xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision db30dc1a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/idtentry.h>
41 #include <asm/io.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/kexec.h>
44 #include <asm/perf_event.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/mwait.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/virtext.h>
50 #include <asm/vmx.h>
51 
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "evmcs.h"
55 #include "hyperv.h"
56 #include "kvm_onhyperv.h"
57 #include "irq.h"
58 #include "kvm_cache_regs.h"
59 #include "lapic.h"
60 #include "mmu.h"
61 #include "nested.h"
62 #include "pmu.h"
63 #include "sgx.h"
64 #include "trace.h"
65 #include "vmcs.h"
66 #include "vmcs12.h"
67 #include "vmx.h"
68 #include "x86.h"
69 
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72 
73 #ifdef MODULE
74 static const struct x86_cpu_id vmx_cpu_id[] = {
75 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
76 	{}
77 };
78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
79 #endif
80 
81 bool __read_mostly enable_vpid = 1;
82 module_param_named(vpid, enable_vpid, bool, 0444);
83 
84 static bool __read_mostly enable_vnmi = 1;
85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
86 
87 bool __read_mostly flexpriority_enabled = 1;
88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
89 
90 bool __read_mostly enable_ept = 1;
91 module_param_named(ept, enable_ept, bool, S_IRUGO);
92 
93 bool __read_mostly enable_unrestricted_guest = 1;
94 module_param_named(unrestricted_guest,
95 			enable_unrestricted_guest, bool, S_IRUGO);
96 
97 bool __read_mostly enable_ept_ad_bits = 1;
98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
99 
100 static bool __read_mostly emulate_invalid_guest_state = true;
101 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
102 
103 static bool __read_mostly fasteoi = 1;
104 module_param(fasteoi, bool, S_IRUGO);
105 
106 module_param(enable_apicv, bool, S_IRUGO);
107 
108 /*
109  * If nested=1, nested virtualization is supported, i.e., guests may use
110  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
111  * use VMX instructions.
112  */
113 static bool __read_mostly nested = 1;
114 module_param(nested, bool, S_IRUGO);
115 
116 bool __read_mostly enable_pml = 1;
117 module_param_named(pml, enable_pml, bool, S_IRUGO);
118 
119 static bool __read_mostly dump_invalid_vmcs = 0;
120 module_param(dump_invalid_vmcs, bool, 0644);
121 
122 #define MSR_BITMAP_MODE_X2APIC		1
123 #define MSR_BITMAP_MODE_X2APIC_APICV	2
124 
125 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
126 
127 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
128 static int __read_mostly cpu_preemption_timer_multi;
129 static bool __read_mostly enable_preemption_timer = 1;
130 #ifdef CONFIG_X86_64
131 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
132 #endif
133 
134 extern bool __read_mostly allow_smaller_maxphyaddr;
135 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
136 
137 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
138 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
139 #define KVM_VM_CR0_ALWAYS_ON				\
140 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
141 
142 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
143 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
144 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
145 
146 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
147 
148 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
149 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
150 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
151 	RTIT_STATUS_BYTECNT))
152 
153 /*
154  * List of MSRs that can be directly passed to the guest.
155  * In addition to these x2apic and PT MSRs are handled specially.
156  */
157 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
158 	MSR_IA32_SPEC_CTRL,
159 	MSR_IA32_PRED_CMD,
160 	MSR_IA32_TSC,
161 #ifdef CONFIG_X86_64
162 	MSR_FS_BASE,
163 	MSR_GS_BASE,
164 	MSR_KERNEL_GS_BASE,
165 	MSR_IA32_XFD,
166 	MSR_IA32_XFD_ERR,
167 #endif
168 	MSR_IA32_SYSENTER_CS,
169 	MSR_IA32_SYSENTER_ESP,
170 	MSR_IA32_SYSENTER_EIP,
171 	MSR_CORE_C1_RES,
172 	MSR_CORE_C3_RESIDENCY,
173 	MSR_CORE_C6_RESIDENCY,
174 	MSR_CORE_C7_RESIDENCY,
175 };
176 
177 /*
178  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
179  * ple_gap:    upper bound on the amount of time between two successive
180  *             executions of PAUSE in a loop. Also indicate if ple enabled.
181  *             According to test, this time is usually smaller than 128 cycles.
182  * ple_window: upper bound on the amount of time a guest is allowed to execute
183  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
184  *             less than 2^12 cycles
185  * Time is measured based on a counter that runs at the same rate as the TSC,
186  * refer SDM volume 3b section 21.6.13 & 22.1.3.
187  */
188 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
189 module_param(ple_gap, uint, 0444);
190 
191 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
192 module_param(ple_window, uint, 0444);
193 
194 /* Default doubles per-vcpu window every exit. */
195 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
196 module_param(ple_window_grow, uint, 0444);
197 
198 /* Default resets per-vcpu window every exit to ple_window. */
199 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
200 module_param(ple_window_shrink, uint, 0444);
201 
202 /* Default is to compute the maximum so we can never overflow. */
203 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
204 module_param(ple_window_max, uint, 0444);
205 
206 /* Default is SYSTEM mode, 1 for host-guest mode */
207 int __read_mostly pt_mode = PT_MODE_SYSTEM;
208 module_param(pt_mode, int, S_IRUGO);
209 
210 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
211 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
212 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
213 
214 /* Storage for pre module init parameter parsing */
215 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
216 
217 static const struct {
218 	const char *option;
219 	bool for_parse;
220 } vmentry_l1d_param[] = {
221 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
222 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
223 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
224 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
225 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
226 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
227 };
228 
229 #define L1D_CACHE_ORDER 4
230 static void *vmx_l1d_flush_pages;
231 
232 /* Control for disabling CPU Fill buffer clear */
233 static bool __read_mostly vmx_fb_clear_ctrl_available;
234 
235 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
236 {
237 	struct page *page;
238 	unsigned int i;
239 
240 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
241 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
242 		return 0;
243 	}
244 
245 	if (!enable_ept) {
246 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
247 		return 0;
248 	}
249 
250 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
251 		u64 msr;
252 
253 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
254 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
255 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
256 			return 0;
257 		}
258 	}
259 
260 	/* If set to auto use the default l1tf mitigation method */
261 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
262 		switch (l1tf_mitigation) {
263 		case L1TF_MITIGATION_OFF:
264 			l1tf = VMENTER_L1D_FLUSH_NEVER;
265 			break;
266 		case L1TF_MITIGATION_FLUSH_NOWARN:
267 		case L1TF_MITIGATION_FLUSH:
268 		case L1TF_MITIGATION_FLUSH_NOSMT:
269 			l1tf = VMENTER_L1D_FLUSH_COND;
270 			break;
271 		case L1TF_MITIGATION_FULL:
272 		case L1TF_MITIGATION_FULL_FORCE:
273 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
274 			break;
275 		}
276 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
277 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
278 	}
279 
280 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
281 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
282 		/*
283 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
284 		 * lifetime and so should not be charged to a memcg.
285 		 */
286 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
287 		if (!page)
288 			return -ENOMEM;
289 		vmx_l1d_flush_pages = page_address(page);
290 
291 		/*
292 		 * Initialize each page with a different pattern in
293 		 * order to protect against KSM in the nested
294 		 * virtualization case.
295 		 */
296 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
297 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
298 			       PAGE_SIZE);
299 		}
300 	}
301 
302 	l1tf_vmx_mitigation = l1tf;
303 
304 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
305 		static_branch_enable(&vmx_l1d_should_flush);
306 	else
307 		static_branch_disable(&vmx_l1d_should_flush);
308 
309 	if (l1tf == VMENTER_L1D_FLUSH_COND)
310 		static_branch_enable(&vmx_l1d_flush_cond);
311 	else
312 		static_branch_disable(&vmx_l1d_flush_cond);
313 	return 0;
314 }
315 
316 static int vmentry_l1d_flush_parse(const char *s)
317 {
318 	unsigned int i;
319 
320 	if (s) {
321 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
322 			if (vmentry_l1d_param[i].for_parse &&
323 			    sysfs_streq(s, vmentry_l1d_param[i].option))
324 				return i;
325 		}
326 	}
327 	return -EINVAL;
328 }
329 
330 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
331 {
332 	int l1tf, ret;
333 
334 	l1tf = vmentry_l1d_flush_parse(s);
335 	if (l1tf < 0)
336 		return l1tf;
337 
338 	if (!boot_cpu_has(X86_BUG_L1TF))
339 		return 0;
340 
341 	/*
342 	 * Has vmx_init() run already? If not then this is the pre init
343 	 * parameter parsing. In that case just store the value and let
344 	 * vmx_init() do the proper setup after enable_ept has been
345 	 * established.
346 	 */
347 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
348 		vmentry_l1d_flush_param = l1tf;
349 		return 0;
350 	}
351 
352 	mutex_lock(&vmx_l1d_flush_mutex);
353 	ret = vmx_setup_l1d_flush(l1tf);
354 	mutex_unlock(&vmx_l1d_flush_mutex);
355 	return ret;
356 }
357 
358 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
359 {
360 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
361 		return sprintf(s, "???\n");
362 
363 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
364 }
365 
366 static void vmx_setup_fb_clear_ctrl(void)
367 {
368 	u64 msr;
369 
370 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
371 	    !boot_cpu_has_bug(X86_BUG_MDS) &&
372 	    !boot_cpu_has_bug(X86_BUG_TAA)) {
373 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
374 		if (msr & ARCH_CAP_FB_CLEAR_CTRL)
375 			vmx_fb_clear_ctrl_available = true;
376 	}
377 }
378 
379 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
380 {
381 	u64 msr;
382 
383 	if (!vmx->disable_fb_clear)
384 		return;
385 
386 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
387 	msr |= FB_CLEAR_DIS;
388 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
389 	/* Cache the MSR value to avoid reading it later */
390 	vmx->msr_ia32_mcu_opt_ctrl = msr;
391 }
392 
393 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
394 {
395 	if (!vmx->disable_fb_clear)
396 		return;
397 
398 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
399 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
400 }
401 
402 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
403 {
404 	vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
405 
406 	/*
407 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
408 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
409 	 * execute VERW.
410 	 */
411 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
412 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
413 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
414 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
415 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
416 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
417 		vmx->disable_fb_clear = false;
418 }
419 
420 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
421 	.set = vmentry_l1d_flush_set,
422 	.get = vmentry_l1d_flush_get,
423 };
424 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
425 
426 static u32 vmx_segment_access_rights(struct kvm_segment *var);
427 
428 void vmx_vmexit(void);
429 
430 #define vmx_insn_failed(fmt...)		\
431 do {					\
432 	WARN_ONCE(1, fmt);		\
433 	pr_warn_ratelimited(fmt);	\
434 } while (0)
435 
436 asmlinkage void vmread_error(unsigned long field, bool fault)
437 {
438 	if (fault)
439 		kvm_spurious_fault();
440 	else
441 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
442 }
443 
444 noinline void vmwrite_error(unsigned long field, unsigned long value)
445 {
446 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
447 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
448 }
449 
450 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
451 {
452 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
453 }
454 
455 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
456 {
457 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
458 }
459 
460 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
461 {
462 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
463 			ext, vpid, gva);
464 }
465 
466 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
467 {
468 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
469 			ext, eptp, gpa);
470 }
471 
472 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
473 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
474 /*
475  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
476  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
477  */
478 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
479 
480 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
481 static DEFINE_SPINLOCK(vmx_vpid_lock);
482 
483 struct vmcs_config vmcs_config;
484 struct vmx_capability vmx_capability;
485 
486 #define VMX_SEGMENT_FIELD(seg)					\
487 	[VCPU_SREG_##seg] = {                                   \
488 		.selector = GUEST_##seg##_SELECTOR,		\
489 		.base = GUEST_##seg##_BASE,		   	\
490 		.limit = GUEST_##seg##_LIMIT,		   	\
491 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
492 	}
493 
494 static const struct kvm_vmx_segment_field {
495 	unsigned selector;
496 	unsigned base;
497 	unsigned limit;
498 	unsigned ar_bytes;
499 } kvm_vmx_segment_fields[] = {
500 	VMX_SEGMENT_FIELD(CS),
501 	VMX_SEGMENT_FIELD(DS),
502 	VMX_SEGMENT_FIELD(ES),
503 	VMX_SEGMENT_FIELD(FS),
504 	VMX_SEGMENT_FIELD(GS),
505 	VMX_SEGMENT_FIELD(SS),
506 	VMX_SEGMENT_FIELD(TR),
507 	VMX_SEGMENT_FIELD(LDTR),
508 };
509 
510 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
511 {
512 	vmx->segment_cache.bitmask = 0;
513 }
514 
515 static unsigned long host_idt_base;
516 
517 #if IS_ENABLED(CONFIG_HYPERV)
518 static bool __read_mostly enlightened_vmcs = true;
519 module_param(enlightened_vmcs, bool, 0444);
520 
521 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
522 {
523 	struct hv_enlightened_vmcs *evmcs;
524 	struct hv_partition_assist_pg **p_hv_pa_pg =
525 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
526 	/*
527 	 * Synthetic VM-Exit is not enabled in current code and so All
528 	 * evmcs in singe VM shares same assist page.
529 	 */
530 	if (!*p_hv_pa_pg)
531 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
532 
533 	if (!*p_hv_pa_pg)
534 		return -ENOMEM;
535 
536 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
537 
538 	evmcs->partition_assist_page =
539 		__pa(*p_hv_pa_pg);
540 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
541 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
542 
543 	return 0;
544 }
545 
546 #endif /* IS_ENABLED(CONFIG_HYPERV) */
547 
548 /*
549  * Comment's format: document - errata name - stepping - processor name.
550  * Refer from
551  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
552  */
553 static u32 vmx_preemption_cpu_tfms[] = {
554 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
555 0x000206E6,
556 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
557 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
558 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
559 0x00020652,
560 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
561 0x00020655,
562 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
563 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
564 /*
565  * 320767.pdf - AAP86  - B1 -
566  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
567  */
568 0x000106E5,
569 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
570 0x000106A0,
571 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
572 0x000106A1,
573 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
574 0x000106A4,
575  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
576  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
577  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
578 0x000106A5,
579  /* Xeon E3-1220 V2 */
580 0x000306A8,
581 };
582 
583 static inline bool cpu_has_broken_vmx_preemption_timer(void)
584 {
585 	u32 eax = cpuid_eax(0x00000001), i;
586 
587 	/* Clear the reserved bits */
588 	eax &= ~(0x3U << 14 | 0xfU << 28);
589 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
590 		if (eax == vmx_preemption_cpu_tfms[i])
591 			return true;
592 
593 	return false;
594 }
595 
596 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
597 {
598 	return flexpriority_enabled && lapic_in_kernel(vcpu);
599 }
600 
601 static int possible_passthrough_msr_slot(u32 msr)
602 {
603 	u32 i;
604 
605 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
606 		if (vmx_possible_passthrough_msrs[i] == msr)
607 			return i;
608 
609 	return -ENOENT;
610 }
611 
612 static bool is_valid_passthrough_msr(u32 msr)
613 {
614 	bool r;
615 
616 	switch (msr) {
617 	case 0x800 ... 0x8ff:
618 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
619 		return true;
620 	case MSR_IA32_RTIT_STATUS:
621 	case MSR_IA32_RTIT_OUTPUT_BASE:
622 	case MSR_IA32_RTIT_OUTPUT_MASK:
623 	case MSR_IA32_RTIT_CR3_MATCH:
624 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
625 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
626 	case MSR_LBR_SELECT:
627 	case MSR_LBR_TOS:
628 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
629 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
630 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
631 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
632 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
633 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
634 		return true;
635 	}
636 
637 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
638 
639 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
640 
641 	return r;
642 }
643 
644 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
645 {
646 	int i;
647 
648 	i = kvm_find_user_return_msr(msr);
649 	if (i >= 0)
650 		return &vmx->guest_uret_msrs[i];
651 	return NULL;
652 }
653 
654 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
655 				  struct vmx_uret_msr *msr, u64 data)
656 {
657 	unsigned int slot = msr - vmx->guest_uret_msrs;
658 	int ret = 0;
659 
660 	if (msr->load_into_hardware) {
661 		preempt_disable();
662 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
663 		preempt_enable();
664 	}
665 	if (!ret)
666 		msr->data = data;
667 	return ret;
668 }
669 
670 #ifdef CONFIG_KEXEC_CORE
671 static void crash_vmclear_local_loaded_vmcss(void)
672 {
673 	int cpu = raw_smp_processor_id();
674 	struct loaded_vmcs *v;
675 
676 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
677 			    loaded_vmcss_on_cpu_link)
678 		vmcs_clear(v->vmcs);
679 }
680 #endif /* CONFIG_KEXEC_CORE */
681 
682 static void __loaded_vmcs_clear(void *arg)
683 {
684 	struct loaded_vmcs *loaded_vmcs = arg;
685 	int cpu = raw_smp_processor_id();
686 
687 	if (loaded_vmcs->cpu != cpu)
688 		return; /* vcpu migration can race with cpu offline */
689 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
690 		per_cpu(current_vmcs, cpu) = NULL;
691 
692 	vmcs_clear(loaded_vmcs->vmcs);
693 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
694 		vmcs_clear(loaded_vmcs->shadow_vmcs);
695 
696 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
697 
698 	/*
699 	 * Ensure all writes to loaded_vmcs, including deleting it from its
700 	 * current percpu list, complete before setting loaded_vmcs->cpu to
701 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
702 	 * and add loaded_vmcs to its percpu list before it's deleted from this
703 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
704 	 */
705 	smp_wmb();
706 
707 	loaded_vmcs->cpu = -1;
708 	loaded_vmcs->launched = 0;
709 }
710 
711 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
712 {
713 	int cpu = loaded_vmcs->cpu;
714 
715 	if (cpu != -1)
716 		smp_call_function_single(cpu,
717 			 __loaded_vmcs_clear, loaded_vmcs, 1);
718 }
719 
720 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
721 				       unsigned field)
722 {
723 	bool ret;
724 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
725 
726 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
727 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
728 		vmx->segment_cache.bitmask = 0;
729 	}
730 	ret = vmx->segment_cache.bitmask & mask;
731 	vmx->segment_cache.bitmask |= mask;
732 	return ret;
733 }
734 
735 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
736 {
737 	u16 *p = &vmx->segment_cache.seg[seg].selector;
738 
739 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
740 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
741 	return *p;
742 }
743 
744 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
745 {
746 	ulong *p = &vmx->segment_cache.seg[seg].base;
747 
748 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
749 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
750 	return *p;
751 }
752 
753 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
754 {
755 	u32 *p = &vmx->segment_cache.seg[seg].limit;
756 
757 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
758 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
759 	return *p;
760 }
761 
762 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
763 {
764 	u32 *p = &vmx->segment_cache.seg[seg].ar;
765 
766 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
767 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
768 	return *p;
769 }
770 
771 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
772 {
773 	u32 eb;
774 
775 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
776 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
777 	/*
778 	 * Guest access to VMware backdoor ports could legitimately
779 	 * trigger #GP because of TSS I/O permission bitmap.
780 	 * We intercept those #GP and allow access to them anyway
781 	 * as VMware does.
782 	 */
783 	if (enable_vmware_backdoor)
784 		eb |= (1u << GP_VECTOR);
785 	if ((vcpu->guest_debug &
786 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
787 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
788 		eb |= 1u << BP_VECTOR;
789 	if (to_vmx(vcpu)->rmode.vm86_active)
790 		eb = ~0;
791 	if (!vmx_need_pf_intercept(vcpu))
792 		eb &= ~(1u << PF_VECTOR);
793 
794 	/* When we are running a nested L2 guest and L1 specified for it a
795 	 * certain exception bitmap, we must trap the same exceptions and pass
796 	 * them to L1. When running L2, we will only handle the exceptions
797 	 * specified above if L1 did not want them.
798 	 */
799 	if (is_guest_mode(vcpu))
800 		eb |= get_vmcs12(vcpu)->exception_bitmap;
801         else {
802 		int mask = 0, match = 0;
803 
804 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
805 			/*
806 			 * If EPT is enabled, #PF is currently only intercepted
807 			 * if MAXPHYADDR is smaller on the guest than on the
808 			 * host.  In that case we only care about present,
809 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
810 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
811 			 */
812 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
813 			match = PFERR_PRESENT_MASK;
814 		}
815 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
816 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
817 	}
818 
819 	/*
820 	 * Disabling xfd interception indicates that dynamic xfeatures
821 	 * might be used in the guest. Always trap #NM in this case
822 	 * to save guest xfd_err timely.
823 	 */
824 	if (vcpu->arch.xfd_no_write_intercept)
825 		eb |= (1u << NM_VECTOR);
826 
827 	vmcs_write32(EXCEPTION_BITMAP, eb);
828 }
829 
830 /*
831  * Check if MSR is intercepted for currently loaded MSR bitmap.
832  */
833 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
834 {
835 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
836 		return true;
837 
838 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap,
839 					 MSR_IA32_SPEC_CTRL);
840 }
841 
842 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
843 		unsigned long entry, unsigned long exit)
844 {
845 	vm_entry_controls_clearbit(vmx, entry);
846 	vm_exit_controls_clearbit(vmx, exit);
847 }
848 
849 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
850 {
851 	unsigned int i;
852 
853 	for (i = 0; i < m->nr; ++i) {
854 		if (m->val[i].index == msr)
855 			return i;
856 	}
857 	return -ENOENT;
858 }
859 
860 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
861 {
862 	int i;
863 	struct msr_autoload *m = &vmx->msr_autoload;
864 
865 	switch (msr) {
866 	case MSR_EFER:
867 		if (cpu_has_load_ia32_efer()) {
868 			clear_atomic_switch_msr_special(vmx,
869 					VM_ENTRY_LOAD_IA32_EFER,
870 					VM_EXIT_LOAD_IA32_EFER);
871 			return;
872 		}
873 		break;
874 	case MSR_CORE_PERF_GLOBAL_CTRL:
875 		if (cpu_has_load_perf_global_ctrl()) {
876 			clear_atomic_switch_msr_special(vmx,
877 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
878 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
879 			return;
880 		}
881 		break;
882 	}
883 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
884 	if (i < 0)
885 		goto skip_guest;
886 	--m->guest.nr;
887 	m->guest.val[i] = m->guest.val[m->guest.nr];
888 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
889 
890 skip_guest:
891 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
892 	if (i < 0)
893 		return;
894 
895 	--m->host.nr;
896 	m->host.val[i] = m->host.val[m->host.nr];
897 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
898 }
899 
900 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
901 		unsigned long entry, unsigned long exit,
902 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
903 		u64 guest_val, u64 host_val)
904 {
905 	vmcs_write64(guest_val_vmcs, guest_val);
906 	if (host_val_vmcs != HOST_IA32_EFER)
907 		vmcs_write64(host_val_vmcs, host_val);
908 	vm_entry_controls_setbit(vmx, entry);
909 	vm_exit_controls_setbit(vmx, exit);
910 }
911 
912 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
913 				  u64 guest_val, u64 host_val, bool entry_only)
914 {
915 	int i, j = 0;
916 	struct msr_autoload *m = &vmx->msr_autoload;
917 
918 	switch (msr) {
919 	case MSR_EFER:
920 		if (cpu_has_load_ia32_efer()) {
921 			add_atomic_switch_msr_special(vmx,
922 					VM_ENTRY_LOAD_IA32_EFER,
923 					VM_EXIT_LOAD_IA32_EFER,
924 					GUEST_IA32_EFER,
925 					HOST_IA32_EFER,
926 					guest_val, host_val);
927 			return;
928 		}
929 		break;
930 	case MSR_CORE_PERF_GLOBAL_CTRL:
931 		if (cpu_has_load_perf_global_ctrl()) {
932 			add_atomic_switch_msr_special(vmx,
933 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
934 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
935 					GUEST_IA32_PERF_GLOBAL_CTRL,
936 					HOST_IA32_PERF_GLOBAL_CTRL,
937 					guest_val, host_val);
938 			return;
939 		}
940 		break;
941 	case MSR_IA32_PEBS_ENABLE:
942 		/* PEBS needs a quiescent period after being disabled (to write
943 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
944 		 * provide that period, so a CPU could write host's record into
945 		 * guest's memory.
946 		 */
947 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
948 	}
949 
950 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
951 	if (!entry_only)
952 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
953 
954 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
955 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
956 		printk_once(KERN_WARNING "Not enough msr switch entries. "
957 				"Can't add msr %x\n", msr);
958 		return;
959 	}
960 	if (i < 0) {
961 		i = m->guest.nr++;
962 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
963 	}
964 	m->guest.val[i].index = msr;
965 	m->guest.val[i].value = guest_val;
966 
967 	if (entry_only)
968 		return;
969 
970 	if (j < 0) {
971 		j = m->host.nr++;
972 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
973 	}
974 	m->host.val[j].index = msr;
975 	m->host.val[j].value = host_val;
976 }
977 
978 static bool update_transition_efer(struct vcpu_vmx *vmx)
979 {
980 	u64 guest_efer = vmx->vcpu.arch.efer;
981 	u64 ignore_bits = 0;
982 	int i;
983 
984 	/* Shadow paging assumes NX to be available.  */
985 	if (!enable_ept)
986 		guest_efer |= EFER_NX;
987 
988 	/*
989 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
990 	 */
991 	ignore_bits |= EFER_SCE;
992 #ifdef CONFIG_X86_64
993 	ignore_bits |= EFER_LMA | EFER_LME;
994 	/* SCE is meaningful only in long mode on Intel */
995 	if (guest_efer & EFER_LMA)
996 		ignore_bits &= ~(u64)EFER_SCE;
997 #endif
998 
999 	/*
1000 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1001 	 * On CPUs that support "load IA32_EFER", always switch EFER
1002 	 * atomically, since it's faster than switching it manually.
1003 	 */
1004 	if (cpu_has_load_ia32_efer() ||
1005 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1006 		if (!(guest_efer & EFER_LMA))
1007 			guest_efer &= ~EFER_LME;
1008 		if (guest_efer != host_efer)
1009 			add_atomic_switch_msr(vmx, MSR_EFER,
1010 					      guest_efer, host_efer, false);
1011 		else
1012 			clear_atomic_switch_msr(vmx, MSR_EFER);
1013 		return false;
1014 	}
1015 
1016 	i = kvm_find_user_return_msr(MSR_EFER);
1017 	if (i < 0)
1018 		return false;
1019 
1020 	clear_atomic_switch_msr(vmx, MSR_EFER);
1021 
1022 	guest_efer &= ~ignore_bits;
1023 	guest_efer |= host_efer & ignore_bits;
1024 
1025 	vmx->guest_uret_msrs[i].data = guest_efer;
1026 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1027 
1028 	return true;
1029 }
1030 
1031 #ifdef CONFIG_X86_32
1032 /*
1033  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1034  * VMCS rather than the segment table.  KVM uses this helper to figure
1035  * out the current bases to poke them into the VMCS before entry.
1036  */
1037 static unsigned long segment_base(u16 selector)
1038 {
1039 	struct desc_struct *table;
1040 	unsigned long v;
1041 
1042 	if (!(selector & ~SEGMENT_RPL_MASK))
1043 		return 0;
1044 
1045 	table = get_current_gdt_ro();
1046 
1047 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1048 		u16 ldt_selector = kvm_read_ldt();
1049 
1050 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1051 			return 0;
1052 
1053 		table = (struct desc_struct *)segment_base(ldt_selector);
1054 	}
1055 	v = get_desc_base(&table[selector >> 3]);
1056 	return v;
1057 }
1058 #endif
1059 
1060 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1061 {
1062 	return vmx_pt_mode_is_host_guest() &&
1063 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1064 }
1065 
1066 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1067 {
1068 	/* The base must be 128-byte aligned and a legal physical address. */
1069 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1070 }
1071 
1072 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1073 {
1074 	u32 i;
1075 
1076 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1077 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1078 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1079 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1080 	for (i = 0; i < addr_range; i++) {
1081 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1082 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1083 	}
1084 }
1085 
1086 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1087 {
1088 	u32 i;
1089 
1090 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1091 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1092 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1093 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1094 	for (i = 0; i < addr_range; i++) {
1095 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1096 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1097 	}
1098 }
1099 
1100 static void pt_guest_enter(struct vcpu_vmx *vmx)
1101 {
1102 	if (vmx_pt_mode_is_system())
1103 		return;
1104 
1105 	/*
1106 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1107 	 * Save host state before VM entry.
