1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <linux/frame.h> 17 #include <linux/highmem.h> 18 #include <linux/hrtimer.h> 19 #include <linux/kernel.h> 20 #include <linux/kvm_host.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/mm.h> 25 #include <linux/sched.h> 26 #include <linux/sched/smt.h> 27 #include <linux/slab.h> 28 #include <linux/tboot.h> 29 #include <linux/trace_events.h> 30 31 #include <asm/apic.h> 32 #include <asm/asm.h> 33 #include <asm/cpu.h> 34 #include <asm/debugreg.h> 35 #include <asm/desc.h> 36 #include <asm/fpu/internal.h> 37 #include <asm/io.h> 38 #include <asm/irq_remapping.h> 39 #include <asm/kexec.h> 40 #include <asm/perf_event.h> 41 #include <asm/mce.h> 42 #include <asm/mmu_context.h> 43 #include <asm/mshyperv.h> 44 #include <asm/spec-ctrl.h> 45 #include <asm/virtext.h> 46 #include <asm/vmx.h> 47 48 #include "capabilities.h" 49 #include "cpuid.h" 50 #include "evmcs.h" 51 #include "irq.h" 52 #include "kvm_cache_regs.h" 53 #include "lapic.h" 54 #include "mmu.h" 55 #include "nested.h" 56 #include "ops.h" 57 #include "pmu.h" 58 #include "trace.h" 59 #include "vmcs.h" 60 #include "vmcs12.h" 61 #include "vmx.h" 62 #include "x86.h" 63 64 MODULE_AUTHOR("Qumranet"); 65 MODULE_LICENSE("GPL"); 66 67 static const struct x86_cpu_id vmx_cpu_id[] = { 68 X86_FEATURE_MATCH(X86_FEATURE_VMX), 69 {} 70 }; 71 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 72 73 bool __read_mostly enable_vpid = 1; 74 module_param_named(vpid, enable_vpid, bool, 0444); 75 76 static bool __read_mostly enable_vnmi = 1; 77 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 78 79 bool __read_mostly flexpriority_enabled = 1; 80 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 81 82 bool __read_mostly enable_ept = 1; 83 module_param_named(ept, enable_ept, bool, S_IRUGO); 84 85 bool __read_mostly enable_unrestricted_guest = 1; 86 module_param_named(unrestricted_guest, 87 enable_unrestricted_guest, bool, S_IRUGO); 88 89 bool __read_mostly enable_ept_ad_bits = 1; 90 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 91 92 static bool __read_mostly emulate_invalid_guest_state = true; 93 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 94 95 static bool __read_mostly fasteoi = 1; 96 module_param(fasteoi, bool, S_IRUGO); 97 98 static bool __read_mostly enable_apicv = 1; 99 module_param(enable_apicv, bool, S_IRUGO); 100 101 /* 102 * If nested=1, nested virtualization is supported, i.e., guests may use 103 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 104 * use VMX instructions. 105 */ 106 static bool __read_mostly nested = 1; 107 module_param(nested, bool, S_IRUGO); 108 109 static u64 __read_mostly host_xss; 110 111 bool __read_mostly enable_pml = 1; 112 module_param_named(pml, enable_pml, bool, S_IRUGO); 113 114 static bool __read_mostly dump_invalid_vmcs = 0; 115 module_param(dump_invalid_vmcs, bool, 0644); 116 117 #define MSR_BITMAP_MODE_X2APIC 1 118 #define MSR_BITMAP_MODE_X2APIC_APICV 2 119 120 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 121 122 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 123 static int __read_mostly cpu_preemption_timer_multi; 124 static bool __read_mostly enable_preemption_timer = 1; 125 #ifdef CONFIG_X86_64 126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 127 #endif 128 129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 131 #define KVM_VM_CR0_ALWAYS_ON \ 132 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \ 133 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE) 134 #define KVM_CR4_GUEST_OWNED_BITS \ 135 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ 136 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD) 137 138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 141 142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 143 144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 145 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 146 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 147 RTIT_STATUS_BYTECNT)) 148 149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \ 150 (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f) 151 152 /* 153 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 154 * ple_gap: upper bound on the amount of time between two successive 155 * executions of PAUSE in a loop. Also indicate if ple enabled. 156 * According to test, this time is usually smaller than 128 cycles. 157 * ple_window: upper bound on the amount of time a guest is allowed to execute 158 * in a PAUSE loop. Tests indicate that most spinlocks are held for 159 * less than 2^12 cycles 160 * Time is measured based on a counter that runs at the same rate as the TSC, 161 * refer SDM volume 3b section 21.6.13 & 22.1.3. 162 */ 163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 164 module_param(ple_gap, uint, 0444); 165 166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 167 module_param(ple_window, uint, 0444); 168 169 /* Default doubles per-vcpu window every exit. */ 170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 171 module_param(ple_window_grow, uint, 0444); 172 173 /* Default resets per-vcpu window every exit to ple_window. */ 174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 175 module_param(ple_window_shrink, uint, 0444); 176 177 /* Default is to compute the maximum so we can never overflow. */ 178 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 179 module_param(ple_window_max, uint, 0444); 180 181 /* Default is SYSTEM mode, 1 for host-guest mode */ 182 int __read_mostly pt_mode = PT_MODE_SYSTEM; 183 module_param(pt_mode, int, S_IRUGO); 184 185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 187 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 188 189 /* Storage for pre module init parameter parsing */ 190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 191 192 static const struct { 193 const char *option; 194 bool for_parse; 195 } vmentry_l1d_param[] = { 196 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 197 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 198 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 199 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 200 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 201 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 202 }; 203 204 #define L1D_CACHE_ORDER 4 205 static void *vmx_l1d_flush_pages; 206 207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 208 { 209 struct page *page; 210 unsigned int i; 211 212 if (!enable_ept) { 213 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 214 return 0; 215 } 216 217 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 218 u64 msr; 219 220 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 221 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 222 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 223 return 0; 224 } 225 } 226 227 /* If set to auto use the default l1tf mitigation method */ 228 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 229 switch (l1tf_mitigation) { 230 case L1TF_MITIGATION_OFF: 231 l1tf = VMENTER_L1D_FLUSH_NEVER; 232 break; 233 case L1TF_MITIGATION_FLUSH_NOWARN: 234 case L1TF_MITIGATION_FLUSH: 235 case L1TF_MITIGATION_FLUSH_NOSMT: 236 l1tf = VMENTER_L1D_FLUSH_COND; 237 break; 238 case L1TF_MITIGATION_FULL: 239 case L1TF_MITIGATION_FULL_FORCE: 240 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 241 break; 242 } 243 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 244 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 245 } 246 247 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 248 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 249 /* 250 * This allocation for vmx_l1d_flush_pages is not tied to a VM 251 * lifetime and so should not be charged to a memcg. 252 */ 253 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 254 if (!page) 255 return -ENOMEM; 256 vmx_l1d_flush_pages = page_address(page); 257 258 /* 259 * Initialize each page with a different pattern in 260 * order to protect against KSM in the nested 261 * virtualization case. 262 */ 263 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 264 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 265 PAGE_SIZE); 266 } 267 } 268 269 l1tf_vmx_mitigation = l1tf; 270 271 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 272 static_branch_enable(&vmx_l1d_should_flush); 273 else 274 static_branch_disable(&vmx_l1d_should_flush); 275 276 if (l1tf == VMENTER_L1D_FLUSH_COND) 277 static_branch_enable(&vmx_l1d_flush_cond); 278 else 279 static_branch_disable(&vmx_l1d_flush_cond); 280 return 0; 281 } 282 283 static int vmentry_l1d_flush_parse(const char *s) 284 { 285 unsigned int i; 286 287 if (s) { 288 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 289 if (vmentry_l1d_param[i].for_parse && 290 sysfs_streq(s, vmentry_l1d_param[i].option)) 291 return i; 292 } 293 } 294 return -EINVAL; 295 } 296 297 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 298 { 299 int l1tf, ret; 300 301 l1tf = vmentry_l1d_flush_parse(s); 302 if (l1tf < 0) 303 return l1tf; 304 305 if (!boot_cpu_has(X86_BUG_L1TF)) 306 return 0; 307 308 /* 309 * Has vmx_init() run already? If not then this is the pre init 310 * parameter parsing. In that case just store the value and let 311 * vmx_init() do the proper setup after enable_ept has been 312 * established. 313 */ 314 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 315 vmentry_l1d_flush_param = l1tf; 316 return 0; 317 } 318 319 mutex_lock(&vmx_l1d_flush_mutex); 320 ret = vmx_setup_l1d_flush(l1tf); 321 mutex_unlock(&vmx_l1d_flush_mutex); 322 return ret; 323 } 324 325 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 326 { 327 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 328 return sprintf(s, "???\n"); 329 330 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 331 } 332 333 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 334 .set = vmentry_l1d_flush_set, 335 .get = vmentry_l1d_flush_get, 336 }; 337 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 338 339 static bool guest_state_valid(struct kvm_vcpu *vcpu); 340 static u32 vmx_segment_access_rights(struct kvm_segment *var); 341 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, 342 u32 msr, int type); 343 344 void vmx_vmexit(void); 345 346 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 347 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 348 /* 349 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 350 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 351 */ 352 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 353 354 /* 355 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we 356 * can find which vCPU should be waken up. 357 */ 358 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu); 359 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock); 360 361 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 362 static DEFINE_SPINLOCK(vmx_vpid_lock); 363 364 struct vmcs_config vmcs_config; 365 struct vmx_capability vmx_capability; 366 367 #define VMX_SEGMENT_FIELD(seg) \ 368 [VCPU_SREG_##seg] = { \ 369 .selector = GUEST_##seg##_SELECTOR, \ 370 .base = GUEST_##seg##_BASE, \ 371 .limit = GUEST_##seg##_LIMIT, \ 372 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 373 } 374 375 static const struct kvm_vmx_segment_field { 376 unsigned selector; 377 unsigned base; 378 unsigned limit; 379 unsigned ar_bytes; 380 } kvm_vmx_segment_fields[] = { 381 VMX_SEGMENT_FIELD(CS), 382 VMX_SEGMENT_FIELD(DS), 383 VMX_SEGMENT_FIELD(ES), 384 VMX_SEGMENT_FIELD(FS), 385 VMX_SEGMENT_FIELD(GS), 386 VMX_SEGMENT_FIELD(SS), 387 VMX_SEGMENT_FIELD(TR), 388 VMX_SEGMENT_FIELD(LDTR), 389 }; 390 391 u64 host_efer; 392 static unsigned long host_idt_base; 393 394 /* 395 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 396 * will emulate SYSCALL in legacy mode if the vendor string in guest 397 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 398 * support this emulation, IA32_STAR must always be included in 399 * vmx_msr_index[], even in i386 builds. 400 */ 401 const u32 vmx_msr_index[] = { 402 #ifdef CONFIG_X86_64 403 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 404 #endif 405 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 406 }; 407 408 #if IS_ENABLED(CONFIG_HYPERV) 409 static bool __read_mostly enlightened_vmcs = true; 410 module_param(enlightened_vmcs, bool, 0444); 411 412 /* check_ept_pointer() should be under protection of ept_pointer_lock. */ 413 static void check_ept_pointer_match(struct kvm *kvm) 414 { 415 struct kvm_vcpu *vcpu; 416 u64 tmp_eptp = INVALID_PAGE; 417 int i; 418 419 kvm_for_each_vcpu(i, vcpu, kvm) { 420 if (!VALID_PAGE(tmp_eptp)) { 421 tmp_eptp = to_vmx(vcpu)->ept_pointer; 422 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) { 423 to_kvm_vmx(kvm)->ept_pointers_match 424 = EPT_POINTERS_MISMATCH; 425 return; 426 } 427 } 428 429 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH; 430 } 431 432 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush, 433 void *data) 434 { 435 struct kvm_tlb_range *range = data; 436 437 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn, 438 range->pages); 439 } 440 441 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm, 442 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range) 443 { 444 u64 ept_pointer = to_vmx(vcpu)->ept_pointer; 445 446 /* 447 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address 448 * of the base of EPT PML4 table, strip off EPT configuration 449 * information. 450 */ 451 if (range) 452 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK, 453 kvm_fill_hv_flush_list_func, (void *)range); 454 else 455 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK); 456 } 457 458 static int hv_remote_flush_tlb_with_range(struct kvm *kvm, 459 struct kvm_tlb_range *range) 460 { 461 struct kvm_vcpu *vcpu; 462 int ret = 0, i; 463 464 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); 465 466 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK) 467 check_ept_pointer_match(kvm); 468 469 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) { 470 kvm_for_each_vcpu(i, vcpu, kvm) { 471 /* If ept_pointer is invalid pointer, bypass flush request. */ 472 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer)) 473 ret |= __hv_remote_flush_tlb_with_range( 474 kvm, vcpu, range); 475 } 476 } else { 477 ret = __hv_remote_flush_tlb_with_range(kvm, 478 kvm_get_vcpu(kvm, 0), range); 479 } 480 481 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); 482 return ret; 483 } 484 static int hv_remote_flush_tlb(struct kvm *kvm) 485 { 486 return hv_remote_flush_tlb_with_range(kvm, NULL); 487 } 488 489 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 490 491 /* 492 * Comment's format: document - errata name - stepping - processor name. 493 * Refer from 494 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 495 */ 496 static u32 vmx_preemption_cpu_tfms[] = { 497 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 498 0x000206E6, 499 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 500 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 501 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 502 0x00020652, 503 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 504 0x00020655, 505 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 506 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 507 /* 508 * 320767.pdf - AAP86 - B1 - 509 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 510 */ 511 0x000106E5, 512 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 513 0x000106A0, 514 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 515 0x000106A1, 516 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 517 0x000106A4, 518 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 519 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 520 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 521 0x000106A5, 522 /* Xeon E3-1220 V2 */ 523 0x000306A8, 524 }; 525 526 static inline bool cpu_has_broken_vmx_preemption_timer(void) 527 { 528 u32 eax = cpuid_eax(0x00000001), i; 529 530 /* Clear the reserved bits */ 531 eax &= ~(0x3U << 14 | 0xfU << 28); 532 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 533 if (eax == vmx_preemption_cpu_tfms[i]) 534 return true; 535 536 return false; 537 } 538 539 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 540 { 541 return flexpriority_enabled && lapic_in_kernel(vcpu); 542 } 543 544 static inline bool report_flexpriority(void) 545 { 546 return flexpriority_enabled; 547 } 548 549 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) 550 { 551 int i; 552 553 for (i = 0; i < vmx->nmsrs; ++i) 554 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr) 555 return i; 556 return -1; 557 } 558 559 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) 560 { 561 int i; 562 563 i = __find_msr_index(vmx, msr); 564 if (i >= 0) 565 return &vmx->guest_msrs[i]; 566 return NULL; 567 } 568 569 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs) 570 { 571 vmcs_clear(loaded_vmcs->vmcs); 572 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 573 vmcs_clear(loaded_vmcs->shadow_vmcs); 574 loaded_vmcs->cpu = -1; 575 loaded_vmcs->launched = 0; 576 } 577 578 #ifdef CONFIG_KEXEC_CORE 579 /* 580 * This bitmap is used to indicate whether the vmclear 581 * operation is enabled on all cpus. All disabled by 582 * default. 583 */ 584 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE; 585 586 static inline void crash_enable_local_vmclear(int cpu) 587 { 588 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap); 589 } 590 591 static inline void crash_disable_local_vmclear(int cpu) 592 { 593 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap); 594 } 595 596 static inline int crash_local_vmclear_enabled(int cpu) 597 { 598 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap); 599 } 600 601 static void crash_vmclear_local_loaded_vmcss(void) 602 { 603 int cpu = raw_smp_processor_id(); 604 struct loaded_vmcs *v; 605 606 if (!crash_local_vmclear_enabled(cpu)) 607 return; 608 609 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 610 loaded_vmcss_on_cpu_link) 611 vmcs_clear(v->vmcs); 612 } 613 #else 614 static inline void crash_enable_local_vmclear(int cpu) { } 615 static inline void crash_disable_local_vmclear(int cpu) { } 616 #endif /* CONFIG_KEXEC_CORE */ 617 618 static void __loaded_vmcs_clear(void *arg) 619 { 620 struct loaded_vmcs *loaded_vmcs = arg; 621 int cpu = raw_smp_processor_id(); 622 623 if (loaded_vmcs->cpu != cpu) 624 return; /* vcpu migration can race with cpu offline */ 625 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 626 per_cpu(current_vmcs, cpu) = NULL; 627 crash_disable_local_vmclear(cpu); 628 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 629 630 /* 631 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link 632 * is before setting loaded_vmcs->vcpu to -1 which is done in 633 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist 634 * then adds the vmcs into percpu list before it is deleted. 635 */ 636 smp_wmb(); 637 638 loaded_vmcs_init(loaded_vmcs); 639 crash_enable_local_vmclear(cpu); 640 } 641 642 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 643 { 644 int cpu = loaded_vmcs->cpu; 645 646 if (cpu != -1) 647 smp_call_function_single(cpu, 648 __loaded_vmcs_clear, loaded_vmcs, 1); 649 } 650 651 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 652 unsigned field) 653 { 654 bool ret; 655 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 656 657 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) { 658 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS); 659 vmx->segment_cache.bitmask = 0; 660 } 661 ret = vmx->segment_cache.bitmask & mask; 662 vmx->segment_cache.bitmask |= mask; 663 return ret; 664 } 665 666 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 667 { 668 u16 *p = &vmx->segment_cache.seg[seg].selector; 669 670 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 671 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 672 return *p; 673 } 674 675 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 676 { 677 ulong *p = &vmx->segment_cache.seg[seg].base; 678 679 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 680 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 681 return *p; 682 } 683 684 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 685 { 686 u32 *p = &vmx->segment_cache.seg[seg].limit; 687 688 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 689 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 690 return *p; 691 } 692 693 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 694 { 695 u32 *p = &vmx->segment_cache.seg[seg].ar; 696 697 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 698 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 699 return *p; 700 } 701 702 void update_exception_bitmap(struct kvm_vcpu *vcpu) 703 { 704 u32 eb; 705 706 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 707 (1u << DB_VECTOR) | (1u << AC_VECTOR); 708 /* 709 * Guest access to VMware backdoor ports could legitimately 710 * trigger #GP because of TSS I/O permission bitmap. 711 * We intercept those #GP and allow access to them anyway 712 * as VMware does. 713 */ 714 if (enable_vmware_backdoor) 715 eb |= (1u << GP_VECTOR); 716 if ((vcpu->guest_debug & 717 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 718 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 719 eb |= 1u << BP_VECTOR; 720 if (to_vmx(vcpu)->rmode.vm86_active) 721 eb = ~0; 722 if (enable_ept) 723 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ 724 725 /* When we are running a nested L2 guest and L1 specified for it a 726 * certain exception bitmap, we must trap the same exceptions and pass 727 * them to L1. When running L2, we will only handle the exceptions 728 * specified above if L1 did not want them. 729 */ 730 if (is_guest_mode(vcpu)) 731 eb |= get_vmcs12(vcpu)->exception_bitmap; 732 733 vmcs_write32(EXCEPTION_BITMAP, eb); 734 } 735 736 /* 737 * Check if MSR is intercepted for currently loaded MSR bitmap. 738 */ 739 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 740 { 741 unsigned long *msr_bitmap; 742 int f = sizeof(unsigned long); 743 744 if (!cpu_has_vmx_msr_bitmap()) 745 return true; 746 747 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; 748 749 if (msr <= 0x1fff) { 750 return !!test_bit(msr, msr_bitmap + 0x800 / f); 751 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 752 msr &= 0x1fff; 753 return !!test_bit(msr, msr_bitmap + 0xc00 / f); 754 } 755 756 return true; 757 } 758 759 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 760 unsigned long entry, unsigned long exit) 761 { 762 vm_entry_controls_clearbit(vmx, entry); 763 vm_exit_controls_clearbit(vmx, exit); 764 } 765 766 static int find_msr(struct vmx_msrs *m, unsigned int msr) 767 { 768 unsigned int i; 769 770 for (i = 0; i < m->nr; ++i) { 771 if (m->val[i].index == msr) 772 return i; 773 } 774 return -ENOENT; 775 } 776 777 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 778 { 779 int i; 780 struct msr_autoload *m = &vmx->msr_autoload; 781 782 switch (msr) { 783 case MSR_EFER: 784 if (cpu_has_load_ia32_efer()) { 785 clear_atomic_switch_msr_special(vmx, 786 VM_ENTRY_LOAD_IA32_EFER, 787 VM_EXIT_LOAD_IA32_EFER); 788 return; 789 } 790 break; 791 case MSR_CORE_PERF_GLOBAL_CTRL: 792 if (cpu_has_load_perf_global_ctrl()) { 793 clear_atomic_switch_msr_special(vmx, 794 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 795 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 796 return; 797 } 798 break; 799 } 800 i = find_msr(&m->guest, msr); 801 if (i < 0) 802 goto skip_guest; 803 --m->guest.nr; 804 m->guest.val[i] = m->guest.val[m->guest.nr]; 805 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 806 807 skip_guest: 808 i = find_msr(&m->host, msr); 809 if (i < 0) 810 return; 811 812 --m->host.nr; 813 m->host.val[i] = m->host.val[m->host.nr]; 814 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 815 } 816 817 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 818 unsigned long entry, unsigned long exit, 819 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 820 u64 guest_val, u64 host_val) 821 { 822 vmcs_write64(guest_val_vmcs, guest_val); 823 if (host_val_vmcs != HOST_IA32_EFER) 824 vmcs_write64(host_val_vmcs, host_val); 825 vm_entry_controls_setbit(vmx, entry); 826 vm_exit_controls_setbit(vmx, exit); 827 } 828 829 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 830 u64 guest_val, u64 host_val, bool entry_only) 831 { 832 int i, j = 0; 833 struct msr_autoload *m = &vmx->msr_autoload; 834 835 switch (msr) { 836 case MSR_EFER: 837 if (cpu_has_load_ia32_efer()) { 838 add_atomic_switch_msr_special(vmx, 839 VM_ENTRY_LOAD_IA32_EFER, 840 VM_EXIT_LOAD_IA32_EFER, 841 GUEST_IA32_EFER, 842 HOST_IA32_EFER, 843 guest_val, host_val); 844 return; 845 } 846 break; 847 case MSR_CORE_PERF_GLOBAL_CTRL: 848 if (cpu_has_load_perf_global_ctrl()) { 849 add_atomic_switch_msr_special(vmx, 850 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 851 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 852 GUEST_IA32_PERF_GLOBAL_CTRL, 853 HOST_IA32_PERF_GLOBAL_CTRL, 854 guest_val, host_val); 855 return; 856 } 857 break; 858 case MSR_IA32_PEBS_ENABLE: 859 /* PEBS needs a quiescent period after being disabled (to write 860 * a record). Disabling PEBS through VMX MSR swapping doesn't 861 * provide that period, so a CPU could write host's record into 862 * guest's memory. 863 */ 864 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 865 } 866 867 i = find_msr(&m->guest, msr); 868 if (!entry_only) 869 j = find_msr(&m->host, msr); 870 871 if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) || 872 (j < 0 && m->host.nr == NR_AUTOLOAD_MSRS)) { 873 printk_once(KERN_WARNING "Not enough msr switch entries. " 874 "Can't add msr %x\n", msr); 875 return; 876 } 877 if (i < 0) { 878 i = m->guest.nr++; 879 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 880 } 881 m->guest.val[i].index = msr; 882 m->guest.val[i].value = guest_val; 883 884 if (entry_only) 885 return; 886 887 if (j < 0) { 888 j = m->host.nr++; 889 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 890 } 891 m->host.val[j].index = msr; 892 m->host.val[j].value = host_val; 893 } 894 895 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) 896 { 897 u64 guest_efer = vmx->vcpu.arch.efer; 898 u64 ignore_bits = 0; 899 900 if (!enable_ept) { 901 /* 902 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing 903 * host CPUID is more efficient than testing guest CPUID 904 * or CR4. Host SMEP is anyway a requirement for guest SMEP. 905 */ 906 if (boot_cpu_has(X86_FEATURE_SMEP)) 907 guest_efer |= EFER_NX; 908 else if (!(guest_efer & EFER_NX)) 909 ignore_bits |= EFER_NX; 910 } 911 912 /* 913 * LMA and LME handled by hardware; SCE meaningless outside long mode. 914 */ 915 ignore_bits |= EFER_SCE; 916 #ifdef CONFIG_X86_64 917 ignore_bits |= EFER_LMA | EFER_LME; 918 /* SCE is meaningful only in long mode on Intel */ 919 if (guest_efer & EFER_LMA) 920 ignore_bits &= ~(u64)EFER_SCE; 921 #endif 922 923 /* 924 * On EPT, we can't emulate NX, so we must switch EFER atomically. 925 * On CPUs that support "load IA32_EFER", always switch EFER 926 * atomically, since it's faster than switching it manually. 927 */ 928 if (cpu_has_load_ia32_efer() || 929 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 930 if (!(guest_efer & EFER_LMA)) 931 guest_efer &= ~EFER_LME; 932 if (guest_efer != host_efer) 933 add_atomic_switch_msr(vmx, MSR_EFER, 934 guest_efer, host_efer, false); 935 else 936 clear_atomic_switch_msr(vmx, MSR_EFER); 937 return false; 938 } else { 939 clear_atomic_switch_msr(vmx, MSR_EFER); 940 941 guest_efer &= ~ignore_bits; 942 guest_efer |= host_efer & ignore_bits; 943 944 vmx->guest_msrs[efer_offset].data = guest_efer; 945 vmx->guest_msrs[efer_offset].mask = ~ignore_bits; 946 947 return true; 948 } 949 } 950 951 #ifdef CONFIG_X86_32 952 /* 953 * On 32-bit kernels, VM exits still load the FS and GS bases from the 954 * VMCS rather than the segment table. KVM uses this helper to figure 955 * out the current bases to poke them into the VMCS before entry. 956 */ 957 static unsigned long segment_base(u16 selector) 958 { 959 struct desc_struct *table; 960 unsigned long v; 961 962 if (!(selector & ~SEGMENT_RPL_MASK)) 963 return 0; 964 965 table = get_current_gdt_ro(); 966 967 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 968 u16 ldt_selector = kvm_read_ldt(); 969 970 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 971 return 0; 972 973 table = (struct desc_struct *)segment_base(ldt_selector); 974 } 975 v = get_desc_base(&table[selector >> 3]); 976 return v; 977 } 978 #endif 979 980 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 981 { 982 u32 i; 983 984 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 985 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 986 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 987 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 988 for (i = 0; i < addr_range; i++) { 989 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 990 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 991 } 992 } 993 994 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 995 { 996 u32 i; 997 998 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 999 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1000 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1001 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1002 for (i = 0; i < addr_range; i++) { 1003 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1004 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1005 } 1006 } 1007 1008 static void pt_guest_enter(struct vcpu_vmx *vmx) 1009 { 1010 if (pt_mode == PT_MODE_SYSTEM) 1011 return; 1012 1013 /* 1014 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1015 * Save host state before VM entry. 1016 */ 1017 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1018 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1019 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1020 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1021 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1022 } 1023 } 1024 1025 static void pt_guest_exit(struct vcpu_vmx *vmx) 1026 { 1027 if (pt_mode == PT_MODE_SYSTEM) 1028 return; 1029 1030 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1031 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1032 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1033 } 1034 1035 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */ 1036 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1037 } 1038 1039 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1040 unsigned long fs_base, unsigned long gs_base) 1041 { 1042 if (unlikely(fs_sel != host->fs_sel)) { 1043 if (!