xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision cff11abeca78aa782378401ca2800bd2194aa14e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/debugreg.h>
36 #include <asm/desc.h>
37 #include <asm/fpu/internal.h>
38 #include <asm/io.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/kexec.h>
41 #include <asm/perf_event.h>
42 #include <asm/mce.h>
43 #include <asm/mmu_context.h>
44 #include <asm/mshyperv.h>
45 #include <asm/mwait.h>
46 #include <asm/spec-ctrl.h>
47 #include <asm/virtext.h>
48 #include <asm/vmx.h>
49 
50 #include "capabilities.h"
51 #include "cpuid.h"
52 #include "evmcs.h"
53 #include "irq.h"
54 #include "kvm_cache_regs.h"
55 #include "lapic.h"
56 #include "mmu.h"
57 #include "nested.h"
58 #include "ops.h"
59 #include "pmu.h"
60 #include "trace.h"
61 #include "vmcs.h"
62 #include "vmcs12.h"
63 #include "vmx.h"
64 #include "x86.h"
65 
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68 
69 #ifdef MODULE
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
72 	{}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 #endif
76 
77 bool __read_mostly enable_vpid = 1;
78 module_param_named(vpid, enable_vpid, bool, 0444);
79 
80 static bool __read_mostly enable_vnmi = 1;
81 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
82 
83 bool __read_mostly flexpriority_enabled = 1;
84 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
85 
86 bool __read_mostly enable_ept = 1;
87 module_param_named(ept, enable_ept, bool, S_IRUGO);
88 
89 bool __read_mostly enable_unrestricted_guest = 1;
90 module_param_named(unrestricted_guest,
91 			enable_unrestricted_guest, bool, S_IRUGO);
92 
93 bool __read_mostly enable_ept_ad_bits = 1;
94 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
95 
96 static bool __read_mostly emulate_invalid_guest_state = true;
97 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
98 
99 static bool __read_mostly fasteoi = 1;
100 module_param(fasteoi, bool, S_IRUGO);
101 
102 bool __read_mostly enable_apicv = 1;
103 module_param(enable_apicv, bool, S_IRUGO);
104 
105 /*
106  * If nested=1, nested virtualization is supported, i.e., guests may use
107  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
108  * use VMX instructions.
109  */
110 static bool __read_mostly nested = 1;
111 module_param(nested, bool, S_IRUGO);
112 
113 bool __read_mostly enable_pml = 1;
114 module_param_named(pml, enable_pml, bool, S_IRUGO);
115 
116 static bool __read_mostly dump_invalid_vmcs = 0;
117 module_param(dump_invalid_vmcs, bool, 0644);
118 
119 #define MSR_BITMAP_MODE_X2APIC		1
120 #define MSR_BITMAP_MODE_X2APIC_APICV	2
121 
122 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
123 
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
127 #ifdef CONFIG_X86_64
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #endif
130 
131 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
132 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
133 #define KVM_VM_CR0_ALWAYS_ON				\
134 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
135 	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
136 #define KVM_CR4_GUEST_OWNED_BITS				      \
137 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
138 	 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
139 
140 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
141 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
142 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
143 
144 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
145 
146 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
147 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
148 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
149 	RTIT_STATUS_BYTECNT))
150 
151 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
152 	(~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
153 
154 /*
155  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
156  * ple_gap:    upper bound on the amount of time between two successive
157  *             executions of PAUSE in a loop. Also indicate if ple enabled.
158  *             According to test, this time is usually smaller than 128 cycles.
159  * ple_window: upper bound on the amount of time a guest is allowed to execute
160  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
161  *             less than 2^12 cycles
162  * Time is measured based on a counter that runs at the same rate as the TSC,
163  * refer SDM volume 3b section 21.6.13 & 22.1.3.
164  */
165 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
166 module_param(ple_gap, uint, 0444);
167 
168 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
169 module_param(ple_window, uint, 0444);
170 
171 /* Default doubles per-vcpu window every exit. */
172 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
173 module_param(ple_window_grow, uint, 0444);
174 
175 /* Default resets per-vcpu window every exit to ple_window. */
176 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
177 module_param(ple_window_shrink, uint, 0444);
178 
179 /* Default is to compute the maximum so we can never overflow. */
180 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
181 module_param(ple_window_max, uint, 0444);
182 
183 /* Default is SYSTEM mode, 1 for host-guest mode */
184 int __read_mostly pt_mode = PT_MODE_SYSTEM;
185 module_param(pt_mode, int, S_IRUGO);
186 
187 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
188 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
189 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
190 
191 /* Storage for pre module init parameter parsing */
192 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
193 
194 static const struct {
195 	const char *option;
196 	bool for_parse;
197 } vmentry_l1d_param[] = {
198 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
199 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
200 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
201 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
202 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
203 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
204 };
205 
206 #define L1D_CACHE_ORDER 4
207 static void *vmx_l1d_flush_pages;
208 
209 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
210 {
211 	struct page *page;
212 	unsigned int i;
213 
214 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
215 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
216 		return 0;
217 	}
218 
219 	if (!enable_ept) {
220 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
221 		return 0;
222 	}
223 
224 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
225 		u64 msr;
226 
227 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
228 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
229 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
230 			return 0;
231 		}
232 	}
233 
234 	/* If set to auto use the default l1tf mitigation method */
235 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
236 		switch (l1tf_mitigation) {
237 		case L1TF_MITIGATION_OFF:
238 			l1tf = VMENTER_L1D_FLUSH_NEVER;
239 			break;
240 		case L1TF_MITIGATION_FLUSH_NOWARN:
241 		case L1TF_MITIGATION_FLUSH:
242 		case L1TF_MITIGATION_FLUSH_NOSMT:
243 			l1tf = VMENTER_L1D_FLUSH_COND;
244 			break;
245 		case L1TF_MITIGATION_FULL:
246 		case L1TF_MITIGATION_FULL_FORCE:
247 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
248 			break;
249 		}
250 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
251 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
252 	}
253 
254 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
255 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
256 		/*
257 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
258 		 * lifetime and so should not be charged to a memcg.
259 		 */
260 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
261 		if (!page)
262 			return -ENOMEM;
263 		vmx_l1d_flush_pages = page_address(page);
264 
265 		/*
266 		 * Initialize each page with a different pattern in
267 		 * order to protect against KSM in the nested
268 		 * virtualization case.
269 		 */
270 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
271 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
272 			       PAGE_SIZE);
273 		}
274 	}
275 
276 	l1tf_vmx_mitigation = l1tf;
277 
278 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
279 		static_branch_enable(&vmx_l1d_should_flush);
280 	else
281 		static_branch_disable(&vmx_l1d_should_flush);
282 
283 	if (l1tf == VMENTER_L1D_FLUSH_COND)
284 		static_branch_enable(&vmx_l1d_flush_cond);
285 	else
286 		static_branch_disable(&vmx_l1d_flush_cond);
287 	return 0;
288 }
289 
290 static int vmentry_l1d_flush_parse(const char *s)
291 {
292 	unsigned int i;
293 
294 	if (s) {
295 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
296 			if (vmentry_l1d_param[i].for_parse &&
297 			    sysfs_streq(s, vmentry_l1d_param[i].option))
298 				return i;
299 		}
300 	}
301 	return -EINVAL;
302 }
303 
304 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
305 {
306 	int l1tf, ret;
307 
308 	l1tf = vmentry_l1d_flush_parse(s);
309 	if (l1tf < 0)
310 		return l1tf;
311 
312 	if (!boot_cpu_has(X86_BUG_L1TF))
313 		return 0;
314 
315 	/*
316 	 * Has vmx_init() run already? If not then this is the pre init
317 	 * parameter parsing. In that case just store the value and let
318 	 * vmx_init() do the proper setup after enable_ept has been
319 	 * established.
320 	 */
321 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
322 		vmentry_l1d_flush_param = l1tf;
323 		return 0;
324 	}
325 
326 	mutex_lock(&vmx_l1d_flush_mutex);
327 	ret = vmx_setup_l1d_flush(l1tf);
328 	mutex_unlock(&vmx_l1d_flush_mutex);
329 	return ret;
330 }
331 
332 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
333 {
334 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
335 		return sprintf(s, "???\n");
336 
337 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
338 }
339 
340 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
341 	.set = vmentry_l1d_flush_set,
342 	.get = vmentry_l1d_flush_get,
343 };
344 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
345 
346 static bool guest_state_valid(struct kvm_vcpu *vcpu);
347 static u32 vmx_segment_access_rights(struct kvm_segment *var);
348 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
349 							  u32 msr, int type);
350 
351 void vmx_vmexit(void);
352 
353 #define vmx_insn_failed(fmt...)		\
354 do {					\
355 	WARN_ONCE(1, fmt);		\
356 	pr_warn_ratelimited(fmt);	\
357 } while (0)
358 
359 asmlinkage void vmread_error(unsigned long field, bool fault)
360 {
361 	if (fault)
362 		kvm_spurious_fault();
363 	else
364 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
365 }
366 
367 noinline void vmwrite_error(unsigned long field, unsigned long value)
368 {
369 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
370 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
371 }
372 
373 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
374 {
375 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
376 }
377 
378 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
379 {
380 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
381 }
382 
383 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
384 {
385 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
386 			ext, vpid, gva);
387 }
388 
389 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
390 {
391 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
392 			ext, eptp, gpa);
393 }
394 
395 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
396 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
397 /*
398  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
399  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
400  */
401 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
402 
403 /*
404  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
405  * can find which vCPU should be waken up.
406  */
407 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
408 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
409 
410 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
411 static DEFINE_SPINLOCK(vmx_vpid_lock);
412 
413 struct vmcs_config vmcs_config;
414 struct vmx_capability vmx_capability;
415 
416 #define VMX_SEGMENT_FIELD(seg)					\
417 	[VCPU_SREG_##seg] = {                                   \
418 		.selector = GUEST_##seg##_SELECTOR,		\
419 		.base = GUEST_##seg##_BASE,		   	\
420 		.limit = GUEST_##seg##_LIMIT,		   	\
421 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
422 	}
423 
424 static const struct kvm_vmx_segment_field {
425 	unsigned selector;
426 	unsigned base;
427 	unsigned limit;
428 	unsigned ar_bytes;
429 } kvm_vmx_segment_fields[] = {
430 	VMX_SEGMENT_FIELD(CS),
431 	VMX_SEGMENT_FIELD(DS),
432 	VMX_SEGMENT_FIELD(ES),
433 	VMX_SEGMENT_FIELD(FS),
434 	VMX_SEGMENT_FIELD(GS),
435 	VMX_SEGMENT_FIELD(SS),
436 	VMX_SEGMENT_FIELD(TR),
437 	VMX_SEGMENT_FIELD(LDTR),
438 };
439 
440 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
441 {
442 	vmx->segment_cache.bitmask = 0;
443 }
444 
445 static unsigned long host_idt_base;
446 
447 /*
448  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
449  * will emulate SYSCALL in legacy mode if the vendor string in guest
450  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
451  * support this emulation, IA32_STAR must always be included in
452  * vmx_msr_index[], even in i386 builds.
453  */
454 const u32 vmx_msr_index[] = {
455 #ifdef CONFIG_X86_64
456 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
457 #endif
458 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
459 	MSR_IA32_TSX_CTRL,
460 };
461 
462 #if IS_ENABLED(CONFIG_HYPERV)
463 static bool __read_mostly enlightened_vmcs = true;
464 module_param(enlightened_vmcs, bool, 0444);
465 
466 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
467 static void check_ept_pointer_match(struct kvm *kvm)
468 {
469 	struct kvm_vcpu *vcpu;
470 	u64 tmp_eptp = INVALID_PAGE;
471 	int i;
472 
473 	kvm_for_each_vcpu(i, vcpu, kvm) {
474 		if (!VALID_PAGE(tmp_eptp)) {
475 			tmp_eptp = to_vmx(vcpu)->ept_pointer;
476 		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
477 			to_kvm_vmx(kvm)->ept_pointers_match
478 				= EPT_POINTERS_MISMATCH;
479 			return;
480 		}
481 	}
482 
483 	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
484 }
485 
486 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
487 		void *data)
488 {
489 	struct kvm_tlb_range *range = data;
490 
491 	return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
492 			range->pages);
493 }
494 
495 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
496 		struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
497 {
498 	u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
499 
500 	/*
501 	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
502 	 * of the base of EPT PML4 table, strip off EPT configuration
503 	 * information.
504 	 */
505 	if (range)
506 		return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
507 				kvm_fill_hv_flush_list_func, (void *)range);
508 	else
509 		return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
510 }
511 
512 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
513 		struct kvm_tlb_range *range)
514 {
515 	struct kvm_vcpu *vcpu;
516 	int ret = 0, i;
517 
518 	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
519 
520 	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
521 		check_ept_pointer_match(kvm);
522 
523 	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
524 		kvm_for_each_vcpu(i, vcpu, kvm) {
525 			/* If ept_pointer is invalid pointer, bypass flush request. */
526 			if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
527 				ret |= __hv_remote_flush_tlb_with_range(
528 					kvm, vcpu, range);
529 		}
530 	} else {
531 		ret = __hv_remote_flush_tlb_with_range(kvm,
532 				kvm_get_vcpu(kvm, 0), range);
533 	}
534 
535 	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
536 	return ret;
537 }
538 static int hv_remote_flush_tlb(struct kvm *kvm)
539 {
540 	return hv_remote_flush_tlb_with_range(kvm, NULL);
541 }
542 
543 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
544 {
545 	struct hv_enlightened_vmcs *evmcs;
546 	struct hv_partition_assist_pg **p_hv_pa_pg =
547 			&vcpu->kvm->arch.hyperv.hv_pa_pg;
548 	/*
549 	 * Synthetic VM-Exit is not enabled in current code and so All
550 	 * evmcs in singe VM shares same assist page.
551 	 */
552 	if (!*p_hv_pa_pg)
553 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
554 
555 	if (!*p_hv_pa_pg)
556 		return -ENOMEM;
557 
558 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
559 
560 	evmcs->partition_assist_page =
561 		__pa(*p_hv_pa_pg);
562 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
563 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
564 
565 	return 0;
566 }
567 
568 #endif /* IS_ENABLED(CONFIG_HYPERV) */
569 
570 /*
571  * Comment's format: document - errata name - stepping - processor name.
572  * Refer from
573  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
574  */
575 static u32 vmx_preemption_cpu_tfms[] = {
576 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
577 0x000206E6,
578 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
579 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
580 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
581 0x00020652,
582 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
583 0x00020655,
584 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
585 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
586 /*
587  * 320767.pdf - AAP86  - B1 -
588  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
589  */
590 0x000106E5,
591 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
592 0x000106A0,
593 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
594 0x000106A1,
595 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
596 0x000106A4,
597  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
598  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
599  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
600 0x000106A5,
601  /* Xeon E3-1220 V2 */
602 0x000306A8,
603 };
604 
605 static inline bool cpu_has_broken_vmx_preemption_timer(void)
606 {
607 	u32 eax = cpuid_eax(0x00000001), i;
608 
609 	/* Clear the reserved bits */
610 	eax &= ~(0x3U << 14 | 0xfU << 28);
611 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
612 		if (eax == vmx_preemption_cpu_tfms[i])
613 			return true;
614 
615 	return false;
616 }
617 
618 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
619 {
620 	return flexpriority_enabled && lapic_in_kernel(vcpu);
621 }
622 
623 static inline bool report_flexpriority(void)
624 {
625 	return flexpriority_enabled;
626 }
627 
628 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
629 {
630 	int i;
631 
632 	for (i = 0; i < vmx->nmsrs; ++i)
633 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
634 			return i;
635 	return -1;
636 }
637 
638 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
639 {
640 	int i;
641 
642 	i = __find_msr_index(vmx, msr);
643 	if (i >= 0)
644 		return &vmx->guest_msrs[i];
645 	return NULL;
646 }
647 
648 static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data)
649 {
650 	int ret = 0;
651 
652 	u64 old_msr_data = msr->data;
653 	msr->data = data;
654 	if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
655 		preempt_disable();
656 		ret = kvm_set_shared_msr(msr->index, msr->data,
657 					 msr->mask);
658 		preempt_enable();
659 		if (ret)
660 			msr->data = old_msr_data;
661 	}
662 	return ret;
663 }
664 
665 #ifdef CONFIG_KEXEC_CORE
666 static void crash_vmclear_local_loaded_vmcss(void)
667 {
668 	int cpu = raw_smp_processor_id();
669 	struct loaded_vmcs *v;
670 
671 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
672 			    loaded_vmcss_on_cpu_link)
673 		vmcs_clear(v->vmcs);
674 }
675 #endif /* CONFIG_KEXEC_CORE */
676 
677 static void __loaded_vmcs_clear(void *arg)
678 {
679 	struct loaded_vmcs *loaded_vmcs = arg;
680 	int cpu = raw_smp_processor_id();
681 
682 	if (loaded_vmcs->cpu != cpu)
683 		return; /* vcpu migration can race with cpu offline */
684 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
685 		per_cpu(current_vmcs, cpu) = NULL;
686 
687 	vmcs_clear(loaded_vmcs->vmcs);
688 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
689 		vmcs_clear(loaded_vmcs->shadow_vmcs);
690 
691 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
692 
693 	/*
694 	 * Ensure all writes to loaded_vmcs, including deleting it from its
695 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
696 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
697 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
698 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
699 	 */
700 	smp_wmb();
701 
702 	loaded_vmcs->cpu = -1;
703 	loaded_vmcs->launched = 0;
704 }
705 
706 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
707 {
708 	int cpu = loaded_vmcs->cpu;
709 
710 	if (cpu != -1)
711 		smp_call_function_single(cpu,
712 			 __loaded_vmcs_clear, loaded_vmcs, 1);
713 }
714 
715 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
716 				       unsigned field)
717 {
718 	bool ret;
719 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
720 
721 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
722 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
723 		vmx->segment_cache.bitmask = 0;
724 	}
725 	ret = vmx->segment_cache.bitmask & mask;
726 	vmx->segment_cache.bitmask |= mask;
727 	return ret;
728 }
729 
730 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
731 {
732 	u16 *p = &vmx->segment_cache.seg[seg].selector;
733 
734 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
735 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
736 	return *p;
737 }
738 
739 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
740 {
741 	ulong *p = &vmx->segment_cache.seg[seg].base;
742 
743 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
744 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
745 	return *p;
746 }
747 
748 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
749 {
750 	u32 *p = &vmx->segment_cache.seg[seg].limit;
751 
752 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
753 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
754 	return *p;
755 }
756 
757 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
758 {
759 	u32 *p = &vmx->segment_cache.seg[seg].ar;
760 
761 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
762 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
763 	return *p;
764 }
765 
766 void update_exception_bitmap(struct kvm_vcpu *vcpu)
767 {
768 	u32 eb;
769 
770 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
771 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
772 	/*
773 	 * Guest access to VMware backdoor ports could legitimately
774 	 * trigger #GP because of TSS I/O permission bitmap.
775 	 * We intercept those #GP and allow access to them anyway
776 	 * as VMware does.
777 	 */
778 	if (enable_vmware_backdoor)
779 		eb |= (1u << GP_VECTOR);
780 	if ((vcpu->guest_debug &
781 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
782 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
783 		eb |= 1u << BP_VECTOR;
784 	if (to_vmx(vcpu)->rmode.vm86_active)
785 		eb = ~0;
786 	if (enable_ept)
787 		eb &= ~(1u << PF_VECTOR);
788 
789 	/* When we are running a nested L2 guest and L1 specified for it a
790 	 * certain exception bitmap, we must trap the same exceptions and pass
791 	 * them to L1. When running L2, we will only handle the exceptions
792 	 * specified above if L1 did not want them.
793 	 */
794 	if (is_guest_mode(vcpu))
795 		eb |= get_vmcs12(vcpu)->exception_bitmap;
796 
797 	vmcs_write32(EXCEPTION_BITMAP, eb);
798 }
799 
800 /*
801  * Check if MSR is intercepted for currently loaded MSR bitmap.
802  */
803 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
804 {
805 	unsigned long *msr_bitmap;
806 	int f = sizeof(unsigned long);
807 
808 	if (!cpu_has_vmx_msr_bitmap())
809 		return true;
810 
811 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
812 
813 	if (msr <= 0x1fff) {
814 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
815 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
816 		msr &= 0x1fff;
817 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
818 	}
819 
820 	return true;
821 }
822 
823 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
824 		unsigned long entry, unsigned long exit)
825 {
826 	vm_entry_controls_clearbit(vmx, entry);
827 	vm_exit_controls_clearbit(vmx, exit);
828 }
829 
830 int vmx_find_msr_index(struct vmx_msrs *m, u32 msr)
831 {
832 	unsigned int i;
833 
834 	for (i = 0; i < m->nr; ++i) {
835 		if (m->val[i].index == msr)
836 			return i;
837 	}
838 	return -ENOENT;
839 }
840 
841 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
842 {
843 	int i;
844 	struct msr_autoload *m = &vmx->msr_autoload;
845 
846 	switch (msr) {
847 	case MSR_EFER:
848 		if (cpu_has_load_ia32_efer()) {
849 			clear_atomic_switch_msr_special(vmx,
850 					VM_ENTRY_LOAD_IA32_EFER,
851 					VM_EXIT_LOAD_IA32_EFER);
852 			return;
853 		}
854 		break;
855 	case MSR_CORE_PERF_GLOBAL_CTRL:
856 		if (cpu_has_load_perf_global_ctrl()) {
857 			clear_atomic_switch_msr_special(vmx,
858 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
859 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
860 			return;
861 		}
862 		break;
863 	}
864 	i = vmx_find_msr_index(&m->guest, msr);
865 	if (i < 0)
866 		goto skip_guest;
867 	--m->guest.nr;
868 	m->guest.val[i] = m->guest.val[m->guest.nr];
869 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
870 
871 skip_guest:
872 	i = vmx_find_msr_index(&m->host, msr);
873 	if (i < 0)
874 		return;
875 
876 	--m->host.nr;
877 	m->host.val[i] = m->host.val[m->host.nr];
878 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
879 }
880 
881 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
882 		unsigned long entry, unsigned long exit,
883 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
884 		u64 guest_val, u64 host_val)
885 {
886 	vmcs_write64(guest_val_vmcs, guest_val);
887 	if (host_val_vmcs != HOST_IA32_EFER)
888 		vmcs_write64(host_val_vmcs, host_val);
889 	vm_entry_controls_setbit(vmx, entry);
890 	vm_exit_controls_setbit(vmx, exit);
891 }
892 
893 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
894 				  u64 guest_val, u64 host_val, bool entry_only)
895 {
896 	int i, j = 0;
897 	struct msr_autoload *m = &vmx->msr_autoload;
898 
899 	switch (msr) {
900 	case MSR_EFER:
901 		if (cpu_has_load_ia32_efer()) {
902 			add_atomic_switch_msr_special(vmx,
903 					VM_ENTRY_LOAD_IA32_EFER,
904 					VM_EXIT_LOAD_IA32_EFER,
905 					GUEST_IA32_EFER,
906 					HOST_IA32_EFER,
907 					guest_val, host_val);
908 			return;
909 		}
910 		break;
911 	case MSR_CORE_PERF_GLOBAL_CTRL:
912 		if (cpu_has_load_perf_global_ctrl()) {
913 			add_atomic_switch_msr_special(vmx,
914 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
915 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
916 					GUEST_IA32_PERF_GLOBAL_CTRL,
917 					HOST_IA32_PERF_GLOBAL_CTRL,
918 					guest_val, host_val);
919 			return;
920 		}
921 		break;
922 	case MSR_IA32_PEBS_ENABLE:
923 		/* PEBS needs a quiescent period after being disabled (to write
924 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
925 		 * provide that period, so a CPU could write host's record into
926 		 * guest's memory.
927 		 */
928 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
929 	}
930 
931 	i = vmx_find_msr_index(&m->guest, msr);
932 	if (!entry_only)
933 		j = vmx_find_msr_index(&m->host, msr);
934 
935 	if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) ||
936 		(j < 0 &&  m->host.nr == NR_LOADSTORE_MSRS)) {
937 		printk_once(KERN_WARNING "Not enough msr switch entries. "
938 				"Can't add msr %x\n", msr);
939 		return;
940 	}
941 	if (i < 0) {
942 		i = m->guest.nr++;
943 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
944 	}
945 	m->guest.val[i].index = msr;
946 	m->guest.val[i].value = guest_val;
947 
948 	if (entry_only)
949 		return;
950 
951 	if (j < 0) {
952 		j = m->host.nr++;
953 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
954 	}
955 	m->host.val[j].index = msr;
956 	m->host.val[j].value = host_val;
957 }
958 
959 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
960 {
961 	u64 guest_efer = vmx->vcpu.arch.efer;
962 	u64 ignore_bits = 0;
963 
964 	/* Shadow paging assumes NX to be available.  */
965 	if (!enable_ept)
966 		guest_efer |= EFER_NX;
967 
968 	/*
969 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
970 	 */
971 	ignore_bits |= EFER_SCE;
972 #ifdef CONFIG_X86_64
973 	ignore_bits |= EFER_LMA | EFER_LME;
974 	/* SCE is meaningful only in long mode on Intel */
975 	if (guest_efer & EFER_LMA)
976 		ignore_bits &= ~(u64)EFER_SCE;
977 #endif
978 
979 	/*
980 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
981 	 * On CPUs that support "load IA32_EFER", always switch EFER
982 	 * atomically, since it's faster than switching it manually.
983 	 */
984 	if (cpu_has_load_ia32_efer() ||
985 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
986 		if (!(guest_efer & EFER_LMA))
987 			guest_efer &= ~EFER_LME;
988 		if (guest_efer != host_efer)
989 			add_atomic_switch_msr(vmx, MSR_EFER,
990 					      guest_efer, host_efer, false);
991 		else
992 			clear_atomic_switch_msr(vmx, MSR_EFER);
993 		return false;
994 	} else {
995 		clear_atomic_switch_msr(vmx, MSR_EFER);
996 
997 		guest_efer &= ~ignore_bits;
998 		guest_efer |= host_efer & ignore_bits;
999 
1000 		vmx->guest_msrs[efer_offset].data = guest_efer;
1001 		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1002 
1003 		return true;
1004 	}
1005 }
1006 
1007 #ifdef CONFIG_X86_32
1008 /*
1009  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1010  * VMCS rather than the segment table.  KVM uses this helper to figure
1011  * out the current bases to poke them into the VMCS before entry.
1012  */
1013 static unsigned long segment_base(u16 selector)
1014 {
1015 	struct desc_struct *table;
1016 	unsigned long v;
1017 
1018 	if (!(selector & ~SEGMENT_RPL_MASK))
1019 		return 0;
1020 
1021 	table = get_current_gdt_ro();
1022 
1023 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1024 		u16 ldt_selector = kvm_read_ldt();
1025 
1026 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1027 			return 0;
1028 
1029 		table = (struct desc_struct *)segment_base(ldt_selector);
1030 	}
1031 	v = get_desc_base(&table[selector >> 3]);
1032 	return v;
1033 }
1034 #endif
1035 
1036 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1037 {
1038 	return vmx_pt_mode_is_host_guest() &&
1039 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1040 }
1041 
1042 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1043 {
1044 	u32 i;
1045 
1046 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1047 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1048 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1049 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1050 	for (i = 0; i < addr_range; i++) {
1051 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1052 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1053 	}
1054 }
1055 
1056 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1057 {
1058 	u32 i;
1059 
1060 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1061 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1062 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1063 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1064 	for (i = 0; i < addr_range; i++) {
1065 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1066 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1067 	}
1068 }
1069 
1070 static void pt_guest_enter(struct vcpu_vmx *vmx)
1071 {
1072 	if (vmx_pt_mode_is_system())
1073 		return;
1074 
1075 	/*
1076 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1077 	 * Save host state before VM entry.
1078 	 */
1079 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1080 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1081 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1082 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1083 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1084 	}
1085 }
1086 
1087 static void pt_guest_exit(struct vcpu_vmx *vmx)
1088 {
1089 	if (vmx_pt_mode_is_system())
1090 		return;
1091 
1092 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1093 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1094 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1095 	}
1096 
1097 	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1098 	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1099 }
1100 
1101 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1102 			unsigned long fs_base, unsigned long gs_base)
1103 {
1104 	if (unlikely(fs_sel != host->fs_sel)) {
1105 		if (!(fs_sel & 7))
1106 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1107 		else
1108 			vmcs_write16(HOST_FS_SELECTOR, 0);
1109 		host->fs_sel = fs_sel;
1110 	}
1111 	if (unlikely(gs_sel != host->gs_sel)) {
1112 		if (!(gs_sel & 7))
1113 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1114 		else
1115 			vmcs_write16(HOST_GS_SELECTOR, 0);
1116 		host->gs_sel = gs_sel;
1117 	}
1118 	if (unlikely(fs_base != host->fs_base)) {
1119 		vmcs_writel(HOST_FS_BASE, fs_base);
1120 		host->fs_base = fs_base;
1121 	}
1122 	if (unlikely(gs_base != host->gs_base)) {
1123 		vmcs_writel(HOST_GS_BASE, gs_base);
1124 		host->gs_base = gs_base;
1125 	}
1126 }
1127 
1128 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1129 {
1130 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1131 	struct vmcs_host_state *host_state;
1132 #ifdef CONFIG_X86_64
1133 	int cpu = raw_smp_processor_id();
1134 #endif
1135 	unsigned long fs_base, gs_base;
1136 	u16 fs_sel, gs_sel;
1137 	int i;
1138 
1139 	vmx->req_immediate_exit = false;
1140 
1141 	/*
1142 	 * Note that guest MSRs to be saved/restored can also be changed
1143 	 * when guest state is loaded. This happens when guest transitions
1144 	 * to/from long-mode by setting MSR_EFER.LMA.
