1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/highmem.h> 18 #include <linux/hrtimer.h> 19 #include <linux/kernel.h> 20 #include <linux/kvm_host.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/mm.h> 25 #include <linux/objtool.h> 26 #include <linux/sched.h> 27 #include <linux/sched/smt.h> 28 #include <linux/slab.h> 29 #include <linux/tboot.h> 30 #include <linux/trace_events.h> 31 #include <linux/entry-kvm.h> 32 33 #include <asm/apic.h> 34 #include <asm/asm.h> 35 #include <asm/cpu.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/debugreg.h> 38 #include <asm/desc.h> 39 #include <asm/fpu/api.h> 40 #include <asm/fpu/xstate.h> 41 #include <asm/idtentry.h> 42 #include <asm/io.h> 43 #include <asm/irq_remapping.h> 44 #include <asm/kexec.h> 45 #include <asm/perf_event.h> 46 #include <asm/mmu_context.h> 47 #include <asm/mshyperv.h> 48 #include <asm/mwait.h> 49 #include <asm/spec-ctrl.h> 50 #include <asm/virtext.h> 51 #include <asm/vmx.h> 52 53 #include "capabilities.h" 54 #include "cpuid.h" 55 #include "hyperv.h" 56 #include "kvm_onhyperv.h" 57 #include "irq.h" 58 #include "kvm_cache_regs.h" 59 #include "lapic.h" 60 #include "mmu.h" 61 #include "nested.h" 62 #include "pmu.h" 63 #include "sgx.h" 64 #include "trace.h" 65 #include "vmcs.h" 66 #include "vmcs12.h" 67 #include "vmx.h" 68 #include "x86.h" 69 #include "smm.h" 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 #ifdef MODULE 75 static const struct x86_cpu_id vmx_cpu_id[] = { 76 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 77 {} 78 }; 79 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 80 #endif 81 82 bool __read_mostly enable_vpid = 1; 83 module_param_named(vpid, enable_vpid, bool, 0444); 84 85 static bool __read_mostly enable_vnmi = 1; 86 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 87 88 bool __read_mostly flexpriority_enabled = 1; 89 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 90 91 bool __read_mostly enable_ept = 1; 92 module_param_named(ept, enable_ept, bool, S_IRUGO); 93 94 bool __read_mostly enable_unrestricted_guest = 1; 95 module_param_named(unrestricted_guest, 96 enable_unrestricted_guest, bool, S_IRUGO); 97 98 bool __read_mostly enable_ept_ad_bits = 1; 99 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 100 101 static bool __read_mostly emulate_invalid_guest_state = true; 102 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 103 104 static bool __read_mostly fasteoi = 1; 105 module_param(fasteoi, bool, S_IRUGO); 106 107 module_param(enable_apicv, bool, S_IRUGO); 108 109 bool __read_mostly enable_ipiv = true; 110 module_param(enable_ipiv, bool, 0444); 111 112 /* 113 * If nested=1, nested virtualization is supported, i.e., guests may use 114 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 115 * use VMX instructions. 116 */ 117 static bool __read_mostly nested = 1; 118 module_param(nested, bool, S_IRUGO); 119 120 bool __read_mostly enable_pml = 1; 121 module_param_named(pml, enable_pml, bool, S_IRUGO); 122 123 static bool __read_mostly error_on_inconsistent_vmcs_config = true; 124 module_param(error_on_inconsistent_vmcs_config, bool, 0444); 125 126 static bool __read_mostly dump_invalid_vmcs = 0; 127 module_param(dump_invalid_vmcs, bool, 0644); 128 129 #define MSR_BITMAP_MODE_X2APIC 1 130 #define MSR_BITMAP_MODE_X2APIC_APICV 2 131 132 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 133 134 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 135 static int __read_mostly cpu_preemption_timer_multi; 136 static bool __read_mostly enable_preemption_timer = 1; 137 #ifdef CONFIG_X86_64 138 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 139 #endif 140 141 extern bool __read_mostly allow_smaller_maxphyaddr; 142 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 143 144 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 145 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 146 #define KVM_VM_CR0_ALWAYS_ON \ 147 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 148 149 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 150 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 151 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 152 153 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 154 155 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 156 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 157 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 158 RTIT_STATUS_BYTECNT)) 159 160 /* 161 * List of MSRs that can be directly passed to the guest. 162 * In addition to these x2apic and PT MSRs are handled specially. 163 */ 164 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 165 MSR_IA32_SPEC_CTRL, 166 MSR_IA32_PRED_CMD, 167 MSR_IA32_FLUSH_CMD, 168 MSR_IA32_TSC, 169 #ifdef CONFIG_X86_64 170 MSR_FS_BASE, 171 MSR_GS_BASE, 172 MSR_KERNEL_GS_BASE, 173 MSR_IA32_XFD, 174 MSR_IA32_XFD_ERR, 175 #endif 176 MSR_IA32_SYSENTER_CS, 177 MSR_IA32_SYSENTER_ESP, 178 MSR_IA32_SYSENTER_EIP, 179 MSR_CORE_C1_RES, 180 MSR_CORE_C3_RESIDENCY, 181 MSR_CORE_C6_RESIDENCY, 182 MSR_CORE_C7_RESIDENCY, 183 }; 184 185 /* 186 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 187 * ple_gap: upper bound on the amount of time between two successive 188 * executions of PAUSE in a loop. Also indicate if ple enabled. 189 * According to test, this time is usually smaller than 128 cycles. 190 * ple_window: upper bound on the amount of time a guest is allowed to execute 191 * in a PAUSE loop. Tests indicate that most spinlocks are held for 192 * less than 2^12 cycles 193 * Time is measured based on a counter that runs at the same rate as the TSC, 194 * refer SDM volume 3b section 21.6.13 & 22.1.3. 195 */ 196 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 197 module_param(ple_gap, uint, 0444); 198 199 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 200 module_param(ple_window, uint, 0444); 201 202 /* Default doubles per-vcpu window every exit. */ 203 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 204 module_param(ple_window_grow, uint, 0444); 205 206 /* Default resets per-vcpu window every exit to ple_window. */ 207 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 208 module_param(ple_window_shrink, uint, 0444); 209 210 /* Default is to compute the maximum so we can never overflow. */ 211 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 212 module_param(ple_window_max, uint, 0444); 213 214 /* Default is SYSTEM mode, 1 for host-guest mode */ 215 int __read_mostly pt_mode = PT_MODE_SYSTEM; 216 module_param(pt_mode, int, S_IRUGO); 217 218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 219 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 220 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 221 222 /* Storage for pre module init parameter parsing */ 223 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 224 225 static const struct { 226 const char *option; 227 bool for_parse; 228 } vmentry_l1d_param[] = { 229 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 230 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 231 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 232 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 233 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 234 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 235 }; 236 237 #define L1D_CACHE_ORDER 4 238 static void *vmx_l1d_flush_pages; 239 240 /* Control for disabling CPU Fill buffer clear */ 241 static bool __read_mostly vmx_fb_clear_ctrl_available; 242 243 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 244 { 245 struct page *page; 246 unsigned int i; 247 248 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 249 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 250 return 0; 251 } 252 253 if (!enable_ept) { 254 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 255 return 0; 256 } 257 258 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 259 u64 msr; 260 261 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 262 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 263 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 264 return 0; 265 } 266 } 267 268 /* If set to auto use the default l1tf mitigation method */ 269 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 270 switch (l1tf_mitigation) { 271 case L1TF_MITIGATION_OFF: 272 l1tf = VMENTER_L1D_FLUSH_NEVER; 273 break; 274 case L1TF_MITIGATION_FLUSH_NOWARN: 275 case L1TF_MITIGATION_FLUSH: 276 case L1TF_MITIGATION_FLUSH_NOSMT: 277 l1tf = VMENTER_L1D_FLUSH_COND; 278 break; 279 case L1TF_MITIGATION_FULL: 280 case L1TF_MITIGATION_FULL_FORCE: 281 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 282 break; 283 } 284 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 285 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 286 } 287 288 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 289 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 290 /* 291 * This allocation for vmx_l1d_flush_pages is not tied to a VM 292 * lifetime and so should not be charged to a memcg. 293 */ 294 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 295 if (!page) 296 return -ENOMEM; 297 vmx_l1d_flush_pages = page_address(page); 298 299 /* 300 * Initialize each page with a different pattern in 301 * order to protect against KSM in the nested 302 * virtualization case. 303 */ 304 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 305 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 306 PAGE_SIZE); 307 } 308 } 309 310 l1tf_vmx_mitigation = l1tf; 311 312 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 313 static_branch_enable(&vmx_l1d_should_flush); 314 else 315 static_branch_disable(&vmx_l1d_should_flush); 316 317 if (l1tf == VMENTER_L1D_FLUSH_COND) 318 static_branch_enable(&vmx_l1d_flush_cond); 319 else 320 static_branch_disable(&vmx_l1d_flush_cond); 321 return 0; 322 } 323 324 static int vmentry_l1d_flush_parse(const char *s) 325 { 326 unsigned int i; 327 328 if (s) { 329 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 330 if (vmentry_l1d_param[i].for_parse && 331 sysfs_streq(s, vmentry_l1d_param[i].option)) 332 return i; 333 } 334 } 335 return -EINVAL; 336 } 337 338 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 339 { 340 int l1tf, ret; 341 342 l1tf = vmentry_l1d_flush_parse(s); 343 if (l1tf < 0) 344 return l1tf; 345 346 if (!boot_cpu_has(X86_BUG_L1TF)) 347 return 0; 348 349 /* 350 * Has vmx_init() run already? If not then this is the pre init 351 * parameter parsing. In that case just store the value and let 352 * vmx_init() do the proper setup after enable_ept has been 353 * established. 354 */ 355 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 356 vmentry_l1d_flush_param = l1tf; 357 return 0; 358 } 359 360 mutex_lock(&vmx_l1d_flush_mutex); 361 ret = vmx_setup_l1d_flush(l1tf); 362 mutex_unlock(&vmx_l1d_flush_mutex); 363 return ret; 364 } 365 366 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 367 { 368 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 369 return sprintf(s, "???\n"); 370 371 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 372 } 373 374 static void vmx_setup_fb_clear_ctrl(void) 375 { 376 u64 msr; 377 378 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) && 379 !boot_cpu_has_bug(X86_BUG_MDS) && 380 !boot_cpu_has_bug(X86_BUG_TAA)) { 381 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 382 if (msr & ARCH_CAP_FB_CLEAR_CTRL) 383 vmx_fb_clear_ctrl_available = true; 384 } 385 } 386 387 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) 388 { 389 u64 msr; 390 391 if (!vmx->disable_fb_clear) 392 return; 393 394 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL); 395 msr |= FB_CLEAR_DIS; 396 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr); 397 /* Cache the MSR value to avoid reading it later */ 398 vmx->msr_ia32_mcu_opt_ctrl = msr; 399 } 400 401 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) 402 { 403 if (!vmx->disable_fb_clear) 404 return; 405 406 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; 407 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); 408 } 409 410 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) 411 { 412 vmx->disable_fb_clear = vmx_fb_clear_ctrl_available; 413 414 /* 415 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS 416 * at VMEntry. Skip the MSR read/write when a guest has no use case to 417 * execute VERW. 418 */ 419 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || 420 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && 421 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && 422 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && 423 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && 424 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) 425 vmx->disable_fb_clear = false; 426 } 427 428 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 429 .set = vmentry_l1d_flush_set, 430 .get = vmentry_l1d_flush_get, 431 }; 432 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 433 434 static u32 vmx_segment_access_rights(struct kvm_segment *var); 435 436 void vmx_vmexit(void); 437 438 #define vmx_insn_failed(fmt...) \ 439 do { \ 440 WARN_ONCE(1, fmt); \ 441 pr_warn_ratelimited(fmt); \ 442 } while (0) 443 444 noinline void vmread_error(unsigned long field) 445 { 446 vmx_insn_failed("vmread failed: field=%lx\n", field); 447 } 448 449 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT 450 noinstr void vmread_error_trampoline2(unsigned long field, bool fault) 451 { 452 if (fault) { 453 kvm_spurious_fault(); 454 } else { 455 instrumentation_begin(); 456 vmread_error(field); 457 instrumentation_end(); 458 } 459 } 460 #endif 461 462 noinline void vmwrite_error(unsigned long field, unsigned long value) 463 { 464 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n", 465 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 466 } 467 468 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 469 { 470 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n", 471 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 472 } 473 474 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 475 { 476 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n", 477 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 478 } 479 480 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 481 { 482 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 483 ext, vpid, gva); 484 } 485 486 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 487 { 488 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 489 ext, eptp, gpa); 490 } 491 492 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 493 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 494 /* 495 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 496 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 497 */ 498 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 499 500 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 501 static DEFINE_SPINLOCK(vmx_vpid_lock); 502 503 struct vmcs_config vmcs_config __ro_after_init; 504 struct vmx_capability vmx_capability __ro_after_init; 505 506 #define VMX_SEGMENT_FIELD(seg) \ 507 [VCPU_SREG_##seg] = { \ 508 .selector = GUEST_##seg##_SELECTOR, \ 509 .base = GUEST_##seg##_BASE, \ 510 .limit = GUEST_##seg##_LIMIT, \ 511 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 512 } 513 514 static const struct kvm_vmx_segment_field { 515 unsigned selector; 516 unsigned base; 517 unsigned limit; 518 unsigned ar_bytes; 519 } kvm_vmx_segment_fields[] = { 520 VMX_SEGMENT_FIELD(CS), 521 VMX_SEGMENT_FIELD(DS), 522 VMX_SEGMENT_FIELD(ES), 523 VMX_SEGMENT_FIELD(FS), 524 VMX_SEGMENT_FIELD(GS), 525 VMX_SEGMENT_FIELD(SS), 526 VMX_SEGMENT_FIELD(TR), 527 VMX_SEGMENT_FIELD(LDTR), 528 }; 529 530 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 531 { 532 vmx->segment_cache.bitmask = 0; 533 } 534 535 static unsigned long host_idt_base; 536 537 #if IS_ENABLED(CONFIG_HYPERV) 538 static struct kvm_x86_ops vmx_x86_ops __initdata; 539 540 static bool __read_mostly enlightened_vmcs = true; 541 module_param(enlightened_vmcs, bool, 0444); 542 543 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu) 544 { 545 struct hv_enlightened_vmcs *evmcs; 546 struct hv_partition_assist_pg **p_hv_pa_pg = 547 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 548 /* 549 * Synthetic VM-Exit is not enabled in current code and so All 550 * evmcs in singe VM shares same assist page. 551 */ 552 if (!*p_hv_pa_pg) 553 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 554 555 if (!*p_hv_pa_pg) 556 return -ENOMEM; 557 558 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 559 560 evmcs->partition_assist_page = 561 __pa(*p_hv_pa_pg); 562 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 563 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 564 565 return 0; 566 } 567 568 static __init void hv_init_evmcs(void) 569 { 570 int cpu; 571 572 if (!enlightened_vmcs) 573 return; 574 575 /* 576 * Enlightened VMCS usage should be recommended and the host needs 577 * to support eVMCS v1 or above. 578 */ 579 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 580 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 581 KVM_EVMCS_VERSION) { 582 583 /* Check that we have assist pages on all online CPUs */ 584 for_each_online_cpu(cpu) { 585 if (!hv_get_vp_assist_page(cpu)) { 586 enlightened_vmcs = false; 587 break; 588 } 589 } 590 591 if (enlightened_vmcs) { 592 pr_info("Using Hyper-V Enlightened VMCS\n"); 593 static_branch_enable(&__kvm_is_using_evmcs); 594 } 595 596 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 597 vmx_x86_ops.enable_l2_tlb_flush 598 = hv_enable_l2_tlb_flush; 599 600 } else { 601 enlightened_vmcs = false; 602 } 603 } 604 605 static void hv_reset_evmcs(void) 606 { 607 struct hv_vp_assist_page *vp_ap; 608 609 if (!kvm_is_using_evmcs()) 610 return; 611 612 /* 613 * KVM should enable eVMCS if and only if all CPUs have a VP assist 614 * page, and should reject CPU onlining if eVMCS is enabled the CPU 615 * doesn't have a VP assist page allocated. 616 */ 617 vp_ap = hv_get_vp_assist_page(smp_processor_id()); 618 if (WARN_ON_ONCE(!vp_ap)) 619 return; 620 621 /* 622 * Reset everything to support using non-enlightened VMCS access later 623 * (e.g. when we reload the module with enlightened_vmcs=0) 624 */ 625 vp_ap->nested_control.features.directhypercall = 0; 626 vp_ap->current_nested_vmcs = 0; 627 vp_ap->enlighten_vmentry = 0; 628 } 629 630 #else /* IS_ENABLED(CONFIG_HYPERV) */ 631 static void hv_init_evmcs(void) {} 632 static void hv_reset_evmcs(void) {} 633 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 634 635 /* 636 * Comment's format: document - errata name - stepping - processor name. 637 * Refer from 638 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 639 */ 640 static u32 vmx_preemption_cpu_tfms[] = { 641 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 642 0x000206E6, 643 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 644 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 645 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 646 0x00020652, 647 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 648 0x00020655, 649 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 650 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 651 /* 652 * 320767.pdf - AAP86 - B1 - 653 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 654 */ 655 0x000106E5, 656 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 657 0x000106A0, 658 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 659 0x000106A1, 660 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 661 0x000106A4, 662 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 663 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 664 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 665 0x000106A5, 666 /* Xeon E3-1220 V2 */ 667 0x000306A8, 668 }; 669 670 static inline bool cpu_has_broken_vmx_preemption_timer(void) 671 { 672 u32 eax = cpuid_eax(0x00000001), i; 673 674 /* Clear the reserved bits */ 675 eax &= ~(0x3U << 14 | 0xfU << 28); 676 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 677 if (eax == vmx_preemption_cpu_tfms[i]) 678 return true; 679 680 return false; 681 } 682 683 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 684 { 685 return flexpriority_enabled && lapic_in_kernel(vcpu); 686 } 687 688 static int possible_passthrough_msr_slot(u32 msr) 689 { 690 u32 i; 691 692 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 693 if (vmx_possible_passthrough_msrs[i] == msr) 694 return i; 695 696 return -ENOENT; 697 } 698 699 static bool is_valid_passthrough_msr(u32 msr) 700 { 701 bool r; 702 703 switch (msr) { 704 case 0x800 ... 0x8ff: 705 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 706 return true; 707 case MSR_IA32_RTIT_STATUS: 708 case MSR_IA32_RTIT_OUTPUT_BASE: 709 case MSR_IA32_RTIT_OUTPUT_MASK: 710 case MSR_IA32_RTIT_CR3_MATCH: 711 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 712 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 713 case MSR_LBR_SELECT: 714 case MSR_LBR_TOS: 715 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 716 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 717 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 718 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 719 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 720 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 721 return true; 722 } 723 724 r = possible_passthrough_msr_slot(msr) != -ENOENT; 725 726 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 727 728 return r; 729 } 730 731 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 732 { 733 int i; 734 735 i = kvm_find_user_return_msr(msr); 736 if (i >= 0) 737 return &vmx->guest_uret_msrs[i]; 738 return NULL; 739 } 740 741 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 742 struct vmx_uret_msr *msr, u64 data) 743 { 744 unsigned int slot = msr - vmx->guest_uret_msrs; 745 int ret = 0; 746 747 if (msr->load_into_hardware) { 748 preempt_disable(); 749 ret = kvm_set_user_return_msr(slot, data, msr->mask); 750 preempt_enable(); 751 } 752 if (!ret) 753 msr->data = data; 754 return ret; 755 } 756 757 #ifdef CONFIG_KEXEC_CORE 758 static void crash_vmclear_local_loaded_vmcss(void) 759 { 760 int cpu = raw_smp_processor_id(); 761 struct loaded_vmcs *v; 762 763 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 764 loaded_vmcss_on_cpu_link) 765 vmcs_clear(v->vmcs); 766 } 767 #endif /* CONFIG_KEXEC_CORE */ 768 769 static void __loaded_vmcs_clear(void *arg) 770 { 771 struct loaded_vmcs *loaded_vmcs = arg; 772 int cpu = raw_smp_processor_id(); 773 774 if (loaded_vmcs->cpu != cpu) 775 return; /* vcpu migration can race with cpu offline */ 776 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 777 per_cpu(current_vmcs, cpu) = NULL; 778 779 vmcs_clear(loaded_vmcs->vmcs); 780 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 781 vmcs_clear(loaded_vmcs->shadow_vmcs); 782 783 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 784 785 /* 786 * Ensure all writes to loaded_vmcs, including deleting it from its 787 * current percpu list, complete before setting loaded_vmcs->cpu to 788 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first 789 * and add loaded_vmcs to its percpu list before it's deleted from this 790 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 791 */ 792 smp_wmb(); 793 794 loaded_vmcs->cpu = -1; 795 loaded_vmcs->launched = 0; 796 } 797 798 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 799 { 800 int cpu = loaded_vmcs->cpu; 801 802 if (cpu != -1) 803 smp_call_function_single(cpu, 804 __loaded_vmcs_clear, loaded_vmcs, 1); 805 } 806 807 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 808 unsigned field) 809 { 810 bool ret; 811 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 812 813 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 814 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 815 vmx->segment_cache.bitmask = 0; 816 } 817 ret = vmx->segment_cache.bitmask & mask; 818 vmx->segment_cache.bitmask |= mask; 819 return ret; 820 } 821 822 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 823 { 824 u16 *p = &vmx->segment_cache.seg[seg].selector; 825 826 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 827 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 828 return *p; 829 } 830 831 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 832 { 833 ulong *p = &vmx->segment_cache.seg[seg].base; 834 835 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 836 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 837 return *p; 838 } 839 840 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 841 { 842 u32 *p = &vmx->segment_cache.seg[seg].limit; 843 844 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 845 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 846 return *p; 847 } 848 849 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 850 { 851 u32 *p = &vmx->segment_cache.seg[seg].ar; 852 853 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 854 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 855 return *p; 856 } 857 858 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 859 { 860 u32 eb; 861 862 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 863 (1u << DB_VECTOR) | (1u << AC_VECTOR); 864 /* 865 * Guest access to VMware backdoor ports could legitimately 866 * trigger #GP because of TSS I/O permission bitmap. 867 * We intercept those #GP and allow access to them anyway 868 * as VMware does. 869 */ 870 if (enable_vmware_backdoor) 871 eb |= (1u << GP_VECTOR); 872 if ((vcpu->guest_debug & 873 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 874 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 875 eb |= 1u << BP_VECTOR; 876 if (to_vmx(vcpu)->rmode.vm86_active) 877 eb = ~0; 878 if (!vmx_need_pf_intercept(vcpu)) 879 eb &= ~(1u << PF_VECTOR); 880 881 /* When we are running a nested L2 guest and L1 specified for it a 882 * certain exception bitmap, we must trap the same exceptions and pass 883 * them to L1. When running L2, we will only handle the exceptions 884 * specified above if L1 did not want them. 885 */ 886 if (is_guest_mode(vcpu)) 887 eb |= get_vmcs12(vcpu)->exception_bitmap; 888 else { 889 int mask = 0, match = 0; 890 891 if (enable_ept && (eb & (1u << PF_VECTOR))) { 892 /* 893 * If EPT is enabled, #PF is currently only intercepted 894 * if MAXPHYADDR is smaller on the guest than on the 895 * host. In that case we only care about present, 896 * non-reserved faults. For vmcs02, however, PFEC_MASK 897 * and PFEC_MATCH are set in prepare_vmcs02_rare. 898 */ 899 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 900 match = PFERR_PRESENT_MASK; 901 } 902 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 903 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 904 } 905 906 /* 907 * Disabling xfd interception indicates that dynamic xfeatures 908 * might be used in the guest. Always trap #NM in this case 909 * to save guest xfd_err timely. 910 */ 911 if (vcpu->arch.xfd_no_write_intercept) 912 eb |= (1u << NM_VECTOR); 913 914 vmcs_write32(EXCEPTION_BITMAP, eb); 915 } 916 917 /* 918 * Check if MSR is intercepted for currently loaded MSR bitmap. 