xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision ce6cc6f7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/idtentry.h>
41 #include <asm/io.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/kexec.h>
44 #include <asm/perf_event.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/mwait.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/virtext.h>
50 #include <asm/vmx.h>
51 
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68 #include "smm.h"
69 
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72 
73 #ifdef MODULE
74 static const struct x86_cpu_id vmx_cpu_id[] = {
75 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
76 	{}
77 };
78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
79 #endif
80 
81 bool __read_mostly enable_vpid = 1;
82 module_param_named(vpid, enable_vpid, bool, 0444);
83 
84 static bool __read_mostly enable_vnmi = 1;
85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
86 
87 bool __read_mostly flexpriority_enabled = 1;
88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
89 
90 bool __read_mostly enable_ept = 1;
91 module_param_named(ept, enable_ept, bool, S_IRUGO);
92 
93 bool __read_mostly enable_unrestricted_guest = 1;
94 module_param_named(unrestricted_guest,
95 			enable_unrestricted_guest, bool, S_IRUGO);
96 
97 bool __read_mostly enable_ept_ad_bits = 1;
98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
99 
100 static bool __read_mostly emulate_invalid_guest_state = true;
101 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
102 
103 static bool __read_mostly fasteoi = 1;
104 module_param(fasteoi, bool, S_IRUGO);
105 
106 module_param(enable_apicv, bool, S_IRUGO);
107 
108 bool __read_mostly enable_ipiv = true;
109 module_param(enable_ipiv, bool, 0444);
110 
111 /*
112  * If nested=1, nested virtualization is supported, i.e., guests may use
113  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
114  * use VMX instructions.
115  */
116 static bool __read_mostly nested = 1;
117 module_param(nested, bool, S_IRUGO);
118 
119 bool __read_mostly enable_pml = 1;
120 module_param_named(pml, enable_pml, bool, S_IRUGO);
121 
122 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
123 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
124 
125 static bool __read_mostly dump_invalid_vmcs = 0;
126 module_param(dump_invalid_vmcs, bool, 0644);
127 
128 #define MSR_BITMAP_MODE_X2APIC		1
129 #define MSR_BITMAP_MODE_X2APIC_APICV	2
130 
131 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
132 
133 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
134 static int __read_mostly cpu_preemption_timer_multi;
135 static bool __read_mostly enable_preemption_timer = 1;
136 #ifdef CONFIG_X86_64
137 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
138 #endif
139 
140 extern bool __read_mostly allow_smaller_maxphyaddr;
141 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
142 
143 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
144 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
145 #define KVM_VM_CR0_ALWAYS_ON				\
146 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
147 
148 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
149 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
150 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
151 
152 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
153 
154 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
155 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
156 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
157 	RTIT_STATUS_BYTECNT))
158 
159 /*
160  * List of MSRs that can be directly passed to the guest.
161  * In addition to these x2apic and PT MSRs are handled specially.
162  */
163 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
164 	MSR_IA32_SPEC_CTRL,
165 	MSR_IA32_PRED_CMD,
166 	MSR_IA32_TSC,
167 #ifdef CONFIG_X86_64
168 	MSR_FS_BASE,
169 	MSR_GS_BASE,
170 	MSR_KERNEL_GS_BASE,
171 	MSR_IA32_XFD,
172 	MSR_IA32_XFD_ERR,
173 #endif
174 	MSR_IA32_SYSENTER_CS,
175 	MSR_IA32_SYSENTER_ESP,
176 	MSR_IA32_SYSENTER_EIP,
177 	MSR_CORE_C1_RES,
178 	MSR_CORE_C3_RESIDENCY,
179 	MSR_CORE_C6_RESIDENCY,
180 	MSR_CORE_C7_RESIDENCY,
181 };
182 
183 /*
184  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
185  * ple_gap:    upper bound on the amount of time between two successive
186  *             executions of PAUSE in a loop. Also indicate if ple enabled.
187  *             According to test, this time is usually smaller than 128 cycles.
188  * ple_window: upper bound on the amount of time a guest is allowed to execute
189  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
190  *             less than 2^12 cycles
191  * Time is measured based on a counter that runs at the same rate as the TSC,
192  * refer SDM volume 3b section 21.6.13 & 22.1.3.
193  */
194 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
195 module_param(ple_gap, uint, 0444);
196 
197 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
198 module_param(ple_window, uint, 0444);
199 
200 /* Default doubles per-vcpu window every exit. */
201 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
202 module_param(ple_window_grow, uint, 0444);
203 
204 /* Default resets per-vcpu window every exit to ple_window. */
205 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
206 module_param(ple_window_shrink, uint, 0444);
207 
208 /* Default is to compute the maximum so we can never overflow. */
209 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
210 module_param(ple_window_max, uint, 0444);
211 
212 /* Default is SYSTEM mode, 1 for host-guest mode */
213 int __read_mostly pt_mode = PT_MODE_SYSTEM;
214 module_param(pt_mode, int, S_IRUGO);
215 
216 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
217 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
218 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
219 
220 /* Storage for pre module init parameter parsing */
221 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
222 
223 static const struct {
224 	const char *option;
225 	bool for_parse;
226 } vmentry_l1d_param[] = {
227 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
228 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
229 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
230 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
231 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
232 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
233 };
234 
235 #define L1D_CACHE_ORDER 4
236 static void *vmx_l1d_flush_pages;
237 
238 /* Control for disabling CPU Fill buffer clear */
239 static bool __read_mostly vmx_fb_clear_ctrl_available;
240 
241 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
242 {
243 	struct page *page;
244 	unsigned int i;
245 
246 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
247 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
248 		return 0;
249 	}
250 
251 	if (!enable_ept) {
252 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
253 		return 0;
254 	}
255 
256 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
257 		u64 msr;
258 
259 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
260 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
261 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
262 			return 0;
263 		}
264 	}
265 
266 	/* If set to auto use the default l1tf mitigation method */
267 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
268 		switch (l1tf_mitigation) {
269 		case L1TF_MITIGATION_OFF:
270 			l1tf = VMENTER_L1D_FLUSH_NEVER;
271 			break;
272 		case L1TF_MITIGATION_FLUSH_NOWARN:
273 		case L1TF_MITIGATION_FLUSH:
274 		case L1TF_MITIGATION_FLUSH_NOSMT:
275 			l1tf = VMENTER_L1D_FLUSH_COND;
276 			break;
277 		case L1TF_MITIGATION_FULL:
278 		case L1TF_MITIGATION_FULL_FORCE:
279 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
280 			break;
281 		}
282 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
283 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
284 	}
285 
286 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
287 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
288 		/*
289 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
290 		 * lifetime and so should not be charged to a memcg.
291 		 */
292 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
293 		if (!page)
294 			return -ENOMEM;
295 		vmx_l1d_flush_pages = page_address(page);
296 
297 		/*
298 		 * Initialize each page with a different pattern in
299 		 * order to protect against KSM in the nested
300 		 * virtualization case.
301 		 */
302 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
303 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
304 			       PAGE_SIZE);
305 		}
306 	}
307 
308 	l1tf_vmx_mitigation = l1tf;
309 
310 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
311 		static_branch_enable(&vmx_l1d_should_flush);
312 	else
313 		static_branch_disable(&vmx_l1d_should_flush);
314 
315 	if (l1tf == VMENTER_L1D_FLUSH_COND)
316 		static_branch_enable(&vmx_l1d_flush_cond);
317 	else
318 		static_branch_disable(&vmx_l1d_flush_cond);
319 	return 0;
320 }
321 
322 static int vmentry_l1d_flush_parse(const char *s)
323 {
324 	unsigned int i;
325 
326 	if (s) {
327 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
328 			if (vmentry_l1d_param[i].for_parse &&
329 			    sysfs_streq(s, vmentry_l1d_param[i].option))
330 				return i;
331 		}
332 	}
333 	return -EINVAL;
334 }
335 
336 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
337 {
338 	int l1tf, ret;
339 
340 	l1tf = vmentry_l1d_flush_parse(s);
341 	if (l1tf < 0)
342 		return l1tf;
343 
344 	if (!boot_cpu_has(X86_BUG_L1TF))
345 		return 0;
346 
347 	/*
348 	 * Has vmx_init() run already? If not then this is the pre init
349 	 * parameter parsing. In that case just store the value and let
350 	 * vmx_init() do the proper setup after enable_ept has been
351 	 * established.
352 	 */
353 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
354 		vmentry_l1d_flush_param = l1tf;
355 		return 0;
356 	}
357 
358 	mutex_lock(&vmx_l1d_flush_mutex);
359 	ret = vmx_setup_l1d_flush(l1tf);
360 	mutex_unlock(&vmx_l1d_flush_mutex);
361 	return ret;
362 }
363 
364 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
365 {
366 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
367 		return sprintf(s, "???\n");
368 
369 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
370 }
371 
372 static void vmx_setup_fb_clear_ctrl(void)
373 {
374 	u64 msr;
375 
376 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
377 	    !boot_cpu_has_bug(X86_BUG_MDS) &&
378 	    !boot_cpu_has_bug(X86_BUG_TAA)) {
379 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
380 		if (msr & ARCH_CAP_FB_CLEAR_CTRL)
381 			vmx_fb_clear_ctrl_available = true;
382 	}
383 }
384 
385 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
386 {
387 	u64 msr;
388 
389 	if (!vmx->disable_fb_clear)
390 		return;
391 
392 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
393 	msr |= FB_CLEAR_DIS;
394 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
395 	/* Cache the MSR value to avoid reading it later */
396 	vmx->msr_ia32_mcu_opt_ctrl = msr;
397 }
398 
399 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
400 {
401 	if (!vmx->disable_fb_clear)
402 		return;
403 
404 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
405 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
406 }
407 
408 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
409 {
410 	vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
411 
412 	/*
413 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
414 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
415 	 * execute VERW.
416 	 */
417 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
418 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
419 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
420 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
421 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
422 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
423 		vmx->disable_fb_clear = false;
424 }
425 
426 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
427 	.set = vmentry_l1d_flush_set,
428 	.get = vmentry_l1d_flush_get,
429 };
430 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
431 
432 static u32 vmx_segment_access_rights(struct kvm_segment *var);
433 
434 void vmx_vmexit(void);
435 
436 #define vmx_insn_failed(fmt...)		\
437 do {					\
438 	WARN_ONCE(1, fmt);		\
439 	pr_warn_ratelimited(fmt);	\
440 } while (0)
441 
442 void vmread_error(unsigned long field, bool fault)
443 {
444 	if (fault)
445 		kvm_spurious_fault();
446 	else
447 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
448 }
449 
450 noinline void vmwrite_error(unsigned long field, unsigned long value)
451 {
452 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%u\n",
453 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
454 }
455 
456 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
457 {
458 	vmx_insn_failed("kvm: vmclear failed: %p/%llx err=%u\n",
459 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
460 }
461 
462 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
463 {
464 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx err=%u\n",
465 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
466 }
467 
468 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
469 {
470 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
471 			ext, vpid, gva);
472 }
473 
474 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
475 {
476 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
477 			ext, eptp, gpa);
478 }
479 
480 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
481 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
482 /*
483  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
484  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
485  */
486 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
487 
488 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
489 static DEFINE_SPINLOCK(vmx_vpid_lock);
490 
491 struct vmcs_config vmcs_config;
492 struct vmx_capability vmx_capability;
493 
494 #define VMX_SEGMENT_FIELD(seg)					\
495 	[VCPU_SREG_##seg] = {                                   \
496 		.selector = GUEST_##seg##_SELECTOR,		\
497 		.base = GUEST_##seg##_BASE,		   	\
498 		.limit = GUEST_##seg##_LIMIT,		   	\
499 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
500 	}
501 
502 static const struct kvm_vmx_segment_field {
503 	unsigned selector;
504 	unsigned base;
505 	unsigned limit;
506 	unsigned ar_bytes;
507 } kvm_vmx_segment_fields[] = {
508 	VMX_SEGMENT_FIELD(CS),
509 	VMX_SEGMENT_FIELD(DS),
510 	VMX_SEGMENT_FIELD(ES),
511 	VMX_SEGMENT_FIELD(FS),
512 	VMX_SEGMENT_FIELD(GS),
513 	VMX_SEGMENT_FIELD(SS),
514 	VMX_SEGMENT_FIELD(TR),
515 	VMX_SEGMENT_FIELD(LDTR),
516 };
517 
518 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
519 {
520 	vmx->segment_cache.bitmask = 0;
521 }
522 
523 static unsigned long host_idt_base;
524 
525 #if IS_ENABLED(CONFIG_HYPERV)
526 static bool __read_mostly enlightened_vmcs = true;
527 module_param(enlightened_vmcs, bool, 0444);
528 
529 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
530 {
531 	struct hv_enlightened_vmcs *evmcs;
532 	struct hv_partition_assist_pg **p_hv_pa_pg =
533 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
534 	/*
535 	 * Synthetic VM-Exit is not enabled in current code and so All
536 	 * evmcs in singe VM shares same assist page.
537 	 */
538 	if (!*p_hv_pa_pg)
539 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
540 
541 	if (!*p_hv_pa_pg)
542 		return -ENOMEM;
543 
544 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
545 
546 	evmcs->partition_assist_page =
547 		__pa(*p_hv_pa_pg);
548 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
549 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
550 
551 	return 0;
552 }
553 
554 #endif /* IS_ENABLED(CONFIG_HYPERV) */
555 
556 /*
557  * Comment's format: document - errata name - stepping - processor name.
558  * Refer from
559  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
560  */
561 static u32 vmx_preemption_cpu_tfms[] = {
562 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
563 0x000206E6,
564 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
565 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
566 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
567 0x00020652,
568 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
569 0x00020655,
570 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
571 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
572 /*
573  * 320767.pdf - AAP86  - B1 -
574  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
575  */
576 0x000106E5,
577 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
578 0x000106A0,
579 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
580 0x000106A1,
581 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
582 0x000106A4,
583  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
584  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
585  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
586 0x000106A5,
587  /* Xeon E3-1220 V2 */
588 0x000306A8,
589 };
590 
591 static inline bool cpu_has_broken_vmx_preemption_timer(void)
592 {
593 	u32 eax = cpuid_eax(0x00000001), i;
594 
595 	/* Clear the reserved bits */
596 	eax &= ~(0x3U << 14 | 0xfU << 28);
597 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
598 		if (eax == vmx_preemption_cpu_tfms[i])
599 			return true;
600 
601 	return false;
602 }
603 
604 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
605 {
606 	return flexpriority_enabled && lapic_in_kernel(vcpu);
607 }
608 
609 static int possible_passthrough_msr_slot(u32 msr)
610 {
611 	u32 i;
612 
613 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
614 		if (vmx_possible_passthrough_msrs[i] == msr)
615 			return i;
616 
617 	return -ENOENT;
618 }
619 
620 static bool is_valid_passthrough_msr(u32 msr)
621 {
622 	bool r;
623 
624 	switch (msr) {
625 	case 0x800 ... 0x8ff:
626 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
627 		return true;
628 	case MSR_IA32_RTIT_STATUS:
629 	case MSR_IA32_RTIT_OUTPUT_BASE:
630 	case MSR_IA32_RTIT_OUTPUT_MASK:
631 	case MSR_IA32_RTIT_CR3_MATCH:
632 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
633 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
634 	case MSR_LBR_SELECT:
635 	case MSR_LBR_TOS:
636 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
637 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
638 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
639 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
640 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
641 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
642 		return true;
643 	}
644 
645 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
646 
647 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
648 
649 	return r;
650 }
651 
652 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
653 {
654 	int i;
655 
656 	i = kvm_find_user_return_msr(msr);
657 	if (i >= 0)
658 		return &vmx->guest_uret_msrs[i];
659 	return NULL;
660 }
661 
662 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
663 				  struct vmx_uret_msr *msr, u64 data)
664 {
665 	unsigned int slot = msr - vmx->guest_uret_msrs;
666 	int ret = 0;
667 
668 	if (msr->load_into_hardware) {
669 		preempt_disable();
670 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
671 		preempt_enable();
672 	}
673 	if (!ret)
674 		msr->data = data;
675 	return ret;
676 }
677 
678 #ifdef CONFIG_KEXEC_CORE
679 static void crash_vmclear_local_loaded_vmcss(void)
680 {
681 	int cpu = raw_smp_processor_id();
682 	struct loaded_vmcs *v;
683 
684 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
685 			    loaded_vmcss_on_cpu_link)
686 		vmcs_clear(v->vmcs);
687 }
688 #endif /* CONFIG_KEXEC_CORE */
689 
690 static void __loaded_vmcs_clear(void *arg)
691 {
692 	struct loaded_vmcs *loaded_vmcs = arg;
693 	int cpu = raw_smp_processor_id();
694 
695 	if (loaded_vmcs->cpu != cpu)
696 		return; /* vcpu migration can race with cpu offline */
697 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
698 		per_cpu(current_vmcs, cpu) = NULL;
699 
700 	vmcs_clear(loaded_vmcs->vmcs);
701 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
702 		vmcs_clear(loaded_vmcs->shadow_vmcs);
703 
704 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
705 
706 	/*
707 	 * Ensure all writes to loaded_vmcs, including deleting it from its
708 	 * current percpu list, complete before setting loaded_vmcs->cpu to
709 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
710 	 * and add loaded_vmcs to its percpu list before it's deleted from this
711 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
712 	 */
713 	smp_wmb();
714 
715 	loaded_vmcs->cpu = -1;
716 	loaded_vmcs->launched = 0;
717 }
718 
719 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
720 {
721 	int cpu = loaded_vmcs->cpu;
722 
723 	if (cpu != -1)
724 		smp_call_function_single(cpu,
725 			 __loaded_vmcs_clear, loaded_vmcs, 1);
726 }
727 
728 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
729 				       unsigned field)
730 {
731 	bool ret;
732 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
733 
734 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
735 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
736 		vmx->segment_cache.bitmask = 0;
737 	}
738 	ret = vmx->segment_cache.bitmask & mask;
739 	vmx->segment_cache.bitmask |= mask;
740 	return ret;
741 }
742 
743 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
744 {
745 	u16 *p = &vmx->segment_cache.seg[seg].selector;
746 
747 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
748 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
749 	return *p;
750 }
751 
752 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
753 {
754 	ulong *p = &vmx->segment_cache.seg[seg].base;
755 
756 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
757 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
758 	return *p;
759 }
760 
761 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
762 {
763 	u32 *p = &vmx->segment_cache.seg[seg].limit;
764 
765 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
766 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
767 	return *p;
768 }
769 
770 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
771 {
772 	u32 *p = &vmx->segment_cache.seg[seg].ar;
773 
774 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
775 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
776 	return *p;
777 }
778 
779 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
780 {
781 	u32 eb;
782 
783 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
784 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
785 	/*
786 	 * Guest access to VMware backdoor ports could legitimately
787 	 * trigger #GP because of TSS I/O permission bitmap.
788 	 * We intercept those #GP and allow access to them anyway
789 	 * as VMware does.
790 	 */
791 	if (enable_vmware_backdoor)
792 		eb |= (1u << GP_VECTOR);
793 	if ((vcpu->guest_debug &
794 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
795 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
796 		eb |= 1u << BP_VECTOR;
797 	if (to_vmx(vcpu)->rmode.vm86_active)
798 		eb = ~0;
799 	if (!vmx_need_pf_intercept(vcpu))
800 		eb &= ~(1u << PF_VECTOR);
801 
802 	/* When we are running a nested L2 guest and L1 specified for it a
803 	 * certain exception bitmap, we must trap the same exceptions and pass
804 	 * them to L1. When running L2, we will only handle the exceptions
805 	 * specified above if L1 did not want them.
806 	 */
807 	if (is_guest_mode(vcpu))
808 		eb |= get_vmcs12(vcpu)->exception_bitmap;
809         else {
810 		int mask = 0, match = 0;
811 
812 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
813 			/*
814 			 * If EPT is enabled, #PF is currently only intercepted
815 			 * if MAXPHYADDR is smaller on the guest than on the
816 			 * host.  In that case we only care about present,
817 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
818 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
819 			 */
820 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
821 			match = PFERR_PRESENT_MASK;
822 		}
823 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
824 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
825 	}
826 
827 	/*
828 	 * Disabling xfd interception indicates that dynamic xfeatures
829 	 * might be used in the guest. Always trap #NM in this case
830 	 * to save guest xfd_err timely.
831 	 */
832 	if (vcpu->arch.xfd_no_write_intercept)
833 		eb |= (1u << NM_VECTOR);
834 
835 	vmcs_write32(EXCEPTION_BITMAP, eb);
836 }
837 
838 /*
839  * Check if MSR is intercepted for currently loaded MSR bitmap.
840  */
841 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
842 {
843 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
844 		return true;
845 
846 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
847 }
848 
849 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
850 {
851 	unsigned int flags = 0;
852 
853 	if (vmx->loaded_vmcs->launched)
854 		flags |= VMX_RUN_VMRESUME;
855 
856 	/*
857 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
858 	 * to change it directly without causing a vmexit.  In that case read
859 	 * it after vmexit and store it in vmx->spec_ctrl.
860 	 */
861 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
862 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
863 
864 	return flags;
865 }
866 
867 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
868 		unsigned long entry, unsigned long exit)
869 {
870 	vm_entry_controls_clearbit(vmx, entry);
871 	vm_exit_controls_clearbit(vmx, exit);
872 }
873 
874 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
875 {
876 	unsigned int i;
877 
878 	for (i = 0; i < m->nr; ++i) {
879 		if (m->val[i].index == msr)
880 			return i;
881 	}
882 	return -ENOENT;
883 }
884 
885 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
886 {
887 	int i;
888 	struct msr_autoload *m = &vmx->msr_autoload;
889 
890 	switch (msr) {
891 	case MSR_EFER:
892 		if (cpu_has_load_ia32_efer()) {
893 			clear_atomic_switch_msr_special(vmx,
894 					VM_ENTRY_LOAD_IA32_EFER,
895 					VM_EXIT_LOAD_IA32_EFER);
896 			return;
897 		}
898 		break;
899 	case MSR_CORE_PERF_GLOBAL_CTRL:
900 		if (cpu_has_load_perf_global_ctrl()) {
901 			clear_atomic_switch_msr_special(vmx,
902 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
903 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
904 			return;
905 		}
906 		break;
907 	}
908 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
909 	if (i < 0)
910 		goto skip_guest;
911 	--m->guest.nr;
912 	m->guest.val[i] = m->guest.val[m->guest.nr];
913 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
914 
915 skip_guest:
916 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
917 	if (i < 0)
918 		return;
919 
920 	--m->host.nr;
921 	m->host.val[i] = m->host.val[m->host.nr];
922 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
923 }
924 
925 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
926 		unsigned long entry, unsigned long exit,
927 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
928 		u64 guest_val, u64 host_val)
929 {
930 	vmcs_write64(guest_val_vmcs, guest_val);
931 	if (host_val_vmcs != HOST_IA32_EFER)
932 		vmcs_write64(host_val_vmcs, host_val);
933 	vm_entry_controls_setbit(vmx, entry);
934 	vm_exit_controls_setbit(vmx, exit);
935 }
936 
937 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
938 				  u64 guest_val, u64 host_val, bool entry_only)
939 {
940 	int i, j = 0;
941 	struct msr_autoload *m = &vmx->msr_autoload;
942 
943 	switch (msr) {
944 	case MSR_EFER:
945 		if (cpu_has_load_ia32_efer()) {
946 			add_atomic_switch_msr_special(vmx,
947 					VM_ENTRY_LOAD_IA32_EFER,
948 					VM_EXIT_LOAD_IA32_EFER,
949 					GUEST_IA32_EFER,
950 					HOST_IA32_EFER,
951 					guest_val, host_val);
952 			return;
953 		}
954 		break;
955 	case MSR_CORE_PERF_GLOBAL_CTRL:
956 		if (cpu_has_load_perf_global_ctrl()) {
957 			add_atomic_switch_msr_special(vmx,
958 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
959 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
960 					GUEST_IA32_PERF_GLOBAL_CTRL,
961 					HOST_IA32_PERF_GLOBAL_CTRL,
962 					guest_val, host_val);
963 			return;
964 		}
965 		break;
966 	case MSR_IA32_PEBS_ENABLE:
967 		/* PEBS needs a quiescent period after being disabled (to write
968 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
969 		 * provide that period, so a CPU could write host's record into
970 		 * guest's memory.
971 		 */
972 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
973 	}
974 
975 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
976 	if (!entry_only)
977 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
978 
979 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
980 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
981 		printk_once(KERN_WARNING "Not enough msr switch entries. "
982 				"Can't add msr %x\n", msr);
983 		return;
984 	}
985 	if (i < 0) {
986 		i = m->guest.nr++;
987 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
988 	}
989 	m->guest.val[i].index = msr;
990 	m->guest.val[i].value = guest_val;
991 
992 	if (entry_only)
993 		return;
994 
995 	if (j < 0) {
996 		j = m->host.nr++;
997 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
998 	}
999 	m->host.val[j].index = msr;
1000 	m->host.val[j].value = host_val;
1001 }
1002 
1003 static bool update_transition_efer(struct vcpu_vmx *vmx)
1004 {
1005 	u64 guest_efer = vmx->vcpu.arch.efer;
1006 	u64 ignore_bits = 0;
1007 	int i;
1008 
1009 	/* Shadow paging assumes NX to be available.  */
1010 	if (!enable_ept)
1011 		guest_efer |= EFER_NX;
1012 
1013 	/*
1014 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1015 	 */
1016 	ignore_bits |= EFER_SCE;
1017 #ifdef CONFIG_X86_64
1018 	ignore_bits |= EFER_LMA | EFER_LME;
1019 	/* SCE is meaningful only in long mode on Intel */
1020 	if (guest_efer & EFER_LMA)
1021 		ignore_bits &= ~(u64)EFER_SCE;
1022 #endif
1023 
1024 	/*
1025 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1026 	 * On CPUs that support "load IA32_EFER", always switch EFER
1027 	 * atomically, since it's faster than switching it manually.
1028 	 */
1029 	if (cpu_has_load_ia32_efer() ||
1030 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1031 		if (!(guest_efer & EFER_LMA))
1032 			guest_efer &= ~EFER_LME;
1033 		if (guest_efer != host_efer)
1034 			add_atomic_switch_msr(vmx, MSR_EFER,
1035 					      guest_efer, host_efer, false);
1036 		else
1037 			clear_atomic_switch_msr(vmx, MSR_EFER);
1038 		return false;
1039 	}
1040 
1041 	i = kvm_find_user_return_msr(MSR_EFER);
1042 	if (i < 0)
1043 		return false;
1044 
1045 	clear_atomic_switch_msr(vmx, MSR_EFER);
1046 
1047 	guest_efer &= ~ignore_bits;
1048 	guest_efer |= host_efer & ignore_bits;
1049 
1050 	vmx->guest_uret_msrs[i].data = guest_efer;
1051 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1052 
1053 	return true;
1054 }
1055 
1056 #ifdef CONFIG_X86_32
1057 /*
1058  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1059  * VMCS rather than the segment table.  KVM uses this helper to figure
1060  * out the current bases to poke them into the VMCS before entry.
1061  */
1062 static unsigned long segment_base(u16 selector)
1063 {
1064 	struct desc_struct *table;
1065 	unsigned long v;
1066 
1067 	if (!(selector & ~SEGMENT_RPL_MASK))
1068 		return 0;
1069 
1070 	table = get_current_gdt_ro();
1071 
1072 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1073 		u16 ldt_selector = kvm_read_ldt();
1074 
1075 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1076 			return 0;
1077 
1078 		table = (struct desc_struct *)segment_base(ldt_selector);
1079 	}
1080 	v = get_desc_base(&table[selector >> 3]);
1081 	return v;
1082 }
1083 #endif
1084 
1085 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1086 {
1087 	return vmx_pt_mode_is_host_guest() &&
1088 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1089 }
1090 
1091 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1092 {
1093 	/* The base must be 128-byte aligned and a legal physical address. */
1094 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1095 }
1096 
1097 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1098 {
1099 	u32 i;
1100 
1101 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1102 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1103 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1104 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1105 	for (i = 0; i < addr_range; i++) {
1106 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1107 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1108 	}
1109 }
1110 
1111 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1112 {
1113 	u32 i;
1114 
1115 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1116 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1117 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1118 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1119 	for (i = 0; i < addr_range; i++) {
1120 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1121 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1122 	}
1123 }
1124 
1125 static void pt_guest_enter(struct vcpu_vmx *vmx)
1126 {
1127 	if (vmx_pt_mode_is_system())
1128 		return;
1129 
1130 	/*
1131 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1132 	 * Save host state before VM entry.