1145 	 */
1146 	if (!vmx->guest_msrs_ready) {
1147 		vmx->guest_msrs_ready = true;
1148 		for (i = 0; i < vmx->save_nmsrs; ++i)
1149 			kvm_set_shared_msr(vmx->guest_msrs[i].index,
1150 					   vmx->guest_msrs[i].data,
1151 					   vmx->guest_msrs[i].mask);
1152 
1153 	}
1154 
1155     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1156 		nested_sync_vmcs12_to_shadow(vcpu);
1157 
1158 	if (vmx->guest_state_loaded)
1159 		return;
1160 
1161 	host_state = &vmx->loaded_vmcs->host_state;
1162 
1163 	/*
1164 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1165 	 * allow segment selectors with cpl > 0 or ti == 1.
1166 	 */
1167 	host_state->ldt_sel = kvm_read_ldt();
1168 
1169 #ifdef CONFIG_X86_64
1170 	savesegment(ds, host_state->ds_sel);
1171 	savesegment(es, host_state->es_sel);
1172 
1173 	gs_base = cpu_kernelmode_gs_base(cpu);
1174 	if (likely(is_64bit_mm(current->mm))) {
1175 		save_fsgs_for_kvm();
1176 		fs_sel = current->thread.fsindex;
1177 		gs_sel = current->thread.gsindex;
1178 		fs_base = current->thread.fsbase;
1179 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1180 	} else {
1181 		savesegment(fs, fs_sel);
1182 		savesegment(gs, gs_sel);
1183 		fs_base = read_msr(MSR_FS_BASE);
1184 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1185 	}
1186 
1187 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1188 #else
1189 	savesegment(fs, fs_sel);
1190 	savesegment(gs, gs_sel);
1191 	fs_base = segment_base(fs_sel);
1192 	gs_base = segment_base(gs_sel);
1193 #endif
1194 
1195 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1196 	vmx->guest_state_loaded = true;
1197 }
1198 
1199 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1200 {
1201 	struct vmcs_host_state *host_state;
1202 
1203 	if (!vmx->guest_state_loaded)
1204 		return;
1205 
1206 	host_state = &vmx->loaded_vmcs->host_state;
1207 
1208 	++vmx->vcpu.stat.host_state_reload;
1209 
1210 #ifdef CONFIG_X86_64
1211 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1212 #endif
1213 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1214 		kvm_load_ldt(host_state->ldt_sel);
1215 #ifdef CONFIG_X86_64
1216 		load_gs_index(host_state->gs_sel);
1217 #else
1218 		loadsegment(gs, host_state->gs_sel);
1219 #endif
1220 	}
1221 	if (host_state->fs_sel & 7)
1222 		loadsegment(fs, host_state->fs_sel);
1223 #ifdef CONFIG_X86_64
1224 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1225 		loadsegment(ds, host_state->ds_sel);
1226 		loadsegment(es, host_state->es_sel);
1227 	}
1228 #endif
1229 	invalidate_tss_limit();
1230 #ifdef CONFIG_X86_64
1231 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1232 #endif
1233 	load_fixmap_gdt(raw_smp_processor_id());
1234 	vmx->guest_state_loaded = false;
1235 	vmx->guest_msrs_ready = false;
1236 }
1237 
1238 #ifdef CONFIG_X86_64
1239 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1240 {
1241 	preempt_disable();
1242 	if (vmx->guest_state_loaded)
1243 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1244 	preempt_enable();
1245 	return vmx->msr_guest_kernel_gs_base;
1246 }
1247 
1248 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1249 {
1250 	preempt_disable();
1251 	if (vmx->guest_state_loaded)
1252 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1253 	preempt_enable();
1254 	vmx->msr_guest_kernel_gs_base = data;
1255 }
1256 #endif
1257 
1258 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1259 {
1260 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1261 	struct pi_desc old, new;
1262 	unsigned int dest;
1263 
1264 	/*
1265 	 * In case of hot-plug or hot-unplug, we may have to undo
1266 	 * vmx_vcpu_pi_put even if there is no assigned device.  And we
1267 	 * always keep PI.NDST up to date for simplicity: it makes the
1268 	 * code easier, and CPU migration is not a fast path.
1269 	 */
1270 	if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1271 		return;
1272 
1273 	/*
1274 	 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1275 	 * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1276 	 * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1277 	 * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1278 	 * correctly.
1279 	 */
1280 	if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1281 		pi_clear_sn(pi_desc);
1282 		goto after_clear_sn;
1283 	}
1284 
1285 	/* The full case.  */
1286 	do {
1287 		old.control = new.control = pi_desc->control;
1288 
1289 		dest = cpu_physical_id(cpu);
1290 
1291 		if (x2apic_enabled())
1292 			new.ndst = dest;
1293 		else
1294 			new.ndst = (dest << 8) & 0xFF00;
1295 
1296 		new.sn = 0;
1297 	} while (cmpxchg64(&pi_desc->control, old.control,
1298 			   new.control) != old.control);
1299 
1300 after_clear_sn:
1301 
1302 	/*
1303 	 * Clear SN before reading the bitmap.  The VT-d firmware
1304 	 * writes the bitmap and reads SN atomically (5.2.3 in the
1305 	 * spec), so it doesn't really have a memory barrier that
1306 	 * pairs with this, but we cannot do that and we need one.
1307 	 */
1308 	smp_mb__after_atomic();
1309 
1310 	if (!pi_is_pir_empty(pi_desc))
1311 		pi_set_on(pi_desc);
1312 }
1313 
1314 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1315 			struct loaded_vmcs *buddy)
1316 {
1317 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1318 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1319 	struct vmcs *prev;
1320 
1321 	if (!already_loaded) {
1322 		loaded_vmcs_clear(vmx->loaded_vmcs);
1323 		local_irq_disable();
1324 
1325 		/*
1326 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1327 		 * this cpu's percpu list, otherwise it may not yet be deleted
1328 		 * from its previous cpu's percpu list.  Pairs with the
1329 		 * smb_wmb() in __loaded_vmcs_clear().
1330 		 */
1331 		smp_rmb();
1332 
1333 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1334 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1335 		local_irq_enable();
1336 	}
1337 
1338 	prev = per_cpu(current_vmcs, cpu);
1339 	if (prev != vmx->loaded_vmcs->vmcs) {
1340 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1341 		vmcs_load(vmx->loaded_vmcs->vmcs);
1342 
1343 		/*
1344 		 * No indirect branch prediction barrier needed when switching
1345 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1346 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1347 		 */
1348 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1349 			indirect_branch_prediction_barrier();
1350 	}
1351 
1352 	if (!already_loaded) {
1353 		void *gdt = get_current_gdt_ro();
1354 		unsigned long sysenter_esp;
1355 
1356 		/*
1357 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1358 		 * TLB entries from its previous association with the vCPU.
1359 		 */
1360 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1361 
1362 		/*
1363 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1364 		 * processors.  See 22.2.4.
1365 		 */
1366 		vmcs_writel(HOST_TR_BASE,
1367 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1368 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1369 
1370 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1371 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1372 
1373 		vmx->loaded_vmcs->cpu = cpu;
1374 	}
1375 
1376 	/* Setup TSC multiplier */
1377 	if (kvm_has_tsc_control &&
1378 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1379 		decache_tsc_multiplier(vmx);
1380 }
1381 
1382 /*
1383  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1384  * vcpu mutex is already taken.
1385  */
1386 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1387 {
1388 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1389 
1390 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1391 
1392 	vmx_vcpu_pi_load(vcpu, cpu);
1393 
1394 	vmx->host_debugctlmsr = get_debugctlmsr();
1395 }
1396 
1397 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1398 {
1399 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1400 
1401 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1402 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
1403 		!kvm_vcpu_apicv_active(vcpu))
1404 		return;
1405 
1406 	/* Set SN when the vCPU is preempted */
1407 	if (vcpu->preempted)
1408 		pi_set_sn(pi_desc);
1409 }
1410 
1411 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1412 {
1413 	vmx_vcpu_pi_put(vcpu);
1414 
1415 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1416 }
1417 
1418 static bool emulation_required(struct kvm_vcpu *vcpu)
1419 {
1420 	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1421 }
1422 
1423 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1424 {
1425 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1426 	unsigned long rflags, save_rflags;
1427 
1428 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1429 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1430 		rflags = vmcs_readl(GUEST_RFLAGS);
1431 		if (vmx->rmode.vm86_active) {
1432 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1433 			save_rflags = vmx->rmode.save_rflags;
1434 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1435 		}
1436 		vmx->rflags = rflags;
1437 	}
1438 	return vmx->rflags;
1439 }
1440 
1441 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1442 {
1443 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1444 	unsigned long old_rflags;
1445 
1446 	if (enable_unrestricted_guest) {
1447 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1448 		vmx->rflags = rflags;
1449 		vmcs_writel(GUEST_RFLAGS, rflags);
1450 		return;
1451 	}
1452 
1453 	old_rflags = vmx_get_rflags(vcpu);
1454 	vmx->rflags = rflags;
1455 	if (vmx->rmode.vm86_active) {
1456 		vmx->rmode.save_rflags = rflags;
1457 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1458 	}
1459 	vmcs_writel(GUEST_RFLAGS, rflags);
1460 
1461 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1462 		vmx->emulation_required = emulation_required(vcpu);
1463 }
1464 
1465 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1466 {
1467 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1468 	int ret = 0;
1469 
1470 	if (interruptibility & GUEST_INTR_STATE_STI)
1471 		ret |= KVM_X86_SHADOW_INT_STI;
1472 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1473 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1474 
1475 	return ret;
1476 }
1477 
1478 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1479 {
1480 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1481 	u32 interruptibility = interruptibility_old;
1482 
1483 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1484 
1485 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1486 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1487 	else if (mask & KVM_X86_SHADOW_INT_STI)
1488 		interruptibility |= GUEST_INTR_STATE_STI;
1489 
1490 	if ((interruptibility != interruptibility_old))
1491 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1492 }
1493 
1494 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1495 {
1496 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1497 	unsigned long value;
1498 
1499 	/*
1500 	 * Any MSR write that attempts to change bits marked reserved will
1501 	 * case a #GP fault.
1502 	 */
1503 	if (data & vmx->pt_desc.ctl_bitmask)
1504 		return 1;
1505 
1506 	/*
1507 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1508 	 * result in a #GP unless the same write also clears TraceEn.
1509 	 */
1510 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1511 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1512 		return 1;
1513 
1514 	/*
1515 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1516 	 * and FabricEn would cause #GP, if
1517 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1518 	 */
1519 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1520 		!(data & RTIT_CTL_FABRIC_EN) &&
1521 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1522 					PT_CAP_single_range_output))
1523 		return 1;
1524 
1525 	/*
1526 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1527 	 * utilize encodings marked reserved will casue a #GP fault.
1528 	 */
1529 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1530 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1531 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1532 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1533 		return 1;
1534 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1535 						PT_CAP_cycle_thresholds);
1536 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1537 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1538 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1539 		return 1;
1540 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1541 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1542 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1543 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1544 		return 1;
1545 
1546 	/*
1547 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1548 	 * cause a #GP fault.
1549 	 */
1550 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1551 	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1552 		return 1;
1553 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1554 	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1555 		return 1;
1556 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1557 	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1558 		return 1;
1559 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1560 	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1561 		return 1;
1562 
1563 	return 0;
1564 }
1565 
1566 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1567 {
1568 	unsigned long rip, orig_rip;
1569 
1570 	/*
1571 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1572 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1573 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1574 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1575 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1576 	 * i.e. we end up advancing IP with some random value.
1577 	 */
1578 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1579 	    to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1580 		orig_rip = kvm_rip_read(vcpu);
1581 		rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1582 #ifdef CONFIG_X86_64
1583 		/*
1584 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1585 		 * mode, but just finding out that we are in 64-bit mode is
1586 		 * quite expensive.  Only do it if there was a carry.
1587 		 */
1588 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1589 			rip = (u32)rip;
1590 #endif
1591 		kvm_rip_write(vcpu, rip);
1592 	} else {
1593 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1594 			return 0;
1595 	}
1596 
1597 	/* skipping an emulated instruction also counts */
1598 	vmx_set_interrupt_shadow(vcpu, 0);
1599 
1600 	return 1;
1601 }
1602 
1603 
1604 /*
1605  * Recognizes a pending MTF VM-exit and records the nested state for later
1606  * delivery.
1607  */
1608 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1609 {
1610 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1611 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1612 
1613 	if (!is_guest_mode(vcpu))
1614 		return;
1615 
1616 	/*
1617 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1618 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1619 	 * instruction boundary), any #DB exception pending delivery must be a
1620 	 * debug-trap. Record the pending MTF state to be delivered in
1621 	 * vmx_check_nested_events().
1622 	 */
1623 	if (nested_cpu_has_mtf(vmcs12) &&
1624 	    (!vcpu->arch.exception.pending ||
1625 	     vcpu->arch.exception.nr == DB_VECTOR))
1626 		vmx->nested.mtf_pending = true;
1627 	else
1628 		vmx->nested.mtf_pending = false;
1629 }
1630 
1631 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1632 {
1633 	vmx_update_emulated_instruction(vcpu);
1634 	return skip_emulated_instruction(vcpu);
1635 }
1636 
1637 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1638 {
1639 	/*
1640 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1641 	 * explicitly skip the instruction because if the HLT state is set,
1642 	 * then the instruction is already executing and RIP has already been
1643 	 * advanced.
1644 	 */
1645 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1646 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1647 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1648 }
1649 
1650 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1651 {
1652 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1653 	unsigned nr = vcpu->arch.exception.nr;
1654 	bool has_error_code = vcpu->arch.exception.has_error_code;
1655 	u32 error_code = vcpu->arch.exception.error_code;
1656 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1657 
1658 	kvm_deliver_exception_payload(vcpu);
1659 
1660 	if (has_error_code) {
1661 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1662 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1663 	}
1664 
1665 	if (vmx->rmode.vm86_active) {
1666 		int inc_eip = 0;
1667 		if (kvm_exception_is_soft(nr))
1668 			inc_eip = vcpu->arch.event_exit_inst_len;
1669 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1670 		return;
1671 	}
1672 
1673 	WARN_ON_ONCE(vmx->emulation_required);
1674 
1675 	if (kvm_exception_is_soft(nr)) {
1676 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1677 			     vmx->vcpu.arch.event_exit_inst_len);
1678 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1679 	} else
1680 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1681 
1682 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1683 
1684 	vmx_clear_hlt(vcpu);
1685 }
1686 
1687 /*
1688  * Swap MSR entry in host/guest MSR entry array.
1689  */
1690 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1691 {
1692 	struct shared_msr_entry tmp;
1693 
1694 	tmp = vmx->guest_msrs[to];
1695 	vmx->guest_msrs[to] = vmx->guest_msrs[from];
1696 	vmx->guest_msrs[from] = tmp;
1697 }
1698 
1699 /*
1700  * Set up the vmcs to automatically save and restore system
1701  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1702  * mode, as fiddling with msrs is very expensive.
1703  */
1704 static void setup_msrs(struct vcpu_vmx *vmx)
1705 {
1706 	int save_nmsrs, index;
1707 
1708 	save_nmsrs = 0;
1709 #ifdef CONFIG_X86_64
1710 	/*
1711 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1712 	 * when EFER.SCE is set.
1713 	 */
1714 	if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1715 		index = __find_msr_index(vmx, MSR_STAR);
1716 		if (index >= 0)
1717 			move_msr_up(vmx, index, save_nmsrs++);
1718 		index = __find_msr_index(vmx, MSR_LSTAR);
1719 		if (index >= 0)
1720 			move_msr_up(vmx, index, save_nmsrs++);
1721 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1722 		if (index >= 0)
1723 			move_msr_up(vmx, index, save_nmsrs++);
1724 	}
1725 #endif
1726 	index = __find_msr_index(vmx, MSR_EFER);
1727 	if (index >= 0 && update_transition_efer(vmx, index))
1728 		move_msr_up(vmx, index, save_nmsrs++);
1729 	index = __find_msr_index(vmx, MSR_TSC_AUX);
1730 	if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1731 		move_msr_up(vmx, index, save_nmsrs++);
1732 	index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL);
1733 	if (index >= 0)
1734 		move_msr_up(vmx, index, save_nmsrs++);
1735 
1736 	vmx->save_nmsrs = save_nmsrs;
1737 	vmx->guest_msrs_ready = false;
1738 
1739 	if (cpu_has_vmx_msr_bitmap())
1740 		vmx_update_msr_bitmap(&vmx->vcpu);
1741 }
1742 
1743 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1744 {
1745 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1746 	u64 g_tsc_offset = 0;
1747 
1748 	/*
1749 	 * We're here if L1 chose not to trap WRMSR to TSC. According
1750 	 * to the spec, this should set L1's TSC; The offset that L1
1751 	 * set for L2 remains unchanged, and still needs to be added
1752 	 * to the newly set TSC to get L2's TSC.
1753 	 */
1754 	if (is_guest_mode(vcpu) &&
1755 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1756 		g_tsc_offset = vmcs12->tsc_offset;
1757 
1758 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1759 				   vcpu->arch.tsc_offset - g_tsc_offset,
1760 				   offset);
1761 	vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1762 	return offset + g_tsc_offset;
1763 }
1764 
1765 /*
1766  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1767  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1768  * all guests if the "nested" module option is off, and can also be disabled
1769  * for a single guest by disabling its VMX cpuid bit.
1770  */
1771 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1772 {
1773 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1774 }
1775 
1776 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1777 						 uint64_t val)
1778 {
1779 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1780 
1781 	return !(val & ~valid_bits);
1782 }
1783 
1784 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1785 {
1786 	switch (msr->index) {
1787 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1788 		if (!nested)
1789 			return 1;
1790 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1791 	case MSR_IA32_PERF_CAPABILITIES:
1792 		msr->data = vmx_get_perf_capabilities();
1793 		return 0;
1794 	default:
1795 		return 1;
1796 	}
1797 }
1798 
1799 /*
1800  * Reads an msr value (of 'msr_index') into 'pdata'.
1801  * Returns 0 on success, non-0 otherwise.
1802  * Assumes vcpu_load() was already called.
1803  */
1804 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1805 {
1806 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1807 	struct shared_msr_entry *msr;
1808 	u32 index;
1809 
1810 	switch (msr_info->index) {
1811 #ifdef CONFIG_X86_64
1812 	case MSR_FS_BASE:
1813 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1814 		break;
1815 	case MSR_GS_BASE:
1816 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1817 		break;
1818 	case MSR_KERNEL_GS_BASE:
1819 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1820 		break;
1821 #endif
1822 	case MSR_EFER:
1823 		return kvm_get_msr_common(vcpu, msr_info);
1824 	case MSR_IA32_TSX_CTRL:
1825 		if (!msr_info->host_initiated &&
1826 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1827 			return 1;
1828 		goto find_shared_msr;
1829 	case MSR_IA32_UMWAIT_CONTROL:
1830 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1831 			return 1;
1832 
1833 		msr_info->data = vmx->msr_ia32_umwait_control;
1834 		break;
1835 	case MSR_IA32_SPEC_CTRL:
1836 		if (!msr_info->host_initiated &&
1837 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1838 			return 1;
1839 
1840 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1841 		break;
1842 	case MSR_IA32_SYSENTER_CS:
1843 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1844 		break;
1845 	case MSR_IA32_SYSENTER_EIP:
1846 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1847 		break;
1848 	case MSR_IA32_SYSENTER_ESP:
1849 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1850 		break;
1851 	case MSR_IA32_BNDCFGS:
1852 		if (!kvm_mpx_supported() ||
1853 		    (!msr_info->host_initiated &&
1854 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1855 			return 1;
1856 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1857 		break;
1858 	case MSR_IA32_MCG_EXT_CTL:
1859 		if (!msr_info->host_initiated &&
1860 		    !(vmx->msr_ia32_feature_control &
1861 		      FEAT_CTL_LMCE_ENABLED))
1862 			return 1;
1863 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1864 		break;
1865 	case MSR_IA32_FEAT_CTL:
1866 		msr_info->data = vmx->msr_ia32_feature_control;
1867 		break;
1868 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1869 		if (!nested_vmx_allowed(vcpu))
1870 			return 1;
1871 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1872 				    &msr_info->data))
1873 			return 1;
1874 		/*
1875 		 * Enlightened VMCS v1 doesn't have certain fields, but buggy
1876 		 * Hyper-V versions are still trying to use corresponding
1877 		 * features when they are exposed. Filter out the essential
1878 		 * minimum.
1879 		 */
1880 		if (!msr_info->host_initiated &&
1881 		    vmx->nested.enlightened_vmcs_enabled)
1882 			nested_evmcs_filter_control_msr(msr_info->index,
1883 							&msr_info->data);
1884 		break;
1885 	case MSR_IA32_RTIT_CTL:
1886 		if (!vmx_pt_mode_is_host_guest())
1887 			return 1;
1888 		msr_info->data = vmx->pt_desc.guest.ctl;
1889 		break;
1890 	case MSR_IA32_RTIT_STATUS:
1891 		if (!vmx_pt_mode_is_host_guest())
1892 			return 1;
1893 		msr_info->data = vmx->pt_desc.guest.status;
1894 		break;
1895 	case MSR_IA32_RTIT_CR3_MATCH:
1896 		if (!vmx_pt_mode_is_host_guest() ||
1897 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1898 						PT_CAP_cr3_filtering))
1899 			return 1;
1900 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1901 		break;
1902 	case MSR_IA32_RTIT_OUTPUT_BASE:
1903 		if (!vmx_pt_mode_is_host_guest() ||
1904 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1905 					PT_CAP_topa_output) &&
1906 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1907 					PT_CAP_single_range_output)))
1908 			return 1;
1909 		msr_info->data = vmx->pt_desc.guest.output_base;
1910 		break;
1911 	case MSR_IA32_RTIT_OUTPUT_MASK:
1912 		if (!vmx_pt_mode_is_host_guest() ||
1913 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1914 					PT_CAP_topa_output) &&
1915 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1916 					PT_CAP_single_range_output)))
1917 			return 1;
1918 		msr_info->data = vmx->pt_desc.guest.output_mask;
1919 		break;
1920 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1921 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1922 		if (!vmx_pt_mode_is_host_guest() ||
1923 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1924 					PT_CAP_num_address_ranges)))
1925 			return 1;
1926 		if (index % 2)
1927 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1928 		else
1929 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1930 		break;
1931 	case MSR_TSC_AUX:
1932 		if (!msr_info->host_initiated &&
1933 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1934 			return 1;
1935 		goto find_shared_msr;
1936 	default:
1937 	find_shared_msr:
1938 		msr = find_msr_entry(vmx, msr_info->index);
1939 		if (msr) {
1940 			msr_info->data = msr->data;
1941 			break;
1942 		}
1943 		return kvm_get_msr_common(vcpu, msr_info);
1944 	}
1945 
1946 	return 0;
1947 }
1948 
1949 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1950 						    u64 data)
1951 {
1952 #ifdef CONFIG_X86_64
1953 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1954 		return (u32)data;
1955 #endif
1956 	return (unsigned long)data;
1957 }
1958 
1959 /*
1960  * Writes msr value into the appropriate "register".
1961  * Returns 0 on success, non-0 otherwise.
1962  * Assumes vcpu_load() was already called.
1963  */
1964 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1965 {
1966 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1967 	struct shared_msr_entry *msr;
1968 	int ret = 0;
1969 	u32 msr_index = msr_info->index;
1970 	u64 data = msr_info->data;
1971 	u32 index;
1972 
1973 	switch (msr_index) {
1974 	case MSR_EFER:
1975 		ret = kvm_set_msr_common(vcpu, msr_info);
1976 		break;
1977 #ifdef CONFIG_X86_64
1978 	case MSR_FS_BASE:
1979 		vmx_segment_cache_clear(vmx);
1980 		vmcs_writel(GUEST_FS_BASE, data);
1981 		break;
1982 	case MSR_GS_BASE:
1983 		vmx_segment_cache_clear(vmx);
1984 		vmcs_writel(GUEST_GS_BASE, data);
1985 		break;
1986 	case MSR_KERNEL_GS_BASE:
1987 		vmx_write_guest_kernel_gs_base(vmx, data);
1988 		break;
1989 #endif
1990 	case MSR_IA32_SYSENTER_CS:
1991 		if (is_guest_mode(vcpu))
1992 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
1993 		vmcs_write32(GUEST_SYSENTER_CS, data);
1994 		break;
1995 	case MSR_IA32_SYSENTER_EIP:
1996 		if (is_guest_mode(vcpu)) {
1997 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1998 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
1999 		}
2000 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2001 		break;
2002 	case MSR_IA32_SYSENTER_ESP:
2003 		if (is_guest_mode(vcpu)) {
2004 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2005 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2006 		}
2007 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2008 		break;
2009 	case MSR_IA32_DEBUGCTLMSR:
2010 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2011 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2012 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2013 
2014 		ret = kvm_set_msr_common(vcpu, msr_info);
2015 		break;
2016 
2017 	case MSR_IA32_BNDCFGS:
2018 		if (!kvm_mpx_supported() ||
2019 		    (!msr_info->host_initiated &&
2020 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2021 			return 1;
2022 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2023 		    (data & MSR_IA32_BNDCFGS_RSVD))
2024 			return 1;
2025 		vmcs_write64(GUEST_BNDCFGS, data);
2026 		break;
2027 	case MSR_IA32_UMWAIT_CONTROL:
2028 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2029 			return 1;
2030 
2031 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2032 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2033 			return 1;
2034 
2035 		vmx->msr_ia32_umwait_control = data;
2036 		break;
2037 	case MSR_IA32_SPEC_CTRL:
2038 		if (!msr_info->host_initiated &&
2039 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2040 			return 1;
2041 
2042 		if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
2043 			return 1;
2044 
2045 		vmx->spec_ctrl = data;
2046 		if (!data)
2047 			break;
2048 
2049 		/*
2050 		 * For non-nested:
2051 		 * When it's written (to non-zero) for the first time, pass
2052 		 * it through.
2053 		 *
2054 		 * For nested:
2055 		 * The handling of the MSR bitmap for L2 guests is done in
2056 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2057 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2058 		 * in the merging. We update the vmcs01 here for L1 as well
2059 		 * since it will end up touching the MSR anyway now.
2060 		 */
2061 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2062 					      MSR_IA32_SPEC_CTRL,
2063 					      MSR_TYPE_RW);
2064 		break;
2065 	case MSR_IA32_TSX_CTRL:
2066 		if (!msr_info->host_initiated &&
2067 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2068 			return 1;
2069 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2070 			return 1;
2071 		goto find_shared_msr;
2072 	case MSR_IA32_PRED_CMD:
2073 		if (!msr_info->host_initiated &&
2074 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2075 			return 1;
2076 
2077 		if (data & ~PRED_CMD_IBPB)
2078 			return 1;
2079 		if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL))
2080 			return 1;
2081 		if (!data)
2082 			break;
2083 
2084 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2085 
2086 		/*
2087 		 * For non-nested:
2088 		 * When it's written (to non-zero) for the first time, pass
2089 		 * it through.
2090 		 *
2091 		 * For nested:
2092 		 * The handling of the MSR bitmap for L2 guests is done in
2093 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2094 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2095 		 * in the merging.