1108 	 */
1109 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1110 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1111 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1112 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1113 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1114 	}
1115 }
1116 
1117 static void pt_guest_exit(struct vcpu_vmx *vmx)
1118 {
1119 	if (vmx_pt_mode_is_system())
1120 		return;
1121 
1122 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1123 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1124 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1125 	}
1126 
1127 	/*
1128 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1129 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1130 	 */
1131 	if (vmx->pt_desc.host.ctl)
1132 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1133 }
1134 
1135 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1136 			unsigned long fs_base, unsigned long gs_base)
1137 {
1138 	if (unlikely(fs_sel != host->fs_sel)) {
1139 		if (!(fs_sel & 7))
1140 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1141 		else
1142 			vmcs_write16(HOST_FS_SELECTOR, 0);
1143 		host->fs_sel = fs_sel;
1144 	}
1145 	if (unlikely(gs_sel != host->gs_sel)) {
1146 		if (!(gs_sel & 7))
1147 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1148 		else
1149 			vmcs_write16(HOST_GS_SELECTOR, 0);
1150 		host->gs_sel = gs_sel;
1151 	}
1152 	if (unlikely(fs_base != host->fs_base)) {
1153 		vmcs_writel(HOST_FS_BASE, fs_base);
1154 		host->fs_base = fs_base;
1155 	}
1156 	if (unlikely(gs_base != host->gs_base)) {
1157 		vmcs_writel(HOST_GS_BASE, gs_base);
1158 		host->gs_base = gs_base;
1159 	}
1160 }
1161 
1162 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1163 {
1164 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1165 	struct vmcs_host_state *host_state;
1166 #ifdef CONFIG_X86_64
1167 	int cpu = raw_smp_processor_id();
1168 #endif
1169 	unsigned long fs_base, gs_base;
1170 	u16 fs_sel, gs_sel;
1171 	int i;
1172 
1173 	vmx->req_immediate_exit = false;
1174 
1175 	/*
1176 	 * Note that guest MSRs to be saved/restored can also be changed
1177 	 * when guest state is loaded. This happens when guest transitions
1178 	 * to/from long-mode by setting MSR_EFER.LMA.
1179 	 */
1180 	if (!vmx->guest_uret_msrs_loaded) {
1181 		vmx->guest_uret_msrs_loaded = true;
1182 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1183 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1184 				continue;
1185 
1186 			kvm_set_user_return_msr(i,
1187 						vmx->guest_uret_msrs[i].data,
1188 						vmx->guest_uret_msrs[i].mask);
1189 		}
1190 	}
1191 
1192     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1193 		nested_sync_vmcs12_to_shadow(vcpu);
1194 
1195 	if (vmx->guest_state_loaded)
1196 		return;
1197 
1198 	host_state = &vmx->loaded_vmcs->host_state;
1199 
1200 	/*
1201 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1202 	 * allow segment selectors with cpl > 0 or ti == 1.
1203 	 */
1204 	host_state->ldt_sel = kvm_read_ldt();
1205 
1206 #ifdef CONFIG_X86_64
1207 	savesegment(ds, host_state->ds_sel);
1208 	savesegment(es, host_state->es_sel);
1209 
1210 	gs_base = cpu_kernelmode_gs_base(cpu);
1211 	if (likely(is_64bit_mm(current->mm))) {
1212 		current_save_fsgs();
1213 		fs_sel = current->thread.fsindex;
1214 		gs_sel = current->thread.gsindex;
1215 		fs_base = current->thread.fsbase;
1216 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1217 	} else {
1218 		savesegment(fs, fs_sel);
1219 		savesegment(gs, gs_sel);
1220 		fs_base = read_msr(MSR_FS_BASE);
1221 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1222 	}
1223 
1224 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1225 #else
1226 	savesegment(fs, fs_sel);
1227 	savesegment(gs, gs_sel);
1228 	fs_base = segment_base(fs_sel);
1229 	gs_base = segment_base(gs_sel);
1230 #endif
1231 
1232 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1233 	vmx->guest_state_loaded = true;
1234 }
1235 
1236 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1237 {
1238 	struct vmcs_host_state *host_state;
1239 
1240 	if (!vmx->guest_state_loaded)
1241 		return;
1242 
1243 	host_state = &vmx->loaded_vmcs->host_state;
1244 
1245 	++vmx->vcpu.stat.host_state_reload;
1246 
1247 #ifdef CONFIG_X86_64
1248 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1249 #endif
1250 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1251 		kvm_load_ldt(host_state->ldt_sel);
1252 #ifdef CONFIG_X86_64
1253 		load_gs_index(host_state->gs_sel);
1254 #else
1255 		loadsegment(gs, host_state->gs_sel);
1256 #endif
1257 	}
1258 	if (host_state->fs_sel & 7)
1259 		loadsegment(fs, host_state->fs_sel);
1260 #ifdef CONFIG_X86_64
1261 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1262 		loadsegment(ds, host_state->ds_sel);
1263 		loadsegment(es, host_state->es_sel);
1264 	}
1265 #endif
1266 	invalidate_tss_limit();
1267 #ifdef CONFIG_X86_64
1268 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1269 #endif
1270 	load_fixmap_gdt(raw_smp_processor_id());
1271 	vmx->guest_state_loaded = false;
1272 	vmx->guest_uret_msrs_loaded = false;
1273 }
1274 
1275 #ifdef CONFIG_X86_64
1276 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1277 {
1278 	preempt_disable();
1279 	if (vmx->guest_state_loaded)
1280 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1281 	preempt_enable();
1282 	return vmx->msr_guest_kernel_gs_base;
1283 }
1284 
1285 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1286 {
1287 	preempt_disable();
1288 	if (vmx->guest_state_loaded)
1289 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1290 	preempt_enable();
1291 	vmx->msr_guest_kernel_gs_base = data;
1292 }
1293 #endif
1294 
1295 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1296 			struct loaded_vmcs *buddy)
1297 {
1298 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1299 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1300 	struct vmcs *prev;
1301 
1302 	if (!already_loaded) {
1303 		loaded_vmcs_clear(vmx->loaded_vmcs);
1304 		local_irq_disable();
1305 
1306 		/*
1307 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1308 		 * this cpu's percpu list, otherwise it may not yet be deleted
1309 		 * from its previous cpu's percpu list.  Pairs with the
1310 		 * smb_wmb() in __loaded_vmcs_clear().
1311 		 */
1312 		smp_rmb();
1313 
1314 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1315 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1316 		local_irq_enable();
1317 	}
1318 
1319 	prev = per_cpu(current_vmcs, cpu);
1320 	if (prev != vmx->loaded_vmcs->vmcs) {
1321 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1322 		vmcs_load(vmx->loaded_vmcs->vmcs);
1323 
1324 		/*
1325 		 * No indirect branch prediction barrier needed when switching
1326 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1327 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1328 		 */
1329 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1330 			indirect_branch_prediction_barrier();
1331 	}
1332 
1333 	if (!already_loaded) {
1334 		void *gdt = get_current_gdt_ro();
1335 
1336 		/*
1337 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1338 		 * TLB entries from its previous association with the vCPU.
1339 		 */
1340 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1341 
1342 		/*
1343 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1344 		 * processors.  See 22.2.4.
1345 		 */
1346 		vmcs_writel(HOST_TR_BASE,
1347 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1348 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1349 
1350 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1351 			/* 22.2.3 */
1352 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1353 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1354 		}
1355 
1356 		vmx->loaded_vmcs->cpu = cpu;
1357 	}
1358 }
1359 
1360 /*
1361  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1362  * vcpu mutex is already taken.
1363  */
1364 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1365 {
1366 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1367 
1368 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1369 
1370 	vmx_vcpu_pi_load(vcpu, cpu);
1371 
1372 	vmx->host_debugctlmsr = get_debugctlmsr();
1373 }
1374 
1375 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1376 {
1377 	vmx_vcpu_pi_put(vcpu);
1378 
1379 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1380 }
1381 
1382 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1383 {
1384 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1385 }
1386 
1387 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1388 {
1389 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1390 	unsigned long rflags, save_rflags;
1391 
1392 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1393 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1394 		rflags = vmcs_readl(GUEST_RFLAGS);
1395 		if (vmx->rmode.vm86_active) {
1396 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1397 			save_rflags = vmx->rmode.save_rflags;
1398 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1399 		}
1400 		vmx->rflags = rflags;
1401 	}
1402 	return vmx->rflags;
1403 }
1404 
1405 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1406 {
1407 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1408 	unsigned long old_rflags;
1409 
1410 	if (is_unrestricted_guest(vcpu)) {
1411 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1412 		vmx->rflags = rflags;
1413 		vmcs_writel(GUEST_RFLAGS, rflags);
1414 		return;
1415 	}
1416 
1417 	old_rflags = vmx_get_rflags(vcpu);
1418 	vmx->rflags = rflags;
1419 	if (vmx->rmode.vm86_active) {
1420 		vmx->rmode.save_rflags = rflags;
1421 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1422 	}
1423 	vmcs_writel(GUEST_RFLAGS, rflags);
1424 
1425 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1426 		vmx->emulation_required = vmx_emulation_required(vcpu);
1427 }
1428 
1429 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1430 {
1431 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1432 }
1433 
1434 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1435 {
1436 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1437 	int ret = 0;
1438 
1439 	if (interruptibility & GUEST_INTR_STATE_STI)
1440 		ret |= KVM_X86_SHADOW_INT_STI;
1441 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1442 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1443 
1444 	return ret;
1445 }
1446 
1447 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1448 {
1449 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1450 	u32 interruptibility = interruptibility_old;
1451 
1452 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1453 
1454 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1455 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1456 	else if (mask & KVM_X86_SHADOW_INT_STI)
1457 		interruptibility |= GUEST_INTR_STATE_STI;
1458 
1459 	if ((interruptibility != interruptibility_old))
1460 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1461 }
1462 
1463 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1464 {
1465 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1466 	unsigned long value;
1467 
1468 	/*
1469 	 * Any MSR write that attempts to change bits marked reserved will
1470 	 * case a #GP fault.
1471 	 */
1472 	if (data & vmx->pt_desc.ctl_bitmask)
1473 		return 1;
1474 
1475 	/*
1476 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1477 	 * result in a #GP unless the same write also clears TraceEn.
1478 	 */
1479 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1480 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1481 		return 1;
1482 
1483 	/*
1484 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1485 	 * and FabricEn would cause #GP, if
1486 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1487 	 */
1488 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1489 		!(data & RTIT_CTL_FABRIC_EN) &&
1490 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1491 					PT_CAP_single_range_output))
1492 		return 1;
1493 
1494 	/*
1495 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1496 	 * utilize encodings marked reserved will cause a #GP fault.
1497 	 */
1498 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1499 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1500 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1501 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1502 		return 1;
1503 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1504 						PT_CAP_cycle_thresholds);
1505 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1506 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1507 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1508 		return 1;
1509 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1510 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1511 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1512 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1513 		return 1;
1514 
1515 	/*
1516 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1517 	 * cause a #GP fault.
1518 	 */
1519 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1520 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1521 		return 1;
1522 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1523 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1524 		return 1;
1525 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1526 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1527 		return 1;
1528 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1529 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1530 		return 1;
1531 
1532 	return 0;
1533 }
1534 
1535 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1536 					void *insn, int insn_len)
1537 {
1538 	/*
1539 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1540 	 * not point at the failing instruction, and even if it did, the code
1541 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1542 	 * so that guest userspace can't DoS the guest simply by triggering
1543 	 * emulation (enclaves are CPL3 only).
1544 	 */
1545 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1546 		kvm_queue_exception(vcpu, UD_VECTOR);
1547 		return false;
1548 	}
1549 	return true;
1550 }
1551 
1552 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1553 {
1554 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1555 	unsigned long rip, orig_rip;
1556 	u32 instr_len;
1557 
1558 	/*
1559 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1560 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1561 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1562 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1563 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1564 	 * i.e. we end up advancing IP with some random value.
1565 	 */
1566 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1567 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1568 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1569 
1570 		/*
1571 		 * Emulating an enclave's instructions isn't supported as KVM
1572 		 * cannot access the enclave's memory or its true RIP, e.g. the
1573 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1574 		 * the RIP that actually triggered the VM-Exit.  But, because
1575 		 * most instructions that cause VM-Exit will #UD in an enclave,
1576 		 * most instruction-based VM-Exits simply do not occur.
1577 		 *
1578 		 * There are a few exceptions, notably the debug instructions
1579 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1580 		 * and generate #DB/#BP as expected, which KVM might intercept.
1581 		 * But again, the CPU does the dirty work and saves an instr
1582 		 * length of zero so VMMs don't shoot themselves in the foot.
1583 		 * WARN if KVM tries to skip a non-zero length instruction on
1584 		 * a VM-Exit from an enclave.
1585 		 */
1586 		if (!instr_len)
1587 			goto rip_updated;
1588 
1589 		WARN(exit_reason.enclave_mode,
1590 		     "KVM: skipping instruction after SGX enclave VM-Exit");
1591 
1592 		orig_rip = kvm_rip_read(vcpu);
1593 		rip = orig_rip + instr_len;
1594 #ifdef CONFIG_X86_64
1595 		/*
1596 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1597 		 * mode, but just finding out that we are in 64-bit mode is
1598 		 * quite expensive.  Only do it if there was a carry.
1599 		 */
1600 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1601 			rip = (u32)rip;
1602 #endif
1603 		kvm_rip_write(vcpu, rip);
1604 	} else {
1605 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1606 			return 0;
1607 	}
1608 
1609 rip_updated:
1610 	/* skipping an emulated instruction also counts */
1611 	vmx_set_interrupt_shadow(vcpu, 0);
1612 
1613 	return 1;
1614 }
1615 
1616 /*
1617  * Recognizes a pending MTF VM-exit and records the nested state for later
1618  * delivery.
1619  */
1620 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1621 {
1622 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1623 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1624 
1625 	if (!is_guest_mode(vcpu))
1626 		return;
1627 
1628 	/*
1629 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1630 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1631 	 * instruction boundary), any #DB exception pending delivery must be a
1632 	 * debug-trap. Record the pending MTF state to be delivered in
1633 	 * vmx_check_nested_events().
1634 	 */
1635 	if (nested_cpu_has_mtf(vmcs12) &&
1636 	    (!vcpu->arch.exception.pending ||
1637 	     vcpu->arch.exception.nr == DB_VECTOR))
1638 		vmx->nested.mtf_pending = true;
1639 	else
1640 		vmx->nested.mtf_pending = false;
1641 }
1642 
1643 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1644 {
1645 	vmx_update_emulated_instruction(vcpu);
1646 	return skip_emulated_instruction(vcpu);
1647 }
1648 
1649 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1650 {
1651 	/*
1652 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1653 	 * explicitly skip the instruction because if the HLT state is set,
1654 	 * then the instruction is already executing and RIP has already been
1655 	 * advanced.
1656 	 */
1657 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1658 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1659 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1660 }
1661 
1662 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1663 {
1664 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1665 	unsigned nr = vcpu->arch.exception.nr;
1666 	bool has_error_code = vcpu->arch.exception.has_error_code;
1667 	u32 error_code = vcpu->arch.exception.error_code;
1668 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1669 
1670 	kvm_deliver_exception_payload(vcpu);
1671 
1672 	if (has_error_code) {
1673 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1674 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1675 	}
1676 
1677 	if (vmx->rmode.vm86_active) {
1678 		int inc_eip = 0;
1679 		if (kvm_exception_is_soft(nr))
1680 			inc_eip = vcpu->arch.event_exit_inst_len;
1681 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1682 		return;
1683 	}
1684 
1685 	WARN_ON_ONCE(vmx->emulation_required);
1686 
1687 	if (kvm_exception_is_soft(nr)) {
1688 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1689 			     vmx->vcpu.arch.event_exit_inst_len);
1690 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1691 	} else
1692 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1693 
1694 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1695 
1696 	vmx_clear_hlt(vcpu);
1697 }
1698 
1699 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1700 			       bool load_into_hardware)
1701 {
1702 	struct vmx_uret_msr *uret_msr;
1703 
1704 	uret_msr = vmx_find_uret_msr(vmx, msr);
1705 	if (!uret_msr)
1706 		return;
1707 
1708 	uret_msr->load_into_hardware = load_into_hardware;
1709 }
1710 
1711 /*
1712  * Configuring user return MSRs to automatically save, load, and restore MSRs
1713  * that need to be shoved into hardware when running the guest.  Note, omitting
1714  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1715  * loaded into hardware when running the guest.
1716  */
1717 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1718 {
1719 #ifdef CONFIG_X86_64
1720 	bool load_syscall_msrs;
1721 
1722 	/*
1723 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1724 	 * when EFER.SCE is set.
1725 	 */
1726 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1727 			    (vmx->vcpu.arch.efer & EFER_SCE);
1728 
1729 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1730 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1731 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1732 #endif
1733 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1734 
1735 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1736 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1737 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1738 
1739 	/*
1740 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1741 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1742 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1743 	 * so that TSX remains always disabled.
1744 	 */
1745 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1746 
1747 	/*
1748 	 * The set of MSRs to load may have changed, reload MSRs before the
1749 	 * next VM-Enter.
1750 	 */
1751 	vmx->guest_uret_msrs_loaded = false;
1752 }
1753 
1754 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1755 {
1756 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1757 
1758 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1759 		return vmcs12->tsc_offset;
1760 
1761 	return 0;
1762 }
1763 
1764 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1765 {
1766 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1767 
1768 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1769 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1770 		return vmcs12->tsc_multiplier;
1771 
1772 	return kvm_default_tsc_scaling_ratio;
1773 }
1774 
1775 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1776 {
1777 	vmcs_write64(TSC_OFFSET, offset);
1778 }
1779 
1780 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1781 {
1782 	vmcs_write64(TSC_MULTIPLIER, multiplier);
1783 }
1784 
1785 /*
1786  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1787  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1788  * all guests if the "nested" module option is off, and can also be disabled
1789  * for a single guest by disabling its VMX cpuid bit.
1790  */
1791 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1792 {
1793 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1794 }
1795 
1796 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1797 						 uint64_t val)
1798 {
1799 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1800 
1801 	return !(val & ~valid_bits);
1802 }
1803 
1804 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1805 {
1806 	switch (msr->index) {
1807 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1808 		if (!nested)
1809 			return 1;
1810 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1811 	case MSR_IA32_PERF_CAPABILITIES:
1812 		msr->data = vmx_get_perf_capabilities();
1813 		return 0;
1814 	default:
1815 		return KVM_MSR_RET_INVALID;
1816 	}
1817 }
1818 
1819 /*
1820  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1821  * Returns 0 on success, non-0 otherwise.
1822  * Assumes vcpu_load() was already called.
1823  */
1824 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1825 {
1826 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1827 	struct vmx_uret_msr *msr;
1828 	u32 index;
1829 
1830 	switch (msr_info->index) {
1831 #ifdef CONFIG_X86_64
1832 	case MSR_FS_BASE:
1833 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1834 		break;
1835 	case MSR_GS_BASE:
1836 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1837 		break;
1838 	case MSR_KERNEL_GS_BASE:
1839 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1840 		break;
1841 #endif
1842 	case MSR_EFER:
1843 		return kvm_get_msr_common(vcpu, msr_info);
1844 	case MSR_IA32_TSX_CTRL:
1845 		if (!msr_info->host_initiated &&
1846 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1847 			return 1;
1848 		goto find_uret_msr;
1849 	case MSR_IA32_UMWAIT_CONTROL:
1850 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1851 			return 1;
1852 
1853 		msr_info->data = vmx->msr_ia32_umwait_control;
1854 		break;
1855 	case MSR_IA32_SPEC_CTRL:
1856 		if (!msr_info->host_initiated &&
1857 		    !guest_has_spec_ctrl_msr(vcpu))
1858 			return 1;
1859 
1860 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1861 		break;
1862 	case MSR_IA32_SYSENTER_CS:
1863 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1864 		break;
1865 	case MSR_IA32_SYSENTER_EIP:
1866 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1867 		break;
1868 	case MSR_IA32_SYSENTER_ESP:
1869 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1870 		break;
1871 	case MSR_IA32_BNDCFGS:
1872 		if (!kvm_mpx_supported() ||
1873 		    (!msr_info->host_initiated &&
1874 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1875 			return 1;
1876 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1877 		break;
1878 	case MSR_IA32_MCG_EXT_CTL:
1879 		if (!msr_info->host_initiated &&
1880 		    !(vmx->msr_ia32_feature_control &
1881 		      FEAT_CTL_LMCE_ENABLED))
1882 			return 1;
1883 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1884 		break;
1885 	case MSR_IA32_FEAT_CTL:
1886 		msr_info->data = vmx->msr_ia32_feature_control;
1887 		break;
1888 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1889 		if (!msr_info->host_initiated &&
1890 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1891 			return 1;
1892 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1893 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1894 		break;
1895 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1896 		if (!nested_vmx_allowed(vcpu))
1897 			return 1;
1898 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1899 				    &msr_info->data))
1900 			return 1;
1901 		/*
1902 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1903 		 * instead of just ignoring the features, different Hyper-V
1904 		 * versions are either trying to use them and fail or do some
1905 		 * sanity checking and refuse to boot. Filter all unsupported
1906 		 * features out.
1907 		 */
1908 		if (!msr_info->host_initiated &&
1909 		    vmx->nested.enlightened_vmcs_enabled)
1910 			nested_evmcs_filter_control_msr(msr_info->index,
1911 							&msr_info->data);
1912 		break;
1913 	case MSR_IA32_RTIT_CTL:
1914 		if (!vmx_pt_mode_is_host_guest())
1915 			return 1;
1916 		msr_info->data = vmx->pt_desc.guest.ctl;
1917 		break;
1918 	case MSR_IA32_RTIT_STATUS:
1919 		if (!vmx_pt_mode_is_host_guest())
1920 			return 1;
1921 		msr_info->data = vmx->pt_desc.guest.status;
1922 		break;
1923 	case MSR_IA32_RTIT_CR3_MATCH:
1924 		if (!vmx_pt_mode_is_host_guest() ||
1925 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1926 						PT_CAP_cr3_filtering))
1927 			return 1;
1928 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1929 		break;
1930 	case MSR_IA32_RTIT_OUTPUT_BASE:
1931 		if (!vmx_pt_mode_is_host_guest() ||
1932 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1933 					PT_CAP_topa_output) &&
1934 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1935 					PT_CAP_single_range_output)))
1936 			return 1;
1937 		msr_info->data = vmx->pt_desc.guest.output_base;
1938 		break;
1939 	case MSR_IA32_RTIT_OUTPUT_MASK:
1940 		if (!vmx_pt_mode_is_host_guest() ||
1941 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1942 					PT_CAP_topa_output) &&
1943 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1944 					PT_CAP_single_range_output)))
1945 			return 1;
1946 		msr_info->data = vmx->pt_desc.guest.output_mask;
1947 		break;
1948 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1949 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1950 		if (!vmx_pt_mode_is_host_guest() ||
1951 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
1952 			return 1;
1953 		if (index % 2)
1954 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1955 		else
1956 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1957 		break;
1958 	case MSR_IA32_DEBUGCTLMSR:
1959 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1960 		break;
1961 	default:
1962 	find_uret_msr:
1963 		msr = vmx_find_uret_msr(vmx, msr_info->index);
1964 		if (msr) {
1965 			msr_info->data = msr->data;
1966 			break;
1967 		}
1968 		return kvm_get_msr_common(vcpu, msr_info);
1969 	}
1970 
1971 	return 0;
1972 }
1973 
1974 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1975 						    u64 data)
1976 {
1977 #ifdef CONFIG_X86_64
1978 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1979 		return (u32)data;
1980 #endif
1981 	return (unsigned long)data;
1982 }
1983 
1984 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1985 {
1986 	u64 debugctl = vmx_supported_debugctl();
1987 
1988 	if (!intel_pmu_lbr_is_enabled(vcpu))
1989 		debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1990 
1991 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1992 		debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1993 
1994 	return debugctl;
1995 }
1996 
1997 /*
1998  * Writes msr value into the appropriate "register".
1999  * Returns 0 on success, non-0 otherwise.
2000  * Assumes vcpu_load() was already called.
2001  */
2002 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2003 {
2004 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2005 	struct vmx_uret_msr *msr;
2006 	int ret = 0;
2007 	u32 msr_index = msr_info->index;
2008 	u64 data = msr_info->data;
2009 	u32 index;
2010 
2011 	switch (msr_index) {
2012 	case MSR_EFER:
2013 		ret = kvm_set_msr_common(vcpu, msr_info);
2014 		break;
2015 #ifdef CONFIG_X86_64
2016 	case MSR_FS_BASE:
2017 		vmx_segment_cache_clear(vmx);
2018 		vmcs_writel(GUEST_FS_BASE, data);
2019 		break;
2020 	case MSR_GS_BASE:
2021 		vmx_segment_cache_clear(vmx);
2022 		vmcs_writel(GUEST_GS_BASE, data);
2023 		break;
2024 	case MSR_KERNEL_GS_BASE:
2025 		vmx_write_guest_kernel_gs_base(vmx, data);
2026 		break;
2027 	case MSR_IA32_XFD:
2028 		ret = kvm_set_msr_common(vcpu, msr_info);
2029 		/*
2030 		 * Always intercepting WRMSR could incur non-negligible
2031 		 * overhead given xfd might be changed frequently in
2032 		 * guest context switch. Disable write interception
2033 		 * upon the first write with a non-zero value (indicating
2034 		 * potential usage on dynamic xfeatures). Also update
2035 		 * exception bitmap to trap #NM for proper virtualization
2036 		 * of guest xfd_err.
2037 		 */
2038 		if (!ret && data) {
2039 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2040 						      MSR_TYPE_RW);
2041 			vcpu->arch.xfd_no_write_intercept = true;
2042 			vmx_update_exception_bitmap(vcpu);
2043 		}
2044 		break;
2045 #endif
2046 	case MSR_IA32_SYSENTER_CS:
2047 		if (is_guest_mode(vcpu))
2048 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2049 		vmcs_write32(GUEST_SYSENTER_CS, data);
2050 		break;
2051 	case MSR_IA32_SYSENTER_EIP:
2052 		if (is_guest_mode(vcpu)) {
2053 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2054 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2055 		}
2056 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2057 		break;
2058 	case MSR_IA32_SYSENTER_ESP:
2059 		if (is_guest_mode(vcpu)) {
2060 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2061 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2062 		}
2063 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2064 		break;
2065 	case MSR_IA32_DEBUGCTLMSR: {
2066 		u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
2067 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2068 			if (report_ignored_msrs)
2069 				vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
2070 					    __func__, data);
2071 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2072 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2073 		}
2074 
2075 		if (invalid)
2076 			return 1;
2077 
2078 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2079 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2080 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2081 
2082 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2083 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2084 		    (data & DEBUGCTLMSR_LBR))
2085 			intel_pmu_create_guest_lbr_event(vcpu);
2086 		return 0;
2087 	}
2088 	case MSR_IA32_BNDCFGS:
2089 		if (!kvm_mpx_supported() ||
2090 		    (!msr_info->host_initiated &&
2091 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2092 			return 1;
2093 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2094 		    (data & MSR_IA32_BNDCFGS_RSVD))
2095 			return 1;
2096 		vmcs_write64(GUEST_BNDCFGS, data);
2097 		break;
2098 	case MSR_IA32_UMWAIT_CONTROL:
2099 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2100 			return 1;
2101 
2102 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2103 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2104 			return 1;
2105 
2106 		vmx->msr_ia32_umwait_control = data;
2107 		break;
2108 	case MSR_IA32_SPEC_CTRL:
2109 		if (!msr_info->host_initiated &&
2110 		    !guest_has_spec_ctrl_msr(vcpu))
2111 			return 1;
2112 
2113 		if (kvm_spec_ctrl_test_value(data))
2114 			return 1;
2115 
2116 		vmx->spec_ctrl = data;
2117 		if (!data)
2118 			break;
2119 
2120 		/*
2121 		 * For non-nested:
2122 		 * When it's written (to non-zero) for the first time, pass
2123 		 * it through.