(fs_sel & 7)) 1044 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1045 else 1046 vmcs_write16(HOST_FS_SELECTOR, 0); 1047 host->fs_sel = fs_sel; 1048 } 1049 if (unlikely(gs_sel != host->gs_sel)) { 1050 if (!(gs_sel & 7)) 1051 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1052 else 1053 vmcs_write16(HOST_GS_SELECTOR, 0); 1054 host->gs_sel = gs_sel; 1055 } 1056 if (unlikely(fs_base != host->fs_base)) { 1057 vmcs_writel(HOST_FS_BASE, fs_base); 1058 host->fs_base = fs_base; 1059 } 1060 if (unlikely(gs_base != host->gs_base)) { 1061 vmcs_writel(HOST_GS_BASE, gs_base); 1062 host->gs_base = gs_base; 1063 } 1064 } 1065 1066 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1067 { 1068 struct vcpu_vmx *vmx = to_vmx(vcpu); 1069 struct vmcs_host_state *host_state; 1070 #ifdef CONFIG_X86_64 1071 int cpu = raw_smp_processor_id(); 1072 #endif 1073 unsigned long fs_base, gs_base; 1074 u16 fs_sel, gs_sel; 1075 int i; 1076 1077 vmx->req_immediate_exit = false; 1078 1079 /* 1080 * Note that guest MSRs to be saved/restored can also be changed 1081 * when guest state is loaded. This happens when guest transitions 1082 * to/from long-mode by setting MSR_EFER.LMA. 1083 */ 1084 if (!vmx->guest_msrs_ready) { 1085 vmx->guest_msrs_ready = true; 1086 for (i = 0; i < vmx->save_nmsrs; ++i) 1087 kvm_set_shared_msr(vmx->guest_msrs[i].index, 1088 vmx->guest_msrs[i].data, 1089 vmx->guest_msrs[i].mask); 1090 1091 } 1092 if (vmx->guest_state_loaded) 1093 return; 1094 1095 host_state = &vmx->loaded_vmcs->host_state; 1096 1097 /* 1098 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1099 * allow segment selectors with cpl > 0 or ti == 1. 1100 */ 1101 host_state->ldt_sel = kvm_read_ldt(); 1102 1103 #ifdef CONFIG_X86_64 1104 savesegment(ds, host_state->ds_sel); 1105 savesegment(es, host_state->es_sel); 1106 1107 gs_base = cpu_kernelmode_gs_base(cpu); 1108 if (likely(is_64bit_mm(current->mm))) { 1109 save_fsgs_for_kvm(); 1110 fs_sel = current->thread.fsindex; 1111 gs_sel = current->thread.gsindex; 1112 fs_base = current->thread.fsbase; 1113 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1114 } else { 1115 savesegment(fs, fs_sel); 1116 savesegment(gs, gs_sel); 1117 fs_base = read_msr(MSR_FS_BASE); 1118 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1119 } 1120 1121 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1122 #else 1123 savesegment(fs, fs_sel); 1124 savesegment(gs, gs_sel); 1125 fs_base = segment_base(fs_sel); 1126 gs_base = segment_base(gs_sel); 1127 #endif 1128 1129 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1130 vmx->guest_state_loaded = true; 1131 } 1132 1133 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1134 { 1135 struct vmcs_host_state *host_state; 1136 1137 if (!vmx->guest_state_loaded) 1138 return; 1139 1140 host_state = &vmx->loaded_vmcs->host_state; 1141 1142 ++vmx->vcpu.stat.host_state_reload; 1143 1144 #ifdef CONFIG_X86_64 1145 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1146 #endif 1147 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1148 kvm_load_ldt(host_state->ldt_sel); 1149 #ifdef CONFIG_X86_64 1150 load_gs_index(host_state->gs_sel); 1151 #else 1152 loadsegment(gs, host_state->gs_sel); 1153 #endif 1154 } 1155 if (host_state->fs_sel & 7) 1156 loadsegment(fs, host_state->fs_sel); 1157 #ifdef CONFIG_X86_64 1158 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1159 loadsegment(ds, host_state->ds_sel); 1160 loadsegment(es, host_state->es_sel); 1161 } 1162 #endif 1163 invalidate_tss_limit(); 1164 #ifdef CONFIG_X86_64 1165 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1166 #endif 1167 load_fixmap_gdt(raw_smp_processor_id()); 1168 vmx->guest_state_loaded = false; 1169 vmx->guest_msrs_ready = false; 1170 } 1171 1172 #ifdef CONFIG_X86_64 1173 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1174 { 1175 preempt_disable(); 1176 if (vmx->guest_state_loaded) 1177 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1178 preempt_enable(); 1179 return vmx->msr_guest_kernel_gs_base; 1180 } 1181 1182 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1183 { 1184 preempt_disable(); 1185 if (vmx->guest_state_loaded) 1186 wrmsrl(MSR_KERNEL_GS_BASE, data); 1187 preempt_enable(); 1188 vmx->msr_guest_kernel_gs_base = data; 1189 } 1190 #endif 1191 1192 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu) 1193 { 1194 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 1195 struct pi_desc old, new; 1196 unsigned int dest; 1197 1198 /* 1199 * In case of hot-plug or hot-unplug, we may have to undo 1200 * vmx_vcpu_pi_put even if there is no assigned device. And we 1201 * always keep PI.NDST up to date for simplicity: it makes the 1202 * code easier, and CPU migration is not a fast path. 1203 */ 1204 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu) 1205 return; 1206 1207 /* The full case. */ 1208 do { 1209 old.control = new.control = pi_desc->control; 1210 1211 dest = cpu_physical_id(cpu); 1212 1213 if (x2apic_enabled()) 1214 new.ndst = dest; 1215 else 1216 new.ndst = (dest << 8) & 0xFF00; 1217 1218 new.sn = 0; 1219 } while (cmpxchg64(&pi_desc->control, old.control, 1220 new.control) != old.control); 1221 1222 /* 1223 * Clear SN before reading the bitmap. The VT-d firmware 1224 * writes the bitmap and reads SN atomically (5.2.3 in the 1225 * spec), so it doesn't really have a memory barrier that 1226 * pairs with this, but we cannot do that and we need one. 1227 */ 1228 smp_mb__after_atomic(); 1229 1230 if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS)) 1231 pi_set_on(pi_desc); 1232 } 1233 1234 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu) 1235 { 1236 struct vcpu_vmx *vmx = to_vmx(vcpu); 1237 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1238 1239 if (!already_loaded) { 1240 loaded_vmcs_clear(vmx->loaded_vmcs); 1241 local_irq_disable(); 1242 crash_disable_local_vmclear(cpu); 1243 1244 /* 1245 * Read loaded_vmcs->cpu should be before fetching 1246 * loaded_vmcs->loaded_vmcss_on_cpu_link. 1247 * See the comments in __loaded_vmcs_clear(). 1248 */ 1249 smp_rmb(); 1250 1251 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1252 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1253 crash_enable_local_vmclear(cpu); 1254 local_irq_enable(); 1255 } 1256 1257 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) { 1258 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1259 vmcs_load(vmx->loaded_vmcs->vmcs); 1260 indirect_branch_prediction_barrier(); 1261 } 1262 1263 if (!already_loaded) { 1264 void *gdt = get_current_gdt_ro(); 1265 unsigned long sysenter_esp; 1266 1267 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1268 1269 /* 1270 * Linux uses per-cpu TSS and GDT, so set these when switching 1271 * processors. See 22.2.4. 1272 */ 1273 vmcs_writel(HOST_TR_BASE, 1274 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1275 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1276 1277 /* 1278 * VM exits change the host TR limit to 0x67 after a VM 1279 * exit. This is okay, since 0x67 covers everything except 1280 * the IO bitmap and have have code to handle the IO bitmap 1281 * being lost after a VM exit. 1282 */ 1283 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67); 1284 1285 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); 1286 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ 1287 1288 vmx->loaded_vmcs->cpu = cpu; 1289 } 1290 1291 /* Setup TSC multiplier */ 1292 if (kvm_has_tsc_control && 1293 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) 1294 decache_tsc_multiplier(vmx); 1295 } 1296 1297 /* 1298 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1299 * vcpu mutex is already taken. 1300 */ 1301 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1302 { 1303 struct vcpu_vmx *vmx = to_vmx(vcpu); 1304 1305 vmx_vcpu_load_vmcs(vcpu, cpu); 1306 1307 vmx_vcpu_pi_load(vcpu, cpu); 1308 1309 vmx->host_pkru = read_pkru(); 1310 vmx->host_debugctlmsr = get_debugctlmsr(); 1311 } 1312 1313 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu) 1314 { 1315 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 1316 1317 if (!kvm_arch_has_assigned_device(vcpu->kvm) || 1318 !irq_remapping_cap(IRQ_POSTING_CAP) || 1319 !kvm_vcpu_apicv_active(vcpu)) 1320 return; 1321 1322 /* Set SN when the vCPU is preempted */ 1323 if (vcpu->preempted) 1324 pi_set_sn(pi_desc); 1325 } 1326 1327 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1328 { 1329 vmx_vcpu_pi_put(vcpu); 1330 1331 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1332 } 1333 1334 static bool emulation_required(struct kvm_vcpu *vcpu) 1335 { 1336 return emulate_invalid_guest_state && !guest_state_valid(vcpu); 1337 } 1338 1339 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu); 1340 1341 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1342 { 1343 unsigned long rflags, save_rflags; 1344 1345 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) { 1346 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); 1347 rflags = vmcs_readl(GUEST_RFLAGS); 1348 if (to_vmx(vcpu)->rmode.vm86_active) { 1349 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1350 save_rflags = to_vmx(vcpu)->rmode.save_rflags; 1351 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1352 } 1353 to_vmx(vcpu)->rflags = rflags; 1354 } 1355 return to_vmx(vcpu)->rflags; 1356 } 1357 1358 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1359 { 1360 unsigned long old_rflags = vmx_get_rflags(vcpu); 1361 1362 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); 1363 to_vmx(vcpu)->rflags = rflags; 1364 if (to_vmx(vcpu)->rmode.vm86_active) { 1365 to_vmx(vcpu)->rmode.save_rflags = rflags; 1366 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1367 } 1368 vmcs_writel(GUEST_RFLAGS, rflags); 1369 1370 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM) 1371 to_vmx(vcpu)->emulation_required = emulation_required(vcpu); 1372 } 1373 1374 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1375 { 1376 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1377 int ret = 0; 1378 1379 if (interruptibility & GUEST_INTR_STATE_STI) 1380 ret |= KVM_X86_SHADOW_INT_STI; 1381 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1382 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1383 1384 return ret; 1385 } 1386 1387 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1388 { 1389 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1390 u32 interruptibility = interruptibility_old; 1391 1392 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1393 1394 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1395 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1396 else if (mask & KVM_X86_SHADOW_INT_STI) 1397 interruptibility |= GUEST_INTR_STATE_STI; 1398 1399 if ((interruptibility != interruptibility_old)) 1400 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1401 } 1402 1403 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1404 { 1405 struct vcpu_vmx *vmx = to_vmx(vcpu); 1406 unsigned long value; 1407 1408 /* 1409 * Any MSR write that attempts to change bits marked reserved will 1410 * case a #GP fault. 1411 */ 1412 if (data & vmx->pt_desc.ctl_bitmask) 1413 return 1; 1414 1415 /* 1416 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1417 * result in a #GP unless the same write also clears TraceEn. 1418 */ 1419 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1420 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1421 return 1; 1422 1423 /* 1424 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1425 * and FabricEn would cause #GP, if 1426 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1427 */ 1428 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1429 !(data & RTIT_CTL_FABRIC_EN) && 1430 !intel_pt_validate_cap(vmx->pt_desc.caps, 1431 PT_CAP_single_range_output)) 1432 return 1; 1433 1434 /* 1435 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1436 * utilize encodings marked reserved will casue a #GP fault. 1437 */ 1438 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1439 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1440 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1441 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1442 return 1; 1443 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1444 PT_CAP_cycle_thresholds); 1445 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1446 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1447 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1448 return 1; 1449 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1450 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1451 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1452 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1453 return 1; 1454 1455 /* 1456 * If ADDRx_CFG is reserved or the encodings is >2 will 1457 * cause a #GP fault. 1458 */ 1459 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1460 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2)) 1461 return 1; 1462 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1463 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2)) 1464 return 1; 1465 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1466 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2)) 1467 return 1; 1468 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1469 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2)) 1470 return 1; 1471 1472 return 0; 1473 } 1474 1475 1476 static void skip_emulated_instruction(struct kvm_vcpu *vcpu) 1477 { 1478 unsigned long rip; 1479 1480 rip = kvm_rip_read(vcpu); 1481 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1482 kvm_rip_write(vcpu, rip); 1483 1484 /* skipping an emulated instruction also counts */ 1485 vmx_set_interrupt_shadow(vcpu, 0); 1486 } 1487 1488 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1489 { 1490 /* 1491 * Ensure that we clear the HLT state in the VMCS. We don't need to 1492 * explicitly skip the instruction because if the HLT state is set, 1493 * then the instruction is already executing and RIP has already been 1494 * advanced. 1495 */ 1496 if (kvm_hlt_in_guest(vcpu->kvm) && 1497 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1498 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1499 } 1500 1501 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1502 { 1503 struct vcpu_vmx *vmx = to_vmx(vcpu); 1504 unsigned nr = vcpu->arch.exception.nr; 1505 bool has_error_code = vcpu->arch.exception.has_error_code; 1506 u32 error_code = vcpu->arch.exception.error_code; 1507 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1508 1509 kvm_deliver_exception_payload(vcpu); 1510 1511 if (has_error_code) { 1512 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1513 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1514 } 1515 1516 if (vmx->rmode.vm86_active) { 1517 int inc_eip = 0; 1518 if (kvm_exception_is_soft(nr)) 1519 inc_eip = vcpu->arch.event_exit_inst_len; 1520 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE) 1521 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 1522 return; 1523 } 1524 1525 WARN_ON_ONCE(vmx->emulation_required); 1526 1527 if (kvm_exception_is_soft(nr)) { 1528 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1529 vmx->vcpu.arch.event_exit_inst_len); 1530 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1531 } else 1532 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1533 1534 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1535 1536 vmx_clear_hlt(vcpu); 1537 } 1538 1539 static bool vmx_rdtscp_supported(void) 1540 { 1541 return cpu_has_vmx_rdtscp(); 1542 } 1543 1544 static bool vmx_invpcid_supported(void) 1545 { 1546 return cpu_has_vmx_invpcid(); 1547 } 1548 1549 /* 1550 * Swap MSR entry in host/guest MSR entry array. 1551 */ 1552 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) 1553 { 1554 struct shared_msr_entry tmp; 1555 1556 tmp = vmx->guest_msrs[to]; 1557 vmx->guest_msrs[to] = vmx->guest_msrs[from]; 1558 vmx->guest_msrs[from] = tmp; 1559 } 1560 1561 /* 1562 * Set up the vmcs to automatically save and restore system 1563 * msrs. Don't touch the 64-bit msrs if the guest is in legacy 1564 * mode, as fiddling with msrs is very expensive. 1565 */ 1566 static void setup_msrs(struct vcpu_vmx *vmx) 1567 { 1568 int save_nmsrs, index; 1569 1570 save_nmsrs = 0; 1571 #ifdef CONFIG_X86_64 1572 /* 1573 * The SYSCALL MSRs are only needed on long mode guests, and only 1574 * when EFER.SCE is set. 1575 */ 1576 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) { 1577 index = __find_msr_index(vmx, MSR_STAR); 1578 if (index >= 0) 1579 move_msr_up(vmx, index, save_nmsrs++); 1580 index = __find_msr_index(vmx, MSR_LSTAR); 1581 if (index >= 0) 1582 move_msr_up(vmx, index, save_nmsrs++); 1583 index = __find_msr_index(vmx, MSR_SYSCALL_MASK); 1584 if (index >= 0) 1585 move_msr_up(vmx, index, save_nmsrs++); 1586 } 1587 #endif 1588 index = __find_msr_index(vmx, MSR_EFER); 1589 if (index >= 0 && update_transition_efer(vmx, index)) 1590 move_msr_up(vmx, index, save_nmsrs++); 1591 index = __find_msr_index(vmx, MSR_TSC_AUX); 1592 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP)) 1593 move_msr_up(vmx, index, save_nmsrs++); 1594 1595 vmx->save_nmsrs = save_nmsrs; 1596 vmx->guest_msrs_ready = false; 1597 1598 if (cpu_has_vmx_msr_bitmap()) 1599 vmx_update_msr_bitmap(&vmx->vcpu); 1600 } 1601 1602 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu) 1603 { 1604 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1605 1606 if (is_guest_mode(vcpu) && 1607 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)) 1608 return vcpu->arch.tsc_offset - vmcs12->tsc_offset; 1609 1610 return vcpu->arch.tsc_offset; 1611 } 1612 1613 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1614 { 1615 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1616 u64 g_tsc_offset = 0; 1617 1618 /* 1619 * We're here if L1 chose not to trap WRMSR to TSC. According 1620 * to the spec, this should set L1's TSC; The offset that L1 1621 * set for L2 remains unchanged, and still needs to be added 1622 * to the newly set TSC to get L2's TSC. 1623 */ 1624 if (is_guest_mode(vcpu) && 1625 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)) 1626 g_tsc_offset = vmcs12->tsc_offset; 1627 1628 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 1629 vcpu->arch.tsc_offset - g_tsc_offset, 1630 offset); 1631 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset); 1632 return offset + g_tsc_offset; 1633 } 1634 1635 /* 1636 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1637 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1638 * all guests if the "nested" module option is off, and can also be disabled 1639 * for a single guest by disabling its VMX cpuid bit. 1640 */ 1641 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1642 { 1643 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1644 } 1645 1646 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1647 uint64_t val) 1648 { 1649 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1650 1651 return !(val & ~valid_bits); 1652 } 1653 1654 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1655 { 1656 switch (msr->index) { 1657 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1658 if (!nested) 1659 return 1; 1660 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1661 default: 1662 return 1; 1663 } 1664 1665 return 0; 1666 } 1667 1668 /* 1669 * Reads an msr value (of 'msr_index') into 'pdata'. 1670 * Returns 0 on success, non-0 otherwise. 1671 * Assumes vcpu_load() was already called. 1672 */ 1673 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1674 { 1675 struct vcpu_vmx *vmx = to_vmx(vcpu); 1676 struct shared_msr_entry *msr; 1677 u32 index; 1678 1679 switch (msr_info->index) { 1680 #ifdef CONFIG_X86_64 1681 case MSR_FS_BASE: 1682 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1683 break; 1684 case MSR_GS_BASE: 1685 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1686 break; 1687 case MSR_KERNEL_GS_BASE: 1688 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1689 break; 1690 #endif 1691 case MSR_EFER: 1692 return kvm_get_msr_common(vcpu, msr_info); 1693 case MSR_IA32_SPEC_CTRL: 1694 if (!msr_info->host_initiated && 1695 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) 1696 return 1; 1697 1698 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1699 break; 1700 case MSR_IA32_SYSENTER_CS: 1701 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1702 break; 1703 case MSR_IA32_SYSENTER_EIP: 1704 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1705 break; 1706 case MSR_IA32_SYSENTER_ESP: 1707 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1708 break; 1709 case MSR_IA32_BNDCFGS: 1710 if (!kvm_mpx_supported() || 1711 (!msr_info->host_initiated && 1712 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1713 return 1; 1714 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1715 break; 1716 case MSR_IA32_MCG_EXT_CTL: 1717 if (!msr_info->host_initiated && 1718 !(vmx->msr_ia32_feature_control & 1719 FEATURE_CONTROL_LMCE)) 1720 return 1; 1721 msr_info->data = vcpu->arch.mcg_ext_ctl; 1722 break; 1723 case MSR_IA32_FEATURE_CONTROL: 1724 msr_info->data = vmx->msr_ia32_feature_control; 1725 break; 1726 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1727 if (!nested_vmx_allowed(vcpu)) 1728 return 1; 1729 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1730 &msr_info->data); 1731 case MSR_IA32_XSS: 1732 if (!vmx_xsaves_supported() || 1733 (!msr_info->host_initiated && 1734 !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 1735 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)))) 1736 return 1; 1737 msr_info->data = vcpu->arch.ia32_xss; 1738 break; 1739 case MSR_IA32_RTIT_CTL: 1740 if (pt_mode != PT_MODE_HOST_GUEST) 1741 return 1; 1742 msr_info->data = vmx->pt_desc.guest.ctl; 1743 break; 1744 case MSR_IA32_RTIT_STATUS: 1745 if (pt_mode != PT_MODE_HOST_GUEST) 1746 return 1; 1747 msr_info->data = vmx->pt_desc.guest.status; 1748 break; 1749 case MSR_IA32_RTIT_CR3_MATCH: 1750 if ((pt_mode != PT_MODE_HOST_GUEST) || 1751 !intel_pt_validate_cap(vmx->pt_desc.caps, 1752 PT_CAP_cr3_filtering)) 1753 return 1; 1754 msr_info->data = vmx->pt_desc.guest.cr3_match; 1755 break; 1756 case MSR_IA32_RTIT_OUTPUT_BASE: 1757 if ((pt_mode != PT_MODE_HOST_GUEST) || 1758 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1759 PT_CAP_topa_output) && 1760 !intel_pt_validate_cap(vmx->pt_desc.caps, 1761 PT_CAP_single_range_output))) 1762 return 1; 1763 msr_info->data = vmx->pt_desc.guest.output_base; 1764 break; 1765 case MSR_IA32_RTIT_OUTPUT_MASK: 1766 if ((pt_mode != PT_MODE_HOST_GUEST) || 1767 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1768 PT_CAP_topa_output) && 1769 !intel_pt_validate_cap(vmx->pt_desc.caps, 1770 PT_CAP_single_range_output))) 1771 return 1; 1772 msr_info->data = vmx->pt_desc.guest.output_mask; 1773 break; 1774 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1775 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1776 if ((pt_mode != PT_MODE_HOST_GUEST) || 1777 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 1778 PT_CAP_num_address_ranges))) 1779 return 1; 1780 if (index % 2) 1781 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1782 else 1783 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1784 break; 1785 case MSR_TSC_AUX: 1786 if (!msr_info->host_initiated && 1787 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1788 return 1; 1789 /* Else, falls through */ 1790 default: 1791 msr = find_msr_entry(vmx, msr_info->index); 1792 if (msr) { 1793 msr_info->data = msr->data; 1794 break; 1795 } 1796 return kvm_get_msr_common(vcpu, msr_info); 1797 } 1798 1799 return 0; 1800 } 1801 1802 /* 1803 * Writes msr value into into the appropriate "register". 1804 * Returns 0 on success, non-0 otherwise. 1805 * Assumes vcpu_load() was already called. 1806 */ 1807 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1808 { 1809 struct vcpu_vmx *vmx = to_vmx(vcpu); 1810 struct shared_msr_entry *msr; 1811 int ret = 0; 1812 u32 msr_index = msr_info->index; 1813 u64 data = msr_info->data; 1814 u32 index; 1815 1816 switch (msr_index) { 1817 case MSR_EFER: 1818 ret = kvm_set_msr_common(vcpu, msr_info); 1819 break; 1820 #ifdef CONFIG_X86_64 1821 case MSR_FS_BASE: 1822 vmx_segment_cache_clear(vmx); 1823 vmcs_writel(GUEST_FS_BASE, data); 1824 break; 1825 case MSR_GS_BASE: 1826 vmx_segment_cache_clear(vmx); 1827 vmcs_writel(GUEST_GS_BASE, data); 1828 break; 1829 case MSR_KERNEL_GS_BASE: 1830 vmx_write_guest_kernel_gs_base(vmx, data); 1831 break; 1832 #endif 1833 case MSR_IA32_SYSENTER_CS: 1834 if (is_guest_mode(vcpu)) 1835 get_vmcs12(vcpu)->guest_sysenter_cs = data; 1836 vmcs_write32(GUEST_SYSENTER_CS, data); 1837 break; 1838 case MSR_IA32_SYSENTER_EIP: 1839 if (is_guest_mode(vcpu)) 1840 get_vmcs12(vcpu)->guest_sysenter_eip = data; 1841 vmcs_writel(GUEST_SYSENTER_EIP, data); 1842 break; 1843 case MSR_IA32_SYSENTER_ESP: 1844 if (is_guest_mode(vcpu)) 1845 get_vmcs12(vcpu)->guest_sysenter_esp = data; 1846 vmcs_writel(GUEST_SYSENTER_ESP, data); 1847 break; 1848 case MSR_IA32_DEBUGCTLMSR: 1849 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 1850 VM_EXIT_SAVE_DEBUG_CONTROLS) 1851 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 1852 1853 ret = kvm_set_msr_common(vcpu, msr_info); 1854 break; 1855 1856 case MSR_IA32_BNDCFGS: 1857 if (!kvm_mpx_supported() || 1858 (!msr_info->host_initiated && 1859 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1860 return 1; 1861 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 1862 (data & MSR_IA32_BNDCFGS_RSVD)) 1863 return 1; 1864 vmcs_write64(GUEST_BNDCFGS, data); 1865 break; 1866 case MSR_IA32_SPEC_CTRL: 1867 if (!msr_info->host_initiated && 1868 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) 1869 return 1; 1870 1871 /* The STIBP bit doesn't fault even if it's not advertised */ 1872 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD)) 1873 return 1; 1874 1875 vmx->spec_ctrl = data; 1876 1877 if (!data) 1878 break; 1879 1880 /* 1881 * For non-nested: 1882 * When it's written (to non-zero) for the first time, pass 1883 * it through. 1884 * 1885 * For nested: 1886 * The handling of the MSR bitmap for L2 guests is done in 1887 * nested_vmx_merge_msr_bitmap. We should not touch the 1888 * vmcs02.msr_bitmap here since it gets completely overwritten 1889 * in the merging. We update the vmcs01 here for L1 as well 1890 * since it will end up touching the MSR anyway now. 1891 */ 1892 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, 1893 MSR_IA32_SPEC_CTRL, 1894 MSR_TYPE_RW); 1895 break; 1896 case MSR_IA32_PRED_CMD: 1897 if (!msr_info->host_initiated && 1898 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) 1899 return 1; 1900 1901 if (data & ~PRED_CMD_IBPB) 1902 return 1; 1903 1904 if (!data) 1905 break; 1906 1907 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 1908 1909 /* 1910 * For non-nested: 1911 * When it's written (to non-zero) for the first time, pass 1912 * it through. 1913 * 1914 * For nested: 1915 * The handling of the MSR bitmap for L2 guests is done in 1916 * nested_vmx_merge_msr_bitmap. We should not touch the 1917 * vmcs02.msr_bitmap here since it gets completely overwritten 1918 * in the merging. 1919 */ 1920 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD, 1921 MSR_TYPE_W); 1922 break; 1923 case MSR_IA32_CR_PAT: 1924 if (!kvm_pat_valid(data)) 1925 return 1; 1926 1927 if (is_guest_mode(vcpu) && 1928 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 1929 get_vmcs12(vcpu)->guest_ia32_pat = data; 1930 1931 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 1932 vmcs_write64(GUEST_IA32_PAT, data); 1933 vcpu->arch.pat = data; 1934 break; 1935 } 1936 ret = kvm_set_msr_common(vcpu, msr_info); 1937 break; 1938 case MSR_IA32_TSC_ADJUST: 1939 ret = kvm_set_msr_common(vcpu, msr_info); 1940 break; 1941 case MSR_IA32_MCG_EXT_CTL: 1942 if ((!msr_info->host_initiated && 1943 !(to_vmx(vcpu)->msr_ia32_feature_control & 1944 FEATURE_CONTROL_LMCE)) || 1945 (data & ~MCG_EXT_CTL_LMCE_EN)) 1946 return 1; 1947 vcpu->arch.mcg_ext_ctl = data; 1948 break; 1949 case MSR_IA32_FEATURE_CONTROL: 1950 if (!vmx_feature_control_msr_valid(vcpu, data) || 1951 (to_vmx(vcpu)->msr_ia32_feature_control & 1952 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated)) 1953 return 1; 1954 vmx->msr_ia32_feature_control = data; 1955 if (msr_info->host_initiated && data == 0) 1956 vmx_leave_nested(vcpu); 1957 break; 1958 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1959 if (!msr_info->host_initiated) 1960 return 1; /* they are read-only */ 1961 if (!nested_vmx_allowed(vcpu)) 1962 return 1; 1963 return vmx_set_vmx_msr(vcpu, msr_index, data); 1964 case MSR_IA32_XSS: 1965 if (!vmx_xsaves_supported() || 1966 (!msr_info->host_initiated && 1967 !