xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision e0d07278)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/io.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/kexec.h>
42 #include <asm/perf_event.h>
43 #include <asm/mce.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50 
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "irq.h"
55 #include "kvm_cache_regs.h"
56 #include "lapic.h"
57 #include "mmu.h"
58 #include "nested.h"
59 #include "ops.h"
60 #include "pmu.h"
61 #include "trace.h"
62 #include "vmcs.h"
63 #include "vmcs12.h"
64 #include "vmx.h"
65 #include "x86.h"
66 
67 MODULE_AUTHOR("Qumranet");
68 MODULE_LICENSE("GPL");
69 
70 #ifdef MODULE
71 static const struct x86_cpu_id vmx_cpu_id[] = {
72 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
73 	{}
74 };
75 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
76 #endif
77 
78 bool __read_mostly enable_vpid = 1;
79 module_param_named(vpid, enable_vpid, bool, 0444);
80 
81 static bool __read_mostly enable_vnmi = 1;
82 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
83 
84 bool __read_mostly flexpriority_enabled = 1;
85 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
86 
87 bool __read_mostly enable_ept = 1;
88 module_param_named(ept, enable_ept, bool, S_IRUGO);
89 
90 bool __read_mostly enable_unrestricted_guest = 1;
91 module_param_named(unrestricted_guest,
92 			enable_unrestricted_guest, bool, S_IRUGO);
93 
94 bool __read_mostly enable_ept_ad_bits = 1;
95 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
96 
97 static bool __read_mostly emulate_invalid_guest_state = true;
98 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
99 
100 static bool __read_mostly fasteoi = 1;
101 module_param(fasteoi, bool, S_IRUGO);
102 
103 bool __read_mostly enable_apicv = 1;
104 module_param(enable_apicv, bool, S_IRUGO);
105 
106 /*
107  * If nested=1, nested virtualization is supported, i.e., guests may use
108  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
109  * use VMX instructions.
110  */
111 static bool __read_mostly nested = 1;
112 module_param(nested, bool, S_IRUGO);
113 
114 bool __read_mostly enable_pml = 1;
115 module_param_named(pml, enable_pml, bool, S_IRUGO);
116 
117 static bool __read_mostly dump_invalid_vmcs = 0;
118 module_param(dump_invalid_vmcs, bool, 0644);
119 
120 #define MSR_BITMAP_MODE_X2APIC		1
121 #define MSR_BITMAP_MODE_X2APIC_APICV	2
122 
123 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
124 
125 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
126 static int __read_mostly cpu_preemption_timer_multi;
127 static bool __read_mostly enable_preemption_timer = 1;
128 #ifdef CONFIG_X86_64
129 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
130 #endif
131 
132 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
133 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
134 #define KVM_VM_CR0_ALWAYS_ON				\
135 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
136 	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
137 
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141 
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143 
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147 	RTIT_STATUS_BYTECNT))
148 
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150 	(~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151 
152 /*
153  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154  * ple_gap:    upper bound on the amount of time between two successive
155  *             executions of PAUSE in a loop. Also indicate if ple enabled.
156  *             According to test, this time is usually smaller than 128 cycles.
157  * ple_window: upper bound on the amount of time a guest is allowed to execute
158  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
159  *             less than 2^12 cycles
160  * Time is measured based on a counter that runs at the same rate as the TSC,
161  * refer SDM volume 3b section 21.6.13 & 22.1.3.
162  */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165 
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168 
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172 
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176 
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180 
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184 
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188 
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191 
192 static const struct {
193 	const char *option;
194 	bool for_parse;
195 } vmentry_l1d_param[] = {
196 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
197 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
198 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
199 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
200 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203 
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206 
207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209 	struct page *page;
210 	unsigned int i;
211 
212 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
213 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
214 		return 0;
215 	}
216 
217 	if (!enable_ept) {
218 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
219 		return 0;
220 	}
221 
222 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
223 		u64 msr;
224 
225 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
226 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
227 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
228 			return 0;
229 		}
230 	}
231 
232 	/* If set to auto use the default l1tf mitigation method */
233 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
234 		switch (l1tf_mitigation) {
235 		case L1TF_MITIGATION_OFF:
236 			l1tf = VMENTER_L1D_FLUSH_NEVER;
237 			break;
238 		case L1TF_MITIGATION_FLUSH_NOWARN:
239 		case L1TF_MITIGATION_FLUSH:
240 		case L1TF_MITIGATION_FLUSH_NOSMT:
241 			l1tf = VMENTER_L1D_FLUSH_COND;
242 			break;
243 		case L1TF_MITIGATION_FULL:
244 		case L1TF_MITIGATION_FULL_FORCE:
245 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
246 			break;
247 		}
248 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
249 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
250 	}
251 
252 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
253 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
254 		/*
255 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
256 		 * lifetime and so should not be charged to a memcg.
257 		 */
258 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
259 		if (!page)
260 			return -ENOMEM;
261 		vmx_l1d_flush_pages = page_address(page);
262 
263 		/*
264 		 * Initialize each page with a different pattern in
265 		 * order to protect against KSM in the nested
266 		 * virtualization case.
267 		 */
268 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
269 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
270 			       PAGE_SIZE);
271 		}
272 	}
273 
274 	l1tf_vmx_mitigation = l1tf;
275 
276 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
277 		static_branch_enable(&vmx_l1d_should_flush);
278 	else
279 		static_branch_disable(&vmx_l1d_should_flush);
280 
281 	if (l1tf == VMENTER_L1D_FLUSH_COND)
282 		static_branch_enable(&vmx_l1d_flush_cond);
283 	else
284 		static_branch_disable(&vmx_l1d_flush_cond);
285 	return 0;
286 }
287 
288 static int vmentry_l1d_flush_parse(const char *s)
289 {
290 	unsigned int i;
291 
292 	if (s) {
293 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
294 			if (vmentry_l1d_param[i].for_parse &&
295 			    sysfs_streq(s, vmentry_l1d_param[i].option))
296 				return i;
297 		}
298 	}
299 	return -EINVAL;
300 }
301 
302 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
303 {
304 	int l1tf, ret;
305 
306 	l1tf = vmentry_l1d_flush_parse(s);
307 	if (l1tf < 0)
308 		return l1tf;
309 
310 	if (!boot_cpu_has(X86_BUG_L1TF))
311 		return 0;
312 
313 	/*
314 	 * Has vmx_init() run already? If not then this is the pre init
315 	 * parameter parsing. In that case just store the value and let
316 	 * vmx_init() do the proper setup after enable_ept has been
317 	 * established.
318 	 */
319 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
320 		vmentry_l1d_flush_param = l1tf;
321 		return 0;
322 	}
323 
324 	mutex_lock(&vmx_l1d_flush_mutex);
325 	ret = vmx_setup_l1d_flush(l1tf);
326 	mutex_unlock(&vmx_l1d_flush_mutex);
327 	return ret;
328 }
329 
330 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
331 {
332 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
333 		return sprintf(s, "???\n");
334 
335 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
336 }
337 
338 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
339 	.set = vmentry_l1d_flush_set,
340 	.get = vmentry_l1d_flush_get,
341 };
342 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
343 
344 static bool guest_state_valid(struct kvm_vcpu *vcpu);
345 static u32 vmx_segment_access_rights(struct kvm_segment *var);
346 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
347 							  u32 msr, int type);
348 
349 void vmx_vmexit(void);
350 
351 #define vmx_insn_failed(fmt...)		\
352 do {					\
353 	WARN_ONCE(1, fmt);		\
354 	pr_warn_ratelimited(fmt);	\
355 } while (0)
356 
357 asmlinkage void vmread_error(unsigned long field, bool fault)
358 {
359 	if (fault)
360 		kvm_spurious_fault();
361 	else
362 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
363 }
364 
365 noinline void vmwrite_error(unsigned long field, unsigned long value)
366 {
367 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
368 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
369 }
370 
371 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
372 {
373 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
374 }
375 
376 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
377 {
378 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
379 }
380 
381 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
382 {
383 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
384 			ext, vpid, gva);
385 }
386 
387 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
388 {
389 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
390 			ext, eptp, gpa);
391 }
392 
393 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
394 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
395 /*
396  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
397  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
398  */
399 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
400 
401 /*
402  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
403  * can find which vCPU should be waken up.
404  */
405 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
406 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
407 
408 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
409 static DEFINE_SPINLOCK(vmx_vpid_lock);
410 
411 struct vmcs_config vmcs_config;
412 struct vmx_capability vmx_capability;
413 
414 #define VMX_SEGMENT_FIELD(seg)					\
415 	[VCPU_SREG_##seg] = {                                   \
416 		.selector = GUEST_##seg##_SELECTOR,		\
417 		.base = GUEST_##seg##_BASE,		   	\
418 		.limit = GUEST_##seg##_LIMIT,		   	\
419 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
420 	}
421 
422 static const struct kvm_vmx_segment_field {
423 	unsigned selector;
424 	unsigned base;
425 	unsigned limit;
426 	unsigned ar_bytes;
427 } kvm_vmx_segment_fields[] = {
428 	VMX_SEGMENT_FIELD(CS),
429 	VMX_SEGMENT_FIELD(DS),
430 	VMX_SEGMENT_FIELD(ES),
431 	VMX_SEGMENT_FIELD(FS),
432 	VMX_SEGMENT_FIELD(GS),
433 	VMX_SEGMENT_FIELD(SS),
434 	VMX_SEGMENT_FIELD(TR),
435 	VMX_SEGMENT_FIELD(LDTR),
436 };
437 
438 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
439 {
440 	vmx->segment_cache.bitmask = 0;
441 }
442 
443 static unsigned long host_idt_base;
444 
445 /*
446  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
447  * will emulate SYSCALL in legacy mode if the vendor string in guest
448  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
449  * support this emulation, IA32_STAR must always be included in
450  * vmx_msr_index[], even in i386 builds.
451  */
452 const u32 vmx_msr_index[] = {
453 #ifdef CONFIG_X86_64
454 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
455 #endif
456 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
457 	MSR_IA32_TSX_CTRL,
458 };
459 
460 #if IS_ENABLED(CONFIG_HYPERV)
461 static bool __read_mostly enlightened_vmcs = true;
462 module_param(enlightened_vmcs, bool, 0444);
463 
464 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
465 static void check_ept_pointer_match(struct kvm *kvm)
466 {
467 	struct kvm_vcpu *vcpu;
468 	u64 tmp_eptp = INVALID_PAGE;
469 	int i;
470 
471 	kvm_for_each_vcpu(i, vcpu, kvm) {
472 		if (!VALID_PAGE(tmp_eptp)) {
473 			tmp_eptp = to_vmx(vcpu)->ept_pointer;
474 		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
475 			to_kvm_vmx(kvm)->ept_pointers_match
476 				= EPT_POINTERS_MISMATCH;
477 			return;
478 		}
479 	}
480 
481 	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
482 }
483 
484 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
485 		void *data)
486 {
487 	struct kvm_tlb_range *range = data;
488 
489 	return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
490 			range->pages);
491 }
492 
493 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
494 		struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
495 {
496 	u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
497 
498 	/*
499 	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
500 	 * of the base of EPT PML4 table, strip off EPT configuration
501 	 * information.
502 	 */
503 	if (range)
504 		return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
505 				kvm_fill_hv_flush_list_func, (void *)range);
506 	else
507 		return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
508 }
509 
510 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
511 		struct kvm_tlb_range *range)
512 {
513 	struct kvm_vcpu *vcpu;
514 	int ret = 0, i;
515 
516 	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
517 
518 	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
519 		check_ept_pointer_match(kvm);
520 
521 	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
522 		kvm_for_each_vcpu(i, vcpu, kvm) {
523 			/* If ept_pointer is invalid pointer, bypass flush request. */
524 			if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
525 				ret |= __hv_remote_flush_tlb_with_range(
526 					kvm, vcpu, range);
527 		}
528 	} else {
529 		ret = __hv_remote_flush_tlb_with_range(kvm,
530 				kvm_get_vcpu(kvm, 0), range);
531 	}
532 
533 	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
534 	return ret;
535 }
536 static int hv_remote_flush_tlb(struct kvm *kvm)
537 {
538 	return hv_remote_flush_tlb_with_range(kvm, NULL);
539 }
540 
541 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
542 {
543 	struct hv_enlightened_vmcs *evmcs;
544 	struct hv_partition_assist_pg **p_hv_pa_pg =
545 			&vcpu->kvm->arch.hyperv.hv_pa_pg;
546 	/*
547 	 * Synthetic VM-Exit is not enabled in current code and so All
548 	 * evmcs in singe VM shares same assist page.
549 	 */
550 	if (!*p_hv_pa_pg)
551 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
552 
553 	if (!*p_hv_pa_pg)
554 		return -ENOMEM;
555 
556 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
557 
558 	evmcs->partition_assist_page =
559 		__pa(*p_hv_pa_pg);
560 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
561 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
562 
563 	return 0;
564 }
565 
566 #endif /* IS_ENABLED(CONFIG_HYPERV) */
567 
568 /*
569  * Comment's format: document - errata name - stepping - processor name.
570  * Refer from
571  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
572  */
573 static u32 vmx_preemption_cpu_tfms[] = {
574 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
575 0x000206E6,
576 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
577 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
578 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
579 0x00020652,
580 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
581 0x00020655,
582 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
583 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
584 /*
585  * 320767.pdf - AAP86  - B1 -
586  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
587  */
588 0x000106E5,
589 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
590 0x000106A0,
591 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
592 0x000106A1,
593 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
594 0x000106A4,
595  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
596  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
597  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
598 0x000106A5,
599  /* Xeon E3-1220 V2 */
600 0x000306A8,
601 };
602 
603 static inline bool cpu_has_broken_vmx_preemption_timer(void)
604 {
605 	u32 eax = cpuid_eax(0x00000001), i;
606 
607 	/* Clear the reserved bits */
608 	eax &= ~(0x3U << 14 | 0xfU << 28);
609 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
610 		if (eax == vmx_preemption_cpu_tfms[i])
611 			return true;
612 
613 	return false;
614 }
615 
616 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
617 {
618 	return flexpriority_enabled && lapic_in_kernel(vcpu);
619 }
620 
621 static inline bool report_flexpriority(void)
622 {
623 	return flexpriority_enabled;
624 }
625 
626 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
627 {
628 	int i;
629 
630 	for (i = 0; i < vmx->nmsrs; ++i)
631 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
632 			return i;
633 	return -1;
634 }
635 
636 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
637 {
638 	int i;
639 
640 	i = __find_msr_index(vmx, msr);
641 	if (i >= 0)
642 		return &vmx->guest_msrs[i];
643 	return NULL;
644 }
645 
646 static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data)
647 {
648 	int ret = 0;
649 
650 	u64 old_msr_data = msr->data;
651 	msr->data = data;
652 	if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
653 		preempt_disable();
654 		ret = kvm_set_shared_msr(msr->index, msr->data,
655 					 msr->mask);
656 		preempt_enable();
657 		if (ret)
658 			msr->data = old_msr_data;
659 	}
660 	return ret;
661 }
662 
663 #ifdef CONFIG_KEXEC_CORE
664 static void crash_vmclear_local_loaded_vmcss(void)
665 {
666 	int cpu = raw_smp_processor_id();
667 	struct loaded_vmcs *v;
668 
669 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
670 			    loaded_vmcss_on_cpu_link)
671 		vmcs_clear(v->vmcs);
672 }
673 #endif /* CONFIG_KEXEC_CORE */
674 
675 static void __loaded_vmcs_clear(void *arg)
676 {
677 	struct loaded_vmcs *loaded_vmcs = arg;
678 	int cpu = raw_smp_processor_id();
679 
680 	if (loaded_vmcs->cpu != cpu)
681 		return; /* vcpu migration can race with cpu offline */
682 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
683 		per_cpu(current_vmcs, cpu) = NULL;
684 
685 	vmcs_clear(loaded_vmcs->vmcs);
686 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
687 		vmcs_clear(loaded_vmcs->shadow_vmcs);
688 
689 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
690 
691 	/*
692 	 * Ensure all writes to loaded_vmcs, including deleting it from its
693 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
694 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
695 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
696 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
697 	 */
698 	smp_wmb();
699 
700 	loaded_vmcs->cpu = -1;
701 	loaded_vmcs->launched = 0;
702 }
703 
704 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
705 {
706 	int cpu = loaded_vmcs->cpu;
707 
708 	if (cpu != -1)
709 		smp_call_function_single(cpu,
710 			 __loaded_vmcs_clear, loaded_vmcs, 1);
711 }
712 
713 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
714 				       unsigned field)
715 {
716 	bool ret;
717 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
718 
719 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
720 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
721 		vmx->segment_cache.bitmask = 0;
722 	}
723 	ret = vmx->segment_cache.bitmask & mask;
724 	vmx->segment_cache.bitmask |= mask;
725 	return ret;
726 }
727 
728 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
729 {
730 	u16 *p = &vmx->segment_cache.seg[seg].selector;
731 
732 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
733 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
734 	return *p;
735 }
736 
737 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
738 {
739 	ulong *p = &vmx->segment_cache.seg[seg].base;
740 
741 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
742 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
743 	return *p;
744 }
745 
746 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
747 {
748 	u32 *p = &vmx->segment_cache.seg[seg].limit;
749 
750 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
751 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
752 	return *p;
753 }
754 
755 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
756 {
757 	u32 *p = &vmx->segment_cache.seg[seg].ar;
758 
759 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
760 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
761 	return *p;
762 }
763 
764 void update_exception_bitmap(struct kvm_vcpu *vcpu)
765 {
766 	u32 eb;
767 
768 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
769 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
770 	/*
771 	 * Guest access to VMware backdoor ports could legitimately
772 	 * trigger #GP because of TSS I/O permission bitmap.
773 	 * We intercept those #GP and allow access to them anyway
774 	 * as VMware does.
775 	 */
776 	if (enable_vmware_backdoor)
777 		eb |= (1u << GP_VECTOR);
778 	if ((vcpu->guest_debug &
779 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
780 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
781 		eb |= 1u << BP_VECTOR;
782 	if (to_vmx(vcpu)->rmode.vm86_active)
783 		eb = ~0;
784 	if (!vmx_need_pf_intercept(vcpu))
785 		eb &= ~(1u << PF_VECTOR);
786 
787 	/* When we are running a nested L2 guest and L1 specified for it a
788 	 * certain exception bitmap, we must trap the same exceptions and pass
789 	 * them to L1. When running L2, we will only handle the exceptions
790 	 * specified above if L1 did not want them.
791 	 */
792 	if (is_guest_mode(vcpu))
793 		eb |= get_vmcs12(vcpu)->exception_bitmap;
794 
795 	vmcs_write32(EXCEPTION_BITMAP, eb);
796 }
797 
798 /*
799  * Check if MSR is intercepted for currently loaded MSR bitmap.
800  */
801 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
802 {
803 	unsigned long *msr_bitmap;
804 	int f = sizeof(unsigned long);
805 
806 	if (!cpu_has_vmx_msr_bitmap())
807 		return true;
808 
809 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
810 
811 	if (msr <= 0x1fff) {
812 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
813 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
814 		msr &= 0x1fff;
815 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
816 	}
817 
818 	return true;
819 }
820 
821 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
822 		unsigned long entry, unsigned long exit)
823 {
824 	vm_entry_controls_clearbit(vmx, entry);
825 	vm_exit_controls_clearbit(vmx, exit);
826 }
827 
828 int vmx_find_msr_index(struct vmx_msrs *m, u32 msr)
829 {
830 	unsigned int i;
831 
832 	for (i = 0; i < m->nr; ++i) {
833 		if (m->val[i].index == msr)
834 			return i;
835 	}
836 	return -ENOENT;
837 }
838 
839 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
840 {
841 	int i;
842 	struct msr_autoload *m = &vmx->msr_autoload;
843 
844 	switch (msr) {
845 	case MSR_EFER:
846 		if (cpu_has_load_ia32_efer()) {
847 			clear_atomic_switch_msr_special(vmx,
848 					VM_ENTRY_LOAD_IA32_EFER,
849 					VM_EXIT_LOAD_IA32_EFER);
850 			return;
851 		}
852 		break;
853 	case MSR_CORE_PERF_GLOBAL_CTRL:
854 		if (cpu_has_load_perf_global_ctrl()) {
855 			clear_atomic_switch_msr_special(vmx,
856 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
857 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
858 			return;
859 		}
860 		break;
861 	}
862 	i = vmx_find_msr_index(&m->guest, msr);
863 	if (i < 0)
864 		goto skip_guest;
865 	--m->guest.nr;
866 	m->guest.val[i] = m->guest.val[m->guest.nr];
867 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
868 
869 skip_guest:
870 	i = vmx_find_msr_index(&m->host, msr);
871 	if (i < 0)
872 		return;
873 
874 	--m->host.nr;
875 	m->host.val[i] = m->host.val[m->host.nr];
876 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
877 }
878 
879 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
880 		unsigned long entry, unsigned long exit,
881 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
882 		u64 guest_val, u64 host_val)
883 {
884 	vmcs_write64(guest_val_vmcs, guest_val);
885 	if (host_val_vmcs != HOST_IA32_EFER)
886 		vmcs_write64(host_val_vmcs, host_val);
887 	vm_entry_controls_setbit(vmx, entry);
888 	vm_exit_controls_setbit(vmx, exit);
889 }
890 
891 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
892 				  u64 guest_val, u64 host_val, bool entry_only)
893 {
894 	int i, j = 0;
895 	struct msr_autoload *m = &vmx->msr_autoload;
896 
897 	switch (msr) {
898 	case MSR_EFER:
899 		if (cpu_has_load_ia32_efer()) {
900 			add_atomic_switch_msr_special(vmx,
901 					VM_ENTRY_LOAD_IA32_EFER,
902 					VM_EXIT_LOAD_IA32_EFER,
903 					GUEST_IA32_EFER,
904 					HOST_IA32_EFER,
905 					guest_val, host_val);
906 			return;
907 		}
908 		break;
909 	case MSR_CORE_PERF_GLOBAL_CTRL:
910 		if (cpu_has_load_perf_global_ctrl()) {
911 			add_atomic_switch_msr_special(vmx,
912 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
913 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
914 					GUEST_IA32_PERF_GLOBAL_CTRL,
915 					HOST_IA32_PERF_GLOBAL_CTRL,
916 					guest_val, host_val);
917 			return;
918 		}
919 		break;
920 	case MSR_IA32_PEBS_ENABLE:
921 		/* PEBS needs a quiescent period after being disabled (to write
922 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
923 		 * provide that period, so a CPU could write host's record into
924 		 * guest's memory.
925 		 */
926 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
927 	}
928 
929 	i = vmx_find_msr_index(&m->guest, msr);
930 	if (!entry_only)
931 		j = vmx_find_msr_index(&m->host, msr);
932 
933 	if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) ||
934 		(j < 0 &&  m->host.nr == NR_LOADSTORE_MSRS)) {
935 		printk_once(KERN_WARNING "Not enough msr switch entries. "
936 				"Can't add msr %x\n", msr);
937 		return;
938 	}
939 	if (i < 0) {
940 		i = m->guest.nr++;
941 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
942 	}
943 	m->guest.val[i].index = msr;
944 	m->guest.val[i].value = guest_val;
945 
946 	if (entry_only)
947 		return;
948 
949 	if (j < 0) {
950 		j = m->host.nr++;
951 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
952 	}
953 	m->host.val[j].index = msr;
954 	m->host.val[j].value = host_val;
955 }
956 
957 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
958 {
959 	u64 guest_efer = vmx->vcpu.arch.efer;
960 	u64 ignore_bits = 0;
961 
962 	/* Shadow paging assumes NX to be available.  */
963 	if (!enable_ept)
964 		guest_efer |= EFER_NX;
965 
966 	/*
967 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
968 	 */
969 	ignore_bits |= EFER_SCE;
970 #ifdef CONFIG_X86_64
971 	ignore_bits |= EFER_LMA | EFER_LME;
972 	/* SCE is meaningful only in long mode on Intel */
973 	if (guest_efer & EFER_LMA)
974 		ignore_bits &= ~(u64)EFER_SCE;
975 #endif
976 
977 	/*
978 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
979 	 * On CPUs that support "load IA32_EFER", always switch EFER
980 	 * atomically, since it's faster than switching it manually.
981 	 */
982 	if (cpu_has_load_ia32_efer() ||
983 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
984 		if (!(guest_efer & EFER_LMA))
985 			guest_efer &= ~EFER_LME;
986 		if (guest_efer != host_efer)
987 			add_atomic_switch_msr(vmx, MSR_EFER,
988 					      guest_efer, host_efer, false);
989 		else
990 			clear_atomic_switch_msr(vmx, MSR_EFER);
991 		return false;
992 	} else {
993 		clear_atomic_switch_msr(vmx, MSR_EFER);
994 
995 		guest_efer &= ~ignore_bits;
996 		guest_efer |= host_efer & ignore_bits;
997 
998 		vmx->guest_msrs[efer_offset].data = guest_efer;
999 		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1000 
1001 		return true;
1002 	}
1003 }
1004 
1005 #ifdef CONFIG_X86_32
1006 /*
1007  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1008  * VMCS rather than the segment table.  KVM uses this helper to figure
1009  * out the current bases to poke them into the VMCS before entry.
1010  */
1011 static unsigned long segment_base(u16 selector)
1012 {
1013 	struct desc_struct *table;
1014 	unsigned long v;
1015 
1016 	if (!(selector & ~SEGMENT_RPL_MASK))
1017 		return 0;
1018 
1019 	table = get_current_gdt_ro();
1020 
1021 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1022 		u16 ldt_selector = kvm_read_ldt();
1023 
1024 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1025 			return 0;
1026 
1027 		table = (struct desc_struct *)segment_base(ldt_selector);
1028 	}
1029 	v = get_desc_base(&table[selector >> 3]);
1030 	return v;
1031 }
1032 #endif
1033 
1034 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1035 {
1036 	return vmx_pt_mode_is_host_guest() &&
1037 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1038 }
1039 
1040 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1041 {
1042 	u32 i;
1043 
1044 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1045 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1046 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1047 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1048 	for (i = 0; i < addr_range; i++) {
1049 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1050 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1051 	}
1052 }
1053 
1054 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1055 {
1056 	u32 i;
1057 
1058 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1059 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1060 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1061 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1062 	for (i = 0; i < addr_range; i++) {
1063 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1064 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1065 	}
1066 }
1067 
1068 static void pt_guest_enter(struct vcpu_vmx *vmx)
1069 {
1070 	if (vmx_pt_mode_is_system())
1071 		return;
1072 
1073 	/*
1074 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1075 	 * Save host state before VM entry.
1076 	 */
1077 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1078 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1079 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1080 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1081 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1082 	}
1083 }
1084 
1085 static void pt_guest_exit(struct vcpu_vmx *vmx)
1086 {
1087 	if (vmx_pt_mode_is_system())
1088 		return;
1089 
1090 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1091 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1092 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1093 	}
1094 
1095 	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1096 	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1097 }
1098 
1099 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1100 			unsigned long fs_base, unsigned long gs_base)
1101 {
1102 	if (unlikely(fs_sel != host->fs_sel)) {
1103 		if (!(fs_sel & 7))
1104 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1105 		else
1106 			vmcs_write16(HOST_FS_SELECTOR, 0);
1107 		host->fs_sel = fs_sel;
1108 	}
1109 	if (unlikely(gs_sel != host->gs_sel)) {
1110 		if (!(gs_sel & 7))
1111 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1112 		else
1113 			vmcs_write16(HOST_GS_SELECTOR, 0);
1114 		host->gs_sel = gs_sel;
1115 	}
1116 	if (unlikely(fs_base != host->fs_base)) {
1117 		vmcs_writel(HOST_FS_BASE, fs_base);
1118 		host->fs_base = fs_base;
1119 	}
1120 	if (unlikely(gs_base != host->gs_base)) {
1121 		vmcs_writel(HOST_GS_BASE, gs_base);
1122 		host->gs_base = gs_base;
1123 	}
1124 }
1125 
1126 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1127 {
1128 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1129 	struct vmcs_host_state *host_state;
1130 #ifdef CONFIG_X86_64
1131 	int cpu = raw_smp_processor_id();
1132 #endif
1133 	unsigned long fs_base, gs_base;
1134 	u16 fs_sel, gs_sel;
1135 	int i;
1136 
1137 	vmx->req_immediate_exit = false;
1138 
1139 	/*
1140 	 * Note that guest MSRs to be saved/restored can also be changed
1141 	 * when guest state is loaded. This happens when guest transitions
1142 	 * to/from long-mode by setting MSR_EFER.LMA.