2124 		 *
2125 		 * For nested:
2126 		 * The handling of the MSR bitmap for L2 guests is done in
2127 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2128 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2129 		 * in the merging. We update the vmcs01 here for L1 as well
2130 		 * since it will end up touching the MSR anyway now.
2131 		 */
2132 		vmx_disable_intercept_for_msr(vcpu,
2133 					      MSR_IA32_SPEC_CTRL,
2134 					      MSR_TYPE_RW);
2135 		break;
2136 	case MSR_IA32_TSX_CTRL:
2137 		if (!msr_info->host_initiated &&
2138 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2139 			return 1;
2140 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2141 			return 1;
2142 		goto find_uret_msr;
2143 	case MSR_IA32_PRED_CMD:
2144 		if (!msr_info->host_initiated &&
2145 		    !guest_has_pred_cmd_msr(vcpu))
2146 			return 1;
2147 
2148 		if (data & ~PRED_CMD_IBPB)
2149 			return 1;
2150 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2151 			return 1;
2152 		if (!data)
2153 			break;
2154 
2155 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2156 
2157 		/*
2158 		 * For non-nested:
2159 		 * When it's written (to non-zero) for the first time, pass
2160 		 * it through.
2161 		 *
2162 		 * For nested:
2163 		 * The handling of the MSR bitmap for L2 guests is done in
2164 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2165 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2166 		 * in the merging.
2167 		 */
2168 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2169 		break;
2170 	case MSR_IA32_CR_PAT:
2171 		if (!kvm_pat_valid(data))
2172 			return 1;
2173 
2174 		if (is_guest_mode(vcpu) &&
2175 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2176 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2177 
2178 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2179 			vmcs_write64(GUEST_IA32_PAT, data);
2180 			vcpu->arch.pat = data;
2181 			break;
2182 		}
2183 		ret = kvm_set_msr_common(vcpu, msr_info);
2184 		break;
2185 	case MSR_IA32_MCG_EXT_CTL:
2186 		if ((!msr_info->host_initiated &&
2187 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2188 		       FEAT_CTL_LMCE_ENABLED)) ||
2189 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2190 			return 1;
2191 		vcpu->arch.mcg_ext_ctl = data;
2192 		break;
2193 	case MSR_IA32_FEAT_CTL:
2194 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2195 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2196 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2197 			return 1;
2198 		vmx->msr_ia32_feature_control = data;
2199 		if (msr_info->host_initiated && data == 0)
2200 			vmx_leave_nested(vcpu);
2201 
2202 		/* SGX may be enabled/disabled by guest's firmware */
2203 		vmx_write_encls_bitmap(vcpu, NULL);
2204 		break;
2205 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2206 		/*
2207 		 * On real hardware, the LE hash MSRs are writable before
2208 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2209 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2210 		 * become writable.
2211 		 *
2212 		 * KVM does not emulate SGX activation for simplicity, so
2213 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2214 		 * is unlocked.  This is technically not architectural
2215 		 * behavior, but it's close enough.
2216 		 */
2217 		if (!msr_info->host_initiated &&
2218 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2219 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2220 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2221 			return 1;
2222 		vmx->msr_ia32_sgxlepubkeyhash
2223 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2224 		break;
2225 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2226 		if (!msr_info->host_initiated)
2227 			return 1; /* they are read-only */
2228 		if (!nested_vmx_allowed(vcpu))
2229 			return 1;
2230 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2231 	case MSR_IA32_RTIT_CTL:
2232 		if (!vmx_pt_mode_is_host_guest() ||
2233 			vmx_rtit_ctl_check(vcpu, data) ||
2234 			vmx->nested.vmxon)
2235 			return 1;
2236 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2237 		vmx->pt_desc.guest.ctl = data;
2238 		pt_update_intercept_for_msr(vcpu);
2239 		break;
2240 	case MSR_IA32_RTIT_STATUS:
2241 		if (!pt_can_write_msr(vmx))
2242 			return 1;
2243 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2244 			return 1;
2245 		vmx->pt_desc.guest.status = data;
2246 		break;
2247 	case MSR_IA32_RTIT_CR3_MATCH:
2248 		if (!pt_can_write_msr(vmx))
2249 			return 1;
2250 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2251 					   PT_CAP_cr3_filtering))
2252 			return 1;
2253 		vmx->pt_desc.guest.cr3_match = data;
2254 		break;
2255 	case MSR_IA32_RTIT_OUTPUT_BASE:
2256 		if (!pt_can_write_msr(vmx))
2257 			return 1;
2258 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2259 					   PT_CAP_topa_output) &&
2260 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2261 					   PT_CAP_single_range_output))
2262 			return 1;
2263 		if (!pt_output_base_valid(vcpu, data))
2264 			return 1;
2265 		vmx->pt_desc.guest.output_base = data;
2266 		break;
2267 	case MSR_IA32_RTIT_OUTPUT_MASK:
2268 		if (!pt_can_write_msr(vmx))
2269 			return 1;
2270 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2271 					   PT_CAP_topa_output) &&
2272 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2273 					   PT_CAP_single_range_output))
2274 			return 1;
2275 		vmx->pt_desc.guest.output_mask = data;
2276 		break;
2277 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2278 		if (!pt_can_write_msr(vmx))
2279 			return 1;
2280 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2281 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2282 			return 1;
2283 		if (is_noncanonical_address(data, vcpu))
2284 			return 1;
2285 		if (index % 2)
2286 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2287 		else
2288 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2289 		break;
2290 	case MSR_IA32_PERF_CAPABILITIES:
2291 		if (data && !vcpu_to_pmu(vcpu)->version)
2292 			return 1;
2293 		if (data & PMU_CAP_LBR_FMT) {
2294 			if ((data & PMU_CAP_LBR_FMT) !=
2295 			    (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2296 				return 1;
2297 			if (!intel_pmu_lbr_is_compatible(vcpu))
2298 				return 1;
2299 		}
2300 		ret = kvm_set_msr_common(vcpu, msr_info);
2301 		break;
2302 
2303 	default:
2304 	find_uret_msr:
2305 		msr = vmx_find_uret_msr(vmx, msr_index);
2306 		if (msr)
2307 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2308 		else
2309 			ret = kvm_set_msr_common(vcpu, msr_info);
2310 	}
2311 
2312 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2313 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2314 		vmx_update_fb_clear_dis(vcpu, vmx);
2315 
2316 	return ret;
2317 }
2318 
2319 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2320 {
2321 	unsigned long guest_owned_bits;
2322 
2323 	kvm_register_mark_available(vcpu, reg);
2324 
2325 	switch (reg) {
2326 	case VCPU_REGS_RSP:
2327 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2328 		break;
2329 	case VCPU_REGS_RIP:
2330 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2331 		break;
2332 	case VCPU_EXREG_PDPTR:
2333 		if (enable_ept)
2334 			ept_save_pdptrs(vcpu);
2335 		break;
2336 	case VCPU_EXREG_CR0:
2337 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2338 
2339 		vcpu->arch.cr0 &= ~guest_owned_bits;
2340 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2341 		break;
2342 	case VCPU_EXREG_CR3:
2343 		/*
2344 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2345 		 * CR3 is loaded into hardware, not the guest's CR3.
2346 		 */
2347 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2348 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2349 		break;
2350 	case VCPU_EXREG_CR4:
2351 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2352 
2353 		vcpu->arch.cr4 &= ~guest_owned_bits;
2354 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2355 		break;
2356 	default:
2357 		KVM_BUG_ON(1, vcpu->kvm);
2358 		break;
2359 	}
2360 }
2361 
2362 static __init int cpu_has_kvm_support(void)
2363 {
2364 	return cpu_has_vmx();
2365 }
2366 
2367 static __init int vmx_disabled_by_bios(void)
2368 {
2369 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2370 	       !boot_cpu_has(X86_FEATURE_VMX);
2371 }
2372 
2373 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2374 {
2375 	u64 msr;
2376 
2377 	cr4_set_bits(X86_CR4_VMXE);
2378 
2379 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2380 			  _ASM_EXTABLE(1b, %l[fault])
2381 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2382 			  : : fault);
2383 	return 0;
2384 
2385 fault:
2386 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2387 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2388 	cr4_clear_bits(X86_CR4_VMXE);
2389 
2390 	return -EFAULT;
2391 }
2392 
2393 static int vmx_hardware_enable(void)
2394 {
2395 	int cpu = raw_smp_processor_id();
2396 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2397 	int r;
2398 
2399 	if (cr4_read_shadow() & X86_CR4_VMXE)
2400 		return -EBUSY;
2401 
2402 	/*
2403 	 * This can happen if we hot-added a CPU but failed to allocate
2404 	 * VP assist page for it.
2405 	 */
2406 	if (static_branch_unlikely(&enable_evmcs) &&
2407 	    !hv_get_vp_assist_page(cpu))
2408 		return -EFAULT;
2409 
2410 	intel_pt_handle_vmx(1);
2411 
2412 	r = kvm_cpu_vmxon(phys_addr);
2413 	if (r) {
2414 		intel_pt_handle_vmx(0);
2415 		return r;
2416 	}
2417 
2418 	if (enable_ept)
2419 		ept_sync_global();
2420 
2421 	return 0;
2422 }
2423 
2424 static void vmclear_local_loaded_vmcss(void)
2425 {
2426 	int cpu = raw_smp_processor_id();
2427 	struct loaded_vmcs *v, *n;
2428 
2429 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2430 				 loaded_vmcss_on_cpu_link)
2431 		__loaded_vmcs_clear(v);
2432 }
2433 
2434 static void vmx_hardware_disable(void)
2435 {
2436 	vmclear_local_loaded_vmcss();
2437 
2438 	if (cpu_vmxoff())
2439 		kvm_spurious_fault();
2440 
2441 	intel_pt_handle_vmx(0);
2442 }
2443 
2444 /*
2445  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2446  * directly instead of going through cpu_has(), to ensure KVM is trapping
2447  * ENCLS whenever it's supported in hardware.  It does not matter whether
2448  * the host OS supports or has enabled SGX.
2449  */
2450 static bool cpu_has_sgx(void)
2451 {
2452 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2453 }
2454 
2455 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2456 				      u32 msr, u32 *result)
2457 {
2458 	u32 vmx_msr_low, vmx_msr_high;
2459 	u32 ctl = ctl_min | ctl_opt;
2460 
2461 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2462 
2463 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2464 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2465 
2466 	/* Ensure minimum (required) set of control bits are supported. */
2467 	if (ctl_min & ~ctl)
2468 		return -EIO;
2469 
2470 	*result = ctl;
2471 	return 0;
2472 }
2473 
2474 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2475 				    struct vmx_capability *vmx_cap)
2476 {
2477 	u32 vmx_msr_low, vmx_msr_high;
2478 	u32 min, opt, min2, opt2;
2479 	u32 _pin_based_exec_control = 0;
2480 	u32 _cpu_based_exec_control = 0;
2481 	u32 _cpu_based_2nd_exec_control = 0;
2482 	u32 _vmexit_control = 0;
2483 	u32 _vmentry_control = 0;
2484 
2485 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2486 	min = CPU_BASED_HLT_EXITING |
2487 #ifdef CONFIG_X86_64
2488 	      CPU_BASED_CR8_LOAD_EXITING |
2489 	      CPU_BASED_CR8_STORE_EXITING |
2490 #endif
2491 	      CPU_BASED_CR3_LOAD_EXITING |
2492 	      CPU_BASED_CR3_STORE_EXITING |
2493 	      CPU_BASED_UNCOND_IO_EXITING |
2494 	      CPU_BASED_MOV_DR_EXITING |
2495 	      CPU_BASED_USE_TSC_OFFSETTING |
2496 	      CPU_BASED_MWAIT_EXITING |
2497 	      CPU_BASED_MONITOR_EXITING |
2498 	      CPU_BASED_INVLPG_EXITING |
2499 	      CPU_BASED_RDPMC_EXITING;
2500 
2501 	opt = CPU_BASED_TPR_SHADOW |
2502 	      CPU_BASED_USE_MSR_BITMAPS |
2503 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2504 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2505 				&_cpu_based_exec_control) < 0)
2506 		return -EIO;
2507 #ifdef CONFIG_X86_64
2508 	if (_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)
2509 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2510 					   ~CPU_BASED_CR8_STORE_EXITING;
2511 #endif
2512 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2513 		min2 = 0;
2514 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2515 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2516 			SECONDARY_EXEC_WBINVD_EXITING |
2517 			SECONDARY_EXEC_ENABLE_VPID |
2518 			SECONDARY_EXEC_ENABLE_EPT |
2519 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2520 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2521 			SECONDARY_EXEC_DESC |
2522 			SECONDARY_EXEC_ENABLE_RDTSCP |
2523 			SECONDARY_EXEC_ENABLE_INVPCID |
2524 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2525 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2526 			SECONDARY_EXEC_SHADOW_VMCS |
2527 			SECONDARY_EXEC_XSAVES |
2528 			SECONDARY_EXEC_RDSEED_EXITING |
2529 			SECONDARY_EXEC_RDRAND_EXITING |
2530 			SECONDARY_EXEC_ENABLE_PML |
2531 			SECONDARY_EXEC_TSC_SCALING |
2532 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2533 			SECONDARY_EXEC_PT_USE_GPA |
2534 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2535 			SECONDARY_EXEC_ENABLE_VMFUNC |
2536 			SECONDARY_EXEC_BUS_LOCK_DETECTION;
2537 		if (cpu_has_sgx())
2538 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2539 		if (adjust_vmx_controls(min2, opt2,
2540 					MSR_IA32_VMX_PROCBASED_CTLS2,
2541 					&_cpu_based_2nd_exec_control) < 0)
2542 			return -EIO;
2543 	}
2544 #ifndef CONFIG_X86_64
2545 	if (!(_cpu_based_2nd_exec_control &
2546 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2547 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2548 #endif
2549 
2550 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2551 		_cpu_based_2nd_exec_control &= ~(
2552 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2553 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2554 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2555 
2556 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2557 		&vmx_cap->ept, &vmx_cap->vpid);
2558 
2559 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2560 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2561 		   enabled */
2562 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2563 					     CPU_BASED_CR3_STORE_EXITING |
2564 					     CPU_BASED_INVLPG_EXITING);
2565 	} else if (vmx_cap->ept) {
2566 		vmx_cap->ept = 0;
2567 		pr_warn_once("EPT CAP should not exist if not support "
2568 				"1-setting enable EPT VM-execution control\n");
2569 	}
2570 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2571 		vmx_cap->vpid) {
2572 		vmx_cap->vpid = 0;
2573 		pr_warn_once("VPID CAP should not exist if not support "
2574 				"1-setting enable VPID VM-execution control\n");
2575 	}
2576 
2577 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2578 #ifdef CONFIG_X86_64
2579 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2580 #endif
2581 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2582 	      VM_EXIT_LOAD_IA32_PAT |
2583 	      VM_EXIT_LOAD_IA32_EFER |
2584 	      VM_EXIT_CLEAR_BNDCFGS |
2585 	      VM_EXIT_PT_CONCEAL_PIP |
2586 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2587 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2588 				&_vmexit_control) < 0)
2589 		return -EIO;
2590 
2591 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2592 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2593 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2594 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2595 				&_pin_based_exec_control) < 0)
2596 		return -EIO;
2597 
2598 	if (cpu_has_broken_vmx_preemption_timer())
2599 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2600 	if (!(_cpu_based_2nd_exec_control &
2601 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2602 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2603 
2604 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2605 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2606 	      VM_ENTRY_LOAD_IA32_PAT |
2607 	      VM_ENTRY_LOAD_IA32_EFER |
2608 	      VM_ENTRY_LOAD_BNDCFGS |
2609 	      VM_ENTRY_PT_CONCEAL_PIP |
2610 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2611 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2612 				&_vmentry_control) < 0)
2613 		return -EIO;
2614 
2615 	/*
2616 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2617 	 * can't be used due to an errata where VM Exit may incorrectly clear
2618 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2619 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2620 	 */
2621 	if (boot_cpu_data.x86 == 0x6) {
2622 		switch (boot_cpu_data.x86_model) {
2623 		case 26: /* AAK155 */
2624 		case 30: /* AAP115 */
2625 		case 37: /* AAT100 */
2626 		case 44: /* BC86,AAY89,BD102 */
2627 		case 46: /* BA97 */
2628 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2629 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2630 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2631 					"does not work properly. Using workaround\n");
2632 			break;
2633 		default:
2634 			break;
2635 		}
2636 	}
2637 
2638 
2639 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2640 
2641 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2642 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2643 		return -EIO;
2644 
2645 #ifdef CONFIG_X86_64
2646 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2647 	if (vmx_msr_high & (1u<<16))
2648 		return -EIO;
2649 #endif
2650 
2651 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2652 	if (((vmx_msr_high >> 18) & 15) != 6)
2653 		return -EIO;
2654 
2655 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2656 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2657 
2658 	vmcs_conf->revision_id = vmx_msr_low;
2659 
2660 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2661 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2662 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2663 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2664 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2665 
2666 #if IS_ENABLED(CONFIG_HYPERV)
2667 	if (enlightened_vmcs)
2668 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2669 #endif
2670 
2671 	return 0;
2672 }
2673 
2674 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2675 {
2676 	int node = cpu_to_node(cpu);
2677 	struct page *pages;
2678 	struct vmcs *vmcs;
2679 
2680 	pages = __alloc_pages_node(node, flags, 0);
2681 	if (!pages)
2682 		return NULL;
2683 	vmcs = page_address(pages);
2684 	memset(vmcs, 0, vmcs_config.size);
2685 
2686 	/* KVM supports Enlightened VMCS v1 only */
2687 	if (static_branch_unlikely(&enable_evmcs))
2688 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2689 	else
2690 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2691 
2692 	if (shadow)
2693 		vmcs->hdr.shadow_vmcs = 1;
2694 	return vmcs;
2695 }
2696 
2697 void free_vmcs(struct vmcs *vmcs)
2698 {
2699 	free_page((unsigned long)vmcs);
2700 }
2701 
2702 /*
2703  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2704  */
2705 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2706 {
2707 	if (!loaded_vmcs->vmcs)
2708 		return;
2709 	loaded_vmcs_clear(loaded_vmcs);
2710 	free_vmcs(loaded_vmcs->vmcs);
2711 	loaded_vmcs->vmcs = NULL;
2712 	if (loaded_vmcs->msr_bitmap)
2713 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2714 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2715 }
2716 
2717 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2718 {
2719 	loaded_vmcs->vmcs = alloc_vmcs(false);
2720 	if (!loaded_vmcs->vmcs)
2721 		return -ENOMEM;
2722 
2723 	vmcs_clear(loaded_vmcs->vmcs);
2724 
2725 	loaded_vmcs->shadow_vmcs = NULL;
2726 	loaded_vmcs->hv_timer_soft_disabled = false;
2727 	loaded_vmcs->cpu = -1;
2728 	loaded_vmcs->launched = 0;
2729 
2730 	if (cpu_has_vmx_msr_bitmap()) {
2731 		loaded_vmcs->msr_bitmap = (unsigned long *)
2732 				__get_free_page(GFP_KERNEL_ACCOUNT);
2733 		if (!loaded_vmcs->msr_bitmap)
2734 			goto out_vmcs;
2735 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2736 	}
2737 
2738 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2739 	memset(&loaded_vmcs->controls_shadow, 0,
2740 		sizeof(struct vmcs_controls_shadow));
2741 
2742 	return 0;
2743 
2744 out_vmcs:
2745 	free_loaded_vmcs(loaded_vmcs);
2746 	return -ENOMEM;
2747 }
2748 
2749 static void free_kvm_area(void)
2750 {
2751 	int cpu;
2752 
2753 	for_each_possible_cpu(cpu) {
2754 		free_vmcs(per_cpu(vmxarea, cpu));
2755 		per_cpu(vmxarea, cpu) = NULL;
2756 	}
2757 }
2758 
2759 static __init int alloc_kvm_area(void)
2760 {
2761 	int cpu;
2762 
2763 	for_each_possible_cpu(cpu) {
2764 		struct vmcs *vmcs;
2765 
2766 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2767 		if (!vmcs) {
2768 			free_kvm_area();
2769 			return -ENOMEM;
2770 		}
2771 
2772 		/*
2773 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2774 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2775 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2776 		 *
2777 		 * However, even though not explicitly documented by
2778 		 * TLFS, VMXArea passed as VMXON argument should
2779 		 * still be marked with revision_id reported by
2780 		 * physical CPU.
2781 		 */
2782 		if (static_branch_unlikely(&enable_evmcs))
2783 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2784 
2785 		per_cpu(vmxarea, cpu) = vmcs;
2786 	}
2787 	return 0;
2788 }
2789 
2790 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2791 		struct kvm_segment *save)
2792 {
2793 	if (!emulate_invalid_guest_state) {
2794 		/*
2795 		 * CS and SS RPL should be equal during guest entry according
2796 		 * to VMX spec, but in reality it is not always so. Since vcpu
2797 		 * is in the middle of the transition from real mode to
2798 		 * protected mode it is safe to assume that RPL 0 is a good
2799 		 * default value.
2800 		 */
2801 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2802 			save->selector &= ~SEGMENT_RPL_MASK;
2803 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2804 		save->s = 1;
2805 	}
2806 	__vmx_set_segment(vcpu, save, seg);
2807 }
2808 
2809 static void enter_pmode(struct kvm_vcpu *vcpu)
2810 {
2811 	unsigned long flags;
2812 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2813 
2814 	/*
2815 	 * Update real mode segment cache. It may be not up-to-date if segment
2816 	 * register was written while vcpu was in a guest mode.
2817 	 */
2818 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2819 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2820 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2821 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2822 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2823 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2824 
2825 	vmx->rmode.vm86_active = 0;
2826 
2827 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2828 
2829 	flags = vmcs_readl(GUEST_RFLAGS);
2830 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2831 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2832 	vmcs_writel(GUEST_RFLAGS, flags);
2833 
2834 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2835 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2836 
2837 	vmx_update_exception_bitmap(vcpu);
2838 
2839 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2840 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2841 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2842 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2843 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2844 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2845 }
2846 
2847 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2848 {
2849 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2850 	struct kvm_segment var = *save;
2851 
2852 	var.dpl = 0x3;
2853 	if (seg == VCPU_SREG_CS)
2854 		var.type = 0x3;
2855 
2856 	if (!emulate_invalid_guest_state) {
2857 		var.selector = var.base >> 4;
2858 		var.base = var.base & 0xffff0;
2859 		var.limit = 0xffff;
2860 		var.g = 0;
2861 		var.db = 0;
2862 		var.present = 1;
2863 		var.s = 1;
2864 		var.l = 0;
2865 		var.unusable = 0;
2866 		var.type = 0x3;
2867 		var.avl = 0;
2868 		if (save->base & 0xf)
2869 			printk_once(KERN_WARNING "kvm: segment base is not "
2870 					"paragraph aligned when entering "
2871 					"protected mode (seg=%d)", seg);
2872 	}
2873 
2874 	vmcs_write16(sf->selector, var.selector);
2875 	vmcs_writel(sf->base, var.base);
2876 	vmcs_write32(sf->limit, var.limit);
2877 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2878 }
2879 
2880 static void enter_rmode(struct kvm_vcpu *vcpu)
2881 {
2882 	unsigned long flags;
2883 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2884 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2885 
2886 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2887 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2888 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2889 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2890 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2891 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2892 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2893 
2894 	vmx->rmode.vm86_active = 1;
2895 
2896 	/*
2897 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2898 	 * vcpu. Warn the user that an update is overdue.
2899 	 */
2900 	if (!kvm_vmx->tss_addr)
2901 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2902 			     "called before entering vcpu\n");
2903 
2904 	vmx_segment_cache_clear(vmx);
2905 
2906 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2907 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2908 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2909 
2910 	flags = vmcs_readl(GUEST_RFLAGS);
2911 	vmx->rmode.save_rflags = flags;
2912 
2913 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2914 
2915 	vmcs_writel(GUEST_RFLAGS, flags);
2916 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2917 	vmx_update_exception_bitmap(vcpu);
2918 
2919 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2920 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2921 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2922 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2923 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2924 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2925 }
2926 
2927 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2928 {
2929 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2930 
2931 	/* Nothing to do if hardware doesn't support EFER. */
2932 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
2933 		return 0;
2934 
2935 	vcpu->arch.efer = efer;
2936 	if (efer & EFER_LMA)
2937 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
2938 	else
2939 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
2940 
2941 	vmx_setup_uret_msrs(vmx);
2942 	return 0;
2943 }
2944 
2945 #ifdef CONFIG_X86_64
2946 
2947 static void enter_lmode(struct kvm_vcpu *vcpu)
2948 {
2949 	u32 guest_tr_ar;
2950 
2951 	vmx_segment_cache_clear(to_vmx(vcpu));
2952 
2953 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2954 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2955 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2956 				     __func__);
2957 		vmcs_write32(GUEST_TR_AR_BYTES,
2958 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2959 			     | VMX_AR_TYPE_BUSY_64_TSS);
2960 	}
2961 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2962 }
2963 
2964 static void exit_lmode(struct kvm_vcpu *vcpu)
2965 {
2966 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2967 }
2968 
2969 #endif
2970 
2971 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2972 {
2973 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2974 
2975 	/*
2976 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2977 	 * the CPU is not required to invalidate guest-physical mappings on
2978 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2979 	 * associated with the root EPT structure and not any particular VPID
2980 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
2981 	 */
2982 	if (enable_ept) {
2983 		ept_sync_global();
2984 	} else if (enable_vpid) {
2985 		if (cpu_has_vmx_invvpid_global()) {
2986 			vpid_sync_vcpu_global();
2987 		} else {
2988 			vpid_sync_vcpu_single(vmx->vpid);
2989 			vpid_sync_vcpu_single(vmx->nested.vpid02);
2990 		}
2991 	}
2992 }
2993 
2994 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
2995 {
2996 	if (is_guest_mode(vcpu))
2997 		return nested_get_vpid02(vcpu);
2998 	return to_vmx(vcpu)->vpid;
2999 }
3000 
3001 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3002 {
3003 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3004 	u64 root_hpa = mmu->root.hpa;
3005 
3006 	/* No flush required if the current context is invalid. */
3007 	if (!VALID_PAGE(root_hpa))
3008 		return;
3009 
3010 	if (enable_ept)
3011 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3012 						mmu->root_role.level));
3013 	else
3014 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3015 }
3016 
3017 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3018 {
3019 	/*
3020 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3021 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3022 	 */
3023 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3024 }
3025 
3026 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3027 {
3028 	/*
3029 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3030 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3031 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3032 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3033 	 * i.e. no explicit INVVPID is necessary.