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 1968 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)))) 1969 return 1; 1970 /* 1971 * The only supported bit as of Skylake is bit 8, but 1972 * it is not supported on KVM. 1973 */ 1974 if (data != 0) 1975 return 1; 1976 vcpu->arch.ia32_xss = data; 1977 if (vcpu->arch.ia32_xss != host_xss) 1978 add_atomic_switch_msr(vmx, MSR_IA32_XSS, 1979 vcpu->arch.ia32_xss, host_xss, false); 1980 else 1981 clear_atomic_switch_msr(vmx, MSR_IA32_XSS); 1982 break; 1983 case MSR_IA32_RTIT_CTL: 1984 if ((pt_mode != PT_MODE_HOST_GUEST) || 1985 vmx_rtit_ctl_check(vcpu, data) || 1986 vmx->nested.vmxon) 1987 return 1; 1988 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 1989 vmx->pt_desc.guest.ctl = data; 1990 pt_update_intercept_for_msr(vmx); 1991 break; 1992 case MSR_IA32_RTIT_STATUS: 1993 if ((pt_mode != PT_MODE_HOST_GUEST) || 1994 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 1995 (data & MSR_IA32_RTIT_STATUS_MASK)) 1996 return 1; 1997 vmx->pt_desc.guest.status = data; 1998 break; 1999 case MSR_IA32_RTIT_CR3_MATCH: 2000 if ((pt_mode != PT_MODE_HOST_GUEST) || 2001 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 2002 !intel_pt_validate_cap(vmx->pt_desc.caps, 2003 PT_CAP_cr3_filtering)) 2004 return 1; 2005 vmx->pt_desc.guest.cr3_match = data; 2006 break; 2007 case MSR_IA32_RTIT_OUTPUT_BASE: 2008 if ((pt_mode != PT_MODE_HOST_GUEST) || 2009 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 2010 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2011 PT_CAP_topa_output) && 2012 !intel_pt_validate_cap(vmx->pt_desc.caps, 2013 PT_CAP_single_range_output)) || 2014 (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)) 2015 return 1; 2016 vmx->pt_desc.guest.output_base = data; 2017 break; 2018 case MSR_IA32_RTIT_OUTPUT_MASK: 2019 if ((pt_mode != PT_MODE_HOST_GUEST) || 2020 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 2021 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2022 PT_CAP_topa_output) && 2023 !intel_pt_validate_cap(vmx->pt_desc.caps, 2024 PT_CAP_single_range_output))) 2025 return 1; 2026 vmx->pt_desc.guest.output_mask = data; 2027 break; 2028 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2029 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2030 if ((pt_mode != PT_MODE_HOST_GUEST) || 2031 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 2032 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 2033 PT_CAP_num_address_ranges))) 2034 return 1; 2035 if (index % 2) 2036 vmx->pt_desc.guest.addr_b[index / 2] = data; 2037 else 2038 vmx->pt_desc.guest.addr_a[index / 2] = data; 2039 break; 2040 case MSR_TSC_AUX: 2041 if (!msr_info->host_initiated && 2042 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 2043 return 1; 2044 /* Check reserved bit, higher 32 bits should be zero */ 2045 if ((data >> 32) != 0) 2046 return 1; 2047 /* Else, falls through */ 2048 default: 2049 msr = find_msr_entry(vmx, msr_index); 2050 if (msr) { 2051 u64 old_msr_data = msr->data; 2052 msr->data = data; 2053 if (msr - vmx->guest_msrs < vmx->save_nmsrs) { 2054 preempt_disable(); 2055 ret = kvm_set_shared_msr(msr->index, msr->data, 2056 msr->mask); 2057 preempt_enable(); 2058 if (ret) 2059 msr->data = old_msr_data; 2060 } 2061 break; 2062 } 2063 ret = kvm_set_msr_common(vcpu, msr_info); 2064 } 2065 2066 return ret; 2067 } 2068 2069 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2070 { 2071 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); 2072 switch (reg) { 2073 case VCPU_REGS_RSP: 2074 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2075 break; 2076 case VCPU_REGS_RIP: 2077 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2078 break; 2079 case VCPU_EXREG_PDPTR: 2080 if (enable_ept) 2081 ept_save_pdptrs(vcpu); 2082 break; 2083 default: 2084 break; 2085 } 2086 } 2087 2088 static __init int cpu_has_kvm_support(void) 2089 { 2090 return cpu_has_vmx(); 2091 } 2092 2093 static __init int vmx_disabled_by_bios(void) 2094 { 2095 u64 msr; 2096 2097 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); 2098 if (msr & FEATURE_CONTROL_LOCKED) { 2099 /* launched w/ TXT and VMX disabled */ 2100 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) 2101 && tboot_enabled()) 2102 return 1; 2103 /* launched w/o TXT and VMX only enabled w/ TXT */ 2104 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) 2105 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) 2106 && !tboot_enabled()) { 2107 printk(KERN_WARNING "kvm: disable TXT in the BIOS or " 2108 "activate TXT before enabling KVM\n"); 2109 return 1; 2110 } 2111 /* launched w/o TXT and VMX disabled */ 2112 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) 2113 && !tboot_enabled()) 2114 return 1; 2115 } 2116 2117 return 0; 2118 } 2119 2120 static void kvm_cpu_vmxon(u64 addr) 2121 { 2122 cr4_set_bits(X86_CR4_VMXE); 2123 intel_pt_handle_vmx(1); 2124 2125 asm volatile ("vmxon %0" : : "m"(addr)); 2126 } 2127 2128 static int hardware_enable(void) 2129 { 2130 int cpu = raw_smp_processor_id(); 2131 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2132 u64 old, test_bits; 2133 2134 if (cr4_read_shadow() & X86_CR4_VMXE) 2135 return -EBUSY; 2136 2137 /* 2138 * This can happen if we hot-added a CPU but failed to allocate 2139 * VP assist page for it. 2140 */ 2141 if (static_branch_unlikely(&enable_evmcs) && 2142 !hv_get_vp_assist_page(cpu)) 2143 return -EFAULT; 2144 2145 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 2146 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu)); 2147 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); 2148 2149 /* 2150 * Now we can enable the vmclear operation in kdump 2151 * since the loaded_vmcss_on_cpu list on this cpu 2152 * has been initialized. 2153 * 2154 * Though the cpu is not in VMX operation now, there 2155 * is no problem to enable the vmclear operation 2156 * for the loaded_vmcss_on_cpu list is empty! 2157 */ 2158 crash_enable_local_vmclear(cpu); 2159 2160 rdmsrl(MSR_IA32_FEATURE_CONTROL, old); 2161 2162 test_bits = FEATURE_CONTROL_LOCKED; 2163 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 2164 if (tboot_enabled()) 2165 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX; 2166 2167 if ((old & test_bits) != test_bits) { 2168 /* enable and lock */ 2169 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits); 2170 } 2171 kvm_cpu_vmxon(phys_addr); 2172 if (enable_ept) 2173 ept_sync_global(); 2174 2175 return 0; 2176 } 2177 2178 static void vmclear_local_loaded_vmcss(void) 2179 { 2180 int cpu = raw_smp_processor_id(); 2181 struct loaded_vmcs *v, *n; 2182 2183 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2184 loaded_vmcss_on_cpu_link) 2185 __loaded_vmcs_clear(v); 2186 } 2187 2188 2189 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() 2190 * tricks. 2191 */ 2192 static void kvm_cpu_vmxoff(void) 2193 { 2194 asm volatile (__ex("vmxoff")); 2195 2196 intel_pt_handle_vmx(0); 2197 cr4_clear_bits(X86_CR4_VMXE); 2198 } 2199 2200 static void hardware_disable(void) 2201 { 2202 vmclear_local_loaded_vmcss(); 2203 kvm_cpu_vmxoff(); 2204 } 2205 2206 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2207 u32 msr, u32 *result) 2208 { 2209 u32 vmx_msr_low, vmx_msr_high; 2210 u32 ctl = ctl_min | ctl_opt; 2211 2212 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2213 2214 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2215 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2216 2217 /* Ensure minimum (required) set of control bits are supported. */ 2218 if (ctl_min & ~ctl) 2219 return -EIO; 2220 2221 *result = ctl; 2222 return 0; 2223 } 2224 2225 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2226 struct vmx_capability *vmx_cap) 2227 { 2228 u32 vmx_msr_low, vmx_msr_high; 2229 u32 min, opt, min2, opt2; 2230 u32 _pin_based_exec_control = 0; 2231 u32 _cpu_based_exec_control = 0; 2232 u32 _cpu_based_2nd_exec_control = 0; 2233 u32 _vmexit_control = 0; 2234 u32 _vmentry_control = 0; 2235 2236 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2237 min = CPU_BASED_HLT_EXITING | 2238 #ifdef CONFIG_X86_64 2239 CPU_BASED_CR8_LOAD_EXITING | 2240 CPU_BASED_CR8_STORE_EXITING | 2241 #endif 2242 CPU_BASED_CR3_LOAD_EXITING | 2243 CPU_BASED_CR3_STORE_EXITING | 2244 CPU_BASED_UNCOND_IO_EXITING | 2245 CPU_BASED_MOV_DR_EXITING | 2246 CPU_BASED_USE_TSC_OFFSETING | 2247 CPU_BASED_MWAIT_EXITING | 2248 CPU_BASED_MONITOR_EXITING | 2249 CPU_BASED_INVLPG_EXITING | 2250 CPU_BASED_RDPMC_EXITING; 2251 2252 opt = CPU_BASED_TPR_SHADOW | 2253 CPU_BASED_USE_MSR_BITMAPS | 2254 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2255 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2256 &_cpu_based_exec_control) < 0) 2257 return -EIO; 2258 #ifdef CONFIG_X86_64 2259 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2260 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2261 ~CPU_BASED_CR8_STORE_EXITING; 2262 #endif 2263 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2264 min2 = 0; 2265 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2266 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2267 SECONDARY_EXEC_WBINVD_EXITING | 2268 SECONDARY_EXEC_ENABLE_VPID | 2269 SECONDARY_EXEC_ENABLE_EPT | 2270 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2271 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2272 SECONDARY_EXEC_DESC | 2273 SECONDARY_EXEC_RDTSCP | 2274 SECONDARY_EXEC_ENABLE_INVPCID | 2275 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2276 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2277 SECONDARY_EXEC_SHADOW_VMCS | 2278 SECONDARY_EXEC_XSAVES | 2279 SECONDARY_EXEC_RDSEED_EXITING | 2280 SECONDARY_EXEC_RDRAND_EXITING | 2281 SECONDARY_EXEC_ENABLE_PML | 2282 SECONDARY_EXEC_TSC_SCALING | 2283 SECONDARY_EXEC_PT_USE_GPA | 2284 SECONDARY_EXEC_PT_CONCEAL_VMX | 2285 SECONDARY_EXEC_ENABLE_VMFUNC | 2286 SECONDARY_EXEC_ENCLS_EXITING; 2287 if (adjust_vmx_controls(min2, opt2, 2288 MSR_IA32_VMX_PROCBASED_CTLS2, 2289 &_cpu_based_2nd_exec_control) < 0) 2290 return -EIO; 2291 } 2292 #ifndef CONFIG_X86_64 2293 if (!(_cpu_based_2nd_exec_control & 2294 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2295 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2296 #endif 2297 2298 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2299 _cpu_based_2nd_exec_control &= ~( 2300 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2301 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2302 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2303 2304 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2305 &vmx_cap->ept, &vmx_cap->vpid); 2306 2307 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2308 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2309 enabled */ 2310 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2311 CPU_BASED_CR3_STORE_EXITING | 2312 CPU_BASED_INVLPG_EXITING); 2313 } else if (vmx_cap->ept) { 2314 vmx_cap->ept = 0; 2315 pr_warn_once("EPT CAP should not exist if not support " 2316 "1-setting enable EPT VM-execution control\n"); 2317 } 2318 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2319 vmx_cap->vpid) { 2320 vmx_cap->vpid = 0; 2321 pr_warn_once("VPID CAP should not exist if not support " 2322 "1-setting enable VPID VM-execution control\n"); 2323 } 2324 2325 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2326 #ifdef CONFIG_X86_64 2327 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2328 #endif 2329 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2330 VM_EXIT_LOAD_IA32_PAT | 2331 VM_EXIT_LOAD_IA32_EFER | 2332 VM_EXIT_CLEAR_BNDCFGS | 2333 VM_EXIT_PT_CONCEAL_PIP | 2334 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2335 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2336 &_vmexit_control) < 0) 2337 return -EIO; 2338 2339 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2340 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2341 PIN_BASED_VMX_PREEMPTION_TIMER; 2342 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2343 &_pin_based_exec_control) < 0) 2344 return -EIO; 2345 2346 if (cpu_has_broken_vmx_preemption_timer()) 2347 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2348 if (!(_cpu_based_2nd_exec_control & 2349 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2350 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2351 2352 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2353 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2354 VM_ENTRY_LOAD_IA32_PAT | 2355 VM_ENTRY_LOAD_IA32_EFER | 2356 VM_ENTRY_LOAD_BNDCFGS | 2357 VM_ENTRY_PT_CONCEAL_PIP | 2358 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2359 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2360 &_vmentry_control) < 0) 2361 return -EIO; 2362 2363 /* 2364 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2365 * can't be used due to an errata where VM Exit may incorrectly clear 2366 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2367 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2368 */ 2369 if (boot_cpu_data.x86 == 0x6) { 2370 switch (boot_cpu_data.x86_model) { 2371 case 26: /* AAK155 */ 2372 case 30: /* AAP115 */ 2373 case 37: /* AAT100 */ 2374 case 44: /* BC86,AAY89,BD102 */ 2375 case 46: /* BA97 */ 2376 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2377 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2378 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2379 "does not work properly. Using workaround\n"); 2380 break; 2381 default: 2382 break; 2383 } 2384 } 2385 2386 2387 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2388 2389 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2390 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2391 return -EIO; 2392 2393 #ifdef CONFIG_X86_64 2394 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2395 if (vmx_msr_high & (1u<<16)) 2396 return -EIO; 2397 #endif 2398 2399 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2400 if (((vmx_msr_high >> 18) & 15) != 6) 2401 return -EIO; 2402 2403 vmcs_conf->size = vmx_msr_high & 0x1fff; 2404 vmcs_conf->order = get_order(vmcs_conf->size); 2405 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2406 2407 vmcs_conf->revision_id = vmx_msr_low; 2408 2409 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2410 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2411 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2412 vmcs_conf->vmexit_ctrl = _vmexit_control; 2413 vmcs_conf->vmentry_ctrl = _vmentry_control; 2414 2415 if (static_branch_unlikely(&enable_evmcs)) 2416 evmcs_sanitize_exec_ctrls(vmcs_conf); 2417 2418 return 0; 2419 } 2420 2421 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2422 { 2423 int node = cpu_to_node(cpu); 2424 struct page *pages; 2425 struct vmcs *vmcs; 2426 2427 pages = __alloc_pages_node(node, flags, vmcs_config.order); 2428 if (!pages) 2429 return NULL; 2430 vmcs = page_address(pages); 2431 memset(vmcs, 0, vmcs_config.size); 2432 2433 /* KVM supports Enlightened VMCS v1 only */ 2434 if (static_branch_unlikely(&enable_evmcs)) 2435 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2436 else 2437 vmcs->hdr.revision_id = vmcs_config.revision_id; 2438 2439 if (shadow) 2440 vmcs->hdr.shadow_vmcs = 1; 2441 return vmcs; 2442 } 2443 2444 void free_vmcs(struct vmcs *vmcs) 2445 { 2446 free_pages((unsigned long)vmcs, vmcs_config.order); 2447 } 2448 2449 /* 2450 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2451 */ 2452 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2453 { 2454 if (!loaded_vmcs->vmcs) 2455 return; 2456 loaded_vmcs_clear(loaded_vmcs); 2457 free_vmcs(loaded_vmcs->vmcs); 2458 loaded_vmcs->vmcs = NULL; 2459 if (loaded_vmcs->msr_bitmap) 2460 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2461 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2462 } 2463 2464 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2465 { 2466 loaded_vmcs->vmcs = alloc_vmcs(false); 2467 if (!loaded_vmcs->vmcs) 2468 return -ENOMEM; 2469 2470 loaded_vmcs->shadow_vmcs = NULL; 2471 loaded_vmcs->hv_timer_soft_disabled = false; 2472 loaded_vmcs_init(loaded_vmcs); 2473 2474 if (cpu_has_vmx_msr_bitmap()) { 2475 loaded_vmcs->msr_bitmap = (unsigned long *) 2476 __get_free_page(GFP_KERNEL_ACCOUNT); 2477 if (!loaded_vmcs->msr_bitmap) 2478 goto out_vmcs; 2479 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2480 2481 if (IS_ENABLED(CONFIG_HYPERV) && 2482 static_branch_unlikely(&enable_evmcs) && 2483 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 2484 struct hv_enlightened_vmcs *evmcs = 2485 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; 2486 2487 evmcs->hv_enlightenments_control.msr_bitmap = 1; 2488 } 2489 } 2490 2491 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2492 memset(&loaded_vmcs->controls_shadow, 0, 2493 sizeof(struct vmcs_controls_shadow)); 2494 2495 return 0; 2496 2497 out_vmcs: 2498 free_loaded_vmcs(loaded_vmcs); 2499 return -ENOMEM; 2500 } 2501 2502 static void free_kvm_area(void) 2503 { 2504 int cpu; 2505 2506 for_each_possible_cpu(cpu) { 2507 free_vmcs(per_cpu(vmxarea, cpu)); 2508 per_cpu(vmxarea, cpu) = NULL; 2509 } 2510 } 2511 2512 static __init int alloc_kvm_area(void) 2513 { 2514 int cpu; 2515 2516 for_each_possible_cpu(cpu) { 2517 struct vmcs *vmcs; 2518 2519 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2520 if (!vmcs) { 2521 free_kvm_area(); 2522 return -ENOMEM; 2523 } 2524 2525 /* 2526 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2527 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2528 * revision_id reported by MSR_IA32_VMX_BASIC. 2529 * 2530 * However, even though not explicitly documented by 2531 * TLFS, VMXArea passed as VMXON argument should 2532 * still be marked with revision_id reported by 2533 * physical CPU. 2534 */ 2535 if (static_branch_unlikely(&enable_evmcs)) 2536 vmcs->hdr.revision_id = vmcs_config.revision_id; 2537 2538 per_cpu(vmxarea, cpu) = vmcs; 2539 } 2540 return 0; 2541 } 2542 2543 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2544 struct kvm_segment *save) 2545 { 2546 if (!emulate_invalid_guest_state) { 2547 /* 2548 * CS and SS RPL should be equal during guest entry according 2549 * to VMX spec, but in reality it is not always so. Since vcpu 2550 * is in the middle of the transition from real mode to 2551 * protected mode it is safe to assume that RPL 0 is a good 2552 * default value. 2553 */ 2554 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2555 save->selector &= ~SEGMENT_RPL_MASK; 2556 save->dpl = save->selector & SEGMENT_RPL_MASK; 2557 save->s = 1; 2558 } 2559 vmx_set_segment(vcpu, save, seg); 2560 } 2561 2562 static void enter_pmode(struct kvm_vcpu *vcpu) 2563 { 2564 unsigned long flags; 2565 struct vcpu_vmx *vmx = to_vmx(vcpu); 2566 2567 /* 2568 * Update real mode segment cache. It may be not up-to-date if sement 2569 * register was written while vcpu was in a guest mode. 2570 */ 2571 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2572 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2573 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2574 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2575 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2576 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2577 2578 vmx->rmode.vm86_active = 0; 2579 2580 vmx_segment_cache_clear(vmx); 2581 2582 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2583 2584 flags = vmcs_readl(GUEST_RFLAGS); 2585 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2586 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2587 vmcs_writel(GUEST_RFLAGS, flags); 2588 2589 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2590 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2591 2592 update_exception_bitmap(vcpu); 2593 2594 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2595 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2596 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2597 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2598 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2599 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2600 } 2601 2602 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2603 { 2604 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2605 struct kvm_segment var = *save; 2606 2607 var.dpl = 0x3; 2608 if (seg == VCPU_SREG_CS) 2609 var.type = 0x3; 2610 2611 if (!emulate_invalid_guest_state) { 2612 var.selector = var.base >> 4; 2613 var.base = var.base & 0xffff0; 2614 var.limit = 0xffff; 2615 var.g = 0; 2616 var.db = 0; 2617 var.present = 1; 2618 var.s = 1; 2619 var.l = 0; 2620 var.unusable = 0; 2621 var.type = 0x3; 2622 var.avl = 0; 2623 if (save->base & 0xf) 2624 printk_once(KERN_WARNING "kvm: segment base is not " 2625 "paragraph aligned when entering " 2626 "protected mode (seg=%d)", seg); 2627 } 2628 2629 vmcs_write16(sf->selector, var.selector); 2630 vmcs_writel(sf->base, var.base); 2631 vmcs_write32(sf->limit, var.limit); 2632 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2633 } 2634 2635 static void enter_rmode(struct kvm_vcpu *vcpu) 2636 { 2637 unsigned long flags; 2638 struct vcpu_vmx *vmx = to_vmx(vcpu); 2639 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2640 2641 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2642 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2643 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2644 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2645 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2646 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2647 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2648 2649 vmx->rmode.vm86_active = 1; 2650 2651 /* 2652 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2653 * vcpu. Warn the user that an update is overdue. 2654 */ 2655 if (!kvm_vmx->tss_addr) 2656 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2657 "called before entering vcpu\n"); 2658 2659 vmx_segment_cache_clear(vmx); 2660 2661 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2662 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2663 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2664 2665 flags = vmcs_readl(GUEST_RFLAGS); 2666 vmx->rmode.save_rflags = flags; 2667 2668 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2669 2670 vmcs_writel(GUEST_RFLAGS, flags); 2671 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2672 update_exception_bitmap(vcpu); 2673 2674 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2675 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2676 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2677 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2678 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2679 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2680 2681 kvm_mmu_reset_context(vcpu); 2682 } 2683 2684 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2685 { 2686 struct vcpu_vmx *vmx = to_vmx(vcpu); 2687 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); 2688 2689 if (!msr) 2690 return; 2691 2692 vcpu->arch.efer = efer; 2693 if (efer & EFER_LMA) { 2694 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2695 msr->data = efer; 2696 } else { 2697 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2698 2699 msr->data = efer & ~EFER_LME; 2700 } 2701 setup_msrs(vmx); 2702 } 2703 2704 #ifdef CONFIG_X86_64 2705 2706 static void enter_lmode(struct kvm_vcpu *vcpu) 2707 { 2708 u32 guest_tr_ar; 2709 2710 vmx_segment_cache_clear(to_vmx(vcpu)); 2711 2712 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2713 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2714 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2715 __func__); 2716 vmcs_write32(GUEST_TR_AR_BYTES, 2717 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 2718 | VMX_AR_TYPE_BUSY_64_TSS); 2719 } 2720 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 2721 } 2722 2723 static void exit_lmode(struct kvm_vcpu *vcpu) 2724 { 2725 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2726 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 2727 } 2728 2729 #endif 2730 2731 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 2732 { 2733 int vpid = to_vmx(vcpu)->vpid; 2734 2735 if (!vpid_sync_vcpu_addr(vpid, addr)) 2736 vpid_sync_context(vpid); 2737 2738 /* 2739 * If VPIDs are not supported or enabled, then the above is a no-op. 2740 * But we don't really need a TLB flush in that case anyway, because 2741 * each VM entry/exit includes an implicit flush when VPID is 0. 2742 */ 2743 } 2744 2745 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) 2746 { 2747 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2748 2749 vcpu->arch.cr0 &= ~cr0_guest_owned_bits; 2750 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits; 2751 } 2752 2753 static void vmx_decache_cr3(struct kvm_vcpu *vcpu) 2754 { 2755 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu))) 2756 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2757 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 2758 } 2759 2760 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) 2761 { 2762 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2763 2764 vcpu->arch.cr4 &= ~cr4_guest_owned_bits; 2765 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits; 2766 } 2767 2768 static void ept_load_pdptrs(struct kvm_vcpu *vcpu) 2769 { 2770 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2771 2772 if (!test_bit(VCPU_EXREG_PDPTR, 2773 (unsigned long *)&vcpu->arch.regs_dirty)) 2774 return; 2775 2776 if (is_pae_paging(vcpu)) { 2777 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 2778 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 2779 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 2780 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 2781 } 2782 } 2783 2784 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 2785 { 2786 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2787 2788 if (is_pae_paging(vcpu)) { 2789 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 2790 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 2791 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 2792 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 2793 } 2794 2795 __set_bit(VCPU_EXREG_PDPTR, 2796 (unsigned long *)&vcpu->arch.regs_avail); 2797 __set_bit(VCPU_EXREG_PDPTR, 2798 (unsigned long *)&vcpu->arch.regs_dirty); 2799 } 2800 2801 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, 2802 unsigned long cr0, 2803 struct kvm_vcpu *vcpu) 2804 { 2805 struct vcpu_vmx *vmx = to_vmx(vcpu); 2806 2807 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 2808 vmx_decache_cr3(vcpu); 2809 if (!(cr0 & X86_CR0_PG)) { 2810 /* From paging/starting to nonpaging */ 2811 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING | 2812 CPU_BASED_CR3_STORE_EXITING); 2813 vcpu->arch.cr0 = cr0; 2814 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 2815 } else if (!is_paging(vcpu)) { 2816 /* From nonpaging to paging */ 2817 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING | 2818 CPU_BASED_CR3_STORE_EXITING); 2819 vcpu->arch.cr0 = cr0; 2820 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 2821 } 2822 2823 if (!(cr0 & X86_CR0_WP)) 2824 *hw_cr0 &= ~X86_CR0_WP; 2825 } 2826 2827 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 2828 { 2829 struct vcpu_vmx *vmx = to_vmx(vcpu); 2830 unsigned long hw_cr0; 2831 2832 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 2833 if (enable_unrestricted_guest) 2834 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 2835 else { 2836 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 2837 2838 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 2839 enter_pmode(vcpu); 2840 2841 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 2842 enter_rmode(vcpu); 2843 } 2844 2845 #ifdef CONFIG_X86_64 2846 if (vcpu->arch.efer & EFER_LME) { 2847 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) 2848 enter_lmode(vcpu); 2849 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) 2850 exit_lmode(vcpu); 2851 } 2852 #endif 2853 2854 if (enable_ept && !enable_unrestricted_guest) 2855 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); 2856 2857 vmcs_writel(CR0_READ_SHADOW, cr0); 2858 vmcs_writel(GUEST_CR0, hw_cr0); 2859 vcpu->arch.cr0 = cr0; 2860 2861 /* depends on vcpu->arch.cr0 to be set to a new value */ 2862 vmx->emulation_required = emulation_required(vcpu); 2863 } 2864 2865 static int get_ept_level(struct kvm_vcpu *vcpu) 2866 { 2867 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48)) 2868 return 5; 2869 return 4; 2870 } 2871 2872 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa) 2873 { 2874 u64 eptp = VMX_EPTP_MT_WB; 2875 2876 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 2877 2878 if (enable_ept_ad_bits && 2879 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 2880 eptp |= VMX_EPTP_AD_ENABLE_BIT; 2881 eptp |= (root_hpa & PAGE_MASK); 2882 2883 return eptp; 2884 } 2885 2886 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 2887 { 2888 struct kvm *kvm = vcpu->kvm; 2889 unsigned long guest_cr3; 2890 u64 eptp; 2891 2892 guest_cr3 = cr3; 2893 if (enable_ept) { 2894 eptp = construct_eptp(vcpu, cr3); 2895 vmcs_write64(EPT_POINTER, eptp); 2896 2897 if (kvm_x86_ops->tlb_remote_flush) { 2898 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); 2899 to_vmx(vcpu)->ept_pointer = eptp; 2900 to_kvm_vmx(kvm)->ept_pointers_match 2901 = EPT_POINTERS_CHECK; 2902 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); 2903 } 2904 2905 if (enable_unrestricted_guest || is_paging(vcpu) || 2906 is_guest_mode(vcpu)) 2907 guest_cr3 = kvm_read_cr3(vcpu); 2908 else 2909 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 2910 ept_load_pdptrs(vcpu); 2911 } 2912 2913 vmcs_writel(GUEST_CR3, guest_cr3); 2914 } 2915 2916 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 2917 { 2918 struct vcpu_vmx *vmx = to_vmx(vcpu); 2919 /* 2920 * Pass through host's Machine Check Enable value to hw_cr4, which 2921 * is in force while we are in guest mode. Do not let guests control 2922 * this bit, even if host CR4.MCE == 0. 2923 */ 2924 unsigned long hw_cr4; 2925 2926 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 2927 if (enable_unrestricted_guest) 2928 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 2929 else if (vmx->rmode.vm86_active) 2930 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 2931 else 2932 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 2933 2934 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 2935 if (cr4 & X86_CR4_UMIP) { 2936 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 2937 hw_cr4 &= ~X86_CR4_UMIP; 2938 } else if (!is_guest_mode(vcpu) || 2939 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 2940 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 2941 } 2942 } 2943 2944 if (cr4 & X86_CR4_VMXE) { 2945 /* 2946 * To use VMXON (and later other VMX instructions), a guest 2947 * must first be able to turn on cr4.VMXE (see handle_vmon()). 2948 * So basically the check on whether to allow nested VMX 2949 * is here. We operate under the default treatment of SMM, 2950 * so VMX cannot be enabled under SMM. 2951 */ 2952 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu)) 2953 return 1; 2954 } 2955 2956 if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 2957 return 1; 2958 2959 vcpu->arch.cr4 = cr4; 2960 2961 if (!enable_unrestricted_guest) { 2962 if (enable_ept) { 2963 if (!is_paging(vcpu)) { 2964 hw_cr4 &= ~X86_CR4_PAE; 2965 hw_cr4 |= X86_CR4_PSE; 2966 } else if (!(cr4 & X86_CR4_PAE)) { 2967 hw_cr4 &= ~X86_CR4_PAE; 2968 } 2969 } 2970 2971 /* 2972 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 2973 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 2974 * to be manually disabled when guest switches to non-paging 2975 * mode. 2976 * 2977 * If !enable_unrestricted_guest, the CPU is always running 2978 * with CR0.PG=1 and CR4 needs to be modified. 