919 */ 920 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 921 { 922 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 923 return true; 924 925 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); 926 } 927 928 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) 929 { 930 unsigned int flags = 0; 931 932 if (vmx->loaded_vmcs->launched) 933 flags |= VMX_RUN_VMRESUME; 934 935 /* 936 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free 937 * to change it directly without causing a vmexit. In that case read 938 * it after vmexit and store it in vmx->spec_ctrl. 939 */ 940 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)) 941 flags |= VMX_RUN_SAVE_SPEC_CTRL; 942 943 return flags; 944 } 945 946 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 947 unsigned long entry, unsigned long exit) 948 { 949 vm_entry_controls_clearbit(vmx, entry); 950 vm_exit_controls_clearbit(vmx, exit); 951 } 952 953 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 954 { 955 unsigned int i; 956 957 for (i = 0; i < m->nr; ++i) { 958 if (m->val[i].index == msr) 959 return i; 960 } 961 return -ENOENT; 962 } 963 964 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 965 { 966 int i; 967 struct msr_autoload *m = &vmx->msr_autoload; 968 969 switch (msr) { 970 case MSR_EFER: 971 if (cpu_has_load_ia32_efer()) { 972 clear_atomic_switch_msr_special(vmx, 973 VM_ENTRY_LOAD_IA32_EFER, 974 VM_EXIT_LOAD_IA32_EFER); 975 return; 976 } 977 break; 978 case MSR_CORE_PERF_GLOBAL_CTRL: 979 if (cpu_has_load_perf_global_ctrl()) { 980 clear_atomic_switch_msr_special(vmx, 981 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 982 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 983 return; 984 } 985 break; 986 } 987 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 988 if (i < 0) 989 goto skip_guest; 990 --m->guest.nr; 991 m->guest.val[i] = m->guest.val[m->guest.nr]; 992 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 993 994 skip_guest: 995 i = vmx_find_loadstore_msr_slot(&m->host, msr); 996 if (i < 0) 997 return; 998 999 --m->host.nr; 1000 m->host.val[i] = m->host.val[m->host.nr]; 1001 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1002 } 1003 1004 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 1005 unsigned long entry, unsigned long exit, 1006 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 1007 u64 guest_val, u64 host_val) 1008 { 1009 vmcs_write64(guest_val_vmcs, guest_val); 1010 if (host_val_vmcs != HOST_IA32_EFER) 1011 vmcs_write64(host_val_vmcs, host_val); 1012 vm_entry_controls_setbit(vmx, entry); 1013 vm_exit_controls_setbit(vmx, exit); 1014 } 1015 1016 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 1017 u64 guest_val, u64 host_val, bool entry_only) 1018 { 1019 int i, j = 0; 1020 struct msr_autoload *m = &vmx->msr_autoload; 1021 1022 switch (msr) { 1023 case MSR_EFER: 1024 if (cpu_has_load_ia32_efer()) { 1025 add_atomic_switch_msr_special(vmx, 1026 VM_ENTRY_LOAD_IA32_EFER, 1027 VM_EXIT_LOAD_IA32_EFER, 1028 GUEST_IA32_EFER, 1029 HOST_IA32_EFER, 1030 guest_val, host_val); 1031 return; 1032 } 1033 break; 1034 case MSR_CORE_PERF_GLOBAL_CTRL: 1035 if (cpu_has_load_perf_global_ctrl()) { 1036 add_atomic_switch_msr_special(vmx, 1037 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 1038 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 1039 GUEST_IA32_PERF_GLOBAL_CTRL, 1040 HOST_IA32_PERF_GLOBAL_CTRL, 1041 guest_val, host_val); 1042 return; 1043 } 1044 break; 1045 case MSR_IA32_PEBS_ENABLE: 1046 /* PEBS needs a quiescent period after being disabled (to write 1047 * a record). Disabling PEBS through VMX MSR swapping doesn't 1048 * provide that period, so a CPU could write host's record into 1049 * guest's memory. 1050 */ 1051 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1052 } 1053 1054 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1055 if (!entry_only) 1056 j = vmx_find_loadstore_msr_slot(&m->host, msr); 1057 1058 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 1059 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 1060 printk_once(KERN_WARNING "Not enough msr switch entries. " 1061 "Can't add msr %x\n", msr); 1062 return; 1063 } 1064 if (i < 0) { 1065 i = m->guest.nr++; 1066 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1067 } 1068 m->guest.val[i].index = msr; 1069 m->guest.val[i].value = guest_val; 1070 1071 if (entry_only) 1072 return; 1073 1074 if (j < 0) { 1075 j = m->host.nr++; 1076 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1077 } 1078 m->host.val[j].index = msr; 1079 m->host.val[j].value = host_val; 1080 } 1081 1082 static bool update_transition_efer(struct vcpu_vmx *vmx) 1083 { 1084 u64 guest_efer = vmx->vcpu.arch.efer; 1085 u64 ignore_bits = 0; 1086 int i; 1087 1088 /* Shadow paging assumes NX to be available. */ 1089 if (!enable_ept) 1090 guest_efer |= EFER_NX; 1091 1092 /* 1093 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1094 */ 1095 ignore_bits |= EFER_SCE; 1096 #ifdef CONFIG_X86_64 1097 ignore_bits |= EFER_LMA | EFER_LME; 1098 /* SCE is meaningful only in long mode on Intel */ 1099 if (guest_efer & EFER_LMA) 1100 ignore_bits &= ~(u64)EFER_SCE; 1101 #endif 1102 1103 /* 1104 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1105 * On CPUs that support "load IA32_EFER", always switch EFER 1106 * atomically, since it's faster than switching it manually. 1107 */ 1108 if (cpu_has_load_ia32_efer() || 1109 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 1110 if (!(guest_efer & EFER_LMA)) 1111 guest_efer &= ~EFER_LME; 1112 if (guest_efer != host_efer) 1113 add_atomic_switch_msr(vmx, MSR_EFER, 1114 guest_efer, host_efer, false); 1115 else 1116 clear_atomic_switch_msr(vmx, MSR_EFER); 1117 return false; 1118 } 1119 1120 i = kvm_find_user_return_msr(MSR_EFER); 1121 if (i < 0) 1122 return false; 1123 1124 clear_atomic_switch_msr(vmx, MSR_EFER); 1125 1126 guest_efer &= ~ignore_bits; 1127 guest_efer |= host_efer & ignore_bits; 1128 1129 vmx->guest_uret_msrs[i].data = guest_efer; 1130 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1131 1132 return true; 1133 } 1134 1135 #ifdef CONFIG_X86_32 1136 /* 1137 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1138 * VMCS rather than the segment table. KVM uses this helper to figure 1139 * out the current bases to poke them into the VMCS before entry. 1140 */ 1141 static unsigned long segment_base(u16 selector) 1142 { 1143 struct desc_struct *table; 1144 unsigned long v; 1145 1146 if (!(selector & ~SEGMENT_RPL_MASK)) 1147 return 0; 1148 1149 table = get_current_gdt_ro(); 1150 1151 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1152 u16 ldt_selector = kvm_read_ldt(); 1153 1154 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1155 return 0; 1156 1157 table = (struct desc_struct *)segment_base(ldt_selector); 1158 } 1159 v = get_desc_base(&table[selector >> 3]); 1160 return v; 1161 } 1162 #endif 1163 1164 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1165 { 1166 return vmx_pt_mode_is_host_guest() && 1167 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1168 } 1169 1170 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1171 { 1172 /* The base must be 128-byte aligned and a legal physical address. */ 1173 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1174 } 1175 1176 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1177 { 1178 u32 i; 1179 1180 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1181 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1182 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1183 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1184 for (i = 0; i < addr_range; i++) { 1185 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1186 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1187 } 1188 } 1189 1190 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1191 { 1192 u32 i; 1193 1194 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1195 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1196 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1197 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1198 for (i = 0; i < addr_range; i++) { 1199 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1200 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1201 } 1202 } 1203 1204 static void pt_guest_enter(struct vcpu_vmx *vmx) 1205 { 1206 if (vmx_pt_mode_is_system()) 1207 return; 1208 1209 /* 1210 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1211 * Save host state before VM entry. 1212 */ 1213 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1214 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1215 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1216 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1217 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1218 } 1219 } 1220 1221 static void pt_guest_exit(struct vcpu_vmx *vmx) 1222 { 1223 if (vmx_pt_mode_is_system()) 1224 return; 1225 1226 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1227 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1228 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1229 } 1230 1231 /* 1232 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1233 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1234 */ 1235 if (vmx->pt_desc.host.ctl) 1236 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1237 } 1238 1239 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1240 unsigned long fs_base, unsigned long gs_base) 1241 { 1242 if (unlikely(fs_sel != host->fs_sel)) { 1243 if (!(fs_sel & 7)) 1244 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1245 else 1246 vmcs_write16(HOST_FS_SELECTOR, 0); 1247 host->fs_sel = fs_sel; 1248 } 1249 if (unlikely(gs_sel != host->gs_sel)) { 1250 if (!(gs_sel & 7)) 1251 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1252 else 1253 vmcs_write16(HOST_GS_SELECTOR, 0); 1254 host->gs_sel = gs_sel; 1255 } 1256 if (unlikely(fs_base != host->fs_base)) { 1257 vmcs_writel(HOST_FS_BASE, fs_base); 1258 host->fs_base = fs_base; 1259 } 1260 if (unlikely(gs_base != host->gs_base)) { 1261 vmcs_writel(HOST_GS_BASE, gs_base); 1262 host->gs_base = gs_base; 1263 } 1264 } 1265 1266 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1267 { 1268 struct vcpu_vmx *vmx = to_vmx(vcpu); 1269 struct vmcs_host_state *host_state; 1270 #ifdef CONFIG_X86_64 1271 int cpu = raw_smp_processor_id(); 1272 #endif 1273 unsigned long fs_base, gs_base; 1274 u16 fs_sel, gs_sel; 1275 int i; 1276 1277 vmx->req_immediate_exit = false; 1278 1279 /* 1280 * Note that guest MSRs to be saved/restored can also be changed 1281 * when guest state is loaded. This happens when guest transitions 1282 * to/from long-mode by setting MSR_EFER.LMA. 1283 */ 1284 if (!vmx->guest_uret_msrs_loaded) { 1285 vmx->guest_uret_msrs_loaded = true; 1286 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1287 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1288 continue; 1289 1290 kvm_set_user_return_msr(i, 1291 vmx->guest_uret_msrs[i].data, 1292 vmx->guest_uret_msrs[i].mask); 1293 } 1294 } 1295 1296 if (vmx->nested.need_vmcs12_to_shadow_sync) 1297 nested_sync_vmcs12_to_shadow(vcpu); 1298 1299 if (vmx->guest_state_loaded) 1300 return; 1301 1302 host_state = &vmx->loaded_vmcs->host_state; 1303 1304 /* 1305 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1306 * allow segment selectors with cpl > 0 or ti == 1. 1307 */ 1308 host_state->ldt_sel = kvm_read_ldt(); 1309 1310 #ifdef CONFIG_X86_64 1311 savesegment(ds, host_state->ds_sel); 1312 savesegment(es, host_state->es_sel); 1313 1314 gs_base = cpu_kernelmode_gs_base(cpu); 1315 if (likely(is_64bit_mm(current->mm))) { 1316 current_save_fsgs(); 1317 fs_sel = current->thread.fsindex; 1318 gs_sel = current->thread.gsindex; 1319 fs_base = current->thread.fsbase; 1320 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1321 } else { 1322 savesegment(fs, fs_sel); 1323 savesegment(gs, gs_sel); 1324 fs_base = read_msr(MSR_FS_BASE); 1325 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1326 } 1327 1328 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1329 #else 1330 savesegment(fs, fs_sel); 1331 savesegment(gs, gs_sel); 1332 fs_base = segment_base(fs_sel); 1333 gs_base = segment_base(gs_sel); 1334 #endif 1335 1336 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1337 vmx->guest_state_loaded = true; 1338 } 1339 1340 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1341 { 1342 struct vmcs_host_state *host_state; 1343 1344 if (!vmx->guest_state_loaded) 1345 return; 1346 1347 host_state = &vmx->loaded_vmcs->host_state; 1348 1349 ++vmx->vcpu.stat.host_state_reload; 1350 1351 #ifdef CONFIG_X86_64 1352 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1353 #endif 1354 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1355 kvm_load_ldt(host_state->ldt_sel); 1356 #ifdef CONFIG_X86_64 1357 load_gs_index(host_state->gs_sel); 1358 #else 1359 loadsegment(gs, host_state->gs_sel); 1360 #endif 1361 } 1362 if (host_state->fs_sel & 7) 1363 loadsegment(fs, host_state->fs_sel); 1364 #ifdef CONFIG_X86_64 1365 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1366 loadsegment(ds, host_state->ds_sel); 1367 loadsegment(es, host_state->es_sel); 1368 } 1369 #endif 1370 invalidate_tss_limit(); 1371 #ifdef CONFIG_X86_64 1372 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1373 #endif 1374 load_fixmap_gdt(raw_smp_processor_id()); 1375 vmx->guest_state_loaded = false; 1376 vmx->guest_uret_msrs_loaded = false; 1377 } 1378 1379 #ifdef CONFIG_X86_64 1380 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1381 { 1382 preempt_disable(); 1383 if (vmx->guest_state_loaded) 1384 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1385 preempt_enable(); 1386 return vmx->msr_guest_kernel_gs_base; 1387 } 1388 1389 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1390 { 1391 preempt_disable(); 1392 if (vmx->guest_state_loaded) 1393 wrmsrl(MSR_KERNEL_GS_BASE, data); 1394 preempt_enable(); 1395 vmx->msr_guest_kernel_gs_base = data; 1396 } 1397 #endif 1398 1399 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1400 struct loaded_vmcs *buddy) 1401 { 1402 struct vcpu_vmx *vmx = to_vmx(vcpu); 1403 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1404 struct vmcs *prev; 1405 1406 if (!already_loaded) { 1407 loaded_vmcs_clear(vmx->loaded_vmcs); 1408 local_irq_disable(); 1409 1410 /* 1411 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1412 * this cpu's percpu list, otherwise it may not yet be deleted 1413 * from its previous cpu's percpu list. Pairs with the 1414 * smb_wmb() in __loaded_vmcs_clear(). 1415 */ 1416 smp_rmb(); 1417 1418 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1419 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1420 local_irq_enable(); 1421 } 1422 1423 prev = per_cpu(current_vmcs, cpu); 1424 if (prev != vmx->loaded_vmcs->vmcs) { 1425 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1426 vmcs_load(vmx->loaded_vmcs->vmcs); 1427 1428 /* 1429 * No indirect branch prediction barrier needed when switching 1430 * the active VMCS within a vCPU, unless IBRS is advertised to 1431 * the vCPU. To minimize the number of IBPBs executed, KVM 1432 * performs IBPB on nested VM-Exit (a single nested transition 1433 * may switch the active VMCS multiple times). 1434 */ 1435 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1436 indirect_branch_prediction_barrier(); 1437 } 1438 1439 if (!already_loaded) { 1440 void *gdt = get_current_gdt_ro(); 1441 1442 /* 1443 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1444 * TLB entries from its previous association with the vCPU. 1445 */ 1446 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1447 1448 /* 1449 * Linux uses per-cpu TSS and GDT, so set these when switching 1450 * processors. See 22.2.4. 1451 */ 1452 vmcs_writel(HOST_TR_BASE, 1453 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1454 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1455 1456 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1457 /* 22.2.3 */ 1458 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1459 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1460 } 1461 1462 vmx->loaded_vmcs->cpu = cpu; 1463 } 1464 } 1465 1466 /* 1467 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1468 * vcpu mutex is already taken. 1469 */ 1470 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1471 { 1472 struct vcpu_vmx *vmx = to_vmx(vcpu); 1473 1474 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1475 1476 vmx_vcpu_pi_load(vcpu, cpu); 1477 1478 vmx->host_debugctlmsr = get_debugctlmsr(); 1479 } 1480 1481 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1482 { 1483 vmx_vcpu_pi_put(vcpu); 1484 1485 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1486 } 1487 1488 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1489 { 1490 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1491 } 1492 1493 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1494 { 1495 struct vcpu_vmx *vmx = to_vmx(vcpu); 1496 unsigned long rflags, save_rflags; 1497 1498 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1499 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1500 rflags = vmcs_readl(GUEST_RFLAGS); 1501 if (vmx->rmode.vm86_active) { 1502 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1503 save_rflags = vmx->rmode.save_rflags; 1504 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1505 } 1506 vmx->rflags = rflags; 1507 } 1508 return vmx->rflags; 1509 } 1510 1511 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1512 { 1513 struct vcpu_vmx *vmx = to_vmx(vcpu); 1514 unsigned long old_rflags; 1515 1516 /* 1517 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU 1518 * is an unrestricted guest in order to mark L2 as needing emulation 1519 * if L1 runs L2 as a restricted guest. 1520 */ 1521 if (is_unrestricted_guest(vcpu)) { 1522 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1523 vmx->rflags = rflags; 1524 vmcs_writel(GUEST_RFLAGS, rflags); 1525 return; 1526 } 1527 1528 old_rflags = vmx_get_rflags(vcpu); 1529 vmx->rflags = rflags; 1530 if (vmx->rmode.vm86_active) { 1531 vmx->rmode.save_rflags = rflags; 1532 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1533 } 1534 vmcs_writel(GUEST_RFLAGS, rflags); 1535 1536 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1537 vmx->emulation_required = vmx_emulation_required(vcpu); 1538 } 1539 1540 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1541 { 1542 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1543 } 1544 1545 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1546 { 1547 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1548 int ret = 0; 1549 1550 if (interruptibility & GUEST_INTR_STATE_STI) 1551 ret |= KVM_X86_SHADOW_INT_STI; 1552 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1553 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1554 1555 return ret; 1556 } 1557 1558 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1559 { 1560 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1561 u32 interruptibility = interruptibility_old; 1562 1563 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1564 1565 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1566 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1567 else if (mask & KVM_X86_SHADOW_INT_STI) 1568 interruptibility |= GUEST_INTR_STATE_STI; 1569 1570 if ((interruptibility != interruptibility_old)) 1571 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1572 } 1573 1574 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1575 { 1576 struct vcpu_vmx *vmx = to_vmx(vcpu); 1577 unsigned long value; 1578 1579 /* 1580 * Any MSR write that attempts to change bits marked reserved will 1581 * case a #GP fault. 1582 */ 1583 if (data & vmx->pt_desc.ctl_bitmask) 1584 return 1; 1585 1586 /* 1587 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1588 * result in a #GP unless the same write also clears TraceEn. 1589 */ 1590 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1591 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1592 return 1; 1593 1594 /* 1595 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1596 * and FabricEn would cause #GP, if 1597 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1598 */ 1599 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1600 !(data & RTIT_CTL_FABRIC_EN) && 1601 !intel_pt_validate_cap(vmx->pt_desc.caps, 1602 PT_CAP_single_range_output)) 1603 return 1; 1604 1605 /* 1606 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1607 * utilize encodings marked reserved will cause a #GP fault. 1608 */ 1609 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1610 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1611 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1612 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1613 return 1; 1614 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1615 PT_CAP_cycle_thresholds); 1616 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1617 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1618 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1619 return 1; 1620 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1621 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1622 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1623 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1624 return 1; 1625 1626 /* 1627 * If ADDRx_CFG is reserved or the encodings is >2 will 1628 * cause a #GP fault. 1629 */ 1630 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1631 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1632 return 1; 1633 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1634 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1635 return 1; 1636 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1637 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1638 return 1; 1639 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1640 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1641 return 1; 1642 1643 return 0; 1644 } 1645 1646 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1647 void *insn, int insn_len) 1648 { 1649 /* 1650 * Emulation of instructions in SGX enclaves is impossible as RIP does 1651 * not point at the failing instruction, and even if it did, the code 1652 * stream is inaccessible. Inject #UD instead of exiting to userspace 1653 * so that guest userspace can't DoS the guest simply by triggering 1654 * emulation (enclaves are CPL3 only). 1655 */ 1656 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1657 kvm_queue_exception(vcpu, UD_VECTOR); 1658 return false; 1659 } 1660 return true; 1661 } 1662 1663 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1664 { 1665 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1666 unsigned long rip, orig_rip; 1667 u32 instr_len; 1668 1669 /* 1670 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1671 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1672 * set when EPT misconfig occurs. In practice, real hardware updates 1673 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1674 * (namely Hyper-V) don't set it due to it being undefined behavior, 1675 * i.e. we end up advancing IP with some random value. 1676 */ 1677 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1678 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1679 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1680 1681 /* 1682 * Emulating an enclave's instructions isn't supported as KVM 1683 * cannot access the enclave's memory or its true RIP, e.g. the 1684 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1685 * the RIP that actually triggered the VM-Exit. But, because 1686 * most instructions that cause VM-Exit will #UD in an enclave, 1687 * most instruction-based VM-Exits simply do not occur. 1688 * 1689 * There are a few exceptions, notably the debug instructions 1690 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1691 * and generate #DB/#BP as expected, which KVM might intercept. 1692 * But again, the CPU does the dirty work and saves an instr 1693 * length of zero so VMMs don't shoot themselves in the foot. 1694 * WARN if KVM tries to skip a non-zero length instruction on 1695 * a VM-Exit from an enclave. 1696 */ 1697 if (!instr_len) 1698 goto rip_updated; 1699 1700 WARN_ONCE(exit_reason.enclave_mode, 1701 "skipping instruction after SGX enclave VM-Exit"); 1702 1703 orig_rip = kvm_rip_read(vcpu); 1704 rip = orig_rip + instr_len; 1705 #ifdef CONFIG_X86_64 1706 /* 1707 * We need to mask out the high 32 bits of RIP if not in 64-bit 1708 * mode, but just finding out that we are in 64-bit mode is 1709 * quite expensive. Only do it if there was a carry. 1710 */ 1711 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1712 rip = (u32)rip; 1713 #endif 1714 kvm_rip_write(vcpu, rip); 1715 } else { 1716 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1717 return 0; 1718 } 1719 1720 rip_updated: 1721 /* skipping an emulated instruction also counts */ 1722 vmx_set_interrupt_shadow(vcpu, 0); 1723 1724 return 1; 1725 } 1726 1727 /* 1728 * Recognizes a pending MTF VM-exit and records the nested state for later 1729 * delivery. 1730 */ 1731 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1732 { 1733 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1734 struct vcpu_vmx *vmx = to_vmx(vcpu); 1735 1736 if (!is_guest_mode(vcpu)) 1737 return; 1738 1739 /* 1740 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1741 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps 1742 * or ICEBP (in the emulator proper), and skipping of ICEBP after an 1743 * intercepted #DB deliberately avoids single-step #DB and MTF updates 1744 * as ICEBP is higher priority than both. As instruction emulation is 1745 * completed at this point (i.e. KVM is at the instruction boundary), 1746 * any #DB exception pending delivery must be a debug-trap of lower 1747 * priority than MTF. Record the pending MTF state to be delivered in 1748 * vmx_check_nested_events(). 1749 */ 1750 if (nested_cpu_has_mtf(vmcs12) && 1751 (!vcpu->arch.exception.pending || 1752 vcpu->arch.exception.vector == DB_VECTOR) && 1753 (!vcpu->arch.exception_vmexit.pending || 1754 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) { 1755 vmx->nested.mtf_pending = true; 1756 kvm_make_request(KVM_REQ_EVENT, vcpu); 1757 } else { 1758 vmx->nested.mtf_pending = false; 1759 } 1760 } 1761 1762 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1763 { 1764 vmx_update_emulated_instruction(vcpu); 1765 return skip_emulated_instruction(vcpu); 1766 } 1767 1768 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1769 { 1770 /* 1771 * Ensure that we clear the HLT state in the VMCS. We don't need to 1772 * explicitly skip the instruction because if the HLT state is set, 1773 * then the instruction is already executing and RIP has already been 1774 * advanced. 