1143 	 */
1144 	if (!vmx->guest_msrs_ready) {
1145 		vmx->guest_msrs_ready = true;
1146 		for (i = 0; i < vmx->save_nmsrs; ++i)
1147 			kvm_set_shared_msr(vmx->guest_msrs[i].index,
1148 					   vmx->guest_msrs[i].data,
1149 					   vmx->guest_msrs[i].mask);
1150 
1151 	}
1152 
1153     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1154 		nested_sync_vmcs12_to_shadow(vcpu);
1155 
1156 	if (vmx->guest_state_loaded)
1157 		return;
1158 
1159 	host_state = &vmx->loaded_vmcs->host_state;
1160 
1161 	/*
1162 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1163 	 * allow segment selectors with cpl > 0 or ti == 1.
1164 	 */
1165 	host_state->ldt_sel = kvm_read_ldt();
1166 
1167 #ifdef CONFIG_X86_64
1168 	savesegment(ds, host_state->ds_sel);
1169 	savesegment(es, host_state->es_sel);
1170 
1171 	gs_base = cpu_kernelmode_gs_base(cpu);
1172 	if (likely(is_64bit_mm(current->mm))) {
1173 		current_save_fsgs();
1174 		fs_sel = current->thread.fsindex;
1175 		gs_sel = current->thread.gsindex;
1176 		fs_base = current->thread.fsbase;
1177 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1178 	} else {
1179 		savesegment(fs, fs_sel);
1180 		savesegment(gs, gs_sel);
1181 		fs_base = read_msr(MSR_FS_BASE);
1182 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1183 	}
1184 
1185 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1186 #else
1187 	savesegment(fs, fs_sel);
1188 	savesegment(gs, gs_sel);
1189 	fs_base = segment_base(fs_sel);
1190 	gs_base = segment_base(gs_sel);
1191 #endif
1192 
1193 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1194 	vmx->guest_state_loaded = true;
1195 }
1196 
1197 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1198 {
1199 	struct vmcs_host_state *host_state;
1200 
1201 	if (!vmx->guest_state_loaded)
1202 		return;
1203 
1204 	host_state = &vmx->loaded_vmcs->host_state;
1205 
1206 	++vmx->vcpu.stat.host_state_reload;
1207 
1208 #ifdef CONFIG_X86_64
1209 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1210 #endif
1211 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1212 		kvm_load_ldt(host_state->ldt_sel);
1213 #ifdef CONFIG_X86_64
1214 		load_gs_index(host_state->gs_sel);
1215 #else
1216 		loadsegment(gs, host_state->gs_sel);
1217 #endif
1218 	}
1219 	if (host_state->fs_sel & 7)
1220 		loadsegment(fs, host_state->fs_sel);
1221 #ifdef CONFIG_X86_64
1222 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1223 		loadsegment(ds, host_state->ds_sel);
1224 		loadsegment(es, host_state->es_sel);
1225 	}
1226 #endif
1227 	invalidate_tss_limit();
1228 #ifdef CONFIG_X86_64
1229 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1230 #endif
1231 	load_fixmap_gdt(raw_smp_processor_id());
1232 	vmx->guest_state_loaded = false;
1233 	vmx->guest_msrs_ready = false;
1234 }
1235 
1236 #ifdef CONFIG_X86_64
1237 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1238 {
1239 	preempt_disable();
1240 	if (vmx->guest_state_loaded)
1241 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1242 	preempt_enable();
1243 	return vmx->msr_guest_kernel_gs_base;
1244 }
1245 
1246 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1247 {
1248 	preempt_disable();
1249 	if (vmx->guest_state_loaded)
1250 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1251 	preempt_enable();
1252 	vmx->msr_guest_kernel_gs_base = data;
1253 }
1254 #endif
1255 
1256 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1257 {
1258 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1259 	struct pi_desc old, new;
1260 	unsigned int dest;
1261 
1262 	/*
1263 	 * In case of hot-plug or hot-unplug, we may have to undo
1264 	 * vmx_vcpu_pi_put even if there is no assigned device.  And we
1265 	 * always keep PI.NDST up to date for simplicity: it makes the
1266 	 * code easier, and CPU migration is not a fast path.
1267 	 */
1268 	if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1269 		return;
1270 
1271 	/*
1272 	 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1273 	 * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1274 	 * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1275 	 * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1276 	 * correctly.
1277 	 */
1278 	if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1279 		pi_clear_sn(pi_desc);
1280 		goto after_clear_sn;
1281 	}
1282 
1283 	/* The full case.  */
1284 	do {
1285 		old.control = new.control = pi_desc->control;
1286 
1287 		dest = cpu_physical_id(cpu);
1288 
1289 		if (x2apic_enabled())
1290 			new.ndst = dest;
1291 		else
1292 			new.ndst = (dest << 8) & 0xFF00;
1293 
1294 		new.sn = 0;
1295 	} while (cmpxchg64(&pi_desc->control, old.control,
1296 			   new.control) != old.control);
1297 
1298 after_clear_sn:
1299 
1300 	/*
1301 	 * Clear SN before reading the bitmap.  The VT-d firmware
1302 	 * writes the bitmap and reads SN atomically (5.2.3 in the
1303 	 * spec), so it doesn't really have a memory barrier that
1304 	 * pairs with this, but we cannot do that and we need one.
1305 	 */
1306 	smp_mb__after_atomic();
1307 
1308 	if (!pi_is_pir_empty(pi_desc))
1309 		pi_set_on(pi_desc);
1310 }
1311 
1312 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1313 			struct loaded_vmcs *buddy)
1314 {
1315 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1316 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1317 	struct vmcs *prev;
1318 
1319 	if (!already_loaded) {
1320 		loaded_vmcs_clear(vmx->loaded_vmcs);
1321 		local_irq_disable();
1322 
1323 		/*
1324 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1325 		 * this cpu's percpu list, otherwise it may not yet be deleted
1326 		 * from its previous cpu's percpu list.  Pairs with the
1327 		 * smb_wmb() in __loaded_vmcs_clear().
1328 		 */
1329 		smp_rmb();
1330 
1331 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1332 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1333 		local_irq_enable();
1334 	}
1335 
1336 	prev = per_cpu(current_vmcs, cpu);
1337 	if (prev != vmx->loaded_vmcs->vmcs) {
1338 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1339 		vmcs_load(vmx->loaded_vmcs->vmcs);
1340 
1341 		/*
1342 		 * No indirect branch prediction barrier needed when switching
1343 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1344 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1345 		 */
1346 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1347 			indirect_branch_prediction_barrier();
1348 	}
1349 
1350 	if (!already_loaded) {
1351 		void *gdt = get_current_gdt_ro();
1352 		unsigned long sysenter_esp;
1353 
1354 		/*
1355 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1356 		 * TLB entries from its previous association with the vCPU.
1357 		 */
1358 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1359 
1360 		/*
1361 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1362 		 * processors.  See 22.2.4.
1363 		 */
1364 		vmcs_writel(HOST_TR_BASE,
1365 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1366 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1367 
1368 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1369 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1370 
1371 		vmx->loaded_vmcs->cpu = cpu;
1372 	}
1373 
1374 	/* Setup TSC multiplier */
1375 	if (kvm_has_tsc_control &&
1376 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1377 		decache_tsc_multiplier(vmx);
1378 }
1379 
1380 /*
1381  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1382  * vcpu mutex is already taken.
1383  */
1384 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1385 {
1386 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1387 
1388 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1389 
1390 	vmx_vcpu_pi_load(vcpu, cpu);
1391 
1392 	vmx->host_debugctlmsr = get_debugctlmsr();
1393 }
1394 
1395 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1396 {
1397 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1398 
1399 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1400 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
1401 		!kvm_vcpu_apicv_active(vcpu))
1402 		return;
1403 
1404 	/* Set SN when the vCPU is preempted */
1405 	if (vcpu->preempted)
1406 		pi_set_sn(pi_desc);
1407 }
1408 
1409 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1410 {
1411 	vmx_vcpu_pi_put(vcpu);
1412 
1413 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1414 }
1415 
1416 static bool emulation_required(struct kvm_vcpu *vcpu)
1417 {
1418 	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1419 }
1420 
1421 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1422 {
1423 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1424 	unsigned long rflags, save_rflags;
1425 
1426 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1427 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1428 		rflags = vmcs_readl(GUEST_RFLAGS);
1429 		if (vmx->rmode.vm86_active) {
1430 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1431 			save_rflags = vmx->rmode.save_rflags;
1432 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1433 		}
1434 		vmx->rflags = rflags;
1435 	}
1436 	return vmx->rflags;
1437 }
1438 
1439 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1440 {
1441 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1442 	unsigned long old_rflags;
1443 
1444 	if (enable_unrestricted_guest) {
1445 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1446 		vmx->rflags = rflags;
1447 		vmcs_writel(GUEST_RFLAGS, rflags);
1448 		return;
1449 	}
1450 
1451 	old_rflags = vmx_get_rflags(vcpu);
1452 	vmx->rflags = rflags;
1453 	if (vmx->rmode.vm86_active) {
1454 		vmx->rmode.save_rflags = rflags;
1455 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1456 	}
1457 	vmcs_writel(GUEST_RFLAGS, rflags);
1458 
1459 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1460 		vmx->emulation_required = emulation_required(vcpu);
1461 }
1462 
1463 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1464 {
1465 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1466 	int ret = 0;
1467 
1468 	if (interruptibility & GUEST_INTR_STATE_STI)
1469 		ret |= KVM_X86_SHADOW_INT_STI;
1470 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1471 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1472 
1473 	return ret;
1474 }
1475 
1476 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1477 {
1478 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1479 	u32 interruptibility = interruptibility_old;
1480 
1481 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1482 
1483 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1484 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1485 	else if (mask & KVM_X86_SHADOW_INT_STI)
1486 		interruptibility |= GUEST_INTR_STATE_STI;
1487 
1488 	if ((interruptibility != interruptibility_old))
1489 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1490 }
1491 
1492 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1493 {
1494 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1495 	unsigned long value;
1496 
1497 	/*
1498 	 * Any MSR write that attempts to change bits marked reserved will
1499 	 * case a #GP fault.
1500 	 */
1501 	if (data & vmx->pt_desc.ctl_bitmask)
1502 		return 1;
1503 
1504 	/*
1505 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1506 	 * result in a #GP unless the same write also clears TraceEn.
1507 	 */
1508 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1509 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1510 		return 1;
1511 
1512 	/*
1513 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1514 	 * and FabricEn would cause #GP, if
1515 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1516 	 */
1517 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1518 		!(data & RTIT_CTL_FABRIC_EN) &&
1519 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1520 					PT_CAP_single_range_output))
1521 		return 1;
1522 
1523 	/*
1524 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1525 	 * utilize encodings marked reserved will casue a #GP fault.
1526 	 */
1527 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1528 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1529 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1530 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1531 		return 1;
1532 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1533 						PT_CAP_cycle_thresholds);
1534 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1535 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1536 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1537 		return 1;
1538 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1539 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1540 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1541 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1542 		return 1;
1543 
1544 	/*
1545 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1546 	 * cause a #GP fault.
1547 	 */
1548 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1549 	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1550 		return 1;
1551 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1552 	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1553 		return 1;
1554 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1555 	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1556 		return 1;
1557 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1558 	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1559 		return 1;
1560 
1561 	return 0;
1562 }
1563 
1564 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1565 {
1566 	unsigned long rip, orig_rip;
1567 
1568 	/*
1569 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1570 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1571 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1572 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1573 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1574 	 * i.e. we end up advancing IP with some random value.
1575 	 */
1576 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1577 	    to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1578 		orig_rip = kvm_rip_read(vcpu);
1579 		rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1580 #ifdef CONFIG_X86_64
1581 		/*
1582 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1583 		 * mode, but just finding out that we are in 64-bit mode is
1584 		 * quite expensive.  Only do it if there was a carry.
1585 		 */
1586 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1587 			rip = (u32)rip;
1588 #endif
1589 		kvm_rip_write(vcpu, rip);
1590 	} else {
1591 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1592 			return 0;
1593 	}
1594 
1595 	/* skipping an emulated instruction also counts */
1596 	vmx_set_interrupt_shadow(vcpu, 0);
1597 
1598 	return 1;
1599 }
1600 
1601 /*
1602  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
1603  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
1604  * indicates whether exit to userspace is needed.
1605  */
1606 int vmx_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
1607 			      struct x86_exception *e)
1608 {
1609 	if (r == X86EMUL_PROPAGATE_FAULT) {
1610 		kvm_inject_emulated_page_fault(vcpu, e);
1611 		return 1;
1612 	}
1613 
1614 	/*
1615 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
1616 	 * while handling a VMX instruction KVM could've handled the request
1617 	 * correctly by exiting to userspace and performing I/O but there
1618 	 * doesn't seem to be a real use-case behind such requests, just return
1619 	 * KVM_EXIT_INTERNAL_ERROR for now.
1620 	 */
1621 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1622 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1623 	vcpu->run->internal.ndata = 0;
1624 
1625 	return 0;
1626 }
1627 
1628 /*
1629  * Recognizes a pending MTF VM-exit and records the nested state for later
1630  * delivery.
1631  */
1632 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1633 {
1634 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1635 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1636 
1637 	if (!is_guest_mode(vcpu))
1638 		return;
1639 
1640 	/*
1641 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1642 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1643 	 * instruction boundary), any #DB exception pending delivery must be a
1644 	 * debug-trap. Record the pending MTF state to be delivered in
1645 	 * vmx_check_nested_events().
1646 	 */
1647 	if (nested_cpu_has_mtf(vmcs12) &&
1648 	    (!vcpu->arch.exception.pending ||
1649 	     vcpu->arch.exception.nr == DB_VECTOR))
1650 		vmx->nested.mtf_pending = true;
1651 	else
1652 		vmx->nested.mtf_pending = false;
1653 }
1654 
1655 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1656 {
1657 	vmx_update_emulated_instruction(vcpu);
1658 	return skip_emulated_instruction(vcpu);
1659 }
1660 
1661 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1662 {
1663 	/*
1664 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1665 	 * explicitly skip the instruction because if the HLT state is set,
1666 	 * then the instruction is already executing and RIP has already been
1667 	 * advanced.
1668 	 */
1669 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1670 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1671 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1672 }
1673 
1674 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1675 {
1676 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1677 	unsigned nr = vcpu->arch.exception.nr;
1678 	bool has_error_code = vcpu->arch.exception.has_error_code;
1679 	u32 error_code = vcpu->arch.exception.error_code;
1680 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1681 
1682 	kvm_deliver_exception_payload(vcpu);
1683 
1684 	if (has_error_code) {
1685 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1686 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1687 	}
1688 
1689 	if (vmx->rmode.vm86_active) {
1690 		int inc_eip = 0;
1691 		if (kvm_exception_is_soft(nr))
1692 			inc_eip = vcpu->arch.event_exit_inst_len;
1693 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1694 		return;
1695 	}
1696 
1697 	WARN_ON_ONCE(vmx->emulation_required);
1698 
1699 	if (kvm_exception_is_soft(nr)) {
1700 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1701 			     vmx->vcpu.arch.event_exit_inst_len);
1702 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1703 	} else
1704 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1705 
1706 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1707 
1708 	vmx_clear_hlt(vcpu);
1709 }
1710 
1711 /*
1712  * Swap MSR entry in host/guest MSR entry array.
1713  */
1714 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1715 {
1716 	struct shared_msr_entry tmp;
1717 
1718 	tmp = vmx->guest_msrs[to];
1719 	vmx->guest_msrs[to] = vmx->guest_msrs[from];
1720 	vmx->guest_msrs[from] = tmp;
1721 }
1722 
1723 /*
1724  * Set up the vmcs to automatically save and restore system
1725  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1726  * mode, as fiddling with msrs is very expensive.
1727  */
1728 static void setup_msrs(struct vcpu_vmx *vmx)
1729 {
1730 	int save_nmsrs, index;
1731 
1732 	save_nmsrs = 0;
1733 #ifdef CONFIG_X86_64
1734 	/*
1735 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1736 	 * when EFER.SCE is set.
1737 	 */
1738 	if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1739 		index = __find_msr_index(vmx, MSR_STAR);
1740 		if (index >= 0)
1741 			move_msr_up(vmx, index, save_nmsrs++);
1742 		index = __find_msr_index(vmx, MSR_LSTAR);
1743 		if (index >= 0)
1744 			move_msr_up(vmx, index, save_nmsrs++);
1745 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1746 		if (index >= 0)
1747 			move_msr_up(vmx, index, save_nmsrs++);
1748 	}
1749 #endif
1750 	index = __find_msr_index(vmx, MSR_EFER);
1751 	if (index >= 0 && update_transition_efer(vmx, index))
1752 		move_msr_up(vmx, index, save_nmsrs++);
1753 	index = __find_msr_index(vmx, MSR_TSC_AUX);
1754 	if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1755 		move_msr_up(vmx, index, save_nmsrs++);
1756 	index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL);
1757 	if (index >= 0)
1758 		move_msr_up(vmx, index, save_nmsrs++);
1759 
1760 	vmx->save_nmsrs = save_nmsrs;
1761 	vmx->guest_msrs_ready = false;
1762 
1763 	if (cpu_has_vmx_msr_bitmap())
1764 		vmx_update_msr_bitmap(&vmx->vcpu);
1765 }
1766 
1767 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1768 {
1769 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1770 	u64 g_tsc_offset = 0;
1771 
1772 	/*
1773 	 * We're here if L1 chose not to trap WRMSR to TSC. According
1774 	 * to the spec, this should set L1's TSC; The offset that L1
1775 	 * set for L2 remains unchanged, and still needs to be added
1776 	 * to the newly set TSC to get L2's TSC.
1777 	 */
1778 	if (is_guest_mode(vcpu) &&
1779 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1780 		g_tsc_offset = vmcs12->tsc_offset;
1781 
1782 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1783 				   vcpu->arch.tsc_offset - g_tsc_offset,
1784 				   offset);
1785 	vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1786 	return offset + g_tsc_offset;
1787 }
1788 
1789 /*
1790  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1791  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1792  * all guests if the "nested" module option is off, and can also be disabled
1793  * for a single guest by disabling its VMX cpuid bit.
1794  */
1795 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1796 {
1797 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1798 }
1799 
1800 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1801 						 uint64_t val)
1802 {
1803 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1804 
1805 	return !(val & ~valid_bits);
1806 }
1807 
1808 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1809 {
1810 	switch (msr->index) {
1811 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1812 		if (!nested)
1813 			return 1;
1814 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1815 	case MSR_IA32_PERF_CAPABILITIES:
1816 		msr->data = vmx_get_perf_capabilities();
1817 		return 0;
1818 	default:
1819 		return KVM_MSR_RET_INVALID;
1820 	}
1821 }
1822 
1823 /*
1824  * Reads an msr value (of 'msr_index') into 'pdata'.
1825  * Returns 0 on success, non-0 otherwise.
1826  * Assumes vcpu_load() was already called.
1827  */
1828 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1829 {
1830 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1831 	struct shared_msr_entry *msr;
1832 	u32 index;
1833 
1834 	switch (msr_info->index) {
1835 #ifdef CONFIG_X86_64
1836 	case MSR_FS_BASE:
1837 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1838 		break;
1839 	case MSR_GS_BASE:
1840 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1841 		break;
1842 	case MSR_KERNEL_GS_BASE:
1843 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1844 		break;
1845 #endif
1846 	case MSR_EFER:
1847 		return kvm_get_msr_common(vcpu, msr_info);
1848 	case MSR_IA32_TSX_CTRL:
1849 		if (!msr_info->host_initiated &&
1850 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1851 			return 1;
1852 		goto find_shared_msr;
1853 	case MSR_IA32_UMWAIT_CONTROL:
1854 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1855 			return 1;
1856 
1857 		msr_info->data = vmx->msr_ia32_umwait_control;
1858 		break;
1859 	case MSR_IA32_SPEC_CTRL:
1860 		if (!msr_info->host_initiated &&
1861 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1862 			return 1;
1863 
1864 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1865 		break;
1866 	case MSR_IA32_SYSENTER_CS:
1867 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1868 		break;
1869 	case MSR_IA32_SYSENTER_EIP:
1870 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1871 		break;
1872 	case MSR_IA32_SYSENTER_ESP:
1873 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1874 		break;
1875 	case MSR_IA32_BNDCFGS:
1876 		if (!kvm_mpx_supported() ||
1877 		    (!msr_info->host_initiated &&
1878 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1879 			return 1;
1880 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1881 		break;
1882 	case MSR_IA32_MCG_EXT_CTL:
1883 		if (!msr_info->host_initiated &&
1884 		    !(vmx->msr_ia32_feature_control &
1885 		      FEAT_CTL_LMCE_ENABLED))
1886 			return 1;
1887 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1888 		break;
1889 	case MSR_IA32_FEAT_CTL:
1890 		msr_info->data = vmx->msr_ia32_feature_control;
1891 		break;
1892 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1893 		if (!nested_vmx_allowed(vcpu))
1894 			return 1;
1895 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1896 				    &msr_info->data))
1897 			return 1;
1898 		/*
1899 		 * Enlightened VMCS v1 doesn't have certain fields, but buggy
1900 		 * Hyper-V versions are still trying to use corresponding
1901 		 * features when they are exposed. Filter out the essential
1902 		 * minimum.
1903 		 */
1904 		if (!msr_info->host_initiated &&
1905 		    vmx->nested.enlightened_vmcs_enabled)
1906 			nested_evmcs_filter_control_msr(msr_info->index,
1907 							&msr_info->data);
1908 		break;
1909 	case MSR_IA32_RTIT_CTL:
1910 		if (!vmx_pt_mode_is_host_guest())
1911 			return 1;
1912 		msr_info->data = vmx->pt_desc.guest.ctl;
1913 		break;
1914 	case MSR_IA32_RTIT_STATUS:
1915 		if (!vmx_pt_mode_is_host_guest())
1916 			return 1;
1917 		msr_info->data = vmx->pt_desc.guest.status;
1918 		break;
1919 	case MSR_IA32_RTIT_CR3_MATCH:
1920 		if (!vmx_pt_mode_is_host_guest() ||
1921 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1922 						PT_CAP_cr3_filtering))
1923 			return 1;
1924 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1925 		break;
1926 	case MSR_IA32_RTIT_OUTPUT_BASE:
1927 		if (!vmx_pt_mode_is_host_guest() ||
1928 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1929 					PT_CAP_topa_output) &&
1930 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1931 					PT_CAP_single_range_output)))
1932 			return 1;
1933 		msr_info->data = vmx->pt_desc.guest.output_base;
1934 		break;
1935 	case MSR_IA32_RTIT_OUTPUT_MASK:
1936 		if (!vmx_pt_mode_is_host_guest() ||
1937 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1938 					PT_CAP_topa_output) &&
1939 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1940 					PT_CAP_single_range_output)))
1941 			return 1;
1942 		msr_info->data = vmx->pt_desc.guest.output_mask;
1943 		break;
1944 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1945 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1946 		if (!vmx_pt_mode_is_host_guest() ||
1947 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1948 					PT_CAP_num_address_ranges)))
1949 			return 1;
1950 		if (index % 2)
1951 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1952 		else
1953 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1954 		break;
1955 	case MSR_TSC_AUX:
1956 		if (!msr_info->host_initiated &&
1957 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1958 			return 1;
1959 		goto find_shared_msr;
1960 	default:
1961 	find_shared_msr:
1962 		msr = find_msr_entry(vmx, msr_info->index);
1963 		if (msr) {
1964 			msr_info->data = msr->data;
1965 			break;
1966 		}
1967 		return kvm_get_msr_common(vcpu, msr_info);
1968 	}
1969 
1970 	return 0;
1971 }
1972 
1973 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1974 						    u64 data)
1975 {
1976 #ifdef CONFIG_X86_64
1977 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1978 		return (u32)data;
1979 #endif
1980 	return (unsigned long)data;
1981 }
1982 
1983 /*
1984  * Writes msr value into the appropriate "register".
1985  * Returns 0 on success, non-0 otherwise.
1986  * Assumes vcpu_load() was already called.
1987  */
1988 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1989 {
1990 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1991 	struct shared_msr_entry *msr;
1992 	int ret = 0;
1993 	u32 msr_index = msr_info->index;
1994 	u64 data = msr_info->data;
1995 	u32 index;
1996 
1997 	switch (msr_index) {
1998 	case MSR_EFER:
1999 		ret = kvm_set_msr_common(vcpu, msr_info);
2000 		break;
2001 #ifdef CONFIG_X86_64
2002 	case MSR_FS_BASE:
2003 		vmx_segment_cache_clear(vmx);
2004 		vmcs_writel(GUEST_FS_BASE, data);
2005 		break;
2006 	case MSR_GS_BASE:
2007 		vmx_segment_cache_clear(vmx);
2008 		vmcs_writel(GUEST_GS_BASE, data);
2009 		break;
2010 	case MSR_KERNEL_GS_BASE:
2011 		vmx_write_guest_kernel_gs_base(vmx, data);
2012 		break;
2013 #endif
2014 	case MSR_IA32_SYSENTER_CS:
2015 		if (is_guest_mode(vcpu))
2016 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2017 		vmcs_write32(GUEST_SYSENTER_CS, data);
2018 		break;
2019 	case MSR_IA32_SYSENTER_EIP:
2020 		if (is_guest_mode(vcpu)) {
2021 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2022 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2023 		}
2024 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2025 		break;
2026 	case MSR_IA32_SYSENTER_ESP:
2027 		if (is_guest_mode(vcpu)) {
2028 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2029 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2030 		}
2031 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2032 		break;
2033 	case MSR_IA32_DEBUGCTLMSR:
2034 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2035 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2036 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2037 
2038 		ret = kvm_set_msr_common(vcpu, msr_info);
2039 		break;
2040 
2041 	case MSR_IA32_BNDCFGS:
2042 		if (!kvm_mpx_supported() ||
2043 		    (!msr_info->host_initiated &&
2044 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2045 			return 1;
2046 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2047 		    (data & MSR_IA32_BNDCFGS_RSVD))
2048 			return 1;
2049 		vmcs_write64(GUEST_BNDCFGS, data);
2050 		break;
2051 	case MSR_IA32_UMWAIT_CONTROL:
2052 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2053 			return 1;
2054 
2055 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2056 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2057 			return 1;
2058 
2059 		vmx->msr_ia32_umwait_control = data;
2060 		break;
2061 	case MSR_IA32_SPEC_CTRL:
2062 		if (!msr_info->host_initiated &&
2063 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2064 			return 1;
2065 
2066 		if (kvm_spec_ctrl_test_value(data))
2067 			return 1;
2068 
2069 		vmx->spec_ctrl = data;
2070 		if (!data)
2071 			break;
2072 
2073 		/*
2074 		 * For non-nested:
2075 		 * When it's written (to non-zero) for the first time, pass
2076 		 * it through.
2077 		 *
2078 		 * For nested:
2079 		 * The handling of the MSR bitmap for L2 guests is done in
2080 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2081 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2082 		 * in the merging. We update the vmcs01 here for L1 as well
2083 		 * since it will end up touching the MSR anyway now.
2084 		 */
2085 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2086 					      MSR_IA32_SPEC_CTRL,
2087 					      MSR_TYPE_RW);
2088 		break;
2089 	case MSR_IA32_TSX_CTRL:
2090 		if (!msr_info->host_initiated &&
2091 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2092 			return 1;
2093 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2094 			return 1;
2095 		goto find_shared_msr;
2096 	case MSR_IA32_PRED_CMD:
2097 		if (!msr_info->host_initiated &&
2098 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2099 			return 1;
2100 
2101 		if (data & ~PRED_CMD_IBPB)
2102 			return 1;
2103 		if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL))
2104 			return 1;
2105 		if (!data)
2106 			break;
2107 
2108 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2109 
2110 		/*
2111 		 * For non-nested:
2112 		 * When it's written (to non-zero) for the first time, pass
2113 		 * it through.
2114 		 *
2115 		 * For nested:
2116 		 * The handling of the MSR bitmap for L2 guests is done in
2117 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2118 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2119 		 * in the merging.