2979 * If enable_unrestricted_guest, the CPU automatically 2980 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 2981 */ 2982 if (!is_paging(vcpu)) 2983 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 2984 } 2985 2986 vmcs_writel(CR4_READ_SHADOW, cr4); 2987 vmcs_writel(GUEST_CR4, hw_cr4); 2988 return 0; 2989 } 2990 2991 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 2992 { 2993 struct vcpu_vmx *vmx = to_vmx(vcpu); 2994 u32 ar; 2995 2996 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 2997 *var = vmx->rmode.segs[seg]; 2998 if (seg == VCPU_SREG_TR 2999 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3000 return; 3001 var->base = vmx_read_guest_seg_base(vmx, seg); 3002 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3003 return; 3004 } 3005 var->base = vmx_read_guest_seg_base(vmx, seg); 3006 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3007 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3008 ar = vmx_read_guest_seg_ar(vmx, seg); 3009 var->unusable = (ar >> 16) & 1; 3010 var->type = ar & 15; 3011 var->s = (ar >> 4) & 1; 3012 var->dpl = (ar >> 5) & 3; 3013 /* 3014 * Some userspaces do not preserve unusable property. Since usable 3015 * segment has to be present according to VMX spec we can use present 3016 * property to amend userspace bug by making unusable segment always 3017 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3018 * segment as unusable. 3019 */ 3020 var->present = !var->unusable; 3021 var->avl = (ar >> 12) & 1; 3022 var->l = (ar >> 13) & 1; 3023 var->db = (ar >> 14) & 1; 3024 var->g = (ar >> 15) & 1; 3025 } 3026 3027 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3028 { 3029 struct kvm_segment s; 3030 3031 if (to_vmx(vcpu)->rmode.vm86_active) { 3032 vmx_get_segment(vcpu, &s, seg); 3033 return s.base; 3034 } 3035 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3036 } 3037 3038 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3039 { 3040 struct vcpu_vmx *vmx = to_vmx(vcpu); 3041 3042 if (unlikely(vmx->rmode.vm86_active)) 3043 return 0; 3044 else { 3045 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3046 return VMX_AR_DPL(ar); 3047 } 3048 } 3049 3050 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3051 { 3052 u32 ar; 3053 3054 if (var->unusable || !var->present) 3055 ar = 1 << 16; 3056 else { 3057 ar = var->type & 15; 3058 ar |= (var->s & 1) << 4; 3059 ar |= (var->dpl & 3) << 5; 3060 ar |= (var->present & 1) << 7; 3061 ar |= (var->avl & 1) << 12; 3062 ar |= (var->l & 1) << 13; 3063 ar |= (var->db & 1) << 14; 3064 ar |= (var->g & 1) << 15; 3065 } 3066 3067 return ar; 3068 } 3069 3070 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3071 { 3072 struct vcpu_vmx *vmx = to_vmx(vcpu); 3073 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3074 3075 vmx_segment_cache_clear(vmx); 3076 3077 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3078 vmx->rmode.segs[seg] = *var; 3079 if (seg == VCPU_SREG_TR) 3080 vmcs_write16(sf->selector, var->selector); 3081 else if (var->s) 3082 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3083 goto out; 3084 } 3085 3086 vmcs_writel(sf->base, var->base); 3087 vmcs_write32(sf->limit, var->limit); 3088 vmcs_write16(sf->selector, var->selector); 3089 3090 /* 3091 * Fix the "Accessed" bit in AR field of segment registers for older 3092 * qemu binaries. 3093 * IA32 arch specifies that at the time of processor reset the 3094 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3095 * is setting it to 0 in the userland code. This causes invalid guest 3096 * state vmexit when "unrestricted guest" mode is turned on. 3097 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3098 * tree. Newer qemu binaries with that qemu fix would not need this 3099 * kvm hack. 3100 */ 3101 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR)) 3102 var->type |= 0x1; /* Accessed */ 3103 3104 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3105 3106 out: 3107 vmx->emulation_required = emulation_required(vcpu); 3108 } 3109 3110 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3111 { 3112 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3113 3114 *db = (ar >> 14) & 1; 3115 *l = (ar >> 13) & 1; 3116 } 3117 3118 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3119 { 3120 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3121 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3122 } 3123 3124 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3125 { 3126 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3127 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3128 } 3129 3130 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3131 { 3132 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3133 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3134 } 3135 3136 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3137 { 3138 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3139 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3140 } 3141 3142 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3143 { 3144 struct kvm_segment var; 3145 u32 ar; 3146 3147 vmx_get_segment(vcpu, &var, seg); 3148 var.dpl = 0x3; 3149 if (seg == VCPU_SREG_CS) 3150 var.type = 0x3; 3151 ar = vmx_segment_access_rights(&var); 3152 3153 if (var.base != (var.selector << 4)) 3154 return false; 3155 if (var.limit != 0xffff) 3156 return false; 3157 if (ar != 0xf3) 3158 return false; 3159 3160 return true; 3161 } 3162 3163 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3164 { 3165 struct kvm_segment cs; 3166 unsigned int cs_rpl; 3167 3168 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3169 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3170 3171 if (cs.unusable) 3172 return false; 3173 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3174 return false; 3175 if (!cs.s) 3176 return false; 3177 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3178 if (cs.dpl > cs_rpl) 3179 return false; 3180 } else { 3181 if (cs.dpl != cs_rpl) 3182 return false; 3183 } 3184 if (!cs.present) 3185 return false; 3186 3187 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3188 return true; 3189 } 3190 3191 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3192 { 3193 struct kvm_segment ss; 3194 unsigned int ss_rpl; 3195 3196 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3197 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3198 3199 if (ss.unusable) 3200 return true; 3201 if (ss.type != 3 && ss.type != 7) 3202 return false; 3203 if (!ss.s) 3204 return false; 3205 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3206 return false; 3207 if (!ss.present) 3208 return false; 3209 3210 return true; 3211 } 3212 3213 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3214 { 3215 struct kvm_segment var; 3216 unsigned int rpl; 3217 3218 vmx_get_segment(vcpu, &var, seg); 3219 rpl = var.selector & SEGMENT_RPL_MASK; 3220 3221 if (var.unusable) 3222 return true; 3223 if (!var.s) 3224 return false; 3225 if (!var.present) 3226 return false; 3227 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3228 if (var.dpl < rpl) /* DPL < RPL */ 3229 return false; 3230 } 3231 3232 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3233 * rights flags 3234 */ 3235 return true; 3236 } 3237 3238 static bool tr_valid(struct kvm_vcpu *vcpu) 3239 { 3240 struct kvm_segment tr; 3241 3242 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3243 3244 if (tr.unusable) 3245 return false; 3246 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3247 return false; 3248 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3249 return false; 3250 if (!tr.present) 3251 return false; 3252 3253 return true; 3254 } 3255 3256 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3257 { 3258 struct kvm_segment ldtr; 3259 3260 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3261 3262 if (ldtr.unusable) 3263 return true; 3264 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3265 return false; 3266 if (ldtr.type != 2) 3267 return false; 3268 if (!ldtr.present) 3269 return false; 3270 3271 return true; 3272 } 3273 3274 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3275 { 3276 struct kvm_segment cs, ss; 3277 3278 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3279 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3280 3281 return ((cs.selector & SEGMENT_RPL_MASK) == 3282 (ss.selector & SEGMENT_RPL_MASK)); 3283 } 3284 3285 /* 3286 * Check if guest state is valid. Returns true if valid, false if 3287 * not. 3288 * We assume that registers are always usable 3289 */ 3290 static bool guest_state_valid(struct kvm_vcpu *vcpu) 3291 { 3292 if (enable_unrestricted_guest) 3293 return true; 3294 3295 /* real mode guest state checks */ 3296 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3297 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3298 return false; 3299 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3300 return false; 3301 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3302 return false; 3303 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3304 return false; 3305 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3306 return false; 3307 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3308 return false; 3309 } else { 3310 /* protected mode guest state checks */ 3311 if (!cs_ss_rpl_check(vcpu)) 3312 return false; 3313 if (!code_segment_valid(vcpu)) 3314 return false; 3315 if (!stack_segment_valid(vcpu)) 3316 return false; 3317 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3318 return false; 3319 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3320 return false; 3321 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3322 return false; 3323 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3324 return false; 3325 if (!tr_valid(vcpu)) 3326 return false; 3327 if (!ldtr_valid(vcpu)) 3328 return false; 3329 } 3330 /* TODO: 3331 * - Add checks on RIP 3332 * - Add checks on RFLAGS 3333 */ 3334 3335 return true; 3336 } 3337 3338 static int init_rmode_tss(struct kvm *kvm) 3339 { 3340 gfn_t fn; 3341 u16 data = 0; 3342 int idx, r; 3343 3344 idx = srcu_read_lock(&kvm->srcu); 3345 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT; 3346 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); 3347 if (r < 0) 3348 goto out; 3349 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3350 r = kvm_write_guest_page(kvm, fn++, &data, 3351 TSS_IOPB_BASE_OFFSET, sizeof(u16)); 3352 if (r < 0) 3353 goto out; 3354 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); 3355 if (r < 0) 3356 goto out; 3357 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); 3358 if (r < 0) 3359 goto out; 3360 data = ~0; 3361 r = kvm_write_guest_page(kvm, fn, &data, 3362 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, 3363 sizeof(u8)); 3364 out: 3365 srcu_read_unlock(&kvm->srcu, idx); 3366 return r; 3367 } 3368 3369 static int init_rmode_identity_map(struct kvm *kvm) 3370 { 3371 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3372 int i, idx, r = 0; 3373 kvm_pfn_t identity_map_pfn; 3374 u32 tmp; 3375 3376 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3377 mutex_lock(&kvm->slots_lock); 3378 3379 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3380 goto out2; 3381 3382 if (!kvm_vmx->ept_identity_map_addr) 3383 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3384 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT; 3385 3386 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3387 kvm_vmx->ept_identity_map_addr, PAGE_SIZE); 3388 if (r < 0) 3389 goto out2; 3390 3391 idx = srcu_read_lock(&kvm->srcu); 3392 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE); 3393 if (r < 0) 3394 goto out; 3395 /* Set up identity-mapping pagetable for EPT in real mode */ 3396 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3397 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3398 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3399 r = kvm_write_guest_page(kvm, identity_map_pfn, 3400 &tmp, i * sizeof(tmp), sizeof(tmp)); 3401 if (r < 0) 3402 goto out; 3403 } 3404 kvm_vmx->ept_identity_pagetable_done = true; 3405 3406 out: 3407 srcu_read_unlock(&kvm->srcu, idx); 3408 3409 out2: 3410 mutex_unlock(&kvm->slots_lock); 3411 return r; 3412 } 3413 3414 static void seg_setup(int seg) 3415 { 3416 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3417 unsigned int ar; 3418 3419 vmcs_write16(sf->selector, 0); 3420 vmcs_writel(sf->base, 0); 3421 vmcs_write32(sf->limit, 0xffff); 3422 ar = 0x93; 3423 if (seg == VCPU_SREG_CS) 3424 ar |= 0x08; /* code segment */ 3425 3426 vmcs_write32(sf->ar_bytes, ar); 3427 } 3428 3429 static int alloc_apic_access_page(struct kvm *kvm) 3430 { 3431 struct page *page; 3432 int r = 0; 3433 3434 mutex_lock(&kvm->slots_lock); 3435 if (kvm->arch.apic_access_page_done) 3436 goto out; 3437 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3438 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3439 if (r) 3440 goto out; 3441 3442 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3443 if (is_error_page(page)) { 3444 r = -EFAULT; 3445 goto out; 3446 } 3447 3448 /* 3449 * Do not pin the page in memory, so that memory hot-unplug 3450 * is able to migrate it. 3451 */ 3452 put_page(page); 3453 kvm->arch.apic_access_page_done = true; 3454 out: 3455 mutex_unlock(&kvm->slots_lock); 3456 return r; 3457 } 3458 3459 int allocate_vpid(void) 3460 { 3461 int vpid; 3462 3463 if (!enable_vpid) 3464 return 0; 3465 spin_lock(&vmx_vpid_lock); 3466 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3467 if (vpid < VMX_NR_VPIDS) 3468 __set_bit(vpid, vmx_vpid_bitmap); 3469 else 3470 vpid = 0; 3471 spin_unlock(&vmx_vpid_lock); 3472 return vpid; 3473 } 3474 3475 void free_vpid(int vpid) 3476 { 3477 if (!enable_vpid || vpid == 0) 3478 return; 3479 spin_lock(&vmx_vpid_lock); 3480 __clear_bit(vpid, vmx_vpid_bitmap); 3481 spin_unlock(&vmx_vpid_lock); 3482 } 3483 3484 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, 3485 u32 msr, int type) 3486 { 3487 int f = sizeof(unsigned long); 3488 3489 if (!cpu_has_vmx_msr_bitmap()) 3490 return; 3491 3492 if (static_branch_unlikely(&enable_evmcs)) 3493 evmcs_touch_msr_bitmap(); 3494 3495 /* 3496 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals 3497 * have the write-low and read-high bitmap offsets the wrong way round. 3498 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. 3499 */ 3500 if (msr <= 0x1fff) { 3501 if (type & MSR_TYPE_R) 3502 /* read-low */ 3503 __clear_bit(msr, msr_bitmap + 0x000 / f); 3504 3505 if (type & MSR_TYPE_W) 3506 /* write-low */ 3507 __clear_bit(msr, msr_bitmap + 0x800 / f); 3508 3509 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 3510 msr &= 0x1fff; 3511 if (type & MSR_TYPE_R) 3512 /* read-high */ 3513 __clear_bit(msr, msr_bitmap + 0x400 / f); 3514 3515 if (type & MSR_TYPE_W) 3516 /* write-high */ 3517 __clear_bit(msr, msr_bitmap + 0xc00 / f); 3518 3519 } 3520 } 3521 3522 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap, 3523 u32 msr, int type) 3524 { 3525 int f = sizeof(unsigned long); 3526 3527 if (!cpu_has_vmx_msr_bitmap()) 3528 return; 3529 3530 if (static_branch_unlikely(&enable_evmcs)) 3531 evmcs_touch_msr_bitmap(); 3532 3533 /* 3534 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals 3535 * have the write-low and read-high bitmap offsets the wrong way round. 3536 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. 3537 */ 3538 if (msr <= 0x1fff) { 3539 if (type & MSR_TYPE_R) 3540 /* read-low */ 3541 __set_bit(msr, msr_bitmap + 0x000 / f); 3542 3543 if (type & MSR_TYPE_W) 3544 /* write-low */ 3545 __set_bit(msr, msr_bitmap + 0x800 / f); 3546 3547 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 3548 msr &= 0x1fff; 3549 if (type & MSR_TYPE_R) 3550 /* read-high */ 3551 __set_bit(msr, msr_bitmap + 0x400 / f); 3552 3553 if (type & MSR_TYPE_W) 3554 /* write-high */ 3555 __set_bit(msr, msr_bitmap + 0xc00 / f); 3556 3557 } 3558 } 3559 3560 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap, 3561 u32 msr, int type, bool value) 3562 { 3563 if (value) 3564 vmx_enable_intercept_for_msr(msr_bitmap, msr, type); 3565 else 3566 vmx_disable_intercept_for_msr(msr_bitmap, msr, type); 3567 } 3568 3569 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu) 3570 { 3571 u8 mode = 0; 3572 3573 if (cpu_has_secondary_exec_ctrls() && 3574 (secondary_exec_controls_get(to_vmx(vcpu)) & 3575 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3576 mode |= MSR_BITMAP_MODE_X2APIC; 3577 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3578 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3579 } 3580 3581 return mode; 3582 } 3583 3584 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap, 3585 u8 mode) 3586 { 3587 int msr; 3588 3589 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3590 unsigned word = msr / BITS_PER_LONG; 3591 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3592 msr_bitmap[word + (0x800 / sizeof(long))] = ~0; 3593 } 3594 3595 if (mode & MSR_BITMAP_MODE_X2APIC) { 3596 /* 3597 * TPR reads and writes can be virtualized even if virtual interrupt 3598 * delivery is not in use. 3599 */ 3600 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW); 3601 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3602 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R); 3603 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3604 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3605 } 3606 } 3607 } 3608 3609 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu) 3610 { 3611 struct vcpu_vmx *vmx = to_vmx(vcpu); 3612 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3613 u8 mode = vmx_msr_bitmap_mode(vcpu); 3614 u8 changed = mode ^ vmx->msr_bitmap_mode; 3615 3616 if (!changed) 3617 return; 3618 3619 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV)) 3620 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode); 3621 3622 vmx->msr_bitmap_mode = mode; 3623 } 3624 3625 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx) 3626 { 3627 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3628 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3629 u32 i; 3630 3631 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS, 3632 MSR_TYPE_RW, flag); 3633 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE, 3634 MSR_TYPE_RW, flag); 3635 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK, 3636 MSR_TYPE_RW, flag); 3637 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH, 3638 MSR_TYPE_RW, flag); 3639 for (i = 0; i < vmx->pt_desc.addr_range; i++) { 3640 vmx_set_intercept_for_msr(msr_bitmap, 3641 MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3642 vmx_set_intercept_for_msr(msr_bitmap, 3643 MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3644 } 3645 } 3646 3647 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu) 3648 { 3649 return enable_apicv; 3650 } 3651 3652 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3653 { 3654 struct vcpu_vmx *vmx = to_vmx(vcpu); 3655 void *vapic_page; 3656 u32 vppr; 3657 int rvi; 3658 3659 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3660 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3661 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3662 return false; 3663 3664 rvi = vmx_get_rvi(); 3665 3666 vapic_page = vmx->nested.virtual_apic_map.hva; 3667 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 3668 3669 return ((rvi & 0xf0) > (vppr & 0xf0)); 3670 } 3671 3672 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 3673 bool nested) 3674 { 3675 #ifdef CONFIG_SMP 3676 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; 3677 3678 if (vcpu->mode == IN_GUEST_MODE) { 3679 /* 3680 * The vector of interrupt to be delivered to vcpu had 3681 * been set in PIR before this function. 3682 * 3683 * Following cases will be reached in this block, and 3684 * we always send a notification event in all cases as 3685 * explained below. 3686 * 3687 * Case 1: vcpu keeps in non-root mode. Sending a 3688 * notification event posts the interrupt to vcpu. 3689 * 3690 * Case 2: vcpu exits to root mode and is still 3691 * runnable. PIR will be synced to vIRR before the 3692 * next vcpu entry. Sending a notification event in 3693 * this case has no effect, as vcpu is not in root 3694 * mode. 3695 * 3696 * Case 3: vcpu exits to root mode and is blocked. 3697 * vcpu_block() has already synced PIR to vIRR and 3698 * never blocks vcpu if vIRR is not cleared. Therefore, 3699 * a blocked vcpu here does not wait for any requested 3700 * interrupts in PIR, and sending a notification event 3701 * which has no effect is safe here. 3702 */ 3703 3704 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 3705 return true; 3706 } 3707 #endif 3708 return false; 3709 } 3710 3711 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 3712 int vector) 3713 { 3714 struct vcpu_vmx *vmx = to_vmx(vcpu); 3715 3716 if (is_guest_mode(vcpu) && 3717 vector == vmx->nested.posted_intr_nv) { 3718 /* 3719 * If a posted intr is not recognized by hardware, 3720 * we will accomplish it in the next vmentry. 3721 */ 3722 vmx->nested.pi_pending = true; 3723 kvm_make_request(KVM_REQ_EVENT, vcpu); 3724 /* the PIR and ON have been set by L1. */ 3725 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) 3726 kvm_vcpu_kick(vcpu); 3727 return 0; 3728 } 3729 return -1; 3730 } 3731 /* 3732 * Send interrupt to vcpu via posted interrupt way. 3733 * 1. If target vcpu is running(non-root mode), send posted interrupt 3734 * notification to vcpu and hardware will sync PIR to vIRR atomically. 3735 * 2. If target vcpu isn't running(root mode), kick it to pick up the 3736 * interrupt from PIR in next vmentry. 3737 */ 3738 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 3739 { 3740 struct vcpu_vmx *vmx = to_vmx(vcpu); 3741 int r; 3742 3743 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 3744 if (!r) 3745 return; 3746 3747 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 3748 return; 3749 3750 /* If a previous notification has sent the IPI, nothing to do. */ 3751 if (pi_test_and_set_on(&vmx->pi_desc)) 3752 return; 3753 3754 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false)) 3755 kvm_vcpu_kick(vcpu); 3756 } 3757 3758 /* 3759 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 3760 * will not change in the lifetime of the guest. 3761 * Note that host-state that does change is set elsewhere. E.g., host-state 3762 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 3763 */ 3764 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 3765 { 3766 u32 low32, high32; 3767 unsigned long tmpl; 3768 unsigned long cr0, cr3, cr4; 3769 3770 cr0 = read_cr0(); 3771 WARN_ON(cr0 & X86_CR0_TS); 3772 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 3773 3774 /* 3775 * Save the most likely value for this task's CR3 in the VMCS. 3776 * We can't use __get_current_cr3_fast() because we're not atomic. 3777 */ 3778 cr3 = __read_cr3(); 3779 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 3780 vmx->loaded_vmcs->host_state.cr3 = cr3; 3781 3782 /* Save the most likely value for this task's CR4 in the VMCS. */ 3783 cr4 = cr4_read_shadow(); 3784 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 3785 vmx->loaded_vmcs->host_state.cr4 = cr4; 3786 3787 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 3788 #ifdef CONFIG_X86_64 3789 /* 3790 * Load null selectors, so we can avoid reloading them in 3791 * vmx_prepare_switch_to_host(), in case userspace uses 3792 * the null selectors too (the expected case). 3793 */ 3794 vmcs_write16(HOST_DS_SELECTOR, 0); 3795 vmcs_write16(HOST_ES_SELECTOR, 0); 3796 #else 3797 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 3798 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 3799 #endif 3800 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 3801 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 3802 3803 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 3804 3805 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 3806 3807 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 3808 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 3809 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 3810 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 3811 3812 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 3813 rdmsr(MSR_IA32_CR_PAT, low32, high32); 3814 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 3815 } 3816 3817 if (cpu_has_load_ia32_efer()) 3818 vmcs_write64(HOST_IA32_EFER, host_efer); 3819 } 3820 3821 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 3822 { 3823 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS; 3824 if (enable_ept) 3825 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; 3826 if (is_guest_mode(&vmx->vcpu)) 3827 vmx->vcpu.arch.cr4_guest_owned_bits &= 3828 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask; 3829 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); 3830 } 3831 3832 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 3833 { 3834 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 3835 3836 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 3837 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 3838 3839 if (!enable_vnmi) 3840 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 3841 3842 if (!enable_preemption_timer) 3843 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 3844 3845 return pin_based_exec_ctrl; 3846 } 3847 3848 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 3849 { 3850 struct vcpu_vmx *vmx = to_vmx(vcpu); 3851 3852 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 3853 if (cpu_has_secondary_exec_ctrls()) { 3854 if (kvm_vcpu_apicv_active(vcpu)) 3855 secondary_exec_controls_setbit(vmx, 3856 SECONDARY_EXEC_APIC_REGISTER_VIRT | 3857 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 3858 else 3859 secondary_exec_controls_clearbit(vmx, 3860 SECONDARY_EXEC_APIC_REGISTER_VIRT | 3861 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 3862 } 3863 3864 if (cpu_has_vmx_msr_bitmap()) 3865 vmx_update_msr_bitmap(vcpu); 3866 } 3867 3868 u32 vmx_exec_control(struct vcpu_vmx *vmx) 3869 { 3870 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 3871 3872 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 3873 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 3874 3875 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 3876 exec_control &= ~CPU_BASED_TPR_SHADOW; 3877 #ifdef CONFIG_X86_64 3878 exec_control |= CPU_BASED_CR8_STORE_EXITING | 3879 CPU_BASED_CR8_LOAD_EXITING; 3880 #endif 3881 } 3882 if (!enable_ept) 3883 exec_control |= CPU_BASED_CR3_STORE_EXITING | 3884 CPU_BASED_CR3_LOAD_EXITING | 3885 CPU_BASED_INVLPG_EXITING; 3886 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 3887 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 3888 CPU_BASED_MONITOR_EXITING); 3889 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 3890 exec_control &= ~CPU_BASED_HLT_EXITING; 3891 return exec_control; 3892 } 3893 3894 3895 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx) 3896 { 3897 struct kvm_vcpu *vcpu = &vmx->vcpu; 3898 3899 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 3900 3901 if (pt_mode == PT_MODE_SYSTEM) 3902 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 3903 if (!cpu_need_virtualize_apic_accesses(vcpu)) 3904 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 3905 if (vmx->vpid == 0) 3906 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 3907 if (!enable_ept) { 3908 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 3909 enable_unrestricted_guest = 0; 3910 } 3911 if (!enable_unrestricted_guest) 3912 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 3913 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 3914 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 3915 if (!kvm_vcpu_apicv_active(vcpu)) 3916 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 3917 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 3918 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 3919 3920 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 3921 * in vmx_set_cr4. */ 3922 exec_control &= ~SECONDARY_EXEC_DESC; 3923 3924 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 3925 (handle_vmptrld). 3926 We can NOT enable shadow_vmcs here because we don't have yet 3927 a current VMCS12 3928 */ 3929 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 3930 3931 if (!enable_pml) 3932 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 3933 3934 if (vmx_xsaves_supported()) { 3935 /* Exposing XSAVES only when XSAVE is exposed */ 3936 bool xsaves_enabled = 3937 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 3938 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 3939 3940 if (!xsaves_enabled) 3941 exec_control &= ~SECONDARY_EXEC_XSAVES; 3942 3943 if (nested) { 3944 if (xsaves_enabled) 3945 vmx->nested.msrs.secondary_ctls_high |= 3946 SECONDARY_EXEC_XSAVES; 3947 else 3948 vmx->nested.msrs.secondary_ctls_high &= 3949 ~SECONDARY_EXEC_XSAVES; 3950 } 3951 } 3952 3953 if (vmx_rdtscp_supported()) { 3954 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP); 3955 if (!rdtscp_enabled) 3956 exec_control &= ~SECONDARY_EXEC_RDTSCP; 3957 3958 if (nested) { 3959 if (rdtscp_enabled) 3960 vmx->nested.msrs.secondary_ctls_high |= 3961 SECONDARY_EXEC_RDTSCP; 3962 else 3963 vmx->nested.msrs.secondary_ctls_high &= 3964 ~SECONDARY_EXEC_RDTSCP; 3965 } 3966 } 3967 3968 if (vmx_invpcid_supported()) { 3969 /* Exposing INVPCID only when PCID is exposed */ 3970 bool invpcid_enabled = 3971 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) && 3972 guest_cpuid_has(vcpu, X86_FEATURE_PCID); 3973 3974 if (!invpcid_enabled) { 3975 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID; 3976 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID); 3977 } 3978 3979 if (nested) { 3980 if (invpcid_enabled) 3981 vmx->nested.msrs.secondary_ctls_high |= 3982 SECONDARY_EXEC_ENABLE_INVPCID; 3983 else 3984 vmx->nested.msrs.secondary_ctls_high &= 3985 ~SECONDARY_EXEC_ENABLE_INVPCID; 3986 } 3987 } 3988 3989 if (vmx_rdrand_supported()) { 3990 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND); 3991 if (rdrand_enabled) 3992 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING; 3993 3994 if (nested) { 3995 if (rdrand_enabled) 3996 vmx->nested.msrs.secondary_ctls_high |= 3997 SECONDARY_EXEC_RDRAND_EXITING; 3998 else 3999 vmx->nested.msrs.secondary_ctls_high &= 4000 ~SECONDARY_EXEC_RDRAND_EXITING; 4001 } 4002 } 4003 4004 if (vmx_rdseed_supported()) { 4005 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED); 4006 if (rdseed_enabled) 4007 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING; 4008 4009 if (nested) { 4010 if (rdseed_enabled) 4011 vmx->nested.msrs.secondary_ctls_high |= 4012 SECONDARY_EXEC_RDSEED_EXITING; 4013 else 4014 vmx->nested.msrs.secondary_ctls_high &= 4015 ~SECONDARY_EXEC_RDSEED_EXITING; 4016 } 4017 } 4018 4019 vmx->secondary_exec_control = exec_control; 4020 } 4021 4022 static void ept_set_mmio_spte_mask(void) 4023 { 4024 /* 4025 * EPT Misconfigurations can be generated if the value of bits 2:0 4026 * of an EPT paging-structure entry is 110b (write/execute). 