2096 		 */
2097 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2098 					      MSR_TYPE_W);
2099 		break;
2100 	case MSR_IA32_CR_PAT:
2101 		if (!kvm_pat_valid(data))
2102 			return 1;
2103 
2104 		if (is_guest_mode(vcpu) &&
2105 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2106 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2107 
2108 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2109 			vmcs_write64(GUEST_IA32_PAT, data);
2110 			vcpu->arch.pat = data;
2111 			break;
2112 		}
2113 		ret = kvm_set_msr_common(vcpu, msr_info);
2114 		break;
2115 	case MSR_IA32_TSC_ADJUST:
2116 		ret = kvm_set_msr_common(vcpu, msr_info);
2117 		break;
2118 	case MSR_IA32_MCG_EXT_CTL:
2119 		if ((!msr_info->host_initiated &&
2120 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2121 		       FEAT_CTL_LMCE_ENABLED)) ||
2122 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2123 			return 1;
2124 		vcpu->arch.mcg_ext_ctl = data;
2125 		break;
2126 	case MSR_IA32_FEAT_CTL:
2127 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2128 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2129 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2130 			return 1;
2131 		vmx->msr_ia32_feature_control = data;
2132 		if (msr_info->host_initiated && data == 0)
2133 			vmx_leave_nested(vcpu);
2134 		break;
2135 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2136 		if (!msr_info->host_initiated)
2137 			return 1; /* they are read-only */
2138 		if (!nested_vmx_allowed(vcpu))
2139 			return 1;
2140 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2141 	case MSR_IA32_RTIT_CTL:
2142 		if (!vmx_pt_mode_is_host_guest() ||
2143 			vmx_rtit_ctl_check(vcpu, data) ||
2144 			vmx->nested.vmxon)
2145 			return 1;
2146 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2147 		vmx->pt_desc.guest.ctl = data;
2148 		pt_update_intercept_for_msr(vmx);
2149 		break;
2150 	case MSR_IA32_RTIT_STATUS:
2151 		if (!pt_can_write_msr(vmx))
2152 			return 1;
2153 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2154 			return 1;
2155 		vmx->pt_desc.guest.status = data;
2156 		break;
2157 	case MSR_IA32_RTIT_CR3_MATCH:
2158 		if (!pt_can_write_msr(vmx))
2159 			return 1;
2160 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2161 					   PT_CAP_cr3_filtering))
2162 			return 1;
2163 		vmx->pt_desc.guest.cr3_match = data;
2164 		break;
2165 	case MSR_IA32_RTIT_OUTPUT_BASE:
2166 		if (!pt_can_write_msr(vmx))
2167 			return 1;
2168 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2169 					   PT_CAP_topa_output) &&
2170 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2171 					   PT_CAP_single_range_output))
2172 			return 1;
2173 		if (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)
2174 			return 1;
2175 		vmx->pt_desc.guest.output_base = data;
2176 		break;
2177 	case MSR_IA32_RTIT_OUTPUT_MASK:
2178 		if (!pt_can_write_msr(vmx))
2179 			return 1;
2180 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2181 					   PT_CAP_topa_output) &&
2182 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2183 					   PT_CAP_single_range_output))
2184 			return 1;
2185 		vmx->pt_desc.guest.output_mask = data;
2186 		break;
2187 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2188 		if (!pt_can_write_msr(vmx))
2189 			return 1;
2190 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2191 		if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2192 						       PT_CAP_num_address_ranges))
2193 			return 1;
2194 		if (is_noncanonical_address(data, vcpu))
2195 			return 1;
2196 		if (index % 2)
2197 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2198 		else
2199 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2200 		break;
2201 	case MSR_TSC_AUX:
2202 		if (!msr_info->host_initiated &&
2203 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2204 			return 1;
2205 		/* Check reserved bit, higher 32 bits should be zero */
2206 		if ((data >> 32) != 0)
2207 			return 1;
2208 		goto find_shared_msr;
2209 
2210 	default:
2211 	find_shared_msr:
2212 		msr = find_msr_entry(vmx, msr_index);
2213 		if (msr)
2214 			ret = vmx_set_guest_msr(vmx, msr, data);
2215 		else
2216 			ret = kvm_set_msr_common(vcpu, msr_info);
2217 	}
2218 
2219 	return ret;
2220 }
2221 
2222 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2223 {
2224 	unsigned long guest_owned_bits;
2225 
2226 	kvm_register_mark_available(vcpu, reg);
2227 
2228 	switch (reg) {
2229 	case VCPU_REGS_RSP:
2230 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2231 		break;
2232 	case VCPU_REGS_RIP:
2233 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2234 		break;
2235 	case VCPU_EXREG_PDPTR:
2236 		if (enable_ept)
2237 			ept_save_pdptrs(vcpu);
2238 		break;
2239 	case VCPU_EXREG_CR0:
2240 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2241 
2242 		vcpu->arch.cr0 &= ~guest_owned_bits;
2243 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2244 		break;
2245 	case VCPU_EXREG_CR3:
2246 		if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2247 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2248 		break;
2249 	case VCPU_EXREG_CR4:
2250 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2251 
2252 		vcpu->arch.cr4 &= ~guest_owned_bits;
2253 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2254 		break;
2255 	default:
2256 		WARN_ON_ONCE(1);
2257 		break;
2258 	}
2259 }
2260 
2261 static __init int cpu_has_kvm_support(void)
2262 {
2263 	return cpu_has_vmx();
2264 }
2265 
2266 static __init int vmx_disabled_by_bios(void)
2267 {
2268 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2269 	       !boot_cpu_has(X86_FEATURE_VMX);
2270 }
2271 
2272 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2273 {
2274 	u64 msr;
2275 
2276 	cr4_set_bits(X86_CR4_VMXE);
2277 	intel_pt_handle_vmx(1);
2278 
2279 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2280 			  _ASM_EXTABLE(1b, %l[fault])
2281 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2282 			  : : fault);
2283 	return 0;
2284 
2285 fault:
2286 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2287 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2288 	intel_pt_handle_vmx(0);
2289 	cr4_clear_bits(X86_CR4_VMXE);
2290 
2291 	return -EFAULT;
2292 }
2293 
2294 static int hardware_enable(void)
2295 {
2296 	int cpu = raw_smp_processor_id();
2297 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2298 	int r;
2299 
2300 	if (cr4_read_shadow() & X86_CR4_VMXE)
2301 		return -EBUSY;
2302 
2303 	/*
2304 	 * This can happen if we hot-added a CPU but failed to allocate
2305 	 * VP assist page for it.
2306 	 */
2307 	if (static_branch_unlikely(&enable_evmcs) &&
2308 	    !hv_get_vp_assist_page(cpu))
2309 		return -EFAULT;
2310 
2311 	r = kvm_cpu_vmxon(phys_addr);
2312 	if (r)
2313 		return r;
2314 
2315 	if (enable_ept)
2316 		ept_sync_global();
2317 
2318 	return 0;
2319 }
2320 
2321 static void vmclear_local_loaded_vmcss(void)
2322 {
2323 	int cpu = raw_smp_processor_id();
2324 	struct loaded_vmcs *v, *n;
2325 
2326 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2327 				 loaded_vmcss_on_cpu_link)
2328 		__loaded_vmcs_clear(v);
2329 }
2330 
2331 
2332 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2333  * tricks.
2334  */
2335 static void kvm_cpu_vmxoff(void)
2336 {
2337 	asm volatile (__ex("vmxoff"));
2338 
2339 	intel_pt_handle_vmx(0);
2340 	cr4_clear_bits(X86_CR4_VMXE);
2341 }
2342 
2343 static void hardware_disable(void)
2344 {
2345 	vmclear_local_loaded_vmcss();
2346 	kvm_cpu_vmxoff();
2347 }
2348 
2349 /*
2350  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2351  * directly instead of going through cpu_has(), to ensure KVM is trapping
2352  * ENCLS whenever it's supported in hardware.  It does not matter whether
2353  * the host OS supports or has enabled SGX.
2354  */
2355 static bool cpu_has_sgx(void)
2356 {
2357 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2358 }
2359 
2360 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2361 				      u32 msr, u32 *result)
2362 {
2363 	u32 vmx_msr_low, vmx_msr_high;
2364 	u32 ctl = ctl_min | ctl_opt;
2365 
2366 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2367 
2368 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2369 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2370 
2371 	/* Ensure minimum (required) set of control bits are supported. */
2372 	if (ctl_min & ~ctl)
2373 		return -EIO;
2374 
2375 	*result = ctl;
2376 	return 0;
2377 }
2378 
2379 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2380 				    struct vmx_capability *vmx_cap)
2381 {
2382 	u32 vmx_msr_low, vmx_msr_high;
2383 	u32 min, opt, min2, opt2;
2384 	u32 _pin_based_exec_control = 0;
2385 	u32 _cpu_based_exec_control = 0;
2386 	u32 _cpu_based_2nd_exec_control = 0;
2387 	u32 _vmexit_control = 0;
2388 	u32 _vmentry_control = 0;
2389 
2390 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2391 	min = CPU_BASED_HLT_EXITING |
2392 #ifdef CONFIG_X86_64
2393 	      CPU_BASED_CR8_LOAD_EXITING |
2394 	      CPU_BASED_CR8_STORE_EXITING |
2395 #endif
2396 	      CPU_BASED_CR3_LOAD_EXITING |
2397 	      CPU_BASED_CR3_STORE_EXITING |
2398 	      CPU_BASED_UNCOND_IO_EXITING |
2399 	      CPU_BASED_MOV_DR_EXITING |
2400 	      CPU_BASED_USE_TSC_OFFSETTING |
2401 	      CPU_BASED_MWAIT_EXITING |
2402 	      CPU_BASED_MONITOR_EXITING |
2403 	      CPU_BASED_INVLPG_EXITING |
2404 	      CPU_BASED_RDPMC_EXITING;
2405 
2406 	opt = CPU_BASED_TPR_SHADOW |
2407 	      CPU_BASED_USE_MSR_BITMAPS |
2408 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2409 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2410 				&_cpu_based_exec_control) < 0)
2411 		return -EIO;
2412 #ifdef CONFIG_X86_64
2413 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2414 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2415 					   ~CPU_BASED_CR8_STORE_EXITING;
2416 #endif
2417 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2418 		min2 = 0;
2419 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2420 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2421 			SECONDARY_EXEC_WBINVD_EXITING |
2422 			SECONDARY_EXEC_ENABLE_VPID |
2423 			SECONDARY_EXEC_ENABLE_EPT |
2424 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2425 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2426 			SECONDARY_EXEC_DESC |
2427 			SECONDARY_EXEC_RDTSCP |
2428 			SECONDARY_EXEC_ENABLE_INVPCID |
2429 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2430 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2431 			SECONDARY_EXEC_SHADOW_VMCS |
2432 			SECONDARY_EXEC_XSAVES |
2433 			SECONDARY_EXEC_RDSEED_EXITING |
2434 			SECONDARY_EXEC_RDRAND_EXITING |
2435 			SECONDARY_EXEC_ENABLE_PML |
2436 			SECONDARY_EXEC_TSC_SCALING |
2437 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2438 			SECONDARY_EXEC_PT_USE_GPA |
2439 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2440 			SECONDARY_EXEC_ENABLE_VMFUNC;
2441 		if (cpu_has_sgx())
2442 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2443 		if (adjust_vmx_controls(min2, opt2,
2444 					MSR_IA32_VMX_PROCBASED_CTLS2,
2445 					&_cpu_based_2nd_exec_control) < 0)
2446 			return -EIO;
2447 	}
2448 #ifndef CONFIG_X86_64
2449 	if (!(_cpu_based_2nd_exec_control &
2450 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2451 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2452 #endif
2453 
2454 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2455 		_cpu_based_2nd_exec_control &= ~(
2456 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2457 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2458 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2459 
2460 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2461 		&vmx_cap->ept, &vmx_cap->vpid);
2462 
2463 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2464 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2465 		   enabled */
2466 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2467 					     CPU_BASED_CR3_STORE_EXITING |
2468 					     CPU_BASED_INVLPG_EXITING);
2469 	} else if (vmx_cap->ept) {
2470 		vmx_cap->ept = 0;
2471 		pr_warn_once("EPT CAP should not exist if not support "
2472 				"1-setting enable EPT VM-execution control\n");
2473 	}
2474 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2475 		vmx_cap->vpid) {
2476 		vmx_cap->vpid = 0;
2477 		pr_warn_once("VPID CAP should not exist if not support "
2478 				"1-setting enable VPID VM-execution control\n");
2479 	}
2480 
2481 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2482 #ifdef CONFIG_X86_64
2483 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2484 #endif
2485 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2486 	      VM_EXIT_LOAD_IA32_PAT |
2487 	      VM_EXIT_LOAD_IA32_EFER |
2488 	      VM_EXIT_CLEAR_BNDCFGS |
2489 	      VM_EXIT_PT_CONCEAL_PIP |
2490 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2491 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2492 				&_vmexit_control) < 0)
2493 		return -EIO;
2494 
2495 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2496 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2497 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2498 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2499 				&_pin_based_exec_control) < 0)
2500 		return -EIO;
2501 
2502 	if (cpu_has_broken_vmx_preemption_timer())
2503 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2504 	if (!(_cpu_based_2nd_exec_control &
2505 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2506 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2507 
2508 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2509 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2510 	      VM_ENTRY_LOAD_IA32_PAT |
2511 	      VM_ENTRY_LOAD_IA32_EFER |
2512 	      VM_ENTRY_LOAD_BNDCFGS |
2513 	      VM_ENTRY_PT_CONCEAL_PIP |
2514 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2515 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2516 				&_vmentry_control) < 0)
2517 		return -EIO;
2518 
2519 	/*
2520 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2521 	 * can't be used due to an errata where VM Exit may incorrectly clear
2522 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2523 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2524 	 */
2525 	if (boot_cpu_data.x86 == 0x6) {
2526 		switch (boot_cpu_data.x86_model) {
2527 		case 26: /* AAK155 */
2528 		case 30: /* AAP115 */
2529 		case 37: /* AAT100 */
2530 		case 44: /* BC86,AAY89,BD102 */
2531 		case 46: /* BA97 */
2532 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2533 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2534 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2535 					"does not work properly. Using workaround\n");
2536 			break;
2537 		default:
2538 			break;
2539 		}
2540 	}
2541 
2542 
2543 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2544 
2545 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2546 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2547 		return -EIO;
2548 
2549 #ifdef CONFIG_X86_64
2550 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2551 	if (vmx_msr_high & (1u<<16))
2552 		return -EIO;
2553 #endif
2554 
2555 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2556 	if (((vmx_msr_high >> 18) & 15) != 6)
2557 		return -EIO;
2558 
2559 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2560 	vmcs_conf->order = get_order(vmcs_conf->size);
2561 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2562 
2563 	vmcs_conf->revision_id = vmx_msr_low;
2564 
2565 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2566 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2567 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2568 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2569 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2570 
2571 	if (static_branch_unlikely(&enable_evmcs))
2572 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2573 
2574 	return 0;
2575 }
2576 
2577 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2578 {
2579 	int node = cpu_to_node(cpu);
2580 	struct page *pages;
2581 	struct vmcs *vmcs;
2582 
2583 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2584 	if (!pages)
2585 		return NULL;
2586 	vmcs = page_address(pages);
2587 	memset(vmcs, 0, vmcs_config.size);
2588 
2589 	/* KVM supports Enlightened VMCS v1 only */
2590 	if (static_branch_unlikely(&enable_evmcs))
2591 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2592 	else
2593 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2594 
2595 	if (shadow)
2596 		vmcs->hdr.shadow_vmcs = 1;
2597 	return vmcs;
2598 }
2599 
2600 void free_vmcs(struct vmcs *vmcs)
2601 {
2602 	free_pages((unsigned long)vmcs, vmcs_config.order);
2603 }
2604 
2605 /*
2606  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2607  */
2608 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2609 {
2610 	if (!loaded_vmcs->vmcs)
2611 		return;
2612 	loaded_vmcs_clear(loaded_vmcs);
2613 	free_vmcs(loaded_vmcs->vmcs);
2614 	loaded_vmcs->vmcs = NULL;
2615 	if (loaded_vmcs->msr_bitmap)
2616 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2617 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2618 }
2619 
2620 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2621 {
2622 	loaded_vmcs->vmcs = alloc_vmcs(false);
2623 	if (!loaded_vmcs->vmcs)
2624 		return -ENOMEM;
2625 
2626 	vmcs_clear(loaded_vmcs->vmcs);
2627 
2628 	loaded_vmcs->shadow_vmcs = NULL;
2629 	loaded_vmcs->hv_timer_soft_disabled = false;
2630 	loaded_vmcs->cpu = -1;
2631 	loaded_vmcs->launched = 0;
2632 
2633 	if (cpu_has_vmx_msr_bitmap()) {
2634 		loaded_vmcs->msr_bitmap = (unsigned long *)
2635 				__get_free_page(GFP_KERNEL_ACCOUNT);
2636 		if (!loaded_vmcs->msr_bitmap)
2637 			goto out_vmcs;
2638 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2639 
2640 		if (IS_ENABLED(CONFIG_HYPERV) &&
2641 		    static_branch_unlikely(&enable_evmcs) &&
2642 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2643 			struct hv_enlightened_vmcs *evmcs =
2644 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2645 
2646 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2647 		}
2648 	}
2649 
2650 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2651 	memset(&loaded_vmcs->controls_shadow, 0,
2652 		sizeof(struct vmcs_controls_shadow));
2653 
2654 	return 0;
2655 
2656 out_vmcs:
2657 	free_loaded_vmcs(loaded_vmcs);
2658 	return -ENOMEM;
2659 }
2660 
2661 static void free_kvm_area(void)
2662 {
2663 	int cpu;
2664 
2665 	for_each_possible_cpu(cpu) {
2666 		free_vmcs(per_cpu(vmxarea, cpu));
2667 		per_cpu(vmxarea, cpu) = NULL;
2668 	}
2669 }
2670 
2671 static __init int alloc_kvm_area(void)
2672 {
2673 	int cpu;
2674 
2675 	for_each_possible_cpu(cpu) {
2676 		struct vmcs *vmcs;
2677 
2678 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2679 		if (!vmcs) {
2680 			free_kvm_area();
2681 			return -ENOMEM;
2682 		}
2683 
2684 		/*
2685 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2686 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2687 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2688 		 *
2689 		 * However, even though not explicitly documented by
2690 		 * TLFS, VMXArea passed as VMXON argument should
2691 		 * still be marked with revision_id reported by
2692 		 * physical CPU.
2693 		 */
2694 		if (static_branch_unlikely(&enable_evmcs))
2695 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2696 
2697 		per_cpu(vmxarea, cpu) = vmcs;
2698 	}
2699 	return 0;
2700 }
2701 
2702 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2703 		struct kvm_segment *save)
2704 {
2705 	if (!emulate_invalid_guest_state) {
2706 		/*
2707 		 * CS and SS RPL should be equal during guest entry according
2708 		 * to VMX spec, but in reality it is not always so. Since vcpu
2709 		 * is in the middle of the transition from real mode to
2710 		 * protected mode it is safe to assume that RPL 0 is a good
2711 		 * default value.
2712 		 */
2713 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2714 			save->selector &= ~SEGMENT_RPL_MASK;
2715 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2716 		save->s = 1;
2717 	}
2718 	vmx_set_segment(vcpu, save, seg);
2719 }
2720 
2721 static void enter_pmode(struct kvm_vcpu *vcpu)
2722 {
2723 	unsigned long flags;
2724 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2725 
2726 	/*
2727 	 * Update real mode segment cache. It may be not up-to-date if sement
2728 	 * register was written while vcpu was in a guest mode.
2729 	 */
2730 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2731 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2732 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2733 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2734 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2735 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2736 
2737 	vmx->rmode.vm86_active = 0;
2738 
2739 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2740 
2741 	flags = vmcs_readl(GUEST_RFLAGS);
2742 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2743 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2744 	vmcs_writel(GUEST_RFLAGS, flags);
2745 
2746 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2747 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2748 
2749 	update_exception_bitmap(vcpu);
2750 
2751 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2752 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2753 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2754 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2755 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2756 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2757 }
2758 
2759 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2760 {
2761 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2762 	struct kvm_segment var = *save;
2763 
2764 	var.dpl = 0x3;
2765 	if (seg == VCPU_SREG_CS)
2766 		var.type = 0x3;
2767 
2768 	if (!emulate_invalid_guest_state) {
2769 		var.selector = var.base >> 4;
2770 		var.base = var.base & 0xffff0;
2771 		var.limit = 0xffff;
2772 		var.g = 0;
2773 		var.db = 0;
2774 		var.present = 1;
2775 		var.s = 1;
2776 		var.l = 0;
2777 		var.unusable = 0;
2778 		var.type = 0x3;
2779 		var.avl = 0;
2780 		if (save->base & 0xf)
2781 			printk_once(KERN_WARNING "kvm: segment base is not "
2782 					"paragraph aligned when entering "
2783 					"protected mode (seg=%d)", seg);
2784 	}
2785 
2786 	vmcs_write16(sf->selector, var.selector);
2787 	vmcs_writel(sf->base, var.base);
2788 	vmcs_write32(sf->limit, var.limit);
2789 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2790 }
2791 
2792 static void enter_rmode(struct kvm_vcpu *vcpu)
2793 {
2794 	unsigned long flags;
2795 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2796 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2797 
2798 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2799 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2800 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2801 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2802 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2803 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2804 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2805 
2806 	vmx->rmode.vm86_active = 1;
2807 
2808 	/*
2809 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2810 	 * vcpu. Warn the user that an update is overdue.
2811 	 */
2812 	if (!kvm_vmx->tss_addr)
2813 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2814 			     "called before entering vcpu\n");
2815 
2816 	vmx_segment_cache_clear(vmx);
2817 
2818 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2819 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2820 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2821 
2822 	flags = vmcs_readl(GUEST_RFLAGS);
2823 	vmx->rmode.save_rflags = flags;
2824 
2825 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2826 
2827 	vmcs_writel(GUEST_RFLAGS, flags);
2828 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2829 	update_exception_bitmap(vcpu);
2830 
2831 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2832 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2833 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2834 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2835 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2836 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2837 
2838 	kvm_mmu_reset_context(vcpu);
2839 }
2840 
2841 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2842 {
2843 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2844 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2845 
2846 	if (!msr)
2847 		return;
2848 
2849 	vcpu->arch.efer = efer;
2850 	if (efer & EFER_LMA) {
2851 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2852 		msr->data = efer;
2853 	} else {
2854 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2855 
2856 		msr->data = efer & ~EFER_LME;
2857 	}
2858 	setup_msrs(vmx);
2859 }
2860 
2861 #ifdef CONFIG_X86_64
2862 
2863 static void enter_lmode(struct kvm_vcpu *vcpu)
2864 {
2865 	u32 guest_tr_ar;
2866 
2867 	vmx_segment_cache_clear(to_vmx(vcpu));
2868 
2869 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2870 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2871 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2872 				     __func__);
2873 		vmcs_write32(GUEST_TR_AR_BYTES,
2874 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2875 			     | VMX_AR_TYPE_BUSY_64_TSS);
2876 	}
2877 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2878 }
2879 
2880 static void exit_lmode(struct kvm_vcpu *vcpu)
2881 {
2882 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2883 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2884 }
2885 
2886 #endif
2887 
2888 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2889 {
2890 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2891 
2892 	/*
2893 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2894 	 * the CPU is not required to invalidate guest-physical mappings on
2895 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2896 	 * associated with the root EPT structure and not any particular VPID
2897 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
2898 	 */
2899 	if (enable_ept) {
2900 		ept_sync_global();
2901 	} else if (enable_vpid) {
2902 		if (cpu_has_vmx_invvpid_global()) {
2903 			vpid_sync_vcpu_global();
2904 		} else {
2905 			vpid_sync_vcpu_single(vmx->vpid);
2906 			vpid_sync_vcpu_single(vmx->nested.vpid02);
2907 		}
2908 	}
2909 }
2910 
2911 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2912 {
2913 	u64 root_hpa = vcpu->arch.mmu->root_hpa;
2914 
2915 	/* No flush required if the current context is invalid. */
2916 	if (!VALID_PAGE(root_hpa))
2917 		return;
2918 
2919 	if (enable_ept)
2920 		ept_sync_context(construct_eptp(vcpu, root_hpa));
2921 	else if (!is_guest_mode(vcpu))
2922 		vpid_sync_context(to_vmx(vcpu)->vpid);
2923 	else
2924 		vpid_sync_context(nested_get_vpid02(vcpu));
2925 }
2926 
2927 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2928 {
2929 	/*
2930 	 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2931 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2932 	 */
2933 	vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2934 }
2935 
2936 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2937 {
2938 	/*
2939 	 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2940 	 * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
2941 	 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2942 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2943 	 * i.e. no explicit INVVPID is necessary.
2944 	 */
2945 	vpid_sync_context(to_vmx(vcpu)->vpid);
2946 }
2947 
2948 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2949 {
2950 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2951 
2952 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2953 		return;
2954 
2955 	if (is_pae_paging(vcpu)) {
2956 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2957 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2958 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2959 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2960 	}
2961 }
2962 
2963 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2964 {
2965 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2966 
2967 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2968 		return;
2969 
2970 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2971 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2972 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2973 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2974 
2975 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2976 }
2977 
2978 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2979 					unsigned long cr0,
2980 					struct kvm_vcpu *vcpu)
2981 {
2982 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2983 
2984 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
2985 		vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
2986 	if (!(cr0 & X86_CR0_PG)) {
2987 		/* From paging/starting to nonpaging */
2988 		exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2989 					  CPU_BASED_CR3_STORE_EXITING);
2990 		vcpu->arch.cr0 = cr0;
2991 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2992 	} else if (!is_paging(vcpu)) {
2993 		/* From nonpaging to paging */
2994 		exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2995 					    CPU_BASED_CR3_STORE_EXITING);
2996 		vcpu->arch.cr0 = cr0;
2997 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2998 	}
2999 
3000 	if (!(cr0 & X86_CR0_WP))
3001 		*hw_cr0 &= ~X86_CR0_WP;
3002 }
3003 
3004 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3005 {
3006 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3007 	unsigned long hw_cr0;
3008 
3009 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3010 	if (enable_unrestricted_guest)
3011 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3012 	else {
3013 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3014 
3015 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3016 			enter_pmode(vcpu);
3017 
3018 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3019 			enter_rmode(vcpu);
3020 	}
3021 
3022 #ifdef CONFIG_X86_64
3023 	if (vcpu->arch.efer & EFER_LME) {
3024 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3025 			enter_lmode(vcpu);
3026 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3027 			exit_lmode(vcpu);
3028 	}
3029 #endif
3030 
3031 	if (enable_ept && !enable_unrestricted_guest)
3032 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3033 
3034 	vmcs_writel(CR0_READ_SHADOW, cr0);
3035 	vmcs_writel(GUEST_CR0, hw_cr0);
3036 	vcpu->arch.cr0 = cr0;
3037 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3038 
3039 	/* depends on vcpu->arch.cr0 to be set to a new value */
3040 	vmx->emulation_required = emulation_required(vcpu);
3041 }
3042 
3043 static int vmx_get_tdp_level(struct kvm_vcpu *vcpu)
3044 {
3045 	if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
3046 		return 5;
3047 	return 4;
3048 }
3049 
3050 static int get_ept_level(struct kvm_vcpu *vcpu)
3051 {
3052 	if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu)))
3053 		return vmx_eptp_page_walk_level(nested_ept_get_eptp(vcpu));
3054 
3055 	return vmx_get_tdp_level(vcpu);
3056 }
3057 
3058 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
3059 {
3060 	u64 eptp = VMX_EPTP_MT_WB;
3061 
3062 	eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3063 
3064 	if (enable_ept_ad_bits &&
3065 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3066 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3067 	eptp |= (root_hpa & PAGE_MASK);
3068 
3069 	return eptp;
3070 }
3071 
3072 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd)
3073 {
3074 	struct kvm *kvm = vcpu->kvm;
3075 	bool update_guest_cr3 = true;
3076 	unsigned long guest_cr3;
3077 	u64 eptp;
3078 
3079 	if (enable_ept) {
3080 		eptp = construct_eptp(vcpu, pgd);
3081 		vmcs_write64(EPT_POINTER, eptp);
3082 
3083 		if (kvm_x86_ops.tlb_remote_flush) {
3084 			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3085 			to_vmx(vcpu)->ept_pointer = eptp;
3086 			to_kvm_vmx(kvm)->ept_pointers_match
3087 				= EPT_POINTERS_CHECK;
3088 			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3089 		}
3090 
3091 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3092 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3093 		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3094 			guest_cr3 = vcpu->arch.cr3;
3095 		else /* vmcs01.GUEST_CR3 is already up-to-date. */
3096 			update_guest_cr3 = false;
3097 		ept_load_pdptrs(vcpu);
3098 	} else {
3099 		guest_cr3 = pgd;
3100 	}
3101 
3102 	if (update_guest_cr3)
3103 		vmcs_writel(GUEST_CR3, guest_cr3);
3104 }
3105 
3106 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3107 {
3108 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3109 	/*
3110 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3111 	 * is in force while we are in guest mode.  Do not let guests control
3112 	 * this bit, even if host CR4.MCE == 0.