1133 	 */
1134 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1135 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1136 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1137 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1138 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1139 	}
1140 }
1141 
1142 static void pt_guest_exit(struct vcpu_vmx *vmx)
1143 {
1144 	if (vmx_pt_mode_is_system())
1145 		return;
1146 
1147 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1148 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1149 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1150 	}
1151 
1152 	/*
1153 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1154 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1155 	 */
1156 	if (vmx->pt_desc.host.ctl)
1157 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1158 }
1159 
1160 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1161 			unsigned long fs_base, unsigned long gs_base)
1162 {
1163 	if (unlikely(fs_sel != host->fs_sel)) {
1164 		if (!(fs_sel & 7))
1165 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1166 		else
1167 			vmcs_write16(HOST_FS_SELECTOR, 0);
1168 		host->fs_sel = fs_sel;
1169 	}
1170 	if (unlikely(gs_sel != host->gs_sel)) {
1171 		if (!(gs_sel & 7))
1172 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1173 		else
1174 			vmcs_write16(HOST_GS_SELECTOR, 0);
1175 		host->gs_sel = gs_sel;
1176 	}
1177 	if (unlikely(fs_base != host->fs_base)) {
1178 		vmcs_writel(HOST_FS_BASE, fs_base);
1179 		host->fs_base = fs_base;
1180 	}
1181 	if (unlikely(gs_base != host->gs_base)) {
1182 		vmcs_writel(HOST_GS_BASE, gs_base);
1183 		host->gs_base = gs_base;
1184 	}
1185 }
1186 
1187 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1188 {
1189 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1190 	struct vmcs_host_state *host_state;
1191 #ifdef CONFIG_X86_64
1192 	int cpu = raw_smp_processor_id();
1193 #endif
1194 	unsigned long fs_base, gs_base;
1195 	u16 fs_sel, gs_sel;
1196 	int i;
1197 
1198 	vmx->req_immediate_exit = false;
1199 
1200 	/*
1201 	 * Note that guest MSRs to be saved/restored can also be changed
1202 	 * when guest state is loaded. This happens when guest transitions
1203 	 * to/from long-mode by setting MSR_EFER.LMA.
1204 	 */
1205 	if (!vmx->guest_uret_msrs_loaded) {
1206 		vmx->guest_uret_msrs_loaded = true;
1207 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1208 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1209 				continue;
1210 
1211 			kvm_set_user_return_msr(i,
1212 						vmx->guest_uret_msrs[i].data,
1213 						vmx->guest_uret_msrs[i].mask);
1214 		}
1215 	}
1216 
1217     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1218 		nested_sync_vmcs12_to_shadow(vcpu);
1219 
1220 	if (vmx->guest_state_loaded)
1221 		return;
1222 
1223 	host_state = &vmx->loaded_vmcs->host_state;
1224 
1225 	/*
1226 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1227 	 * allow segment selectors with cpl > 0 or ti == 1.
1228 	 */
1229 	host_state->ldt_sel = kvm_read_ldt();
1230 
1231 #ifdef CONFIG_X86_64
1232 	savesegment(ds, host_state->ds_sel);
1233 	savesegment(es, host_state->es_sel);
1234 
1235 	gs_base = cpu_kernelmode_gs_base(cpu);
1236 	if (likely(is_64bit_mm(current->mm))) {
1237 		current_save_fsgs();
1238 		fs_sel = current->thread.fsindex;
1239 		gs_sel = current->thread.gsindex;
1240 		fs_base = current->thread.fsbase;
1241 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1242 	} else {
1243 		savesegment(fs, fs_sel);
1244 		savesegment(gs, gs_sel);
1245 		fs_base = read_msr(MSR_FS_BASE);
1246 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1247 	}
1248 
1249 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1250 #else
1251 	savesegment(fs, fs_sel);
1252 	savesegment(gs, gs_sel);
1253 	fs_base = segment_base(fs_sel);
1254 	gs_base = segment_base(gs_sel);
1255 #endif
1256 
1257 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1258 	vmx->guest_state_loaded = true;
1259 }
1260 
1261 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1262 {
1263 	struct vmcs_host_state *host_state;
1264 
1265 	if (!vmx->guest_state_loaded)
1266 		return;
1267 
1268 	host_state = &vmx->loaded_vmcs->host_state;
1269 
1270 	++vmx->vcpu.stat.host_state_reload;
1271 
1272 #ifdef CONFIG_X86_64
1273 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1274 #endif
1275 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1276 		kvm_load_ldt(host_state->ldt_sel);
1277 #ifdef CONFIG_X86_64
1278 		load_gs_index(host_state->gs_sel);
1279 #else
1280 		loadsegment(gs, host_state->gs_sel);
1281 #endif
1282 	}
1283 	if (host_state->fs_sel & 7)
1284 		loadsegment(fs, host_state->fs_sel);
1285 #ifdef CONFIG_X86_64
1286 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1287 		loadsegment(ds, host_state->ds_sel);
1288 		loadsegment(es, host_state->es_sel);
1289 	}
1290 #endif
1291 	invalidate_tss_limit();
1292 #ifdef CONFIG_X86_64
1293 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1294 #endif
1295 	load_fixmap_gdt(raw_smp_processor_id());
1296 	vmx->guest_state_loaded = false;
1297 	vmx->guest_uret_msrs_loaded = false;
1298 }
1299 
1300 #ifdef CONFIG_X86_64
1301 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1302 {
1303 	preempt_disable();
1304 	if (vmx->guest_state_loaded)
1305 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1306 	preempt_enable();
1307 	return vmx->msr_guest_kernel_gs_base;
1308 }
1309 
1310 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1311 {
1312 	preempt_disable();
1313 	if (vmx->guest_state_loaded)
1314 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1315 	preempt_enable();
1316 	vmx->msr_guest_kernel_gs_base = data;
1317 }
1318 #endif
1319 
1320 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1321 			struct loaded_vmcs *buddy)
1322 {
1323 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1324 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1325 	struct vmcs *prev;
1326 
1327 	if (!already_loaded) {
1328 		loaded_vmcs_clear(vmx->loaded_vmcs);
1329 		local_irq_disable();
1330 
1331 		/*
1332 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1333 		 * this cpu's percpu list, otherwise it may not yet be deleted
1334 		 * from its previous cpu's percpu list.  Pairs with the
1335 		 * smb_wmb() in __loaded_vmcs_clear().
1336 		 */
1337 		smp_rmb();
1338 
1339 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1340 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1341 		local_irq_enable();
1342 	}
1343 
1344 	prev = per_cpu(current_vmcs, cpu);
1345 	if (prev != vmx->loaded_vmcs->vmcs) {
1346 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1347 		vmcs_load(vmx->loaded_vmcs->vmcs);
1348 
1349 		/*
1350 		 * No indirect branch prediction barrier needed when switching
1351 		 * the active VMCS within a vCPU, unless IBRS is advertised to
1352 		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1353 		 * performs IBPB on nested VM-Exit (a single nested transition
1354 		 * may switch the active VMCS multiple times).
1355 		 */
1356 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1357 			indirect_branch_prediction_barrier();
1358 	}
1359 
1360 	if (!already_loaded) {
1361 		void *gdt = get_current_gdt_ro();
1362 
1363 		/*
1364 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1365 		 * TLB entries from its previous association with the vCPU.
1366 		 */
1367 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1368 
1369 		/*
1370 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1371 		 * processors.  See 22.2.4.
1372 		 */
1373 		vmcs_writel(HOST_TR_BASE,
1374 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1375 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1376 
1377 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1378 			/* 22.2.3 */
1379 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1380 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1381 		}
1382 
1383 		vmx->loaded_vmcs->cpu = cpu;
1384 	}
1385 }
1386 
1387 /*
1388  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1389  * vcpu mutex is already taken.
1390  */
1391 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1392 {
1393 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1394 
1395 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1396 
1397 	vmx_vcpu_pi_load(vcpu, cpu);
1398 
1399 	vmx->host_debugctlmsr = get_debugctlmsr();
1400 }
1401 
1402 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1403 {
1404 	vmx_vcpu_pi_put(vcpu);
1405 
1406 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1407 }
1408 
1409 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1410 {
1411 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1412 }
1413 
1414 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1415 {
1416 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1417 	unsigned long rflags, save_rflags;
1418 
1419 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1420 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1421 		rflags = vmcs_readl(GUEST_RFLAGS);
1422 		if (vmx->rmode.vm86_active) {
1423 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1424 			save_rflags = vmx->rmode.save_rflags;
1425 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1426 		}
1427 		vmx->rflags = rflags;
1428 	}
1429 	return vmx->rflags;
1430 }
1431 
1432 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1433 {
1434 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1435 	unsigned long old_rflags;
1436 
1437 	if (is_unrestricted_guest(vcpu)) {
1438 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1439 		vmx->rflags = rflags;
1440 		vmcs_writel(GUEST_RFLAGS, rflags);
1441 		return;
1442 	}
1443 
1444 	old_rflags = vmx_get_rflags(vcpu);
1445 	vmx->rflags = rflags;
1446 	if (vmx->rmode.vm86_active) {
1447 		vmx->rmode.save_rflags = rflags;
1448 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1449 	}
1450 	vmcs_writel(GUEST_RFLAGS, rflags);
1451 
1452 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1453 		vmx->emulation_required = vmx_emulation_required(vcpu);
1454 }
1455 
1456 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1457 {
1458 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1459 }
1460 
1461 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1462 {
1463 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1464 	int ret = 0;
1465 
1466 	if (interruptibility & GUEST_INTR_STATE_STI)
1467 		ret |= KVM_X86_SHADOW_INT_STI;
1468 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1469 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1470 
1471 	return ret;
1472 }
1473 
1474 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1475 {
1476 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1477 	u32 interruptibility = interruptibility_old;
1478 
1479 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1480 
1481 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1482 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1483 	else if (mask & KVM_X86_SHADOW_INT_STI)
1484 		interruptibility |= GUEST_INTR_STATE_STI;
1485 
1486 	if ((interruptibility != interruptibility_old))
1487 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1488 }
1489 
1490 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1491 {
1492 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1493 	unsigned long value;
1494 
1495 	/*
1496 	 * Any MSR write that attempts to change bits marked reserved will
1497 	 * case a #GP fault.
1498 	 */
1499 	if (data & vmx->pt_desc.ctl_bitmask)
1500 		return 1;
1501 
1502 	/*
1503 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1504 	 * result in a #GP unless the same write also clears TraceEn.
1505 	 */
1506 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1507 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1508 		return 1;
1509 
1510 	/*
1511 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1512 	 * and FabricEn would cause #GP, if
1513 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1514 	 */
1515 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1516 		!(data & RTIT_CTL_FABRIC_EN) &&
1517 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1518 					PT_CAP_single_range_output))
1519 		return 1;
1520 
1521 	/*
1522 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1523 	 * utilize encodings marked reserved will cause a #GP fault.
1524 	 */
1525 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1526 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1527 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1528 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1529 		return 1;
1530 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1531 						PT_CAP_cycle_thresholds);
1532 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1533 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1534 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1535 		return 1;
1536 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1537 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1538 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1539 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1540 		return 1;
1541 
1542 	/*
1543 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1544 	 * cause a #GP fault.
1545 	 */
1546 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1547 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1548 		return 1;
1549 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1550 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1551 		return 1;
1552 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1553 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1554 		return 1;
1555 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1556 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1557 		return 1;
1558 
1559 	return 0;
1560 }
1561 
1562 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1563 					void *insn, int insn_len)
1564 {
1565 	/*
1566 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1567 	 * not point at the failing instruction, and even if it did, the code
1568 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1569 	 * so that guest userspace can't DoS the guest simply by triggering
1570 	 * emulation (enclaves are CPL3 only).
1571 	 */
1572 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1573 		kvm_queue_exception(vcpu, UD_VECTOR);
1574 		return false;
1575 	}
1576 	return true;
1577 }
1578 
1579 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1580 {
1581 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1582 	unsigned long rip, orig_rip;
1583 	u32 instr_len;
1584 
1585 	/*
1586 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1587 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1588 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1589 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1590 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1591 	 * i.e. we end up advancing IP with some random value.
1592 	 */
1593 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1594 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1595 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1596 
1597 		/*
1598 		 * Emulating an enclave's instructions isn't supported as KVM
1599 		 * cannot access the enclave's memory or its true RIP, e.g. the
1600 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1601 		 * the RIP that actually triggered the VM-Exit.  But, because
1602 		 * most instructions that cause VM-Exit will #UD in an enclave,
1603 		 * most instruction-based VM-Exits simply do not occur.
1604 		 *
1605 		 * There are a few exceptions, notably the debug instructions
1606 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1607 		 * and generate #DB/#BP as expected, which KVM might intercept.
1608 		 * But again, the CPU does the dirty work and saves an instr
1609 		 * length of zero so VMMs don't shoot themselves in the foot.
1610 		 * WARN if KVM tries to skip a non-zero length instruction on
1611 		 * a VM-Exit from an enclave.
1612 		 */
1613 		if (!instr_len)
1614 			goto rip_updated;
1615 
1616 		WARN(exit_reason.enclave_mode,
1617 		     "KVM: skipping instruction after SGX enclave VM-Exit");
1618 
1619 		orig_rip = kvm_rip_read(vcpu);
1620 		rip = orig_rip + instr_len;
1621 #ifdef CONFIG_X86_64
1622 		/*
1623 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1624 		 * mode, but just finding out that we are in 64-bit mode is
1625 		 * quite expensive.  Only do it if there was a carry.
1626 		 */
1627 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1628 			rip = (u32)rip;
1629 #endif
1630 		kvm_rip_write(vcpu, rip);
1631 	} else {
1632 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1633 			return 0;
1634 	}
1635 
1636 rip_updated:
1637 	/* skipping an emulated instruction also counts */
1638 	vmx_set_interrupt_shadow(vcpu, 0);
1639 
1640 	return 1;
1641 }
1642 
1643 /*
1644  * Recognizes a pending MTF VM-exit and records the nested state for later
1645  * delivery.
1646  */
1647 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1648 {
1649 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1650 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1651 
1652 	if (!is_guest_mode(vcpu))
1653 		return;
1654 
1655 	/*
1656 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1657 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1658 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1659 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1660 	 * as ICEBP is higher priority than both.  As instruction emulation is
1661 	 * completed at this point (i.e. KVM is at the instruction boundary),
1662 	 * any #DB exception pending delivery must be a debug-trap of lower
1663 	 * priority than MTF.  Record the pending MTF state to be delivered in
1664 	 * vmx_check_nested_events().
1665 	 */
1666 	if (nested_cpu_has_mtf(vmcs12) &&
1667 	    (!vcpu->arch.exception.pending ||
1668 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1669 	    (!vcpu->arch.exception_vmexit.pending ||
1670 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1671 		vmx->nested.mtf_pending = true;
1672 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1673 	} else {
1674 		vmx->nested.mtf_pending = false;
1675 	}
1676 }
1677 
1678 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1679 {
1680 	vmx_update_emulated_instruction(vcpu);
1681 	return skip_emulated_instruction(vcpu);
1682 }
1683 
1684 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1685 {
1686 	/*
1687 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1688 	 * explicitly skip the instruction because if the HLT state is set,
1689 	 * then the instruction is already executing and RIP has already been
1690 	 * advanced.
1691 	 */
1692 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1693 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1694 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1695 }
1696 
1697 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1698 {
1699 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1700 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1701 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1702 
1703 	kvm_deliver_exception_payload(vcpu, ex);
1704 
1705 	if (ex->has_error_code) {
1706 		/*
1707 		 * Despite the error code being architecturally defined as 32
1708 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1709 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1710 		 * will (should) never provide a bogus error code, but AMD CPUs
1711 		 * do generate error codes with bits 31:16 set, and so KVM's
1712 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1713 		 * the upper bits to avoid VM-Fail, losing information that
1714 		 * does't really exist is preferable to killing the VM.
1715 		 */
1716 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1717 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1718 	}
1719 
1720 	if (vmx->rmode.vm86_active) {
1721 		int inc_eip = 0;
1722 		if (kvm_exception_is_soft(ex->vector))
1723 			inc_eip = vcpu->arch.event_exit_inst_len;
1724 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1725 		return;
1726 	}
1727 
1728 	WARN_ON_ONCE(vmx->emulation_required);
1729 
1730 	if (kvm_exception_is_soft(ex->vector)) {
1731 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1732 			     vmx->vcpu.arch.event_exit_inst_len);
1733 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1734 	} else
1735 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1736 
1737 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1738 
1739 	vmx_clear_hlt(vcpu);
1740 }
1741 
1742 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1743 			       bool load_into_hardware)
1744 {
1745 	struct vmx_uret_msr *uret_msr;
1746 
1747 	uret_msr = vmx_find_uret_msr(vmx, msr);
1748 	if (!uret_msr)
1749 		return;
1750 
1751 	uret_msr->load_into_hardware = load_into_hardware;
1752 }
1753 
1754 /*
1755  * Configuring user return MSRs to automatically save, load, and restore MSRs
1756  * that need to be shoved into hardware when running the guest.  Note, omitting
1757  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1758  * loaded into hardware when running the guest.
1759  */
1760 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1761 {
1762 #ifdef CONFIG_X86_64
1763 	bool load_syscall_msrs;
1764 
1765 	/*
1766 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1767 	 * when EFER.SCE is set.
1768 	 */
1769 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1770 			    (vmx->vcpu.arch.efer & EFER_SCE);
1771 
1772 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1773 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1774 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1775 #endif
1776 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1777 
1778 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1779 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1780 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1781 
1782 	/*
1783 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1784 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1785 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1786 	 * so that TSX remains always disabled.
1787 	 */
1788 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1789 
1790 	/*
1791 	 * The set of MSRs to load may have changed, reload MSRs before the
1792 	 * next VM-Enter.
1793 	 */
1794 	vmx->guest_uret_msrs_loaded = false;
1795 }
1796 
1797 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1798 {
1799 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1800 
1801 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1802 		return vmcs12->tsc_offset;
1803 
1804 	return 0;
1805 }
1806 
1807 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1808 {
1809 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1810 
1811 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1812 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1813 		return vmcs12->tsc_multiplier;
1814 
1815 	return kvm_caps.default_tsc_scaling_ratio;
1816 }
1817 
1818 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1819 {
1820 	vmcs_write64(TSC_OFFSET, offset);
1821 }
1822 
1823 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1824 {
1825 	vmcs_write64(TSC_MULTIPLIER, multiplier);
1826 }
1827 
1828 /*
1829  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1830  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1831  * all guests if the "nested" module option is off, and can also be disabled
1832  * for a single guest by disabling its VMX cpuid bit.
1833  */
1834 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1835 {
1836 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1837 }
1838 
1839 /*
1840  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1841  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1842  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1843  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1844  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1845  */
1846 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1847 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1848 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1849 					FEAT_CTL_SGX_LC_ENABLED		 | \
1850 					FEAT_CTL_SGX_ENABLED		 | \
1851 					FEAT_CTL_LMCE_ENABLED)
1852 
1853 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1854 						    struct msr_data *msr)
1855 {
1856 	uint64_t valid_bits;
1857 
1858 	/*
1859 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1860 	 * exposed to the guest.
1861 	 */
1862 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1863 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1864 
1865 	if (!msr->host_initiated &&
1866 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1867 		return false;
1868 
1869 	if (msr->host_initiated)
1870 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1871 	else
1872 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1873 
1874 	return !(msr->data & ~valid_bits);
1875 }
1876 
1877 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1878 {
1879 	switch (msr->index) {
1880 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1881 		if (!nested)
1882 			return 1;
1883 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1884 	default:
1885 		return KVM_MSR_RET_INVALID;
1886 	}
1887 }
1888 
1889 /*
1890  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1891  * Returns 0 on success, non-0 otherwise.
1892  * Assumes vcpu_load() was already called.
1893  */
1894 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1895 {
1896 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1897 	struct vmx_uret_msr *msr;
1898 	u32 index;
1899 
1900 	switch (msr_info->index) {
1901 #ifdef CONFIG_X86_64
1902 	case MSR_FS_BASE:
1903 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1904 		break;
1905 	case MSR_GS_BASE:
1906 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1907 		break;
1908 	case MSR_KERNEL_GS_BASE:
1909 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1910 		break;
1911 #endif
1912 	case MSR_EFER:
1913 		return kvm_get_msr_common(vcpu, msr_info);
1914 	case MSR_IA32_TSX_CTRL:
1915 		if (!msr_info->host_initiated &&
1916 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1917 			return 1;
1918 		goto find_uret_msr;
1919 	case MSR_IA32_UMWAIT_CONTROL:
1920 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1921 			return 1;
1922 
1923 		msr_info->data = vmx->msr_ia32_umwait_control;
1924 		break;
1925 	case MSR_IA32_SPEC_CTRL:
1926 		if (!msr_info->host_initiated &&
1927 		    !guest_has_spec_ctrl_msr(vcpu))
1928 			return 1;
1929 
1930 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1931 		break;
1932 	case MSR_IA32_SYSENTER_CS:
1933 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1934 		break;
1935 	case MSR_IA32_SYSENTER_EIP:
1936 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1937 		break;
1938 	case MSR_IA32_SYSENTER_ESP:
1939 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1940 		break;
1941 	case MSR_IA32_BNDCFGS:
1942 		if (!kvm_mpx_supported() ||
1943 		    (!msr_info->host_initiated &&
1944 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1945 			return 1;
1946 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1947 		break;
1948 	case MSR_IA32_MCG_EXT_CTL:
1949 		if (!msr_info->host_initiated &&
1950 		    !(vmx->msr_ia32_feature_control &
1951 		      FEAT_CTL_LMCE_ENABLED))
1952 			return 1;
1953 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1954 		break;
1955 	case MSR_IA32_FEAT_CTL:
1956 		msr_info->data = vmx->msr_ia32_feature_control;
1957 		break;
1958 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1959 		if (!msr_info->host_initiated &&
1960 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1961 			return 1;
1962 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1963 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1964 		break;
1965 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1966 		if (!nested_vmx_allowed(vcpu))
1967 			return 1;
1968 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1969 				    &msr_info->data))
1970 			return 1;
1971 		/*
1972 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1973 		 * instead of just ignoring the features, different Hyper-V
1974 		 * versions are either trying to use them and fail or do some
1975 		 * sanity checking and refuse to boot. Filter all unsupported
1976 		 * features out.
1977 		 */
1978 		if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
1979 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
1980 							&msr_info->data);
1981 		break;
1982 	case MSR_IA32_RTIT_CTL:
1983 		if (!vmx_pt_mode_is_host_guest())
1984 			return 1;
1985 		msr_info->data = vmx->pt_desc.guest.ctl;
1986 		break;
1987 	case MSR_IA32_RTIT_STATUS:
1988 		if (!vmx_pt_mode_is_host_guest())
1989 			return 1;
1990 		msr_info->data = vmx->pt_desc.guest.status;
1991 		break;
1992 	case MSR_IA32_RTIT_CR3_MATCH:
1993 		if (!vmx_pt_mode_is_host_guest() ||
1994 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1995 						PT_CAP_cr3_filtering))
1996 			return 1;
1997 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1998 		break;
1999 	case MSR_IA32_RTIT_OUTPUT_BASE:
2000 		if (!vmx_pt_mode_is_host_guest() ||
2001 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2002 					PT_CAP_topa_output) &&
2003 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2004 					PT_CAP_single_range_output)))
2005 			return 1;
2006 		msr_info->data = vmx->pt_desc.guest.output_base;
2007 		break;
2008 	case MSR_IA32_RTIT_OUTPUT_MASK:
2009 		if (!vmx_pt_mode_is_host_guest() ||
2010 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2011 					PT_CAP_topa_output) &&
2012 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2013 					PT_CAP_single_range_output)))
2014 			return 1;
2015 		msr_info->data = vmx->pt_desc.guest.output_mask;
2016 		break;
2017 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2018 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2019 		if (!vmx_pt_mode_is_host_guest() ||
2020 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2021 			return 1;
2022 		if (index % 2)
2023 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2024 		else
2025 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2026 		break;
2027 	case MSR_IA32_DEBUGCTLMSR:
2028 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2029 		break;
2030 	default:
2031 	find_uret_msr:
2032 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2033 		if (msr) {
2034 			msr_info->data = msr->data;
2035 			break;
2036 		}
2037 		return kvm_get_msr_common(vcpu, msr_info);
2038 	}
2039 
2040 	return 0;
2041 }
2042 
2043 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2044 						    u64 data)
2045 {
2046 #ifdef CONFIG_X86_64
2047 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2048 		return (u32)data;
2049 #endif
2050 	return (unsigned long)data;
2051 }
2052 
2053 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2054 {
2055 	u64 debugctl = 0;
2056 
2057 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2058 	    (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2059 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2060 
2061 	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2062 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2063 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2064 
2065 	return debugctl;
2066 }
2067 
2068 /*
2069  * Writes msr value into the appropriate "register".
2070  * Returns 0 on success, non-0 otherwise.
2071  * Assumes vcpu_load() was already called.
2072  */
2073 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2074 {
2075 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2076 	struct vmx_uret_msr *msr;
2077 	int ret = 0;
2078 	u32 msr_index = msr_info->index;
2079 	u64 data = msr_info->data;
2080 	u32 index;
2081 
2082 	switch (msr_index) {
2083 	case MSR_EFER:
2084 		ret = kvm_set_msr_common(vcpu, msr_info);
2085 		break;
2086 #ifdef CONFIG_X86_64
2087 	case MSR_FS_BASE:
2088 		vmx_segment_cache_clear(vmx);
2089 		vmcs_writel(GUEST_FS_BASE, data);
2090 		break;
2091 	case MSR_GS_BASE:
2092 		vmx_segment_cache_clear(vmx);
2093 		vmcs_writel(GUEST_GS_BASE, data);
2094 		break;
2095 	case MSR_KERNEL_GS_BASE:
2096 		vmx_write_guest_kernel_gs_base(vmx, data);
2097 		break;
2098 	case MSR_IA32_XFD:
2099 		ret = kvm_set_msr_common(vcpu, msr_info);
2100 		/*
2101 		 * Always intercepting WRMSR could incur non-negligible
2102 		 * overhead given xfd might be changed frequently in
2103 		 * guest context switch. Disable write interception
2104 		 * upon the first write with a non-zero value (indicating
2105 		 * potential usage on dynamic xfeatures). Also update
2106 		 * exception bitmap to trap #NM for proper virtualization
2107 		 * of guest xfd_err.
2108 		 */
2109 		if (!ret && data) {
2110 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2111 						      MSR_TYPE_RW);
2112 			vcpu->arch.xfd_no_write_intercept = true;
2113 			vmx_update_exception_bitmap(vcpu);
2114 		}
2115 		break;
2116 #endif
2117 	case MSR_IA32_SYSENTER_CS:
2118 		if (is_guest_mode(vcpu))
2119 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2120 		vmcs_write32(GUEST_SYSENTER_CS, data);
2121 		break;
2122 	case MSR_IA32_SYSENTER_EIP:
2123 		if (is_guest_mode(vcpu)) {
2124 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2125 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2126 		}
2127 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2128 		break;
2129 	case MSR_IA32_SYSENTER_ESP:
2130 		if (is_guest_mode(vcpu)) {
2131 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2132 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2133 		}
2134 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2135 		break;
2136 	case MSR_IA32_DEBUGCTLMSR: {
2137 		u64 invalid;
2138 
2139 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2140 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2141 			if (report_ignored_msrs)
2142 				vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
2143 					    __func__, data);
2144 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2145 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2146 		}
2147 
2148 		if (invalid)
2149 			return 1;
2150 
2151 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2152 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2153 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2154 
2155 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2156 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2157 		    (data & DEBUGCTLMSR_LBR))
2158 			intel_pmu_create_guest_lbr_event(vcpu);
2159 		return 0;
2160 	}
2161 	case MSR_IA32_BNDCFGS:
2162 		if (!kvm_mpx_supported() ||
2163 		    (!msr_info->host_initiated &&
2164 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2165 			return 1;
2166 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2167 		    (data & MSR_IA32_BNDCFGS_RSVD))
2168 			return 1;
2169 
2170 		if (is_guest_mode(vcpu) &&
2171 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2172 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2173 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2174 
2175 		vmcs_write64(GUEST_BNDCFGS, data);
2176 		break;
2177 	case MSR_IA32_UMWAIT_CONTROL:
2178 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2179 			return 1;
2180 
2181 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2182 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2183 			return 1;
2184 
2185 		vmx->msr_ia32_umwait_control = data;
2186 		break;
2187 	case MSR_IA32_SPEC_CTRL:
2188 		if (!msr_info->host_initiated &&
2189 		    !guest_has_spec_ctrl_msr(vcpu))
2190 			return 1;
2191 
2192 		if (kvm_spec_ctrl_test_value(data))
2193 			return 1;
2194 
2195 		vmx->spec_ctrl = data;
2196 		if (!data)
2197 			break;
2198 
2199 		/*
2200 		 * For non-nested:
2201 		 * When it's written (to non-zero) for the first time, pass
2202 		 * it through.
