xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision d9f6e12f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/io.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/kexec.h>
42 #include <asm/perf_event.h>
43 #include <asm/mmu_context.h>
44 #include <asm/mshyperv.h>
45 #include <asm/mwait.h>
46 #include <asm/spec-ctrl.h>
47 #include <asm/virtext.h>
48 #include <asm/vmx.h>
49 
50 #include "capabilities.h"
51 #include "cpuid.h"
52 #include "evmcs.h"
53 #include "hyperv.h"
54 #include "irq.h"
55 #include "kvm_cache_regs.h"
56 #include "lapic.h"
57 #include "mmu.h"
58 #include "nested.h"
59 #include "pmu.h"
60 #include "trace.h"
61 #include "vmcs.h"
62 #include "vmcs12.h"
63 #include "vmx.h"
64 #include "x86.h"
65 
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68 
69 #ifdef MODULE
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
72 	{}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 #endif
76 
77 bool __read_mostly enable_vpid = 1;
78 module_param_named(vpid, enable_vpid, bool, 0444);
79 
80 static bool __read_mostly enable_vnmi = 1;
81 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
82 
83 bool __read_mostly flexpriority_enabled = 1;
84 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
85 
86 bool __read_mostly enable_ept = 1;
87 module_param_named(ept, enable_ept, bool, S_IRUGO);
88 
89 bool __read_mostly enable_unrestricted_guest = 1;
90 module_param_named(unrestricted_guest,
91 			enable_unrestricted_guest, bool, S_IRUGO);
92 
93 bool __read_mostly enable_ept_ad_bits = 1;
94 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
95 
96 static bool __read_mostly emulate_invalid_guest_state = true;
97 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
98 
99 static bool __read_mostly fasteoi = 1;
100 module_param(fasteoi, bool, S_IRUGO);
101 
102 bool __read_mostly enable_apicv = 1;
103 module_param(enable_apicv, bool, S_IRUGO);
104 
105 /*
106  * If nested=1, nested virtualization is supported, i.e., guests may use
107  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
108  * use VMX instructions.
109  */
110 static bool __read_mostly nested = 1;
111 module_param(nested, bool, S_IRUGO);
112 
113 bool __read_mostly enable_pml = 1;
114 module_param_named(pml, enable_pml, bool, S_IRUGO);
115 
116 static bool __read_mostly dump_invalid_vmcs = 0;
117 module_param(dump_invalid_vmcs, bool, 0644);
118 
119 #define MSR_BITMAP_MODE_X2APIC		1
120 #define MSR_BITMAP_MODE_X2APIC_APICV	2
121 
122 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
123 
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
127 #ifdef CONFIG_X86_64
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #endif
130 
131 extern bool __read_mostly allow_smaller_maxphyaddr;
132 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
133 
134 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
135 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
136 #define KVM_VM_CR0_ALWAYS_ON				\
137 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
138 	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
139 
140 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
141 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
142 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
143 
144 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
145 
146 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
147 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
148 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
149 	RTIT_STATUS_BYTECNT))
150 
151 /*
152  * List of MSRs that can be directly passed to the guest.
153  * In addition to these x2apic and PT MSRs are handled specially.
154  */
155 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
156 	MSR_IA32_SPEC_CTRL,
157 	MSR_IA32_PRED_CMD,
158 	MSR_IA32_TSC,
159 	MSR_FS_BASE,
160 	MSR_GS_BASE,
161 	MSR_KERNEL_GS_BASE,
162 	MSR_IA32_SYSENTER_CS,
163 	MSR_IA32_SYSENTER_ESP,
164 	MSR_IA32_SYSENTER_EIP,
165 	MSR_CORE_C1_RES,
166 	MSR_CORE_C3_RESIDENCY,
167 	MSR_CORE_C6_RESIDENCY,
168 	MSR_CORE_C7_RESIDENCY,
169 };
170 
171 /*
172  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
173  * ple_gap:    upper bound on the amount of time between two successive
174  *             executions of PAUSE in a loop. Also indicate if ple enabled.
175  *             According to test, this time is usually smaller than 128 cycles.
176  * ple_window: upper bound on the amount of time a guest is allowed to execute
177  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
178  *             less than 2^12 cycles
179  * Time is measured based on a counter that runs at the same rate as the TSC,
180  * refer SDM volume 3b section 21.6.13 & 22.1.3.
181  */
182 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
183 module_param(ple_gap, uint, 0444);
184 
185 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
186 module_param(ple_window, uint, 0444);
187 
188 /* Default doubles per-vcpu window every exit. */
189 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
190 module_param(ple_window_grow, uint, 0444);
191 
192 /* Default resets per-vcpu window every exit to ple_window. */
193 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
194 module_param(ple_window_shrink, uint, 0444);
195 
196 /* Default is to compute the maximum so we can never overflow. */
197 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
198 module_param(ple_window_max, uint, 0444);
199 
200 /* Default is SYSTEM mode, 1 for host-guest mode */
201 int __read_mostly pt_mode = PT_MODE_SYSTEM;
202 module_param(pt_mode, int, S_IRUGO);
203 
204 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
205 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
206 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
207 
208 /* Storage for pre module init parameter parsing */
209 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
210 
211 static const struct {
212 	const char *option;
213 	bool for_parse;
214 } vmentry_l1d_param[] = {
215 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
216 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
217 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
218 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
219 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
220 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
221 };
222 
223 #define L1D_CACHE_ORDER 4
224 static void *vmx_l1d_flush_pages;
225 
226 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
227 {
228 	struct page *page;
229 	unsigned int i;
230 
231 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
232 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
233 		return 0;
234 	}
235 
236 	if (!enable_ept) {
237 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
238 		return 0;
239 	}
240 
241 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
242 		u64 msr;
243 
244 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
245 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
246 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
247 			return 0;
248 		}
249 	}
250 
251 	/* If set to auto use the default l1tf mitigation method */
252 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
253 		switch (l1tf_mitigation) {
254 		case L1TF_MITIGATION_OFF:
255 			l1tf = VMENTER_L1D_FLUSH_NEVER;
256 			break;
257 		case L1TF_MITIGATION_FLUSH_NOWARN:
258 		case L1TF_MITIGATION_FLUSH:
259 		case L1TF_MITIGATION_FLUSH_NOSMT:
260 			l1tf = VMENTER_L1D_FLUSH_COND;
261 			break;
262 		case L1TF_MITIGATION_FULL:
263 		case L1TF_MITIGATION_FULL_FORCE:
264 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
265 			break;
266 		}
267 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
268 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
269 	}
270 
271 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
272 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
273 		/*
274 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
275 		 * lifetime and so should not be charged to a memcg.
276 		 */
277 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
278 		if (!page)
279 			return -ENOMEM;
280 		vmx_l1d_flush_pages = page_address(page);
281 
282 		/*
283 		 * Initialize each page with a different pattern in
284 		 * order to protect against KSM in the nested
285 		 * virtualization case.
286 		 */
287 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
288 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
289 			       PAGE_SIZE);
290 		}
291 	}
292 
293 	l1tf_vmx_mitigation = l1tf;
294 
295 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
296 		static_branch_enable(&vmx_l1d_should_flush);
297 	else
298 		static_branch_disable(&vmx_l1d_should_flush);
299 
300 	if (l1tf == VMENTER_L1D_FLUSH_COND)
301 		static_branch_enable(&vmx_l1d_flush_cond);
302 	else
303 		static_branch_disable(&vmx_l1d_flush_cond);
304 	return 0;
305 }
306 
307 static int vmentry_l1d_flush_parse(const char *s)
308 {
309 	unsigned int i;
310 
311 	if (s) {
312 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
313 			if (vmentry_l1d_param[i].for_parse &&
314 			    sysfs_streq(s, vmentry_l1d_param[i].option))
315 				return i;
316 		}
317 	}
318 	return -EINVAL;
319 }
320 
321 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
322 {
323 	int l1tf, ret;
324 
325 	l1tf = vmentry_l1d_flush_parse(s);
326 	if (l1tf < 0)
327 		return l1tf;
328 
329 	if (!boot_cpu_has(X86_BUG_L1TF))
330 		return 0;
331 
332 	/*
333 	 * Has vmx_init() run already? If not then this is the pre init
334 	 * parameter parsing. In that case just store the value and let
335 	 * vmx_init() do the proper setup after enable_ept has been
336 	 * established.
337 	 */
338 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
339 		vmentry_l1d_flush_param = l1tf;
340 		return 0;
341 	}
342 
343 	mutex_lock(&vmx_l1d_flush_mutex);
344 	ret = vmx_setup_l1d_flush(l1tf);
345 	mutex_unlock(&vmx_l1d_flush_mutex);
346 	return ret;
347 }
348 
349 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
350 {
351 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
352 		return sprintf(s, "???\n");
353 
354 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
355 }
356 
357 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
358 	.set = vmentry_l1d_flush_set,
359 	.get = vmentry_l1d_flush_get,
360 };
361 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
362 
363 static u32 vmx_segment_access_rights(struct kvm_segment *var);
364 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
365 							  u32 msr, int type);
366 
367 void vmx_vmexit(void);
368 
369 #define vmx_insn_failed(fmt...)		\
370 do {					\
371 	WARN_ONCE(1, fmt);		\
372 	pr_warn_ratelimited(fmt);	\
373 } while (0)
374 
375 asmlinkage void vmread_error(unsigned long field, bool fault)
376 {
377 	if (fault)
378 		kvm_spurious_fault();
379 	else
380 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
381 }
382 
383 noinline void vmwrite_error(unsigned long field, unsigned long value)
384 {
385 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
386 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
387 }
388 
389 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
390 {
391 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
392 }
393 
394 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
395 {
396 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
397 }
398 
399 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
400 {
401 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
402 			ext, vpid, gva);
403 }
404 
405 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
406 {
407 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
408 			ext, eptp, gpa);
409 }
410 
411 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
412 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
413 /*
414  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
415  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
416  */
417 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
418 
419 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
420 static DEFINE_SPINLOCK(vmx_vpid_lock);
421 
422 struct vmcs_config vmcs_config;
423 struct vmx_capability vmx_capability;
424 
425 #define VMX_SEGMENT_FIELD(seg)					\
426 	[VCPU_SREG_##seg] = {                                   \
427 		.selector = GUEST_##seg##_SELECTOR,		\
428 		.base = GUEST_##seg##_BASE,		   	\
429 		.limit = GUEST_##seg##_LIMIT,		   	\
430 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
431 	}
432 
433 static const struct kvm_vmx_segment_field {
434 	unsigned selector;
435 	unsigned base;
436 	unsigned limit;
437 	unsigned ar_bytes;
438 } kvm_vmx_segment_fields[] = {
439 	VMX_SEGMENT_FIELD(CS),
440 	VMX_SEGMENT_FIELD(DS),
441 	VMX_SEGMENT_FIELD(ES),
442 	VMX_SEGMENT_FIELD(FS),
443 	VMX_SEGMENT_FIELD(GS),
444 	VMX_SEGMENT_FIELD(SS),
445 	VMX_SEGMENT_FIELD(TR),
446 	VMX_SEGMENT_FIELD(LDTR),
447 };
448 
449 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
450 {
451 	vmx->segment_cache.bitmask = 0;
452 }
453 
454 static unsigned long host_idt_base;
455 
456 /*
457  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
458  * will emulate SYSCALL in legacy mode if the vendor string in guest
459  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
460  * support this emulation, IA32_STAR must always be included in
461  * vmx_uret_msrs_list[], even in i386 builds.
462  */
463 static const u32 vmx_uret_msrs_list[] = {
464 #ifdef CONFIG_X86_64
465 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
466 #endif
467 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
468 	MSR_IA32_TSX_CTRL,
469 };
470 
471 #if IS_ENABLED(CONFIG_HYPERV)
472 static bool __read_mostly enlightened_vmcs = true;
473 module_param(enlightened_vmcs, bool, 0444);
474 
475 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
476 static void check_ept_pointer_match(struct kvm *kvm)
477 {
478 	struct kvm_vcpu *vcpu;
479 	u64 tmp_eptp = INVALID_PAGE;
480 	int i;
481 
482 	kvm_for_each_vcpu(i, vcpu, kvm) {
483 		if (!VALID_PAGE(tmp_eptp)) {
484 			tmp_eptp = to_vmx(vcpu)->ept_pointer;
485 		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
486 			to_kvm_vmx(kvm)->ept_pointers_match
487 				= EPT_POINTERS_MISMATCH;
488 			return;
489 		}
490 	}
491 
492 	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
493 }
494 
495 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
496 		void *data)
497 {
498 	struct kvm_tlb_range *range = data;
499 
500 	return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
501 			range->pages);
502 }
503 
504 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
505 		struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
506 {
507 	u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
508 
509 	/*
510 	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
511 	 * of the base of EPT PML4 table, strip off EPT configuration
512 	 * information.
513 	 */
514 	if (range)
515 		return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
516 				kvm_fill_hv_flush_list_func, (void *)range);
517 	else
518 		return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
519 }
520 
521 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
522 		struct kvm_tlb_range *range)
523 {
524 	struct kvm_vcpu *vcpu;
525 	int ret = 0, i;
526 
527 	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
528 
529 	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
530 		check_ept_pointer_match(kvm);
531 
532 	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
533 		kvm_for_each_vcpu(i, vcpu, kvm) {
534 			/* If ept_pointer is invalid pointer, bypass flush request. */
535 			if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
536 				ret |= __hv_remote_flush_tlb_with_range(
537 					kvm, vcpu, range);
538 		}
539 	} else {
540 		ret = __hv_remote_flush_tlb_with_range(kvm,
541 				kvm_get_vcpu(kvm, 0), range);
542 	}
543 
544 	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
545 	return ret;
546 }
547 static int hv_remote_flush_tlb(struct kvm *kvm)
548 {
549 	return hv_remote_flush_tlb_with_range(kvm, NULL);
550 }
551 
552 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
553 {
554 	struct hv_enlightened_vmcs *evmcs;
555 	struct hv_partition_assist_pg **p_hv_pa_pg =
556 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
557 	/*
558 	 * Synthetic VM-Exit is not enabled in current code and so All
559 	 * evmcs in singe VM shares same assist page.
560 	 */
561 	if (!*p_hv_pa_pg)
562 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
563 
564 	if (!*p_hv_pa_pg)
565 		return -ENOMEM;
566 
567 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
568 
569 	evmcs->partition_assist_page =
570 		__pa(*p_hv_pa_pg);
571 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
572 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
573 
574 	return 0;
575 }
576 
577 #endif /* IS_ENABLED(CONFIG_HYPERV) */
578 
579 /*
580  * Comment's format: document - errata name - stepping - processor name.
581  * Refer from
582  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
583  */
584 static u32 vmx_preemption_cpu_tfms[] = {
585 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
586 0x000206E6,
587 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
588 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
589 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
590 0x00020652,
591 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
592 0x00020655,
593 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
594 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
595 /*
596  * 320767.pdf - AAP86  - B1 -
597  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
598  */
599 0x000106E5,
600 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
601 0x000106A0,
602 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
603 0x000106A1,
604 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
605 0x000106A4,
606  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
607  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
608  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
609 0x000106A5,
610  /* Xeon E3-1220 V2 */
611 0x000306A8,
612 };
613 
614 static inline bool cpu_has_broken_vmx_preemption_timer(void)
615 {
616 	u32 eax = cpuid_eax(0x00000001), i;
617 
618 	/* Clear the reserved bits */
619 	eax &= ~(0x3U << 14 | 0xfU << 28);
620 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
621 		if (eax == vmx_preemption_cpu_tfms[i])
622 			return true;
623 
624 	return false;
625 }
626 
627 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
628 {
629 	return flexpriority_enabled && lapic_in_kernel(vcpu);
630 }
631 
632 static inline bool report_flexpriority(void)
633 {
634 	return flexpriority_enabled;
635 }
636 
637 static int possible_passthrough_msr_slot(u32 msr)
638 {
639 	u32 i;
640 
641 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
642 		if (vmx_possible_passthrough_msrs[i] == msr)
643 			return i;
644 
645 	return -ENOENT;
646 }
647 
648 static bool is_valid_passthrough_msr(u32 msr)
649 {
650 	bool r;
651 
652 	switch (msr) {
653 	case 0x800 ... 0x8ff:
654 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
655 		return true;
656 	case MSR_IA32_RTIT_STATUS:
657 	case MSR_IA32_RTIT_OUTPUT_BASE:
658 	case MSR_IA32_RTIT_OUTPUT_MASK:
659 	case MSR_IA32_RTIT_CR3_MATCH:
660 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
661 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
662 	case MSR_LBR_SELECT:
663 	case MSR_LBR_TOS:
664 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
665 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
666 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
667 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
668 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
669 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
670 		return true;
671 	}
672 
673 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
674 
675 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
676 
677 	return r;
678 }
679 
680 static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
681 {
682 	int i;
683 
684 	for (i = 0; i < vmx->nr_uret_msrs; ++i)
685 		if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr)
686 			return i;
687 	return -1;
688 }
689 
690 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
691 {
692 	int i;
693 
694 	i = __vmx_find_uret_msr(vmx, msr);
695 	if (i >= 0)
696 		return &vmx->guest_uret_msrs[i];
697 	return NULL;
698 }
699 
700 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
701 				  struct vmx_uret_msr *msr, u64 data)
702 {
703 	int ret = 0;
704 
705 	u64 old_msr_data = msr->data;
706 	msr->data = data;
707 	if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) {
708 		preempt_disable();
709 		ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask);
710 		preempt_enable();
711 		if (ret)
712 			msr->data = old_msr_data;
713 	}
714 	return ret;
715 }
716 
717 #ifdef CONFIG_KEXEC_CORE
718 static void crash_vmclear_local_loaded_vmcss(void)
719 {
720 	int cpu = raw_smp_processor_id();
721 	struct loaded_vmcs *v;
722 
723 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
724 			    loaded_vmcss_on_cpu_link)
725 		vmcs_clear(v->vmcs);
726 }
727 #endif /* CONFIG_KEXEC_CORE */
728 
729 static void __loaded_vmcs_clear(void *arg)
730 {
731 	struct loaded_vmcs *loaded_vmcs = arg;
732 	int cpu = raw_smp_processor_id();
733 
734 	if (loaded_vmcs->cpu != cpu)
735 		return; /* vcpu migration can race with cpu offline */
736 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
737 		per_cpu(current_vmcs, cpu) = NULL;
738 
739 	vmcs_clear(loaded_vmcs->vmcs);
740 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
741 		vmcs_clear(loaded_vmcs->shadow_vmcs);
742 
743 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
744 
745 	/*
746 	 * Ensure all writes to loaded_vmcs, including deleting it from its
747 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
748 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
749 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
750 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
751 	 */
752 	smp_wmb();
753 
754 	loaded_vmcs->cpu = -1;
755 	loaded_vmcs->launched = 0;
756 }
757 
758 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
759 {
760 	int cpu = loaded_vmcs->cpu;
761 
762 	if (cpu != -1)
763 		smp_call_function_single(cpu,
764 			 __loaded_vmcs_clear, loaded_vmcs, 1);
765 }
766 
767 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
768 				       unsigned field)
769 {
770 	bool ret;
771 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
772 
773 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
774 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
775 		vmx->segment_cache.bitmask = 0;
776 	}
777 	ret = vmx->segment_cache.bitmask & mask;
778 	vmx->segment_cache.bitmask |= mask;
779 	return ret;
780 }
781 
782 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
783 {
784 	u16 *p = &vmx->segment_cache.seg[seg].selector;
785 
786 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
787 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
788 	return *p;
789 }
790 
791 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
792 {
793 	ulong *p = &vmx->segment_cache.seg[seg].base;
794 
795 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
796 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
797 	return *p;
798 }
799 
800 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
801 {
802 	u32 *p = &vmx->segment_cache.seg[seg].limit;
803 
804 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
805 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
806 	return *p;
807 }
808 
809 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
810 {
811 	u32 *p = &vmx->segment_cache.seg[seg].ar;
812 
813 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
814 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
815 	return *p;
816 }
817 
818 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
819 {
820 	u32 eb;
821 
822 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
823 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
824 	/*
825 	 * Guest access to VMware backdoor ports could legitimately
826 	 * trigger #GP because of TSS I/O permission bitmap.
827 	 * We intercept those #GP and allow access to them anyway
828 	 * as VMware does.
829 	 */
830 	if (enable_vmware_backdoor)
831 		eb |= (1u << GP_VECTOR);
832 	if ((vcpu->guest_debug &
833 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
834 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
835 		eb |= 1u << BP_VECTOR;
836 	if (to_vmx(vcpu)->rmode.vm86_active)
837 		eb = ~0;
838 	if (!vmx_need_pf_intercept(vcpu))
839 		eb &= ~(1u << PF_VECTOR);
840 
841 	/* When we are running a nested L2 guest and L1 specified for it a
842 	 * certain exception bitmap, we must trap the same exceptions and pass
843 	 * them to L1. When running L2, we will only handle the exceptions
844 	 * specified above if L1 did not want them.
845 	 */
846 	if (is_guest_mode(vcpu))
847 		eb |= get_vmcs12(vcpu)->exception_bitmap;
848         else {
849 		/*
850 		 * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched
851 		 * between guest and host.  In that case we only care about present
852 		 * faults.  For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in
853 		 * prepare_vmcs02_rare.
854 		 */
855 		bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR));
856 		int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0;
857 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
858 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask);
859 	}
860 
861 	vmcs_write32(EXCEPTION_BITMAP, eb);
862 }
863 
864 /*
865  * Check if MSR is intercepted for currently loaded MSR bitmap.
866  */
867 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
868 {
869 	unsigned long *msr_bitmap;
870 	int f = sizeof(unsigned long);
871 
872 	if (!cpu_has_vmx_msr_bitmap())
873 		return true;
874 
875 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
876 
877 	if (msr <= 0x1fff) {
878 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
879 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
880 		msr &= 0x1fff;
881 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
882 	}
883 
884 	return true;
885 }
886 
887 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
888 		unsigned long entry, unsigned long exit)
889 {
890 	vm_entry_controls_clearbit(vmx, entry);
891 	vm_exit_controls_clearbit(vmx, exit);
892 }
893 
894 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
895 {
896 	unsigned int i;
897 
898 	for (i = 0; i < m->nr; ++i) {
899 		if (m->val[i].index == msr)
900 			return i;
901 	}
902 	return -ENOENT;
903 }
904 
905 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
906 {
907 	int i;
908 	struct msr_autoload *m = &vmx->msr_autoload;
909 
910 	switch (msr) {
911 	case MSR_EFER:
912 		if (cpu_has_load_ia32_efer()) {
913 			clear_atomic_switch_msr_special(vmx,
914 					VM_ENTRY_LOAD_IA32_EFER,
915 					VM_EXIT_LOAD_IA32_EFER);
916 			return;
917 		}
918 		break;
919 	case MSR_CORE_PERF_GLOBAL_CTRL:
920 		if (cpu_has_load_perf_global_ctrl()) {
921 			clear_atomic_switch_msr_special(vmx,
922 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
923 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
924 			return;
925 		}
926 		break;
927 	}
928 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
929 	if (i < 0)
930 		goto skip_guest;
931 	--m->guest.nr;
932 	m->guest.val[i] = m->guest.val[m->guest.nr];
933 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
934 
935 skip_guest:
936 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
937 	if (i < 0)
938 		return;
939 
940 	--m->host.nr;
941 	m->host.val[i] = m->host.val[m->host.nr];
942 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
943 }
944 
945 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
946 		unsigned long entry, unsigned long exit,
947 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
948 		u64 guest_val, u64 host_val)
949 {
950 	vmcs_write64(guest_val_vmcs, guest_val);
951 	if (host_val_vmcs != HOST_IA32_EFER)
952 		vmcs_write64(host_val_vmcs, host_val);
953 	vm_entry_controls_setbit(vmx, entry);
954 	vm_exit_controls_setbit(vmx, exit);
955 }
956 
957 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
958 				  u64 guest_val, u64 host_val, bool entry_only)
959 {
960 	int i, j = 0;
961 	struct msr_autoload *m = &vmx->msr_autoload;
962 
963 	switch (msr) {
964 	case MSR_EFER:
965 		if (cpu_has_load_ia32_efer()) {
966 			add_atomic_switch_msr_special(vmx,
967 					VM_ENTRY_LOAD_IA32_EFER,
968 					VM_EXIT_LOAD_IA32_EFER,
969 					GUEST_IA32_EFER,
970 					HOST_IA32_EFER,
971 					guest_val, host_val);
972 			return;
973 		}
974 		break;
975 	case MSR_CORE_PERF_GLOBAL_CTRL:
976 		if (cpu_has_load_perf_global_ctrl()) {
977 			add_atomic_switch_msr_special(vmx,
978 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
979 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
980 					GUEST_IA32_PERF_GLOBAL_CTRL,
981 					HOST_IA32_PERF_GLOBAL_CTRL,
982 					guest_val, host_val);
983 			return;
984 		}
985 		break;
986 	case MSR_IA32_PEBS_ENABLE:
987 		/* PEBS needs a quiescent period after being disabled (to write
988 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
989 		 * provide that period, so a CPU could write host's record into
990 		 * guest's memory.
991 		 */
992 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
993 	}
994 
995 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
996 	if (!entry_only)
997 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
998 
999 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1000 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1001 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1002 				"Can't add msr %x\n", msr);
1003 		return;
1004 	}
1005 	if (i < 0) {
1006 		i = m->guest.nr++;
1007 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1008 	}
1009 	m->guest.val[i].index = msr;
1010 	m->guest.val[i].value = guest_val;
1011 
1012 	if (entry_only)
1013 		return;
1014 
1015 	if (j < 0) {
1016 		j = m->host.nr++;
1017 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1018 	}
1019 	m->host.val[j].index = msr;
1020 	m->host.val[j].value = host_val;
1021 }
1022 
1023 static bool update_transition_efer(struct vcpu_vmx *vmx)
1024 {
1025 	u64 guest_efer = vmx->vcpu.arch.efer;
1026 	u64 ignore_bits = 0;
1027 	int i;
1028 
1029 	/* Shadow paging assumes NX to be available.  */
1030 	if (!enable_ept)
1031 		guest_efer |= EFER_NX;
1032 
1033 	/*
1034 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1035 	 */
1036 	ignore_bits |= EFER_SCE;
1037 #ifdef CONFIG_X86_64
1038 	ignore_bits |= EFER_LMA | EFER_LME;
1039 	/* SCE is meaningful only in long mode on Intel */
1040 	if (guest_efer & EFER_LMA)
1041 		ignore_bits &= ~(u64)EFER_SCE;
1042 #endif
1043 
1044 	/*
1045 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1046 	 * On CPUs that support "load IA32_EFER", always switch EFER
1047 	 * atomically, since it's faster than switching it manually.
1048 	 */
1049 	if (cpu_has_load_ia32_efer() ||
1050 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1051 		if (!(guest_efer & EFER_LMA))
1052 			guest_efer &= ~EFER_LME;
1053 		if (guest_efer != host_efer)
1054 			add_atomic_switch_msr(vmx, MSR_EFER,
1055 					      guest_efer, host_efer, false);
1056 		else
1057 			clear_atomic_switch_msr(vmx, MSR_EFER);
1058 		return false;
1059 	}
1060 
1061 	i = __vmx_find_uret_msr(vmx, MSR_EFER);
1062 	if (i < 0)
1063 		return false;
1064 
1065 	clear_atomic_switch_msr(vmx, MSR_EFER);
1066 
1067 	guest_efer &= ~ignore_bits;
1068 	guest_efer |= host_efer & ignore_bits;
1069 
1070 	vmx->guest_uret_msrs[i].data = guest_efer;
1071 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1072 
1073 	return true;
1074 }
1075 
1076 #ifdef CONFIG_X86_32
1077 /*
1078  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1079  * VMCS rather than the segment table.  KVM uses this helper to figure
1080  * out the current bases to poke them into the VMCS before entry.