4027 */ 4028 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK, 4029 VMX_EPT_MISCONFIG_WX_VALUE); 4030 } 4031 4032 #define VMX_XSS_EXIT_BITMAP 0 4033 4034 /* 4035 * Sets up the vmcs for emulated real mode. 4036 */ 4037 static void vmx_vcpu_setup(struct vcpu_vmx *vmx) 4038 { 4039 int i; 4040 4041 if (nested) 4042 nested_vmx_vcpu_setup(); 4043 4044 if (cpu_has_vmx_msr_bitmap()) 4045 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4046 4047 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ 4048 4049 /* Control */ 4050 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4051 vmx->hv_deadline_tsc = -1; 4052 4053 exec_controls_set(vmx, vmx_exec_control(vmx)); 4054 4055 if (cpu_has_secondary_exec_ctrls()) { 4056 vmx_compute_secondary_exec_control(vmx); 4057 secondary_exec_controls_set(vmx, vmx->secondary_exec_control); 4058 } 4059 4060 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4061 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4062 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4063 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4064 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4065 4066 vmcs_write16(GUEST_INTR_STATUS, 0); 4067 4068 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4069 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4070 } 4071 4072 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4073 vmcs_write32(PLE_GAP, ple_gap); 4074 vmx->ple_window = ple_window; 4075 vmx->ple_window_dirty = true; 4076 } 4077 4078 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4079 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4080 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4081 4082 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4083 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4084 vmx_set_constant_host_state(vmx); 4085 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4086 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4087 4088 if (cpu_has_vmx_vmfunc()) 4089 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4090 4091 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4092 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4093 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4094 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4095 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4096 4097 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4098 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4099 4100 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) { 4101 u32 index = vmx_msr_index[i]; 4102 u32 data_low, data_high; 4103 int j = vmx->nmsrs; 4104 4105 if (rdmsr_safe(index, &data_low, &data_high) < 0) 4106 continue; 4107 if (wrmsr_safe(index, data_low, data_high) < 0) 4108 continue; 4109 vmx->guest_msrs[j].index = i; 4110 vmx->guest_msrs[j].data = 0; 4111 vmx->guest_msrs[j].mask = -1ull; 4112 ++vmx->nmsrs; 4113 } 4114 4115 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4116 4117 /* 22.2.1, 20.8.1 */ 4118 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4119 4120 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS; 4121 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS); 4122 4123 set_cr4_guest_host_mask(vmx); 4124 4125 if (vmx_xsaves_supported()) 4126 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4127 4128 if (enable_pml) { 4129 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4130 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4131 } 4132 4133 if (cpu_has_vmx_encls_vmexit()) 4134 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); 4135 4136 if (pt_mode == PT_MODE_HOST_GUEST) { 4137 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4138 /* Bit[6~0] are forced to 1, writes are ignored. */ 4139 vmx->pt_desc.guest.output_mask = 0x7F; 4140 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4141 } 4142 } 4143 4144 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4145 { 4146 struct vcpu_vmx *vmx = to_vmx(vcpu); 4147 struct msr_data apic_base_msr; 4148 u64 cr0; 4149 4150 vmx->rmode.vm86_active = 0; 4151 vmx->spec_ctrl = 0; 4152 4153 vcpu->arch.microcode_version = 0x100000000ULL; 4154 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); 4155 kvm_set_cr8(vcpu, 0); 4156 4157 if (!init_event) { 4158 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | 4159 MSR_IA32_APICBASE_ENABLE; 4160 if (kvm_vcpu_is_reset_bsp(vcpu)) 4161 apic_base_msr.data |= MSR_IA32_APICBASE_BSP; 4162 apic_base_msr.host_initiated = true; 4163 kvm_set_apic_base(vcpu, &apic_base_msr); 4164 } 4165 4166 vmx_segment_cache_clear(vmx); 4167 4168 seg_setup(VCPU_SREG_CS); 4169 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4170 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4171 4172 seg_setup(VCPU_SREG_DS); 4173 seg_setup(VCPU_SREG_ES); 4174 seg_setup(VCPU_SREG_FS); 4175 seg_setup(VCPU_SREG_GS); 4176 seg_setup(VCPU_SREG_SS); 4177 4178 vmcs_write16(GUEST_TR_SELECTOR, 0); 4179 vmcs_writel(GUEST_TR_BASE, 0); 4180 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4181 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4182 4183 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4184 vmcs_writel(GUEST_LDTR_BASE, 0); 4185 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4186 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4187 4188 if (!init_event) { 4189 vmcs_write32(GUEST_SYSENTER_CS, 0); 4190 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4191 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4192 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4193 } 4194 4195 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 4196 kvm_rip_write(vcpu, 0xfff0); 4197 4198 vmcs_writel(GUEST_GDTR_BASE, 0); 4199 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4200 4201 vmcs_writel(GUEST_IDTR_BASE, 0); 4202 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4203 4204 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4205 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4206 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4207 if (kvm_mpx_supported()) 4208 vmcs_write64(GUEST_BNDCFGS, 0); 4209 4210 setup_msrs(vmx); 4211 4212 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4213 4214 if (cpu_has_vmx_tpr_shadow() && !init_event) { 4215 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4216 if (cpu_need_tpr_shadow(vcpu)) 4217 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4218 __pa(vcpu->arch.apic->regs)); 4219 vmcs_write32(TPR_THRESHOLD, 0); 4220 } 4221 4222 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4223 4224 if (vmx->vpid != 0) 4225 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4226 4227 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; 4228 vmx->vcpu.arch.cr0 = cr0; 4229 vmx_set_cr0(vcpu, cr0); /* enter rmode */ 4230 vmx_set_cr4(vcpu, 0); 4231 vmx_set_efer(vcpu, 0); 4232 4233 update_exception_bitmap(vcpu); 4234 4235 vpid_sync_context(vmx->vpid); 4236 if (init_event) 4237 vmx_clear_hlt(vcpu); 4238 } 4239 4240 static void enable_irq_window(struct kvm_vcpu *vcpu) 4241 { 4242 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING); 4243 } 4244 4245 static void enable_nmi_window(struct kvm_vcpu *vcpu) 4246 { 4247 if (!enable_vnmi || 4248 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4249 enable_irq_window(vcpu); 4250 return; 4251 } 4252 4253 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING); 4254 } 4255 4256 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4257 { 4258 struct vcpu_vmx *vmx = to_vmx(vcpu); 4259 uint32_t intr; 4260 int irq = vcpu->arch.interrupt.nr; 4261 4262 trace_kvm_inj_virq(irq); 4263 4264 ++vcpu->stat.irq_injections; 4265 if (vmx->rmode.vm86_active) { 4266 int inc_eip = 0; 4267 if (vcpu->arch.interrupt.soft) 4268 inc_eip = vcpu->arch.event_exit_inst_len; 4269 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE) 4270 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4271 return; 4272 } 4273 intr = irq | INTR_INFO_VALID_MASK; 4274 if (vcpu->arch.interrupt.soft) { 4275 intr |= INTR_TYPE_SOFT_INTR; 4276 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4277 vmx->vcpu.arch.event_exit_inst_len); 4278 } else 4279 intr |= INTR_TYPE_EXT_INTR; 4280 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4281 4282 vmx_clear_hlt(vcpu); 4283 } 4284 4285 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4286 { 4287 struct vcpu_vmx *vmx = to_vmx(vcpu); 4288 4289 if (!enable_vnmi) { 4290 /* 4291 * Tracking the NMI-blocked state in software is built upon 4292 * finding the next open IRQ window. This, in turn, depends on 4293 * well-behaving guests: They have to keep IRQs disabled at 4294 * least as long as the NMI handler runs. Otherwise we may 4295 * cause NMI nesting, maybe breaking the guest. But as this is 4296 * highly unlikely, we can live with the residual risk. 4297 */ 4298 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4299 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4300 } 4301 4302 ++vcpu->stat.nmi_injections; 4303 vmx->loaded_vmcs->nmi_known_unmasked = false; 4304 4305 if (vmx->rmode.vm86_active) { 4306 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE) 4307 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4308 return; 4309 } 4310 4311 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4312 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4313 4314 vmx_clear_hlt(vcpu); 4315 } 4316 4317 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4318 { 4319 struct vcpu_vmx *vmx = to_vmx(vcpu); 4320 bool masked; 4321 4322 if (!enable_vnmi) 4323 return vmx->loaded_vmcs->soft_vnmi_blocked; 4324 if (vmx->loaded_vmcs->nmi_known_unmasked) 4325 return false; 4326 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4327 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4328 return masked; 4329 } 4330 4331 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4332 { 4333 struct vcpu_vmx *vmx = to_vmx(vcpu); 4334 4335 if (!enable_vnmi) { 4336 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4337 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4338 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4339 } 4340 } else { 4341 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4342 if (masked) 4343 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4344 GUEST_INTR_STATE_NMI); 4345 else 4346 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4347 GUEST_INTR_STATE_NMI); 4348 } 4349 } 4350 4351 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu) 4352 { 4353 if (to_vmx(vcpu)->nested.nested_run_pending) 4354 return 0; 4355 4356 if (!enable_vnmi && 4357 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4358 return 0; 4359 4360 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4361 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI 4362 | GUEST_INTR_STATE_NMI)); 4363 } 4364 4365 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu) 4366 { 4367 return (!to_vmx(vcpu)->nested.nested_run_pending && 4368 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && 4369 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4370 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4371 } 4372 4373 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4374 { 4375 int ret; 4376 4377 if (enable_unrestricted_guest) 4378 return 0; 4379 4380 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4381 PAGE_SIZE * 3); 4382 if (ret) 4383 return ret; 4384 to_kvm_vmx(kvm)->tss_addr = addr; 4385 return init_rmode_tss(kvm); 4386 } 4387 4388 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4389 { 4390 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4391 return 0; 4392 } 4393 4394 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4395 { 4396 switch (vec) { 4397 case BP_VECTOR: 4398 /* 4399 * Update instruction length as we may reinject the exception 4400 * from user space while in guest debugging mode. 4401 */ 4402 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4403 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4404 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4405 return false; 4406 /* fall through */ 4407 case DB_VECTOR: 4408 if (vcpu->guest_debug & 4409 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) 4410 return false; 4411 /* fall through */ 4412 case DE_VECTOR: 4413 case OF_VECTOR: 4414 case BR_VECTOR: 4415 case UD_VECTOR: 4416 case DF_VECTOR: 4417 case SS_VECTOR: 4418 case GP_VECTOR: 4419 case MF_VECTOR: 4420 return true; 4421 break; 4422 } 4423 return false; 4424 } 4425 4426 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4427 int vec, u32 err_code) 4428 { 4429 /* 4430 * Instruction with address size override prefix opcode 0x67 4431 * Cause the #SS fault with 0 error code in VM86 mode. 4432 */ 4433 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4434 if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) { 4435 if (vcpu->arch.halt_request) { 4436 vcpu->arch.halt_request = 0; 4437 return kvm_vcpu_halt(vcpu); 4438 } 4439 return 1; 4440 } 4441 return 0; 4442 } 4443 4444 /* 4445 * Forward all other exceptions that are valid in real mode. 4446 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4447 * the required debugging infrastructure rework. 4448 */ 4449 kvm_queue_exception(vcpu, vec); 4450 return 1; 4451 } 4452 4453 /* 4454 * Trigger machine check on the host. We assume all the MSRs are already set up 4455 * by the CPU and that we still run on the same CPU as the MCE occurred on. 4456 * We pass a fake environment to the machine check handler because we want 4457 * the guest to be always treated like user space, no matter what context 4458 * it used internally. 4459 */ 4460 static void kvm_machine_check(void) 4461 { 4462 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64) 4463 struct pt_regs regs = { 4464 .cs = 3, /* Fake ring 3 no matter what the guest ran on */ 4465 .flags = X86_EFLAGS_IF, 4466 }; 4467 4468 do_machine_check(®s, 0); 4469 #endif 4470 } 4471 4472 static int handle_machine_check(struct kvm_vcpu *vcpu) 4473 { 4474 /* handled by vmx_vcpu_run() */ 4475 return 1; 4476 } 4477 4478 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 4479 { 4480 struct vcpu_vmx *vmx = to_vmx(vcpu); 4481 struct kvm_run *kvm_run = vcpu->run; 4482 u32 intr_info, ex_no, error_code; 4483 unsigned long cr2, rip, dr6; 4484 u32 vect_info; 4485 enum emulation_result er; 4486 4487 vect_info = vmx->idt_vectoring_info; 4488 intr_info = vmx->exit_intr_info; 4489 4490 if (is_machine_check(intr_info) || is_nmi(intr_info)) 4491 return 1; /* handled by handle_exception_nmi_irqoff() */ 4492 4493 if (is_invalid_opcode(intr_info)) 4494 return handle_ud(vcpu); 4495 4496 error_code = 0; 4497 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4498 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4499 4500 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4501 WARN_ON_ONCE(!enable_vmware_backdoor); 4502 er = kvm_emulate_instruction(vcpu, 4503 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL); 4504 if (er == EMULATE_USER_EXIT) 4505 return 0; 4506 else if (er != EMULATE_DONE) 4507 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4508 return 1; 4509 } 4510 4511 /* 4512 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4513 * MMIO, it is better to report an internal error. 4514 * See the comments in vmx_handle_exit. 4515 */ 4516 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4517 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4518 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4519 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4520 vcpu->run->internal.ndata = 3; 4521 vcpu->run->internal.data[0] = vect_info; 4522 vcpu->run->internal.data[1] = intr_info; 4523 vcpu->run->internal.data[2] = error_code; 4524 return 0; 4525 } 4526 4527 if (is_page_fault(intr_info)) { 4528 cr2 = vmcs_readl(EXIT_QUALIFICATION); 4529 /* EPT won't cause page fault directly */ 4530 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept); 4531 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4532 } 4533 4534 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4535 4536 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4537 return handle_rmode_exception(vcpu, ex_no, error_code); 4538 4539 switch (ex_no) { 4540 case AC_VECTOR: 4541 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4542 return 1; 4543 case DB_VECTOR: 4544 dr6 = vmcs_readl(EXIT_QUALIFICATION); 4545 if (!(vcpu->guest_debug & 4546 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4547 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 4548 vcpu->arch.dr6 |= dr6 | DR6_RTM; 4549 if (is_icebp(intr_info)) 4550 skip_emulated_instruction(vcpu); 4551 4552 kvm_queue_exception(vcpu, DB_VECTOR); 4553 return 1; 4554 } 4555 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; 4556 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4557 /* fall through */ 4558 case BP_VECTOR: 4559 /* 4560 * Update instruction length as we may reinject #BP from 4561 * user space while in guest debugging mode. Reading it for 4562 * #DB as well causes no harm, it is not used in that case. 4563 */ 4564 vmx->vcpu.arch.event_exit_inst_len = 4565 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4566 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4567 rip = kvm_rip_read(vcpu); 4568 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; 4569 kvm_run->debug.arch.exception = ex_no; 4570 break; 4571 default: 4572 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4573 kvm_run->ex.exception = ex_no; 4574 kvm_run->ex.error_code = error_code; 4575 break; 4576 } 4577 return 0; 4578 } 4579 4580 static int handle_external_interrupt(struct kvm_vcpu *vcpu) 4581 { 4582 ++vcpu->stat.irq_exits; 4583 return 1; 4584 } 4585 4586 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4587 { 4588 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 4589 vcpu->mmio_needed = 0; 4590 return 0; 4591 } 4592 4593 static int handle_io(struct kvm_vcpu *vcpu) 4594 { 4595 unsigned long exit_qualification; 4596 int size, in, string; 4597 unsigned port; 4598 4599 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4600 string = (exit_qualification & 16) != 0; 4601 4602 ++vcpu->stat.io_exits; 4603 4604 if (string) 4605 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; 4606 4607 port = exit_qualification >> 16; 4608 size = (exit_qualification & 7) + 1; 4609 in = (exit_qualification & 8) != 0; 4610 4611 return kvm_fast_pio(vcpu, size, port, in); 4612 } 4613 4614 static void 4615 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4616 { 4617 /* 4618 * Patch in the VMCALL instruction: 4619 */ 4620 hypercall[0] = 0x0f; 4621 hypercall[1] = 0x01; 4622 hypercall[2] = 0xc1; 4623 } 4624 4625 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 4626 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 4627 { 4628 if (is_guest_mode(vcpu)) { 4629 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4630 unsigned long orig_val = val; 4631 4632 /* 4633 * We get here when L2 changed cr0 in a way that did not change 4634 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 4635 * but did change L0 shadowed bits. So we first calculate the 4636 * effective cr0 value that L1 would like to write into the 4637 * hardware. It consists of the L2-owned bits from the new 4638 * value combined with the L1-owned bits from L1's guest_cr0. 4639 */ 4640 val = (val & ~vmcs12->cr0_guest_host_mask) | 4641 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 4642 4643 if (!nested_guest_cr0_valid(vcpu, val)) 4644 return 1; 4645 4646 if (kvm_set_cr0(vcpu, val)) 4647 return 1; 4648 vmcs_writel(CR0_READ_SHADOW, orig_val); 4649 return 0; 4650 } else { 4651 if (to_vmx(vcpu)->nested.vmxon && 4652 !nested_host_cr0_valid(vcpu, val)) 4653 return 1; 4654 4655 return kvm_set_cr0(vcpu, val); 4656 } 4657 } 4658 4659 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 4660 { 4661 if (is_guest_mode(vcpu)) { 4662 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4663 unsigned long orig_val = val; 4664 4665 /* analogously to handle_set_cr0 */ 4666 val = (val & ~vmcs12->cr4_guest_host_mask) | 4667 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 4668 if (kvm_set_cr4(vcpu, val)) 4669 return 1; 4670 vmcs_writel(CR4_READ_SHADOW, orig_val); 4671 return 0; 4672 } else 4673 return kvm_set_cr4(vcpu, val); 4674 } 4675 4676 static int handle_desc(struct kvm_vcpu *vcpu) 4677 { 4678 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 4679 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; 4680 } 4681 4682 static int handle_cr(struct kvm_vcpu *vcpu) 4683 { 4684 unsigned long exit_qualification, val; 4685 int cr; 4686 int reg; 4687 int err; 4688 int ret; 4689 4690 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4691 cr = exit_qualification & 15; 4692 reg = (exit_qualification >> 8) & 15; 4693 switch ((exit_qualification >> 4) & 3) { 4694 case 0: /* mov to cr */ 4695 val = kvm_register_readl(vcpu, reg); 4696 trace_kvm_cr_write(cr, val); 4697 switch (cr) { 4698 case 0: 4699 err = handle_set_cr0(vcpu, val); 4700 return kvm_complete_insn_gp(vcpu, err); 4701 case 3: 4702 WARN_ON_ONCE(enable_unrestricted_guest); 4703 err = kvm_set_cr3(vcpu, val); 4704 return kvm_complete_insn_gp(vcpu, err); 4705 case 4: 4706 err = handle_set_cr4(vcpu, val); 4707 return kvm_complete_insn_gp(vcpu, err); 4708 case 8: { 4709 u8 cr8_prev = kvm_get_cr8(vcpu); 4710 u8 cr8 = (u8)val; 4711 err = kvm_set_cr8(vcpu, cr8); 4712 ret = kvm_complete_insn_gp(vcpu, err); 4713 if (lapic_in_kernel(vcpu)) 4714 return ret; 4715 if (cr8_prev <= cr8) 4716 return ret; 4717 /* 4718 * TODO: we might be squashing a 4719 * KVM_GUESTDBG_SINGLESTEP-triggered 4720 * KVM_EXIT_DEBUG here. 4721 */ 4722 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 4723 return 0; 4724 } 4725 } 4726 break; 4727 case 2: /* clts */ 4728 WARN_ONCE(1, "Guest should always own CR0.TS"); 4729 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); 4730 trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); 4731 return kvm_skip_emulated_instruction(vcpu); 4732 case 1: /*mov from cr*/ 4733 switch (cr) { 4734 case 3: 4735 WARN_ON_ONCE(enable_unrestricted_guest); 4736 val = kvm_read_cr3(vcpu); 4737 kvm_register_write(vcpu, reg, val); 4738 trace_kvm_cr_read(cr, val); 4739 return kvm_skip_emulated_instruction(vcpu); 4740 case 8: 4741 val = kvm_get_cr8(vcpu); 4742 kvm_register_write(vcpu, reg, val); 4743 trace_kvm_cr_read(cr, val); 4744 return kvm_skip_emulated_instruction(vcpu); 4745 } 4746 break; 4747 case 3: /* lmsw */ 4748 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 4749 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 4750 kvm_lmsw(vcpu, val); 4751 4752 return kvm_skip_emulated_instruction(vcpu); 4753 default: 4754 break; 4755 } 4756 vcpu->run->exit_reason = 0; 4757 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 4758 (int)(exit_qualification >> 4) & 3, cr); 4759 return 0; 4760 } 4761 4762 static int handle_dr(struct kvm_vcpu *vcpu) 4763 { 4764 unsigned long exit_qualification; 4765 int dr, dr7, reg; 4766 4767 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4768 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 4769 4770 /* First, if DR does not exist, trigger UD */ 4771 if (!kvm_require_dr(vcpu, dr)) 4772 return 1; 4773 4774 /* Do not handle if the CPL > 0, will trigger GP on re-entry */ 4775 if (!kvm_require_cpl(vcpu, 0)) 4776 return 1; 4777 dr7 = vmcs_readl(GUEST_DR7); 4778 if (dr7 & DR7_GD) { 4779 /* 4780 * As the vm-exit takes precedence over the debug trap, we 4781 * need to emulate the latter, either for the host or the 4782 * guest debugging itself. 4783 */ 4784 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 4785 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6; 4786 vcpu->run->debug.arch.dr7 = dr7; 4787 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 4788 vcpu->run->debug.arch.exception = DB_VECTOR; 4789 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 4790 return 0; 4791 } else { 4792 vcpu->arch.dr6 &= ~DR_TRAP_BITS; 4793 vcpu->arch.dr6 |= DR6_BD | DR6_RTM; 4794 kvm_queue_exception(vcpu, DB_VECTOR); 4795 return 1; 4796 } 4797 } 4798 4799 if (vcpu->guest_debug == 0) { 4800 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 4801 4802 /* 4803 * No more DR vmexits; force a reload of the debug registers 4804 * and reenter on this instruction. The next vmexit will 4805 * retrieve the full state of the debug registers. 4806 */ 4807 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 4808 return 1; 4809 } 4810 4811 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 4812 if (exit_qualification & TYPE_MOV_FROM_DR) { 4813 unsigned long val; 4814 4815 if (kvm_get_dr(vcpu, dr, &val)) 4816 return 1; 4817 kvm_register_write(vcpu, reg, val); 4818 } else 4819 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg))) 4820 return 1; 4821 4822 return kvm_skip_emulated_instruction(vcpu); 4823 } 4824 4825 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu) 4826 { 4827 return vcpu->arch.dr6; 4828 } 4829 4830 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val) 4831 { 4832 } 4833 4834 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 4835 { 4836 get_debugreg(vcpu->arch.db[0], 0); 4837 get_debugreg(vcpu->arch.db[1], 1); 4838 get_debugreg(vcpu->arch.db[2], 2); 4839 get_debugreg(vcpu->arch.db[3], 3); 4840 get_debugreg(vcpu->arch.dr6, 6); 4841 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 4842 4843 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 4844 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 4845 } 4846 4847 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 4848 { 4849 vmcs_writel(GUEST_DR7, val); 4850 } 4851 4852 static int handle_cpuid(struct kvm_vcpu *vcpu) 4853 { 4854 return kvm_emulate_cpuid(vcpu); 4855 } 4856 4857 static int handle_rdmsr(struct kvm_vcpu *vcpu) 4858 { 4859 u32 ecx = kvm_rcx_read(vcpu); 4860 struct msr_data msr_info; 4861 4862 msr_info.index = ecx; 4863 msr_info.host_initiated = false; 4864 if (vmx_get_msr(vcpu, &msr_info)) { 4865 trace_kvm_msr_read_ex(ecx); 4866 kvm_inject_gp(vcpu, 0); 4867 return 1; 4868 } 4869 4870 trace_kvm_msr_read(ecx, msr_info.data); 4871 4872 kvm_rax_write(vcpu, msr_info.data & -1u); 4873 kvm_rdx_write(vcpu, (msr_info.data >> 32) & -1u); 4874 return kvm_skip_emulated_instruction(vcpu); 4875 } 4876 4877 static int handle_wrmsr(struct kvm_vcpu *vcpu) 4878 { 4879 struct msr_data msr; 4880 u32 ecx = kvm_rcx_read(vcpu); 4881 u64 data = kvm_read_edx_eax(vcpu); 4882 4883 msr.data = data; 4884 msr.index = ecx; 4885 msr.host_initiated = false; 4886 if (kvm_set_msr(vcpu, &msr) != 0) { 4887 trace_kvm_msr_write_ex(ecx, data); 4888 kvm_inject_gp(vcpu, 0); 4889 return 1; 4890 } 4891 4892 trace_kvm_msr_write(ecx, data); 4893 return kvm_skip_emulated_instruction(vcpu); 4894 } 4895 4896 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 4897 { 4898 kvm_apic_update_ppr(vcpu); 4899 return 1; 4900 } 4901 4902 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 4903 { 4904 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING); 4905 4906 kvm_make_request(KVM_REQ_EVENT, vcpu); 4907 4908 ++vcpu->stat.irq_window_exits; 4909 return 1; 4910 } 4911 4912 static int handle_halt(struct kvm_vcpu *vcpu) 4913 { 4914 return kvm_emulate_halt(vcpu); 4915 } 4916 4917 static int handle_vmcall(struct kvm_vcpu *vcpu) 4918 { 4919 return kvm_emulate_hypercall(vcpu); 4920 } 4921 4922 static int handle_invd(struct kvm_vcpu *vcpu) 4923 { 4924 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; 4925 } 4926 4927 static int handle_invlpg(struct kvm_vcpu *vcpu) 4928 { 4929 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4930 4931 kvm_mmu_invlpg(vcpu, exit_qualification); 4932 return kvm_skip_emulated_instruction(vcpu); 4933 } 4934 4935 static int handle_rdpmc(struct kvm_vcpu *vcpu) 4936 { 4937 int err; 4938 4939 err = kvm_rdpmc(vcpu); 4940 return kvm_complete_insn_gp(vcpu, err); 4941 } 4942 4943 static int handle_wbinvd(struct kvm_vcpu *vcpu) 4944 { 4945 return kvm_emulate_wbinvd(vcpu); 4946 } 4947 4948 static int handle_xsetbv(struct kvm_vcpu *vcpu) 4949 { 4950 u64 new_bv = kvm_read_edx_eax(vcpu); 4951 u32 index = kvm_rcx_read(vcpu); 4952 4953 if (kvm_set_xcr(vcpu, index, new_bv) == 0) 4954 return kvm_skip_emulated_instruction(vcpu); 4955 return 1; 4956 } 4957 4958 static int handle_xsaves(struct kvm_vcpu *vcpu) 4959 { 4960 kvm_skip_emulated_instruction(vcpu); 4961 WARN(1, "this should never happen\n"); 4962 return 1; 4963 } 4964 4965 static int handle_xrstors(struct kvm_vcpu *vcpu) 4966 { 4967 kvm_skip_emulated_instruction(vcpu); 4968 WARN(1, "this should never happen\n"); 4969 return 1; 4970 } 4971 4972 static int handle_apic_access(struct kvm_vcpu *vcpu) 4973 { 4974 if (likely(fasteoi)) { 4975 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4976 int access_type, offset; 4977 4978 access_type = exit_qualification & APIC_ACCESS_TYPE; 4979 offset = exit_qualification & APIC_ACCESS_OFFSET; 4980 /* 4981 * Sane guest uses MOV to write EOI, with written value 4982 * not cared. So make a short-circuit here by avoiding 4983 * heavy instruction emulation. 4984 */ 4985 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 4986 (offset == APIC_EOI)) { 4987 kvm_lapic_set_eoi(vcpu); 4988 return kvm_skip_emulated_instruction(vcpu); 4989 } 4990 } 4991 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; 4992 } 4993 4994 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 4995 { 4996 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4997 int vector = exit_qualification & 0xff; 4998 4999 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5000 kvm_apic_set_eoi_accelerated(vcpu, vector); 5001 return 1; 5002 } 5003 5004 static int handle_apic_write(struct kvm_vcpu *vcpu) 5005 { 5006 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 5007 u32 offset = exit_qualification & 0xfff; 5008 5009 /* APIC-write VM exit is trap-like and thus no need to adjust IP */ 5010 kvm_apic_write_nodecode(vcpu, offset); 5011 return 1; 5012 } 5013 5014 static int handle_task_switch(struct kvm_vcpu *vcpu) 5015 { 5016 struct vcpu_vmx *vmx = to_vmx(vcpu); 5017 unsigned long exit_qualification; 5018 bool has_error_code = false; 5019 u32 error_code = 0; 5020 u16 tss_selector; 5021 int reason, type, idt_v, idt_index; 5022 5023 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5024 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5025 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5026 5027 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 5028 5029 reason = (u32)exit_qualification >> 30; 5030 if (reason == TASK_SWITCH_GATE && idt_v) { 5031 switch (type) { 5032 case INTR_TYPE_NMI_INTR: 5033 vcpu->arch.nmi_injected = false; 5034 vmx_set_nmi_mask(vcpu, true); 5035 break; 5036 case INTR_TYPE_EXT_INTR: 5037 case INTR_TYPE_SOFT_INTR: 5038 kvm_clear_interrupt_queue(vcpu); 5039 break; 5040 case INTR_TYPE_HARD_EXCEPTION: 5041 if (vmx->idt_vectoring_info & 5042 VECTORING_INFO_DELIVER_CODE_MASK) { 5043 has_error_code = true; 5044 error_code = 5045 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5046 } 5047 /* fall through */ 5048 case INTR_TYPE_SOFT_EXCEPTION: 5049 kvm_clear_exception_queue(vcpu); 5050 break; 5051 default: 5052 break; 5053 } 5054 } 5055 tss_selector = exit_qualification; 5056 5057 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5058 type != INTR_TYPE_EXT_INTR && 5059 type != INTR_TYPE_NMI_INTR)) 5060 skip_emulated_instruction(vcpu); 5061 5062 if (kvm_task_switch(vcpu, tss_selector, 5063 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason, 5064 has_error_code, error_code) == EMULATE_FAIL) { 5065 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5066 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 5067 vcpu->run->internal.ndata = 0; 5068 return 0; 5069 } 5070 5071 /* 5072 * TODO: What about debug traps on tss switch? 