3034 	 */
3035 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3036 }
3037 
3038 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3039 {
3040 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3041 
3042 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3043 		return;
3044 
3045 	if (is_pae_paging(vcpu)) {
3046 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3047 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3048 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3049 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3050 	}
3051 }
3052 
3053 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3054 {
3055 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3056 
3057 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3058 		return;
3059 
3060 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3061 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3062 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3063 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3064 
3065 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3066 }
3067 
3068 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3069 			  CPU_BASED_CR3_STORE_EXITING)
3070 
3071 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3072 {
3073 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3074 	unsigned long hw_cr0, old_cr0_pg;
3075 	u32 tmp;
3076 
3077 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3078 
3079 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3080 	if (is_unrestricted_guest(vcpu))
3081 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3082 	else {
3083 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3084 		if (!enable_ept)
3085 			hw_cr0 |= X86_CR0_WP;
3086 
3087 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3088 			enter_pmode(vcpu);
3089 
3090 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3091 			enter_rmode(vcpu);
3092 	}
3093 
3094 	vmcs_writel(CR0_READ_SHADOW, cr0);
3095 	vmcs_writel(GUEST_CR0, hw_cr0);
3096 	vcpu->arch.cr0 = cr0;
3097 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3098 
3099 #ifdef CONFIG_X86_64
3100 	if (vcpu->arch.efer & EFER_LME) {
3101 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3102 			enter_lmode(vcpu);
3103 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3104 			exit_lmode(vcpu);
3105 	}
3106 #endif
3107 
3108 	if (enable_ept && !is_unrestricted_guest(vcpu)) {
3109 		/*
3110 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3111 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3112 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3113 		 * KVM's CR3 is installed.
3114 		 */
3115 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3116 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3117 
3118 		/*
3119 		 * When running with EPT but not unrestricted guest, KVM must
3120 		 * intercept CR3 accesses when paging is _disabled_.  This is
3121 		 * necessary because restricted guests can't actually run with
3122 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3123 		 * run the guest when identity mapped page tables.
3124 		 *
3125 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3126 		 * update, it may be stale with respect to CR3 interception,
3127 		 * e.g. after nested VM-Enter.
3128 		 *
3129 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3130 		 * stores to forward them to L1, even if KVM does not need to
3131 		 * intercept them to preserve its identity mapped page tables.
3132 		 */
3133 		if (!(cr0 & X86_CR0_PG)) {
3134 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3135 		} else if (!is_guest_mode(vcpu)) {
3136 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3137 		} else {
3138 			tmp = exec_controls_get(vmx);
3139 			tmp &= ~CR3_EXITING_BITS;
3140 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3141 			exec_controls_set(vmx, tmp);
3142 		}
3143 
3144 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3145 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3146 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3147 
3148 		/*
3149 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3150 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3151 		 */
3152 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3153 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3154 	}
3155 
3156 	/* depends on vcpu->arch.cr0 to be set to a new value */
3157 	vmx->emulation_required = vmx_emulation_required(vcpu);
3158 }
3159 
3160 static int vmx_get_max_tdp_level(void)
3161 {
3162 	if (cpu_has_vmx_ept_5levels())
3163 		return 5;
3164 	return 4;
3165 }
3166 
3167 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3168 {
3169 	u64 eptp = VMX_EPTP_MT_WB;
3170 
3171 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3172 
3173 	if (enable_ept_ad_bits &&
3174 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3175 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3176 	eptp |= root_hpa;
3177 
3178 	return eptp;
3179 }
3180 
3181 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3182 			     int root_level)
3183 {
3184 	struct kvm *kvm = vcpu->kvm;
3185 	bool update_guest_cr3 = true;
3186 	unsigned long guest_cr3;
3187 	u64 eptp;
3188 
3189 	if (enable_ept) {
3190 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3191 		vmcs_write64(EPT_POINTER, eptp);
3192 
3193 		hv_track_root_tdp(vcpu, root_hpa);
3194 
3195 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3196 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3197 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3198 			guest_cr3 = vcpu->arch.cr3;
3199 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3200 			update_guest_cr3 = false;
3201 		vmx_ept_load_pdptrs(vcpu);
3202 	} else {
3203 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3204 	}
3205 
3206 	if (update_guest_cr3)
3207 		vmcs_writel(GUEST_CR3, guest_cr3);
3208 }
3209 
3210 
3211 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3212 {
3213 	/*
3214 	 * We operate under the default treatment of SMM, so VMX cannot be
3215 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3216 	 * handled by kvm_is_valid_cr4().
3217 	 */
3218 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3219 		return false;
3220 
3221 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3222 		return false;
3223 
3224 	return true;
3225 }
3226 
3227 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3228 {
3229 	unsigned long old_cr4 = vcpu->arch.cr4;
3230 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3231 	/*
3232 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3233 	 * is in force while we are in guest mode.  Do not let guests control
3234 	 * this bit, even if host CR4.MCE == 0.
3235 	 */
3236 	unsigned long hw_cr4;
3237 
3238 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3239 	if (is_unrestricted_guest(vcpu))
3240 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3241 	else if (vmx->rmode.vm86_active)
3242 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3243 	else
3244 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3245 
3246 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3247 		if (cr4 & X86_CR4_UMIP) {
3248 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3249 			hw_cr4 &= ~X86_CR4_UMIP;
3250 		} else if (!is_guest_mode(vcpu) ||
3251 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3252 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3253 		}
3254 	}
3255 
3256 	vcpu->arch.cr4 = cr4;
3257 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3258 
3259 	if (!is_unrestricted_guest(vcpu)) {
3260 		if (enable_ept) {
3261 			if (!is_paging(vcpu)) {
3262 				hw_cr4 &= ~X86_CR4_PAE;
3263 				hw_cr4 |= X86_CR4_PSE;
3264 			} else if (!(cr4 & X86_CR4_PAE)) {
3265 				hw_cr4 &= ~X86_CR4_PAE;
3266 			}
3267 		}
3268 
3269 		/*
3270 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3271 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3272 		 * to be manually disabled when guest switches to non-paging
3273 		 * mode.
3274 		 *
3275 		 * If !enable_unrestricted_guest, the CPU is always running
3276 		 * with CR0.PG=1 and CR4 needs to be modified.
3277 		 * If enable_unrestricted_guest, the CPU automatically
3278 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3279 		 */
3280 		if (!is_paging(vcpu))
3281 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3282 	}
3283 
3284 	vmcs_writel(CR4_READ_SHADOW, cr4);
3285 	vmcs_writel(GUEST_CR4, hw_cr4);
3286 
3287 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3288 		kvm_update_cpuid_runtime(vcpu);
3289 }
3290 
3291 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3292 {
3293 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3294 	u32 ar;
3295 
3296 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3297 		*var = vmx->rmode.segs[seg];
3298 		if (seg == VCPU_SREG_TR
3299 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3300 			return;
3301 		var->base = vmx_read_guest_seg_base(vmx, seg);
3302 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3303 		return;
3304 	}
3305 	var->base = vmx_read_guest_seg_base(vmx, seg);
3306 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3307 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3308 	ar = vmx_read_guest_seg_ar(vmx, seg);
3309 	var->unusable = (ar >> 16) & 1;
3310 	var->type = ar & 15;
3311 	var->s = (ar >> 4) & 1;
3312 	var->dpl = (ar >> 5) & 3;
3313 	/*
3314 	 * Some userspaces do not preserve unusable property. Since usable
3315 	 * segment has to be present according to VMX spec we can use present
3316 	 * property to amend userspace bug by making unusable segment always
3317 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3318 	 * segment as unusable.
3319 	 */
3320 	var->present = !var->unusable;
3321 	var->avl = (ar >> 12) & 1;
3322 	var->l = (ar >> 13) & 1;
3323 	var->db = (ar >> 14) & 1;
3324 	var->g = (ar >> 15) & 1;
3325 }
3326 
3327 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3328 {
3329 	struct kvm_segment s;
3330 
3331 	if (to_vmx(vcpu)->rmode.vm86_active) {
3332 		vmx_get_segment(vcpu, &s, seg);
3333 		return s.base;
3334 	}
3335 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3336 }
3337 
3338 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3339 {
3340 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3341 
3342 	if (unlikely(vmx->rmode.vm86_active))
3343 		return 0;
3344 	else {
3345 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3346 		return VMX_AR_DPL(ar);
3347 	}
3348 }
3349 
3350 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3351 {
3352 	u32 ar;
3353 
3354 	if (var->unusable || !var->present)
3355 		ar = 1 << 16;
3356 	else {
3357 		ar = var->type & 15;
3358 		ar |= (var->s & 1) << 4;
3359 		ar |= (var->dpl & 3) << 5;
3360 		ar |= (var->present & 1) << 7;
3361 		ar |= (var->avl & 1) << 12;
3362 		ar |= (var->l & 1) << 13;
3363 		ar |= (var->db & 1) << 14;
3364 		ar |= (var->g & 1) << 15;
3365 	}
3366 
3367 	return ar;
3368 }
3369 
3370 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3371 {
3372 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3373 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3374 
3375 	vmx_segment_cache_clear(vmx);
3376 
3377 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3378 		vmx->rmode.segs[seg] = *var;
3379 		if (seg == VCPU_SREG_TR)
3380 			vmcs_write16(sf->selector, var->selector);
3381 		else if (var->s)
3382 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3383 		return;
3384 	}
3385 
3386 	vmcs_writel(sf->base, var->base);
3387 	vmcs_write32(sf->limit, var->limit);
3388 	vmcs_write16(sf->selector, var->selector);
3389 
3390 	/*
3391 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3392 	 * qemu binaries.
3393 	 *   IA32 arch specifies that at the time of processor reset the
3394 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3395 	 * is setting it to 0 in the userland code. This causes invalid guest
3396 	 * state vmexit when "unrestricted guest" mode is turned on.
3397 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3398 	 * tree. Newer qemu binaries with that qemu fix would not need this
3399 	 * kvm hack.
3400 	 */
3401 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3402 		var->type |= 0x1; /* Accessed */
3403 
3404 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3405 }
3406 
3407 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3408 {
3409 	__vmx_set_segment(vcpu, var, seg);
3410 
3411 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3412 }
3413 
3414 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3415 {
3416 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3417 
3418 	*db = (ar >> 14) & 1;
3419 	*l = (ar >> 13) & 1;
3420 }
3421 
3422 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3423 {
3424 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3425 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3426 }
3427 
3428 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3429 {
3430 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3431 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3432 }
3433 
3434 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3435 {
3436 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3437 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3438 }
3439 
3440 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3441 {
3442 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3443 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3444 }
3445 
3446 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3447 {
3448 	struct kvm_segment var;
3449 	u32 ar;
3450 
3451 	vmx_get_segment(vcpu, &var, seg);
3452 	var.dpl = 0x3;
3453 	if (seg == VCPU_SREG_CS)
3454 		var.type = 0x3;
3455 	ar = vmx_segment_access_rights(&var);
3456 
3457 	if (var.base != (var.selector << 4))
3458 		return false;
3459 	if (var.limit != 0xffff)
3460 		return false;
3461 	if (ar != 0xf3)
3462 		return false;
3463 
3464 	return true;
3465 }
3466 
3467 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3468 {
3469 	struct kvm_segment cs;
3470 	unsigned int cs_rpl;
3471 
3472 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3473 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3474 
3475 	if (cs.unusable)
3476 		return false;
3477 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3478 		return false;
3479 	if (!cs.s)
3480 		return false;
3481 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3482 		if (cs.dpl > cs_rpl)
3483 			return false;
3484 	} else {
3485 		if (cs.dpl != cs_rpl)
3486 			return false;
3487 	}
3488 	if (!cs.present)
3489 		return false;
3490 
3491 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3492 	return true;
3493 }
3494 
3495 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3496 {
3497 	struct kvm_segment ss;
3498 	unsigned int ss_rpl;
3499 
3500 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3501 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3502 
3503 	if (ss.unusable)
3504 		return true;
3505 	if (ss.type != 3 && ss.type != 7)
3506 		return false;
3507 	if (!ss.s)
3508 		return false;
3509 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3510 		return false;
3511 	if (!ss.present)
3512 		return false;
3513 
3514 	return true;
3515 }
3516 
3517 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3518 {
3519 	struct kvm_segment var;
3520 	unsigned int rpl;
3521 
3522 	vmx_get_segment(vcpu, &var, seg);
3523 	rpl = var.selector & SEGMENT_RPL_MASK;
3524 
3525 	if (var.unusable)
3526 		return true;
3527 	if (!var.s)
3528 		return false;
3529 	if (!var.present)
3530 		return false;
3531 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3532 		if (var.dpl < rpl) /* DPL < RPL */
3533 			return false;
3534 	}
3535 
3536 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3537 	 * rights flags
3538 	 */
3539 	return true;
3540 }
3541 
3542 static bool tr_valid(struct kvm_vcpu *vcpu)
3543 {
3544 	struct kvm_segment tr;
3545 
3546 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3547 
3548 	if (tr.unusable)
3549 		return false;
3550 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3551 		return false;
3552 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3553 		return false;
3554 	if (!tr.present)
3555 		return false;
3556 
3557 	return true;
3558 }
3559 
3560 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3561 {
3562 	struct kvm_segment ldtr;
3563 
3564 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3565 
3566 	if (ldtr.unusable)
3567 		return true;
3568 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3569 		return false;
3570 	if (ldtr.type != 2)
3571 		return false;
3572 	if (!ldtr.present)
3573 		return false;
3574 
3575 	return true;
3576 }
3577 
3578 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3579 {
3580 	struct kvm_segment cs, ss;
3581 
3582 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3583 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3584 
3585 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3586 		 (ss.selector & SEGMENT_RPL_MASK));
3587 }
3588 
3589 /*
3590  * Check if guest state is valid. Returns true if valid, false if
3591  * not.
3592  * We assume that registers are always usable
3593  */
3594 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3595 {
3596 	/* real mode guest state checks */
3597 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3598 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3599 			return false;
3600 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3601 			return false;
3602 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3603 			return false;
3604 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3605 			return false;
3606 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3607 			return false;
3608 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3609 			return false;
3610 	} else {
3611 	/* protected mode guest state checks */
3612 		if (!cs_ss_rpl_check(vcpu))
3613 			return false;
3614 		if (!code_segment_valid(vcpu))
3615 			return false;
3616 		if (!stack_segment_valid(vcpu))
3617 			return false;
3618 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3619 			return false;
3620 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3621 			return false;
3622 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3623 			return false;
3624 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3625 			return false;
3626 		if (!tr_valid(vcpu))
3627 			return false;
3628 		if (!ldtr_valid(vcpu))
3629 			return false;
3630 	}
3631 	/* TODO:
3632 	 * - Add checks on RIP
3633 	 * - Add checks on RFLAGS
3634 	 */
3635 
3636 	return true;
3637 }
3638 
3639 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3640 {
3641 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3642 	u16 data;
3643 	int i;
3644 
3645 	for (i = 0; i < 3; i++) {
3646 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3647 			return -EFAULT;
3648 	}
3649 
3650 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3651 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3652 		return -EFAULT;
3653 
3654 	data = ~0;
3655 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3656 		return -EFAULT;
3657 
3658 	return 0;
3659 }
3660 
3661 static int init_rmode_identity_map(struct kvm *kvm)
3662 {
3663 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3664 	int i, r = 0;
3665 	void __user *uaddr;
3666 	u32 tmp;
3667 
3668 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3669 	mutex_lock(&kvm->slots_lock);
3670 
3671 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3672 		goto out;
3673 
3674 	if (!kvm_vmx->ept_identity_map_addr)
3675 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3676 
3677 	uaddr = __x86_set_memory_region(kvm,
3678 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3679 					kvm_vmx->ept_identity_map_addr,
3680 					PAGE_SIZE);
3681 	if (IS_ERR(uaddr)) {
3682 		r = PTR_ERR(uaddr);
3683 		goto out;
3684 	}
3685 
3686 	/* Set up identity-mapping pagetable for EPT in real mode */
3687 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3688 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3689 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3690 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3691 			r = -EFAULT;
3692 			goto out;
3693 		}
3694 	}
3695 	kvm_vmx->ept_identity_pagetable_done = true;
3696 
3697 out:
3698 	mutex_unlock(&kvm->slots_lock);
3699 	return r;
3700 }
3701 
3702 static void seg_setup(int seg)
3703 {
3704 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3705 	unsigned int ar;
3706 
3707 	vmcs_write16(sf->selector, 0);
3708 	vmcs_writel(sf->base, 0);
3709 	vmcs_write32(sf->limit, 0xffff);
3710 	ar = 0x93;
3711 	if (seg == VCPU_SREG_CS)
3712 		ar |= 0x08; /* code segment */
3713 
3714 	vmcs_write32(sf->ar_bytes, ar);
3715 }
3716 
3717 static int alloc_apic_access_page(struct kvm *kvm)
3718 {
3719 	struct page *page;
3720 	void __user *hva;
3721 	int ret = 0;
3722 
3723 	mutex_lock(&kvm->slots_lock);
3724 	if (kvm->arch.apic_access_memslot_enabled)
3725 		goto out;
3726 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3727 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3728 	if (IS_ERR(hva)) {
3729 		ret = PTR_ERR(hva);
3730 		goto out;
3731 	}
3732 
3733 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3734 	if (is_error_page(page)) {
3735 		ret = -EFAULT;
3736 		goto out;
3737 	}
3738 
3739 	/*
3740 	 * Do not pin the page in memory, so that memory hot-unplug
3741 	 * is able to migrate it.
3742 	 */
3743 	put_page(page);
3744 	kvm->arch.apic_access_memslot_enabled = true;
3745 out:
3746 	mutex_unlock(&kvm->slots_lock);
3747 	return ret;
3748 }
3749 
3750 int allocate_vpid(void)
3751 {
3752 	int vpid;
3753 
3754 	if (!enable_vpid)
3755 		return 0;
3756 	spin_lock(&vmx_vpid_lock);
3757 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3758 	if (vpid < VMX_NR_VPIDS)
3759 		__set_bit(vpid, vmx_vpid_bitmap);
3760 	else
3761 		vpid = 0;
3762 	spin_unlock(&vmx_vpid_lock);
3763 	return vpid;
3764 }
3765 
3766 void free_vpid(int vpid)
3767 {
3768 	if (!enable_vpid || vpid == 0)
3769 		return;
3770 	spin_lock(&vmx_vpid_lock);
3771 	__clear_bit(vpid, vmx_vpid_bitmap);
3772 	spin_unlock(&vmx_vpid_lock);
3773 }
3774 
3775 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3776 {
3777 	/*
3778 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3779 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3780 	 * bitmap has changed.
3781 	 */
3782 	if (static_branch_unlikely(&enable_evmcs))
3783 		evmcs_touch_msr_bitmap();
3784 
3785 	vmx->nested.force_msr_bitmap_recalc = true;
3786 }
3787 
3788 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3789 {
3790 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3791 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3792 
3793 	if (!cpu_has_vmx_msr_bitmap())
3794 		return;
3795 
3796 	vmx_msr_bitmap_l01_changed(vmx);
3797 
3798 	/*
3799 	 * Mark the desired intercept state in shadow bitmap, this is needed
3800 	 * for resync when the MSR filters change.
3801 	*/
3802 	if (is_valid_passthrough_msr(msr)) {
3803 		int idx = possible_passthrough_msr_slot(msr);
3804 
3805 		if (idx != -ENOENT) {
3806 			if (type & MSR_TYPE_R)
3807 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3808 			if (type & MSR_TYPE_W)
3809 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3810 		}
3811 	}
3812 
3813 	if ((type & MSR_TYPE_R) &&
3814 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3815 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3816 		type &= ~MSR_TYPE_R;
3817 	}
3818 
3819 	if ((type & MSR_TYPE_W) &&
3820 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3821 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3822 		type &= ~MSR_TYPE_W;
3823 	}
3824 
3825 	if (type & MSR_TYPE_R)
3826 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3827 
3828 	if (type & MSR_TYPE_W)
3829 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3830 }
3831 
3832 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3833 {
3834 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3835 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3836 
3837 	if (!cpu_has_vmx_msr_bitmap())
3838 		return;
3839 
3840 	vmx_msr_bitmap_l01_changed(vmx);
3841 
3842 	/*
3843 	 * Mark the desired intercept state in shadow bitmap, this is needed
3844 	 * for resync when the MSR filter changes.
3845 	*/
3846 	if (is_valid_passthrough_msr(msr)) {
3847 		int idx = possible_passthrough_msr_slot(msr);
3848 
3849 		if (idx != -ENOENT) {
3850 			if (type & MSR_TYPE_R)
3851 				set_bit(idx, vmx->shadow_msr_intercept.read);
3852 			if (type & MSR_TYPE_W)
3853 				set_bit(idx, vmx->shadow_msr_intercept.write);
3854 		}
3855 	}
3856 
3857 	if (type & MSR_TYPE_R)
3858 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3859 
3860 	if (type & MSR_TYPE_W)
3861 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3862 }
3863 
3864 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3865 {
3866 	unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3867 	unsigned long read_intercept;
3868 	int msr;
3869 
3870 	read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3871 
3872 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3873 		unsigned int read_idx = msr / BITS_PER_LONG;
3874 		unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3875 
3876 		msr_bitmap[read_idx] = read_intercept;
3877 		msr_bitmap[write_idx] = ~0ul;
3878 	}
3879 }
3880 
3881 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3882 {
3883 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3884 	u8 mode;
3885 
3886 	if (!cpu_has_vmx_msr_bitmap())
3887 		return;
3888 
3889 	if (cpu_has_secondary_exec_ctrls() &&
3890 	    (secondary_exec_controls_get(vmx) &
3891 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3892 		mode = MSR_BITMAP_MODE_X2APIC;
3893 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3894 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3895 	} else {
3896 		mode = 0;
3897 	}
3898 
3899 	if (mode == vmx->x2apic_msr_bitmap_mode)
3900 		return;
3901 
3902 	vmx->x2apic_msr_bitmap_mode = mode;
3903 
3904 	vmx_reset_x2apic_msrs(vcpu, mode);
3905 
3906 	/*
3907 	 * TPR reads and writes can be virtualized even if virtual interrupt
3908 	 * delivery is not in use.
3909 	 */
3910 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3911 				  !(mode & MSR_BITMAP_MODE_X2APIC));
3912 
3913 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3914 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3915 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3916 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3917 	}
3918 }
3919 
3920 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3921 {
3922 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3923 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3924 	u32 i;
3925 
3926 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3927 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3928 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3929 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3930 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
3931 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3932 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3933 	}
3934 }
3935 
3936 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3937 {
3938 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3939 	void *vapic_page;
3940 	u32 vppr;
3941 	int rvi;
3942 
3943 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3944 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3945 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3946 		return false;
3947 
3948 	rvi = vmx_get_rvi();
3949 
3950 	vapic_page = vmx->nested.virtual_apic_map.hva;
3951 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3952 
3953 	return ((rvi & 0xf0) > (vppr & 0xf0));
3954 }
3955 
3956 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3957 {
3958 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3959 	u32 i;
3960 
3961 	/*
3962 	 * Set intercept permissions for all potentially passed through MSRs
3963 	 * again. They will automatically get filtered through the MSR filter,
3964 	 * so we are back in sync after this.
3965 	 */
3966 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3967 		u32 msr = vmx_possible_passthrough_msrs[i];
3968 		bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3969 		bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3970 
3971 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3972 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3973 	}
3974 
3975 	pt_update_intercept_for_msr(vcpu);
3976 }
3977 
3978 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3979 						     int pi_vec)
3980 {
3981 #ifdef CONFIG_SMP
3982 	if (vcpu->mode == IN_GUEST_MODE) {
3983 		/*
3984 		 * The vector of the virtual has already been set in the PIR.
3985 		 * Send a notification event to deliver the virtual interrupt
3986 		 * unless the vCPU is the currently running vCPU, i.e. the
3987 		 * event is being sent from a fastpath VM-Exit handler, in
3988 		 * which case the PIR will be synced to the vIRR before
3989 		 * re-entering the guest.
3990 		 *
3991 		 * When the target is not the running vCPU, the following
3992 		 * possibilities emerge:
3993 		 *
3994 		 * Case 1: vCPU stays in non-root mode. Sending a notification
3995 		 * event posts the interrupt to the vCPU.
3996 		 *
3997 		 * Case 2: vCPU exits to root mode and is still runnable. The
3998 		 * PIR will be synced to the vIRR before re-entering the guest.
3999 		 * Sending a notification event is ok as the host IRQ handler
4000 		 * will ignore the spurious event.
4001 		 *
4002 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4003 		 * has already synced PIR to vIRR and never blocks the vCPU if
4004 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4005 		 * not wait for any requested interrupts in PIR, and sending a
4006 		 * notification event also results in a benign, spurious event.
4007 		 */
4008 
4009 		if (vcpu != kvm_get_running_vcpu())
4010 			apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4011 		return;
4012 	}
4013 #endif
4014 	/*
4015 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4016 	 * otherwise do nothing as KVM will grab the highest priority pending
4017 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4018 	 */
4019 	kvm_vcpu_wake_up(vcpu);
4020 }
4021 
4022 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4023 						int vector)
4024 {
4025 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4026 
4027 	if (is_guest_mode(vcpu) &&
4028 	    vector == vmx->nested.posted_intr_nv) {
4029 		/*
4030 		 * If a posted intr is not recognized by hardware,
4031 		 * we will accomplish it in the next vmentry.
4032 		 */
4033 		vmx->nested.pi_pending = true;
4034 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4035 
4036 		/*
4037 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4038 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4039 		 * request if triggering a posted interrupt "fails" because
4040 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4041 		 * the smb_wmb() in kvm_make_request() only ensures everything
4042 		 * done before making the request is visible when the request
4043 		 * is visible, it doesn't ensure ordering between the store to
4044 		 * vcpu->requests and the load from vcpu->mode.
4045 		 */
4046 		smp_mb__after_atomic();
4047 
4048 		/* the PIR and ON have been set by L1. */
4049 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4050 		return 0;
4051 	}
4052 	return -1;
4053 }
4054 /*
4055  * Send interrupt to vcpu via posted interrupt way.
4056  * 1. If target vcpu is running(non-root mode), send posted interrupt
4057  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4058  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4059  * interrupt from PIR in next vmentry.
4060  */
4061 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4062 {
4063 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4064 	int r;
4065 
4066 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4067 	if (!r)
4068 		return 0;
4069 
4070 	if (!vcpu->arch.apicv_active)
4071 		return -1;
4072 
4073 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4074 		return 0;
4075 
4076 	/* If a previous notification has sent the IPI, nothing to do.  */
4077 	if (pi_test_and_set_on(&vmx->pi_desc))
4078 		return 0;
4079 
4080 	/*
4081 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4082 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4083 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4084 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4085 	 */
4086 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4087 	return 0;
4088 }
4089 
4090 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4091 				  int trig_mode, int vector)
4092 {
4093 	struct kvm_vcpu *vcpu = apic->vcpu;
4094 
4095 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4096 		kvm_lapic_set_irr(vector, apic);
4097 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4098 		kvm_vcpu_kick(vcpu);
4099 	} else {
4100 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4101 					   trig_mode, vector);
4102 	}
4103 }
4104 
4105 /*
4106  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4107  * will not change in the lifetime of the guest.
4108  * Note that host-state that does change is set elsewhere. E.g., host-state
4109  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4110  */
4111 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4112 {
4113 	u32 low32, high32;
4114 	unsigned long tmpl;
4115 	unsigned long cr0, cr3, cr4;
4116 
4117 	cr0 = read_cr0();
4118 	WARN_ON(cr0 & X86_CR0_TS);
4119 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4120 
4121 	/*
4122 	 * Save the most likely value for this task's CR3 in the VMCS.
4123 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4124 	 */
4125 	cr3 = __read_cr3();
4126 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4127 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4128 
4129 	/* Save the most likely value for this task's CR4 in the VMCS. */
4130 	cr4 = cr4_read_shadow();
4131 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4132 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4133 
4134 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4135 #ifdef CONFIG_X86_64
4136 	/*
4137 	 * Load null selectors, so we can avoid reloading them in
4138 	 * vmx_prepare_switch_to_host(), in case userspace uses
4139 	 * the null selectors too (the expected case).
4140 	 */
4141 	vmcs_write16(HOST_DS_SELECTOR, 0);
4142 	vmcs_write16(HOST_ES_SELECTOR, 0);
4143 #else
4144 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4145 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4146 #endif
4147 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4148 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4149 
4150 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4151 
4152 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4153 
4154 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4155 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4156 
4157 	/*
4158 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4159 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4160 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4161 	 * have already done so!).