3113 	 */
3114 	unsigned long hw_cr4;
3115 
3116 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3117 	if (enable_unrestricted_guest)
3118 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3119 	else if (vmx->rmode.vm86_active)
3120 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3121 	else
3122 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3123 
3124 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3125 		if (cr4 & X86_CR4_UMIP) {
3126 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3127 			hw_cr4 &= ~X86_CR4_UMIP;
3128 		} else if (!is_guest_mode(vcpu) ||
3129 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3130 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3131 		}
3132 	}
3133 
3134 	if (cr4 & X86_CR4_VMXE) {
3135 		/*
3136 		 * To use VMXON (and later other VMX instructions), a guest
3137 		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3138 		 * So basically the check on whether to allow nested VMX
3139 		 * is here.  We operate under the default treatment of SMM,
3140 		 * so VMX cannot be enabled under SMM.
3141 		 */
3142 		if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3143 			return 1;
3144 	}
3145 
3146 	if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3147 		return 1;
3148 
3149 	vcpu->arch.cr4 = cr4;
3150 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3151 
3152 	if (!enable_unrestricted_guest) {
3153 		if (enable_ept) {
3154 			if (!is_paging(vcpu)) {
3155 				hw_cr4 &= ~X86_CR4_PAE;
3156 				hw_cr4 |= X86_CR4_PSE;
3157 			} else if (!(cr4 & X86_CR4_PAE)) {
3158 				hw_cr4 &= ~X86_CR4_PAE;
3159 			}
3160 		}
3161 
3162 		/*
3163 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3164 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3165 		 * to be manually disabled when guest switches to non-paging
3166 		 * mode.
3167 		 *
3168 		 * If !enable_unrestricted_guest, the CPU is always running
3169 		 * with CR0.PG=1 and CR4 needs to be modified.
3170 		 * If enable_unrestricted_guest, the CPU automatically
3171 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3172 		 */
3173 		if (!is_paging(vcpu))
3174 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3175 	}
3176 
3177 	vmcs_writel(CR4_READ_SHADOW, cr4);
3178 	vmcs_writel(GUEST_CR4, hw_cr4);
3179 	return 0;
3180 }
3181 
3182 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3183 {
3184 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3185 	u32 ar;
3186 
3187 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3188 		*var = vmx->rmode.segs[seg];
3189 		if (seg == VCPU_SREG_TR
3190 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3191 			return;
3192 		var->base = vmx_read_guest_seg_base(vmx, seg);
3193 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3194 		return;
3195 	}
3196 	var->base = vmx_read_guest_seg_base(vmx, seg);
3197 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3198 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3199 	ar = vmx_read_guest_seg_ar(vmx, seg);
3200 	var->unusable = (ar >> 16) & 1;
3201 	var->type = ar & 15;
3202 	var->s = (ar >> 4) & 1;
3203 	var->dpl = (ar >> 5) & 3;
3204 	/*
3205 	 * Some userspaces do not preserve unusable property. Since usable
3206 	 * segment has to be present according to VMX spec we can use present
3207 	 * property to amend userspace bug by making unusable segment always
3208 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3209 	 * segment as unusable.
3210 	 */
3211 	var->present = !var->unusable;
3212 	var->avl = (ar >> 12) & 1;
3213 	var->l = (ar >> 13) & 1;
3214 	var->db = (ar >> 14) & 1;
3215 	var->g = (ar >> 15) & 1;
3216 }
3217 
3218 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3219 {
3220 	struct kvm_segment s;
3221 
3222 	if (to_vmx(vcpu)->rmode.vm86_active) {
3223 		vmx_get_segment(vcpu, &s, seg);
3224 		return s.base;
3225 	}
3226 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3227 }
3228 
3229 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3230 {
3231 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3232 
3233 	if (unlikely(vmx->rmode.vm86_active))
3234 		return 0;
3235 	else {
3236 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3237 		return VMX_AR_DPL(ar);
3238 	}
3239 }
3240 
3241 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3242 {
3243 	u32 ar;
3244 
3245 	if (var->unusable || !var->present)
3246 		ar = 1 << 16;
3247 	else {
3248 		ar = var->type & 15;
3249 		ar |= (var->s & 1) << 4;
3250 		ar |= (var->dpl & 3) << 5;
3251 		ar |= (var->present & 1) << 7;
3252 		ar |= (var->avl & 1) << 12;
3253 		ar |= (var->l & 1) << 13;
3254 		ar |= (var->db & 1) << 14;
3255 		ar |= (var->g & 1) << 15;
3256 	}
3257 
3258 	return ar;
3259 }
3260 
3261 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3262 {
3263 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3264 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3265 
3266 	vmx_segment_cache_clear(vmx);
3267 
3268 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3269 		vmx->rmode.segs[seg] = *var;
3270 		if (seg == VCPU_SREG_TR)
3271 			vmcs_write16(sf->selector, var->selector);
3272 		else if (var->s)
3273 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3274 		goto out;
3275 	}
3276 
3277 	vmcs_writel(sf->base, var->base);
3278 	vmcs_write32(sf->limit, var->limit);
3279 	vmcs_write16(sf->selector, var->selector);
3280 
3281 	/*
3282 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3283 	 * qemu binaries.
3284 	 *   IA32 arch specifies that at the time of processor reset the
3285 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3286 	 * is setting it to 0 in the userland code. This causes invalid guest
3287 	 * state vmexit when "unrestricted guest" mode is turned on.
3288 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3289 	 * tree. Newer qemu binaries with that qemu fix would not need this
3290 	 * kvm hack.
3291 	 */
3292 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3293 		var->type |= 0x1; /* Accessed */
3294 
3295 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3296 
3297 out:
3298 	vmx->emulation_required = emulation_required(vcpu);
3299 }
3300 
3301 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3302 {
3303 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3304 
3305 	*db = (ar >> 14) & 1;
3306 	*l = (ar >> 13) & 1;
3307 }
3308 
3309 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3310 {
3311 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3312 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3313 }
3314 
3315 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3316 {
3317 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3318 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3319 }
3320 
3321 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3322 {
3323 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3324 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3325 }
3326 
3327 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3328 {
3329 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3330 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3331 }
3332 
3333 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3334 {
3335 	struct kvm_segment var;
3336 	u32 ar;
3337 
3338 	vmx_get_segment(vcpu, &var, seg);
3339 	var.dpl = 0x3;
3340 	if (seg == VCPU_SREG_CS)
3341 		var.type = 0x3;
3342 	ar = vmx_segment_access_rights(&var);
3343 
3344 	if (var.base != (var.selector << 4))
3345 		return false;
3346 	if (var.limit != 0xffff)
3347 		return false;
3348 	if (ar != 0xf3)
3349 		return false;
3350 
3351 	return true;
3352 }
3353 
3354 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3355 {
3356 	struct kvm_segment cs;
3357 	unsigned int cs_rpl;
3358 
3359 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3360 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3361 
3362 	if (cs.unusable)
3363 		return false;
3364 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3365 		return false;
3366 	if (!cs.s)
3367 		return false;
3368 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3369 		if (cs.dpl > cs_rpl)
3370 			return false;
3371 	} else {
3372 		if (cs.dpl != cs_rpl)
3373 			return false;
3374 	}
3375 	if (!cs.present)
3376 		return false;
3377 
3378 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3379 	return true;
3380 }
3381 
3382 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3383 {
3384 	struct kvm_segment ss;
3385 	unsigned int ss_rpl;
3386 
3387 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3388 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3389 
3390 	if (ss.unusable)
3391 		return true;
3392 	if (ss.type != 3 && ss.type != 7)
3393 		return false;
3394 	if (!ss.s)
3395 		return false;
3396 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3397 		return false;
3398 	if (!ss.present)
3399 		return false;
3400 
3401 	return true;
3402 }
3403 
3404 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3405 {
3406 	struct kvm_segment var;
3407 	unsigned int rpl;
3408 
3409 	vmx_get_segment(vcpu, &var, seg);
3410 	rpl = var.selector & SEGMENT_RPL_MASK;
3411 
3412 	if (var.unusable)
3413 		return true;
3414 	if (!var.s)
3415 		return false;
3416 	if (!var.present)
3417 		return false;
3418 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3419 		if (var.dpl < rpl) /* DPL < RPL */
3420 			return false;
3421 	}
3422 
3423 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3424 	 * rights flags
3425 	 */
3426 	return true;
3427 }
3428 
3429 static bool tr_valid(struct kvm_vcpu *vcpu)
3430 {
3431 	struct kvm_segment tr;
3432 
3433 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3434 
3435 	if (tr.unusable)
3436 		return false;
3437 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3438 		return false;
3439 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3440 		return false;
3441 	if (!tr.present)
3442 		return false;
3443 
3444 	return true;
3445 }
3446 
3447 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3448 {
3449 	struct kvm_segment ldtr;
3450 
3451 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3452 
3453 	if (ldtr.unusable)
3454 		return true;
3455 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3456 		return false;
3457 	if (ldtr.type != 2)
3458 		return false;
3459 	if (!ldtr.present)
3460 		return false;
3461 
3462 	return true;
3463 }
3464 
3465 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3466 {
3467 	struct kvm_segment cs, ss;
3468 
3469 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3470 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3471 
3472 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3473 		 (ss.selector & SEGMENT_RPL_MASK));
3474 }
3475 
3476 /*
3477  * Check if guest state is valid. Returns true if valid, false if
3478  * not.
3479  * We assume that registers are always usable
3480  */
3481 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3482 {
3483 	if (enable_unrestricted_guest)
3484 		return true;
3485 
3486 	/* real mode guest state checks */
3487 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3488 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3489 			return false;
3490 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3491 			return false;
3492 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3493 			return false;
3494 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3495 			return false;
3496 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3497 			return false;
3498 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3499 			return false;
3500 	} else {
3501 	/* protected mode guest state checks */
3502 		if (!cs_ss_rpl_check(vcpu))
3503 			return false;
3504 		if (!code_segment_valid(vcpu))
3505 			return false;
3506 		if (!stack_segment_valid(vcpu))
3507 			return false;
3508 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3509 			return false;
3510 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3511 			return false;
3512 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3513 			return false;
3514 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3515 			return false;
3516 		if (!tr_valid(vcpu))
3517 			return false;
3518 		if (!ldtr_valid(vcpu))
3519 			return false;
3520 	}
3521 	/* TODO:
3522 	 * - Add checks on RIP
3523 	 * - Add checks on RFLAGS
3524 	 */
3525 
3526 	return true;
3527 }
3528 
3529 static int init_rmode_tss(struct kvm *kvm)
3530 {
3531 	gfn_t fn;
3532 	u16 data = 0;
3533 	int idx, r;
3534 
3535 	idx = srcu_read_lock(&kvm->srcu);
3536 	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3537 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3538 	if (r < 0)
3539 		goto out;
3540 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3541 	r = kvm_write_guest_page(kvm, fn++, &data,
3542 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
3543 	if (r < 0)
3544 		goto out;
3545 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3546 	if (r < 0)
3547 		goto out;
3548 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3549 	if (r < 0)
3550 		goto out;
3551 	data = ~0;
3552 	r = kvm_write_guest_page(kvm, fn, &data,
3553 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3554 				 sizeof(u8));
3555 out:
3556 	srcu_read_unlock(&kvm->srcu, idx);
3557 	return r;
3558 }
3559 
3560 static int init_rmode_identity_map(struct kvm *kvm)
3561 {
3562 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3563 	int i, r = 0;
3564 	kvm_pfn_t identity_map_pfn;
3565 	u32 tmp;
3566 
3567 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3568 	mutex_lock(&kvm->slots_lock);
3569 
3570 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3571 		goto out;
3572 
3573 	if (!kvm_vmx->ept_identity_map_addr)
3574 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3575 	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3576 
3577 	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3578 				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3579 	if (r < 0)
3580 		goto out;
3581 
3582 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3583 	if (r < 0)
3584 		goto out;
3585 	/* Set up identity-mapping pagetable for EPT in real mode */
3586 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3587 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3588 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3589 		r = kvm_write_guest_page(kvm, identity_map_pfn,
3590 				&tmp, i * sizeof(tmp), sizeof(tmp));
3591 		if (r < 0)
3592 			goto out;
3593 	}
3594 	kvm_vmx->ept_identity_pagetable_done = true;
3595 
3596 out:
3597 	mutex_unlock(&kvm->slots_lock);
3598 	return r;
3599 }
3600 
3601 static void seg_setup(int seg)
3602 {
3603 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3604 	unsigned int ar;
3605 
3606 	vmcs_write16(sf->selector, 0);
3607 	vmcs_writel(sf->base, 0);
3608 	vmcs_write32(sf->limit, 0xffff);
3609 	ar = 0x93;
3610 	if (seg == VCPU_SREG_CS)
3611 		ar |= 0x08; /* code segment */
3612 
3613 	vmcs_write32(sf->ar_bytes, ar);
3614 }
3615 
3616 static int alloc_apic_access_page(struct kvm *kvm)
3617 {
3618 	struct page *page;
3619 	int r = 0;
3620 
3621 	mutex_lock(&kvm->slots_lock);
3622 	if (kvm->arch.apic_access_page_done)
3623 		goto out;
3624 	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3625 				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3626 	if (r)
3627 		goto out;
3628 
3629 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3630 	if (is_error_page(page)) {
3631 		r = -EFAULT;
3632 		goto out;
3633 	}
3634 
3635 	/*
3636 	 * Do not pin the page in memory, so that memory hot-unplug
3637 	 * is able to migrate it.
3638 	 */
3639 	put_page(page);
3640 	kvm->arch.apic_access_page_done = true;
3641 out:
3642 	mutex_unlock(&kvm->slots_lock);
3643 	return r;
3644 }
3645 
3646 int allocate_vpid(void)
3647 {
3648 	int vpid;
3649 
3650 	if (!enable_vpid)
3651 		return 0;
3652 	spin_lock(&vmx_vpid_lock);
3653 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3654 	if (vpid < VMX_NR_VPIDS)
3655 		__set_bit(vpid, vmx_vpid_bitmap);
3656 	else
3657 		vpid = 0;
3658 	spin_unlock(&vmx_vpid_lock);
3659 	return vpid;
3660 }
3661 
3662 void free_vpid(int vpid)
3663 {
3664 	if (!enable_vpid || vpid == 0)
3665 		return;
3666 	spin_lock(&vmx_vpid_lock);
3667 	__clear_bit(vpid, vmx_vpid_bitmap);
3668 	spin_unlock(&vmx_vpid_lock);
3669 }
3670 
3671 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3672 							  u32 msr, int type)
3673 {
3674 	int f = sizeof(unsigned long);
3675 
3676 	if (!cpu_has_vmx_msr_bitmap())
3677 		return;
3678 
3679 	if (static_branch_unlikely(&enable_evmcs))
3680 		evmcs_touch_msr_bitmap();
3681 
3682 	/*
3683 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3684 	 * have the write-low and read-high bitmap offsets the wrong way round.
3685 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3686 	 */
3687 	if (msr <= 0x1fff) {
3688 		if (type & MSR_TYPE_R)
3689 			/* read-low */
3690 			__clear_bit(msr, msr_bitmap + 0x000 / f);
3691 
3692 		if (type & MSR_TYPE_W)
3693 			/* write-low */
3694 			__clear_bit(msr, msr_bitmap + 0x800 / f);
3695 
3696 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3697 		msr &= 0x1fff;
3698 		if (type & MSR_TYPE_R)
3699 			/* read-high */
3700 			__clear_bit(msr, msr_bitmap + 0x400 / f);
3701 
3702 		if (type & MSR_TYPE_W)
3703 			/* write-high */
3704 			__clear_bit(msr, msr_bitmap + 0xc00 / f);
3705 
3706 	}
3707 }
3708 
3709 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3710 							 u32 msr, int type)
3711 {
3712 	int f = sizeof(unsigned long);
3713 
3714 	if (!cpu_has_vmx_msr_bitmap())
3715 		return;
3716 
3717 	if (static_branch_unlikely(&enable_evmcs))
3718 		evmcs_touch_msr_bitmap();
3719 
3720 	/*
3721 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3722 	 * have the write-low and read-high bitmap offsets the wrong way round.
3723 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3724 	 */
3725 	if (msr <= 0x1fff) {
3726 		if (type & MSR_TYPE_R)
3727 			/* read-low */
3728 			__set_bit(msr, msr_bitmap + 0x000 / f);
3729 
3730 		if (type & MSR_TYPE_W)
3731 			/* write-low */
3732 			__set_bit(msr, msr_bitmap + 0x800 / f);
3733 
3734 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3735 		msr &= 0x1fff;
3736 		if (type & MSR_TYPE_R)
3737 			/* read-high */
3738 			__set_bit(msr, msr_bitmap + 0x400 / f);
3739 
3740 		if (type & MSR_TYPE_W)
3741 			/* write-high */
3742 			__set_bit(msr, msr_bitmap + 0xc00 / f);
3743 
3744 	}
3745 }
3746 
3747 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3748 			     			      u32 msr, int type, bool value)
3749 {
3750 	if (value)
3751 		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3752 	else
3753 		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3754 }
3755 
3756 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3757 {
3758 	u8 mode = 0;
3759 
3760 	if (cpu_has_secondary_exec_ctrls() &&
3761 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
3762 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3763 		mode |= MSR_BITMAP_MODE_X2APIC;
3764 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3765 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3766 	}
3767 
3768 	return mode;
3769 }
3770 
3771 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3772 					 u8 mode)
3773 {
3774 	int msr;
3775 
3776 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3777 		unsigned word = msr / BITS_PER_LONG;
3778 		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3779 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3780 	}
3781 
3782 	if (mode & MSR_BITMAP_MODE_X2APIC) {
3783 		/*
3784 		 * TPR reads and writes can be virtualized even if virtual interrupt
3785 		 * delivery is not in use.
3786 		 */
3787 		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3788 		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3789 			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3790 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3791 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3792 		}
3793 	}
3794 }
3795 
3796 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3797 {
3798 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3799 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3800 	u8 mode = vmx_msr_bitmap_mode(vcpu);
3801 	u8 changed = mode ^ vmx->msr_bitmap_mode;
3802 
3803 	if (!changed)
3804 		return;
3805 
3806 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3807 		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3808 
3809 	vmx->msr_bitmap_mode = mode;
3810 }
3811 
3812 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3813 {
3814 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3815 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3816 	u32 i;
3817 
3818 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3819 							MSR_TYPE_RW, flag);
3820 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3821 							MSR_TYPE_RW, flag);
3822 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3823 							MSR_TYPE_RW, flag);
3824 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3825 							MSR_TYPE_RW, flag);
3826 	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3827 		vmx_set_intercept_for_msr(msr_bitmap,
3828 			MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3829 		vmx_set_intercept_for_msr(msr_bitmap,
3830 			MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3831 	}
3832 }
3833 
3834 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3835 {
3836 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3837 	void *vapic_page;
3838 	u32 vppr;
3839 	int rvi;
3840 
3841 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3842 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3843 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3844 		return false;
3845 
3846 	rvi = vmx_get_rvi();
3847 
3848 	vapic_page = vmx->nested.virtual_apic_map.hva;
3849 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3850 
3851 	return ((rvi & 0xf0) > (vppr & 0xf0));
3852 }
3853 
3854 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3855 						     bool nested)
3856 {
3857 #ifdef CONFIG_SMP
3858 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3859 
3860 	if (vcpu->mode == IN_GUEST_MODE) {
3861 		/*
3862 		 * The vector of interrupt to be delivered to vcpu had
3863 		 * been set in PIR before this function.
3864 		 *
3865 		 * Following cases will be reached in this block, and
3866 		 * we always send a notification event in all cases as
3867 		 * explained below.
3868 		 *
3869 		 * Case 1: vcpu keeps in non-root mode. Sending a
3870 		 * notification event posts the interrupt to vcpu.
3871 		 *
3872 		 * Case 2: vcpu exits to root mode and is still
3873 		 * runnable. PIR will be synced to vIRR before the
3874 		 * next vcpu entry. Sending a notification event in
3875 		 * this case has no effect, as vcpu is not in root
3876 		 * mode.
3877 		 *
3878 		 * Case 3: vcpu exits to root mode and is blocked.
3879 		 * vcpu_block() has already synced PIR to vIRR and
3880 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3881 		 * a blocked vcpu here does not wait for any requested
3882 		 * interrupts in PIR, and sending a notification event
3883 		 * which has no effect is safe here.
3884 		 */
3885 
3886 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3887 		return true;
3888 	}
3889 #endif
3890 	return false;
3891 }
3892 
3893 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3894 						int vector)
3895 {
3896 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3897 
3898 	if (is_guest_mode(vcpu) &&
3899 	    vector == vmx->nested.posted_intr_nv) {
3900 		/*
3901 		 * If a posted intr is not recognized by hardware,
3902 		 * we will accomplish it in the next vmentry.
3903 		 */
3904 		vmx->nested.pi_pending = true;
3905 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3906 		/* the PIR and ON have been set by L1. */
3907 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3908 			kvm_vcpu_kick(vcpu);
3909 		return 0;
3910 	}
3911 	return -1;
3912 }
3913 /*
3914  * Send interrupt to vcpu via posted interrupt way.
3915  * 1. If target vcpu is running(non-root mode), send posted interrupt
3916  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3917  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3918  * interrupt from PIR in next vmentry.
3919  */
3920 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3921 {
3922 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3923 	int r;
3924 
3925 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3926 	if (!r)
3927 		return 0;
3928 
3929 	if (!vcpu->arch.apicv_active)
3930 		return -1;
3931 
3932 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3933 		return 0;
3934 
3935 	/* If a previous notification has sent the IPI, nothing to do.  */
3936 	if (pi_test_and_set_on(&vmx->pi_desc))
3937 		return 0;
3938 
3939 	if (vcpu != kvm_get_running_vcpu() &&
3940 	    !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3941 		kvm_vcpu_kick(vcpu);
3942 
3943 	return 0;
3944 }
3945 
3946 /*
3947  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3948  * will not change in the lifetime of the guest.
3949  * Note that host-state that does change is set elsewhere. E.g., host-state
3950  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3951  */
3952 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3953 {
3954 	u32 low32, high32;
3955 	unsigned long tmpl;
3956 	unsigned long cr0, cr3, cr4;
3957 
3958 	cr0 = read_cr0();
3959 	WARN_ON(cr0 & X86_CR0_TS);
3960 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3961 
3962 	/*
3963 	 * Save the most likely value for this task's CR3 in the VMCS.
3964 	 * We can't use __get_current_cr3_fast() because we're not atomic.
3965 	 */
3966 	cr3 = __read_cr3();
3967 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
3968 	vmx->loaded_vmcs->host_state.cr3 = cr3;
3969 
3970 	/* Save the most likely value for this task's CR4 in the VMCS. */
3971 	cr4 = cr4_read_shadow();
3972 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
3973 	vmx->loaded_vmcs->host_state.cr4 = cr4;
3974 
3975 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3976 #ifdef CONFIG_X86_64
3977 	/*
3978 	 * Load null selectors, so we can avoid reloading them in
3979 	 * vmx_prepare_switch_to_host(), in case userspace uses
3980 	 * the null selectors too (the expected case).
3981 	 */
3982 	vmcs_write16(HOST_DS_SELECTOR, 0);
3983 	vmcs_write16(HOST_ES_SELECTOR, 0);
3984 #else
3985 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3986 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3987 #endif
3988 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3989 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3990 
3991 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3992 
3993 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3994 
3995 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3996 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3997 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3998 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3999 
4000 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4001 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4002 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4003 	}
4004 
4005 	if (cpu_has_load_ia32_efer())
4006 		vmcs_write64(HOST_IA32_EFER, host_efer);
4007 }
4008 
4009 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4010 {
4011 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4012 	if (enable_ept)
4013 		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4014 	if (is_guest_mode(&vmx->vcpu))
4015 		vmx->vcpu.arch.cr4_guest_owned_bits &=
4016 			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4017 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4018 }
4019 
4020 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4021 {
4022 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4023 
4024 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4025 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4026 
4027 	if (!enable_vnmi)
4028 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4029 
4030 	if (!enable_preemption_timer)
4031 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4032 
4033 	return pin_based_exec_ctrl;
4034 }
4035 
4036 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4037 {
4038 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4039 
4040 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4041 	if (cpu_has_secondary_exec_ctrls()) {
4042 		if (kvm_vcpu_apicv_active(vcpu))
4043 			secondary_exec_controls_setbit(vmx,
4044 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4045 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4046 		else
4047 			secondary_exec_controls_clearbit(vmx,
4048 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4049 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4050 	}
4051 
4052 	if (cpu_has_vmx_msr_bitmap())
4053 		vmx_update_msr_bitmap(vcpu);
4054 }
4055 
4056 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4057 {
4058 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4059 
4060 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4061 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4062 
4063 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4064 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4065 #ifdef CONFIG_X86_64
4066 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4067 				CPU_BASED_CR8_LOAD_EXITING;
4068 #endif
4069 	}
4070 	if (!enable_ept)
4071 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4072 				CPU_BASED_CR3_LOAD_EXITING  |
4073 				CPU_BASED_INVLPG_EXITING;
4074 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4075 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4076 				CPU_BASED_MONITOR_EXITING);
4077 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4078 		exec_control &= ~CPU_BASED_HLT_EXITING;
4079 	return exec_control;
4080 }
4081 
4082 
4083 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4084 {
4085 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4086 
4087 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4088 
4089 	if (vmx_pt_mode_is_system())
4090 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4091 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4092 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4093 	if (vmx->vpid == 0)
4094 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4095 	if (!enable_ept) {
4096 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4097 		enable_unrestricted_guest = 0;
4098 	}
4099 	if (!enable_unrestricted_guest)
4100 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4101 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4102 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4103 	if (!kvm_vcpu_apicv_active(vcpu))
4104 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4105 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4106 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4107 
4108 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4109 	 * in vmx_set_cr4.  */
4110 	exec_control &= ~SECONDARY_EXEC_DESC;
4111 
4112 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4113 	   (handle_vmptrld).
4114 	   We can NOT enable shadow_vmcs here because we don't have yet
4115 	   a current VMCS12
4116 	*/
4117 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4118 
4119 	if (!enable_pml)
4120 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4121 
4122 	if (vmx_xsaves_supported()) {
4123 		/* Exposing XSAVES only when XSAVE is exposed */
4124 		bool xsaves_enabled =
4125 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4126 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4127 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4128 
4129 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4130 
4131 		if (!xsaves_enabled)
4132 			exec_control &= ~SECONDARY_EXEC_XSAVES;
4133 
4134 		if (nested) {
4135 			if (xsaves_enabled)
4136 				vmx->nested.msrs.secondary_ctls_high |=
4137 					SECONDARY_EXEC_XSAVES;
4138 			else
4139 				vmx->nested.msrs.secondary_ctls_high &=
4140 					~SECONDARY_EXEC_XSAVES;
4141 		}
4142 	}
4143 
4144 	if (cpu_has_vmx_rdtscp()) {
4145 		bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4146 		if (!rdtscp_enabled)
4147 			exec_control &= ~SECONDARY_EXEC_RDTSCP;
4148 
4149 		if (nested) {
4150 			if (rdtscp_enabled)
4151 				vmx->nested.msrs.secondary_ctls_high |=
4152 					SECONDARY_EXEC_RDTSCP;
4153 			else
4154 				vmx->nested.msrs.secondary_ctls_high &=
4155 					~SECONDARY_EXEC_RDTSCP;
4156 		}
4157 	}
4158 
4159 	if (cpu_has_vmx_invpcid()) {
4160 		/* Exposing INVPCID only when PCID is exposed */
4161 		bool invpcid_enabled =
4162 			guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4163 			guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4164 
4165 		if (!invpcid_enabled) {
4166 			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4167 			guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4168 		}
4169 
4170 		if (nested) {
4171 			if (invpcid_enabled)
4172 				vmx->nested.msrs.secondary_ctls_high |=
4173 					SECONDARY_EXEC_ENABLE_INVPCID;
4174 			else
4175 				vmx->nested.msrs.secondary_ctls_high &=
4176 					~SECONDARY_EXEC_ENABLE_INVPCID;
4177 		}
4178 	}
4179 
4180 	if (vmx_rdrand_supported()) {
4181 		bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4182 		if (rdrand_enabled)
4183 			exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4184 
4185 		if (nested) {
4186 			if (rdrand_enabled)
4187 				vmx->nested.msrs.secondary_ctls_high |=
4188 					SECONDARY_EXEC_RDRAND_EXITING;
4189 			else
4190 				vmx->nested.msrs.secondary_ctls_high &=
4191 					~SECONDARY_EXEC_RDRAND_EXITING;
4192 		}
4193 	}
4194 
4195 	if (vmx_rdseed_supported()) {
4196 		bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4197 		if (rdseed_enabled)
4198 			exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4199 
4200 		if (nested) {
4201 			if (rdseed_enabled)
4202 				vmx->nested.msrs.secondary_ctls_high |=
4203 					SECONDARY_EXEC_RDSEED_EXITING;
4204 			else
4205 				vmx->nested.msrs.secondary_ctls_high &=
4206 					~SECONDARY_EXEC_RDSEED_EXITING;
4207 		}
4208 	}
4209 
4210 	if (vmx_waitpkg_supported()) {
4211 		bool waitpkg_enabled =
4212 			guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4213 
4214 		if (!waitpkg_enabled)
4215 			exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4216 
4217 		if (nested) {
4218 			if (waitpkg_enabled)
4219 				vmx->nested.msrs.secondary_ctls_high |=
4220 					SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4221 			else
4222 				vmx->nested.msrs.secondary_ctls_high &=
4223 					~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4224 		}
4225 	}
4226 
4227 	vmx->secondary_exec_control = exec_control;
4228 }
4229 
4230 static void ept_set_mmio_spte_mask(void)
4231 {
4232 	/*
4233 	 * EPT Misconfigurations can be generated if the value of bits 2:0
4234 	 * of an EPT paging-structure entry is 110b (write/execute).