2203 		 *
2204 		 * For nested:
2205 		 * The handling of the MSR bitmap for L2 guests is done in
2206 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2207 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2208 		 * in the merging. We update the vmcs01 here for L1 as well
2209 		 * since it will end up touching the MSR anyway now.
2210 		 */
2211 		vmx_disable_intercept_for_msr(vcpu,
2212 					      MSR_IA32_SPEC_CTRL,
2213 					      MSR_TYPE_RW);
2214 		break;
2215 	case MSR_IA32_TSX_CTRL:
2216 		if (!msr_info->host_initiated &&
2217 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2218 			return 1;
2219 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2220 			return 1;
2221 		goto find_uret_msr;
2222 	case MSR_IA32_PRED_CMD:
2223 		if (!msr_info->host_initiated &&
2224 		    !guest_has_pred_cmd_msr(vcpu))
2225 			return 1;
2226 
2227 		if (data & ~PRED_CMD_IBPB)
2228 			return 1;
2229 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2230 			return 1;
2231 		if (!data)
2232 			break;
2233 
2234 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2235 
2236 		/*
2237 		 * For non-nested:
2238 		 * When it's written (to non-zero) for the first time, pass
2239 		 * it through.
2240 		 *
2241 		 * For nested:
2242 		 * The handling of the MSR bitmap for L2 guests is done in
2243 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2244 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2245 		 * in the merging.
2246 		 */
2247 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2248 		break;
2249 	case MSR_IA32_CR_PAT:
2250 		if (!kvm_pat_valid(data))
2251 			return 1;
2252 
2253 		if (is_guest_mode(vcpu) &&
2254 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2255 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2256 
2257 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2258 			vmcs_write64(GUEST_IA32_PAT, data);
2259 			vcpu->arch.pat = data;
2260 			break;
2261 		}
2262 		ret = kvm_set_msr_common(vcpu, msr_info);
2263 		break;
2264 	case MSR_IA32_MCG_EXT_CTL:
2265 		if ((!msr_info->host_initiated &&
2266 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2267 		       FEAT_CTL_LMCE_ENABLED)) ||
2268 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2269 			return 1;
2270 		vcpu->arch.mcg_ext_ctl = data;
2271 		break;
2272 	case MSR_IA32_FEAT_CTL:
2273 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2274 			return 1;
2275 
2276 		vmx->msr_ia32_feature_control = data;
2277 		if (msr_info->host_initiated && data == 0)
2278 			vmx_leave_nested(vcpu);
2279 
2280 		/* SGX may be enabled/disabled by guest's firmware */
2281 		vmx_write_encls_bitmap(vcpu, NULL);
2282 		break;
2283 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2284 		/*
2285 		 * On real hardware, the LE hash MSRs are writable before
2286 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2287 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2288 		 * become writable.
2289 		 *
2290 		 * KVM does not emulate SGX activation for simplicity, so
2291 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2292 		 * is unlocked.  This is technically not architectural
2293 		 * behavior, but it's close enough.
2294 		 */
2295 		if (!msr_info->host_initiated &&
2296 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2297 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2298 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2299 			return 1;
2300 		vmx->msr_ia32_sgxlepubkeyhash
2301 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2302 		break;
2303 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2304 		if (!msr_info->host_initiated)
2305 			return 1; /* they are read-only */
2306 		if (!nested_vmx_allowed(vcpu))
2307 			return 1;
2308 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2309 	case MSR_IA32_RTIT_CTL:
2310 		if (!vmx_pt_mode_is_host_guest() ||
2311 			vmx_rtit_ctl_check(vcpu, data) ||
2312 			vmx->nested.vmxon)
2313 			return 1;
2314 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2315 		vmx->pt_desc.guest.ctl = data;
2316 		pt_update_intercept_for_msr(vcpu);
2317 		break;
2318 	case MSR_IA32_RTIT_STATUS:
2319 		if (!pt_can_write_msr(vmx))
2320 			return 1;
2321 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2322 			return 1;
2323 		vmx->pt_desc.guest.status = data;
2324 		break;
2325 	case MSR_IA32_RTIT_CR3_MATCH:
2326 		if (!pt_can_write_msr(vmx))
2327 			return 1;
2328 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2329 					   PT_CAP_cr3_filtering))
2330 			return 1;
2331 		vmx->pt_desc.guest.cr3_match = data;
2332 		break;
2333 	case MSR_IA32_RTIT_OUTPUT_BASE:
2334 		if (!pt_can_write_msr(vmx))
2335 			return 1;
2336 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2337 					   PT_CAP_topa_output) &&
2338 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2339 					   PT_CAP_single_range_output))
2340 			return 1;
2341 		if (!pt_output_base_valid(vcpu, data))
2342 			return 1;
2343 		vmx->pt_desc.guest.output_base = data;
2344 		break;
2345 	case MSR_IA32_RTIT_OUTPUT_MASK:
2346 		if (!pt_can_write_msr(vmx))
2347 			return 1;
2348 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2349 					   PT_CAP_topa_output) &&
2350 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2351 					   PT_CAP_single_range_output))
2352 			return 1;
2353 		vmx->pt_desc.guest.output_mask = data;
2354 		break;
2355 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2356 		if (!pt_can_write_msr(vmx))
2357 			return 1;
2358 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2359 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2360 			return 1;
2361 		if (is_noncanonical_address(data, vcpu))
2362 			return 1;
2363 		if (index % 2)
2364 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2365 		else
2366 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2367 		break;
2368 	case MSR_IA32_PERF_CAPABILITIES:
2369 		if (data && !vcpu_to_pmu(vcpu)->version)
2370 			return 1;
2371 		if (data & PMU_CAP_LBR_FMT) {
2372 			if ((data & PMU_CAP_LBR_FMT) !=
2373 			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2374 				return 1;
2375 			if (!cpuid_model_is_consistent(vcpu))
2376 				return 1;
2377 		}
2378 		if (data & PERF_CAP_PEBS_FORMAT) {
2379 			if ((data & PERF_CAP_PEBS_MASK) !=
2380 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2381 				return 1;
2382 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2383 				return 1;
2384 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2385 				return 1;
2386 			if (!cpuid_model_is_consistent(vcpu))
2387 				return 1;
2388 		}
2389 		ret = kvm_set_msr_common(vcpu, msr_info);
2390 		break;
2391 
2392 	default:
2393 	find_uret_msr:
2394 		msr = vmx_find_uret_msr(vmx, msr_index);
2395 		if (msr)
2396 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2397 		else
2398 			ret = kvm_set_msr_common(vcpu, msr_info);
2399 	}
2400 
2401 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2402 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2403 		vmx_update_fb_clear_dis(vcpu, vmx);
2404 
2405 	return ret;
2406 }
2407 
2408 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2409 {
2410 	unsigned long guest_owned_bits;
2411 
2412 	kvm_register_mark_available(vcpu, reg);
2413 
2414 	switch (reg) {
2415 	case VCPU_REGS_RSP:
2416 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2417 		break;
2418 	case VCPU_REGS_RIP:
2419 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2420 		break;
2421 	case VCPU_EXREG_PDPTR:
2422 		if (enable_ept)
2423 			ept_save_pdptrs(vcpu);
2424 		break;
2425 	case VCPU_EXREG_CR0:
2426 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2427 
2428 		vcpu->arch.cr0 &= ~guest_owned_bits;
2429 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2430 		break;
2431 	case VCPU_EXREG_CR3:
2432 		/*
2433 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2434 		 * CR3 is loaded into hardware, not the guest's CR3.
2435 		 */
2436 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2437 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2438 		break;
2439 	case VCPU_EXREG_CR4:
2440 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2441 
2442 		vcpu->arch.cr4 &= ~guest_owned_bits;
2443 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2444 		break;
2445 	default:
2446 		KVM_BUG_ON(1, vcpu->kvm);
2447 		break;
2448 	}
2449 }
2450 
2451 static __init int cpu_has_kvm_support(void)
2452 {
2453 	return cpu_has_vmx();
2454 }
2455 
2456 static __init int vmx_disabled_by_bios(void)
2457 {
2458 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2459 	       !boot_cpu_has(X86_FEATURE_VMX);
2460 }
2461 
2462 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2463 {
2464 	u64 msr;
2465 
2466 	cr4_set_bits(X86_CR4_VMXE);
2467 
2468 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2469 			  _ASM_EXTABLE(1b, %l[fault])
2470 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2471 			  : : fault);
2472 	return 0;
2473 
2474 fault:
2475 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2476 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2477 	cr4_clear_bits(X86_CR4_VMXE);
2478 
2479 	return -EFAULT;
2480 }
2481 
2482 static int vmx_hardware_enable(void)
2483 {
2484 	int cpu = raw_smp_processor_id();
2485 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2486 	int r;
2487 
2488 	if (cr4_read_shadow() & X86_CR4_VMXE)
2489 		return -EBUSY;
2490 
2491 	/*
2492 	 * This can happen if we hot-added a CPU but failed to allocate
2493 	 * VP assist page for it.
2494 	 */
2495 	if (static_branch_unlikely(&enable_evmcs) &&
2496 	    !hv_get_vp_assist_page(cpu))
2497 		return -EFAULT;
2498 
2499 	intel_pt_handle_vmx(1);
2500 
2501 	r = kvm_cpu_vmxon(phys_addr);
2502 	if (r) {
2503 		intel_pt_handle_vmx(0);
2504 		return r;
2505 	}
2506 
2507 	if (enable_ept)
2508 		ept_sync_global();
2509 
2510 	return 0;
2511 }
2512 
2513 static void vmclear_local_loaded_vmcss(void)
2514 {
2515 	int cpu = raw_smp_processor_id();
2516 	struct loaded_vmcs *v, *n;
2517 
2518 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2519 				 loaded_vmcss_on_cpu_link)
2520 		__loaded_vmcs_clear(v);
2521 }
2522 
2523 static void vmx_hardware_disable(void)
2524 {
2525 	vmclear_local_loaded_vmcss();
2526 
2527 	if (cpu_vmxoff())
2528 		kvm_spurious_fault();
2529 
2530 	intel_pt_handle_vmx(0);
2531 }
2532 
2533 /*
2534  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2535  * directly instead of going through cpu_has(), to ensure KVM is trapping
2536  * ENCLS whenever it's supported in hardware.  It does not matter whether
2537  * the host OS supports or has enabled SGX.
2538  */
2539 static bool cpu_has_sgx(void)
2540 {
2541 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2542 }
2543 
2544 /*
2545  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2546  * can't be used due to errata where VM Exit may incorrectly clear
2547  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2548  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2549  */
2550 static bool cpu_has_perf_global_ctrl_bug(void)
2551 {
2552 	if (boot_cpu_data.x86 == 0x6) {
2553 		switch (boot_cpu_data.x86_model) {
2554 		case INTEL_FAM6_NEHALEM_EP:	/* AAK155 */
2555 		case INTEL_FAM6_NEHALEM:	/* AAP115 */
2556 		case INTEL_FAM6_WESTMERE:	/* AAT100 */
2557 		case INTEL_FAM6_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2558 		case INTEL_FAM6_NEHALEM_EX:	/* BA97 */
2559 			return true;
2560 		default:
2561 			break;
2562 		}
2563 	}
2564 
2565 	return false;
2566 }
2567 
2568 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2569 				      u32 msr, u32 *result)
2570 {
2571 	u32 vmx_msr_low, vmx_msr_high;
2572 	u32 ctl = ctl_min | ctl_opt;
2573 
2574 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2575 
2576 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2577 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2578 
2579 	/* Ensure minimum (required) set of control bits are supported. */
2580 	if (ctl_min & ~ctl)
2581 		return -EIO;
2582 
2583 	*result = ctl;
2584 	return 0;
2585 }
2586 
2587 static __init u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2588 {
2589 	u64 allowed;
2590 
2591 	rdmsrl(msr, allowed);
2592 
2593 	return  ctl_opt & allowed;
2594 }
2595 
2596 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2597 				    struct vmx_capability *vmx_cap)
2598 {
2599 	u32 vmx_msr_low, vmx_msr_high;
2600 	u32 _pin_based_exec_control = 0;
2601 	u32 _cpu_based_exec_control = 0;
2602 	u32 _cpu_based_2nd_exec_control = 0;
2603 	u64 _cpu_based_3rd_exec_control = 0;
2604 	u32 _vmexit_control = 0;
2605 	u32 _vmentry_control = 0;
2606 	u64 misc_msr;
2607 	int i;
2608 
2609 	/*
2610 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2611 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2612 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2613 	 */
2614 	struct {
2615 		u32 entry_control;
2616 		u32 exit_control;
2617 	} const vmcs_entry_exit_pairs[] = {
2618 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2619 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2620 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2621 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2622 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2623 	};
2624 
2625 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2626 
2627 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2628 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2629 				MSR_IA32_VMX_PROCBASED_CTLS,
2630 				&_cpu_based_exec_control))
2631 		return -EIO;
2632 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2633 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2634 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2635 					MSR_IA32_VMX_PROCBASED_CTLS2,
2636 					&_cpu_based_2nd_exec_control))
2637 			return -EIO;
2638 	}
2639 #ifndef CONFIG_X86_64
2640 	if (!(_cpu_based_2nd_exec_control &
2641 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2642 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2643 #endif
2644 
2645 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2646 		_cpu_based_2nd_exec_control &= ~(
2647 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2648 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2649 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2650 
2651 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2652 		&vmx_cap->ept, &vmx_cap->vpid);
2653 
2654 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2655 	    vmx_cap->ept) {
2656 		pr_warn_once("EPT CAP should not exist if not support "
2657 				"1-setting enable EPT VM-execution control\n");
2658 
2659 		if (error_on_inconsistent_vmcs_config)
2660 			return -EIO;
2661 
2662 		vmx_cap->ept = 0;
2663 	}
2664 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2665 	    vmx_cap->vpid) {
2666 		pr_warn_once("VPID CAP should not exist if not support "
2667 				"1-setting enable VPID VM-execution control\n");
2668 
2669 		if (error_on_inconsistent_vmcs_config)
2670 			return -EIO;
2671 
2672 		vmx_cap->vpid = 0;
2673 	}
2674 
2675 	if (!cpu_has_sgx())
2676 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2677 
2678 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2679 		_cpu_based_3rd_exec_control =
2680 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2681 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2682 
2683 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2684 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2685 				MSR_IA32_VMX_EXIT_CTLS,
2686 				&_vmexit_control))
2687 		return -EIO;
2688 
2689 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2690 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2691 				MSR_IA32_VMX_PINBASED_CTLS,
2692 				&_pin_based_exec_control))
2693 		return -EIO;
2694 
2695 	if (cpu_has_broken_vmx_preemption_timer())
2696 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2697 	if (!(_cpu_based_2nd_exec_control &
2698 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2699 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2700 
2701 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2702 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2703 				MSR_IA32_VMX_ENTRY_CTLS,
2704 				&_vmentry_control))
2705 		return -EIO;
2706 
2707 	for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2708 		u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2709 		u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2710 
2711 		if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2712 			continue;
2713 
2714 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2715 			     _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2716 
2717 		if (error_on_inconsistent_vmcs_config)
2718 			return -EIO;
2719 
2720 		_vmentry_control &= ~n_ctrl;
2721 		_vmexit_control &= ~x_ctrl;
2722 	}
2723 
2724 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2725 
2726 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2727 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2728 		return -EIO;
2729 
2730 #ifdef CONFIG_X86_64
2731 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2732 	if (vmx_msr_high & (1u<<16))
2733 		return -EIO;
2734 #endif
2735 
2736 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2737 	if (((vmx_msr_high >> 18) & 15) != 6)
2738 		return -EIO;
2739 
2740 	rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2741 
2742 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2743 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2744 
2745 	vmcs_conf->revision_id = vmx_msr_low;
2746 
2747 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2748 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2749 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2750 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2751 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2752 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2753 	vmcs_conf->misc	= misc_msr;
2754 
2755 	return 0;
2756 }
2757 
2758 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2759 {
2760 	int node = cpu_to_node(cpu);
2761 	struct page *pages;
2762 	struct vmcs *vmcs;
2763 
2764 	pages = __alloc_pages_node(node, flags, 0);
2765 	if (!pages)
2766 		return NULL;
2767 	vmcs = page_address(pages);
2768 	memset(vmcs, 0, vmcs_config.size);
2769 
2770 	/* KVM supports Enlightened VMCS v1 only */
2771 	if (static_branch_unlikely(&enable_evmcs))
2772 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2773 	else
2774 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2775 
2776 	if (shadow)
2777 		vmcs->hdr.shadow_vmcs = 1;
2778 	return vmcs;
2779 }
2780 
2781 void free_vmcs(struct vmcs *vmcs)
2782 {
2783 	free_page((unsigned long)vmcs);
2784 }
2785 
2786 /*
2787  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2788  */
2789 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2790 {
2791 	if (!loaded_vmcs->vmcs)
2792 		return;
2793 	loaded_vmcs_clear(loaded_vmcs);
2794 	free_vmcs(loaded_vmcs->vmcs);
2795 	loaded_vmcs->vmcs = NULL;
2796 	if (loaded_vmcs->msr_bitmap)
2797 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2798 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2799 }
2800 
2801 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2802 {
2803 	loaded_vmcs->vmcs = alloc_vmcs(false);
2804 	if (!loaded_vmcs->vmcs)
2805 		return -ENOMEM;
2806 
2807 	vmcs_clear(loaded_vmcs->vmcs);
2808 
2809 	loaded_vmcs->shadow_vmcs = NULL;
2810 	loaded_vmcs->hv_timer_soft_disabled = false;
2811 	loaded_vmcs->cpu = -1;
2812 	loaded_vmcs->launched = 0;
2813 
2814 	if (cpu_has_vmx_msr_bitmap()) {
2815 		loaded_vmcs->msr_bitmap = (unsigned long *)
2816 				__get_free_page(GFP_KERNEL_ACCOUNT);
2817 		if (!loaded_vmcs->msr_bitmap)
2818 			goto out_vmcs;
2819 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2820 	}
2821 
2822 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2823 	memset(&loaded_vmcs->controls_shadow, 0,
2824 		sizeof(struct vmcs_controls_shadow));
2825 
2826 	return 0;
2827 
2828 out_vmcs:
2829 	free_loaded_vmcs(loaded_vmcs);
2830 	return -ENOMEM;
2831 }
2832 
2833 static void free_kvm_area(void)
2834 {
2835 	int cpu;
2836 
2837 	for_each_possible_cpu(cpu) {
2838 		free_vmcs(per_cpu(vmxarea, cpu));
2839 		per_cpu(vmxarea, cpu) = NULL;
2840 	}
2841 }
2842 
2843 static __init int alloc_kvm_area(void)
2844 {
2845 	int cpu;
2846 
2847 	for_each_possible_cpu(cpu) {
2848 		struct vmcs *vmcs;
2849 
2850 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2851 		if (!vmcs) {
2852 			free_kvm_area();
2853 			return -ENOMEM;
2854 		}
2855 
2856 		/*
2857 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2858 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2859 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2860 		 *
2861 		 * However, even though not explicitly documented by
2862 		 * TLFS, VMXArea passed as VMXON argument should
2863 		 * still be marked with revision_id reported by
2864 		 * physical CPU.
2865 		 */
2866 		if (static_branch_unlikely(&enable_evmcs))
2867 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2868 
2869 		per_cpu(vmxarea, cpu) = vmcs;
2870 	}
2871 	return 0;
2872 }
2873 
2874 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2875 		struct kvm_segment *save)
2876 {
2877 	if (!emulate_invalid_guest_state) {
2878 		/*
2879 		 * CS and SS RPL should be equal during guest entry according
2880 		 * to VMX spec, but in reality it is not always so. Since vcpu
2881 		 * is in the middle of the transition from real mode to
2882 		 * protected mode it is safe to assume that RPL 0 is a good
2883 		 * default value.
2884 		 */
2885 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2886 			save->selector &= ~SEGMENT_RPL_MASK;
2887 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2888 		save->s = 1;
2889 	}
2890 	__vmx_set_segment(vcpu, save, seg);
2891 }
2892 
2893 static void enter_pmode(struct kvm_vcpu *vcpu)
2894 {
2895 	unsigned long flags;
2896 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2897 
2898 	/*
2899 	 * Update real mode segment cache. It may be not up-to-date if segment
2900 	 * register was written while vcpu was in a guest mode.
2901 	 */
2902 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2903 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2904 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2905 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2906 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2907 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2908 
2909 	vmx->rmode.vm86_active = 0;
2910 
2911 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2912 
2913 	flags = vmcs_readl(GUEST_RFLAGS);
2914 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2915 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2916 	vmcs_writel(GUEST_RFLAGS, flags);
2917 
2918 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2919 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2920 
2921 	vmx_update_exception_bitmap(vcpu);
2922 
2923 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2924 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2925 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2926 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2927 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2928 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2929 }
2930 
2931 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2932 {
2933 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2934 	struct kvm_segment var = *save;
2935 
2936 	var.dpl = 0x3;
2937 	if (seg == VCPU_SREG_CS)
2938 		var.type = 0x3;
2939 
2940 	if (!emulate_invalid_guest_state) {
2941 		var.selector = var.base >> 4;
2942 		var.base = var.base & 0xffff0;
2943 		var.limit = 0xffff;
2944 		var.g = 0;
2945 		var.db = 0;
2946 		var.present = 1;
2947 		var.s = 1;
2948 		var.l = 0;
2949 		var.unusable = 0;
2950 		var.type = 0x3;
2951 		var.avl = 0;
2952 		if (save->base & 0xf)
2953 			printk_once(KERN_WARNING "kvm: segment base is not "
2954 					"paragraph aligned when entering "
2955 					"protected mode (seg=%d)", seg);
2956 	}
2957 
2958 	vmcs_write16(sf->selector, var.selector);
2959 	vmcs_writel(sf->base, var.base);
2960 	vmcs_write32(sf->limit, var.limit);
2961 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2962 }
2963 
2964 static void enter_rmode(struct kvm_vcpu *vcpu)
2965 {
2966 	unsigned long flags;
2967 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2968 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2969 
2970 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2971 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2972 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2973 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2974 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2975 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2976 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2977 
2978 	vmx->rmode.vm86_active = 1;
2979 
2980 	/*
2981 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2982 	 * vcpu. Warn the user that an update is overdue.
2983 	 */
2984 	if (!kvm_vmx->tss_addr)
2985 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2986 			     "called before entering vcpu\n");
2987 
2988 	vmx_segment_cache_clear(vmx);
2989 
2990 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2991 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2992 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2993 
2994 	flags = vmcs_readl(GUEST_RFLAGS);
2995 	vmx->rmode.save_rflags = flags;
2996 
2997 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2998 
2999 	vmcs_writel(GUEST_RFLAGS, flags);
3000 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3001 	vmx_update_exception_bitmap(vcpu);
3002 
3003 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3004 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3005 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3006 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3007 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3008 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3009 }
3010 
3011 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3012 {
3013 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3014 
3015 	/* Nothing to do if hardware doesn't support EFER. */
3016 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3017 		return 0;
3018 
3019 	vcpu->arch.efer = efer;
3020 #ifdef CONFIG_X86_64
3021 	if (efer & EFER_LMA)
3022 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3023 	else
3024 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3025 #else
3026 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3027 		return 1;
3028 #endif
3029 
3030 	vmx_setup_uret_msrs(vmx);
3031 	return 0;
3032 }
3033 
3034 #ifdef CONFIG_X86_64
3035 
3036 static void enter_lmode(struct kvm_vcpu *vcpu)
3037 {
3038 	u32 guest_tr_ar;
3039 
3040 	vmx_segment_cache_clear(to_vmx(vcpu));
3041 
3042 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3043 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3044 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3045 				     __func__);
3046 		vmcs_write32(GUEST_TR_AR_BYTES,
3047 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3048 			     | VMX_AR_TYPE_BUSY_64_TSS);
3049 	}
3050 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3051 }
3052 
3053 static void exit_lmode(struct kvm_vcpu *vcpu)
3054 {
3055 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3056 }
3057 
3058 #endif
3059 
3060 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3061 {
3062 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3063 
3064 	/*
3065 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3066 	 * the CPU is not required to invalidate guest-physical mappings on
3067 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3068 	 * associated with the root EPT structure and not any particular VPID
3069 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3070 	 */
3071 	if (enable_ept) {
3072 		ept_sync_global();
3073 	} else if (enable_vpid) {
3074 		if (cpu_has_vmx_invvpid_global()) {
3075 			vpid_sync_vcpu_global();
3076 		} else {
3077 			vpid_sync_vcpu_single(vmx->vpid);
3078 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3079 		}
3080 	}
3081 }
3082 
3083 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3084 {
3085 	if (is_guest_mode(vcpu))
3086 		return nested_get_vpid02(vcpu);
3087 	return to_vmx(vcpu)->vpid;
3088 }
3089 
3090 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3091 {
3092 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3093 	u64 root_hpa = mmu->root.hpa;
3094 
3095 	/* No flush required if the current context is invalid. */
3096 	if (!VALID_PAGE(root_hpa))
3097 		return;
3098 
3099 	if (enable_ept)
3100 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3101 						mmu->root_role.level));
3102 	else
3103 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3104 }
3105 
3106 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3107 {
3108 	/*
3109 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3110 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3111 	 */
3112 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3113 }
3114 
3115 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3116 {
3117 	/*
3118 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3119 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3120 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3121 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3122 	 * i.e. no explicit INVVPID is necessary.
3123 	 */
3124 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3125 }
3126 
3127 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3128 {
3129 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3130 
3131 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3132 		return;
3133 
3134 	if (is_pae_paging(vcpu)) {
3135 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3136 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3137 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3138 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3139 	}
3140 }
3141 
3142 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3143 {
3144 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3145 
3146 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3147 		return;
3148 
3149 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3150 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3151 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3152 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3153 
3154 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3155 }
3156 
3157 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3158 			  CPU_BASED_CR3_STORE_EXITING)
3159 
3160 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3161 {
3162 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3163 	unsigned long hw_cr0, old_cr0_pg;
3164 	u32 tmp;
3165 
3166 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3167 
3168 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3169 	if (is_unrestricted_guest(vcpu))
3170 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3171 	else {
3172 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3173 		if (!enable_ept)
3174 			hw_cr0 |= X86_CR0_WP;
3175 
3176 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3177 			enter_pmode(vcpu);
3178 
3179 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3180 			enter_rmode(vcpu);
3181 	}
3182 
3183 	vmcs_writel(CR0_READ_SHADOW, cr0);
3184 	vmcs_writel(GUEST_CR0, hw_cr0);
3185 	vcpu->arch.cr0 = cr0;
3186 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3187 
3188 #ifdef CONFIG_X86_64
3189 	if (vcpu->arch.efer & EFER_LME) {
3190 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3191 			enter_lmode(vcpu);
3192 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3193 			exit_lmode(vcpu);
3194 	}
3195 #endif
3196 
3197 	if (enable_ept && !is_unrestricted_guest(vcpu)) {
3198 		/*
3199 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3200 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3201 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3202 		 * KVM's CR3 is installed.
3203 		 */
3204 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3205 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3206 
3207 		/*
3208 		 * When running with EPT but not unrestricted guest, KVM must
3209 		 * intercept CR3 accesses when paging is _disabled_.  This is
3210 		 * necessary because restricted guests can't actually run with
3211 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3212 		 * run the guest when identity mapped page tables.
3213 		 *
3214 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3215 		 * update, it may be stale with respect to CR3 interception,
3216 		 * e.g. after nested VM-Enter.
3217 		 *
3218 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3219 		 * stores to forward them to L1, even if KVM does not need to
3220 		 * intercept them to preserve its identity mapped page tables.