2120 		 */
2121 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2122 					      MSR_TYPE_W);
2123 		break;
2124 	case MSR_IA32_CR_PAT:
2125 		if (!kvm_pat_valid(data))
2126 			return 1;
2127 
2128 		if (is_guest_mode(vcpu) &&
2129 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2130 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2131 
2132 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2133 			vmcs_write64(GUEST_IA32_PAT, data);
2134 			vcpu->arch.pat = data;
2135 			break;
2136 		}
2137 		ret = kvm_set_msr_common(vcpu, msr_info);
2138 		break;
2139 	case MSR_IA32_TSC_ADJUST:
2140 		ret = kvm_set_msr_common(vcpu, msr_info);
2141 		break;
2142 	case MSR_IA32_MCG_EXT_CTL:
2143 		if ((!msr_info->host_initiated &&
2144 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2145 		       FEAT_CTL_LMCE_ENABLED)) ||
2146 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2147 			return 1;
2148 		vcpu->arch.mcg_ext_ctl = data;
2149 		break;
2150 	case MSR_IA32_FEAT_CTL:
2151 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2152 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2153 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2154 			return 1;
2155 		vmx->msr_ia32_feature_control = data;
2156 		if (msr_info->host_initiated && data == 0)
2157 			vmx_leave_nested(vcpu);
2158 		break;
2159 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2160 		if (!msr_info->host_initiated)
2161 			return 1; /* they are read-only */
2162 		if (!nested_vmx_allowed(vcpu))
2163 			return 1;
2164 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2165 	case MSR_IA32_RTIT_CTL:
2166 		if (!vmx_pt_mode_is_host_guest() ||
2167 			vmx_rtit_ctl_check(vcpu, data) ||
2168 			vmx->nested.vmxon)
2169 			return 1;
2170 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2171 		vmx->pt_desc.guest.ctl = data;
2172 		pt_update_intercept_for_msr(vmx);
2173 		break;
2174 	case MSR_IA32_RTIT_STATUS:
2175 		if (!pt_can_write_msr(vmx))
2176 			return 1;
2177 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2178 			return 1;
2179 		vmx->pt_desc.guest.status = data;
2180 		break;
2181 	case MSR_IA32_RTIT_CR3_MATCH:
2182 		if (!pt_can_write_msr(vmx))
2183 			return 1;
2184 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2185 					   PT_CAP_cr3_filtering))
2186 			return 1;
2187 		vmx->pt_desc.guest.cr3_match = data;
2188 		break;
2189 	case MSR_IA32_RTIT_OUTPUT_BASE:
2190 		if (!pt_can_write_msr(vmx))
2191 			return 1;
2192 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2193 					   PT_CAP_topa_output) &&
2194 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2195 					   PT_CAP_single_range_output))
2196 			return 1;
2197 		if (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)
2198 			return 1;
2199 		vmx->pt_desc.guest.output_base = data;
2200 		break;
2201 	case MSR_IA32_RTIT_OUTPUT_MASK:
2202 		if (!pt_can_write_msr(vmx))
2203 			return 1;
2204 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2205 					   PT_CAP_topa_output) &&
2206 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2207 					   PT_CAP_single_range_output))
2208 			return 1;
2209 		vmx->pt_desc.guest.output_mask = data;
2210 		break;
2211 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2212 		if (!pt_can_write_msr(vmx))
2213 			return 1;
2214 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2215 		if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2216 						       PT_CAP_num_address_ranges))
2217 			return 1;
2218 		if (is_noncanonical_address(data, vcpu))
2219 			return 1;
2220 		if (index % 2)
2221 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2222 		else
2223 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2224 		break;
2225 	case MSR_TSC_AUX:
2226 		if (!msr_info->host_initiated &&
2227 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2228 			return 1;
2229 		/* Check reserved bit, higher 32 bits should be zero */
2230 		if ((data >> 32) != 0)
2231 			return 1;
2232 		goto find_shared_msr;
2233 
2234 	default:
2235 	find_shared_msr:
2236 		msr = find_msr_entry(vmx, msr_index);
2237 		if (msr)
2238 			ret = vmx_set_guest_msr(vmx, msr, data);
2239 		else
2240 			ret = kvm_set_msr_common(vcpu, msr_info);
2241 	}
2242 
2243 	return ret;
2244 }
2245 
2246 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2247 {
2248 	unsigned long guest_owned_bits;
2249 
2250 	kvm_register_mark_available(vcpu, reg);
2251 
2252 	switch (reg) {
2253 	case VCPU_REGS_RSP:
2254 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2255 		break;
2256 	case VCPU_REGS_RIP:
2257 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2258 		break;
2259 	case VCPU_EXREG_PDPTR:
2260 		if (enable_ept)
2261 			ept_save_pdptrs(vcpu);
2262 		break;
2263 	case VCPU_EXREG_CR0:
2264 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2265 
2266 		vcpu->arch.cr0 &= ~guest_owned_bits;
2267 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2268 		break;
2269 	case VCPU_EXREG_CR3:
2270 		if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2271 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2272 		break;
2273 	case VCPU_EXREG_CR4:
2274 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2275 
2276 		vcpu->arch.cr4 &= ~guest_owned_bits;
2277 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2278 		break;
2279 	default:
2280 		WARN_ON_ONCE(1);
2281 		break;
2282 	}
2283 }
2284 
2285 static __init int cpu_has_kvm_support(void)
2286 {
2287 	return cpu_has_vmx();
2288 }
2289 
2290 static __init int vmx_disabled_by_bios(void)
2291 {
2292 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2293 	       !boot_cpu_has(X86_FEATURE_VMX);
2294 }
2295 
2296 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2297 {
2298 	u64 msr;
2299 
2300 	cr4_set_bits(X86_CR4_VMXE);
2301 	intel_pt_handle_vmx(1);
2302 
2303 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2304 			  _ASM_EXTABLE(1b, %l[fault])
2305 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2306 			  : : fault);
2307 	return 0;
2308 
2309 fault:
2310 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2311 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2312 	intel_pt_handle_vmx(0);
2313 	cr4_clear_bits(X86_CR4_VMXE);
2314 
2315 	return -EFAULT;
2316 }
2317 
2318 static int hardware_enable(void)
2319 {
2320 	int cpu = raw_smp_processor_id();
2321 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2322 	int r;
2323 
2324 	if (cr4_read_shadow() & X86_CR4_VMXE)
2325 		return -EBUSY;
2326 
2327 	/*
2328 	 * This can happen if we hot-added a CPU but failed to allocate
2329 	 * VP assist page for it.
2330 	 */
2331 	if (static_branch_unlikely(&enable_evmcs) &&
2332 	    !hv_get_vp_assist_page(cpu))
2333 		return -EFAULT;
2334 
2335 	r = kvm_cpu_vmxon(phys_addr);
2336 	if (r)
2337 		return r;
2338 
2339 	if (enable_ept)
2340 		ept_sync_global();
2341 
2342 	return 0;
2343 }
2344 
2345 static void vmclear_local_loaded_vmcss(void)
2346 {
2347 	int cpu = raw_smp_processor_id();
2348 	struct loaded_vmcs *v, *n;
2349 
2350 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2351 				 loaded_vmcss_on_cpu_link)
2352 		__loaded_vmcs_clear(v);
2353 }
2354 
2355 
2356 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2357  * tricks.
2358  */
2359 static void kvm_cpu_vmxoff(void)
2360 {
2361 	asm volatile (__ex("vmxoff"));
2362 
2363 	intel_pt_handle_vmx(0);
2364 	cr4_clear_bits(X86_CR4_VMXE);
2365 }
2366 
2367 static void hardware_disable(void)
2368 {
2369 	vmclear_local_loaded_vmcss();
2370 	kvm_cpu_vmxoff();
2371 }
2372 
2373 /*
2374  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2375  * directly instead of going through cpu_has(), to ensure KVM is trapping
2376  * ENCLS whenever it's supported in hardware.  It does not matter whether
2377  * the host OS supports or has enabled SGX.
2378  */
2379 static bool cpu_has_sgx(void)
2380 {
2381 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2382 }
2383 
2384 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2385 				      u32 msr, u32 *result)
2386 {
2387 	u32 vmx_msr_low, vmx_msr_high;
2388 	u32 ctl = ctl_min | ctl_opt;
2389 
2390 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2391 
2392 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2393 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2394 
2395 	/* Ensure minimum (required) set of control bits are supported. */
2396 	if (ctl_min & ~ctl)
2397 		return -EIO;
2398 
2399 	*result = ctl;
2400 	return 0;
2401 }
2402 
2403 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2404 				    struct vmx_capability *vmx_cap)
2405 {
2406 	u32 vmx_msr_low, vmx_msr_high;
2407 	u32 min, opt, min2, opt2;
2408 	u32 _pin_based_exec_control = 0;
2409 	u32 _cpu_based_exec_control = 0;
2410 	u32 _cpu_based_2nd_exec_control = 0;
2411 	u32 _vmexit_control = 0;
2412 	u32 _vmentry_control = 0;
2413 
2414 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2415 	min = CPU_BASED_HLT_EXITING |
2416 #ifdef CONFIG_X86_64
2417 	      CPU_BASED_CR8_LOAD_EXITING |
2418 	      CPU_BASED_CR8_STORE_EXITING |
2419 #endif
2420 	      CPU_BASED_CR3_LOAD_EXITING |
2421 	      CPU_BASED_CR3_STORE_EXITING |
2422 	      CPU_BASED_UNCOND_IO_EXITING |
2423 	      CPU_BASED_MOV_DR_EXITING |
2424 	      CPU_BASED_USE_TSC_OFFSETTING |
2425 	      CPU_BASED_MWAIT_EXITING |
2426 	      CPU_BASED_MONITOR_EXITING |
2427 	      CPU_BASED_INVLPG_EXITING |
2428 	      CPU_BASED_RDPMC_EXITING;
2429 
2430 	opt = CPU_BASED_TPR_SHADOW |
2431 	      CPU_BASED_USE_MSR_BITMAPS |
2432 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2433 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2434 				&_cpu_based_exec_control) < 0)
2435 		return -EIO;
2436 #ifdef CONFIG_X86_64
2437 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2438 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2439 					   ~CPU_BASED_CR8_STORE_EXITING;
2440 #endif
2441 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2442 		min2 = 0;
2443 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2444 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2445 			SECONDARY_EXEC_WBINVD_EXITING |
2446 			SECONDARY_EXEC_ENABLE_VPID |
2447 			SECONDARY_EXEC_ENABLE_EPT |
2448 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2449 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2450 			SECONDARY_EXEC_DESC |
2451 			SECONDARY_EXEC_RDTSCP |
2452 			SECONDARY_EXEC_ENABLE_INVPCID |
2453 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2454 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2455 			SECONDARY_EXEC_SHADOW_VMCS |
2456 			SECONDARY_EXEC_XSAVES |
2457 			SECONDARY_EXEC_RDSEED_EXITING |
2458 			SECONDARY_EXEC_RDRAND_EXITING |
2459 			SECONDARY_EXEC_ENABLE_PML |
2460 			SECONDARY_EXEC_TSC_SCALING |
2461 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2462 			SECONDARY_EXEC_PT_USE_GPA |
2463 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2464 			SECONDARY_EXEC_ENABLE_VMFUNC;
2465 		if (cpu_has_sgx())
2466 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2467 		if (adjust_vmx_controls(min2, opt2,
2468 					MSR_IA32_VMX_PROCBASED_CTLS2,
2469 					&_cpu_based_2nd_exec_control) < 0)
2470 			return -EIO;
2471 	}
2472 #ifndef CONFIG_X86_64
2473 	if (!(_cpu_based_2nd_exec_control &
2474 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2475 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2476 #endif
2477 
2478 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2479 		_cpu_based_2nd_exec_control &= ~(
2480 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2481 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2482 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2483 
2484 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2485 		&vmx_cap->ept, &vmx_cap->vpid);
2486 
2487 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2488 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2489 		   enabled */
2490 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2491 					     CPU_BASED_CR3_STORE_EXITING |
2492 					     CPU_BASED_INVLPG_EXITING);
2493 	} else if (vmx_cap->ept) {
2494 		vmx_cap->ept = 0;
2495 		pr_warn_once("EPT CAP should not exist if not support "
2496 				"1-setting enable EPT VM-execution control\n");
2497 	}
2498 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2499 		vmx_cap->vpid) {
2500 		vmx_cap->vpid = 0;
2501 		pr_warn_once("VPID CAP should not exist if not support "
2502 				"1-setting enable VPID VM-execution control\n");
2503 	}
2504 
2505 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2506 #ifdef CONFIG_X86_64
2507 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2508 #endif
2509 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2510 	      VM_EXIT_LOAD_IA32_PAT |
2511 	      VM_EXIT_LOAD_IA32_EFER |
2512 	      VM_EXIT_CLEAR_BNDCFGS |
2513 	      VM_EXIT_PT_CONCEAL_PIP |
2514 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2515 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2516 				&_vmexit_control) < 0)
2517 		return -EIO;
2518 
2519 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2520 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2521 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2522 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2523 				&_pin_based_exec_control) < 0)
2524 		return -EIO;
2525 
2526 	if (cpu_has_broken_vmx_preemption_timer())
2527 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2528 	if (!(_cpu_based_2nd_exec_control &
2529 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2530 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2531 
2532 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2533 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2534 	      VM_ENTRY_LOAD_IA32_PAT |
2535 	      VM_ENTRY_LOAD_IA32_EFER |
2536 	      VM_ENTRY_LOAD_BNDCFGS |
2537 	      VM_ENTRY_PT_CONCEAL_PIP |
2538 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2539 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2540 				&_vmentry_control) < 0)
2541 		return -EIO;
2542 
2543 	/*
2544 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2545 	 * can't be used due to an errata where VM Exit may incorrectly clear
2546 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2547 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2548 	 */
2549 	if (boot_cpu_data.x86 == 0x6) {
2550 		switch (boot_cpu_data.x86_model) {
2551 		case 26: /* AAK155 */
2552 		case 30: /* AAP115 */
2553 		case 37: /* AAT100 */
2554 		case 44: /* BC86,AAY89,BD102 */
2555 		case 46: /* BA97 */
2556 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2557 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2558 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2559 					"does not work properly. Using workaround\n");
2560 			break;
2561 		default:
2562 			break;
2563 		}
2564 	}
2565 
2566 
2567 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2568 
2569 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2570 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2571 		return -EIO;
2572 
2573 #ifdef CONFIG_X86_64
2574 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2575 	if (vmx_msr_high & (1u<<16))
2576 		return -EIO;
2577 #endif
2578 
2579 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2580 	if (((vmx_msr_high >> 18) & 15) != 6)
2581 		return -EIO;
2582 
2583 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2584 	vmcs_conf->order = get_order(vmcs_conf->size);
2585 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2586 
2587 	vmcs_conf->revision_id = vmx_msr_low;
2588 
2589 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2590 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2591 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2592 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2593 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2594 
2595 	if (static_branch_unlikely(&enable_evmcs))
2596 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2597 
2598 	return 0;
2599 }
2600 
2601 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2602 {
2603 	int node = cpu_to_node(cpu);
2604 	struct page *pages;
2605 	struct vmcs *vmcs;
2606 
2607 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2608 	if (!pages)
2609 		return NULL;
2610 	vmcs = page_address(pages);
2611 	memset(vmcs, 0, vmcs_config.size);
2612 
2613 	/* KVM supports Enlightened VMCS v1 only */
2614 	if (static_branch_unlikely(&enable_evmcs))
2615 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2616 	else
2617 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2618 
2619 	if (shadow)
2620 		vmcs->hdr.shadow_vmcs = 1;
2621 	return vmcs;
2622 }
2623 
2624 void free_vmcs(struct vmcs *vmcs)
2625 {
2626 	free_pages((unsigned long)vmcs, vmcs_config.order);
2627 }
2628 
2629 /*
2630  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2631  */
2632 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2633 {
2634 	if (!loaded_vmcs->vmcs)
2635 		return;
2636 	loaded_vmcs_clear(loaded_vmcs);
2637 	free_vmcs(loaded_vmcs->vmcs);
2638 	loaded_vmcs->vmcs = NULL;
2639 	if (loaded_vmcs->msr_bitmap)
2640 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2641 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2642 }
2643 
2644 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2645 {
2646 	loaded_vmcs->vmcs = alloc_vmcs(false);
2647 	if (!loaded_vmcs->vmcs)
2648 		return -ENOMEM;
2649 
2650 	vmcs_clear(loaded_vmcs->vmcs);
2651 
2652 	loaded_vmcs->shadow_vmcs = NULL;
2653 	loaded_vmcs->hv_timer_soft_disabled = false;
2654 	loaded_vmcs->cpu = -1;
2655 	loaded_vmcs->launched = 0;
2656 
2657 	if (cpu_has_vmx_msr_bitmap()) {
2658 		loaded_vmcs->msr_bitmap = (unsigned long *)
2659 				__get_free_page(GFP_KERNEL_ACCOUNT);
2660 		if (!loaded_vmcs->msr_bitmap)
2661 			goto out_vmcs;
2662 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2663 
2664 		if (IS_ENABLED(CONFIG_HYPERV) &&
2665 		    static_branch_unlikely(&enable_evmcs) &&
2666 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2667 			struct hv_enlightened_vmcs *evmcs =
2668 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2669 
2670 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2671 		}
2672 	}
2673 
2674 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2675 	memset(&loaded_vmcs->controls_shadow, 0,
2676 		sizeof(struct vmcs_controls_shadow));
2677 
2678 	return 0;
2679 
2680 out_vmcs:
2681 	free_loaded_vmcs(loaded_vmcs);
2682 	return -ENOMEM;
2683 }
2684 
2685 static void free_kvm_area(void)
2686 {
2687 	int cpu;
2688 
2689 	for_each_possible_cpu(cpu) {
2690 		free_vmcs(per_cpu(vmxarea, cpu));
2691 		per_cpu(vmxarea, cpu) = NULL;
2692 	}
2693 }
2694 
2695 static __init int alloc_kvm_area(void)
2696 {
2697 	int cpu;
2698 
2699 	for_each_possible_cpu(cpu) {
2700 		struct vmcs *vmcs;
2701 
2702 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2703 		if (!vmcs) {
2704 			free_kvm_area();
2705 			return -ENOMEM;
2706 		}
2707 
2708 		/*
2709 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2710 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2711 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2712 		 *
2713 		 * However, even though not explicitly documented by
2714 		 * TLFS, VMXArea passed as VMXON argument should
2715 		 * still be marked with revision_id reported by
2716 		 * physical CPU.
2717 		 */
2718 		if (static_branch_unlikely(&enable_evmcs))
2719 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2720 
2721 		per_cpu(vmxarea, cpu) = vmcs;
2722 	}
2723 	return 0;
2724 }
2725 
2726 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2727 		struct kvm_segment *save)
2728 {
2729 	if (!emulate_invalid_guest_state) {
2730 		/*
2731 		 * CS and SS RPL should be equal during guest entry according
2732 		 * to VMX spec, but in reality it is not always so. Since vcpu
2733 		 * is in the middle of the transition from real mode to
2734 		 * protected mode it is safe to assume that RPL 0 is a good
2735 		 * default value.
2736 		 */
2737 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2738 			save->selector &= ~SEGMENT_RPL_MASK;
2739 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2740 		save->s = 1;
2741 	}
2742 	vmx_set_segment(vcpu, save, seg);
2743 }
2744 
2745 static void enter_pmode(struct kvm_vcpu *vcpu)
2746 {
2747 	unsigned long flags;
2748 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2749 
2750 	/*
2751 	 * Update real mode segment cache. It may be not up-to-date if sement
2752 	 * register was written while vcpu was in a guest mode.
2753 	 */
2754 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2755 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2756 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2757 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2758 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2759 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2760 
2761 	vmx->rmode.vm86_active = 0;
2762 
2763 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2764 
2765 	flags = vmcs_readl(GUEST_RFLAGS);
2766 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2767 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2768 	vmcs_writel(GUEST_RFLAGS, flags);
2769 
2770 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2771 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2772 
2773 	update_exception_bitmap(vcpu);
2774 
2775 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2776 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2777 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2778 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2779 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2780 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2781 }
2782 
2783 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2784 {
2785 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2786 	struct kvm_segment var = *save;
2787 
2788 	var.dpl = 0x3;
2789 	if (seg == VCPU_SREG_CS)
2790 		var.type = 0x3;
2791 
2792 	if (!emulate_invalid_guest_state) {
2793 		var.selector = var.base >> 4;
2794 		var.base = var.base & 0xffff0;
2795 		var.limit = 0xffff;
2796 		var.g = 0;
2797 		var.db = 0;
2798 		var.present = 1;
2799 		var.s = 1;
2800 		var.l = 0;
2801 		var.unusable = 0;
2802 		var.type = 0x3;
2803 		var.avl = 0;
2804 		if (save->base & 0xf)
2805 			printk_once(KERN_WARNING "kvm: segment base is not "
2806 					"paragraph aligned when entering "
2807 					"protected mode (seg=%d)", seg);
2808 	}
2809 
2810 	vmcs_write16(sf->selector, var.selector);
2811 	vmcs_writel(sf->base, var.base);
2812 	vmcs_write32(sf->limit, var.limit);
2813 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2814 }
2815 
2816 static void enter_rmode(struct kvm_vcpu *vcpu)
2817 {
2818 	unsigned long flags;
2819 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2820 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2821 
2822 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2823 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2824 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2825 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2826 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2827 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2828 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2829 
2830 	vmx->rmode.vm86_active = 1;
2831 
2832 	/*
2833 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2834 	 * vcpu. Warn the user that an update is overdue.
2835 	 */
2836 	if (!kvm_vmx->tss_addr)
2837 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2838 			     "called before entering vcpu\n");
2839 
2840 	vmx_segment_cache_clear(vmx);
2841 
2842 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2843 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2844 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2845 
2846 	flags = vmcs_readl(GUEST_RFLAGS);
2847 	vmx->rmode.save_rflags = flags;
2848 
2849 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2850 
2851 	vmcs_writel(GUEST_RFLAGS, flags);
2852 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2853 	update_exception_bitmap(vcpu);
2854 
2855 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2856 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2857 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2858 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2859 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2860 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2861 
2862 	kvm_mmu_reset_context(vcpu);
2863 }
2864 
2865 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2866 {
2867 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2868 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2869 
2870 	if (!msr)
2871 		return;
2872 
2873 	vcpu->arch.efer = efer;
2874 	if (efer & EFER_LMA) {
2875 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2876 		msr->data = efer;
2877 	} else {
2878 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2879 
2880 		msr->data = efer & ~EFER_LME;
2881 	}
2882 	setup_msrs(vmx);
2883 }
2884 
2885 #ifdef CONFIG_X86_64
2886 
2887 static void enter_lmode(struct kvm_vcpu *vcpu)
2888 {
2889 	u32 guest_tr_ar;
2890 
2891 	vmx_segment_cache_clear(to_vmx(vcpu));
2892 
2893 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2894 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2895 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2896 				     __func__);
2897 		vmcs_write32(GUEST_TR_AR_BYTES,
2898 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2899 			     | VMX_AR_TYPE_BUSY_64_TSS);
2900 	}
2901 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2902 }
2903 
2904 static void exit_lmode(struct kvm_vcpu *vcpu)
2905 {
2906 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2907 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2908 }
2909 
2910 #endif
2911 
2912 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2913 {
2914 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2915 
2916 	/*
2917 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2918 	 * the CPU is not required to invalidate guest-physical mappings on
2919 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2920 	 * associated with the root EPT structure and not any particular VPID
2921 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
2922 	 */
2923 	if (enable_ept) {
2924 		ept_sync_global();
2925 	} else if (enable_vpid) {
2926 		if (cpu_has_vmx_invvpid_global()) {
2927 			vpid_sync_vcpu_global();
2928 		} else {
2929 			vpid_sync_vcpu_single(vmx->vpid);
2930 			vpid_sync_vcpu_single(vmx->nested.vpid02);
2931 		}
2932 	}
2933 }
2934 
2935 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2936 {
2937 	struct kvm_mmu *mmu = vcpu->arch.mmu;
2938 	u64 root_hpa = mmu->root_hpa;
2939 
2940 	/* No flush required if the current context is invalid. */
2941 	if (!VALID_PAGE(root_hpa))
2942 		return;
2943 
2944 	if (enable_ept)
2945 		ept_sync_context(construct_eptp(vcpu, root_hpa,
2946 						mmu->shadow_root_level));
2947 	else if (!is_guest_mode(vcpu))
2948 		vpid_sync_context(to_vmx(vcpu)->vpid);
2949 	else
2950 		vpid_sync_context(nested_get_vpid02(vcpu));
2951 }
2952 
2953 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2954 {
2955 	/*
2956 	 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2957 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2958 	 */
2959 	vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2960 }
2961 
2962 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2963 {
2964 	/*
2965 	 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2966 	 * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
2967 	 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2968 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2969 	 * i.e. no explicit INVVPID is necessary.
2970 	 */
2971 	vpid_sync_context(to_vmx(vcpu)->vpid);
2972 }
2973 
2974 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2975 {
2976 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2977 
2978 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2979 		return;
2980 
2981 	if (is_pae_paging(vcpu)) {
2982 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2983 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2984 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2985 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2986 	}
2987 }
2988 
2989 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2990 {
2991 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2992 
2993 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2994 		return;
2995 
2996 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2997 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2998 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2999 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3000 
3001 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
3002 }
3003 
3004 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3005 					unsigned long cr0,
3006 					struct kvm_vcpu *vcpu)
3007 {
3008 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3009 
3010 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3011 		vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3012 	if (!(cr0 & X86_CR0_PG)) {
3013 		/* From paging/starting to nonpaging */
3014 		exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3015 					  CPU_BASED_CR3_STORE_EXITING);
3016 		vcpu->arch.cr0 = cr0;
3017 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3018 	} else if (!is_paging(vcpu)) {
3019 		/* From nonpaging to paging */
3020 		exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3021 					    CPU_BASED_CR3_STORE_EXITING);
3022 		vcpu->arch.cr0 = cr0;
3023 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3024 	}
3025 
3026 	if (!(cr0 & X86_CR0_WP))
3027 		*hw_cr0 &= ~X86_CR0_WP;
3028 }
3029 
3030 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3031 {
3032 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3033 	unsigned long hw_cr0;
3034 
3035 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3036 	if (enable_unrestricted_guest)
3037 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3038 	else {
3039 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3040 
3041 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3042 			enter_pmode(vcpu);
3043 
3044 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3045 			enter_rmode(vcpu);
3046 	}
3047 
3048 #ifdef CONFIG_X86_64
3049 	if (vcpu->arch.efer & EFER_LME) {
3050 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3051 			enter_lmode(vcpu);
3052 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3053 			exit_lmode(vcpu);
3054 	}
3055 #endif
3056 
3057 	if (enable_ept && !enable_unrestricted_guest)
3058 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3059 
3060 	vmcs_writel(CR0_READ_SHADOW, cr0);
3061 	vmcs_writel(GUEST_CR0, hw_cr0);
3062 	vcpu->arch.cr0 = cr0;
3063 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3064 
3065 	/* depends on vcpu->arch.cr0 to be set to a new value */
3066 	vmx->emulation_required = emulation_required(vcpu);
3067 }
3068 
3069 static int vmx_get_max_tdp_level(void)
3070 {
3071 	if (cpu_has_vmx_ept_5levels())
3072 		return 5;
3073 	return 4;
3074 }
3075 
3076 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa,
3077 		   int root_level)
3078 {
3079 	u64 eptp = VMX_EPTP_MT_WB;
3080 
3081 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3082 
3083 	if (enable_ept_ad_bits &&
3084 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3085 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3086 	eptp |= (root_hpa & PAGE_MASK);
3087 
3088 	return eptp;
3089 }
3090 
3091 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd,
3092 			     int pgd_level)
3093 {
3094 	struct kvm *kvm = vcpu->kvm;
3095 	bool update_guest_cr3 = true;
3096 	unsigned long guest_cr3;
3097 	u64 eptp;
3098 
3099 	if (enable_ept) {
3100 		eptp = construct_eptp(vcpu, pgd, pgd_level);
3101 		vmcs_write64(EPT_POINTER, eptp);
3102 
3103 		if (kvm_x86_ops.tlb_remote_flush) {
3104 			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3105 			to_vmx(vcpu)->ept_pointer = eptp;
3106 			to_kvm_vmx(kvm)->ept_pointers_match
3107 				= EPT_POINTERS_CHECK;
3108 			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3109 		}
3110 
3111 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3112 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3113 		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3114 			guest_cr3 = vcpu->arch.cr3;
3115 		else /* vmcs01.GUEST_CR3 is already up-to-date. */
3116 			update_guest_cr3 = false;
3117 		ept_load_pdptrs(vcpu);
3118 	} else {
3119 		guest_cr3 = pgd;
3120 	}
3121 
3122 	if (update_guest_cr3)
3123 		vmcs_writel(GUEST_CR3, guest_cr3);
3124 }
3125 
3126 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3127 {
3128 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3129 	/*
3130 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3131 	 * is in force while we are in guest mode.  Do not let guests control
3132 	 * this bit, even if host CR4.MCE == 0.
3133 	 */
3134 	unsigned long hw_cr4;
3135 
3136 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3137 	if (enable_unrestricted_guest)
3138 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3139 	else if (vmx->rmode.vm86_active)
3140 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3141 	else
3142 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3143 
3144 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3145 		if (cr4 & X86_CR4_UMIP) {
3146 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3147 			hw_cr4 &= ~X86_CR4_UMIP;
3148 		} else if (!is_guest_mode(vcpu) ||
3149 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3150 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3151 		}
3152 	}
3153 
3154 	if (cr4 & X86_CR4_VMXE) {
3155 		/*
3156 		 * To use VMXON (and later other VMX instructions), a guest
3157 		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3158 		 * So basically the check on whether to allow nested VMX
3159 		 * is here.  We operate under the default treatment of SMM,
3160 		 * so VMX cannot be enabled under SMM.