5073 * Are we supposed to inject them and update dr6? 5074 */ 5075 5076 return 1; 5077 } 5078 5079 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5080 { 5081 unsigned long exit_qualification; 5082 gpa_t gpa; 5083 u64 error_code; 5084 5085 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 5086 5087 /* 5088 * EPT violation happened while executing iret from NMI, 5089 * "blocked by NMI" bit has to be set before next VM entry. 5090 * There are errata that may cause this bit to not be set: 5091 * AAK134, BY25. 5092 */ 5093 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5094 enable_vnmi && 5095 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5096 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5097 5098 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5099 trace_kvm_page_fault(gpa, exit_qualification); 5100 5101 /* Is it a read fault? */ 5102 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5103 ? PFERR_USER_MASK : 0; 5104 /* Is it a write fault? */ 5105 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5106 ? PFERR_WRITE_MASK : 0; 5107 /* Is it a fetch fault? */ 5108 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5109 ? PFERR_FETCH_MASK : 0; 5110 /* ept page table entry is present? */ 5111 error_code |= (exit_qualification & 5112 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5113 EPT_VIOLATION_EXECUTABLE)) 5114 ? PFERR_PRESENT_MASK : 0; 5115 5116 error_code |= (exit_qualification & 0x100) != 0 ? 5117 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5118 5119 vcpu->arch.exit_qualification = exit_qualification; 5120 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5121 } 5122 5123 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5124 { 5125 gpa_t gpa; 5126 5127 /* 5128 * A nested guest cannot optimize MMIO vmexits, because we have an 5129 * nGPA here instead of the required GPA. 5130 */ 5131 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5132 if (!is_guest_mode(vcpu) && 5133 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5134 trace_kvm_fast_mmio(gpa); 5135 /* 5136 * Doing kvm_skip_emulated_instruction() depends on undefined 5137 * behavior: Intel's manual doesn't mandate 5138 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG 5139 * occurs and while on real hardware it was observed to be set, 5140 * other hypervisors (namely Hyper-V) don't set it, we end up 5141 * advancing IP with some random value. Disable fast mmio when 5142 * running nested and keep it for real hardware in hope that 5143 * VM_EXIT_INSTRUCTION_LEN will always be set correctly. 5144 */ 5145 if (!static_cpu_has(X86_FEATURE_HYPERVISOR)) 5146 return kvm_skip_emulated_instruction(vcpu); 5147 else 5148 return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) == 5149 EMULATE_DONE; 5150 } 5151 5152 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5153 } 5154 5155 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5156 { 5157 WARN_ON_ONCE(!enable_vnmi); 5158 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING); 5159 ++vcpu->stat.nmi_window_exits; 5160 kvm_make_request(KVM_REQ_EVENT, vcpu); 5161 5162 return 1; 5163 } 5164 5165 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5166 { 5167 struct vcpu_vmx *vmx = to_vmx(vcpu); 5168 enum emulation_result err = EMULATE_DONE; 5169 int ret = 1; 5170 bool intr_window_requested; 5171 unsigned count = 130; 5172 5173 /* 5174 * We should never reach the point where we are emulating L2 5175 * due to invalid guest state as that means we incorrectly 5176 * allowed a nested VMEntry with an invalid vmcs12. 5177 */ 5178 WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending); 5179 5180 intr_window_requested = exec_controls_get(vmx) & 5181 CPU_BASED_VIRTUAL_INTR_PENDING; 5182 5183 while (vmx->emulation_required && count-- != 0) { 5184 if (intr_window_requested && vmx_interrupt_allowed(vcpu)) 5185 return handle_interrupt_window(&vmx->vcpu); 5186 5187 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5188 return 1; 5189 5190 err = kvm_emulate_instruction(vcpu, 0); 5191 5192 if (err == EMULATE_USER_EXIT) { 5193 ++vcpu->stat.mmio_exits; 5194 ret = 0; 5195 goto out; 5196 } 5197 5198 if (err != EMULATE_DONE) 5199 goto emulation_error; 5200 5201 if (vmx->emulation_required && !vmx->rmode.vm86_active && 5202 vcpu->arch.exception.pending) 5203 goto emulation_error; 5204 5205 if (vcpu->arch.halt_request) { 5206 vcpu->arch.halt_request = 0; 5207 ret = kvm_vcpu_halt(vcpu); 5208 goto out; 5209 } 5210 5211 if (signal_pending(current)) 5212 goto out; 5213 if (need_resched()) 5214 schedule(); 5215 } 5216 5217 out: 5218 return ret; 5219 5220 emulation_error: 5221 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5222 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 5223 vcpu->run->internal.ndata = 0; 5224 return 0; 5225 } 5226 5227 static void grow_ple_window(struct kvm_vcpu *vcpu) 5228 { 5229 struct vcpu_vmx *vmx = to_vmx(vcpu); 5230 int old = vmx->ple_window; 5231 5232 vmx->ple_window = __grow_ple_window(old, ple_window, 5233 ple_window_grow, 5234 ple_window_max); 5235 5236 if (vmx->ple_window != old) 5237 vmx->ple_window_dirty = true; 5238 5239 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old); 5240 } 5241 5242 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5243 { 5244 struct vcpu_vmx *vmx = to_vmx(vcpu); 5245 int old = vmx->ple_window; 5246 5247 vmx->ple_window = __shrink_ple_window(old, ple_window, 5248 ple_window_shrink, 5249 ple_window); 5250 5251 if (vmx->ple_window != old) 5252 vmx->ple_window_dirty = true; 5253 5254 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old); 5255 } 5256 5257 /* 5258 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. 5259 */ 5260 static void wakeup_handler(void) 5261 { 5262 struct kvm_vcpu *vcpu; 5263 int cpu = smp_processor_id(); 5264 5265 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); 5266 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu), 5267 blocked_vcpu_list) { 5268 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 5269 5270 if (pi_test_on(pi_desc) == 1) 5271 kvm_vcpu_kick(vcpu); 5272 } 5273 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); 5274 } 5275 5276 static void vmx_enable_tdp(void) 5277 { 5278 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK, 5279 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull, 5280 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull, 5281 0ull, VMX_EPT_EXECUTABLE_MASK, 5282 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK, 5283 VMX_EPT_RWX_MASK, 0ull); 5284 5285 ept_set_mmio_spte_mask(); 5286 kvm_enable_tdp(); 5287 } 5288 5289 /* 5290 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5291 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5292 */ 5293 static int handle_pause(struct kvm_vcpu *vcpu) 5294 { 5295 if (!kvm_pause_in_guest(vcpu->kvm)) 5296 grow_ple_window(vcpu); 5297 5298 /* 5299 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5300 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5301 * never set PAUSE_EXITING and just set PLE if supported, 5302 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5303 */ 5304 kvm_vcpu_on_spin(vcpu, true); 5305 return kvm_skip_emulated_instruction(vcpu); 5306 } 5307 5308 static int handle_nop(struct kvm_vcpu *vcpu) 5309 { 5310 return kvm_skip_emulated_instruction(vcpu); 5311 } 5312 5313 static int handle_mwait(struct kvm_vcpu *vcpu) 5314 { 5315 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); 5316 return handle_nop(vcpu); 5317 } 5318 5319 static int handle_invalid_op(struct kvm_vcpu *vcpu) 5320 { 5321 kvm_queue_exception(vcpu, UD_VECTOR); 5322 return 1; 5323 } 5324 5325 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5326 { 5327 return 1; 5328 } 5329 5330 static int handle_monitor(struct kvm_vcpu *vcpu) 5331 { 5332 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); 5333 return handle_nop(vcpu); 5334 } 5335 5336 static int handle_invpcid(struct kvm_vcpu *vcpu) 5337 { 5338 u32 vmx_instruction_info; 5339 unsigned long type; 5340 bool pcid_enabled; 5341 gva_t gva; 5342 struct x86_exception e; 5343 unsigned i; 5344 unsigned long roots_to_free = 0; 5345 struct { 5346 u64 pcid; 5347 u64 gla; 5348 } operand; 5349 5350 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5351 kvm_queue_exception(vcpu, UD_VECTOR); 5352 return 1; 5353 } 5354 5355 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5356 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); 5357 5358 if (type > 3) { 5359 kvm_inject_gp(vcpu, 0); 5360 return 1; 5361 } 5362 5363 /* According to the Intel instruction reference, the memory operand 5364 * is read even if it isn't needed (e.g., for type==all) 5365 */ 5366 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), 5367 vmx_instruction_info, false, 5368 sizeof(operand), &gva)) 5369 return 1; 5370 5371 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { 5372 kvm_inject_page_fault(vcpu, &e); 5373 return 1; 5374 } 5375 5376 if (operand.pcid >> 12 != 0) { 5377 kvm_inject_gp(vcpu, 0); 5378 return 1; 5379 } 5380 5381 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 5382 5383 switch (type) { 5384 case INVPCID_TYPE_INDIV_ADDR: 5385 if ((!pcid_enabled && (operand.pcid != 0)) || 5386 is_noncanonical_address(operand.gla, vcpu)) { 5387 kvm_inject_gp(vcpu, 0); 5388 return 1; 5389 } 5390 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 5391 return kvm_skip_emulated_instruction(vcpu); 5392 5393 case INVPCID_TYPE_SINGLE_CTXT: 5394 if (!pcid_enabled && (operand.pcid != 0)) { 5395 kvm_inject_gp(vcpu, 0); 5396 return 1; 5397 } 5398 5399 if (kvm_get_active_pcid(vcpu) == operand.pcid) { 5400 kvm_mmu_sync_roots(vcpu); 5401 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 5402 } 5403 5404 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5405 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3) 5406 == operand.pcid) 5407 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5408 5409 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); 5410 /* 5411 * If neither the current cr3 nor any of the prev_roots use the 5412 * given PCID, then nothing needs to be done here because a 5413 * resync will happen anyway before switching to any other CR3. 5414 */ 5415 5416 return kvm_skip_emulated_instruction(vcpu); 5417 5418 case INVPCID_TYPE_ALL_NON_GLOBAL: 5419 /* 5420 * Currently, KVM doesn't mark global entries in the shadow 5421 * page tables, so a non-global flush just degenerates to a 5422 * global flush. If needed, we could optimize this later by 5423 * keeping track of global entries in shadow page tables. 5424 */ 5425 5426 /* fall-through */ 5427 case INVPCID_TYPE_ALL_INCL_GLOBAL: 5428 kvm_mmu_unload(vcpu); 5429 return kvm_skip_emulated_instruction(vcpu); 5430 5431 default: 5432 BUG(); /* We have already checked above that type <= 3 */ 5433 } 5434 } 5435 5436 static int handle_pml_full(struct kvm_vcpu *vcpu) 5437 { 5438 unsigned long exit_qualification; 5439 5440 trace_kvm_pml_full(vcpu->vcpu_id); 5441 5442 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 5443 5444 /* 5445 * PML buffer FULL happened while executing iret from NMI, 5446 * "blocked by NMI" bit has to be set before next VM entry. 5447 */ 5448 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5449 enable_vnmi && 5450 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5451 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5452 GUEST_INTR_STATE_NMI); 5453 5454 /* 5455 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5456 * here.., and there's no userspace involvement needed for PML. 5457 */ 5458 return 1; 5459 } 5460 5461 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5462 { 5463 struct vcpu_vmx *vmx = to_vmx(vcpu); 5464 5465 if (!vmx->req_immediate_exit && 5466 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) 5467 kvm_lapic_expired_hv_timer(vcpu); 5468 5469 return 1; 5470 } 5471 5472 /* 5473 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5474 * are overwritten by nested_vmx_setup() when nested=1. 5475 */ 5476 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5477 { 5478 kvm_queue_exception(vcpu, UD_VECTOR); 5479 return 1; 5480 } 5481 5482 static int handle_encls(struct kvm_vcpu *vcpu) 5483 { 5484 /* 5485 * SGX virtualization is not yet supported. There is no software 5486 * enable bit for SGX, so we have to trap ENCLS and inject a #UD 5487 * to prevent the guest from executing ENCLS. 5488 */ 5489 kvm_queue_exception(vcpu, UD_VECTOR); 5490 return 1; 5491 } 5492 5493 /* 5494 * The exit handlers return 1 if the exit was handled fully and guest execution 5495 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5496 * to be done to userspace and return 0. 5497 */ 5498 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5499 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 5500 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5501 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5502 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5503 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5504 [EXIT_REASON_CR_ACCESS] = handle_cr, 5505 [EXIT_REASON_DR_ACCESS] = handle_dr, 5506 [EXIT_REASON_CPUID] = handle_cpuid, 5507 [EXIT_REASON_MSR_READ] = handle_rdmsr, 5508 [EXIT_REASON_MSR_WRITE] = handle_wrmsr, 5509 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window, 5510 [EXIT_REASON_HLT] = handle_halt, 5511 [EXIT_REASON_INVD] = handle_invd, 5512 [EXIT_REASON_INVLPG] = handle_invlpg, 5513 [EXIT_REASON_RDPMC] = handle_rdpmc, 5514 [EXIT_REASON_VMCALL] = handle_vmcall, 5515 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5516 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5517 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5518 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5519 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5520 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5521 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5522 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5523 [EXIT_REASON_VMON] = handle_vmx_instruction, 5524 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5525 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5526 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5527 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5528 [EXIT_REASON_WBINVD] = handle_wbinvd, 5529 [EXIT_REASON_XSETBV] = handle_xsetbv, 5530 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5531 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5532 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5533 [EXIT_REASON_LDTR_TR] = handle_desc, 5534 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5535 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5536 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5537 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait, 5538 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5539 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor, 5540 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5541 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5542 [EXIT_REASON_RDRAND] = handle_invalid_op, 5543 [EXIT_REASON_RDSEED] = handle_invalid_op, 5544 [EXIT_REASON_XSAVES] = handle_xsaves, 5545 [EXIT_REASON_XRSTORS] = handle_xrstors, 5546 [EXIT_REASON_PML_FULL] = handle_pml_full, 5547 [EXIT_REASON_INVPCID] = handle_invpcid, 5548 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5549 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5550 [EXIT_REASON_ENCLS] = handle_encls, 5551 }; 5552 5553 static const int kvm_vmx_max_exit_handlers = 5554 ARRAY_SIZE(kvm_vmx_exit_handlers); 5555 5556 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) 5557 { 5558 *info1 = vmcs_readl(EXIT_QUALIFICATION); 5559 *info2 = vmcs_read32(VM_EXIT_INTR_INFO); 5560 } 5561 5562 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5563 { 5564 if (vmx->pml_pg) { 5565 __free_page(vmx->pml_pg); 5566 vmx->pml_pg = NULL; 5567 } 5568 } 5569 5570 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5571 { 5572 struct vcpu_vmx *vmx = to_vmx(vcpu); 5573 u64 *pml_buf; 5574 u16 pml_idx; 5575 5576 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5577 5578 /* Do nothing if PML buffer is empty */ 5579 if (pml_idx == (PML_ENTITY_NUM - 1)) 5580 return; 5581 5582 /* PML index always points to next available PML buffer entity */ 5583 if (pml_idx >= PML_ENTITY_NUM) 5584 pml_idx = 0; 5585 else 5586 pml_idx++; 5587 5588 pml_buf = page_address(vmx->pml_pg); 5589 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5590 u64 gpa; 5591 5592 gpa = pml_buf[pml_idx]; 5593 WARN_ON(gpa & (PAGE_SIZE - 1)); 5594 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5595 } 5596 5597 /* reset PML index */ 5598 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5599 } 5600 5601 /* 5602 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap. 5603 * Called before reporting dirty_bitmap to userspace. 5604 */ 5605 static void kvm_flush_pml_buffers(struct kvm *kvm) 5606 { 5607 int i; 5608 struct kvm_vcpu *vcpu; 5609 /* 5610 * We only need to kick vcpu out of guest mode here, as PML buffer 5611 * is flushed at beginning of all VMEXITs, and it's obvious that only 5612 * vcpus running in guest are possible to have unflushed GPAs in PML 5613 * buffer. 5614 */ 5615 kvm_for_each_vcpu(i, vcpu, kvm) 5616 kvm_vcpu_kick(vcpu); 5617 } 5618 5619 static void vmx_dump_sel(char *name, uint32_t sel) 5620 { 5621 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5622 name, vmcs_read16(sel), 5623 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5624 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5625 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5626 } 5627 5628 static void vmx_dump_dtsel(char *name, uint32_t limit) 5629 { 5630 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5631 name, vmcs_read32(limit), 5632 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5633 } 5634 5635 void dump_vmcs(void) 5636 { 5637 u32 vmentry_ctl, vmexit_ctl; 5638 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 5639 unsigned long cr4; 5640 u64 efer; 5641 int i, n; 5642 5643 if (!dump_invalid_vmcs) { 5644 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 5645 return; 5646 } 5647 5648 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5649 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5650 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5651 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5652 cr4 = vmcs_readl(GUEST_CR4); 5653 efer = vmcs_read64(GUEST_IA32_EFER); 5654 secondary_exec_control = 0; 5655 if (cpu_has_secondary_exec_ctrls()) 5656 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5657 5658 pr_err("*** Guest State ***\n"); 5659 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5660 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5661 vmcs_readl(CR0_GUEST_HOST_MASK)); 5662 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5663 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5664 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5665 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 5666 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA)) 5667 { 5668 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5669 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5670 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5671 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5672 } 5673 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5674 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5675 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5676 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5677 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5678 vmcs_readl(GUEST_SYSENTER_ESP), 5679 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5680 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5681 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5682 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5683 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5684 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5685 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5686 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5687 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5688 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5689 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5690 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) || 5691 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER))) 5692 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", 5693 efer, vmcs_read64(GUEST_IA32_PAT)); 5694 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5695 vmcs_read64(GUEST_IA32_DEBUGCTL), 5696 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5697 if (cpu_has_load_perf_global_ctrl() && 5698 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5699 pr_err("PerfGlobCtl = 0x%016llx\n", 5700 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5701 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5702 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5703 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5704 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5705 vmcs_read32(GUEST_ACTIVITY_STATE)); 5706 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5707 pr_err("InterruptStatus = %04x\n", 5708 vmcs_read16(GUEST_INTR_STATUS)); 5709 5710 pr_err("*** Host State ***\n"); 5711 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5712 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5713 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5714 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5715 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5716 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5717 vmcs_read16(HOST_TR_SELECTOR)); 5718 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5719 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5720 vmcs_readl(HOST_TR_BASE)); 5721 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5722 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5723 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5724 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5725 vmcs_readl(HOST_CR4)); 5726 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5727 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5728 vmcs_read32(HOST_IA32_SYSENTER_CS), 5729 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5730 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER)) 5731 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", 5732 vmcs_read64(HOST_IA32_EFER), 5733 vmcs_read64(HOST_IA32_PAT)); 5734 if (cpu_has_load_perf_global_ctrl() && 5735 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5736 pr_err("PerfGlobCtl = 0x%016llx\n", 5737 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5738 5739 pr_err("*** Control State ***\n"); 5740 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5741 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5742 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5743 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5744 vmcs_read32(EXCEPTION_BITMAP), 5745 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5746 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5747 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5748 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5749 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5750 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5751 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5752 vmcs_read32(VM_EXIT_INTR_INFO), 5753 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5754 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5755 pr_err(" reason=%08x qualification=%016lx\n", 5756 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5757 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5758 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5759 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5760 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5761 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5762 pr_err("TSC Multiplier = 0x%016llx\n", 5763 vmcs_read64(TSC_MULTIPLIER)); 5764 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5765 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5766 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5767 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5768 } 5769 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5770 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5771 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5772 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5773 } 5774 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 5775 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 5776 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 5777 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 5778 n = vmcs_read32(CR3_TARGET_COUNT); 5779 for (i = 0; i + 1 < n; i += 4) 5780 pr_err("CR3 target%u=%016lx target%u=%016lx\n", 5781 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2), 5782 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2)); 5783 if (i < n) 5784 pr_err("CR3 target%u=%016lx\n", 5785 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2)); 5786 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 5787 pr_err("PLE Gap=%08x Window=%08x\n", 5788 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 5789 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 5790 pr_err("Virtual processor ID = 0x%04x\n", 5791 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 5792 } 5793 5794 /* 5795 * The guest has exited. See if we can fix it or if we need userspace 5796 * assistance. 5797 */ 5798 static int vmx_handle_exit(struct kvm_vcpu *vcpu) 5799 { 5800 struct vcpu_vmx *vmx = to_vmx(vcpu); 5801 u32 exit_reason = vmx->exit_reason; 5802 u32 vectoring_info = vmx->idt_vectoring_info; 5803 5804 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX); 5805 5806 /* 5807 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 5808 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 5809 * querying dirty_bitmap, we only need to kick all vcpus out of guest 5810 * mode as if vcpus is in root mode, the PML buffer must has been 5811 * flushed already. 5812 */ 5813 if (enable_pml) 5814 vmx_flush_pml_buffer(vcpu); 5815 5816 /* If guest state is invalid, start emulating */ 5817 if (vmx->emulation_required) 5818 return handle_invalid_guest_state(vcpu); 5819 5820 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason)) 5821 return nested_vmx_reflect_vmexit(vcpu, exit_reason); 5822 5823 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) { 5824 dump_vmcs(); 5825 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5826 vcpu->run->fail_entry.hardware_entry_failure_reason 5827 = exit_reason; 5828 return 0; 5829 } 5830 5831 if (unlikely(vmx->fail)) { 5832 dump_vmcs(); 5833 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5834 vcpu->run->fail_entry.hardware_entry_failure_reason 5835 = vmcs_read32(VM_INSTRUCTION_ERROR); 5836 return 0; 5837 } 5838 5839 /* 5840 * Note: 5841 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 5842 * delivery event since it indicates guest is accessing MMIO. 5843 * The vm-exit can be triggered again after return to guest that 5844 * will cause infinite loop. 5845 */ 5846 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 5847 (exit_reason != EXIT_REASON_EXCEPTION_NMI && 5848 exit_reason != EXIT_REASON_EPT_VIOLATION && 5849 exit_reason != EXIT_REASON_PML_FULL && 5850 exit_reason != EXIT_REASON_TASK_SWITCH)) { 5851 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5852 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 5853 vcpu->run->internal.ndata = 3; 5854 vcpu->run->internal.data[0] = vectoring_info; 5855 vcpu->run->internal.data[1] = exit_reason; 5856 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 5857 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) { 5858 vcpu->run->internal.ndata++; 5859 vcpu->run->internal.data[3] = 5860 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5861 } 5862 return 0; 5863 } 5864 5865 if (unlikely(!enable_vnmi && 5866 vmx->loaded_vmcs->soft_vnmi_blocked)) { 5867 if (vmx_interrupt_allowed(vcpu)) { 5868 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5869 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 5870 vcpu->arch.nmi_pending) { 5871 /* 5872 * This CPU don't support us in finding the end of an 5873 * NMI-blocked window if the guest runs with IRQs 5874 * disabled. So we pull the trigger after 1 s of 5875 * futile waiting, but inform the user about this. 5876 */ 5877 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 5878 "state on VCPU %d after 1 s timeout\n", 5879 __func__, vcpu->vcpu_id); 5880 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5881 } 5882 } 5883 5884 if (exit_reason < kvm_vmx_max_exit_handlers 5885 && kvm_vmx_exit_handlers[exit_reason]) 5886 return kvm_vmx_exit_handlers[exit_reason](vcpu); 5887 else { 5888 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 5889 exit_reason); 5890 kvm_queue_exception(vcpu, UD_VECTOR); 5891 return 1; 5892 } 5893 } 5894 5895 /* 5896 * Software based L1D cache flush which is used when microcode providing 5897 * the cache control MSR is not loaded. 