4235 	 */
4236 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0);
4237 }
4238 
4239 #define VMX_XSS_EXIT_BITMAP 0
4240 
4241 /*
4242  * Noting that the initialization of Guest-state Area of VMCS is in
4243  * vmx_vcpu_reset().
4244  */
4245 static void init_vmcs(struct vcpu_vmx *vmx)
4246 {
4247 	if (nested)
4248 		nested_vmx_set_vmcs_shadowing_bitmap();
4249 
4250 	if (cpu_has_vmx_msr_bitmap())
4251 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4252 
4253 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4254 
4255 	/* Control */
4256 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4257 
4258 	exec_controls_set(vmx, vmx_exec_control(vmx));
4259 
4260 	if (cpu_has_secondary_exec_ctrls()) {
4261 		vmx_compute_secondary_exec_control(vmx);
4262 		secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4263 	}
4264 
4265 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4266 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4267 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4268 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4269 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4270 
4271 		vmcs_write16(GUEST_INTR_STATUS, 0);
4272 
4273 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4274 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4275 	}
4276 
4277 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4278 		vmcs_write32(PLE_GAP, ple_gap);
4279 		vmx->ple_window = ple_window;
4280 		vmx->ple_window_dirty = true;
4281 	}
4282 
4283 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4284 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4285 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4286 
4287 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4288 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4289 	vmx_set_constant_host_state(vmx);
4290 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4291 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4292 
4293 	if (cpu_has_vmx_vmfunc())
4294 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4295 
4296 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4297 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4298 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4299 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4300 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4301 
4302 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4303 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4304 
4305 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4306 
4307 	/* 22.2.1, 20.8.1 */
4308 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4309 
4310 	vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4311 	vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4312 
4313 	set_cr4_guest_host_mask(vmx);
4314 
4315 	if (vmx->vpid != 0)
4316 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4317 
4318 	if (vmx_xsaves_supported())
4319 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4320 
4321 	if (enable_pml) {
4322 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4323 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4324 	}
4325 
4326 	if (cpu_has_vmx_encls_vmexit())
4327 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4328 
4329 	if (vmx_pt_mode_is_host_guest()) {
4330 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4331 		/* Bit[6~0] are forced to 1, writes are ignored. */
4332 		vmx->pt_desc.guest.output_mask = 0x7F;
4333 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4334 	}
4335 }
4336 
4337 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4338 {
4339 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4340 	struct msr_data apic_base_msr;
4341 	u64 cr0;
4342 
4343 	vmx->rmode.vm86_active = 0;
4344 	vmx->spec_ctrl = 0;
4345 
4346 	vmx->msr_ia32_umwait_control = 0;
4347 
4348 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4349 	vmx->hv_deadline_tsc = -1;
4350 	kvm_set_cr8(vcpu, 0);
4351 
4352 	if (!init_event) {
4353 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4354 				     MSR_IA32_APICBASE_ENABLE;
4355 		if (kvm_vcpu_is_reset_bsp(vcpu))
4356 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4357 		apic_base_msr.host_initiated = true;
4358 		kvm_set_apic_base(vcpu, &apic_base_msr);
4359 	}
4360 
4361 	vmx_segment_cache_clear(vmx);
4362 
4363 	seg_setup(VCPU_SREG_CS);
4364 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4365 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4366 
4367 	seg_setup(VCPU_SREG_DS);
4368 	seg_setup(VCPU_SREG_ES);
4369 	seg_setup(VCPU_SREG_FS);
4370 	seg_setup(VCPU_SREG_GS);
4371 	seg_setup(VCPU_SREG_SS);
4372 
4373 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4374 	vmcs_writel(GUEST_TR_BASE, 0);
4375 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4376 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4377 
4378 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4379 	vmcs_writel(GUEST_LDTR_BASE, 0);
4380 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4381 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4382 
4383 	if (!init_event) {
4384 		vmcs_write32(GUEST_SYSENTER_CS, 0);
4385 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
4386 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
4387 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4388 	}
4389 
4390 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4391 	kvm_rip_write(vcpu, 0xfff0);
4392 
4393 	vmcs_writel(GUEST_GDTR_BASE, 0);
4394 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4395 
4396 	vmcs_writel(GUEST_IDTR_BASE, 0);
4397 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4398 
4399 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4400 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4401 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4402 	if (kvm_mpx_supported())
4403 		vmcs_write64(GUEST_BNDCFGS, 0);
4404 
4405 	setup_msrs(vmx);
4406 
4407 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4408 
4409 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
4410 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4411 		if (cpu_need_tpr_shadow(vcpu))
4412 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4413 				     __pa(vcpu->arch.apic->regs));
4414 		vmcs_write32(TPR_THRESHOLD, 0);
4415 	}
4416 
4417 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4418 
4419 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4420 	vmx->vcpu.arch.cr0 = cr0;
4421 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
4422 	vmx_set_cr4(vcpu, 0);
4423 	vmx_set_efer(vcpu, 0);
4424 
4425 	update_exception_bitmap(vcpu);
4426 
4427 	vpid_sync_context(vmx->vpid);
4428 	if (init_event)
4429 		vmx_clear_hlt(vcpu);
4430 }
4431 
4432 static void enable_irq_window(struct kvm_vcpu *vcpu)
4433 {
4434 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4435 }
4436 
4437 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4438 {
4439 	if (!enable_vnmi ||
4440 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4441 		enable_irq_window(vcpu);
4442 		return;
4443 	}
4444 
4445 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4446 }
4447 
4448 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4449 {
4450 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4451 	uint32_t intr;
4452 	int irq = vcpu->arch.interrupt.nr;
4453 
4454 	trace_kvm_inj_virq(irq);
4455 
4456 	++vcpu->stat.irq_injections;
4457 	if (vmx->rmode.vm86_active) {
4458 		int inc_eip = 0;
4459 		if (vcpu->arch.interrupt.soft)
4460 			inc_eip = vcpu->arch.event_exit_inst_len;
4461 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4462 		return;
4463 	}
4464 	intr = irq | INTR_INFO_VALID_MASK;
4465 	if (vcpu->arch.interrupt.soft) {
4466 		intr |= INTR_TYPE_SOFT_INTR;
4467 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4468 			     vmx->vcpu.arch.event_exit_inst_len);
4469 	} else
4470 		intr |= INTR_TYPE_EXT_INTR;
4471 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4472 
4473 	vmx_clear_hlt(vcpu);
4474 }
4475 
4476 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4477 {
4478 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4479 
4480 	if (!enable_vnmi) {
4481 		/*
4482 		 * Tracking the NMI-blocked state in software is built upon
4483 		 * finding the next open IRQ window. This, in turn, depends on
4484 		 * well-behaving guests: They have to keep IRQs disabled at
4485 		 * least as long as the NMI handler runs. Otherwise we may
4486 		 * cause NMI nesting, maybe breaking the guest. But as this is
4487 		 * highly unlikely, we can live with the residual risk.
4488 		 */
4489 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4490 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4491 	}
4492 
4493 	++vcpu->stat.nmi_injections;
4494 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4495 
4496 	if (vmx->rmode.vm86_active) {
4497 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4498 		return;
4499 	}
4500 
4501 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4502 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4503 
4504 	vmx_clear_hlt(vcpu);
4505 }
4506 
4507 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4508 {
4509 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4510 	bool masked;
4511 
4512 	if (!enable_vnmi)
4513 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4514 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4515 		return false;
4516 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4517 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4518 	return masked;
4519 }
4520 
4521 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4522 {
4523 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4524 
4525 	if (!enable_vnmi) {
4526 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4527 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4528 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4529 		}
4530 	} else {
4531 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4532 		if (masked)
4533 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4534 				      GUEST_INTR_STATE_NMI);
4535 		else
4536 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4537 					GUEST_INTR_STATE_NMI);
4538 	}
4539 }
4540 
4541 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4542 {
4543 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4544 		return false;
4545 
4546 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4547 		return true;
4548 
4549 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4550 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4551 		 GUEST_INTR_STATE_NMI));
4552 }
4553 
4554 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4555 {
4556 	if (to_vmx(vcpu)->nested.nested_run_pending)
4557 		return -EBUSY;
4558 
4559 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4560 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4561 		return -EBUSY;
4562 
4563 	return !vmx_nmi_blocked(vcpu);
4564 }
4565 
4566 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4567 {
4568 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4569 		return false;
4570 
4571 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4572 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4573 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4574 }
4575 
4576 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4577 {
4578 	if (to_vmx(vcpu)->nested.nested_run_pending)
4579 		return -EBUSY;
4580 
4581        /*
4582         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4583         * e.g. if the IRQ arrived asynchronously after checking nested events.
4584         */
4585 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4586 		return -EBUSY;
4587 
4588 	return !vmx_interrupt_blocked(vcpu);
4589 }
4590 
4591 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4592 {
4593 	int ret;
4594 
4595 	if (enable_unrestricted_guest)
4596 		return 0;
4597 
4598 	mutex_lock(&kvm->slots_lock);
4599 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4600 				      PAGE_SIZE * 3);
4601 	mutex_unlock(&kvm->slots_lock);
4602 
4603 	if (ret)
4604 		return ret;
4605 	to_kvm_vmx(kvm)->tss_addr = addr;
4606 	return init_rmode_tss(kvm);
4607 }
4608 
4609 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4610 {
4611 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4612 	return 0;
4613 }
4614 
4615 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4616 {
4617 	switch (vec) {
4618 	case BP_VECTOR:
4619 		/*
4620 		 * Update instruction length as we may reinject the exception
4621 		 * from user space while in guest debugging mode.
4622 		 */
4623 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4624 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4625 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4626 			return false;
4627 		/* fall through */
4628 	case DB_VECTOR:
4629 		return !(vcpu->guest_debug &
4630 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4631 	case DE_VECTOR:
4632 	case OF_VECTOR:
4633 	case BR_VECTOR:
4634 	case UD_VECTOR:
4635 	case DF_VECTOR:
4636 	case SS_VECTOR:
4637 	case GP_VECTOR:
4638 	case MF_VECTOR:
4639 		return true;
4640 	}
4641 	return false;
4642 }
4643 
4644 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4645 				  int vec, u32 err_code)
4646 {
4647 	/*
4648 	 * Instruction with address size override prefix opcode 0x67
4649 	 * Cause the #SS fault with 0 error code in VM86 mode.
4650 	 */
4651 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4652 		if (kvm_emulate_instruction(vcpu, 0)) {
4653 			if (vcpu->arch.halt_request) {
4654 				vcpu->arch.halt_request = 0;
4655 				return kvm_vcpu_halt(vcpu);
4656 			}
4657 			return 1;
4658 		}
4659 		return 0;
4660 	}
4661 
4662 	/*
4663 	 * Forward all other exceptions that are valid in real mode.
4664 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4665 	 *        the required debugging infrastructure rework.
4666 	 */
4667 	kvm_queue_exception(vcpu, vec);
4668 	return 1;
4669 }
4670 
4671 /*
4672  * Trigger machine check on the host. We assume all the MSRs are already set up
4673  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4674  * We pass a fake environment to the machine check handler because we want
4675  * the guest to be always treated like user space, no matter what context
4676  * it used internally.
4677  */
4678 static void kvm_machine_check(void)
4679 {
4680 #if defined(CONFIG_X86_MCE)
4681 	struct pt_regs regs = {
4682 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
4683 		.flags = X86_EFLAGS_IF,
4684 	};
4685 
4686 	do_machine_check(&regs, 0);
4687 #endif
4688 }
4689 
4690 static int handle_machine_check(struct kvm_vcpu *vcpu)
4691 {
4692 	/* handled by vmx_vcpu_run() */
4693 	return 1;
4694 }
4695 
4696 /*
4697  * If the host has split lock detection disabled, then #AC is
4698  * unconditionally injected into the guest, which is the pre split lock
4699  * detection behaviour.
4700  *
4701  * If the host has split lock detection enabled then #AC is
4702  * only injected into the guest when:
4703  *  - Guest CPL == 3 (user mode)
4704  *  - Guest has #AC detection enabled in CR0
4705  *  - Guest EFLAGS has AC bit set
4706  */
4707 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4708 {
4709 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4710 		return true;
4711 
4712 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4713 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4714 }
4715 
4716 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4717 {
4718 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4719 	struct kvm_run *kvm_run = vcpu->run;
4720 	u32 intr_info, ex_no, error_code;
4721 	unsigned long cr2, rip, dr6;
4722 	u32 vect_info;
4723 
4724 	vect_info = vmx->idt_vectoring_info;
4725 	intr_info = vmx_get_intr_info(vcpu);
4726 
4727 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4728 		return 1; /* handled by handle_exception_nmi_irqoff() */
4729 
4730 	if (is_invalid_opcode(intr_info))
4731 		return handle_ud(vcpu);
4732 
4733 	error_code = 0;
4734 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4735 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4736 
4737 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4738 		WARN_ON_ONCE(!enable_vmware_backdoor);
4739 
4740 		/*
4741 		 * VMware backdoor emulation on #GP interception only handles
4742 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4743 		 * error code on #GP.
4744 		 */
4745 		if (error_code) {
4746 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4747 			return 1;
4748 		}
4749 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4750 	}
4751 
4752 	/*
4753 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4754 	 * MMIO, it is better to report an internal error.
4755 	 * See the comments in vmx_handle_exit.
4756 	 */
4757 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4758 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4759 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4760 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4761 		vcpu->run->internal.ndata = 3;
4762 		vcpu->run->internal.data[0] = vect_info;
4763 		vcpu->run->internal.data[1] = intr_info;
4764 		vcpu->run->internal.data[2] = error_code;
4765 		return 0;
4766 	}
4767 
4768 	if (is_page_fault(intr_info)) {
4769 		cr2 = vmx_get_exit_qual(vcpu);
4770 		/* EPT won't cause page fault directly */
4771 		WARN_ON_ONCE(!vcpu->arch.apf.host_apf_flags && enable_ept);
4772 		return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4773 	}
4774 
4775 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4776 
4777 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4778 		return handle_rmode_exception(vcpu, ex_no, error_code);
4779 
4780 	switch (ex_no) {
4781 	case DB_VECTOR:
4782 		dr6 = vmx_get_exit_qual(vcpu);
4783 		if (!(vcpu->guest_debug &
4784 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4785 			if (is_icebp(intr_info))
4786 				WARN_ON(!skip_emulated_instruction(vcpu));
4787 
4788 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4789 			return 1;
4790 		}
4791 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4792 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4793 		/* fall through */
4794 	case BP_VECTOR:
4795 		/*
4796 		 * Update instruction length as we may reinject #BP from
4797 		 * user space while in guest debugging mode. Reading it for
4798 		 * #DB as well causes no harm, it is not used in that case.
4799 		 */
4800 		vmx->vcpu.arch.event_exit_inst_len =
4801 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4802 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4803 		rip = kvm_rip_read(vcpu);
4804 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4805 		kvm_run->debug.arch.exception = ex_no;
4806 		break;
4807 	case AC_VECTOR:
4808 		if (guest_inject_ac(vcpu)) {
4809 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4810 			return 1;
4811 		}
4812 
4813 		/*
4814 		 * Handle split lock. Depending on detection mode this will
4815 		 * either warn and disable split lock detection for this
4816 		 * task or force SIGBUS on it.
4817 		 */
4818 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4819 			return 1;
4820 		fallthrough;
4821 	default:
4822 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4823 		kvm_run->ex.exception = ex_no;
4824 		kvm_run->ex.error_code = error_code;
4825 		break;
4826 	}
4827 	return 0;
4828 }
4829 
4830 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4831 {
4832 	++vcpu->stat.irq_exits;
4833 	return 1;
4834 }
4835 
4836 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4837 {
4838 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4839 	vcpu->mmio_needed = 0;
4840 	return 0;
4841 }
4842 
4843 static int handle_io(struct kvm_vcpu *vcpu)
4844 {
4845 	unsigned long exit_qualification;
4846 	int size, in, string;
4847 	unsigned port;
4848 
4849 	exit_qualification = vmx_get_exit_qual(vcpu);
4850 	string = (exit_qualification & 16) != 0;
4851 
4852 	++vcpu->stat.io_exits;
4853 
4854 	if (string)
4855 		return kvm_emulate_instruction(vcpu, 0);
4856 
4857 	port = exit_qualification >> 16;
4858 	size = (exit_qualification & 7) + 1;
4859 	in = (exit_qualification & 8) != 0;
4860 
4861 	return kvm_fast_pio(vcpu, size, port, in);
4862 }
4863 
4864 static void
4865 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4866 {
4867 	/*
4868 	 * Patch in the VMCALL instruction:
4869 	 */
4870 	hypercall[0] = 0x0f;
4871 	hypercall[1] = 0x01;
4872 	hypercall[2] = 0xc1;
4873 }
4874 
4875 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4876 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4877 {
4878 	if (is_guest_mode(vcpu)) {
4879 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4880 		unsigned long orig_val = val;
4881 
4882 		/*
4883 		 * We get here when L2 changed cr0 in a way that did not change
4884 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4885 		 * but did change L0 shadowed bits. So we first calculate the
4886 		 * effective cr0 value that L1 would like to write into the
4887 		 * hardware. It consists of the L2-owned bits from the new
4888 		 * value combined with the L1-owned bits from L1's guest_cr0.
4889 		 */
4890 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4891 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4892 
4893 		if (!nested_guest_cr0_valid(vcpu, val))
4894 			return 1;
4895 
4896 		if (kvm_set_cr0(vcpu, val))
4897 			return 1;
4898 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4899 		return 0;
4900 	} else {
4901 		if (to_vmx(vcpu)->nested.vmxon &&
4902 		    !nested_host_cr0_valid(vcpu, val))
4903 			return 1;
4904 
4905 		return kvm_set_cr0(vcpu, val);
4906 	}
4907 }
4908 
4909 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4910 {
4911 	if (is_guest_mode(vcpu)) {
4912 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4913 		unsigned long orig_val = val;
4914 
4915 		/* analogously to handle_set_cr0 */
4916 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4917 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4918 		if (kvm_set_cr4(vcpu, val))
4919 			return 1;
4920 		vmcs_writel(CR4_READ_SHADOW, orig_val);
4921 		return 0;
4922 	} else
4923 		return kvm_set_cr4(vcpu, val);
4924 }
4925 
4926 static int handle_desc(struct kvm_vcpu *vcpu)
4927 {
4928 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4929 	return kvm_emulate_instruction(vcpu, 0);
4930 }
4931 
4932 static int handle_cr(struct kvm_vcpu *vcpu)
4933 {
4934 	unsigned long exit_qualification, val;
4935 	int cr;
4936 	int reg;
4937 	int err;
4938 	int ret;
4939 
4940 	exit_qualification = vmx_get_exit_qual(vcpu);
4941 	cr = exit_qualification & 15;
4942 	reg = (exit_qualification >> 8) & 15;
4943 	switch ((exit_qualification >> 4) & 3) {
4944 	case 0: /* mov to cr */
4945 		val = kvm_register_readl(vcpu, reg);
4946 		trace_kvm_cr_write(cr, val);
4947 		switch (cr) {
4948 		case 0:
4949 			err = handle_set_cr0(vcpu, val);
4950 			return kvm_complete_insn_gp(vcpu, err);
4951 		case 3:
4952 			WARN_ON_ONCE(enable_unrestricted_guest);
4953 			err = kvm_set_cr3(vcpu, val);
4954 			return kvm_complete_insn_gp(vcpu, err);
4955 		case 4:
4956 			err = handle_set_cr4(vcpu, val);
4957 			return kvm_complete_insn_gp(vcpu, err);
4958 		case 8: {
4959 				u8 cr8_prev = kvm_get_cr8(vcpu);
4960 				u8 cr8 = (u8)val;
4961 				err = kvm_set_cr8(vcpu, cr8);
4962 				ret = kvm_complete_insn_gp(vcpu, err);
4963 				if (lapic_in_kernel(vcpu))
4964 					return ret;
4965 				if (cr8_prev <= cr8)
4966 					return ret;
4967 				/*
4968 				 * TODO: we might be squashing a
4969 				 * KVM_GUESTDBG_SINGLESTEP-triggered
4970 				 * KVM_EXIT_DEBUG here.
4971 				 */
4972 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4973 				return 0;
4974 			}
4975 		}
4976 		break;
4977 	case 2: /* clts */
4978 		WARN_ONCE(1, "Guest should always own CR0.TS");
4979 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4980 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4981 		return kvm_skip_emulated_instruction(vcpu);
4982 	case 1: /*mov from cr*/
4983 		switch (cr) {
4984 		case 3:
4985 			WARN_ON_ONCE(enable_unrestricted_guest);
4986 			val = kvm_read_cr3(vcpu);
4987 			kvm_register_write(vcpu, reg, val);
4988 			trace_kvm_cr_read(cr, val);
4989 			return kvm_skip_emulated_instruction(vcpu);
4990 		case 8:
4991 			val = kvm_get_cr8(vcpu);
4992 			kvm_register_write(vcpu, reg, val);
4993 			trace_kvm_cr_read(cr, val);
4994 			return kvm_skip_emulated_instruction(vcpu);
4995 		}
4996 		break;
4997 	case 3: /* lmsw */
4998 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4999 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5000 		kvm_lmsw(vcpu, val);
5001 
5002 		return kvm_skip_emulated_instruction(vcpu);
5003 	default:
5004 		break;
5005 	}
5006 	vcpu->run->exit_reason = 0;
5007 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5008 	       (int)(exit_qualification >> 4) & 3, cr);
5009 	return 0;
5010 }
5011 
5012 static int handle_dr(struct kvm_vcpu *vcpu)
5013 {
5014 	unsigned long exit_qualification;
5015 	int dr, dr7, reg;
5016 
5017 	exit_qualification = vmx_get_exit_qual(vcpu);
5018 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5019 
5020 	/* First, if DR does not exist, trigger UD */
5021 	if (!kvm_require_dr(vcpu, dr))
5022 		return 1;
5023 
5024 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
5025 	if (!kvm_require_cpl(vcpu, 0))
5026 		return 1;
5027 	dr7 = vmcs_readl(GUEST_DR7);
5028 	if (dr7 & DR7_GD) {
5029 		/*
5030 		 * As the vm-exit takes precedence over the debug trap, we
5031 		 * need to emulate the latter, either for the host or the
5032 		 * guest debugging itself.
5033 		 */
5034 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5035 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
5036 			vcpu->run->debug.arch.dr7 = dr7;
5037 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5038 			vcpu->run->debug.arch.exception = DB_VECTOR;
5039 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5040 			return 0;
5041 		} else {
5042 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5043 			return 1;
5044 		}
5045 	}
5046 
5047 	if (vcpu->guest_debug == 0) {
5048 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5049 
5050 		/*
5051 		 * No more DR vmexits; force a reload of the debug registers
5052 		 * and reenter on this instruction.  The next vmexit will
5053 		 * retrieve the full state of the debug registers.
5054 		 */
5055 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5056 		return 1;
5057 	}
5058 
5059 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5060 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5061 		unsigned long val;
5062 
5063 		if (kvm_get_dr(vcpu, dr, &val))
5064 			return 1;
5065 		kvm_register_write(vcpu, reg, val);
5066 	} else
5067 		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5068 			return 1;
5069 
5070 	return kvm_skip_emulated_instruction(vcpu);
5071 }
5072 
5073 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5074 {
5075 	get_debugreg(vcpu->arch.db[0], 0);
5076 	get_debugreg(vcpu->arch.db[1], 1);
5077 	get_debugreg(vcpu->arch.db[2], 2);
5078 	get_debugreg(vcpu->arch.db[3], 3);
5079 	get_debugreg(vcpu->arch.dr6, 6);
5080 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5081 
5082 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5083 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5084 }
5085 
5086 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5087 {
5088 	vmcs_writel(GUEST_DR7, val);
5089 }
5090 
5091 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5092 {
5093 	kvm_apic_update_ppr(vcpu);
5094 	return 1;
5095 }
5096 
5097 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5098 {
5099 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5100 
5101 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5102 
5103 	++vcpu->stat.irq_window_exits;
5104 	return 1;
5105 }
5106 
5107 static int handle_vmcall(struct kvm_vcpu *vcpu)
5108 {
5109 	return kvm_emulate_hypercall(vcpu);
5110 }
5111 
5112 static int handle_invd(struct kvm_vcpu *vcpu)
5113 {
5114 	return kvm_emulate_instruction(vcpu, 0);
5115 }
5116 
5117 static int handle_invlpg(struct kvm_vcpu *vcpu)
5118 {
5119 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5120 
5121 	kvm_mmu_invlpg(vcpu, exit_qualification);
5122 	return kvm_skip_emulated_instruction(vcpu);
5123 }
5124 
5125 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5126 {
5127 	int err;
5128 
5129 	err = kvm_rdpmc(vcpu);
5130 	return kvm_complete_insn_gp(vcpu, err);
5131 }
5132 
5133 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5134 {
5135 	return kvm_emulate_wbinvd(vcpu);
5136 }
5137 
5138 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5139 {
5140 	u64 new_bv = kvm_read_edx_eax(vcpu);
5141 	u32 index = kvm_rcx_read(vcpu);
5142 
5143 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5144 		return kvm_skip_emulated_instruction(vcpu);
5145 	return 1;
5146 }
5147 
5148 static int handle_apic_access(struct kvm_vcpu *vcpu)
5149 {
5150 	if (likely(fasteoi)) {
5151 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5152 		int access_type, offset;
5153 
5154 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5155 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5156 		/*
5157 		 * Sane guest uses MOV to write EOI, with written value
5158 		 * not cared. So make a short-circuit here by avoiding
5159 		 * heavy instruction emulation.
5160 		 */
5161 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5162 		    (offset == APIC_EOI)) {
5163 			kvm_lapic_set_eoi(vcpu);
5164 			return kvm_skip_emulated_instruction(vcpu);
5165 		}
5166 	}
5167 	return kvm_emulate_instruction(vcpu, 0);
5168 }
5169 
5170 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5171 {
5172 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5173 	int vector = exit_qualification & 0xff;
5174 
5175 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5176 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5177 	return 1;
5178 }
5179 
5180 static int handle_apic_write(struct kvm_vcpu *vcpu)
5181 {
5182 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5183 	u32 offset = exit_qualification & 0xfff;
5184 
5185 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5186 	kvm_apic_write_nodecode(vcpu, offset);
5187 	return 1;
5188 }
5189 
5190 static int handle_task_switch(struct kvm_vcpu *vcpu)
5191 {
5192 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5193 	unsigned long exit_qualification;
5194 	bool has_error_code = false;
5195 	u32 error_code = 0;
5196 	u16 tss_selector;
5197 	int reason, type, idt_v, idt_index;
5198 
5199 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5200 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5201 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5202 
5203 	exit_qualification = vmx_get_exit_qual(vcpu);
5204 
5205 	reason = (u32)exit_qualification >> 30;
5206 	if (reason == TASK_SWITCH_GATE && idt_v) {
5207 		switch (type) {
5208 		case INTR_TYPE_NMI_INTR:
5209 			vcpu->arch.nmi_injected = false;
5210 			vmx_set_nmi_mask(vcpu, true);
5211 			break;
5212 		case INTR_TYPE_EXT_INTR:
5213 		case INTR_TYPE_SOFT_INTR:
5214 			kvm_clear_interrupt_queue(vcpu);
5215 			break;
5216 		case INTR_TYPE_HARD_EXCEPTION:
5217 			if (vmx->idt_vectoring_info &
5218 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5219 				has_error_code = true;
5220 				error_code =
5221 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5222 			}
5223 			/* fall through */
5224 		case INTR_TYPE_SOFT_EXCEPTION:
5225 			kvm_clear_exception_queue(vcpu);
5226 			break;
5227 		default:
5228 			break;
5229 		}
5230 	}
5231 	tss_selector = exit_qualification;
5232 
5233 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5234 		       type != INTR_TYPE_EXT_INTR &&
5235 		       type != INTR_TYPE_NMI_INTR))
5236 		WARN_ON(!skip_emulated_instruction(vcpu));
5237 
5238 	/*
5239 	 * TODO: What about debug traps on tss switch?
5240 	 *       Are we supposed to inject them and update dr6?