3161 		 */
3162 		if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3163 			return 1;
3164 	}
3165 
3166 	if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3167 		return 1;
3168 
3169 	vcpu->arch.cr4 = cr4;
3170 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3171 
3172 	if (!enable_unrestricted_guest) {
3173 		if (enable_ept) {
3174 			if (!is_paging(vcpu)) {
3175 				hw_cr4 &= ~X86_CR4_PAE;
3176 				hw_cr4 |= X86_CR4_PSE;
3177 			} else if (!(cr4 & X86_CR4_PAE)) {
3178 				hw_cr4 &= ~X86_CR4_PAE;
3179 			}
3180 		}
3181 
3182 		/*
3183 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3184 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3185 		 * to be manually disabled when guest switches to non-paging
3186 		 * mode.
3187 		 *
3188 		 * If !enable_unrestricted_guest, the CPU is always running
3189 		 * with CR0.PG=1 and CR4 needs to be modified.
3190 		 * If enable_unrestricted_guest, the CPU automatically
3191 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3192 		 */
3193 		if (!is_paging(vcpu))
3194 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3195 	}
3196 
3197 	vmcs_writel(CR4_READ_SHADOW, cr4);
3198 	vmcs_writel(GUEST_CR4, hw_cr4);
3199 	return 0;
3200 }
3201 
3202 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3203 {
3204 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3205 	u32 ar;
3206 
3207 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3208 		*var = vmx->rmode.segs[seg];
3209 		if (seg == VCPU_SREG_TR
3210 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3211 			return;
3212 		var->base = vmx_read_guest_seg_base(vmx, seg);
3213 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3214 		return;
3215 	}
3216 	var->base = vmx_read_guest_seg_base(vmx, seg);
3217 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3218 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3219 	ar = vmx_read_guest_seg_ar(vmx, seg);
3220 	var->unusable = (ar >> 16) & 1;
3221 	var->type = ar & 15;
3222 	var->s = (ar >> 4) & 1;
3223 	var->dpl = (ar >> 5) & 3;
3224 	/*
3225 	 * Some userspaces do not preserve unusable property. Since usable
3226 	 * segment has to be present according to VMX spec we can use present
3227 	 * property to amend userspace bug by making unusable segment always
3228 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3229 	 * segment as unusable.
3230 	 */
3231 	var->present = !var->unusable;
3232 	var->avl = (ar >> 12) & 1;
3233 	var->l = (ar >> 13) & 1;
3234 	var->db = (ar >> 14) & 1;
3235 	var->g = (ar >> 15) & 1;
3236 }
3237 
3238 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3239 {
3240 	struct kvm_segment s;
3241 
3242 	if (to_vmx(vcpu)->rmode.vm86_active) {
3243 		vmx_get_segment(vcpu, &s, seg);
3244 		return s.base;
3245 	}
3246 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3247 }
3248 
3249 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3250 {
3251 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3252 
3253 	if (unlikely(vmx->rmode.vm86_active))
3254 		return 0;
3255 	else {
3256 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3257 		return VMX_AR_DPL(ar);
3258 	}
3259 }
3260 
3261 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3262 {
3263 	u32 ar;
3264 
3265 	if (var->unusable || !var->present)
3266 		ar = 1 << 16;
3267 	else {
3268 		ar = var->type & 15;
3269 		ar |= (var->s & 1) << 4;
3270 		ar |= (var->dpl & 3) << 5;
3271 		ar |= (var->present & 1) << 7;
3272 		ar |= (var->avl & 1) << 12;
3273 		ar |= (var->l & 1) << 13;
3274 		ar |= (var->db & 1) << 14;
3275 		ar |= (var->g & 1) << 15;
3276 	}
3277 
3278 	return ar;
3279 }
3280 
3281 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3282 {
3283 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3284 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3285 
3286 	vmx_segment_cache_clear(vmx);
3287 
3288 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3289 		vmx->rmode.segs[seg] = *var;
3290 		if (seg == VCPU_SREG_TR)
3291 			vmcs_write16(sf->selector, var->selector);
3292 		else if (var->s)
3293 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3294 		goto out;
3295 	}
3296 
3297 	vmcs_writel(sf->base, var->base);
3298 	vmcs_write32(sf->limit, var->limit);
3299 	vmcs_write16(sf->selector, var->selector);
3300 
3301 	/*
3302 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3303 	 * qemu binaries.
3304 	 *   IA32 arch specifies that at the time of processor reset the
3305 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3306 	 * is setting it to 0 in the userland code. This causes invalid guest
3307 	 * state vmexit when "unrestricted guest" mode is turned on.
3308 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3309 	 * tree. Newer qemu binaries with that qemu fix would not need this
3310 	 * kvm hack.
3311 	 */
3312 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3313 		var->type |= 0x1; /* Accessed */
3314 
3315 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3316 
3317 out:
3318 	vmx->emulation_required = emulation_required(vcpu);
3319 }
3320 
3321 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3322 {
3323 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3324 
3325 	*db = (ar >> 14) & 1;
3326 	*l = (ar >> 13) & 1;
3327 }
3328 
3329 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3330 {
3331 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3332 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3333 }
3334 
3335 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3336 {
3337 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3338 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3339 }
3340 
3341 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3342 {
3343 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3344 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3345 }
3346 
3347 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3348 {
3349 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3350 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3351 }
3352 
3353 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3354 {
3355 	struct kvm_segment var;
3356 	u32 ar;
3357 
3358 	vmx_get_segment(vcpu, &var, seg);
3359 	var.dpl = 0x3;
3360 	if (seg == VCPU_SREG_CS)
3361 		var.type = 0x3;
3362 	ar = vmx_segment_access_rights(&var);
3363 
3364 	if (var.base != (var.selector << 4))
3365 		return false;
3366 	if (var.limit != 0xffff)
3367 		return false;
3368 	if (ar != 0xf3)
3369 		return false;
3370 
3371 	return true;
3372 }
3373 
3374 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3375 {
3376 	struct kvm_segment cs;
3377 	unsigned int cs_rpl;
3378 
3379 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3380 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3381 
3382 	if (cs.unusable)
3383 		return false;
3384 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3385 		return false;
3386 	if (!cs.s)
3387 		return false;
3388 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3389 		if (cs.dpl > cs_rpl)
3390 			return false;
3391 	} else {
3392 		if (cs.dpl != cs_rpl)
3393 			return false;
3394 	}
3395 	if (!cs.present)
3396 		return false;
3397 
3398 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3399 	return true;
3400 }
3401 
3402 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3403 {
3404 	struct kvm_segment ss;
3405 	unsigned int ss_rpl;
3406 
3407 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3408 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3409 
3410 	if (ss.unusable)
3411 		return true;
3412 	if (ss.type != 3 && ss.type != 7)
3413 		return false;
3414 	if (!ss.s)
3415 		return false;
3416 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3417 		return false;
3418 	if (!ss.present)
3419 		return false;
3420 
3421 	return true;
3422 }
3423 
3424 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3425 {
3426 	struct kvm_segment var;
3427 	unsigned int rpl;
3428 
3429 	vmx_get_segment(vcpu, &var, seg);
3430 	rpl = var.selector & SEGMENT_RPL_MASK;
3431 
3432 	if (var.unusable)
3433 		return true;
3434 	if (!var.s)
3435 		return false;
3436 	if (!var.present)
3437 		return false;
3438 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3439 		if (var.dpl < rpl) /* DPL < RPL */
3440 			return false;
3441 	}
3442 
3443 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3444 	 * rights flags
3445 	 */
3446 	return true;
3447 }
3448 
3449 static bool tr_valid(struct kvm_vcpu *vcpu)
3450 {
3451 	struct kvm_segment tr;
3452 
3453 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3454 
3455 	if (tr.unusable)
3456 		return false;
3457 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3458 		return false;
3459 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3460 		return false;
3461 	if (!tr.present)
3462 		return false;
3463 
3464 	return true;
3465 }
3466 
3467 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3468 {
3469 	struct kvm_segment ldtr;
3470 
3471 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3472 
3473 	if (ldtr.unusable)
3474 		return true;
3475 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3476 		return false;
3477 	if (ldtr.type != 2)
3478 		return false;
3479 	if (!ldtr.present)
3480 		return false;
3481 
3482 	return true;
3483 }
3484 
3485 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3486 {
3487 	struct kvm_segment cs, ss;
3488 
3489 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3490 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3491 
3492 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3493 		 (ss.selector & SEGMENT_RPL_MASK));
3494 }
3495 
3496 /*
3497  * Check if guest state is valid. Returns true if valid, false if
3498  * not.
3499  * We assume that registers are always usable
3500  */
3501 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3502 {
3503 	if (enable_unrestricted_guest)
3504 		return true;
3505 
3506 	/* real mode guest state checks */
3507 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3508 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3509 			return false;
3510 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3511 			return false;
3512 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3513 			return false;
3514 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3515 			return false;
3516 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3517 			return false;
3518 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3519 			return false;
3520 	} else {
3521 	/* protected mode guest state checks */
3522 		if (!cs_ss_rpl_check(vcpu))
3523 			return false;
3524 		if (!code_segment_valid(vcpu))
3525 			return false;
3526 		if (!stack_segment_valid(vcpu))
3527 			return false;
3528 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3529 			return false;
3530 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3531 			return false;
3532 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3533 			return false;
3534 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3535 			return false;
3536 		if (!tr_valid(vcpu))
3537 			return false;
3538 		if (!ldtr_valid(vcpu))
3539 			return false;
3540 	}
3541 	/* TODO:
3542 	 * - Add checks on RIP
3543 	 * - Add checks on RFLAGS
3544 	 */
3545 
3546 	return true;
3547 }
3548 
3549 static int init_rmode_tss(struct kvm *kvm)
3550 {
3551 	gfn_t fn;
3552 	u16 data = 0;
3553 	int idx, r;
3554 
3555 	idx = srcu_read_lock(&kvm->srcu);
3556 	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3557 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3558 	if (r < 0)
3559 		goto out;
3560 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3561 	r = kvm_write_guest_page(kvm, fn++, &data,
3562 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
3563 	if (r < 0)
3564 		goto out;
3565 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3566 	if (r < 0)
3567 		goto out;
3568 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3569 	if (r < 0)
3570 		goto out;
3571 	data = ~0;
3572 	r = kvm_write_guest_page(kvm, fn, &data,
3573 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3574 				 sizeof(u8));
3575 out:
3576 	srcu_read_unlock(&kvm->srcu, idx);
3577 	return r;
3578 }
3579 
3580 static int init_rmode_identity_map(struct kvm *kvm)
3581 {
3582 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3583 	int i, r = 0;
3584 	kvm_pfn_t identity_map_pfn;
3585 	u32 tmp;
3586 
3587 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3588 	mutex_lock(&kvm->slots_lock);
3589 
3590 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3591 		goto out;
3592 
3593 	if (!kvm_vmx->ept_identity_map_addr)
3594 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3595 	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3596 
3597 	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3598 				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3599 	if (r < 0)
3600 		goto out;
3601 
3602 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3603 	if (r < 0)
3604 		goto out;
3605 	/* Set up identity-mapping pagetable for EPT in real mode */
3606 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3607 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3608 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3609 		r = kvm_write_guest_page(kvm, identity_map_pfn,
3610 				&tmp, i * sizeof(tmp), sizeof(tmp));
3611 		if (r < 0)
3612 			goto out;
3613 	}
3614 	kvm_vmx->ept_identity_pagetable_done = true;
3615 
3616 out:
3617 	mutex_unlock(&kvm->slots_lock);
3618 	return r;
3619 }
3620 
3621 static void seg_setup(int seg)
3622 {
3623 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3624 	unsigned int ar;
3625 
3626 	vmcs_write16(sf->selector, 0);
3627 	vmcs_writel(sf->base, 0);
3628 	vmcs_write32(sf->limit, 0xffff);
3629 	ar = 0x93;
3630 	if (seg == VCPU_SREG_CS)
3631 		ar |= 0x08; /* code segment */
3632 
3633 	vmcs_write32(sf->ar_bytes, ar);
3634 }
3635 
3636 static int alloc_apic_access_page(struct kvm *kvm)
3637 {
3638 	struct page *page;
3639 	int r = 0;
3640 
3641 	mutex_lock(&kvm->slots_lock);
3642 	if (kvm->arch.apic_access_page_done)
3643 		goto out;
3644 	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3645 				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3646 	if (r)
3647 		goto out;
3648 
3649 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3650 	if (is_error_page(page)) {
3651 		r = -EFAULT;
3652 		goto out;
3653 	}
3654 
3655 	/*
3656 	 * Do not pin the page in memory, so that memory hot-unplug
3657 	 * is able to migrate it.
3658 	 */
3659 	put_page(page);
3660 	kvm->arch.apic_access_page_done = true;
3661 out:
3662 	mutex_unlock(&kvm->slots_lock);
3663 	return r;
3664 }
3665 
3666 int allocate_vpid(void)
3667 {
3668 	int vpid;
3669 
3670 	if (!enable_vpid)
3671 		return 0;
3672 	spin_lock(&vmx_vpid_lock);
3673 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3674 	if (vpid < VMX_NR_VPIDS)
3675 		__set_bit(vpid, vmx_vpid_bitmap);
3676 	else
3677 		vpid = 0;
3678 	spin_unlock(&vmx_vpid_lock);
3679 	return vpid;
3680 }
3681 
3682 void free_vpid(int vpid)
3683 {
3684 	if (!enable_vpid || vpid == 0)
3685 		return;
3686 	spin_lock(&vmx_vpid_lock);
3687 	__clear_bit(vpid, vmx_vpid_bitmap);
3688 	spin_unlock(&vmx_vpid_lock);
3689 }
3690 
3691 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3692 							  u32 msr, int type)
3693 {
3694 	int f = sizeof(unsigned long);
3695 
3696 	if (!cpu_has_vmx_msr_bitmap())
3697 		return;
3698 
3699 	if (static_branch_unlikely(&enable_evmcs))
3700 		evmcs_touch_msr_bitmap();
3701 
3702 	/*
3703 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3704 	 * have the write-low and read-high bitmap offsets the wrong way round.
3705 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3706 	 */
3707 	if (msr <= 0x1fff) {
3708 		if (type & MSR_TYPE_R)
3709 			/* read-low */
3710 			__clear_bit(msr, msr_bitmap + 0x000 / f);
3711 
3712 		if (type & MSR_TYPE_W)
3713 			/* write-low */
3714 			__clear_bit(msr, msr_bitmap + 0x800 / f);
3715 
3716 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3717 		msr &= 0x1fff;
3718 		if (type & MSR_TYPE_R)
3719 			/* read-high */
3720 			__clear_bit(msr, msr_bitmap + 0x400 / f);
3721 
3722 		if (type & MSR_TYPE_W)
3723 			/* write-high */
3724 			__clear_bit(msr, msr_bitmap + 0xc00 / f);
3725 
3726 	}
3727 }
3728 
3729 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3730 							 u32 msr, int type)
3731 {
3732 	int f = sizeof(unsigned long);
3733 
3734 	if (!cpu_has_vmx_msr_bitmap())
3735 		return;
3736 
3737 	if (static_branch_unlikely(&enable_evmcs))
3738 		evmcs_touch_msr_bitmap();
3739 
3740 	/*
3741 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3742 	 * have the write-low and read-high bitmap offsets the wrong way round.
3743 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3744 	 */
3745 	if (msr <= 0x1fff) {
3746 		if (type & MSR_TYPE_R)
3747 			/* read-low */
3748 			__set_bit(msr, msr_bitmap + 0x000 / f);
3749 
3750 		if (type & MSR_TYPE_W)
3751 			/* write-low */
3752 			__set_bit(msr, msr_bitmap + 0x800 / f);
3753 
3754 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3755 		msr &= 0x1fff;
3756 		if (type & MSR_TYPE_R)
3757 			/* read-high */
3758 			__set_bit(msr, msr_bitmap + 0x400 / f);
3759 
3760 		if (type & MSR_TYPE_W)
3761 			/* write-high */
3762 			__set_bit(msr, msr_bitmap + 0xc00 / f);
3763 
3764 	}
3765 }
3766 
3767 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3768 			     			      u32 msr, int type, bool value)
3769 {
3770 	if (value)
3771 		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3772 	else
3773 		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3774 }
3775 
3776 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3777 {
3778 	u8 mode = 0;
3779 
3780 	if (cpu_has_secondary_exec_ctrls() &&
3781 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
3782 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3783 		mode |= MSR_BITMAP_MODE_X2APIC;
3784 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3785 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3786 	}
3787 
3788 	return mode;
3789 }
3790 
3791 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3792 					 u8 mode)
3793 {
3794 	int msr;
3795 
3796 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3797 		unsigned word = msr / BITS_PER_LONG;
3798 		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3799 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3800 	}
3801 
3802 	if (mode & MSR_BITMAP_MODE_X2APIC) {
3803 		/*
3804 		 * TPR reads and writes can be virtualized even if virtual interrupt
3805 		 * delivery is not in use.
3806 		 */
3807 		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3808 		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3809 			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3810 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3811 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3812 		}
3813 	}
3814 }
3815 
3816 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3817 {
3818 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3819 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3820 	u8 mode = vmx_msr_bitmap_mode(vcpu);
3821 	u8 changed = mode ^ vmx->msr_bitmap_mode;
3822 
3823 	if (!changed)
3824 		return;
3825 
3826 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3827 		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3828 
3829 	vmx->msr_bitmap_mode = mode;
3830 }
3831 
3832 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3833 {
3834 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3835 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3836 	u32 i;
3837 
3838 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3839 							MSR_TYPE_RW, flag);
3840 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3841 							MSR_TYPE_RW, flag);
3842 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3843 							MSR_TYPE_RW, flag);
3844 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3845 							MSR_TYPE_RW, flag);
3846 	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3847 		vmx_set_intercept_for_msr(msr_bitmap,
3848 			MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3849 		vmx_set_intercept_for_msr(msr_bitmap,
3850 			MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3851 	}
3852 }
3853 
3854 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3855 {
3856 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3857 	void *vapic_page;
3858 	u32 vppr;
3859 	int rvi;
3860 
3861 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3862 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3863 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3864 		return false;
3865 
3866 	rvi = vmx_get_rvi();
3867 
3868 	vapic_page = vmx->nested.virtual_apic_map.hva;
3869 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3870 
3871 	return ((rvi & 0xf0) > (vppr & 0xf0));
3872 }
3873 
3874 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3875 						     bool nested)
3876 {
3877 #ifdef CONFIG_SMP
3878 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3879 
3880 	if (vcpu->mode == IN_GUEST_MODE) {
3881 		/*
3882 		 * The vector of interrupt to be delivered to vcpu had
3883 		 * been set in PIR before this function.
3884 		 *
3885 		 * Following cases will be reached in this block, and
3886 		 * we always send a notification event in all cases as
3887 		 * explained below.
3888 		 *
3889 		 * Case 1: vcpu keeps in non-root mode. Sending a
3890 		 * notification event posts the interrupt to vcpu.
3891 		 *
3892 		 * Case 2: vcpu exits to root mode and is still
3893 		 * runnable. PIR will be synced to vIRR before the
3894 		 * next vcpu entry. Sending a notification event in
3895 		 * this case has no effect, as vcpu is not in root
3896 		 * mode.
3897 		 *
3898 		 * Case 3: vcpu exits to root mode and is blocked.
3899 		 * vcpu_block() has already synced PIR to vIRR and
3900 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3901 		 * a blocked vcpu here does not wait for any requested
3902 		 * interrupts in PIR, and sending a notification event
3903 		 * which has no effect is safe here.
3904 		 */
3905 
3906 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3907 		return true;
3908 	}
3909 #endif
3910 	return false;
3911 }
3912 
3913 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3914 						int vector)
3915 {
3916 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3917 
3918 	if (is_guest_mode(vcpu) &&
3919 	    vector == vmx->nested.posted_intr_nv) {
3920 		/*
3921 		 * If a posted intr is not recognized by hardware,
3922 		 * we will accomplish it in the next vmentry.
3923 		 */
3924 		vmx->nested.pi_pending = true;
3925 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3926 		/* the PIR and ON have been set by L1. */
3927 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3928 			kvm_vcpu_kick(vcpu);
3929 		return 0;
3930 	}
3931 	return -1;
3932 }
3933 /*
3934  * Send interrupt to vcpu via posted interrupt way.
3935  * 1. If target vcpu is running(non-root mode), send posted interrupt
3936  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3937  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3938  * interrupt from PIR in next vmentry.
3939  */
3940 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3941 {
3942 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3943 	int r;
3944 
3945 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3946 	if (!r)
3947 		return 0;
3948 
3949 	if (!vcpu->arch.apicv_active)
3950 		return -1;
3951 
3952 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3953 		return 0;
3954 
3955 	/* If a previous notification has sent the IPI, nothing to do.  */
3956 	if (pi_test_and_set_on(&vmx->pi_desc))
3957 		return 0;
3958 
3959 	if (vcpu != kvm_get_running_vcpu() &&
3960 	    !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3961 		kvm_vcpu_kick(vcpu);
3962 
3963 	return 0;
3964 }
3965 
3966 /*
3967  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3968  * will not change in the lifetime of the guest.
3969  * Note that host-state that does change is set elsewhere. E.g., host-state
3970  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3971  */
3972 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3973 {
3974 	u32 low32, high32;
3975 	unsigned long tmpl;
3976 	unsigned long cr0, cr3, cr4;
3977 
3978 	cr0 = read_cr0();
3979 	WARN_ON(cr0 & X86_CR0_TS);
3980 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3981 
3982 	/*
3983 	 * Save the most likely value for this task's CR3 in the VMCS.
3984 	 * We can't use __get_current_cr3_fast() because we're not atomic.
3985 	 */
3986 	cr3 = __read_cr3();
3987 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
3988 	vmx->loaded_vmcs->host_state.cr3 = cr3;
3989 
3990 	/* Save the most likely value for this task's CR4 in the VMCS. */
3991 	cr4 = cr4_read_shadow();
3992 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
3993 	vmx->loaded_vmcs->host_state.cr4 = cr4;
3994 
3995 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3996 #ifdef CONFIG_X86_64
3997 	/*
3998 	 * Load null selectors, so we can avoid reloading them in
3999 	 * vmx_prepare_switch_to_host(), in case userspace uses
4000 	 * the null selectors too (the expected case).
4001 	 */
4002 	vmcs_write16(HOST_DS_SELECTOR, 0);
4003 	vmcs_write16(HOST_ES_SELECTOR, 0);
4004 #else
4005 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4006 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4007 #endif
4008 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4009 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4010 
4011 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4012 
4013 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4014 
4015 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4016 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4017 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4018 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4019 
4020 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4021 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4022 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4023 	}
4024 
4025 	if (cpu_has_load_ia32_efer())
4026 		vmcs_write64(HOST_IA32_EFER, host_efer);
4027 }
4028 
4029 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4030 {
4031 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS;
4032 	if (!enable_ept)
4033 		vmx->vcpu.arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4034 	if (is_guest_mode(&vmx->vcpu))
4035 		vmx->vcpu.arch.cr4_guest_owned_bits &=
4036 			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4037 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4038 }
4039 
4040 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4041 {
4042 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4043 
4044 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4045 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4046 
4047 	if (!enable_vnmi)
4048 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4049 
4050 	if (!enable_preemption_timer)
4051 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4052 
4053 	return pin_based_exec_ctrl;
4054 }
4055 
4056 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4057 {
4058 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4059 
4060 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4061 	if (cpu_has_secondary_exec_ctrls()) {
4062 		if (kvm_vcpu_apicv_active(vcpu))
4063 			secondary_exec_controls_setbit(vmx,
4064 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4065 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4066 		else
4067 			secondary_exec_controls_clearbit(vmx,
4068 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4069 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4070 	}
4071 
4072 	if (cpu_has_vmx_msr_bitmap())
4073 		vmx_update_msr_bitmap(vcpu);
4074 }
4075 
4076 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4077 {
4078 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4079 
4080 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4081 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4082 
4083 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4084 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4085 #ifdef CONFIG_X86_64
4086 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4087 				CPU_BASED_CR8_LOAD_EXITING;
4088 #endif
4089 	}
4090 	if (!enable_ept)
4091 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4092 				CPU_BASED_CR3_LOAD_EXITING  |
4093 				CPU_BASED_INVLPG_EXITING;
4094 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4095 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4096 				CPU_BASED_MONITOR_EXITING);
4097 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4098 		exec_control &= ~CPU_BASED_HLT_EXITING;
4099 	return exec_control;
4100 }
4101 
4102 
4103 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4104 {
4105 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4106 
4107 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4108 
4109 	if (vmx_pt_mode_is_system())
4110 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4111 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4112 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4113 	if (vmx->vpid == 0)
4114 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4115 	if (!enable_ept) {
4116 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4117 		enable_unrestricted_guest = 0;
4118 	}
4119 	if (!enable_unrestricted_guest)
4120 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4121 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4122 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4123 	if (!kvm_vcpu_apicv_active(vcpu))
4124 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4125 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4126 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4127 
4128 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4129 	 * in vmx_set_cr4.  */
4130 	exec_control &= ~SECONDARY_EXEC_DESC;
4131 
4132 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4133 	   (handle_vmptrld).
4134 	   We can NOT enable shadow_vmcs here because we don't have yet
4135 	   a current VMCS12
4136 	*/
4137 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4138 
4139 	if (!enable_pml)
4140 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4141 
4142 	if (vmx_xsaves_supported()) {
4143 		/* Exposing XSAVES only when XSAVE is exposed */
4144 		bool xsaves_enabled =
4145 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4146 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4147 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4148 
4149 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4150 
4151 		if (!xsaves_enabled)
4152 			exec_control &= ~SECONDARY_EXEC_XSAVES;
4153 
4154 		if (nested) {
4155 			if (xsaves_enabled)
4156 				vmx->nested.msrs.secondary_ctls_high |=
4157 					SECONDARY_EXEC_XSAVES;
4158 			else
4159 				vmx->nested.msrs.secondary_ctls_high &=
4160 					~SECONDARY_EXEC_XSAVES;
4161 		}
4162 	}
4163 
4164 	if (cpu_has_vmx_rdtscp()) {
4165 		bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4166 		if (!rdtscp_enabled)
4167 			exec_control &= ~SECONDARY_EXEC_RDTSCP;
4168 
4169 		if (nested) {
4170 			if (rdtscp_enabled)
4171 				vmx->nested.msrs.secondary_ctls_high |=
4172 					SECONDARY_EXEC_RDTSCP;
4173 			else
4174 				vmx->nested.msrs.secondary_ctls_high &=
4175 					~SECONDARY_EXEC_RDTSCP;
4176 		}
4177 	}
4178 
4179 	if (cpu_has_vmx_invpcid()) {
4180 		/* Exposing INVPCID only when PCID is exposed */
4181 		bool invpcid_enabled =
4182 			guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4183 			guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4184 
4185 		if (!invpcid_enabled) {
4186 			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4187 			guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4188 		}
4189 
4190 		if (nested) {
4191 			if (invpcid_enabled)
4192 				vmx->nested.msrs.secondary_ctls_high |=
4193 					SECONDARY_EXEC_ENABLE_INVPCID;
4194 			else
4195 				vmx->nested.msrs.secondary_ctls_high &=
4196 					~SECONDARY_EXEC_ENABLE_INVPCID;
4197 		}
4198 	}
4199 
4200 	if (vmx_rdrand_supported()) {
4201 		bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4202 		if (rdrand_enabled)
4203 			exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4204 
4205 		if (nested) {
4206 			if (rdrand_enabled)
4207 				vmx->nested.msrs.secondary_ctls_high |=
4208 					SECONDARY_EXEC_RDRAND_EXITING;
4209 			else
4210 				vmx->nested.msrs.secondary_ctls_high &=
4211 					~SECONDARY_EXEC_RDRAND_EXITING;
4212 		}
4213 	}
4214 
4215 	if (vmx_rdseed_supported()) {
4216 		bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4217 		if (rdseed_enabled)
4218 			exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4219 
4220 		if (nested) {
4221 			if (rdseed_enabled)
4222 				vmx->nested.msrs.secondary_ctls_high |=
4223 					SECONDARY_EXEC_RDSEED_EXITING;
4224 			else
4225 				vmx->nested.msrs.secondary_ctls_high &=
4226 					~SECONDARY_EXEC_RDSEED_EXITING;
4227 		}
4228 	}
4229 
4230 	if (vmx_waitpkg_supported()) {
4231 		bool waitpkg_enabled =
4232 			guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4233 
4234 		if (!waitpkg_enabled)
4235 			exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4236 
4237 		if (nested) {
4238 			if (waitpkg_enabled)
4239 				vmx->nested.msrs.secondary_ctls_high |=
4240 					SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4241 			else
4242 				vmx->nested.msrs.secondary_ctls_high &=
4243 					~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4244 		}
4245 	}
4246 
4247 	vmx->secondary_exec_control = exec_control;
4248 }
4249 
4250 static void ept_set_mmio_spte_mask(void)
4251 {
4252 	/*
4253 	 * EPT Misconfigurations can be generated if the value of bits 2:0
4254 	 * of an EPT paging-structure entry is 110b (write/execute).