1081  */
1082 static unsigned long segment_base(u16 selector)
1083 {
1084 	struct desc_struct *table;
1085 	unsigned long v;
1086 
1087 	if (!(selector & ~SEGMENT_RPL_MASK))
1088 		return 0;
1089 
1090 	table = get_current_gdt_ro();
1091 
1092 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1093 		u16 ldt_selector = kvm_read_ldt();
1094 
1095 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1096 			return 0;
1097 
1098 		table = (struct desc_struct *)segment_base(ldt_selector);
1099 	}
1100 	v = get_desc_base(&table[selector >> 3]);
1101 	return v;
1102 }
1103 #endif
1104 
1105 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1106 {
1107 	return vmx_pt_mode_is_host_guest() &&
1108 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1109 }
1110 
1111 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1112 {
1113 	/* The base must be 128-byte aligned and a legal physical address. */
1114 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1115 }
1116 
1117 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1118 {
1119 	u32 i;
1120 
1121 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1122 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1123 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1124 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1125 	for (i = 0; i < addr_range; i++) {
1126 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1127 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1128 	}
1129 }
1130 
1131 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1132 {
1133 	u32 i;
1134 
1135 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1136 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1137 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1138 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1139 	for (i = 0; i < addr_range; i++) {
1140 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1141 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1142 	}
1143 }
1144 
1145 static void pt_guest_enter(struct vcpu_vmx *vmx)
1146 {
1147 	if (vmx_pt_mode_is_system())
1148 		return;
1149 
1150 	/*
1151 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1152 	 * Save host state before VM entry.
1153 	 */
1154 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1155 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1156 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1157 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1158 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1159 	}
1160 }
1161 
1162 static void pt_guest_exit(struct vcpu_vmx *vmx)
1163 {
1164 	if (vmx_pt_mode_is_system())
1165 		return;
1166 
1167 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1168 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1169 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1170 	}
1171 
1172 	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1173 	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1174 }
1175 
1176 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1177 			unsigned long fs_base, unsigned long gs_base)
1178 {
1179 	if (unlikely(fs_sel != host->fs_sel)) {
1180 		if (!(fs_sel & 7))
1181 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1182 		else
1183 			vmcs_write16(HOST_FS_SELECTOR, 0);
1184 		host->fs_sel = fs_sel;
1185 	}
1186 	if (unlikely(gs_sel != host->gs_sel)) {
1187 		if (!(gs_sel & 7))
1188 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1189 		else
1190 			vmcs_write16(HOST_GS_SELECTOR, 0);
1191 		host->gs_sel = gs_sel;
1192 	}
1193 	if (unlikely(fs_base != host->fs_base)) {
1194 		vmcs_writel(HOST_FS_BASE, fs_base);
1195 		host->fs_base = fs_base;
1196 	}
1197 	if (unlikely(gs_base != host->gs_base)) {
1198 		vmcs_writel(HOST_GS_BASE, gs_base);
1199 		host->gs_base = gs_base;
1200 	}
1201 }
1202 
1203 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1204 {
1205 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1206 	struct vmcs_host_state *host_state;
1207 #ifdef CONFIG_X86_64
1208 	int cpu = raw_smp_processor_id();
1209 #endif
1210 	unsigned long fs_base, gs_base;
1211 	u16 fs_sel, gs_sel;
1212 	int i;
1213 
1214 	vmx->req_immediate_exit = false;
1215 
1216 	/*
1217 	 * Note that guest MSRs to be saved/restored can also be changed
1218 	 * when guest state is loaded. This happens when guest transitions
1219 	 * to/from long-mode by setting MSR_EFER.LMA.
1220 	 */
1221 	if (!vmx->guest_uret_msrs_loaded) {
1222 		vmx->guest_uret_msrs_loaded = true;
1223 		for (i = 0; i < vmx->nr_active_uret_msrs; ++i)
1224 			kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot,
1225 						vmx->guest_uret_msrs[i].data,
1226 						vmx->guest_uret_msrs[i].mask);
1227 
1228 	}
1229 
1230     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1231 		nested_sync_vmcs12_to_shadow(vcpu);
1232 
1233 	if (vmx->guest_state_loaded)
1234 		return;
1235 
1236 	host_state = &vmx->loaded_vmcs->host_state;
1237 
1238 	/*
1239 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1240 	 * allow segment selectors with cpl > 0 or ti == 1.
1241 	 */
1242 	host_state->ldt_sel = kvm_read_ldt();
1243 
1244 #ifdef CONFIG_X86_64
1245 	savesegment(ds, host_state->ds_sel);
1246 	savesegment(es, host_state->es_sel);
1247 
1248 	gs_base = cpu_kernelmode_gs_base(cpu);
1249 	if (likely(is_64bit_mm(current->mm))) {
1250 		current_save_fsgs();
1251 		fs_sel = current->thread.fsindex;
1252 		gs_sel = current->thread.gsindex;
1253 		fs_base = current->thread.fsbase;
1254 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1255 	} else {
1256 		savesegment(fs, fs_sel);
1257 		savesegment(gs, gs_sel);
1258 		fs_base = read_msr(MSR_FS_BASE);
1259 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1260 	}
1261 
1262 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1263 #else
1264 	savesegment(fs, fs_sel);
1265 	savesegment(gs, gs_sel);
1266 	fs_base = segment_base(fs_sel);
1267 	gs_base = segment_base(gs_sel);
1268 #endif
1269 
1270 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1271 	vmx->guest_state_loaded = true;
1272 }
1273 
1274 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1275 {
1276 	struct vmcs_host_state *host_state;
1277 
1278 	if (!vmx->guest_state_loaded)
1279 		return;
1280 
1281 	host_state = &vmx->loaded_vmcs->host_state;
1282 
1283 	++vmx->vcpu.stat.host_state_reload;
1284 
1285 #ifdef CONFIG_X86_64
1286 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1287 #endif
1288 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1289 		kvm_load_ldt(host_state->ldt_sel);
1290 #ifdef CONFIG_X86_64
1291 		load_gs_index(host_state->gs_sel);
1292 #else
1293 		loadsegment(gs, host_state->gs_sel);
1294 #endif
1295 	}
1296 	if (host_state->fs_sel & 7)
1297 		loadsegment(fs, host_state->fs_sel);
1298 #ifdef CONFIG_X86_64
1299 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1300 		loadsegment(ds, host_state->ds_sel);
1301 		loadsegment(es, host_state->es_sel);
1302 	}
1303 #endif
1304 	invalidate_tss_limit();
1305 #ifdef CONFIG_X86_64
1306 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1307 #endif
1308 	load_fixmap_gdt(raw_smp_processor_id());
1309 	vmx->guest_state_loaded = false;
1310 	vmx->guest_uret_msrs_loaded = false;
1311 }
1312 
1313 #ifdef CONFIG_X86_64
1314 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1315 {
1316 	preempt_disable();
1317 	if (vmx->guest_state_loaded)
1318 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1319 	preempt_enable();
1320 	return vmx->msr_guest_kernel_gs_base;
1321 }
1322 
1323 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1324 {
1325 	preempt_disable();
1326 	if (vmx->guest_state_loaded)
1327 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1328 	preempt_enable();
1329 	vmx->msr_guest_kernel_gs_base = data;
1330 }
1331 #endif
1332 
1333 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1334 			struct loaded_vmcs *buddy)
1335 {
1336 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1337 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1338 	struct vmcs *prev;
1339 
1340 	if (!already_loaded) {
1341 		loaded_vmcs_clear(vmx->loaded_vmcs);
1342 		local_irq_disable();
1343 
1344 		/*
1345 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1346 		 * this cpu's percpu list, otherwise it may not yet be deleted
1347 		 * from its previous cpu's percpu list.  Pairs with the
1348 		 * smb_wmb() in __loaded_vmcs_clear().
1349 		 */
1350 		smp_rmb();
1351 
1352 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1353 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1354 		local_irq_enable();
1355 	}
1356 
1357 	prev = per_cpu(current_vmcs, cpu);
1358 	if (prev != vmx->loaded_vmcs->vmcs) {
1359 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1360 		vmcs_load(vmx->loaded_vmcs->vmcs);
1361 
1362 		/*
1363 		 * No indirect branch prediction barrier needed when switching
1364 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1365 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1366 		 */
1367 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1368 			indirect_branch_prediction_barrier();
1369 	}
1370 
1371 	if (!already_loaded) {
1372 		void *gdt = get_current_gdt_ro();
1373 		unsigned long sysenter_esp;
1374 
1375 		/*
1376 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1377 		 * TLB entries from its previous association with the vCPU.
1378 		 */
1379 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1380 
1381 		/*
1382 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1383 		 * processors.  See 22.2.4.
1384 		 */
1385 		vmcs_writel(HOST_TR_BASE,
1386 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1387 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1388 
1389 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1390 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1391 
1392 		vmx->loaded_vmcs->cpu = cpu;
1393 	}
1394 
1395 	/* Setup TSC multiplier */
1396 	if (kvm_has_tsc_control &&
1397 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1398 		decache_tsc_multiplier(vmx);
1399 }
1400 
1401 /*
1402  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1403  * vcpu mutex is already taken.
1404  */
1405 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1406 {
1407 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1408 
1409 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1410 
1411 	vmx_vcpu_pi_load(vcpu, cpu);
1412 
1413 	vmx->host_debugctlmsr = get_debugctlmsr();
1414 }
1415 
1416 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1417 {
1418 	vmx_vcpu_pi_put(vcpu);
1419 
1420 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1421 }
1422 
1423 static bool emulation_required(struct kvm_vcpu *vcpu)
1424 {
1425 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1426 }
1427 
1428 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1429 {
1430 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1431 	unsigned long rflags, save_rflags;
1432 
1433 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1434 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1435 		rflags = vmcs_readl(GUEST_RFLAGS);
1436 		if (vmx->rmode.vm86_active) {
1437 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1438 			save_rflags = vmx->rmode.save_rflags;
1439 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1440 		}
1441 		vmx->rflags = rflags;
1442 	}
1443 	return vmx->rflags;
1444 }
1445 
1446 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1447 {
1448 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1449 	unsigned long old_rflags;
1450 
1451 	if (is_unrestricted_guest(vcpu)) {
1452 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1453 		vmx->rflags = rflags;
1454 		vmcs_writel(GUEST_RFLAGS, rflags);
1455 		return;
1456 	}
1457 
1458 	old_rflags = vmx_get_rflags(vcpu);
1459 	vmx->rflags = rflags;
1460 	if (vmx->rmode.vm86_active) {
1461 		vmx->rmode.save_rflags = rflags;
1462 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1463 	}
1464 	vmcs_writel(GUEST_RFLAGS, rflags);
1465 
1466 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1467 		vmx->emulation_required = emulation_required(vcpu);
1468 }
1469 
1470 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1471 {
1472 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1473 	int ret = 0;
1474 
1475 	if (interruptibility & GUEST_INTR_STATE_STI)
1476 		ret |= KVM_X86_SHADOW_INT_STI;
1477 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1478 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1479 
1480 	return ret;
1481 }
1482 
1483 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1484 {
1485 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1486 	u32 interruptibility = interruptibility_old;
1487 
1488 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1489 
1490 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1491 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1492 	else if (mask & KVM_X86_SHADOW_INT_STI)
1493 		interruptibility |= GUEST_INTR_STATE_STI;
1494 
1495 	if ((interruptibility != interruptibility_old))
1496 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1497 }
1498 
1499 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1500 {
1501 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1502 	unsigned long value;
1503 
1504 	/*
1505 	 * Any MSR write that attempts to change bits marked reserved will
1506 	 * case a #GP fault.
1507 	 */
1508 	if (data & vmx->pt_desc.ctl_bitmask)
1509 		return 1;
1510 
1511 	/*
1512 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1513 	 * result in a #GP unless the same write also clears TraceEn.
1514 	 */
1515 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1516 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1517 		return 1;
1518 
1519 	/*
1520 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1521 	 * and FabricEn would cause #GP, if
1522 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1523 	 */
1524 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1525 		!(data & RTIT_CTL_FABRIC_EN) &&
1526 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1527 					PT_CAP_single_range_output))
1528 		return 1;
1529 
1530 	/*
1531 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1532 	 * utilize encodings marked reserved will cause a #GP fault.
1533 	 */
1534 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1535 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1536 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1537 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1538 		return 1;
1539 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1540 						PT_CAP_cycle_thresholds);
1541 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1542 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1543 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1544 		return 1;
1545 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1546 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1547 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1548 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1549 		return 1;
1550 
1551 	/*
1552 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1553 	 * cause a #GP fault.
1554 	 */
1555 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1556 	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1557 		return 1;
1558 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1559 	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1560 		return 1;
1561 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1562 	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1563 		return 1;
1564 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1565 	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1566 		return 1;
1567 
1568 	return 0;
1569 }
1570 
1571 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1572 {
1573 	return true;
1574 }
1575 
1576 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1577 {
1578 	unsigned long rip, orig_rip;
1579 
1580 	/*
1581 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1582 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1583 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1584 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1585 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1586 	 * i.e. we end up advancing IP with some random value.
1587 	 */
1588 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1589 	    to_vmx(vcpu)->exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1590 		orig_rip = kvm_rip_read(vcpu);
1591 		rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1592 #ifdef CONFIG_X86_64
1593 		/*
1594 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1595 		 * mode, but just finding out that we are in 64-bit mode is
1596 		 * quite expensive.  Only do it if there was a carry.
1597 		 */
1598 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1599 			rip = (u32)rip;
1600 #endif
1601 		kvm_rip_write(vcpu, rip);
1602 	} else {
1603 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1604 			return 0;
1605 	}
1606 
1607 	/* skipping an emulated instruction also counts */
1608 	vmx_set_interrupt_shadow(vcpu, 0);
1609 
1610 	return 1;
1611 }
1612 
1613 /*
1614  * Recognizes a pending MTF VM-exit and records the nested state for later
1615  * delivery.
1616  */
1617 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1618 {
1619 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1620 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1621 
1622 	if (!is_guest_mode(vcpu))
1623 		return;
1624 
1625 	/*
1626 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1627 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1628 	 * instruction boundary), any #DB exception pending delivery must be a
1629 	 * debug-trap. Record the pending MTF state to be delivered in
1630 	 * vmx_check_nested_events().
1631 	 */
1632 	if (nested_cpu_has_mtf(vmcs12) &&
1633 	    (!vcpu->arch.exception.pending ||
1634 	     vcpu->arch.exception.nr == DB_VECTOR))
1635 		vmx->nested.mtf_pending = true;
1636 	else
1637 		vmx->nested.mtf_pending = false;
1638 }
1639 
1640 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1641 {
1642 	vmx_update_emulated_instruction(vcpu);
1643 	return skip_emulated_instruction(vcpu);
1644 }
1645 
1646 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1647 {
1648 	/*
1649 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1650 	 * explicitly skip the instruction because if the HLT state is set,
1651 	 * then the instruction is already executing and RIP has already been
1652 	 * advanced.
1653 	 */
1654 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1655 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1656 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1657 }
1658 
1659 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1660 {
1661 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1662 	unsigned nr = vcpu->arch.exception.nr;
1663 	bool has_error_code = vcpu->arch.exception.has_error_code;
1664 	u32 error_code = vcpu->arch.exception.error_code;
1665 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1666 
1667 	kvm_deliver_exception_payload(vcpu);
1668 
1669 	if (has_error_code) {
1670 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1671 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1672 	}
1673 
1674 	if (vmx->rmode.vm86_active) {
1675 		int inc_eip = 0;
1676 		if (kvm_exception_is_soft(nr))
1677 			inc_eip = vcpu->arch.event_exit_inst_len;
1678 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1679 		return;
1680 	}
1681 
1682 	WARN_ON_ONCE(vmx->emulation_required);
1683 
1684 	if (kvm_exception_is_soft(nr)) {
1685 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1686 			     vmx->vcpu.arch.event_exit_inst_len);
1687 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1688 	} else
1689 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1690 
1691 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1692 
1693 	vmx_clear_hlt(vcpu);
1694 }
1695 
1696 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr)
1697 {
1698 	struct vmx_uret_msr tmp;
1699 	int from, to;
1700 
1701 	from = __vmx_find_uret_msr(vmx, msr);
1702 	if (from < 0)
1703 		return;
1704 	to = vmx->nr_active_uret_msrs++;
1705 
1706 	tmp = vmx->guest_uret_msrs[to];
1707 	vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from];
1708 	vmx->guest_uret_msrs[from] = tmp;
1709 }
1710 
1711 /*
1712  * Set up the vmcs to automatically save and restore system
1713  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1714  * mode, as fiddling with msrs is very expensive.
1715  */
1716 static void setup_msrs(struct vcpu_vmx *vmx)
1717 {
1718 	vmx->guest_uret_msrs_loaded = false;
1719 	vmx->nr_active_uret_msrs = 0;
1720 #ifdef CONFIG_X86_64
1721 	/*
1722 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1723 	 * when EFER.SCE is set.
1724 	 */
1725 	if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1726 		vmx_setup_uret_msr(vmx, MSR_STAR);
1727 		vmx_setup_uret_msr(vmx, MSR_LSTAR);
1728 		vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK);
1729 	}
1730 #endif
1731 	if (update_transition_efer(vmx))
1732 		vmx_setup_uret_msr(vmx, MSR_EFER);
1733 
1734 	if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1735 		vmx_setup_uret_msr(vmx, MSR_TSC_AUX);
1736 
1737 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL);
1738 
1739 	if (cpu_has_vmx_msr_bitmap())
1740 		vmx_update_msr_bitmap(&vmx->vcpu);
1741 }
1742 
1743 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1744 {
1745 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1746 	u64 g_tsc_offset = 0;
1747 
1748 	/*
1749 	 * We're here if L1 chose not to trap WRMSR to TSC. According
1750 	 * to the spec, this should set L1's TSC; The offset that L1
1751 	 * set for L2 remains unchanged, and still needs to be added
1752 	 * to the newly set TSC to get L2's TSC.
1753 	 */
1754 	if (is_guest_mode(vcpu) &&
1755 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1756 		g_tsc_offset = vmcs12->tsc_offset;
1757 
1758 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1759 				   vcpu->arch.tsc_offset - g_tsc_offset,
1760 				   offset);
1761 	vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1762 	return offset + g_tsc_offset;
1763 }
1764 
1765 /*
1766  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1767  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1768  * all guests if the "nested" module option is off, and can also be disabled
1769  * for a single guest by disabling its VMX cpuid bit.
1770  */
1771 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1772 {
1773 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1774 }
1775 
1776 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1777 						 uint64_t val)
1778 {
1779 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1780 
1781 	return !(val & ~valid_bits);
1782 }
1783 
1784 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1785 {
1786 	switch (msr->index) {
1787 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1788 		if (!nested)
1789 			return 1;
1790 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1791 	case MSR_IA32_PERF_CAPABILITIES:
1792 		msr->data = vmx_get_perf_capabilities();
1793 		return 0;
1794 	default:
1795 		return KVM_MSR_RET_INVALID;
1796 	}
1797 }
1798 
1799 /*
1800  * Reads an msr value (of 'msr_index') into 'pdata'.
1801  * Returns 0 on success, non-0 otherwise.
1802  * Assumes vcpu_load() was already called.
1803  */
1804 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1805 {
1806 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1807 	struct vmx_uret_msr *msr;
1808 	u32 index;
1809 
1810 	switch (msr_info->index) {
1811 #ifdef CONFIG_X86_64
1812 	case MSR_FS_BASE:
1813 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1814 		break;
1815 	case MSR_GS_BASE:
1816 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1817 		break;
1818 	case MSR_KERNEL_GS_BASE:
1819 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1820 		break;
1821 #endif
1822 	case MSR_EFER:
1823 		return kvm_get_msr_common(vcpu, msr_info);
1824 	case MSR_IA32_TSX_CTRL:
1825 		if (!msr_info->host_initiated &&
1826 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1827 			return 1;
1828 		goto find_uret_msr;
1829 	case MSR_IA32_UMWAIT_CONTROL:
1830 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1831 			return 1;
1832 
1833 		msr_info->data = vmx->msr_ia32_umwait_control;
1834 		break;
1835 	case MSR_IA32_SPEC_CTRL:
1836 		if (!msr_info->host_initiated &&
1837 		    !guest_has_spec_ctrl_msr(vcpu))
1838 			return 1;
1839 
1840 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1841 		break;
1842 	case MSR_IA32_SYSENTER_CS:
1843 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1844 		break;
1845 	case MSR_IA32_SYSENTER_EIP:
1846 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1847 		break;
1848 	case MSR_IA32_SYSENTER_ESP:
1849 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1850 		break;
1851 	case MSR_IA32_BNDCFGS:
1852 		if (!kvm_mpx_supported() ||
1853 		    (!msr_info->host_initiated &&
1854 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1855 			return 1;
1856 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1857 		break;
1858 	case MSR_IA32_MCG_EXT_CTL:
1859 		if (!msr_info->host_initiated &&
1860 		    !(vmx->msr_ia32_feature_control &
1861 		      FEAT_CTL_LMCE_ENABLED))
1862 			return 1;
1863 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1864 		break;
1865 	case MSR_IA32_FEAT_CTL:
1866 		msr_info->data = vmx->msr_ia32_feature_control;
1867 		break;
1868 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1869 		if (!nested_vmx_allowed(vcpu))
1870 			return 1;
1871 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1872 				    &msr_info->data))
1873 			return 1;
1874 		/*
1875 		 * Enlightened VMCS v1 doesn't have certain fields, but buggy
1876 		 * Hyper-V versions are still trying to use corresponding
1877 		 * features when they are exposed. Filter out the essential
1878 		 * minimum.
1879 		 */
1880 		if (!msr_info->host_initiated &&
1881 		    vmx->nested.enlightened_vmcs_enabled)
1882 			nested_evmcs_filter_control_msr(msr_info->index,
1883 							&msr_info->data);
1884 		break;
1885 	case MSR_IA32_RTIT_CTL:
1886 		if (!vmx_pt_mode_is_host_guest())
1887 			return 1;
1888 		msr_info->data = vmx->pt_desc.guest.ctl;
1889 		break;
1890 	case MSR_IA32_RTIT_STATUS:
1891 		if (!vmx_pt_mode_is_host_guest())
1892 			return 1;
1893 		msr_info->data = vmx->pt_desc.guest.status;
1894 		break;
1895 	case MSR_IA32_RTIT_CR3_MATCH:
1896 		if (!vmx_pt_mode_is_host_guest() ||
1897 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1898 						PT_CAP_cr3_filtering))
1899 			return 1;
1900 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1901 		break;
1902 	case MSR_IA32_RTIT_OUTPUT_BASE:
1903 		if (!vmx_pt_mode_is_host_guest() ||
1904 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1905 					PT_CAP_topa_output) &&
1906 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1907 					PT_CAP_single_range_output)))
1908 			return 1;
1909 		msr_info->data = vmx->pt_desc.guest.output_base;
1910 		break;
1911 	case MSR_IA32_RTIT_OUTPUT_MASK:
1912 		if (!vmx_pt_mode_is_host_guest() ||
1913 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1914 					PT_CAP_topa_output) &&
1915 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1916 					PT_CAP_single_range_output)))
1917 			return 1;
1918 		msr_info->data = vmx->pt_desc.guest.output_mask;
1919 		break;
1920 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1921 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1922 		if (!vmx_pt_mode_is_host_guest() ||
1923 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1924 					PT_CAP_num_address_ranges)))
1925 			return 1;
1926 		if (index % 2)
1927 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1928 		else
1929 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1930 		break;
1931 	case MSR_TSC_AUX:
1932 		if (!msr_info->host_initiated &&
1933 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1934 			return 1;
1935 		goto find_uret_msr;
1936 	case MSR_IA32_DEBUGCTLMSR:
1937 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1938 		break;
1939 	default:
1940 	find_uret_msr:
1941 		msr = vmx_find_uret_msr(vmx, msr_info->index);
1942 		if (msr) {
1943 			msr_info->data = msr->data;
1944 			break;
1945 		}
1946 		return kvm_get_msr_common(vcpu, msr_info);
1947 	}
1948 
1949 	return 0;
1950 }
1951 
1952 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1953 						    u64 data)
1954 {
1955 #ifdef CONFIG_X86_64
1956 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1957 		return (u32)data;
1958 #endif
1959 	return (unsigned long)data;
1960 }
1961 
1962 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1963 {
1964 	u64 debugctl = vmx_supported_debugctl();
1965 
1966 	if (!intel_pmu_lbr_is_enabled(vcpu))
1967 		debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1968 
1969 	return debugctl;
1970 }
1971 
1972 /*
1973  * Writes msr value into the appropriate "register".
1974  * Returns 0 on success, non-0 otherwise.
1975  * Assumes vcpu_load() was already called.
1976  */
1977 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1978 {
1979 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1980 	struct vmx_uret_msr *msr;
1981 	int ret = 0;
1982 	u32 msr_index = msr_info->index;
1983 	u64 data = msr_info->data;
1984 	u32 index;
1985 
1986 	switch (msr_index) {
1987 	case MSR_EFER:
1988 		ret = kvm_set_msr_common(vcpu, msr_info);
1989 		break;
1990 #ifdef CONFIG_X86_64
1991 	case MSR_FS_BASE:
1992 		vmx_segment_cache_clear(vmx);
1993 		vmcs_writel(GUEST_FS_BASE, data);
1994 		break;
1995 	case MSR_GS_BASE:
1996 		vmx_segment_cache_clear(vmx);
1997 		vmcs_writel(GUEST_GS_BASE, data);
1998 		break;
1999 	case MSR_KERNEL_GS_BASE:
2000 		vmx_write_guest_kernel_gs_base(vmx, data);
2001 		break;
2002 #endif
2003 	case MSR_IA32_SYSENTER_CS:
2004 		if (is_guest_mode(vcpu))
2005 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2006 		vmcs_write32(GUEST_SYSENTER_CS, data);
2007 		break;
2008 	case MSR_IA32_SYSENTER_EIP:
2009 		if (is_guest_mode(vcpu)) {
2010 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2011 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2012 		}
2013 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2014 		break;
2015 	case MSR_IA32_SYSENTER_ESP:
2016 		if (is_guest_mode(vcpu)) {
2017 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2018 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2019 		}
2020 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2021 		break;
2022 	case MSR_IA32_DEBUGCTLMSR: {
2023 		u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
2024 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2025 			if (report_ignored_msrs)
2026 				vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
2027 					    __func__, data);
2028 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2029 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2030 		}
2031 
2032 		if (invalid)
2033 			return 1;
2034 
2035 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2036 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2037 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2038 
2039 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2040 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2041 		    (data & DEBUGCTLMSR_LBR))
2042 			intel_pmu_create_guest_lbr_event(vcpu);
2043 		return 0;
2044 	}
2045 	case MSR_IA32_BNDCFGS:
2046 		if (!kvm_mpx_supported() ||
2047 		    (!msr_info->host_initiated &&
2048 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2049 			return 1;
2050 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2051 		    (data & MSR_IA32_BNDCFGS_RSVD))
2052 			return 1;
2053 		vmcs_write64(GUEST_BNDCFGS, data);
2054 		break;
2055 	case MSR_IA32_UMWAIT_CONTROL:
2056 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2057 			return 1;
2058 
2059 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2060 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2061 			return 1;
2062 
2063 		vmx->msr_ia32_umwait_control = data;
2064 		break;
2065 	case MSR_IA32_SPEC_CTRL:
2066 		if (!msr_info->host_initiated &&
2067 		    !guest_has_spec_ctrl_msr(vcpu))
2068 			return 1;
2069 
2070 		if (kvm_spec_ctrl_test_value(data))
2071 			return 1;
2072 
2073 		vmx->spec_ctrl = data;
2074 		if (!data)
2075 			break;
2076 
2077 		/*
2078 		 * For non-nested:
2079 		 * When it's written (to non-zero) for the first time, pass
2080 		 * it through.