3221 		 */
3222 		if (!(cr0 & X86_CR0_PG)) {
3223 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3224 		} else if (!is_guest_mode(vcpu)) {
3225 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3226 		} else {
3227 			tmp = exec_controls_get(vmx);
3228 			tmp &= ~CR3_EXITING_BITS;
3229 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3230 			exec_controls_set(vmx, tmp);
3231 		}
3232 
3233 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3234 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3235 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3236 
3237 		/*
3238 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3239 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3240 		 */
3241 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3242 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3243 	}
3244 
3245 	/* depends on vcpu->arch.cr0 to be set to a new value */
3246 	vmx->emulation_required = vmx_emulation_required(vcpu);
3247 }
3248 
3249 static int vmx_get_max_tdp_level(void)
3250 {
3251 	if (cpu_has_vmx_ept_5levels())
3252 		return 5;
3253 	return 4;
3254 }
3255 
3256 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3257 {
3258 	u64 eptp = VMX_EPTP_MT_WB;
3259 
3260 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3261 
3262 	if (enable_ept_ad_bits &&
3263 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3264 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3265 	eptp |= root_hpa;
3266 
3267 	return eptp;
3268 }
3269 
3270 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3271 			     int root_level)
3272 {
3273 	struct kvm *kvm = vcpu->kvm;
3274 	bool update_guest_cr3 = true;
3275 	unsigned long guest_cr3;
3276 	u64 eptp;
3277 
3278 	if (enable_ept) {
3279 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3280 		vmcs_write64(EPT_POINTER, eptp);
3281 
3282 		hv_track_root_tdp(vcpu, root_hpa);
3283 
3284 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3285 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3286 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3287 			guest_cr3 = vcpu->arch.cr3;
3288 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3289 			update_guest_cr3 = false;
3290 		vmx_ept_load_pdptrs(vcpu);
3291 	} else {
3292 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3293 	}
3294 
3295 	if (update_guest_cr3)
3296 		vmcs_writel(GUEST_CR3, guest_cr3);
3297 }
3298 
3299 
3300 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3301 {
3302 	/*
3303 	 * We operate under the default treatment of SMM, so VMX cannot be
3304 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3305 	 * i.e. is a reserved bit, is handled by common x86 code.
3306 	 */
3307 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3308 		return false;
3309 
3310 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3311 		return false;
3312 
3313 	return true;
3314 }
3315 
3316 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3317 {
3318 	unsigned long old_cr4 = vcpu->arch.cr4;
3319 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3320 	/*
3321 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3322 	 * is in force while we are in guest mode.  Do not let guests control
3323 	 * this bit, even if host CR4.MCE == 0.
3324 	 */
3325 	unsigned long hw_cr4;
3326 
3327 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3328 	if (is_unrestricted_guest(vcpu))
3329 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3330 	else if (vmx->rmode.vm86_active)
3331 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3332 	else
3333 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3334 
3335 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3336 		if (cr4 & X86_CR4_UMIP) {
3337 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3338 			hw_cr4 &= ~X86_CR4_UMIP;
3339 		} else if (!is_guest_mode(vcpu) ||
3340 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3341 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3342 		}
3343 	}
3344 
3345 	vcpu->arch.cr4 = cr4;
3346 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3347 
3348 	if (!is_unrestricted_guest(vcpu)) {
3349 		if (enable_ept) {
3350 			if (!is_paging(vcpu)) {
3351 				hw_cr4 &= ~X86_CR4_PAE;
3352 				hw_cr4 |= X86_CR4_PSE;
3353 			} else if (!(cr4 & X86_CR4_PAE)) {
3354 				hw_cr4 &= ~X86_CR4_PAE;
3355 			}
3356 		}
3357 
3358 		/*
3359 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3360 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3361 		 * to be manually disabled when guest switches to non-paging
3362 		 * mode.
3363 		 *
3364 		 * If !enable_unrestricted_guest, the CPU is always running
3365 		 * with CR0.PG=1 and CR4 needs to be modified.
3366 		 * If enable_unrestricted_guest, the CPU automatically
3367 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3368 		 */
3369 		if (!is_paging(vcpu))
3370 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3371 	}
3372 
3373 	vmcs_writel(CR4_READ_SHADOW, cr4);
3374 	vmcs_writel(GUEST_CR4, hw_cr4);
3375 
3376 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3377 		kvm_update_cpuid_runtime(vcpu);
3378 }
3379 
3380 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3381 {
3382 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3383 	u32 ar;
3384 
3385 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3386 		*var = vmx->rmode.segs[seg];
3387 		if (seg == VCPU_SREG_TR
3388 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3389 			return;
3390 		var->base = vmx_read_guest_seg_base(vmx, seg);
3391 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3392 		return;
3393 	}
3394 	var->base = vmx_read_guest_seg_base(vmx, seg);
3395 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3396 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3397 	ar = vmx_read_guest_seg_ar(vmx, seg);
3398 	var->unusable = (ar >> 16) & 1;
3399 	var->type = ar & 15;
3400 	var->s = (ar >> 4) & 1;
3401 	var->dpl = (ar >> 5) & 3;
3402 	/*
3403 	 * Some userspaces do not preserve unusable property. Since usable
3404 	 * segment has to be present according to VMX spec we can use present
3405 	 * property to amend userspace bug by making unusable segment always
3406 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3407 	 * segment as unusable.
3408 	 */
3409 	var->present = !var->unusable;
3410 	var->avl = (ar >> 12) & 1;
3411 	var->l = (ar >> 13) & 1;
3412 	var->db = (ar >> 14) & 1;
3413 	var->g = (ar >> 15) & 1;
3414 }
3415 
3416 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3417 {
3418 	struct kvm_segment s;
3419 
3420 	if (to_vmx(vcpu)->rmode.vm86_active) {
3421 		vmx_get_segment(vcpu, &s, seg);
3422 		return s.base;
3423 	}
3424 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3425 }
3426 
3427 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3428 {
3429 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3430 
3431 	if (unlikely(vmx->rmode.vm86_active))
3432 		return 0;
3433 	else {
3434 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3435 		return VMX_AR_DPL(ar);
3436 	}
3437 }
3438 
3439 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3440 {
3441 	u32 ar;
3442 
3443 	ar = var->type & 15;
3444 	ar |= (var->s & 1) << 4;
3445 	ar |= (var->dpl & 3) << 5;
3446 	ar |= (var->present & 1) << 7;
3447 	ar |= (var->avl & 1) << 12;
3448 	ar |= (var->l & 1) << 13;
3449 	ar |= (var->db & 1) << 14;
3450 	ar |= (var->g & 1) << 15;
3451 	ar |= (var->unusable || !var->present) << 16;
3452 
3453 	return ar;
3454 }
3455 
3456 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3457 {
3458 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3459 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3460 
3461 	vmx_segment_cache_clear(vmx);
3462 
3463 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3464 		vmx->rmode.segs[seg] = *var;
3465 		if (seg == VCPU_SREG_TR)
3466 			vmcs_write16(sf->selector, var->selector);
3467 		else if (var->s)
3468 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3469 		return;
3470 	}
3471 
3472 	vmcs_writel(sf->base, var->base);
3473 	vmcs_write32(sf->limit, var->limit);
3474 	vmcs_write16(sf->selector, var->selector);
3475 
3476 	/*
3477 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3478 	 * qemu binaries.
3479 	 *   IA32 arch specifies that at the time of processor reset the
3480 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3481 	 * is setting it to 0 in the userland code. This causes invalid guest
3482 	 * state vmexit when "unrestricted guest" mode is turned on.
3483 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3484 	 * tree. Newer qemu binaries with that qemu fix would not need this
3485 	 * kvm hack.
3486 	 */
3487 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3488 		var->type |= 0x1; /* Accessed */
3489 
3490 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3491 }
3492 
3493 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3494 {
3495 	__vmx_set_segment(vcpu, var, seg);
3496 
3497 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3498 }
3499 
3500 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3501 {
3502 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3503 
3504 	*db = (ar >> 14) & 1;
3505 	*l = (ar >> 13) & 1;
3506 }
3507 
3508 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3509 {
3510 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3511 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3512 }
3513 
3514 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3515 {
3516 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3517 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3518 }
3519 
3520 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3521 {
3522 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3523 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3524 }
3525 
3526 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3527 {
3528 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3529 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3530 }
3531 
3532 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3533 {
3534 	struct kvm_segment var;
3535 	u32 ar;
3536 
3537 	vmx_get_segment(vcpu, &var, seg);
3538 	var.dpl = 0x3;
3539 	if (seg == VCPU_SREG_CS)
3540 		var.type = 0x3;
3541 	ar = vmx_segment_access_rights(&var);
3542 
3543 	if (var.base != (var.selector << 4))
3544 		return false;
3545 	if (var.limit != 0xffff)
3546 		return false;
3547 	if (ar != 0xf3)
3548 		return false;
3549 
3550 	return true;
3551 }
3552 
3553 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3554 {
3555 	struct kvm_segment cs;
3556 	unsigned int cs_rpl;
3557 
3558 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3559 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3560 
3561 	if (cs.unusable)
3562 		return false;
3563 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3564 		return false;
3565 	if (!cs.s)
3566 		return false;
3567 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3568 		if (cs.dpl > cs_rpl)
3569 			return false;
3570 	} else {
3571 		if (cs.dpl != cs_rpl)
3572 			return false;
3573 	}
3574 	if (!cs.present)
3575 		return false;
3576 
3577 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3578 	return true;
3579 }
3580 
3581 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3582 {
3583 	struct kvm_segment ss;
3584 	unsigned int ss_rpl;
3585 
3586 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3587 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3588 
3589 	if (ss.unusable)
3590 		return true;
3591 	if (ss.type != 3 && ss.type != 7)
3592 		return false;
3593 	if (!ss.s)
3594 		return false;
3595 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3596 		return false;
3597 	if (!ss.present)
3598 		return false;
3599 
3600 	return true;
3601 }
3602 
3603 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3604 {
3605 	struct kvm_segment var;
3606 	unsigned int rpl;
3607 
3608 	vmx_get_segment(vcpu, &var, seg);
3609 	rpl = var.selector & SEGMENT_RPL_MASK;
3610 
3611 	if (var.unusable)
3612 		return true;
3613 	if (!var.s)
3614 		return false;
3615 	if (!var.present)
3616 		return false;
3617 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3618 		if (var.dpl < rpl) /* DPL < RPL */
3619 			return false;
3620 	}
3621 
3622 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3623 	 * rights flags
3624 	 */
3625 	return true;
3626 }
3627 
3628 static bool tr_valid(struct kvm_vcpu *vcpu)
3629 {
3630 	struct kvm_segment tr;
3631 
3632 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3633 
3634 	if (tr.unusable)
3635 		return false;
3636 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3637 		return false;
3638 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3639 		return false;
3640 	if (!tr.present)
3641 		return false;
3642 
3643 	return true;
3644 }
3645 
3646 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3647 {
3648 	struct kvm_segment ldtr;
3649 
3650 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3651 
3652 	if (ldtr.unusable)
3653 		return true;
3654 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3655 		return false;
3656 	if (ldtr.type != 2)
3657 		return false;
3658 	if (!ldtr.present)
3659 		return false;
3660 
3661 	return true;
3662 }
3663 
3664 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3665 {
3666 	struct kvm_segment cs, ss;
3667 
3668 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3669 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3670 
3671 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3672 		 (ss.selector & SEGMENT_RPL_MASK));
3673 }
3674 
3675 /*
3676  * Check if guest state is valid. Returns true if valid, false if
3677  * not.
3678  * We assume that registers are always usable
3679  */
3680 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3681 {
3682 	/* real mode guest state checks */
3683 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3684 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3685 			return false;
3686 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3687 			return false;
3688 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3689 			return false;
3690 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3691 			return false;
3692 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3693 			return false;
3694 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3695 			return false;
3696 	} else {
3697 	/* protected mode guest state checks */
3698 		if (!cs_ss_rpl_check(vcpu))
3699 			return false;
3700 		if (!code_segment_valid(vcpu))
3701 			return false;
3702 		if (!stack_segment_valid(vcpu))
3703 			return false;
3704 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3705 			return false;
3706 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3707 			return false;
3708 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3709 			return false;
3710 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3711 			return false;
3712 		if (!tr_valid(vcpu))
3713 			return false;
3714 		if (!ldtr_valid(vcpu))
3715 			return false;
3716 	}
3717 	/* TODO:
3718 	 * - Add checks on RIP
3719 	 * - Add checks on RFLAGS
3720 	 */
3721 
3722 	return true;
3723 }
3724 
3725 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3726 {
3727 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3728 	u16 data;
3729 	int i;
3730 
3731 	for (i = 0; i < 3; i++) {
3732 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3733 			return -EFAULT;
3734 	}
3735 
3736 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3737 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3738 		return -EFAULT;
3739 
3740 	data = ~0;
3741 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3742 		return -EFAULT;
3743 
3744 	return 0;
3745 }
3746 
3747 static int init_rmode_identity_map(struct kvm *kvm)
3748 {
3749 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3750 	int i, r = 0;
3751 	void __user *uaddr;
3752 	u32 tmp;
3753 
3754 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3755 	mutex_lock(&kvm->slots_lock);
3756 
3757 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3758 		goto out;
3759 
3760 	if (!kvm_vmx->ept_identity_map_addr)
3761 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3762 
3763 	uaddr = __x86_set_memory_region(kvm,
3764 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3765 					kvm_vmx->ept_identity_map_addr,
3766 					PAGE_SIZE);
3767 	if (IS_ERR(uaddr)) {
3768 		r = PTR_ERR(uaddr);
3769 		goto out;
3770 	}
3771 
3772 	/* Set up identity-mapping pagetable for EPT in real mode */
3773 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3774 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3775 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3776 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3777 			r = -EFAULT;
3778 			goto out;
3779 		}
3780 	}
3781 	kvm_vmx->ept_identity_pagetable_done = true;
3782 
3783 out:
3784 	mutex_unlock(&kvm->slots_lock);
3785 	return r;
3786 }
3787 
3788 static void seg_setup(int seg)
3789 {
3790 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3791 	unsigned int ar;
3792 
3793 	vmcs_write16(sf->selector, 0);
3794 	vmcs_writel(sf->base, 0);
3795 	vmcs_write32(sf->limit, 0xffff);
3796 	ar = 0x93;
3797 	if (seg == VCPU_SREG_CS)
3798 		ar |= 0x08; /* code segment */
3799 
3800 	vmcs_write32(sf->ar_bytes, ar);
3801 }
3802 
3803 static int alloc_apic_access_page(struct kvm *kvm)
3804 {
3805 	struct page *page;
3806 	void __user *hva;
3807 	int ret = 0;
3808 
3809 	mutex_lock(&kvm->slots_lock);
3810 	if (kvm->arch.apic_access_memslot_enabled)
3811 		goto out;
3812 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3813 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3814 	if (IS_ERR(hva)) {
3815 		ret = PTR_ERR(hva);
3816 		goto out;
3817 	}
3818 
3819 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3820 	if (is_error_page(page)) {
3821 		ret = -EFAULT;
3822 		goto out;
3823 	}
3824 
3825 	/*
3826 	 * Do not pin the page in memory, so that memory hot-unplug
3827 	 * is able to migrate it.
3828 	 */
3829 	put_page(page);
3830 	kvm->arch.apic_access_memslot_enabled = true;
3831 out:
3832 	mutex_unlock(&kvm->slots_lock);
3833 	return ret;
3834 }
3835 
3836 int allocate_vpid(void)
3837 {
3838 	int vpid;
3839 
3840 	if (!enable_vpid)
3841 		return 0;
3842 	spin_lock(&vmx_vpid_lock);
3843 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3844 	if (vpid < VMX_NR_VPIDS)
3845 		__set_bit(vpid, vmx_vpid_bitmap);
3846 	else
3847 		vpid = 0;
3848 	spin_unlock(&vmx_vpid_lock);
3849 	return vpid;
3850 }
3851 
3852 void free_vpid(int vpid)
3853 {
3854 	if (!enable_vpid || vpid == 0)
3855 		return;
3856 	spin_lock(&vmx_vpid_lock);
3857 	__clear_bit(vpid, vmx_vpid_bitmap);
3858 	spin_unlock(&vmx_vpid_lock);
3859 }
3860 
3861 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3862 {
3863 	/*
3864 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3865 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3866 	 * bitmap has changed.
3867 	 */
3868 	if (static_branch_unlikely(&enable_evmcs))
3869 		evmcs_touch_msr_bitmap();
3870 
3871 	vmx->nested.force_msr_bitmap_recalc = true;
3872 }
3873 
3874 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3875 {
3876 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3877 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3878 
3879 	if (!cpu_has_vmx_msr_bitmap())
3880 		return;
3881 
3882 	vmx_msr_bitmap_l01_changed(vmx);
3883 
3884 	/*
3885 	 * Mark the desired intercept state in shadow bitmap, this is needed
3886 	 * for resync when the MSR filters change.
3887 	*/
3888 	if (is_valid_passthrough_msr(msr)) {
3889 		int idx = possible_passthrough_msr_slot(msr);
3890 
3891 		if (idx != -ENOENT) {
3892 			if (type & MSR_TYPE_R)
3893 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3894 			if (type & MSR_TYPE_W)
3895 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3896 		}
3897 	}
3898 
3899 	if ((type & MSR_TYPE_R) &&
3900 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3901 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3902 		type &= ~MSR_TYPE_R;
3903 	}
3904 
3905 	if ((type & MSR_TYPE_W) &&
3906 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3907 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3908 		type &= ~MSR_TYPE_W;
3909 	}
3910 
3911 	if (type & MSR_TYPE_R)
3912 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3913 
3914 	if (type & MSR_TYPE_W)
3915 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3916 }
3917 
3918 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3919 {
3920 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3921 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3922 
3923 	if (!cpu_has_vmx_msr_bitmap())
3924 		return;
3925 
3926 	vmx_msr_bitmap_l01_changed(vmx);
3927 
3928 	/*
3929 	 * Mark the desired intercept state in shadow bitmap, this is needed
3930 	 * for resync when the MSR filter changes.
3931 	*/
3932 	if (is_valid_passthrough_msr(msr)) {
3933 		int idx = possible_passthrough_msr_slot(msr);
3934 
3935 		if (idx != -ENOENT) {
3936 			if (type & MSR_TYPE_R)
3937 				set_bit(idx, vmx->shadow_msr_intercept.read);
3938 			if (type & MSR_TYPE_W)
3939 				set_bit(idx, vmx->shadow_msr_intercept.write);
3940 		}
3941 	}
3942 
3943 	if (type & MSR_TYPE_R)
3944 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3945 
3946 	if (type & MSR_TYPE_W)
3947 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3948 }
3949 
3950 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3951 {
3952 	unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3953 	unsigned long read_intercept;
3954 	int msr;
3955 
3956 	read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3957 
3958 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3959 		unsigned int read_idx = msr / BITS_PER_LONG;
3960 		unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3961 
3962 		msr_bitmap[read_idx] = read_intercept;
3963 		msr_bitmap[write_idx] = ~0ul;
3964 	}
3965 }
3966 
3967 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3968 {
3969 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3970 	u8 mode;
3971 
3972 	if (!cpu_has_vmx_msr_bitmap())
3973 		return;
3974 
3975 	if (cpu_has_secondary_exec_ctrls() &&
3976 	    (secondary_exec_controls_get(vmx) &
3977 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3978 		mode = MSR_BITMAP_MODE_X2APIC;
3979 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3980 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3981 	} else {
3982 		mode = 0;
3983 	}
3984 
3985 	if (mode == vmx->x2apic_msr_bitmap_mode)
3986 		return;
3987 
3988 	vmx->x2apic_msr_bitmap_mode = mode;
3989 
3990 	vmx_reset_x2apic_msrs(vcpu, mode);
3991 
3992 	/*
3993 	 * TPR reads and writes can be virtualized even if virtual interrupt
3994 	 * delivery is not in use.
3995 	 */
3996 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3997 				  !(mode & MSR_BITMAP_MODE_X2APIC));
3998 
3999 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4000 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4001 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4002 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4003 		if (enable_ipiv)
4004 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4005 	}
4006 }
4007 
4008 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4009 {
4010 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4011 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4012 	u32 i;
4013 
4014 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4015 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4016 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4017 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4018 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4019 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4020 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4021 	}
4022 }
4023 
4024 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4025 {
4026 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4027 	void *vapic_page;
4028 	u32 vppr;
4029 	int rvi;
4030 
4031 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4032 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4033 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4034 		return false;
4035 
4036 	rvi = vmx_get_rvi();
4037 
4038 	vapic_page = vmx->nested.virtual_apic_map.hva;
4039 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4040 
4041 	return ((rvi & 0xf0) > (vppr & 0xf0));
4042 }
4043 
4044 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4045 {
4046 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4047 	u32 i;
4048 
4049 	/*
4050 	 * Redo intercept permissions for MSRs that KVM is passing through to
4051 	 * the guest.  Disabling interception will check the new MSR filter and
4052 	 * ensure that KVM enables interception if usersepace wants to filter
4053 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4054 	 * refreshed since KVM is going to intercept them regardless of what
4055 	 * userspace wants.
4056 	 */
4057 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4058 		u32 msr = vmx_possible_passthrough_msrs[i];
4059 
4060 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4061 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4062 
4063 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4064 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4065 	}
4066 
4067 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4068 	if (vmx_pt_mode_is_host_guest())
4069 		pt_update_intercept_for_msr(vcpu);
4070 }
4071 
4072 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4073 						     int pi_vec)
4074 {
4075 #ifdef CONFIG_SMP
4076 	if (vcpu->mode == IN_GUEST_MODE) {
4077 		/*
4078 		 * The vector of the virtual has already been set in the PIR.
4079 		 * Send a notification event to deliver the virtual interrupt
4080 		 * unless the vCPU is the currently running vCPU, i.e. the
4081 		 * event is being sent from a fastpath VM-Exit handler, in
4082 		 * which case the PIR will be synced to the vIRR before
4083 		 * re-entering the guest.
4084 		 *
4085 		 * When the target is not the running vCPU, the following
4086 		 * possibilities emerge:
4087 		 *
4088 		 * Case 1: vCPU stays in non-root mode. Sending a notification
4089 		 * event posts the interrupt to the vCPU.
4090 		 *
4091 		 * Case 2: vCPU exits to root mode and is still runnable. The
4092 		 * PIR will be synced to the vIRR before re-entering the guest.
4093 		 * Sending a notification event is ok as the host IRQ handler
4094 		 * will ignore the spurious event.
4095 		 *
4096 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4097 		 * has already synced PIR to vIRR and never blocks the vCPU if
4098 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4099 		 * not wait for any requested interrupts in PIR, and sending a
4100 		 * notification event also results in a benign, spurious event.
4101 		 */
4102 
4103 		if (vcpu != kvm_get_running_vcpu())
4104 			apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4105 		return;
4106 	}
4107 #endif
4108 	/*
4109 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4110 	 * otherwise do nothing as KVM will grab the highest priority pending
4111 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4112 	 */
4113 	kvm_vcpu_wake_up(vcpu);
4114 }
4115 
4116 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4117 						int vector)
4118 {
4119 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4120 
4121 	if (is_guest_mode(vcpu) &&
4122 	    vector == vmx->nested.posted_intr_nv) {
4123 		/*
4124 		 * If a posted intr is not recognized by hardware,
4125 		 * we will accomplish it in the next vmentry.
4126 		 */
4127 		vmx->nested.pi_pending = true;
4128 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4129 
4130 		/*
4131 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4132 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4133 		 * request if triggering a posted interrupt "fails" because
4134 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4135 		 * the smb_wmb() in kvm_make_request() only ensures everything
4136 		 * done before making the request is visible when the request
4137 		 * is visible, it doesn't ensure ordering between the store to
4138 		 * vcpu->requests and the load from vcpu->mode.
4139 		 */
4140 		smp_mb__after_atomic();
4141 
4142 		/* the PIR and ON have been set by L1. */
4143 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4144 		return 0;
4145 	}
4146 	return -1;
4147 }
4148 /*
4149  * Send interrupt to vcpu via posted interrupt way.
4150  * 1. If target vcpu is running(non-root mode), send posted interrupt
4151  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4152  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4153  * interrupt from PIR in next vmentry.
4154  */
4155 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4156 {
4157 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4158 	int r;
4159 
4160 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4161 	if (!r)
4162 		return 0;
4163 
4164 	/* Note, this is called iff the local APIC is in-kernel. */
4165 	if (!vcpu->arch.apic->apicv_active)
4166 		return -1;
4167 
4168 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4169 		return 0;
4170 
4171 	/* If a previous notification has sent the IPI, nothing to do.  */
4172 	if (pi_test_and_set_on(&vmx->pi_desc))
4173 		return 0;
4174 
4175 	/*
4176 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4177 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4178 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4179 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4180 	 */
4181 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4182 	return 0;
4183 }
4184 
4185 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4186 				  int trig_mode, int vector)
4187 {
4188 	struct kvm_vcpu *vcpu = apic->vcpu;
4189 
4190 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4191 		kvm_lapic_set_irr(vector, apic);
4192 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4193 		kvm_vcpu_kick(vcpu);
4194 	} else {
4195 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4196 					   trig_mode, vector);
4197 	}
4198 }
4199 
4200 /*
4201  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4202  * will not change in the lifetime of the guest.
4203  * Note that host-state that does change is set elsewhere. E.g., host-state
4204  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4205  */
4206 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4207 {
4208 	u32 low32, high32;
4209 	unsigned long tmpl;
4210 	unsigned long cr0, cr3, cr4;
4211 
4212 	cr0 = read_cr0();
4213 	WARN_ON(cr0 & X86_CR0_TS);
4214 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4215 
4216 	/*
4217 	 * Save the most likely value for this task's CR3 in the VMCS.
4218 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4219 	 */
4220 	cr3 = __read_cr3();
4221 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4222 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4223 
4224 	/* Save the most likely value for this task's CR4 in the VMCS. */
4225 	cr4 = cr4_read_shadow();
4226 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4227 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4228 
4229 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4230 #ifdef CONFIG_X86_64
4231 	/*
4232 	 * Load null selectors, so we can avoid reloading them in
4233 	 * vmx_prepare_switch_to_host(), in case userspace uses
4234 	 * the null selectors too (the expected case).
4235 	 */
4236 	vmcs_write16(HOST_DS_SELECTOR, 0);
4237 	vmcs_write16(HOST_ES_SELECTOR, 0);
4238 #else
4239 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4240 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4241 #endif
4242 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4243 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4244 
4245 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4246 
4247 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4248 
4249 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4250 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4251 
4252 	/*
4253 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4254 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4255 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4256 	 * have already done so!).
4257 	 */
4258 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4259 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4260 
4261 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4262 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4263 
4264 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4265 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4266 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4267 	}
4268 
4269 	if (cpu_has_load_ia32_efer())
4270 		vmcs_write64(HOST_IA32_EFER, host_efer);
4271 }
4272 
4273 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4274 {
4275 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4276 
4277 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4278 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4279 	if (!enable_ept) {
4280 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4281 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4282 	}
4283 	if (is_guest_mode(&vmx->vcpu))
4284 		vcpu->arch.cr4_guest_owned_bits &=
4285 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4286 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4287 }
4288 
4289 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4290 {
4291 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4292 
4293 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4294 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4295 
4296 	if (!enable_vnmi)
4297 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4298 
4299 	if (!enable_preemption_timer)
4300 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4301 
4302 	return pin_based_exec_ctrl;
4303 }
4304 
4305 static u32 vmx_vmentry_ctrl(void)
4306 {
4307 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4308 
4309 	if (vmx_pt_mode_is_system())
4310 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4311 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4312 	/*
4313 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4314 	 */
4315 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4316 			  VM_ENTRY_LOAD_IA32_EFER |
4317 			  VM_ENTRY_IA32E_MODE);
4318 
4319 	if (cpu_has_perf_global_ctrl_bug())
4320 		vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4321 
4322 	return vmentry_ctrl;
4323 }
4324 
4325 static u32 vmx_vmexit_ctrl(void)
4326 {
4327 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4328 
4329 	/*
4330 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4331 	 * nested virtualization and thus allowed to be set in vmcs12.