1775 */ 1776 if (kvm_hlt_in_guest(vcpu->kvm) && 1777 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1778 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1779 } 1780 1781 static void vmx_inject_exception(struct kvm_vcpu *vcpu) 1782 { 1783 struct kvm_queued_exception *ex = &vcpu->arch.exception; 1784 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; 1785 struct vcpu_vmx *vmx = to_vmx(vcpu); 1786 1787 kvm_deliver_exception_payload(vcpu, ex); 1788 1789 if (ex->has_error_code) { 1790 /* 1791 * Despite the error code being architecturally defined as 32 1792 * bits, and the VMCS field being 32 bits, Intel CPUs and thus 1793 * VMX don't actually supporting setting bits 31:16. Hardware 1794 * will (should) never provide a bogus error code, but AMD CPUs 1795 * do generate error codes with bits 31:16 set, and so KVM's 1796 * ABI lets userspace shove in arbitrary 32-bit values. Drop 1797 * the upper bits to avoid VM-Fail, losing information that 1798 * does't really exist is preferable to killing the VM. 1799 */ 1800 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code); 1801 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1802 } 1803 1804 if (vmx->rmode.vm86_active) { 1805 int inc_eip = 0; 1806 if (kvm_exception_is_soft(ex->vector)) 1807 inc_eip = vcpu->arch.event_exit_inst_len; 1808 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip); 1809 return; 1810 } 1811 1812 WARN_ON_ONCE(vmx->emulation_required); 1813 1814 if (kvm_exception_is_soft(ex->vector)) { 1815 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1816 vmx->vcpu.arch.event_exit_inst_len); 1817 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1818 } else 1819 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1820 1821 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1822 1823 vmx_clear_hlt(vcpu); 1824 } 1825 1826 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1827 bool load_into_hardware) 1828 { 1829 struct vmx_uret_msr *uret_msr; 1830 1831 uret_msr = vmx_find_uret_msr(vmx, msr); 1832 if (!uret_msr) 1833 return; 1834 1835 uret_msr->load_into_hardware = load_into_hardware; 1836 } 1837 1838 /* 1839 * Configuring user return MSRs to automatically save, load, and restore MSRs 1840 * that need to be shoved into hardware when running the guest. Note, omitting 1841 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1842 * loaded into hardware when running the guest. 1843 */ 1844 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1845 { 1846 #ifdef CONFIG_X86_64 1847 bool load_syscall_msrs; 1848 1849 /* 1850 * The SYSCALL MSRs are only needed on long mode guests, and only 1851 * when EFER.SCE is set. 1852 */ 1853 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1854 (vmx->vcpu.arch.efer & EFER_SCE); 1855 1856 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1857 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1858 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1859 #endif 1860 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1861 1862 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1863 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1864 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1865 1866 /* 1867 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1868 * kernel and old userspace. If those guests run on a tsx=off host, do 1869 * allow guests to use TSX_CTRL, but don't change the value in hardware 1870 * so that TSX remains always disabled. 1871 */ 1872 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1873 1874 /* 1875 * The set of MSRs to load may have changed, reload MSRs before the 1876 * next VM-Enter. 1877 */ 1878 vmx->guest_uret_msrs_loaded = false; 1879 } 1880 1881 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1882 { 1883 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1884 1885 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1886 return vmcs12->tsc_offset; 1887 1888 return 0; 1889 } 1890 1891 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1892 { 1893 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1894 1895 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1896 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1897 return vmcs12->tsc_multiplier; 1898 1899 return kvm_caps.default_tsc_scaling_ratio; 1900 } 1901 1902 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1903 { 1904 vmcs_write64(TSC_OFFSET, offset); 1905 } 1906 1907 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1908 { 1909 vmcs_write64(TSC_MULTIPLIER, multiplier); 1910 } 1911 1912 /* 1913 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1914 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1915 * all guests if the "nested" module option is off, and can also be disabled 1916 * for a single guest by disabling its VMX cpuid bit. 1917 */ 1918 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1919 { 1920 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1921 } 1922 1923 /* 1924 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of 1925 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain 1926 * backwards compatibility even though KVM doesn't support emulating SMX. And 1927 * because userspace set "VMX in SMX", the guest must also be allowed to set it, 1928 * e.g. if the MSR is left unlocked and the guest does a RMW operation. 1929 */ 1930 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \ 1931 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \ 1932 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \ 1933 FEAT_CTL_SGX_LC_ENABLED | \ 1934 FEAT_CTL_SGX_ENABLED | \ 1935 FEAT_CTL_LMCE_ENABLED) 1936 1937 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx, 1938 struct msr_data *msr) 1939 { 1940 uint64_t valid_bits; 1941 1942 /* 1943 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are 1944 * exposed to the guest. 1945 */ 1946 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits & 1947 ~KVM_SUPPORTED_FEATURE_CONTROL); 1948 1949 if (!msr->host_initiated && 1950 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED)) 1951 return false; 1952 1953 if (msr->host_initiated) 1954 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL; 1955 else 1956 valid_bits = vmx->msr_ia32_feature_control_valid_bits; 1957 1958 return !(msr->data & ~valid_bits); 1959 } 1960 1961 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1962 { 1963 switch (msr->index) { 1964 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 1965 if (!nested) 1966 return 1; 1967 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1968 default: 1969 return KVM_MSR_RET_INVALID; 1970 } 1971 } 1972 1973 /* 1974 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 1975 * Returns 0 on success, non-0 otherwise. 1976 * Assumes vcpu_load() was already called. 1977 */ 1978 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1979 { 1980 struct vcpu_vmx *vmx = to_vmx(vcpu); 1981 struct vmx_uret_msr *msr; 1982 u32 index; 1983 1984 switch (msr_info->index) { 1985 #ifdef CONFIG_X86_64 1986 case MSR_FS_BASE: 1987 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1988 break; 1989 case MSR_GS_BASE: 1990 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1991 break; 1992 case MSR_KERNEL_GS_BASE: 1993 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1994 break; 1995 #endif 1996 case MSR_EFER: 1997 return kvm_get_msr_common(vcpu, msr_info); 1998 case MSR_IA32_TSX_CTRL: 1999 if (!msr_info->host_initiated && 2000 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2001 return 1; 2002 goto find_uret_msr; 2003 case MSR_IA32_UMWAIT_CONTROL: 2004 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2005 return 1; 2006 2007 msr_info->data = vmx->msr_ia32_umwait_control; 2008 break; 2009 case MSR_IA32_SPEC_CTRL: 2010 if (!msr_info->host_initiated && 2011 !guest_has_spec_ctrl_msr(vcpu)) 2012 return 1; 2013 2014 msr_info->data = to_vmx(vcpu)->spec_ctrl; 2015 break; 2016 case MSR_IA32_SYSENTER_CS: 2017 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 2018 break; 2019 case MSR_IA32_SYSENTER_EIP: 2020 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 2021 break; 2022 case MSR_IA32_SYSENTER_ESP: 2023 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 2024 break; 2025 case MSR_IA32_BNDCFGS: 2026 if (!kvm_mpx_supported() || 2027 (!msr_info->host_initiated && 2028 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2029 return 1; 2030 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 2031 break; 2032 case MSR_IA32_MCG_EXT_CTL: 2033 if (!msr_info->host_initiated && 2034 !(vmx->msr_ia32_feature_control & 2035 FEAT_CTL_LMCE_ENABLED)) 2036 return 1; 2037 msr_info->data = vcpu->arch.mcg_ext_ctl; 2038 break; 2039 case MSR_IA32_FEAT_CTL: 2040 msr_info->data = vmx->msr_ia32_feature_control; 2041 break; 2042 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2043 if (!msr_info->host_initiated && 2044 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 2045 return 1; 2046 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 2047 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 2048 break; 2049 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2050 if (!nested_vmx_allowed(vcpu)) 2051 return 1; 2052 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 2053 &msr_info->data)) 2054 return 1; 2055 /* 2056 * Enlightened VMCS v1 doesn't have certain VMCS fields but 2057 * instead of just ignoring the features, different Hyper-V 2058 * versions are either trying to use them and fail or do some 2059 * sanity checking and refuse to boot. Filter all unsupported 2060 * features out. 2061 */ 2062 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu)) 2063 nested_evmcs_filter_control_msr(vcpu, msr_info->index, 2064 &msr_info->data); 2065 break; 2066 case MSR_IA32_RTIT_CTL: 2067 if (!vmx_pt_mode_is_host_guest()) 2068 return 1; 2069 msr_info->data = vmx->pt_desc.guest.ctl; 2070 break; 2071 case MSR_IA32_RTIT_STATUS: 2072 if (!vmx_pt_mode_is_host_guest()) 2073 return 1; 2074 msr_info->data = vmx->pt_desc.guest.status; 2075 break; 2076 case MSR_IA32_RTIT_CR3_MATCH: 2077 if (!vmx_pt_mode_is_host_guest() || 2078 !intel_pt_validate_cap(vmx->pt_desc.caps, 2079 PT_CAP_cr3_filtering)) 2080 return 1; 2081 msr_info->data = vmx->pt_desc.guest.cr3_match; 2082 break; 2083 case MSR_IA32_RTIT_OUTPUT_BASE: 2084 if (!vmx_pt_mode_is_host_guest() || 2085 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2086 PT_CAP_topa_output) && 2087 !intel_pt_validate_cap(vmx->pt_desc.caps, 2088 PT_CAP_single_range_output))) 2089 return 1; 2090 msr_info->data = vmx->pt_desc.guest.output_base; 2091 break; 2092 case MSR_IA32_RTIT_OUTPUT_MASK: 2093 if (!vmx_pt_mode_is_host_guest() || 2094 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2095 PT_CAP_topa_output) && 2096 !intel_pt_validate_cap(vmx->pt_desc.caps, 2097 PT_CAP_single_range_output))) 2098 return 1; 2099 msr_info->data = vmx->pt_desc.guest.output_mask; 2100 break; 2101 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2102 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2103 if (!vmx_pt_mode_is_host_guest() || 2104 (index >= 2 * vmx->pt_desc.num_address_ranges)) 2105 return 1; 2106 if (index % 2) 2107 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 2108 else 2109 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 2110 break; 2111 case MSR_IA32_DEBUGCTLMSR: 2112 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 2113 break; 2114 default: 2115 find_uret_msr: 2116 msr = vmx_find_uret_msr(vmx, msr_info->index); 2117 if (msr) { 2118 msr_info->data = msr->data; 2119 break; 2120 } 2121 return kvm_get_msr_common(vcpu, msr_info); 2122 } 2123 2124 return 0; 2125 } 2126 2127 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 2128 u64 data) 2129 { 2130 #ifdef CONFIG_X86_64 2131 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 2132 return (u32)data; 2133 #endif 2134 return (unsigned long)data; 2135 } 2136 2137 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated) 2138 { 2139 u64 debugctl = 0; 2140 2141 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && 2142 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))) 2143 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT; 2144 2145 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) && 2146 (host_initiated || intel_pmu_lbr_is_enabled(vcpu))) 2147 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; 2148 2149 return debugctl; 2150 } 2151 2152 /* 2153 * Writes msr value into the appropriate "register". 2154 * Returns 0 on success, non-0 otherwise. 2155 * Assumes vcpu_load() was already called. 2156 */ 2157 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2158 { 2159 struct vcpu_vmx *vmx = to_vmx(vcpu); 2160 struct vmx_uret_msr *msr; 2161 int ret = 0; 2162 u32 msr_index = msr_info->index; 2163 u64 data = msr_info->data; 2164 u32 index; 2165 2166 switch (msr_index) { 2167 case MSR_EFER: 2168 ret = kvm_set_msr_common(vcpu, msr_info); 2169 break; 2170 #ifdef CONFIG_X86_64 2171 case MSR_FS_BASE: 2172 vmx_segment_cache_clear(vmx); 2173 vmcs_writel(GUEST_FS_BASE, data); 2174 break; 2175 case MSR_GS_BASE: 2176 vmx_segment_cache_clear(vmx); 2177 vmcs_writel(GUEST_GS_BASE, data); 2178 break; 2179 case MSR_KERNEL_GS_BASE: 2180 vmx_write_guest_kernel_gs_base(vmx, data); 2181 break; 2182 case MSR_IA32_XFD: 2183 ret = kvm_set_msr_common(vcpu, msr_info); 2184 /* 2185 * Always intercepting WRMSR could incur non-negligible 2186 * overhead given xfd might be changed frequently in 2187 * guest context switch. Disable write interception 2188 * upon the first write with a non-zero value (indicating 2189 * potential usage on dynamic xfeatures). Also update 2190 * exception bitmap to trap #NM for proper virtualization 2191 * of guest xfd_err. 2192 */ 2193 if (!ret && data) { 2194 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 2195 MSR_TYPE_RW); 2196 vcpu->arch.xfd_no_write_intercept = true; 2197 vmx_update_exception_bitmap(vcpu); 2198 } 2199 break; 2200 #endif 2201 case MSR_IA32_SYSENTER_CS: 2202 if (is_guest_mode(vcpu)) 2203 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2204 vmcs_write32(GUEST_SYSENTER_CS, data); 2205 break; 2206 case MSR_IA32_SYSENTER_EIP: 2207 if (is_guest_mode(vcpu)) { 2208 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2209 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2210 } 2211 vmcs_writel(GUEST_SYSENTER_EIP, data); 2212 break; 2213 case MSR_IA32_SYSENTER_ESP: 2214 if (is_guest_mode(vcpu)) { 2215 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2216 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2217 } 2218 vmcs_writel(GUEST_SYSENTER_ESP, data); 2219 break; 2220 case MSR_IA32_DEBUGCTLMSR: { 2221 u64 invalid; 2222 2223 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated); 2224 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2225 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data); 2226 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2227 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2228 } 2229 2230 if (invalid) 2231 return 1; 2232 2233 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2234 VM_EXIT_SAVE_DEBUG_CONTROLS) 2235 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2236 2237 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2238 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2239 (data & DEBUGCTLMSR_LBR)) 2240 intel_pmu_create_guest_lbr_event(vcpu); 2241 return 0; 2242 } 2243 case MSR_IA32_BNDCFGS: 2244 if (!kvm_mpx_supported() || 2245 (!msr_info->host_initiated && 2246 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2247 return 1; 2248 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2249 (data & MSR_IA32_BNDCFGS_RSVD)) 2250 return 1; 2251 2252 if (is_guest_mode(vcpu) && 2253 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) || 2254 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS))) 2255 get_vmcs12(vcpu)->guest_bndcfgs = data; 2256 2257 vmcs_write64(GUEST_BNDCFGS, data); 2258 break; 2259 case MSR_IA32_UMWAIT_CONTROL: 2260 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2261 return 1; 2262 2263 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2264 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2265 return 1; 2266 2267 vmx->msr_ia32_umwait_control = data; 2268 break; 2269 case MSR_IA32_SPEC_CTRL: 2270 if (!msr_info->host_initiated && 2271 !guest_has_spec_ctrl_msr(vcpu)) 2272 return 1; 2273 2274 if (kvm_spec_ctrl_test_value(data)) 2275 return 1; 2276 2277 vmx->spec_ctrl = data; 2278 if (!data) 2279 break; 2280 2281 /* 2282 * For non-nested: 2283 * When it's written (to non-zero) for the first time, pass 2284 * it through. 2285 * 2286 * For nested: 2287 * The handling of the MSR bitmap for L2 guests is done in 2288 * nested_vmx_prepare_msr_bitmap. We should not touch the 2289 * vmcs02.msr_bitmap here since it gets completely overwritten 2290 * in the merging. We update the vmcs01 here for L1 as well 2291 * since it will end up touching the MSR anyway now. 2292 */ 2293 vmx_disable_intercept_for_msr(vcpu, 2294 MSR_IA32_SPEC_CTRL, 2295 MSR_TYPE_RW); 2296 break; 2297 case MSR_IA32_TSX_CTRL: 2298 if (!msr_info->host_initiated && 2299 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2300 return 1; 2301 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2302 return 1; 2303 goto find_uret_msr; 2304 case MSR_IA32_CR_PAT: 2305 ret = kvm_set_msr_common(vcpu, msr_info); 2306 if (ret) 2307 break; 2308 2309 if (is_guest_mode(vcpu) && 2310 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2311 get_vmcs12(vcpu)->guest_ia32_pat = data; 2312 2313 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 2314 vmcs_write64(GUEST_IA32_PAT, data); 2315 break; 2316 case MSR_IA32_MCG_EXT_CTL: 2317 if ((!msr_info->host_initiated && 2318 !(to_vmx(vcpu)->msr_ia32_feature_control & 2319 FEAT_CTL_LMCE_ENABLED)) || 2320 (data & ~MCG_EXT_CTL_LMCE_EN)) 2321 return 1; 2322 vcpu->arch.mcg_ext_ctl = data; 2323 break; 2324 case MSR_IA32_FEAT_CTL: 2325 if (!is_vmx_feature_control_msr_valid(vmx, msr_info)) 2326 return 1; 2327 2328 vmx->msr_ia32_feature_control = data; 2329 if (msr_info->host_initiated && data == 0) 2330 vmx_leave_nested(vcpu); 2331 2332 /* SGX may be enabled/disabled by guest's firmware */ 2333 vmx_write_encls_bitmap(vcpu, NULL); 2334 break; 2335 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2336 /* 2337 * On real hardware, the LE hash MSRs are writable before 2338 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2339 * at which point SGX related bits in IA32_FEATURE_CONTROL 2340 * become writable. 2341 * 2342 * KVM does not emulate SGX activation for simplicity, so 2343 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2344 * is unlocked. This is technically not architectural 2345 * behavior, but it's close enough. 2346 */ 2347 if (!msr_info->host_initiated && 2348 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2349 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2350 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2351 return 1; 2352 vmx->msr_ia32_sgxlepubkeyhash 2353 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2354 break; 2355 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2356 if (!msr_info->host_initiated) 2357 return 1; /* they are read-only */ 2358 if (!nested_vmx_allowed(vcpu)) 2359 return 1; 2360 return vmx_set_vmx_msr(vcpu, msr_index, data); 2361 case MSR_IA32_RTIT_CTL: 2362 if (!vmx_pt_mode_is_host_guest() || 2363 vmx_rtit_ctl_check(vcpu, data) || 2364 vmx->nested.vmxon) 2365 return 1; 2366 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2367 vmx->pt_desc.guest.ctl = data; 2368 pt_update_intercept_for_msr(vcpu); 2369 break; 2370 case MSR_IA32_RTIT_STATUS: 2371 if (!pt_can_write_msr(vmx)) 2372 return 1; 2373 if (data & MSR_IA32_RTIT_STATUS_MASK) 2374 return 1; 2375 vmx->pt_desc.guest.status = data; 2376 break; 2377 case MSR_IA32_RTIT_CR3_MATCH: 2378 if (!pt_can_write_msr(vmx)) 2379 return 1; 2380 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2381 PT_CAP_cr3_filtering)) 2382 return 1; 2383 vmx->pt_desc.guest.cr3_match = data; 2384 break; 2385 case MSR_IA32_RTIT_OUTPUT_BASE: 2386 if (!pt_can_write_msr(vmx)) 2387 return 1; 2388 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2389 PT_CAP_topa_output) && 2390 !intel_pt_validate_cap(vmx->pt_desc.caps, 2391 PT_CAP_single_range_output)) 2392 return 1; 2393 if (!pt_output_base_valid(vcpu, data)) 2394 return 1; 2395 vmx->pt_desc.guest.output_base = data; 2396 break; 2397 case MSR_IA32_RTIT_OUTPUT_MASK: 2398 if (!pt_can_write_msr(vmx)) 2399 return 1; 2400 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2401 PT_CAP_topa_output) && 2402 !intel_pt_validate_cap(vmx->pt_desc.caps, 2403 PT_CAP_single_range_output)) 2404 return 1; 2405 vmx->pt_desc.guest.output_mask = data; 2406 break; 2407 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2408 if (!pt_can_write_msr(vmx)) 2409 return 1; 2410 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2411 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2412 return 1; 2413 if (is_noncanonical_address(data, vcpu)) 2414 return 1; 2415 if (index % 2) 2416 vmx->pt_desc.guest.addr_b[index / 2] = data; 2417 else 2418 vmx->pt_desc.guest.addr_a[index / 2] = data; 2419 break; 2420 case MSR_IA32_PERF_CAPABILITIES: 2421 if (data && !vcpu_to_pmu(vcpu)->version) 2422 return 1; 2423 if (data & PMU_CAP_LBR_FMT) { 2424 if ((data & PMU_CAP_LBR_FMT) != 2425 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT)) 2426 return 1; 2427 if (!cpuid_model_is_consistent(vcpu)) 2428 return 1; 2429 } 2430 if (data & PERF_CAP_PEBS_FORMAT) { 2431 if ((data & PERF_CAP_PEBS_MASK) != 2432 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK)) 2433 return 1; 2434 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS)) 2435 return 1; 2436 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64)) 2437 return 1; 2438 if (!cpuid_model_is_consistent(vcpu)) 2439 return 1; 2440 } 2441 ret = kvm_set_msr_common(vcpu, msr_info); 2442 break; 2443 2444 default: 2445 find_uret_msr: 2446 msr = vmx_find_uret_msr(vmx, msr_index); 2447 if (msr) 2448 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2449 else 2450 ret = kvm_set_msr_common(vcpu, msr_info); 2451 } 2452 2453 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ 2454 if (msr_index == MSR_IA32_ARCH_CAPABILITIES) 2455 vmx_update_fb_clear_dis(vcpu, vmx); 2456 2457 return ret; 2458 } 2459 2460 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2461 { 2462 unsigned long guest_owned_bits; 2463 2464 kvm_register_mark_available(vcpu, reg); 2465 2466 switch (reg) { 2467 case VCPU_REGS_RSP: 2468 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2469 break; 2470 case VCPU_REGS_RIP: 2471 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2472 break; 2473 case VCPU_EXREG_PDPTR: 2474 if (enable_ept) 2475 ept_save_pdptrs(vcpu); 2476 break; 2477 case VCPU_EXREG_CR0: 2478 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2479 2480 vcpu->arch.cr0 &= ~guest_owned_bits; 2481 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2482 break; 2483 case VCPU_EXREG_CR3: 2484 /* 2485 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2486 * CR3 is loaded into hardware, not the guest's CR3. 2487 */ 2488 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2489 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2490 break; 2491 case VCPU_EXREG_CR4: 2492 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2493 2494 vcpu->arch.cr4 &= ~guest_owned_bits; 2495 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2496 break; 2497 default: 2498 KVM_BUG_ON(1, vcpu->kvm); 2499 break; 2500 } 2501 } 2502 2503 /* 2504 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2505 * directly instead of going through cpu_has(), to ensure KVM is trapping 2506 * ENCLS whenever it's supported in hardware. It does not matter whether 2507 * the host OS supports or has enabled SGX. 2508 */ 2509 static bool cpu_has_sgx(void) 2510 { 2511 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2512 } 2513 2514 /* 2515 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2516 * can't be used due to errata where VM Exit may incorrectly clear 2517 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the 2518 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2519 */ 2520 static bool cpu_has_perf_global_ctrl_bug(void) 2521 { 2522 if (boot_cpu_data.x86 == 0x6) { 2523 switch (boot_cpu_data.x86_model) { 2524 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */ 2525 case INTEL_FAM6_NEHALEM: /* AAP115 */ 2526 case INTEL_FAM6_WESTMERE: /* AAT100 */ 2527 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */ 2528 case INTEL_FAM6_NEHALEM_EX: /* BA97 */ 2529 return true; 2530 default: 2531 break; 2532 } 2533 } 2534 2535 return false; 2536 } 2537 2538 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) 2539 { 2540 u32 vmx_msr_low, vmx_msr_high; 2541 u32 ctl = ctl_min | ctl_opt; 2542 2543 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2544 2545 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2546 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2547 2548 /* Ensure minimum (required) set of control bits are supported. */ 2549 if (ctl_min & ~ctl) 2550 return -EIO; 2551 2552 *result = ctl; 2553 return 0; 2554 } 2555 2556 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr) 2557 { 2558 u64 allowed; 2559 2560 rdmsrl(msr, allowed); 2561 2562 return ctl_opt & allowed; 2563 } 2564 2565 static int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2566 struct vmx_capability *vmx_cap) 2567 { 2568 u32 vmx_msr_low, vmx_msr_high; 2569 u32 _pin_based_exec_control = 0; 2570 u32 _cpu_based_exec_control = 0; 2571 u32 _cpu_based_2nd_exec_control = 0; 2572 u64 _cpu_based_3rd_exec_control = 0; 2573 u32 _vmexit_control = 0; 2574 u32 _vmentry_control = 0; 2575 u64 misc_msr; 2576 int i; 2577 2578 /* 2579 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory. 2580 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always 2581 * intercepts writes to PAT and EFER, i.e. never enables those controls. 2582 */ 2583 struct { 2584 u32 entry_control; 2585 u32 exit_control; 2586 } const vmcs_entry_exit_pairs[] = { 2587 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL }, 2588 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT }, 2589 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER }, 2590 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS }, 2591 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL }, 2592 }; 2593 2594 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2595 2596 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL, 2597 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL, 2598 MSR_IA32_VMX_PROCBASED_CTLS, 2599 &_cpu_based_exec_control)) 2600 return -EIO; 2601 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2602 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL, 2603 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL, 2604 MSR_IA32_VMX_PROCBASED_CTLS2, 2605 &_cpu_based_2nd_exec_control)) 2606 return -EIO; 2607 } 2608 #ifndef CONFIG_X86_64 2609 if (!