4255 	 */
4256 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0);
4257 }
4258 
4259 #define VMX_XSS_EXIT_BITMAP 0
4260 
4261 /*
4262  * Noting that the initialization of Guest-state Area of VMCS is in
4263  * vmx_vcpu_reset().
4264  */
4265 static void init_vmcs(struct vcpu_vmx *vmx)
4266 {
4267 	if (nested)
4268 		nested_vmx_set_vmcs_shadowing_bitmap();
4269 
4270 	if (cpu_has_vmx_msr_bitmap())
4271 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4272 
4273 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4274 
4275 	/* Control */
4276 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4277 
4278 	exec_controls_set(vmx, vmx_exec_control(vmx));
4279 
4280 	if (cpu_has_secondary_exec_ctrls()) {
4281 		vmx_compute_secondary_exec_control(vmx);
4282 		secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4283 	}
4284 
4285 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4286 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4287 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4288 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4289 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4290 
4291 		vmcs_write16(GUEST_INTR_STATUS, 0);
4292 
4293 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4294 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4295 	}
4296 
4297 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4298 		vmcs_write32(PLE_GAP, ple_gap);
4299 		vmx->ple_window = ple_window;
4300 		vmx->ple_window_dirty = true;
4301 	}
4302 
4303 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4304 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4305 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4306 
4307 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4308 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4309 	vmx_set_constant_host_state(vmx);
4310 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4311 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4312 
4313 	if (cpu_has_vmx_vmfunc())
4314 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4315 
4316 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4317 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4318 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4319 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4320 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4321 
4322 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4323 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4324 
4325 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4326 
4327 	/* 22.2.1, 20.8.1 */
4328 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4329 
4330 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4331 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4332 
4333 	set_cr4_guest_host_mask(vmx);
4334 
4335 	if (vmx->vpid != 0)
4336 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4337 
4338 	if (vmx_xsaves_supported())
4339 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4340 
4341 	if (enable_pml) {
4342 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4343 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4344 	}
4345 
4346 	if (cpu_has_vmx_encls_vmexit())
4347 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4348 
4349 	if (vmx_pt_mode_is_host_guest()) {
4350 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4351 		/* Bit[6~0] are forced to 1, writes are ignored. */
4352 		vmx->pt_desc.guest.output_mask = 0x7F;
4353 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4354 	}
4355 
4356 	/*
4357 	 * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched
4358 	 * between guest and host.  In that case we only care about present
4359 	 * faults.
4360 	 */
4361 	if (enable_ept) {
4362 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, PFERR_PRESENT_MASK);
4363 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, PFERR_PRESENT_MASK);
4364 	}
4365 }
4366 
4367 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4368 {
4369 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4370 	struct msr_data apic_base_msr;
4371 	u64 cr0;
4372 
4373 	vmx->rmode.vm86_active = 0;
4374 	vmx->spec_ctrl = 0;
4375 
4376 	vmx->msr_ia32_umwait_control = 0;
4377 
4378 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4379 	vmx->hv_deadline_tsc = -1;
4380 	kvm_set_cr8(vcpu, 0);
4381 
4382 	if (!init_event) {
4383 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4384 				     MSR_IA32_APICBASE_ENABLE;
4385 		if (kvm_vcpu_is_reset_bsp(vcpu))
4386 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4387 		apic_base_msr.host_initiated = true;
4388 		kvm_set_apic_base(vcpu, &apic_base_msr);
4389 	}
4390 
4391 	vmx_segment_cache_clear(vmx);
4392 
4393 	seg_setup(VCPU_SREG_CS);
4394 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4395 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4396 
4397 	seg_setup(VCPU_SREG_DS);
4398 	seg_setup(VCPU_SREG_ES);
4399 	seg_setup(VCPU_SREG_FS);
4400 	seg_setup(VCPU_SREG_GS);
4401 	seg_setup(VCPU_SREG_SS);
4402 
4403 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4404 	vmcs_writel(GUEST_TR_BASE, 0);
4405 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4406 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4407 
4408 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4409 	vmcs_writel(GUEST_LDTR_BASE, 0);
4410 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4411 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4412 
4413 	if (!init_event) {
4414 		vmcs_write32(GUEST_SYSENTER_CS, 0);
4415 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
4416 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
4417 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4418 	}
4419 
4420 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4421 	kvm_rip_write(vcpu, 0xfff0);
4422 
4423 	vmcs_writel(GUEST_GDTR_BASE, 0);
4424 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4425 
4426 	vmcs_writel(GUEST_IDTR_BASE, 0);
4427 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4428 
4429 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4430 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4431 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4432 	if (kvm_mpx_supported())
4433 		vmcs_write64(GUEST_BNDCFGS, 0);
4434 
4435 	setup_msrs(vmx);
4436 
4437 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4438 
4439 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
4440 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4441 		if (cpu_need_tpr_shadow(vcpu))
4442 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4443 				     __pa(vcpu->arch.apic->regs));
4444 		vmcs_write32(TPR_THRESHOLD, 0);
4445 	}
4446 
4447 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4448 
4449 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4450 	vmx->vcpu.arch.cr0 = cr0;
4451 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
4452 	vmx_set_cr4(vcpu, 0);
4453 	vmx_set_efer(vcpu, 0);
4454 
4455 	update_exception_bitmap(vcpu);
4456 
4457 	vpid_sync_context(vmx->vpid);
4458 	if (init_event)
4459 		vmx_clear_hlt(vcpu);
4460 }
4461 
4462 static void enable_irq_window(struct kvm_vcpu *vcpu)
4463 {
4464 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4465 }
4466 
4467 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4468 {
4469 	if (!enable_vnmi ||
4470 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4471 		enable_irq_window(vcpu);
4472 		return;
4473 	}
4474 
4475 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4476 }
4477 
4478 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4479 {
4480 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4481 	uint32_t intr;
4482 	int irq = vcpu->arch.interrupt.nr;
4483 
4484 	trace_kvm_inj_virq(irq);
4485 
4486 	++vcpu->stat.irq_injections;
4487 	if (vmx->rmode.vm86_active) {
4488 		int inc_eip = 0;
4489 		if (vcpu->arch.interrupt.soft)
4490 			inc_eip = vcpu->arch.event_exit_inst_len;
4491 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4492 		return;
4493 	}
4494 	intr = irq | INTR_INFO_VALID_MASK;
4495 	if (vcpu->arch.interrupt.soft) {
4496 		intr |= INTR_TYPE_SOFT_INTR;
4497 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4498 			     vmx->vcpu.arch.event_exit_inst_len);
4499 	} else
4500 		intr |= INTR_TYPE_EXT_INTR;
4501 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4502 
4503 	vmx_clear_hlt(vcpu);
4504 }
4505 
4506 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4507 {
4508 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4509 
4510 	if (!enable_vnmi) {
4511 		/*
4512 		 * Tracking the NMI-blocked state in software is built upon
4513 		 * finding the next open IRQ window. This, in turn, depends on
4514 		 * well-behaving guests: They have to keep IRQs disabled at
4515 		 * least as long as the NMI handler runs. Otherwise we may
4516 		 * cause NMI nesting, maybe breaking the guest. But as this is
4517 		 * highly unlikely, we can live with the residual risk.
4518 		 */
4519 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4520 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4521 	}
4522 
4523 	++vcpu->stat.nmi_injections;
4524 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4525 
4526 	if (vmx->rmode.vm86_active) {
4527 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4528 		return;
4529 	}
4530 
4531 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4532 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4533 
4534 	vmx_clear_hlt(vcpu);
4535 }
4536 
4537 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4538 {
4539 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4540 	bool masked;
4541 
4542 	if (!enable_vnmi)
4543 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4544 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4545 		return false;
4546 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4547 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4548 	return masked;
4549 }
4550 
4551 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4552 {
4553 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4554 
4555 	if (!enable_vnmi) {
4556 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4557 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4558 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4559 		}
4560 	} else {
4561 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4562 		if (masked)
4563 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4564 				      GUEST_INTR_STATE_NMI);
4565 		else
4566 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4567 					GUEST_INTR_STATE_NMI);
4568 	}
4569 }
4570 
4571 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4572 {
4573 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4574 		return false;
4575 
4576 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4577 		return true;
4578 
4579 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4580 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4581 		 GUEST_INTR_STATE_NMI));
4582 }
4583 
4584 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4585 {
4586 	if (to_vmx(vcpu)->nested.nested_run_pending)
4587 		return -EBUSY;
4588 
4589 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4590 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4591 		return -EBUSY;
4592 
4593 	return !vmx_nmi_blocked(vcpu);
4594 }
4595 
4596 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4597 {
4598 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4599 		return false;
4600 
4601 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4602 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4603 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4604 }
4605 
4606 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4607 {
4608 	if (to_vmx(vcpu)->nested.nested_run_pending)
4609 		return -EBUSY;
4610 
4611        /*
4612         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4613         * e.g. if the IRQ arrived asynchronously after checking nested events.
4614         */
4615 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4616 		return -EBUSY;
4617 
4618 	return !vmx_interrupt_blocked(vcpu);
4619 }
4620 
4621 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4622 {
4623 	int ret;
4624 
4625 	if (enable_unrestricted_guest)
4626 		return 0;
4627 
4628 	mutex_lock(&kvm->slots_lock);
4629 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4630 				      PAGE_SIZE * 3);
4631 	mutex_unlock(&kvm->slots_lock);
4632 
4633 	if (ret)
4634 		return ret;
4635 	to_kvm_vmx(kvm)->tss_addr = addr;
4636 	return init_rmode_tss(kvm);
4637 }
4638 
4639 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4640 {
4641 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4642 	return 0;
4643 }
4644 
4645 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4646 {
4647 	switch (vec) {
4648 	case BP_VECTOR:
4649 		/*
4650 		 * Update instruction length as we may reinject the exception
4651 		 * from user space while in guest debugging mode.
4652 		 */
4653 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4654 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4655 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4656 			return false;
4657 		fallthrough;
4658 	case DB_VECTOR:
4659 		return !(vcpu->guest_debug &
4660 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4661 	case DE_VECTOR:
4662 	case OF_VECTOR:
4663 	case BR_VECTOR:
4664 	case UD_VECTOR:
4665 	case DF_VECTOR:
4666 	case SS_VECTOR:
4667 	case GP_VECTOR:
4668 	case MF_VECTOR:
4669 		return true;
4670 	}
4671 	return false;
4672 }
4673 
4674 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4675 				  int vec, u32 err_code)
4676 {
4677 	/*
4678 	 * Instruction with address size override prefix opcode 0x67
4679 	 * Cause the #SS fault with 0 error code in VM86 mode.
4680 	 */
4681 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4682 		if (kvm_emulate_instruction(vcpu, 0)) {
4683 			if (vcpu->arch.halt_request) {
4684 				vcpu->arch.halt_request = 0;
4685 				return kvm_vcpu_halt(vcpu);
4686 			}
4687 			return 1;
4688 		}
4689 		return 0;
4690 	}
4691 
4692 	/*
4693 	 * Forward all other exceptions that are valid in real mode.
4694 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4695 	 *        the required debugging infrastructure rework.
4696 	 */
4697 	kvm_queue_exception(vcpu, vec);
4698 	return 1;
4699 }
4700 
4701 /*
4702  * Trigger machine check on the host. We assume all the MSRs are already set up
4703  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4704  * We pass a fake environment to the machine check handler because we want
4705  * the guest to be always treated like user space, no matter what context
4706  * it used internally.
4707  */
4708 static void kvm_machine_check(void)
4709 {
4710 #if defined(CONFIG_X86_MCE)
4711 	struct pt_regs regs = {
4712 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
4713 		.flags = X86_EFLAGS_IF,
4714 	};
4715 
4716 	do_machine_check(&regs);
4717 #endif
4718 }
4719 
4720 static int handle_machine_check(struct kvm_vcpu *vcpu)
4721 {
4722 	/* handled by vmx_vcpu_run() */
4723 	return 1;
4724 }
4725 
4726 /*
4727  * If the host has split lock detection disabled, then #AC is
4728  * unconditionally injected into the guest, which is the pre split lock
4729  * detection behaviour.
4730  *
4731  * If the host has split lock detection enabled then #AC is
4732  * only injected into the guest when:
4733  *  - Guest CPL == 3 (user mode)
4734  *  - Guest has #AC detection enabled in CR0
4735  *  - Guest EFLAGS has AC bit set
4736  */
4737 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4738 {
4739 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4740 		return true;
4741 
4742 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4743 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4744 }
4745 
4746 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4747 {
4748 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4749 	struct kvm_run *kvm_run = vcpu->run;
4750 	u32 intr_info, ex_no, error_code;
4751 	unsigned long cr2, rip, dr6;
4752 	u32 vect_info;
4753 
4754 	vect_info = vmx->idt_vectoring_info;
4755 	intr_info = vmx_get_intr_info(vcpu);
4756 
4757 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4758 		return 1; /* handled by handle_exception_nmi_irqoff() */
4759 
4760 	if (is_invalid_opcode(intr_info))
4761 		return handle_ud(vcpu);
4762 
4763 	error_code = 0;
4764 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4765 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4766 
4767 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4768 		WARN_ON_ONCE(!enable_vmware_backdoor);
4769 
4770 		/*
4771 		 * VMware backdoor emulation on #GP interception only handles
4772 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4773 		 * error code on #GP.
4774 		 */
4775 		if (error_code) {
4776 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4777 			return 1;
4778 		}
4779 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4780 	}
4781 
4782 	/*
4783 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4784 	 * MMIO, it is better to report an internal error.
4785 	 * See the comments in vmx_handle_exit.
4786 	 */
4787 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4788 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4789 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4790 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4791 		vcpu->run->internal.ndata = 4;
4792 		vcpu->run->internal.data[0] = vect_info;
4793 		vcpu->run->internal.data[1] = intr_info;
4794 		vcpu->run->internal.data[2] = error_code;
4795 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4796 		return 0;
4797 	}
4798 
4799 	if (is_page_fault(intr_info)) {
4800 		cr2 = vmx_get_exit_qual(vcpu);
4801 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4802 			/*
4803 			 * EPT will cause page fault only if we need to
4804 			 * detect illegal GPAs.
4805 			 */
4806 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4807 			return 1;
4808 		} else
4809 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4810 	}
4811 
4812 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4813 
4814 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4815 		return handle_rmode_exception(vcpu, ex_no, error_code);
4816 
4817 	switch (ex_no) {
4818 	case DB_VECTOR:
4819 		dr6 = vmx_get_exit_qual(vcpu);
4820 		if (!(vcpu->guest_debug &
4821 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4822 			if (is_icebp(intr_info))
4823 				WARN_ON(!skip_emulated_instruction(vcpu));
4824 
4825 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4826 			return 1;
4827 		}
4828 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4829 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4830 		fallthrough;
4831 	case BP_VECTOR:
4832 		/*
4833 		 * Update instruction length as we may reinject #BP from
4834 		 * user space while in guest debugging mode. Reading it for
4835 		 * #DB as well causes no harm, it is not used in that case.
4836 		 */
4837 		vmx->vcpu.arch.event_exit_inst_len =
4838 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4839 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4840 		rip = kvm_rip_read(vcpu);
4841 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4842 		kvm_run->debug.arch.exception = ex_no;
4843 		break;
4844 	case AC_VECTOR:
4845 		if (guest_inject_ac(vcpu)) {
4846 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4847 			return 1;
4848 		}
4849 
4850 		/*
4851 		 * Handle split lock. Depending on detection mode this will
4852 		 * either warn and disable split lock detection for this
4853 		 * task or force SIGBUS on it.
4854 		 */
4855 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4856 			return 1;
4857 		fallthrough;
4858 	default:
4859 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4860 		kvm_run->ex.exception = ex_no;
4861 		kvm_run->ex.error_code = error_code;
4862 		break;
4863 	}
4864 	return 0;
4865 }
4866 
4867 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4868 {
4869 	++vcpu->stat.irq_exits;
4870 	return 1;
4871 }
4872 
4873 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4874 {
4875 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4876 	vcpu->mmio_needed = 0;
4877 	return 0;
4878 }
4879 
4880 static int handle_io(struct kvm_vcpu *vcpu)
4881 {
4882 	unsigned long exit_qualification;
4883 	int size, in, string;
4884 	unsigned port;
4885 
4886 	exit_qualification = vmx_get_exit_qual(vcpu);
4887 	string = (exit_qualification & 16) != 0;
4888 
4889 	++vcpu->stat.io_exits;
4890 
4891 	if (string)
4892 		return kvm_emulate_instruction(vcpu, 0);
4893 
4894 	port = exit_qualification >> 16;
4895 	size = (exit_qualification & 7) + 1;
4896 	in = (exit_qualification & 8) != 0;
4897 
4898 	return kvm_fast_pio(vcpu, size, port, in);
4899 }
4900 
4901 static void
4902 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4903 {
4904 	/*
4905 	 * Patch in the VMCALL instruction:
4906 	 */
4907 	hypercall[0] = 0x0f;
4908 	hypercall[1] = 0x01;
4909 	hypercall[2] = 0xc1;
4910 }
4911 
4912 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4913 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4914 {
4915 	if (is_guest_mode(vcpu)) {
4916 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4917 		unsigned long orig_val = val;
4918 
4919 		/*
4920 		 * We get here when L2 changed cr0 in a way that did not change
4921 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4922 		 * but did change L0 shadowed bits. So we first calculate the
4923 		 * effective cr0 value that L1 would like to write into the
4924 		 * hardware. It consists of the L2-owned bits from the new
4925 		 * value combined with the L1-owned bits from L1's guest_cr0.
4926 		 */
4927 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4928 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4929 
4930 		if (!nested_guest_cr0_valid(vcpu, val))
4931 			return 1;
4932 
4933 		if (kvm_set_cr0(vcpu, val))
4934 			return 1;
4935 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4936 		return 0;
4937 	} else {
4938 		if (to_vmx(vcpu)->nested.vmxon &&
4939 		    !nested_host_cr0_valid(vcpu, val))
4940 			return 1;
4941 
4942 		return kvm_set_cr0(vcpu, val);
4943 	}
4944 }
4945 
4946 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4947 {
4948 	if (is_guest_mode(vcpu)) {
4949 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4950 		unsigned long orig_val = val;
4951 
4952 		/* analogously to handle_set_cr0 */
4953 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4954 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4955 		if (kvm_set_cr4(vcpu, val))
4956 			return 1;
4957 		vmcs_writel(CR4_READ_SHADOW, orig_val);
4958 		return 0;
4959 	} else
4960 		return kvm_set_cr4(vcpu, val);
4961 }
4962 
4963 static int handle_desc(struct kvm_vcpu *vcpu)
4964 {
4965 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4966 	return kvm_emulate_instruction(vcpu, 0);
4967 }
4968 
4969 static int handle_cr(struct kvm_vcpu *vcpu)
4970 {
4971 	unsigned long exit_qualification, val;
4972 	int cr;
4973 	int reg;
4974 	int err;
4975 	int ret;
4976 
4977 	exit_qualification = vmx_get_exit_qual(vcpu);
4978 	cr = exit_qualification & 15;
4979 	reg = (exit_qualification >> 8) & 15;
4980 	switch ((exit_qualification >> 4) & 3) {
4981 	case 0: /* mov to cr */
4982 		val = kvm_register_readl(vcpu, reg);
4983 		trace_kvm_cr_write(cr, val);
4984 		switch (cr) {
4985 		case 0:
4986 			err = handle_set_cr0(vcpu, val);
4987 			return kvm_complete_insn_gp(vcpu, err);
4988 		case 3:
4989 			WARN_ON_ONCE(enable_unrestricted_guest);
4990 			err = kvm_set_cr3(vcpu, val);
4991 			return kvm_complete_insn_gp(vcpu, err);
4992 		case 4:
4993 			err = handle_set_cr4(vcpu, val);
4994 			return kvm_complete_insn_gp(vcpu, err);
4995 		case 8: {
4996 				u8 cr8_prev = kvm_get_cr8(vcpu);
4997 				u8 cr8 = (u8)val;
4998 				err = kvm_set_cr8(vcpu, cr8);
4999 				ret = kvm_complete_insn_gp(vcpu, err);
5000 				if (lapic_in_kernel(vcpu))
5001 					return ret;
5002 				if (cr8_prev <= cr8)
5003 					return ret;
5004 				/*
5005 				 * TODO: we might be squashing a
5006 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5007 				 * KVM_EXIT_DEBUG here.
5008 				 */
5009 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5010 				return 0;
5011 			}
5012 		}
5013 		break;
5014 	case 2: /* clts */
5015 		WARN_ONCE(1, "Guest should always own CR0.TS");
5016 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5017 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5018 		return kvm_skip_emulated_instruction(vcpu);
5019 	case 1: /*mov from cr*/
5020 		switch (cr) {
5021 		case 3:
5022 			WARN_ON_ONCE(enable_unrestricted_guest);
5023 			val = kvm_read_cr3(vcpu);
5024 			kvm_register_write(vcpu, reg, val);
5025 			trace_kvm_cr_read(cr, val);
5026 			return kvm_skip_emulated_instruction(vcpu);
5027 		case 8:
5028 			val = kvm_get_cr8(vcpu);
5029 			kvm_register_write(vcpu, reg, val);
5030 			trace_kvm_cr_read(cr, val);
5031 			return kvm_skip_emulated_instruction(vcpu);
5032 		}
5033 		break;
5034 	case 3: /* lmsw */
5035 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5036 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5037 		kvm_lmsw(vcpu, val);
5038 
5039 		return kvm_skip_emulated_instruction(vcpu);
5040 	default:
5041 		break;
5042 	}
5043 	vcpu->run->exit_reason = 0;
5044 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5045 	       (int)(exit_qualification >> 4) & 3, cr);
5046 	return 0;
5047 }
5048 
5049 static int handle_dr(struct kvm_vcpu *vcpu)
5050 {
5051 	unsigned long exit_qualification;
5052 	int dr, dr7, reg;
5053 
5054 	exit_qualification = vmx_get_exit_qual(vcpu);
5055 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5056 
5057 	/* First, if DR does not exist, trigger UD */
5058 	if (!kvm_require_dr(vcpu, dr))
5059 		return 1;
5060 
5061 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
5062 	if (!kvm_require_cpl(vcpu, 0))
5063 		return 1;
5064 	dr7 = vmcs_readl(GUEST_DR7);
5065 	if (dr7 & DR7_GD) {
5066 		/*
5067 		 * As the vm-exit takes precedence over the debug trap, we
5068 		 * need to emulate the latter, either for the host or the
5069 		 * guest debugging itself.
5070 		 */
5071 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5072 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
5073 			vcpu->run->debug.arch.dr7 = dr7;
5074 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5075 			vcpu->run->debug.arch.exception = DB_VECTOR;
5076 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5077 			return 0;
5078 		} else {
5079 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5080 			return 1;
5081 		}
5082 	}
5083 
5084 	if (vcpu->guest_debug == 0) {
5085 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5086 
5087 		/*
5088 		 * No more DR vmexits; force a reload of the debug registers
5089 		 * and reenter on this instruction.  The next vmexit will
5090 		 * retrieve the full state of the debug registers.
5091 		 */
5092 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5093 		return 1;
5094 	}
5095 
5096 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5097 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5098 		unsigned long val;
5099 
5100 		if (kvm_get_dr(vcpu, dr, &val))
5101 			return 1;
5102 		kvm_register_write(vcpu, reg, val);
5103 	} else
5104 		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5105 			return 1;
5106 
5107 	return kvm_skip_emulated_instruction(vcpu);
5108 }
5109 
5110 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5111 {
5112 	get_debugreg(vcpu->arch.db[0], 0);
5113 	get_debugreg(vcpu->arch.db[1], 1);
5114 	get_debugreg(vcpu->arch.db[2], 2);
5115 	get_debugreg(vcpu->arch.db[3], 3);
5116 	get_debugreg(vcpu->arch.dr6, 6);
5117 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5118 
5119 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5120 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5121 }
5122 
5123 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5124 {
5125 	vmcs_writel(GUEST_DR7, val);
5126 }
5127 
5128 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5129 {
5130 	kvm_apic_update_ppr(vcpu);
5131 	return 1;
5132 }
5133 
5134 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5135 {
5136 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5137 
5138 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5139 
5140 	++vcpu->stat.irq_window_exits;
5141 	return 1;
5142 }
5143 
5144 static int handle_vmcall(struct kvm_vcpu *vcpu)
5145 {
5146 	return kvm_emulate_hypercall(vcpu);
5147 }
5148 
5149 static int handle_invd(struct kvm_vcpu *vcpu)
5150 {
5151 	return kvm_emulate_instruction(vcpu, 0);
5152 }
5153 
5154 static int handle_invlpg(struct kvm_vcpu *vcpu)
5155 {
5156 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5157 
5158 	kvm_mmu_invlpg(vcpu, exit_qualification);
5159 	return kvm_skip_emulated_instruction(vcpu);
5160 }
5161 
5162 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5163 {
5164 	int err;
5165 
5166 	err = kvm_rdpmc(vcpu);
5167 	return kvm_complete_insn_gp(vcpu, err);
5168 }
5169 
5170 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5171 {
5172 	return kvm_emulate_wbinvd(vcpu);
5173 }
5174 
5175 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5176 {
5177 	u64 new_bv = kvm_read_edx_eax(vcpu);
5178 	u32 index = kvm_rcx_read(vcpu);
5179 
5180 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5181 		return kvm_skip_emulated_instruction(vcpu);
5182 	return 1;
5183 }
5184 
5185 static int handle_apic_access(struct kvm_vcpu *vcpu)
5186 {
5187 	if (likely(fasteoi)) {
5188 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5189 		int access_type, offset;
5190 
5191 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5192 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5193 		/*
5194 		 * Sane guest uses MOV to write EOI, with written value
5195 		 * not cared. So make a short-circuit here by avoiding
5196 		 * heavy instruction emulation.
5197 		 */
5198 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5199 		    (offset == APIC_EOI)) {
5200 			kvm_lapic_set_eoi(vcpu);
5201 			return kvm_skip_emulated_instruction(vcpu);
5202 		}
5203 	}
5204 	return kvm_emulate_instruction(vcpu, 0);
5205 }
5206 
5207 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5208 {
5209 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5210 	int vector = exit_qualification & 0xff;
5211 
5212 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5213 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5214 	return 1;
5215 }
5216 
5217 static int handle_apic_write(struct kvm_vcpu *vcpu)
5218 {
5219 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5220 	u32 offset = exit_qualification & 0xfff;
5221 
5222 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5223 	kvm_apic_write_nodecode(vcpu, offset);
5224 	return 1;
5225 }
5226 
5227 static int handle_task_switch(struct kvm_vcpu *vcpu)
5228 {
5229 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5230 	unsigned long exit_qualification;
5231 	bool has_error_code = false;
5232 	u32 error_code = 0;
5233 	u16 tss_selector;
5234 	int reason, type, idt_v, idt_index;
5235 
5236 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5237 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5238 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5239 
5240 	exit_qualification = vmx_get_exit_qual(vcpu);
5241 
5242 	reason = (u32)exit_qualification >> 30;
5243 	if (reason == TASK_SWITCH_GATE && idt_v) {
5244 		switch (type) {
5245 		case INTR_TYPE_NMI_INTR:
5246 			vcpu->arch.nmi_injected = false;
5247 			vmx_set_nmi_mask(vcpu, true);
5248 			break;
5249 		case INTR_TYPE_EXT_INTR:
5250 		case INTR_TYPE_SOFT_INTR:
5251 			kvm_clear_interrupt_queue(vcpu);
5252 			break;
5253 		case INTR_TYPE_HARD_EXCEPTION:
5254 			if (vmx->idt_vectoring_info &
5255 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5256 				has_error_code = true;
5257 				error_code =
5258 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5259 			}
5260 			fallthrough;
5261 		case INTR_TYPE_SOFT_EXCEPTION:
5262 			kvm_clear_exception_queue(vcpu);
5263 			break;
5264 		default:
5265 			break;
5266 		}
5267 	}
5268 	tss_selector = exit_qualification;
5269 
5270 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5271 		       type != INTR_TYPE_EXT_INTR &&
5272 		       type != INTR_TYPE_NMI_INTR))
5273 		WARN_ON(!skip_emulated_instruction(vcpu));
5274 
5275 	/*
5276 	 * TODO: What about debug traps on tss switch?
5277 	 *       Are we supposed to inject them and update dr6?
5278 	 */
5279 	return kvm_task_switch(vcpu, tss_selector,
5280 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5281 			       reason, has_error_code, error_code);
5282 }
5283 
5284 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5285 {
5286 	unsigned long exit_qualification;
5287 	gpa_t gpa;
5288 	u64 error_code;
5289 
5290 	exit_qualification = vmx_get_exit_qual(vcpu);
5291 
5292 	/*
5293 	 * EPT violation happened while executing iret from NMI,
5294 	 * "blocked by NMI" bit has to be set before next VM entry.