4162 	 */
4163 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4164 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4165 
4166 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4167 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4168 
4169 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4170 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4171 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4172 	}
4173 
4174 	if (cpu_has_load_ia32_efer())
4175 		vmcs_write64(HOST_IA32_EFER, host_efer);
4176 }
4177 
4178 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4179 {
4180 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4181 
4182 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4183 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4184 	if (!enable_ept) {
4185 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4186 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4187 	}
4188 	if (is_guest_mode(&vmx->vcpu))
4189 		vcpu->arch.cr4_guest_owned_bits &=
4190 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4191 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4192 }
4193 
4194 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4195 {
4196 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4197 
4198 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4199 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4200 
4201 	if (!enable_vnmi)
4202 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4203 
4204 	if (!enable_preemption_timer)
4205 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4206 
4207 	return pin_based_exec_ctrl;
4208 }
4209 
4210 static u32 vmx_vmentry_ctrl(void)
4211 {
4212 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4213 
4214 	if (vmx_pt_mode_is_system())
4215 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4216 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4217 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4218 	return vmentry_ctrl &
4219 		~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
4220 }
4221 
4222 static u32 vmx_vmexit_ctrl(void)
4223 {
4224 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4225 
4226 	if (vmx_pt_mode_is_system())
4227 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4228 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4229 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4230 	return vmexit_ctrl &
4231 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4232 }
4233 
4234 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4235 {
4236 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4237 
4238 	if (is_guest_mode(vcpu)) {
4239 		vmx->nested.update_vmcs01_apicv_status = true;
4240 		return;
4241 	}
4242 
4243 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4244 	if (cpu_has_secondary_exec_ctrls()) {
4245 		if (kvm_vcpu_apicv_active(vcpu))
4246 			secondary_exec_controls_setbit(vmx,
4247 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4248 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4249 		else
4250 			secondary_exec_controls_clearbit(vmx,
4251 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4252 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4253 	}
4254 
4255 	vmx_update_msr_bitmap_x2apic(vcpu);
4256 }
4257 
4258 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4259 {
4260 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4261 
4262 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4263 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4264 
4265 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4266 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4267 #ifdef CONFIG_X86_64
4268 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4269 				CPU_BASED_CR8_LOAD_EXITING;
4270 #endif
4271 	}
4272 	if (!enable_ept)
4273 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4274 				CPU_BASED_CR3_LOAD_EXITING  |
4275 				CPU_BASED_INVLPG_EXITING;
4276 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4277 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4278 				CPU_BASED_MONITOR_EXITING);
4279 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4280 		exec_control &= ~CPU_BASED_HLT_EXITING;
4281 	return exec_control;
4282 }
4283 
4284 /*
4285  * Adjust a single secondary execution control bit to intercept/allow an
4286  * instruction in the guest.  This is usually done based on whether or not a
4287  * feature has been exposed to the guest in order to correctly emulate faults.
4288  */
4289 static inline void
4290 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4291 				  u32 control, bool enabled, bool exiting)
4292 {
4293 	/*
4294 	 * If the control is for an opt-in feature, clear the control if the
4295 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4296 	 * control is opt-out, i.e. an exiting control, clear the control if
4297 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4298 	 * disabled for the associated instruction.  Note, the caller is
4299 	 * responsible presetting exec_control to set all supported bits.
4300 	 */
4301 	if (enabled == exiting)
4302 		*exec_control &= ~control;
4303 
4304 	/*
4305 	 * Update the nested MSR settings so that a nested VMM can/can't set
4306 	 * controls for features that are/aren't exposed to the guest.
4307 	 */
4308 	if (nested) {
4309 		if (enabled)
4310 			vmx->nested.msrs.secondary_ctls_high |= control;
4311 		else
4312 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4313 	}
4314 }
4315 
4316 /*
4317  * Wrapper macro for the common case of adjusting a secondary execution control
4318  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4319  * verifies that the control is actually supported by KVM and hardware.
4320  */
4321 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4322 ({									 \
4323 	bool __enabled;							 \
4324 									 \
4325 	if (cpu_has_vmx_##name()) {					 \
4326 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4327 					    X86_FEATURE_##feat_name);	 \
4328 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4329 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4330 	}								 \
4331 })
4332 
4333 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4334 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4335 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4336 
4337 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4338 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4339 
4340 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4341 {
4342 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4343 
4344 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4345 
4346 	if (vmx_pt_mode_is_system())
4347 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4348 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4349 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4350 	if (vmx->vpid == 0)
4351 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4352 	if (!enable_ept) {
4353 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4354 		enable_unrestricted_guest = 0;
4355 	}
4356 	if (!enable_unrestricted_guest)
4357 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4358 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4359 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4360 	if (!kvm_vcpu_apicv_active(vcpu))
4361 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4362 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4363 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4364 
4365 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4366 	 * in vmx_set_cr4.  */
4367 	exec_control &= ~SECONDARY_EXEC_DESC;
4368 
4369 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4370 	   (handle_vmptrld).
4371 	   We can NOT enable shadow_vmcs here because we don't have yet
4372 	   a current VMCS12
4373 	*/
4374 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4375 
4376 	/*
4377 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4378 	 * it needs to be set here when dirty logging is already active, e.g.
4379 	 * if this vCPU was created after dirty logging was enabled.
4380 	 */
4381 	if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4382 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4383 
4384 	if (cpu_has_vmx_xsaves()) {
4385 		/* Exposing XSAVES only when XSAVE is exposed */
4386 		bool xsaves_enabled =
4387 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4388 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4389 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4390 
4391 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4392 
4393 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4394 						  SECONDARY_EXEC_XSAVES,
4395 						  xsaves_enabled, false);
4396 	}
4397 
4398 	/*
4399 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4400 	 * feature is exposed to the guest.  This creates a virtualization hole
4401 	 * if both are supported in hardware but only one is exposed to the
4402 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4403 	 * is advertised is preferable to emulating the advertised instruction
4404 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4405 	 */
4406 	if (cpu_has_vmx_rdtscp()) {
4407 		bool rdpid_or_rdtscp_enabled =
4408 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4409 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4410 
4411 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4412 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4413 						  rdpid_or_rdtscp_enabled, false);
4414 	}
4415 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4416 
4417 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4418 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4419 
4420 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4421 				    ENABLE_USR_WAIT_PAUSE, false);
4422 
4423 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4424 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4425 
4426 	return exec_control;
4427 }
4428 
4429 #define VMX_XSS_EXIT_BITMAP 0
4430 
4431 static void init_vmcs(struct vcpu_vmx *vmx)
4432 {
4433 	if (nested)
4434 		nested_vmx_set_vmcs_shadowing_bitmap();
4435 
4436 	if (cpu_has_vmx_msr_bitmap())
4437 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4438 
4439 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4440 
4441 	/* Control */
4442 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4443 
4444 	exec_controls_set(vmx, vmx_exec_control(vmx));
4445 
4446 	if (cpu_has_secondary_exec_ctrls())
4447 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4448 
4449 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4450 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4451 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4452 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4453 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4454 
4455 		vmcs_write16(GUEST_INTR_STATUS, 0);
4456 
4457 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4458 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4459 	}
4460 
4461 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4462 		vmcs_write32(PLE_GAP, ple_gap);
4463 		vmx->ple_window = ple_window;
4464 		vmx->ple_window_dirty = true;
4465 	}
4466 
4467 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4468 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4469 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4470 
4471 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4472 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4473 	vmx_set_constant_host_state(vmx);
4474 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4475 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4476 
4477 	if (cpu_has_vmx_vmfunc())
4478 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4479 
4480 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4481 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4482 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4483 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4484 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4485 
4486 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4487 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4488 
4489 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4490 
4491 	/* 22.2.1, 20.8.1 */
4492 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4493 
4494 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4495 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4496 
4497 	set_cr4_guest_host_mask(vmx);
4498 
4499 	if (vmx->vpid != 0)
4500 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4501 
4502 	if (cpu_has_vmx_xsaves())
4503 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4504 
4505 	if (enable_pml) {
4506 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4507 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4508 	}
4509 
4510 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4511 
4512 	if (vmx_pt_mode_is_host_guest()) {
4513 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4514 		/* Bit[6~0] are forced to 1, writes are ignored. */
4515 		vmx->pt_desc.guest.output_mask = 0x7F;
4516 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4517 	}
4518 
4519 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4520 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4521 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4522 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4523 
4524 	if (cpu_has_vmx_tpr_shadow()) {
4525 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4526 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4527 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4528 				     __pa(vmx->vcpu.arch.apic->regs));
4529 		vmcs_write32(TPR_THRESHOLD, 0);
4530 	}
4531 
4532 	vmx_setup_uret_msrs(vmx);
4533 }
4534 
4535 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4536 {
4537 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4538 
4539 	init_vmcs(vmx);
4540 
4541 	if (nested)
4542 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4543 
4544 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4545 
4546 	vmx->nested.posted_intr_nv = -1;
4547 	vmx->nested.vmxon_ptr = INVALID_GPA;
4548 	vmx->nested.current_vmptr = INVALID_GPA;
4549 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4550 
4551 	vcpu->arch.microcode_version = 0x100000000ULL;
4552 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4553 
4554 	/*
4555 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4556 	 * or POSTED_INTR_WAKEUP_VECTOR.
4557 	 */
4558 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4559 	vmx->pi_desc.sn = 1;
4560 }
4561 
4562 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4563 {
4564 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4565 
4566 	if (!init_event)
4567 		__vmx_vcpu_reset(vcpu);
4568 
4569 	vmx->rmode.vm86_active = 0;
4570 	vmx->spec_ctrl = 0;
4571 
4572 	vmx->msr_ia32_umwait_control = 0;
4573 
4574 	vmx->hv_deadline_tsc = -1;
4575 	kvm_set_cr8(vcpu, 0);
4576 
4577 	vmx_segment_cache_clear(vmx);
4578 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4579 
4580 	seg_setup(VCPU_SREG_CS);
4581 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4582 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4583 
4584 	seg_setup(VCPU_SREG_DS);
4585 	seg_setup(VCPU_SREG_ES);
4586 	seg_setup(VCPU_SREG_FS);
4587 	seg_setup(VCPU_SREG_GS);
4588 	seg_setup(VCPU_SREG_SS);
4589 
4590 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4591 	vmcs_writel(GUEST_TR_BASE, 0);
4592 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4593 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4594 
4595 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4596 	vmcs_writel(GUEST_LDTR_BASE, 0);
4597 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4598 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4599 
4600 	vmcs_writel(GUEST_GDTR_BASE, 0);
4601 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4602 
4603 	vmcs_writel(GUEST_IDTR_BASE, 0);
4604 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4605 
4606 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4607 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4608 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4609 	if (kvm_mpx_supported())
4610 		vmcs_write64(GUEST_BNDCFGS, 0);
4611 
4612 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4613 
4614 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4615 
4616 	vpid_sync_context(vmx->vpid);
4617 
4618 	vmx_update_fb_clear_dis(vcpu, vmx);
4619 }
4620 
4621 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4622 {
4623 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4624 }
4625 
4626 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4627 {
4628 	if (!enable_vnmi ||
4629 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4630 		vmx_enable_irq_window(vcpu);
4631 		return;
4632 	}
4633 
4634 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4635 }
4636 
4637 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4638 {
4639 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4640 	uint32_t intr;
4641 	int irq = vcpu->arch.interrupt.nr;
4642 
4643 	trace_kvm_inj_virq(irq);
4644 
4645 	++vcpu->stat.irq_injections;
4646 	if (vmx->rmode.vm86_active) {
4647 		int inc_eip = 0;
4648 		if (vcpu->arch.interrupt.soft)
4649 			inc_eip = vcpu->arch.event_exit_inst_len;
4650 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4651 		return;
4652 	}
4653 	intr = irq | INTR_INFO_VALID_MASK;
4654 	if (vcpu->arch.interrupt.soft) {
4655 		intr |= INTR_TYPE_SOFT_INTR;
4656 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4657 			     vmx->vcpu.arch.event_exit_inst_len);
4658 	} else
4659 		intr |= INTR_TYPE_EXT_INTR;
4660 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4661 
4662 	vmx_clear_hlt(vcpu);
4663 }
4664 
4665 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4666 {
4667 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4668 
4669 	if (!enable_vnmi) {
4670 		/*
4671 		 * Tracking the NMI-blocked state in software is built upon
4672 		 * finding the next open IRQ window. This, in turn, depends on
4673 		 * well-behaving guests: They have to keep IRQs disabled at
4674 		 * least as long as the NMI handler runs. Otherwise we may
4675 		 * cause NMI nesting, maybe breaking the guest. But as this is
4676 		 * highly unlikely, we can live with the residual risk.
4677 		 */
4678 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4679 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4680 	}
4681 
4682 	++vcpu->stat.nmi_injections;
4683 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4684 
4685 	if (vmx->rmode.vm86_active) {
4686 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4687 		return;
4688 	}
4689 
4690 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4691 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4692 
4693 	vmx_clear_hlt(vcpu);
4694 }
4695 
4696 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4697 {
4698 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4699 	bool masked;
4700 
4701 	if (!enable_vnmi)
4702 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4703 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4704 		return false;
4705 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4706 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4707 	return masked;
4708 }
4709 
4710 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4711 {
4712 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4713 
4714 	if (!enable_vnmi) {
4715 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4716 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4717 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4718 		}
4719 	} else {
4720 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4721 		if (masked)
4722 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4723 				      GUEST_INTR_STATE_NMI);
4724 		else
4725 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4726 					GUEST_INTR_STATE_NMI);
4727 	}
4728 }
4729 
4730 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4731 {
4732 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4733 		return false;
4734 
4735 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4736 		return true;
4737 
4738 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4739 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4740 		 GUEST_INTR_STATE_NMI));
4741 }
4742 
4743 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4744 {
4745 	if (to_vmx(vcpu)->nested.nested_run_pending)
4746 		return -EBUSY;
4747 
4748 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4749 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4750 		return -EBUSY;
4751 
4752 	return !vmx_nmi_blocked(vcpu);
4753 }
4754 
4755 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4756 {
4757 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4758 		return false;
4759 
4760 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4761 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4762 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4763 }
4764 
4765 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4766 {
4767 	if (to_vmx(vcpu)->nested.nested_run_pending)
4768 		return -EBUSY;
4769 
4770        /*
4771         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4772         * e.g. if the IRQ arrived asynchronously after checking nested events.
4773         */
4774 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4775 		return -EBUSY;
4776 
4777 	return !vmx_interrupt_blocked(vcpu);
4778 }
4779 
4780 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4781 {
4782 	void __user *ret;
4783 
4784 	if (enable_unrestricted_guest)
4785 		return 0;
4786 
4787 	mutex_lock(&kvm->slots_lock);
4788 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4789 				      PAGE_SIZE * 3);
4790 	mutex_unlock(&kvm->slots_lock);
4791 
4792 	if (IS_ERR(ret))
4793 		return PTR_ERR(ret);
4794 
4795 	to_kvm_vmx(kvm)->tss_addr = addr;
4796 
4797 	return init_rmode_tss(kvm, ret);
4798 }
4799 
4800 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4801 {
4802 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4803 	return 0;
4804 }
4805 
4806 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4807 {
4808 	switch (vec) {
4809 	case BP_VECTOR:
4810 		/*
4811 		 * Update instruction length as we may reinject the exception
4812 		 * from user space while in guest debugging mode.
4813 		 */
4814 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4815 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4816 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4817 			return false;
4818 		fallthrough;
4819 	case DB_VECTOR:
4820 		return !(vcpu->guest_debug &
4821 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4822 	case DE_VECTOR:
4823 	case OF_VECTOR:
4824 	case BR_VECTOR:
4825 	case UD_VECTOR:
4826 	case DF_VECTOR:
4827 	case SS_VECTOR:
4828 	case GP_VECTOR:
4829 	case MF_VECTOR:
4830 		return true;
4831 	}
4832 	return false;
4833 }
4834 
4835 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4836 				  int vec, u32 err_code)
4837 {
4838 	/*
4839 	 * Instruction with address size override prefix opcode 0x67
4840 	 * Cause the #SS fault with 0 error code in VM86 mode.
4841 	 */
4842 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4843 		if (kvm_emulate_instruction(vcpu, 0)) {
4844 			if (vcpu->arch.halt_request) {
4845 				vcpu->arch.halt_request = 0;
4846 				return kvm_emulate_halt_noskip(vcpu);
4847 			}
4848 			return 1;
4849 		}
4850 		return 0;
4851 	}
4852 
4853 	/*
4854 	 * Forward all other exceptions that are valid in real mode.
4855 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4856 	 *        the required debugging infrastructure rework.
4857 	 */
4858 	kvm_queue_exception(vcpu, vec);
4859 	return 1;
4860 }
4861 
4862 static int handle_machine_check(struct kvm_vcpu *vcpu)
4863 {
4864 	/* handled by vmx_vcpu_run() */
4865 	return 1;
4866 }
4867 
4868 /*
4869  * If the host has split lock detection disabled, then #AC is
4870  * unconditionally injected into the guest, which is the pre split lock
4871  * detection behaviour.
4872  *
4873  * If the host has split lock detection enabled then #AC is
4874  * only injected into the guest when:
4875  *  - Guest CPL == 3 (user mode)
4876  *  - Guest has #AC detection enabled in CR0
4877  *  - Guest EFLAGS has AC bit set
4878  */
4879 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4880 {
4881 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4882 		return true;
4883 
4884 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4885 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4886 }
4887 
4888 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4889 {
4890 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4891 	struct kvm_run *kvm_run = vcpu->run;
4892 	u32 intr_info, ex_no, error_code;
4893 	unsigned long cr2, dr6;
4894 	u32 vect_info;
4895 
4896 	vect_info = vmx->idt_vectoring_info;
4897 	intr_info = vmx_get_intr_info(vcpu);
4898 
4899 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4900 		return 1; /* handled by handle_exception_nmi_irqoff() */
4901 
4902 	/*
4903 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
4904 	 * This ensures the nested_vmx check is not skipped so vmexit can
4905 	 * be reflected to L1 (when it intercepts #NM) before reaching this
4906 	 * point.
4907 	 */
4908 	if (is_nm_fault(intr_info)) {
4909 		kvm_queue_exception(vcpu, NM_VECTOR);
4910 		return 1;
4911 	}
4912 
4913 	if (is_invalid_opcode(intr_info))
4914 		return handle_ud(vcpu);
4915 
4916 	error_code = 0;
4917 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4918 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4919 
4920 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4921 		WARN_ON_ONCE(!enable_vmware_backdoor);
4922 
4923 		/*
4924 		 * VMware backdoor emulation on #GP interception only handles
4925 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4926 		 * error code on #GP.
4927 		 */
4928 		if (error_code) {
4929 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4930 			return 1;
4931 		}
4932 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4933 	}
4934 
4935 	/*
4936 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4937 	 * MMIO, it is better to report an internal error.
4938 	 * See the comments in vmx_handle_exit.
4939 	 */
4940 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4941 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4942 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4943 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4944 		vcpu->run->internal.ndata = 4;
4945 		vcpu->run->internal.data[0] = vect_info;
4946 		vcpu->run->internal.data[1] = intr_info;
4947 		vcpu->run->internal.data[2] = error_code;
4948 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4949 		return 0;
4950 	}
4951 
4952 	if (is_page_fault(intr_info)) {
4953 		cr2 = vmx_get_exit_qual(vcpu);
4954 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4955 			/*
4956 			 * EPT will cause page fault only if we need to
4957 			 * detect illegal GPAs.
4958 			 */
4959 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4960 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4961 			return 1;
4962 		} else
4963 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4964 	}
4965 
4966 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4967 
4968 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4969 		return handle_rmode_exception(vcpu, ex_no, error_code);
4970 
4971 	switch (ex_no) {
4972 	case DB_VECTOR:
4973 		dr6 = vmx_get_exit_qual(vcpu);
4974 		if (!(vcpu->guest_debug &
4975 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4976 			/*
4977 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
4978 			 * instruction.  ICEBP generates a trap-like #DB, but
4979 			 * despite its interception control being tied to #DB,
4980 			 * is an instruction intercept, i.e. the VM-Exit occurs
4981 			 * on the ICEBP itself.  Note, skipping ICEBP also
4982 			 * clears STI and MOVSS blocking.
4983 			 *
4984 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
4985 			 * if single-step is enabled in RFLAGS and STI or MOVSS
4986 			 * blocking is active, as the CPU doesn't set the bit
4987 			 * on VM-Exit due to #DB interception.  VM-Entry has a
4988 			 * consistency check that a single-step #DB is pending
4989 			 * in this scenario as the previous instruction cannot
4990 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
4991 			 * don't modify RFLAGS), therefore the one instruction
4992 			 * delay when activating single-step breakpoints must
4993 			 * have already expired.  Note, the CPU sets/clears BS
4994 			 * as appropriate for all other VM-Exits types.
4995 			 */
4996 			if (is_icebp(intr_info))
4997 				WARN_ON(!skip_emulated_instruction(vcpu));
4998 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
4999 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5000 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5001 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5002 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5003 
5004 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5005 			return 1;
5006 		}
5007 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5008 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5009 		fallthrough;
5010 	case BP_VECTOR:
5011 		/*
5012 		 * Update instruction length as we may reinject #BP from
5013 		 * user space while in guest debugging mode. Reading it for
5014 		 * #DB as well causes no harm, it is not used in that case.
5015 		 */
5016 		vmx->vcpu.arch.event_exit_inst_len =
5017 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5018 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5019 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5020 		kvm_run->debug.arch.exception = ex_no;
5021 		break;
5022 	case AC_VECTOR:
5023 		if (vmx_guest_inject_ac(vcpu)) {
5024 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5025 			return 1;
5026 		}
5027 
5028 		/*
5029 		 * Handle split lock. Depending on detection mode this will
5030 		 * either warn and disable split lock detection for this
5031 		 * task or force SIGBUS on it.
5032 		 */
5033 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5034 			return 1;
5035 		fallthrough;
5036 	default:
5037 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5038 		kvm_run->ex.exception = ex_no;
5039 		kvm_run->ex.error_code = error_code;
5040 		break;
5041 	}
5042 	return 0;
5043 }
5044 
5045 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5046 {
5047 	++vcpu->stat.irq_exits;
5048 	return 1;
5049 }
5050 
5051 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5052 {
5053 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5054 	vcpu->mmio_needed = 0;
5055 	return 0;
5056 }
5057 
5058 static int handle_io(struct kvm_vcpu *vcpu)
5059 {
5060 	unsigned long exit_qualification;
5061 	int size, in, string;
5062 	unsigned port;
5063 
5064 	exit_qualification = vmx_get_exit_qual(vcpu);
5065 	string = (exit_qualification & 16) != 0;
5066 
5067 	++vcpu->stat.io_exits;
5068 
5069 	if (string)
5070 		return kvm_emulate_instruction(vcpu, 0);
5071 
5072 	port = exit_qualification >> 16;
5073 	size = (exit_qualification & 7) + 1;
5074 	in = (exit_qualification & 8) != 0;
5075 
5076 	return kvm_fast_pio(vcpu, size, port, in);
5077 }
5078 
5079 static void
5080 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5081 {
5082 	/*
5083 	 * Patch in the VMCALL instruction:
5084 	 */
5085 	hypercall[0] = 0x0f;
5086 	hypercall[1] = 0x01;
5087 	hypercall[2] = 0xc1;
5088 }
5089 
5090 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5091 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5092 {
5093 	if (is_guest_mode(vcpu)) {
5094 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5095 		unsigned long orig_val = val;
5096 
5097 		/*
5098 		 * We get here when L2 changed cr0 in a way that did not change
5099 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5100 		 * but did change L0 shadowed bits. So we first calculate the
5101 		 * effective cr0 value that L1 would like to write into the
5102 		 * hardware. It consists of the L2-owned bits from the new
5103 		 * value combined with the L1-owned bits from L1's guest_cr0.
5104 		 */
5105 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5106 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5107 
5108 		if (!nested_guest_cr0_valid(vcpu, val))
5109 			return 1;
5110 
5111 		if (kvm_set_cr0(vcpu, val))
5112 			return 1;
5113 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5114 		return 0;
5115 	} else {
5116 		if (to_vmx(vcpu)->nested.vmxon &&
5117 		    !nested_host_cr0_valid(vcpu, val))
5118 			return 1;
5119 
5120 		return kvm_set_cr0(vcpu, val);
5121 	}
5122 }
5123 
5124 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5125 {
5126 	if (is_guest_mode(vcpu)) {
5127 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5128 		unsigned long orig_val = val;
5129 
5130 		/* analogously to handle_set_cr0 */
5131 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5132 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5133 		if (kvm_set_cr4(vcpu, val))
5134 			return 1;
5135 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5136 		return 0;
5137 	} else
5138 		return kvm_set_cr4(vcpu, val);
5139 }
5140 
5141 static int handle_desc(struct kvm_vcpu *vcpu)
5142 {
5143 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5144 	return kvm_emulate_instruction(vcpu, 0);
5145 }
5146 
5147 static int handle_cr(struct kvm_vcpu *vcpu)
5148 {
5149 	unsigned long exit_qualification, val;
5150 	int cr;
5151 	int reg;
5152 	int err;
5153 	int ret;
5154 
5155 	exit_qualification = vmx_get_exit_qual(vcpu);
5156 	cr = exit_qualification & 15;
5157 	reg = (exit_qualification >> 8) & 15;
5158 	switch ((exit_qualification >> 4) & 3) {
5159 	case 0: /* mov to cr */
5160 		val = kvm_register_read(vcpu, reg);
5161 		trace_kvm_cr_write(cr, val);
5162 		switch (cr) {
5163 		case 0:
5164 			err = handle_set_cr0(vcpu, val);
5165 			return kvm_complete_insn_gp(vcpu, err);
5166 		case 3:
5167 			WARN_ON_ONCE(enable_unrestricted_guest);
5168 
5169 			err = kvm_set_cr3(vcpu, val);
5170 			return kvm_complete_insn_gp(vcpu, err);
5171 		case 4:
5172 			err = handle_set_cr4(vcpu, val);
5173 			return kvm_complete_insn_gp(vcpu, err);
5174 		case 8: {
5175 				u8 cr8_prev = kvm_get_cr8(vcpu);
5176 				u8 cr8 = (u8)val;
5177 				err = kvm_set_cr8(vcpu, cr8);
5178 				ret = kvm_complete_insn_gp(vcpu, err);
5179 				if (lapic_in_kernel(vcpu))
5180 					return ret;
5181 				if (cr8_prev <= cr8)
5182 					return ret;
5183 				/*
5184 				 * TODO: we might be squashing a
5185 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5186 				 * KVM_EXIT_DEBUG here.
5187 				 */
5188 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5189 				return 0;
5190 			}
5191 		}
5192 		break;
5193 	case 2: /* clts */
5194 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5195 		return -EIO;
5196 	case 1: /*mov from cr*/
5197 		switch (cr) {
5198 		case 3:
5199 			WARN_ON_ONCE(enable_unrestricted_guest);
5200 
5201 			val = kvm_read_cr3(vcpu);
5202 			kvm_register_write(vcpu, reg, val);
5203 			trace_kvm_cr_read(cr, val);
5204 			return kvm_skip_emulated_instruction(vcpu);
5205 		case 8:
5206 			val = kvm_get_cr8(vcpu);
5207 			kvm_register_write(vcpu, reg, val);
5208 			trace_kvm_cr_read(cr, val);
5209 			return kvm_skip_emulated_instruction(vcpu);
5210 		}
5211 		break;
5212 	case 3: /* lmsw */
5213 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5214 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5215 		kvm_lmsw(vcpu, val);
5216 
5217 		return kvm_skip_emulated_instruction(vcpu);
5218 	default:
5219 		break;
5220 	}
5221 	vcpu->run->exit_reason = 0;
5222 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5223 	       (int)(exit_qualification >> 4) & 3, cr);
5224 	return 0;
5225 }
5226 
5227 static int handle_dr(struct kvm_vcpu *vcpu)
5228 {
5229 	unsigned long exit_qualification;
5230 	int dr, dr7, reg;
5231 	int err = 1;
5232 
5233 	exit_qualification = vmx_get_exit_qual(vcpu);
5234 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5235 
5236 	/* First, if DR does not exist, trigger UD */
5237 	if (!kvm_require_dr(vcpu, dr))
5238 		return 1;
5239 
5240 	if (vmx_get_cpl(vcpu) > 0)
5241 		goto out;
5242 
5243 	dr7 = vmcs_readl(GUEST_DR7);
5244 	if (dr7 & DR7_GD) {
5245 		/*
5246 		 * As the vm-exit takes precedence over the debug trap, we
5247 		 * need to emulate the latter, either for the host or the
5248 		 * guest debugging itself.