(_cpu_based_2nd_exec_control & 2610 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2611 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2612 #endif 2613 2614 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2615 _cpu_based_2nd_exec_control &= ~( 2616 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2617 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2618 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2619 2620 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2621 &vmx_cap->ept, &vmx_cap->vpid); 2622 2623 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 2624 vmx_cap->ept) { 2625 pr_warn_once("EPT CAP should not exist if not support " 2626 "1-setting enable EPT VM-execution control\n"); 2627 2628 if (error_on_inconsistent_vmcs_config) 2629 return -EIO; 2630 2631 vmx_cap->ept = 0; 2632 } 2633 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2634 vmx_cap->vpid) { 2635 pr_warn_once("VPID CAP should not exist if not support " 2636 "1-setting enable VPID VM-execution control\n"); 2637 2638 if (error_on_inconsistent_vmcs_config) 2639 return -EIO; 2640 2641 vmx_cap->vpid = 0; 2642 } 2643 2644 if (!cpu_has_sgx()) 2645 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING; 2646 2647 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) 2648 _cpu_based_3rd_exec_control = 2649 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL, 2650 MSR_IA32_VMX_PROCBASED_CTLS3); 2651 2652 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS, 2653 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS, 2654 MSR_IA32_VMX_EXIT_CTLS, 2655 &_vmexit_control)) 2656 return -EIO; 2657 2658 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL, 2659 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL, 2660 MSR_IA32_VMX_PINBASED_CTLS, 2661 &_pin_based_exec_control)) 2662 return -EIO; 2663 2664 if (cpu_has_broken_vmx_preemption_timer()) 2665 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2666 if (!(_cpu_based_2nd_exec_control & 2667 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2668 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2669 2670 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS, 2671 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS, 2672 MSR_IA32_VMX_ENTRY_CTLS, 2673 &_vmentry_control)) 2674 return -EIO; 2675 2676 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) { 2677 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control; 2678 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control; 2679 2680 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl)) 2681 continue; 2682 2683 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n", 2684 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl); 2685 2686 if (error_on_inconsistent_vmcs_config) 2687 return -EIO; 2688 2689 _vmentry_control &= ~n_ctrl; 2690 _vmexit_control &= ~x_ctrl; 2691 } 2692 2693 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2694 2695 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2696 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2697 return -EIO; 2698 2699 #ifdef CONFIG_X86_64 2700 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2701 if (vmx_msr_high & (1u<<16)) 2702 return -EIO; 2703 #endif 2704 2705 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2706 if (((vmx_msr_high >> 18) & 15) != 6) 2707 return -EIO; 2708 2709 rdmsrl(MSR_IA32_VMX_MISC, misc_msr); 2710 2711 vmcs_conf->size = vmx_msr_high & 0x1fff; 2712 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2713 2714 vmcs_conf->revision_id = vmx_msr_low; 2715 2716 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2717 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2718 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2719 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control; 2720 vmcs_conf->vmexit_ctrl = _vmexit_control; 2721 vmcs_conf->vmentry_ctrl = _vmentry_control; 2722 vmcs_conf->misc = misc_msr; 2723 2724 #if IS_ENABLED(CONFIG_HYPERV) 2725 if (enlightened_vmcs) 2726 evmcs_sanitize_exec_ctrls(vmcs_conf); 2727 #endif 2728 2729 return 0; 2730 } 2731 2732 static bool kvm_is_vmx_supported(void) 2733 { 2734 int cpu = raw_smp_processor_id(); 2735 2736 if (!cpu_has_vmx()) { 2737 pr_err("VMX not supported by CPU %d\n", cpu); 2738 return false; 2739 } 2740 2741 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2742 !this_cpu_has(X86_FEATURE_VMX)) { 2743 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu); 2744 return false; 2745 } 2746 2747 return true; 2748 } 2749 2750 static int vmx_check_processor_compat(void) 2751 { 2752 int cpu = raw_smp_processor_id(); 2753 struct vmcs_config vmcs_conf; 2754 struct vmx_capability vmx_cap; 2755 2756 if (!kvm_is_vmx_supported()) 2757 return -EIO; 2758 2759 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) { 2760 pr_err("Failed to setup VMCS config on CPU %d\n", cpu); 2761 return -EIO; 2762 } 2763 if (nested) 2764 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept); 2765 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) { 2766 pr_err("Inconsistent VMCS config on CPU %d\n", cpu); 2767 return -EIO; 2768 } 2769 return 0; 2770 } 2771 2772 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2773 { 2774 u64 msr; 2775 2776 cr4_set_bits(X86_CR4_VMXE); 2777 2778 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2779 _ASM_EXTABLE(1b, %l[fault]) 2780 : : [vmxon_pointer] "m"(vmxon_pointer) 2781 : : fault); 2782 return 0; 2783 2784 fault: 2785 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2786 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2787 cr4_clear_bits(X86_CR4_VMXE); 2788 2789 return -EFAULT; 2790 } 2791 2792 static int vmx_hardware_enable(void) 2793 { 2794 int cpu = raw_smp_processor_id(); 2795 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2796 int r; 2797 2798 if (cr4_read_shadow() & X86_CR4_VMXE) 2799 return -EBUSY; 2800 2801 /* 2802 * This can happen if we hot-added a CPU but failed to allocate 2803 * VP assist page for it. 2804 */ 2805 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu)) 2806 return -EFAULT; 2807 2808 intel_pt_handle_vmx(1); 2809 2810 r = kvm_cpu_vmxon(phys_addr); 2811 if (r) { 2812 intel_pt_handle_vmx(0); 2813 return r; 2814 } 2815 2816 if (enable_ept) 2817 ept_sync_global(); 2818 2819 return 0; 2820 } 2821 2822 static void vmclear_local_loaded_vmcss(void) 2823 { 2824 int cpu = raw_smp_processor_id(); 2825 struct loaded_vmcs *v, *n; 2826 2827 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2828 loaded_vmcss_on_cpu_link) 2829 __loaded_vmcs_clear(v); 2830 } 2831 2832 static void vmx_hardware_disable(void) 2833 { 2834 vmclear_local_loaded_vmcss(); 2835 2836 if (cpu_vmxoff()) 2837 kvm_spurious_fault(); 2838 2839 hv_reset_evmcs(); 2840 2841 intel_pt_handle_vmx(0); 2842 } 2843 2844 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2845 { 2846 int node = cpu_to_node(cpu); 2847 struct page *pages; 2848 struct vmcs *vmcs; 2849 2850 pages = __alloc_pages_node(node, flags, 0); 2851 if (!pages) 2852 return NULL; 2853 vmcs = page_address(pages); 2854 memset(vmcs, 0, vmcs_config.size); 2855 2856 /* KVM supports Enlightened VMCS v1 only */ 2857 if (kvm_is_using_evmcs()) 2858 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2859 else 2860 vmcs->hdr.revision_id = vmcs_config.revision_id; 2861 2862 if (shadow) 2863 vmcs->hdr.shadow_vmcs = 1; 2864 return vmcs; 2865 } 2866 2867 void free_vmcs(struct vmcs *vmcs) 2868 { 2869 free_page((unsigned long)vmcs); 2870 } 2871 2872 /* 2873 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2874 */ 2875 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2876 { 2877 if (!loaded_vmcs->vmcs) 2878 return; 2879 loaded_vmcs_clear(loaded_vmcs); 2880 free_vmcs(loaded_vmcs->vmcs); 2881 loaded_vmcs->vmcs = NULL; 2882 if (loaded_vmcs->msr_bitmap) 2883 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2884 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2885 } 2886 2887 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2888 { 2889 loaded_vmcs->vmcs = alloc_vmcs(false); 2890 if (!loaded_vmcs->vmcs) 2891 return -ENOMEM; 2892 2893 vmcs_clear(loaded_vmcs->vmcs); 2894 2895 loaded_vmcs->shadow_vmcs = NULL; 2896 loaded_vmcs->hv_timer_soft_disabled = false; 2897 loaded_vmcs->cpu = -1; 2898 loaded_vmcs->launched = 0; 2899 2900 if (cpu_has_vmx_msr_bitmap()) { 2901 loaded_vmcs->msr_bitmap = (unsigned long *) 2902 __get_free_page(GFP_KERNEL_ACCOUNT); 2903 if (!loaded_vmcs->msr_bitmap) 2904 goto out_vmcs; 2905 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2906 } 2907 2908 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2909 memset(&loaded_vmcs->controls_shadow, 0, 2910 sizeof(struct vmcs_controls_shadow)); 2911 2912 return 0; 2913 2914 out_vmcs: 2915 free_loaded_vmcs(loaded_vmcs); 2916 return -ENOMEM; 2917 } 2918 2919 static void free_kvm_area(void) 2920 { 2921 int cpu; 2922 2923 for_each_possible_cpu(cpu) { 2924 free_vmcs(per_cpu(vmxarea, cpu)); 2925 per_cpu(vmxarea, cpu) = NULL; 2926 } 2927 } 2928 2929 static __init int alloc_kvm_area(void) 2930 { 2931 int cpu; 2932 2933 for_each_possible_cpu(cpu) { 2934 struct vmcs *vmcs; 2935 2936 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2937 if (!vmcs) { 2938 free_kvm_area(); 2939 return -ENOMEM; 2940 } 2941 2942 /* 2943 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2944 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2945 * revision_id reported by MSR_IA32_VMX_BASIC. 2946 * 2947 * However, even though not explicitly documented by 2948 * TLFS, VMXArea passed as VMXON argument should 2949 * still be marked with revision_id reported by 2950 * physical CPU. 2951 */ 2952 if (kvm_is_using_evmcs()) 2953 vmcs->hdr.revision_id = vmcs_config.revision_id; 2954 2955 per_cpu(vmxarea, cpu) = vmcs; 2956 } 2957 return 0; 2958 } 2959 2960 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2961 struct kvm_segment *save) 2962 { 2963 if (!emulate_invalid_guest_state) { 2964 /* 2965 * CS and SS RPL should be equal during guest entry according 2966 * to VMX spec, but in reality it is not always so. Since vcpu 2967 * is in the middle of the transition from real mode to 2968 * protected mode it is safe to assume that RPL 0 is a good 2969 * default value. 2970 */ 2971 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2972 save->selector &= ~SEGMENT_RPL_MASK; 2973 save->dpl = save->selector & SEGMENT_RPL_MASK; 2974 save->s = 1; 2975 } 2976 __vmx_set_segment(vcpu, save, seg); 2977 } 2978 2979 static void enter_pmode(struct kvm_vcpu *vcpu) 2980 { 2981 unsigned long flags; 2982 struct vcpu_vmx *vmx = to_vmx(vcpu); 2983 2984 /* 2985 * Update real mode segment cache. It may be not up-to-date if segment 2986 * register was written while vcpu was in a guest mode. 2987 */ 2988 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2989 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2990 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2991 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2992 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2993 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2994 2995 vmx->rmode.vm86_active = 0; 2996 2997 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2998 2999 flags = vmcs_readl(GUEST_RFLAGS); 3000 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 3001 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 3002 vmcs_writel(GUEST_RFLAGS, flags); 3003 3004 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 3005 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 3006 3007 vmx_update_exception_bitmap(vcpu); 3008 3009 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3010 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3011 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3012 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3013 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3014 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3015 } 3016 3017 static void fix_rmode_seg(int seg, struct kvm_segment *save) 3018 { 3019 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3020 struct kvm_segment var = *save; 3021 3022 var.dpl = 0x3; 3023 if (seg == VCPU_SREG_CS) 3024 var.type = 0x3; 3025 3026 if (!emulate_invalid_guest_state) { 3027 var.selector = var.base >> 4; 3028 var.base = var.base & 0xffff0; 3029 var.limit = 0xffff; 3030 var.g = 0; 3031 var.db = 0; 3032 var.present = 1; 3033 var.s = 1; 3034 var.l = 0; 3035 var.unusable = 0; 3036 var.type = 0x3; 3037 var.avl = 0; 3038 if (save->base & 0xf) 3039 pr_warn_once("segment base is not paragraph aligned " 3040 "when entering protected mode (seg=%d)", seg); 3041 } 3042 3043 vmcs_write16(sf->selector, var.selector); 3044 vmcs_writel(sf->base, var.base); 3045 vmcs_write32(sf->limit, var.limit); 3046 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 3047 } 3048 3049 static void enter_rmode(struct kvm_vcpu *vcpu) 3050 { 3051 unsigned long flags; 3052 struct vcpu_vmx *vmx = to_vmx(vcpu); 3053 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 3054 3055 /* 3056 * KVM should never use VM86 to virtualize Real Mode when L2 is active, 3057 * as using VM86 is unnecessary if unrestricted guest is enabled, and 3058 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0 3059 * should VM-Fail and KVM should reject userspace attempts to stuff 3060 * CR0.PG=0 when L2 is active. 3061 */ 3062 WARN_ON_ONCE(is_guest_mode(vcpu)); 3063 3064 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3065 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3066 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3067 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3068 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3069 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3070 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3071 3072 vmx->rmode.vm86_active = 1; 3073 3074 /* 3075 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 3076 * vcpu. Warn the user that an update is overdue. 3077 */ 3078 if (!kvm_vmx->tss_addr) 3079 pr_warn_once("KVM_SET_TSS_ADDR needs to be called before running vCPU\n"); 3080 3081 vmx_segment_cache_clear(vmx); 3082 3083 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 3084 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 3085 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 3086 3087 flags = vmcs_readl(GUEST_RFLAGS); 3088 vmx->rmode.save_rflags = flags; 3089 3090 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 3091 3092 vmcs_writel(GUEST_RFLAGS, flags); 3093 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 3094 vmx_update_exception_bitmap(vcpu); 3095 3096 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3097 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3098 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3099 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3100 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3101 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3102 } 3103 3104 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 3105 { 3106 struct vcpu_vmx *vmx = to_vmx(vcpu); 3107 3108 /* Nothing to do if hardware doesn't support EFER. */ 3109 if (!vmx_find_uret_msr(vmx, MSR_EFER)) 3110 return 0; 3111 3112 vcpu->arch.efer = efer; 3113 #ifdef CONFIG_X86_64 3114 if (efer & EFER_LMA) 3115 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); 3116 else 3117 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); 3118 #else 3119 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm)) 3120 return 1; 3121 #endif 3122 3123 vmx_setup_uret_msrs(vmx); 3124 return 0; 3125 } 3126 3127 #ifdef CONFIG_X86_64 3128 3129 static void enter_lmode(struct kvm_vcpu *vcpu) 3130 { 3131 u32 guest_tr_ar; 3132 3133 vmx_segment_cache_clear(to_vmx(vcpu)); 3134 3135 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 3136 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 3137 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 3138 __func__); 3139 vmcs_write32(GUEST_TR_AR_BYTES, 3140 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 3141 | VMX_AR_TYPE_BUSY_64_TSS); 3142 } 3143 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 3144 } 3145 3146 static void exit_lmode(struct kvm_vcpu *vcpu) 3147 { 3148 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 3149 } 3150 3151 #endif 3152 3153 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 3154 { 3155 struct vcpu_vmx *vmx = to_vmx(vcpu); 3156 3157 /* 3158 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 3159 * the CPU is not required to invalidate guest-physical mappings on 3160 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 3161 * associated with the root EPT structure and not any particular VPID 3162 * (INVVPID also isn't required to invalidate guest-physical mappings). 3163 */ 3164 if (enable_ept) { 3165 ept_sync_global(); 3166 } else if (enable_vpid) { 3167 if (cpu_has_vmx_invvpid_global()) { 3168 vpid_sync_vcpu_global(); 3169 } else { 3170 vpid_sync_vcpu_single(vmx->vpid); 3171 vpid_sync_vcpu_single(vmx->nested.vpid02); 3172 } 3173 } 3174 } 3175 3176 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 3177 { 3178 if (is_guest_mode(vcpu)) 3179 return nested_get_vpid02(vcpu); 3180 return to_vmx(vcpu)->vpid; 3181 } 3182 3183 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 3184 { 3185 struct kvm_mmu *mmu = vcpu->arch.mmu; 3186 u64 root_hpa = mmu->root.hpa; 3187 3188 /* No flush required if the current context is invalid. */ 3189 if (!VALID_PAGE(root_hpa)) 3190 return; 3191 3192 if (enable_ept) 3193 ept_sync_context(construct_eptp(vcpu, root_hpa, 3194 mmu->root_role.level)); 3195 else 3196 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3197 } 3198 3199 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 3200 { 3201 /* 3202 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 3203 * vmx_flush_tlb_guest() for an explanation of why this is ok. 3204 */ 3205 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 3206 } 3207 3208 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 3209 { 3210 /* 3211 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 3212 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 3213 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 3214 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 3215 * i.e. no explicit INVVPID is necessary. 3216 */ 3217 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3218 } 3219 3220 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 3221 { 3222 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3223 3224 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 3225 return; 3226 3227 if (is_pae_paging(vcpu)) { 3228 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3229 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3230 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3231 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3232 } 3233 } 3234 3235 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3236 { 3237 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3238 3239 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3240 return; 3241 3242 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3243 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3244 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3245 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3246 3247 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3248 } 3249 3250 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3251 CPU_BASED_CR3_STORE_EXITING) 3252 3253 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3254 { 3255 if (is_guest_mode(vcpu)) 3256 return nested_guest_cr0_valid(vcpu, cr0); 3257 3258 if (to_vmx(vcpu)->nested.vmxon) 3259 return nested_host_cr0_valid(vcpu, cr0); 3260 3261 return true; 3262 } 3263 3264 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3265 { 3266 struct vcpu_vmx *vmx = to_vmx(vcpu); 3267 unsigned long hw_cr0, old_cr0_pg; 3268 u32 tmp; 3269 3270 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3271 3272 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3273 if (enable_unrestricted_guest) 3274 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3275 else { 3276 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3277 if (!enable_ept) 3278 hw_cr0 |= X86_CR0_WP; 3279 3280 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3281 enter_pmode(vcpu); 3282 3283 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3284 enter_rmode(vcpu); 3285 } 3286 3287 vmcs_writel(CR0_READ_SHADOW, cr0); 3288 vmcs_writel(GUEST_CR0, hw_cr0); 3289 vcpu->arch.cr0 = cr0; 3290 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3291 3292 #ifdef CONFIG_X86_64 3293 if (vcpu->arch.efer & EFER_LME) { 3294 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3295 enter_lmode(vcpu); 3296 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3297 exit_lmode(vcpu); 3298 } 3299 #endif 3300 3301 if (enable_ept && !enable_unrestricted_guest) { 3302 /* 3303 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3304 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3305 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3306 * KVM's CR3 is installed. 3307 */ 3308 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3309 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3310 3311 /* 3312 * When running with EPT but not unrestricted guest, KVM must 3313 * intercept CR3 accesses when paging is _disabled_. This is 3314 * necessary because restricted guests can't actually run with 3315 * paging disabled, and so KVM stuffs its own CR3 in order to 3316 * run the guest when identity mapped page tables. 3317 * 3318 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3319 * update, it may be stale with respect to CR3 interception, 3320 * e.g. after nested VM-Enter. 3321 * 3322 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3323 * stores to forward them to L1, even if KVM does not need to 3324 * intercept them to preserve its identity mapped page tables. 3325 */ 3326 if (!(cr0 & X86_CR0_PG)) { 3327 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3328 } else if (!is_guest_mode(vcpu)) { 3329 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3330 } else { 3331 tmp = exec_controls_get(vmx); 3332 tmp &= ~CR3_EXITING_BITS; 3333 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3334 exec_controls_set(vmx, tmp); 3335 } 3336 3337 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3338 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3339 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3340 3341 /* 3342 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3343 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3344 */ 3345 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3346 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3347 } 3348 3349 /* depends on vcpu->arch.cr0 to be set to a new value */ 3350 vmx->emulation_required = vmx_emulation_required(vcpu); 3351 } 3352 3353 static int vmx_get_max_tdp_level(void) 3354 { 3355 if (cpu_has_vmx_ept_5levels()) 3356 return 5; 3357 return 4; 3358 } 3359 3360 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3361 { 3362 u64 eptp = VMX_EPTP_MT_WB; 3363 3364 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3365 3366 if (enable_ept_ad_bits && 3367 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3368 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3369 eptp |= root_hpa; 3370 3371 return eptp; 3372 } 3373 3374 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3375 int root_level) 3376 { 3377 struct kvm *kvm = vcpu->kvm; 3378 bool update_guest_cr3 = true; 3379 unsigned long guest_cr3; 3380 u64 eptp; 3381 3382 if (enable_ept) { 3383 eptp = construct_eptp(vcpu, root_hpa, root_level); 3384 vmcs_write64(EPT_POINTER, eptp); 3385 3386 hv_track_root_tdp(vcpu, root_hpa); 3387 3388 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3389 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3390 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3391 guest_cr3 = vcpu->arch.cr3; 3392 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3393 update_guest_cr3 = false; 3394 vmx_ept_load_pdptrs(vcpu); 3395 } else { 3396 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3397 } 3398 3399 if (update_guest_cr3) 3400 vmcs_writel(GUEST_CR3, guest_cr3); 3401 } 3402 3403 3404 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3405 { 3406 /* 3407 * We operate under the default treatment of SMM, so VMX cannot be 3408 * enabled under SMM. Note, whether or not VMXE is allowed at all, 3409 * i.e. is a reserved bit, is handled by common x86 code. 3410 */ 3411 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3412 return false; 3413 3414 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3415 return false; 3416 3417 return true; 3418 } 3419 3420 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3421 { 3422 unsigned long old_cr4 = kvm_read_cr4(vcpu); 3423 struct vcpu_vmx *vmx = to_vmx(vcpu); 3424 unsigned long hw_cr4; 3425 3426 /* 3427 * Pass through host's Machine Check Enable value to hw_cr4, which 3428 * is in force while we are in guest mode. Do not let guests control 3429 * this bit, even if host CR4.MCE == 0. 3430 */ 3431 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3432 if (enable_unrestricted_guest) 3433 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3434 else if (vmx->rmode.vm86_active) 3435 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3436 else 3437 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3438 3439 if (vmx_umip_emulated()) { 3440 if (cr4 & X86_CR4_UMIP) { 3441 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3442 hw_cr4 &= ~X86_CR4_UMIP; 3443 } else if (!is_guest_mode(vcpu) || 3444 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3445 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3446 } 3447 } 3448 3449 vcpu->arch.cr4 = cr4; 3450 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3451 3452 if (!enable_unrestricted_guest) { 3453 if (enable_ept) { 3454 if (!is_paging(vcpu)) { 3455 hw_cr4 &= ~X86_CR4_PAE; 3456 hw_cr4 |= X86_CR4_PSE; 3457 } else if (!(cr4 & X86_CR4_PAE)) { 3458 hw_cr4 &= ~X86_CR4_PAE; 3459 } 3460 } 3461 3462 /* 3463 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3464 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3465 * to be manually disabled when guest switches to non-paging 3466 * mode. 3467 * 3468 * If !enable_unrestricted_guest, the CPU is always running 3469 * with CR0.PG=1 and CR4 needs to be modified. 3470 * If enable_unrestricted_guest, the CPU automatically 3471 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3472 */ 3473 if (!is_paging(vcpu)) 3474 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3475 } 3476 3477 vmcs_writel(CR4_READ_SHADOW, cr4); 3478 vmcs_writel(GUEST_CR4, hw_cr4); 3479 3480 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3481 kvm_update_cpuid_runtime(vcpu); 3482 } 3483 3484 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3485 { 3486 struct vcpu_vmx *vmx = to_vmx(vcpu); 3487 u32 ar; 3488 3489 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3490 *var = vmx->rmode.segs[seg]; 3491 if (seg == VCPU_SREG_TR 3492 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3493 return; 3494 var->base = vmx_read_guest_seg_base(vmx, seg); 3495 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3496 return; 3497 } 3498 var->base = vmx_read_guest_seg_base(vmx, seg); 3499 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3500 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3501 ar = vmx_read_guest_seg_ar(vmx, seg); 3502 var->unusable = (ar >> 16) & 1; 3503 var->type = ar & 15; 3504 var->s = (ar >> 4) & 1; 3505 var->dpl = (ar >> 5) & 3; 3506 /* 3507 * Some userspaces do not preserve unusable property. Since usable 3508 * segment has to be present according to VMX spec we can use present 3509 * property to amend userspace bug by making unusable segment always 3510 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3511 * segment as unusable. 