4332 	 */
4333 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4334 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4335 
4336 	if (vmx_pt_mode_is_system())
4337 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4338 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4339 
4340 	if (cpu_has_perf_global_ctrl_bug())
4341 		vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4342 
4343 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4344 	return vmexit_ctrl &
4345 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4346 }
4347 
4348 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4349 {
4350 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4351 
4352 	if (is_guest_mode(vcpu)) {
4353 		vmx->nested.update_vmcs01_apicv_status = true;
4354 		return;
4355 	}
4356 
4357 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4358 
4359 	if (kvm_vcpu_apicv_active(vcpu)) {
4360 		secondary_exec_controls_setbit(vmx,
4361 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4362 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4363 		if (enable_ipiv)
4364 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4365 	} else {
4366 		secondary_exec_controls_clearbit(vmx,
4367 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4368 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4369 		if (enable_ipiv)
4370 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4371 	}
4372 
4373 	vmx_update_msr_bitmap_x2apic(vcpu);
4374 }
4375 
4376 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4377 {
4378 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4379 
4380 	/*
4381 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4382 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4383 	 */
4384 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4385 			  CPU_BASED_USE_IO_BITMAPS |
4386 			  CPU_BASED_MONITOR_TRAP_FLAG |
4387 			  CPU_BASED_PAUSE_EXITING);
4388 
4389 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4390 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4391 			  CPU_BASED_NMI_WINDOW_EXITING);
4392 
4393 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4394 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4395 
4396 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4397 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4398 
4399 #ifdef CONFIG_X86_64
4400 	if (exec_control & CPU_BASED_TPR_SHADOW)
4401 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4402 				  CPU_BASED_CR8_STORE_EXITING);
4403 	else
4404 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4405 				CPU_BASED_CR8_LOAD_EXITING;
4406 #endif
4407 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4408 	if (enable_ept)
4409 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4410 				  CPU_BASED_CR3_STORE_EXITING |
4411 				  CPU_BASED_INVLPG_EXITING);
4412 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4413 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4414 				CPU_BASED_MONITOR_EXITING);
4415 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4416 		exec_control &= ~CPU_BASED_HLT_EXITING;
4417 	return exec_control;
4418 }
4419 
4420 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4421 {
4422 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4423 
4424 	/*
4425 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4426 	 * APICv is inhibited.
4427 	 */
4428 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4429 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4430 
4431 	return exec_control;
4432 }
4433 
4434 /*
4435  * Adjust a single secondary execution control bit to intercept/allow an
4436  * instruction in the guest.  This is usually done based on whether or not a
4437  * feature has been exposed to the guest in order to correctly emulate faults.
4438  */
4439 static inline void
4440 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4441 				  u32 control, bool enabled, bool exiting)
4442 {
4443 	/*
4444 	 * If the control is for an opt-in feature, clear the control if the
4445 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4446 	 * control is opt-out, i.e. an exiting control, clear the control if
4447 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4448 	 * disabled for the associated instruction.  Note, the caller is
4449 	 * responsible presetting exec_control to set all supported bits.
4450 	 */
4451 	if (enabled == exiting)
4452 		*exec_control &= ~control;
4453 
4454 	/*
4455 	 * Update the nested MSR settings so that a nested VMM can/can't set
4456 	 * controls for features that are/aren't exposed to the guest.
4457 	 */
4458 	if (nested) {
4459 		/*
4460 		 * All features that can be added or removed to VMX MSRs must
4461 		 * be supported in the first place for nested virtualization.
4462 		 */
4463 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4464 			enabled = false;
4465 
4466 		if (enabled)
4467 			vmx->nested.msrs.secondary_ctls_high |= control;
4468 		else
4469 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4470 	}
4471 }
4472 
4473 /*
4474  * Wrapper macro for the common case of adjusting a secondary execution control
4475  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4476  * verifies that the control is actually supported by KVM and hardware.
4477  */
4478 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4479 ({									 \
4480 	bool __enabled;							 \
4481 									 \
4482 	if (cpu_has_vmx_##name()) {					 \
4483 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4484 					    X86_FEATURE_##feat_name);	 \
4485 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4486 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4487 	}								 \
4488 })
4489 
4490 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4491 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4492 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4493 
4494 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4495 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4496 
4497 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4498 {
4499 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4500 
4501 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4502 
4503 	if (vmx_pt_mode_is_system())
4504 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4505 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4506 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4507 	if (vmx->vpid == 0)
4508 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4509 	if (!enable_ept) {
4510 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4511 		enable_unrestricted_guest = 0;
4512 	}
4513 	if (!enable_unrestricted_guest)
4514 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4515 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4516 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4517 	if (!kvm_vcpu_apicv_active(vcpu))
4518 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4519 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4520 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4521 
4522 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4523 	 * in vmx_set_cr4.  */
4524 	exec_control &= ~SECONDARY_EXEC_DESC;
4525 
4526 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4527 	   (handle_vmptrld).
4528 	   We can NOT enable shadow_vmcs here because we don't have yet
4529 	   a current VMCS12
4530 	*/
4531 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4532 
4533 	/*
4534 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4535 	 * it needs to be set here when dirty logging is already active, e.g.
4536 	 * if this vCPU was created after dirty logging was enabled.
4537 	 */
4538 	if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4539 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4540 
4541 	if (cpu_has_vmx_xsaves()) {
4542 		/* Exposing XSAVES only when XSAVE is exposed */
4543 		bool xsaves_enabled =
4544 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4545 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4546 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4547 
4548 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4549 
4550 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4551 						  SECONDARY_EXEC_XSAVES,
4552 						  xsaves_enabled, false);
4553 	}
4554 
4555 	/*
4556 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4557 	 * feature is exposed to the guest.  This creates a virtualization hole
4558 	 * if both are supported in hardware but only one is exposed to the
4559 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4560 	 * is advertised is preferable to emulating the advertised instruction
4561 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4562 	 */
4563 	if (cpu_has_vmx_rdtscp()) {
4564 		bool rdpid_or_rdtscp_enabled =
4565 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4566 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4567 
4568 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4569 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4570 						  rdpid_or_rdtscp_enabled, false);
4571 	}
4572 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4573 
4574 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4575 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4576 
4577 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4578 				    ENABLE_USR_WAIT_PAUSE, false);
4579 
4580 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4581 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4582 
4583 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4584 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4585 
4586 	return exec_control;
4587 }
4588 
4589 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4590 {
4591 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4592 }
4593 
4594 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4595 {
4596 	struct page *pages;
4597 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4598 
4599 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4600 		return 0;
4601 
4602 	if (kvm_vmx->pid_table)
4603 		return 0;
4604 
4605 	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, vmx_get_pid_table_order(kvm));
4606 	if (!pages)
4607 		return -ENOMEM;
4608 
4609 	kvm_vmx->pid_table = (void *)page_address(pages);
4610 	return 0;
4611 }
4612 
4613 static int vmx_vcpu_precreate(struct kvm *kvm)
4614 {
4615 	return vmx_alloc_ipiv_pid_table(kvm);
4616 }
4617 
4618 #define VMX_XSS_EXIT_BITMAP 0
4619 
4620 static void init_vmcs(struct vcpu_vmx *vmx)
4621 {
4622 	struct kvm *kvm = vmx->vcpu.kvm;
4623 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4624 
4625 	if (nested)
4626 		nested_vmx_set_vmcs_shadowing_bitmap();
4627 
4628 	if (cpu_has_vmx_msr_bitmap())
4629 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4630 
4631 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4632 
4633 	/* Control */
4634 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4635 
4636 	exec_controls_set(vmx, vmx_exec_control(vmx));
4637 
4638 	if (cpu_has_secondary_exec_ctrls())
4639 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4640 
4641 	if (cpu_has_tertiary_exec_ctrls())
4642 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4643 
4644 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4645 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4646 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4647 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4648 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4649 
4650 		vmcs_write16(GUEST_INTR_STATUS, 0);
4651 
4652 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4653 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4654 	}
4655 
4656 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4657 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4658 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4659 	}
4660 
4661 	if (!kvm_pause_in_guest(kvm)) {
4662 		vmcs_write32(PLE_GAP, ple_gap);
4663 		vmx->ple_window = ple_window;
4664 		vmx->ple_window_dirty = true;
4665 	}
4666 
4667 	if (kvm_notify_vmexit_enabled(kvm))
4668 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4669 
4670 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4671 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4672 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4673 
4674 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4675 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4676 	vmx_set_constant_host_state(vmx);
4677 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4678 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4679 
4680 	if (cpu_has_vmx_vmfunc())
4681 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4682 
4683 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4684 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4685 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4686 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4687 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4688 
4689 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4690 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4691 
4692 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4693 
4694 	/* 22.2.1, 20.8.1 */
4695 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4696 
4697 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4698 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4699 
4700 	set_cr4_guest_host_mask(vmx);
4701 
4702 	if (vmx->vpid != 0)
4703 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4704 
4705 	if (cpu_has_vmx_xsaves())
4706 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4707 
4708 	if (enable_pml) {
4709 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4710 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4711 	}
4712 
4713 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4714 
4715 	if (vmx_pt_mode_is_host_guest()) {
4716 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4717 		/* Bit[6~0] are forced to 1, writes are ignored. */
4718 		vmx->pt_desc.guest.output_mask = 0x7F;
4719 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4720 	}
4721 
4722 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4723 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4724 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4725 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4726 
4727 	if (cpu_has_vmx_tpr_shadow()) {
4728 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4729 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4730 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4731 				     __pa(vmx->vcpu.arch.apic->regs));
4732 		vmcs_write32(TPR_THRESHOLD, 0);
4733 	}
4734 
4735 	vmx_setup_uret_msrs(vmx);
4736 }
4737 
4738 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4739 {
4740 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4741 
4742 	init_vmcs(vmx);
4743 
4744 	if (nested)
4745 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4746 
4747 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4748 
4749 	vmx->nested.posted_intr_nv = -1;
4750 	vmx->nested.vmxon_ptr = INVALID_GPA;
4751 	vmx->nested.current_vmptr = INVALID_GPA;
4752 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4753 
4754 	vcpu->arch.microcode_version = 0x100000000ULL;
4755 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4756 
4757 	/*
4758 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4759 	 * or POSTED_INTR_WAKEUP_VECTOR.
4760 	 */
4761 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4762 	vmx->pi_desc.sn = 1;
4763 }
4764 
4765 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4766 {
4767 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4768 
4769 	if (!init_event)
4770 		__vmx_vcpu_reset(vcpu);
4771 
4772 	vmx->rmode.vm86_active = 0;
4773 	vmx->spec_ctrl = 0;
4774 
4775 	vmx->msr_ia32_umwait_control = 0;
4776 
4777 	vmx->hv_deadline_tsc = -1;
4778 	kvm_set_cr8(vcpu, 0);
4779 
4780 	vmx_segment_cache_clear(vmx);
4781 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4782 
4783 	seg_setup(VCPU_SREG_CS);
4784 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4785 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4786 
4787 	seg_setup(VCPU_SREG_DS);
4788 	seg_setup(VCPU_SREG_ES);
4789 	seg_setup(VCPU_SREG_FS);
4790 	seg_setup(VCPU_SREG_GS);
4791 	seg_setup(VCPU_SREG_SS);
4792 
4793 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4794 	vmcs_writel(GUEST_TR_BASE, 0);
4795 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4796 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4797 
4798 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4799 	vmcs_writel(GUEST_LDTR_BASE, 0);
4800 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4801 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4802 
4803 	vmcs_writel(GUEST_GDTR_BASE, 0);
4804 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4805 
4806 	vmcs_writel(GUEST_IDTR_BASE, 0);
4807 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4808 
4809 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4810 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4811 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4812 	if (kvm_mpx_supported())
4813 		vmcs_write64(GUEST_BNDCFGS, 0);
4814 
4815 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4816 
4817 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4818 
4819 	vpid_sync_context(vmx->vpid);
4820 
4821 	vmx_update_fb_clear_dis(vcpu, vmx);
4822 }
4823 
4824 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4825 {
4826 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4827 }
4828 
4829 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4830 {
4831 	if (!enable_vnmi ||
4832 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4833 		vmx_enable_irq_window(vcpu);
4834 		return;
4835 	}
4836 
4837 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4838 }
4839 
4840 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4841 {
4842 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4843 	uint32_t intr;
4844 	int irq = vcpu->arch.interrupt.nr;
4845 
4846 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4847 
4848 	++vcpu->stat.irq_injections;
4849 	if (vmx->rmode.vm86_active) {
4850 		int inc_eip = 0;
4851 		if (vcpu->arch.interrupt.soft)
4852 			inc_eip = vcpu->arch.event_exit_inst_len;
4853 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4854 		return;
4855 	}
4856 	intr = irq | INTR_INFO_VALID_MASK;
4857 	if (vcpu->arch.interrupt.soft) {
4858 		intr |= INTR_TYPE_SOFT_INTR;
4859 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4860 			     vmx->vcpu.arch.event_exit_inst_len);
4861 	} else
4862 		intr |= INTR_TYPE_EXT_INTR;
4863 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4864 
4865 	vmx_clear_hlt(vcpu);
4866 }
4867 
4868 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4869 {
4870 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4871 
4872 	if (!enable_vnmi) {
4873 		/*
4874 		 * Tracking the NMI-blocked state in software is built upon
4875 		 * finding the next open IRQ window. This, in turn, depends on
4876 		 * well-behaving guests: They have to keep IRQs disabled at
4877 		 * least as long as the NMI handler runs. Otherwise we may
4878 		 * cause NMI nesting, maybe breaking the guest. But as this is
4879 		 * highly unlikely, we can live with the residual risk.
4880 		 */
4881 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4882 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4883 	}
4884 
4885 	++vcpu->stat.nmi_injections;
4886 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4887 
4888 	if (vmx->rmode.vm86_active) {
4889 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4890 		return;
4891 	}
4892 
4893 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4894 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4895 
4896 	vmx_clear_hlt(vcpu);
4897 }
4898 
4899 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4900 {
4901 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4902 	bool masked;
4903 
4904 	if (!enable_vnmi)
4905 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4906 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4907 		return false;
4908 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4909 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4910 	return masked;
4911 }
4912 
4913 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4914 {
4915 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4916 
4917 	if (!enable_vnmi) {
4918 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4919 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4920 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4921 		}
4922 	} else {
4923 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4924 		if (masked)
4925 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4926 				      GUEST_INTR_STATE_NMI);
4927 		else
4928 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4929 					GUEST_INTR_STATE_NMI);
4930 	}
4931 }
4932 
4933 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4934 {
4935 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4936 		return false;
4937 
4938 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4939 		return true;
4940 
4941 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4942 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4943 		 GUEST_INTR_STATE_NMI));
4944 }
4945 
4946 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4947 {
4948 	if (to_vmx(vcpu)->nested.nested_run_pending)
4949 		return -EBUSY;
4950 
4951 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4952 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4953 		return -EBUSY;
4954 
4955 	return !vmx_nmi_blocked(vcpu);
4956 }
4957 
4958 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4959 {
4960 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4961 		return false;
4962 
4963 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4964 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4965 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4966 }
4967 
4968 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4969 {
4970 	if (to_vmx(vcpu)->nested.nested_run_pending)
4971 		return -EBUSY;
4972 
4973        /*
4974         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4975         * e.g. if the IRQ arrived asynchronously after checking nested events.
4976         */
4977 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4978 		return -EBUSY;
4979 
4980 	return !vmx_interrupt_blocked(vcpu);
4981 }
4982 
4983 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4984 {
4985 	void __user *ret;
4986 
4987 	if (enable_unrestricted_guest)
4988 		return 0;
4989 
4990 	mutex_lock(&kvm->slots_lock);
4991 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4992 				      PAGE_SIZE * 3);
4993 	mutex_unlock(&kvm->slots_lock);
4994 
4995 	if (IS_ERR(ret))
4996 		return PTR_ERR(ret);
4997 
4998 	to_kvm_vmx(kvm)->tss_addr = addr;
4999 
5000 	return init_rmode_tss(kvm, ret);
5001 }
5002 
5003 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5004 {
5005 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5006 	return 0;
5007 }
5008 
5009 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5010 {
5011 	switch (vec) {
5012 	case BP_VECTOR:
5013 		/*
5014 		 * Update instruction length as we may reinject the exception
5015 		 * from user space while in guest debugging mode.
5016 		 */
5017 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5018 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5019 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5020 			return false;
5021 		fallthrough;
5022 	case DB_VECTOR:
5023 		return !(vcpu->guest_debug &
5024 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5025 	case DE_VECTOR:
5026 	case OF_VECTOR:
5027 	case BR_VECTOR:
5028 	case UD_VECTOR:
5029 	case DF_VECTOR:
5030 	case SS_VECTOR:
5031 	case GP_VECTOR:
5032 	case MF_VECTOR:
5033 		return true;
5034 	}
5035 	return false;
5036 }
5037 
5038 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5039 				  int vec, u32 err_code)
5040 {
5041 	/*
5042 	 * Instruction with address size override prefix opcode 0x67
5043 	 * Cause the #SS fault with 0 error code in VM86 mode.
5044 	 */
5045 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5046 		if (kvm_emulate_instruction(vcpu, 0)) {
5047 			if (vcpu->arch.halt_request) {
5048 				vcpu->arch.halt_request = 0;
5049 				return kvm_emulate_halt_noskip(vcpu);
5050 			}
5051 			return 1;
5052 		}
5053 		return 0;
5054 	}
5055 
5056 	/*
5057 	 * Forward all other exceptions that are valid in real mode.
5058 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5059 	 *        the required debugging infrastructure rework.
5060 	 */
5061 	kvm_queue_exception(vcpu, vec);
5062 	return 1;
5063 }
5064 
5065 static int handle_machine_check(struct kvm_vcpu *vcpu)
5066 {
5067 	/* handled by vmx_vcpu_run() */
5068 	return 1;
5069 }
5070 
5071 /*
5072  * If the host has split lock detection disabled, then #AC is
5073  * unconditionally injected into the guest, which is the pre split lock
5074  * detection behaviour.
5075  *
5076  * If the host has split lock detection enabled then #AC is
5077  * only injected into the guest when:
5078  *  - Guest CPL == 3 (user mode)
5079  *  - Guest has #AC detection enabled in CR0
5080  *  - Guest EFLAGS has AC bit set
5081  */
5082 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5083 {
5084 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5085 		return true;
5086 
5087 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
5088 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5089 }
5090 
5091 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5092 {
5093 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5094 	struct kvm_run *kvm_run = vcpu->run;
5095 	u32 intr_info, ex_no, error_code;
5096 	unsigned long cr2, dr6;
5097 	u32 vect_info;
5098 
5099 	vect_info = vmx->idt_vectoring_info;
5100 	intr_info = vmx_get_intr_info(vcpu);
5101 
5102 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5103 		return 1; /* handled by handle_exception_nmi_irqoff() */
5104 
5105 	/*
5106 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5107 	 * This ensures the nested_vmx check is not skipped so vmexit can
5108 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5109 	 * point.
5110 	 */
5111 	if (is_nm_fault(intr_info)) {
5112 		kvm_queue_exception(vcpu, NM_VECTOR);
5113 		return 1;
5114 	}
5115 
5116 	if (is_invalid_opcode(intr_info))
5117 		return handle_ud(vcpu);
5118 
5119 	error_code = 0;
5120 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5121 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5122 
5123 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5124 		WARN_ON_ONCE(!enable_vmware_backdoor);
5125 
5126 		/*
5127 		 * VMware backdoor emulation on #GP interception only handles
5128 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5129 		 * error code on #GP.
5130 		 */
5131 		if (error_code) {
5132 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5133 			return 1;
5134 		}
5135 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5136 	}
5137 
5138 	/*
5139 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5140 	 * MMIO, it is better to report an internal error.
5141 	 * See the comments in vmx_handle_exit.
5142 	 */
5143 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5144 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5145 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5146 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5147 		vcpu->run->internal.ndata = 4;
5148 		vcpu->run->internal.data[0] = vect_info;
5149 		vcpu->run->internal.data[1] = intr_info;
5150 		vcpu->run->internal.data[2] = error_code;
5151 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5152 		return 0;
5153 	}
5154 
5155 	if (is_page_fault(intr_info)) {
5156 		cr2 = vmx_get_exit_qual(vcpu);
5157 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5158 			/*
5159 			 * EPT will cause page fault only if we need to
5160 			 * detect illegal GPAs.
5161 			 */
5162 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5163 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5164 			return 1;
5165 		} else
5166 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5167 	}
5168 
5169 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5170 
5171 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5172 		return handle_rmode_exception(vcpu, ex_no, error_code);
5173 
5174 	switch (ex_no) {
5175 	case DB_VECTOR:
5176 		dr6 = vmx_get_exit_qual(vcpu);
5177 		if (!(vcpu->guest_debug &
5178 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5179 			/*
5180 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5181 			 * instruction.  ICEBP generates a trap-like #DB, but
5182 			 * despite its interception control being tied to #DB,
5183 			 * is an instruction intercept, i.e. the VM-Exit occurs
5184 			 * on the ICEBP itself.  Use the inner "skip" helper to
5185 			 * avoid single-step #DB and MTF updates, as ICEBP is
5186 			 * higher priority.  Note, skipping ICEBP still clears
5187 			 * STI and MOVSS blocking.
5188 			 *
5189 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5190 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5191 			 * blocking is active, as the CPU doesn't set the bit
5192 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5193 			 * consistency check that a single-step #DB is pending
5194 			 * in this scenario as the previous instruction cannot
5195 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5196 			 * don't modify RFLAGS), therefore the one instruction
5197 			 * delay when activating single-step breakpoints must
5198 			 * have already expired.  Note, the CPU sets/clears BS
5199 			 * as appropriate for all other VM-Exits types.
5200 			 */
5201 			if (is_icebp(intr_info))
5202 				WARN_ON(!skip_emulated_instruction(vcpu));
5203 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5204 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5205 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5206 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5207 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5208 
5209 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5210 			return 1;
5211 		}
5212 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5213 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5214 		fallthrough;
5215 	case BP_VECTOR:
5216 		/*
5217 		 * Update instruction length as we may reinject #BP from
5218 		 * user space while in guest debugging mode. Reading it for
5219 		 * #DB as well causes no harm, it is not used in that case.
5220 		 */
5221 		vmx->vcpu.arch.event_exit_inst_len =
5222 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5223 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5224 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5225 		kvm_run->debug.arch.exception = ex_no;
5226 		break;
5227 	case AC_VECTOR:
5228 		if (vmx_guest_inject_ac(vcpu)) {
5229 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5230 			return 1;
5231 		}
5232 
5233 		/*
5234 		 * Handle split lock. Depending on detection mode this will
5235 		 * either warn and disable split lock detection for this
5236 		 * task or force SIGBUS on it.
5237 		 */
5238 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5239 			return 1;
5240 		fallthrough;
5241 	default:
5242 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5243 		kvm_run->ex.exception = ex_no;
5244 		kvm_run->ex.error_code = error_code;
5245 		break;
5246 	}
5247 	return 0;
5248 }
5249 
5250 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5251 {
5252 	++vcpu->stat.irq_exits;
5253 	return 1;
5254 }
5255 
5256 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5257 {
5258 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5259 	vcpu->mmio_needed = 0;
5260 	return 0;
5261 }
5262 
5263 static int handle_io(struct kvm_vcpu *vcpu)
5264 {
5265 	unsigned long exit_qualification;
5266 	int size, in, string;
5267 	unsigned port;
5268 
5269 	exit_qualification = vmx_get_exit_qual(vcpu);
5270 	string = (exit_qualification & 16) != 0;
5271 
5272 	++vcpu->stat.io_exits;
5273 
5274 	if (string)
5275 		return kvm_emulate_instruction(vcpu, 0);
5276 
5277 	port = exit_qualification >> 16;
5278 	size = (exit_qualification & 7) + 1;
5279 	in = (exit_qualification & 8) != 0;
5280 
5281 	return kvm_fast_pio(vcpu, size, port, in);
5282 }
5283 
5284 static void
5285 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5286 {
5287 	/*
5288 	 * Patch in the VMCALL instruction:
5289 	 */
5290 	hypercall[0] = 0x0f;
5291 	hypercall[1] = 0x01;
5292 	hypercall[2] = 0xc1;
5293 }
5294 
5295 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5296 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5297 {
5298 	if (is_guest_mode(vcpu)) {
5299 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5300 		unsigned long orig_val = val;
5301 
5302 		/*
5303 		 * We get here when L2 changed cr0 in a way that did not change
5304 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5305 		 * but did change L0 shadowed bits. So we first calculate the
5306 		 * effective cr0 value that L1 would like to write into the
5307 		 * hardware. It consists of the L2-owned bits from the new
5308 		 * value combined with the L1-owned bits from L1's guest_cr0.
5309 		 */
5310 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5311 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5312 
5313 		if (!nested_guest_cr0_valid(vcpu, val))
5314 			return 1;
5315 
5316 		if (kvm_set_cr0(vcpu, val))
5317 			return 1;
5318 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5319 		return 0;
5320 	} else {
5321 		if (to_vmx(vcpu)->nested.vmxon &&
5322 		    !nested_host_cr0_valid(vcpu, val))
5323 			return 1;
5324 
5325 		return kvm_set_cr0(vcpu, val);
5326 	}
5327 }
5328 
5329 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5330 {
5331 	if (is_guest_mode(vcpu)) {
5332 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5333 		unsigned long orig_val = val;
5334 
5335 		/* analogously to handle_set_cr0 */
5336 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5337 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5338 		if (kvm_set_cr4(vcpu, val))
5339 			return 1;
5340 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5341 		return 0;
5342 	} else
5343 		return kvm_set_cr4(vcpu, val);
5344 }
5345 
5346 static int handle_desc(struct kvm_vcpu *vcpu)
5347 {
5348 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5349 	return kvm_emulate_instruction(vcpu, 0);
5350 }
5351 
5352 static int handle_cr(struct kvm_vcpu *vcpu)
5353 {
5354 	unsigned long exit_qualification, val;
5355 	int cr;
5356 	int reg;
5357 	int err;
5358 	int ret;
5359 
5360 	exit_qualification = vmx_get_exit_qual(vcpu);
5361 	cr = exit_qualification & 15;
5362 	reg = (exit_qualification >> 8) & 15;
5363 	switch ((exit_qualification >> 4) & 3) {
5364 	case 0: /* mov to cr */
5365 		val = kvm_register_read(vcpu, reg);
5366 		trace_kvm_cr_write(cr, val);
5367 		switch (cr) {
5368 		case 0:
5369 			err = handle_set_cr0(vcpu, val);
5370 			return kvm_complete_insn_gp(vcpu, err);
5371 		case 3:
5372 			WARN_ON_ONCE(enable_unrestricted_guest);
5373 
5374 			err = kvm_set_cr3(vcpu, val);
5375 			return kvm_complete_insn_gp(vcpu, err);
5376 		case 4:
5377 			err = handle_set_cr4(vcpu, val);
5378 			return kvm_complete_insn_gp(vcpu, err);
5379 		case 8: {
5380 				u8 cr8_prev = kvm_get_cr8(vcpu);
5381 				u8 cr8 = (u8)val;
5382 				err = kvm_set_cr8(vcpu, cr8);
5383 				ret = kvm_complete_insn_gp(vcpu, err);
5384 				if (lapic_in_kernel(vcpu))
5385 					return ret;
5386 				if (cr8_prev <= cr8)
5387 					return ret;
5388 				/*
5389 				 * TODO: we might be squashing a
5390 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5391 				 * KVM_EXIT_DEBUG here.
5392 				 */
5393 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5394 				return 0;
5395 			}
5396 		}
5397 		break;
5398 	case 2: /* clts */
5399 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5400 		return -EIO;
5401 	case 1: /*mov from cr*/
5402 		switch (cr) {
5403 		case 3:
5404 			WARN_ON_ONCE(enable_unrestricted_guest);
5405 
5406 			val = kvm_read_cr3(vcpu);
5407 			kvm_register_write(vcpu, reg, val);
5408 			trace_kvm_cr_read(cr, val);
5409 			return kvm_skip_emulated_instruction(vcpu);
5410 		case 8:
5411 			val = kvm_get_cr8(vcpu);
5412 			kvm_register_write(vcpu, reg, val);
5413 			trace_kvm_cr_read(cr, val);
5414 			return kvm_skip_emulated_instruction(vcpu);
5415 		}
5416 		break;
5417 	case 3: /* lmsw */
5418 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5419 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5420 		kvm_lmsw(vcpu, val);
5421 
5422 		return kvm_skip_emulated_instruction(vcpu);
5423 	default:
5424 		break;
5425 	}
5426 	vcpu->run->exit_reason = 0;
5427 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5428 	       (int)(exit_qualification >> 4) & 3, cr);
5429 	return 0;
5430 }
5431 
5432 static int handle_dr(struct kvm_vcpu *vcpu)
5433 {
5434 	unsigned long exit_qualification;
5435 	int dr, dr7, reg;
5436 	int err = 1;
5437 
5438 	exit_qualification = vmx_get_exit_qual(vcpu);
5439 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5440 
5441 	/* First, if DR does not exist, trigger UD */
5442 	if (!kvm_require_dr(vcpu, dr))
5443 		return 1;
5444 
5445 	if (vmx_get_cpl(vcpu) > 0)
5446 		goto out;
5447 
5448 	dr7 = vmcs_readl(GUEST_DR7);
5449 	if (dr7 & DR7_GD) {
5450 		/*
5451 		 * As the vm-exit takes precedence over the debug trap, we
5452 		 * need to emulate the latter, either for the host or the
5453 		 * guest debugging itself.