5295 	 * There are errata that may cause this bit to not be set:
5296 	 * AAK134, BY25.
5297 	 */
5298 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5299 			enable_vnmi &&
5300 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5301 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5302 
5303 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5304 	trace_kvm_page_fault(gpa, exit_qualification);
5305 
5306 	/* Is it a read fault? */
5307 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5308 		     ? PFERR_USER_MASK : 0;
5309 	/* Is it a write fault? */
5310 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5311 		      ? PFERR_WRITE_MASK : 0;
5312 	/* Is it a fetch fault? */
5313 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5314 		      ? PFERR_FETCH_MASK : 0;
5315 	/* ept page table entry is present? */
5316 	error_code |= (exit_qualification &
5317 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5318 			EPT_VIOLATION_EXECUTABLE))
5319 		      ? PFERR_PRESENT_MASK : 0;
5320 
5321 	error_code |= (exit_qualification & 0x100) != 0 ?
5322 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5323 
5324 	vcpu->arch.exit_qualification = exit_qualification;
5325 
5326 	/*
5327 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5328 	 * a guest page fault.  We have to emulate the instruction here, because
5329 	 * if the illegal address is that of a paging structure, then
5330 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5331 	 * would also use advanced VM-exit information for EPT violations to
5332 	 * reconstruct the page fault error code.
5333 	 */
5334 	if (unlikely(kvm_mmu_is_illegal_gpa(vcpu, gpa)))
5335 		return kvm_emulate_instruction(vcpu, 0);
5336 
5337 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5338 }
5339 
5340 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5341 {
5342 	gpa_t gpa;
5343 
5344 	/*
5345 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5346 	 * nGPA here instead of the required GPA.
5347 	 */
5348 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5349 	if (!is_guest_mode(vcpu) &&
5350 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5351 		trace_kvm_fast_mmio(gpa);
5352 		return kvm_skip_emulated_instruction(vcpu);
5353 	}
5354 
5355 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5356 }
5357 
5358 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5359 {
5360 	WARN_ON_ONCE(!enable_vnmi);
5361 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5362 	++vcpu->stat.nmi_window_exits;
5363 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5364 
5365 	return 1;
5366 }
5367 
5368 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5369 {
5370 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5371 	bool intr_window_requested;
5372 	unsigned count = 130;
5373 
5374 	intr_window_requested = exec_controls_get(vmx) &
5375 				CPU_BASED_INTR_WINDOW_EXITING;
5376 
5377 	while (vmx->emulation_required && count-- != 0) {
5378 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5379 			return handle_interrupt_window(&vmx->vcpu);
5380 
5381 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5382 			return 1;
5383 
5384 		if (!kvm_emulate_instruction(vcpu, 0))
5385 			return 0;
5386 
5387 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5388 		    vcpu->arch.exception.pending) {
5389 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5390 			vcpu->run->internal.suberror =
5391 						KVM_INTERNAL_ERROR_EMULATION;
5392 			vcpu->run->internal.ndata = 0;
5393 			return 0;
5394 		}
5395 
5396 		if (vcpu->arch.halt_request) {
5397 			vcpu->arch.halt_request = 0;
5398 			return kvm_vcpu_halt(vcpu);
5399 		}
5400 
5401 		/*
5402 		 * Note, return 1 and not 0, vcpu_run() will invoke
5403 		 * xfer_to_guest_mode() which will create a proper return
5404 		 * code.
5405 		 */
5406 		if (__xfer_to_guest_mode_work_pending())
5407 			return 1;
5408 	}
5409 
5410 	return 1;
5411 }
5412 
5413 static void grow_ple_window(struct kvm_vcpu *vcpu)
5414 {
5415 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5416 	unsigned int old = vmx->ple_window;
5417 
5418 	vmx->ple_window = __grow_ple_window(old, ple_window,
5419 					    ple_window_grow,
5420 					    ple_window_max);
5421 
5422 	if (vmx->ple_window != old) {
5423 		vmx->ple_window_dirty = true;
5424 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5425 					    vmx->ple_window, old);
5426 	}
5427 }
5428 
5429 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5430 {
5431 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5432 	unsigned int old = vmx->ple_window;
5433 
5434 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5435 					      ple_window_shrink,
5436 					      ple_window);
5437 
5438 	if (vmx->ple_window != old) {
5439 		vmx->ple_window_dirty = true;
5440 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5441 					    vmx->ple_window, old);
5442 	}
5443 }
5444 
5445 /*
5446  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5447  */
5448 static void wakeup_handler(void)
5449 {
5450 	struct kvm_vcpu *vcpu;
5451 	int cpu = smp_processor_id();
5452 
5453 	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5454 	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5455 			blocked_vcpu_list) {
5456 		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5457 
5458 		if (pi_test_on(pi_desc) == 1)
5459 			kvm_vcpu_kick(vcpu);
5460 	}
5461 	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5462 }
5463 
5464 static void vmx_enable_tdp(void)
5465 {
5466 	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5467 		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5468 		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5469 		0ull, VMX_EPT_EXECUTABLE_MASK,
5470 		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5471 		VMX_EPT_RWX_MASK, 0ull);
5472 
5473 	ept_set_mmio_spte_mask();
5474 }
5475 
5476 /*
5477  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5478  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5479  */
5480 static int handle_pause(struct kvm_vcpu *vcpu)
5481 {
5482 	if (!kvm_pause_in_guest(vcpu->kvm))
5483 		grow_ple_window(vcpu);
5484 
5485 	/*
5486 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5487 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5488 	 * never set PAUSE_EXITING and just set PLE if supported,
5489 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5490 	 */
5491 	kvm_vcpu_on_spin(vcpu, true);
5492 	return kvm_skip_emulated_instruction(vcpu);
5493 }
5494 
5495 static int handle_nop(struct kvm_vcpu *vcpu)
5496 {
5497 	return kvm_skip_emulated_instruction(vcpu);
5498 }
5499 
5500 static int handle_mwait(struct kvm_vcpu *vcpu)
5501 {
5502 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5503 	return handle_nop(vcpu);
5504 }
5505 
5506 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5507 {
5508 	kvm_queue_exception(vcpu, UD_VECTOR);
5509 	return 1;
5510 }
5511 
5512 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5513 {
5514 	return 1;
5515 }
5516 
5517 static int handle_monitor(struct kvm_vcpu *vcpu)
5518 {
5519 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5520 	return handle_nop(vcpu);
5521 }
5522 
5523 static int handle_invpcid(struct kvm_vcpu *vcpu)
5524 {
5525 	u32 vmx_instruction_info;
5526 	unsigned long type;
5527 	bool pcid_enabled;
5528 	gva_t gva;
5529 	struct x86_exception e;
5530 	unsigned i;
5531 	unsigned long roots_to_free = 0;
5532 	struct {
5533 		u64 pcid;
5534 		u64 gla;
5535 	} operand;
5536 	int r;
5537 
5538 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5539 		kvm_queue_exception(vcpu, UD_VECTOR);
5540 		return 1;
5541 	}
5542 
5543 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5544 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5545 
5546 	if (type > 3) {
5547 		kvm_inject_gp(vcpu, 0);
5548 		return 1;
5549 	}
5550 
5551 	/* According to the Intel instruction reference, the memory operand
5552 	 * is read even if it isn't needed (e.g., for type==all)
5553 	 */
5554 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5555 				vmx_instruction_info, false,
5556 				sizeof(operand), &gva))
5557 		return 1;
5558 
5559 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5560 	if (r != X86EMUL_CONTINUE)
5561 		return vmx_handle_memory_failure(vcpu, r, &e);
5562 
5563 	if (operand.pcid >> 12 != 0) {
5564 		kvm_inject_gp(vcpu, 0);
5565 		return 1;
5566 	}
5567 
5568 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5569 
5570 	switch (type) {
5571 	case INVPCID_TYPE_INDIV_ADDR:
5572 		if ((!pcid_enabled && (operand.pcid != 0)) ||
5573 		    is_noncanonical_address(operand.gla, vcpu)) {
5574 			kvm_inject_gp(vcpu, 0);
5575 			return 1;
5576 		}
5577 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5578 		return kvm_skip_emulated_instruction(vcpu);
5579 
5580 	case INVPCID_TYPE_SINGLE_CTXT:
5581 		if (!pcid_enabled && (operand.pcid != 0)) {
5582 			kvm_inject_gp(vcpu, 0);
5583 			return 1;
5584 		}
5585 
5586 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5587 			kvm_mmu_sync_roots(vcpu);
5588 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
5589 		}
5590 
5591 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5592 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
5593 			    == operand.pcid)
5594 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5595 
5596 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5597 		/*
5598 		 * If neither the current cr3 nor any of the prev_roots use the
5599 		 * given PCID, then nothing needs to be done here because a
5600 		 * resync will happen anyway before switching to any other CR3.
5601 		 */
5602 
5603 		return kvm_skip_emulated_instruction(vcpu);
5604 
5605 	case INVPCID_TYPE_ALL_NON_GLOBAL:
5606 		/*
5607 		 * Currently, KVM doesn't mark global entries in the shadow
5608 		 * page tables, so a non-global flush just degenerates to a
5609 		 * global flush. If needed, we could optimize this later by
5610 		 * keeping track of global entries in shadow page tables.
5611 		 */
5612 
5613 		fallthrough;
5614 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
5615 		kvm_mmu_unload(vcpu);
5616 		return kvm_skip_emulated_instruction(vcpu);
5617 
5618 	default:
5619 		BUG(); /* We have already checked above that type <= 3 */
5620 	}
5621 }
5622 
5623 static int handle_pml_full(struct kvm_vcpu *vcpu)
5624 {
5625 	unsigned long exit_qualification;
5626 
5627 	trace_kvm_pml_full(vcpu->vcpu_id);
5628 
5629 	exit_qualification = vmx_get_exit_qual(vcpu);
5630 
5631 	/*
5632 	 * PML buffer FULL happened while executing iret from NMI,
5633 	 * "blocked by NMI" bit has to be set before next VM entry.
5634 	 */
5635 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5636 			enable_vnmi &&
5637 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5638 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5639 				GUEST_INTR_STATE_NMI);
5640 
5641 	/*
5642 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5643 	 * here.., and there's no userspace involvement needed for PML.
5644 	 */
5645 	return 1;
5646 }
5647 
5648 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5649 {
5650 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5651 
5652 	if (!vmx->req_immediate_exit &&
5653 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5654 		kvm_lapic_expired_hv_timer(vcpu);
5655 		return EXIT_FASTPATH_REENTER_GUEST;
5656 	}
5657 
5658 	return EXIT_FASTPATH_NONE;
5659 }
5660 
5661 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5662 {
5663 	handle_fastpath_preemption_timer(vcpu);
5664 	return 1;
5665 }
5666 
5667 /*
5668  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5669  * are overwritten by nested_vmx_setup() when nested=1.
5670  */
5671 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5672 {
5673 	kvm_queue_exception(vcpu, UD_VECTOR);
5674 	return 1;
5675 }
5676 
5677 static int handle_encls(struct kvm_vcpu *vcpu)
5678 {
5679 	/*
5680 	 * SGX virtualization is not yet supported.  There is no software
5681 	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5682 	 * to prevent the guest from executing ENCLS.
5683 	 */
5684 	kvm_queue_exception(vcpu, UD_VECTOR);
5685 	return 1;
5686 }
5687 
5688 /*
5689  * The exit handlers return 1 if the exit was handled fully and guest execution
5690  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5691  * to be done to userspace and return 0.
5692  */
5693 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5694 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5695 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5696 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5697 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5698 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5699 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5700 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5701 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5702 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5703 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5704 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5705 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5706 	[EXIT_REASON_INVD]		      = handle_invd,
5707 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5708 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
5709 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
5710 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5711 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5712 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5713 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5714 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5715 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5716 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5717 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5718 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5719 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5720 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5721 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5722 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5723 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
5724 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
5725 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5726 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5727 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5728 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5729 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5730 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5731 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5732 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
5733 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5734 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5735 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5736 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5737 	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
5738 	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
5739 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5740 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5741 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5742 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5743 	[EXIT_REASON_ENCLS]		      = handle_encls,
5744 };
5745 
5746 static const int kvm_vmx_max_exit_handlers =
5747 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5748 
5749 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5750 {
5751 	*info1 = vmx_get_exit_qual(vcpu);
5752 	*info2 = vmx_get_intr_info(vcpu);
5753 }
5754 
5755 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5756 {
5757 	if (vmx->pml_pg) {
5758 		__free_page(vmx->pml_pg);
5759 		vmx->pml_pg = NULL;
5760 	}
5761 }
5762 
5763 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5764 {
5765 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5766 	u64 *pml_buf;
5767 	u16 pml_idx;
5768 
5769 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5770 
5771 	/* Do nothing if PML buffer is empty */
5772 	if (pml_idx == (PML_ENTITY_NUM - 1))
5773 		return;
5774 
5775 	/* PML index always points to next available PML buffer entity */
5776 	if (pml_idx >= PML_ENTITY_NUM)
5777 		pml_idx = 0;
5778 	else
5779 		pml_idx++;
5780 
5781 	pml_buf = page_address(vmx->pml_pg);
5782 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5783 		u64 gpa;
5784 
5785 		gpa = pml_buf[pml_idx];
5786 		WARN_ON(gpa & (PAGE_SIZE - 1));
5787 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5788 	}
5789 
5790 	/* reset PML index */
5791 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5792 }
5793 
5794 /*
5795  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5796  * Called before reporting dirty_bitmap to userspace.
5797  */
5798 static void kvm_flush_pml_buffers(struct kvm *kvm)
5799 {
5800 	int i;
5801 	struct kvm_vcpu *vcpu;
5802 	/*
5803 	 * We only need to kick vcpu out of guest mode here, as PML buffer
5804 	 * is flushed at beginning of all VMEXITs, and it's obvious that only
5805 	 * vcpus running in guest are possible to have unflushed GPAs in PML
5806 	 * buffer.
5807 	 */
5808 	kvm_for_each_vcpu(i, vcpu, kvm)
5809 		kvm_vcpu_kick(vcpu);
5810 }
5811 
5812 static void vmx_dump_sel(char *name, uint32_t sel)
5813 {
5814 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5815 	       name, vmcs_read16(sel),
5816 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5817 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5818 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5819 }
5820 
5821 static void vmx_dump_dtsel(char *name, uint32_t limit)
5822 {
5823 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5824 	       name, vmcs_read32(limit),
5825 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5826 }
5827 
5828 void dump_vmcs(void)
5829 {
5830 	u32 vmentry_ctl, vmexit_ctl;
5831 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5832 	unsigned long cr4;
5833 	u64 efer;
5834 
5835 	if (!dump_invalid_vmcs) {
5836 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5837 		return;
5838 	}
5839 
5840 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5841 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5842 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5843 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5844 	cr4 = vmcs_readl(GUEST_CR4);
5845 	efer = vmcs_read64(GUEST_IA32_EFER);
5846 	secondary_exec_control = 0;
5847 	if (cpu_has_secondary_exec_ctrls())
5848 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5849 
5850 	pr_err("*** Guest State ***\n");
5851 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5852 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5853 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5854 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5855 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5856 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5857 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5858 	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5859 	{
5860 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5861 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5862 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5863 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5864 	}
5865 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5866 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5867 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5868 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5869 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5870 	       vmcs_readl(GUEST_SYSENTER_ESP),
5871 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5872 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5873 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5874 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5875 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5876 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5877 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5878 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5879 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5880 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5881 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5882 	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5883 	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5884 		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5885 		       efer, vmcs_read64(GUEST_IA32_PAT));
5886 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5887 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5888 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5889 	if (cpu_has_load_perf_global_ctrl() &&
5890 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5891 		pr_err("PerfGlobCtl = 0x%016llx\n",
5892 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5893 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5894 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5895 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5896 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5897 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5898 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5899 		pr_err("InterruptStatus = %04x\n",
5900 		       vmcs_read16(GUEST_INTR_STATUS));
5901 
5902 	pr_err("*** Host State ***\n");
5903 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5904 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5905 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5906 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5907 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5908 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5909 	       vmcs_read16(HOST_TR_SELECTOR));
5910 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5911 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5912 	       vmcs_readl(HOST_TR_BASE));
5913 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5914 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5915 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5916 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5917 	       vmcs_readl(HOST_CR4));
5918 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5919 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5920 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5921 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5922 	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5923 		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5924 		       vmcs_read64(HOST_IA32_EFER),
5925 		       vmcs_read64(HOST_IA32_PAT));
5926 	if (cpu_has_load_perf_global_ctrl() &&
5927 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5928 		pr_err("PerfGlobCtl = 0x%016llx\n",
5929 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5930 
5931 	pr_err("*** Control State ***\n");
5932 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5933 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5934 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5935 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5936 	       vmcs_read32(EXCEPTION_BITMAP),
5937 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5938 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5939 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5940 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5941 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5942 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5943 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5944 	       vmcs_read32(VM_EXIT_INTR_INFO),
5945 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5946 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5947 	pr_err("        reason=%08x qualification=%016lx\n",
5948 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5949 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5950 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5951 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5952 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5953 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5954 		pr_err("TSC Multiplier = 0x%016llx\n",
5955 		       vmcs_read64(TSC_MULTIPLIER));
5956 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5957 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5958 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5959 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5960 		}
5961 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5962 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5963 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5964 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5965 	}
5966 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5967 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5968 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5969 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5970 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5971 		pr_err("PLE Gap=%08x Window=%08x\n",
5972 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5973 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5974 		pr_err("Virtual processor ID = 0x%04x\n",
5975 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5976 }
5977 
5978 /*
5979  * The guest has exited.  See if we can fix it or if we need userspace
5980  * assistance.
5981  */
5982 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5983 {
5984 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5985 	u32 exit_reason = vmx->exit_reason;
5986 	u32 vectoring_info = vmx->idt_vectoring_info;
5987 
5988 	/*
5989 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5990 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5991 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5992 	 * mode as if vcpus is in root mode, the PML buffer must has been
5993 	 * flushed already.
5994 	 */
5995 	if (enable_pml)
5996 		vmx_flush_pml_buffer(vcpu);
5997 
5998 	/*
5999 	 * We should never reach this point with a pending nested VM-Enter, and
6000 	 * more specifically emulation of L2 due to invalid guest state (see
6001 	 * below) should never happen as that means we incorrectly allowed a
6002 	 * nested VM-Enter with an invalid vmcs12.
6003 	 */
6004 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
6005 
6006 	/* If guest state is invalid, start emulating */
6007 	if (vmx->emulation_required)
6008 		return handle_invalid_guest_state(vcpu);
6009 
6010 	if (is_guest_mode(vcpu)) {
6011 		/*
6012 		 * The host physical addresses of some pages of guest memory
6013 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6014 		 * Page). The CPU may write to these pages via their host
6015 		 * physical address while L2 is running, bypassing any
6016 		 * address-translation-based dirty tracking (e.g. EPT write
6017 		 * protection).
6018 		 *
6019 		 * Mark them dirty on every exit from L2 to prevent them from
6020 		 * getting out of sync with dirty tracking.
6021 		 */
6022 		nested_mark_vmcs12_pages_dirty(vcpu);
6023 
6024 		if (nested_vmx_reflect_vmexit(vcpu))
6025 			return 1;
6026 	}
6027 
6028 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6029 		dump_vmcs();
6030 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6031 		vcpu->run->fail_entry.hardware_entry_failure_reason
6032 			= exit_reason;
6033 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6034 		return 0;
6035 	}
6036 
6037 	if (unlikely(vmx->fail)) {
6038 		dump_vmcs();
6039 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6040 		vcpu->run->fail_entry.hardware_entry_failure_reason
6041 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6042 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6043 		return 0;
6044 	}
6045 
6046 	/*
6047 	 * Note:
6048 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6049 	 * delivery event since it indicates guest is accessing MMIO.
6050 	 * The vm-exit can be triggered again after return to guest that
6051 	 * will cause infinite loop.
6052 	 */
6053 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6054 			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6055 			exit_reason != EXIT_REASON_EPT_VIOLATION &&
6056 			exit_reason != EXIT_REASON_PML_FULL &&
6057 			exit_reason != EXIT_REASON_TASK_SWITCH)) {
6058 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6059 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6060 		vcpu->run->internal.ndata = 3;
6061 		vcpu->run->internal.data[0] = vectoring_info;
6062 		vcpu->run->internal.data[1] = exit_reason;
6063 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6064 		if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
6065 			vcpu->run->internal.ndata++;
6066 			vcpu->run->internal.data[3] =
6067 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6068 		}
6069 		vcpu->run->internal.data[vcpu->run->internal.ndata++] =
6070 			vcpu->arch.last_vmentry_cpu;
6071 		return 0;
6072 	}
6073 
6074 	if (unlikely(!enable_vnmi &&
6075 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6076 		if (!vmx_interrupt_blocked(vcpu)) {
6077 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6078 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6079 			   vcpu->arch.nmi_pending) {
6080 			/*
6081 			 * This CPU don't support us in finding the end of an
6082 			 * NMI-blocked window if the guest runs with IRQs
6083 			 * disabled. So we pull the trigger after 1 s of
6084 			 * futile waiting, but inform the user about this.
6085 			 */
6086 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6087 			       "state on VCPU %d after 1 s timeout\n",
6088 			       __func__, vcpu->vcpu_id);
6089 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6090 		}
6091 	}
6092 
6093 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6094 		return 1;
6095 
6096 	if (exit_reason >= kvm_vmx_max_exit_handlers)
6097 		goto unexpected_vmexit;
6098 #ifdef CONFIG_RETPOLINE
6099 	if (exit_reason == EXIT_REASON_MSR_WRITE)
6100 		return kvm_emulate_wrmsr(vcpu);
6101 	else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
6102 		return handle_preemption_timer(vcpu);
6103 	else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
6104 		return handle_interrupt_window(vcpu);
6105 	else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6106 		return handle_external_interrupt(vcpu);
6107 	else if (exit_reason == EXIT_REASON_HLT)
6108 		return kvm_emulate_halt(vcpu);
6109 	else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
6110 		return handle_ept_misconfig(vcpu);
6111 #endif
6112 
6113 	exit_reason = array_index_nospec(exit_reason,
6114 					 kvm_vmx_max_exit_handlers);
6115 	if (!kvm_vmx_exit_handlers[exit_reason])
6116 		goto unexpected_vmexit;
6117 
6118 	return kvm_vmx_exit_handlers[exit_reason](vcpu);
6119 
6120 unexpected_vmexit:
6121 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason);
6122 	dump_vmcs();
6123 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6124 	vcpu->run->internal.suberror =
6125 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6126 	vcpu->run->internal.ndata = 2;
6127 	vcpu->run->internal.data[0] = exit_reason;
6128 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6129 	return 0;
6130 }
6131 
6132 /*
6133  * Software based L1D cache flush which is used when microcode providing
6134  * the cache control MSR is not loaded.
6135  *
6136  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6137  * flush it is required to read in 64 KiB because the replacement algorithm
6138  * is not exactly LRU. This could be sized at runtime via topology
6139  * information but as all relevant affected CPUs have 32KiB L1D cache size
6140  * there is no point in doing so.
6141  */
6142 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6143 {
6144 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6145 
6146 	/*
6147 	 * This code is only executed when the the flush mode is 'cond' or
6148 	 * 'always'
6149 	 */
6150 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6151 		bool flush_l1d;
6152 
6153 		/*
6154 		 * Clear the per-vcpu flush bit, it gets set again
6155 		 * either from vcpu_run() or from one of the unsafe
6156 		 * VMEXIT handlers.
6157 		 */
6158 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6159 		vcpu->arch.l1tf_flush_l1d = false;
6160 
6161 		/*
6162 		 * Clear the per-cpu flush bit, it gets set again from
6163 		 * the interrupt handlers.
6164 		 */
6165 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6166 		kvm_clear_cpu_l1tf_flush_l1d();
6167 
6168 		if (!flush_l1d)
6169 			return;
6170 	}
6171 
6172 	vcpu->stat.l1d_flush++;
6173 
6174 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6175 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6176 		return;
6177 	}
6178 
6179 	asm volatile(
6180 		/* First ensure the pages are in the TLB */
6181 		"xorl	%%eax, %%eax\n"
6182 		".Lpopulate_tlb:\n\t"
6183 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6184 		"addl	$4096, %%eax\n\t"
6185 		"cmpl	%%eax, %[size]\n\t"
6186 		"jne	.Lpopulate_tlb\n\t"
6187 		"xorl	%%eax, %%eax\n\t"
6188 		"cpuid\n\t"
6189 		/* Now fill the cache */
6190 		"xorl	%%eax, %%eax\n"
6191 		".Lfill_cache:\n"
6192 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6193 		"addl	$64, %%eax\n\t"
6194 		"cmpl	%%eax, %[size]\n\t"
6195 		"jne	.Lfill_cache\n\t"
6196 		"lfence\n"
6197 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6198 		    [size] "r" (size)
6199 		: "eax", "ebx", "ecx", "edx");
6200 }
6201 
6202 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6203 {
6204 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6205 	int tpr_threshold;
6206 
6207 	if (is_guest_mode(vcpu) &&
6208 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6209 		return;
6210 
6211 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6212 	if (is_guest_mode(vcpu))
6213 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6214 	else
6215 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6216 }
6217 
6218 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6219 {
6220 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6221 	u32 sec_exec_control;
6222 
6223 	if (!lapic_in_kernel(vcpu))
6224 		return;
6225 
6226 	if (!flexpriority_enabled &&
6227 	    !cpu_has_vmx_virtualize_x2apic_mode())
6228 		return;
6229 
6230 	/* Postpone execution until vmcs01 is the current VMCS. */
6231 	if (is_guest_mode(vcpu)) {
6232 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6233 		return;
6234 	}
6235 
6236 	sec_exec_control = secondary_exec_controls_get(vmx);
6237 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6238 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6239 
6240 	switch (kvm_get_apic_mode(vcpu)) {
6241 	case LAPIC_MODE_INVALID:
6242 		WARN_ONCE(true, "Invalid local APIC state");
6243 	case LAPIC_MODE_DISABLED:
6244 		break;
6245 	case LAPIC_MODE_XAPIC:
6246 		if (flexpriority_enabled) {
6247 			sec_exec_control |=
6248 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6249 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6250 
6251 			/*
6252 			 * Flush the TLB, reloading the APIC access page will
6253 			 * only do so if its physical address has changed, but
6254 			 * the guest may have inserted a non-APIC mapping into
6255 			 * the TLB while the APIC access page was disabled.
6256 			 */
6257 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6258 		}
6259 		break;
6260 	case LAPIC_MODE_X2APIC:
6261 		if (cpu_has_vmx_virtualize_x2apic_mode())
6262 			sec_exec_control |=
6263 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6264 		break;
6265 	}
6266 	secondary_exec_controls_set(vmx, sec_exec_control);
6267 
6268 	vmx_update_msr_bitmap(vcpu);
6269 }
6270 
6271 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6272 {
6273 	struct page *page;
6274 
6275 	/* Defer reload until vmcs01 is the current VMCS. */
6276 	if (is_guest_mode(vcpu)) {
6277 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6278 		return;
6279 	}
6280 
6281 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6282 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6283 		return;
6284 
6285 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6286 	if (is_error_page(page))
6287 		return;
6288 
6289 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6290 	vmx_flush_tlb_current(vcpu);
6291 
6292 	/*
6293 	 * Do not pin apic access page in memory, the MMU notifier
6294 	 * will call us again if it is migrated or swapped out.
6295 	 */
6296 	put_page(page);
6297 }
6298 
6299 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6300 {
6301 	u16 status;
6302 	u8 old;
6303 
6304 	if (max_isr == -1)
6305 		max_isr = 0;
6306 
6307 	status = vmcs_read16(GUEST_INTR_STATUS);
6308 	old = status >> 8;
6309 	if (max_isr != old) {
6310 		status &= 0xff;
6311 		status |= max_isr << 8;
6312 		vmcs_write16(GUEST_INTR_STATUS, status);
6313 	}
6314 }
6315 
6316 static void vmx_set_rvi(int vector)
6317 {
6318 	u16 status;
6319 	u8 old;
6320 
6321 	if (vector == -1)
6322 		vector = 0;
6323 
6324 	status = vmcs_read16(GUEST_INTR_STATUS);
6325 	old = (u8)status & 0xff;
6326 	if ((u8)vector != old) {
6327 		status &= ~0xff;
6328 		status |= (u8)vector;
6329 		vmcs_write16(GUEST_INTR_STATUS, status);
6330 	}
6331 }
6332 
6333 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6334 {
6335 	/*
6336 	 * When running L2, updating RVI is only relevant when
6337 	 * vmcs12 virtual-interrupt-delivery enabled.
6338 	 * However, it can be enabled only when L1 also
6339 	 * intercepts external-interrupts and in that case
6340 	 * we should not update vmcs02 RVI but instead intercept
6341 	 * interrupt. Therefore, do nothing when running L2.