3512 */ 3513 var->present = !var->unusable; 3514 var->avl = (ar >> 12) & 1; 3515 var->l = (ar >> 13) & 1; 3516 var->db = (ar >> 14) & 1; 3517 var->g = (ar >> 15) & 1; 3518 } 3519 3520 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3521 { 3522 struct kvm_segment s; 3523 3524 if (to_vmx(vcpu)->rmode.vm86_active) { 3525 vmx_get_segment(vcpu, &s, seg); 3526 return s.base; 3527 } 3528 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3529 } 3530 3531 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3532 { 3533 struct vcpu_vmx *vmx = to_vmx(vcpu); 3534 3535 if (unlikely(vmx->rmode.vm86_active)) 3536 return 0; 3537 else { 3538 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3539 return VMX_AR_DPL(ar); 3540 } 3541 } 3542 3543 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3544 { 3545 u32 ar; 3546 3547 ar = var->type & 15; 3548 ar |= (var->s & 1) << 4; 3549 ar |= (var->dpl & 3) << 5; 3550 ar |= (var->present & 1) << 7; 3551 ar |= (var->avl & 1) << 12; 3552 ar |= (var->l & 1) << 13; 3553 ar |= (var->db & 1) << 14; 3554 ar |= (var->g & 1) << 15; 3555 ar |= (var->unusable || !var->present) << 16; 3556 3557 return ar; 3558 } 3559 3560 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3561 { 3562 struct vcpu_vmx *vmx = to_vmx(vcpu); 3563 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3564 3565 vmx_segment_cache_clear(vmx); 3566 3567 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3568 vmx->rmode.segs[seg] = *var; 3569 if (seg == VCPU_SREG_TR) 3570 vmcs_write16(sf->selector, var->selector); 3571 else if (var->s) 3572 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3573 return; 3574 } 3575 3576 vmcs_writel(sf->base, var->base); 3577 vmcs_write32(sf->limit, var->limit); 3578 vmcs_write16(sf->selector, var->selector); 3579 3580 /* 3581 * Fix the "Accessed" bit in AR field of segment registers for older 3582 * qemu binaries. 3583 * IA32 arch specifies that at the time of processor reset the 3584 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3585 * is setting it to 0 in the userland code. This causes invalid guest 3586 * state vmexit when "unrestricted guest" mode is turned on. 3587 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3588 * tree. Newer qemu binaries with that qemu fix would not need this 3589 * kvm hack. 3590 */ 3591 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3592 var->type |= 0x1; /* Accessed */ 3593 3594 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3595 } 3596 3597 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3598 { 3599 __vmx_set_segment(vcpu, var, seg); 3600 3601 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3602 } 3603 3604 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3605 { 3606 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3607 3608 *db = (ar >> 14) & 1; 3609 *l = (ar >> 13) & 1; 3610 } 3611 3612 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3613 { 3614 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3615 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3616 } 3617 3618 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3619 { 3620 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3621 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3622 } 3623 3624 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3625 { 3626 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3627 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3628 } 3629 3630 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3631 { 3632 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3633 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3634 } 3635 3636 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3637 { 3638 struct kvm_segment var; 3639 u32 ar; 3640 3641 vmx_get_segment(vcpu, &var, seg); 3642 var.dpl = 0x3; 3643 if (seg == VCPU_SREG_CS) 3644 var.type = 0x3; 3645 ar = vmx_segment_access_rights(&var); 3646 3647 if (var.base != (var.selector << 4)) 3648 return false; 3649 if (var.limit != 0xffff) 3650 return false; 3651 if (ar != 0xf3) 3652 return false; 3653 3654 return true; 3655 } 3656 3657 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3658 { 3659 struct kvm_segment cs; 3660 unsigned int cs_rpl; 3661 3662 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3663 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3664 3665 if (cs.unusable) 3666 return false; 3667 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3668 return false; 3669 if (!cs.s) 3670 return false; 3671 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3672 if (cs.dpl > cs_rpl) 3673 return false; 3674 } else { 3675 if (cs.dpl != cs_rpl) 3676 return false; 3677 } 3678 if (!cs.present) 3679 return false; 3680 3681 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3682 return true; 3683 } 3684 3685 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3686 { 3687 struct kvm_segment ss; 3688 unsigned int ss_rpl; 3689 3690 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3691 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3692 3693 if (ss.unusable) 3694 return true; 3695 if (ss.type != 3 && ss.type != 7) 3696 return false; 3697 if (!ss.s) 3698 return false; 3699 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3700 return false; 3701 if (!ss.present) 3702 return false; 3703 3704 return true; 3705 } 3706 3707 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3708 { 3709 struct kvm_segment var; 3710 unsigned int rpl; 3711 3712 vmx_get_segment(vcpu, &var, seg); 3713 rpl = var.selector & SEGMENT_RPL_MASK; 3714 3715 if (var.unusable) 3716 return true; 3717 if (!var.s) 3718 return false; 3719 if (!var.present) 3720 return false; 3721 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3722 if (var.dpl < rpl) /* DPL < RPL */ 3723 return false; 3724 } 3725 3726 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3727 * rights flags 3728 */ 3729 return true; 3730 } 3731 3732 static bool tr_valid(struct kvm_vcpu *vcpu) 3733 { 3734 struct kvm_segment tr; 3735 3736 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3737 3738 if (tr.unusable) 3739 return false; 3740 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3741 return false; 3742 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3743 return false; 3744 if (!tr.present) 3745 return false; 3746 3747 return true; 3748 } 3749 3750 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3751 { 3752 struct kvm_segment ldtr; 3753 3754 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3755 3756 if (ldtr.unusable) 3757 return true; 3758 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3759 return false; 3760 if (ldtr.type != 2) 3761 return false; 3762 if (!ldtr.present) 3763 return false; 3764 3765 return true; 3766 } 3767 3768 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3769 { 3770 struct kvm_segment cs, ss; 3771 3772 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3773 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3774 3775 return ((cs.selector & SEGMENT_RPL_MASK) == 3776 (ss.selector & SEGMENT_RPL_MASK)); 3777 } 3778 3779 /* 3780 * Check if guest state is valid. Returns true if valid, false if 3781 * not. 3782 * We assume that registers are always usable 3783 */ 3784 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3785 { 3786 /* real mode guest state checks */ 3787 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3788 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3789 return false; 3790 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3791 return false; 3792 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3793 return false; 3794 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3795 return false; 3796 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3797 return false; 3798 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3799 return false; 3800 } else { 3801 /* protected mode guest state checks */ 3802 if (!cs_ss_rpl_check(vcpu)) 3803 return false; 3804 if (!code_segment_valid(vcpu)) 3805 return false; 3806 if (!stack_segment_valid(vcpu)) 3807 return false; 3808 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3809 return false; 3810 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3811 return false; 3812 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3813 return false; 3814 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3815 return false; 3816 if (!tr_valid(vcpu)) 3817 return false; 3818 if (!ldtr_valid(vcpu)) 3819 return false; 3820 } 3821 /* TODO: 3822 * - Add checks on RIP 3823 * - Add checks on RFLAGS 3824 */ 3825 3826 return true; 3827 } 3828 3829 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3830 { 3831 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3832 u16 data; 3833 int i; 3834 3835 for (i = 0; i < 3; i++) { 3836 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3837 return -EFAULT; 3838 } 3839 3840 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3841 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3842 return -EFAULT; 3843 3844 data = ~0; 3845 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3846 return -EFAULT; 3847 3848 return 0; 3849 } 3850 3851 static int init_rmode_identity_map(struct kvm *kvm) 3852 { 3853 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3854 int i, r = 0; 3855 void __user *uaddr; 3856 u32 tmp; 3857 3858 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3859 mutex_lock(&kvm->slots_lock); 3860 3861 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3862 goto out; 3863 3864 if (!kvm_vmx->ept_identity_map_addr) 3865 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3866 3867 uaddr = __x86_set_memory_region(kvm, 3868 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3869 kvm_vmx->ept_identity_map_addr, 3870 PAGE_SIZE); 3871 if (IS_ERR(uaddr)) { 3872 r = PTR_ERR(uaddr); 3873 goto out; 3874 } 3875 3876 /* Set up identity-mapping pagetable for EPT in real mode */ 3877 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) { 3878 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3879 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3880 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3881 r = -EFAULT; 3882 goto out; 3883 } 3884 } 3885 kvm_vmx->ept_identity_pagetable_done = true; 3886 3887 out: 3888 mutex_unlock(&kvm->slots_lock); 3889 return r; 3890 } 3891 3892 static void seg_setup(int seg) 3893 { 3894 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3895 unsigned int ar; 3896 3897 vmcs_write16(sf->selector, 0); 3898 vmcs_writel(sf->base, 0); 3899 vmcs_write32(sf->limit, 0xffff); 3900 ar = 0x93; 3901 if (seg == VCPU_SREG_CS) 3902 ar |= 0x08; /* code segment */ 3903 3904 vmcs_write32(sf->ar_bytes, ar); 3905 } 3906 3907 int allocate_vpid(void) 3908 { 3909 int vpid; 3910 3911 if (!enable_vpid) 3912 return 0; 3913 spin_lock(&vmx_vpid_lock); 3914 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3915 if (vpid < VMX_NR_VPIDS) 3916 __set_bit(vpid, vmx_vpid_bitmap); 3917 else 3918 vpid = 0; 3919 spin_unlock(&vmx_vpid_lock); 3920 return vpid; 3921 } 3922 3923 void free_vpid(int vpid) 3924 { 3925 if (!enable_vpid || vpid == 0) 3926 return; 3927 spin_lock(&vmx_vpid_lock); 3928 __clear_bit(vpid, vmx_vpid_bitmap); 3929 spin_unlock(&vmx_vpid_lock); 3930 } 3931 3932 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3933 { 3934 /* 3935 * When KVM is a nested hypervisor on top of Hyper-V and uses 3936 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3937 * bitmap has changed. 3938 */ 3939 if (kvm_is_using_evmcs()) { 3940 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 3941 3942 if (evmcs->hv_enlightenments_control.msr_bitmap) 3943 evmcs->hv_clean_fields &= 3944 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; 3945 } 3946 3947 vmx->nested.force_msr_bitmap_recalc = true; 3948 } 3949 3950 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3951 { 3952 struct vcpu_vmx *vmx = to_vmx(vcpu); 3953 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3954 3955 if (!cpu_has_vmx_msr_bitmap()) 3956 return; 3957 3958 vmx_msr_bitmap_l01_changed(vmx); 3959 3960 /* 3961 * Mark the desired intercept state in shadow bitmap, this is needed 3962 * for resync when the MSR filters change. 3963 */ 3964 if (is_valid_passthrough_msr(msr)) { 3965 int idx = possible_passthrough_msr_slot(msr); 3966 3967 if (idx != -ENOENT) { 3968 if (type & MSR_TYPE_R) 3969 clear_bit(idx, vmx->shadow_msr_intercept.read); 3970 if (type & MSR_TYPE_W) 3971 clear_bit(idx, vmx->shadow_msr_intercept.write); 3972 } 3973 } 3974 3975 if ((type & MSR_TYPE_R) && 3976 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3977 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3978 type &= ~MSR_TYPE_R; 3979 } 3980 3981 if ((type & MSR_TYPE_W) && 3982 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3983 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3984 type &= ~MSR_TYPE_W; 3985 } 3986 3987 if (type & MSR_TYPE_R) 3988 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3989 3990 if (type & MSR_TYPE_W) 3991 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3992 } 3993 3994 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3995 { 3996 struct vcpu_vmx *vmx = to_vmx(vcpu); 3997 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3998 3999 if (!cpu_has_vmx_msr_bitmap()) 4000 return; 4001 4002 vmx_msr_bitmap_l01_changed(vmx); 4003 4004 /* 4005 * Mark the desired intercept state in shadow bitmap, this is needed 4006 * for resync when the MSR filter changes. 4007 */ 4008 if (is_valid_passthrough_msr(msr)) { 4009 int idx = possible_passthrough_msr_slot(msr); 4010 4011 if (idx != -ENOENT) { 4012 if (type & MSR_TYPE_R) 4013 set_bit(idx, vmx->shadow_msr_intercept.read); 4014 if (type & MSR_TYPE_W) 4015 set_bit(idx, vmx->shadow_msr_intercept.write); 4016 } 4017 } 4018 4019 if (type & MSR_TYPE_R) 4020 vmx_set_msr_bitmap_read(msr_bitmap, msr); 4021 4022 if (type & MSR_TYPE_W) 4023 vmx_set_msr_bitmap_write(msr_bitmap, msr); 4024 } 4025 4026 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 4027 { 4028 /* 4029 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves 4030 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0, 4031 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits. 4032 */ 4033 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG; 4034 const int write_idx = read_idx + (0x800 / sizeof(u64)); 4035 struct vcpu_vmx *vmx = to_vmx(vcpu); 4036 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap; 4037 u8 mode; 4038 4039 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu))) 4040 return; 4041 4042 if (cpu_has_secondary_exec_ctrls() && 4043 (secondary_exec_controls_get(vmx) & 4044 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 4045 mode = MSR_BITMAP_MODE_X2APIC; 4046 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 4047 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 4048 } else { 4049 mode = 0; 4050 } 4051 4052 if (mode == vmx->x2apic_msr_bitmap_mode) 4053 return; 4054 4055 vmx->x2apic_msr_bitmap_mode = mode; 4056 4057 /* 4058 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended 4059 * registers (0x840 and above) intercepted, KVM doesn't support them. 4060 * Intercept all writes by default and poke holes as needed. Pass 4061 * through reads for all valid registers by default in x2APIC+APICv 4062 * mode, only the current timer count needs on-demand emulation by KVM. 4063 */ 4064 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) 4065 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic); 4066 else 4067 msr_bitmap[read_idx] = ~0ull; 4068 msr_bitmap[write_idx] = ~0ull; 4069 4070 /* 4071 * TPR reads and writes can be virtualized even if virtual interrupt 4072 * delivery is not in use. 4073 */ 4074 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 4075 !(mode & MSR_BITMAP_MODE_X2APIC)); 4076 4077 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 4078 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 4079 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 4080 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 4081 if (enable_ipiv) 4082 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW); 4083 } 4084 } 4085 4086 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 4087 { 4088 struct vcpu_vmx *vmx = to_vmx(vcpu); 4089 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 4090 u32 i; 4091 4092 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 4093 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 4094 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 4095 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 4096 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 4097 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 4098 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 4099 } 4100 } 4101 4102 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 4103 { 4104 struct vcpu_vmx *vmx = to_vmx(vcpu); 4105 void *vapic_page; 4106 u32 vppr; 4107 int rvi; 4108 4109 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 4110 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 4111 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 4112 return false; 4113 4114 rvi = vmx_get_rvi(); 4115 4116 vapic_page = vmx->nested.virtual_apic_map.hva; 4117 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 4118 4119 return ((rvi & 0xf0) > (vppr & 0xf0)); 4120 } 4121 4122 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 4123 { 4124 struct vcpu_vmx *vmx = to_vmx(vcpu); 4125 u32 i; 4126 4127 /* 4128 * Redo intercept permissions for MSRs that KVM is passing through to 4129 * the guest. Disabling interception will check the new MSR filter and 4130 * ensure that KVM enables interception if usersepace wants to filter 4131 * the MSR. MSRs that KVM is already intercepting don't need to be 4132 * refreshed since KVM is going to intercept them regardless of what 4133 * userspace wants. 4134 */ 4135 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 4136 u32 msr = vmx_possible_passthrough_msrs[i]; 4137 4138 if (!test_bit(i, vmx->shadow_msr_intercept.read)) 4139 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R); 4140 4141 if (!test_bit(i, vmx->shadow_msr_intercept.write)) 4142 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W); 4143 } 4144 4145 /* PT MSRs can be passed through iff PT is exposed to the guest. */ 4146 if (vmx_pt_mode_is_host_guest()) 4147 pt_update_intercept_for_msr(vcpu); 4148 } 4149 4150 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 4151 int pi_vec) 4152 { 4153 #ifdef CONFIG_SMP 4154 if (vcpu->mode == IN_GUEST_MODE) { 4155 /* 4156 * The vector of the virtual has already been set in the PIR. 4157 * Send a notification event to deliver the virtual interrupt 4158 * unless the vCPU is the currently running vCPU, i.e. the 4159 * event is being sent from a fastpath VM-Exit handler, in 4160 * which case the PIR will be synced to the vIRR before 4161 * re-entering the guest. 4162 * 4163 * When the target is not the running vCPU, the following 4164 * possibilities emerge: 4165 * 4166 * Case 1: vCPU stays in non-root mode. Sending a notification 4167 * event posts the interrupt to the vCPU. 4168 * 4169 * Case 2: vCPU exits to root mode and is still runnable. The 4170 * PIR will be synced to the vIRR before re-entering the guest. 4171 * Sending a notification event is ok as the host IRQ handler 4172 * will ignore the spurious event. 4173 * 4174 * Case 3: vCPU exits to root mode and is blocked. vcpu_block() 4175 * has already synced PIR to vIRR and never blocks the vCPU if 4176 * the vIRR is not empty. Therefore, a blocked vCPU here does 4177 * not wait for any requested interrupts in PIR, and sending a 4178 * notification event also results in a benign, spurious event. 4179 */ 4180 4181 if (vcpu != kvm_get_running_vcpu()) 4182 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 4183 return; 4184 } 4185 #endif 4186 /* 4187 * The vCPU isn't in the guest; wake the vCPU in case it is blocking, 4188 * otherwise do nothing as KVM will grab the highest priority pending 4189 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). 4190 */ 4191 kvm_vcpu_wake_up(vcpu); 4192 } 4193 4194 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 4195 int vector) 4196 { 4197 struct vcpu_vmx *vmx = to_vmx(vcpu); 4198 4199 if (is_guest_mode(vcpu) && 4200 vector == vmx->nested.posted_intr_nv) { 4201 /* 4202 * If a posted intr is not recognized by hardware, 4203 * we will accomplish it in the next vmentry. 4204 */ 4205 vmx->nested.pi_pending = true; 4206 kvm_make_request(KVM_REQ_EVENT, vcpu); 4207 4208 /* 4209 * This pairs with the smp_mb_*() after setting vcpu->mode in 4210 * vcpu_enter_guest() to guarantee the vCPU sees the event 4211 * request if triggering a posted interrupt "fails" because 4212 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 4213 * the smb_wmb() in kvm_make_request() only ensures everything 4214 * done before making the request is visible when the request 4215 * is visible, it doesn't ensure ordering between the store to 4216 * vcpu->requests and the load from vcpu->mode. 4217 */ 4218 smp_mb__after_atomic(); 4219 4220 /* the PIR and ON have been set by L1. */ 4221 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); 4222 return 0; 4223 } 4224 return -1; 4225 } 4226 /* 4227 * Send interrupt to vcpu via posted interrupt way. 4228 * 1. If target vcpu is running(non-root mode), send posted interrupt 4229 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4230 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4231 * interrupt from PIR in next vmentry. 4232 */ 4233 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4234 { 4235 struct vcpu_vmx *vmx = to_vmx(vcpu); 4236 int r; 4237 4238 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4239 if (!r) 4240 return 0; 4241 4242 /* Note, this is called iff the local APIC is in-kernel. */ 4243 if (!vcpu->arch.apic->apicv_active) 4244 return -1; 4245 4246 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4247 return 0; 4248 4249 /* If a previous notification has sent the IPI, nothing to do. */ 4250 if (pi_test_and_set_on(&vmx->pi_desc)) 4251 return 0; 4252 4253 /* 4254 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() 4255 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is 4256 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a 4257 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. 4258 */ 4259 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); 4260 return 0; 4261 } 4262 4263 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 4264 int trig_mode, int vector) 4265 { 4266 struct kvm_vcpu *vcpu = apic->vcpu; 4267 4268 if (vmx_deliver_posted_interrupt(vcpu, vector)) { 4269 kvm_lapic_set_irr(vector, apic); 4270 kvm_make_request(KVM_REQ_EVENT, vcpu); 4271 kvm_vcpu_kick(vcpu); 4272 } else { 4273 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 4274 trig_mode, vector); 4275 } 4276 } 4277 4278 /* 4279 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4280 * will not change in the lifetime of the guest. 4281 * Note that host-state that does change is set elsewhere. E.g., host-state 4282 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4283 */ 4284 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4285 { 4286 u32 low32, high32; 4287 unsigned long tmpl; 4288 unsigned long cr0, cr3, cr4; 4289 4290 cr0 = read_cr0(); 4291 WARN_ON(cr0 & X86_CR0_TS); 4292 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4293 4294 /* 4295 * Save the most likely value for this task's CR3 in the VMCS. 4296 * We can't use __get_current_cr3_fast() because we're not atomic. 4297 */ 4298 cr3 = __read_cr3(); 4299 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4300 vmx->loaded_vmcs->host_state.cr3 = cr3; 4301 4302 /* Save the most likely value for this task's CR4 in the VMCS. */ 4303 cr4 = cr4_read_shadow(); 4304 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4305 vmx->loaded_vmcs->host_state.cr4 = cr4; 4306 4307 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4308 #ifdef CONFIG_X86_64 4309 /* 4310 * Load null selectors, so we can avoid reloading them in 4311 * vmx_prepare_switch_to_host(), in case userspace uses 4312 * the null selectors too (the expected case). 4313 */ 4314 vmcs_write16(HOST_DS_SELECTOR, 0); 4315 vmcs_write16(HOST_ES_SELECTOR, 0); 4316 #else 4317 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4318 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4319 #endif 4320 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4321 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4322 4323 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4324 4325 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4326 4327 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4328 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4329 4330 /* 4331 * SYSENTER is used for 32-bit system calls on either 32-bit or 4332 * 64-bit kernels. It is always zero If neither is allowed, otherwise 4333 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may 4334 * have already done so!). 4335 */ 4336 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) 4337 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4338 4339 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4340 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4341 4342 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4343 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4344 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4345 } 4346 4347 if (cpu_has_load_ia32_efer()) 4348 vmcs_write64(HOST_IA32_EFER, host_efer); 4349 } 4350 4351 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4352 { 4353 struct kvm_vcpu *vcpu = &vmx->vcpu; 4354 4355 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4356 ~vcpu->arch.cr4_guest_rsvd_bits; 4357 if (!enable_ept) { 4358 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4359 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4360 } 4361 if (is_guest_mode(&vmx->vcpu)) 4362 vcpu->arch.cr4_guest_owned_bits &= 4363 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4364 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4365 } 4366 4367 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4368 { 4369 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4370 4371 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4372 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4373 4374 if (!enable_vnmi) 4375 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4376 4377 if (!enable_preemption_timer) 4378 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4379 4380 return pin_based_exec_ctrl; 4381 } 4382 4383 static u32 vmx_vmentry_ctrl(void) 4384 { 4385 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4386 4387 if (vmx_pt_mode_is_system()) 4388 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4389 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4390 /* 4391 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically. 