5241 	 */
5242 	return kvm_task_switch(vcpu, tss_selector,
5243 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5244 			       reason, has_error_code, error_code);
5245 }
5246 
5247 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5248 {
5249 	unsigned long exit_qualification;
5250 	gpa_t gpa;
5251 	u64 error_code;
5252 
5253 	exit_qualification = vmx_get_exit_qual(vcpu);
5254 
5255 	/*
5256 	 * EPT violation happened while executing iret from NMI,
5257 	 * "blocked by NMI" bit has to be set before next VM entry.
5258 	 * There are errata that may cause this bit to not be set:
5259 	 * AAK134, BY25.
5260 	 */
5261 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5262 			enable_vnmi &&
5263 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5264 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5265 
5266 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5267 	trace_kvm_page_fault(gpa, exit_qualification);
5268 
5269 	/* Is it a read fault? */
5270 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5271 		     ? PFERR_USER_MASK : 0;
5272 	/* Is it a write fault? */
5273 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5274 		      ? PFERR_WRITE_MASK : 0;
5275 	/* Is it a fetch fault? */
5276 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5277 		      ? PFERR_FETCH_MASK : 0;
5278 	/* ept page table entry is present? */
5279 	error_code |= (exit_qualification &
5280 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5281 			EPT_VIOLATION_EXECUTABLE))
5282 		      ? PFERR_PRESENT_MASK : 0;
5283 
5284 	error_code |= (exit_qualification & 0x100) != 0 ?
5285 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5286 
5287 	vcpu->arch.exit_qualification = exit_qualification;
5288 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5289 }
5290 
5291 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5292 {
5293 	gpa_t gpa;
5294 
5295 	/*
5296 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5297 	 * nGPA here instead of the required GPA.
5298 	 */
5299 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5300 	if (!is_guest_mode(vcpu) &&
5301 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5302 		trace_kvm_fast_mmio(gpa);
5303 		return kvm_skip_emulated_instruction(vcpu);
5304 	}
5305 
5306 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5307 }
5308 
5309 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5310 {
5311 	WARN_ON_ONCE(!enable_vnmi);
5312 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5313 	++vcpu->stat.nmi_window_exits;
5314 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5315 
5316 	return 1;
5317 }
5318 
5319 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5320 {
5321 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5322 	bool intr_window_requested;
5323 	unsigned count = 130;
5324 
5325 	intr_window_requested = exec_controls_get(vmx) &
5326 				CPU_BASED_INTR_WINDOW_EXITING;
5327 
5328 	while (vmx->emulation_required && count-- != 0) {
5329 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5330 			return handle_interrupt_window(&vmx->vcpu);
5331 
5332 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5333 			return 1;
5334 
5335 		if (!kvm_emulate_instruction(vcpu, 0))
5336 			return 0;
5337 
5338 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5339 		    vcpu->arch.exception.pending) {
5340 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5341 			vcpu->run->internal.suberror =
5342 						KVM_INTERNAL_ERROR_EMULATION;
5343 			vcpu->run->internal.ndata = 0;
5344 			return 0;
5345 		}
5346 
5347 		if (vcpu->arch.halt_request) {
5348 			vcpu->arch.halt_request = 0;
5349 			return kvm_vcpu_halt(vcpu);
5350 		}
5351 
5352 		/*
5353 		 * Note, return 1 and not 0, vcpu_run() is responsible for
5354 		 * morphing the pending signal into the proper return code.
5355 		 */
5356 		if (signal_pending(current))
5357 			return 1;
5358 
5359 		if (need_resched())
5360 			schedule();
5361 	}
5362 
5363 	return 1;
5364 }
5365 
5366 static void grow_ple_window(struct kvm_vcpu *vcpu)
5367 {
5368 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5369 	unsigned int old = vmx->ple_window;
5370 
5371 	vmx->ple_window = __grow_ple_window(old, ple_window,
5372 					    ple_window_grow,
5373 					    ple_window_max);
5374 
5375 	if (vmx->ple_window != old) {
5376 		vmx->ple_window_dirty = true;
5377 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5378 					    vmx->ple_window, old);
5379 	}
5380 }
5381 
5382 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5383 {
5384 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5385 	unsigned int old = vmx->ple_window;
5386 
5387 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5388 					      ple_window_shrink,
5389 					      ple_window);
5390 
5391 	if (vmx->ple_window != old) {
5392 		vmx->ple_window_dirty = true;
5393 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5394 					    vmx->ple_window, old);
5395 	}
5396 }
5397 
5398 /*
5399  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5400  */
5401 static void wakeup_handler(void)
5402 {
5403 	struct kvm_vcpu *vcpu;
5404 	int cpu = smp_processor_id();
5405 
5406 	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5407 	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5408 			blocked_vcpu_list) {
5409 		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5410 
5411 		if (pi_test_on(pi_desc) == 1)
5412 			kvm_vcpu_kick(vcpu);
5413 	}
5414 	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5415 }
5416 
5417 static void vmx_enable_tdp(void)
5418 {
5419 	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5420 		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5421 		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5422 		0ull, VMX_EPT_EXECUTABLE_MASK,
5423 		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5424 		VMX_EPT_RWX_MASK, 0ull);
5425 
5426 	ept_set_mmio_spte_mask();
5427 }
5428 
5429 /*
5430  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5431  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5432  */
5433 static int handle_pause(struct kvm_vcpu *vcpu)
5434 {
5435 	if (!kvm_pause_in_guest(vcpu->kvm))
5436 		grow_ple_window(vcpu);
5437 
5438 	/*
5439 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5440 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5441 	 * never set PAUSE_EXITING and just set PLE if supported,
5442 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5443 	 */
5444 	kvm_vcpu_on_spin(vcpu, true);
5445 	return kvm_skip_emulated_instruction(vcpu);
5446 }
5447 
5448 static int handle_nop(struct kvm_vcpu *vcpu)
5449 {
5450 	return kvm_skip_emulated_instruction(vcpu);
5451 }
5452 
5453 static int handle_mwait(struct kvm_vcpu *vcpu)
5454 {
5455 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5456 	return handle_nop(vcpu);
5457 }
5458 
5459 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5460 {
5461 	kvm_queue_exception(vcpu, UD_VECTOR);
5462 	return 1;
5463 }
5464 
5465 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5466 {
5467 	return 1;
5468 }
5469 
5470 static int handle_monitor(struct kvm_vcpu *vcpu)
5471 {
5472 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5473 	return handle_nop(vcpu);
5474 }
5475 
5476 static int handle_invpcid(struct kvm_vcpu *vcpu)
5477 {
5478 	u32 vmx_instruction_info;
5479 	unsigned long type;
5480 	bool pcid_enabled;
5481 	gva_t gva;
5482 	struct x86_exception e;
5483 	unsigned i;
5484 	unsigned long roots_to_free = 0;
5485 	struct {
5486 		u64 pcid;
5487 		u64 gla;
5488 	} operand;
5489 
5490 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5491 		kvm_queue_exception(vcpu, UD_VECTOR);
5492 		return 1;
5493 	}
5494 
5495 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5496 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5497 
5498 	if (type > 3) {
5499 		kvm_inject_gp(vcpu, 0);
5500 		return 1;
5501 	}
5502 
5503 	/* According to the Intel instruction reference, the memory operand
5504 	 * is read even if it isn't needed (e.g., for type==all)
5505 	 */
5506 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5507 				vmx_instruction_info, false,
5508 				sizeof(operand), &gva))
5509 		return 1;
5510 
5511 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5512 		kvm_inject_emulated_page_fault(vcpu, &e);
5513 		return 1;
5514 	}
5515 
5516 	if (operand.pcid >> 12 != 0) {
5517 		kvm_inject_gp(vcpu, 0);
5518 		return 1;
5519 	}
5520 
5521 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5522 
5523 	switch (type) {
5524 	case INVPCID_TYPE_INDIV_ADDR:
5525 		if ((!pcid_enabled && (operand.pcid != 0)) ||
5526 		    is_noncanonical_address(operand.gla, vcpu)) {
5527 			kvm_inject_gp(vcpu, 0);
5528 			return 1;
5529 		}
5530 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5531 		return kvm_skip_emulated_instruction(vcpu);
5532 
5533 	case INVPCID_TYPE_SINGLE_CTXT:
5534 		if (!pcid_enabled && (operand.pcid != 0)) {
5535 			kvm_inject_gp(vcpu, 0);
5536 			return 1;
5537 		}
5538 
5539 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5540 			kvm_mmu_sync_roots(vcpu);
5541 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
5542 		}
5543 
5544 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5545 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
5546 			    == operand.pcid)
5547 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5548 
5549 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5550 		/*
5551 		 * If neither the current cr3 nor any of the prev_roots use the
5552 		 * given PCID, then nothing needs to be done here because a
5553 		 * resync will happen anyway before switching to any other CR3.
5554 		 */
5555 
5556 		return kvm_skip_emulated_instruction(vcpu);
5557 
5558 	case INVPCID_TYPE_ALL_NON_GLOBAL:
5559 		/*
5560 		 * Currently, KVM doesn't mark global entries in the shadow
5561 		 * page tables, so a non-global flush just degenerates to a
5562 		 * global flush. If needed, we could optimize this later by
5563 		 * keeping track of global entries in shadow page tables.
5564 		 */
5565 
5566 		/* fall-through */
5567 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
5568 		kvm_mmu_unload(vcpu);
5569 		return kvm_skip_emulated_instruction(vcpu);
5570 
5571 	default:
5572 		BUG(); /* We have already checked above that type <= 3 */
5573 	}
5574 }
5575 
5576 static int handle_pml_full(struct kvm_vcpu *vcpu)
5577 {
5578 	unsigned long exit_qualification;
5579 
5580 	trace_kvm_pml_full(vcpu->vcpu_id);
5581 
5582 	exit_qualification = vmx_get_exit_qual(vcpu);
5583 
5584 	/*
5585 	 * PML buffer FULL happened while executing iret from NMI,
5586 	 * "blocked by NMI" bit has to be set before next VM entry.
5587 	 */
5588 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5589 			enable_vnmi &&
5590 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5591 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5592 				GUEST_INTR_STATE_NMI);
5593 
5594 	/*
5595 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5596 	 * here.., and there's no userspace involvement needed for PML.
5597 	 */
5598 	return 1;
5599 }
5600 
5601 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5602 {
5603 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5604 
5605 	if (!vmx->req_immediate_exit &&
5606 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5607 		kvm_lapic_expired_hv_timer(vcpu);
5608 		return EXIT_FASTPATH_REENTER_GUEST;
5609 	}
5610 
5611 	return EXIT_FASTPATH_NONE;
5612 }
5613 
5614 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5615 {
5616 	handle_fastpath_preemption_timer(vcpu);
5617 	return 1;
5618 }
5619 
5620 /*
5621  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5622  * are overwritten by nested_vmx_setup() when nested=1.
5623  */
5624 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5625 {
5626 	kvm_queue_exception(vcpu, UD_VECTOR);
5627 	return 1;
5628 }
5629 
5630 static int handle_encls(struct kvm_vcpu *vcpu)
5631 {
5632 	/*
5633 	 * SGX virtualization is not yet supported.  There is no software
5634 	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5635 	 * to prevent the guest from executing ENCLS.
5636 	 */
5637 	kvm_queue_exception(vcpu, UD_VECTOR);
5638 	return 1;
5639 }
5640 
5641 /*
5642  * The exit handlers return 1 if the exit was handled fully and guest execution
5643  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5644  * to be done to userspace and return 0.
5645  */
5646 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5647 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5648 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5649 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5650 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5651 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5652 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5653 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5654 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5655 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5656 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5657 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5658 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5659 	[EXIT_REASON_INVD]		      = handle_invd,
5660 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5661 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
5662 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
5663 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5664 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5665 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5666 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5667 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5668 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5669 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5670 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5671 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5672 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5673 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5674 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5675 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5676 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
5677 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
5678 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5679 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5680 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5681 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5682 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5683 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5684 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5685 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
5686 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5687 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5688 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5689 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5690 	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
5691 	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
5692 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5693 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5694 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5695 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5696 	[EXIT_REASON_ENCLS]		      = handle_encls,
5697 };
5698 
5699 static const int kvm_vmx_max_exit_handlers =
5700 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5701 
5702 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5703 {
5704 	*info1 = vmx_get_exit_qual(vcpu);
5705 	*info2 = vmx_get_intr_info(vcpu);
5706 }
5707 
5708 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5709 {
5710 	if (vmx->pml_pg) {
5711 		__free_page(vmx->pml_pg);
5712 		vmx->pml_pg = NULL;
5713 	}
5714 }
5715 
5716 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5717 {
5718 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5719 	u64 *pml_buf;
5720 	u16 pml_idx;
5721 
5722 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5723 
5724 	/* Do nothing if PML buffer is empty */
5725 	if (pml_idx == (PML_ENTITY_NUM - 1))
5726 		return;
5727 
5728 	/* PML index always points to next available PML buffer entity */
5729 	if (pml_idx >= PML_ENTITY_NUM)
5730 		pml_idx = 0;
5731 	else
5732 		pml_idx++;
5733 
5734 	pml_buf = page_address(vmx->pml_pg);
5735 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5736 		u64 gpa;
5737 
5738 		gpa = pml_buf[pml_idx];
5739 		WARN_ON(gpa & (PAGE_SIZE - 1));
5740 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5741 	}
5742 
5743 	/* reset PML index */
5744 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5745 }
5746 
5747 /*
5748  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5749  * Called before reporting dirty_bitmap to userspace.
5750  */
5751 static void kvm_flush_pml_buffers(struct kvm *kvm)
5752 {
5753 	int i;
5754 	struct kvm_vcpu *vcpu;
5755 	/*
5756 	 * We only need to kick vcpu out of guest mode here, as PML buffer
5757 	 * is flushed at beginning of all VMEXITs, and it's obvious that only
5758 	 * vcpus running in guest are possible to have unflushed GPAs in PML
5759 	 * buffer.
5760 	 */
5761 	kvm_for_each_vcpu(i, vcpu, kvm)
5762 		kvm_vcpu_kick(vcpu);
5763 }
5764 
5765 static void vmx_dump_sel(char *name, uint32_t sel)
5766 {
5767 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5768 	       name, vmcs_read16(sel),
5769 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5770 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5771 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5772 }
5773 
5774 static void vmx_dump_dtsel(char *name, uint32_t limit)
5775 {
5776 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5777 	       name, vmcs_read32(limit),
5778 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5779 }
5780 
5781 void dump_vmcs(void)
5782 {
5783 	u32 vmentry_ctl, vmexit_ctl;
5784 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5785 	unsigned long cr4;
5786 	u64 efer;
5787 
5788 	if (!dump_invalid_vmcs) {
5789 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5790 		return;
5791 	}
5792 
5793 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5794 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5795 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5796 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5797 	cr4 = vmcs_readl(GUEST_CR4);
5798 	efer = vmcs_read64(GUEST_IA32_EFER);
5799 	secondary_exec_control = 0;
5800 	if (cpu_has_secondary_exec_ctrls())
5801 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5802 
5803 	pr_err("*** Guest State ***\n");
5804 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5805 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5806 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5807 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5808 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5809 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5810 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5811 	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5812 	{
5813 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5814 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5815 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5816 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5817 	}
5818 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5819 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5820 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5821 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5822 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5823 	       vmcs_readl(GUEST_SYSENTER_ESP),
5824 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5825 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5826 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5827 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5828 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5829 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5830 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5831 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5832 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5833 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5834 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5835 	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5836 	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5837 		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5838 		       efer, vmcs_read64(GUEST_IA32_PAT));
5839 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5840 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5841 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5842 	if (cpu_has_load_perf_global_ctrl() &&
5843 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5844 		pr_err("PerfGlobCtl = 0x%016llx\n",
5845 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5846 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5847 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5848 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5849 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5850 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5851 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5852 		pr_err("InterruptStatus = %04x\n",
5853 		       vmcs_read16(GUEST_INTR_STATUS));
5854 
5855 	pr_err("*** Host State ***\n");
5856 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5857 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5858 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5859 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5860 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5861 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5862 	       vmcs_read16(HOST_TR_SELECTOR));
5863 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5864 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5865 	       vmcs_readl(HOST_TR_BASE));
5866 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5867 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5868 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5869 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5870 	       vmcs_readl(HOST_CR4));
5871 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5872 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5873 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5874 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5875 	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5876 		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5877 		       vmcs_read64(HOST_IA32_EFER),
5878 		       vmcs_read64(HOST_IA32_PAT));
5879 	if (cpu_has_load_perf_global_ctrl() &&
5880 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5881 		pr_err("PerfGlobCtl = 0x%016llx\n",
5882 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5883 
5884 	pr_err("*** Control State ***\n");
5885 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5886 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5887 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5888 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5889 	       vmcs_read32(EXCEPTION_BITMAP),
5890 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5891 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5892 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5893 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5894 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5895 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5896 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5897 	       vmcs_read32(VM_EXIT_INTR_INFO),
5898 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5899 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5900 	pr_err("        reason=%08x qualification=%016lx\n",
5901 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5902 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5903 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5904 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5905 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5906 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5907 		pr_err("TSC Multiplier = 0x%016llx\n",
5908 		       vmcs_read64(TSC_MULTIPLIER));
5909 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5910 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5911 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5912 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5913 		}
5914 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5915 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5916 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5917 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5918 	}
5919 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5920 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5921 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5922 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5923 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5924 		pr_err("PLE Gap=%08x Window=%08x\n",
5925 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5926 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5927 		pr_err("Virtual processor ID = 0x%04x\n",
5928 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5929 }
5930 
5931 /*
5932  * The guest has exited.  See if we can fix it or if we need userspace
5933  * assistance.
5934  */
5935 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5936 {
5937 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5938 	u32 exit_reason = vmx->exit_reason;
5939 	u32 vectoring_info = vmx->idt_vectoring_info;
5940 
5941 	/*
5942 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5943 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5944 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5945 	 * mode as if vcpus is in root mode, the PML buffer must has been
5946 	 * flushed already.
5947 	 */
5948 	if (enable_pml)
5949 		vmx_flush_pml_buffer(vcpu);
5950 
5951 	/*
5952 	 * We should never reach this point with a pending nested VM-Enter, and
5953 	 * more specifically emulation of L2 due to invalid guest state (see
5954 	 * below) should never happen as that means we incorrectly allowed a
5955 	 * nested VM-Enter with an invalid vmcs12.
5956 	 */
5957 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
5958 
5959 	/* If guest state is invalid, start emulating */
5960 	if (vmx->emulation_required)
5961 		return handle_invalid_guest_state(vcpu);
5962 
5963 	if (is_guest_mode(vcpu)) {
5964 		/*
5965 		 * The host physical addresses of some pages of guest memory
5966 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5967 		 * Page). The CPU may write to these pages via their host
5968 		 * physical address while L2 is running, bypassing any
5969 		 * address-translation-based dirty tracking (e.g. EPT write
5970 		 * protection).
5971 		 *
5972 		 * Mark them dirty on every exit from L2 to prevent them from
5973 		 * getting out of sync with dirty tracking.
5974 		 */
5975 		nested_mark_vmcs12_pages_dirty(vcpu);
5976 
5977 		if (nested_vmx_reflect_vmexit(vcpu))
5978 			return 1;
5979 	}
5980 
5981 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5982 		dump_vmcs();
5983 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5984 		vcpu->run->fail_entry.hardware_entry_failure_reason
5985 			= exit_reason;
5986 		return 0;
5987 	}
5988 
5989 	if (unlikely(vmx->fail)) {
5990 		dump_vmcs();
5991 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5992 		vcpu->run->fail_entry.hardware_entry_failure_reason
5993 			= vmcs_read32(VM_INSTRUCTION_ERROR);
5994 		return 0;
5995 	}
5996 
5997 	/*
5998 	 * Note:
5999 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6000 	 * delivery event since it indicates guest is accessing MMIO.
6001 	 * The vm-exit can be triggered again after return to guest that
6002 	 * will cause infinite loop.
6003 	 */
6004 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6005 			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6006 			exit_reason != EXIT_REASON_EPT_VIOLATION &&
6007 			exit_reason != EXIT_REASON_PML_FULL &&
6008 			exit_reason != EXIT_REASON_TASK_SWITCH)) {
6009 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6010 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6011 		vcpu->run->internal.ndata = 3;
6012 		vcpu->run->internal.data[0] = vectoring_info;
6013 		vcpu->run->internal.data[1] = exit_reason;
6014 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6015 		if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
6016 			vcpu->run->internal.ndata++;
6017 			vcpu->run->internal.data[3] =
6018 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6019 		}
6020 		return 0;
6021 	}
6022 
6023 	if (unlikely(!enable_vnmi &&
6024 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6025 		if (!vmx_interrupt_blocked(vcpu)) {
6026 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6027 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6028 			   vcpu->arch.nmi_pending) {
6029 			/*
6030 			 * This CPU don't support us in finding the end of an
6031 			 * NMI-blocked window if the guest runs with IRQs
6032 			 * disabled. So we pull the trigger after 1 s of
6033 			 * futile waiting, but inform the user about this.
6034 			 */
6035 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6036 			       "state on VCPU %d after 1 s timeout\n",
6037 			       __func__, vcpu->vcpu_id);
6038 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6039 		}
6040 	}
6041 
6042 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6043 		return 1;
6044 
6045 	if (exit_reason >= kvm_vmx_max_exit_handlers)
6046 		goto unexpected_vmexit;
6047 #ifdef CONFIG_RETPOLINE
6048 	if (exit_reason == EXIT_REASON_MSR_WRITE)
6049 		return kvm_emulate_wrmsr(vcpu);
6050 	else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
6051 		return handle_preemption_timer(vcpu);
6052 	else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
6053 		return handle_interrupt_window(vcpu);
6054 	else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6055 		return handle_external_interrupt(vcpu);
6056 	else if (exit_reason == EXIT_REASON_HLT)
6057 		return kvm_emulate_halt(vcpu);
6058 	else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
6059 		return handle_ept_misconfig(vcpu);
6060 #endif
6061 
6062 	exit_reason = array_index_nospec(exit_reason,
6063 					 kvm_vmx_max_exit_handlers);
6064 	if (!kvm_vmx_exit_handlers[exit_reason])
6065 		goto unexpected_vmexit;
6066 
6067 	return kvm_vmx_exit_handlers[exit_reason](vcpu);
6068 
6069 unexpected_vmexit:
6070 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason);
6071 	dump_vmcs();
6072 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6073 	vcpu->run->internal.suberror =
6074 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6075 	vcpu->run->internal.ndata = 1;
6076 	vcpu->run->internal.data[0] = exit_reason;
6077 	return 0;
6078 }
6079 
6080 /*
6081  * Software based L1D cache flush which is used when microcode providing
6082  * the cache control MSR is not loaded.
6083  *
6084  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6085  * flush it is required to read in 64 KiB because the replacement algorithm
6086  * is not exactly LRU. This could be sized at runtime via topology
6087  * information but as all relevant affected CPUs have 32KiB L1D cache size
6088  * there is no point in doing so.
6089  */
6090 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6091 {
6092 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6093 
6094 	/*
6095 	 * This code is only executed when the the flush mode is 'cond' or
6096 	 * 'always'
6097 	 */
6098 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6099 		bool flush_l1d;
6100 
6101 		/*
6102 		 * Clear the per-vcpu flush bit, it gets set again
6103 		 * either from vcpu_run() or from one of the unsafe
6104 		 * VMEXIT handlers.
6105 		 */
6106 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6107 		vcpu->arch.l1tf_flush_l1d = false;
6108 
6109 		/*
6110 		 * Clear the per-cpu flush bit, it gets set again from
6111 		 * the interrupt handlers.
6112 		 */
6113 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6114 		kvm_clear_cpu_l1tf_flush_l1d();
6115 
6116 		if (!flush_l1d)
6117 			return;
6118 	}
6119 
6120 	vcpu->stat.l1d_flush++;
6121 
6122 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6123 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6124 		return;
6125 	}
6126 
6127 	asm volatile(
6128 		/* First ensure the pages are in the TLB */
6129 		"xorl	%%eax, %%eax\n"
6130 		".Lpopulate_tlb:\n\t"
6131 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6132 		"addl	$4096, %%eax\n\t"
6133 		"cmpl	%%eax, %[size]\n\t"
6134 		"jne	.Lpopulate_tlb\n\t"
6135 		"xorl	%%eax, %%eax\n\t"
6136 		"cpuid\n\t"
6137 		/* Now fill the cache */
6138 		"xorl	%%eax, %%eax\n"
6139 		".Lfill_cache:\n"
6140 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6141 		"addl	$64, %%eax\n\t"
6142 		"cmpl	%%eax, %[size]\n\t"
6143 		"jne	.Lfill_cache\n\t"
6144 		"lfence\n"
6145 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6146 		    [size] "r" (size)
6147 		: "eax", "ebx", "ecx", "edx");
6148 }
6149 
6150 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6151 {
6152 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6153 	int tpr_threshold;
6154 
6155 	if (is_guest_mode(vcpu) &&
6156 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6157 		return;
6158 
6159 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6160 	if (is_guest_mode(vcpu))
6161 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6162 	else
6163 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6164 }
6165 
6166 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6167 {
6168 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6169 	u32 sec_exec_control;
6170 
6171 	if (!lapic_in_kernel(vcpu))
6172 		return;
6173 
6174 	if (!flexpriority_enabled &&
6175 	    !cpu_has_vmx_virtualize_x2apic_mode())
6176 		return;
6177 
6178 	/* Postpone execution until vmcs01 is the current VMCS. */
6179 	if (is_guest_mode(vcpu)) {
6180 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6181 		return;
6182 	}
6183 
6184 	sec_exec_control = secondary_exec_controls_get(vmx);
6185 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6186 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6187 
6188 	switch (kvm_get_apic_mode(vcpu)) {
6189 	case LAPIC_MODE_INVALID:
6190 		WARN_ONCE(true, "Invalid local APIC state");
6191 	case LAPIC_MODE_DISABLED:
6192 		break;
6193 	case LAPIC_MODE_XAPIC:
6194 		if (flexpriority_enabled) {
6195 			sec_exec_control |=
6196 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6197 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6198 
6199 			/*
6200 			 * Flush the TLB, reloading the APIC access page will
6201 			 * only do so if its physical address has changed, but
6202 			 * the guest may have inserted a non-APIC mapping into
6203 			 * the TLB while the APIC access page was disabled.
6204 			 */
6205 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6206 		}
6207 		break;
6208 	case LAPIC_MODE_X2APIC:
6209 		if (cpu_has_vmx_virtualize_x2apic_mode())
6210 			sec_exec_control |=
6211 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6212 		break;
6213 	}
6214 	secondary_exec_controls_set(vmx, sec_exec_control);
6215 
6216 	vmx_update_msr_bitmap(vcpu);
6217 }
6218 
6219 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6220 {
6221 	struct page *page;
6222 
6223 	/* Defer reload until vmcs01 is the current VMCS. */
6224 	if (is_guest_mode(vcpu)) {
6225 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6226 		return;
6227 	}
6228 
6229 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6230 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6231 		return;
6232 
6233 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6234 	if (is_error_page(page))
6235 		return;
6236 
6237 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6238 	vmx_flush_tlb_current(vcpu);
6239 
6240 	/*
6241 	 * Do not pin apic access page in memory, the MMU notifier
6242 	 * will call us again if it is migrated or swapped out.
6243 	 */
6244 	put_page(page);
6245 }
6246 
6247 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6248 {
6249 	u16 status;
6250 	u8 old;
6251 
6252 	if (max_isr == -1)
6253 		max_isr = 0;
6254 
6255 	status = vmcs_read16(GUEST_INTR_STATUS);
6256 	old = status >> 8;
6257 	if (max_isr != old) {
6258 		status &= 0xff;
6259 		status |= max_isr << 8;
6260 		vmcs_write16(GUEST_INTR_STATUS, status);
6261 	}
6262 }
6263 
6264 static void vmx_set_rvi(int vector)
6265 {
6266 	u16 status;
6267 	u8 old;
6268 
6269 	if (vector == -1)
6270 		vector = 0;
6271 
6272 	status = vmcs_read16(GUEST_INTR_STATUS);
6273 	old = (u8)status & 0xff;
6274 	if ((u8)vector != old) {
6275 		status &= ~0xff;
6276 		status |= (u8)vector;
6277 		vmcs_write16(GUEST_INTR_STATUS, status);
6278 	}
6279 }
6280 
6281 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6282 {
6283 	/*
6284 	 * When running L2, updating RVI is only relevant when
6285 	 * vmcs12 virtual-interrupt-delivery enabled.
6286 	 * However, it can be enabled only when L1 also
6287 	 * intercepts external-interrupts and in that case
6288 	 * we should not update vmcs02 RVI but instead intercept
6289 	 * interrupt. Therefore, do nothing when running L2.