5249 		 */
5250 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5251 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5252 			vcpu->run->debug.arch.dr7 = dr7;
5253 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5254 			vcpu->run->debug.arch.exception = DB_VECTOR;
5255 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5256 			return 0;
5257 		} else {
5258 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5259 			return 1;
5260 		}
5261 	}
5262 
5263 	if (vcpu->guest_debug == 0) {
5264 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5265 
5266 		/*
5267 		 * No more DR vmexits; force a reload of the debug registers
5268 		 * and reenter on this instruction.  The next vmexit will
5269 		 * retrieve the full state of the debug registers.
5270 		 */
5271 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5272 		return 1;
5273 	}
5274 
5275 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5276 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5277 		unsigned long val;
5278 
5279 		kvm_get_dr(vcpu, dr, &val);
5280 		kvm_register_write(vcpu, reg, val);
5281 		err = 0;
5282 	} else {
5283 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5284 	}
5285 
5286 out:
5287 	return kvm_complete_insn_gp(vcpu, err);
5288 }
5289 
5290 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5291 {
5292 	get_debugreg(vcpu->arch.db[0], 0);
5293 	get_debugreg(vcpu->arch.db[1], 1);
5294 	get_debugreg(vcpu->arch.db[2], 2);
5295 	get_debugreg(vcpu->arch.db[3], 3);
5296 	get_debugreg(vcpu->arch.dr6, 6);
5297 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5298 
5299 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5300 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5301 
5302 	/*
5303 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5304 	 * a stale dr6 from the guest.
5305 	 */
5306 	set_debugreg(DR6_RESERVED, 6);
5307 }
5308 
5309 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5310 {
5311 	vmcs_writel(GUEST_DR7, val);
5312 }
5313 
5314 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5315 {
5316 	kvm_apic_update_ppr(vcpu);
5317 	return 1;
5318 }
5319 
5320 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5321 {
5322 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5323 
5324 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5325 
5326 	++vcpu->stat.irq_window_exits;
5327 	return 1;
5328 }
5329 
5330 static int handle_invlpg(struct kvm_vcpu *vcpu)
5331 {
5332 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5333 
5334 	kvm_mmu_invlpg(vcpu, exit_qualification);
5335 	return kvm_skip_emulated_instruction(vcpu);
5336 }
5337 
5338 static int handle_apic_access(struct kvm_vcpu *vcpu)
5339 {
5340 	if (likely(fasteoi)) {
5341 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5342 		int access_type, offset;
5343 
5344 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5345 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5346 		/*
5347 		 * Sane guest uses MOV to write EOI, with written value
5348 		 * not cared. So make a short-circuit here by avoiding
5349 		 * heavy instruction emulation.
5350 		 */
5351 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5352 		    (offset == APIC_EOI)) {
5353 			kvm_lapic_set_eoi(vcpu);
5354 			return kvm_skip_emulated_instruction(vcpu);
5355 		}
5356 	}
5357 	return kvm_emulate_instruction(vcpu, 0);
5358 }
5359 
5360 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5361 {
5362 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5363 	int vector = exit_qualification & 0xff;
5364 
5365 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5366 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5367 	return 1;
5368 }
5369 
5370 static int handle_apic_write(struct kvm_vcpu *vcpu)
5371 {
5372 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5373 
5374 	/*
5375 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5376 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5377 	 * for the access.  I.e. the correct value has already been  written to
5378 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5379 	 * retrieve the register value and emulate the access.
5380 	 */
5381 	u32 offset = exit_qualification & 0xff0;
5382 
5383 	kvm_apic_write_nodecode(vcpu, offset);
5384 	return 1;
5385 }
5386 
5387 static int handle_task_switch(struct kvm_vcpu *vcpu)
5388 {
5389 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5390 	unsigned long exit_qualification;
5391 	bool has_error_code = false;
5392 	u32 error_code = 0;
5393 	u16 tss_selector;
5394 	int reason, type, idt_v, idt_index;
5395 
5396 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5397 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5398 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5399 
5400 	exit_qualification = vmx_get_exit_qual(vcpu);
5401 
5402 	reason = (u32)exit_qualification >> 30;
5403 	if (reason == TASK_SWITCH_GATE && idt_v) {
5404 		switch (type) {
5405 		case INTR_TYPE_NMI_INTR:
5406 			vcpu->arch.nmi_injected = false;
5407 			vmx_set_nmi_mask(vcpu, true);
5408 			break;
5409 		case INTR_TYPE_EXT_INTR:
5410 		case INTR_TYPE_SOFT_INTR:
5411 			kvm_clear_interrupt_queue(vcpu);
5412 			break;
5413 		case INTR_TYPE_HARD_EXCEPTION:
5414 			if (vmx->idt_vectoring_info &
5415 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5416 				has_error_code = true;
5417 				error_code =
5418 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5419 			}
5420 			fallthrough;
5421 		case INTR_TYPE_SOFT_EXCEPTION:
5422 			kvm_clear_exception_queue(vcpu);
5423 			break;
5424 		default:
5425 			break;
5426 		}
5427 	}
5428 	tss_selector = exit_qualification;
5429 
5430 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5431 		       type != INTR_TYPE_EXT_INTR &&
5432 		       type != INTR_TYPE_NMI_INTR))
5433 		WARN_ON(!skip_emulated_instruction(vcpu));
5434 
5435 	/*
5436 	 * TODO: What about debug traps on tss switch?
5437 	 *       Are we supposed to inject them and update dr6?
5438 	 */
5439 	return kvm_task_switch(vcpu, tss_selector,
5440 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5441 			       reason, has_error_code, error_code);
5442 }
5443 
5444 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5445 {
5446 	unsigned long exit_qualification;
5447 	gpa_t gpa;
5448 	u64 error_code;
5449 
5450 	exit_qualification = vmx_get_exit_qual(vcpu);
5451 
5452 	/*
5453 	 * EPT violation happened while executing iret from NMI,
5454 	 * "blocked by NMI" bit has to be set before next VM entry.
5455 	 * There are errata that may cause this bit to not be set:
5456 	 * AAK134, BY25.
5457 	 */
5458 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5459 			enable_vnmi &&
5460 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5461 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5462 
5463 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5464 	trace_kvm_page_fault(gpa, exit_qualification);
5465 
5466 	/* Is it a read fault? */
5467 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5468 		     ? PFERR_USER_MASK : 0;
5469 	/* Is it a write fault? */
5470 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5471 		      ? PFERR_WRITE_MASK : 0;
5472 	/* Is it a fetch fault? */
5473 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5474 		      ? PFERR_FETCH_MASK : 0;
5475 	/* ept page table entry is present? */
5476 	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5477 		      ? PFERR_PRESENT_MASK : 0;
5478 
5479 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5480 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5481 
5482 	vcpu->arch.exit_qualification = exit_qualification;
5483 
5484 	/*
5485 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5486 	 * a guest page fault.  We have to emulate the instruction here, because
5487 	 * if the illegal address is that of a paging structure, then
5488 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5489 	 * would also use advanced VM-exit information for EPT violations to
5490 	 * reconstruct the page fault error code.
5491 	 */
5492 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5493 		return kvm_emulate_instruction(vcpu, 0);
5494 
5495 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5496 }
5497 
5498 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5499 {
5500 	gpa_t gpa;
5501 
5502 	if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5503 		return 1;
5504 
5505 	/*
5506 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5507 	 * nGPA here instead of the required GPA.
5508 	 */
5509 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5510 	if (!is_guest_mode(vcpu) &&
5511 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5512 		trace_kvm_fast_mmio(gpa);
5513 		return kvm_skip_emulated_instruction(vcpu);
5514 	}
5515 
5516 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5517 }
5518 
5519 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5520 {
5521 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5522 		return -EIO;
5523 
5524 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5525 	++vcpu->stat.nmi_window_exits;
5526 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5527 
5528 	return 1;
5529 }
5530 
5531 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5532 {
5533 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5534 
5535 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5536 	       (vcpu->arch.exception.pending || vcpu->arch.exception.injected);
5537 }
5538 
5539 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5540 {
5541 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5542 	bool intr_window_requested;
5543 	unsigned count = 130;
5544 
5545 	intr_window_requested = exec_controls_get(vmx) &
5546 				CPU_BASED_INTR_WINDOW_EXITING;
5547 
5548 	while (vmx->emulation_required && count-- != 0) {
5549 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5550 			return handle_interrupt_window(&vmx->vcpu);
5551 
5552 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5553 			return 1;
5554 
5555 		if (!kvm_emulate_instruction(vcpu, 0))
5556 			return 0;
5557 
5558 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5559 			kvm_prepare_emulation_failure_exit(vcpu);
5560 			return 0;
5561 		}
5562 
5563 		if (vcpu->arch.halt_request) {
5564 			vcpu->arch.halt_request = 0;
5565 			return kvm_emulate_halt_noskip(vcpu);
5566 		}
5567 
5568 		/*
5569 		 * Note, return 1 and not 0, vcpu_run() will invoke
5570 		 * xfer_to_guest_mode() which will create a proper return
5571 		 * code.
5572 		 */
5573 		if (__xfer_to_guest_mode_work_pending())
5574 			return 1;
5575 	}
5576 
5577 	return 1;
5578 }
5579 
5580 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5581 {
5582 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5583 		kvm_prepare_emulation_failure_exit(vcpu);
5584 		return 0;
5585 	}
5586 
5587 	return 1;
5588 }
5589 
5590 static void grow_ple_window(struct kvm_vcpu *vcpu)
5591 {
5592 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5593 	unsigned int old = vmx->ple_window;
5594 
5595 	vmx->ple_window = __grow_ple_window(old, ple_window,
5596 					    ple_window_grow,
5597 					    ple_window_max);
5598 
5599 	if (vmx->ple_window != old) {
5600 		vmx->ple_window_dirty = true;
5601 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5602 					    vmx->ple_window, old);
5603 	}
5604 }
5605 
5606 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5607 {
5608 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5609 	unsigned int old = vmx->ple_window;
5610 
5611 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5612 					      ple_window_shrink,
5613 					      ple_window);
5614 
5615 	if (vmx->ple_window != old) {
5616 		vmx->ple_window_dirty = true;
5617 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5618 					    vmx->ple_window, old);
5619 	}
5620 }
5621 
5622 /*
5623  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5624  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5625  */
5626 static int handle_pause(struct kvm_vcpu *vcpu)
5627 {
5628 	if (!kvm_pause_in_guest(vcpu->kvm))
5629 		grow_ple_window(vcpu);
5630 
5631 	/*
5632 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5633 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5634 	 * never set PAUSE_EXITING and just set PLE if supported,
5635 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5636 	 */
5637 	kvm_vcpu_on_spin(vcpu, true);
5638 	return kvm_skip_emulated_instruction(vcpu);
5639 }
5640 
5641 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5642 {
5643 	return 1;
5644 }
5645 
5646 static int handle_invpcid(struct kvm_vcpu *vcpu)
5647 {
5648 	u32 vmx_instruction_info;
5649 	unsigned long type;
5650 	gva_t gva;
5651 	struct {
5652 		u64 pcid;
5653 		u64 gla;
5654 	} operand;
5655 	int gpr_index;
5656 
5657 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5658 		kvm_queue_exception(vcpu, UD_VECTOR);
5659 		return 1;
5660 	}
5661 
5662 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5663 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5664 	type = kvm_register_read(vcpu, gpr_index);
5665 
5666 	/* According to the Intel instruction reference, the memory operand
5667 	 * is read even if it isn't needed (e.g., for type==all)
5668 	 */
5669 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5670 				vmx_instruction_info, false,
5671 				sizeof(operand), &gva))
5672 		return 1;
5673 
5674 	return kvm_handle_invpcid(vcpu, type, gva);
5675 }
5676 
5677 static int handle_pml_full(struct kvm_vcpu *vcpu)
5678 {
5679 	unsigned long exit_qualification;
5680 
5681 	trace_kvm_pml_full(vcpu->vcpu_id);
5682 
5683 	exit_qualification = vmx_get_exit_qual(vcpu);
5684 
5685 	/*
5686 	 * PML buffer FULL happened while executing iret from NMI,
5687 	 * "blocked by NMI" bit has to be set before next VM entry.
5688 	 */
5689 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5690 			enable_vnmi &&
5691 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5692 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5693 				GUEST_INTR_STATE_NMI);
5694 
5695 	/*
5696 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5697 	 * here.., and there's no userspace involvement needed for PML.
5698 	 */
5699 	return 1;
5700 }
5701 
5702 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5703 {
5704 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5705 
5706 	if (!vmx->req_immediate_exit &&
5707 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5708 		kvm_lapic_expired_hv_timer(vcpu);
5709 		return EXIT_FASTPATH_REENTER_GUEST;
5710 	}
5711 
5712 	return EXIT_FASTPATH_NONE;
5713 }
5714 
5715 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5716 {
5717 	handle_fastpath_preemption_timer(vcpu);
5718 	return 1;
5719 }
5720 
5721 /*
5722  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5723  * are overwritten by nested_vmx_setup() when nested=1.
5724  */
5725 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5726 {
5727 	kvm_queue_exception(vcpu, UD_VECTOR);
5728 	return 1;
5729 }
5730 
5731 #ifndef CONFIG_X86_SGX_KVM
5732 static int handle_encls(struct kvm_vcpu *vcpu)
5733 {
5734 	/*
5735 	 * SGX virtualization is disabled.  There is no software enable bit for
5736 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5737 	 * the guest from executing ENCLS (when SGX is supported by hardware).
5738 	 */
5739 	kvm_queue_exception(vcpu, UD_VECTOR);
5740 	return 1;
5741 }
5742 #endif /* CONFIG_X86_SGX_KVM */
5743 
5744 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5745 {
5746 	/*
5747 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5748 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
5749 	 * vmx_handle_exit().
5750 	 */
5751 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
5752 	return 1;
5753 }
5754 
5755 /*
5756  * The exit handlers return 1 if the exit was handled fully and guest execution
5757  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5758  * to be done to userspace and return 0.
5759  */
5760 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5761 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5762 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5763 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5764 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5765 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5766 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5767 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5768 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5769 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5770 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5771 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5772 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5773 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
5774 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5775 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5776 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5777 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5778 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5779 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5780 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5781 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5782 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5783 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5784 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5785 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5786 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5787 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5788 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5789 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5790 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5791 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5792 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5793 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5794 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5795 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5796 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5797 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5798 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5799 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
5800 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5801 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
5802 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5803 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5804 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
5805 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
5806 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5807 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5808 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5809 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5810 	[EXIT_REASON_ENCLS]		      = handle_encls,
5811 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5812 };
5813 
5814 static const int kvm_vmx_max_exit_handlers =
5815 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5816 
5817 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
5818 			      u64 *info1, u64 *info2,
5819 			      u32 *intr_info, u32 *error_code)
5820 {
5821 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5822 
5823 	*reason = vmx->exit_reason.full;
5824 	*info1 = vmx_get_exit_qual(vcpu);
5825 	if (!(vmx->exit_reason.failed_vmentry)) {
5826 		*info2 = vmx->idt_vectoring_info;
5827 		*intr_info = vmx_get_intr_info(vcpu);
5828 		if (is_exception_with_error_code(*intr_info))
5829 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5830 		else
5831 			*error_code = 0;
5832 	} else {
5833 		*info2 = 0;
5834 		*intr_info = 0;
5835 		*error_code = 0;
5836 	}
5837 }
5838 
5839 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5840 {
5841 	if (vmx->pml_pg) {
5842 		__free_page(vmx->pml_pg);
5843 		vmx->pml_pg = NULL;
5844 	}
5845 }
5846 
5847 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5848 {
5849 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5850 	u64 *pml_buf;
5851 	u16 pml_idx;
5852 
5853 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5854 
5855 	/* Do nothing if PML buffer is empty */
5856 	if (pml_idx == (PML_ENTITY_NUM - 1))
5857 		return;
5858 
5859 	/* PML index always points to next available PML buffer entity */
5860 	if (pml_idx >= PML_ENTITY_NUM)
5861 		pml_idx = 0;
5862 	else
5863 		pml_idx++;
5864 
5865 	pml_buf = page_address(vmx->pml_pg);
5866 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5867 		u64 gpa;
5868 
5869 		gpa = pml_buf[pml_idx];
5870 		WARN_ON(gpa & (PAGE_SIZE - 1));
5871 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5872 	}
5873 
5874 	/* reset PML index */
5875 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5876 }
5877 
5878 static void vmx_dump_sel(char *name, uint32_t sel)
5879 {
5880 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5881 	       name, vmcs_read16(sel),
5882 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5883 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5884 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5885 }
5886 
5887 static void vmx_dump_dtsel(char *name, uint32_t limit)
5888 {
5889 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5890 	       name, vmcs_read32(limit),
5891 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5892 }
5893 
5894 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5895 {
5896 	unsigned int i;
5897 	struct vmx_msr_entry *e;
5898 
5899 	pr_err("MSR %s:\n", name);
5900 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5901 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5902 }
5903 
5904 void dump_vmcs(struct kvm_vcpu *vcpu)
5905 {
5906 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5907 	u32 vmentry_ctl, vmexit_ctl;
5908 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5909 	unsigned long cr4;
5910 	int efer_slot;
5911 
5912 	if (!dump_invalid_vmcs) {
5913 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5914 		return;
5915 	}
5916 
5917 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5918 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5919 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5920 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5921 	cr4 = vmcs_readl(GUEST_CR4);
5922 	secondary_exec_control = 0;
5923 	if (cpu_has_secondary_exec_ctrls())
5924 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5925 
5926 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
5927 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
5928 	pr_err("*** Guest State ***\n");
5929 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5930 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5931 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5932 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5933 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5934 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5935 	if (cpu_has_vmx_ept()) {
5936 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5937 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5938 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5939 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5940 	}
5941 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5942 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5943 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5944 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5945 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5946 	       vmcs_readl(GUEST_SYSENTER_ESP),
5947 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5948 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5949 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5950 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5951 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5952 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5953 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5954 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5955 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5956 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5957 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5958 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5959 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5960 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5961 	else if (efer_slot >= 0)
5962 		pr_err("EFER= 0x%016llx (autoload)\n",
5963 		       vmx->msr_autoload.guest.val[efer_slot].value);
5964 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5965 		pr_err("EFER= 0x%016llx (effective)\n",
5966 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
5967 	else
5968 		pr_err("EFER= 0x%016llx (effective)\n",
5969 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5970 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5971 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5972 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5973 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5974 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5975 	if (cpu_has_load_perf_global_ctrl() &&
5976 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5977 		pr_err("PerfGlobCtl = 0x%016llx\n",
5978 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5979 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5980 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5981 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5982 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5983 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5984 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5985 		pr_err("InterruptStatus = %04x\n",
5986 		       vmcs_read16(GUEST_INTR_STATUS));
5987 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5988 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5989 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5990 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5991 
5992 	pr_err("*** Host State ***\n");
5993 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5994 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5995 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5996 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5997 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5998 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5999 	       vmcs_read16(HOST_TR_SELECTOR));
6000 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6001 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6002 	       vmcs_readl(HOST_TR_BASE));
6003 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6004 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6005 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6006 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6007 	       vmcs_readl(HOST_CR4));
6008 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6009 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6010 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6011 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6012 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6013 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6014 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6015 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6016 	if (cpu_has_load_perf_global_ctrl() &&
6017 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6018 		pr_err("PerfGlobCtl = 0x%016llx\n",
6019 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6020 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6021 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6022 
6023 	pr_err("*** Control State ***\n");
6024 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
6025 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
6026 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
6027 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6028 	       vmcs_read32(EXCEPTION_BITMAP),
6029 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6030 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6031 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6032 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6033 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6034 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6035 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6036 	       vmcs_read32(VM_EXIT_INTR_INFO),
6037 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6038 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6039 	pr_err("        reason=%08x qualification=%016lx\n",
6040 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6041 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6042 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6043 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6044 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6045 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6046 		pr_err("TSC Multiplier = 0x%016llx\n",
6047 		       vmcs_read64(TSC_MULTIPLIER));
6048 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6049 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6050 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6051 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6052 		}
6053 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6054 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6055 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6056 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6057 	}
6058 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6059 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6060 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6061 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6062 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6063 		pr_err("PLE Gap=%08x Window=%08x\n",
6064 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6065 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6066 		pr_err("Virtual processor ID = 0x%04x\n",
6067 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6068 }
6069 
6070 /*
6071  * The guest has exited.  See if we can fix it or if we need userspace
6072  * assistance.
6073  */
6074 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6075 {
6076 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6077 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6078 	u32 vectoring_info = vmx->idt_vectoring_info;
6079 	u16 exit_handler_index;
6080 
6081 	/*
6082 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6083 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6084 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6085 	 * mode as if vcpus is in root mode, the PML buffer must has been
6086 	 * flushed already.  Note, PML is never enabled in hardware while
6087 	 * running L2.
6088 	 */
6089 	if (enable_pml && !is_guest_mode(vcpu))
6090 		vmx_flush_pml_buffer(vcpu);
6091 
6092 	/*
6093 	 * KVM should never reach this point with a pending nested VM-Enter.
6094 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6095 	 * invalid guest state should never happen as that means KVM knowingly
6096 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6097 	 */
6098 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6099 		return -EIO;
6100 
6101 	if (is_guest_mode(vcpu)) {
6102 		/*
6103 		 * PML is never enabled when running L2, bail immediately if a
6104 		 * PML full exit occurs as something is horribly wrong.
6105 		 */
6106 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6107 			goto unexpected_vmexit;
6108 
6109 		/*
6110 		 * The host physical addresses of some pages of guest memory
6111 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6112 		 * Page). The CPU may write to these pages via their host
6113 		 * physical address while L2 is running, bypassing any
6114 		 * address-translation-based dirty tracking (e.g. EPT write
6115 		 * protection).
6116 		 *
6117 		 * Mark them dirty on every exit from L2 to prevent them from
6118 		 * getting out of sync with dirty tracking.
6119 		 */
6120 		nested_mark_vmcs12_pages_dirty(vcpu);
6121 
6122 		/*
6123 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6124 		 * operation, nested VM-Enter rejects any attempt to enter L2
6125 		 * with invalid state.  However, those checks are skipped if
6126 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6127 		 * L2 state is invalid, it means either L1 modified SMRAM state
6128 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6129 		 * doing so is architecturally allowed in the RSM case, and is
6130 		 * the least awful solution for the userspace case without
6131 		 * risking false positives.
6132 		 */
6133 		if (vmx->emulation_required) {
6134 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6135 			return 1;
6136 		}
6137 
6138 		if (nested_vmx_reflect_vmexit(vcpu))
6139 			return 1;
6140 	}
6141 
6142 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6143 	if (vmx->emulation_required)
6144 		return handle_invalid_guest_state(vcpu);
6145 
6146 	if (exit_reason.failed_vmentry) {
6147 		dump_vmcs(vcpu);
6148 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6149 		vcpu->run->fail_entry.hardware_entry_failure_reason
6150 			= exit_reason.full;
6151 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6152 		return 0;
6153 	}
6154 
6155 	if (unlikely(vmx->fail)) {
6156 		dump_vmcs(vcpu);
6157 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6158 		vcpu->run->fail_entry.hardware_entry_failure_reason
6159 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6160 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6161 		return 0;
6162 	}
6163 
6164 	/*
6165 	 * Note:
6166 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6167 	 * delivery event since it indicates guest is accessing MMIO.
6168 	 * The vm-exit can be triggered again after return to guest that
6169 	 * will cause infinite loop.
6170 	 */
6171 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6172 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6173 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6174 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6175 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6176 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6177 		int ndata = 3;
6178 
6179 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6180 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6181 		vcpu->run->internal.data[0] = vectoring_info;
6182 		vcpu->run->internal.data[1] = exit_reason.full;
6183 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6184 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6185 			vcpu->run->internal.data[ndata++] =
6186 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6187 		}
6188 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6189 		vcpu->run->internal.ndata = ndata;
6190 		return 0;
6191 	}
6192 
6193 	if (unlikely(!enable_vnmi &&
6194 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6195 		if (!vmx_interrupt_blocked(vcpu)) {
6196 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6197 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6198 			   vcpu->arch.nmi_pending) {
6199 			/*
6200 			 * This CPU don't support us in finding the end of an
6201 			 * NMI-blocked window if the guest runs with IRQs
6202 			 * disabled. So we pull the trigger after 1 s of
6203 			 * futile waiting, but inform the user about this.
6204 			 */
6205 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6206 			       "state on VCPU %d after 1 s timeout\n",
6207 			       __func__, vcpu->vcpu_id);
6208 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6209 		}
6210 	}
6211 
6212 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6213 		return 1;
6214 
6215 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6216 		goto unexpected_vmexit;
6217 #ifdef CONFIG_RETPOLINE
6218 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6219 		return kvm_emulate_wrmsr(vcpu);
6220 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6221 		return handle_preemption_timer(vcpu);
6222 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6223 		return handle_interrupt_window(vcpu);
6224 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6225 		return handle_external_interrupt(vcpu);
6226 	else if (exit_reason.basic == EXIT_REASON_HLT)
6227 		return kvm_emulate_halt(vcpu);
6228 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6229 		return handle_ept_misconfig(vcpu);
6230 #endif
6231 
6232 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6233 						kvm_vmx_max_exit_handlers);
6234 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6235 		goto unexpected_vmexit;
6236 
6237 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6238 
6239 unexpected_vmexit:
6240 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6241 		    exit_reason.full);
6242 	dump_vmcs(vcpu);
6243 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6244 	vcpu->run->internal.suberror =
6245 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6246 	vcpu->run->internal.ndata = 2;
6247 	vcpu->run->internal.data[0] = exit_reason.full;
6248 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6249 	return 0;
6250 }
6251 
6252 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6253 {
6254 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6255 
6256 	/*
6257 	 * Exit to user space when bus lock detected to inform that there is
6258 	 * a bus lock in guest.
6259 	 */
6260 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6261 		if (ret > 0)
6262 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6263 
6264 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6265 		return 0;
6266 	}
6267 	return ret;
6268 }
6269 
6270 /*
6271  * Software based L1D cache flush which is used when microcode providing
6272  * the cache control MSR is not loaded.
6273  *
6274  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6275  * flush it is required to read in 64 KiB because the replacement algorithm
6276  * is not exactly LRU. This could be sized at runtime via topology
6277  * information but as all relevant affected CPUs have 32KiB L1D cache size
6278  * there is no point in doing so.
6279  */
6280 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6281 {
6282 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6283 
6284 	/*
6285 	 * This code is only executed when the flush mode is 'cond' or
6286 	 * 'always'
6287 	 */
6288 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6289 		bool flush_l1d;
6290 
6291 		/*
6292 		 * Clear the per-vcpu flush bit, it gets set again
6293 		 * either from vcpu_run() or from one of the unsafe
6294 		 * VMEXIT handlers.
6295 		 */
6296 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6297 		vcpu->arch.l1tf_flush_l1d = false;
6298 
6299 		/*
6300 		 * Clear the per-cpu flush bit, it gets set again from
6301 		 * the interrupt handlers.