4392 */ 4393 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 4394 VM_ENTRY_LOAD_IA32_EFER | 4395 VM_ENTRY_IA32E_MODE); 4396 4397 if (cpu_has_perf_global_ctrl_bug()) 4398 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 4399 4400 return vmentry_ctrl; 4401 } 4402 4403 static u32 vmx_vmexit_ctrl(void) 4404 { 4405 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4406 4407 /* 4408 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for 4409 * nested virtualization and thus allowed to be set in vmcs12. 4410 */ 4411 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER | 4412 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER); 4413 4414 if (vmx_pt_mode_is_system()) 4415 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4416 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4417 4418 if (cpu_has_perf_global_ctrl_bug()) 4419 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 4420 4421 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4422 return vmexit_ctrl & 4423 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4424 } 4425 4426 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4427 { 4428 struct vcpu_vmx *vmx = to_vmx(vcpu); 4429 4430 if (is_guest_mode(vcpu)) { 4431 vmx->nested.update_vmcs01_apicv_status = true; 4432 return; 4433 } 4434 4435 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4436 4437 if (kvm_vcpu_apicv_active(vcpu)) { 4438 secondary_exec_controls_setbit(vmx, 4439 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4440 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4441 if (enable_ipiv) 4442 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4443 } else { 4444 secondary_exec_controls_clearbit(vmx, 4445 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4446 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4447 if (enable_ipiv) 4448 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4449 } 4450 4451 vmx_update_msr_bitmap_x2apic(vcpu); 4452 } 4453 4454 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4455 { 4456 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4457 4458 /* 4459 * Not used by KVM, but fully supported for nesting, i.e. are allowed in 4460 * vmcs12 and propagated to vmcs02 when set in vmcs12. 4461 */ 4462 exec_control &= ~(CPU_BASED_RDTSC_EXITING | 4463 CPU_BASED_USE_IO_BITMAPS | 4464 CPU_BASED_MONITOR_TRAP_FLAG | 4465 CPU_BASED_PAUSE_EXITING); 4466 4467 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */ 4468 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING | 4469 CPU_BASED_NMI_WINDOW_EXITING); 4470 4471 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4472 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4473 4474 if (!cpu_need_tpr_shadow(&vmx->vcpu)) 4475 exec_control &= ~CPU_BASED_TPR_SHADOW; 4476 4477 #ifdef CONFIG_X86_64 4478 if (exec_control & CPU_BASED_TPR_SHADOW) 4479 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING | 4480 CPU_BASED_CR8_STORE_EXITING); 4481 else 4482 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4483 CPU_BASED_CR8_LOAD_EXITING; 4484 #endif 4485 /* No need to intercept CR3 access or INVPLG when using EPT. */ 4486 if (enable_ept) 4487 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 4488 CPU_BASED_CR3_STORE_EXITING | 4489 CPU_BASED_INVLPG_EXITING); 4490 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4491 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4492 CPU_BASED_MONITOR_EXITING); 4493 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4494 exec_control &= ~CPU_BASED_HLT_EXITING; 4495 return exec_control; 4496 } 4497 4498 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx) 4499 { 4500 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl; 4501 4502 /* 4503 * IPI virtualization relies on APICv. Disable IPI virtualization if 4504 * APICv is inhibited. 4505 */ 4506 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu)) 4507 exec_control &= ~TERTIARY_EXEC_IPI_VIRT; 4508 4509 return exec_control; 4510 } 4511 4512 /* 4513 * Adjust a single secondary execution control bit to intercept/allow an 4514 * instruction in the guest. This is usually done based on whether or not a 4515 * feature has been exposed to the guest in order to correctly emulate faults. 4516 */ 4517 static inline void 4518 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4519 u32 control, bool enabled, bool exiting) 4520 { 4521 /* 4522 * If the control is for an opt-in feature, clear the control if the 4523 * feature is not exposed to the guest, i.e. not enabled. If the 4524 * control is opt-out, i.e. an exiting control, clear the control if 4525 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4526 * disabled for the associated instruction. Note, the caller is 4527 * responsible presetting exec_control to set all supported bits. 4528 */ 4529 if (enabled == exiting) 4530 *exec_control &= ~control; 4531 4532 /* 4533 * Update the nested MSR settings so that a nested VMM can/can't set 4534 * controls for features that are/aren't exposed to the guest. 4535 */ 4536 if (nested) { 4537 /* 4538 * All features that can be added or removed to VMX MSRs must 4539 * be supported in the first place for nested virtualization. 4540 */ 4541 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control))) 4542 enabled = false; 4543 4544 if (enabled) 4545 vmx->nested.msrs.secondary_ctls_high |= control; 4546 else 4547 vmx->nested.msrs.secondary_ctls_high &= ~control; 4548 } 4549 } 4550 4551 /* 4552 * Wrapper macro for the common case of adjusting a secondary execution control 4553 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4554 * verifies that the control is actually supported by KVM and hardware. 4555 */ 4556 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4557 ({ \ 4558 bool __enabled; \ 4559 \ 4560 if (cpu_has_vmx_##name()) { \ 4561 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4562 X86_FEATURE_##feat_name); \ 4563 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4564 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4565 } \ 4566 }) 4567 4568 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4569 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4570 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4571 4572 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4573 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4574 4575 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4576 { 4577 struct kvm_vcpu *vcpu = &vmx->vcpu; 4578 4579 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4580 4581 if (vmx_pt_mode_is_system()) 4582 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4583 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4584 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4585 if (vmx->vpid == 0) 4586 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4587 if (!enable_ept) { 4588 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4589 enable_unrestricted_guest = 0; 4590 } 4591 if (!enable_unrestricted_guest) 4592 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4593 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4594 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4595 if (!kvm_vcpu_apicv_active(vcpu)) 4596 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4597 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4598 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4599 4600 /* 4601 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's 4602 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2. 4603 */ 4604 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC; 4605 4606 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4607 * in vmx_set_cr4. */ 4608 exec_control &= ~SECONDARY_EXEC_DESC; 4609 4610 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4611 (handle_vmptrld). 4612 We can NOT enable shadow_vmcs here because we don't have yet 4613 a current VMCS12 4614 */ 4615 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4616 4617 /* 4618 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4619 * it needs to be set here when dirty logging is already active, e.g. 4620 * if this vCPU was created after dirty logging was enabled. 4621 */ 4622 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 4623 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4624 4625 if (cpu_has_vmx_xsaves()) { 4626 /* Exposing XSAVES only when XSAVE is exposed */ 4627 bool xsaves_enabled = 4628 boot_cpu_has(X86_FEATURE_XSAVE) && 4629 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4630 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4631 4632 vcpu->arch.xsaves_enabled = xsaves_enabled; 4633 4634 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4635 SECONDARY_EXEC_XSAVES, 4636 xsaves_enabled, false); 4637 } 4638 4639 /* 4640 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4641 * feature is exposed to the guest. This creates a virtualization hole 4642 * if both are supported in hardware but only one is exposed to the 4643 * guest, but letting the guest execute RDTSCP or RDPID when either one 4644 * is advertised is preferable to emulating the advertised instruction 4645 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4646 */ 4647 if (cpu_has_vmx_rdtscp()) { 4648 bool rdpid_or_rdtscp_enabled = 4649 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4650 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4651 4652 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4653 SECONDARY_EXEC_ENABLE_RDTSCP, 4654 rdpid_or_rdtscp_enabled, false); 4655 } 4656 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4657 4658 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4659 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4660 4661 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4662 ENABLE_USR_WAIT_PAUSE, false); 4663 4664 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4665 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4666 4667 if (!kvm_notify_vmexit_enabled(vcpu->kvm)) 4668 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING; 4669 4670 return exec_control; 4671 } 4672 4673 static inline int vmx_get_pid_table_order(struct kvm *kvm) 4674 { 4675 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table)); 4676 } 4677 4678 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm) 4679 { 4680 struct page *pages; 4681 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4682 4683 if (!irqchip_in_kernel(kvm) || !enable_ipiv) 4684 return 0; 4685 4686 if (kvm_vmx->pid_table) 4687 return 0; 4688 4689 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 4690 vmx_get_pid_table_order(kvm)); 4691 if (!pages) 4692 return -ENOMEM; 4693 4694 kvm_vmx->pid_table = (void *)page_address(pages); 4695 return 0; 4696 } 4697 4698 static int vmx_vcpu_precreate(struct kvm *kvm) 4699 { 4700 return vmx_alloc_ipiv_pid_table(kvm); 4701 } 4702 4703 #define VMX_XSS_EXIT_BITMAP 0 4704 4705 static void init_vmcs(struct vcpu_vmx *vmx) 4706 { 4707 struct kvm *kvm = vmx->vcpu.kvm; 4708 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4709 4710 if (nested) 4711 nested_vmx_set_vmcs_shadowing_bitmap(); 4712 4713 if (cpu_has_vmx_msr_bitmap()) 4714 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4715 4716 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4717 4718 /* Control */ 4719 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4720 4721 exec_controls_set(vmx, vmx_exec_control(vmx)); 4722 4723 if (cpu_has_secondary_exec_ctrls()) 4724 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4725 4726 if (cpu_has_tertiary_exec_ctrls()) 4727 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx)); 4728 4729 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) { 4730 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4731 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4732 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4733 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4734 4735 vmcs_write16(GUEST_INTR_STATUS, 0); 4736 4737 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4738 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4739 } 4740 4741 if (vmx_can_use_ipiv(&vmx->vcpu)) { 4742 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table)); 4743 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1); 4744 } 4745 4746 if (!kvm_pause_in_guest(kvm)) { 4747 vmcs_write32(PLE_GAP, ple_gap); 4748 vmx->ple_window = ple_window; 4749 vmx->ple_window_dirty = true; 4750 } 4751 4752 if (kvm_notify_vmexit_enabled(kvm)) 4753 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); 4754 4755 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4756 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4757 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4758 4759 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4760 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4761 vmx_set_constant_host_state(vmx); 4762 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4763 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4764 4765 if (cpu_has_vmx_vmfunc()) 4766 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4767 4768 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4769 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4770 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4771 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4772 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4773 4774 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4775 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4776 4777 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4778 4779 /* 22.2.1, 20.8.1 */ 4780 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4781 4782 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); 4783 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4784 4785 set_cr4_guest_host_mask(vmx); 4786 4787 if (vmx->vpid != 0) 4788 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4789 4790 if (cpu_has_vmx_xsaves()) 4791 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4792 4793 if (enable_pml) { 4794 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4795 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4796 } 4797 4798 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4799 4800 if (vmx_pt_mode_is_host_guest()) { 4801 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4802 /* Bit[6~0] are forced to 1, writes are ignored. */ 4803 vmx->pt_desc.guest.output_mask = 0x7F; 4804 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4805 } 4806 4807 vmcs_write32(GUEST_SYSENTER_CS, 0); 4808 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4809 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4810 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4811 4812 if (cpu_has_vmx_tpr_shadow()) { 4813 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4814 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4815 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4816 __pa(vmx->vcpu.arch.apic->regs)); 4817 vmcs_write32(TPR_THRESHOLD, 0); 4818 } 4819 4820 vmx_setup_uret_msrs(vmx); 4821 } 4822 4823 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4824 { 4825 struct vcpu_vmx *vmx = to_vmx(vcpu); 4826 4827 init_vmcs(vmx); 4828 4829 if (nested) 4830 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4831 4832 vcpu_setup_sgx_lepubkeyhash(vcpu); 4833 4834 vmx->nested.posted_intr_nv = -1; 4835 vmx->nested.vmxon_ptr = INVALID_GPA; 4836 vmx->nested.current_vmptr = INVALID_GPA; 4837 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4838 4839 vcpu->arch.microcode_version = 0x100000000ULL; 4840 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4841 4842 /* 4843 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4844 * or POSTED_INTR_WAKEUP_VECTOR. 4845 */ 4846 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4847 vmx->pi_desc.sn = 1; 4848 } 4849 4850 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4851 { 4852 struct vcpu_vmx *vmx = to_vmx(vcpu); 4853 4854 if (!init_event) 4855 __vmx_vcpu_reset(vcpu); 4856 4857 vmx->rmode.vm86_active = 0; 4858 vmx->spec_ctrl = 0; 4859 4860 vmx->msr_ia32_umwait_control = 0; 4861 4862 vmx->hv_deadline_tsc = -1; 4863 kvm_set_cr8(vcpu, 0); 4864 4865 vmx_segment_cache_clear(vmx); 4866 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4867 4868 seg_setup(VCPU_SREG_CS); 4869 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4870 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4871 4872 seg_setup(VCPU_SREG_DS); 4873 seg_setup(VCPU_SREG_ES); 4874 seg_setup(VCPU_SREG_FS); 4875 seg_setup(VCPU_SREG_GS); 4876 seg_setup(VCPU_SREG_SS); 4877 4878 vmcs_write16(GUEST_TR_SELECTOR, 0); 4879 vmcs_writel(GUEST_TR_BASE, 0); 4880 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4881 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4882 4883 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4884 vmcs_writel(GUEST_LDTR_BASE, 0); 4885 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4886 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4887 4888 vmcs_writel(GUEST_GDTR_BASE, 0); 4889 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4890 4891 vmcs_writel(GUEST_IDTR_BASE, 0); 4892 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4893 4894 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4895 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4896 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4897 if (kvm_mpx_supported()) 4898 vmcs_write64(GUEST_BNDCFGS, 0); 4899 4900 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4901 4902 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4903 4904 vpid_sync_context(vmx->vpid); 4905 4906 vmx_update_fb_clear_dis(vcpu, vmx); 4907 } 4908 4909 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4910 { 4911 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4912 } 4913 4914 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4915 { 4916 if (!enable_vnmi || 4917 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4918 vmx_enable_irq_window(vcpu); 4919 return; 4920 } 4921 4922 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4923 } 4924 4925 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 4926 { 4927 struct vcpu_vmx *vmx = to_vmx(vcpu); 4928 uint32_t intr; 4929 int irq = vcpu->arch.interrupt.nr; 4930 4931 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected); 4932 4933 ++vcpu->stat.irq_injections; 4934 if (vmx->rmode.vm86_active) { 4935 int inc_eip = 0; 4936 if (vcpu->arch.interrupt.soft) 4937 inc_eip = vcpu->arch.event_exit_inst_len; 4938 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4939 return; 4940 } 4941 intr = irq | INTR_INFO_VALID_MASK; 4942 if (vcpu->arch.interrupt.soft) { 4943 intr |= INTR_TYPE_SOFT_INTR; 4944 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4945 vmx->vcpu.arch.event_exit_inst_len); 4946 } else 4947 intr |= INTR_TYPE_EXT_INTR; 4948 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4949 4950 vmx_clear_hlt(vcpu); 4951 } 4952 4953 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4954 { 4955 struct vcpu_vmx *vmx = to_vmx(vcpu); 4956 4957 if (!enable_vnmi) { 4958 /* 4959 * Tracking the NMI-blocked state in software is built upon 4960 * finding the next open IRQ window. This, in turn, depends on 4961 * well-behaving guests: They have to keep IRQs disabled at 4962 * least as long as the NMI handler runs. Otherwise we may 4963 * cause NMI nesting, maybe breaking the guest. But as this is 4964 * highly unlikely, we can live with the residual risk. 4965 */ 4966 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4967 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4968 } 4969 4970 ++vcpu->stat.nmi_injections; 4971 vmx->loaded_vmcs->nmi_known_unmasked = false; 4972 4973 if (vmx->rmode.vm86_active) { 4974 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4975 return; 4976 } 4977 4978 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4979 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4980 4981 vmx_clear_hlt(vcpu); 4982 } 4983 4984 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4985 { 4986 struct vcpu_vmx *vmx = to_vmx(vcpu); 4987 bool masked; 4988 4989 if (!enable_vnmi) 4990 return vmx->loaded_vmcs->soft_vnmi_blocked; 4991 if (vmx->loaded_vmcs->nmi_known_unmasked) 4992 return false; 4993 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4994 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4995 return masked; 4996 } 4997 4998 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4999 { 5000 struct vcpu_vmx *vmx = to_vmx(vcpu); 5001 5002 if (!enable_vnmi) { 5003 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 5004 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 5005 vmx->loaded_vmcs->vnmi_blocked_time = 0; 5006 } 5007 } else { 5008 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5009 if (masked) 5010 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5011 GUEST_INTR_STATE_NMI); 5012 else 5013 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 5014 GUEST_INTR_STATE_NMI); 5015 } 5016 } 5017 5018 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 5019 { 5020 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5021 return false; 5022 5023 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 5024 return true; 5025 5026 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5027 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 5028 GUEST_INTR_STATE_NMI)); 5029 } 5030 5031 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5032 { 5033 if (to_vmx(vcpu)->nested.nested_run_pending) 5034 return -EBUSY; 5035 5036 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 5037 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5038 return -EBUSY; 5039 5040 return !vmx_nmi_blocked(vcpu); 5041 } 5042 5043 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 5044 { 5045 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5046 return false; 5047 5048 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 5049 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5050 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 5051 } 5052 5053 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5054 { 5055 if (to_vmx(vcpu)->nested.nested_run_pending) 5056 return -EBUSY; 5057 5058 /* 5059 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 5060 * e.g. if the IRQ arrived asynchronously after checking nested events. 5061 */ 5062 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5063 return -EBUSY; 5064 5065 return !vmx_interrupt_blocked(vcpu); 5066 } 5067 5068 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 5069 { 5070 void __user *ret; 5071 5072 if (enable_unrestricted_guest) 5073 return 0; 5074 5075 mutex_lock(&kvm->slots_lock); 5076 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 5077 PAGE_SIZE * 3); 5078 mutex_unlock(&kvm->slots_lock); 5079 5080 if (IS_ERR(ret)) 5081 return PTR_ERR(ret); 5082 5083 to_kvm_vmx(kvm)->tss_addr = addr; 5084 5085 return init_rmode_tss(kvm, ret); 5086 } 5087 5088 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 5089 { 5090 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 5091 return 0; 5092 } 5093 5094 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 5095 { 5096 switch (vec) { 5097 case BP_VECTOR: 5098 /* 5099 * Update instruction length as we may reinject the exception 5100 * from user space while in guest debugging mode. 5101 */ 5102 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 5103 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5104 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 5105 return false; 5106 fallthrough; 5107 case DB_VECTOR: 5108 return !(vcpu->guest_debug & 5109 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 5110 case DE_VECTOR: 5111 case OF_VECTOR: 5112 case BR_VECTOR: 5113 case UD_VECTOR: 5114 case DF_VECTOR: 5115 case SS_VECTOR: 5116 case GP_VECTOR: 5117 case MF_VECTOR: 5118 return true; 5119 } 5120 return false; 5121 } 5122 5123 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 5124 int vec, u32 err_code) 5125 { 5126 /* 5127 * Instruction with address size override prefix opcode 0x67 5128 * Cause the #SS fault with 0 error code in VM86 mode. 5129 */ 5130 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 5131 if (kvm_emulate_instruction(vcpu, 0)) { 5132 if (vcpu->arch.halt_request) { 5133 vcpu->arch.halt_request = 0; 5134 return kvm_emulate_halt_noskip(vcpu); 5135 } 5136 return 1; 5137 } 5138 return 0; 5139 } 5140 5141 /* 5142 * Forward all other exceptions that are valid in real mode. 5143 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 5144 * the required debugging infrastructure rework. 5145 */ 5146 kvm_queue_exception(vcpu, vec); 5147 return 1; 5148 } 5149 5150 static int handle_machine_check(struct kvm_vcpu *vcpu) 5151 { 5152 /* handled by vmx_vcpu_run() */ 5153 return 1; 5154 } 5155 5156 /* 5157 * If the host has split lock detection disabled, then #AC is 5158 * unconditionally injected into the guest, which is the pre split lock 5159 * detection behaviour. 5160 * 5161 * If the host has split lock detection enabled then #AC is 5162 * only injected into the guest when: 5163 * - Guest CPL == 3 (user mode) 5164 * - Guest has #AC detection enabled in CR0 5165 * - Guest EFLAGS has AC bit set 5166 */ 5167 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 5168 { 5169 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5170 return true; 5171 5172 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) && 5173 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 5174 } 5175 5176 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 5177 { 5178 struct vcpu_vmx *vmx = to_vmx(vcpu); 5179 struct kvm_run *kvm_run = vcpu->run; 5180 u32 intr_info, ex_no, error_code; 5181 unsigned long cr2, dr6; 5182 u32 vect_info; 5183 5184 vect_info = vmx->idt_vectoring_info; 5185 intr_info = vmx_get_intr_info(vcpu); 5186 5187 /* 5188 * Machine checks are handled by handle_exception_irqoff(), or by 5189 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by 5190 * vmx_vcpu_enter_exit(). 5191 */ 5192 if (is_machine_check(intr_info) || is_nmi(intr_info)) 5193 return 1; 5194 5195 /* 5196 * Queue the exception here instead of in handle_nm_fault_irqoff(). 5197 * This ensures the nested_vmx check is not skipped so vmexit can 5198 * be reflected to L1 (when it intercepts #NM) before reaching this 5199 * point. 5200 */ 5201 if (is_nm_fault(intr_info)) { 5202 kvm_queue_exception(vcpu, NM_VECTOR); 5203 return 1; 5204 } 5205 5206 if (is_invalid_opcode(intr_info)) 5207 return handle_ud(vcpu); 5208 5209 error_code = 0; 5210 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 5211 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5212 5213 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 5214 WARN_ON_ONCE(!enable_vmware_backdoor); 5215 5216 /* 5217 * VMware backdoor emulation on #GP interception only handles 5218 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 5219 * error code on #GP. 5220 */ 5221 if (error_code) { 5222 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 5223 return 1; 5224 } 5225 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 5226 } 5227 5228 /* 5229 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 5230 * MMIO, it is better to report an internal error. 