2081 		 *
2082 		 * For nested:
2083 		 * The handling of the MSR bitmap for L2 guests is done in
2084 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2085 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2086 		 * in the merging. We update the vmcs01 here for L1 as well
2087 		 * since it will end up touching the MSR anyway now.
2088 		 */
2089 		vmx_disable_intercept_for_msr(vcpu,
2090 					      MSR_IA32_SPEC_CTRL,
2091 					      MSR_TYPE_RW);
2092 		break;
2093 	case MSR_IA32_TSX_CTRL:
2094 		if (!msr_info->host_initiated &&
2095 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2096 			return 1;
2097 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2098 			return 1;
2099 		goto find_uret_msr;
2100 	case MSR_IA32_PRED_CMD:
2101 		if (!msr_info->host_initiated &&
2102 		    !guest_has_pred_cmd_msr(vcpu))
2103 			return 1;
2104 
2105 		if (data & ~PRED_CMD_IBPB)
2106 			return 1;
2107 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2108 			return 1;
2109 		if (!data)
2110 			break;
2111 
2112 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2113 
2114 		/*
2115 		 * For non-nested:
2116 		 * When it's written (to non-zero) for the first time, pass
2117 		 * it through.
2118 		 *
2119 		 * For nested:
2120 		 * The handling of the MSR bitmap for L2 guests is done in
2121 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2122 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2123 		 * in the merging.
2124 		 */
2125 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2126 		break;
2127 	case MSR_IA32_CR_PAT:
2128 		if (!kvm_pat_valid(data))
2129 			return 1;
2130 
2131 		if (is_guest_mode(vcpu) &&
2132 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2133 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2134 
2135 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2136 			vmcs_write64(GUEST_IA32_PAT, data);
2137 			vcpu->arch.pat = data;
2138 			break;
2139 		}
2140 		ret = kvm_set_msr_common(vcpu, msr_info);
2141 		break;
2142 	case MSR_IA32_TSC_ADJUST:
2143 		ret = kvm_set_msr_common(vcpu, msr_info);
2144 		break;
2145 	case MSR_IA32_MCG_EXT_CTL:
2146 		if ((!msr_info->host_initiated &&
2147 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2148 		       FEAT_CTL_LMCE_ENABLED)) ||
2149 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2150 			return 1;
2151 		vcpu->arch.mcg_ext_ctl = data;
2152 		break;
2153 	case MSR_IA32_FEAT_CTL:
2154 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2155 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2156 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2157 			return 1;
2158 		vmx->msr_ia32_feature_control = data;
2159 		if (msr_info->host_initiated && data == 0)
2160 			vmx_leave_nested(vcpu);
2161 		break;
2162 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2163 		if (!msr_info->host_initiated)
2164 			return 1; /* they are read-only */
2165 		if (!nested_vmx_allowed(vcpu))
2166 			return 1;
2167 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2168 	case MSR_IA32_RTIT_CTL:
2169 		if (!vmx_pt_mode_is_host_guest() ||
2170 			vmx_rtit_ctl_check(vcpu, data) ||
2171 			vmx->nested.vmxon)
2172 			return 1;
2173 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2174 		vmx->pt_desc.guest.ctl = data;
2175 		pt_update_intercept_for_msr(vcpu);
2176 		break;
2177 	case MSR_IA32_RTIT_STATUS:
2178 		if (!pt_can_write_msr(vmx))
2179 			return 1;
2180 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2181 			return 1;
2182 		vmx->pt_desc.guest.status = data;
2183 		break;
2184 	case MSR_IA32_RTIT_CR3_MATCH:
2185 		if (!pt_can_write_msr(vmx))
2186 			return 1;
2187 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2188 					   PT_CAP_cr3_filtering))
2189 			return 1;
2190 		vmx->pt_desc.guest.cr3_match = data;
2191 		break;
2192 	case MSR_IA32_RTIT_OUTPUT_BASE:
2193 		if (!pt_can_write_msr(vmx))
2194 			return 1;
2195 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2196 					   PT_CAP_topa_output) &&
2197 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2198 					   PT_CAP_single_range_output))
2199 			return 1;
2200 		if (!pt_output_base_valid(vcpu, data))
2201 			return 1;
2202 		vmx->pt_desc.guest.output_base = data;
2203 		break;
2204 	case MSR_IA32_RTIT_OUTPUT_MASK:
2205 		if (!pt_can_write_msr(vmx))
2206 			return 1;
2207 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2208 					   PT_CAP_topa_output) &&
2209 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2210 					   PT_CAP_single_range_output))
2211 			return 1;
2212 		vmx->pt_desc.guest.output_mask = data;
2213 		break;
2214 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2215 		if (!pt_can_write_msr(vmx))
2216 			return 1;
2217 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2218 		if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2219 						       PT_CAP_num_address_ranges))
2220 			return 1;
2221 		if (is_noncanonical_address(data, vcpu))
2222 			return 1;
2223 		if (index % 2)
2224 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2225 		else
2226 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2227 		break;
2228 	case MSR_TSC_AUX:
2229 		if (!msr_info->host_initiated &&
2230 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2231 			return 1;
2232 		/* Check reserved bit, higher 32 bits should be zero */
2233 		if ((data >> 32) != 0)
2234 			return 1;
2235 		goto find_uret_msr;
2236 	case MSR_IA32_PERF_CAPABILITIES:
2237 		if (data && !vcpu_to_pmu(vcpu)->version)
2238 			return 1;
2239 		if (data & PMU_CAP_LBR_FMT) {
2240 			if ((data & PMU_CAP_LBR_FMT) !=
2241 			    (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2242 				return 1;
2243 			if (!intel_pmu_lbr_is_compatible(vcpu))
2244 				return 1;
2245 		}
2246 		ret = kvm_set_msr_common(vcpu, msr_info);
2247 		break;
2248 
2249 	default:
2250 	find_uret_msr:
2251 		msr = vmx_find_uret_msr(vmx, msr_index);
2252 		if (msr)
2253 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2254 		else
2255 			ret = kvm_set_msr_common(vcpu, msr_info);
2256 	}
2257 
2258 	return ret;
2259 }
2260 
2261 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2262 {
2263 	unsigned long guest_owned_bits;
2264 
2265 	kvm_register_mark_available(vcpu, reg);
2266 
2267 	switch (reg) {
2268 	case VCPU_REGS_RSP:
2269 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2270 		break;
2271 	case VCPU_REGS_RIP:
2272 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2273 		break;
2274 	case VCPU_EXREG_PDPTR:
2275 		if (enable_ept)
2276 			ept_save_pdptrs(vcpu);
2277 		break;
2278 	case VCPU_EXREG_CR0:
2279 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2280 
2281 		vcpu->arch.cr0 &= ~guest_owned_bits;
2282 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2283 		break;
2284 	case VCPU_EXREG_CR3:
2285 		if (is_unrestricted_guest(vcpu) ||
2286 		    (enable_ept && is_paging(vcpu)))
2287 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2288 		break;
2289 	case VCPU_EXREG_CR4:
2290 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2291 
2292 		vcpu->arch.cr4 &= ~guest_owned_bits;
2293 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2294 		break;
2295 	default:
2296 		WARN_ON_ONCE(1);
2297 		break;
2298 	}
2299 }
2300 
2301 static __init int cpu_has_kvm_support(void)
2302 {
2303 	return cpu_has_vmx();
2304 }
2305 
2306 static __init int vmx_disabled_by_bios(void)
2307 {
2308 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2309 	       !boot_cpu_has(X86_FEATURE_VMX);
2310 }
2311 
2312 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2313 {
2314 	u64 msr;
2315 
2316 	cr4_set_bits(X86_CR4_VMXE);
2317 
2318 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2319 			  _ASM_EXTABLE(1b, %l[fault])
2320 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2321 			  : : fault);
2322 	return 0;
2323 
2324 fault:
2325 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2326 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2327 	cr4_clear_bits(X86_CR4_VMXE);
2328 
2329 	return -EFAULT;
2330 }
2331 
2332 static int hardware_enable(void)
2333 {
2334 	int cpu = raw_smp_processor_id();
2335 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2336 	int r;
2337 
2338 	if (cr4_read_shadow() & X86_CR4_VMXE)
2339 		return -EBUSY;
2340 
2341 	/*
2342 	 * This can happen if we hot-added a CPU but failed to allocate
2343 	 * VP assist page for it.
2344 	 */
2345 	if (static_branch_unlikely(&enable_evmcs) &&
2346 	    !hv_get_vp_assist_page(cpu))
2347 		return -EFAULT;
2348 
2349 	intel_pt_handle_vmx(1);
2350 
2351 	r = kvm_cpu_vmxon(phys_addr);
2352 	if (r) {
2353 		intel_pt_handle_vmx(0);
2354 		return r;
2355 	}
2356 
2357 	if (enable_ept)
2358 		ept_sync_global();
2359 
2360 	return 0;
2361 }
2362 
2363 static void vmclear_local_loaded_vmcss(void)
2364 {
2365 	int cpu = raw_smp_processor_id();
2366 	struct loaded_vmcs *v, *n;
2367 
2368 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2369 				 loaded_vmcss_on_cpu_link)
2370 		__loaded_vmcs_clear(v);
2371 }
2372 
2373 static void hardware_disable(void)
2374 {
2375 	vmclear_local_loaded_vmcss();
2376 
2377 	if (cpu_vmxoff())
2378 		kvm_spurious_fault();
2379 
2380 	intel_pt_handle_vmx(0);
2381 }
2382 
2383 /*
2384  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2385  * directly instead of going through cpu_has(), to ensure KVM is trapping
2386  * ENCLS whenever it's supported in hardware.  It does not matter whether
2387  * the host OS supports or has enabled SGX.
2388  */
2389 static bool cpu_has_sgx(void)
2390 {
2391 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2392 }
2393 
2394 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2395 				      u32 msr, u32 *result)
2396 {
2397 	u32 vmx_msr_low, vmx_msr_high;
2398 	u32 ctl = ctl_min | ctl_opt;
2399 
2400 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2401 
2402 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2403 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2404 
2405 	/* Ensure minimum (required) set of control bits are supported. */
2406 	if (ctl_min & ~ctl)
2407 		return -EIO;
2408 
2409 	*result = ctl;
2410 	return 0;
2411 }
2412 
2413 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2414 				    struct vmx_capability *vmx_cap)
2415 {
2416 	u32 vmx_msr_low, vmx_msr_high;
2417 	u32 min, opt, min2, opt2;
2418 	u32 _pin_based_exec_control = 0;
2419 	u32 _cpu_based_exec_control = 0;
2420 	u32 _cpu_based_2nd_exec_control = 0;
2421 	u32 _vmexit_control = 0;
2422 	u32 _vmentry_control = 0;
2423 
2424 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2425 	min = CPU_BASED_HLT_EXITING |
2426 #ifdef CONFIG_X86_64
2427 	      CPU_BASED_CR8_LOAD_EXITING |
2428 	      CPU_BASED_CR8_STORE_EXITING |
2429 #endif
2430 	      CPU_BASED_CR3_LOAD_EXITING |
2431 	      CPU_BASED_CR3_STORE_EXITING |
2432 	      CPU_BASED_UNCOND_IO_EXITING |
2433 	      CPU_BASED_MOV_DR_EXITING |
2434 	      CPU_BASED_USE_TSC_OFFSETTING |
2435 	      CPU_BASED_MWAIT_EXITING |
2436 	      CPU_BASED_MONITOR_EXITING |
2437 	      CPU_BASED_INVLPG_EXITING |
2438 	      CPU_BASED_RDPMC_EXITING;
2439 
2440 	opt = CPU_BASED_TPR_SHADOW |
2441 	      CPU_BASED_USE_MSR_BITMAPS |
2442 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2443 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2444 				&_cpu_based_exec_control) < 0)
2445 		return -EIO;
2446 #ifdef CONFIG_X86_64
2447 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2448 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2449 					   ~CPU_BASED_CR8_STORE_EXITING;
2450 #endif
2451 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2452 		min2 = 0;
2453 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2454 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2455 			SECONDARY_EXEC_WBINVD_EXITING |
2456 			SECONDARY_EXEC_ENABLE_VPID |
2457 			SECONDARY_EXEC_ENABLE_EPT |
2458 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2459 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2460 			SECONDARY_EXEC_DESC |
2461 			SECONDARY_EXEC_ENABLE_RDTSCP |
2462 			SECONDARY_EXEC_ENABLE_INVPCID |
2463 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2464 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2465 			SECONDARY_EXEC_SHADOW_VMCS |
2466 			SECONDARY_EXEC_XSAVES |
2467 			SECONDARY_EXEC_RDSEED_EXITING |
2468 			SECONDARY_EXEC_RDRAND_EXITING |
2469 			SECONDARY_EXEC_ENABLE_PML |
2470 			SECONDARY_EXEC_TSC_SCALING |
2471 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2472 			SECONDARY_EXEC_PT_USE_GPA |
2473 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2474 			SECONDARY_EXEC_ENABLE_VMFUNC |
2475 			SECONDARY_EXEC_BUS_LOCK_DETECTION;
2476 		if (cpu_has_sgx())
2477 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2478 		if (adjust_vmx_controls(min2, opt2,
2479 					MSR_IA32_VMX_PROCBASED_CTLS2,
2480 					&_cpu_based_2nd_exec_control) < 0)
2481 			return -EIO;
2482 	}
2483 #ifndef CONFIG_X86_64
2484 	if (!(_cpu_based_2nd_exec_control &
2485 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2486 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2487 #endif
2488 
2489 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2490 		_cpu_based_2nd_exec_control &= ~(
2491 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2492 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2493 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2494 
2495 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2496 		&vmx_cap->ept, &vmx_cap->vpid);
2497 
2498 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2499 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2500 		   enabled */
2501 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2502 					     CPU_BASED_CR3_STORE_EXITING |
2503 					     CPU_BASED_INVLPG_EXITING);
2504 	} else if (vmx_cap->ept) {
2505 		vmx_cap->ept = 0;
2506 		pr_warn_once("EPT CAP should not exist if not support "
2507 				"1-setting enable EPT VM-execution control\n");
2508 	}
2509 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2510 		vmx_cap->vpid) {
2511 		vmx_cap->vpid = 0;
2512 		pr_warn_once("VPID CAP should not exist if not support "
2513 				"1-setting enable VPID VM-execution control\n");
2514 	}
2515 
2516 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2517 #ifdef CONFIG_X86_64
2518 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2519 #endif
2520 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2521 	      VM_EXIT_LOAD_IA32_PAT |
2522 	      VM_EXIT_LOAD_IA32_EFER |
2523 	      VM_EXIT_CLEAR_BNDCFGS |
2524 	      VM_EXIT_PT_CONCEAL_PIP |
2525 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2526 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2527 				&_vmexit_control) < 0)
2528 		return -EIO;
2529 
2530 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2531 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2532 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2533 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2534 				&_pin_based_exec_control) < 0)
2535 		return -EIO;
2536 
2537 	if (cpu_has_broken_vmx_preemption_timer())
2538 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2539 	if (!(_cpu_based_2nd_exec_control &
2540 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2541 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2542 
2543 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2544 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2545 	      VM_ENTRY_LOAD_IA32_PAT |
2546 	      VM_ENTRY_LOAD_IA32_EFER |
2547 	      VM_ENTRY_LOAD_BNDCFGS |
2548 	      VM_ENTRY_PT_CONCEAL_PIP |
2549 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2550 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2551 				&_vmentry_control) < 0)
2552 		return -EIO;
2553 
2554 	/*
2555 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2556 	 * can't be used due to an errata where VM Exit may incorrectly clear
2557 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2558 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2559 	 */
2560 	if (boot_cpu_data.x86 == 0x6) {
2561 		switch (boot_cpu_data.x86_model) {
2562 		case 26: /* AAK155 */
2563 		case 30: /* AAP115 */
2564 		case 37: /* AAT100 */
2565 		case 44: /* BC86,AAY89,BD102 */
2566 		case 46: /* BA97 */
2567 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2568 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2569 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2570 					"does not work properly. Using workaround\n");
2571 			break;
2572 		default:
2573 			break;
2574 		}
2575 	}
2576 
2577 
2578 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2579 
2580 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2581 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2582 		return -EIO;
2583 
2584 #ifdef CONFIG_X86_64
2585 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2586 	if (vmx_msr_high & (1u<<16))
2587 		return -EIO;
2588 #endif
2589 
2590 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2591 	if (((vmx_msr_high >> 18) & 15) != 6)
2592 		return -EIO;
2593 
2594 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2595 	vmcs_conf->order = get_order(vmcs_conf->size);
2596 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2597 
2598 	vmcs_conf->revision_id = vmx_msr_low;
2599 
2600 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2601 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2602 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2603 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2604 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2605 
2606 #if IS_ENABLED(CONFIG_HYPERV)
2607 	if (enlightened_vmcs)
2608 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2609 #endif
2610 
2611 	return 0;
2612 }
2613 
2614 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2615 {
2616 	int node = cpu_to_node(cpu);
2617 	struct page *pages;
2618 	struct vmcs *vmcs;
2619 
2620 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2621 	if (!pages)
2622 		return NULL;
2623 	vmcs = page_address(pages);
2624 	memset(vmcs, 0, vmcs_config.size);
2625 
2626 	/* KVM supports Enlightened VMCS v1 only */
2627 	if (static_branch_unlikely(&enable_evmcs))
2628 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2629 	else
2630 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2631 
2632 	if (shadow)
2633 		vmcs->hdr.shadow_vmcs = 1;
2634 	return vmcs;
2635 }
2636 
2637 void free_vmcs(struct vmcs *vmcs)
2638 {
2639 	free_pages((unsigned long)vmcs, vmcs_config.order);
2640 }
2641 
2642 /*
2643  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2644  */
2645 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2646 {
2647 	if (!loaded_vmcs->vmcs)
2648 		return;
2649 	loaded_vmcs_clear(loaded_vmcs);
2650 	free_vmcs(loaded_vmcs->vmcs);
2651 	loaded_vmcs->vmcs = NULL;
2652 	if (loaded_vmcs->msr_bitmap)
2653 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2654 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2655 }
2656 
2657 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2658 {
2659 	loaded_vmcs->vmcs = alloc_vmcs(false);
2660 	if (!loaded_vmcs->vmcs)
2661 		return -ENOMEM;
2662 
2663 	vmcs_clear(loaded_vmcs->vmcs);
2664 
2665 	loaded_vmcs->shadow_vmcs = NULL;
2666 	loaded_vmcs->hv_timer_soft_disabled = false;
2667 	loaded_vmcs->cpu = -1;
2668 	loaded_vmcs->launched = 0;
2669 
2670 	if (cpu_has_vmx_msr_bitmap()) {
2671 		loaded_vmcs->msr_bitmap = (unsigned long *)
2672 				__get_free_page(GFP_KERNEL_ACCOUNT);
2673 		if (!loaded_vmcs->msr_bitmap)
2674 			goto out_vmcs;
2675 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2676 
2677 		if (IS_ENABLED(CONFIG_HYPERV) &&
2678 		    static_branch_unlikely(&enable_evmcs) &&
2679 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2680 			struct hv_enlightened_vmcs *evmcs =
2681 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2682 
2683 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2684 		}
2685 	}
2686 
2687 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2688 	memset(&loaded_vmcs->controls_shadow, 0,
2689 		sizeof(struct vmcs_controls_shadow));
2690 
2691 	return 0;
2692 
2693 out_vmcs:
2694 	free_loaded_vmcs(loaded_vmcs);
2695 	return -ENOMEM;
2696 }
2697 
2698 static void free_kvm_area(void)
2699 {
2700 	int cpu;
2701 
2702 	for_each_possible_cpu(cpu) {
2703 		free_vmcs(per_cpu(vmxarea, cpu));
2704 		per_cpu(vmxarea, cpu) = NULL;
2705 	}
2706 }
2707 
2708 static __init int alloc_kvm_area(void)
2709 {
2710 	int cpu;
2711 
2712 	for_each_possible_cpu(cpu) {
2713 		struct vmcs *vmcs;
2714 
2715 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2716 		if (!vmcs) {
2717 			free_kvm_area();
2718 			return -ENOMEM;
2719 		}
2720 
2721 		/*
2722 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2723 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2724 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2725 		 *
2726 		 * However, even though not explicitly documented by
2727 		 * TLFS, VMXArea passed as VMXON argument should
2728 		 * still be marked with revision_id reported by
2729 		 * physical CPU.
2730 		 */
2731 		if (static_branch_unlikely(&enable_evmcs))
2732 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2733 
2734 		per_cpu(vmxarea, cpu) = vmcs;
2735 	}
2736 	return 0;
2737 }
2738 
2739 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2740 		struct kvm_segment *save)
2741 {
2742 	if (!emulate_invalid_guest_state) {
2743 		/*
2744 		 * CS and SS RPL should be equal during guest entry according
2745 		 * to VMX spec, but in reality it is not always so. Since vcpu
2746 		 * is in the middle of the transition from real mode to
2747 		 * protected mode it is safe to assume that RPL 0 is a good
2748 		 * default value.
2749 		 */
2750 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2751 			save->selector &= ~SEGMENT_RPL_MASK;
2752 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2753 		save->s = 1;
2754 	}
2755 	vmx_set_segment(vcpu, save, seg);
2756 }
2757 
2758 static void enter_pmode(struct kvm_vcpu *vcpu)
2759 {
2760 	unsigned long flags;
2761 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2762 
2763 	/*
2764 	 * Update real mode segment cache. It may be not up-to-date if segment
2765 	 * register was written while vcpu was in a guest mode.
2766 	 */
2767 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2768 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2769 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2770 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2771 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2772 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2773 
2774 	vmx->rmode.vm86_active = 0;
2775 
2776 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2777 
2778 	flags = vmcs_readl(GUEST_RFLAGS);
2779 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2780 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2781 	vmcs_writel(GUEST_RFLAGS, flags);
2782 
2783 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2784 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2785 
2786 	vmx_update_exception_bitmap(vcpu);
2787 
2788 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2789 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2790 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2791 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2792 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2793 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2794 }
2795 
2796 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2797 {
2798 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2799 	struct kvm_segment var = *save;
2800 
2801 	var.dpl = 0x3;
2802 	if (seg == VCPU_SREG_CS)
2803 		var.type = 0x3;
2804 
2805 	if (!emulate_invalid_guest_state) {
2806 		var.selector = var.base >> 4;
2807 		var.base = var.base & 0xffff0;
2808 		var.limit = 0xffff;
2809 		var.g = 0;
2810 		var.db = 0;
2811 		var.present = 1;
2812 		var.s = 1;
2813 		var.l = 0;
2814 		var.unusable = 0;
2815 		var.type = 0x3;
2816 		var.avl = 0;
2817 		if (save->base & 0xf)
2818 			printk_once(KERN_WARNING "kvm: segment base is not "
2819 					"paragraph aligned when entering "
2820 					"protected mode (seg=%d)", seg);
2821 	}
2822 
2823 	vmcs_write16(sf->selector, var.selector);
2824 	vmcs_writel(sf->base, var.base);
2825 	vmcs_write32(sf->limit, var.limit);
2826 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2827 }
2828 
2829 static void enter_rmode(struct kvm_vcpu *vcpu)
2830 {
2831 	unsigned long flags;
2832 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2833 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2834 
2835 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2836 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2837 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2838 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2839 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2840 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2841 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2842 
2843 	vmx->rmode.vm86_active = 1;
2844 
2845 	/*
2846 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2847 	 * vcpu. Warn the user that an update is overdue.
2848 	 */
2849 	if (!kvm_vmx->tss_addr)
2850 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2851 			     "called before entering vcpu\n");
2852 
2853 	vmx_segment_cache_clear(vmx);
2854 
2855 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2856 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2857 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2858 
2859 	flags = vmcs_readl(GUEST_RFLAGS);
2860 	vmx->rmode.save_rflags = flags;
2861 
2862 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2863 
2864 	vmcs_writel(GUEST_RFLAGS, flags);
2865 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2866 	vmx_update_exception_bitmap(vcpu);
2867 
2868 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2869 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2870 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2871 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2872 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2873 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2874 
2875 	kvm_mmu_reset_context(vcpu);
2876 }
2877 
2878 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2879 {
2880 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2881 	struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2882 
2883 	/* Nothing to do if hardware doesn't support EFER. */
2884 	if (!msr)
2885 		return 0;
2886 
2887 	vcpu->arch.efer = efer;
2888 	if (efer & EFER_LMA) {
2889 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2890 		msr->data = efer;
2891 	} else {
2892 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2893 
2894 		msr->data = efer & ~EFER_LME;
2895 	}
2896 	setup_msrs(vmx);
2897 	return 0;
2898 }
2899 
2900 #ifdef CONFIG_X86_64
2901 
2902 static void enter_lmode(struct kvm_vcpu *vcpu)
2903 {
2904 	u32 guest_tr_ar;
2905 
2906 	vmx_segment_cache_clear(to_vmx(vcpu));
2907 
2908 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2909 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2910 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2911 				     __func__);
2912 		vmcs_write32(GUEST_TR_AR_BYTES,
2913 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2914 			     | VMX_AR_TYPE_BUSY_64_TSS);
2915 	}
2916 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2917 }
2918 
2919 static void exit_lmode(struct kvm_vcpu *vcpu)
2920 {
2921 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2922 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2923 }
2924 
2925 #endif
2926 
2927 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2928 {
2929 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2930 
2931 	/*
2932 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2933 	 * the CPU is not required to invalidate guest-physical mappings on
2934 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2935 	 * associated with the root EPT structure and not any particular VPID
2936 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
2937 	 */
2938 	if (enable_ept) {
2939 		ept_sync_global();
2940 	} else if (enable_vpid) {
2941 		if (cpu_has_vmx_invvpid_global()) {
2942 			vpid_sync_vcpu_global();
2943 		} else {
2944 			vpid_sync_vcpu_single(vmx->vpid);
2945 			vpid_sync_vcpu_single(vmx->nested.vpid02);
2946 		}
2947 	}
2948 }
2949 
2950 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2951 {
2952 	struct kvm_mmu *mmu = vcpu->arch.mmu;
2953 	u64 root_hpa = mmu->root_hpa;
2954 
2955 	/* No flush required if the current context is invalid. */
2956 	if (!VALID_PAGE(root_hpa))
2957 		return;
2958 
2959 	if (enable_ept)
2960 		ept_sync_context(construct_eptp(vcpu, root_hpa,
2961 						mmu->shadow_root_level));
2962 	else if (!is_guest_mode(vcpu))
2963 		vpid_sync_context(to_vmx(vcpu)->vpid);
2964 	else
2965 		vpid_sync_context(nested_get_vpid02(vcpu));
2966 }
2967 
2968 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2969 {
2970 	/*
2971 	 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2972 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2973 	 */
2974 	vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2975 }
2976 
2977 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2978 {
2979 	/*
2980 	 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2981 	 * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
2982 	 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2983 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2984 	 * i.e. no explicit INVVPID is necessary.