6302 		 */
6303 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6304 		kvm_clear_cpu_l1tf_flush_l1d();
6305 
6306 		if (!flush_l1d)
6307 			return;
6308 	}
6309 
6310 	vcpu->stat.l1d_flush++;
6311 
6312 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6313 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6314 		return;
6315 	}
6316 
6317 	asm volatile(
6318 		/* First ensure the pages are in the TLB */
6319 		"xorl	%%eax, %%eax\n"
6320 		".Lpopulate_tlb:\n\t"
6321 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6322 		"addl	$4096, %%eax\n\t"
6323 		"cmpl	%%eax, %[size]\n\t"
6324 		"jne	.Lpopulate_tlb\n\t"
6325 		"xorl	%%eax, %%eax\n\t"
6326 		"cpuid\n\t"
6327 		/* Now fill the cache */
6328 		"xorl	%%eax, %%eax\n"
6329 		".Lfill_cache:\n"
6330 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6331 		"addl	$64, %%eax\n\t"
6332 		"cmpl	%%eax, %[size]\n\t"
6333 		"jne	.Lfill_cache\n\t"
6334 		"lfence\n"
6335 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6336 		    [size] "r" (size)
6337 		: "eax", "ebx", "ecx", "edx");
6338 }
6339 
6340 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6341 {
6342 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6343 	int tpr_threshold;
6344 
6345 	if (is_guest_mode(vcpu) &&
6346 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6347 		return;
6348 
6349 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6350 	if (is_guest_mode(vcpu))
6351 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6352 	else
6353 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6354 }
6355 
6356 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6357 {
6358 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6359 	u32 sec_exec_control;
6360 
6361 	if (!lapic_in_kernel(vcpu))
6362 		return;
6363 
6364 	if (!flexpriority_enabled &&
6365 	    !cpu_has_vmx_virtualize_x2apic_mode())
6366 		return;
6367 
6368 	/* Postpone execution until vmcs01 is the current VMCS. */
6369 	if (is_guest_mode(vcpu)) {
6370 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6371 		return;
6372 	}
6373 
6374 	sec_exec_control = secondary_exec_controls_get(vmx);
6375 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6376 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6377 
6378 	switch (kvm_get_apic_mode(vcpu)) {
6379 	case LAPIC_MODE_INVALID:
6380 		WARN_ONCE(true, "Invalid local APIC state");
6381 		break;
6382 	case LAPIC_MODE_DISABLED:
6383 		break;
6384 	case LAPIC_MODE_XAPIC:
6385 		if (flexpriority_enabled) {
6386 			sec_exec_control |=
6387 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6388 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6389 
6390 			/*
6391 			 * Flush the TLB, reloading the APIC access page will
6392 			 * only do so if its physical address has changed, but
6393 			 * the guest may have inserted a non-APIC mapping into
6394 			 * the TLB while the APIC access page was disabled.
6395 			 */
6396 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6397 		}
6398 		break;
6399 	case LAPIC_MODE_X2APIC:
6400 		if (cpu_has_vmx_virtualize_x2apic_mode())
6401 			sec_exec_control |=
6402 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6403 		break;
6404 	}
6405 	secondary_exec_controls_set(vmx, sec_exec_control);
6406 
6407 	vmx_update_msr_bitmap_x2apic(vcpu);
6408 }
6409 
6410 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6411 {
6412 	struct page *page;
6413 
6414 	/* Defer reload until vmcs01 is the current VMCS. */
6415 	if (is_guest_mode(vcpu)) {
6416 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6417 		return;
6418 	}
6419 
6420 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6421 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6422 		return;
6423 
6424 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6425 	if (is_error_page(page))
6426 		return;
6427 
6428 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6429 	vmx_flush_tlb_current(vcpu);
6430 
6431 	/*
6432 	 * Do not pin apic access page in memory, the MMU notifier
6433 	 * will call us again if it is migrated or swapped out.
6434 	 */
6435 	put_page(page);
6436 }
6437 
6438 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6439 {
6440 	u16 status;
6441 	u8 old;
6442 
6443 	if (max_isr == -1)
6444 		max_isr = 0;
6445 
6446 	status = vmcs_read16(GUEST_INTR_STATUS);
6447 	old = status >> 8;
6448 	if (max_isr != old) {
6449 		status &= 0xff;
6450 		status |= max_isr << 8;
6451 		vmcs_write16(GUEST_INTR_STATUS, status);
6452 	}
6453 }
6454 
6455 static void vmx_set_rvi(int vector)
6456 {
6457 	u16 status;
6458 	u8 old;
6459 
6460 	if (vector == -1)
6461 		vector = 0;
6462 
6463 	status = vmcs_read16(GUEST_INTR_STATUS);
6464 	old = (u8)status & 0xff;
6465 	if ((u8)vector != old) {
6466 		status &= ~0xff;
6467 		status |= (u8)vector;
6468 		vmcs_write16(GUEST_INTR_STATUS, status);
6469 	}
6470 }
6471 
6472 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6473 {
6474 	/*
6475 	 * When running L2, updating RVI is only relevant when
6476 	 * vmcs12 virtual-interrupt-delivery enabled.
6477 	 * However, it can be enabled only when L1 also
6478 	 * intercepts external-interrupts and in that case
6479 	 * we should not update vmcs02 RVI but instead intercept
6480 	 * interrupt. Therefore, do nothing when running L2.
6481 	 */
6482 	if (!is_guest_mode(vcpu))
6483 		vmx_set_rvi(max_irr);
6484 }
6485 
6486 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6487 {
6488 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6489 	int max_irr;
6490 	bool got_posted_interrupt;
6491 
6492 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6493 		return -EIO;
6494 
6495 	if (pi_test_on(&vmx->pi_desc)) {
6496 		pi_clear_on(&vmx->pi_desc);
6497 		/*
6498 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6499 		 * But on x86 this is just a compiler barrier anyway.
6500 		 */
6501 		smp_mb__after_atomic();
6502 		got_posted_interrupt =
6503 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6504 	} else {
6505 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6506 		got_posted_interrupt = false;
6507 	}
6508 
6509 	/*
6510 	 * Newly recognized interrupts are injected via either virtual interrupt
6511 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6512 	 * disabled in two cases:
6513 	 *
6514 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6515 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6516 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6517 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6518 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6519 	 *
6520 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6521 	 * attempt to post interrupts.  The posted interrupt vector will cause
6522 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6523 	 */
6524 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6525 		vmx_set_rvi(max_irr);
6526 	else if (got_posted_interrupt)
6527 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6528 
6529 	return max_irr;
6530 }
6531 
6532 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6533 {
6534 	if (!kvm_vcpu_apicv_active(vcpu))
6535 		return;
6536 
6537 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6538 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6539 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6540 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6541 }
6542 
6543 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6544 {
6545 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6546 
6547 	pi_clear_on(&vmx->pi_desc);
6548 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6549 }
6550 
6551 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6552 
6553 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6554 					unsigned long entry)
6555 {
6556 	bool is_nmi = entry == (unsigned long)asm_exc_nmi_noist;
6557 
6558 	kvm_before_interrupt(vcpu, is_nmi ? KVM_HANDLING_NMI : KVM_HANDLING_IRQ);
6559 	vmx_do_interrupt_nmi_irqoff(entry);
6560 	kvm_after_interrupt(vcpu);
6561 }
6562 
6563 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6564 {
6565 	/*
6566 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6567 	 * MSR value is not clobbered by the host activity before the guest
6568 	 * has chance to consume it.
6569 	 *
6570 	 * Do not blindly read xfd_err here, since this exception might
6571 	 * be caused by L1 interception on a platform which doesn't
6572 	 * support xfd at all.
6573 	 *
6574 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6575 	 * only when xfd contains a non-zero value.
6576 	 *
6577 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6578 	 */
6579 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6580 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6581 }
6582 
6583 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6584 {
6585 	const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6586 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6587 
6588 	/* if exit due to PF check for async PF */
6589 	if (is_page_fault(intr_info))
6590 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6591 	/* if exit due to NM, handle before interrupts are enabled */
6592 	else if (is_nm_fault(intr_info))
6593 		handle_nm_fault_irqoff(&vmx->vcpu);
6594 	/* Handle machine checks before interrupts are enabled */
6595 	else if (is_machine_check(intr_info))
6596 		kvm_machine_check();
6597 	/* We need to handle NMIs before interrupts are enabled */
6598 	else if (is_nmi(intr_info))
6599 		handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6600 }
6601 
6602 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6603 {
6604 	u32 intr_info = vmx_get_intr_info(vcpu);
6605 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6606 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6607 
6608 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6609 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6610 		return;
6611 
6612 	handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6613 	vcpu->arch.at_instruction_boundary = true;
6614 }
6615 
6616 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6617 {
6618 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6619 
6620 	if (vmx->emulation_required)
6621 		return;
6622 
6623 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6624 		handle_external_interrupt_irqoff(vcpu);
6625 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6626 		handle_exception_nmi_irqoff(vmx);
6627 }
6628 
6629 /*
6630  * The kvm parameter can be NULL (module initialization, or invocation before
6631  * VM creation). Be sure to check the kvm parameter before using it.
6632  */
6633 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6634 {
6635 	switch (index) {
6636 	case MSR_IA32_SMBASE:
6637 		/*
6638 		 * We cannot do SMM unless we can run the guest in big
6639 		 * real mode.
6640 		 */
6641 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6642 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6643 		return nested;
6644 	case MSR_AMD64_VIRT_SPEC_CTRL:
6645 	case MSR_AMD64_TSC_RATIO:
6646 		/* This is AMD only.  */
6647 		return false;
6648 	default:
6649 		return true;
6650 	}
6651 }
6652 
6653 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6654 {
6655 	u32 exit_intr_info;
6656 	bool unblock_nmi;
6657 	u8 vector;
6658 	bool idtv_info_valid;
6659 
6660 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6661 
6662 	if (enable_vnmi) {
6663 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6664 			return;
6665 
6666 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6667 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6668 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6669 		/*
6670 		 * SDM 3: 27.7.1.2 (September 2008)
6671 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6672 		 * a guest IRET fault.
6673 		 * SDM 3: 23.2.2 (September 2008)
6674 		 * Bit 12 is undefined in any of the following cases:
6675 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6676 		 *   information field.
6677 		 *  If the VM exit is due to a double fault.
6678 		 */
6679 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6680 		    vector != DF_VECTOR && !idtv_info_valid)
6681 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6682 				      GUEST_INTR_STATE_NMI);
6683 		else
6684 			vmx->loaded_vmcs->nmi_known_unmasked =
6685 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6686 				  & GUEST_INTR_STATE_NMI);
6687 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6688 		vmx->loaded_vmcs->vnmi_blocked_time +=
6689 			ktime_to_ns(ktime_sub(ktime_get(),
6690 					      vmx->loaded_vmcs->entry_time));
6691 }
6692 
6693 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6694 				      u32 idt_vectoring_info,
6695 				      int instr_len_field,
6696 				      int error_code_field)
6697 {
6698 	u8 vector;
6699 	int type;
6700 	bool idtv_info_valid;
6701 
6702 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6703 
6704 	vcpu->arch.nmi_injected = false;
6705 	kvm_clear_exception_queue(vcpu);
6706 	kvm_clear_interrupt_queue(vcpu);
6707 
6708 	if (!idtv_info_valid)
6709 		return;
6710 
6711 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6712 
6713 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6714 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6715 
6716 	switch (type) {
6717 	case INTR_TYPE_NMI_INTR:
6718 		vcpu->arch.nmi_injected = true;
6719 		/*
6720 		 * SDM 3: 27.7.1.2 (September 2008)
6721 		 * Clear bit "block by NMI" before VM entry if a NMI
6722 		 * delivery faulted.
6723 		 */
6724 		vmx_set_nmi_mask(vcpu, false);
6725 		break;
6726 	case INTR_TYPE_SOFT_EXCEPTION:
6727 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6728 		fallthrough;
6729 	case INTR_TYPE_HARD_EXCEPTION:
6730 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6731 			u32 err = vmcs_read32(error_code_field);
6732 			kvm_requeue_exception_e(vcpu, vector, err);
6733 		} else
6734 			kvm_requeue_exception(vcpu, vector);
6735 		break;
6736 	case INTR_TYPE_SOFT_INTR:
6737 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6738 		fallthrough;
6739 	case INTR_TYPE_EXT_INTR:
6740 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6741 		break;
6742 	default:
6743 		break;
6744 	}
6745 }
6746 
6747 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6748 {
6749 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6750 				  VM_EXIT_INSTRUCTION_LEN,
6751 				  IDT_VECTORING_ERROR_CODE);
6752 }
6753 
6754 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6755 {
6756 	__vmx_complete_interrupts(vcpu,
6757 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6758 				  VM_ENTRY_INSTRUCTION_LEN,
6759 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6760 
6761 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6762 }
6763 
6764 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6765 {
6766 	int i, nr_msrs;
6767 	struct perf_guest_switch_msr *msrs;
6768 
6769 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6770 	msrs = perf_guest_get_msrs(&nr_msrs);
6771 	if (!msrs)
6772 		return;
6773 
6774 	for (i = 0; i < nr_msrs; i++)
6775 		if (msrs[i].host == msrs[i].guest)
6776 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6777 		else
6778 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6779 					msrs[i].host, false);
6780 }
6781 
6782 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6783 {
6784 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6785 	u64 tscl;
6786 	u32 delta_tsc;
6787 
6788 	if (vmx->req_immediate_exit) {
6789 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6790 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6791 	} else if (vmx->hv_deadline_tsc != -1) {
6792 		tscl = rdtsc();
6793 		if (vmx->hv_deadline_tsc > tscl)
6794 			/* set_hv_timer ensures the delta fits in 32-bits */
6795 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6796 				cpu_preemption_timer_multi);
6797 		else
6798 			delta_tsc = 0;
6799 
6800 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6801 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6802 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6803 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6804 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6805 	}
6806 }
6807 
6808 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6809 {
6810 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6811 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6812 		vmcs_writel(HOST_RSP, host_rsp);
6813 	}
6814 }
6815 
6816 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6817 {
6818 	switch (to_vmx(vcpu)->exit_reason.basic) {
6819 	case EXIT_REASON_MSR_WRITE:
6820 		return handle_fastpath_set_msr_irqoff(vcpu);
6821 	case EXIT_REASON_PREEMPTION_TIMER:
6822 		return handle_fastpath_preemption_timer(vcpu);
6823 	default:
6824 		return EXIT_FASTPATH_NONE;
6825 	}
6826 }
6827 
6828 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6829 					struct vcpu_vmx *vmx)
6830 {
6831 	guest_state_enter_irqoff();
6832 
6833 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6834 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6835 		vmx_l1d_flush(vcpu);
6836 	else if (static_branch_unlikely(&mds_user_clear))
6837 		mds_clear_cpu_buffers();
6838 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
6839 		 kvm_arch_has_assigned_device(vcpu->kvm))
6840 		mds_clear_cpu_buffers();
6841 
6842 	vmx_disable_fb_clear(vmx);
6843 
6844 	if (vcpu->arch.cr2 != native_read_cr2())
6845 		native_write_cr2(vcpu->arch.cr2);
6846 
6847 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6848 				   vmx->loaded_vmcs->launched);
6849 
6850 	vcpu->arch.cr2 = native_read_cr2();
6851 
6852 	vmx_enable_fb_clear(vmx);
6853 
6854 	guest_state_exit_irqoff();
6855 }
6856 
6857 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6858 {
6859 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6860 	unsigned long cr3, cr4;
6861 
6862 	/* Record the guest's net vcpu time for enforced NMI injections. */
6863 	if (unlikely(!enable_vnmi &&
6864 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6865 		vmx->loaded_vmcs->entry_time = ktime_get();
6866 
6867 	/*
6868 	 * Don't enter VMX if guest state is invalid, let the exit handler
6869 	 * start emulation until we arrive back to a valid state.  Synthesize a
6870 	 * consistency check VM-Exit due to invalid guest state and bail.
6871 	 */
6872 	if (unlikely(vmx->emulation_required)) {
6873 		vmx->fail = 0;
6874 
6875 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
6876 		vmx->exit_reason.failed_vmentry = 1;
6877 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
6878 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
6879 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
6880 		vmx->exit_intr_info = 0;
6881 		return EXIT_FASTPATH_NONE;
6882 	}
6883 
6884 	trace_kvm_entry(vcpu);
6885 
6886 	if (vmx->ple_window_dirty) {
6887 		vmx->ple_window_dirty = false;
6888 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6889 	}
6890 
6891 	/*
6892 	 * We did this in prepare_switch_to_guest, because it needs to
6893 	 * be within srcu_read_lock.
6894 	 */
6895 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6896 
6897 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6898 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6899 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6900 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6901 	vcpu->arch.regs_dirty = 0;
6902 
6903 	/*
6904 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
6905 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
6906 	 * it switches back to the current->mm, which can occur in KVM context
6907 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
6908 	 * toggles a static key while handling a VM-Exit.
6909 	 */
6910 	cr3 = __get_current_cr3_fast();
6911 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6912 		vmcs_writel(HOST_CR3, cr3);
6913 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6914 	}
6915 
6916 	cr4 = cr4_read_shadow();
6917 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6918 		vmcs_writel(HOST_CR4, cr4);
6919 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6920 	}
6921 
6922 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
6923 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
6924 		set_debugreg(vcpu->arch.dr6, 6);
6925 
6926 	/* When single-stepping over STI and MOV SS, we must clear the
6927 	 * corresponding interruptibility bits in the guest state. Otherwise
6928 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6929 	 * exceptions being set, but that's not correct for the guest debugging
6930 	 * case. */
6931 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6932 		vmx_set_interrupt_shadow(vcpu, 0);
6933 
6934 	kvm_load_guest_xsave_state(vcpu);
6935 
6936 	pt_guest_enter(vmx);
6937 
6938 	atomic_switch_perf_msrs(vmx);
6939 	if (intel_pmu_lbr_is_enabled(vcpu))
6940 		vmx_passthrough_lbr_msrs(vcpu);
6941 
6942 	if (enable_preemption_timer)
6943 		vmx_update_hv_timer(vcpu);
6944 
6945 	kvm_wait_lapic_expire(vcpu);
6946 
6947 	/*
6948 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6949 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6950 	 * is no need to worry about the conditional branch over the wrmsr
6951 	 * being speculatively taken.
6952 	 */
6953 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6954 
6955 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
6956 	vmx_vcpu_enter_exit(vcpu, vmx);
6957 
6958 	/*
6959 	 * We do not use IBRS in the kernel. If this vCPU has used the
6960 	 * SPEC_CTRL MSR it may have left it on; save the value and
6961 	 * turn it off. This is much more efficient than blindly adding
6962 	 * it to the atomic save/restore list. Especially as the former
6963 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6964 	 *
6965 	 * For non-nested case:
6966 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6967 	 * save it.
6968 	 *
6969 	 * For nested case:
6970 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6971 	 * save it.
6972 	 */
6973 	if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
6974 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6975 
6976 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6977 
6978 	/* All fields are clean at this point */
6979 	if (static_branch_unlikely(&enable_evmcs)) {
6980 		current_evmcs->hv_clean_fields |=
6981 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6982 
6983 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6984 	}
6985 
6986 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6987 	if (vmx->host_debugctlmsr)
6988 		update_debugctlmsr(vmx->host_debugctlmsr);
6989 
6990 #ifndef CONFIG_X86_64
6991 	/*
6992 	 * The sysexit path does not restore ds/es, so we must set them to
6993 	 * a reasonable value ourselves.
6994 	 *
6995 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6996 	 * function may be executed in interrupt context, which saves and
6997 	 * restore segments around it, nullifying its effect.
6998 	 */
6999 	loadsegment(ds, __USER_DS);
7000 	loadsegment(es, __USER_DS);
7001 #endif
7002 
7003 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7004 
7005 	pt_guest_exit(vmx);
7006 
7007 	kvm_load_host_xsave_state(vcpu);
7008 
7009 	if (is_guest_mode(vcpu)) {
7010 		/*
7011 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7012 		 * checking.
7013 		 */
7014 		if (vmx->nested.nested_run_pending &&
7015 		    !vmx->exit_reason.failed_vmentry)
7016 			++vcpu->stat.nested_run;
7017 
7018 		vmx->nested.nested_run_pending = 0;
7019 	}
7020 
7021 	vmx->idt_vectoring_info = 0;
7022 
7023 	if (unlikely(vmx->fail)) {
7024 		vmx->exit_reason.full = 0xdead;
7025 		return EXIT_FASTPATH_NONE;
7026 	}
7027 
7028 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7029 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7030 		kvm_machine_check();
7031 
7032 	if (likely(!vmx->exit_reason.failed_vmentry))
7033 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7034 
7035 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7036 
7037 	if (unlikely(vmx->exit_reason.failed_vmentry))
7038 		return EXIT_FASTPATH_NONE;
7039 
7040 	vmx->loaded_vmcs->launched = 1;
7041 
7042 	vmx_recover_nmi_blocking(vmx);
7043 	vmx_complete_interrupts(vmx);
7044 
7045 	if (is_guest_mode(vcpu))
7046 		return EXIT_FASTPATH_NONE;
7047 
7048 	return vmx_exit_handlers_fastpath(vcpu);
7049 }
7050 
7051 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7052 {
7053 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7054 
7055 	if (enable_pml)
7056 		vmx_destroy_pml_buffer(vmx);
7057 	free_vpid(vmx->vpid);
7058 	nested_vmx_free_vcpu(vcpu);
7059 	free_loaded_vmcs(vmx->loaded_vmcs);
7060 }
7061 
7062 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7063 {
7064 	struct vmx_uret_msr *tsx_ctrl;
7065 	struct vcpu_vmx *vmx;
7066 	int i, err;
7067 
7068 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7069 	vmx = to_vmx(vcpu);
7070 
7071 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7072 
7073 	err = -ENOMEM;
7074 
7075 	vmx->vpid = allocate_vpid();
7076 
7077 	/*
7078 	 * If PML is turned on, failure on enabling PML just results in failure
7079 	 * of creating the vcpu, therefore we can simplify PML logic (by
7080 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7081 	 * for the guest), etc.
7082 	 */
7083 	if (enable_pml) {
7084 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7085 		if (!vmx->pml_pg)
7086 			goto free_vpid;
7087 	}
7088 
7089 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7090 		vmx->guest_uret_msrs[i].mask = -1ull;
7091 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7092 		/*
7093 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7094 		 * Keep the host value unchanged to avoid changing CPUID bits
7095 		 * under the host kernel's feet.
7096 		 */
7097 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7098 		if (tsx_ctrl)
7099 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7100 	}
7101 
7102 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7103 	if (err < 0)
7104 		goto free_pml;
7105 
7106 	/*
7107 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7108 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7109 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7110 	 * performance benefits from enabling it for vmcs02.
7111 	 */
7112 	if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) &&
7113 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7114 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7115 
7116 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7117 	}
7118 
7119 	/* The MSR bitmap starts with all ones */
7120 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7121 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7122 
7123 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7124 #ifdef CONFIG_X86_64
7125 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7126 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7127 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7128 #endif
7129 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7130 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7131 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7132 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7133 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7134 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7135 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7136 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7137 	}
7138 
7139 	vmx->loaded_vmcs = &vmx->vmcs01;
7140 
7141 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7142 		err = alloc_apic_access_page(vcpu->kvm);
7143 		if (err)
7144 			goto free_vmcs;
7145 	}
7146 
7147 	if (enable_ept && !enable_unrestricted_guest) {
7148 		err = init_rmode_identity_map(vcpu->kvm);
7149 		if (err)
7150 			goto free_vmcs;
7151 	}
7152 
7153 	return 0;
7154 
7155 free_vmcs:
7156 	free_loaded_vmcs(vmx->loaded_vmcs);
7157 free_pml:
7158 	vmx_destroy_pml_buffer(vmx);
7159 free_vpid:
7160 	free_vpid(vmx->vpid);
7161 	return err;
7162 }
7163 
7164 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7165 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7166 
7167 static int vmx_vm_init(struct kvm *kvm)
7168 {
7169 	if (!ple_gap)
7170 		kvm->arch.pause_in_guest = true;
7171 
7172 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7173 		switch (l1tf_mitigation) {
7174 		case L1TF_MITIGATION_OFF:
7175 		case L1TF_MITIGATION_FLUSH_NOWARN:
7176 			/* 'I explicitly don't care' is set */
7177 			break;
7178 		case L1TF_MITIGATION_FLUSH:
7179 		case L1TF_MITIGATION_FLUSH_NOSMT:
7180 		case L1TF_MITIGATION_FULL:
7181 			/*
7182 			 * Warn upon starting the first VM in a potentially
7183 			 * insecure environment.
7184 			 */
7185 			if (sched_smt_active())
7186 				pr_warn_once(L1TF_MSG_SMT);
7187 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7188 				pr_warn_once(L1TF_MSG_L1D);
7189 			break;
7190 		case L1TF_MITIGATION_FULL_FORCE:
7191 			/* Flush is enforced */
7192 			break;
7193 		}
7194 	}
7195 	return 0;
7196 }
7197 
7198 static int __init vmx_check_processor_compat(void)
7199 {
7200 	struct vmcs_config vmcs_conf;
7201 	struct vmx_capability vmx_cap;
7202 
7203 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7204 	    !this_cpu_has(X86_FEATURE_VMX)) {
7205 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7206 		return -EIO;
7207 	}
7208 
7209 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7210 		return -EIO;
7211 	if (nested)
7212 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7213 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7214 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7215 				smp_processor_id());
7216 		return -EIO;
7217 	}
7218 	return 0;
7219 }
7220 
7221 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7222 {
7223 	u8 cache;
7224 
7225 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7226 	 * memory aliases with conflicting memory types and sometimes MCEs.
7227 	 * We have to be careful as to what are honored and when.
7228 	 *
7229 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7230 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7231 	 * This was historically the source of MCEs and we want to be
7232 	 * conservative.
7233 	 *
7234 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7235 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7236 	 * EPT memory type is set to WB.  The effective memory type is forced
7237 	 * WB.
7238 	 *
7239 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7240 	 * EPT memory type is used to emulate guest CD/MTRR.
7241 	 */
7242 
7243 	if (is_mmio)
7244 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7245 
7246 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7247 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7248 
7249 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7250 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7251 			cache = MTRR_TYPE_WRBACK;
7252 		else
7253 			cache = MTRR_TYPE_UNCACHABLE;
7254 
7255 		return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7256 	}
7257 
7258 	return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7259 }
7260 
7261 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7262 {
7263 	/*
7264 	 * These bits in the secondary execution controls field
7265 	 * are dynamic, the others are mostly based on the hypervisor
7266 	 * architecture and the guest's CPUID.  Do not touch the
7267 	 * dynamic bits.