6290 	 */
6291 	if (!is_guest_mode(vcpu))
6292 		vmx_set_rvi(max_irr);
6293 }
6294 
6295 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6296 {
6297 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6298 	int max_irr;
6299 	bool max_irr_updated;
6300 
6301 	WARN_ON(!vcpu->arch.apicv_active);
6302 	if (pi_test_on(&vmx->pi_desc)) {
6303 		pi_clear_on(&vmx->pi_desc);
6304 		/*
6305 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6306 		 * But on x86 this is just a compiler barrier anyway.
6307 		 */
6308 		smp_mb__after_atomic();
6309 		max_irr_updated =
6310 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6311 
6312 		/*
6313 		 * If we are running L2 and L1 has a new pending interrupt
6314 		 * which can be injected, we should re-evaluate
6315 		 * what should be done with this new L1 interrupt.
6316 		 * If L1 intercepts external-interrupts, we should
6317 		 * exit from L2 to L1. Otherwise, interrupt should be
6318 		 * delivered directly to L2.
6319 		 */
6320 		if (is_guest_mode(vcpu) && max_irr_updated) {
6321 			if (nested_exit_on_intr(vcpu))
6322 				kvm_vcpu_exiting_guest_mode(vcpu);
6323 			else
6324 				kvm_make_request(KVM_REQ_EVENT, vcpu);
6325 		}
6326 	} else {
6327 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6328 	}
6329 	vmx_hwapic_irr_update(vcpu, max_irr);
6330 	return max_irr;
6331 }
6332 
6333 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6334 {
6335 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6336 
6337 	return pi_test_on(pi_desc) ||
6338 		(pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6339 }
6340 
6341 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6342 {
6343 	if (!kvm_vcpu_apicv_active(vcpu))
6344 		return;
6345 
6346 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6347 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6348 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6349 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6350 }
6351 
6352 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6353 {
6354 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6355 
6356 	pi_clear_on(&vmx->pi_desc);
6357 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6358 }
6359 
6360 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6361 {
6362 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6363 
6364 	/* if exit due to PF check for async PF */
6365 	if (is_page_fault(intr_info)) {
6366 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6367 	/* Handle machine checks before interrupts are enabled */
6368 	} else if (is_machine_check(intr_info)) {
6369 		kvm_machine_check();
6370 	/* We need to handle NMIs before interrupts are enabled */
6371 	} else if (is_nmi(intr_info)) {
6372 		kvm_before_interrupt(&vmx->vcpu);
6373 		asm("int $2");
6374 		kvm_after_interrupt(&vmx->vcpu);
6375 	}
6376 }
6377 
6378 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6379 {
6380 	unsigned int vector;
6381 	unsigned long entry;
6382 #ifdef CONFIG_X86_64
6383 	unsigned long tmp;
6384 #endif
6385 	gate_desc *desc;
6386 	u32 intr_info = vmx_get_intr_info(vcpu);
6387 
6388 	if (WARN_ONCE(!is_external_intr(intr_info),
6389 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6390 		return;
6391 
6392 	vector = intr_info & INTR_INFO_VECTOR_MASK;
6393 	desc = (gate_desc *)host_idt_base + vector;
6394 	entry = gate_offset(desc);
6395 
6396 	kvm_before_interrupt(vcpu);
6397 
6398 	asm volatile(
6399 #ifdef CONFIG_X86_64
6400 		"mov %%rsp, %[sp]\n\t"
6401 		"and $-16, %%rsp\n\t"
6402 		"push %[ss]\n\t"
6403 		"push %[sp]\n\t"
6404 #endif
6405 		"pushf\n\t"
6406 		"push %[cs]\n\t"
6407 		CALL_NOSPEC
6408 		:
6409 #ifdef CONFIG_X86_64
6410 		[sp]"=&r"(tmp),
6411 #endif
6412 		ASM_CALL_CONSTRAINT
6413 		:
6414 		[thunk_target]"r"(entry),
6415 #ifdef CONFIG_X86_64
6416 		[ss]"i"(__KERNEL_DS),
6417 #endif
6418 		[cs]"i"(__KERNEL_CS)
6419 	);
6420 
6421 	kvm_after_interrupt(vcpu);
6422 }
6423 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6424 
6425 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6426 {
6427 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6428 
6429 	if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6430 		handle_external_interrupt_irqoff(vcpu);
6431 	else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6432 		handle_exception_nmi_irqoff(vmx);
6433 }
6434 
6435 static bool vmx_has_emulated_msr(u32 index)
6436 {
6437 	switch (index) {
6438 	case MSR_IA32_SMBASE:
6439 		/*
6440 		 * We cannot do SMM unless we can run the guest in big
6441 		 * real mode.
6442 		 */
6443 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6444 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6445 		return nested;
6446 	case MSR_AMD64_VIRT_SPEC_CTRL:
6447 		/* This is AMD only.  */
6448 		return false;
6449 	default:
6450 		return true;
6451 	}
6452 }
6453 
6454 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6455 {
6456 	u32 exit_intr_info;
6457 	bool unblock_nmi;
6458 	u8 vector;
6459 	bool idtv_info_valid;
6460 
6461 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6462 
6463 	if (enable_vnmi) {
6464 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6465 			return;
6466 
6467 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6468 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6469 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6470 		/*
6471 		 * SDM 3: 27.7.1.2 (September 2008)
6472 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6473 		 * a guest IRET fault.
6474 		 * SDM 3: 23.2.2 (September 2008)
6475 		 * Bit 12 is undefined in any of the following cases:
6476 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6477 		 *   information field.
6478 		 *  If the VM exit is due to a double fault.
6479 		 */
6480 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6481 		    vector != DF_VECTOR && !idtv_info_valid)
6482 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6483 				      GUEST_INTR_STATE_NMI);
6484 		else
6485 			vmx->loaded_vmcs->nmi_known_unmasked =
6486 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6487 				  & GUEST_INTR_STATE_NMI);
6488 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6489 		vmx->loaded_vmcs->vnmi_blocked_time +=
6490 			ktime_to_ns(ktime_sub(ktime_get(),
6491 					      vmx->loaded_vmcs->entry_time));
6492 }
6493 
6494 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6495 				      u32 idt_vectoring_info,
6496 				      int instr_len_field,
6497 				      int error_code_field)
6498 {
6499 	u8 vector;
6500 	int type;
6501 	bool idtv_info_valid;
6502 
6503 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6504 
6505 	vcpu->arch.nmi_injected = false;
6506 	kvm_clear_exception_queue(vcpu);
6507 	kvm_clear_interrupt_queue(vcpu);
6508 
6509 	if (!idtv_info_valid)
6510 		return;
6511 
6512 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6513 
6514 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6515 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6516 
6517 	switch (type) {
6518 	case INTR_TYPE_NMI_INTR:
6519 		vcpu->arch.nmi_injected = true;
6520 		/*
6521 		 * SDM 3: 27.7.1.2 (September 2008)
6522 		 * Clear bit "block by NMI" before VM entry if a NMI
6523 		 * delivery faulted.
6524 		 */
6525 		vmx_set_nmi_mask(vcpu, false);
6526 		break;
6527 	case INTR_TYPE_SOFT_EXCEPTION:
6528 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6529 		/* fall through */
6530 	case INTR_TYPE_HARD_EXCEPTION:
6531 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6532 			u32 err = vmcs_read32(error_code_field);
6533 			kvm_requeue_exception_e(vcpu, vector, err);
6534 		} else
6535 			kvm_requeue_exception(vcpu, vector);
6536 		break;
6537 	case INTR_TYPE_SOFT_INTR:
6538 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6539 		/* fall through */
6540 	case INTR_TYPE_EXT_INTR:
6541 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6542 		break;
6543 	default:
6544 		break;
6545 	}
6546 }
6547 
6548 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6549 {
6550 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6551 				  VM_EXIT_INSTRUCTION_LEN,
6552 				  IDT_VECTORING_ERROR_CODE);
6553 }
6554 
6555 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6556 {
6557 	__vmx_complete_interrupts(vcpu,
6558 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6559 				  VM_ENTRY_INSTRUCTION_LEN,
6560 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6561 
6562 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6563 }
6564 
6565 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6566 {
6567 	int i, nr_msrs;
6568 	struct perf_guest_switch_msr *msrs;
6569 
6570 	msrs = perf_guest_get_msrs(&nr_msrs);
6571 
6572 	if (!msrs)
6573 		return;
6574 
6575 	for (i = 0; i < nr_msrs; i++)
6576 		if (msrs[i].host == msrs[i].guest)
6577 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6578 		else
6579 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6580 					msrs[i].host, false);
6581 }
6582 
6583 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6584 {
6585 	u32 host_umwait_control;
6586 
6587 	if (!vmx_has_waitpkg(vmx))
6588 		return;
6589 
6590 	host_umwait_control = get_umwait_control_msr();
6591 
6592 	if (vmx->msr_ia32_umwait_control != host_umwait_control)
6593 		add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6594 			vmx->msr_ia32_umwait_control,
6595 			host_umwait_control, false);
6596 	else
6597 		clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6598 }
6599 
6600 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6601 {
6602 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6603 	u64 tscl;
6604 	u32 delta_tsc;
6605 
6606 	if (vmx->req_immediate_exit) {
6607 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6608 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6609 	} else if (vmx->hv_deadline_tsc != -1) {
6610 		tscl = rdtsc();
6611 		if (vmx->hv_deadline_tsc > tscl)
6612 			/* set_hv_timer ensures the delta fits in 32-bits */
6613 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6614 				cpu_preemption_timer_multi);
6615 		else
6616 			delta_tsc = 0;
6617 
6618 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6619 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6620 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6621 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6622 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6623 	}
6624 }
6625 
6626 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6627 {
6628 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6629 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6630 		vmcs_writel(HOST_RSP, host_rsp);
6631 	}
6632 }
6633 
6634 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6635 {
6636 	switch (to_vmx(vcpu)->exit_reason) {
6637 	case EXIT_REASON_MSR_WRITE:
6638 		return handle_fastpath_set_msr_irqoff(vcpu);
6639 	case EXIT_REASON_PREEMPTION_TIMER:
6640 		return handle_fastpath_preemption_timer(vcpu);
6641 	default:
6642 		return EXIT_FASTPATH_NONE;
6643 	}
6644 }
6645 
6646 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6647 
6648 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6649 {
6650 	fastpath_t exit_fastpath;
6651 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6652 	unsigned long cr3, cr4;
6653 
6654 reenter_guest:
6655 	/* Record the guest's net vcpu time for enforced NMI injections. */
6656 	if (unlikely(!enable_vnmi &&
6657 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6658 		vmx->loaded_vmcs->entry_time = ktime_get();
6659 
6660 	/* Don't enter VMX if guest state is invalid, let the exit handler
6661 	   start emulation until we arrive back to a valid state */
6662 	if (vmx->emulation_required)
6663 		return EXIT_FASTPATH_NONE;
6664 
6665 	if (vmx->ple_window_dirty) {
6666 		vmx->ple_window_dirty = false;
6667 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6668 	}
6669 
6670 	/*
6671 	 * We did this in prepare_switch_to_guest, because it needs to
6672 	 * be within srcu_read_lock.
6673 	 */
6674 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6675 
6676 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6677 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6678 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6679 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6680 
6681 	cr3 = __get_current_cr3_fast();
6682 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6683 		vmcs_writel(HOST_CR3, cr3);
6684 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6685 	}
6686 
6687 	cr4 = cr4_read_shadow();
6688 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6689 		vmcs_writel(HOST_CR4, cr4);
6690 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6691 	}
6692 
6693 	/* When single-stepping over STI and MOV SS, we must clear the
6694 	 * corresponding interruptibility bits in the guest state. Otherwise
6695 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6696 	 * exceptions being set, but that's not correct for the guest debugging
6697 	 * case. */
6698 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6699 		vmx_set_interrupt_shadow(vcpu, 0);
6700 
6701 	kvm_load_guest_xsave_state(vcpu);
6702 
6703 	pt_guest_enter(vmx);
6704 
6705 	if (vcpu_to_pmu(vcpu)->version)
6706 		atomic_switch_perf_msrs(vmx);
6707 	atomic_switch_umwait_control_msr(vmx);
6708 
6709 	if (enable_preemption_timer)
6710 		vmx_update_hv_timer(vcpu);
6711 
6712 	if (lapic_in_kernel(vcpu) &&
6713 		vcpu->arch.apic->lapic_timer.timer_advance_ns)
6714 		kvm_wait_lapic_expire(vcpu);
6715 
6716 	/*
6717 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6718 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6719 	 * is no need to worry about the conditional branch over the wrmsr
6720 	 * being speculatively taken.
6721 	 */
6722 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6723 
6724 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6725 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6726 		vmx_l1d_flush(vcpu);
6727 	else if (static_branch_unlikely(&mds_user_clear))
6728 		mds_clear_cpu_buffers();
6729 
6730 	if (vcpu->arch.cr2 != read_cr2())
6731 		write_cr2(vcpu->arch.cr2);
6732 
6733 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6734 				   vmx->loaded_vmcs->launched);
6735 
6736 	vcpu->arch.cr2 = read_cr2();
6737 
6738 	/*
6739 	 * We do not use IBRS in the kernel. If this vCPU has used the
6740 	 * SPEC_CTRL MSR it may have left it on; save the value and
6741 	 * turn it off. This is much more efficient than blindly adding
6742 	 * it to the atomic save/restore list. Especially as the former
6743 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6744 	 *
6745 	 * For non-nested case:
6746 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6747 	 * save it.
6748 	 *
6749 	 * For nested case:
6750 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6751 	 * save it.
6752 	 */
6753 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6754 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6755 
6756 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6757 
6758 	/* All fields are clean at this point */
6759 	if (static_branch_unlikely(&enable_evmcs))
6760 		current_evmcs->hv_clean_fields |=
6761 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6762 
6763 	if (static_branch_unlikely(&enable_evmcs))
6764 		current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6765 
6766 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6767 	if (vmx->host_debugctlmsr)
6768 		update_debugctlmsr(vmx->host_debugctlmsr);
6769 
6770 #ifndef CONFIG_X86_64
6771 	/*
6772 	 * The sysexit path does not restore ds/es, so we must set them to
6773 	 * a reasonable value ourselves.
6774 	 *
6775 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6776 	 * function may be executed in interrupt context, which saves and
6777 	 * restore segments around it, nullifying its effect.
6778 	 */
6779 	loadsegment(ds, __USER_DS);
6780 	loadsegment(es, __USER_DS);
6781 #endif
6782 
6783 	vmx_register_cache_reset(vcpu);
6784 
6785 	pt_guest_exit(vmx);
6786 
6787 	kvm_load_host_xsave_state(vcpu);
6788 
6789 	vmx->nested.nested_run_pending = 0;
6790 	vmx->idt_vectoring_info = 0;
6791 
6792 	if (unlikely(vmx->fail)) {
6793 		vmx->exit_reason = 0xdead;
6794 		return EXIT_FASTPATH_NONE;
6795 	}
6796 
6797 	vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6798 	if (unlikely((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY))
6799 		kvm_machine_check();
6800 
6801 	trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6802 
6803 	if (unlikely(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6804 		return EXIT_FASTPATH_NONE;
6805 
6806 	vmx->loaded_vmcs->launched = 1;
6807 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6808 
6809 	vmx_recover_nmi_blocking(vmx);
6810 	vmx_complete_interrupts(vmx);
6811 
6812 	if (is_guest_mode(vcpu))
6813 		return EXIT_FASTPATH_NONE;
6814 
6815 	exit_fastpath = vmx_exit_handlers_fastpath(vcpu);
6816 	if (exit_fastpath == EXIT_FASTPATH_REENTER_GUEST) {
6817 		if (!kvm_vcpu_exit_request(vcpu)) {
6818 			/*
6819 			 * FIXME: this goto should be a loop in vcpu_enter_guest,
6820 			 * but it would incur the cost of a retpoline for now.
6821 			 * Revisit once static calls are available.
6822 			 */
6823 			if (vcpu->arch.apicv_active)
6824 				vmx_sync_pir_to_irr(vcpu);
6825 			goto reenter_guest;
6826 		}
6827 		exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
6828 	}
6829 
6830 	return exit_fastpath;
6831 }
6832 
6833 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6834 {
6835 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6836 
6837 	if (enable_pml)
6838 		vmx_destroy_pml_buffer(vmx);
6839 	free_vpid(vmx->vpid);
6840 	nested_vmx_free_vcpu(vcpu);
6841 	free_loaded_vmcs(vmx->loaded_vmcs);
6842 }
6843 
6844 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6845 {
6846 	struct vcpu_vmx *vmx;
6847 	unsigned long *msr_bitmap;
6848 	int i, cpu, err;
6849 
6850 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6851 	vmx = to_vmx(vcpu);
6852 
6853 	err = -ENOMEM;
6854 
6855 	vmx->vpid = allocate_vpid();
6856 
6857 	/*
6858 	 * If PML is turned on, failure on enabling PML just results in failure
6859 	 * of creating the vcpu, therefore we can simplify PML logic (by
6860 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6861 	 * for the guest), etc.
6862 	 */
6863 	if (enable_pml) {
6864 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6865 		if (!vmx->pml_pg)
6866 			goto free_vpid;
6867 	}
6868 
6869 	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) != NR_SHARED_MSRS);
6870 
6871 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6872 		u32 index = vmx_msr_index[i];
6873 		u32 data_low, data_high;
6874 		int j = vmx->nmsrs;
6875 
6876 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
6877 			continue;
6878 		if (wrmsr_safe(index, data_low, data_high) < 0)
6879 			continue;
6880 
6881 		vmx->guest_msrs[j].index = i;
6882 		vmx->guest_msrs[j].data = 0;
6883 		switch (index) {
6884 		case MSR_IA32_TSX_CTRL:
6885 			/*
6886 			 * No need to pass TSX_CTRL_CPUID_CLEAR through, so
6887 			 * let's avoid changing CPUID bits under the host
6888 			 * kernel's feet.
6889 			 */
6890 			vmx->guest_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6891 			break;
6892 		default:
6893 			vmx->guest_msrs[j].mask = -1ull;
6894 			break;
6895 		}
6896 		++vmx->nmsrs;
6897 	}
6898 
6899 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6900 	if (err < 0)
6901 		goto free_pml;
6902 
6903 	msr_bitmap = vmx->vmcs01.msr_bitmap;
6904 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6905 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6906 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6907 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6908 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6909 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6910 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6911 	if (kvm_cstate_in_guest(vcpu->kvm)) {
6912 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6913 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6914 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6915 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6916 	}
6917 	vmx->msr_bitmap_mode = 0;
6918 
6919 	vmx->loaded_vmcs = &vmx->vmcs01;
6920 	cpu = get_cpu();
6921 	vmx_vcpu_load(vcpu, cpu);
6922 	vcpu->cpu = cpu;
6923 	init_vmcs(vmx);
6924 	vmx_vcpu_put(vcpu);
6925 	put_cpu();
6926 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
6927 		err = alloc_apic_access_page(vcpu->kvm);
6928 		if (err)
6929 			goto free_vmcs;
6930 	}
6931 
6932 	if (enable_ept && !enable_unrestricted_guest) {
6933 		err = init_rmode_identity_map(vcpu->kvm);
6934 		if (err)
6935 			goto free_vmcs;
6936 	}
6937 
6938 	if (nested)
6939 		nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6940 					   vmx_capability.ept);
6941 	else
6942 		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6943 
6944 	vmx->nested.posted_intr_nv = -1;
6945 	vmx->nested.current_vmptr = -1ull;
6946 
6947 	vcpu->arch.microcode_version = 0x100000000ULL;
6948 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6949 
6950 	/*
6951 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6952 	 * or POSTED_INTR_WAKEUP_VECTOR.
6953 	 */
6954 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6955 	vmx->pi_desc.sn = 1;
6956 
6957 	vmx->ept_pointer = INVALID_PAGE;
6958 
6959 	return 0;
6960 
6961 free_vmcs:
6962 	free_loaded_vmcs(vmx->loaded_vmcs);
6963 free_pml:
6964 	vmx_destroy_pml_buffer(vmx);
6965 free_vpid:
6966 	free_vpid(vmx->vpid);
6967 	return err;
6968 }
6969 
6970 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6971 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6972 
6973 static int vmx_vm_init(struct kvm *kvm)
6974 {
6975 	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6976 
6977 	if (!ple_gap)
6978 		kvm->arch.pause_in_guest = true;
6979 
6980 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6981 		switch (l1tf_mitigation) {
6982 		case L1TF_MITIGATION_OFF:
6983 		case L1TF_MITIGATION_FLUSH_NOWARN:
6984 			/* 'I explicitly don't care' is set */
6985 			break;
6986 		case L1TF_MITIGATION_FLUSH:
6987 		case L1TF_MITIGATION_FLUSH_NOSMT:
6988 		case L1TF_MITIGATION_FULL:
6989 			/*
6990 			 * Warn upon starting the first VM in a potentially
6991 			 * insecure environment.
6992 			 */
6993 			if (sched_smt_active())
6994 				pr_warn_once(L1TF_MSG_SMT);
6995 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6996 				pr_warn_once(L1TF_MSG_L1D);
6997 			break;
6998 		case L1TF_MITIGATION_FULL_FORCE:
6999 			/* Flush is enforced */
7000 			break;
7001 		}
7002 	}
7003 	kvm_apicv_init(kvm, enable_apicv);
7004 	return 0;
7005 }
7006 
7007 static int __init vmx_check_processor_compat(void)
7008 {
7009 	struct vmcs_config vmcs_conf;
7010 	struct vmx_capability vmx_cap;
7011 
7012 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7013 	    !this_cpu_has(X86_FEATURE_VMX)) {
7014 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7015 		return -EIO;
7016 	}
7017 
7018 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7019 		return -EIO;
7020 	if (nested)
7021 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7022 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7023 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7024 				smp_processor_id());
7025 		return -EIO;
7026 	}
7027 	return 0;
7028 }
7029 
7030 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7031 {
7032 	u8 cache;
7033 	u64 ipat = 0;
7034 
7035 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7036 	 * memory aliases with conflicting memory types and sometimes MCEs.
7037 	 * We have to be careful as to what are honored and when.
7038 	 *
7039 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7040 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7041 	 * This was historically the source of MCEs and we want to be
7042 	 * conservative.
7043 	 *
7044 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7045 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7046 	 * EPT memory type is set to WB.  The effective memory type is forced
7047 	 * WB.
7048 	 *
7049 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7050 	 * EPT memory type is used to emulate guest CD/MTRR.
7051 	 */
7052 
7053 	if (is_mmio) {
7054 		cache = MTRR_TYPE_UNCACHABLE;
7055 		goto exit;
7056 	}
7057 
7058 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7059 		ipat = VMX_EPT_IPAT_BIT;
7060 		cache = MTRR_TYPE_WRBACK;
7061 		goto exit;
7062 	}
7063 
7064 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7065 		ipat = VMX_EPT_IPAT_BIT;
7066 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7067 			cache = MTRR_TYPE_WRBACK;
7068 		else
7069 			cache = MTRR_TYPE_UNCACHABLE;
7070 		goto exit;
7071 	}
7072 
7073 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7074 
7075 exit:
7076 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7077 }
7078 
7079 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7080 {
7081 	/*
7082 	 * These bits in the secondary execution controls field
7083 	 * are dynamic, the others are mostly based on the hypervisor
7084 	 * architecture and the guest's CPUID.  Do not touch the
7085 	 * dynamic bits.
7086 	 */
7087 	u32 mask =
7088 		SECONDARY_EXEC_SHADOW_VMCS |
7089 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7090 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7091 		SECONDARY_EXEC_DESC;
7092 
7093 	u32 new_ctl = vmx->secondary_exec_control;
7094 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7095 
7096 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7097 }
7098 
7099 /*
7100  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7101  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7102  */
7103 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7104 {
7105 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7106 	struct kvm_cpuid_entry2 *entry;
7107 
7108 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7109 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7110 
7111 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7112 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7113 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7114 } while (0)
7115 
7116 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7117 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7118 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7119 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7120 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7121 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7122 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7123 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7124 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7125 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7126 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7127 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7128 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7129 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7130 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7131 
7132 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7133 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7134 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7135 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7136 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7137 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7138 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7139 
7140 #undef cr4_fixed1_update
7141 }
7142 
7143 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7144 {
7145 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7146 
7147 	if (kvm_mpx_supported()) {
7148 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7149 
7150 		if (mpx_enabled) {
7151 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7152 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7153 		} else {
7154 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7155 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7156 		}
7157 	}
7158 }
7159 
7160 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7161 {
7162 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7163 	struct kvm_cpuid_entry2 *best = NULL;
7164 	int i;
7165 
7166 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7167 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7168 		if (!best)
7169 			return;
7170 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7171 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7172 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7173 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7174 	}
7175 
7176 	/* Get the number of configurable Address Ranges for filtering */
7177 	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7178 						PT_CAP_num_address_ranges);
7179 
7180 	/* Initialize and clear the no dependency bits */
7181 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7182 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7183 
7184 	/*
7185 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7186 	 * will inject an #GP
7187 	 */
7188 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7189 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7190 
7191 	/*
7192 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7193 	 * PSBFreq can be set
7194 	 */
7195 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7196 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7197 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7198 
7199 	/*
7200 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7201 	 * MTCFreq can be set
7202 	 */
7203 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7204 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7205 				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7206 
7207 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7208 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7209 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7210 							RTIT_CTL_PTW_EN);
7211 
7212 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7213 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7214 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7215 
7216 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7217 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7218 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7219 
7220 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7221 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7222 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7223 
7224 	/* unmask address range configure area */
7225 	for (i = 0; i < vmx->pt_desc.addr_range; i++)
7226 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7227 }
7228 
7229 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7230 {
7231 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7232 
7233 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7234 	vcpu->arch.xsaves_enabled = false;
7235 
7236 	if (cpu_has_secondary_exec_ctrls()) {
7237 		vmx_compute_secondary_exec_control(vmx);
7238 		vmcs_set_secondary_exec_control(vmx);
7239 	}
7240 
7241 	if (nested_vmx_allowed(vcpu))
7242 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7243 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7244 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7245 	else
7246 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7247 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7248 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7249 
7250 	if (nested_vmx_allowed(vcpu)) {
7251 		nested_vmx_cr_fixed1_bits_update(vcpu);
7252 		nested_vmx_entry_exit_ctls_update(vcpu);
7253 	}
7254 
7255 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7256 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7257 		update_intel_pt_cfg(vcpu);
7258 
7259 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7260 		struct shared_msr_entry *msr;
7261 		msr = find_msr_entry(vmx, MSR_IA32_TSX_CTRL);
7262 		if (msr) {
7263 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7264 			vmx_set_guest_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7265 		}
7266 	}
7267 }
7268 
7269 static __init void vmx_set_cpu_caps(void)
7270 {
7271 	kvm_set_cpu_caps();
7272 
7273 	/* CPUID 0x1 */
7274 	if (nested)
7275 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7276 
7277 	/* CPUID 0x7 */
7278 	if (kvm_mpx_supported())
7279 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7280 	if (cpu_has_vmx_invpcid())
7281 		kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7282 	if (vmx_pt_mode_is_host_guest())
7283 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7284 
7285 	/* PKU is not yet implemented for shadow paging. */
7286 	if (enable_ept && boot_cpu_has(X86_FEATURE_OSPKE))
7287 		kvm_cpu_cap_check_and_set(X86_FEATURE_PKU);
7288 
7289 	if (vmx_umip_emulated())
7290 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7291 
7292 	/* CPUID 0xD.1 */
7293 	supported_xss = 0;
7294 	if (!vmx_xsaves_supported())
7295 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7296 
7297 	/* CPUID 0x80000001 */
7298 	if (!cpu_has_vmx_rdtscp())
7299 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7300 
7301 	if (vmx_waitpkg_supported())
7302 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7303 }
7304 
7305 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7306 {
7307 	to_vmx(vcpu)->req_immediate_exit = true;
7308 }
7309 
7310 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7311 				  struct x86_instruction_info *info)
7312 {
7313 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7314 	unsigned short port;
7315 	bool intercept;
7316 	int size;
7317 
7318 	if (info->intercept == x86_intercept_in ||
7319 	    info->intercept == x86_intercept_ins) {
7320 		port = info->src_val;
7321 		size = info->dst_bytes;
7322 	} else {
7323 		port = info->dst_val;
7324 		size = info->src_bytes;
7325 	}
7326 
7327 	/*
7328 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7329 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7330 	 * control.
7331 	 *
7332 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7333 	 */
7334 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7335 		intercept = nested_cpu_has(vmcs12,
7336 					   CPU_BASED_UNCOND_IO_EXITING);
7337 	else
7338 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7339 
7340 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7341 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7342 }
7343 
7344 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7345 			       struct x86_instruction_info *info,
7346 			       enum x86_intercept_stage stage,
7347 			       struct x86_exception *exception)
7348 {
7349 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7350 
7351 	switch (info->intercept) {
7352 	/*
7353 	 * RDPID causes #UD if disabled through secondary execution controls.