5898 * 5899 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 5900 * flush it is required to read in 64 KiB because the replacement algorithm 5901 * is not exactly LRU. This could be sized at runtime via topology 5902 * information but as all relevant affected CPUs have 32KiB L1D cache size 5903 * there is no point in doing so. 5904 */ 5905 static void vmx_l1d_flush(struct kvm_vcpu *vcpu) 5906 { 5907 int size = PAGE_SIZE << L1D_CACHE_ORDER; 5908 5909 /* 5910 * This code is only executed when the the flush mode is 'cond' or 5911 * 'always' 5912 */ 5913 if (static_branch_likely(&vmx_l1d_flush_cond)) { 5914 bool flush_l1d; 5915 5916 /* 5917 * Clear the per-vcpu flush bit, it gets set again 5918 * either from vcpu_run() or from one of the unsafe 5919 * VMEXIT handlers. 5920 */ 5921 flush_l1d = vcpu->arch.l1tf_flush_l1d; 5922 vcpu->arch.l1tf_flush_l1d = false; 5923 5924 /* 5925 * Clear the per-cpu flush bit, it gets set again from 5926 * the interrupt handlers. 5927 */ 5928 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 5929 kvm_clear_cpu_l1tf_flush_l1d(); 5930 5931 if (!flush_l1d) 5932 return; 5933 } 5934 5935 vcpu->stat.l1d_flush++; 5936 5937 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 5938 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 5939 return; 5940 } 5941 5942 asm volatile( 5943 /* First ensure the pages are in the TLB */ 5944 "xorl %%eax, %%eax\n" 5945 ".Lpopulate_tlb:\n\t" 5946 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 5947 "addl $4096, %%eax\n\t" 5948 "cmpl %%eax, %[size]\n\t" 5949 "jne .Lpopulate_tlb\n\t" 5950 "xorl %%eax, %%eax\n\t" 5951 "cpuid\n\t" 5952 /* Now fill the cache */ 5953 "xorl %%eax, %%eax\n" 5954 ".Lfill_cache:\n" 5955 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 5956 "addl $64, %%eax\n\t" 5957 "cmpl %%eax, %[size]\n\t" 5958 "jne .Lfill_cache\n\t" 5959 "lfence\n" 5960 :: [flush_pages] "r" (vmx_l1d_flush_pages), 5961 [size] "r" (size) 5962 : "eax", "ebx", "ecx", "edx"); 5963 } 5964 5965 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 5966 { 5967 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5968 5969 if (is_guest_mode(vcpu) && 5970 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 5971 return; 5972 5973 if (irr == -1 || tpr < irr) { 5974 vmcs_write32(TPR_THRESHOLD, 0); 5975 return; 5976 } 5977 5978 vmcs_write32(TPR_THRESHOLD, irr); 5979 } 5980 5981 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 5982 { 5983 struct vcpu_vmx *vmx = to_vmx(vcpu); 5984 u32 sec_exec_control; 5985 5986 if (!lapic_in_kernel(vcpu)) 5987 return; 5988 5989 if (!flexpriority_enabled && 5990 !cpu_has_vmx_virtualize_x2apic_mode()) 5991 return; 5992 5993 /* Postpone execution until vmcs01 is the current VMCS. */ 5994 if (is_guest_mode(vcpu)) { 5995 vmx->nested.change_vmcs01_virtual_apic_mode = true; 5996 return; 5997 } 5998 5999 sec_exec_control = secondary_exec_controls_get(vmx); 6000 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6001 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6002 6003 switch (kvm_get_apic_mode(vcpu)) { 6004 case LAPIC_MODE_INVALID: 6005 WARN_ONCE(true, "Invalid local APIC state"); 6006 case LAPIC_MODE_DISABLED: 6007 break; 6008 case LAPIC_MODE_XAPIC: 6009 if (flexpriority_enabled) { 6010 sec_exec_control |= 6011 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6012 vmx_flush_tlb(vcpu, true); 6013 } 6014 break; 6015 case LAPIC_MODE_X2APIC: 6016 if (cpu_has_vmx_virtualize_x2apic_mode()) 6017 sec_exec_control |= 6018 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6019 break; 6020 } 6021 secondary_exec_controls_set(vmx, sec_exec_control); 6022 6023 vmx_update_msr_bitmap(vcpu); 6024 } 6025 6026 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa) 6027 { 6028 if (!is_guest_mode(vcpu)) { 6029 vmcs_write64(APIC_ACCESS_ADDR, hpa); 6030 vmx_flush_tlb(vcpu, true); 6031 } 6032 } 6033 6034 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6035 { 6036 u16 status; 6037 u8 old; 6038 6039 if (max_isr == -1) 6040 max_isr = 0; 6041 6042 status = vmcs_read16(GUEST_INTR_STATUS); 6043 old = status >> 8; 6044 if (max_isr != old) { 6045 status &= 0xff; 6046 status |= max_isr << 8; 6047 vmcs_write16(GUEST_INTR_STATUS, status); 6048 } 6049 } 6050 6051 static void vmx_set_rvi(int vector) 6052 { 6053 u16 status; 6054 u8 old; 6055 6056 if (vector == -1) 6057 vector = 0; 6058 6059 status = vmcs_read16(GUEST_INTR_STATUS); 6060 old = (u8)status & 0xff; 6061 if ((u8)vector != old) { 6062 status &= ~0xff; 6063 status |= (u8)vector; 6064 vmcs_write16(GUEST_INTR_STATUS, status); 6065 } 6066 } 6067 6068 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6069 { 6070 /* 6071 * When running L2, updating RVI is only relevant when 6072 * vmcs12 virtual-interrupt-delivery enabled. 6073 * However, it can be enabled only when L1 also 6074 * intercepts external-interrupts and in that case 6075 * we should not update vmcs02 RVI but instead intercept 6076 * interrupt. Therefore, do nothing when running L2. 6077 */ 6078 if (!is_guest_mode(vcpu)) 6079 vmx_set_rvi(max_irr); 6080 } 6081 6082 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6083 { 6084 struct vcpu_vmx *vmx = to_vmx(vcpu); 6085 int max_irr; 6086 bool max_irr_updated; 6087 6088 WARN_ON(!vcpu->arch.apicv_active); 6089 if (pi_test_on(&vmx->pi_desc)) { 6090 pi_clear_on(&vmx->pi_desc); 6091 /* 6092 * IOMMU can write to PIR.ON, so the barrier matters even on UP. 6093 * But on x86 this is just a compiler barrier anyway. 6094 */ 6095 smp_mb__after_atomic(); 6096 max_irr_updated = 6097 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6098 6099 /* 6100 * If we are running L2 and L1 has a new pending interrupt 6101 * which can be injected, we should re-evaluate 6102 * what should be done with this new L1 interrupt. 6103 * If L1 intercepts external-interrupts, we should 6104 * exit from L2 to L1. Otherwise, interrupt should be 6105 * delivered directly to L2. 6106 */ 6107 if (is_guest_mode(vcpu) && max_irr_updated) { 6108 if (nested_exit_on_intr(vcpu)) 6109 kvm_vcpu_exiting_guest_mode(vcpu); 6110 else 6111 kvm_make_request(KVM_REQ_EVENT, vcpu); 6112 } 6113 } else { 6114 max_irr = kvm_lapic_find_highest_irr(vcpu); 6115 } 6116 vmx_hwapic_irr_update(vcpu, max_irr); 6117 return max_irr; 6118 } 6119 6120 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6121 { 6122 if (!kvm_vcpu_apicv_active(vcpu)) 6123 return; 6124 6125 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6126 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6127 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6128 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6129 } 6130 6131 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6132 { 6133 struct vcpu_vmx *vmx = to_vmx(vcpu); 6134 6135 pi_clear_on(&vmx->pi_desc); 6136 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6137 } 6138 6139 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) 6140 { 6141 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); 6142 6143 /* if exit due to PF check for async PF */ 6144 if (is_page_fault(vmx->exit_intr_info)) 6145 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason(); 6146 6147 /* Handle machine checks before interrupts are enabled */ 6148 if (is_machine_check(vmx->exit_intr_info)) 6149 kvm_machine_check(); 6150 6151 /* We need to handle NMIs before interrupts are enabled */ 6152 if (is_nmi(vmx->exit_intr_info)) { 6153 kvm_before_interrupt(&vmx->vcpu); 6154 asm("int $2"); 6155 kvm_after_interrupt(&vmx->vcpu); 6156 } 6157 } 6158 6159 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6160 { 6161 unsigned int vector; 6162 unsigned long entry; 6163 #ifdef CONFIG_X86_64 6164 unsigned long tmp; 6165 #endif 6166 gate_desc *desc; 6167 u32 intr_info; 6168 6169 intr_info = vmcs_read32(VM_EXIT_INTR_INFO); 6170 if (WARN_ONCE(!is_external_intr(intr_info), 6171 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6172 return; 6173 6174 vector = intr_info & INTR_INFO_VECTOR_MASK; 6175 desc = (gate_desc *)host_idt_base + vector; 6176 entry = gate_offset(desc); 6177 6178 kvm_before_interrupt(vcpu); 6179 6180 asm volatile( 6181 #ifdef CONFIG_X86_64 6182 "mov %%" _ASM_SP ", %[sp]\n\t" 6183 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t" 6184 "push $%c[ss]\n\t" 6185 "push %[sp]\n\t" 6186 #endif 6187 "pushf\n\t" 6188 __ASM_SIZE(push) " $%c[cs]\n\t" 6189 CALL_NOSPEC 6190 : 6191 #ifdef CONFIG_X86_64 6192 [sp]"=&r"(tmp), 6193 #endif 6194 ASM_CALL_CONSTRAINT 6195 : 6196 THUNK_TARGET(entry), 6197 [ss]"i"(__KERNEL_DS), 6198 [cs]"i"(__KERNEL_CS) 6199 ); 6200 6201 kvm_after_interrupt(vcpu); 6202 } 6203 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff); 6204 6205 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6206 { 6207 struct vcpu_vmx *vmx = to_vmx(vcpu); 6208 6209 if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT) 6210 handle_external_interrupt_irqoff(vcpu); 6211 else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI) 6212 handle_exception_nmi_irqoff(vmx); 6213 } 6214 6215 static bool vmx_has_emulated_msr(int index) 6216 { 6217 switch (index) { 6218 case MSR_IA32_SMBASE: 6219 /* 6220 * We cannot do SMM unless we can run the guest in big 6221 * real mode. 6222 */ 6223 return enable_unrestricted_guest || emulate_invalid_guest_state; 6224 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 6225 return nested; 6226 case MSR_AMD64_VIRT_SPEC_CTRL: 6227 /* This is AMD only. */ 6228 return false; 6229 default: 6230 return true; 6231 } 6232 } 6233 6234 static bool vmx_pt_supported(void) 6235 { 6236 return pt_mode == PT_MODE_HOST_GUEST; 6237 } 6238 6239 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6240 { 6241 u32 exit_intr_info; 6242 bool unblock_nmi; 6243 u8 vector; 6244 bool idtv_info_valid; 6245 6246 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6247 6248 if (enable_vnmi) { 6249 if (vmx->loaded_vmcs->nmi_known_unmasked) 6250 return; 6251 /* 6252 * Can't use vmx->exit_intr_info since we're not sure what 6253 * the exit reason is. 6254 */ 6255 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); 6256 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6257 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6258 /* 6259 * SDM 3: 27.7.1.2 (September 2008) 6260 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6261 * a guest IRET fault. 6262 * SDM 3: 23.2.2 (September 2008) 6263 * Bit 12 is undefined in any of the following cases: 6264 * If the VM exit sets the valid bit in the IDT-vectoring 6265 * information field. 6266 * If the VM exit is due to a double fault. 6267 */ 6268 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6269 vector != DF_VECTOR && !idtv_info_valid) 6270 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6271 GUEST_INTR_STATE_NMI); 6272 else 6273 vmx->loaded_vmcs->nmi_known_unmasked = 6274 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6275 & GUEST_INTR_STATE_NMI); 6276 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6277 vmx->loaded_vmcs->vnmi_blocked_time += 6278 ktime_to_ns(ktime_sub(ktime_get(), 6279 vmx->loaded_vmcs->entry_time)); 6280 } 6281 6282 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6283 u32 idt_vectoring_info, 6284 int instr_len_field, 6285 int error_code_field) 6286 { 6287 u8 vector; 6288 int type; 6289 bool idtv_info_valid; 6290 6291 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6292 6293 vcpu->arch.nmi_injected = false; 6294 kvm_clear_exception_queue(vcpu); 6295 kvm_clear_interrupt_queue(vcpu); 6296 6297 if (!idtv_info_valid) 6298 return; 6299 6300 kvm_make_request(KVM_REQ_EVENT, vcpu); 6301 6302 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6303 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6304 6305 switch (type) { 6306 case INTR_TYPE_NMI_INTR: 6307 vcpu->arch.nmi_injected = true; 6308 /* 6309 * SDM 3: 27.7.1.2 (September 2008) 6310 * Clear bit "block by NMI" before VM entry if a NMI 6311 * delivery faulted. 6312 */ 6313 vmx_set_nmi_mask(vcpu, false); 6314 break; 6315 case INTR_TYPE_SOFT_EXCEPTION: 6316 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6317 /* fall through */ 6318 case INTR_TYPE_HARD_EXCEPTION: 6319 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6320 u32 err = vmcs_read32(error_code_field); 6321 kvm_requeue_exception_e(vcpu, vector, err); 6322 } else 6323 kvm_requeue_exception(vcpu, vector); 6324 break; 6325 case INTR_TYPE_SOFT_INTR: 6326 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6327 /* fall through */ 6328 case INTR_TYPE_EXT_INTR: 6329 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6330 break; 6331 default: 6332 break; 6333 } 6334 } 6335 6336 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6337 { 6338 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6339 VM_EXIT_INSTRUCTION_LEN, 6340 IDT_VECTORING_ERROR_CODE); 6341 } 6342 6343 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6344 { 6345 __vmx_complete_interrupts(vcpu, 6346 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6347 VM_ENTRY_INSTRUCTION_LEN, 6348 VM_ENTRY_EXCEPTION_ERROR_CODE); 6349 6350 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6351 } 6352 6353 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6354 { 6355 int i, nr_msrs; 6356 struct perf_guest_switch_msr *msrs; 6357 6358 msrs = perf_guest_get_msrs(&nr_msrs); 6359 6360 if (!msrs) 6361 return; 6362 6363 for (i = 0; i < nr_msrs; i++) 6364 if (msrs[i].host == msrs[i].guest) 6365 clear_atomic_switch_msr(vmx, msrs[i].msr); 6366 else 6367 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6368 msrs[i].host, false); 6369 } 6370 6371 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6372 { 6373 struct vcpu_vmx *vmx = to_vmx(vcpu); 6374 u64 tscl; 6375 u32 delta_tsc; 6376 6377 if (vmx->req_immediate_exit) { 6378 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 6379 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6380 } else if (vmx->hv_deadline_tsc != -1) { 6381 tscl = rdtsc(); 6382 if (vmx->hv_deadline_tsc > tscl) 6383 /* set_hv_timer ensures the delta fits in 32-bits */ 6384 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6385 cpu_preemption_timer_multi); 6386 else 6387 delta_tsc = 0; 6388 6389 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 6390 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6391 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 6392 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 6393 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 6394 } 6395 } 6396 6397 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6398 { 6399 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6400 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6401 vmcs_writel(HOST_RSP, host_rsp); 6402 } 6403 } 6404 6405 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched); 6406 6407 static void vmx_vcpu_run(struct kvm_vcpu *vcpu) 6408 { 6409 struct vcpu_vmx *vmx = to_vmx(vcpu); 6410 unsigned long cr3, cr4; 6411 6412 /* Record the guest's net vcpu time for enforced NMI injections. */ 6413 if (unlikely(!enable_vnmi && 6414 vmx->loaded_vmcs->soft_vnmi_blocked)) 6415 vmx->loaded_vmcs->entry_time = ktime_get(); 6416 6417 /* Don't enter VMX if guest state is invalid, let the exit handler 6418 start emulation until we arrive back to a valid state */ 6419 if (vmx->emulation_required) 6420 return; 6421 6422 if (vmx->ple_window_dirty) { 6423 vmx->ple_window_dirty = false; 6424 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6425 } 6426 6427 if (vmx->nested.need_vmcs12_to_shadow_sync) 6428 nested_sync_vmcs12_to_shadow(vcpu); 6429 6430 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty)) 6431 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6432 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty)) 6433 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6434 6435 cr3 = __get_current_cr3_fast(); 6436 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 6437 vmcs_writel(HOST_CR3, cr3); 6438 vmx->loaded_vmcs->host_state.cr3 = cr3; 6439 } 6440 6441 cr4 = cr4_read_shadow(); 6442 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6443 vmcs_writel(HOST_CR4, cr4); 6444 vmx->loaded_vmcs->host_state.cr4 = cr4; 6445 } 6446 6447 /* When single-stepping over STI and MOV SS, we must clear the 6448 * corresponding interruptibility bits in the guest state. Otherwise 6449 * vmentry fails as it then expects bit 14 (BS) in pending debug 6450 * exceptions being set, but that's not correct for the guest debugging 6451 * case. */ 6452 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6453 vmx_set_interrupt_shadow(vcpu, 0); 6454 6455 kvm_load_guest_xcr0(vcpu); 6456 6457 if (static_cpu_has(X86_FEATURE_PKU) && 6458 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) && 6459 vcpu->arch.pkru != vmx->host_pkru) 6460 __write_pkru(vcpu->arch.pkru); 6461 6462 pt_guest_enter(vmx); 6463 6464 atomic_switch_perf_msrs(vmx); 6465 6466 if (enable_preemption_timer) 6467 vmx_update_hv_timer(vcpu); 6468 6469 if (lapic_in_kernel(vcpu) && 6470 vcpu->arch.apic->lapic_timer.timer_advance_ns) 6471 kvm_wait_lapic_expire(vcpu); 6472 6473 /* 6474 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6475 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6476 * is no need to worry about the conditional branch over the wrmsr 6477 * being speculatively taken. 6478 */ 6479 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6480 6481 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6482 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6483 vmx_l1d_flush(vcpu); 6484 else if (static_branch_unlikely(&mds_user_clear)) 6485 mds_clear_cpu_buffers(); 6486 6487 if (vcpu->arch.cr2 != read_cr2()) 6488 write_cr2(vcpu->arch.cr2); 6489 6490 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6491 vmx->loaded_vmcs->launched); 6492 6493 vcpu->arch.cr2 = read_cr2(); 6494 6495 /* 6496 * We do not use IBRS in the kernel. If this vCPU has used the 6497 * SPEC_CTRL MSR it may have left it on; save the value and 6498 * turn it off. This is much more efficient than blindly adding 6499 * it to the atomic save/restore list. Especially as the former 6500 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6501 * 6502 * For non-nested case: 6503 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6504 * save it. 6505 * 6506 * For nested case: 6507 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6508 * save it. 6509 */ 6510 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 6511 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6512 6513 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6514 6515 /* All fields are clean at this point */ 6516 if (static_branch_unlikely(&enable_evmcs)) 6517 current_evmcs->hv_clean_fields |= 6518 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6519 6520 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6521 if (vmx->host_debugctlmsr) 6522 update_debugctlmsr(vmx->host_debugctlmsr); 6523 6524 #ifndef CONFIG_X86_64 6525 /* 6526 * The sysexit path does not restore ds/es, so we must set them to 6527 * a reasonable value ourselves. 6528 * 6529 * We can't defer this to vmx_prepare_switch_to_host() since that 6530 * function may be executed in interrupt context, which saves and 6531 * restore segments around it, nullifying its effect. 6532 */ 6533 loadsegment(ds, __USER_DS); 6534 loadsegment(es, __USER_DS); 6535 #endif 6536 6537 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) 6538 | (1 << VCPU_EXREG_RFLAGS) 6539 | (1 << VCPU_EXREG_PDPTR) 6540 | (1 << VCPU_EXREG_SEGMENTS) 6541 | (1 << VCPU_EXREG_CR3)); 6542 vcpu->arch.regs_dirty = 0; 6543 6544 pt_guest_exit(vmx); 6545 6546 /* 6547 * eager fpu is enabled if PKEY is supported and CR4 is switched 6548 * back on host, so it is safe to read guest PKRU from current 6549 * XSAVE. 6550 */ 6551 if (static_cpu_has(X86_FEATURE_PKU) && 6552 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) { 6553 vcpu->arch.pkru = rdpkru(); 6554 if (vcpu->arch.pkru != vmx->host_pkru) 6555 __write_pkru(vmx->host_pkru); 6556 } 6557 6558 kvm_put_guest_xcr0(vcpu); 6559 6560 vmx->nested.nested_run_pending = 0; 6561 vmx->idt_vectoring_info = 0; 6562 6563 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON); 6564 if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY) 6565 kvm_machine_check(); 6566 6567 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) 6568 return; 6569 6570 vmx->loaded_vmcs->launched = 1; 6571 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6572 6573 vmx_recover_nmi_blocking(vmx); 6574 vmx_complete_interrupts(vmx); 6575 } 6576 6577 static struct kvm *vmx_vm_alloc(void) 6578 { 6579 struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx), 6580 GFP_KERNEL_ACCOUNT | __GFP_ZERO, 6581 PAGE_KERNEL); 6582 return &kvm_vmx->kvm; 6583 } 6584 6585 static void vmx_vm_free(struct kvm *kvm) 6586 { 6587 vfree(to_kvm_vmx(kvm)); 6588 } 6589 6590 static void vmx_free_vcpu(struct kvm_vcpu *vcpu) 6591 { 6592 struct vcpu_vmx *vmx = to_vmx(vcpu); 6593 6594 if (enable_pml) 6595 vmx_destroy_pml_buffer(vmx); 6596 free_vpid(vmx->vpid); 6597 nested_vmx_free_vcpu(vcpu); 6598 free_loaded_vmcs(vmx->loaded_vmcs); 6599 kfree(vmx->guest_msrs); 6600 kvm_vcpu_uninit(vcpu); 6601 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu); 6602 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu); 6603 kmem_cache_free(kvm_vcpu_cache, vmx); 6604 } 6605 6606 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) 6607 { 6608 int err; 6609 struct vcpu_vmx *vmx; 6610 unsigned long *msr_bitmap; 6611 int cpu; 6612 6613 vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 6614 if (!vmx) 6615 return ERR_PTR(-ENOMEM); 6616 6617 vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache, 6618 GFP_KERNEL_ACCOUNT); 6619 if (!vmx->vcpu.arch.user_fpu) { 6620 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n"); 6621 err = -ENOMEM; 6622 goto free_partial_vcpu; 6623 } 6624 6625 vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, 6626 GFP_KERNEL_ACCOUNT); 6627 if (!vmx->vcpu.arch.guest_fpu) { 6628 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n"); 6629 err = -ENOMEM; 6630 goto free_user_fpu; 6631 } 6632 6633 vmx->vpid = allocate_vpid(); 6634 6635 err = kvm_vcpu_init(&vmx->vcpu, kvm, id); 6636 if (err) 6637 goto free_vcpu; 6638 6639 err = -ENOMEM; 6640 6641 /* 6642 * If PML is turned on, failure on enabling PML just results in failure 6643 * of creating the vcpu, therefore we can simplify PML logic (by 6644 * avoiding dealing with cases, such as enabling PML partially on vcpus 6645 * for the guest, etc. 6646 */ 6647 if (enable_pml) { 6648 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 6649 if (!vmx->pml_pg) 6650 goto uninit_vcpu; 6651 } 6652 6653 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 6654 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0]) 6655 > PAGE_SIZE); 6656 6657 if (!vmx->guest_msrs) 6658 goto free_pml; 6659 6660 err = alloc_loaded_vmcs(&vmx->vmcs01); 6661 if (err < 0) 6662 goto free_msrs; 6663 6664 msr_bitmap = vmx->vmcs01.msr_bitmap; 6665 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R); 6666 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW); 6667 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW); 6668 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 6669 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 6670 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 6671 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 6672 if (kvm_cstate_in_guest(kvm)) { 6673 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R); 6674 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 6675 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 6676 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 6677 } 6678 vmx->msr_bitmap_mode = 0; 6679 6680 vmx->loaded_vmcs = &vmx->vmcs01; 6681 cpu = get_cpu(); 6682 vmx_vcpu_load(&vmx->vcpu, cpu); 6683 vmx->vcpu.cpu = cpu; 6684 vmx_vcpu_setup(vmx); 6685 vmx_vcpu_put(&vmx->vcpu); 6686 put_cpu(); 6687 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) { 6688 err = alloc_apic_access_page(kvm); 6689 if (err) 6690 goto free_vmcs; 6691 } 6692 6693 if (enable_ept && !enable_unrestricted_guest) { 6694 err = init_rmode_identity_map(kvm); 6695 if (err) 6696 goto free_vmcs; 6697 } 6698 6699 if (nested) 6700 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs, 6701 vmx_capability.ept, 6702 kvm_vcpu_apicv_active(&vmx->vcpu)); 6703 else 6704 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs)); 6705 6706 vmx->nested.posted_intr_nv = -1; 6707 vmx->nested.current_vmptr = -1ull; 6708 6709 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED; 6710 6711 /* 6712 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 6713 * or POSTED_INTR_WAKEUP_VECTOR. 6714 */ 6715 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 6716 vmx->pi_desc.sn = 1; 6717 6718 vmx->ept_pointer = INVALID_PAGE; 6719 6720 return &vmx->vcpu; 6721 6722 free_vmcs: 6723 free_loaded_vmcs(vmx->loaded_vmcs); 6724 free_msrs: 6725 kfree(vmx->guest_msrs); 6726 free_pml: 6727 vmx_destroy_pml_buffer(vmx); 6728 uninit_vcpu: 6729 kvm_vcpu_uninit(&vmx->vcpu); 6730 free_vcpu: 6731 free_vpid(vmx->vpid); 6732 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu); 6733 free_user_fpu: 6734 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu); 6735 free_partial_vcpu: 6736 kmem_cache_free(kvm_vcpu_cache, vmx); 6737 return ERR_PTR(err); 6738 } 6739 6740 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6741 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6742 6743 static int vmx_vm_init(struct kvm *kvm) 6744 { 6745 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock); 6746 6747 if (!ple_gap) 6748 kvm->arch.pause_in_guest = true; 6749 6750 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 6751 switch (l1tf_mitigation) { 6752 case L1TF_MITIGATION_OFF: 6753 case L1TF_MITIGATION_FLUSH_NOWARN: 6754 /* 'I explicitly don't care' is set */ 6755 break; 6756 case L1TF_MITIGATION_FLUSH: 6757 case L1TF_MITIGATION_FLUSH_NOSMT: 6758 case L1TF_MITIGATION_FULL: 6759 /* 6760 * Warn upon starting the first VM in a potentially 6761 * insecure environment. 6762 */ 6763 if (sched_smt_active()) 6764 pr_warn_once(L1TF_MSG_SMT); 6765 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 6766 pr_warn_once(L1TF_MSG_L1D); 6767 break; 6768 case L1TF_MITIGATION_FULL_FORCE: 6769 /* Flush is enforced */ 6770 break; 6771 } 6772 } 6773 return 0; 6774 } 6775 6776 static int __init vmx_check_processor_compat(void) 6777 { 6778 struct vmcs_config vmcs_conf; 6779 struct vmx_capability vmx_cap; 6780 6781 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 6782 return -EIO; 6783 if (nested) 6784 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept, 6785 enable_apicv); 6786 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 6787 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 6788 smp_processor_id()); 6789 return -EIO; 6790 } 6791 return 0; 6792 } 6793 6794 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 6795 { 6796 u8 cache; 6797 u64 ipat = 0; 6798 6799 /* For VT-d and EPT combination 6800 * 1. MMIO: always map as UC 6801 * 2. EPT with VT-d: 6802 * a. VT-d without snooping control feature: can't guarantee the 6803 * result, try to trust guest. 6804 * b. VT-d with snooping control feature: snooping control feature of 6805 * VT-d engine can guarantee the cache correctness. Just set it 6806 * to WB to keep consistent with host. So the same as item 3. 6807 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep 6808 * consistent with host MTRR 6809 */ 6810 if (is_mmio) { 6811 cache = MTRR_TYPE_UNCACHABLE; 6812 goto exit; 6813 } 6814 6815 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 6816 ipat = VMX_EPT_IPAT_BIT; 6817 cache = MTRR_TYPE_WRBACK; 6818 goto exit; 6819 } 6820 6821 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 6822 ipat = VMX_EPT_IPAT_BIT; 6823 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 6824 cache = MTRR_TYPE_WRBACK; 6825 else 6826 cache = MTRR_TYPE_UNCACHABLE; 6827 goto exit; 6828 } 6829 6830 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); 6831 6832 exit: 6833 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; 6834 } 6835 6836 static int vmx_get_lpage_level(void) 6837 { 6838 if (enable_ept && !cpu_has_vmx_ept_1g_page()) 6839 return PT_DIRECTORY_LEVEL; 6840 else 6841 /* For shadow and EPT supported 1GB page */ 6842 return PT_PDPE_LEVEL; 6843 } 6844 6845 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx) 6846 { 6847 /* 6848 * These bits in the secondary execution controls field 6849 * are dynamic, the others are mostly based on the hypervisor 6850 * architecture and the guest's CPUID. Do not touch the 6851 * dynamic bits. 6852 */ 6853 u32 mask = 6854 SECONDARY_EXEC_SHADOW_VMCS | 6855 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 6856 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6857 SECONDARY_EXEC_DESC; 6858 6859 u32 new_ctl = vmx->secondary_exec_control; 6860 u32 cur_ctl = secondary_exec_controls_get(vmx); 6861 6862 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 6863 } 6864 6865 /* 6866 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 6867 * (indicating "allowed-1") if they are supported in the guest's CPUID. 