2985 	 */
2986 	vpid_sync_context(to_vmx(vcpu)->vpid);
2987 }
2988 
2989 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2990 {
2991 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2992 
2993 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2994 		return;
2995 
2996 	if (is_pae_paging(vcpu)) {
2997 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2998 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2999 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3000 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3001 	}
3002 }
3003 
3004 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3005 {
3006 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3007 
3008 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3009 		return;
3010 
3011 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3012 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3013 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3014 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3015 
3016 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
3017 }
3018 
3019 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3020 					unsigned long cr0,
3021 					struct kvm_vcpu *vcpu)
3022 {
3023 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3024 
3025 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3026 		vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3027 	if (!(cr0 & X86_CR0_PG)) {
3028 		/* From paging/starting to nonpaging */
3029 		exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3030 					  CPU_BASED_CR3_STORE_EXITING);
3031 		vcpu->arch.cr0 = cr0;
3032 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3033 	} else if (!is_paging(vcpu)) {
3034 		/* From nonpaging to paging */
3035 		exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3036 					    CPU_BASED_CR3_STORE_EXITING);
3037 		vcpu->arch.cr0 = cr0;
3038 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3039 	}
3040 
3041 	if (!(cr0 & X86_CR0_WP))
3042 		*hw_cr0 &= ~X86_CR0_WP;
3043 }
3044 
3045 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3046 {
3047 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3048 	unsigned long hw_cr0;
3049 
3050 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3051 	if (is_unrestricted_guest(vcpu))
3052 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3053 	else {
3054 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3055 
3056 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3057 			enter_pmode(vcpu);
3058 
3059 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3060 			enter_rmode(vcpu);
3061 	}
3062 
3063 #ifdef CONFIG_X86_64
3064 	if (vcpu->arch.efer & EFER_LME) {
3065 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3066 			enter_lmode(vcpu);
3067 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3068 			exit_lmode(vcpu);
3069 	}
3070 #endif
3071 
3072 	if (enable_ept && !is_unrestricted_guest(vcpu))
3073 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3074 
3075 	vmcs_writel(CR0_READ_SHADOW, cr0);
3076 	vmcs_writel(GUEST_CR0, hw_cr0);
3077 	vcpu->arch.cr0 = cr0;
3078 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3079 
3080 	/* depends on vcpu->arch.cr0 to be set to a new value */
3081 	vmx->emulation_required = emulation_required(vcpu);
3082 }
3083 
3084 static int vmx_get_max_tdp_level(void)
3085 {
3086 	if (cpu_has_vmx_ept_5levels())
3087 		return 5;
3088 	return 4;
3089 }
3090 
3091 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa,
3092 		   int root_level)
3093 {
3094 	u64 eptp = VMX_EPTP_MT_WB;
3095 
3096 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3097 
3098 	if (enable_ept_ad_bits &&
3099 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3100 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3101 	eptp |= (root_hpa & PAGE_MASK);
3102 
3103 	return eptp;
3104 }
3105 
3106 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd,
3107 			     int pgd_level)
3108 {
3109 	struct kvm *kvm = vcpu->kvm;
3110 	bool update_guest_cr3 = true;
3111 	unsigned long guest_cr3;
3112 	u64 eptp;
3113 
3114 	if (enable_ept) {
3115 		eptp = construct_eptp(vcpu, pgd, pgd_level);
3116 		vmcs_write64(EPT_POINTER, eptp);
3117 
3118 		if (kvm_x86_ops.tlb_remote_flush) {
3119 			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3120 			to_vmx(vcpu)->ept_pointer = eptp;
3121 			to_kvm_vmx(kvm)->ept_pointers_match
3122 				= EPT_POINTERS_CHECK;
3123 			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3124 		}
3125 
3126 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3127 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3128 		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3129 			guest_cr3 = vcpu->arch.cr3;
3130 		else /* vmcs01.GUEST_CR3 is already up-to-date. */
3131 			update_guest_cr3 = false;
3132 		vmx_ept_load_pdptrs(vcpu);
3133 	} else {
3134 		guest_cr3 = pgd;
3135 	}
3136 
3137 	if (update_guest_cr3)
3138 		vmcs_writel(GUEST_CR3, guest_cr3);
3139 }
3140 
3141 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3142 {
3143 	/*
3144 	 * We operate under the default treatment of SMM, so VMX cannot be
3145 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3146 	 * handled by kvm_is_valid_cr4().
3147 	 */
3148 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3149 		return false;
3150 
3151 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3152 		return false;
3153 
3154 	return true;
3155 }
3156 
3157 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3158 {
3159 	unsigned long old_cr4 = vcpu->arch.cr4;
3160 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3161 	/*
3162 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3163 	 * is in force while we are in guest mode.  Do not let guests control
3164 	 * this bit, even if host CR4.MCE == 0.
3165 	 */
3166 	unsigned long hw_cr4;
3167 
3168 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3169 	if (is_unrestricted_guest(vcpu))
3170 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3171 	else if (vmx->rmode.vm86_active)
3172 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3173 	else
3174 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3175 
3176 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3177 		if (cr4 & X86_CR4_UMIP) {
3178 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3179 			hw_cr4 &= ~X86_CR4_UMIP;
3180 		} else if (!is_guest_mode(vcpu) ||
3181 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3182 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3183 		}
3184 	}
3185 
3186 	vcpu->arch.cr4 = cr4;
3187 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3188 
3189 	if (!is_unrestricted_guest(vcpu)) {
3190 		if (enable_ept) {
3191 			if (!is_paging(vcpu)) {
3192 				hw_cr4 &= ~X86_CR4_PAE;
3193 				hw_cr4 |= X86_CR4_PSE;
3194 			} else if (!(cr4 & X86_CR4_PAE)) {
3195 				hw_cr4 &= ~X86_CR4_PAE;
3196 			}
3197 		}
3198 
3199 		/*
3200 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3201 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3202 		 * to be manually disabled when guest switches to non-paging
3203 		 * mode.
3204 		 *
3205 		 * If !enable_unrestricted_guest, the CPU is always running
3206 		 * with CR0.PG=1 and CR4 needs to be modified.
3207 		 * If enable_unrestricted_guest, the CPU automatically
3208 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3209 		 */
3210 		if (!is_paging(vcpu))
3211 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3212 	}
3213 
3214 	vmcs_writel(CR4_READ_SHADOW, cr4);
3215 	vmcs_writel(GUEST_CR4, hw_cr4);
3216 
3217 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3218 		kvm_update_cpuid_runtime(vcpu);
3219 }
3220 
3221 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3222 {
3223 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3224 	u32 ar;
3225 
3226 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3227 		*var = vmx->rmode.segs[seg];
3228 		if (seg == VCPU_SREG_TR
3229 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3230 			return;
3231 		var->base = vmx_read_guest_seg_base(vmx, seg);
3232 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3233 		return;
3234 	}
3235 	var->base = vmx_read_guest_seg_base(vmx, seg);
3236 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3237 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3238 	ar = vmx_read_guest_seg_ar(vmx, seg);
3239 	var->unusable = (ar >> 16) & 1;
3240 	var->type = ar & 15;
3241 	var->s = (ar >> 4) & 1;
3242 	var->dpl = (ar >> 5) & 3;
3243 	/*
3244 	 * Some userspaces do not preserve unusable property. Since usable
3245 	 * segment has to be present according to VMX spec we can use present
3246 	 * property to amend userspace bug by making unusable segment always
3247 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3248 	 * segment as unusable.
3249 	 */
3250 	var->present = !var->unusable;
3251 	var->avl = (ar >> 12) & 1;
3252 	var->l = (ar >> 13) & 1;
3253 	var->db = (ar >> 14) & 1;
3254 	var->g = (ar >> 15) & 1;
3255 }
3256 
3257 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3258 {
3259 	struct kvm_segment s;
3260 
3261 	if (to_vmx(vcpu)->rmode.vm86_active) {
3262 		vmx_get_segment(vcpu, &s, seg);
3263 		return s.base;
3264 	}
3265 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3266 }
3267 
3268 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3269 {
3270 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3271 
3272 	if (unlikely(vmx->rmode.vm86_active))
3273 		return 0;
3274 	else {
3275 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3276 		return VMX_AR_DPL(ar);
3277 	}
3278 }
3279 
3280 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3281 {
3282 	u32 ar;
3283 
3284 	if (var->unusable || !var->present)
3285 		ar = 1 << 16;
3286 	else {
3287 		ar = var->type & 15;
3288 		ar |= (var->s & 1) << 4;
3289 		ar |= (var->dpl & 3) << 5;
3290 		ar |= (var->present & 1) << 7;
3291 		ar |= (var->avl & 1) << 12;
3292 		ar |= (var->l & 1) << 13;
3293 		ar |= (var->db & 1) << 14;
3294 		ar |= (var->g & 1) << 15;
3295 	}
3296 
3297 	return ar;
3298 }
3299 
3300 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3301 {
3302 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3303 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3304 
3305 	vmx_segment_cache_clear(vmx);
3306 
3307 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3308 		vmx->rmode.segs[seg] = *var;
3309 		if (seg == VCPU_SREG_TR)
3310 			vmcs_write16(sf->selector, var->selector);
3311 		else if (var->s)
3312 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3313 		goto out;
3314 	}
3315 
3316 	vmcs_writel(sf->base, var->base);
3317 	vmcs_write32(sf->limit, var->limit);
3318 	vmcs_write16(sf->selector, var->selector);
3319 
3320 	/*
3321 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3322 	 * qemu binaries.
3323 	 *   IA32 arch specifies that at the time of processor reset the
3324 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3325 	 * is setting it to 0 in the userland code. This causes invalid guest
3326 	 * state vmexit when "unrestricted guest" mode is turned on.
3327 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3328 	 * tree. Newer qemu binaries with that qemu fix would not need this
3329 	 * kvm hack.
3330 	 */
3331 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3332 		var->type |= 0x1; /* Accessed */
3333 
3334 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3335 
3336 out:
3337 	vmx->emulation_required = emulation_required(vcpu);
3338 }
3339 
3340 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3341 {
3342 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3343 
3344 	*db = (ar >> 14) & 1;
3345 	*l = (ar >> 13) & 1;
3346 }
3347 
3348 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3349 {
3350 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3351 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3352 }
3353 
3354 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3355 {
3356 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3357 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3358 }
3359 
3360 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3361 {
3362 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3363 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3364 }
3365 
3366 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3367 {
3368 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3369 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3370 }
3371 
3372 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3373 {
3374 	struct kvm_segment var;
3375 	u32 ar;
3376 
3377 	vmx_get_segment(vcpu, &var, seg);
3378 	var.dpl = 0x3;
3379 	if (seg == VCPU_SREG_CS)
3380 		var.type = 0x3;
3381 	ar = vmx_segment_access_rights(&var);
3382 
3383 	if (var.base != (var.selector << 4))
3384 		return false;
3385 	if (var.limit != 0xffff)
3386 		return false;
3387 	if (ar != 0xf3)
3388 		return false;
3389 
3390 	return true;
3391 }
3392 
3393 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3394 {
3395 	struct kvm_segment cs;
3396 	unsigned int cs_rpl;
3397 
3398 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3399 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3400 
3401 	if (cs.unusable)
3402 		return false;
3403 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3404 		return false;
3405 	if (!cs.s)
3406 		return false;
3407 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3408 		if (cs.dpl > cs_rpl)
3409 			return false;
3410 	} else {
3411 		if (cs.dpl != cs_rpl)
3412 			return false;
3413 	}
3414 	if (!cs.present)
3415 		return false;
3416 
3417 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3418 	return true;
3419 }
3420 
3421 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3422 {
3423 	struct kvm_segment ss;
3424 	unsigned int ss_rpl;
3425 
3426 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3427 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3428 
3429 	if (ss.unusable)
3430 		return true;
3431 	if (ss.type != 3 && ss.type != 7)
3432 		return false;
3433 	if (!ss.s)
3434 		return false;
3435 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3436 		return false;
3437 	if (!ss.present)
3438 		return false;
3439 
3440 	return true;
3441 }
3442 
3443 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3444 {
3445 	struct kvm_segment var;
3446 	unsigned int rpl;
3447 
3448 	vmx_get_segment(vcpu, &var, seg);
3449 	rpl = var.selector & SEGMENT_RPL_MASK;
3450 
3451 	if (var.unusable)
3452 		return true;
3453 	if (!var.s)
3454 		return false;
3455 	if (!var.present)
3456 		return false;
3457 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3458 		if (var.dpl < rpl) /* DPL < RPL */
3459 			return false;
3460 	}
3461 
3462 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3463 	 * rights flags
3464 	 */
3465 	return true;
3466 }
3467 
3468 static bool tr_valid(struct kvm_vcpu *vcpu)
3469 {
3470 	struct kvm_segment tr;
3471 
3472 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3473 
3474 	if (tr.unusable)
3475 		return false;
3476 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3477 		return false;
3478 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3479 		return false;
3480 	if (!tr.present)
3481 		return false;
3482 
3483 	return true;
3484 }
3485 
3486 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3487 {
3488 	struct kvm_segment ldtr;
3489 
3490 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3491 
3492 	if (ldtr.unusable)
3493 		return true;
3494 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3495 		return false;
3496 	if (ldtr.type != 2)
3497 		return false;
3498 	if (!ldtr.present)
3499 		return false;
3500 
3501 	return true;
3502 }
3503 
3504 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3505 {
3506 	struct kvm_segment cs, ss;
3507 
3508 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3509 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3510 
3511 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3512 		 (ss.selector & SEGMENT_RPL_MASK));
3513 }
3514 
3515 /*
3516  * Check if guest state is valid. Returns true if valid, false if
3517  * not.
3518  * We assume that registers are always usable
3519  */
3520 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3521 {
3522 	/* real mode guest state checks */
3523 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3524 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3525 			return false;
3526 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3527 			return false;
3528 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3529 			return false;
3530 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3531 			return false;
3532 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3533 			return false;
3534 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3535 			return false;
3536 	} else {
3537 	/* protected mode guest state checks */
3538 		if (!cs_ss_rpl_check(vcpu))
3539 			return false;
3540 		if (!code_segment_valid(vcpu))
3541 			return false;
3542 		if (!stack_segment_valid(vcpu))
3543 			return false;
3544 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3545 			return false;
3546 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3547 			return false;
3548 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3549 			return false;
3550 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3551 			return false;
3552 		if (!tr_valid(vcpu))
3553 			return false;
3554 		if (!ldtr_valid(vcpu))
3555 			return false;
3556 	}
3557 	/* TODO:
3558 	 * - Add checks on RIP
3559 	 * - Add checks on RFLAGS
3560 	 */
3561 
3562 	return true;
3563 }
3564 
3565 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3566 {
3567 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3568 	u16 data;
3569 	int i;
3570 
3571 	for (i = 0; i < 3; i++) {
3572 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3573 			return -EFAULT;
3574 	}
3575 
3576 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3577 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3578 		return -EFAULT;
3579 
3580 	data = ~0;
3581 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3582 		return -EFAULT;
3583 
3584 	return 0;
3585 }
3586 
3587 static int init_rmode_identity_map(struct kvm *kvm)
3588 {
3589 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3590 	int i, r = 0;
3591 	void __user *uaddr;
3592 	u32 tmp;
3593 
3594 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3595 	mutex_lock(&kvm->slots_lock);
3596 
3597 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3598 		goto out;
3599 
3600 	if (!kvm_vmx->ept_identity_map_addr)
3601 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3602 
3603 	uaddr = __x86_set_memory_region(kvm,
3604 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3605 					kvm_vmx->ept_identity_map_addr,
3606 					PAGE_SIZE);
3607 	if (IS_ERR(uaddr)) {
3608 		r = PTR_ERR(uaddr);
3609 		goto out;
3610 	}
3611 
3612 	/* Set up identity-mapping pagetable for EPT in real mode */
3613 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3614 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3615 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3616 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3617 			r = -EFAULT;
3618 			goto out;
3619 		}
3620 	}
3621 	kvm_vmx->ept_identity_pagetable_done = true;
3622 
3623 out:
3624 	mutex_unlock(&kvm->slots_lock);
3625 	return r;
3626 }
3627 
3628 static void seg_setup(int seg)
3629 {
3630 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3631 	unsigned int ar;
3632 
3633 	vmcs_write16(sf->selector, 0);
3634 	vmcs_writel(sf->base, 0);
3635 	vmcs_write32(sf->limit, 0xffff);
3636 	ar = 0x93;
3637 	if (seg == VCPU_SREG_CS)
3638 		ar |= 0x08; /* code segment */
3639 
3640 	vmcs_write32(sf->ar_bytes, ar);
3641 }
3642 
3643 static int alloc_apic_access_page(struct kvm *kvm)
3644 {
3645 	struct page *page;
3646 	void __user *hva;
3647 	int ret = 0;
3648 
3649 	mutex_lock(&kvm->slots_lock);
3650 	if (kvm->arch.apic_access_page_done)
3651 		goto out;
3652 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3653 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3654 	if (IS_ERR(hva)) {
3655 		ret = PTR_ERR(hva);
3656 		goto out;
3657 	}
3658 
3659 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3660 	if (is_error_page(page)) {
3661 		ret = -EFAULT;
3662 		goto out;
3663 	}
3664 
3665 	/*
3666 	 * Do not pin the page in memory, so that memory hot-unplug
3667 	 * is able to migrate it.
3668 	 */
3669 	put_page(page);
3670 	kvm->arch.apic_access_page_done = true;
3671 out:
3672 	mutex_unlock(&kvm->slots_lock);
3673 	return ret;
3674 }
3675 
3676 int allocate_vpid(void)
3677 {
3678 	int vpid;
3679 
3680 	if (!enable_vpid)
3681 		return 0;
3682 	spin_lock(&vmx_vpid_lock);
3683 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3684 	if (vpid < VMX_NR_VPIDS)
3685 		__set_bit(vpid, vmx_vpid_bitmap);
3686 	else
3687 		vpid = 0;
3688 	spin_unlock(&vmx_vpid_lock);
3689 	return vpid;
3690 }
3691 
3692 void free_vpid(int vpid)
3693 {
3694 	if (!enable_vpid || vpid == 0)
3695 		return;
3696 	spin_lock(&vmx_vpid_lock);
3697 	__clear_bit(vpid, vmx_vpid_bitmap);
3698 	spin_unlock(&vmx_vpid_lock);
3699 }
3700 
3701 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3702 {
3703 	int f = sizeof(unsigned long);
3704 
3705 	if (msr <= 0x1fff)
3706 		__clear_bit(msr, msr_bitmap + 0x000 / f);
3707 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3708 		__clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3709 }
3710 
3711 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3712 {
3713 	int f = sizeof(unsigned long);
3714 
3715 	if (msr <= 0x1fff)
3716 		__clear_bit(msr, msr_bitmap + 0x800 / f);
3717 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3718 		__clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3719 }
3720 
3721 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3722 {
3723 	int f = sizeof(unsigned long);
3724 
3725 	if (msr <= 0x1fff)
3726 		__set_bit(msr, msr_bitmap + 0x000 / f);
3727 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3728 		__set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3729 }
3730 
3731 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3732 {
3733 	int f = sizeof(unsigned long);
3734 
3735 	if (msr <= 0x1fff)
3736 		__set_bit(msr, msr_bitmap + 0x800 / f);
3737 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3738 		__set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3739 }
3740 
3741 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
3742 							  u32 msr, int type)
3743 {
3744 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3745 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3746 
3747 	if (!cpu_has_vmx_msr_bitmap())
3748 		return;
3749 
3750 	if (static_branch_unlikely(&enable_evmcs))
3751 		evmcs_touch_msr_bitmap();
3752 
3753 	/*
3754 	 * Mark the desired intercept state in shadow bitmap, this is needed
3755 	 * for resync when the MSR filters change.
3756 	*/
3757 	if (is_valid_passthrough_msr(msr)) {
3758 		int idx = possible_passthrough_msr_slot(msr);
3759 
3760 		if (idx != -ENOENT) {
3761 			if (type & MSR_TYPE_R)
3762 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3763 			if (type & MSR_TYPE_W)
3764 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3765 		}
3766 	}
3767 
3768 	if ((type & MSR_TYPE_R) &&
3769 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3770 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3771 		type &= ~MSR_TYPE_R;
3772 	}
3773 
3774 	if ((type & MSR_TYPE_W) &&
3775 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3776 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3777 		type &= ~MSR_TYPE_W;
3778 	}
3779 
3780 	if (type & MSR_TYPE_R)
3781 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3782 
3783 	if (type & MSR_TYPE_W)
3784 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3785 }
3786 
3787 static __always_inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
3788 							 u32 msr, int type)
3789 {
3790 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3791 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3792 
3793 	if (!cpu_has_vmx_msr_bitmap())
3794 		return;
3795 
3796 	if (static_branch_unlikely(&enable_evmcs))
3797 		evmcs_touch_msr_bitmap();
3798 
3799 	/*
3800 	 * Mark the desired intercept state in shadow bitmap, this is needed
3801 	 * for resync when the MSR filter changes.
3802 	*/
3803 	if (is_valid_passthrough_msr(msr)) {
3804 		int idx = possible_passthrough_msr_slot(msr);
3805 
3806 		if (idx != -ENOENT) {
3807 			if (type & MSR_TYPE_R)
3808 				set_bit(idx, vmx->shadow_msr_intercept.read);
3809 			if (type & MSR_TYPE_W)
3810 				set_bit(idx, vmx->shadow_msr_intercept.write);
3811 		}
3812 	}
3813 
3814 	if (type & MSR_TYPE_R)
3815 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3816 
3817 	if (type & MSR_TYPE_W)
3818 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3819 }
3820 
3821 void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu,
3822 						      u32 msr, int type, bool value)
3823 {
3824 	if (value)
3825 		vmx_enable_intercept_for_msr(vcpu, msr, type);
3826 	else
3827 		vmx_disable_intercept_for_msr(vcpu, msr, type);
3828 }
3829 
3830 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3831 {
3832 	u8 mode = 0;
3833 
3834 	if (cpu_has_secondary_exec_ctrls() &&
3835 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
3836 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3837 		mode |= MSR_BITMAP_MODE_X2APIC;
3838 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3839 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3840 	}
3841 
3842 	return mode;
3843 }
3844 
3845 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3846 {
3847 	unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3848 	unsigned long read_intercept;
3849 	int msr;
3850 
3851 	read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3852 
3853 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3854 		unsigned int read_idx = msr / BITS_PER_LONG;
3855 		unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3856 
3857 		msr_bitmap[read_idx] = read_intercept;
3858 		msr_bitmap[write_idx] = ~0ul;
3859 	}
3860 }
3861 
3862 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3863 {
3864 	if (!cpu_has_vmx_msr_bitmap())
3865 		return;
3866 
3867 	vmx_reset_x2apic_msrs(vcpu, mode);
3868 
3869 	/*
3870 	 * TPR reads and writes can be virtualized even if virtual interrupt
3871 	 * delivery is not in use.
3872 	 */
3873 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3874 				  !(mode & MSR_BITMAP_MODE_X2APIC));
3875 
3876 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3877 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3878 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3879 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3880 	}
3881 }
3882 
3883 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3884 {
3885 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3886 	u8 mode = vmx_msr_bitmap_mode(vcpu);
3887 	u8 changed = mode ^ vmx->msr_bitmap_mode;
3888 
3889 	if (!changed)
3890 		return;
3891 
3892 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3893 		vmx_update_msr_bitmap_x2apic(vcpu, mode);
3894 
3895 	vmx->msr_bitmap_mode = mode;
3896 }
3897 
3898 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3899 {
3900 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3901 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3902 	u32 i;
3903 
3904 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3905 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3906 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3907 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3908 	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3909 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3910 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3911 	}
3912 }
3913 
3914 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3915 {
3916 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3917 	void *vapic_page;
3918 	u32 vppr;
3919 	int rvi;
3920 
3921 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3922 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3923 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3924 		return false;
3925 
3926 	rvi = vmx_get_rvi();
3927 
3928 	vapic_page = vmx->nested.virtual_apic_map.hva;
3929 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3930 
3931 	return ((rvi & 0xf0) > (vppr & 0xf0));
3932 }
3933 
3934 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3935 {
3936 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3937 	u32 i;
3938 
3939 	/*
3940 	 * Set intercept permissions for all potentially passed through MSRs
3941 	 * again. They will automatically get filtered through the MSR filter,
3942 	 * so we are back in sync after this.
3943 	 */
3944 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3945 		u32 msr = vmx_possible_passthrough_msrs[i];
3946 		bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3947 		bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3948 
3949 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3950 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3951 	}
3952 
3953 	pt_update_intercept_for_msr(vcpu);
3954 	vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
3955 }
3956 
3957 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3958 						     bool nested)
3959 {
3960 #ifdef CONFIG_SMP
3961 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3962 
3963 	if (vcpu->mode == IN_GUEST_MODE) {
3964 		/*
3965 		 * The vector of interrupt to be delivered to vcpu had
3966 		 * been set in PIR before this function.
3967 		 *
3968 		 * Following cases will be reached in this block, and
3969 		 * we always send a notification event in all cases as
3970 		 * explained below.
3971 		 *
3972 		 * Case 1: vcpu keeps in non-root mode. Sending a
3973 		 * notification event posts the interrupt to vcpu.
3974 		 *
3975 		 * Case 2: vcpu exits to root mode and is still
3976 		 * runnable. PIR will be synced to vIRR before the
3977 		 * next vcpu entry. Sending a notification event in
3978 		 * this case has no effect, as vcpu is not in root
3979 		 * mode.
3980 		 *
3981 		 * Case 3: vcpu exits to root mode and is blocked.
3982 		 * vcpu_block() has already synced PIR to vIRR and
3983 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3984 		 * a blocked vcpu here does not wait for any requested
3985 		 * interrupts in PIR, and sending a notification event
3986 		 * which has no effect is safe here.
3987 		 */
3988 
3989 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3990 		return true;
3991 	}
3992 #endif
3993 	return false;
3994 }
3995 
3996 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3997 						int vector)
3998 {
3999 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4000 
4001 	if (is_guest_mode(vcpu) &&
4002 	    vector == vmx->nested.posted_intr_nv) {
4003 		/*
4004 		 * If a posted intr is not recognized by hardware,
4005 		 * we will accomplish it in the next vmentry.
4006 		 */
4007 		vmx->nested.pi_pending = true;
4008 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4009 		/* the PIR and ON have been set by L1. */
4010 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
4011 			kvm_vcpu_kick(vcpu);
4012 		return 0;
4013 	}
4014 	return -1;
4015 }
4016 /*
4017  * Send interrupt to vcpu via posted interrupt way.
4018  * 1. If target vcpu is running(non-root mode), send posted interrupt
4019  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4020  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4021  * interrupt from PIR in next vmentry.
4022  */
4023 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4024 {
4025 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4026 	int r;
4027 
4028 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4029 	if (!r)
4030 		return 0;
4031 
4032 	if (!vcpu->arch.apicv_active)
4033 		return -1;
4034 
4035 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4036 		return 0;
4037 
4038 	/* If a previous notification has sent the IPI, nothing to do.  */
4039 	if (pi_test_and_set_on(&vmx->pi_desc))
4040 		return 0;
4041 
4042 	if (vcpu != kvm_get_running_vcpu() &&
4043 	    !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4044 		kvm_vcpu_kick(vcpu);
4045 
4046 	return 0;
4047 }
4048 
4049 /*
4050  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4051  * will not change in the lifetime of the guest.
4052  * Note that host-state that does change is set elsewhere. E.g., host-state
4053  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4054  */
4055 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4056 {
4057 	u32 low32, high32;
4058 	unsigned long tmpl;
4059 	unsigned long cr0, cr3, cr4;
4060 
4061 	cr0 = read_cr0();
4062 	WARN_ON(cr0 & X86_CR0_TS);
4063 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4064 
4065 	/*
4066 	 * Save the most likely value for this task's CR3 in the VMCS.