7354 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7355 	 */
7356 	case x86_intercept_rdtscp:
7357 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7358 			exception->vector = UD_VECTOR;
7359 			exception->error_code_valid = false;
7360 			return X86EMUL_PROPAGATE_FAULT;
7361 		}
7362 		break;
7363 
7364 	case x86_intercept_in:
7365 	case x86_intercept_ins:
7366 	case x86_intercept_out:
7367 	case x86_intercept_outs:
7368 		return vmx_check_intercept_io(vcpu, info);
7369 
7370 	case x86_intercept_lgdt:
7371 	case x86_intercept_lidt:
7372 	case x86_intercept_lldt:
7373 	case x86_intercept_ltr:
7374 	case x86_intercept_sgdt:
7375 	case x86_intercept_sidt:
7376 	case x86_intercept_sldt:
7377 	case x86_intercept_str:
7378 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7379 			return X86EMUL_CONTINUE;
7380 
7381 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7382 		break;
7383 
7384 	/* TODO: check more intercepts... */
7385 	default:
7386 		break;
7387 	}
7388 
7389 	return X86EMUL_UNHANDLEABLE;
7390 }
7391 
7392 #ifdef CONFIG_X86_64
7393 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7394 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7395 				  u64 divisor, u64 *result)
7396 {
7397 	u64 low = a << shift, high = a >> (64 - shift);
7398 
7399 	/* To avoid the overflow on divq */
7400 	if (high >= divisor)
7401 		return 1;
7402 
7403 	/* Low hold the result, high hold rem which is discarded */
7404 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7405 	    "rm" (divisor), "0" (low), "1" (high));
7406 	*result = low;
7407 
7408 	return 0;
7409 }
7410 
7411 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7412 			    bool *expired)
7413 {
7414 	struct vcpu_vmx *vmx;
7415 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7416 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7417 
7418 	vmx = to_vmx(vcpu);
7419 	tscl = rdtsc();
7420 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7421 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7422 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7423 						    ktimer->timer_advance_ns);
7424 
7425 	if (delta_tsc > lapic_timer_advance_cycles)
7426 		delta_tsc -= lapic_timer_advance_cycles;
7427 	else
7428 		delta_tsc = 0;
7429 
7430 	/* Convert to host delta tsc if tsc scaling is enabled */
7431 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7432 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7433 				kvm_tsc_scaling_ratio_frac_bits,
7434 				vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7435 		return -ERANGE;
7436 
7437 	/*
7438 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7439 	 * we can't use the preemption timer.
7440 	 * It's possible that it fits on later vmentries, but checking
7441 	 * on every vmentry is costly so we just use an hrtimer.
7442 	 */
7443 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7444 		return -ERANGE;
7445 
7446 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7447 	*expired = !delta_tsc;
7448 	return 0;
7449 }
7450 
7451 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7452 {
7453 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7454 }
7455 #endif
7456 
7457 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7458 {
7459 	if (!kvm_pause_in_guest(vcpu->kvm))
7460 		shrink_ple_window(vcpu);
7461 }
7462 
7463 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7464 				     struct kvm_memory_slot *slot)
7465 {
7466 	if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7467 		kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7468 	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7469 }
7470 
7471 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7472 				       struct kvm_memory_slot *slot)
7473 {
7474 	kvm_mmu_slot_set_dirty(kvm, slot);
7475 }
7476 
7477 static void vmx_flush_log_dirty(struct kvm *kvm)
7478 {
7479 	kvm_flush_pml_buffers(kvm);
7480 }
7481 
7482 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7483 {
7484 	struct vmcs12 *vmcs12;
7485 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7486 	gpa_t gpa, dst;
7487 
7488 	if (is_guest_mode(vcpu)) {
7489 		WARN_ON_ONCE(vmx->nested.pml_full);
7490 
7491 		/*
7492 		 * Check if PML is enabled for the nested guest.
7493 		 * Whether eptp bit 6 is set is already checked
7494 		 * as part of A/D emulation.
7495 		 */
7496 		vmcs12 = get_vmcs12(vcpu);
7497 		if (!nested_cpu_has_pml(vmcs12))
7498 			return 0;
7499 
7500 		if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7501 			vmx->nested.pml_full = true;
7502 			return 1;
7503 		}
7504 
7505 		gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7506 		dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7507 
7508 		if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7509 					 offset_in_page(dst), sizeof(gpa)))
7510 			return 0;
7511 
7512 		vmcs12->guest_pml_index--;
7513 	}
7514 
7515 	return 0;
7516 }
7517 
7518 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7519 					   struct kvm_memory_slot *memslot,
7520 					   gfn_t offset, unsigned long mask)
7521 {
7522 	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7523 }
7524 
7525 static void __pi_post_block(struct kvm_vcpu *vcpu)
7526 {
7527 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7528 	struct pi_desc old, new;
7529 	unsigned int dest;
7530 
7531 	do {
7532 		old.control = new.control = pi_desc->control;
7533 		WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7534 		     "Wakeup handler not enabled while the VCPU is blocked\n");
7535 
7536 		dest = cpu_physical_id(vcpu->cpu);
7537 
7538 		if (x2apic_enabled())
7539 			new.ndst = dest;
7540 		else
7541 			new.ndst = (dest << 8) & 0xFF00;
7542 
7543 		/* set 'NV' to 'notification vector' */
7544 		new.nv = POSTED_INTR_VECTOR;
7545 	} while (cmpxchg64(&pi_desc->control, old.control,
7546 			   new.control) != old.control);
7547 
7548 	if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7549 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7550 		list_del(&vcpu->blocked_vcpu_list);
7551 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7552 		vcpu->pre_pcpu = -1;
7553 	}
7554 }
7555 
7556 /*
7557  * This routine does the following things for vCPU which is going
7558  * to be blocked if VT-d PI is enabled.
7559  * - Store the vCPU to the wakeup list, so when interrupts happen
7560  *   we can find the right vCPU to wake up.
7561  * - Change the Posted-interrupt descriptor as below:
7562  *      'NDST' <-- vcpu->pre_pcpu
7563  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7564  * - If 'ON' is set during this process, which means at least one
7565  *   interrupt is posted for this vCPU, we cannot block it, in
7566  *   this case, return 1, otherwise, return 0.
7567  *
7568  */
7569 static int pi_pre_block(struct kvm_vcpu *vcpu)
7570 {
7571 	unsigned int dest;
7572 	struct pi_desc old, new;
7573 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7574 
7575 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7576 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
7577 		!kvm_vcpu_apicv_active(vcpu))
7578 		return 0;
7579 
7580 	WARN_ON(irqs_disabled());
7581 	local_irq_disable();
7582 	if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7583 		vcpu->pre_pcpu = vcpu->cpu;
7584 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7585 		list_add_tail(&vcpu->blocked_vcpu_list,
7586 			      &per_cpu(blocked_vcpu_on_cpu,
7587 				       vcpu->pre_pcpu));
7588 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7589 	}
7590 
7591 	do {
7592 		old.control = new.control = pi_desc->control;
7593 
7594 		WARN((pi_desc->sn == 1),
7595 		     "Warning: SN field of posted-interrupts "
7596 		     "is set before blocking\n");
7597 
7598 		/*
7599 		 * Since vCPU can be preempted during this process,
7600 		 * vcpu->cpu could be different with pre_pcpu, we
7601 		 * need to set pre_pcpu as the destination of wakeup
7602 		 * notification event, then we can find the right vCPU
7603 		 * to wakeup in wakeup handler if interrupts happen
7604 		 * when the vCPU is in blocked state.
7605 		 */
7606 		dest = cpu_physical_id(vcpu->pre_pcpu);
7607 
7608 		if (x2apic_enabled())
7609 			new.ndst = dest;
7610 		else
7611 			new.ndst = (dest << 8) & 0xFF00;
7612 
7613 		/* set 'NV' to 'wakeup vector' */
7614 		new.nv = POSTED_INTR_WAKEUP_VECTOR;
7615 	} while (cmpxchg64(&pi_desc->control, old.control,
7616 			   new.control) != old.control);
7617 
7618 	/* We should not block the vCPU if an interrupt is posted for it.  */
7619 	if (pi_test_on(pi_desc) == 1)
7620 		__pi_post_block(vcpu);
7621 
7622 	local_irq_enable();
7623 	return (vcpu->pre_pcpu == -1);
7624 }
7625 
7626 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7627 {
7628 	if (pi_pre_block(vcpu))
7629 		return 1;
7630 
7631 	if (kvm_lapic_hv_timer_in_use(vcpu))
7632 		kvm_lapic_switch_to_sw_timer(vcpu);
7633 
7634 	return 0;
7635 }
7636 
7637 static void pi_post_block(struct kvm_vcpu *vcpu)
7638 {
7639 	if (vcpu->pre_pcpu == -1)
7640 		return;
7641 
7642 	WARN_ON(irqs_disabled());
7643 	local_irq_disable();
7644 	__pi_post_block(vcpu);
7645 	local_irq_enable();
7646 }
7647 
7648 static void vmx_post_block(struct kvm_vcpu *vcpu)
7649 {
7650 	if (kvm_x86_ops.set_hv_timer)
7651 		kvm_lapic_switch_to_hv_timer(vcpu);
7652 
7653 	pi_post_block(vcpu);
7654 }
7655 
7656 /*
7657  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7658  *
7659  * @kvm: kvm
7660  * @host_irq: host irq of the interrupt
7661  * @guest_irq: gsi of the interrupt
7662  * @set: set or unset PI
7663  * returns 0 on success, < 0 on failure
7664  */
7665 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7666 			      uint32_t guest_irq, bool set)
7667 {
7668 	struct kvm_kernel_irq_routing_entry *e;
7669 	struct kvm_irq_routing_table *irq_rt;
7670 	struct kvm_lapic_irq irq;
7671 	struct kvm_vcpu *vcpu;
7672 	struct vcpu_data vcpu_info;
7673 	int idx, ret = 0;
7674 
7675 	if (!kvm_arch_has_assigned_device(kvm) ||
7676 		!irq_remapping_cap(IRQ_POSTING_CAP) ||
7677 		!kvm_vcpu_apicv_active(kvm->vcpus[0]))
7678 		return 0;
7679 
7680 	idx = srcu_read_lock(&kvm->irq_srcu);
7681 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7682 	if (guest_irq >= irq_rt->nr_rt_entries ||
7683 	    hlist_empty(&irq_rt->map[guest_irq])) {
7684 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7685 			     guest_irq, irq_rt->nr_rt_entries);
7686 		goto out;
7687 	}
7688 
7689 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7690 		if (e->type != KVM_IRQ_ROUTING_MSI)
7691 			continue;
7692 		/*
7693 		 * VT-d PI cannot support posting multicast/broadcast
7694 		 * interrupts to a vCPU, we still use interrupt remapping
7695 		 * for these kind of interrupts.
7696 		 *
7697 		 * For lowest-priority interrupts, we only support
7698 		 * those with single CPU as the destination, e.g. user
7699 		 * configures the interrupts via /proc/irq or uses
7700 		 * irqbalance to make the interrupts single-CPU.
7701 		 *
7702 		 * We will support full lowest-priority interrupt later.
7703 		 *
7704 		 * In addition, we can only inject generic interrupts using
7705 		 * the PI mechanism, refuse to route others through it.
7706 		 */
7707 
7708 		kvm_set_msi_irq(kvm, e, &irq);
7709 		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7710 		    !kvm_irq_is_postable(&irq)) {
7711 			/*
7712 			 * Make sure the IRTE is in remapped mode if
7713 			 * we don't handle it in posted mode.
7714 			 */
7715 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7716 			if (ret < 0) {
7717 				printk(KERN_INFO
7718 				   "failed to back to remapped mode, irq: %u\n",
7719 				   host_irq);
7720 				goto out;
7721 			}
7722 
7723 			continue;
7724 		}
7725 
7726 		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7727 		vcpu_info.vector = irq.vector;
7728 
7729 		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7730 				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7731 
7732 		if (set)
7733 			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7734 		else
7735 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7736 
7737 		if (ret < 0) {
7738 			printk(KERN_INFO "%s: failed to update PI IRTE\n",
7739 					__func__);
7740 			goto out;
7741 		}
7742 	}
7743 
7744 	ret = 0;
7745 out:
7746 	srcu_read_unlock(&kvm->irq_srcu, idx);
7747 	return ret;
7748 }
7749 
7750 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7751 {
7752 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7753 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7754 			FEAT_CTL_LMCE_ENABLED;
7755 	else
7756 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7757 			~FEAT_CTL_LMCE_ENABLED;
7758 }
7759 
7760 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7761 {
7762 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7763 	if (to_vmx(vcpu)->nested.nested_run_pending)
7764 		return -EBUSY;
7765 	return !is_smm(vcpu);
7766 }
7767 
7768 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7769 {
7770 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7771 
7772 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7773 	if (vmx->nested.smm.guest_mode)
7774 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7775 
7776 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7777 	vmx->nested.vmxon = false;
7778 	vmx_clear_hlt(vcpu);
7779 	return 0;
7780 }
7781 
7782 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7783 {
7784 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7785 	int ret;
7786 
7787 	if (vmx->nested.smm.vmxon) {
7788 		vmx->nested.vmxon = true;
7789 		vmx->nested.smm.vmxon = false;
7790 	}
7791 
7792 	if (vmx->nested.smm.guest_mode) {
7793 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7794 		if (ret)
7795 			return ret;
7796 
7797 		vmx->nested.smm.guest_mode = false;
7798 	}
7799 	return 0;
7800 }
7801 
7802 static void enable_smi_window(struct kvm_vcpu *vcpu)
7803 {
7804 	/* RSM will cause a vmexit anyway.  */
7805 }
7806 
7807 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7808 {
7809 	return false;
7810 }
7811 
7812 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7813 {
7814 	return to_vmx(vcpu)->nested.vmxon;
7815 }
7816 
7817 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7818 {
7819 	if (is_guest_mode(vcpu)) {
7820 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7821 
7822 		if (hrtimer_try_to_cancel(timer) == 1)
7823 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7824 	}
7825 }
7826 
7827 static void hardware_unsetup(void)
7828 {
7829 	if (nested)
7830 		nested_vmx_hardware_unsetup();
7831 
7832 	free_kvm_area();
7833 }
7834 
7835 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7836 {
7837 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7838 			  BIT(APICV_INHIBIT_REASON_HYPERV);
7839 
7840 	return supported & BIT(bit);
7841 }
7842 
7843 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7844 	.hardware_unsetup = hardware_unsetup,
7845 
7846 	.hardware_enable = hardware_enable,
7847 	.hardware_disable = hardware_disable,
7848 	.cpu_has_accelerated_tpr = report_flexpriority,
7849 	.has_emulated_msr = vmx_has_emulated_msr,
7850 
7851 	.vm_size = sizeof(struct kvm_vmx),
7852 	.vm_init = vmx_vm_init,
7853 
7854 	.vcpu_create = vmx_create_vcpu,
7855 	.vcpu_free = vmx_free_vcpu,
7856 	.vcpu_reset = vmx_vcpu_reset,
7857 
7858 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7859 	.vcpu_load = vmx_vcpu_load,
7860 	.vcpu_put = vmx_vcpu_put,
7861 
7862 	.update_bp_intercept = update_exception_bitmap,
7863 	.get_msr_feature = vmx_get_msr_feature,
7864 	.get_msr = vmx_get_msr,
7865 	.set_msr = vmx_set_msr,
7866 	.get_segment_base = vmx_get_segment_base,
7867 	.get_segment = vmx_get_segment,
7868 	.set_segment = vmx_set_segment,
7869 	.get_cpl = vmx_get_cpl,
7870 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7871 	.set_cr0 = vmx_set_cr0,
7872 	.set_cr4 = vmx_set_cr4,
7873 	.set_efer = vmx_set_efer,
7874 	.get_idt = vmx_get_idt,
7875 	.set_idt = vmx_set_idt,
7876 	.get_gdt = vmx_get_gdt,
7877 	.set_gdt = vmx_set_gdt,
7878 	.set_dr7 = vmx_set_dr7,
7879 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7880 	.cache_reg = vmx_cache_reg,
7881 	.get_rflags = vmx_get_rflags,
7882 	.set_rflags = vmx_set_rflags,
7883 
7884 	.tlb_flush_all = vmx_flush_tlb_all,
7885 	.tlb_flush_current = vmx_flush_tlb_current,
7886 	.tlb_flush_gva = vmx_flush_tlb_gva,
7887 	.tlb_flush_guest = vmx_flush_tlb_guest,
7888 
7889 	.run = vmx_vcpu_run,
7890 	.handle_exit = vmx_handle_exit,
7891 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7892 	.update_emulated_instruction = vmx_update_emulated_instruction,
7893 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7894 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7895 	.patch_hypercall = vmx_patch_hypercall,
7896 	.set_irq = vmx_inject_irq,
7897 	.set_nmi = vmx_inject_nmi,
7898 	.queue_exception = vmx_queue_exception,
7899 	.cancel_injection = vmx_cancel_injection,
7900 	.interrupt_allowed = vmx_interrupt_allowed,
7901 	.nmi_allowed = vmx_nmi_allowed,
7902 	.get_nmi_mask = vmx_get_nmi_mask,
7903 	.set_nmi_mask = vmx_set_nmi_mask,
7904 	.enable_nmi_window = enable_nmi_window,
7905 	.enable_irq_window = enable_irq_window,
7906 	.update_cr8_intercept = update_cr8_intercept,
7907 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7908 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7909 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7910 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7911 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7912 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7913 	.hwapic_irr_update = vmx_hwapic_irr_update,
7914 	.hwapic_isr_update = vmx_hwapic_isr_update,
7915 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7916 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7917 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7918 	.dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7919 
7920 	.set_tss_addr = vmx_set_tss_addr,
7921 	.set_identity_map_addr = vmx_set_identity_map_addr,
7922 	.get_tdp_level = vmx_get_tdp_level,
7923 	.get_mt_mask = vmx_get_mt_mask,
7924 
7925 	.get_exit_info = vmx_get_exit_info,
7926 
7927 	.cpuid_update = vmx_cpuid_update,
7928 
7929 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7930 
7931 	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7932 
7933 	.load_mmu_pgd = vmx_load_mmu_pgd,
7934 
7935 	.check_intercept = vmx_check_intercept,
7936 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7937 
7938 	.request_immediate_exit = vmx_request_immediate_exit,
7939 
7940 	.sched_in = vmx_sched_in,
7941 
7942 	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7943 	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7944 	.flush_log_dirty = vmx_flush_log_dirty,
7945 	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7946 	.write_log_dirty = vmx_write_pml_buffer,
7947 
7948 	.pre_block = vmx_pre_block,
7949 	.post_block = vmx_post_block,
7950 
7951 	.pmu_ops = &intel_pmu_ops,
7952 	.nested_ops = &vmx_nested_ops,
7953 
7954 	.update_pi_irte = vmx_update_pi_irte,
7955 
7956 #ifdef CONFIG_X86_64
7957 	.set_hv_timer = vmx_set_hv_timer,
7958 	.cancel_hv_timer = vmx_cancel_hv_timer,
7959 #endif
7960 
7961 	.setup_mce = vmx_setup_mce,
7962 
7963 	.smi_allowed = vmx_smi_allowed,
7964 	.pre_enter_smm = vmx_pre_enter_smm,
7965 	.pre_leave_smm = vmx_pre_leave_smm,
7966 	.enable_smi_window = enable_smi_window,
7967 
7968 	.need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7969 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7970 	.migrate_timers = vmx_migrate_timers,
7971 };
7972 
7973 static __init int hardware_setup(void)
7974 {
7975 	unsigned long host_bndcfgs;
7976 	struct desc_ptr dt;
7977 	int r, i, ept_lpage_level;
7978 
7979 	store_idt(&dt);
7980 	host_idt_base = dt.address;
7981 
7982 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7983 		kvm_define_shared_msr(i, vmx_msr_index[i]);
7984 
7985 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7986 		return -EIO;
7987 
7988 	if (boot_cpu_has(X86_FEATURE_NX))
7989 		kvm_enable_efer_bits(EFER_NX);
7990 
7991 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7992 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7993 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7994 	}
7995 
7996 	if (!cpu_has_vmx_mpx())
7997 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7998 				    XFEATURE_MASK_BNDCSR);
7999 
8000 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8001 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8002 		enable_vpid = 0;
8003 
8004 	if (!cpu_has_vmx_ept() ||
8005 	    !cpu_has_vmx_ept_4levels() ||
8006 	    !cpu_has_vmx_ept_mt_wb() ||
8007 	    !cpu_has_vmx_invept_global())
8008 		enable_ept = 0;
8009 
8010 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8011 		enable_ept_ad_bits = 0;
8012 
8013 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8014 		enable_unrestricted_guest = 0;
8015 
8016 	if (!cpu_has_vmx_flexpriority())
8017 		flexpriority_enabled = 0;
8018 
8019 	if (!cpu_has_virtual_nmis())
8020 		enable_vnmi = 0;
8021 
8022 	/*
8023 	 * set_apic_access_page_addr() is used to reload apic access
8024 	 * page upon invalidation.  No need to do anything if not
8025 	 * using the APIC_ACCESS_ADDR VMCS field.
8026 	 */
8027 	if (!flexpriority_enabled)
8028 		vmx_x86_ops.set_apic_access_page_addr = NULL;
8029 
8030 	if (!cpu_has_vmx_tpr_shadow())
8031 		vmx_x86_ops.update_cr8_intercept = NULL;
8032 
8033 #if IS_ENABLED(CONFIG_HYPERV)
8034 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8035 	    && enable_ept) {
8036 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
8037 		vmx_x86_ops.tlb_remote_flush_with_range =
8038 				hv_remote_flush_tlb_with_range;
8039 	}
8040 #endif
8041 
8042 	if (!cpu_has_vmx_ple()) {
8043 		ple_gap = 0;
8044 		ple_window = 0;
8045 		ple_window_grow = 0;
8046 		ple_window_max = 0;
8047 		ple_window_shrink = 0;
8048 	}
8049 
8050 	if (!cpu_has_vmx_apicv()) {
8051 		enable_apicv = 0;
8052 		vmx_x86_ops.sync_pir_to_irr = NULL;
8053 	}
8054 
8055 	if (cpu_has_vmx_tsc_scaling()) {
8056 		kvm_has_tsc_control = true;
8057 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8058 		kvm_tsc_scaling_ratio_frac_bits = 48;
8059 	}
8060 
8061 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8062 
8063 	if (enable_ept)
8064 		vmx_enable_tdp();
8065 
8066 	if (!enable_ept)
8067 		ept_lpage_level = 0;
8068 	else if (cpu_has_vmx_ept_1g_page())
8069 		ept_lpage_level = PG_LEVEL_1G;
8070 	else if (cpu_has_vmx_ept_2m_page())
8071 		ept_lpage_level = PG_LEVEL_2M;
8072 	else
8073 		ept_lpage_level = PG_LEVEL_4K;
8074 	kvm_configure_mmu(enable_ept, ept_lpage_level);
8075 
8076 	/*
8077 	 * Only enable PML when hardware supports PML feature, and both EPT
8078 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8079 	 */
8080 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8081 		enable_pml = 0;
8082 
8083 	if (!enable_pml) {
8084 		vmx_x86_ops.slot_enable_log_dirty = NULL;
8085 		vmx_x86_ops.slot_disable_log_dirty = NULL;
8086 		vmx_x86_ops.flush_log_dirty = NULL;
8087 		vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
8088 	}
8089 
8090 	if (!cpu_has_vmx_preemption_timer())
8091 		enable_preemption_timer = false;
8092 
8093 	if (enable_preemption_timer) {
8094 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8095 		u64 vmx_msr;
8096 
8097 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
8098 		cpu_preemption_timer_multi =
8099 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8100 
8101 		if (tsc_khz)
8102 			use_timer_freq = (u64)tsc_khz * 1000;
8103 		use_timer_freq >>= cpu_preemption_timer_multi;
8104 
8105 		/*
8106 		 * KVM "disables" the preemption timer by setting it to its max
8107 		 * value.  Don't use the timer if it might cause spurious exits
8108 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8109 		 */
8110 		if (use_timer_freq > 0xffffffffu / 10)
8111 			enable_preemption_timer = false;
8112 	}
8113 
8114 	if (!enable_preemption_timer) {
8115 		vmx_x86_ops.set_hv_timer = NULL;
8116 		vmx_x86_ops.cancel_hv_timer = NULL;
8117 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8118 	}
8119 
8120 	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
8121 
8122 	kvm_mce_cap_supported |= MCG_LMCE_P;
8123 
8124 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8125 		return -EINVAL;
8126 	if (!enable_ept || !cpu_has_vmx_intel_pt())
8127 		pt_mode = PT_MODE_SYSTEM;
8128 
8129 	if (nested) {
8130 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8131 					   vmx_capability.ept);
8132 
8133 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8134 		if (r)
8135 			return r;
8136 	}
8137 
8138 	vmx_set_cpu_caps();
8139 
8140 	r = alloc_kvm_area();
8141 	if (r)
8142 		nested_vmx_hardware_unsetup();
8143 	return r;
8144 }
8145 
8146 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8147 	.cpu_has_kvm_support = cpu_has_kvm_support,
8148 	.disabled_by_bios = vmx_disabled_by_bios,
8149 	.check_processor_compatibility = vmx_check_processor_compat,
8150 	.hardware_setup = hardware_setup,
8151 
8152 	.runtime_ops = &vmx_x86_ops,
8153 };
8154 
8155 static void vmx_cleanup_l1d_flush(void)
8156 {
8157 	if (vmx_l1d_flush_pages) {
8158 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8159 		vmx_l1d_flush_pages = NULL;
8160 	}
8161 	/* Restore state so sysfs ignores VMX */
8162 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8163 }
8164 
8165 static void vmx_exit(void)
8166 {
8167 #ifdef CONFIG_KEXEC_CORE
8168 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8169 	synchronize_rcu();
8170 #endif
8171 
8172 	kvm_exit();
8173 
8174 #if IS_ENABLED(CONFIG_HYPERV)
8175 	if (static_branch_unlikely(&enable_evmcs)) {
8176 		int cpu;
8177 		struct hv_vp_assist_page *vp_ap;
8178 		/*
8179 		 * Reset everything to support using non-enlightened VMCS
8180 		 * access later (e.g. when we reload the module with
8181 		 * enlightened_vmcs=0)
8182 		 */
8183 		for_each_online_cpu(cpu) {
8184 			vp_ap =	hv_get_vp_assist_page(cpu);
8185 
8186 			if (!vp_ap)
8187 				continue;
8188 
8189 			vp_ap->nested_control.features.directhypercall = 0;
8190 			vp_ap->current_nested_vmcs = 0;
8191 			vp_ap->enlighten_vmentry = 0;
8192 		}
8193 
8194 		static_branch_disable(&enable_evmcs);
8195 	}
8196 #endif
8197 	vmx_cleanup_l1d_flush();
8198 }
8199 module_exit(vmx_exit);
8200 
8201 static int __init vmx_init(void)
8202 {
8203 	int r, cpu;
8204 
8205 #if IS_ENABLED(CONFIG_HYPERV)
8206 	/*
8207 	 * Enlightened VMCS usage should be recommended and the host needs
8208 	 * to support eVMCS v1 or above. We can also disable eVMCS support
8209 	 * with module parameter.
8210 	 */
8211 	if (enlightened_vmcs &&
8212 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8213 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8214 	    KVM_EVMCS_VERSION) {
8215 		int cpu;
8216 
8217 		/* Check that we have assist pages on all online CPUs */
8218 		for_each_online_cpu(cpu) {
8219 			if (!hv_get_vp_assist_page(cpu)) {
8220 				enlightened_vmcs = false;
8221 				break;
8222 			}
8223 		}
8224 
8225 		if (enlightened_vmcs) {
8226 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8227 			static_branch_enable(&enable_evmcs);
8228 		}
8229 
8230 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8231 			vmx_x86_ops.enable_direct_tlbflush
8232 				= hv_enable_direct_tlbflush;
8233 
8234 	} else {
8235 		enlightened_vmcs = false;
8236 	}
8237 #endif
8238 
8239 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8240 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8241 	if (r)
8242 		return r;
8243 
8244 	/*
8245 	 * Must be called after kvm_init() so enable_ept is properly set
8246 	 * up. Hand the parameter mitigation value in which was stored in
8247 	 * the pre module init parser. If no parameter was given, it will
8248 	 * contain 'auto' which will be turned into the default 'cond'
8249 	 * mitigation mode.
8250 	 */
8251 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8252 	if (r) {
8253 		vmx_exit();
8254 		return r;
8255 	}
8256 
8257 	for_each_possible_cpu(cpu) {
8258 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8259 		INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
8260 		spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8261 	}
8262 
8263 #ifdef CONFIG_KEXEC_CORE
8264 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8265 			   crash_vmclear_local_loaded_vmcss);
8266 #endif
8267 	vmx_check_vmcs12_offsets();
8268 
8269 	return 0;
8270 }
8271 module_init(vmx_init);
8272