5454 		 */
5455 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5456 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5457 			vcpu->run->debug.arch.dr7 = dr7;
5458 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5459 			vcpu->run->debug.arch.exception = DB_VECTOR;
5460 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5461 			return 0;
5462 		} else {
5463 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5464 			return 1;
5465 		}
5466 	}
5467 
5468 	if (vcpu->guest_debug == 0) {
5469 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5470 
5471 		/*
5472 		 * No more DR vmexits; force a reload of the debug registers
5473 		 * and reenter on this instruction.  The next vmexit will
5474 		 * retrieve the full state of the debug registers.
5475 		 */
5476 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5477 		return 1;
5478 	}
5479 
5480 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5481 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5482 		unsigned long val;
5483 
5484 		kvm_get_dr(vcpu, dr, &val);
5485 		kvm_register_write(vcpu, reg, val);
5486 		err = 0;
5487 	} else {
5488 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5489 	}
5490 
5491 out:
5492 	return kvm_complete_insn_gp(vcpu, err);
5493 }
5494 
5495 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5496 {
5497 	get_debugreg(vcpu->arch.db[0], 0);
5498 	get_debugreg(vcpu->arch.db[1], 1);
5499 	get_debugreg(vcpu->arch.db[2], 2);
5500 	get_debugreg(vcpu->arch.db[3], 3);
5501 	get_debugreg(vcpu->arch.dr6, 6);
5502 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5503 
5504 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5505 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5506 
5507 	/*
5508 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5509 	 * a stale dr6 from the guest.
5510 	 */
5511 	set_debugreg(DR6_RESERVED, 6);
5512 }
5513 
5514 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5515 {
5516 	vmcs_writel(GUEST_DR7, val);
5517 }
5518 
5519 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5520 {
5521 	kvm_apic_update_ppr(vcpu);
5522 	return 1;
5523 }
5524 
5525 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5526 {
5527 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5528 
5529 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5530 
5531 	++vcpu->stat.irq_window_exits;
5532 	return 1;
5533 }
5534 
5535 static int handle_invlpg(struct kvm_vcpu *vcpu)
5536 {
5537 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5538 
5539 	kvm_mmu_invlpg(vcpu, exit_qualification);
5540 	return kvm_skip_emulated_instruction(vcpu);
5541 }
5542 
5543 static int handle_apic_access(struct kvm_vcpu *vcpu)
5544 {
5545 	if (likely(fasteoi)) {
5546 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5547 		int access_type, offset;
5548 
5549 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5550 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5551 		/*
5552 		 * Sane guest uses MOV to write EOI, with written value
5553 		 * not cared. So make a short-circuit here by avoiding
5554 		 * heavy instruction emulation.
5555 		 */
5556 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5557 		    (offset == APIC_EOI)) {
5558 			kvm_lapic_set_eoi(vcpu);
5559 			return kvm_skip_emulated_instruction(vcpu);
5560 		}
5561 	}
5562 	return kvm_emulate_instruction(vcpu, 0);
5563 }
5564 
5565 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5566 {
5567 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5568 	int vector = exit_qualification & 0xff;
5569 
5570 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5571 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5572 	return 1;
5573 }
5574 
5575 static int handle_apic_write(struct kvm_vcpu *vcpu)
5576 {
5577 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5578 
5579 	/*
5580 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5581 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5582 	 * for the access.  I.e. the correct value has already been  written to
5583 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5584 	 * retrieve the register value and emulate the access.
5585 	 */
5586 	u32 offset = exit_qualification & 0xff0;
5587 
5588 	kvm_apic_write_nodecode(vcpu, offset);
5589 	return 1;
5590 }
5591 
5592 static int handle_task_switch(struct kvm_vcpu *vcpu)
5593 {
5594 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5595 	unsigned long exit_qualification;
5596 	bool has_error_code = false;
5597 	u32 error_code = 0;
5598 	u16 tss_selector;
5599 	int reason, type, idt_v, idt_index;
5600 
5601 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5602 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5603 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5604 
5605 	exit_qualification = vmx_get_exit_qual(vcpu);
5606 
5607 	reason = (u32)exit_qualification >> 30;
5608 	if (reason == TASK_SWITCH_GATE && idt_v) {
5609 		switch (type) {
5610 		case INTR_TYPE_NMI_INTR:
5611 			vcpu->arch.nmi_injected = false;
5612 			vmx_set_nmi_mask(vcpu, true);
5613 			break;
5614 		case INTR_TYPE_EXT_INTR:
5615 		case INTR_TYPE_SOFT_INTR:
5616 			kvm_clear_interrupt_queue(vcpu);
5617 			break;
5618 		case INTR_TYPE_HARD_EXCEPTION:
5619 			if (vmx->idt_vectoring_info &
5620 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5621 				has_error_code = true;
5622 				error_code =
5623 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5624 			}
5625 			fallthrough;
5626 		case INTR_TYPE_SOFT_EXCEPTION:
5627 			kvm_clear_exception_queue(vcpu);
5628 			break;
5629 		default:
5630 			break;
5631 		}
5632 	}
5633 	tss_selector = exit_qualification;
5634 
5635 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5636 		       type != INTR_TYPE_EXT_INTR &&
5637 		       type != INTR_TYPE_NMI_INTR))
5638 		WARN_ON(!skip_emulated_instruction(vcpu));
5639 
5640 	/*
5641 	 * TODO: What about debug traps on tss switch?
5642 	 *       Are we supposed to inject them and update dr6?
5643 	 */
5644 	return kvm_task_switch(vcpu, tss_selector,
5645 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5646 			       reason, has_error_code, error_code);
5647 }
5648 
5649 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5650 {
5651 	unsigned long exit_qualification;
5652 	gpa_t gpa;
5653 	u64 error_code;
5654 
5655 	exit_qualification = vmx_get_exit_qual(vcpu);
5656 
5657 	/*
5658 	 * EPT violation happened while executing iret from NMI,
5659 	 * "blocked by NMI" bit has to be set before next VM entry.
5660 	 * There are errata that may cause this bit to not be set:
5661 	 * AAK134, BY25.
5662 	 */
5663 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5664 			enable_vnmi &&
5665 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5666 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5667 
5668 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5669 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5670 
5671 	/* Is it a read fault? */
5672 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5673 		     ? PFERR_USER_MASK : 0;
5674 	/* Is it a write fault? */
5675 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5676 		      ? PFERR_WRITE_MASK : 0;
5677 	/* Is it a fetch fault? */
5678 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5679 		      ? PFERR_FETCH_MASK : 0;
5680 	/* ept page table entry is present? */
5681 	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5682 		      ? PFERR_PRESENT_MASK : 0;
5683 
5684 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5685 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5686 
5687 	vcpu->arch.exit_qualification = exit_qualification;
5688 
5689 	/*
5690 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5691 	 * a guest page fault.  We have to emulate the instruction here, because
5692 	 * if the illegal address is that of a paging structure, then
5693 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5694 	 * would also use advanced VM-exit information for EPT violations to
5695 	 * reconstruct the page fault error code.
5696 	 */
5697 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5698 		return kvm_emulate_instruction(vcpu, 0);
5699 
5700 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5701 }
5702 
5703 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5704 {
5705 	gpa_t gpa;
5706 
5707 	if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5708 		return 1;
5709 
5710 	/*
5711 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5712 	 * nGPA here instead of the required GPA.
5713 	 */
5714 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5715 	if (!is_guest_mode(vcpu) &&
5716 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5717 		trace_kvm_fast_mmio(gpa);
5718 		return kvm_skip_emulated_instruction(vcpu);
5719 	}
5720 
5721 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5722 }
5723 
5724 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5725 {
5726 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5727 		return -EIO;
5728 
5729 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5730 	++vcpu->stat.nmi_window_exits;
5731 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5732 
5733 	return 1;
5734 }
5735 
5736 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5737 {
5738 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5739 
5740 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5741 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5742 }
5743 
5744 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5745 {
5746 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5747 	bool intr_window_requested;
5748 	unsigned count = 130;
5749 
5750 	intr_window_requested = exec_controls_get(vmx) &
5751 				CPU_BASED_INTR_WINDOW_EXITING;
5752 
5753 	while (vmx->emulation_required && count-- != 0) {
5754 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5755 			return handle_interrupt_window(&vmx->vcpu);
5756 
5757 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5758 			return 1;
5759 
5760 		if (!kvm_emulate_instruction(vcpu, 0))
5761 			return 0;
5762 
5763 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5764 			kvm_prepare_emulation_failure_exit(vcpu);
5765 			return 0;
5766 		}
5767 
5768 		if (vcpu->arch.halt_request) {
5769 			vcpu->arch.halt_request = 0;
5770 			return kvm_emulate_halt_noskip(vcpu);
5771 		}
5772 
5773 		/*
5774 		 * Note, return 1 and not 0, vcpu_run() will invoke
5775 		 * xfer_to_guest_mode() which will create a proper return
5776 		 * code.
5777 		 */
5778 		if (__xfer_to_guest_mode_work_pending())
5779 			return 1;
5780 	}
5781 
5782 	return 1;
5783 }
5784 
5785 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5786 {
5787 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5788 		kvm_prepare_emulation_failure_exit(vcpu);
5789 		return 0;
5790 	}
5791 
5792 	return 1;
5793 }
5794 
5795 static void grow_ple_window(struct kvm_vcpu *vcpu)
5796 {
5797 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5798 	unsigned int old = vmx->ple_window;
5799 
5800 	vmx->ple_window = __grow_ple_window(old, ple_window,
5801 					    ple_window_grow,
5802 					    ple_window_max);
5803 
5804 	if (vmx->ple_window != old) {
5805 		vmx->ple_window_dirty = true;
5806 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5807 					    vmx->ple_window, old);
5808 	}
5809 }
5810 
5811 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5812 {
5813 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5814 	unsigned int old = vmx->ple_window;
5815 
5816 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5817 					      ple_window_shrink,
5818 					      ple_window);
5819 
5820 	if (vmx->ple_window != old) {
5821 		vmx->ple_window_dirty = true;
5822 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5823 					    vmx->ple_window, old);
5824 	}
5825 }
5826 
5827 /*
5828  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5829  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5830  */
5831 static int handle_pause(struct kvm_vcpu *vcpu)
5832 {
5833 	if (!kvm_pause_in_guest(vcpu->kvm))
5834 		grow_ple_window(vcpu);
5835 
5836 	/*
5837 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5838 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5839 	 * never set PAUSE_EXITING and just set PLE if supported,
5840 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5841 	 */
5842 	kvm_vcpu_on_spin(vcpu, true);
5843 	return kvm_skip_emulated_instruction(vcpu);
5844 }
5845 
5846 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5847 {
5848 	return 1;
5849 }
5850 
5851 static int handle_invpcid(struct kvm_vcpu *vcpu)
5852 {
5853 	u32 vmx_instruction_info;
5854 	unsigned long type;
5855 	gva_t gva;
5856 	struct {
5857 		u64 pcid;
5858 		u64 gla;
5859 	} operand;
5860 	int gpr_index;
5861 
5862 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5863 		kvm_queue_exception(vcpu, UD_VECTOR);
5864 		return 1;
5865 	}
5866 
5867 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5868 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5869 	type = kvm_register_read(vcpu, gpr_index);
5870 
5871 	/* According to the Intel instruction reference, the memory operand
5872 	 * is read even if it isn't needed (e.g., for type==all)
5873 	 */
5874 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5875 				vmx_instruction_info, false,
5876 				sizeof(operand), &gva))
5877 		return 1;
5878 
5879 	return kvm_handle_invpcid(vcpu, type, gva);
5880 }
5881 
5882 static int handle_pml_full(struct kvm_vcpu *vcpu)
5883 {
5884 	unsigned long exit_qualification;
5885 
5886 	trace_kvm_pml_full(vcpu->vcpu_id);
5887 
5888 	exit_qualification = vmx_get_exit_qual(vcpu);
5889 
5890 	/*
5891 	 * PML buffer FULL happened while executing iret from NMI,
5892 	 * "blocked by NMI" bit has to be set before next VM entry.
5893 	 */
5894 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5895 			enable_vnmi &&
5896 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5897 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5898 				GUEST_INTR_STATE_NMI);
5899 
5900 	/*
5901 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5902 	 * here.., and there's no userspace involvement needed for PML.
5903 	 */
5904 	return 1;
5905 }
5906 
5907 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5908 {
5909 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5910 
5911 	if (!vmx->req_immediate_exit &&
5912 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5913 		kvm_lapic_expired_hv_timer(vcpu);
5914 		return EXIT_FASTPATH_REENTER_GUEST;
5915 	}
5916 
5917 	return EXIT_FASTPATH_NONE;
5918 }
5919 
5920 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5921 {
5922 	handle_fastpath_preemption_timer(vcpu);
5923 	return 1;
5924 }
5925 
5926 /*
5927  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5928  * are overwritten by nested_vmx_setup() when nested=1.
5929  */
5930 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5931 {
5932 	kvm_queue_exception(vcpu, UD_VECTOR);
5933 	return 1;
5934 }
5935 
5936 #ifndef CONFIG_X86_SGX_KVM
5937 static int handle_encls(struct kvm_vcpu *vcpu)
5938 {
5939 	/*
5940 	 * SGX virtualization is disabled.  There is no software enable bit for
5941 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5942 	 * the guest from executing ENCLS (when SGX is supported by hardware).
5943 	 */
5944 	kvm_queue_exception(vcpu, UD_VECTOR);
5945 	return 1;
5946 }
5947 #endif /* CONFIG_X86_SGX_KVM */
5948 
5949 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5950 {
5951 	/*
5952 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5953 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
5954 	 * vmx_handle_exit().
5955 	 */
5956 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
5957 	return 1;
5958 }
5959 
5960 static int handle_notify(struct kvm_vcpu *vcpu)
5961 {
5962 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5963 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
5964 
5965 	++vcpu->stat.notify_window_exits;
5966 
5967 	/*
5968 	 * Notify VM exit happened while executing iret from NMI,
5969 	 * "blocked by NMI" bit has to be set before next VM entry.
5970 	 */
5971 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
5972 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5973 			      GUEST_INTR_STATE_NMI);
5974 
5975 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
5976 	    context_invalid) {
5977 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
5978 		vcpu->run->notify.flags = context_invalid ?
5979 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
5980 		return 0;
5981 	}
5982 
5983 	return 1;
5984 }
5985 
5986 /*
5987  * The exit handlers return 1 if the exit was handled fully and guest execution
5988  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5989  * to be done to userspace and return 0.
5990  */
5991 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5992 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5993 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5994 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5995 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5996 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5997 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5998 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5999 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6000 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6001 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6002 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6003 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6004 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6005 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6006 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6007 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6008 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6009 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6010 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6011 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6012 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6013 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6014 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6015 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6016 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6017 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6018 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6019 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6020 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6021 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6022 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6023 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6024 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6025 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6026 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6027 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6028 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6029 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6030 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6031 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6032 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6033 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6034 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6035 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6036 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6037 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6038 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6039 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6040 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6041 	[EXIT_REASON_ENCLS]		      = handle_encls,
6042 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6043 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6044 };
6045 
6046 static const int kvm_vmx_max_exit_handlers =
6047 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6048 
6049 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6050 			      u64 *info1, u64 *info2,
6051 			      u32 *intr_info, u32 *error_code)
6052 {
6053 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6054 
6055 	*reason = vmx->exit_reason.full;
6056 	*info1 = vmx_get_exit_qual(vcpu);
6057 	if (!(vmx->exit_reason.failed_vmentry)) {
6058 		*info2 = vmx->idt_vectoring_info;
6059 		*intr_info = vmx_get_intr_info(vcpu);
6060 		if (is_exception_with_error_code(*intr_info))
6061 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6062 		else
6063 			*error_code = 0;
6064 	} else {
6065 		*info2 = 0;
6066 		*intr_info = 0;
6067 		*error_code = 0;
6068 	}
6069 }
6070 
6071 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6072 {
6073 	if (vmx->pml_pg) {
6074 		__free_page(vmx->pml_pg);
6075 		vmx->pml_pg = NULL;
6076 	}
6077 }
6078 
6079 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6080 {
6081 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6082 	u64 *pml_buf;
6083 	u16 pml_idx;
6084 
6085 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6086 
6087 	/* Do nothing if PML buffer is empty */
6088 	if (pml_idx == (PML_ENTITY_NUM - 1))
6089 		return;
6090 
6091 	/* PML index always points to next available PML buffer entity */
6092 	if (pml_idx >= PML_ENTITY_NUM)
6093 		pml_idx = 0;
6094 	else
6095 		pml_idx++;
6096 
6097 	pml_buf = page_address(vmx->pml_pg);
6098 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6099 		u64 gpa;
6100 
6101 		gpa = pml_buf[pml_idx];
6102 		WARN_ON(gpa & (PAGE_SIZE - 1));
6103 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6104 	}
6105 
6106 	/* reset PML index */
6107 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6108 }
6109 
6110 static void vmx_dump_sel(char *name, uint32_t sel)
6111 {
6112 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6113 	       name, vmcs_read16(sel),
6114 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6115 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6116 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6117 }
6118 
6119 static void vmx_dump_dtsel(char *name, uint32_t limit)
6120 {
6121 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6122 	       name, vmcs_read32(limit),
6123 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6124 }
6125 
6126 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6127 {
6128 	unsigned int i;
6129 	struct vmx_msr_entry *e;
6130 
6131 	pr_err("MSR %s:\n", name);
6132 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6133 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6134 }
6135 
6136 void dump_vmcs(struct kvm_vcpu *vcpu)
6137 {
6138 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6139 	u32 vmentry_ctl, vmexit_ctl;
6140 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6141 	u64 tertiary_exec_control;
6142 	unsigned long cr4;
6143 	int efer_slot;
6144 
6145 	if (!dump_invalid_vmcs) {
6146 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6147 		return;
6148 	}
6149 
6150 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6151 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6152 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6153 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6154 	cr4 = vmcs_readl(GUEST_CR4);
6155 
6156 	if (cpu_has_secondary_exec_ctrls())
6157 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6158 	else
6159 		secondary_exec_control = 0;
6160 
6161 	if (cpu_has_tertiary_exec_ctrls())
6162 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6163 	else
6164 		tertiary_exec_control = 0;
6165 
6166 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6167 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6168 	pr_err("*** Guest State ***\n");
6169 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6170 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6171 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6172 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6173 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6174 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6175 	if (cpu_has_vmx_ept()) {
6176 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6177 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6178 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6179 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6180 	}
6181 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6182 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6183 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6184 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6185 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6186 	       vmcs_readl(GUEST_SYSENTER_ESP),
6187 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6188 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6189 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6190 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6191 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6192 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6193 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6194 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6195 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6196 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6197 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6198 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6199 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6200 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6201 	else if (efer_slot >= 0)
6202 		pr_err("EFER= 0x%016llx (autoload)\n",
6203 		       vmx->msr_autoload.guest.val[efer_slot].value);
6204 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6205 		pr_err("EFER= 0x%016llx (effective)\n",
6206 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6207 	else
6208 		pr_err("EFER= 0x%016llx (effective)\n",
6209 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6210 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6211 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6212 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6213 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6214 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6215 	if (cpu_has_load_perf_global_ctrl() &&
6216 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6217 		pr_err("PerfGlobCtl = 0x%016llx\n",
6218 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6219 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6220 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6221 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6222 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6223 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6224 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6225 		pr_err("InterruptStatus = %04x\n",
6226 		       vmcs_read16(GUEST_INTR_STATUS));
6227 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6228 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6229 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6230 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6231 
6232 	pr_err("*** Host State ***\n");
6233 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6234 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6235 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6236 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6237 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6238 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6239 	       vmcs_read16(HOST_TR_SELECTOR));
6240 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6241 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6242 	       vmcs_readl(HOST_TR_BASE));
6243 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6244 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6245 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6246 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6247 	       vmcs_readl(HOST_CR4));
6248 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6249 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6250 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6251 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6252 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6253 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6254 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6255 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6256 	if (cpu_has_load_perf_global_ctrl() &&
6257 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6258 		pr_err("PerfGlobCtl = 0x%016llx\n",
6259 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6260 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6261 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6262 
6263 	pr_err("*** Control State ***\n");
6264 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6265 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6266 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6267 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6268 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6269 	       vmcs_read32(EXCEPTION_BITMAP),
6270 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6271 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6272 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6273 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6274 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6275 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6276 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6277 	       vmcs_read32(VM_EXIT_INTR_INFO),
6278 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6279 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6280 	pr_err("        reason=%08x qualification=%016lx\n",
6281 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6282 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6283 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6284 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6285 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6286 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6287 		pr_err("TSC Multiplier = 0x%016llx\n",
6288 		       vmcs_read64(TSC_MULTIPLIER));
6289 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6290 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6291 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6292 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6293 		}
6294 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6295 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6296 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6297 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6298 	}
6299 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6300 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6301 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6302 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6303 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6304 		pr_err("PLE Gap=%08x Window=%08x\n",
6305 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6306 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6307 		pr_err("Virtual processor ID = 0x%04x\n",
6308 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6309 }
6310 
6311 /*
6312  * The guest has exited.  See if we can fix it or if we need userspace
6313  * assistance.
6314  */
6315 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6316 {
6317 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6318 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6319 	u32 vectoring_info = vmx->idt_vectoring_info;
6320 	u16 exit_handler_index;
6321 
6322 	/*
6323 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6324 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6325 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6326 	 * mode as if vcpus is in root mode, the PML buffer must has been
6327 	 * flushed already.  Note, PML is never enabled in hardware while
6328 	 * running L2.
6329 	 */
6330 	if (enable_pml && !is_guest_mode(vcpu))
6331 		vmx_flush_pml_buffer(vcpu);
6332 
6333 	/*
6334 	 * KVM should never reach this point with a pending nested VM-Enter.
6335 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6336 	 * invalid guest state should never happen as that means KVM knowingly
6337 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6338 	 */
6339 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6340 		return -EIO;
6341 
6342 	if (is_guest_mode(vcpu)) {
6343 		/*
6344 		 * PML is never enabled when running L2, bail immediately if a
6345 		 * PML full exit occurs as something is horribly wrong.
6346 		 */
6347 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6348 			goto unexpected_vmexit;
6349 
6350 		/*
6351 		 * The host physical addresses of some pages of guest memory
6352 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6353 		 * Page). The CPU may write to these pages via their host
6354 		 * physical address while L2 is running, bypassing any
6355 		 * address-translation-based dirty tracking (e.g. EPT write
6356 		 * protection).
6357 		 *
6358 		 * Mark them dirty on every exit from L2 to prevent them from
6359 		 * getting out of sync with dirty tracking.
6360 		 */
6361 		nested_mark_vmcs12_pages_dirty(vcpu);
6362 
6363 		/*
6364 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6365 		 * operation, nested VM-Enter rejects any attempt to enter L2
6366 		 * with invalid state.  However, those checks are skipped if
6367 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6368 		 * L2 state is invalid, it means either L1 modified SMRAM state
6369 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6370 		 * doing so is architecturally allowed in the RSM case, and is
6371 		 * the least awful solution for the userspace case without
6372 		 * risking false positives.
6373 		 */
6374 		if (vmx->emulation_required) {
6375 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6376 			return 1;
6377 		}
6378 
6379 		if (nested_vmx_reflect_vmexit(vcpu))
6380 			return 1;
6381 	}
6382 
6383 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6384 	if (vmx->emulation_required)
6385 		return handle_invalid_guest_state(vcpu);
6386 
6387 	if (exit_reason.failed_vmentry) {
6388 		dump_vmcs(vcpu);
6389 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6390 		vcpu->run->fail_entry.hardware_entry_failure_reason
6391 			= exit_reason.full;
6392 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6393 		return 0;
6394 	}
6395 
6396 	if (unlikely(vmx->fail)) {
6397 		dump_vmcs(vcpu);
6398 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6399 		vcpu->run->fail_entry.hardware_entry_failure_reason
6400 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6401 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6402 		return 0;
6403 	}
6404 
6405 	/*
6406 	 * Note:
6407 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6408 	 * delivery event since it indicates guest is accessing MMIO.
6409 	 * The vm-exit can be triggered again after return to guest that
6410 	 * will cause infinite loop.
6411 	 */
6412 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6413 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6414 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6415 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6416 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6417 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6418 	     exit_reason.basic != EXIT_REASON_NOTIFY)) {
6419 		int ndata = 3;
6420 
6421 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6422 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6423 		vcpu->run->internal.data[0] = vectoring_info;
6424 		vcpu->run->internal.data[1] = exit_reason.full;
6425 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6426 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6427 			vcpu->run->internal.data[ndata++] =
6428 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6429 		}
6430 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6431 		vcpu->run->internal.ndata = ndata;
6432 		return 0;
6433 	}
6434 
6435 	if (unlikely(!enable_vnmi &&
6436 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6437 		if (!vmx_interrupt_blocked(vcpu)) {
6438 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6439 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6440 			   vcpu->arch.nmi_pending) {
6441 			/*
6442 			 * This CPU don't support us in finding the end of an
6443 			 * NMI-blocked window if the guest runs with IRQs
6444 			 * disabled. So we pull the trigger after 1 s of
6445 			 * futile waiting, but inform the user about this.
6446 			 */
6447 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6448 			       "state on VCPU %d after 1 s timeout\n",
6449 			       __func__, vcpu->vcpu_id);
6450 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6451 		}
6452 	}
6453 
6454 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6455 		return 1;
6456 
6457 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6458 		goto unexpected_vmexit;
6459 #ifdef CONFIG_RETPOLINE
6460 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6461 		return kvm_emulate_wrmsr(vcpu);
6462 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6463 		return handle_preemption_timer(vcpu);
6464 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6465 		return handle_interrupt_window(vcpu);
6466 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6467 		return handle_external_interrupt(vcpu);
6468 	else if (exit_reason.basic == EXIT_REASON_HLT)
6469 		return kvm_emulate_halt(vcpu);
6470 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6471 		return handle_ept_misconfig(vcpu);
6472 #endif
6473 
6474 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6475 						kvm_vmx_max_exit_handlers);
6476 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6477 		goto unexpected_vmexit;
6478 
6479 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6480 
6481 unexpected_vmexit:
6482 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6483 		    exit_reason.full);
6484 	dump_vmcs(vcpu);
6485 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6486 	vcpu->run->internal.suberror =
6487 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6488 	vcpu->run->internal.ndata = 2;
6489 	vcpu->run->internal.data[0] = exit_reason.full;
6490 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6491 	return 0;
6492 }
6493 
6494 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6495 {
6496 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6497 
6498 	/*
6499 	 * Exit to user space when bus lock detected to inform that there is
6500 	 * a bus lock in guest.
6501 	 */
6502 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6503 		if (ret > 0)
6504 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6505 
6506 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6507 		return 0;
6508 	}
6509 	return ret;
6510 }
6511 
6512 /*
6513  * Software based L1D cache flush which is used when microcode providing
6514  * the cache control MSR is not loaded.
6515  *
6516  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6517  * flush it is required to read in 64 KiB because the replacement algorithm
6518  * is not exactly LRU. This could be sized at runtime via topology
6519  * information but as all relevant affected CPUs have 32KiB L1D cache size
6520  * there is no point in doing so.
6521  */
6522 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6523 {
6524 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6525 
6526 	/*
6527 	 * This code is only executed when the flush mode is 'cond' or
6528 	 * 'always'
6529 	 */
6530 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6531 		bool flush_l1d;
6532 
6533 		/*
6534 		 * Clear the per-vcpu flush bit, it gets set again
6535 		 * either from vcpu_run() or from one of the unsafe
6536 		 * VMEXIT handlers.
6537 		 */
6538 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6539 		vcpu->arch.l1tf_flush_l1d = false;
6540 
6541 		/*
6542 		 * Clear the per-cpu flush bit, it gets set again from
6543 		 * the interrupt handlers.