4067 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4068 	 */
4069 	cr3 = __read_cr3();
4070 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4071 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4072 
4073 	/* Save the most likely value for this task's CR4 in the VMCS. */
4074 	cr4 = cr4_read_shadow();
4075 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4076 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4077 
4078 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4079 #ifdef CONFIG_X86_64
4080 	/*
4081 	 * Load null selectors, so we can avoid reloading them in
4082 	 * vmx_prepare_switch_to_host(), in case userspace uses
4083 	 * the null selectors too (the expected case).
4084 	 */
4085 	vmcs_write16(HOST_DS_SELECTOR, 0);
4086 	vmcs_write16(HOST_ES_SELECTOR, 0);
4087 #else
4088 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4089 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4090 #endif
4091 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4092 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4093 
4094 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4095 
4096 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4097 
4098 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4099 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4100 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4101 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4102 
4103 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4104 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4105 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4106 	}
4107 
4108 	if (cpu_has_load_ia32_efer())
4109 		vmcs_write64(HOST_IA32_EFER, host_efer);
4110 }
4111 
4112 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4113 {
4114 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4115 
4116 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4117 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4118 	if (!enable_ept)
4119 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4120 	if (is_guest_mode(&vmx->vcpu))
4121 		vcpu->arch.cr4_guest_owned_bits &=
4122 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4123 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4124 }
4125 
4126 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4127 {
4128 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4129 
4130 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4131 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4132 
4133 	if (!enable_vnmi)
4134 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4135 
4136 	if (!enable_preemption_timer)
4137 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4138 
4139 	return pin_based_exec_ctrl;
4140 }
4141 
4142 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4143 {
4144 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4145 
4146 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4147 	if (cpu_has_secondary_exec_ctrls()) {
4148 		if (kvm_vcpu_apicv_active(vcpu))
4149 			secondary_exec_controls_setbit(vmx,
4150 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4151 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4152 		else
4153 			secondary_exec_controls_clearbit(vmx,
4154 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4155 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4156 	}
4157 
4158 	if (cpu_has_vmx_msr_bitmap())
4159 		vmx_update_msr_bitmap(vcpu);
4160 }
4161 
4162 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4163 {
4164 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4165 
4166 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4167 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4168 
4169 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4170 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4171 #ifdef CONFIG_X86_64
4172 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4173 				CPU_BASED_CR8_LOAD_EXITING;
4174 #endif
4175 	}
4176 	if (!enable_ept)
4177 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4178 				CPU_BASED_CR3_LOAD_EXITING  |
4179 				CPU_BASED_INVLPG_EXITING;
4180 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4181 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4182 				CPU_BASED_MONITOR_EXITING);
4183 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4184 		exec_control &= ~CPU_BASED_HLT_EXITING;
4185 	return exec_control;
4186 }
4187 
4188 /*
4189  * Adjust a single secondary execution control bit to intercept/allow an
4190  * instruction in the guest.  This is usually done based on whether or not a
4191  * feature has been exposed to the guest in order to correctly emulate faults.
4192  */
4193 static inline void
4194 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4195 				  u32 control, bool enabled, bool exiting)
4196 {
4197 	/*
4198 	 * If the control is for an opt-in feature, clear the control if the
4199 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4200 	 * control is opt-out, i.e. an exiting control, clear the control if
4201 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4202 	 * disabled for the associated instruction.  Note, the caller is
4203 	 * responsible presetting exec_control to set all supported bits.
4204 	 */
4205 	if (enabled == exiting)
4206 		*exec_control &= ~control;
4207 
4208 	/*
4209 	 * Update the nested MSR settings so that a nested VMM can/can't set
4210 	 * controls for features that are/aren't exposed to the guest.
4211 	 */
4212 	if (nested) {
4213 		if (enabled)
4214 			vmx->nested.msrs.secondary_ctls_high |= control;
4215 		else
4216 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4217 	}
4218 }
4219 
4220 /*
4221  * Wrapper macro for the common case of adjusting a secondary execution control
4222  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4223  * verifies that the control is actually supported by KVM and hardware.
4224  */
4225 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4226 ({									 \
4227 	bool __enabled;							 \
4228 									 \
4229 	if (cpu_has_vmx_##name()) {					 \
4230 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4231 					    X86_FEATURE_##feat_name);	 \
4232 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4233 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4234 	}								 \
4235 })
4236 
4237 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4238 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4239 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4240 
4241 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4242 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4243 
4244 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4245 {
4246 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4247 
4248 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4249 
4250 	if (vmx_pt_mode_is_system())
4251 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4252 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4253 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4254 	if (vmx->vpid == 0)
4255 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4256 	if (!enable_ept) {
4257 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4258 		enable_unrestricted_guest = 0;
4259 	}
4260 	if (!enable_unrestricted_guest)
4261 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4262 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4263 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4264 	if (!kvm_vcpu_apicv_active(vcpu))
4265 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4266 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4267 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4268 
4269 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4270 	 * in vmx_set_cr4.  */
4271 	exec_control &= ~SECONDARY_EXEC_DESC;
4272 
4273 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4274 	   (handle_vmptrld).
4275 	   We can NOT enable shadow_vmcs here because we don't have yet
4276 	   a current VMCS12
4277 	*/
4278 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4279 
4280 	/*
4281 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4282 	 * it needs to be set here when dirty logging is already active, e.g.
4283 	 * if this vCPU was created after dirty logging was enabled.
4284 	 */
4285 	if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4286 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4287 
4288 	if (cpu_has_vmx_xsaves()) {
4289 		/* Exposing XSAVES only when XSAVE is exposed */
4290 		bool xsaves_enabled =
4291 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4292 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4293 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4294 
4295 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4296 
4297 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4298 						  SECONDARY_EXEC_XSAVES,
4299 						  xsaves_enabled, false);
4300 	}
4301 
4302 	vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP);
4303 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4304 
4305 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4306 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4307 
4308 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4309 				    ENABLE_USR_WAIT_PAUSE, false);
4310 
4311 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4312 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4313 
4314 	vmx->secondary_exec_control = exec_control;
4315 }
4316 
4317 static void ept_set_mmio_spte_mask(void)
4318 {
4319 	/*
4320 	 * EPT Misconfigurations can be generated if the value of bits 2:0
4321 	 * of an EPT paging-structure entry is 110b (write/execute).
4322 	 */
4323 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0);
4324 }
4325 
4326 #define VMX_XSS_EXIT_BITMAP 0
4327 
4328 /*
4329  * Noting that the initialization of Guest-state Area of VMCS is in
4330  * vmx_vcpu_reset().
4331  */
4332 static void init_vmcs(struct vcpu_vmx *vmx)
4333 {
4334 	if (nested)
4335 		nested_vmx_set_vmcs_shadowing_bitmap();
4336 
4337 	if (cpu_has_vmx_msr_bitmap())
4338 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4339 
4340 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4341 
4342 	/* Control */
4343 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4344 
4345 	exec_controls_set(vmx, vmx_exec_control(vmx));
4346 
4347 	if (cpu_has_secondary_exec_ctrls()) {
4348 		vmx_compute_secondary_exec_control(vmx);
4349 		secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4350 	}
4351 
4352 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4353 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4354 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4355 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4356 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4357 
4358 		vmcs_write16(GUEST_INTR_STATUS, 0);
4359 
4360 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4361 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4362 	}
4363 
4364 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4365 		vmcs_write32(PLE_GAP, ple_gap);
4366 		vmx->ple_window = ple_window;
4367 		vmx->ple_window_dirty = true;
4368 	}
4369 
4370 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4371 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4372 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4373 
4374 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4375 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4376 	vmx_set_constant_host_state(vmx);
4377 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4378 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4379 
4380 	if (cpu_has_vmx_vmfunc())
4381 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4382 
4383 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4384 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4385 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4386 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4387 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4388 
4389 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4390 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4391 
4392 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4393 
4394 	/* 22.2.1, 20.8.1 */
4395 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4396 
4397 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4398 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4399 
4400 	set_cr4_guest_host_mask(vmx);
4401 
4402 	if (vmx->vpid != 0)
4403 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4404 
4405 	if (cpu_has_vmx_xsaves())
4406 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4407 
4408 	if (enable_pml) {
4409 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4410 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4411 	}
4412 
4413 	if (cpu_has_vmx_encls_vmexit())
4414 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4415 
4416 	if (vmx_pt_mode_is_host_guest()) {
4417 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4418 		/* Bit[6~0] are forced to 1, writes are ignored. */
4419 		vmx->pt_desc.guest.output_mask = 0x7F;
4420 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4421 	}
4422 }
4423 
4424 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4425 {
4426 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4427 	struct msr_data apic_base_msr;
4428 	u64 cr0;
4429 
4430 	vmx->rmode.vm86_active = 0;
4431 	vmx->spec_ctrl = 0;
4432 
4433 	vmx->msr_ia32_umwait_control = 0;
4434 
4435 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4436 	vmx->hv_deadline_tsc = -1;
4437 	kvm_set_cr8(vcpu, 0);
4438 
4439 	if (!init_event) {
4440 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4441 				     MSR_IA32_APICBASE_ENABLE;
4442 		if (kvm_vcpu_is_reset_bsp(vcpu))
4443 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4444 		apic_base_msr.host_initiated = true;
4445 		kvm_set_apic_base(vcpu, &apic_base_msr);
4446 	}
4447 
4448 	vmx_segment_cache_clear(vmx);
4449 
4450 	seg_setup(VCPU_SREG_CS);
4451 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4452 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4453 
4454 	seg_setup(VCPU_SREG_DS);
4455 	seg_setup(VCPU_SREG_ES);
4456 	seg_setup(VCPU_SREG_FS);
4457 	seg_setup(VCPU_SREG_GS);
4458 	seg_setup(VCPU_SREG_SS);
4459 
4460 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4461 	vmcs_writel(GUEST_TR_BASE, 0);
4462 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4463 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4464 
4465 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4466 	vmcs_writel(GUEST_LDTR_BASE, 0);
4467 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4468 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4469 
4470 	if (!init_event) {
4471 		vmcs_write32(GUEST_SYSENTER_CS, 0);
4472 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
4473 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
4474 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4475 	}
4476 
4477 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4478 	kvm_rip_write(vcpu, 0xfff0);
4479 
4480 	vmcs_writel(GUEST_GDTR_BASE, 0);
4481 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4482 
4483 	vmcs_writel(GUEST_IDTR_BASE, 0);
4484 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4485 
4486 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4487 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4488 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4489 	if (kvm_mpx_supported())
4490 		vmcs_write64(GUEST_BNDCFGS, 0);
4491 
4492 	setup_msrs(vmx);
4493 
4494 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4495 
4496 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
4497 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4498 		if (cpu_need_tpr_shadow(vcpu))
4499 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4500 				     __pa(vcpu->arch.apic->regs));
4501 		vmcs_write32(TPR_THRESHOLD, 0);
4502 	}
4503 
4504 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4505 
4506 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4507 	vmx->vcpu.arch.cr0 = cr0;
4508 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
4509 	vmx_set_cr4(vcpu, 0);
4510 	vmx_set_efer(vcpu, 0);
4511 
4512 	vmx_update_exception_bitmap(vcpu);
4513 
4514 	vpid_sync_context(vmx->vpid);
4515 	if (init_event)
4516 		vmx_clear_hlt(vcpu);
4517 }
4518 
4519 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4520 {
4521 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4522 }
4523 
4524 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4525 {
4526 	if (!enable_vnmi ||
4527 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4528 		vmx_enable_irq_window(vcpu);
4529 		return;
4530 	}
4531 
4532 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4533 }
4534 
4535 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4536 {
4537 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4538 	uint32_t intr;
4539 	int irq = vcpu->arch.interrupt.nr;
4540 
4541 	trace_kvm_inj_virq(irq);
4542 
4543 	++vcpu->stat.irq_injections;
4544 	if (vmx->rmode.vm86_active) {
4545 		int inc_eip = 0;
4546 		if (vcpu->arch.interrupt.soft)
4547 			inc_eip = vcpu->arch.event_exit_inst_len;
4548 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4549 		return;
4550 	}
4551 	intr = irq | INTR_INFO_VALID_MASK;
4552 	if (vcpu->arch.interrupt.soft) {
4553 		intr |= INTR_TYPE_SOFT_INTR;
4554 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4555 			     vmx->vcpu.arch.event_exit_inst_len);
4556 	} else
4557 		intr |= INTR_TYPE_EXT_INTR;
4558 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4559 
4560 	vmx_clear_hlt(vcpu);
4561 }
4562 
4563 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4564 {
4565 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4566 
4567 	if (!enable_vnmi) {
4568 		/*
4569 		 * Tracking the NMI-blocked state in software is built upon
4570 		 * finding the next open IRQ window. This, in turn, depends on
4571 		 * well-behaving guests: They have to keep IRQs disabled at
4572 		 * least as long as the NMI handler runs. Otherwise we may
4573 		 * cause NMI nesting, maybe breaking the guest. But as this is
4574 		 * highly unlikely, we can live with the residual risk.
4575 		 */
4576 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4577 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4578 	}
4579 
4580 	++vcpu->stat.nmi_injections;
4581 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4582 
4583 	if (vmx->rmode.vm86_active) {
4584 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4585 		return;
4586 	}
4587 
4588 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4589 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4590 
4591 	vmx_clear_hlt(vcpu);
4592 }
4593 
4594 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4595 {
4596 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4597 	bool masked;
4598 
4599 	if (!enable_vnmi)
4600 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4601 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4602 		return false;
4603 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4604 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4605 	return masked;
4606 }
4607 
4608 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4609 {
4610 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4611 
4612 	if (!enable_vnmi) {
4613 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4614 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4615 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4616 		}
4617 	} else {
4618 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4619 		if (masked)
4620 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4621 				      GUEST_INTR_STATE_NMI);
4622 		else
4623 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4624 					GUEST_INTR_STATE_NMI);
4625 	}
4626 }
4627 
4628 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4629 {
4630 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4631 		return false;
4632 
4633 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4634 		return true;
4635 
4636 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4637 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4638 		 GUEST_INTR_STATE_NMI));
4639 }
4640 
4641 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4642 {
4643 	if (to_vmx(vcpu)->nested.nested_run_pending)
4644 		return -EBUSY;
4645 
4646 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4647 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4648 		return -EBUSY;
4649 
4650 	return !vmx_nmi_blocked(vcpu);
4651 }
4652 
4653 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4654 {
4655 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4656 		return false;
4657 
4658 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4659 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4660 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4661 }
4662 
4663 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4664 {
4665 	if (to_vmx(vcpu)->nested.nested_run_pending)
4666 		return -EBUSY;
4667 
4668        /*
4669         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4670         * e.g. if the IRQ arrived asynchronously after checking nested events.
4671         */
4672 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4673 		return -EBUSY;
4674 
4675 	return !vmx_interrupt_blocked(vcpu);
4676 }
4677 
4678 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4679 {
4680 	void __user *ret;
4681 
4682 	if (enable_unrestricted_guest)
4683 		return 0;
4684 
4685 	mutex_lock(&kvm->slots_lock);
4686 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4687 				      PAGE_SIZE * 3);
4688 	mutex_unlock(&kvm->slots_lock);
4689 
4690 	if (IS_ERR(ret))
4691 		return PTR_ERR(ret);
4692 
4693 	to_kvm_vmx(kvm)->tss_addr = addr;
4694 
4695 	return init_rmode_tss(kvm, ret);
4696 }
4697 
4698 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4699 {
4700 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4701 	return 0;
4702 }
4703 
4704 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4705 {
4706 	switch (vec) {
4707 	case BP_VECTOR:
4708 		/*
4709 		 * Update instruction length as we may reinject the exception
4710 		 * from user space while in guest debugging mode.
4711 		 */
4712 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4713 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4714 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4715 			return false;
4716 		fallthrough;
4717 	case DB_VECTOR:
4718 		return !(vcpu->guest_debug &
4719 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4720 	case DE_VECTOR:
4721 	case OF_VECTOR:
4722 	case BR_VECTOR:
4723 	case UD_VECTOR:
4724 	case DF_VECTOR:
4725 	case SS_VECTOR:
4726 	case GP_VECTOR:
4727 	case MF_VECTOR:
4728 		return true;
4729 	}
4730 	return false;
4731 }
4732 
4733 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4734 				  int vec, u32 err_code)
4735 {
4736 	/*
4737 	 * Instruction with address size override prefix opcode 0x67
4738 	 * Cause the #SS fault with 0 error code in VM86 mode.
4739 	 */
4740 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4741 		if (kvm_emulate_instruction(vcpu, 0)) {
4742 			if (vcpu->arch.halt_request) {
4743 				vcpu->arch.halt_request = 0;
4744 				return kvm_vcpu_halt(vcpu);
4745 			}
4746 			return 1;
4747 		}
4748 		return 0;
4749 	}
4750 
4751 	/*
4752 	 * Forward all other exceptions that are valid in real mode.
4753 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4754 	 *        the required debugging infrastructure rework.
4755 	 */
4756 	kvm_queue_exception(vcpu, vec);
4757 	return 1;
4758 }
4759 
4760 static int handle_machine_check(struct kvm_vcpu *vcpu)
4761 {
4762 	/* handled by vmx_vcpu_run() */
4763 	return 1;
4764 }
4765 
4766 /*
4767  * If the host has split lock detection disabled, then #AC is
4768  * unconditionally injected into the guest, which is the pre split lock
4769  * detection behaviour.
4770  *
4771  * If the host has split lock detection enabled then #AC is
4772  * only injected into the guest when:
4773  *  - Guest CPL == 3 (user mode)
4774  *  - Guest has #AC detection enabled in CR0
4775  *  - Guest EFLAGS has AC bit set
4776  */
4777 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4778 {
4779 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4780 		return true;
4781 
4782 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4783 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4784 }
4785 
4786 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4787 {
4788 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4789 	struct kvm_run *kvm_run = vcpu->run;
4790 	u32 intr_info, ex_no, error_code;
4791 	unsigned long cr2, rip, dr6;
4792 	u32 vect_info;
4793 
4794 	vect_info = vmx->idt_vectoring_info;
4795 	intr_info = vmx_get_intr_info(vcpu);
4796 
4797 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4798 		return 1; /* handled by handle_exception_nmi_irqoff() */
4799 
4800 	if (is_invalid_opcode(intr_info))
4801 		return handle_ud(vcpu);
4802 
4803 	error_code = 0;
4804 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4805 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4806 
4807 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4808 		WARN_ON_ONCE(!enable_vmware_backdoor);
4809 
4810 		/*
4811 		 * VMware backdoor emulation on #GP interception only handles
4812 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4813 		 * error code on #GP.
4814 		 */
4815 		if (error_code) {
4816 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4817 			return 1;
4818 		}
4819 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4820 	}
4821 
4822 	/*
4823 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4824 	 * MMIO, it is better to report an internal error.
4825 	 * See the comments in vmx_handle_exit.
4826 	 */
4827 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4828 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4829 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4830 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4831 		vcpu->run->internal.ndata = 4;
4832 		vcpu->run->internal.data[0] = vect_info;
4833 		vcpu->run->internal.data[1] = intr_info;
4834 		vcpu->run->internal.data[2] = error_code;
4835 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4836 		return 0;
4837 	}
4838 
4839 	if (is_page_fault(intr_info)) {
4840 		cr2 = vmx_get_exit_qual(vcpu);
4841 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4842 			/*
4843 			 * EPT will cause page fault only if we need to
4844 			 * detect illegal GPAs.
4845 			 */
4846 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4847 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4848 			return 1;
4849 		} else
4850 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4851 	}
4852 
4853 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4854 
4855 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4856 		return handle_rmode_exception(vcpu, ex_no, error_code);
4857 
4858 	switch (ex_no) {
4859 	case DB_VECTOR:
4860 		dr6 = vmx_get_exit_qual(vcpu);
4861 		if (!(vcpu->guest_debug &
4862 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4863 			if (is_icebp(intr_info))
4864 				WARN_ON(!skip_emulated_instruction(vcpu));
4865 
4866 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4867 			return 1;
4868 		}
4869 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4870 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4871 		fallthrough;
4872 	case BP_VECTOR:
4873 		/*
4874 		 * Update instruction length as we may reinject #BP from
4875 		 * user space while in guest debugging mode. Reading it for
4876 		 * #DB as well causes no harm, it is not used in that case.
4877 		 */
4878 		vmx->vcpu.arch.event_exit_inst_len =
4879 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4880 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4881 		rip = kvm_rip_read(vcpu);
4882 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4883 		kvm_run->debug.arch.exception = ex_no;
4884 		break;
4885 	case AC_VECTOR:
4886 		if (guest_inject_ac(vcpu)) {
4887 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4888 			return 1;
4889 		}
4890 
4891 		/*
4892 		 * Handle split lock. Depending on detection mode this will
4893 		 * either warn and disable split lock detection for this
4894 		 * task or force SIGBUS on it.
4895 		 */
4896 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4897 			return 1;
4898 		fallthrough;
4899 	default:
4900 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4901 		kvm_run->ex.exception = ex_no;
4902 		kvm_run->ex.error_code = error_code;
4903 		break;
4904 	}
4905 	return 0;
4906 }
4907 
4908 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4909 {
4910 	++vcpu->stat.irq_exits;
4911 	return 1;
4912 }
4913 
4914 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4915 {
4916 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4917 	vcpu->mmio_needed = 0;
4918 	return 0;
4919 }
4920 
4921 static int handle_io(struct kvm_vcpu *vcpu)
4922 {
4923 	unsigned long exit_qualification;
4924 	int size, in, string;
4925 	unsigned port;
4926 
4927 	exit_qualification = vmx_get_exit_qual(vcpu);
4928 	string = (exit_qualification & 16) != 0;
4929 
4930 	++vcpu->stat.io_exits;
4931 
4932 	if (string)
4933 		return kvm_emulate_instruction(vcpu, 0);
4934 
4935 	port = exit_qualification >> 16;
4936 	size = (exit_qualification & 7) + 1;
4937 	in = (exit_qualification & 8) != 0;
4938 
4939 	return kvm_fast_pio(vcpu, size, port, in);
4940 }
4941 
4942 static void
4943 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4944 {
4945 	/*
4946 	 * Patch in the VMCALL instruction:
4947 	 */
4948 	hypercall[0] = 0x0f;
4949 	hypercall[1] = 0x01;
4950 	hypercall[2] = 0xc1;
4951 }
4952 
4953 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4954 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4955 {
4956 	if (is_guest_mode(vcpu)) {
4957 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4958 		unsigned long orig_val = val;
4959 
4960 		/*
4961 		 * We get here when L2 changed cr0 in a way that did not change
4962 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4963 		 * but did change L0 shadowed bits. So we first calculate the
4964 		 * effective cr0 value that L1 would like to write into the
4965 		 * hardware. It consists of the L2-owned bits from the new
4966 		 * value combined with the L1-owned bits from L1's guest_cr0.
4967 		 */
4968 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4969 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4970 
4971 		if (!nested_guest_cr0_valid(vcpu, val))
4972 			return 1;
4973 
4974 		if (kvm_set_cr0(vcpu, val))
4975 			return 1;
4976 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4977 		return 0;
4978 	} else {
4979 		if (to_vmx(vcpu)->nested.vmxon &&
4980 		    !nested_host_cr0_valid(vcpu, val))
4981 			return 1;
4982 
4983 		return kvm_set_cr0(vcpu, val);
4984 	}
4985 }
4986 
4987 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4988 {
4989 	if (is_guest_mode(vcpu)) {
4990 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4991 		unsigned long orig_val = val;
4992 
4993 		/* analogously to handle_set_cr0 */
4994 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4995 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4996 		if (kvm_set_cr4(vcpu, val))
4997 			return 1;
4998 		vmcs_writel(CR4_READ_SHADOW, orig_val);
4999 		return 0;
5000 	} else
5001 		return kvm_set_cr4(vcpu, val);
5002 }
5003 
5004 static int handle_desc(struct kvm_vcpu *vcpu)
5005 {
5006 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5007 	return kvm_emulate_instruction(vcpu, 0);
5008 }
5009 
5010 static int handle_cr(struct kvm_vcpu *vcpu)
5011 {
5012 	unsigned long exit_qualification, val;
5013 	int cr;
5014 	int reg;
5015 	int err;
5016 	int ret;
5017 
5018 	exit_qualification = vmx_get_exit_qual(vcpu);
5019 	cr = exit_qualification & 15;
5020 	reg = (exit_qualification >> 8) & 15;
5021 	switch ((exit_qualification >> 4) & 3) {
5022 	case 0: /* mov to cr */
5023 		val = kvm_register_readl(vcpu, reg);
5024 		trace_kvm_cr_write(cr, val);
5025 		switch (cr) {
5026 		case 0:
5027 			err = handle_set_cr0(vcpu, val);
5028 			return kvm_complete_insn_gp(vcpu, err);
5029 		case 3:
5030 			WARN_ON_ONCE(enable_unrestricted_guest);
5031 			err = kvm_set_cr3(vcpu, val);
5032 			return kvm_complete_insn_gp(vcpu, err);
5033 		case 4:
5034 			err = handle_set_cr4(vcpu, val);
5035 			return kvm_complete_insn_gp(vcpu, err);
5036 		case 8: {
5037 				u8 cr8_prev = kvm_get_cr8(vcpu);
5038 				u8 cr8 = (u8)val;
5039 				err = kvm_set_cr8(vcpu, cr8);
5040 				ret = kvm_complete_insn_gp(vcpu, err);
5041 				if (lapic_in_kernel(vcpu))
5042 					return ret;
5043 				if (cr8_prev <= cr8)
5044 					return ret;
5045 				/*
5046 				 * TODO: we might be squashing a
5047 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5048 				 * KVM_EXIT_DEBUG here.
5049 				 */
5050 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5051 				return 0;
5052 			}
5053 		}
5054 		break;
5055 	case 2: /* clts */
5056 		WARN_ONCE(1, "Guest should always own CR0.TS");
5057 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5058 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5059 		return kvm_skip_emulated_instruction(vcpu);
5060 	case 1: /*mov from cr*/
5061 		switch (cr) {
5062 		case 3:
5063 			WARN_ON_ONCE(enable_unrestricted_guest);
5064 			val = kvm_read_cr3(vcpu);
5065 			kvm_register_write(vcpu, reg, val);
5066 			trace_kvm_cr_read(cr, val);
5067 			return kvm_skip_emulated_instruction(vcpu);
5068 		case 8:
5069 			val = kvm_get_cr8(vcpu);
5070 			kvm_register_write(vcpu, reg, val);
5071 			trace_kvm_cr_read(cr, val);
5072 			return kvm_skip_emulated_instruction(vcpu);
5073 		}
5074 		break;
5075 	case 3: /* lmsw */
5076 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5077 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5078 		kvm_lmsw(vcpu, val);
5079 
5080 		return kvm_skip_emulated_instruction(vcpu);
5081 	default:
5082 		break;
5083 	}
5084 	vcpu->run->exit_reason = 0;
5085 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5086 	       (int)(exit_qualification >> 4) & 3, cr);
5087 	return 0;
5088 }
5089 
5090 static int handle_dr(struct kvm_vcpu *vcpu)
5091 {
5092 	unsigned long exit_qualification;
5093 	int dr, dr7, reg;
5094 	int err = 1;
5095 
5096 	exit_qualification = vmx_get_exit_qual(vcpu);
5097 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5098 
5099 	/* First, if DR does not exist, trigger UD */
5100 	if (!kvm_require_dr(vcpu, dr))
5101 		return 1;
5102 
5103 	if (kvm_x86_ops.get_cpl(vcpu) > 0)
5104 		goto out;
5105 
5106 	dr7 = vmcs_readl(GUEST_DR7);
5107 	if (dr7 & DR7_GD) {
5108 		/*
5109 		 * As the vm-exit takes precedence over the debug trap, we
5110 		 * need to emulate the latter, either for the host or the
5111 		 * guest debugging itself.