5231 * See the comments in vmx_handle_exit. 5232 */ 5233 if ((vect_info & VECTORING_INFO_VALID_MASK) && 5234 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 5235 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5236 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 5237 vcpu->run->internal.ndata = 4; 5238 vcpu->run->internal.data[0] = vect_info; 5239 vcpu->run->internal.data[1] = intr_info; 5240 vcpu->run->internal.data[2] = error_code; 5241 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 5242 return 0; 5243 } 5244 5245 if (is_page_fault(intr_info)) { 5246 cr2 = vmx_get_exit_qual(vcpu); 5247 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 5248 /* 5249 * EPT will cause page fault only if we need to 5250 * detect illegal GPAs. 5251 */ 5252 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 5253 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 5254 return 1; 5255 } else 5256 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 5257 } 5258 5259 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 5260 5261 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 5262 return handle_rmode_exception(vcpu, ex_no, error_code); 5263 5264 switch (ex_no) { 5265 case DB_VECTOR: 5266 dr6 = vmx_get_exit_qual(vcpu); 5267 if (!(vcpu->guest_debug & 5268 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 5269 /* 5270 * If the #DB was due to ICEBP, a.k.a. INT1, skip the 5271 * instruction. ICEBP generates a trap-like #DB, but 5272 * despite its interception control being tied to #DB, 5273 * is an instruction intercept, i.e. the VM-Exit occurs 5274 * on the ICEBP itself. Use the inner "skip" helper to 5275 * avoid single-step #DB and MTF updates, as ICEBP is 5276 * higher priority. Note, skipping ICEBP still clears 5277 * STI and MOVSS blocking. 5278 * 5279 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS 5280 * if single-step is enabled in RFLAGS and STI or MOVSS 5281 * blocking is active, as the CPU doesn't set the bit 5282 * on VM-Exit due to #DB interception. VM-Entry has a 5283 * consistency check that a single-step #DB is pending 5284 * in this scenario as the previous instruction cannot 5285 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV 5286 * don't modify RFLAGS), therefore the one instruction 5287 * delay when activating single-step breakpoints must 5288 * have already expired. Note, the CPU sets/clears BS 5289 * as appropriate for all other VM-Exits types. 5290 */ 5291 if (is_icebp(intr_info)) 5292 WARN_ON(!skip_emulated_instruction(vcpu)); 5293 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && 5294 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5295 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) 5296 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 5297 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); 5298 5299 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 5300 return 1; 5301 } 5302 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 5303 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 5304 fallthrough; 5305 case BP_VECTOR: 5306 /* 5307 * Update instruction length as we may reinject #BP from 5308 * user space while in guest debugging mode. Reading it for 5309 * #DB as well causes no harm, it is not used in that case. 5310 */ 5311 vmx->vcpu.arch.event_exit_inst_len = 5312 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5313 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5314 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5315 kvm_run->debug.arch.exception = ex_no; 5316 break; 5317 case AC_VECTOR: 5318 if (vmx_guest_inject_ac(vcpu)) { 5319 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 5320 return 1; 5321 } 5322 5323 /* 5324 * Handle split lock. Depending on detection mode this will 5325 * either warn and disable split lock detection for this 5326 * task or force SIGBUS on it. 5327 */ 5328 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 5329 return 1; 5330 fallthrough; 5331 default: 5332 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 5333 kvm_run->ex.exception = ex_no; 5334 kvm_run->ex.error_code = error_code; 5335 break; 5336 } 5337 return 0; 5338 } 5339 5340 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 5341 { 5342 ++vcpu->stat.irq_exits; 5343 return 1; 5344 } 5345 5346 static int handle_triple_fault(struct kvm_vcpu *vcpu) 5347 { 5348 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5349 vcpu->mmio_needed = 0; 5350 return 0; 5351 } 5352 5353 static int handle_io(struct kvm_vcpu *vcpu) 5354 { 5355 unsigned long exit_qualification; 5356 int size, in, string; 5357 unsigned port; 5358 5359 exit_qualification = vmx_get_exit_qual(vcpu); 5360 string = (exit_qualification & 16) != 0; 5361 5362 ++vcpu->stat.io_exits; 5363 5364 if (string) 5365 return kvm_emulate_instruction(vcpu, 0); 5366 5367 port = exit_qualification >> 16; 5368 size = (exit_qualification & 7) + 1; 5369 in = (exit_qualification & 8) != 0; 5370 5371 return kvm_fast_pio(vcpu, size, port, in); 5372 } 5373 5374 static void 5375 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5376 { 5377 /* 5378 * Patch in the VMCALL instruction: 5379 */ 5380 hypercall[0] = 0x0f; 5381 hypercall[1] = 0x01; 5382 hypercall[2] = 0xc1; 5383 } 5384 5385 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5386 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5387 { 5388 if (is_guest_mode(vcpu)) { 5389 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5390 unsigned long orig_val = val; 5391 5392 /* 5393 * We get here when L2 changed cr0 in a way that did not change 5394 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5395 * but did change L0 shadowed bits. So we first calculate the 5396 * effective cr0 value that L1 would like to write into the 5397 * hardware. It consists of the L2-owned bits from the new 5398 * value combined with the L1-owned bits from L1's guest_cr0. 5399 */ 5400 val = (val & ~vmcs12->cr0_guest_host_mask) | 5401 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5402 5403 if (kvm_set_cr0(vcpu, val)) 5404 return 1; 5405 vmcs_writel(CR0_READ_SHADOW, orig_val); 5406 return 0; 5407 } else { 5408 return kvm_set_cr0(vcpu, val); 5409 } 5410 } 5411 5412 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5413 { 5414 if (is_guest_mode(vcpu)) { 5415 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5416 unsigned long orig_val = val; 5417 5418 /* analogously to handle_set_cr0 */ 5419 val = (val & ~vmcs12->cr4_guest_host_mask) | 5420 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5421 if (kvm_set_cr4(vcpu, val)) 5422 return 1; 5423 vmcs_writel(CR4_READ_SHADOW, orig_val); 5424 return 0; 5425 } else 5426 return kvm_set_cr4(vcpu, val); 5427 } 5428 5429 static int handle_desc(struct kvm_vcpu *vcpu) 5430 { 5431 /* 5432 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this 5433 * and other code needs to be updated if UMIP can be guest owned. 5434 */ 5435 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP); 5436 5437 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP)); 5438 return kvm_emulate_instruction(vcpu, 0); 5439 } 5440 5441 static int handle_cr(struct kvm_vcpu *vcpu) 5442 { 5443 unsigned long exit_qualification, val; 5444 int cr; 5445 int reg; 5446 int err; 5447 int ret; 5448 5449 exit_qualification = vmx_get_exit_qual(vcpu); 5450 cr = exit_qualification & 15; 5451 reg = (exit_qualification >> 8) & 15; 5452 switch ((exit_qualification >> 4) & 3) { 5453 case 0: /* mov to cr */ 5454 val = kvm_register_read(vcpu, reg); 5455 trace_kvm_cr_write(cr, val); 5456 switch (cr) { 5457 case 0: 5458 err = handle_set_cr0(vcpu, val); 5459 return kvm_complete_insn_gp(vcpu, err); 5460 case 3: 5461 WARN_ON_ONCE(enable_unrestricted_guest); 5462 5463 err = kvm_set_cr3(vcpu, val); 5464 return kvm_complete_insn_gp(vcpu, err); 5465 case 4: 5466 err = handle_set_cr4(vcpu, val); 5467 return kvm_complete_insn_gp(vcpu, err); 5468 case 8: { 5469 u8 cr8_prev = kvm_get_cr8(vcpu); 5470 u8 cr8 = (u8)val; 5471 err = kvm_set_cr8(vcpu, cr8); 5472 ret = kvm_complete_insn_gp(vcpu, err); 5473 if (lapic_in_kernel(vcpu)) 5474 return ret; 5475 if (cr8_prev <= cr8) 5476 return ret; 5477 /* 5478 * TODO: we might be squashing a 5479 * KVM_GUESTDBG_SINGLESTEP-triggered 5480 * KVM_EXIT_DEBUG here. 5481 */ 5482 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5483 return 0; 5484 } 5485 } 5486 break; 5487 case 2: /* clts */ 5488 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5489 return -EIO; 5490 case 1: /*mov from cr*/ 5491 switch (cr) { 5492 case 3: 5493 WARN_ON_ONCE(enable_unrestricted_guest); 5494 5495 val = kvm_read_cr3(vcpu); 5496 kvm_register_write(vcpu, reg, val); 5497 trace_kvm_cr_read(cr, val); 5498 return kvm_skip_emulated_instruction(vcpu); 5499 case 8: 5500 val = kvm_get_cr8(vcpu); 5501 kvm_register_write(vcpu, reg, val); 5502 trace_kvm_cr_read(cr, val); 5503 return kvm_skip_emulated_instruction(vcpu); 5504 } 5505 break; 5506 case 3: /* lmsw */ 5507 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5508 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val)); 5509 kvm_lmsw(vcpu, val); 5510 5511 return kvm_skip_emulated_instruction(vcpu); 5512 default: 5513 break; 5514 } 5515 vcpu->run->exit_reason = 0; 5516 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5517 (int)(exit_qualification >> 4) & 3, cr); 5518 return 0; 5519 } 5520 5521 static int handle_dr(struct kvm_vcpu *vcpu) 5522 { 5523 unsigned long exit_qualification; 5524 int dr, dr7, reg; 5525 int err = 1; 5526 5527 exit_qualification = vmx_get_exit_qual(vcpu); 5528 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5529 5530 /* First, if DR does not exist, trigger UD */ 5531 if (!kvm_require_dr(vcpu, dr)) 5532 return 1; 5533 5534 if (vmx_get_cpl(vcpu) > 0) 5535 goto out; 5536 5537 dr7 = vmcs_readl(GUEST_DR7); 5538 if (dr7 & DR7_GD) { 5539 /* 5540 * As the vm-exit takes precedence over the debug trap, we 5541 * need to emulate the latter, either for the host or the 5542 * guest debugging itself. 5543 */ 5544 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5545 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5546 vcpu->run->debug.arch.dr7 = dr7; 5547 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5548 vcpu->run->debug.arch.exception = DB_VECTOR; 5549 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5550 return 0; 5551 } else { 5552 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5553 return 1; 5554 } 5555 } 5556 5557 if (vcpu->guest_debug == 0) { 5558 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5559 5560 /* 5561 * No more DR vmexits; force a reload of the debug registers 5562 * and reenter on this instruction. The next vmexit will 5563 * retrieve the full state of the debug registers. 5564 */ 5565 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5566 return 1; 5567 } 5568 5569 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5570 if (exit_qualification & TYPE_MOV_FROM_DR) { 5571 unsigned long val; 5572 5573 kvm_get_dr(vcpu, dr, &val); 5574 kvm_register_write(vcpu, reg, val); 5575 err = 0; 5576 } else { 5577 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5578 } 5579 5580 out: 5581 return kvm_complete_insn_gp(vcpu, err); 5582 } 5583 5584 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5585 { 5586 get_debugreg(vcpu->arch.db[0], 0); 5587 get_debugreg(vcpu->arch.db[1], 1); 5588 get_debugreg(vcpu->arch.db[2], 2); 5589 get_debugreg(vcpu->arch.db[3], 3); 5590 get_debugreg(vcpu->arch.dr6, 6); 5591 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5592 5593 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5594 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5595 5596 /* 5597 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5598 * a stale dr6 from the guest. 5599 */ 5600 set_debugreg(DR6_RESERVED, 6); 5601 } 5602 5603 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5604 { 5605 vmcs_writel(GUEST_DR7, val); 5606 } 5607 5608 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5609 { 5610 kvm_apic_update_ppr(vcpu); 5611 return 1; 5612 } 5613 5614 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5615 { 5616 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5617 5618 kvm_make_request(KVM_REQ_EVENT, vcpu); 5619 5620 ++vcpu->stat.irq_window_exits; 5621 return 1; 5622 } 5623 5624 static int handle_invlpg(struct kvm_vcpu *vcpu) 5625 { 5626 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5627 5628 kvm_mmu_invlpg(vcpu, exit_qualification); 5629 return kvm_skip_emulated_instruction(vcpu); 5630 } 5631 5632 static int handle_apic_access(struct kvm_vcpu *vcpu) 5633 { 5634 if (likely(fasteoi)) { 5635 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5636 int access_type, offset; 5637 5638 access_type = exit_qualification & APIC_ACCESS_TYPE; 5639 offset = exit_qualification & APIC_ACCESS_OFFSET; 5640 /* 5641 * Sane guest uses MOV to write EOI, with written value 5642 * not cared. So make a short-circuit here by avoiding 5643 * heavy instruction emulation. 5644 */ 5645 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5646 (offset == APIC_EOI)) { 5647 kvm_lapic_set_eoi(vcpu); 5648 return kvm_skip_emulated_instruction(vcpu); 5649 } 5650 } 5651 return kvm_emulate_instruction(vcpu, 0); 5652 } 5653 5654 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5655 { 5656 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5657 int vector = exit_qualification & 0xff; 5658 5659 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5660 kvm_apic_set_eoi_accelerated(vcpu, vector); 5661 return 1; 5662 } 5663 5664 static int handle_apic_write(struct kvm_vcpu *vcpu) 5665 { 5666 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5667 5668 /* 5669 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and 5670 * hardware has done any necessary aliasing, offset adjustments, etc... 5671 * for the access. I.e. the correct value has already been written to 5672 * the vAPIC page for the correct 16-byte chunk. KVM needs only to 5673 * retrieve the register value and emulate the access. 5674 */ 5675 u32 offset = exit_qualification & 0xff0; 5676 5677 kvm_apic_write_nodecode(vcpu, offset); 5678 return 1; 5679 } 5680 5681 static int handle_task_switch(struct kvm_vcpu *vcpu) 5682 { 5683 struct vcpu_vmx *vmx = to_vmx(vcpu); 5684 unsigned long exit_qualification; 5685 bool has_error_code = false; 5686 u32 error_code = 0; 5687 u16 tss_selector; 5688 int reason, type, idt_v, idt_index; 5689 5690 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5691 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5692 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5693 5694 exit_qualification = vmx_get_exit_qual(vcpu); 5695 5696 reason = (u32)exit_qualification >> 30; 5697 if (reason == TASK_SWITCH_GATE && idt_v) { 5698 switch (type) { 5699 case INTR_TYPE_NMI_INTR: 5700 vcpu->arch.nmi_injected = false; 5701 vmx_set_nmi_mask(vcpu, true); 5702 break; 5703 case INTR_TYPE_EXT_INTR: 5704 case INTR_TYPE_SOFT_INTR: 5705 kvm_clear_interrupt_queue(vcpu); 5706 break; 5707 case INTR_TYPE_HARD_EXCEPTION: 5708 if (vmx->idt_vectoring_info & 5709 VECTORING_INFO_DELIVER_CODE_MASK) { 5710 has_error_code = true; 5711 error_code = 5712 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5713 } 5714 fallthrough; 5715 case INTR_TYPE_SOFT_EXCEPTION: 5716 kvm_clear_exception_queue(vcpu); 5717 break; 5718 default: 5719 break; 5720 } 5721 } 5722 tss_selector = exit_qualification; 5723 5724 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5725 type != INTR_TYPE_EXT_INTR && 5726 type != INTR_TYPE_NMI_INTR)) 5727 WARN_ON(!skip_emulated_instruction(vcpu)); 5728 5729 /* 5730 * TODO: What about debug traps on tss switch? 5731 * Are we supposed to inject them and update dr6? 5732 */ 5733 return kvm_task_switch(vcpu, tss_selector, 5734 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5735 reason, has_error_code, error_code); 5736 } 5737 5738 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5739 { 5740 unsigned long exit_qualification; 5741 gpa_t gpa; 5742 u64 error_code; 5743 5744 exit_qualification = vmx_get_exit_qual(vcpu); 5745 5746 /* 5747 * EPT violation happened while executing iret from NMI, 5748 * "blocked by NMI" bit has to be set before next VM entry. 5749 * There are errata that may cause this bit to not be set: 5750 * AAK134, BY25. 5751 */ 5752 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5753 enable_vnmi && 5754 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5755 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5756 5757 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5758 trace_kvm_page_fault(vcpu, gpa, exit_qualification); 5759 5760 /* Is it a read fault? */ 5761 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5762 ? PFERR_USER_MASK : 0; 5763 /* Is it a write fault? */ 5764 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5765 ? PFERR_WRITE_MASK : 0; 5766 /* Is it a fetch fault? */ 5767 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5768 ? PFERR_FETCH_MASK : 0; 5769 /* ept page table entry is present? */ 5770 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK) 5771 ? PFERR_PRESENT_MASK : 0; 5772 5773 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5774 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5775 5776 vcpu->arch.exit_qualification = exit_qualification; 5777 5778 /* 5779 * Check that the GPA doesn't exceed physical memory limits, as that is 5780 * a guest page fault. We have to emulate the instruction here, because 5781 * if the illegal address is that of a paging structure, then 5782 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5783 * would also use advanced VM-exit information for EPT violations to 5784 * reconstruct the page fault error code. 5785 */ 5786 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5787 return kvm_emulate_instruction(vcpu, 0); 5788 5789 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5790 } 5791 5792 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5793 { 5794 gpa_t gpa; 5795 5796 if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) 5797 return 1; 5798 5799 /* 5800 * A nested guest cannot optimize MMIO vmexits, because we have an 5801 * nGPA here instead of the required GPA. 5802 */ 5803 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5804 if (!is_guest_mode(vcpu) && 5805 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5806 trace_kvm_fast_mmio(gpa); 5807 return kvm_skip_emulated_instruction(vcpu); 5808 } 5809 5810 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5811 } 5812 5813 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5814 { 5815 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5816 return -EIO; 5817 5818 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5819 ++vcpu->stat.nmi_window_exits; 5820 kvm_make_request(KVM_REQ_EVENT, vcpu); 5821 5822 return 1; 5823 } 5824 5825 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) 5826 { 5827 struct vcpu_vmx *vmx = to_vmx(vcpu); 5828 5829 return vmx->emulation_required && !vmx->rmode.vm86_active && 5830 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected); 5831 } 5832 5833 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5834 { 5835 struct vcpu_vmx *vmx = to_vmx(vcpu); 5836 bool intr_window_requested; 5837 unsigned count = 130; 5838 5839 intr_window_requested = exec_controls_get(vmx) & 5840 CPU_BASED_INTR_WINDOW_EXITING; 5841 5842 while (vmx->emulation_required && count-- != 0) { 5843 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5844 return handle_interrupt_window(&vmx->vcpu); 5845 5846 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5847 return 1; 5848 5849 if (!kvm_emulate_instruction(vcpu, 0)) 5850 return 0; 5851 5852 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5853 kvm_prepare_emulation_failure_exit(vcpu); 5854 return 0; 5855 } 5856 5857 if (vcpu->arch.halt_request) { 5858 vcpu->arch.halt_request = 0; 5859 return kvm_emulate_halt_noskip(vcpu); 5860 } 5861 5862 /* 5863 * Note, return 1 and not 0, vcpu_run() will invoke 5864 * xfer_to_guest_mode() which will create a proper return 5865 * code. 5866 */ 5867 if (__xfer_to_guest_mode_work_pending()) 5868 return 1; 5869 } 5870 5871 return 1; 5872 } 5873 5874 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) 5875 { 5876 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5877 kvm_prepare_emulation_failure_exit(vcpu); 5878 return 0; 5879 } 5880 5881 return 1; 5882 } 5883 5884 static void grow_ple_window(struct kvm_vcpu *vcpu) 5885 { 5886 struct vcpu_vmx *vmx = to_vmx(vcpu); 5887 unsigned int old = vmx->ple_window; 5888 5889 vmx->ple_window = __grow_ple_window(old, ple_window, 5890 ple_window_grow, 5891 ple_window_max); 5892 5893 if (vmx->ple_window != old) { 5894 vmx->ple_window_dirty = true; 5895 trace_kvm_ple_window_update(vcpu->vcpu_id, 5896 vmx->ple_window, old); 5897 } 5898 } 5899 5900 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5901 { 5902 struct vcpu_vmx *vmx = to_vmx(vcpu); 5903 unsigned int old = vmx->ple_window; 5904 5905 vmx->ple_window = __shrink_ple_window(old, ple_window, 5906 ple_window_shrink, 5907 ple_window); 5908 5909 if (vmx->ple_window != old) { 5910 vmx->ple_window_dirty = true; 5911 trace_kvm_ple_window_update(vcpu->vcpu_id, 5912 vmx->ple_window, old); 5913 } 5914 } 5915 5916 /* 5917 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5918 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5919 */ 5920 static int handle_pause(struct kvm_vcpu *vcpu) 5921 { 5922 if (!kvm_pause_in_guest(vcpu->kvm)) 5923 grow_ple_window(vcpu); 5924 5925 /* 5926 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5927 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5928 * never set PAUSE_EXITING and just set PLE if supported, 5929 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5930 */ 5931 kvm_vcpu_on_spin(vcpu, true); 5932 return kvm_skip_emulated_instruction(vcpu); 5933 } 5934 5935 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5936 { 5937 return 1; 5938 } 5939 5940 static int handle_invpcid(struct kvm_vcpu *vcpu) 5941 { 5942 u32 vmx_instruction_info; 5943 unsigned long type; 5944 gva_t gva; 5945 struct { 5946 u64 pcid; 5947 u64 gla; 5948 } operand; 5949 int gpr_index; 5950 5951 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5952 kvm_queue_exception(vcpu, UD_VECTOR); 5953 return 1; 5954 } 5955 5956 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5957 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5958 type = kvm_register_read(vcpu, gpr_index); 5959 5960 /* According to the Intel instruction reference, the memory operand 5961 * is read even if it isn't needed (e.g., for type==all) 5962 */ 5963 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5964 vmx_instruction_info, false, 5965 sizeof(operand), &gva)) 5966 return 1; 5967 5968 return kvm_handle_invpcid(vcpu, type, gva); 5969 } 5970 5971 static int handle_pml_full(struct kvm_vcpu *vcpu) 5972 { 5973 unsigned long exit_qualification; 5974 5975 trace_kvm_pml_full(vcpu->vcpu_id); 5976 5977 exit_qualification = vmx_get_exit_qual(vcpu); 5978 5979 /* 5980 * PML buffer FULL happened while executing iret from NMI, 5981 * "blocked by NMI" bit has to be set before next VM entry. 5982 */ 5983 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5984 enable_vnmi && 5985 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5986 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5987 GUEST_INTR_STATE_NMI); 5988 5989 /* 5990 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5991 * here.., and there's no userspace involvement needed for PML. 5992 */ 5993 return 1; 5994 } 5995 5996 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5997 { 5998 struct vcpu_vmx *vmx = to_vmx(vcpu); 5999 6000 if (!vmx->req_immediate_exit && 6001 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 6002 kvm_lapic_expired_hv_timer(vcpu); 6003 return EXIT_FASTPATH_REENTER_GUEST; 6004 } 6005 6006 return EXIT_FASTPATH_NONE; 6007 } 6008 6009 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 6010 { 6011 handle_fastpath_preemption_timer(vcpu); 6012 return 1; 6013 } 6014 6015 /* 6016 * When nested=0, all VMX instruction VM Exits filter here. The handlers 6017 * are overwritten by nested_vmx_setup() when nested=1. 6018 */ 6019 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 6020 { 6021 kvm_queue_exception(vcpu, UD_VECTOR); 6022 return 1; 6023 } 6024 6025 #ifndef CONFIG_X86_SGX_KVM 6026 static int handle_encls(struct kvm_vcpu *vcpu) 6027 { 6028 /* 6029 * SGX virtualization is disabled. There is no software enable bit for 6030 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 6031 * the guest from executing ENCLS (when SGX is supported by hardware). 6032 */ 6033 kvm_queue_exception(vcpu, UD_VECTOR); 6034 return 1; 6035 } 6036 #endif /* CONFIG_X86_SGX_KVM */ 6037 6038 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 6039 { 6040 /* 6041 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 6042 * VM-Exits. Unconditionally set the flag here and leave the handling to 6043 * vmx_handle_exit(). 6044 */ 6045 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 6046 return 1; 6047 } 6048 6049 static int handle_notify(struct kvm_vcpu *vcpu) 6050 { 6051 unsigned long exit_qual = vmx_get_exit_qual(vcpu); 6052 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID; 6053 6054 ++vcpu->stat.notify_window_exits; 6055 6056 /* 6057 * Notify VM exit happened while executing iret from NMI, 6058 * "blocked by NMI" bit has to be set before next VM entry. 6059 */ 6060 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI)) 6061 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6062 GUEST_INTR_STATE_NMI); 6063 6064 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER || 6065 context_invalid) { 6066 vcpu->run->exit_reason = KVM_EXIT_NOTIFY; 6067 vcpu->run->notify.flags = context_invalid ? 6068 KVM_NOTIFY_CONTEXT_INVALID : 0; 6069 return 0; 6070 } 6071 6072 return 1; 6073 } 6074 6075 /* 6076 * The exit handlers return 1 if the exit was handled fully and guest execution 6077 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 6078 * to be done to userspace and return 0. 