6544 		 */
6545 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6546 		kvm_clear_cpu_l1tf_flush_l1d();
6547 
6548 		if (!flush_l1d)
6549 			return;
6550 	}
6551 
6552 	vcpu->stat.l1d_flush++;
6553 
6554 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6555 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6556 		return;
6557 	}
6558 
6559 	asm volatile(
6560 		/* First ensure the pages are in the TLB */
6561 		"xorl	%%eax, %%eax\n"
6562 		".Lpopulate_tlb:\n\t"
6563 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6564 		"addl	$4096, %%eax\n\t"
6565 		"cmpl	%%eax, %[size]\n\t"
6566 		"jne	.Lpopulate_tlb\n\t"
6567 		"xorl	%%eax, %%eax\n\t"
6568 		"cpuid\n\t"
6569 		/* Now fill the cache */
6570 		"xorl	%%eax, %%eax\n"
6571 		".Lfill_cache:\n"
6572 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6573 		"addl	$64, %%eax\n\t"
6574 		"cmpl	%%eax, %[size]\n\t"
6575 		"jne	.Lfill_cache\n\t"
6576 		"lfence\n"
6577 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6578 		    [size] "r" (size)
6579 		: "eax", "ebx", "ecx", "edx");
6580 }
6581 
6582 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6583 {
6584 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6585 	int tpr_threshold;
6586 
6587 	if (is_guest_mode(vcpu) &&
6588 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6589 		return;
6590 
6591 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6592 	if (is_guest_mode(vcpu))
6593 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6594 	else
6595 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6596 }
6597 
6598 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6599 {
6600 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6601 	u32 sec_exec_control;
6602 
6603 	if (!lapic_in_kernel(vcpu))
6604 		return;
6605 
6606 	if (!flexpriority_enabled &&
6607 	    !cpu_has_vmx_virtualize_x2apic_mode())
6608 		return;
6609 
6610 	/* Postpone execution until vmcs01 is the current VMCS. */
6611 	if (is_guest_mode(vcpu)) {
6612 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6613 		return;
6614 	}
6615 
6616 	sec_exec_control = secondary_exec_controls_get(vmx);
6617 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6618 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6619 
6620 	switch (kvm_get_apic_mode(vcpu)) {
6621 	case LAPIC_MODE_INVALID:
6622 		WARN_ONCE(true, "Invalid local APIC state");
6623 		break;
6624 	case LAPIC_MODE_DISABLED:
6625 		break;
6626 	case LAPIC_MODE_XAPIC:
6627 		if (flexpriority_enabled) {
6628 			sec_exec_control |=
6629 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6630 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6631 
6632 			/*
6633 			 * Flush the TLB, reloading the APIC access page will
6634 			 * only do so if its physical address has changed, but
6635 			 * the guest may have inserted a non-APIC mapping into
6636 			 * the TLB while the APIC access page was disabled.
6637 			 */
6638 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6639 		}
6640 		break;
6641 	case LAPIC_MODE_X2APIC:
6642 		if (cpu_has_vmx_virtualize_x2apic_mode())
6643 			sec_exec_control |=
6644 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6645 		break;
6646 	}
6647 	secondary_exec_controls_set(vmx, sec_exec_control);
6648 
6649 	vmx_update_msr_bitmap_x2apic(vcpu);
6650 }
6651 
6652 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6653 {
6654 	struct page *page;
6655 
6656 	/* Defer reload until vmcs01 is the current VMCS. */
6657 	if (is_guest_mode(vcpu)) {
6658 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6659 		return;
6660 	}
6661 
6662 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6663 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6664 		return;
6665 
6666 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6667 	if (is_error_page(page))
6668 		return;
6669 
6670 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6671 	vmx_flush_tlb_current(vcpu);
6672 
6673 	/*
6674 	 * Do not pin apic access page in memory, the MMU notifier
6675 	 * will call us again if it is migrated or swapped out.
6676 	 */
6677 	put_page(page);
6678 }
6679 
6680 static void vmx_hwapic_isr_update(int max_isr)
6681 {
6682 	u16 status;
6683 	u8 old;
6684 
6685 	if (max_isr == -1)
6686 		max_isr = 0;
6687 
6688 	status = vmcs_read16(GUEST_INTR_STATUS);
6689 	old = status >> 8;
6690 	if (max_isr != old) {
6691 		status &= 0xff;
6692 		status |= max_isr << 8;
6693 		vmcs_write16(GUEST_INTR_STATUS, status);
6694 	}
6695 }
6696 
6697 static void vmx_set_rvi(int vector)
6698 {
6699 	u16 status;
6700 	u8 old;
6701 
6702 	if (vector == -1)
6703 		vector = 0;
6704 
6705 	status = vmcs_read16(GUEST_INTR_STATUS);
6706 	old = (u8)status & 0xff;
6707 	if ((u8)vector != old) {
6708 		status &= ~0xff;
6709 		status |= (u8)vector;
6710 		vmcs_write16(GUEST_INTR_STATUS, status);
6711 	}
6712 }
6713 
6714 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6715 {
6716 	/*
6717 	 * When running L2, updating RVI is only relevant when
6718 	 * vmcs12 virtual-interrupt-delivery enabled.
6719 	 * However, it can be enabled only when L1 also
6720 	 * intercepts external-interrupts and in that case
6721 	 * we should not update vmcs02 RVI but instead intercept
6722 	 * interrupt. Therefore, do nothing when running L2.
6723 	 */
6724 	if (!is_guest_mode(vcpu))
6725 		vmx_set_rvi(max_irr);
6726 }
6727 
6728 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6729 {
6730 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6731 	int max_irr;
6732 	bool got_posted_interrupt;
6733 
6734 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6735 		return -EIO;
6736 
6737 	if (pi_test_on(&vmx->pi_desc)) {
6738 		pi_clear_on(&vmx->pi_desc);
6739 		/*
6740 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6741 		 * But on x86 this is just a compiler barrier anyway.
6742 		 */
6743 		smp_mb__after_atomic();
6744 		got_posted_interrupt =
6745 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6746 	} else {
6747 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6748 		got_posted_interrupt = false;
6749 	}
6750 
6751 	/*
6752 	 * Newly recognized interrupts are injected via either virtual interrupt
6753 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6754 	 * disabled in two cases:
6755 	 *
6756 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6757 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6758 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6759 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6760 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6761 	 *
6762 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6763 	 * attempt to post interrupts.  The posted interrupt vector will cause
6764 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6765 	 */
6766 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6767 		vmx_set_rvi(max_irr);
6768 	else if (got_posted_interrupt)
6769 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6770 
6771 	return max_irr;
6772 }
6773 
6774 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6775 {
6776 	if (!kvm_vcpu_apicv_active(vcpu))
6777 		return;
6778 
6779 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6780 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6781 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6782 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6783 }
6784 
6785 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6786 {
6787 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6788 
6789 	pi_clear_on(&vmx->pi_desc);
6790 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6791 }
6792 
6793 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6794 
6795 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6796 					unsigned long entry)
6797 {
6798 	bool is_nmi = entry == (unsigned long)asm_exc_nmi_noist;
6799 
6800 	kvm_before_interrupt(vcpu, is_nmi ? KVM_HANDLING_NMI : KVM_HANDLING_IRQ);
6801 	vmx_do_interrupt_nmi_irqoff(entry);
6802 	kvm_after_interrupt(vcpu);
6803 }
6804 
6805 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6806 {
6807 	/*
6808 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6809 	 * MSR value is not clobbered by the host activity before the guest
6810 	 * has chance to consume it.
6811 	 *
6812 	 * Do not blindly read xfd_err here, since this exception might
6813 	 * be caused by L1 interception on a platform which doesn't
6814 	 * support xfd at all.
6815 	 *
6816 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6817 	 * only when xfd contains a non-zero value.
6818 	 *
6819 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6820 	 */
6821 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6822 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6823 }
6824 
6825 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6826 {
6827 	const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6828 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6829 
6830 	/* if exit due to PF check for async PF */
6831 	if (is_page_fault(intr_info))
6832 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6833 	/* if exit due to NM, handle before interrupts are enabled */
6834 	else if (is_nm_fault(intr_info))
6835 		handle_nm_fault_irqoff(&vmx->vcpu);
6836 	/* Handle machine checks before interrupts are enabled */
6837 	else if (is_machine_check(intr_info))
6838 		kvm_machine_check();
6839 	/* We need to handle NMIs before interrupts are enabled */
6840 	else if (is_nmi(intr_info))
6841 		handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6842 }
6843 
6844 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6845 {
6846 	u32 intr_info = vmx_get_intr_info(vcpu);
6847 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6848 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6849 
6850 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6851 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6852 		return;
6853 
6854 	handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6855 	vcpu->arch.at_instruction_boundary = true;
6856 }
6857 
6858 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6859 {
6860 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6861 
6862 	if (vmx->emulation_required)
6863 		return;
6864 
6865 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6866 		handle_external_interrupt_irqoff(vcpu);
6867 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6868 		handle_exception_nmi_irqoff(vmx);
6869 }
6870 
6871 /*
6872  * The kvm parameter can be NULL (module initialization, or invocation before
6873  * VM creation). Be sure to check the kvm parameter before using it.
6874  */
6875 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6876 {
6877 	switch (index) {
6878 	case MSR_IA32_SMBASE:
6879 		if (!IS_ENABLED(CONFIG_KVM_SMM))
6880 			return false;
6881 		/*
6882 		 * We cannot do SMM unless we can run the guest in big
6883 		 * real mode.
6884 		 */
6885 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6886 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6887 		return nested;
6888 	case MSR_AMD64_VIRT_SPEC_CTRL:
6889 	case MSR_AMD64_TSC_RATIO:
6890 		/* This is AMD only.  */
6891 		return false;
6892 	default:
6893 		return true;
6894 	}
6895 }
6896 
6897 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6898 {
6899 	u32 exit_intr_info;
6900 	bool unblock_nmi;
6901 	u8 vector;
6902 	bool idtv_info_valid;
6903 
6904 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6905 
6906 	if (enable_vnmi) {
6907 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6908 			return;
6909 
6910 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6911 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6912 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6913 		/*
6914 		 * SDM 3: 27.7.1.2 (September 2008)
6915 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6916 		 * a guest IRET fault.
6917 		 * SDM 3: 23.2.2 (September 2008)
6918 		 * Bit 12 is undefined in any of the following cases:
6919 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6920 		 *   information field.
6921 		 *  If the VM exit is due to a double fault.
6922 		 */
6923 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6924 		    vector != DF_VECTOR && !idtv_info_valid)
6925 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6926 				      GUEST_INTR_STATE_NMI);
6927 		else
6928 			vmx->loaded_vmcs->nmi_known_unmasked =
6929 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6930 				  & GUEST_INTR_STATE_NMI);
6931 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6932 		vmx->loaded_vmcs->vnmi_blocked_time +=
6933 			ktime_to_ns(ktime_sub(ktime_get(),
6934 					      vmx->loaded_vmcs->entry_time));
6935 }
6936 
6937 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6938 				      u32 idt_vectoring_info,
6939 				      int instr_len_field,
6940 				      int error_code_field)
6941 {
6942 	u8 vector;
6943 	int type;
6944 	bool idtv_info_valid;
6945 
6946 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6947 
6948 	vcpu->arch.nmi_injected = false;
6949 	kvm_clear_exception_queue(vcpu);
6950 	kvm_clear_interrupt_queue(vcpu);
6951 
6952 	if (!idtv_info_valid)
6953 		return;
6954 
6955 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6956 
6957 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6958 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6959 
6960 	switch (type) {
6961 	case INTR_TYPE_NMI_INTR:
6962 		vcpu->arch.nmi_injected = true;
6963 		/*
6964 		 * SDM 3: 27.7.1.2 (September 2008)
6965 		 * Clear bit "block by NMI" before VM entry if a NMI
6966 		 * delivery faulted.
6967 		 */
6968 		vmx_set_nmi_mask(vcpu, false);
6969 		break;
6970 	case INTR_TYPE_SOFT_EXCEPTION:
6971 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6972 		fallthrough;
6973 	case INTR_TYPE_HARD_EXCEPTION:
6974 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6975 			u32 err = vmcs_read32(error_code_field);
6976 			kvm_requeue_exception_e(vcpu, vector, err);
6977 		} else
6978 			kvm_requeue_exception(vcpu, vector);
6979 		break;
6980 	case INTR_TYPE_SOFT_INTR:
6981 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6982 		fallthrough;
6983 	case INTR_TYPE_EXT_INTR:
6984 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6985 		break;
6986 	default:
6987 		break;
6988 	}
6989 }
6990 
6991 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6992 {
6993 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6994 				  VM_EXIT_INSTRUCTION_LEN,
6995 				  IDT_VECTORING_ERROR_CODE);
6996 }
6997 
6998 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6999 {
7000 	__vmx_complete_interrupts(vcpu,
7001 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7002 				  VM_ENTRY_INSTRUCTION_LEN,
7003 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7004 
7005 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7006 }
7007 
7008 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7009 {
7010 	int i, nr_msrs;
7011 	struct perf_guest_switch_msr *msrs;
7012 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7013 
7014 	pmu->host_cross_mapped_mask = 0;
7015 	if (pmu->pebs_enable & pmu->global_ctrl)
7016 		intel_pmu_cross_mapped_check(pmu);
7017 
7018 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7019 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7020 	if (!msrs)
7021 		return;
7022 
7023 	for (i = 0; i < nr_msrs; i++)
7024 		if (msrs[i].host == msrs[i].guest)
7025 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7026 		else
7027 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7028 					msrs[i].host, false);
7029 }
7030 
7031 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
7032 {
7033 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7034 	u64 tscl;
7035 	u32 delta_tsc;
7036 
7037 	if (vmx->req_immediate_exit) {
7038 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7039 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7040 	} else if (vmx->hv_deadline_tsc != -1) {
7041 		tscl = rdtsc();
7042 		if (vmx->hv_deadline_tsc > tscl)
7043 			/* set_hv_timer ensures the delta fits in 32-bits */
7044 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7045 				cpu_preemption_timer_multi);
7046 		else
7047 			delta_tsc = 0;
7048 
7049 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7050 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7051 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7052 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7053 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7054 	}
7055 }
7056 
7057 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7058 {
7059 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7060 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7061 		vmcs_writel(HOST_RSP, host_rsp);
7062 	}
7063 }
7064 
7065 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7066 					unsigned int flags)
7067 {
7068 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7069 
7070 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7071 		return;
7072 
7073 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7074 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7075 
7076 	/*
7077 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7078 	 *
7079 	 * For legacy IBRS, the IBRS bit always needs to be written after
7080 	 * transitioning from a less privileged predictor mode, regardless of
7081 	 * whether the guest/host values differ.
7082 	 */
7083 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7084 	    vmx->spec_ctrl != hostval)
7085 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7086 
7087 	barrier_nospec();
7088 }
7089 
7090 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7091 {
7092 	switch (to_vmx(vcpu)->exit_reason.basic) {
7093 	case EXIT_REASON_MSR_WRITE:
7094 		return handle_fastpath_set_msr_irqoff(vcpu);
7095 	case EXIT_REASON_PREEMPTION_TIMER:
7096 		return handle_fastpath_preemption_timer(vcpu);
7097 	default:
7098 		return EXIT_FASTPATH_NONE;
7099 	}
7100 }
7101 
7102 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7103 					struct vcpu_vmx *vmx,
7104 					unsigned long flags)
7105 {
7106 	guest_state_enter_irqoff();
7107 
7108 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
7109 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7110 		vmx_l1d_flush(vcpu);
7111 	else if (static_branch_unlikely(&mds_user_clear))
7112 		mds_clear_cpu_buffers();
7113 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7114 		 kvm_arch_has_assigned_device(vcpu->kvm))
7115 		mds_clear_cpu_buffers();
7116 
7117 	vmx_disable_fb_clear(vmx);
7118 
7119 	if (vcpu->arch.cr2 != native_read_cr2())
7120 		native_write_cr2(vcpu->arch.cr2);
7121 
7122 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7123 				   flags);
7124 
7125 	vcpu->arch.cr2 = native_read_cr2();
7126 
7127 	vmx_enable_fb_clear(vmx);
7128 
7129 	guest_state_exit_irqoff();
7130 }
7131 
7132 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7133 {
7134 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7135 	unsigned long cr3, cr4;
7136 
7137 	/* Record the guest's net vcpu time for enforced NMI injections. */
7138 	if (unlikely(!enable_vnmi &&
7139 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7140 		vmx->loaded_vmcs->entry_time = ktime_get();
7141 
7142 	/*
7143 	 * Don't enter VMX if guest state is invalid, let the exit handler
7144 	 * start emulation until we arrive back to a valid state.  Synthesize a
7145 	 * consistency check VM-Exit due to invalid guest state and bail.
7146 	 */
7147 	if (unlikely(vmx->emulation_required)) {
7148 		vmx->fail = 0;
7149 
7150 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7151 		vmx->exit_reason.failed_vmentry = 1;
7152 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7153 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7154 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7155 		vmx->exit_intr_info = 0;
7156 		return EXIT_FASTPATH_NONE;
7157 	}
7158 
7159 	trace_kvm_entry(vcpu);
7160 
7161 	if (vmx->ple_window_dirty) {
7162 		vmx->ple_window_dirty = false;
7163 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7164 	}
7165 
7166 	/*
7167 	 * We did this in prepare_switch_to_guest, because it needs to
7168 	 * be within srcu_read_lock.
7169 	 */
7170 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7171 
7172 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7173 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7174 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7175 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7176 	vcpu->arch.regs_dirty = 0;
7177 
7178 	/*
7179 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7180 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7181 	 * it switches back to the current->mm, which can occur in KVM context
7182 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7183 	 * toggles a static key while handling a VM-Exit.
7184 	 */
7185 	cr3 = __get_current_cr3_fast();
7186 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7187 		vmcs_writel(HOST_CR3, cr3);
7188 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7189 	}
7190 
7191 	cr4 = cr4_read_shadow();
7192 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7193 		vmcs_writel(HOST_CR4, cr4);
7194 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7195 	}
7196 
7197 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7198 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7199 		set_debugreg(vcpu->arch.dr6, 6);
7200 
7201 	/* When single-stepping over STI and MOV SS, we must clear the
7202 	 * corresponding interruptibility bits in the guest state. Otherwise
7203 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7204 	 * exceptions being set, but that's not correct for the guest debugging
7205 	 * case. */
7206 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7207 		vmx_set_interrupt_shadow(vcpu, 0);
7208 
7209 	kvm_load_guest_xsave_state(vcpu);
7210 
7211 	pt_guest_enter(vmx);
7212 
7213 	atomic_switch_perf_msrs(vmx);
7214 	if (intel_pmu_lbr_is_enabled(vcpu))
7215 		vmx_passthrough_lbr_msrs(vcpu);
7216 
7217 	if (enable_preemption_timer)
7218 		vmx_update_hv_timer(vcpu);
7219 
7220 	kvm_wait_lapic_expire(vcpu);
7221 
7222 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7223 	vmx_vcpu_enter_exit(vcpu, vmx, __vmx_vcpu_run_flags(vmx));
7224 
7225 	/* All fields are clean at this point */
7226 	if (static_branch_unlikely(&enable_evmcs)) {
7227 		current_evmcs->hv_clean_fields |=
7228 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7229 
7230 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7231 	}
7232 
7233 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7234 	if (vmx->host_debugctlmsr)
7235 		update_debugctlmsr(vmx->host_debugctlmsr);
7236 
7237 #ifndef CONFIG_X86_64
7238 	/*
7239 	 * The sysexit path does not restore ds/es, so we must set them to
7240 	 * a reasonable value ourselves.
7241 	 *
7242 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7243 	 * function may be executed in interrupt context, which saves and
7244 	 * restore segments around it, nullifying its effect.
7245 	 */
7246 	loadsegment(ds, __USER_DS);
7247 	loadsegment(es, __USER_DS);
7248 #endif
7249 
7250 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7251 
7252 	pt_guest_exit(vmx);
7253 
7254 	kvm_load_host_xsave_state(vcpu);
7255 
7256 	if (is_guest_mode(vcpu)) {
7257 		/*
7258 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7259 		 * checking.
7260 		 */
7261 		if (vmx->nested.nested_run_pending &&
7262 		    !vmx->exit_reason.failed_vmentry)
7263 			++vcpu->stat.nested_run;
7264 
7265 		vmx->nested.nested_run_pending = 0;
7266 	}
7267 
7268 	vmx->idt_vectoring_info = 0;
7269 
7270 	if (unlikely(vmx->fail)) {
7271 		vmx->exit_reason.full = 0xdead;
7272 		return EXIT_FASTPATH_NONE;
7273 	}
7274 
7275 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7276 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7277 		kvm_machine_check();
7278 
7279 	if (likely(!vmx->exit_reason.failed_vmentry))
7280 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7281 
7282 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7283 
7284 	if (unlikely(vmx->exit_reason.failed_vmentry))
7285 		return EXIT_FASTPATH_NONE;
7286 
7287 	vmx->loaded_vmcs->launched = 1;
7288 
7289 	vmx_recover_nmi_blocking(vmx);
7290 	vmx_complete_interrupts(vmx);
7291 
7292 	if (is_guest_mode(vcpu))
7293 		return EXIT_FASTPATH_NONE;
7294 
7295 	return vmx_exit_handlers_fastpath(vcpu);
7296 }
7297 
7298 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7299 {
7300 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7301 
7302 	if (enable_pml)
7303 		vmx_destroy_pml_buffer(vmx);
7304 	free_vpid(vmx->vpid);
7305 	nested_vmx_free_vcpu(vcpu);
7306 	free_loaded_vmcs(vmx->loaded_vmcs);
7307 }
7308 
7309 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7310 {
7311 	struct vmx_uret_msr *tsx_ctrl;
7312 	struct vcpu_vmx *vmx;
7313 	int i, err;
7314 
7315 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7316 	vmx = to_vmx(vcpu);
7317 
7318 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7319 
7320 	err = -ENOMEM;
7321 
7322 	vmx->vpid = allocate_vpid();
7323 
7324 	/*
7325 	 * If PML is turned on, failure on enabling PML just results in failure
7326 	 * of creating the vcpu, therefore we can simplify PML logic (by
7327 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7328 	 * for the guest), etc.
7329 	 */
7330 	if (enable_pml) {
7331 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7332 		if (!vmx->pml_pg)
7333 			goto free_vpid;
7334 	}
7335 
7336 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7337 		vmx->guest_uret_msrs[i].mask = -1ull;
7338 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7339 		/*
7340 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7341 		 * Keep the host value unchanged to avoid changing CPUID bits
7342 		 * under the host kernel's feet.
7343 		 */
7344 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7345 		if (tsx_ctrl)
7346 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7347 	}
7348 
7349 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7350 	if (err < 0)
7351 		goto free_pml;
7352 
7353 	/*
7354 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7355 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7356 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7357 	 * performance benefits from enabling it for vmcs02.
7358 	 */
7359 	if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) &&
7360 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7361 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7362 
7363 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7364 	}
7365 
7366 	/* The MSR bitmap starts with all ones */
7367 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7368 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7369 
7370 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7371 #ifdef CONFIG_X86_64
7372 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7373 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7374 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7375 #endif
7376 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7377 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7378 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7379 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7380 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7381 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7382 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7383 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7384 	}
7385 
7386 	vmx->loaded_vmcs = &vmx->vmcs01;
7387 
7388 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7389 		err = alloc_apic_access_page(vcpu->kvm);
7390 		if (err)
7391 			goto free_vmcs;
7392 	}
7393 
7394 	if (enable_ept && !enable_unrestricted_guest) {
7395 		err = init_rmode_identity_map(vcpu->kvm);
7396 		if (err)
7397 			goto free_vmcs;
7398 	}
7399 
7400 	if (vmx_can_use_ipiv(vcpu))
7401 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7402 			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7403 
7404 	return 0;
7405 
7406 free_vmcs:
7407 	free_loaded_vmcs(vmx->loaded_vmcs);
7408 free_pml:
7409 	vmx_destroy_pml_buffer(vmx);
7410 free_vpid:
7411 	free_vpid(vmx->vpid);
7412 	return err;
7413 }
7414 
7415 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7416 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7417 
7418 static int vmx_vm_init(struct kvm *kvm)
7419 {
7420 	if (!ple_gap)
7421 		kvm->arch.pause_in_guest = true;
7422 
7423 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7424 		switch (l1tf_mitigation) {
7425 		case L1TF_MITIGATION_OFF:
7426 		case L1TF_MITIGATION_FLUSH_NOWARN:
7427 			/* 'I explicitly don't care' is set */
7428 			break;
7429 		case L1TF_MITIGATION_FLUSH:
7430 		case L1TF_MITIGATION_FLUSH_NOSMT:
7431 		case L1TF_MITIGATION_FULL:
7432 			/*
7433 			 * Warn upon starting the first VM in a potentially
7434 			 * insecure environment.
7435 			 */
7436 			if (sched_smt_active())
7437 				pr_warn_once(L1TF_MSG_SMT);
7438 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7439 				pr_warn_once(L1TF_MSG_L1D);
7440 			break;
7441 		case L1TF_MITIGATION_FULL_FORCE:
7442 			/* Flush is enforced */
7443 			break;
7444 		}
7445 	}
7446 	return 0;
7447 }
7448 
7449 static int __init vmx_check_processor_compat(void)
7450 {
7451 	struct vmcs_config vmcs_conf;
7452 	struct vmx_capability vmx_cap;
7453 
7454 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7455 	    !this_cpu_has(X86_FEATURE_VMX)) {
7456 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7457 		return -EIO;
7458 	}
7459 
7460 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7461 		return -EIO;
7462 	if (nested)
7463 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
7464 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7465 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7466 				smp_processor_id());
7467 		return -EIO;
7468 	}
7469 	return 0;
7470 }
7471 
7472 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7473 {
7474 	u8 cache;
7475 
7476 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7477 	 * memory aliases with conflicting memory types and sometimes MCEs.
7478 	 * We have to be careful as to what are honored and when.
7479 	 *
7480 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7481 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7482 	 * This was historically the source of MCEs and we want to be
7483 	 * conservative.
7484 	 *
7485 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7486 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7487 	 * EPT memory type is set to WB.  The effective memory type is forced
7488 	 * WB.
7489 	 *
7490 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7491 	 * EPT memory type is used to emulate guest CD/MTRR.
7492 	 */
7493 
7494 	if (is_mmio)
7495 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7496 
7497 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7498 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7499 
7500 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7501 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7502 			cache = MTRR_TYPE_WRBACK;
7503 		else
7504 			cache = MTRR_TYPE_UNCACHABLE;
7505 
7506 		return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7507 	}
7508 
7509 	return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7510 }
7511 
7512 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7513 {
7514 	/*
7515 	 * These bits in the secondary execution controls field
7516 	 * are dynamic, the others are mostly based on the hypervisor
7517 	 * architecture and the guest's CPUID.  Do not touch the
7518 	 * dynamic bits.