6868 */ 6869 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 6870 { 6871 struct vcpu_vmx *vmx = to_vmx(vcpu); 6872 struct kvm_cpuid_entry2 *entry; 6873 6874 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 6875 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 6876 6877 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 6878 if (entry && (entry->_reg & (_cpuid_mask))) \ 6879 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 6880 } while (0) 6881 6882 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 6883 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME)); 6884 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME)); 6885 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC)); 6886 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE)); 6887 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE)); 6888 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE)); 6889 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE)); 6890 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE)); 6891 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR)); 6892 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM)); 6893 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX)); 6894 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX)); 6895 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID)); 6896 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE)); 6897 6898 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 6899 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE)); 6900 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP)); 6901 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP)); 6902 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU)); 6903 cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP)); 6904 6905 #undef cr4_fixed1_update 6906 } 6907 6908 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 6909 { 6910 struct vcpu_vmx *vmx = to_vmx(vcpu); 6911 6912 if (kvm_mpx_supported()) { 6913 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 6914 6915 if (mpx_enabled) { 6916 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 6917 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 6918 } else { 6919 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 6920 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 6921 } 6922 } 6923 } 6924 6925 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 6926 { 6927 struct vcpu_vmx *vmx = to_vmx(vcpu); 6928 struct kvm_cpuid_entry2 *best = NULL; 6929 int i; 6930 6931 for (i = 0; i < PT_CPUID_LEAVES; i++) { 6932 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 6933 if (!best) 6934 return; 6935 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 6936 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 6937 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 6938 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 6939 } 6940 6941 /* Get the number of configurable Address Ranges for filtering */ 6942 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps, 6943 PT_CAP_num_address_ranges); 6944 6945 /* Initialize and clear the no dependency bits */ 6946 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 6947 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC); 6948 6949 /* 6950 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 6951 * will inject an #GP 6952 */ 6953 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 6954 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 6955 6956 /* 6957 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 6958 * PSBFreq can be set 6959 */ 6960 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 6961 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 6962 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 6963 6964 /* 6965 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and 6966 * MTCFreq can be set 6967 */ 6968 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 6969 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 6970 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE); 6971 6972 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 6973 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 6974 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 6975 RTIT_CTL_PTW_EN); 6976 6977 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 6978 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 6979 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 6980 6981 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 6982 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 6983 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 6984 6985 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */ 6986 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 6987 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 6988 6989 /* unmask address range configure area */ 6990 for (i = 0; i < vmx->pt_desc.addr_range; i++) 6991 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 6992 } 6993 6994 static void vmx_cpuid_update(struct kvm_vcpu *vcpu) 6995 { 6996 struct vcpu_vmx *vmx = to_vmx(vcpu); 6997 6998 if (cpu_has_secondary_exec_ctrls()) { 6999 vmx_compute_secondary_exec_control(vmx); 7000 vmcs_set_secondary_exec_control(vmx); 7001 } 7002 7003 if (nested_vmx_allowed(vcpu)) 7004 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7005 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 7006 else 7007 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7008 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 7009 7010 if (nested_vmx_allowed(vcpu)) { 7011 nested_vmx_cr_fixed1_bits_update(vcpu); 7012 nested_vmx_entry_exit_ctls_update(vcpu); 7013 } 7014 7015 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7016 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7017 update_intel_pt_cfg(vcpu); 7018 } 7019 7020 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) 7021 { 7022 if (func == 1 && nested) 7023 entry->ecx |= bit(X86_FEATURE_VMX); 7024 } 7025 7026 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7027 { 7028 to_vmx(vcpu)->req_immediate_exit = true; 7029 } 7030 7031 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7032 struct x86_instruction_info *info, 7033 enum x86_intercept_stage stage) 7034 { 7035 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7036 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 7037 7038 /* 7039 * RDPID causes #UD if disabled through secondary execution controls. 7040 * Because it is marked as EmulateOnUD, we need to intercept it here. 7041 */ 7042 if (info->intercept == x86_intercept_rdtscp && 7043 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) { 7044 ctxt->exception.vector = UD_VECTOR; 7045 ctxt->exception.error_code_valid = false; 7046 return X86EMUL_PROPAGATE_FAULT; 7047 } 7048 7049 /* TODO: check more intercepts... */ 7050 return X86EMUL_CONTINUE; 7051 } 7052 7053 #ifdef CONFIG_X86_64 7054 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7055 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7056 u64 divisor, u64 *result) 7057 { 7058 u64 low = a << shift, high = a >> (64 - shift); 7059 7060 /* To avoid the overflow on divq */ 7061 if (high >= divisor) 7062 return 1; 7063 7064 /* Low hold the result, high hold rem which is discarded */ 7065 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7066 "rm" (divisor), "0" (low), "1" (high)); 7067 *result = low; 7068 7069 return 0; 7070 } 7071 7072 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7073 bool *expired) 7074 { 7075 struct vcpu_vmx *vmx; 7076 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7077 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7078 7079 if (kvm_mwait_in_guest(vcpu->kvm) || 7080 kvm_can_post_timer_interrupt(vcpu)) 7081 return -EOPNOTSUPP; 7082 7083 vmx = to_vmx(vcpu); 7084 tscl = rdtsc(); 7085 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7086 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7087 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7088 ktimer->timer_advance_ns); 7089 7090 if (delta_tsc > lapic_timer_advance_cycles) 7091 delta_tsc -= lapic_timer_advance_cycles; 7092 else 7093 delta_tsc = 0; 7094 7095 /* Convert to host delta tsc if tsc scaling is enabled */ 7096 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7097 delta_tsc && u64_shl_div_u64(delta_tsc, 7098 kvm_tsc_scaling_ratio_frac_bits, 7099 vcpu->arch.tsc_scaling_ratio, &delta_tsc)) 7100 return -ERANGE; 7101 7102 /* 7103 * If the delta tsc can't fit in the 32 bit after the multi shift, 7104 * we can't use the preemption timer. 7105 * It's possible that it fits on later vmentries, but checking 7106 * on every vmentry is costly so we just use an hrtimer. 7107 */ 7108 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7109 return -ERANGE; 7110 7111 vmx->hv_deadline_tsc = tscl + delta_tsc; 7112 *expired = !delta_tsc; 7113 return 0; 7114 } 7115 7116 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7117 { 7118 to_vmx(vcpu)->hv_deadline_tsc = -1; 7119 } 7120 #endif 7121 7122 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7123 { 7124 if (!kvm_pause_in_guest(vcpu->kvm)) 7125 shrink_ple_window(vcpu); 7126 } 7127 7128 static void vmx_slot_enable_log_dirty(struct kvm *kvm, 7129 struct kvm_memory_slot *slot) 7130 { 7131 kvm_mmu_slot_leaf_clear_dirty(kvm, slot); 7132 kvm_mmu_slot_largepage_remove_write_access(kvm, slot); 7133 } 7134 7135 static void vmx_slot_disable_log_dirty(struct kvm *kvm, 7136 struct kvm_memory_slot *slot) 7137 { 7138 kvm_mmu_slot_set_dirty(kvm, slot); 7139 } 7140 7141 static void vmx_flush_log_dirty(struct kvm *kvm) 7142 { 7143 kvm_flush_pml_buffers(kvm); 7144 } 7145 7146 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu) 7147 { 7148 struct vmcs12 *vmcs12; 7149 struct vcpu_vmx *vmx = to_vmx(vcpu); 7150 gpa_t gpa, dst; 7151 7152 if (is_guest_mode(vcpu)) { 7153 WARN_ON_ONCE(vmx->nested.pml_full); 7154 7155 /* 7156 * Check if PML is enabled for the nested guest. 7157 * Whether eptp bit 6 is set is already checked 7158 * as part of A/D emulation. 7159 */ 7160 vmcs12 = get_vmcs12(vcpu); 7161 if (!nested_cpu_has_pml(vmcs12)) 7162 return 0; 7163 7164 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) { 7165 vmx->nested.pml_full = true; 7166 return 1; 7167 } 7168 7169 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull; 7170 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index; 7171 7172 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa, 7173 offset_in_page(dst), sizeof(gpa))) 7174 return 0; 7175 7176 vmcs12->guest_pml_index--; 7177 } 7178 7179 return 0; 7180 } 7181 7182 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm, 7183 struct kvm_memory_slot *memslot, 7184 gfn_t offset, unsigned long mask) 7185 { 7186 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask); 7187 } 7188 7189 static void __pi_post_block(struct kvm_vcpu *vcpu) 7190 { 7191 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 7192 struct pi_desc old, new; 7193 unsigned int dest; 7194 7195 do { 7196 old.control = new.control = pi_desc->control; 7197 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR, 7198 "Wakeup handler not enabled while the VCPU is blocked\n"); 7199 7200 dest = cpu_physical_id(vcpu->cpu); 7201 7202 if (x2apic_enabled()) 7203 new.ndst = dest; 7204 else 7205 new.ndst = (dest << 8) & 0xFF00; 7206 7207 /* set 'NV' to 'notification vector' */ 7208 new.nv = POSTED_INTR_VECTOR; 7209 } while (cmpxchg64(&pi_desc->control, old.control, 7210 new.control) != old.control); 7211 7212 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) { 7213 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); 7214 list_del(&vcpu->blocked_vcpu_list); 7215 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); 7216 vcpu->pre_pcpu = -1; 7217 } 7218 } 7219 7220 /* 7221 * This routine does the following things for vCPU which is going 7222 * to be blocked if VT-d PI is enabled. 7223 * - Store the vCPU to the wakeup list, so when interrupts happen 7224 * we can find the right vCPU to wake up. 7225 * - Change the Posted-interrupt descriptor as below: 7226 * 'NDST' <-- vcpu->pre_pcpu 7227 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR 7228 * - If 'ON' is set during this process, which means at least one 7229 * interrupt is posted for this vCPU, we cannot block it, in 7230 * this case, return 1, otherwise, return 0. 7231 * 7232 */ 7233 static int pi_pre_block(struct kvm_vcpu *vcpu) 7234 { 7235 unsigned int dest; 7236 struct pi_desc old, new; 7237 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 7238 7239 if (!kvm_arch_has_assigned_device(vcpu->kvm) || 7240 !irq_remapping_cap(IRQ_POSTING_CAP) || 7241 !kvm_vcpu_apicv_active(vcpu)) 7242 return 0; 7243 7244 WARN_ON(irqs_disabled()); 7245 local_irq_disable(); 7246 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) { 7247 vcpu->pre_pcpu = vcpu->cpu; 7248 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); 7249 list_add_tail(&vcpu->blocked_vcpu_list, 7250 &per_cpu(blocked_vcpu_on_cpu, 7251 vcpu->pre_pcpu)); 7252 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); 7253 } 7254 7255 do { 7256 old.control = new.control = pi_desc->control; 7257 7258 WARN((pi_desc->sn == 1), 7259 "Warning: SN field of posted-interrupts " 7260 "is set before blocking\n"); 7261 7262 /* 7263 * Since vCPU can be preempted during this process, 7264 * vcpu->cpu could be different with pre_pcpu, we 7265 * need to set pre_pcpu as the destination of wakeup 7266 * notification event, then we can find the right vCPU 7267 * to wakeup in wakeup handler if interrupts happen 7268 * when the vCPU is in blocked state. 7269 */ 7270 dest = cpu_physical_id(vcpu->pre_pcpu); 7271 7272 if (x2apic_enabled()) 7273 new.ndst = dest; 7274 else 7275 new.ndst = (dest << 8) & 0xFF00; 7276 7277 /* set 'NV' to 'wakeup vector' */ 7278 new.nv = POSTED_INTR_WAKEUP_VECTOR; 7279 } while (cmpxchg64(&pi_desc->control, old.control, 7280 new.control) != old.control); 7281 7282 /* We should not block the vCPU if an interrupt is posted for it. */ 7283 if (pi_test_on(pi_desc) == 1) 7284 __pi_post_block(vcpu); 7285 7286 local_irq_enable(); 7287 return (vcpu->pre_pcpu == -1); 7288 } 7289 7290 static int vmx_pre_block(struct kvm_vcpu *vcpu) 7291 { 7292 if (pi_pre_block(vcpu)) 7293 return 1; 7294 7295 if (kvm_lapic_hv_timer_in_use(vcpu)) 7296 kvm_lapic_switch_to_sw_timer(vcpu); 7297 7298 return 0; 7299 } 7300 7301 static void pi_post_block(struct kvm_vcpu *vcpu) 7302 { 7303 if (vcpu->pre_pcpu == -1) 7304 return; 7305 7306 WARN_ON(irqs_disabled()); 7307 local_irq_disable(); 7308 __pi_post_block(vcpu); 7309 local_irq_enable(); 7310 } 7311 7312 static void vmx_post_block(struct kvm_vcpu *vcpu) 7313 { 7314 if (kvm_x86_ops->set_hv_timer) 7315 kvm_lapic_switch_to_hv_timer(vcpu); 7316 7317 pi_post_block(vcpu); 7318 } 7319 7320 /* 7321 * vmx_update_pi_irte - set IRTE for Posted-Interrupts 7322 * 7323 * @kvm: kvm 7324 * @host_irq: host irq of the interrupt 7325 * @guest_irq: gsi of the interrupt 7326 * @set: set or unset PI 7327 * returns 0 on success, < 0 on failure 7328 */ 7329 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq, 7330 uint32_t guest_irq, bool set) 7331 { 7332 struct kvm_kernel_irq_routing_entry *e; 7333 struct kvm_irq_routing_table *irq_rt; 7334 struct kvm_lapic_irq irq; 7335 struct kvm_vcpu *vcpu; 7336 struct vcpu_data vcpu_info; 7337 int idx, ret = 0; 7338 7339 if (!kvm_arch_has_assigned_device(kvm) || 7340 !irq_remapping_cap(IRQ_POSTING_CAP) || 7341 !kvm_vcpu_apicv_active(kvm->vcpus[0])) 7342 return 0; 7343 7344 idx = srcu_read_lock(&kvm->irq_srcu); 7345 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); 7346 if (guest_irq >= irq_rt->nr_rt_entries || 7347 hlist_empty(&irq_rt->map[guest_irq])) { 7348 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", 7349 guest_irq, irq_rt->nr_rt_entries); 7350 goto out; 7351 } 7352 7353 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { 7354 if (e->type != KVM_IRQ_ROUTING_MSI) 7355 continue; 7356 /* 7357 * VT-d PI cannot support posting multicast/broadcast 7358 * interrupts to a vCPU, we still use interrupt remapping 7359 * for these kind of interrupts. 7360 * 7361 * For lowest-priority interrupts, we only support 7362 * those with single CPU as the destination, e.g. user 7363 * configures the interrupts via /proc/irq or uses 7364 * irqbalance to make the interrupts single-CPU. 7365 * 7366 * We will support full lowest-priority interrupt later. 7367 */ 7368 7369 kvm_set_msi_irq(kvm, e, &irq); 7370 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) { 7371 /* 7372 * Make sure the IRTE is in remapped mode if 7373 * we don't handle it in posted mode. 7374 */ 7375 ret = irq_set_vcpu_affinity(host_irq, NULL); 7376 if (ret < 0) { 7377 printk(KERN_INFO 7378 "failed to back to remapped mode, irq: %u\n", 7379 host_irq); 7380 goto out; 7381 } 7382 7383 continue; 7384 } 7385 7386 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu)); 7387 vcpu_info.vector = irq.vector; 7388 7389 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi, 7390 vcpu_info.vector, vcpu_info.pi_desc_addr, set); 7391 7392 if (set) 7393 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info); 7394 else 7395 ret = irq_set_vcpu_affinity(host_irq, NULL); 7396 7397 if (ret < 0) { 7398 printk(KERN_INFO "%s: failed to update PI IRTE\n", 7399 __func__); 7400 goto out; 7401 } 7402 } 7403 7404 ret = 0; 7405 out: 7406 srcu_read_unlock(&kvm->irq_srcu, idx); 7407 return ret; 7408 } 7409 7410 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7411 { 7412 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7413 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7414 FEATURE_CONTROL_LMCE; 7415 else 7416 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7417 ~FEATURE_CONTROL_LMCE; 7418 } 7419 7420 static int vmx_smi_allowed(struct kvm_vcpu *vcpu) 7421 { 7422 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7423 if (to_vmx(vcpu)->nested.nested_run_pending) 7424 return 0; 7425 return 1; 7426 } 7427 7428 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7429 { 7430 struct vcpu_vmx *vmx = to_vmx(vcpu); 7431 7432 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7433 if (vmx->nested.smm.guest_mode) 7434 nested_vmx_vmexit(vcpu, -1, 0, 0); 7435 7436 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7437 vmx->nested.vmxon = false; 7438 vmx_clear_hlt(vcpu); 7439 return 0; 7440 } 7441 7442 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7443 { 7444 struct vcpu_vmx *vmx = to_vmx(vcpu); 7445 int ret; 7446 7447 if (vmx->nested.smm.vmxon) { 7448 vmx->nested.vmxon = true; 7449 vmx->nested.smm.vmxon = false; 7450 } 7451 7452 if (vmx->nested.smm.guest_mode) { 7453 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7454 if (ret) 7455 return ret; 7456 7457 vmx->nested.smm.guest_mode = false; 7458 } 7459 return 0; 7460 } 7461 7462 static int enable_smi_window(struct kvm_vcpu *vcpu) 7463 { 7464 return 0; 7465 } 7466 7467 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu) 7468 { 7469 return false; 7470 } 7471 7472 static __init int hardware_setup(void) 7473 { 7474 unsigned long host_bndcfgs; 7475 struct desc_ptr dt; 7476 int r, i; 7477 7478 rdmsrl_safe(MSR_EFER, &host_efer); 7479 7480 store_idt(&dt); 7481 host_idt_base = dt.address; 7482 7483 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) 7484 kvm_define_shared_msr(i, vmx_msr_index[i]); 7485 7486 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7487 return -EIO; 7488 7489 if (boot_cpu_has(X86_FEATURE_NX)) 7490 kvm_enable_efer_bits(EFER_NX); 7491 7492 if (boot_cpu_has(X86_FEATURE_MPX)) { 7493 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7494 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7495 } 7496 7497 if (boot_cpu_has(X86_FEATURE_XSAVES)) 7498 rdmsrl(MSR_IA32_XSS, host_xss); 7499 7500 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7501 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7502 enable_vpid = 0; 7503 7504 if (!cpu_has_vmx_ept() || 7505 !cpu_has_vmx_ept_4levels() || 7506 !cpu_has_vmx_ept_mt_wb() || 7507 !cpu_has_vmx_invept_global()) 7508 enable_ept = 0; 7509 7510 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7511 enable_ept_ad_bits = 0; 7512 7513 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7514 enable_unrestricted_guest = 0; 7515 7516 if (!cpu_has_vmx_flexpriority()) 7517 flexpriority_enabled = 0; 7518 7519 if (!cpu_has_virtual_nmis()) 7520 enable_vnmi = 0; 7521 7522 /* 7523 * set_apic_access_page_addr() is used to reload apic access 7524 * page upon invalidation. No need to do anything if not 7525 * using the APIC_ACCESS_ADDR VMCS field. 7526 */ 7527 if (!flexpriority_enabled) 7528 kvm_x86_ops->set_apic_access_page_addr = NULL; 7529 7530 if (!cpu_has_vmx_tpr_shadow()) 7531 kvm_x86_ops->update_cr8_intercept = NULL; 7532 7533 if (enable_ept && !cpu_has_vmx_ept_2m_page()) 7534 kvm_disable_largepages(); 7535 7536 #if IS_ENABLED(CONFIG_HYPERV) 7537 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7538 && enable_ept) { 7539 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb; 7540 kvm_x86_ops->tlb_remote_flush_with_range = 7541 hv_remote_flush_tlb_with_range; 7542 } 7543 #endif 7544 7545 if (!cpu_has_vmx_ple()) { 7546 ple_gap = 0; 7547 ple_window = 0; 7548 ple_window_grow = 0; 7549 ple_window_max = 0; 7550 ple_window_shrink = 0; 7551 } 7552 7553 if (!cpu_has_vmx_apicv()) { 7554 enable_apicv = 0; 7555 kvm_x86_ops->sync_pir_to_irr = NULL; 7556 } 7557 7558 if (cpu_has_vmx_tsc_scaling()) { 7559 kvm_has_tsc_control = true; 7560 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7561 kvm_tsc_scaling_ratio_frac_bits = 48; 7562 } 7563 7564 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7565 7566 if (enable_ept) 7567 vmx_enable_tdp(); 7568 else 7569 kvm_disable_tdp(); 7570 7571 /* 7572 * Only enable PML when hardware supports PML feature, and both EPT 7573 * and EPT A/D bit features are enabled -- PML depends on them to work. 7574 */ 7575 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 7576 enable_pml = 0; 7577 7578 if (!enable_pml) { 7579 kvm_x86_ops->slot_enable_log_dirty = NULL; 7580 kvm_x86_ops->slot_disable_log_dirty = NULL; 7581 kvm_x86_ops->flush_log_dirty = NULL; 7582 kvm_x86_ops->enable_log_dirty_pt_masked = NULL; 7583 } 7584 7585 if (!cpu_has_vmx_preemption_timer()) 7586 enable_preemption_timer = false; 7587 7588 if (enable_preemption_timer) { 7589 u64 use_timer_freq = 5000ULL * 1000 * 1000; 7590 u64 vmx_msr; 7591 7592 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 7593 cpu_preemption_timer_multi = 7594 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 7595 7596 if (tsc_khz) 7597 use_timer_freq = (u64)tsc_khz * 1000; 7598 use_timer_freq >>= cpu_preemption_timer_multi; 7599 7600 /* 7601 * KVM "disables" the preemption timer by setting it to its max 7602 * value. Don't use the timer if it might cause spurious exits 7603 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 7604 */ 7605 if (use_timer_freq > 0xffffffffu / 10) 7606 enable_preemption_timer = false; 7607 } 7608 7609 if (!enable_preemption_timer) { 7610 kvm_x86_ops->set_hv_timer = NULL; 7611 kvm_x86_ops->cancel_hv_timer = NULL; 7612 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit; 7613 } 7614 7615 kvm_set_posted_intr_wakeup_handler(wakeup_handler); 7616 7617 kvm_mce_cap_supported |= MCG_LMCE_P; 7618 7619 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 7620 return -EINVAL; 7621 if (!enable_ept || !cpu_has_vmx_intel_pt()) 7622 pt_mode = PT_MODE_SYSTEM; 7623 7624 if (nested) { 7625 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 7626 vmx_capability.ept, enable_apicv); 7627 7628 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 7629 if (r) 7630 return r; 7631 } 7632 7633 r = alloc_kvm_area(); 7634 if (r) 7635 nested_vmx_hardware_unsetup(); 7636 return r; 7637 } 7638 7639 static __exit void hardware_unsetup(void) 7640 { 7641 if (nested) 7642 nested_vmx_hardware_unsetup(); 7643 7644 free_kvm_area(); 7645 } 7646 7647 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = { 7648 .cpu_has_kvm_support = cpu_has_kvm_support, 7649 .disabled_by_bios = vmx_disabled_by_bios, 7650 .hardware_setup = hardware_setup, 7651 .hardware_unsetup = hardware_unsetup, 7652 .check_processor_compatibility = vmx_check_processor_compat, 7653 .hardware_enable = hardware_enable, 7654 .hardware_disable = hardware_disable, 7655 .cpu_has_accelerated_tpr = report_flexpriority, 7656 .has_emulated_msr = vmx_has_emulated_msr, 7657 7658 .vm_init = vmx_vm_init, 7659 .vm_alloc = vmx_vm_alloc, 7660 .vm_free = vmx_vm_free, 7661 7662 .vcpu_create = vmx_create_vcpu, 7663 .vcpu_free = vmx_free_vcpu, 7664 .vcpu_reset = vmx_vcpu_reset, 7665 7666 .prepare_guest_switch = vmx_prepare_switch_to_guest, 7667 .vcpu_load = vmx_vcpu_load, 7668 .vcpu_put = vmx_vcpu_put, 7669 7670 .update_bp_intercept = update_exception_bitmap, 7671 .get_msr_feature = vmx_get_msr_feature, 7672 .get_msr = vmx_get_msr, 7673 .set_msr = vmx_set_msr, 7674 .get_segment_base = vmx_get_segment_base, 7675 .get_segment = vmx_get_segment, 7676 .set_segment = vmx_set_segment, 7677 .get_cpl = vmx_get_cpl, 7678 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7679 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits, 7680 .decache_cr3 = vmx_decache_cr3, 7681 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, 7682 .set_cr0 = vmx_set_cr0, 7683 .set_cr3 = vmx_set_cr3, 7684 .set_cr4 = vmx_set_cr4, 7685 .set_efer = vmx_set_efer, 7686 .get_idt = vmx_get_idt, 7687 .set_idt = vmx_set_idt, 7688 .get_gdt = vmx_get_gdt, 7689 .set_gdt = vmx_set_gdt, 7690 .get_dr6 = vmx_get_dr6, 7691 .set_dr6 = vmx_set_dr6, 7692 .set_dr7 = vmx_set_dr7, 7693 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7694 .cache_reg = vmx_cache_reg, 7695 .get_rflags = vmx_get_rflags, 7696 .set_rflags = vmx_set_rflags, 7697 7698 .tlb_flush = vmx_flush_tlb, 7699 .tlb_flush_gva = vmx_flush_tlb_gva, 7700 7701 .run = vmx_vcpu_run, 7702 .handle_exit = vmx_handle_exit, 7703 .skip_emulated_instruction = skip_emulated_instruction, 7704 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7705 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7706 .patch_hypercall = vmx_patch_hypercall, 7707 .set_irq = vmx_inject_irq, 7708 .set_nmi = vmx_inject_nmi, 7709 .queue_exception = vmx_queue_exception, 7710 .cancel_injection = vmx_cancel_injection, 7711 .interrupt_allowed = vmx_interrupt_allowed, 7712 .nmi_allowed = vmx_nmi_allowed, 7713 .get_nmi_mask = vmx_get_nmi_mask, 7714 .set_nmi_mask = vmx_set_nmi_mask, 7715 .enable_nmi_window = enable_nmi_window, 7716 .enable_irq_window = enable_irq_window, 7717 .update_cr8_intercept = update_cr8_intercept, 7718 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7719 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7720 .get_enable_apicv = vmx_get_enable_apicv, 7721 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7722 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7723 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7724 .hwapic_irr_update = vmx_hwapic_irr_update, 7725 .hwapic_isr_update = vmx_hwapic_isr_update, 7726 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7727 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7728 .deliver_posted_interrupt = vmx_deliver_posted_interrupt, 7729 7730 .set_tss_addr = vmx_set_tss_addr, 7731 .set_identity_map_addr = vmx_set_identity_map_addr, 7732 .get_tdp_level = get_ept_level, 7733 .get_mt_mask = vmx_get_mt_mask, 7734 7735 .get_exit_info = vmx_get_exit_info, 7736 7737 .get_lpage_level = vmx_get_lpage_level, 7738 7739 .cpuid_update = vmx_cpuid_update, 7740 7741 .rdtscp_supported = vmx_rdtscp_supported, 7742 .invpcid_supported = vmx_invpcid_supported, 7743 7744 .set_supported_cpuid = vmx_set_supported_cpuid, 7745 7746 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7747 7748 .read_l1_tsc_offset = vmx_read_l1_tsc_offset, 7749 .write_l1_tsc_offset = vmx_write_l1_tsc_offset, 7750 7751 .set_tdp_cr3 = vmx_set_cr3, 7752 7753 .check_intercept = vmx_check_intercept, 7754 .handle_exit_irqoff = vmx_handle_exit_irqoff, 7755 .mpx_supported = vmx_mpx_supported, 7756 .xsaves_supported = vmx_xsaves_supported, 7757 .umip_emulated = vmx_umip_emulated, 7758 .pt_supported = vmx_pt_supported, 7759 7760 .request_immediate_exit = vmx_request_immediate_exit, 7761 7762 .sched_in = vmx_sched_in, 7763 7764 .slot_enable_log_dirty = vmx_slot_enable_log_dirty, 7765 .slot_disable_log_dirty = vmx_slot_disable_log_dirty, 7766 .flush_log_dirty = vmx_flush_log_dirty, 7767 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked, 7768 .write_log_dirty = vmx_write_pml_buffer, 7769 7770 .pre_block = vmx_pre_block, 7771 .post_block = vmx_post_block, 7772 7773 .pmu_ops = &intel_pmu_ops, 7774 7775 .update_pi_irte = vmx_update_pi_irte, 7776 7777 #ifdef CONFIG_X86_64 7778 .set_hv_timer = vmx_set_hv_timer, 7779 .cancel_hv_timer = vmx_cancel_hv_timer, 7780 #endif 7781 7782 .setup_mce = vmx_setup_mce, 7783 7784 .smi_allowed = vmx_smi_allowed, 7785 .pre_enter_smm = vmx_pre_enter_smm, 7786 .pre_leave_smm = vmx_pre_leave_smm, 7787 .enable_smi_window = enable_smi_window, 7788 7789 .check_nested_events = NULL, 7790 .get_nested_state = NULL, 7791 .set_nested_state = NULL, 7792 .get_vmcs12_pages = NULL, 7793 .nested_enable_evmcs = NULL, 7794 .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault, 7795 }; 7796 7797 static void vmx_cleanup_l1d_flush(void) 7798 { 7799 if (vmx_l1d_flush_pages) { 7800 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 7801 vmx_l1d_flush_pages = NULL; 7802 } 7803 /* Restore state so sysfs ignores VMX */ 7804 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 7805 } 7806 7807 static void vmx_exit(void) 7808 { 7809 #ifdef CONFIG_KEXEC_CORE 7810 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 7811 synchronize_rcu(); 7812 #endif 7813 7814 kvm_exit(); 7815 7816 #if IS_ENABLED(CONFIG_HYPERV) 7817 if (static_branch_unlikely(&enable_evmcs)) { 7818 int cpu; 7819 struct hv_vp_assist_page *vp_ap; 7820 /* 7821 * Reset everything to support using non-enlightened VMCS 7822 * access later (e.g. when we reload the module with 7823 * enlightened_vmcs=0) 7824 */ 7825 for_each_online_cpu(cpu) { 7826 vp_ap = hv_get_vp_assist_page(cpu); 7827 7828 if (!vp_ap) 7829 continue; 7830 7831 vp_ap->current_nested_vmcs = 0; 7832 vp_ap->enlighten_vmentry = 0; 7833 } 7834 7835 static_branch_disable(&enable_evmcs); 7836 } 7837 #endif 7838 vmx_cleanup_l1d_flush(); 7839 } 7840 module_exit(vmx_exit); 7841 7842 static int __init vmx_init(void) 7843 { 7844 int r; 7845 7846 #if IS_ENABLED(CONFIG_HYPERV) 7847 /* 7848 * Enlightened VMCS usage should be recommended and the host needs 7849 * to support eVMCS v1 or above. We can also disable eVMCS support 7850 * with module parameter. 7851 */ 7852 if (enlightened_vmcs && 7853 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 7854 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 7855 KVM_EVMCS_VERSION) { 7856 int cpu; 7857 7858 /* Check that we have assist pages on all online CPUs */ 7859 for_each_online_cpu(cpu) { 7860 if (!hv_get_vp_assist_page(cpu)) { 7861 enlightened_vmcs = false; 7862 break; 7863 } 7864 } 7865 7866 if (enlightened_vmcs) { 7867 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 7868 static_branch_enable(&enable_evmcs); 7869 } 7870 } else { 7871 enlightened_vmcs = false; 7872 } 7873 #endif 7874 7875 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), 7876 __alignof__(struct vcpu_vmx), THIS_MODULE); 7877 if (r) 7878 return r; 7879 7880 /* 7881 * Must be called after kvm_init() so enable_ept is properly set 7882 * up. Hand the parameter mitigation value in which was stored in 7883 * the pre module init parser. If no parameter was given, it will 7884 * contain 'auto' which will be turned into the default 'cond' 7885 * mitigation mode. 7886 */ 7887 if (boot_cpu_has(X86_BUG_L1TF)) { 7888 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 7889 if (r) { 7890 vmx_exit(); 7891 return r; 7892 } 7893 } 7894 7895 #ifdef CONFIG_KEXEC_CORE 7896 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 7897 crash_vmclear_local_loaded_vmcss); 7898 #endif 7899 vmx_check_vmcs12_offsets(); 7900 7901 return 0; 7902 } 7903 module_init(vmx_init); 7904