7268 	 */
7269 	u32 mask =
7270 		SECONDARY_EXEC_SHADOW_VMCS |
7271 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7272 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7273 		SECONDARY_EXEC_DESC;
7274 
7275 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7276 
7277 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7278 }
7279 
7280 /*
7281  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7282  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7283  */
7284 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7285 {
7286 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7287 	struct kvm_cpuid_entry2 *entry;
7288 
7289 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7290 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7291 
7292 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7293 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7294 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7295 } while (0)
7296 
7297 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7298 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7299 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7300 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7301 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7302 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7303 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7304 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7305 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7306 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7307 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7308 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7309 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7310 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7311 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7312 
7313 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7314 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7315 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7316 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7317 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7318 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7319 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7320 
7321 #undef cr4_fixed1_update
7322 }
7323 
7324 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7325 {
7326 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7327 
7328 	if (kvm_mpx_supported()) {
7329 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7330 
7331 		if (mpx_enabled) {
7332 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7333 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7334 		} else {
7335 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7336 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7337 		}
7338 	}
7339 }
7340 
7341 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7342 {
7343 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7344 	struct kvm_cpuid_entry2 *best = NULL;
7345 	int i;
7346 
7347 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7348 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7349 		if (!best)
7350 			return;
7351 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7352 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7353 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7354 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7355 	}
7356 
7357 	/* Get the number of configurable Address Ranges for filtering */
7358 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7359 						PT_CAP_num_address_ranges);
7360 
7361 	/* Initialize and clear the no dependency bits */
7362 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7363 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7364 			RTIT_CTL_BRANCH_EN);
7365 
7366 	/*
7367 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7368 	 * will inject an #GP
7369 	 */
7370 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7371 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7372 
7373 	/*
7374 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7375 	 * PSBFreq can be set
7376 	 */
7377 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7378 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7379 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7380 
7381 	/*
7382 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7383 	 */
7384 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7385 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7386 					      RTIT_CTL_MTC_RANGE);
7387 
7388 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7389 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7390 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7391 							RTIT_CTL_PTW_EN);
7392 
7393 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7394 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7395 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7396 
7397 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7398 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7399 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7400 
7401 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7402 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7403 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7404 
7405 	/* unmask address range configure area */
7406 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7407 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7408 }
7409 
7410 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7411 {
7412 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7413 
7414 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7415 	vcpu->arch.xsaves_enabled = false;
7416 
7417 	vmx_setup_uret_msrs(vmx);
7418 
7419 	if (cpu_has_secondary_exec_ctrls())
7420 		vmcs_set_secondary_exec_control(vmx,
7421 						vmx_secondary_exec_control(vmx));
7422 
7423 	if (nested_vmx_allowed(vcpu))
7424 		vmx->msr_ia32_feature_control_valid_bits |=
7425 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7426 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7427 	else
7428 		vmx->msr_ia32_feature_control_valid_bits &=
7429 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7430 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7431 
7432 	if (nested_vmx_allowed(vcpu)) {
7433 		nested_vmx_cr_fixed1_bits_update(vcpu);
7434 		nested_vmx_entry_exit_ctls_update(vcpu);
7435 	}
7436 
7437 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7438 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7439 		update_intel_pt_cfg(vcpu);
7440 
7441 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7442 		struct vmx_uret_msr *msr;
7443 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7444 		if (msr) {
7445 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7446 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7447 		}
7448 	}
7449 
7450 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7451 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7452 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7453 
7454 
7455 	set_cr4_guest_host_mask(vmx);
7456 
7457 	vmx_write_encls_bitmap(vcpu, NULL);
7458 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7459 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7460 	else
7461 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7462 
7463 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7464 		vmx->msr_ia32_feature_control_valid_bits |=
7465 			FEAT_CTL_SGX_LC_ENABLED;
7466 	else
7467 		vmx->msr_ia32_feature_control_valid_bits &=
7468 			~FEAT_CTL_SGX_LC_ENABLED;
7469 
7470 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7471 	vmx_update_exception_bitmap(vcpu);
7472 }
7473 
7474 static __init void vmx_set_cpu_caps(void)
7475 {
7476 	kvm_set_cpu_caps();
7477 
7478 	/* CPUID 0x1 */
7479 	if (nested)
7480 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7481 
7482 	/* CPUID 0x7 */
7483 	if (kvm_mpx_supported())
7484 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7485 	if (!cpu_has_vmx_invpcid())
7486 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7487 	if (vmx_pt_mode_is_host_guest())
7488 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7489 
7490 	if (!enable_sgx) {
7491 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7492 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7493 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7494 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7495 	}
7496 
7497 	if (vmx_umip_emulated())
7498 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7499 
7500 	/* CPUID 0xD.1 */
7501 	supported_xss = 0;
7502 	if (!cpu_has_vmx_xsaves())
7503 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7504 
7505 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7506 	if (!cpu_has_vmx_rdtscp()) {
7507 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7508 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7509 	}
7510 
7511 	if (cpu_has_vmx_waitpkg())
7512 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7513 }
7514 
7515 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7516 {
7517 	to_vmx(vcpu)->req_immediate_exit = true;
7518 }
7519 
7520 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7521 				  struct x86_instruction_info *info)
7522 {
7523 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7524 	unsigned short port;
7525 	bool intercept;
7526 	int size;
7527 
7528 	if (info->intercept == x86_intercept_in ||
7529 	    info->intercept == x86_intercept_ins) {
7530 		port = info->src_val;
7531 		size = info->dst_bytes;
7532 	} else {
7533 		port = info->dst_val;
7534 		size = info->src_bytes;
7535 	}
7536 
7537 	/*
7538 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7539 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7540 	 * control.
7541 	 *
7542 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7543 	 */
7544 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7545 		intercept = nested_cpu_has(vmcs12,
7546 					   CPU_BASED_UNCOND_IO_EXITING);
7547 	else
7548 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7549 
7550 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7551 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7552 }
7553 
7554 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7555 			       struct x86_instruction_info *info,
7556 			       enum x86_intercept_stage stage,
7557 			       struct x86_exception *exception)
7558 {
7559 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7560 
7561 	switch (info->intercept) {
7562 	/*
7563 	 * RDPID causes #UD if disabled through secondary execution controls.
7564 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7565 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7566 	 */
7567 	case x86_intercept_rdpid:
7568 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7569 			exception->vector = UD_VECTOR;
7570 			exception->error_code_valid = false;
7571 			return X86EMUL_PROPAGATE_FAULT;
7572 		}
7573 		break;
7574 
7575 	case x86_intercept_in:
7576 	case x86_intercept_ins:
7577 	case x86_intercept_out:
7578 	case x86_intercept_outs:
7579 		return vmx_check_intercept_io(vcpu, info);
7580 
7581 	case x86_intercept_lgdt:
7582 	case x86_intercept_lidt:
7583 	case x86_intercept_lldt:
7584 	case x86_intercept_ltr:
7585 	case x86_intercept_sgdt:
7586 	case x86_intercept_sidt:
7587 	case x86_intercept_sldt:
7588 	case x86_intercept_str:
7589 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7590 			return X86EMUL_CONTINUE;
7591 
7592 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7593 		break;
7594 
7595 	/* TODO: check more intercepts... */
7596 	default:
7597 		break;
7598 	}
7599 
7600 	return X86EMUL_UNHANDLEABLE;
7601 }
7602 
7603 #ifdef CONFIG_X86_64
7604 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7605 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7606 				  u64 divisor, u64 *result)
7607 {
7608 	u64 low = a << shift, high = a >> (64 - shift);
7609 
7610 	/* To avoid the overflow on divq */
7611 	if (high >= divisor)
7612 		return 1;
7613 
7614 	/* Low hold the result, high hold rem which is discarded */
7615 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7616 	    "rm" (divisor), "0" (low), "1" (high));
7617 	*result = low;
7618 
7619 	return 0;
7620 }
7621 
7622 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7623 			    bool *expired)
7624 {
7625 	struct vcpu_vmx *vmx;
7626 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7627 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7628 
7629 	vmx = to_vmx(vcpu);
7630 	tscl = rdtsc();
7631 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7632 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7633 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7634 						    ktimer->timer_advance_ns);
7635 
7636 	if (delta_tsc > lapic_timer_advance_cycles)
7637 		delta_tsc -= lapic_timer_advance_cycles;
7638 	else
7639 		delta_tsc = 0;
7640 
7641 	/* Convert to host delta tsc if tsc scaling is enabled */
7642 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7643 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7644 				kvm_tsc_scaling_ratio_frac_bits,
7645 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7646 		return -ERANGE;
7647 
7648 	/*
7649 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7650 	 * we can't use the preemption timer.
7651 	 * It's possible that it fits on later vmentries, but checking
7652 	 * on every vmentry is costly so we just use an hrtimer.
7653 	 */
7654 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7655 		return -ERANGE;
7656 
7657 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7658 	*expired = !delta_tsc;
7659 	return 0;
7660 }
7661 
7662 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7663 {
7664 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7665 }
7666 #endif
7667 
7668 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7669 {
7670 	if (!kvm_pause_in_guest(vcpu->kvm))
7671 		shrink_ple_window(vcpu);
7672 }
7673 
7674 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7675 {
7676 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7677 
7678 	if (is_guest_mode(vcpu)) {
7679 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7680 		return;
7681 	}
7682 
7683 	/*
7684 	 * Note, cpu_dirty_logging_count can be changed concurrent with this
7685 	 * code, but in that case another update request will be made and so
7686 	 * the guest will never run with a stale PML value.
7687 	 */
7688 	if (vcpu->kvm->arch.cpu_dirty_logging_count)
7689 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7690 	else
7691 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7692 }
7693 
7694 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7695 {
7696 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7697 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7698 			FEAT_CTL_LMCE_ENABLED;
7699 	else
7700 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7701 			~FEAT_CTL_LMCE_ENABLED;
7702 }
7703 
7704 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7705 {
7706 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7707 	if (to_vmx(vcpu)->nested.nested_run_pending)
7708 		return -EBUSY;
7709 	return !is_smm(vcpu);
7710 }
7711 
7712 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7713 {
7714 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7715 
7716 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7717 	if (vmx->nested.smm.guest_mode)
7718 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7719 
7720 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7721 	vmx->nested.vmxon = false;
7722 	vmx_clear_hlt(vcpu);
7723 	return 0;
7724 }
7725 
7726 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7727 {
7728 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7729 	int ret;
7730 
7731 	if (vmx->nested.smm.vmxon) {
7732 		vmx->nested.vmxon = true;
7733 		vmx->nested.smm.vmxon = false;
7734 	}
7735 
7736 	if (vmx->nested.smm.guest_mode) {
7737 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7738 		if (ret)
7739 			return ret;
7740 
7741 		vmx->nested.nested_run_pending = 1;
7742 		vmx->nested.smm.guest_mode = false;
7743 	}
7744 	return 0;
7745 }
7746 
7747 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7748 {
7749 	/* RSM will cause a vmexit anyway.  */
7750 }
7751 
7752 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7753 {
7754 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7755 }
7756 
7757 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7758 {
7759 	if (is_guest_mode(vcpu)) {
7760 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7761 
7762 		if (hrtimer_try_to_cancel(timer) == 1)
7763 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7764 	}
7765 }
7766 
7767 static void vmx_hardware_unsetup(void)
7768 {
7769 	kvm_set_posted_intr_wakeup_handler(NULL);
7770 
7771 	if (nested)
7772 		nested_vmx_hardware_unsetup();
7773 
7774 	free_kvm_area();
7775 }
7776 
7777 static bool vmx_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason)
7778 {
7779 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7780 			  BIT(APICV_INHIBIT_REASON_ABSENT) |
7781 			  BIT(APICV_INHIBIT_REASON_HYPERV) |
7782 			  BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |
7783 			  BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |
7784 			  BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
7785 
7786 	return supported & BIT(reason);
7787 }
7788 
7789 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7790 	.name = "kvm_intel",
7791 
7792 	.hardware_unsetup = vmx_hardware_unsetup,
7793 
7794 	.hardware_enable = vmx_hardware_enable,
7795 	.hardware_disable = vmx_hardware_disable,
7796 	.has_emulated_msr = vmx_has_emulated_msr,
7797 
7798 	.vm_size = sizeof(struct kvm_vmx),
7799 	.vm_init = vmx_vm_init,
7800 
7801 	.vcpu_create = vmx_vcpu_create,
7802 	.vcpu_free = vmx_vcpu_free,
7803 	.vcpu_reset = vmx_vcpu_reset,
7804 
7805 	.prepare_switch_to_guest = vmx_prepare_switch_to_guest,
7806 	.vcpu_load = vmx_vcpu_load,
7807 	.vcpu_put = vmx_vcpu_put,
7808 
7809 	.update_exception_bitmap = vmx_update_exception_bitmap,
7810 	.get_msr_feature = vmx_get_msr_feature,
7811 	.get_msr = vmx_get_msr,
7812 	.set_msr = vmx_set_msr,
7813 	.get_segment_base = vmx_get_segment_base,
7814 	.get_segment = vmx_get_segment,
7815 	.set_segment = vmx_set_segment,
7816 	.get_cpl = vmx_get_cpl,
7817 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7818 	.set_cr0 = vmx_set_cr0,
7819 	.is_valid_cr4 = vmx_is_valid_cr4,
7820 	.set_cr4 = vmx_set_cr4,
7821 	.set_efer = vmx_set_efer,
7822 	.get_idt = vmx_get_idt,
7823 	.set_idt = vmx_set_idt,
7824 	.get_gdt = vmx_get_gdt,
7825 	.set_gdt = vmx_set_gdt,
7826 	.set_dr7 = vmx_set_dr7,
7827 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7828 	.cache_reg = vmx_cache_reg,
7829 	.get_rflags = vmx_get_rflags,
7830 	.set_rflags = vmx_set_rflags,
7831 	.get_if_flag = vmx_get_if_flag,
7832 
7833 	.flush_tlb_all = vmx_flush_tlb_all,
7834 	.flush_tlb_current = vmx_flush_tlb_current,
7835 	.flush_tlb_gva = vmx_flush_tlb_gva,
7836 	.flush_tlb_guest = vmx_flush_tlb_guest,
7837 
7838 	.vcpu_pre_run = vmx_vcpu_pre_run,
7839 	.vcpu_run = vmx_vcpu_run,
7840 	.handle_exit = vmx_handle_exit,
7841 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7842 	.update_emulated_instruction = vmx_update_emulated_instruction,
7843 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7844 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7845 	.patch_hypercall = vmx_patch_hypercall,
7846 	.inject_irq = vmx_inject_irq,
7847 	.inject_nmi = vmx_inject_nmi,
7848 	.queue_exception = vmx_queue_exception,
7849 	.cancel_injection = vmx_cancel_injection,
7850 	.interrupt_allowed = vmx_interrupt_allowed,
7851 	.nmi_allowed = vmx_nmi_allowed,
7852 	.get_nmi_mask = vmx_get_nmi_mask,
7853 	.set_nmi_mask = vmx_set_nmi_mask,
7854 	.enable_nmi_window = vmx_enable_nmi_window,
7855 	.enable_irq_window = vmx_enable_irq_window,
7856 	.update_cr8_intercept = vmx_update_cr8_intercept,
7857 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7858 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7859 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7860 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7861 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7862 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7863 	.hwapic_irr_update = vmx_hwapic_irr_update,
7864 	.hwapic_isr_update = vmx_hwapic_isr_update,
7865 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7866 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7867 	.deliver_interrupt = vmx_deliver_interrupt,
7868 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7869 
7870 	.set_tss_addr = vmx_set_tss_addr,
7871 	.set_identity_map_addr = vmx_set_identity_map_addr,
7872 	.get_mt_mask = vmx_get_mt_mask,
7873 
7874 	.get_exit_info = vmx_get_exit_info,
7875 
7876 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7877 
7878 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7879 
7880 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
7881 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
7882 	.write_tsc_offset = vmx_write_tsc_offset,
7883 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
7884 
7885 	.load_mmu_pgd = vmx_load_mmu_pgd,
7886 
7887 	.check_intercept = vmx_check_intercept,
7888 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7889 
7890 	.request_immediate_exit = vmx_request_immediate_exit,
7891 
7892 	.sched_in = vmx_sched_in,
7893 
7894 	.cpu_dirty_log_size = PML_ENTITY_NUM,
7895 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7896 
7897 	.nested_ops = &vmx_nested_ops,
7898 
7899 	.pi_update_irte = vmx_pi_update_irte,
7900 	.pi_start_assignment = vmx_pi_start_assignment,
7901 
7902 #ifdef CONFIG_X86_64
7903 	.set_hv_timer = vmx_set_hv_timer,
7904 	.cancel_hv_timer = vmx_cancel_hv_timer,
7905 #endif
7906 
7907 	.setup_mce = vmx_setup_mce,
7908 
7909 	.smi_allowed = vmx_smi_allowed,
7910 	.enter_smm = vmx_enter_smm,
7911 	.leave_smm = vmx_leave_smm,
7912 	.enable_smi_window = vmx_enable_smi_window,
7913 
7914 	.can_emulate_instruction = vmx_can_emulate_instruction,
7915 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7916 	.migrate_timers = vmx_migrate_timers,
7917 
7918 	.msr_filter_changed = vmx_msr_filter_changed,
7919 	.complete_emulated_msr = kvm_complete_insn_gp,
7920 
7921 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7922 };
7923 
7924 static unsigned int vmx_handle_intel_pt_intr(void)
7925 {
7926 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
7927 
7928 	/* '0' on failure so that the !PT case can use a RET0 static call. */
7929 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
7930 		return 0;
7931 
7932 	kvm_make_request(KVM_REQ_PMI, vcpu);
7933 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7934 		  (unsigned long *)&vcpu->arch.pmu.global_status);
7935 	return 1;
7936 }
7937 
7938 static __init void vmx_setup_user_return_msrs(void)
7939 {
7940 
7941 	/*
7942 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7943 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
7944 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7945 	 * support this emulation, MSR_STAR is included in the list for i386,
7946 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
7947 	 * into hardware and is here purely for emulation purposes.
7948 	 */
7949 	const u32 vmx_uret_msrs_list[] = {
7950 	#ifdef CONFIG_X86_64
7951 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7952 	#endif
7953 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7954 		MSR_IA32_TSX_CTRL,
7955 	};
7956 	int i;
7957 
7958 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7959 
7960 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7961 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7962 }
7963 
7964 static void __init vmx_setup_me_spte_mask(void)
7965 {
7966 	u64 me_mask = 0;
7967 
7968 	/*
7969 	 * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
7970 	 * the former to avoid exposing shadow_phys_bits.
7971 	 *
7972 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
7973 	 * shadow_phys_bits.  On MKTME and/or TDX capable systems,
7974 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
7975 	 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
7976 	 * reported by CPUID.  Those bits between are KeyID bits.
7977 	 */
7978 	if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
7979 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
7980 			kvm_get_shadow_phys_bits() - 1);
7981 	/*
7982 	 * Unlike SME, host kernel doesn't support setting up any
7983 	 * MKTME KeyID on Intel platforms.  No memory encryption
7984 	 * bits should be included into the SPTE.
7985 	 */
7986 	kvm_mmu_set_me_spte_mask(0, me_mask);
7987 }
7988 
7989 static struct kvm_x86_init_ops vmx_init_ops __initdata;
7990 
7991 static __init int hardware_setup(void)
7992 {
7993 	unsigned long host_bndcfgs;
7994 	struct desc_ptr dt;
7995 	int r;
7996 
7997 	store_idt(&dt);
7998 	host_idt_base = dt.address;
7999 
8000 	vmx_setup_user_return_msrs();
8001 
8002 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8003 		return -EIO;
8004 
8005 	if (boot_cpu_has(X86_FEATURE_NX))
8006 		kvm_enable_efer_bits(EFER_NX);
8007 
8008 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8009 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8010 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
8011 	}
8012 
8013 	if (!cpu_has_vmx_mpx())
8014 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8015 				    XFEATURE_MASK_BNDCSR);
8016 
8017 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8018 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8019 		enable_vpid = 0;
8020 
8021 	if (!cpu_has_vmx_ept() ||
8022 	    !cpu_has_vmx_ept_4levels() ||
8023 	    !cpu_has_vmx_ept_mt_wb() ||
8024 	    !cpu_has_vmx_invept_global())
8025 		enable_ept = 0;
8026 
8027 	/* NX support is required for shadow paging. */
8028 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8029 		pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
8030 		return -EOPNOTSUPP;
8031 	}
8032 
8033 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8034 		enable_ept_ad_bits = 0;
8035 
8036 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8037 		enable_unrestricted_guest = 0;
8038 
8039 	if (!cpu_has_vmx_flexpriority())
8040 		flexpriority_enabled = 0;
8041 
8042 	if (!cpu_has_virtual_nmis())
8043 		enable_vnmi = 0;
8044 
8045 	/*
8046 	 * set_apic_access_page_addr() is used to reload apic access
8047 	 * page upon invalidation.  No need to do anything if not
8048 	 * using the APIC_ACCESS_ADDR VMCS field.
8049 	 */
8050 	if (!flexpriority_enabled)
8051 		vmx_x86_ops.set_apic_access_page_addr = NULL;
8052 
8053 	if (!cpu_has_vmx_tpr_shadow())
8054 		vmx_x86_ops.update_cr8_intercept = NULL;
8055 
8056 #if IS_ENABLED(CONFIG_HYPERV)
8057 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8058 	    && enable_ept) {
8059 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
8060 		vmx_x86_ops.tlb_remote_flush_with_range =
8061 				hv_remote_flush_tlb_with_range;
8062 	}
8063 #endif
8064 
8065 	if (!cpu_has_vmx_ple()) {
8066 		ple_gap = 0;
8067 		ple_window = 0;
8068 		ple_window_grow = 0;
8069 		ple_window_max = 0;
8070 		ple_window_shrink = 0;
8071 	}
8072 
8073 	if (!cpu_has_vmx_apicv())
8074 		enable_apicv = 0;
8075 	if (!enable_apicv)
8076 		vmx_x86_ops.sync_pir_to_irr = NULL;
8077 
8078 	if (cpu_has_vmx_tsc_scaling())
8079 		kvm_has_tsc_control = true;
8080 
8081 	kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8082 	kvm_tsc_scaling_ratio_frac_bits = 48;
8083 	kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8084 
8085 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8086 
8087 	if (enable_ept)
8088 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8089 				      cpu_has_vmx_ept_execute_only());
8090 
8091 	/*
8092 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8093 	 * bits to shadow_zero_check.
8094 	 */
8095 	vmx_setup_me_spte_mask();
8096 
8097 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
8098 			  ept_caps_to_lpage_level(vmx_capability.ept));
8099 
8100 	/*
8101 	 * Only enable PML when hardware supports PML feature, and both EPT
8102 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8103 	 */
8104 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8105 		enable_pml = 0;
8106 
8107 	if (!enable_pml)
8108 		vmx_x86_ops.cpu_dirty_log_size = 0;
8109 
8110 	if (!cpu_has_vmx_preemption_timer())
8111 		enable_preemption_timer = false;
8112 
8113 	if (enable_preemption_timer) {
8114 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8115 		u64 vmx_msr;
8116 
8117 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
8118 		cpu_preemption_timer_multi =
8119 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8120 
8121 		if (tsc_khz)
8122 			use_timer_freq = (u64)tsc_khz * 1000;
8123 		use_timer_freq >>= cpu_preemption_timer_multi;
8124 
8125 		/*
8126 		 * KVM "disables" the preemption timer by setting it to its max
8127 		 * value.  Don't use the timer if it might cause spurious exits
8128 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8129 		 */
8130 		if (use_timer_freq > 0xffffffffu / 10)
8131 			enable_preemption_timer = false;
8132 	}
8133 
8134 	if (!enable_preemption_timer) {
8135 		vmx_x86_ops.set_hv_timer = NULL;
8136 		vmx_x86_ops.cancel_hv_timer = NULL;
8137 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8138 	}
8139 
8140 	kvm_mce_cap_supported |= MCG_LMCE_P;
8141 
8142 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8143 		return -EINVAL;
8144 	if (!enable_ept || !cpu_has_vmx_intel_pt())
8145 		pt_mode = PT_MODE_SYSTEM;
8146 	if (pt_mode == PT_MODE_HOST_GUEST)
8147 		vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8148 	else
8149 		vmx_init_ops.handle_intel_pt_intr = NULL;
8150 
8151 	setup_default_sgx_lepubkeyhash();
8152 
8153 	if (nested) {
8154 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8155 					   vmx_capability.ept);
8156 
8157 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8158 		if (r)
8159 			return r;
8160 	}
8161 
8162 	vmx_set_cpu_caps();
8163 
8164 	r = alloc_kvm_area();
8165 	if (r && nested)
8166 		nested_vmx_hardware_unsetup();
8167 
8168 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8169 
8170 	return r;
8171 }
8172 
8173 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8174 	.cpu_has_kvm_support = cpu_has_kvm_support,
8175 	.disabled_by_bios = vmx_disabled_by_bios,
8176 	.check_processor_compatibility = vmx_check_processor_compat,
8177 	.hardware_setup = hardware_setup,
8178 	.handle_intel_pt_intr = NULL,
8179 
8180 	.runtime_ops = &vmx_x86_ops,
8181 	.pmu_ops = &intel_pmu_ops,
8182 };
8183 
8184 static void vmx_cleanup_l1d_flush(void)
8185 {
8186 	if (vmx_l1d_flush_pages) {
8187 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8188 		vmx_l1d_flush_pages = NULL;
8189 	}
8190 	/* Restore state so sysfs ignores VMX */
8191 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8192 }
8193 
8194 static void vmx_exit(void)
8195 {
8196 #ifdef CONFIG_KEXEC_CORE
8197 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8198 	synchronize_rcu();
8199 #endif
8200 
8201 	kvm_exit();
8202 
8203 #if IS_ENABLED(CONFIG_HYPERV)
8204 	if (static_branch_unlikely(&enable_evmcs)) {
8205 		int cpu;
8206 		struct hv_vp_assist_page *vp_ap;
8207 		/*
8208 		 * Reset everything to support using non-enlightened VMCS
8209 		 * access later (e.g. when we reload the module with
8210 		 * enlightened_vmcs=0)
8211 		 */
8212 		for_each_online_cpu(cpu) {
8213 			vp_ap =	hv_get_vp_assist_page(cpu);
8214 
8215 			if (!vp_ap)
8216 				continue;
8217 
8218 			vp_ap->nested_control.features.directhypercall = 0;
8219 			vp_ap->current_nested_vmcs = 0;
8220 			vp_ap->enlighten_vmentry = 0;
8221 		}
8222 
8223 		static_branch_disable(&enable_evmcs);
8224 	}
8225 #endif
8226 	vmx_cleanup_l1d_flush();
8227 
8228 	allow_smaller_maxphyaddr = false;
8229 }
8230 module_exit(vmx_exit);
8231 
8232 static int __init vmx_init(void)
8233 {
8234 	int r, cpu;
8235 
8236 #if IS_ENABLED(CONFIG_HYPERV)
8237 	/*
8238 	 * Enlightened VMCS usage should be recommended and the host needs
8239 	 * to support eVMCS v1 or above. We can also disable eVMCS support
8240 	 * with module parameter.
8241 	 */
8242 	if (enlightened_vmcs &&
8243 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8244 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8245 	    KVM_EVMCS_VERSION) {
8246 
8247 		/* Check that we have assist pages on all online CPUs */
8248 		for_each_online_cpu(cpu) {
8249 			if (!hv_get_vp_assist_page(cpu)) {
8250 				enlightened_vmcs = false;
8251 				break;
8252 			}
8253 		}
8254 
8255 		if (enlightened_vmcs) {
8256 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8257 			static_branch_enable(&enable_evmcs);
8258 		}
8259 
8260 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8261 			vmx_x86_ops.enable_direct_tlbflush
8262 				= hv_enable_direct_tlbflush;
8263 
8264 	} else {
8265 		enlightened_vmcs = false;
8266 	}
8267 #endif
8268 
8269 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8270 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8271 	if (r)
8272 		return r;
8273 
8274 	/*
8275 	 * Must be called after kvm_init() so enable_ept is properly set
8276 	 * up. Hand the parameter mitigation value in which was stored in
8277 	 * the pre module init parser. If no parameter was given, it will
8278 	 * contain 'auto' which will be turned into the default 'cond'
8279 	 * mitigation mode.
8280 	 */
8281 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8282 	if (r) {
8283 		vmx_exit();
8284 		return r;
8285 	}
8286 
8287 	vmx_setup_fb_clear_ctrl();
8288 
8289 	for_each_possible_cpu(cpu) {
8290 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8291 
8292 		pi_init_cpu(cpu);
8293 	}
8294 
8295 #ifdef CONFIG_KEXEC_CORE
8296 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8297 			   crash_vmclear_local_loaded_vmcss);
8298 #endif
8299 	vmx_check_vmcs12_offsets();
8300 
8301 	/*
8302 	 * Shadow paging doesn't have a (further) performance penalty
8303 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8304 	 * by default
8305 	 */
8306 	if (!enable_ept)
8307 		allow_smaller_maxphyaddr = true;
8308 
8309 	return 0;
8310 }
8311 module_init(vmx_init);
8312