7519 	 */
7520 	u32 mask =
7521 		SECONDARY_EXEC_SHADOW_VMCS |
7522 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7523 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7524 		SECONDARY_EXEC_DESC;
7525 
7526 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7527 
7528 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7529 }
7530 
7531 /*
7532  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7533  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7534  */
7535 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7536 {
7537 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7538 	struct kvm_cpuid_entry2 *entry;
7539 
7540 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7541 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7542 
7543 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7544 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7545 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7546 } while (0)
7547 
7548 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7549 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7550 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7551 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7552 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7553 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7554 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7555 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7556 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7557 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7558 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7559 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7560 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7561 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7562 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7563 
7564 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7565 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7566 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7567 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7568 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7569 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7570 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7571 
7572 #undef cr4_fixed1_update
7573 }
7574 
7575 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7576 {
7577 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7578 	struct kvm_cpuid_entry2 *best = NULL;
7579 	int i;
7580 
7581 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7582 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7583 		if (!best)
7584 			return;
7585 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7586 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7587 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7588 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7589 	}
7590 
7591 	/* Get the number of configurable Address Ranges for filtering */
7592 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7593 						PT_CAP_num_address_ranges);
7594 
7595 	/* Initialize and clear the no dependency bits */
7596 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7597 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7598 			RTIT_CTL_BRANCH_EN);
7599 
7600 	/*
7601 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7602 	 * will inject an #GP
7603 	 */
7604 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7605 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7606 
7607 	/*
7608 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7609 	 * PSBFreq can be set
7610 	 */
7611 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7612 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7613 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7614 
7615 	/*
7616 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7617 	 */
7618 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7619 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7620 					      RTIT_CTL_MTC_RANGE);
7621 
7622 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7623 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7624 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7625 							RTIT_CTL_PTW_EN);
7626 
7627 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7628 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7629 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7630 
7631 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7632 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7633 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7634 
7635 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7636 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7637 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7638 
7639 	/* unmask address range configure area */
7640 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7641 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7642 }
7643 
7644 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7645 {
7646 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7647 
7648 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7649 	vcpu->arch.xsaves_enabled = false;
7650 
7651 	vmx_setup_uret_msrs(vmx);
7652 
7653 	if (cpu_has_secondary_exec_ctrls())
7654 		vmcs_set_secondary_exec_control(vmx,
7655 						vmx_secondary_exec_control(vmx));
7656 
7657 	if (nested_vmx_allowed(vcpu))
7658 		vmx->msr_ia32_feature_control_valid_bits |=
7659 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7660 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7661 	else
7662 		vmx->msr_ia32_feature_control_valid_bits &=
7663 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7664 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7665 
7666 	if (nested_vmx_allowed(vcpu))
7667 		nested_vmx_cr_fixed1_bits_update(vcpu);
7668 
7669 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7670 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7671 		update_intel_pt_cfg(vcpu);
7672 
7673 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7674 		struct vmx_uret_msr *msr;
7675 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7676 		if (msr) {
7677 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7678 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7679 		}
7680 	}
7681 
7682 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7683 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7684 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7685 
7686 
7687 	set_cr4_guest_host_mask(vmx);
7688 
7689 	vmx_write_encls_bitmap(vcpu, NULL);
7690 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7691 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7692 	else
7693 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7694 
7695 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7696 		vmx->msr_ia32_feature_control_valid_bits |=
7697 			FEAT_CTL_SGX_LC_ENABLED;
7698 	else
7699 		vmx->msr_ia32_feature_control_valid_bits &=
7700 			~FEAT_CTL_SGX_LC_ENABLED;
7701 
7702 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7703 	vmx_update_exception_bitmap(vcpu);
7704 }
7705 
7706 static u64 vmx_get_perf_capabilities(void)
7707 {
7708 	u64 perf_cap = PMU_CAP_FW_WRITES;
7709 	struct x86_pmu_lbr lbr;
7710 	u64 host_perf_cap = 0;
7711 
7712 	if (!enable_pmu)
7713 		return 0;
7714 
7715 	if (boot_cpu_has(X86_FEATURE_PDCM))
7716 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7717 
7718 	x86_perf_get_lbr(&lbr);
7719 	if (lbr.nr)
7720 		perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7721 
7722 	if (vmx_pebs_supported()) {
7723 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7724 		if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4)
7725 			perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7726 	}
7727 
7728 	return perf_cap;
7729 }
7730 
7731 static __init void vmx_set_cpu_caps(void)
7732 {
7733 	kvm_set_cpu_caps();
7734 
7735 	/* CPUID 0x1 */
7736 	if (nested)
7737 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7738 
7739 	/* CPUID 0x7 */
7740 	if (kvm_mpx_supported())
7741 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7742 	if (!cpu_has_vmx_invpcid())
7743 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7744 	if (vmx_pt_mode_is_host_guest())
7745 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7746 	if (vmx_pebs_supported()) {
7747 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7748 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7749 	}
7750 
7751 	if (!enable_pmu)
7752 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7753 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7754 
7755 	if (!enable_sgx) {
7756 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7757 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7758 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7759 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7760 	}
7761 
7762 	if (vmx_umip_emulated())
7763 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7764 
7765 	/* CPUID 0xD.1 */
7766 	kvm_caps.supported_xss = 0;
7767 	if (!cpu_has_vmx_xsaves())
7768 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7769 
7770 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7771 	if (!cpu_has_vmx_rdtscp()) {
7772 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7773 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7774 	}
7775 
7776 	if (cpu_has_vmx_waitpkg())
7777 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7778 }
7779 
7780 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7781 {
7782 	to_vmx(vcpu)->req_immediate_exit = true;
7783 }
7784 
7785 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7786 				  struct x86_instruction_info *info)
7787 {
7788 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7789 	unsigned short port;
7790 	bool intercept;
7791 	int size;
7792 
7793 	if (info->intercept == x86_intercept_in ||
7794 	    info->intercept == x86_intercept_ins) {
7795 		port = info->src_val;
7796 		size = info->dst_bytes;
7797 	} else {
7798 		port = info->dst_val;
7799 		size = info->src_bytes;
7800 	}
7801 
7802 	/*
7803 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7804 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7805 	 * control.
7806 	 *
7807 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7808 	 */
7809 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7810 		intercept = nested_cpu_has(vmcs12,
7811 					   CPU_BASED_UNCOND_IO_EXITING);
7812 	else
7813 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7814 
7815 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7816 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7817 }
7818 
7819 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7820 			       struct x86_instruction_info *info,
7821 			       enum x86_intercept_stage stage,
7822 			       struct x86_exception *exception)
7823 {
7824 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7825 
7826 	switch (info->intercept) {
7827 	/*
7828 	 * RDPID causes #UD if disabled through secondary execution controls.
7829 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7830 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7831 	 */
7832 	case x86_intercept_rdpid:
7833 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7834 			exception->vector = UD_VECTOR;
7835 			exception->error_code_valid = false;
7836 			return X86EMUL_PROPAGATE_FAULT;
7837 		}
7838 		break;
7839 
7840 	case x86_intercept_in:
7841 	case x86_intercept_ins:
7842 	case x86_intercept_out:
7843 	case x86_intercept_outs:
7844 		return vmx_check_intercept_io(vcpu, info);
7845 
7846 	case x86_intercept_lgdt:
7847 	case x86_intercept_lidt:
7848 	case x86_intercept_lldt:
7849 	case x86_intercept_ltr:
7850 	case x86_intercept_sgdt:
7851 	case x86_intercept_sidt:
7852 	case x86_intercept_sldt:
7853 	case x86_intercept_str:
7854 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7855 			return X86EMUL_CONTINUE;
7856 
7857 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7858 		break;
7859 
7860 	/* TODO: check more intercepts... */
7861 	default:
7862 		break;
7863 	}
7864 
7865 	return X86EMUL_UNHANDLEABLE;
7866 }
7867 
7868 #ifdef CONFIG_X86_64
7869 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7870 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7871 				  u64 divisor, u64 *result)
7872 {
7873 	u64 low = a << shift, high = a >> (64 - shift);
7874 
7875 	/* To avoid the overflow on divq */
7876 	if (high >= divisor)
7877 		return 1;
7878 
7879 	/* Low hold the result, high hold rem which is discarded */
7880 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7881 	    "rm" (divisor), "0" (low), "1" (high));
7882 	*result = low;
7883 
7884 	return 0;
7885 }
7886 
7887 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7888 			    bool *expired)
7889 {
7890 	struct vcpu_vmx *vmx;
7891 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7892 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7893 
7894 	vmx = to_vmx(vcpu);
7895 	tscl = rdtsc();
7896 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7897 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7898 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7899 						    ktimer->timer_advance_ns);
7900 
7901 	if (delta_tsc > lapic_timer_advance_cycles)
7902 		delta_tsc -= lapic_timer_advance_cycles;
7903 	else
7904 		delta_tsc = 0;
7905 
7906 	/* Convert to host delta tsc if tsc scaling is enabled */
7907 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
7908 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7909 				kvm_caps.tsc_scaling_ratio_frac_bits,
7910 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7911 		return -ERANGE;
7912 
7913 	/*
7914 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7915 	 * we can't use the preemption timer.
7916 	 * It's possible that it fits on later vmentries, but checking
7917 	 * on every vmentry is costly so we just use an hrtimer.
7918 	 */
7919 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7920 		return -ERANGE;
7921 
7922 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7923 	*expired = !delta_tsc;
7924 	return 0;
7925 }
7926 
7927 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7928 {
7929 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7930 }
7931 #endif
7932 
7933 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7934 {
7935 	if (!kvm_pause_in_guest(vcpu->kvm))
7936 		shrink_ple_window(vcpu);
7937 }
7938 
7939 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7940 {
7941 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7942 
7943 	if (is_guest_mode(vcpu)) {
7944 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7945 		return;
7946 	}
7947 
7948 	/*
7949 	 * Note, cpu_dirty_logging_count can be changed concurrent with this
7950 	 * code, but in that case another update request will be made and so
7951 	 * the guest will never run with a stale PML value.
7952 	 */
7953 	if (vcpu->kvm->arch.cpu_dirty_logging_count)
7954 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7955 	else
7956 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7957 }
7958 
7959 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7960 {
7961 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7962 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7963 			FEAT_CTL_LMCE_ENABLED;
7964 	else
7965 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7966 			~FEAT_CTL_LMCE_ENABLED;
7967 }
7968 
7969 #ifdef CONFIG_KVM_SMM
7970 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7971 {
7972 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7973 	if (to_vmx(vcpu)->nested.nested_run_pending)
7974 		return -EBUSY;
7975 	return !is_smm(vcpu);
7976 }
7977 
7978 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
7979 {
7980 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7981 
7982 	/*
7983 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
7984 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
7985 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
7986 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
7987 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
7988 	 */
7989 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7990 	if (vmx->nested.smm.guest_mode)
7991 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7992 
7993 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7994 	vmx->nested.vmxon = false;
7995 	vmx_clear_hlt(vcpu);
7996 	return 0;
7997 }
7998 
7999 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8000 {
8001 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8002 	int ret;
8003 
8004 	if (vmx->nested.smm.vmxon) {
8005 		vmx->nested.vmxon = true;
8006 		vmx->nested.smm.vmxon = false;
8007 	}
8008 
8009 	if (vmx->nested.smm.guest_mode) {
8010 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8011 		if (ret)
8012 			return ret;
8013 
8014 		vmx->nested.nested_run_pending = 1;
8015 		vmx->nested.smm.guest_mode = false;
8016 	}
8017 	return 0;
8018 }
8019 
8020 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8021 {
8022 	/* RSM will cause a vmexit anyway.  */
8023 }
8024 #endif
8025 
8026 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8027 {
8028 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8029 }
8030 
8031 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8032 {
8033 	if (is_guest_mode(vcpu)) {
8034 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8035 
8036 		if (hrtimer_try_to_cancel(timer) == 1)
8037 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8038 	}
8039 }
8040 
8041 static void vmx_hardware_unsetup(void)
8042 {
8043 	kvm_set_posted_intr_wakeup_handler(NULL);
8044 
8045 	if (nested)
8046 		nested_vmx_hardware_unsetup();
8047 
8048 	free_kvm_area();
8049 }
8050 
8051 static bool vmx_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason)
8052 {
8053 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
8054 			  BIT(APICV_INHIBIT_REASON_ABSENT) |
8055 			  BIT(APICV_INHIBIT_REASON_HYPERV) |
8056 			  BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |
8057 			  BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |
8058 			  BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
8059 
8060 	return supported & BIT(reason);
8061 }
8062 
8063 static void vmx_vm_destroy(struct kvm *kvm)
8064 {
8065 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8066 
8067 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8068 }
8069 
8070 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8071 	.name = "kvm_intel",
8072 
8073 	.hardware_unsetup = vmx_hardware_unsetup,
8074 
8075 	.hardware_enable = vmx_hardware_enable,
8076 	.hardware_disable = vmx_hardware_disable,
8077 	.has_emulated_msr = vmx_has_emulated_msr,
8078 
8079 	.vm_size = sizeof(struct kvm_vmx),
8080 	.vm_init = vmx_vm_init,
8081 	.vm_destroy = vmx_vm_destroy,
8082 
8083 	.vcpu_precreate = vmx_vcpu_precreate,
8084 	.vcpu_create = vmx_vcpu_create,
8085 	.vcpu_free = vmx_vcpu_free,
8086 	.vcpu_reset = vmx_vcpu_reset,
8087 
8088 	.prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8089 	.vcpu_load = vmx_vcpu_load,
8090 	.vcpu_put = vmx_vcpu_put,
8091 
8092 	.update_exception_bitmap = vmx_update_exception_bitmap,
8093 	.get_msr_feature = vmx_get_msr_feature,
8094 	.get_msr = vmx_get_msr,
8095 	.set_msr = vmx_set_msr,
8096 	.get_segment_base = vmx_get_segment_base,
8097 	.get_segment = vmx_get_segment,
8098 	.set_segment = vmx_set_segment,
8099 	.get_cpl = vmx_get_cpl,
8100 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8101 	.set_cr0 = vmx_set_cr0,
8102 	.is_valid_cr4 = vmx_is_valid_cr4,
8103 	.set_cr4 = vmx_set_cr4,
8104 	.set_efer = vmx_set_efer,
8105 	.get_idt = vmx_get_idt,
8106 	.set_idt = vmx_set_idt,
8107 	.get_gdt = vmx_get_gdt,
8108 	.set_gdt = vmx_set_gdt,
8109 	.set_dr7 = vmx_set_dr7,
8110 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8111 	.cache_reg = vmx_cache_reg,
8112 	.get_rflags = vmx_get_rflags,
8113 	.set_rflags = vmx_set_rflags,
8114 	.get_if_flag = vmx_get_if_flag,
8115 
8116 	.flush_tlb_all = vmx_flush_tlb_all,
8117 	.flush_tlb_current = vmx_flush_tlb_current,
8118 	.flush_tlb_gva = vmx_flush_tlb_gva,
8119 	.flush_tlb_guest = vmx_flush_tlb_guest,
8120 
8121 	.vcpu_pre_run = vmx_vcpu_pre_run,
8122 	.vcpu_run = vmx_vcpu_run,
8123 	.handle_exit = vmx_handle_exit,
8124 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
8125 	.update_emulated_instruction = vmx_update_emulated_instruction,
8126 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
8127 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
8128 	.patch_hypercall = vmx_patch_hypercall,
8129 	.inject_irq = vmx_inject_irq,
8130 	.inject_nmi = vmx_inject_nmi,
8131 	.inject_exception = vmx_inject_exception,
8132 	.cancel_injection = vmx_cancel_injection,
8133 	.interrupt_allowed = vmx_interrupt_allowed,
8134 	.nmi_allowed = vmx_nmi_allowed,
8135 	.get_nmi_mask = vmx_get_nmi_mask,
8136 	.set_nmi_mask = vmx_set_nmi_mask,
8137 	.enable_nmi_window = vmx_enable_nmi_window,
8138 	.enable_irq_window = vmx_enable_irq_window,
8139 	.update_cr8_intercept = vmx_update_cr8_intercept,
8140 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8141 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8142 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8143 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
8144 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
8145 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
8146 	.hwapic_irr_update = vmx_hwapic_irr_update,
8147 	.hwapic_isr_update = vmx_hwapic_isr_update,
8148 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8149 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
8150 	.deliver_interrupt = vmx_deliver_interrupt,
8151 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8152 
8153 	.set_tss_addr = vmx_set_tss_addr,
8154 	.set_identity_map_addr = vmx_set_identity_map_addr,
8155 	.get_mt_mask = vmx_get_mt_mask,
8156 
8157 	.get_exit_info = vmx_get_exit_info,
8158 
8159 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8160 
8161 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8162 
8163 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8164 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8165 	.write_tsc_offset = vmx_write_tsc_offset,
8166 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
8167 
8168 	.load_mmu_pgd = vmx_load_mmu_pgd,
8169 
8170 	.check_intercept = vmx_check_intercept,
8171 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
8172 
8173 	.request_immediate_exit = vmx_request_immediate_exit,
8174 
8175 	.sched_in = vmx_sched_in,
8176 
8177 	.cpu_dirty_log_size = PML_ENTITY_NUM,
8178 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8179 
8180 	.nested_ops = &vmx_nested_ops,
8181 
8182 	.pi_update_irte = vmx_pi_update_irte,
8183 	.pi_start_assignment = vmx_pi_start_assignment,
8184 
8185 #ifdef CONFIG_X86_64
8186 	.set_hv_timer = vmx_set_hv_timer,
8187 	.cancel_hv_timer = vmx_cancel_hv_timer,
8188 #endif
8189 
8190 	.setup_mce = vmx_setup_mce,
8191 
8192 #ifdef CONFIG_KVM_SMM
8193 	.smi_allowed = vmx_smi_allowed,
8194 	.enter_smm = vmx_enter_smm,
8195 	.leave_smm = vmx_leave_smm,
8196 	.enable_smi_window = vmx_enable_smi_window,
8197 #endif
8198 
8199 	.can_emulate_instruction = vmx_can_emulate_instruction,
8200 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8201 	.migrate_timers = vmx_migrate_timers,
8202 
8203 	.msr_filter_changed = vmx_msr_filter_changed,
8204 	.complete_emulated_msr = kvm_complete_insn_gp,
8205 
8206 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8207 };
8208 
8209 static unsigned int vmx_handle_intel_pt_intr(void)
8210 {
8211 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8212 
8213 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8214 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8215 		return 0;
8216 
8217 	kvm_make_request(KVM_REQ_PMI, vcpu);
8218 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8219 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8220 	return 1;
8221 }
8222 
8223 static __init void vmx_setup_user_return_msrs(void)
8224 {
8225 
8226 	/*
8227 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8228 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8229 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8230 	 * support this emulation, MSR_STAR is included in the list for i386,
8231 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8232 	 * into hardware and is here purely for emulation purposes.
8233 	 */
8234 	const u32 vmx_uret_msrs_list[] = {
8235 	#ifdef CONFIG_X86_64
8236 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8237 	#endif
8238 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8239 		MSR_IA32_TSX_CTRL,
8240 	};
8241 	int i;
8242 
8243 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8244 
8245 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8246 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8247 }
8248 
8249 static void __init vmx_setup_me_spte_mask(void)
8250 {
8251 	u64 me_mask = 0;
8252 
8253 	/*
8254 	 * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
8255 	 * the former to avoid exposing shadow_phys_bits.
8256 	 *
8257 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8258 	 * shadow_phys_bits.  On MKTME and/or TDX capable systems,
8259 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8260 	 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8261 	 * reported by CPUID.  Those bits between are KeyID bits.
8262 	 */
8263 	if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8264 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8265 			kvm_get_shadow_phys_bits() - 1);
8266 	/*
8267 	 * Unlike SME, host kernel doesn't support setting up any
8268 	 * MKTME KeyID on Intel platforms.  No memory encryption
8269 	 * bits should be included into the SPTE.
8270 	 */
8271 	kvm_mmu_set_me_spte_mask(0, me_mask);
8272 }
8273 
8274 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8275 
8276 static __init int hardware_setup(void)
8277 {
8278 	unsigned long host_bndcfgs;
8279 	struct desc_ptr dt;
8280 	int r;
8281 
8282 	store_idt(&dt);
8283 	host_idt_base = dt.address;
8284 
8285 	vmx_setup_user_return_msrs();
8286 
8287 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8288 		return -EIO;
8289 
8290 	if (cpu_has_perf_global_ctrl_bug())
8291 		pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8292 			     "does not work properly. Using workaround\n");
8293 
8294 	if (boot_cpu_has(X86_FEATURE_NX))
8295 		kvm_enable_efer_bits(EFER_NX);
8296 
8297 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8298 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8299 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
8300 	}
8301 
8302 	if (!cpu_has_vmx_mpx())
8303 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8304 					     XFEATURE_MASK_BNDCSR);
8305 
8306 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8307 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8308 		enable_vpid = 0;
8309 
8310 	if (!cpu_has_vmx_ept() ||
8311 	    !cpu_has_vmx_ept_4levels() ||
8312 	    !cpu_has_vmx_ept_mt_wb() ||
8313 	    !cpu_has_vmx_invept_global())
8314 		enable_ept = 0;
8315 
8316 	/* NX support is required for shadow paging. */
8317 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8318 		pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
8319 		return -EOPNOTSUPP;
8320 	}
8321 
8322 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8323 		enable_ept_ad_bits = 0;
8324 
8325 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8326 		enable_unrestricted_guest = 0;
8327 
8328 	if (!cpu_has_vmx_flexpriority())
8329 		flexpriority_enabled = 0;
8330 
8331 	if (!cpu_has_virtual_nmis())
8332 		enable_vnmi = 0;
8333 
8334 #ifdef CONFIG_X86_SGX_KVM
8335 	if (!cpu_has_vmx_encls_vmexit())
8336 		enable_sgx = false;
8337 #endif
8338 
8339 	/*
8340 	 * set_apic_access_page_addr() is used to reload apic access
8341 	 * page upon invalidation.  No need to do anything if not
8342 	 * using the APIC_ACCESS_ADDR VMCS field.
8343 	 */
8344 	if (!flexpriority_enabled)
8345 		vmx_x86_ops.set_apic_access_page_addr = NULL;
8346 
8347 	if (!cpu_has_vmx_tpr_shadow())
8348 		vmx_x86_ops.update_cr8_intercept = NULL;
8349 
8350 #if IS_ENABLED(CONFIG_HYPERV)
8351 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8352 	    && enable_ept) {
8353 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
8354 		vmx_x86_ops.tlb_remote_flush_with_range =
8355 				hv_remote_flush_tlb_with_range;
8356 	}
8357 #endif
8358 
8359 	if (!cpu_has_vmx_ple()) {
8360 		ple_gap = 0;
8361 		ple_window = 0;
8362 		ple_window_grow = 0;
8363 		ple_window_max = 0;
8364 		ple_window_shrink = 0;
8365 	}
8366 
8367 	if (!cpu_has_vmx_apicv())
8368 		enable_apicv = 0;
8369 	if (!enable_apicv)
8370 		vmx_x86_ops.sync_pir_to_irr = NULL;
8371 
8372 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8373 		enable_ipiv = false;
8374 
8375 	if (cpu_has_vmx_tsc_scaling())
8376 		kvm_caps.has_tsc_control = true;
8377 
8378 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8379 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8380 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8381 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8382 
8383 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8384 
8385 	if (enable_ept)
8386 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8387 				      cpu_has_vmx_ept_execute_only());
8388 
8389 	/*
8390 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8391 	 * bits to shadow_zero_check.
8392 	 */
8393 	vmx_setup_me_spte_mask();
8394 
8395 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
8396 			  ept_caps_to_lpage_level(vmx_capability.ept));
8397 
8398 	/*
8399 	 * Only enable PML when hardware supports PML feature, and both EPT
8400 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8401 	 */
8402 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8403 		enable_pml = 0;
8404 
8405 	if (!enable_pml)
8406 		vmx_x86_ops.cpu_dirty_log_size = 0;
8407 
8408 	if (!cpu_has_vmx_preemption_timer())
8409 		enable_preemption_timer = false;
8410 
8411 	if (enable_preemption_timer) {
8412 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8413 
8414 		cpu_preemption_timer_multi =
8415 			vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8416 
8417 		if (tsc_khz)
8418 			use_timer_freq = (u64)tsc_khz * 1000;
8419 		use_timer_freq >>= cpu_preemption_timer_multi;
8420 
8421 		/*
8422 		 * KVM "disables" the preemption timer by setting it to its max
8423 		 * value.  Don't use the timer if it might cause spurious exits
8424 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8425 		 */
8426 		if (use_timer_freq > 0xffffffffu / 10)
8427 			enable_preemption_timer = false;
8428 	}
8429 
8430 	if (!enable_preemption_timer) {
8431 		vmx_x86_ops.set_hv_timer = NULL;
8432 		vmx_x86_ops.cancel_hv_timer = NULL;
8433 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8434 	}
8435 
8436 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8437 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8438 
8439 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8440 		return -EINVAL;
8441 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8442 		pt_mode = PT_MODE_SYSTEM;
8443 	if (pt_mode == PT_MODE_HOST_GUEST)
8444 		vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8445 	else
8446 		vmx_init_ops.handle_intel_pt_intr = NULL;
8447 
8448 	setup_default_sgx_lepubkeyhash();
8449 
8450 	if (nested) {
8451 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8452 
8453 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8454 		if (r)
8455 			return r;
8456 	}
8457 
8458 	vmx_set_cpu_caps();
8459 
8460 	r = alloc_kvm_area();
8461 	if (r && nested)
8462 		nested_vmx_hardware_unsetup();
8463 
8464 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8465 
8466 	return r;
8467 }
8468 
8469 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8470 	.cpu_has_kvm_support = cpu_has_kvm_support,
8471 	.disabled_by_bios = vmx_disabled_by_bios,
8472 	.check_processor_compatibility = vmx_check_processor_compat,
8473 	.hardware_setup = hardware_setup,
8474 	.handle_intel_pt_intr = NULL,
8475 
8476 	.runtime_ops = &vmx_x86_ops,
8477 	.pmu_ops = &intel_pmu_ops,
8478 };
8479 
8480 static void vmx_cleanup_l1d_flush(void)
8481 {
8482 	if (vmx_l1d_flush_pages) {
8483 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8484 		vmx_l1d_flush_pages = NULL;
8485 	}
8486 	/* Restore state so sysfs ignores VMX */
8487 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8488 }
8489 
8490 static void vmx_exit(void)
8491 {
8492 #ifdef CONFIG_KEXEC_CORE
8493 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8494 	synchronize_rcu();
8495 #endif
8496 
8497 	kvm_exit();
8498 
8499 #if IS_ENABLED(CONFIG_HYPERV)
8500 	if (static_branch_unlikely(&enable_evmcs)) {
8501 		int cpu;
8502 		struct hv_vp_assist_page *vp_ap;
8503 		/*
8504 		 * Reset everything to support using non-enlightened VMCS
8505 		 * access later (e.g. when we reload the module with
8506 		 * enlightened_vmcs=0)
8507 		 */
8508 		for_each_online_cpu(cpu) {
8509 			vp_ap =	hv_get_vp_assist_page(cpu);
8510 
8511 			if (!vp_ap)
8512 				continue;
8513 
8514 			vp_ap->nested_control.features.directhypercall = 0;
8515 			vp_ap->current_nested_vmcs = 0;
8516 			vp_ap->enlighten_vmentry = 0;
8517 		}
8518 
8519 		static_branch_disable(&enable_evmcs);
8520 	}
8521 #endif
8522 	vmx_cleanup_l1d_flush();
8523 
8524 	allow_smaller_maxphyaddr = false;
8525 }
8526 module_exit(vmx_exit);
8527 
8528 static int __init vmx_init(void)
8529 {
8530 	int r, cpu;
8531 
8532 #if IS_ENABLED(CONFIG_HYPERV)
8533 	/*
8534 	 * Enlightened VMCS usage should be recommended and the host needs
8535 	 * to support eVMCS v1 or above. We can also disable eVMCS support
8536 	 * with module parameter.
8537 	 */
8538 	if (enlightened_vmcs &&
8539 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8540 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8541 	    KVM_EVMCS_VERSION) {
8542 
8543 		/* Check that we have assist pages on all online CPUs */
8544 		for_each_online_cpu(cpu) {
8545 			if (!hv_get_vp_assist_page(cpu)) {
8546 				enlightened_vmcs = false;
8547 				break;
8548 			}
8549 		}
8550 
8551 		if (enlightened_vmcs) {
8552 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8553 			static_branch_enable(&enable_evmcs);
8554 		}
8555 
8556 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8557 			vmx_x86_ops.enable_l2_tlb_flush
8558 				= hv_enable_l2_tlb_flush;
8559 
8560 	} else {
8561 		enlightened_vmcs = false;
8562 	}
8563 #endif
8564 
8565 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8566 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8567 	if (r)
8568 		return r;
8569 
8570 	/*
8571 	 * Must be called after kvm_init() so enable_ept is properly set
8572 	 * up. Hand the parameter mitigation value in which was stored in
8573 	 * the pre module init parser. If no parameter was given, it will
8574 	 * contain 'auto' which will be turned into the default 'cond'
8575 	 * mitigation mode.
8576 	 */
8577 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8578 	if (r) {
8579 		vmx_exit();
8580 		return r;
8581 	}
8582 
8583 	vmx_setup_fb_clear_ctrl();
8584 
8585 	for_each_possible_cpu(cpu) {
8586 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8587 
8588 		pi_init_cpu(cpu);
8589 	}
8590 
8591 #ifdef CONFIG_KEXEC_CORE
8592 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8593 			   crash_vmclear_local_loaded_vmcss);
8594 #endif
8595 	vmx_check_vmcs12_offsets();
8596 
8597 	/*
8598 	 * Shadow paging doesn't have a (further) performance penalty
8599 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8600 	 * by default
8601 	 */
8602 	if (!enable_ept)
8603 		allow_smaller_maxphyaddr = true;
8604 
8605 	return 0;
8606 }
8607 module_init(vmx_init);
8608