5112 		 */
5113 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5114 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5115 			vcpu->run->debug.arch.dr7 = dr7;
5116 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5117 			vcpu->run->debug.arch.exception = DB_VECTOR;
5118 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5119 			return 0;
5120 		} else {
5121 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5122 			return 1;
5123 		}
5124 	}
5125 
5126 	if (vcpu->guest_debug == 0) {
5127 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5128 
5129 		/*
5130 		 * No more DR vmexits; force a reload of the debug registers
5131 		 * and reenter on this instruction.  The next vmexit will
5132 		 * retrieve the full state of the debug registers.
5133 		 */
5134 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5135 		return 1;
5136 	}
5137 
5138 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5139 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5140 		unsigned long val;
5141 
5142 		kvm_get_dr(vcpu, dr, &val);
5143 		kvm_register_write(vcpu, reg, val);
5144 		err = 0;
5145 	} else {
5146 		err = kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg));
5147 	}
5148 
5149 out:
5150 	return kvm_complete_insn_gp(vcpu, err);
5151 }
5152 
5153 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5154 {
5155 	get_debugreg(vcpu->arch.db[0], 0);
5156 	get_debugreg(vcpu->arch.db[1], 1);
5157 	get_debugreg(vcpu->arch.db[2], 2);
5158 	get_debugreg(vcpu->arch.db[3], 3);
5159 	get_debugreg(vcpu->arch.dr6, 6);
5160 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5161 
5162 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5163 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5164 }
5165 
5166 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5167 {
5168 	vmcs_writel(GUEST_DR7, val);
5169 }
5170 
5171 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5172 {
5173 	kvm_apic_update_ppr(vcpu);
5174 	return 1;
5175 }
5176 
5177 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5178 {
5179 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5180 
5181 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5182 
5183 	++vcpu->stat.irq_window_exits;
5184 	return 1;
5185 }
5186 
5187 static int handle_vmcall(struct kvm_vcpu *vcpu)
5188 {
5189 	return kvm_emulate_hypercall(vcpu);
5190 }
5191 
5192 static int handle_invd(struct kvm_vcpu *vcpu)
5193 {
5194 	/* Treat an INVD instruction as a NOP and just skip it. */
5195 	return kvm_skip_emulated_instruction(vcpu);
5196 }
5197 
5198 static int handle_invlpg(struct kvm_vcpu *vcpu)
5199 {
5200 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5201 
5202 	kvm_mmu_invlpg(vcpu, exit_qualification);
5203 	return kvm_skip_emulated_instruction(vcpu);
5204 }
5205 
5206 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5207 {
5208 	int err;
5209 
5210 	err = kvm_rdpmc(vcpu);
5211 	return kvm_complete_insn_gp(vcpu, err);
5212 }
5213 
5214 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5215 {
5216 	return kvm_emulate_wbinvd(vcpu);
5217 }
5218 
5219 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5220 {
5221 	u64 new_bv = kvm_read_edx_eax(vcpu);
5222 	u32 index = kvm_rcx_read(vcpu);
5223 
5224 	int err = kvm_set_xcr(vcpu, index, new_bv);
5225 	return kvm_complete_insn_gp(vcpu, err);
5226 }
5227 
5228 static int handle_apic_access(struct kvm_vcpu *vcpu)
5229 {
5230 	if (likely(fasteoi)) {
5231 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5232 		int access_type, offset;
5233 
5234 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5235 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5236 		/*
5237 		 * Sane guest uses MOV to write EOI, with written value
5238 		 * not cared. So make a short-circuit here by avoiding
5239 		 * heavy instruction emulation.
5240 		 */
5241 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5242 		    (offset == APIC_EOI)) {
5243 			kvm_lapic_set_eoi(vcpu);
5244 			return kvm_skip_emulated_instruction(vcpu);
5245 		}
5246 	}
5247 	return kvm_emulate_instruction(vcpu, 0);
5248 }
5249 
5250 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5251 {
5252 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5253 	int vector = exit_qualification & 0xff;
5254 
5255 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5256 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5257 	return 1;
5258 }
5259 
5260 static int handle_apic_write(struct kvm_vcpu *vcpu)
5261 {
5262 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5263 	u32 offset = exit_qualification & 0xfff;
5264 
5265 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5266 	kvm_apic_write_nodecode(vcpu, offset);
5267 	return 1;
5268 }
5269 
5270 static int handle_task_switch(struct kvm_vcpu *vcpu)
5271 {
5272 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5273 	unsigned long exit_qualification;
5274 	bool has_error_code = false;
5275 	u32 error_code = 0;
5276 	u16 tss_selector;
5277 	int reason, type, idt_v, idt_index;
5278 
5279 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5280 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5281 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5282 
5283 	exit_qualification = vmx_get_exit_qual(vcpu);
5284 
5285 	reason = (u32)exit_qualification >> 30;
5286 	if (reason == TASK_SWITCH_GATE && idt_v) {
5287 		switch (type) {
5288 		case INTR_TYPE_NMI_INTR:
5289 			vcpu->arch.nmi_injected = false;
5290 			vmx_set_nmi_mask(vcpu, true);
5291 			break;
5292 		case INTR_TYPE_EXT_INTR:
5293 		case INTR_TYPE_SOFT_INTR:
5294 			kvm_clear_interrupt_queue(vcpu);
5295 			break;
5296 		case INTR_TYPE_HARD_EXCEPTION:
5297 			if (vmx->idt_vectoring_info &
5298 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5299 				has_error_code = true;
5300 				error_code =
5301 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5302 			}
5303 			fallthrough;
5304 		case INTR_TYPE_SOFT_EXCEPTION:
5305 			kvm_clear_exception_queue(vcpu);
5306 			break;
5307 		default:
5308 			break;
5309 		}
5310 	}
5311 	tss_selector = exit_qualification;
5312 
5313 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5314 		       type != INTR_TYPE_EXT_INTR &&
5315 		       type != INTR_TYPE_NMI_INTR))
5316 		WARN_ON(!skip_emulated_instruction(vcpu));
5317 
5318 	/*
5319 	 * TODO: What about debug traps on tss switch?
5320 	 *       Are we supposed to inject them and update dr6?
5321 	 */
5322 	return kvm_task_switch(vcpu, tss_selector,
5323 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5324 			       reason, has_error_code, error_code);
5325 }
5326 
5327 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5328 {
5329 	unsigned long exit_qualification;
5330 	gpa_t gpa;
5331 	u64 error_code;
5332 
5333 	exit_qualification = vmx_get_exit_qual(vcpu);
5334 
5335 	/*
5336 	 * EPT violation happened while executing iret from NMI,
5337 	 * "blocked by NMI" bit has to be set before next VM entry.
5338 	 * There are errata that may cause this bit to not be set:
5339 	 * AAK134, BY25.
5340 	 */
5341 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5342 			enable_vnmi &&
5343 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5344 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5345 
5346 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5347 	trace_kvm_page_fault(gpa, exit_qualification);
5348 
5349 	/* Is it a read fault? */
5350 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5351 		     ? PFERR_USER_MASK : 0;
5352 	/* Is it a write fault? */
5353 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5354 		      ? PFERR_WRITE_MASK : 0;
5355 	/* Is it a fetch fault? */
5356 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5357 		      ? PFERR_FETCH_MASK : 0;
5358 	/* ept page table entry is present? */
5359 	error_code |= (exit_qualification &
5360 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5361 			EPT_VIOLATION_EXECUTABLE))
5362 		      ? PFERR_PRESENT_MASK : 0;
5363 
5364 	error_code |= (exit_qualification & 0x100) != 0 ?
5365 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5366 
5367 	vcpu->arch.exit_qualification = exit_qualification;
5368 
5369 	/*
5370 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5371 	 * a guest page fault.  We have to emulate the instruction here, because
5372 	 * if the illegal address is that of a paging structure, then
5373 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5374 	 * would also use advanced VM-exit information for EPT violations to
5375 	 * reconstruct the page fault error code.
5376 	 */
5377 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5378 		return kvm_emulate_instruction(vcpu, 0);
5379 
5380 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5381 }
5382 
5383 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5384 {
5385 	gpa_t gpa;
5386 
5387 	/*
5388 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5389 	 * nGPA here instead of the required GPA.
5390 	 */
5391 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5392 	if (!is_guest_mode(vcpu) &&
5393 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5394 		trace_kvm_fast_mmio(gpa);
5395 		return kvm_skip_emulated_instruction(vcpu);
5396 	}
5397 
5398 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5399 }
5400 
5401 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5402 {
5403 	WARN_ON_ONCE(!enable_vnmi);
5404 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5405 	++vcpu->stat.nmi_window_exits;
5406 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5407 
5408 	return 1;
5409 }
5410 
5411 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5412 {
5413 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5414 	bool intr_window_requested;
5415 	unsigned count = 130;
5416 
5417 	intr_window_requested = exec_controls_get(vmx) &
5418 				CPU_BASED_INTR_WINDOW_EXITING;
5419 
5420 	while (vmx->emulation_required && count-- != 0) {
5421 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5422 			return handle_interrupt_window(&vmx->vcpu);
5423 
5424 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5425 			return 1;
5426 
5427 		if (!kvm_emulate_instruction(vcpu, 0))
5428 			return 0;
5429 
5430 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5431 		    vcpu->arch.exception.pending) {
5432 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5433 			vcpu->run->internal.suberror =
5434 						KVM_INTERNAL_ERROR_EMULATION;
5435 			vcpu->run->internal.ndata = 0;
5436 			return 0;
5437 		}
5438 
5439 		if (vcpu->arch.halt_request) {
5440 			vcpu->arch.halt_request = 0;
5441 			return kvm_vcpu_halt(vcpu);
5442 		}
5443 
5444 		/*
5445 		 * Note, return 1 and not 0, vcpu_run() will invoke
5446 		 * xfer_to_guest_mode() which will create a proper return
5447 		 * code.
5448 		 */
5449 		if (__xfer_to_guest_mode_work_pending())
5450 			return 1;
5451 	}
5452 
5453 	return 1;
5454 }
5455 
5456 static void grow_ple_window(struct kvm_vcpu *vcpu)
5457 {
5458 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5459 	unsigned int old = vmx->ple_window;
5460 
5461 	vmx->ple_window = __grow_ple_window(old, ple_window,
5462 					    ple_window_grow,
5463 					    ple_window_max);
5464 
5465 	if (vmx->ple_window != old) {
5466 		vmx->ple_window_dirty = true;
5467 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5468 					    vmx->ple_window, old);
5469 	}
5470 }
5471 
5472 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5473 {
5474 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5475 	unsigned int old = vmx->ple_window;
5476 
5477 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5478 					      ple_window_shrink,
5479 					      ple_window);
5480 
5481 	if (vmx->ple_window != old) {
5482 		vmx->ple_window_dirty = true;
5483 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5484 					    vmx->ple_window, old);
5485 	}
5486 }
5487 
5488 static void vmx_enable_tdp(void)
5489 {
5490 	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5491 		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5492 		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5493 		0ull, VMX_EPT_EXECUTABLE_MASK,
5494 		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5495 		VMX_EPT_RWX_MASK, 0ull);
5496 
5497 	ept_set_mmio_spte_mask();
5498 }
5499 
5500 /*
5501  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5502  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5503  */
5504 static int handle_pause(struct kvm_vcpu *vcpu)
5505 {
5506 	if (!kvm_pause_in_guest(vcpu->kvm))
5507 		grow_ple_window(vcpu);
5508 
5509 	/*
5510 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5511 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5512 	 * never set PAUSE_EXITING and just set PLE if supported,
5513 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5514 	 */
5515 	kvm_vcpu_on_spin(vcpu, true);
5516 	return kvm_skip_emulated_instruction(vcpu);
5517 }
5518 
5519 static int handle_nop(struct kvm_vcpu *vcpu)
5520 {
5521 	return kvm_skip_emulated_instruction(vcpu);
5522 }
5523 
5524 static int handle_mwait(struct kvm_vcpu *vcpu)
5525 {
5526 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5527 	return handle_nop(vcpu);
5528 }
5529 
5530 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5531 {
5532 	kvm_queue_exception(vcpu, UD_VECTOR);
5533 	return 1;
5534 }
5535 
5536 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5537 {
5538 	return 1;
5539 }
5540 
5541 static int handle_monitor(struct kvm_vcpu *vcpu)
5542 {
5543 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5544 	return handle_nop(vcpu);
5545 }
5546 
5547 static int handle_invpcid(struct kvm_vcpu *vcpu)
5548 {
5549 	u32 vmx_instruction_info;
5550 	unsigned long type;
5551 	gva_t gva;
5552 	struct {
5553 		u64 pcid;
5554 		u64 gla;
5555 	} operand;
5556 
5557 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5558 		kvm_queue_exception(vcpu, UD_VECTOR);
5559 		return 1;
5560 	}
5561 
5562 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5563 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5564 
5565 	if (type > 3) {
5566 		kvm_inject_gp(vcpu, 0);
5567 		return 1;
5568 	}
5569 
5570 	/* According to the Intel instruction reference, the memory operand
5571 	 * is read even if it isn't needed (e.g., for type==all)
5572 	 */
5573 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5574 				vmx_instruction_info, false,
5575 				sizeof(operand), &gva))
5576 		return 1;
5577 
5578 	return kvm_handle_invpcid(vcpu, type, gva);
5579 }
5580 
5581 static int handle_pml_full(struct kvm_vcpu *vcpu)
5582 {
5583 	unsigned long exit_qualification;
5584 
5585 	trace_kvm_pml_full(vcpu->vcpu_id);
5586 
5587 	exit_qualification = vmx_get_exit_qual(vcpu);
5588 
5589 	/*
5590 	 * PML buffer FULL happened while executing iret from NMI,
5591 	 * "blocked by NMI" bit has to be set before next VM entry.
5592 	 */
5593 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5594 			enable_vnmi &&
5595 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5596 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5597 				GUEST_INTR_STATE_NMI);
5598 
5599 	/*
5600 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5601 	 * here.., and there's no userspace involvement needed for PML.
5602 	 */
5603 	return 1;
5604 }
5605 
5606 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5607 {
5608 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5609 
5610 	if (!vmx->req_immediate_exit &&
5611 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5612 		kvm_lapic_expired_hv_timer(vcpu);
5613 		return EXIT_FASTPATH_REENTER_GUEST;
5614 	}
5615 
5616 	return EXIT_FASTPATH_NONE;
5617 }
5618 
5619 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5620 {
5621 	handle_fastpath_preemption_timer(vcpu);
5622 	return 1;
5623 }
5624 
5625 /*
5626  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5627  * are overwritten by nested_vmx_setup() when nested=1.
5628  */
5629 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5630 {
5631 	kvm_queue_exception(vcpu, UD_VECTOR);
5632 	return 1;
5633 }
5634 
5635 static int handle_encls(struct kvm_vcpu *vcpu)
5636 {
5637 	/*
5638 	 * SGX virtualization is not yet supported.  There is no software
5639 	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5640 	 * to prevent the guest from executing ENCLS.
5641 	 */
5642 	kvm_queue_exception(vcpu, UD_VECTOR);
5643 	return 1;
5644 }
5645 
5646 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5647 {
5648 	vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
5649 	vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
5650 	return 0;
5651 }
5652 
5653 /*
5654  * The exit handlers return 1 if the exit was handled fully and guest execution
5655  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5656  * to be done to userspace and return 0.
5657  */
5658 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5659 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5660 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5661 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5662 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5663 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5664 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5665 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5666 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5667 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5668 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5669 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5670 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5671 	[EXIT_REASON_INVD]		      = handle_invd,
5672 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5673 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
5674 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
5675 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5676 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5677 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5678 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5679 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5680 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5681 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5682 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5683 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5684 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5685 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5686 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5687 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5688 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
5689 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
5690 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5691 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5692 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5693 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5694 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5695 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5696 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5697 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
5698 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5699 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5700 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5701 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5702 	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
5703 	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
5704 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5705 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5706 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5707 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5708 	[EXIT_REASON_ENCLS]		      = handle_encls,
5709 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5710 };
5711 
5712 static const int kvm_vmx_max_exit_handlers =
5713 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5714 
5715 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5716 			      u32 *intr_info, u32 *error_code)
5717 {
5718 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5719 
5720 	*info1 = vmx_get_exit_qual(vcpu);
5721 	if (!(vmx->exit_reason.failed_vmentry)) {
5722 		*info2 = vmx->idt_vectoring_info;
5723 		*intr_info = vmx_get_intr_info(vcpu);
5724 		if (is_exception_with_error_code(*intr_info))
5725 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5726 		else
5727 			*error_code = 0;
5728 	} else {
5729 		*info2 = 0;
5730 		*intr_info = 0;
5731 		*error_code = 0;
5732 	}
5733 }
5734 
5735 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5736 {
5737 	if (vmx->pml_pg) {
5738 		__free_page(vmx->pml_pg);
5739 		vmx->pml_pg = NULL;
5740 	}
5741 }
5742 
5743 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5744 {
5745 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5746 	u64 *pml_buf;
5747 	u16 pml_idx;
5748 
5749 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5750 
5751 	/* Do nothing if PML buffer is empty */
5752 	if (pml_idx == (PML_ENTITY_NUM - 1))
5753 		return;
5754 
5755 	/* PML index always points to next available PML buffer entity */
5756 	if (pml_idx >= PML_ENTITY_NUM)
5757 		pml_idx = 0;
5758 	else
5759 		pml_idx++;
5760 
5761 	pml_buf = page_address(vmx->pml_pg);
5762 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5763 		u64 gpa;
5764 
5765 		gpa = pml_buf[pml_idx];
5766 		WARN_ON(gpa & (PAGE_SIZE - 1));
5767 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5768 	}
5769 
5770 	/* reset PML index */
5771 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5772 }
5773 
5774 static void vmx_dump_sel(char *name, uint32_t sel)
5775 {
5776 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5777 	       name, vmcs_read16(sel),
5778 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5779 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5780 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5781 }
5782 
5783 static void vmx_dump_dtsel(char *name, uint32_t limit)
5784 {
5785 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5786 	       name, vmcs_read32(limit),
5787 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5788 }
5789 
5790 void dump_vmcs(void)
5791 {
5792 	u32 vmentry_ctl, vmexit_ctl;
5793 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5794 	unsigned long cr4;
5795 	u64 efer;
5796 
5797 	if (!dump_invalid_vmcs) {
5798 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5799 		return;
5800 	}
5801 
5802 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5803 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5804 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5805 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5806 	cr4 = vmcs_readl(GUEST_CR4);
5807 	efer = vmcs_read64(GUEST_IA32_EFER);
5808 	secondary_exec_control = 0;
5809 	if (cpu_has_secondary_exec_ctrls())
5810 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5811 
5812 	pr_err("*** Guest State ***\n");
5813 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5814 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5815 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5816 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5817 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5818 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5819 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5820 	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5821 	{
5822 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5823 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5824 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5825 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5826 	}
5827 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5828 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5829 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5830 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5831 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5832 	       vmcs_readl(GUEST_SYSENTER_ESP),
5833 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5834 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5835 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5836 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5837 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5838 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5839 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5840 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5841 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5842 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5843 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5844 	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5845 	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5846 		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5847 		       efer, vmcs_read64(GUEST_IA32_PAT));
5848 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5849 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5850 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5851 	if (cpu_has_load_perf_global_ctrl() &&
5852 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5853 		pr_err("PerfGlobCtl = 0x%016llx\n",
5854 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5855 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5856 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5857 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5858 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5859 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5860 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5861 		pr_err("InterruptStatus = %04x\n",
5862 		       vmcs_read16(GUEST_INTR_STATUS));
5863 
5864 	pr_err("*** Host State ***\n");
5865 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5866 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5867 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5868 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5869 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5870 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5871 	       vmcs_read16(HOST_TR_SELECTOR));
5872 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5873 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5874 	       vmcs_readl(HOST_TR_BASE));
5875 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5876 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5877 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5878 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5879 	       vmcs_readl(HOST_CR4));
5880 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5881 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5882 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5883 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5884 	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5885 		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5886 		       vmcs_read64(HOST_IA32_EFER),
5887 		       vmcs_read64(HOST_IA32_PAT));
5888 	if (cpu_has_load_perf_global_ctrl() &&
5889 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5890 		pr_err("PerfGlobCtl = 0x%016llx\n",
5891 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5892 
5893 	pr_err("*** Control State ***\n");
5894 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5895 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5896 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5897 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5898 	       vmcs_read32(EXCEPTION_BITMAP),
5899 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5900 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5901 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5902 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5903 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5904 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5905 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5906 	       vmcs_read32(VM_EXIT_INTR_INFO),
5907 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5908 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5909 	pr_err("        reason=%08x qualification=%016lx\n",
5910 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5911 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5912 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5913 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5914 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5915 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5916 		pr_err("TSC Multiplier = 0x%016llx\n",
5917 		       vmcs_read64(TSC_MULTIPLIER));
5918 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5919 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5920 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5921 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5922 		}
5923 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5924 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5925 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5926 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5927 	}
5928 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5929 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5930 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5931 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5932 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5933 		pr_err("PLE Gap=%08x Window=%08x\n",
5934 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5935 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5936 		pr_err("Virtual processor ID = 0x%04x\n",
5937 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5938 }
5939 
5940 /*
5941  * The guest has exited.  See if we can fix it or if we need userspace
5942  * assistance.
5943  */
5944 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5945 {
5946 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5947 	union vmx_exit_reason exit_reason = vmx->exit_reason;
5948 	u32 vectoring_info = vmx->idt_vectoring_info;
5949 	u16 exit_handler_index;
5950 
5951 	/*
5952 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5953 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5954 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5955 	 * mode as if vcpus is in root mode, the PML buffer must has been
5956 	 * flushed already.  Note, PML is never enabled in hardware while
5957 	 * running L2.
5958 	 */
5959 	if (enable_pml && !is_guest_mode(vcpu))
5960 		vmx_flush_pml_buffer(vcpu);
5961 
5962 	/*
5963 	 * We should never reach this point with a pending nested VM-Enter, and
5964 	 * more specifically emulation of L2 due to invalid guest state (see
5965 	 * below) should never happen as that means we incorrectly allowed a
5966 	 * nested VM-Enter with an invalid vmcs12.
5967 	 */
5968 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
5969 
5970 	/* If guest state is invalid, start emulating */
5971 	if (vmx->emulation_required)
5972 		return handle_invalid_guest_state(vcpu);
5973 
5974 	if (is_guest_mode(vcpu)) {
5975 		/*
5976 		 * PML is never enabled when running L2, bail immediately if a
5977 		 * PML full exit occurs as something is horribly wrong.
5978 		 */
5979 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
5980 			goto unexpected_vmexit;
5981 
5982 		/*
5983 		 * The host physical addresses of some pages of guest memory
5984 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5985 		 * Page). The CPU may write to these pages via their host
5986 		 * physical address while L2 is running, bypassing any
5987 		 * address-translation-based dirty tracking (e.g. EPT write
5988 		 * protection).
5989 		 *
5990 		 * Mark them dirty on every exit from L2 to prevent them from
5991 		 * getting out of sync with dirty tracking.
5992 		 */
5993 		nested_mark_vmcs12_pages_dirty(vcpu);
5994 
5995 		if (nested_vmx_reflect_vmexit(vcpu))
5996 			return 1;
5997 	}
5998 
5999 	if (exit_reason.failed_vmentry) {
6000 		dump_vmcs();
6001 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6002 		vcpu->run->fail_entry.hardware_entry_failure_reason
6003 			= exit_reason.full;
6004 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6005 		return 0;
6006 	}
6007 
6008 	if (unlikely(vmx->fail)) {
6009 		dump_vmcs();
6010 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6011 		vcpu->run->fail_entry.hardware_entry_failure_reason
6012 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6013 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6014 		return 0;
6015 	}
6016 
6017 	/*
6018 	 * Note:
6019 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6020 	 * delivery event since it indicates guest is accessing MMIO.
6021 	 * The vm-exit can be triggered again after return to guest that
6022 	 * will cause infinite loop.
6023 	 */
6024 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6025 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6026 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6027 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6028 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6029 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6030 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6031 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6032 		vcpu->run->internal.ndata = 3;
6033 		vcpu->run->internal.data[0] = vectoring_info;
6034 		vcpu->run->internal.data[1] = exit_reason.full;
6035 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6036 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6037 			vcpu->run->internal.ndata++;
6038 			vcpu->run->internal.data[3] =
6039 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6040 		}
6041 		vcpu->run->internal.data[vcpu->run->internal.ndata++] =
6042 			vcpu->arch.last_vmentry_cpu;
6043 		return 0;
6044 	}
6045 
6046 	if (unlikely(!enable_vnmi &&
6047 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6048 		if (!vmx_interrupt_blocked(vcpu)) {
6049 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6050 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6051 			   vcpu->arch.nmi_pending) {
6052 			/*
6053 			 * This CPU don't support us in finding the end of an
6054 			 * NMI-blocked window if the guest runs with IRQs
6055 			 * disabled. So we pull the trigger after 1 s of
6056 			 * futile waiting, but inform the user about this.
6057 			 */
6058 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6059 			       "state on VCPU %d after 1 s timeout\n",
6060 			       __func__, vcpu->vcpu_id);
6061 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6062 		}
6063 	}
6064 
6065 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6066 		return 1;
6067 
6068 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6069 		goto unexpected_vmexit;
6070 #ifdef CONFIG_RETPOLINE
6071 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6072 		return kvm_emulate_wrmsr(vcpu);
6073 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6074 		return handle_preemption_timer(vcpu);
6075 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6076 		return handle_interrupt_window(vcpu);
6077 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6078 		return handle_external_interrupt(vcpu);
6079 	else if (exit_reason.basic == EXIT_REASON_HLT)
6080 		return kvm_emulate_halt(vcpu);
6081 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6082 		return handle_ept_misconfig(vcpu);
6083 #endif
6084 
6085 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6086 						kvm_vmx_max_exit_handlers);
6087 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6088 		goto unexpected_vmexit;
6089 
6090 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6091 
6092 unexpected_vmexit:
6093 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6094 		    exit_reason.full);
6095 	dump_vmcs();
6096 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6097 	vcpu->run->internal.suberror =
6098 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6099 	vcpu->run->internal.ndata = 2;
6100 	vcpu->run->internal.data[0] = exit_reason.full;
6101 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6102 	return 0;
6103 }
6104 
6105 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6106 {
6107 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6108 
6109 	/*
6110 	 * Even when current exit reason is handled by KVM internally, we
6111 	 * still need to exit to user space when bus lock detected to inform
6112 	 * that there is a bus lock in guest.
6113 	 */
6114 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6115 		if (ret > 0)
6116 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6117 
6118 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6119 		return 0;
6120 	}
6121 	return ret;
6122 }
6123 
6124 /*
6125  * Software based L1D cache flush which is used when microcode providing
6126  * the cache control MSR is not loaded.
6127  *
6128  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6129  * flush it is required to read in 64 KiB because the replacement algorithm
6130  * is not exactly LRU. This could be sized at runtime via topology
6131  * information but as all relevant affected CPUs have 32KiB L1D cache size
6132  * there is no point in doing so.