6342 	 */
6343 	if (!is_guest_mode(vcpu))
6344 		vmx_set_rvi(max_irr);
6345 }
6346 
6347 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6348 {
6349 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6350 	int max_irr;
6351 	bool max_irr_updated;
6352 
6353 	WARN_ON(!vcpu->arch.apicv_active);
6354 	if (pi_test_on(&vmx->pi_desc)) {
6355 		pi_clear_on(&vmx->pi_desc);
6356 		/*
6357 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6358 		 * But on x86 this is just a compiler barrier anyway.
6359 		 */
6360 		smp_mb__after_atomic();
6361 		max_irr_updated =
6362 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6363 
6364 		/*
6365 		 * If we are running L2 and L1 has a new pending interrupt
6366 		 * which can be injected, we should re-evaluate
6367 		 * what should be done with this new L1 interrupt.
6368 		 * If L1 intercepts external-interrupts, we should
6369 		 * exit from L2 to L1. Otherwise, interrupt should be
6370 		 * delivered directly to L2.
6371 		 */
6372 		if (is_guest_mode(vcpu) && max_irr_updated) {
6373 			if (nested_exit_on_intr(vcpu))
6374 				kvm_vcpu_exiting_guest_mode(vcpu);
6375 			else
6376 				kvm_make_request(KVM_REQ_EVENT, vcpu);
6377 		}
6378 	} else {
6379 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6380 	}
6381 	vmx_hwapic_irr_update(vcpu, max_irr);
6382 	return max_irr;
6383 }
6384 
6385 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6386 {
6387 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6388 
6389 	return pi_test_on(pi_desc) ||
6390 		(pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6391 }
6392 
6393 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6394 {
6395 	if (!kvm_vcpu_apicv_active(vcpu))
6396 		return;
6397 
6398 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6399 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6400 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6401 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6402 }
6403 
6404 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6405 {
6406 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6407 
6408 	pi_clear_on(&vmx->pi_desc);
6409 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6410 }
6411 
6412 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6413 {
6414 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6415 
6416 	/* if exit due to PF check for async PF */
6417 	if (is_page_fault(intr_info)) {
6418 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6419 	/* Handle machine checks before interrupts are enabled */
6420 	} else if (is_machine_check(intr_info)) {
6421 		kvm_machine_check();
6422 	/* We need to handle NMIs before interrupts are enabled */
6423 	} else if (is_nmi(intr_info)) {
6424 		kvm_before_interrupt(&vmx->vcpu);
6425 		asm("int $2");
6426 		kvm_after_interrupt(&vmx->vcpu);
6427 	}
6428 }
6429 
6430 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6431 {
6432 	unsigned int vector;
6433 	unsigned long entry;
6434 #ifdef CONFIG_X86_64
6435 	unsigned long tmp;
6436 #endif
6437 	gate_desc *desc;
6438 	u32 intr_info = vmx_get_intr_info(vcpu);
6439 
6440 	if (WARN_ONCE(!is_external_intr(intr_info),
6441 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6442 		return;
6443 
6444 	vector = intr_info & INTR_INFO_VECTOR_MASK;
6445 	desc = (gate_desc *)host_idt_base + vector;
6446 	entry = gate_offset(desc);
6447 
6448 	kvm_before_interrupt(vcpu);
6449 
6450 	asm volatile(
6451 #ifdef CONFIG_X86_64
6452 		"mov %%rsp, %[sp]\n\t"
6453 		"and $-16, %%rsp\n\t"
6454 		"push %[ss]\n\t"
6455 		"push %[sp]\n\t"
6456 #endif
6457 		"pushf\n\t"
6458 		"push %[cs]\n\t"
6459 		CALL_NOSPEC
6460 		:
6461 #ifdef CONFIG_X86_64
6462 		[sp]"=&r"(tmp),
6463 #endif
6464 		ASM_CALL_CONSTRAINT
6465 		:
6466 		[thunk_target]"r"(entry),
6467 #ifdef CONFIG_X86_64
6468 		[ss]"i"(__KERNEL_DS),
6469 #endif
6470 		[cs]"i"(__KERNEL_CS)
6471 	);
6472 
6473 	kvm_after_interrupt(vcpu);
6474 }
6475 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6476 
6477 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6478 {
6479 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6480 
6481 	if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6482 		handle_external_interrupt_irqoff(vcpu);
6483 	else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6484 		handle_exception_nmi_irqoff(vmx);
6485 }
6486 
6487 static bool vmx_has_emulated_msr(u32 index)
6488 {
6489 	switch (index) {
6490 	case MSR_IA32_SMBASE:
6491 		/*
6492 		 * We cannot do SMM unless we can run the guest in big
6493 		 * real mode.
6494 		 */
6495 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6496 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6497 		return nested;
6498 	case MSR_AMD64_VIRT_SPEC_CTRL:
6499 		/* This is AMD only.  */
6500 		return false;
6501 	default:
6502 		return true;
6503 	}
6504 }
6505 
6506 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6507 {
6508 	u32 exit_intr_info;
6509 	bool unblock_nmi;
6510 	u8 vector;
6511 	bool idtv_info_valid;
6512 
6513 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6514 
6515 	if (enable_vnmi) {
6516 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6517 			return;
6518 
6519 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6520 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6521 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6522 		/*
6523 		 * SDM 3: 27.7.1.2 (September 2008)
6524 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6525 		 * a guest IRET fault.
6526 		 * SDM 3: 23.2.2 (September 2008)
6527 		 * Bit 12 is undefined in any of the following cases:
6528 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6529 		 *   information field.
6530 		 *  If the VM exit is due to a double fault.
6531 		 */
6532 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6533 		    vector != DF_VECTOR && !idtv_info_valid)
6534 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6535 				      GUEST_INTR_STATE_NMI);
6536 		else
6537 			vmx->loaded_vmcs->nmi_known_unmasked =
6538 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6539 				  & GUEST_INTR_STATE_NMI);
6540 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6541 		vmx->loaded_vmcs->vnmi_blocked_time +=
6542 			ktime_to_ns(ktime_sub(ktime_get(),
6543 					      vmx->loaded_vmcs->entry_time));
6544 }
6545 
6546 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6547 				      u32 idt_vectoring_info,
6548 				      int instr_len_field,
6549 				      int error_code_field)
6550 {
6551 	u8 vector;
6552 	int type;
6553 	bool idtv_info_valid;
6554 
6555 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6556 
6557 	vcpu->arch.nmi_injected = false;
6558 	kvm_clear_exception_queue(vcpu);
6559 	kvm_clear_interrupt_queue(vcpu);
6560 
6561 	if (!idtv_info_valid)
6562 		return;
6563 
6564 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6565 
6566 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6567 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6568 
6569 	switch (type) {
6570 	case INTR_TYPE_NMI_INTR:
6571 		vcpu->arch.nmi_injected = true;
6572 		/*
6573 		 * SDM 3: 27.7.1.2 (September 2008)
6574 		 * Clear bit "block by NMI" before VM entry if a NMI
6575 		 * delivery faulted.
6576 		 */
6577 		vmx_set_nmi_mask(vcpu, false);
6578 		break;
6579 	case INTR_TYPE_SOFT_EXCEPTION:
6580 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6581 		fallthrough;
6582 	case INTR_TYPE_HARD_EXCEPTION:
6583 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6584 			u32 err = vmcs_read32(error_code_field);
6585 			kvm_requeue_exception_e(vcpu, vector, err);
6586 		} else
6587 			kvm_requeue_exception(vcpu, vector);
6588 		break;
6589 	case INTR_TYPE_SOFT_INTR:
6590 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6591 		fallthrough;
6592 	case INTR_TYPE_EXT_INTR:
6593 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6594 		break;
6595 	default:
6596 		break;
6597 	}
6598 }
6599 
6600 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6601 {
6602 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6603 				  VM_EXIT_INSTRUCTION_LEN,
6604 				  IDT_VECTORING_ERROR_CODE);
6605 }
6606 
6607 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6608 {
6609 	__vmx_complete_interrupts(vcpu,
6610 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6611 				  VM_ENTRY_INSTRUCTION_LEN,
6612 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6613 
6614 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6615 }
6616 
6617 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6618 {
6619 	int i, nr_msrs;
6620 	struct perf_guest_switch_msr *msrs;
6621 
6622 	msrs = perf_guest_get_msrs(&nr_msrs);
6623 
6624 	if (!msrs)
6625 		return;
6626 
6627 	for (i = 0; i < nr_msrs; i++)
6628 		if (msrs[i].host == msrs[i].guest)
6629 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6630 		else
6631 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6632 					msrs[i].host, false);
6633 }
6634 
6635 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6636 {
6637 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6638 	u64 tscl;
6639 	u32 delta_tsc;
6640 
6641 	if (vmx->req_immediate_exit) {
6642 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6643 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6644 	} else if (vmx->hv_deadline_tsc != -1) {
6645 		tscl = rdtsc();
6646 		if (vmx->hv_deadline_tsc > tscl)
6647 			/* set_hv_timer ensures the delta fits in 32-bits */
6648 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6649 				cpu_preemption_timer_multi);
6650 		else
6651 			delta_tsc = 0;
6652 
6653 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6654 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6655 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6656 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6657 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6658 	}
6659 }
6660 
6661 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6662 {
6663 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6664 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6665 		vmcs_writel(HOST_RSP, host_rsp);
6666 	}
6667 }
6668 
6669 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6670 {
6671 	switch (to_vmx(vcpu)->exit_reason) {
6672 	case EXIT_REASON_MSR_WRITE:
6673 		return handle_fastpath_set_msr_irqoff(vcpu);
6674 	case EXIT_REASON_PREEMPTION_TIMER:
6675 		return handle_fastpath_preemption_timer(vcpu);
6676 	default:
6677 		return EXIT_FASTPATH_NONE;
6678 	}
6679 }
6680 
6681 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6682 
6683 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6684 					struct vcpu_vmx *vmx)
6685 {
6686 	/*
6687 	 * VMENTER enables interrupts (host state), but the kernel state is
6688 	 * interrupts disabled when this is invoked. Also tell RCU about
6689 	 * it. This is the same logic as for exit_to_user_mode().
6690 	 *
6691 	 * This ensures that e.g. latency analysis on the host observes
6692 	 * guest mode as interrupt enabled.
6693 	 *
6694 	 * guest_enter_irqoff() informs context tracking about the
6695 	 * transition to guest mode and if enabled adjusts RCU state
6696 	 * accordingly.
6697 	 */
6698 	instrumentation_begin();
6699 	trace_hardirqs_on_prepare();
6700 	lockdep_hardirqs_on_prepare(CALLER_ADDR0);
6701 	instrumentation_end();
6702 
6703 	guest_enter_irqoff();
6704 	lockdep_hardirqs_on(CALLER_ADDR0);
6705 
6706 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6707 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6708 		vmx_l1d_flush(vcpu);
6709 	else if (static_branch_unlikely(&mds_user_clear))
6710 		mds_clear_cpu_buffers();
6711 
6712 	if (vcpu->arch.cr2 != native_read_cr2())
6713 		native_write_cr2(vcpu->arch.cr2);
6714 
6715 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6716 				   vmx->loaded_vmcs->launched);
6717 
6718 	vcpu->arch.cr2 = native_read_cr2();
6719 
6720 	/*
6721 	 * VMEXIT disables interrupts (host state), but tracing and lockdep
6722 	 * have them in state 'on' as recorded before entering guest mode.
6723 	 * Same as enter_from_user_mode().
6724 	 *
6725 	 * guest_exit_irqoff() restores host context and reinstates RCU if
6726 	 * enabled and required.
6727 	 *
6728 	 * This needs to be done before the below as native_read_msr()
6729 	 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
6730 	 * into world and some more.
6731 	 */
6732 	lockdep_hardirqs_off(CALLER_ADDR0);
6733 	guest_exit_irqoff();
6734 
6735 	instrumentation_begin();
6736 	trace_hardirqs_off_finish();
6737 	instrumentation_end();
6738 }
6739 
6740 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6741 {
6742 	fastpath_t exit_fastpath;
6743 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6744 	unsigned long cr3, cr4;
6745 
6746 reenter_guest:
6747 	/* Record the guest's net vcpu time for enforced NMI injections. */
6748 	if (unlikely(!enable_vnmi &&
6749 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6750 		vmx->loaded_vmcs->entry_time = ktime_get();
6751 
6752 	/* Don't enter VMX if guest state is invalid, let the exit handler
6753 	   start emulation until we arrive back to a valid state */
6754 	if (vmx->emulation_required)
6755 		return EXIT_FASTPATH_NONE;
6756 
6757 	if (vmx->ple_window_dirty) {
6758 		vmx->ple_window_dirty = false;
6759 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6760 	}
6761 
6762 	/*
6763 	 * We did this in prepare_switch_to_guest, because it needs to
6764 	 * be within srcu_read_lock.
6765 	 */
6766 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6767 
6768 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6769 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6770 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6771 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6772 
6773 	cr3 = __get_current_cr3_fast();
6774 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6775 		vmcs_writel(HOST_CR3, cr3);
6776 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6777 	}
6778 
6779 	cr4 = cr4_read_shadow();
6780 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6781 		vmcs_writel(HOST_CR4, cr4);
6782 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6783 	}
6784 
6785 	/* When single-stepping over STI and MOV SS, we must clear the
6786 	 * corresponding interruptibility bits in the guest state. Otherwise
6787 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6788 	 * exceptions being set, but that's not correct for the guest debugging
6789 	 * case. */
6790 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6791 		vmx_set_interrupt_shadow(vcpu, 0);
6792 
6793 	kvm_load_guest_xsave_state(vcpu);
6794 
6795 	pt_guest_enter(vmx);
6796 
6797 	atomic_switch_perf_msrs(vmx);
6798 
6799 	if (enable_preemption_timer)
6800 		vmx_update_hv_timer(vcpu);
6801 
6802 	if (lapic_in_kernel(vcpu) &&
6803 		vcpu->arch.apic->lapic_timer.timer_advance_ns)
6804 		kvm_wait_lapic_expire(vcpu);
6805 
6806 	/*
6807 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6808 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6809 	 * is no need to worry about the conditional branch over the wrmsr
6810 	 * being speculatively taken.
6811 	 */
6812 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6813 
6814 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
6815 	vmx_vcpu_enter_exit(vcpu, vmx);
6816 
6817 	/*
6818 	 * We do not use IBRS in the kernel. If this vCPU has used the
6819 	 * SPEC_CTRL MSR it may have left it on; save the value and
6820 	 * turn it off. This is much more efficient than blindly adding
6821 	 * it to the atomic save/restore list. Especially as the former
6822 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6823 	 *
6824 	 * For non-nested case:
6825 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6826 	 * save it.
6827 	 *
6828 	 * For nested case:
6829 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6830 	 * save it.
6831 	 */
6832 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6833 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6834 
6835 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6836 
6837 	/* All fields are clean at this point */
6838 	if (static_branch_unlikely(&enable_evmcs))
6839 		current_evmcs->hv_clean_fields |=
6840 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6841 
6842 	if (static_branch_unlikely(&enable_evmcs))
6843 		current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6844 
6845 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6846 	if (vmx->host_debugctlmsr)
6847 		update_debugctlmsr(vmx->host_debugctlmsr);
6848 
6849 #ifndef CONFIG_X86_64
6850 	/*
6851 	 * The sysexit path does not restore ds/es, so we must set them to
6852 	 * a reasonable value ourselves.
6853 	 *
6854 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6855 	 * function may be executed in interrupt context, which saves and
6856 	 * restore segments around it, nullifying its effect.
6857 	 */
6858 	loadsegment(ds, __USER_DS);
6859 	loadsegment(es, __USER_DS);
6860 #endif
6861 
6862 	vmx_register_cache_reset(vcpu);
6863 
6864 	pt_guest_exit(vmx);
6865 
6866 	kvm_load_host_xsave_state(vcpu);
6867 
6868 	vmx->nested.nested_run_pending = 0;
6869 	vmx->idt_vectoring_info = 0;
6870 
6871 	if (unlikely(vmx->fail)) {
6872 		vmx->exit_reason = 0xdead;
6873 		return EXIT_FASTPATH_NONE;
6874 	}
6875 
6876 	vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6877 	if (unlikely((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY))
6878 		kvm_machine_check();
6879 
6880 	trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6881 
6882 	if (unlikely(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6883 		return EXIT_FASTPATH_NONE;
6884 
6885 	vmx->loaded_vmcs->launched = 1;
6886 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6887 
6888 	vmx_recover_nmi_blocking(vmx);
6889 	vmx_complete_interrupts(vmx);
6890 
6891 	if (is_guest_mode(vcpu))
6892 		return EXIT_FASTPATH_NONE;
6893 
6894 	exit_fastpath = vmx_exit_handlers_fastpath(vcpu);
6895 	if (exit_fastpath == EXIT_FASTPATH_REENTER_GUEST) {
6896 		if (!kvm_vcpu_exit_request(vcpu)) {
6897 			/*
6898 			 * FIXME: this goto should be a loop in vcpu_enter_guest,
6899 			 * but it would incur the cost of a retpoline for now.
6900 			 * Revisit once static calls are available.
6901 			 */
6902 			if (vcpu->arch.apicv_active)
6903 				vmx_sync_pir_to_irr(vcpu);
6904 			goto reenter_guest;
6905 		}
6906 		exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
6907 	}
6908 
6909 	return exit_fastpath;
6910 }
6911 
6912 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6913 {
6914 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6915 
6916 	if (enable_pml)
6917 		vmx_destroy_pml_buffer(vmx);
6918 	free_vpid(vmx->vpid);
6919 	nested_vmx_free_vcpu(vcpu);
6920 	free_loaded_vmcs(vmx->loaded_vmcs);
6921 }
6922 
6923 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6924 {
6925 	struct vcpu_vmx *vmx;
6926 	unsigned long *msr_bitmap;
6927 	int i, cpu, err;
6928 
6929 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6930 	vmx = to_vmx(vcpu);
6931 
6932 	err = -ENOMEM;
6933 
6934 	vmx->vpid = allocate_vpid();
6935 
6936 	/*
6937 	 * If PML is turned on, failure on enabling PML just results in failure
6938 	 * of creating the vcpu, therefore we can simplify PML logic (by
6939 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6940 	 * for the guest), etc.
6941 	 */
6942 	if (enable_pml) {
6943 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6944 		if (!vmx->pml_pg)
6945 			goto free_vpid;
6946 	}
6947 
6948 	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) != NR_SHARED_MSRS);
6949 
6950 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6951 		u32 index = vmx_msr_index[i];
6952 		u32 data_low, data_high;
6953 		int j = vmx->nmsrs;
6954 
6955 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
6956 			continue;
6957 		if (wrmsr_safe(index, data_low, data_high) < 0)
6958 			continue;
6959 
6960 		vmx->guest_msrs[j].index = i;
6961 		vmx->guest_msrs[j].data = 0;
6962 		switch (index) {
6963 		case MSR_IA32_TSX_CTRL:
6964 			/*
6965 			 * No need to pass TSX_CTRL_CPUID_CLEAR through, so
6966 			 * let's avoid changing CPUID bits under the host
6967 			 * kernel's feet.
6968 			 */
6969 			vmx->guest_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6970 			break;
6971 		default:
6972 			vmx->guest_msrs[j].mask = -1ull;
6973 			break;
6974 		}
6975 		++vmx->nmsrs;
6976 	}
6977 
6978 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6979 	if (err < 0)
6980 		goto free_pml;
6981 
6982 	msr_bitmap = vmx->vmcs01.msr_bitmap;
6983 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6984 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6985 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6986 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6987 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6988 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6989 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6990 	if (kvm_cstate_in_guest(vcpu->kvm)) {
6991 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6992 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6993 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6994 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6995 	}
6996 	vmx->msr_bitmap_mode = 0;
6997 
6998 	vmx->loaded_vmcs = &vmx->vmcs01;
6999 	cpu = get_cpu();
7000 	vmx_vcpu_load(vcpu, cpu);
7001 	vcpu->cpu = cpu;
7002 	init_vmcs(vmx);
7003 	vmx_vcpu_put(vcpu);
7004 	put_cpu();
7005 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7006 		err = alloc_apic_access_page(vcpu->kvm);
7007 		if (err)
7008 			goto free_vmcs;
7009 	}
7010 
7011 	if (enable_ept && !enable_unrestricted_guest) {
7012 		err = init_rmode_identity_map(vcpu->kvm);
7013 		if (err)
7014 			goto free_vmcs;
7015 	}
7016 
7017 	if (nested)
7018 		nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
7019 					   vmx_capability.ept);
7020 	else
7021 		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
7022 
7023 	vmx->nested.posted_intr_nv = -1;
7024 	vmx->nested.current_vmptr = -1ull;
7025 
7026 	vcpu->arch.microcode_version = 0x100000000ULL;
7027 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
7028 
7029 	/*
7030 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
7031 	 * or POSTED_INTR_WAKEUP_VECTOR.
7032 	 */
7033 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
7034 	vmx->pi_desc.sn = 1;
7035 
7036 	vmx->ept_pointer = INVALID_PAGE;
7037 
7038 	return 0;
7039 
7040 free_vmcs:
7041 	free_loaded_vmcs(vmx->loaded_vmcs);
7042 free_pml:
7043 	vmx_destroy_pml_buffer(vmx);
7044 free_vpid:
7045 	free_vpid(vmx->vpid);
7046 	return err;
7047 }
7048 
7049 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7050 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7051 
7052 static int vmx_vm_init(struct kvm *kvm)
7053 {
7054 	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
7055 
7056 	if (!ple_gap)
7057 		kvm->arch.pause_in_guest = true;
7058 
7059 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7060 		switch (l1tf_mitigation) {
7061 		case L1TF_MITIGATION_OFF:
7062 		case L1TF_MITIGATION_FLUSH_NOWARN:
7063 			/* 'I explicitly don't care' is set */
7064 			break;
7065 		case L1TF_MITIGATION_FLUSH:
7066 		case L1TF_MITIGATION_FLUSH_NOSMT:
7067 		case L1TF_MITIGATION_FULL:
7068 			/*
7069 			 * Warn upon starting the first VM in a potentially
7070 			 * insecure environment.
7071 			 */
7072 			if (sched_smt_active())
7073 				pr_warn_once(L1TF_MSG_SMT);
7074 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7075 				pr_warn_once(L1TF_MSG_L1D);
7076 			break;
7077 		case L1TF_MITIGATION_FULL_FORCE:
7078 			/* Flush is enforced */
7079 			break;
7080 		}
7081 	}
7082 	kvm_apicv_init(kvm, enable_apicv);
7083 	return 0;
7084 }
7085 
7086 static int __init vmx_check_processor_compat(void)
7087 {
7088 	struct vmcs_config vmcs_conf;
7089 	struct vmx_capability vmx_cap;
7090 
7091 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7092 	    !this_cpu_has(X86_FEATURE_VMX)) {
7093 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7094 		return -EIO;
7095 	}
7096 
7097 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7098 		return -EIO;
7099 	if (nested)
7100 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7101 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7102 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7103 				smp_processor_id());
7104 		return -EIO;
7105 	}
7106 	return 0;
7107 }
7108 
7109 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7110 {
7111 	u8 cache;
7112 	u64 ipat = 0;
7113 
7114 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7115 	 * memory aliases with conflicting memory types and sometimes MCEs.
7116 	 * We have to be careful as to what are honored and when.
7117 	 *
7118 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7119 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7120 	 * This was historically the source of MCEs and we want to be
7121 	 * conservative.
7122 	 *
7123 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7124 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7125 	 * EPT memory type is set to WB.  The effective memory type is forced
7126 	 * WB.
7127 	 *
7128 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7129 	 * EPT memory type is used to emulate guest CD/MTRR.
7130 	 */
7131 
7132 	if (is_mmio) {
7133 		cache = MTRR_TYPE_UNCACHABLE;
7134 		goto exit;
7135 	}
7136 
7137 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7138 		ipat = VMX_EPT_IPAT_BIT;
7139 		cache = MTRR_TYPE_WRBACK;
7140 		goto exit;
7141 	}
7142 
7143 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7144 		ipat = VMX_EPT_IPAT_BIT;
7145 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7146 			cache = MTRR_TYPE_WRBACK;
7147 		else
7148 			cache = MTRR_TYPE_UNCACHABLE;
7149 		goto exit;
7150 	}
7151 
7152 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7153 
7154 exit:
7155 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7156 }
7157 
7158 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7159 {
7160 	/*
7161 	 * These bits in the secondary execution controls field
7162 	 * are dynamic, the others are mostly based on the hypervisor
7163 	 * architecture and the guest's CPUID.  Do not touch the
7164 	 * dynamic bits.
7165 	 */
7166 	u32 mask =
7167 		SECONDARY_EXEC_SHADOW_VMCS |
7168 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7169 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7170 		SECONDARY_EXEC_DESC;
7171 
7172 	u32 new_ctl = vmx->secondary_exec_control;
7173 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7174 
7175 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7176 }
7177 
7178 /*
7179  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7180  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7181  */
7182 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7183 {
7184 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7185 	struct kvm_cpuid_entry2 *entry;
7186 
7187 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7188 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7189 
7190 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7191 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7192 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7193 } while (0)
7194 
7195 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7196 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7197 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7198 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7199 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7200 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7201 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7202 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7203 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7204 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7205 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7206 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7207 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7208 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7209 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7210 
7211 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7212 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7213 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7214 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7215 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7216 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7217 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7218 
7219 #undef cr4_fixed1_update
7220 }
7221 
7222 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7223 {
7224 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7225 
7226 	if (kvm_mpx_supported()) {
7227 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7228 
7229 		if (mpx_enabled) {
7230 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7231 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7232 		} else {
7233 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7234 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7235 		}
7236 	}
7237 }
7238 
7239 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7240 {
7241 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7242 	struct kvm_cpuid_entry2 *best = NULL;
7243 	int i;
7244 
7245 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7246 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7247 		if (!best)
7248 			return;
7249 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7250 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7251 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7252 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7253 	}
7254 
7255 	/* Get the number of configurable Address Ranges for filtering */
7256 	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7257 						PT_CAP_num_address_ranges);
7258 
7259 	/* Initialize and clear the no dependency bits */
7260 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7261 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7262 
7263 	/*
7264 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7265 	 * will inject an #GP
7266 	 */
7267 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7268 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7269 
7270 	/*
7271 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7272 	 * PSBFreq can be set
7273 	 */
7274 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7275 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7276 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7277 
7278 	/*
7279 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7280 	 * MTCFreq can be set
7281 	 */
7282 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7283 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7284 				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7285 
7286 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7287 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7288 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7289 							RTIT_CTL_PTW_EN);
7290 
7291 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7292 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7293 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7294 
7295 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7296 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7297 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7298 
7299 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7300 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7301 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7302 
7303 	/* unmask address range configure area */
7304 	for (i = 0; i < vmx->pt_desc.addr_range; i++)
7305 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7306 }
7307 
7308 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7309 {
7310 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7311 
7312 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7313 	vcpu->arch.xsaves_enabled = false;
7314 
7315 	if (cpu_has_secondary_exec_ctrls()) {
7316 		vmx_compute_secondary_exec_control(vmx);
7317 		vmcs_set_secondary_exec_control(vmx);
7318 	}
7319 
7320 	if (nested_vmx_allowed(vcpu))
7321 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7322 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7323 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7324 	else
7325 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7326 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7327 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7328 
7329 	if (nested_vmx_allowed(vcpu)) {
7330 		nested_vmx_cr_fixed1_bits_update(vcpu);
7331 		nested_vmx_entry_exit_ctls_update(vcpu);
7332 	}
7333 
7334 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7335 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7336 		update_intel_pt_cfg(vcpu);
7337 
7338 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7339 		struct shared_msr_entry *msr;
7340 		msr = find_msr_entry(vmx, MSR_IA32_TSX_CTRL);
7341 		if (msr) {
7342 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7343 			vmx_set_guest_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7344 		}
7345 	}
7346 }
7347 
7348 static __init void vmx_set_cpu_caps(void)
7349 {
7350 	kvm_set_cpu_caps();
7351 
7352 	/* CPUID 0x1 */
7353 	if (nested)
7354 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7355 
7356 	/* CPUID 0x7 */
7357 	if (kvm_mpx_supported())
7358 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7359 	if (cpu_has_vmx_invpcid())
7360 		kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7361 	if (vmx_pt_mode_is_host_guest())
7362 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7363 
7364 	if (vmx_umip_emulated())
7365 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7366 
7367 	/* CPUID 0xD.1 */
7368 	supported_xss = 0;
7369 	if (!vmx_xsaves_supported())
7370 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7371 
7372 	/* CPUID 0x80000001 */
7373 	if (!cpu_has_vmx_rdtscp())
7374 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7375 
7376 	if (vmx_waitpkg_supported())
7377 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7378 }
7379 
7380 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7381 {
7382 	to_vmx(vcpu)->req_immediate_exit = true;
7383 }
7384 
7385 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7386 				  struct x86_instruction_info *info)
7387 {
7388 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7389 	unsigned short port;
7390 	bool intercept;
7391 	int size;
7392 
7393 	if (info->intercept == x86_intercept_in ||
7394 	    info->intercept == x86_intercept_ins) {
7395 		port = info->src_val;
7396 		size = info->dst_bytes;
7397 	} else {
7398 		port = info->dst_val;
7399 		size = info->src_bytes;
7400 	}
7401 
7402 	/*
7403 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7404 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7405 	 * control.
7406 	 *
7407 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7408 	 */
7409 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7410 		intercept = nested_cpu_has(vmcs12,
7411 					   CPU_BASED_UNCOND_IO_EXITING);
7412 	else
7413 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7414 
7415 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7416 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7417 }
7418 
7419 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7420 			       struct x86_instruction_info *info,
7421 			       enum x86_intercept_stage stage,
7422 			       struct x86_exception *exception)
7423 {
7424 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7425 
7426 	switch (info->intercept) {
7427 	/*
7428 	 * RDPID causes #UD if disabled through secondary execution controls.
7429 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7430 	 */
7431 	case x86_intercept_rdtscp:
7432 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7433 			exception->vector = UD_VECTOR;
7434 			exception->error_code_valid = false;
7435 			return X86EMUL_PROPAGATE_FAULT;
7436 		}
7437 		break;
7438 
7439 	case x86_intercept_in:
7440 	case x86_intercept_ins:
7441 	case x86_intercept_out:
7442 	case x86_intercept_outs:
7443 		return vmx_check_intercept_io(vcpu, info);
7444 
7445 	case x86_intercept_lgdt:
7446 	case x86_intercept_lidt:
7447 	case x86_intercept_lldt:
7448 	case x86_intercept_ltr:
7449 	case x86_intercept_sgdt:
7450 	case x86_intercept_sidt:
7451 	case x86_intercept_sldt:
7452 	case x86_intercept_str:
7453 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7454 			return X86EMUL_CONTINUE;
7455 
7456 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7457 		break;
7458 
7459 	/* TODO: check more intercepts... */
7460 	default:
7461 		break;
7462 	}
7463 
7464 	return X86EMUL_UNHANDLEABLE;
7465 }
7466 
7467 #ifdef CONFIG_X86_64
7468 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7469 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7470 				  u64 divisor, u64 *result)
7471 {
7472 	u64 low = a << shift, high = a >> (64 - shift);
7473 
7474 	/* To avoid the overflow on divq */
7475 	if (high >= divisor)
7476 		return 1;
7477 
7478 	/* Low hold the result, high hold rem which is discarded */
7479 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7480 	    "rm" (divisor), "0" (low), "1" (high));
7481 	*result = low;
7482 
7483 	return 0;
7484 }
7485 
7486 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7487 			    bool *expired)
7488 {
7489 	struct vcpu_vmx *vmx;
7490 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7491 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7492 
7493 	vmx = to_vmx(vcpu);
7494 	tscl = rdtsc();
7495 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7496 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7497 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7498 						    ktimer->timer_advance_ns);
7499 
7500 	if (delta_tsc > lapic_timer_advance_cycles)
7501 		delta_tsc -= lapic_timer_advance_cycles;
7502 	else
7503 		delta_tsc = 0;
7504 
7505 	/* Convert to host delta tsc if tsc scaling is enabled */
7506 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7507 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7508 				kvm_tsc_scaling_ratio_frac_bits,
7509 				vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7510 		return -ERANGE;
7511 
7512 	/*
7513 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7514 	 * we can't use the preemption timer.
7515 	 * It's possible that it fits on later vmentries, but checking
7516 	 * on every vmentry is costly so we just use an hrtimer.
7517 	 */
7518 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7519 		return -ERANGE;
7520 
7521 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7522 	*expired = !delta_tsc;
7523 	return 0;
7524 }
7525 
7526 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7527 {
7528 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7529 }
7530 #endif
7531 
7532 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7533 {
7534 	if (!kvm_pause_in_guest(vcpu->kvm))
7535 		shrink_ple_window(vcpu);
7536 }
7537 
7538 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7539 				     struct kvm_memory_slot *slot)
7540 {
7541 	if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7542 		kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7543 	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7544 }
7545 
7546 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7547 				       struct kvm_memory_slot *slot)
7548 {
7549 	kvm_mmu_slot_set_dirty(kvm, slot);
7550 }
7551 
7552 static void vmx_flush_log_dirty(struct kvm *kvm)
7553 {
7554 	kvm_flush_pml_buffers(kvm);
7555 }
7556 
7557 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7558 					   struct kvm_memory_slot *memslot,
7559 					   gfn_t offset, unsigned long mask)
7560 {
7561 	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7562 }
7563 
7564 static void __pi_post_block(struct kvm_vcpu *vcpu)
7565 {
7566 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7567 	struct pi_desc old, new;
7568 	unsigned int dest;
7569 
7570 	do {
7571 		old.control = new.control = pi_desc->control;
7572 		WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7573 		     "Wakeup handler not enabled while the VCPU is blocked\n");
7574 
7575 		dest = cpu_physical_id(vcpu->cpu);
7576 
7577 		if (x2apic_enabled())
7578 			new.ndst = dest;
7579 		else
7580 			new.ndst = (dest << 8) & 0xFF00;
7581 
7582 		/* set 'NV' to 'notification vector' */
7583 		new.nv = POSTED_INTR_VECTOR;
7584 	} while (cmpxchg64(&pi_desc->control, old.control,
7585 			   new.control) != old.control);
7586 
7587 	if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7588 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7589 		list_del(&vcpu->blocked_vcpu_list);
7590 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7591 		vcpu->pre_pcpu = -1;
7592 	}
7593 }
7594 
7595 /*
7596  * This routine does the following things for vCPU which is going
7597  * to be blocked if VT-d PI is enabled.
7598  * - Store the vCPU to the wakeup list, so when interrupts happen
7599  *   we can find the right vCPU to wake up.
7600  * - Change the Posted-interrupt descriptor as below:
7601  *      'NDST' <-- vcpu->pre_pcpu
7602  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7603  * - If 'ON' is set during this process, which means at least one
7604  *   interrupt is posted for this vCPU, we cannot block it, in
7605  *   this case, return 1, otherwise, return 0.
7606  *
7607  */
7608 static int pi_pre_block(struct kvm_vcpu *vcpu)
7609 {
7610 	unsigned int dest;
7611 	struct pi_desc old, new;
7612 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7613 
7614 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7615 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
7616 		!kvm_vcpu_apicv_active(vcpu))
7617 		return 0;
7618 
7619 	WARN_ON(irqs_disabled());
7620 	local_irq_disable();
7621 	if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7622 		vcpu->pre_pcpu = vcpu->cpu;
7623 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7624 		list_add_tail(&vcpu->blocked_vcpu_list,
7625 			      &per_cpu(blocked_vcpu_on_cpu,
7626 				       vcpu->pre_pcpu));
7627 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7628 	}
7629 
7630 	do {
7631 		old.control = new.control = pi_desc->control;
7632 
7633 		WARN((pi_desc->sn == 1),
7634 		     "Warning: SN field of posted-interrupts "
7635 		     "is set before blocking\n");
7636 
7637 		/*
7638 		 * Since vCPU can be preempted during this process,
7639 		 * vcpu->cpu could be different with pre_pcpu, we
7640 		 * need to set pre_pcpu as the destination of wakeup
7641 		 * notification event, then we can find the right vCPU
7642 		 * to wakeup in wakeup handler if interrupts happen
7643 		 * when the vCPU is in blocked state.
7644 		 */
7645 		dest = cpu_physical_id(vcpu->pre_pcpu);
7646 
7647 		if (x2apic_enabled())
7648 			new.ndst = dest;
7649 		else
7650 			new.ndst = (dest << 8) & 0xFF00;
7651 
7652 		/* set 'NV' to 'wakeup vector' */
7653 		new.nv = POSTED_INTR_WAKEUP_VECTOR;
7654 	} while (cmpxchg64(&pi_desc->control, old.control,
7655 			   new.control) != old.control);
7656 
7657 	/* We should not block the vCPU if an interrupt is posted for it.  */
7658 	if (pi_test_on(pi_desc) == 1)
7659 		__pi_post_block(vcpu);
7660 
7661 	local_irq_enable();
7662 	return (vcpu->pre_pcpu == -1);
7663 }
7664 
7665 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7666 {
7667 	if (pi_pre_block(vcpu))
7668 		return 1;
7669 
7670 	if (kvm_lapic_hv_timer_in_use(vcpu))
7671 		kvm_lapic_switch_to_sw_timer(vcpu);
7672 
7673 	return 0;
7674 }
7675 
7676 static void pi_post_block(struct kvm_vcpu *vcpu)
7677 {
7678 	if (vcpu->pre_pcpu == -1)
7679 		return;
7680 
7681 	WARN_ON(irqs_disabled());
7682 	local_irq_disable();
7683 	__pi_post_block(vcpu);
7684 	local_irq_enable();
7685 }
7686 
7687 static void vmx_post_block(struct kvm_vcpu *vcpu)
7688 {
7689 	if (kvm_x86_ops.set_hv_timer)
7690 		kvm_lapic_switch_to_hv_timer(vcpu);
7691 
7692 	pi_post_block(vcpu);
7693 }
7694 
7695 /*
7696  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7697  *
7698  * @kvm: kvm
7699  * @host_irq: host irq of the interrupt
7700  * @guest_irq: gsi of the interrupt
7701  * @set: set or unset PI
7702  * returns 0 on success, < 0 on failure
7703  */
7704 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7705 			      uint32_t guest_irq, bool set)
7706 {
7707 	struct kvm_kernel_irq_routing_entry *e;
7708 	struct kvm_irq_routing_table *irq_rt;
7709 	struct kvm_lapic_irq irq;
7710 	struct kvm_vcpu *vcpu;
7711 	struct vcpu_data vcpu_info;
7712 	int idx, ret = 0;
7713 
7714 	if (!kvm_arch_has_assigned_device(kvm) ||
7715 		!irq_remapping_cap(IRQ_POSTING_CAP) ||
7716 		!kvm_vcpu_apicv_active(kvm->vcpus[0]))
7717 		return 0;
7718 
7719 	idx = srcu_read_lock(&kvm->irq_srcu);
7720 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7721 	if (guest_irq >= irq_rt->nr_rt_entries ||
7722 	    hlist_empty(&irq_rt->map[guest_irq])) {
7723 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7724 			     guest_irq, irq_rt->nr_rt_entries);
7725 		goto out;
7726 	}
7727 
7728 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7729 		if (e->type != KVM_IRQ_ROUTING_MSI)
7730 			continue;
7731 		/*
7732 		 * VT-d PI cannot support posting multicast/broadcast
7733 		 * interrupts to a vCPU, we still use interrupt remapping
7734 		 * for these kind of interrupts.
7735 		 *
7736 		 * For lowest-priority interrupts, we only support
7737 		 * those with single CPU as the destination, e.g. user
7738 		 * configures the interrupts via /proc/irq or uses
7739 		 * irqbalance to make the interrupts single-CPU.
7740 		 *
7741 		 * We will support full lowest-priority interrupt later.
7742 		 *
7743 		 * In addition, we can only inject generic interrupts using
7744 		 * the PI mechanism, refuse to route others through it.
7745 		 */
7746 
7747 		kvm_set_msi_irq(kvm, e, &irq);
7748 		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7749 		    !kvm_irq_is_postable(&irq)) {
7750 			/*
7751 			 * Make sure the IRTE is in remapped mode if
7752 			 * we don't handle it in posted mode.
7753 			 */
7754 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7755 			if (ret < 0) {
7756 				printk(KERN_INFO
7757 				   "failed to back to remapped mode, irq: %u\n",
7758 				   host_irq);
7759 				goto out;
7760 			}
7761 
7762 			continue;
7763 		}
7764 
7765 		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7766 		vcpu_info.vector = irq.vector;
7767 
7768 		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7769 				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7770 
7771 		if (set)
7772 			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7773 		else
7774 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7775 
7776 		if (ret < 0) {
7777 			printk(KERN_INFO "%s: failed to update PI IRTE\n",
7778 					__func__);
7779 			goto out;
7780 		}
7781 	}
7782 
7783 	ret = 0;
7784 out:
7785 	srcu_read_unlock(&kvm->irq_srcu, idx);
7786 	return ret;
7787 }
7788 
7789 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7790 {
7791 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7792 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7793 			FEAT_CTL_LMCE_ENABLED;
7794 	else
7795 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7796 			~FEAT_CTL_LMCE_ENABLED;
7797 }
7798 
7799 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7800 {
7801 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7802 	if (to_vmx(vcpu)->nested.nested_run_pending)
7803 		return -EBUSY;
7804 	return !is_smm(vcpu);
7805 }
7806 
7807 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7808 {
7809 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7810 
7811 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7812 	if (vmx->nested.smm.guest_mode)
7813 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7814 
7815 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7816 	vmx->nested.vmxon = false;
7817 	vmx_clear_hlt(vcpu);
7818 	return 0;
7819 }
7820 
7821 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7822 {
7823 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7824 	int ret;
7825 
7826 	if (vmx->nested.smm.vmxon) {
7827 		vmx->nested.vmxon = true;
7828 		vmx->nested.smm.vmxon = false;
7829 	}
7830 
7831 	if (vmx->nested.smm.guest_mode) {
7832 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7833 		if (ret)
7834 			return ret;
7835 
7836 		vmx->nested.smm.guest_mode = false;
7837 	}
7838 	return 0;
7839 }
7840 
7841 static void enable_smi_window(struct kvm_vcpu *vcpu)
7842 {
7843 	/* RSM will cause a vmexit anyway.  */
7844 }
7845 
7846 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7847 {
7848 	return false;
7849 }
7850 
7851 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7852 {
7853 	return to_vmx(vcpu)->nested.vmxon;
7854 }
7855 
7856 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7857 {
7858 	if (is_guest_mode(vcpu)) {
7859 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7860 
7861 		if (hrtimer_try_to_cancel(timer) == 1)
7862 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7863 	}
7864 }
7865 
7866 static void hardware_unsetup(void)
7867 {
7868 	if (nested)
7869 		nested_vmx_hardware_unsetup();
7870 
7871 	free_kvm_area();
7872 }
7873 
7874 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7875 {
7876 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7877 			  BIT(APICV_INHIBIT_REASON_HYPERV);
7878 
7879 	return supported & BIT(bit);
7880 }
7881 
7882 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7883 	.hardware_unsetup = hardware_unsetup,
7884 
7885 	.hardware_enable = hardware_enable,
7886 	.hardware_disable = hardware_disable,
7887 	.cpu_has_accelerated_tpr = report_flexpriority,
7888 	.has_emulated_msr = vmx_has_emulated_msr,
7889 
7890 	.vm_size = sizeof(struct kvm_vmx),
7891 	.vm_init = vmx_vm_init,
7892 
7893 	.vcpu_create = vmx_create_vcpu,
7894 	.vcpu_free = vmx_free_vcpu,
7895 	.vcpu_reset = vmx_vcpu_reset,
7896 
7897 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7898 	.vcpu_load = vmx_vcpu_load,
7899 	.vcpu_put = vmx_vcpu_put,
7900 
7901 	.update_exception_bitmap = update_exception_bitmap,
7902 	.get_msr_feature = vmx_get_msr_feature,
7903 	.get_msr = vmx_get_msr,
7904 	.set_msr = vmx_set_msr,
7905 	.get_segment_base = vmx_get_segment_base,
7906 	.get_segment = vmx_get_segment,
7907 	.set_segment = vmx_set_segment,
7908 	.get_cpl = vmx_get_cpl,
7909 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7910 	.set_cr0 = vmx_set_cr0,
7911 	.set_cr4 = vmx_set_cr4,
7912 	.set_efer = vmx_set_efer,
7913 	.get_idt = vmx_get_idt,
7914 	.set_idt = vmx_set_idt,
7915 	.get_gdt = vmx_get_gdt,
7916 	.set_gdt = vmx_set_gdt,
7917 	.set_dr7 = vmx_set_dr7,
7918 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7919 	.cache_reg = vmx_cache_reg,
7920 	.get_rflags = vmx_get_rflags,
7921 	.set_rflags = vmx_set_rflags,
7922 
7923 	.tlb_flush_all = vmx_flush_tlb_all,
7924 	.tlb_flush_current = vmx_flush_tlb_current,
7925 	.tlb_flush_gva = vmx_flush_tlb_gva,
7926 	.tlb_flush_guest = vmx_flush_tlb_guest,
7927 
7928 	.run = vmx_vcpu_run,
7929 	.handle_exit = vmx_handle_exit,
7930 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7931 	.update_emulated_instruction = vmx_update_emulated_instruction,
7932 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7933 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7934 	.patch_hypercall = vmx_patch_hypercall,
7935 	.set_irq = vmx_inject_irq,
7936 	.set_nmi = vmx_inject_nmi,
7937 	.queue_exception = vmx_queue_exception,
7938 	.cancel_injection = vmx_cancel_injection,
7939 	.interrupt_allowed = vmx_interrupt_allowed,
7940 	.nmi_allowed = vmx_nmi_allowed,
7941 	.get_nmi_mask = vmx_get_nmi_mask,
7942 	.set_nmi_mask = vmx_set_nmi_mask,
7943 	.enable_nmi_window = enable_nmi_window,
7944 	.enable_irq_window = enable_irq_window,
7945 	.update_cr8_intercept = update_cr8_intercept,
7946 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7947 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7948 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7949 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7950 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7951 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7952 	.hwapic_irr_update = vmx_hwapic_irr_update,
7953 	.hwapic_isr_update = vmx_hwapic_isr_update,
7954 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7955 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7956 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7957 	.dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7958 
7959 	.set_tss_addr = vmx_set_tss_addr,
7960 	.set_identity_map_addr = vmx_set_identity_map_addr,
7961 	.get_mt_mask = vmx_get_mt_mask,
7962 
7963 	.get_exit_info = vmx_get_exit_info,
7964 
7965 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7966 
7967 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7968 
7969 	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7970 
7971 	.load_mmu_pgd = vmx_load_mmu_pgd,
7972 
7973 	.check_intercept = vmx_check_intercept,
7974 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7975 
7976 	.request_immediate_exit = vmx_request_immediate_exit,
7977 
7978 	.sched_in = vmx_sched_in,
7979 
7980 	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7981 	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7982 	.flush_log_dirty = vmx_flush_log_dirty,
7983 	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7984 
7985 	.pre_block = vmx_pre_block,
7986 	.post_block = vmx_post_block,
7987 
7988 	.pmu_ops = &intel_pmu_ops,
7989 	.nested_ops = &vmx_nested_ops,
7990 
7991 	.update_pi_irte = vmx_update_pi_irte,
7992 
7993 #ifdef CONFIG_X86_64
7994 	.set_hv_timer = vmx_set_hv_timer,
7995 	.cancel_hv_timer = vmx_cancel_hv_timer,
7996 #endif
7997 
7998 	.setup_mce = vmx_setup_mce,
7999 
8000 	.smi_allowed = vmx_smi_allowed,
8001 	.pre_enter_smm = vmx_pre_enter_smm,
8002 	.pre_leave_smm = vmx_pre_leave_smm,
8003 	.enable_smi_window = enable_smi_window,
8004 
8005 	.need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
8006 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8007 	.migrate_timers = vmx_migrate_timers,
8008 };
8009 
8010 static __init int hardware_setup(void)
8011 {
8012 	unsigned long host_bndcfgs;
8013 	struct desc_ptr dt;
8014 	int r, i, ept_lpage_level;
8015 
8016 	store_idt(&dt);
8017 	host_idt_base = dt.address;
8018 
8019 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
8020 		kvm_define_shared_msr(i, vmx_msr_index[i]);
8021 
8022 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8023 		return -EIO;
8024 
8025 	if (boot_cpu_has(X86_FEATURE_NX))
8026 		kvm_enable_efer_bits(EFER_NX);
8027 
8028 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8029 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8030 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
8031 	}
8032 
8033 	if (!cpu_has_vmx_mpx())
8034 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8035 				    XFEATURE_MASK_BNDCSR);
8036 
8037 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8038 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8039 		enable_vpid = 0;
8040 
8041 	if (!cpu_has_vmx_ept() ||
8042 	    !cpu_has_vmx_ept_4levels() ||
8043 	    !cpu_has_vmx_ept_mt_wb() ||
8044 	    !cpu_has_vmx_invept_global())
8045 		enable_ept = 0;
8046 
8047 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8048 		enable_ept_ad_bits = 0;
8049 
8050 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8051 		enable_unrestricted_guest = 0;
8052 
8053 	if (!cpu_has_vmx_flexpriority())
8054 		flexpriority_enabled = 0;
8055 
8056 	if (!cpu_has_virtual_nmis())
8057 		enable_vnmi = 0;
8058 
8059 	/*
8060 	 * set_apic_access_page_addr() is used to reload apic access
8061 	 * page upon invalidation.  No need to do anything if not
8062 	 * using the APIC_ACCESS_ADDR VMCS field.
8063 	 */
8064 	if (!flexpriority_enabled)
8065 		vmx_x86_ops.set_apic_access_page_addr = NULL;
8066 
8067 	if (!cpu_has_vmx_tpr_shadow())
8068 		vmx_x86_ops.update_cr8_intercept = NULL;
8069 
8070 #if IS_ENABLED(CONFIG_HYPERV)
8071 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8072 	    && enable_ept) {
8073 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
8074 		vmx_x86_ops.tlb_remote_flush_with_range =
8075 				hv_remote_flush_tlb_with_range;
8076 	}
8077 #endif
8078 
8079 	if (!cpu_has_vmx_ple()) {
8080 		ple_gap = 0;
8081 		ple_window = 0;
8082 		ple_window_grow = 0;
8083 		ple_window_max = 0;
8084 		ple_window_shrink = 0;
8085 	}
8086 
8087 	if (!cpu_has_vmx_apicv()) {
8088 		enable_apicv = 0;
8089 		vmx_x86_ops.sync_pir_to_irr = NULL;
8090 	}
8091 
8092 	if (cpu_has_vmx_tsc_scaling()) {
8093 		kvm_has_tsc_control = true;
8094 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8095 		kvm_tsc_scaling_ratio_frac_bits = 48;
8096 	}
8097 
8098 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8099 
8100 	if (enable_ept)
8101 		vmx_enable_tdp();
8102 
8103 	if (!enable_ept)
8104 		ept_lpage_level = 0;
8105 	else if (cpu_has_vmx_ept_1g_page())
8106 		ept_lpage_level = PG_LEVEL_1G;
8107 	else if (cpu_has_vmx_ept_2m_page())
8108 		ept_lpage_level = PG_LEVEL_2M;
8109 	else
8110 		ept_lpage_level = PG_LEVEL_4K;
8111 	kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
8112 
8113 	/*
8114 	 * Only enable PML when hardware supports PML feature, and both EPT
8115 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8116 	 */
8117 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8118 		enable_pml = 0;
8119 
8120 	if (!enable_pml) {
8121 		vmx_x86_ops.slot_enable_log_dirty = NULL;
8122 		vmx_x86_ops.slot_disable_log_dirty = NULL;
8123 		vmx_x86_ops.flush_log_dirty = NULL;
8124 		vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
8125 	}
8126 
8127 	if (!cpu_has_vmx_preemption_timer())
8128 		enable_preemption_timer = false;
8129 
8130 	if (enable_preemption_timer) {
8131 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8132 		u64 vmx_msr;
8133 
8134 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
8135 		cpu_preemption_timer_multi =
8136 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8137 
8138 		if (tsc_khz)
8139 			use_timer_freq = (u64)tsc_khz * 1000;
8140 		use_timer_freq >>= cpu_preemption_timer_multi;
8141 
8142 		/*
8143 		 * KVM "disables" the preemption timer by setting it to its max
8144 		 * value.  Don't use the timer if it might cause spurious exits
8145 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8146 		 */
8147 		if (use_timer_freq > 0xffffffffu / 10)
8148 			enable_preemption_timer = false;
8149 	}
8150 
8151 	if (!enable_preemption_timer) {
8152 		vmx_x86_ops.set_hv_timer = NULL;
8153 		vmx_x86_ops.cancel_hv_timer = NULL;
8154 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8155 	}
8156 
8157 	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
8158 
8159 	kvm_mce_cap_supported |= MCG_LMCE_P;
8160 
8161 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8162 		return -EINVAL;
8163 	if (!enable_ept || !cpu_has_vmx_intel_pt())
8164 		pt_mode = PT_MODE_SYSTEM;
8165 
8166 	if (nested) {
8167 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8168 					   vmx_capability.ept);
8169 
8170 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8171 		if (r)
8172 			return r;
8173 	}
8174 
8175 	vmx_set_cpu_caps();
8176 
8177 	r = alloc_kvm_area();
8178 	if (r)
8179 		nested_vmx_hardware_unsetup();
8180 	return r;
8181 }
8182 
8183 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8184 	.cpu_has_kvm_support = cpu_has_kvm_support,
8185 	.disabled_by_bios = vmx_disabled_by_bios,
8186 	.check_processor_compatibility = vmx_check_processor_compat,
8187 	.hardware_setup = hardware_setup,
8188 
8189 	.runtime_ops = &vmx_x86_ops,
8190 };
8191 
8192 static void vmx_cleanup_l1d_flush(void)
8193 {
8194 	if (vmx_l1d_flush_pages) {
8195 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8196 		vmx_l1d_flush_pages = NULL;
8197 	}
8198 	/* Restore state so sysfs ignores VMX */
8199 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8200 }
8201 
8202 static void vmx_exit(void)
8203 {
8204 #ifdef CONFIG_KEXEC_CORE
8205 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8206 	synchronize_rcu();
8207 #endif
8208 
8209 	kvm_exit();
8210 
8211 #if IS_ENABLED(CONFIG_HYPERV)
8212 	if (static_branch_unlikely(&enable_evmcs)) {
8213 		int cpu;
8214 		struct hv_vp_assist_page *vp_ap;
8215 		/*
8216 		 * Reset everything to support using non-enlightened VMCS
8217 		 * access later (e.g. when we reload the module with
8218 		 * enlightened_vmcs=0)
8219 		 */
8220 		for_each_online_cpu(cpu) {
8221 			vp_ap =	hv_get_vp_assist_page(cpu);
8222 
8223 			if (!vp_ap)
8224 				continue;
8225 
8226 			vp_ap->nested_control.features.directhypercall = 0;
8227 			vp_ap->current_nested_vmcs = 0;
8228 			vp_ap->enlighten_vmentry = 0;
8229 		}
8230 
8231 		static_branch_disable(&enable_evmcs);
8232 	}
8233 #endif
8234 	vmx_cleanup_l1d_flush();
8235 }
8236 module_exit(vmx_exit);
8237 
8238 static int __init vmx_init(void)
8239 {
8240 	int r, cpu;
8241 
8242 #if IS_ENABLED(CONFIG_HYPERV)
8243 	/*
8244 	 * Enlightened VMCS usage should be recommended and the host needs
8245 	 * to support eVMCS v1 or above. We can also disable eVMCS support
8246 	 * with module parameter.
8247 	 */
8248 	if (enlightened_vmcs &&
8249 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8250 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8251 	    KVM_EVMCS_VERSION) {
8252 		int cpu;
8253 
8254 		/* Check that we have assist pages on all online CPUs */
8255 		for_each_online_cpu(cpu) {
8256 			if (!hv_get_vp_assist_page(cpu)) {
8257 				enlightened_vmcs = false;
8258 				break;
8259 			}
8260 		}
8261 
8262 		if (enlightened_vmcs) {
8263 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8264 			static_branch_enable(&enable_evmcs);
8265 		}
8266 
8267 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8268 			vmx_x86_ops.enable_direct_tlbflush
8269 				= hv_enable_direct_tlbflush;
8270 
8271 	} else {
8272 		enlightened_vmcs = false;
8273 	}
8274 #endif
8275 
8276 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8277 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8278 	if (r)
8279 		return r;
8280 
8281 	/*
8282 	 * Must be called after kvm_init() so enable_ept is properly set
8283 	 * up. Hand the parameter mitigation value in which was stored in
8284 	 * the pre module init parser. If no parameter was given, it will
8285 	 * contain 'auto' which will be turned into the default 'cond'
8286 	 * mitigation mode.
8287 	 */
8288 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8289 	if (r) {
8290 		vmx_exit();
8291 		return r;
8292 	}
8293 
8294 	for_each_possible_cpu(cpu) {
8295 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8296 		INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
8297 		spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8298 	}
8299 
8300 #ifdef CONFIG_KEXEC_CORE
8301 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8302 			   crash_vmclear_local_loaded_vmcss);
8303 #endif
8304 	vmx_check_vmcs12_offsets();
8305 
8306 	/*
8307 	 * Intel processors don't have problems with
8308 	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable
8309 	 * it for VMX by default
8310 	 */
8311 	allow_smaller_maxphyaddr = true;
8312 
8313 	return 0;
8314 }
8315 module_init(vmx_init);
8316