6133  */
6134 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6135 {
6136 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6137 
6138 	/*
6139 	 * This code is only executed when the the flush mode is 'cond' or
6140 	 * 'always'
6141 	 */
6142 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6143 		bool flush_l1d;
6144 
6145 		/*
6146 		 * Clear the per-vcpu flush bit, it gets set again
6147 		 * either from vcpu_run() or from one of the unsafe
6148 		 * VMEXIT handlers.
6149 		 */
6150 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6151 		vcpu->arch.l1tf_flush_l1d = false;
6152 
6153 		/*
6154 		 * Clear the per-cpu flush bit, it gets set again from
6155 		 * the interrupt handlers.
6156 		 */
6157 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6158 		kvm_clear_cpu_l1tf_flush_l1d();
6159 
6160 		if (!flush_l1d)
6161 			return;
6162 	}
6163 
6164 	vcpu->stat.l1d_flush++;
6165 
6166 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6167 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6168 		return;
6169 	}
6170 
6171 	asm volatile(
6172 		/* First ensure the pages are in the TLB */
6173 		"xorl	%%eax, %%eax\n"
6174 		".Lpopulate_tlb:\n\t"
6175 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6176 		"addl	$4096, %%eax\n\t"
6177 		"cmpl	%%eax, %[size]\n\t"
6178 		"jne	.Lpopulate_tlb\n\t"
6179 		"xorl	%%eax, %%eax\n\t"
6180 		"cpuid\n\t"
6181 		/* Now fill the cache */
6182 		"xorl	%%eax, %%eax\n"
6183 		".Lfill_cache:\n"
6184 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6185 		"addl	$64, %%eax\n\t"
6186 		"cmpl	%%eax, %[size]\n\t"
6187 		"jne	.Lfill_cache\n\t"
6188 		"lfence\n"
6189 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6190 		    [size] "r" (size)
6191 		: "eax", "ebx", "ecx", "edx");
6192 }
6193 
6194 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6195 {
6196 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6197 	int tpr_threshold;
6198 
6199 	if (is_guest_mode(vcpu) &&
6200 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6201 		return;
6202 
6203 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6204 	if (is_guest_mode(vcpu))
6205 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6206 	else
6207 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6208 }
6209 
6210 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6211 {
6212 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6213 	u32 sec_exec_control;
6214 
6215 	if (!lapic_in_kernel(vcpu))
6216 		return;
6217 
6218 	if (!flexpriority_enabled &&
6219 	    !cpu_has_vmx_virtualize_x2apic_mode())
6220 		return;
6221 
6222 	/* Postpone execution until vmcs01 is the current VMCS. */
6223 	if (is_guest_mode(vcpu)) {
6224 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6225 		return;
6226 	}
6227 
6228 	sec_exec_control = secondary_exec_controls_get(vmx);
6229 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6230 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6231 
6232 	switch (kvm_get_apic_mode(vcpu)) {
6233 	case LAPIC_MODE_INVALID:
6234 		WARN_ONCE(true, "Invalid local APIC state");
6235 	case LAPIC_MODE_DISABLED:
6236 		break;
6237 	case LAPIC_MODE_XAPIC:
6238 		if (flexpriority_enabled) {
6239 			sec_exec_control |=
6240 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6241 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6242 
6243 			/*
6244 			 * Flush the TLB, reloading the APIC access page will
6245 			 * only do so if its physical address has changed, but
6246 			 * the guest may have inserted a non-APIC mapping into
6247 			 * the TLB while the APIC access page was disabled.
6248 			 */
6249 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6250 		}
6251 		break;
6252 	case LAPIC_MODE_X2APIC:
6253 		if (cpu_has_vmx_virtualize_x2apic_mode())
6254 			sec_exec_control |=
6255 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6256 		break;
6257 	}
6258 	secondary_exec_controls_set(vmx, sec_exec_control);
6259 
6260 	vmx_update_msr_bitmap(vcpu);
6261 }
6262 
6263 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6264 {
6265 	struct page *page;
6266 
6267 	/* Defer reload until vmcs01 is the current VMCS. */
6268 	if (is_guest_mode(vcpu)) {
6269 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6270 		return;
6271 	}
6272 
6273 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6274 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6275 		return;
6276 
6277 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6278 	if (is_error_page(page))
6279 		return;
6280 
6281 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6282 	vmx_flush_tlb_current(vcpu);
6283 
6284 	/*
6285 	 * Do not pin apic access page in memory, the MMU notifier
6286 	 * will call us again if it is migrated or swapped out.
6287 	 */
6288 	put_page(page);
6289 }
6290 
6291 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6292 {
6293 	u16 status;
6294 	u8 old;
6295 
6296 	if (max_isr == -1)
6297 		max_isr = 0;
6298 
6299 	status = vmcs_read16(GUEST_INTR_STATUS);
6300 	old = status >> 8;
6301 	if (max_isr != old) {
6302 		status &= 0xff;
6303 		status |= max_isr << 8;
6304 		vmcs_write16(GUEST_INTR_STATUS, status);
6305 	}
6306 }
6307 
6308 static void vmx_set_rvi(int vector)
6309 {
6310 	u16 status;
6311 	u8 old;
6312 
6313 	if (vector == -1)
6314 		vector = 0;
6315 
6316 	status = vmcs_read16(GUEST_INTR_STATUS);
6317 	old = (u8)status & 0xff;
6318 	if ((u8)vector != old) {
6319 		status &= ~0xff;
6320 		status |= (u8)vector;
6321 		vmcs_write16(GUEST_INTR_STATUS, status);
6322 	}
6323 }
6324 
6325 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6326 {
6327 	/*
6328 	 * When running L2, updating RVI is only relevant when
6329 	 * vmcs12 virtual-interrupt-delivery enabled.
6330 	 * However, it can be enabled only when L1 also
6331 	 * intercepts external-interrupts and in that case
6332 	 * we should not update vmcs02 RVI but instead intercept
6333 	 * interrupt. Therefore, do nothing when running L2.
6334 	 */
6335 	if (!is_guest_mode(vcpu))
6336 		vmx_set_rvi(max_irr);
6337 }
6338 
6339 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6340 {
6341 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6342 	int max_irr;
6343 	bool max_irr_updated;
6344 
6345 	WARN_ON(!vcpu->arch.apicv_active);
6346 	if (pi_test_on(&vmx->pi_desc)) {
6347 		pi_clear_on(&vmx->pi_desc);
6348 		/*
6349 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6350 		 * But on x86 this is just a compiler barrier anyway.
6351 		 */
6352 		smp_mb__after_atomic();
6353 		max_irr_updated =
6354 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6355 
6356 		/*
6357 		 * If we are running L2 and L1 has a new pending interrupt
6358 		 * which can be injected, we should re-evaluate
6359 		 * what should be done with this new L1 interrupt.
6360 		 * If L1 intercepts external-interrupts, we should
6361 		 * exit from L2 to L1. Otherwise, interrupt should be
6362 		 * delivered directly to L2.
6363 		 */
6364 		if (is_guest_mode(vcpu) && max_irr_updated) {
6365 			if (nested_exit_on_intr(vcpu))
6366 				kvm_vcpu_exiting_guest_mode(vcpu);
6367 			else
6368 				kvm_make_request(KVM_REQ_EVENT, vcpu);
6369 		}
6370 	} else {
6371 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6372 	}
6373 	vmx_hwapic_irr_update(vcpu, max_irr);
6374 	return max_irr;
6375 }
6376 
6377 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6378 {
6379 	if (!kvm_vcpu_apicv_active(vcpu))
6380 		return;
6381 
6382 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6383 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6384 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6385 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6386 }
6387 
6388 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6389 {
6390 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6391 
6392 	pi_clear_on(&vmx->pi_desc);
6393 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6394 }
6395 
6396 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6397 
6398 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
6399 {
6400 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6401 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6402 
6403 	kvm_before_interrupt(vcpu);
6404 	vmx_do_interrupt_nmi_irqoff(gate_offset(desc));
6405 	kvm_after_interrupt(vcpu);
6406 }
6407 
6408 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6409 {
6410 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6411 
6412 	/* if exit due to PF check for async PF */
6413 	if (is_page_fault(intr_info))
6414 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6415 	/* Handle machine checks before interrupts are enabled */
6416 	else if (is_machine_check(intr_info))
6417 		kvm_machine_check();
6418 	/* We need to handle NMIs before interrupts are enabled */
6419 	else if (is_nmi(intr_info))
6420 		handle_interrupt_nmi_irqoff(&vmx->vcpu, intr_info);
6421 }
6422 
6423 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6424 {
6425 	u32 intr_info = vmx_get_intr_info(vcpu);
6426 
6427 	if (WARN_ONCE(!is_external_intr(intr_info),
6428 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6429 		return;
6430 
6431 	handle_interrupt_nmi_irqoff(vcpu, intr_info);
6432 }
6433 
6434 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6435 {
6436 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6437 
6438 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6439 		handle_external_interrupt_irqoff(vcpu);
6440 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6441 		handle_exception_nmi_irqoff(vmx);
6442 }
6443 
6444 /*
6445  * The kvm parameter can be NULL (module initialization, or invocation before
6446  * VM creation). Be sure to check the kvm parameter before using it.
6447  */
6448 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6449 {
6450 	switch (index) {
6451 	case MSR_IA32_SMBASE:
6452 		/*
6453 		 * We cannot do SMM unless we can run the guest in big
6454 		 * real mode.
6455 		 */
6456 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6457 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6458 		return nested;
6459 	case MSR_AMD64_VIRT_SPEC_CTRL:
6460 		/* This is AMD only.  */
6461 		return false;
6462 	default:
6463 		return true;
6464 	}
6465 }
6466 
6467 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6468 {
6469 	u32 exit_intr_info;
6470 	bool unblock_nmi;
6471 	u8 vector;
6472 	bool idtv_info_valid;
6473 
6474 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6475 
6476 	if (enable_vnmi) {
6477 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6478 			return;
6479 
6480 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6481 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6482 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6483 		/*
6484 		 * SDM 3: 27.7.1.2 (September 2008)
6485 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6486 		 * a guest IRET fault.
6487 		 * SDM 3: 23.2.2 (September 2008)
6488 		 * Bit 12 is undefined in any of the following cases:
6489 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6490 		 *   information field.
6491 		 *  If the VM exit is due to a double fault.
6492 		 */
6493 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6494 		    vector != DF_VECTOR && !idtv_info_valid)
6495 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6496 				      GUEST_INTR_STATE_NMI);
6497 		else
6498 			vmx->loaded_vmcs->nmi_known_unmasked =
6499 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6500 				  & GUEST_INTR_STATE_NMI);
6501 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6502 		vmx->loaded_vmcs->vnmi_blocked_time +=
6503 			ktime_to_ns(ktime_sub(ktime_get(),
6504 					      vmx->loaded_vmcs->entry_time));
6505 }
6506 
6507 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6508 				      u32 idt_vectoring_info,
6509 				      int instr_len_field,
6510 				      int error_code_field)
6511 {
6512 	u8 vector;
6513 	int type;
6514 	bool idtv_info_valid;
6515 
6516 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6517 
6518 	vcpu->arch.nmi_injected = false;
6519 	kvm_clear_exception_queue(vcpu);
6520 	kvm_clear_interrupt_queue(vcpu);
6521 
6522 	if (!idtv_info_valid)
6523 		return;
6524 
6525 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6526 
6527 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6528 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6529 
6530 	switch (type) {
6531 	case INTR_TYPE_NMI_INTR:
6532 		vcpu->arch.nmi_injected = true;
6533 		/*
6534 		 * SDM 3: 27.7.1.2 (September 2008)
6535 		 * Clear bit "block by NMI" before VM entry if a NMI
6536 		 * delivery faulted.
6537 		 */
6538 		vmx_set_nmi_mask(vcpu, false);
6539 		break;
6540 	case INTR_TYPE_SOFT_EXCEPTION:
6541 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6542 		fallthrough;
6543 	case INTR_TYPE_HARD_EXCEPTION:
6544 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6545 			u32 err = vmcs_read32(error_code_field);
6546 			kvm_requeue_exception_e(vcpu, vector, err);
6547 		} else
6548 			kvm_requeue_exception(vcpu, vector);
6549 		break;
6550 	case INTR_TYPE_SOFT_INTR:
6551 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6552 		fallthrough;
6553 	case INTR_TYPE_EXT_INTR:
6554 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6555 		break;
6556 	default:
6557 		break;
6558 	}
6559 }
6560 
6561 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6562 {
6563 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6564 				  VM_EXIT_INSTRUCTION_LEN,
6565 				  IDT_VECTORING_ERROR_CODE);
6566 }
6567 
6568 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6569 {
6570 	__vmx_complete_interrupts(vcpu,
6571 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6572 				  VM_ENTRY_INSTRUCTION_LEN,
6573 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6574 
6575 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6576 }
6577 
6578 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6579 {
6580 	int i, nr_msrs;
6581 	struct perf_guest_switch_msr *msrs;
6582 
6583 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6584 	msrs = perf_guest_get_msrs(&nr_msrs);
6585 	if (!msrs)
6586 		return;
6587 
6588 	for (i = 0; i < nr_msrs; i++)
6589 		if (msrs[i].host == msrs[i].guest)
6590 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6591 		else
6592 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6593 					msrs[i].host, false);
6594 }
6595 
6596 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6597 {
6598 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6599 	u64 tscl;
6600 	u32 delta_tsc;
6601 
6602 	if (vmx->req_immediate_exit) {
6603 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6604 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6605 	} else if (vmx->hv_deadline_tsc != -1) {
6606 		tscl = rdtsc();
6607 		if (vmx->hv_deadline_tsc > tscl)
6608 			/* set_hv_timer ensures the delta fits in 32-bits */
6609 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6610 				cpu_preemption_timer_multi);
6611 		else
6612 			delta_tsc = 0;
6613 
6614 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6615 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6616 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6617 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6618 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6619 	}
6620 }
6621 
6622 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6623 {
6624 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6625 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6626 		vmcs_writel(HOST_RSP, host_rsp);
6627 	}
6628 }
6629 
6630 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6631 {
6632 	switch (to_vmx(vcpu)->exit_reason.basic) {
6633 	case EXIT_REASON_MSR_WRITE:
6634 		return handle_fastpath_set_msr_irqoff(vcpu);
6635 	case EXIT_REASON_PREEMPTION_TIMER:
6636 		return handle_fastpath_preemption_timer(vcpu);
6637 	default:
6638 		return EXIT_FASTPATH_NONE;
6639 	}
6640 }
6641 
6642 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6643 					struct vcpu_vmx *vmx)
6644 {
6645 	/*
6646 	 * VMENTER enables interrupts (host state), but the kernel state is
6647 	 * interrupts disabled when this is invoked. Also tell RCU about
6648 	 * it. This is the same logic as for exit_to_user_mode().
6649 	 *
6650 	 * This ensures that e.g. latency analysis on the host observes
6651 	 * guest mode as interrupt enabled.
6652 	 *
6653 	 * guest_enter_irqoff() informs context tracking about the
6654 	 * transition to guest mode and if enabled adjusts RCU state
6655 	 * accordingly.
6656 	 */
6657 	instrumentation_begin();
6658 	trace_hardirqs_on_prepare();
6659 	lockdep_hardirqs_on_prepare(CALLER_ADDR0);
6660 	instrumentation_end();
6661 
6662 	guest_enter_irqoff();
6663 	lockdep_hardirqs_on(CALLER_ADDR0);
6664 
6665 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6666 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6667 		vmx_l1d_flush(vcpu);
6668 	else if (static_branch_unlikely(&mds_user_clear))
6669 		mds_clear_cpu_buffers();
6670 
6671 	if (vcpu->arch.cr2 != native_read_cr2())
6672 		native_write_cr2(vcpu->arch.cr2);
6673 
6674 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6675 				   vmx->loaded_vmcs->launched);
6676 
6677 	vcpu->arch.cr2 = native_read_cr2();
6678 
6679 	/*
6680 	 * VMEXIT disables interrupts (host state), but tracing and lockdep
6681 	 * have them in state 'on' as recorded before entering guest mode.
6682 	 * Same as enter_from_user_mode().
6683 	 *
6684 	 * guest_exit_irqoff() restores host context and reinstates RCU if
6685 	 * enabled and required.
6686 	 *
6687 	 * This needs to be done before the below as native_read_msr()
6688 	 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
6689 	 * into world and some more.
6690 	 */
6691 	lockdep_hardirqs_off(CALLER_ADDR0);
6692 	guest_exit_irqoff();
6693 
6694 	instrumentation_begin();
6695 	trace_hardirqs_off_finish();
6696 	instrumentation_end();
6697 }
6698 
6699 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6700 {
6701 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6702 	unsigned long cr3, cr4;
6703 
6704 	/* Record the guest's net vcpu time for enforced NMI injections. */
6705 	if (unlikely(!enable_vnmi &&
6706 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6707 		vmx->loaded_vmcs->entry_time = ktime_get();
6708 
6709 	/* Don't enter VMX if guest state is invalid, let the exit handler
6710 	   start emulation until we arrive back to a valid state */
6711 	if (vmx->emulation_required)
6712 		return EXIT_FASTPATH_NONE;
6713 
6714 	trace_kvm_entry(vcpu);
6715 
6716 	if (vmx->ple_window_dirty) {
6717 		vmx->ple_window_dirty = false;
6718 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6719 	}
6720 
6721 	/*
6722 	 * We did this in prepare_switch_to_guest, because it needs to
6723 	 * be within srcu_read_lock.
6724 	 */
6725 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6726 
6727 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6728 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6729 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6730 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6731 
6732 	cr3 = __get_current_cr3_fast();
6733 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6734 		vmcs_writel(HOST_CR3, cr3);
6735 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6736 	}
6737 
6738 	cr4 = cr4_read_shadow();
6739 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6740 		vmcs_writel(HOST_CR4, cr4);
6741 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6742 	}
6743 
6744 	/* When single-stepping over STI and MOV SS, we must clear the
6745 	 * corresponding interruptibility bits in the guest state. Otherwise
6746 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6747 	 * exceptions being set, but that's not correct for the guest debugging
6748 	 * case. */
6749 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6750 		vmx_set_interrupt_shadow(vcpu, 0);
6751 
6752 	kvm_load_guest_xsave_state(vcpu);
6753 
6754 	pt_guest_enter(vmx);
6755 
6756 	atomic_switch_perf_msrs(vmx);
6757 	if (intel_pmu_lbr_is_enabled(vcpu))
6758 		vmx_passthrough_lbr_msrs(vcpu);
6759 
6760 	if (enable_preemption_timer)
6761 		vmx_update_hv_timer(vcpu);
6762 
6763 	kvm_wait_lapic_expire(vcpu);
6764 
6765 	/*
6766 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6767 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6768 	 * is no need to worry about the conditional branch over the wrmsr
6769 	 * being speculatively taken.
6770 	 */
6771 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6772 
6773 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
6774 	vmx_vcpu_enter_exit(vcpu, vmx);
6775 
6776 	/*
6777 	 * We do not use IBRS in the kernel. If this vCPU has used the
6778 	 * SPEC_CTRL MSR it may have left it on; save the value and
6779 	 * turn it off. This is much more efficient than blindly adding
6780 	 * it to the atomic save/restore list. Especially as the former
6781 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6782 	 *
6783 	 * For non-nested case:
6784 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6785 	 * save it.
6786 	 *
6787 	 * For nested case:
6788 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6789 	 * save it.
6790 	 */
6791 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6792 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6793 
6794 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6795 
6796 	/* All fields are clean at this point */
6797 	if (static_branch_unlikely(&enable_evmcs)) {
6798 		current_evmcs->hv_clean_fields |=
6799 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6800 
6801 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6802 	}
6803 
6804 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6805 	if (vmx->host_debugctlmsr)
6806 		update_debugctlmsr(vmx->host_debugctlmsr);
6807 
6808 #ifndef CONFIG_X86_64
6809 	/*
6810 	 * The sysexit path does not restore ds/es, so we must set them to
6811 	 * a reasonable value ourselves.
6812 	 *
6813 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6814 	 * function may be executed in interrupt context, which saves and
6815 	 * restore segments around it, nullifying its effect.
6816 	 */
6817 	loadsegment(ds, __USER_DS);
6818 	loadsegment(es, __USER_DS);
6819 #endif
6820 
6821 	vmx_register_cache_reset(vcpu);
6822 
6823 	pt_guest_exit(vmx);
6824 
6825 	kvm_load_host_xsave_state(vcpu);
6826 
6827 	vmx->nested.nested_run_pending = 0;
6828 	vmx->idt_vectoring_info = 0;
6829 
6830 	if (unlikely(vmx->fail)) {
6831 		vmx->exit_reason.full = 0xdead;
6832 		return EXIT_FASTPATH_NONE;
6833 	}
6834 
6835 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6836 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6837 		kvm_machine_check();
6838 
6839 	if (likely(!vmx->exit_reason.failed_vmentry))
6840 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6841 
6842 	trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6843 
6844 	if (unlikely(vmx->exit_reason.failed_vmentry))
6845 		return EXIT_FASTPATH_NONE;
6846 
6847 	vmx->loaded_vmcs->launched = 1;
6848 
6849 	vmx_recover_nmi_blocking(vmx);
6850 	vmx_complete_interrupts(vmx);
6851 
6852 	if (is_guest_mode(vcpu))
6853 		return EXIT_FASTPATH_NONE;
6854 
6855 	return vmx_exit_handlers_fastpath(vcpu);
6856 }
6857 
6858 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6859 {
6860 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6861 
6862 	if (enable_pml)
6863 		vmx_destroy_pml_buffer(vmx);
6864 	free_vpid(vmx->vpid);
6865 	nested_vmx_free_vcpu(vcpu);
6866 	free_loaded_vmcs(vmx->loaded_vmcs);
6867 }
6868 
6869 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6870 {
6871 	struct vcpu_vmx *vmx;
6872 	int i, cpu, err;
6873 
6874 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6875 	vmx = to_vmx(vcpu);
6876 
6877 	err = -ENOMEM;
6878 
6879 	vmx->vpid = allocate_vpid();
6880 
6881 	/*
6882 	 * If PML is turned on, failure on enabling PML just results in failure
6883 	 * of creating the vcpu, therefore we can simplify PML logic (by
6884 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6885 	 * for the guest), etc.
6886 	 */
6887 	if (enable_pml) {
6888 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6889 		if (!vmx->pml_pg)
6890 			goto free_vpid;
6891 	}
6892 
6893 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
6894 
6895 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) {
6896 		u32 index = vmx_uret_msrs_list[i];
6897 		u32 data_low, data_high;
6898 		int j = vmx->nr_uret_msrs;
6899 
6900 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
6901 			continue;
6902 		if (wrmsr_safe(index, data_low, data_high) < 0)
6903 			continue;
6904 
6905 		vmx->guest_uret_msrs[j].slot = i;
6906 		vmx->guest_uret_msrs[j].data = 0;
6907 		switch (index) {
6908 		case MSR_IA32_TSX_CTRL:
6909 			/*
6910 			 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID
6911 			 * interception.  Keep the host value unchanged to avoid
6912 			 * changing CPUID bits under the host kernel's feet.
6913 			 *
6914 			 * hle=0, rtm=0, tsx_ctrl=1 can be found with some
6915 			 * combinations of new kernel and old userspace.  If
6916 			 * those guests run on a tsx=off host, do allow guests
6917 			 * to use TSX_CTRL, but do not change the value on the
6918 			 * host so that TSX remains always disabled.
6919 			 */
6920 			if (boot_cpu_has(X86_FEATURE_RTM))
6921 				vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6922 			else
6923 				vmx->guest_uret_msrs[j].mask = 0;
6924 			break;
6925 		default:
6926 			vmx->guest_uret_msrs[j].mask = -1ull;
6927 			break;
6928 		}
6929 		++vmx->nr_uret_msrs;
6930 	}
6931 
6932 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6933 	if (err < 0)
6934 		goto free_pml;
6935 
6936 	/* The MSR bitmap starts with all ones */
6937 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6938 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6939 
6940 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6941 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6942 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6943 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6944 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6945 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6946 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6947 	if (kvm_cstate_in_guest(vcpu->kvm)) {
6948 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6949 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6950 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6951 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6952 	}
6953 	vmx->msr_bitmap_mode = 0;
6954 
6955 	vmx->loaded_vmcs = &vmx->vmcs01;
6956 	cpu = get_cpu();
6957 	vmx_vcpu_load(vcpu, cpu);
6958 	vcpu->cpu = cpu;
6959 	init_vmcs(vmx);
6960 	vmx_vcpu_put(vcpu);
6961 	put_cpu();
6962 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
6963 		err = alloc_apic_access_page(vcpu->kvm);
6964 		if (err)
6965 			goto free_vmcs;
6966 	}
6967 
6968 	if (enable_ept && !enable_unrestricted_guest) {
6969 		err = init_rmode_identity_map(vcpu->kvm);
6970 		if (err)
6971 			goto free_vmcs;
6972 	}
6973 
6974 	if (nested)
6975 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
6976 	else
6977 		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6978 
6979 	vmx->nested.posted_intr_nv = -1;
6980 	vmx->nested.current_vmptr = -1ull;
6981 
6982 	vcpu->arch.microcode_version = 0x100000000ULL;
6983 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6984 
6985 	/*
6986 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6987 	 * or POSTED_INTR_WAKEUP_VECTOR.
6988 	 */
6989 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6990 	vmx->pi_desc.sn = 1;
6991 
6992 	vmx->ept_pointer = INVALID_PAGE;
6993 
6994 	return 0;
6995 
6996 free_vmcs:
6997 	free_loaded_vmcs(vmx->loaded_vmcs);
6998 free_pml:
6999 	vmx_destroy_pml_buffer(vmx);
7000 free_vpid:
7001 	free_vpid(vmx->vpid);
7002 	return err;
7003 }
7004 
7005 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7006 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7007 
7008 static int vmx_vm_init(struct kvm *kvm)
7009 {
7010 	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
7011 
7012 	if (!ple_gap)
7013 		kvm->arch.pause_in_guest = true;
7014 
7015 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7016 		switch (l1tf_mitigation) {
7017 		case L1TF_MITIGATION_OFF:
7018 		case L1TF_MITIGATION_FLUSH_NOWARN:
7019 			/* 'I explicitly don't care' is set */
7020 			break;
7021 		case L1TF_MITIGATION_FLUSH:
7022 		case L1TF_MITIGATION_FLUSH_NOSMT:
7023 		case L1TF_MITIGATION_FULL:
7024 			/*
7025 			 * Warn upon starting the first VM in a potentially
7026 			 * insecure environment.
7027 			 */
7028 			if (sched_smt_active())
7029 				pr_warn_once(L1TF_MSG_SMT);
7030 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7031 				pr_warn_once(L1TF_MSG_L1D);
7032 			break;
7033 		case L1TF_MITIGATION_FULL_FORCE:
7034 			/* Flush is enforced */
7035 			break;
7036 		}
7037 	}
7038 	kvm_apicv_init(kvm, enable_apicv);
7039 	return 0;
7040 }
7041 
7042 static int __init vmx_check_processor_compat(void)
7043 {
7044 	struct vmcs_config vmcs_conf;
7045 	struct vmx_capability vmx_cap;
7046 
7047 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7048 	    !this_cpu_has(X86_FEATURE_VMX)) {
7049 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7050 		return -EIO;
7051 	}
7052 
7053 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7054 		return -EIO;
7055 	if (nested)
7056 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7057 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7058 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7059 				smp_processor_id());
7060 		return -EIO;
7061 	}
7062 	return 0;
7063 }
7064 
7065 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7066 {
7067 	u8 cache;
7068 	u64 ipat = 0;
7069 
7070 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7071 	 * memory aliases with conflicting memory types and sometimes MCEs.
7072 	 * We have to be careful as to what are honored and when.
7073 	 *
7074 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7075 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7076 	 * This was historically the source of MCEs and we want to be
7077 	 * conservative.
7078 	 *
7079 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7080 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7081 	 * EPT memory type is set to WB.  The effective memory type is forced
7082 	 * WB.
7083 	 *
7084 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7085 	 * EPT memory type is used to emulate guest CD/MTRR.
7086 	 */
7087 
7088 	if (is_mmio) {
7089 		cache = MTRR_TYPE_UNCACHABLE;
7090 		goto exit;
7091 	}
7092 
7093 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7094 		ipat = VMX_EPT_IPAT_BIT;
7095 		cache = MTRR_TYPE_WRBACK;
7096 		goto exit;
7097 	}
7098 
7099 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7100 		ipat = VMX_EPT_IPAT_BIT;
7101 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7102 			cache = MTRR_TYPE_WRBACK;
7103 		else
7104 			cache = MTRR_TYPE_UNCACHABLE;
7105 		goto exit;
7106 	}
7107 
7108 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7109 
7110 exit:
7111 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7112 }
7113 
7114 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7115 {
7116 	/*
7117 	 * These bits in the secondary execution controls field
7118 	 * are dynamic, the others are mostly based on the hypervisor
7119 	 * architecture and the guest's CPUID.  Do not touch the
7120 	 * dynamic bits.
7121 	 */
7122 	u32 mask =
7123 		SECONDARY_EXEC_SHADOW_VMCS |
7124 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7125 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7126 		SECONDARY_EXEC_DESC;
7127 
7128 	u32 new_ctl = vmx->secondary_exec_control;
7129 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7130 
7131 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7132 }
7133 
7134 /*
7135  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7136  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7137  */
7138 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7139 {
7140 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7141 	struct kvm_cpuid_entry2 *entry;
7142 
7143 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7144 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7145 
7146 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7147 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7148 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7149 } while (0)
7150 
7151 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7152 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7153 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7154 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7155 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7156 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7157 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7158 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7159 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7160 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7161 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7162 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7163 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7164 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7165 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7166 
7167 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7168 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7169 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7170 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7171 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7172 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7173 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7174 
7175 #undef cr4_fixed1_update
7176 }
7177 
7178 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7179 {
7180 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7181 
7182 	if (kvm_mpx_supported()) {
7183 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7184 
7185 		if (mpx_enabled) {
7186 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7187 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7188 		} else {
7189 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7190 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7191 		}
7192 	}
7193 }
7194 
7195 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7196 {
7197 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7198 	struct kvm_cpuid_entry2 *best = NULL;
7199 	int i;
7200 
7201 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7202 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7203 		if (!best)
7204 			return;
7205 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7206 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7207 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7208 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7209 	}
7210 
7211 	/* Get the number of configurable Address Ranges for filtering */
7212 	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7213 						PT_CAP_num_address_ranges);
7214 
7215 	/* Initialize and clear the no dependency bits */
7216 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7217 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7218 
7219 	/*
7220 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7221 	 * will inject an #GP
7222 	 */
7223 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7224 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7225 
7226 	/*
7227 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7228 	 * PSBFreq can be set
7229 	 */
7230 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7231 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7232 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7233 
7234 	/*
7235 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7236 	 * MTCFreq can be set
7237 	 */
7238 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7239 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7240 				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7241 
7242 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7243 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7244 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7245 							RTIT_CTL_PTW_EN);
7246 
7247 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7248 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7249 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7250 
7251 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7252 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7253 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7254 
7255 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7256 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7257 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7258 
7259 	/* unmask address range configure area */
7260 	for (i = 0; i < vmx->pt_desc.addr_range; i++)
7261 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7262 }
7263 
7264 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7265 {
7266 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7267 
7268 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7269 	vcpu->arch.xsaves_enabled = false;
7270 
7271 	if (cpu_has_secondary_exec_ctrls()) {
7272 		vmx_compute_secondary_exec_control(vmx);
7273 		vmcs_set_secondary_exec_control(vmx);
7274 	}
7275 
7276 	if (nested_vmx_allowed(vcpu))
7277 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7278 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7279 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7280 	else
7281 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7282 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7283 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7284 
7285 	if (nested_vmx_allowed(vcpu)) {
7286 		nested_vmx_cr_fixed1_bits_update(vcpu);
7287 		nested_vmx_entry_exit_ctls_update(vcpu);
7288 	}
7289 
7290 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7291 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7292 		update_intel_pt_cfg(vcpu);
7293 
7294 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7295 		struct vmx_uret_msr *msr;
7296 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7297 		if (msr) {
7298 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7299 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7300 		}
7301 	}
7302 
7303 	set_cr4_guest_host_mask(vmx);
7304 
7305 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7306 	vmx_update_exception_bitmap(vcpu);
7307 }
7308 
7309 static __init void vmx_set_cpu_caps(void)
7310 {
7311 	kvm_set_cpu_caps();
7312 
7313 	/* CPUID 0x1 */
7314 	if (nested)
7315 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7316 
7317 	/* CPUID 0x7 */
7318 	if (kvm_mpx_supported())
7319 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7320 	if (!cpu_has_vmx_invpcid())
7321 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7322 	if (vmx_pt_mode_is_host_guest())
7323 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7324 
7325 	if (vmx_umip_emulated())
7326 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7327 
7328 	/* CPUID 0xD.1 */
7329 	supported_xss = 0;
7330 	if (!cpu_has_vmx_xsaves())
7331 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7332 
7333 	/* CPUID 0x80000001 */
7334 	if (!cpu_has_vmx_rdtscp())
7335 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7336 
7337 	if (cpu_has_vmx_waitpkg())
7338 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7339 }
7340 
7341 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7342 {
7343 	to_vmx(vcpu)->req_immediate_exit = true;
7344 }
7345 
7346 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7347 				  struct x86_instruction_info *info)
7348 {
7349 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7350 	unsigned short port;
7351 	bool intercept;
7352 	int size;
7353 
7354 	if (info->intercept == x86_intercept_in ||
7355 	    info->intercept == x86_intercept_ins) {
7356 		port = info->src_val;
7357 		size = info->dst_bytes;
7358 	} else {
7359 		port = info->dst_val;
7360 		size = info->src_bytes;
7361 	}
7362 
7363 	/*
7364 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7365 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7366 	 * control.
7367 	 *
7368 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7369 	 */
7370 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7371 		intercept = nested_cpu_has(vmcs12,
7372 					   CPU_BASED_UNCOND_IO_EXITING);
7373 	else
7374 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7375 
7376 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7377 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7378 }
7379 
7380 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7381 			       struct x86_instruction_info *info,
7382 			       enum x86_intercept_stage stage,
7383 			       struct x86_exception *exception)
7384 {
7385 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7386 
7387 	switch (info->intercept) {
7388 	/*
7389 	 * RDPID causes #UD if disabled through secondary execution controls.
7390 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7391 	 */
7392 	case x86_intercept_rdtscp:
7393 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7394 			exception->vector = UD_VECTOR;
7395 			exception->error_code_valid = false;
7396 			return X86EMUL_PROPAGATE_FAULT;
7397 		}
7398 		break;
7399 
7400 	case x86_intercept_in:
7401 	case x86_intercept_ins:
7402 	case x86_intercept_out:
7403 	case x86_intercept_outs:
7404 		return vmx_check_intercept_io(vcpu, info);
7405 
7406 	case x86_intercept_lgdt:
7407 	case x86_intercept_lidt:
7408 	case x86_intercept_lldt:
7409 	case x86_intercept_ltr:
7410 	case x86_intercept_sgdt:
7411 	case x86_intercept_sidt:
7412 	case x86_intercept_sldt:
7413 	case x86_intercept_str:
7414 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7415 			return X86EMUL_CONTINUE;
7416 
7417 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7418 		break;
7419 
7420 	/* TODO: check more intercepts... */
7421 	default:
7422 		break;
7423 	}
7424 
7425 	return X86EMUL_UNHANDLEABLE;
7426 }
7427 
7428 #ifdef CONFIG_X86_64
7429 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7430 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7431 				  u64 divisor, u64 *result)
7432 {
7433 	u64 low = a << shift, high = a >> (64 - shift);
7434 
7435 	/* To avoid the overflow on divq */
7436 	if (high >= divisor)
7437 		return 1;
7438 
7439 	/* Low hold the result, high hold rem which is discarded */
7440 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7441 	    "rm" (divisor), "0" (low), "1" (high));
7442 	*result = low;
7443 
7444 	return 0;
7445 }
7446 
7447 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7448 			    bool *expired)
7449 {
7450 	struct vcpu_vmx *vmx;
7451 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7452 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7453 
7454 	vmx = to_vmx(vcpu);
7455 	tscl = rdtsc();
7456 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7457 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7458 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7459 						    ktimer->timer_advance_ns);
7460 
7461 	if (delta_tsc > lapic_timer_advance_cycles)
7462 		delta_tsc -= lapic_timer_advance_cycles;
7463 	else
7464 		delta_tsc = 0;
7465 
7466 	/* Convert to host delta tsc if tsc scaling is enabled */
7467 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7468 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7469 				kvm_tsc_scaling_ratio_frac_bits,
7470 				vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7471 		return -ERANGE;
7472 
7473 	/*
7474 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7475 	 * we can't use the preemption timer.
7476 	 * It's possible that it fits on later vmentries, but checking
7477 	 * on every vmentry is costly so we just use an hrtimer.
7478 	 */
7479 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7480 		return -ERANGE;
7481 
7482 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7483 	*expired = !delta_tsc;
7484 	return 0;
7485 }
7486 
7487 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7488 {
7489 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7490 }
7491 #endif
7492 
7493 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7494 {
7495 	if (!kvm_pause_in_guest(vcpu->kvm))
7496 		shrink_ple_window(vcpu);
7497 }
7498 
7499 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7500 {
7501 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7502 
7503 	if (is_guest_mode(vcpu)) {
7504 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7505 		return;
7506 	}
7507 
7508 	/*
7509 	 * Note, cpu_dirty_logging_count can be changed concurrent with this
7510 	 * code, but in that case another update request will be made and so
7511 	 * the guest will never run with a stale PML value.
7512 	 */
7513 	if (vcpu->kvm->arch.cpu_dirty_logging_count)
7514 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7515 	else
7516 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7517 }
7518 
7519 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7520 {
7521 	if (pi_pre_block(vcpu))
7522 		return 1;
7523 
7524 	if (kvm_lapic_hv_timer_in_use(vcpu))
7525 		kvm_lapic_switch_to_sw_timer(vcpu);
7526 
7527 	return 0;
7528 }
7529 
7530 static void vmx_post_block(struct kvm_vcpu *vcpu)
7531 {
7532 	if (kvm_x86_ops.set_hv_timer)
7533 		kvm_lapic_switch_to_hv_timer(vcpu);
7534 
7535 	pi_post_block(vcpu);
7536 }
7537 
7538 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7539 {
7540 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7541 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7542 			FEAT_CTL_LMCE_ENABLED;
7543 	else
7544 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7545 			~FEAT_CTL_LMCE_ENABLED;
7546 }
7547 
7548 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7549 {
7550 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7551 	if (to_vmx(vcpu)->nested.nested_run_pending)
7552 		return -EBUSY;
7553 	return !is_smm(vcpu);
7554 }
7555 
7556 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7557 {
7558 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7559 
7560 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7561 	if (vmx->nested.smm.guest_mode)
7562 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7563 
7564 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7565 	vmx->nested.vmxon = false;
7566 	vmx_clear_hlt(vcpu);
7567 	return 0;
7568 }
7569 
7570 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7571 {
7572 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7573 	int ret;
7574 
7575 	if (vmx->nested.smm.vmxon) {
7576 		vmx->nested.vmxon = true;
7577 		vmx->nested.smm.vmxon = false;
7578 	}
7579 
7580 	if (vmx->nested.smm.guest_mode) {
7581 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7582 		if (ret)
7583 			return ret;
7584 
7585 		vmx->nested.smm.guest_mode = false;
7586 	}
7587 	return 0;
7588 }
7589 
7590 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7591 {
7592 	/* RSM will cause a vmexit anyway.  */
7593 }
7594 
7595 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7596 {
7597 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7598 }
7599 
7600 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7601 {
7602 	if (is_guest_mode(vcpu)) {
7603 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7604 
7605 		if (hrtimer_try_to_cancel(timer) == 1)
7606 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7607 	}
7608 }
7609 
7610 static void hardware_unsetup(void)
7611 {
7612 	if (nested)
7613 		nested_vmx_hardware_unsetup();
7614 
7615 	free_kvm_area();
7616 }
7617 
7618 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7619 {
7620 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7621 			  BIT(APICV_INHIBIT_REASON_HYPERV);
7622 
7623 	return supported & BIT(bit);
7624 }
7625 
7626 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7627 	.hardware_unsetup = hardware_unsetup,
7628 
7629 	.hardware_enable = hardware_enable,
7630 	.hardware_disable = hardware_disable,
7631 	.cpu_has_accelerated_tpr = report_flexpriority,
7632 	.has_emulated_msr = vmx_has_emulated_msr,
7633 
7634 	.vm_size = sizeof(struct kvm_vmx),
7635 	.vm_init = vmx_vm_init,
7636 
7637 	.vcpu_create = vmx_create_vcpu,
7638 	.vcpu_free = vmx_free_vcpu,
7639 	.vcpu_reset = vmx_vcpu_reset,
7640 
7641 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7642 	.vcpu_load = vmx_vcpu_load,
7643 	.vcpu_put = vmx_vcpu_put,
7644 
7645 	.update_exception_bitmap = vmx_update_exception_bitmap,
7646 	.get_msr_feature = vmx_get_msr_feature,
7647 	.get_msr = vmx_get_msr,
7648 	.set_msr = vmx_set_msr,
7649 	.get_segment_base = vmx_get_segment_base,
7650 	.get_segment = vmx_get_segment,
7651 	.set_segment = vmx_set_segment,
7652 	.get_cpl = vmx_get_cpl,
7653 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7654 	.set_cr0 = vmx_set_cr0,
7655 	.is_valid_cr4 = vmx_is_valid_cr4,
7656 	.set_cr4 = vmx_set_cr4,
7657 	.set_efer = vmx_set_efer,
7658 	.get_idt = vmx_get_idt,
7659 	.set_idt = vmx_set_idt,
7660 	.get_gdt = vmx_get_gdt,
7661 	.set_gdt = vmx_set_gdt,
7662 	.set_dr7 = vmx_set_dr7,
7663 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7664 	.cache_reg = vmx_cache_reg,
7665 	.get_rflags = vmx_get_rflags,
7666 	.set_rflags = vmx_set_rflags,
7667 
7668 	.tlb_flush_all = vmx_flush_tlb_all,
7669 	.tlb_flush_current = vmx_flush_tlb_current,
7670 	.tlb_flush_gva = vmx_flush_tlb_gva,
7671 	.tlb_flush_guest = vmx_flush_tlb_guest,
7672 
7673 	.run = vmx_vcpu_run,
7674 	.handle_exit = vmx_handle_exit,
7675 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7676 	.update_emulated_instruction = vmx_update_emulated_instruction,
7677 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7678 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7679 	.patch_hypercall = vmx_patch_hypercall,
7680 	.set_irq = vmx_inject_irq,
7681 	.set_nmi = vmx_inject_nmi,
7682 	.queue_exception = vmx_queue_exception,
7683 	.cancel_injection = vmx_cancel_injection,
7684 	.interrupt_allowed = vmx_interrupt_allowed,
7685 	.nmi_allowed = vmx_nmi_allowed,
7686 	.get_nmi_mask = vmx_get_nmi_mask,
7687 	.set_nmi_mask = vmx_set_nmi_mask,
7688 	.enable_nmi_window = vmx_enable_nmi_window,
7689 	.enable_irq_window = vmx_enable_irq_window,
7690 	.update_cr8_intercept = vmx_update_cr8_intercept,
7691 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7692 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7693 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7694 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7695 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7696 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7697 	.hwapic_irr_update = vmx_hwapic_irr_update,
7698 	.hwapic_isr_update = vmx_hwapic_isr_update,
7699 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7700 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7701 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7702 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7703 
7704 	.set_tss_addr = vmx_set_tss_addr,
7705 	.set_identity_map_addr = vmx_set_identity_map_addr,
7706 	.get_mt_mask = vmx_get_mt_mask,
7707 
7708 	.get_exit_info = vmx_get_exit_info,
7709 
7710 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7711 
7712 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7713 
7714 	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7715 
7716 	.load_mmu_pgd = vmx_load_mmu_pgd,
7717 
7718 	.check_intercept = vmx_check_intercept,
7719 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7720 
7721 	.request_immediate_exit = vmx_request_immediate_exit,
7722 
7723 	.sched_in = vmx_sched_in,
7724 
7725 	.cpu_dirty_log_size = PML_ENTITY_NUM,
7726 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7727 
7728 	.pre_block = vmx_pre_block,
7729 	.post_block = vmx_post_block,
7730 
7731 	.pmu_ops = &intel_pmu_ops,
7732 	.nested_ops = &vmx_nested_ops,
7733 
7734 	.update_pi_irte = pi_update_irte,
7735 
7736 #ifdef CONFIG_X86_64
7737 	.set_hv_timer = vmx_set_hv_timer,
7738 	.cancel_hv_timer = vmx_cancel_hv_timer,
7739 #endif
7740 
7741 	.setup_mce = vmx_setup_mce,
7742 
7743 	.smi_allowed = vmx_smi_allowed,
7744 	.pre_enter_smm = vmx_pre_enter_smm,
7745 	.pre_leave_smm = vmx_pre_leave_smm,
7746 	.enable_smi_window = vmx_enable_smi_window,
7747 
7748 	.can_emulate_instruction = vmx_can_emulate_instruction,
7749 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7750 	.migrate_timers = vmx_migrate_timers,
7751 
7752 	.msr_filter_changed = vmx_msr_filter_changed,
7753 	.complete_emulated_msr = kvm_complete_insn_gp,
7754 
7755 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7756 };
7757 
7758 static __init int hardware_setup(void)
7759 {
7760 	unsigned long host_bndcfgs;
7761 	struct desc_ptr dt;
7762 	int r, i, ept_lpage_level;
7763 
7764 	store_idt(&dt);
7765 	host_idt_base = dt.address;
7766 
7767 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7768 		kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]);
7769 
7770 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7771 		return -EIO;
7772 
7773 	if (boot_cpu_has(X86_FEATURE_NX))
7774 		kvm_enable_efer_bits(EFER_NX);
7775 
7776 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7777 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7778 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7779 	}
7780 
7781 	if (!cpu_has_vmx_mpx())
7782 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7783 				    XFEATURE_MASK_BNDCSR);
7784 
7785 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7786 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7787 		enable_vpid = 0;
7788 
7789 	if (!cpu_has_vmx_ept() ||
7790 	    !cpu_has_vmx_ept_4levels() ||
7791 	    !cpu_has_vmx_ept_mt_wb() ||
7792 	    !cpu_has_vmx_invept_global())
7793 		enable_ept = 0;
7794 
7795 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7796 		enable_ept_ad_bits = 0;
7797 
7798 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7799 		enable_unrestricted_guest = 0;
7800 
7801 	if (!cpu_has_vmx_flexpriority())
7802 		flexpriority_enabled = 0;
7803 
7804 	if (!cpu_has_virtual_nmis())
7805 		enable_vnmi = 0;
7806 
7807 	/*
7808 	 * set_apic_access_page_addr() is used to reload apic access
7809 	 * page upon invalidation.  No need to do anything if not
7810 	 * using the APIC_ACCESS_ADDR VMCS field.
7811 	 */
7812 	if (!flexpriority_enabled)
7813 		vmx_x86_ops.set_apic_access_page_addr = NULL;
7814 
7815 	if (!cpu_has_vmx_tpr_shadow())
7816 		vmx_x86_ops.update_cr8_intercept = NULL;
7817 
7818 #if IS_ENABLED(CONFIG_HYPERV)
7819 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7820 	    && enable_ept) {
7821 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7822 		vmx_x86_ops.tlb_remote_flush_with_range =
7823 				hv_remote_flush_tlb_with_range;
7824 	}
7825 #endif
7826 
7827 	if (!cpu_has_vmx_ple()) {
7828 		ple_gap = 0;
7829 		ple_window = 0;
7830 		ple_window_grow = 0;
7831 		ple_window_max = 0;
7832 		ple_window_shrink = 0;
7833 	}
7834 
7835 	if (!cpu_has_vmx_apicv()) {
7836 		enable_apicv = 0;
7837 		vmx_x86_ops.sync_pir_to_irr = NULL;
7838 	}
7839 
7840 	if (cpu_has_vmx_tsc_scaling()) {
7841 		kvm_has_tsc_control = true;
7842 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7843 		kvm_tsc_scaling_ratio_frac_bits = 48;
7844 	}
7845 
7846 	kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7847 
7848 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7849 
7850 	if (enable_ept)
7851 		vmx_enable_tdp();
7852 
7853 	if (!enable_ept)
7854 		ept_lpage_level = 0;
7855 	else if (cpu_has_vmx_ept_1g_page())
7856 		ept_lpage_level = PG_LEVEL_1G;
7857 	else if (cpu_has_vmx_ept_2m_page())
7858 		ept_lpage_level = PG_LEVEL_2M;
7859 	else
7860 		ept_lpage_level = PG_LEVEL_4K;
7861 	kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
7862 
7863 	/*
7864 	 * Only enable PML when hardware supports PML feature, and both EPT
7865 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7866 	 */
7867 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7868 		enable_pml = 0;
7869 
7870 	if (!enable_pml)
7871 		vmx_x86_ops.cpu_dirty_log_size = 0;
7872 
7873 	if (!cpu_has_vmx_preemption_timer())
7874 		enable_preemption_timer = false;
7875 
7876 	if (enable_preemption_timer) {
7877 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
7878 		u64 vmx_msr;
7879 
7880 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7881 		cpu_preemption_timer_multi =
7882 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7883 
7884 		if (tsc_khz)
7885 			use_timer_freq = (u64)tsc_khz * 1000;
7886 		use_timer_freq >>= cpu_preemption_timer_multi;
7887 
7888 		/*
7889 		 * KVM "disables" the preemption timer by setting it to its max
7890 		 * value.  Don't use the timer if it might cause spurious exits
7891 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7892 		 */
7893 		if (use_timer_freq > 0xffffffffu / 10)
7894 			enable_preemption_timer = false;
7895 	}
7896 
7897 	if (!enable_preemption_timer) {
7898 		vmx_x86_ops.set_hv_timer = NULL;
7899 		vmx_x86_ops.cancel_hv_timer = NULL;
7900 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7901 	}
7902 
7903 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7904 
7905 	kvm_mce_cap_supported |= MCG_LMCE_P;
7906 
7907 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7908 		return -EINVAL;
7909 	if (!enable_ept || !cpu_has_vmx_intel_pt())
7910 		pt_mode = PT_MODE_SYSTEM;
7911 
7912 	if (nested) {
7913 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7914 					   vmx_capability.ept);
7915 
7916 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7917 		if (r)
7918 			return r;
7919 	}
7920 
7921 	vmx_set_cpu_caps();
7922 
7923 	r = alloc_kvm_area();
7924 	if (r)
7925 		nested_vmx_hardware_unsetup();
7926 	return r;
7927 }
7928 
7929 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7930 	.cpu_has_kvm_support = cpu_has_kvm_support,
7931 	.disabled_by_bios = vmx_disabled_by_bios,
7932 	.check_processor_compatibility = vmx_check_processor_compat,
7933 	.hardware_setup = hardware_setup,
7934 
7935 	.runtime_ops = &vmx_x86_ops,
7936 };
7937 
7938 static void vmx_cleanup_l1d_flush(void)
7939 {
7940 	if (vmx_l1d_flush_pages) {
7941 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7942 		vmx_l1d_flush_pages = NULL;
7943 	}
7944 	/* Restore state so sysfs ignores VMX */
7945 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7946 }
7947 
7948 static void vmx_exit(void)
7949 {
7950 #ifdef CONFIG_KEXEC_CORE
7951 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7952 	synchronize_rcu();
7953 #endif
7954 
7955 	kvm_exit();
7956 
7957 #if IS_ENABLED(CONFIG_HYPERV)
7958 	if (static_branch_unlikely(&enable_evmcs)) {
7959 		int cpu;
7960 		struct hv_vp_assist_page *vp_ap;
7961 		/*
7962 		 * Reset everything to support using non-enlightened VMCS
7963 		 * access later (e.g. when we reload the module with
7964 		 * enlightened_vmcs=0)
7965 		 */
7966 		for_each_online_cpu(cpu) {
7967 			vp_ap =	hv_get_vp_assist_page(cpu);
7968 
7969 			if (!vp_ap)
7970 				continue;
7971 
7972 			vp_ap->nested_control.features.directhypercall = 0;
7973 			vp_ap->current_nested_vmcs = 0;
7974 			vp_ap->enlighten_vmentry = 0;
7975 		}
7976 
7977 		static_branch_disable(&enable_evmcs);
7978 	}
7979 #endif
7980 	vmx_cleanup_l1d_flush();
7981 }
7982 module_exit(vmx_exit);
7983 
7984 static int __init vmx_init(void)
7985 {
7986 	int r, cpu;
7987 
7988 #if IS_ENABLED(CONFIG_HYPERV)
7989 	/*
7990 	 * Enlightened VMCS usage should be recommended and the host needs
7991 	 * to support eVMCS v1 or above. We can also disable eVMCS support
7992 	 * with module parameter.
7993 	 */
7994 	if (enlightened_vmcs &&
7995 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7996 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7997 	    KVM_EVMCS_VERSION) {
7998 		int cpu;
7999 
8000 		/* Check that we have assist pages on all online CPUs */
8001 		for_each_online_cpu(cpu) {
8002 			if (!hv_get_vp_assist_page(cpu)) {
8003 				enlightened_vmcs = false;
8004 				break;
8005 			}
8006 		}
8007 
8008 		if (enlightened_vmcs) {
8009 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8010 			static_branch_enable(&enable_evmcs);
8011 		}
8012 
8013 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8014 			vmx_x86_ops.enable_direct_tlbflush
8015 				= hv_enable_direct_tlbflush;
8016 
8017 	} else {
8018 		enlightened_vmcs = false;
8019 	}
8020 #endif
8021 
8022 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8023 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8024 	if (r)
8025 		return r;
8026 
8027 	/*
8028 	 * Must be called after kvm_init() so enable_ept is properly set
8029 	 * up. Hand the parameter mitigation value in which was stored in
8030 	 * the pre module init parser. If no parameter was given, it will
8031 	 * contain 'auto' which will be turned into the default 'cond'
8032 	 * mitigation mode.
8033 	 */
8034 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8035 	if (r) {
8036 		vmx_exit();
8037 		return r;
8038 	}
8039 
8040 	for_each_possible_cpu(cpu) {
8041 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8042 
8043 		pi_init_cpu(cpu);
8044 	}
8045 
8046 #ifdef CONFIG_KEXEC_CORE
8047 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8048 			   crash_vmclear_local_loaded_vmcss);
8049 #endif
8050 	vmx_check_vmcs12_offsets();
8051 
8052 	/*
8053 	 * Shadow paging doesn't have a (further) performance penalty
8054 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8055 	 * by default
8056 	 */
8057 	if (!enable_ept)
8058 		allow_smaller_maxphyaddr = true;
8059 
8060 	return 0;
8061 }
8062 module_init(vmx_init);
8063