6079 */ 6080 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 6081 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 6082 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 6083 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 6084 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 6085 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 6086 [EXIT_REASON_CR_ACCESS] = handle_cr, 6087 [EXIT_REASON_DR_ACCESS] = handle_dr, 6088 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 6089 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 6090 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 6091 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 6092 [EXIT_REASON_HLT] = kvm_emulate_halt, 6093 [EXIT_REASON_INVD] = kvm_emulate_invd, 6094 [EXIT_REASON_INVLPG] = handle_invlpg, 6095 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 6096 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 6097 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 6098 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 6099 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 6100 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 6101 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 6102 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 6103 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 6104 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 6105 [EXIT_REASON_VMON] = handle_vmx_instruction, 6106 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 6107 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 6108 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 6109 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 6110 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 6111 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 6112 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 6113 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 6114 [EXIT_REASON_GDTR_IDTR] = handle_desc, 6115 [EXIT_REASON_LDTR_TR] = handle_desc, 6116 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 6117 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 6118 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 6119 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 6120 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 6121 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 6122 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 6123 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 6124 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 6125 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 6126 [EXIT_REASON_PML_FULL] = handle_pml_full, 6127 [EXIT_REASON_INVPCID] = handle_invpcid, 6128 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 6129 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 6130 [EXIT_REASON_ENCLS] = handle_encls, 6131 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 6132 [EXIT_REASON_NOTIFY] = handle_notify, 6133 }; 6134 6135 static const int kvm_vmx_max_exit_handlers = 6136 ARRAY_SIZE(kvm_vmx_exit_handlers); 6137 6138 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 6139 u64 *info1, u64 *info2, 6140 u32 *intr_info, u32 *error_code) 6141 { 6142 struct vcpu_vmx *vmx = to_vmx(vcpu); 6143 6144 *reason = vmx->exit_reason.full; 6145 *info1 = vmx_get_exit_qual(vcpu); 6146 if (!(vmx->exit_reason.failed_vmentry)) { 6147 *info2 = vmx->idt_vectoring_info; 6148 *intr_info = vmx_get_intr_info(vcpu); 6149 if (is_exception_with_error_code(*intr_info)) 6150 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 6151 else 6152 *error_code = 0; 6153 } else { 6154 *info2 = 0; 6155 *intr_info = 0; 6156 *error_code = 0; 6157 } 6158 } 6159 6160 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 6161 { 6162 if (vmx->pml_pg) { 6163 __free_page(vmx->pml_pg); 6164 vmx->pml_pg = NULL; 6165 } 6166 } 6167 6168 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 6169 { 6170 struct vcpu_vmx *vmx = to_vmx(vcpu); 6171 u64 *pml_buf; 6172 u16 pml_idx; 6173 6174 pml_idx = vmcs_read16(GUEST_PML_INDEX); 6175 6176 /* Do nothing if PML buffer is empty */ 6177 if (pml_idx == (PML_ENTITY_NUM - 1)) 6178 return; 6179 6180 /* PML index always points to next available PML buffer entity */ 6181 if (pml_idx >= PML_ENTITY_NUM) 6182 pml_idx = 0; 6183 else 6184 pml_idx++; 6185 6186 pml_buf = page_address(vmx->pml_pg); 6187 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 6188 u64 gpa; 6189 6190 gpa = pml_buf[pml_idx]; 6191 WARN_ON(gpa & (PAGE_SIZE - 1)); 6192 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 6193 } 6194 6195 /* reset PML index */ 6196 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 6197 } 6198 6199 static void vmx_dump_sel(char *name, uint32_t sel) 6200 { 6201 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 6202 name, vmcs_read16(sel), 6203 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 6204 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 6205 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 6206 } 6207 6208 static void vmx_dump_dtsel(char *name, uint32_t limit) 6209 { 6210 pr_err("%s limit=0x%08x, base=0x%016lx\n", 6211 name, vmcs_read32(limit), 6212 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 6213 } 6214 6215 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 6216 { 6217 unsigned int i; 6218 struct vmx_msr_entry *e; 6219 6220 pr_err("MSR %s:\n", name); 6221 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 6222 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 6223 } 6224 6225 void dump_vmcs(struct kvm_vcpu *vcpu) 6226 { 6227 struct vcpu_vmx *vmx = to_vmx(vcpu); 6228 u32 vmentry_ctl, vmexit_ctl; 6229 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 6230 u64 tertiary_exec_control; 6231 unsigned long cr4; 6232 int efer_slot; 6233 6234 if (!dump_invalid_vmcs) { 6235 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 6236 return; 6237 } 6238 6239 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 6240 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 6241 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 6242 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 6243 cr4 = vmcs_readl(GUEST_CR4); 6244 6245 if (cpu_has_secondary_exec_ctrls()) 6246 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 6247 else 6248 secondary_exec_control = 0; 6249 6250 if (cpu_has_tertiary_exec_ctrls()) 6251 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL); 6252 else 6253 tertiary_exec_control = 0; 6254 6255 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 6256 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 6257 pr_err("*** Guest State ***\n"); 6258 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6259 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 6260 vmcs_readl(CR0_GUEST_HOST_MASK)); 6261 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6262 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 6263 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 6264 if (cpu_has_vmx_ept()) { 6265 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 6266 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 6267 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 6268 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 6269 } 6270 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 6271 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 6272 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 6273 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 6274 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6275 vmcs_readl(GUEST_SYSENTER_ESP), 6276 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 6277 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 6278 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 6279 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 6280 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 6281 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 6282 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 6283 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 6284 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 6285 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 6286 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 6287 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 6288 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 6289 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 6290 else if (efer_slot >= 0) 6291 pr_err("EFER= 0x%016llx (autoload)\n", 6292 vmx->msr_autoload.guest.val[efer_slot].value); 6293 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 6294 pr_err("EFER= 0x%016llx (effective)\n", 6295 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 6296 else 6297 pr_err("EFER= 0x%016llx (effective)\n", 6298 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 6299 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 6300 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 6301 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 6302 vmcs_read64(GUEST_IA32_DEBUGCTL), 6303 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 6304 if (cpu_has_load_perf_global_ctrl() && 6305 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 6306 pr_err("PerfGlobCtl = 0x%016llx\n", 6307 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 6308 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 6309 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 6310 pr_err("Interruptibility = %08x ActivityState = %08x\n", 6311 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 6312 vmcs_read32(GUEST_ACTIVITY_STATE)); 6313 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 6314 pr_err("InterruptStatus = %04x\n", 6315 vmcs_read16(GUEST_INTR_STATUS)); 6316 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 6317 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 6318 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 6319 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 6320 6321 pr_err("*** Host State ***\n"); 6322 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 6323 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 6324 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 6325 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 6326 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 6327 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 6328 vmcs_read16(HOST_TR_SELECTOR)); 6329 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 6330 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 6331 vmcs_readl(HOST_TR_BASE)); 6332 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 6333 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 6334 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 6335 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 6336 vmcs_readl(HOST_CR4)); 6337 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6338 vmcs_readl(HOST_IA32_SYSENTER_ESP), 6339 vmcs_read32(HOST_IA32_SYSENTER_CS), 6340 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 6341 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 6342 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 6343 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 6344 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 6345 if (cpu_has_load_perf_global_ctrl() && 6346 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 6347 pr_err("PerfGlobCtl = 0x%016llx\n", 6348 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 6349 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 6350 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 6351 6352 pr_err("*** Control State ***\n"); 6353 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n", 6354 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control); 6355 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n", 6356 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl); 6357 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 6358 vmcs_read32(EXCEPTION_BITMAP), 6359 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 6360 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 6361 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 6362 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6363 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 6364 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 6365 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 6366 vmcs_read32(VM_EXIT_INTR_INFO), 6367 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 6368 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 6369 pr_err(" reason=%08x qualification=%016lx\n", 6370 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 6371 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 6372 vmcs_read32(IDT_VECTORING_INFO_FIELD), 6373 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 6374 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 6375 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 6376 pr_err("TSC Multiplier = 0x%016llx\n", 6377 vmcs_read64(TSC_MULTIPLIER)); 6378 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 6379 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 6380 u16 status = vmcs_read16(GUEST_INTR_STATUS); 6381 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 6382 } 6383 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 6384 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 6385 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 6386 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 6387 } 6388 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 6389 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 6390 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 6391 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 6392 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 6393 pr_err("PLE Gap=%08x Window=%08x\n", 6394 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 6395 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 6396 pr_err("Virtual processor ID = 0x%04x\n", 6397 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 6398 } 6399 6400 /* 6401 * The guest has exited. See if we can fix it or if we need userspace 6402 * assistance. 6403 */ 6404 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6405 { 6406 struct vcpu_vmx *vmx = to_vmx(vcpu); 6407 union vmx_exit_reason exit_reason = vmx->exit_reason; 6408 u32 vectoring_info = vmx->idt_vectoring_info; 6409 u16 exit_handler_index; 6410 6411 /* 6412 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 6413 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 6414 * querying dirty_bitmap, we only need to kick all vcpus out of guest 6415 * mode as if vcpus is in root mode, the PML buffer must has been 6416 * flushed already. Note, PML is never enabled in hardware while 6417 * running L2. 6418 */ 6419 if (enable_pml && !is_guest_mode(vcpu)) 6420 vmx_flush_pml_buffer(vcpu); 6421 6422 /* 6423 * KVM should never reach this point with a pending nested VM-Enter. 6424 * More specifically, short-circuiting VM-Entry to emulate L2 due to 6425 * invalid guest state should never happen as that means KVM knowingly 6426 * allowed a nested VM-Enter with an invalid vmcs12. More below. 6427 */ 6428 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 6429 return -EIO; 6430 6431 if (is_guest_mode(vcpu)) { 6432 /* 6433 * PML is never enabled when running L2, bail immediately if a 6434 * PML full exit occurs as something is horribly wrong. 6435 */ 6436 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6437 goto unexpected_vmexit; 6438 6439 /* 6440 * The host physical addresses of some pages of guest memory 6441 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6442 * Page). The CPU may write to these pages via their host 6443 * physical address while L2 is running, bypassing any 6444 * address-translation-based dirty tracking (e.g. EPT write 6445 * protection). 6446 * 6447 * Mark them dirty on every exit from L2 to prevent them from 6448 * getting out of sync with dirty tracking. 6449 */ 6450 nested_mark_vmcs12_pages_dirty(vcpu); 6451 6452 /* 6453 * Synthesize a triple fault if L2 state is invalid. In normal 6454 * operation, nested VM-Enter rejects any attempt to enter L2 6455 * with invalid state. However, those checks are skipped if 6456 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6457 * L2 state is invalid, it means either L1 modified SMRAM state 6458 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6459 * doing so is architecturally allowed in the RSM case, and is 6460 * the least awful solution for the userspace case without 6461 * risking false positives. 6462 */ 6463 if (vmx->emulation_required) { 6464 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6465 return 1; 6466 } 6467 6468 if (nested_vmx_reflect_vmexit(vcpu)) 6469 return 1; 6470 } 6471 6472 /* If guest state is invalid, start emulating. L2 is handled above. */ 6473 if (vmx->emulation_required) 6474 return handle_invalid_guest_state(vcpu); 6475 6476 if (exit_reason.failed_vmentry) { 6477 dump_vmcs(vcpu); 6478 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6479 vcpu->run->fail_entry.hardware_entry_failure_reason 6480 = exit_reason.full; 6481 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6482 return 0; 6483 } 6484 6485 if (unlikely(vmx->fail)) { 6486 dump_vmcs(vcpu); 6487 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6488 vcpu->run->fail_entry.hardware_entry_failure_reason 6489 = vmcs_read32(VM_INSTRUCTION_ERROR); 6490 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6491 return 0; 6492 } 6493 6494 /* 6495 * Note: 6496 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6497 * delivery event since it indicates guest is accessing MMIO. 6498 * The vm-exit can be triggered again after return to guest that 6499 * will cause infinite loop. 6500 */ 6501 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6502 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6503 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6504 exit_reason.basic != EXIT_REASON_PML_FULL && 6505 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6506 exit_reason.basic != EXIT_REASON_TASK_SWITCH && 6507 exit_reason.basic != EXIT_REASON_NOTIFY)) { 6508 int ndata = 3; 6509 6510 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6511 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6512 vcpu->run->internal.data[0] = vectoring_info; 6513 vcpu->run->internal.data[1] = exit_reason.full; 6514 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 6515 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6516 vcpu->run->internal.data[ndata++] = 6517 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6518 } 6519 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6520 vcpu->run->internal.ndata = ndata; 6521 return 0; 6522 } 6523 6524 if (unlikely(!enable_vnmi && 6525 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6526 if (!vmx_interrupt_blocked(vcpu)) { 6527 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6528 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6529 vcpu->arch.nmi_pending) { 6530 /* 6531 * This CPU don't support us in finding the end of an 6532 * NMI-blocked window if the guest runs with IRQs 6533 * disabled. So we pull the trigger after 1 s of 6534 * futile waiting, but inform the user about this. 6535 */ 6536 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6537 "state on VCPU %d after 1 s timeout\n", 6538 __func__, vcpu->vcpu_id); 6539 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6540 } 6541 } 6542 6543 if (exit_fastpath != EXIT_FASTPATH_NONE) 6544 return 1; 6545 6546 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6547 goto unexpected_vmexit; 6548 #ifdef CONFIG_RETPOLINE 6549 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6550 return kvm_emulate_wrmsr(vcpu); 6551 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6552 return handle_preemption_timer(vcpu); 6553 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6554 return handle_interrupt_window(vcpu); 6555 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6556 return handle_external_interrupt(vcpu); 6557 else if (exit_reason.basic == EXIT_REASON_HLT) 6558 return kvm_emulate_halt(vcpu); 6559 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6560 return handle_ept_misconfig(vcpu); 6561 #endif 6562 6563 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6564 kvm_vmx_max_exit_handlers); 6565 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6566 goto unexpected_vmexit; 6567 6568 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6569 6570 unexpected_vmexit: 6571 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6572 exit_reason.full); 6573 dump_vmcs(vcpu); 6574 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6575 vcpu->run->internal.suberror = 6576 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6577 vcpu->run->internal.ndata = 2; 6578 vcpu->run->internal.data[0] = exit_reason.full; 6579 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6580 return 0; 6581 } 6582 6583 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6584 { 6585 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6586 6587 /* 6588 * Exit to user space when bus lock detected to inform that there is 6589 * a bus lock in guest. 6590 */ 6591 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6592 if (ret > 0) 6593 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6594 6595 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6596 return 0; 6597 } 6598 return ret; 6599 } 6600 6601 /* 6602 * Software based L1D cache flush which is used when microcode providing 6603 * the cache control MSR is not loaded. 6604 * 6605 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6606 * flush it is required to read in 64 KiB because the replacement algorithm 6607 * is not exactly LRU. This could be sized at runtime via topology 6608 * information but as all relevant affected CPUs have 32KiB L1D cache size 6609 * there is no point in doing so. 6610 */ 6611 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6612 { 6613 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6614 6615 /* 6616 * This code is only executed when the flush mode is 'cond' or 6617 * 'always' 6618 */ 6619 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6620 bool flush_l1d; 6621 6622 /* 6623 * Clear the per-vcpu flush bit, it gets set again 6624 * either from vcpu_run() or from one of the unsafe 6625 * VMEXIT handlers. 6626 */ 6627 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6628 vcpu->arch.l1tf_flush_l1d = false; 6629 6630 /* 6631 * Clear the per-cpu flush bit, it gets set again from 6632 * the interrupt handlers. 6633 */ 6634 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6635 kvm_clear_cpu_l1tf_flush_l1d(); 6636 6637 if (!flush_l1d) 6638 return; 6639 } 6640 6641 vcpu->stat.l1d_flush++; 6642 6643 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6644 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6645 return; 6646 } 6647 6648 asm volatile( 6649 /* First ensure the pages are in the TLB */ 6650 "xorl %%eax, %%eax\n" 6651 ".Lpopulate_tlb:\n\t" 6652 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6653 "addl $4096, %%eax\n\t" 6654 "cmpl %%eax, %[size]\n\t" 6655 "jne .Lpopulate_tlb\n\t" 6656 "xorl %%eax, %%eax\n\t" 6657 "cpuid\n\t" 6658 /* Now fill the cache */ 6659 "xorl %%eax, %%eax\n" 6660 ".Lfill_cache:\n" 6661 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6662 "addl $64, %%eax\n\t" 6663 "cmpl %%eax, %[size]\n\t" 6664 "jne .Lfill_cache\n\t" 6665 "lfence\n" 6666 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6667 [size] "r" (size) 6668 : "eax", "ebx", "ecx", "edx"); 6669 } 6670 6671 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6672 { 6673 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6674 int tpr_threshold; 6675 6676 if (is_guest_mode(vcpu) && 6677 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6678 return; 6679 6680 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6681 if (is_guest_mode(vcpu)) 6682 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6683 else 6684 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6685 } 6686 6687 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6688 { 6689 struct vcpu_vmx *vmx = to_vmx(vcpu); 6690 u32 sec_exec_control; 6691 6692 if (!lapic_in_kernel(vcpu)) 6693 return; 6694 6695 if (!flexpriority_enabled && 6696 !cpu_has_vmx_virtualize_x2apic_mode()) 6697 return; 6698 6699 /* Postpone execution until vmcs01 is the current VMCS. */ 6700 if (is_guest_mode(vcpu)) { 6701 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6702 return; 6703 } 6704 6705 sec_exec_control = secondary_exec_controls_get(vmx); 6706 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6707 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6708 6709 switch (kvm_get_apic_mode(vcpu)) { 6710 case LAPIC_MODE_INVALID: 6711 WARN_ONCE(true, "Invalid local APIC state"); 6712 break; 6713 case LAPIC_MODE_DISABLED: 6714 break; 6715 case LAPIC_MODE_XAPIC: 6716 if (flexpriority_enabled) { 6717 sec_exec_control |= 6718 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6719 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6720 6721 /* 6722 * Flush the TLB, reloading the APIC access page will 6723 * only do so if its physical address has changed, but 6724 * the guest may have inserted a non-APIC mapping into 6725 * the TLB while the APIC access page was disabled. 6726 */ 6727 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6728 } 6729 break; 6730 case LAPIC_MODE_X2APIC: 6731 if (cpu_has_vmx_virtualize_x2apic_mode()) 6732 sec_exec_control |= 6733 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6734 break; 6735 } 6736 secondary_exec_controls_set(vmx, sec_exec_control); 6737 6738 vmx_update_msr_bitmap_x2apic(vcpu); 6739 } 6740 6741 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6742 { 6743 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT; 6744 struct kvm *kvm = vcpu->kvm; 6745 struct kvm_memslots *slots = kvm_memslots(kvm); 6746 struct kvm_memory_slot *slot; 6747 unsigned long mmu_seq; 6748 kvm_pfn_t pfn; 6749 6750 /* Defer reload until vmcs01 is the current VMCS. */ 6751 if (is_guest_mode(vcpu)) { 6752 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6753 return; 6754 } 6755 6756 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6757 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6758 return; 6759 6760 /* 6761 * Grab the memslot so that the hva lookup for the mmu_notifier retry 6762 * is guaranteed to use the same memslot as the pfn lookup, i.e. rely 6763 * on the pfn lookup's validation of the memslot to ensure a valid hva 6764 * is used for the retry check. 6765 */ 6766 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT); 6767 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 6768 return; 6769 6770 /* 6771 * Ensure that the mmu_notifier sequence count is read before KVM 6772 * retrieves the pfn from the primary MMU. Note, the memslot is 6773 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb() 6774 * in kvm_mmu_invalidate_end(). 6775 */ 6776 mmu_seq = kvm->mmu_invalidate_seq; 6777 smp_rmb(); 6778 6779 /* 6780 * No need to retry if the memslot does not exist or is invalid. KVM 6781 * controls the APIC-access page memslot, and only deletes the memslot 6782 * if APICv is permanently inhibited, i.e. the memslot won't reappear. 6783 */ 6784 pfn = gfn_to_pfn_memslot(slot, gfn); 6785 if (is_error_noslot_pfn(pfn)) 6786 return; 6787 6788 read_lock(&vcpu->kvm->mmu_lock); 6789 if (mmu_invalidate_retry_hva(kvm, mmu_seq, 6790 gfn_to_hva_memslot(slot, gfn))) { 6791 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6792 read_unlock(&vcpu->kvm->mmu_lock); 6793 goto out; 6794 } 6795 6796 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn)); 6797 read_unlock(&vcpu->kvm->mmu_lock); 6798 6799 vmx_flush_tlb_current(vcpu); 6800 6801 out: 6802 /* 6803 * Do not pin apic access page in memory, the MMU notifier 6804 * will call us again if it is migrated or swapped out. 6805 */ 6806 kvm_release_pfn_clean(pfn); 6807 } 6808 6809 static void vmx_hwapic_isr_update(int max_isr) 6810 { 6811 u16 status; 6812 u8 old; 6813 6814 if (max_isr == -1) 6815 max_isr = 0; 6816 6817 status = vmcs_read16(GUEST_INTR_STATUS); 6818 old = status >> 8; 6819 if (max_isr != old) { 6820 status &= 0xff; 6821 status |= max_isr << 8; 6822 vmcs_write16(GUEST_INTR_STATUS, status); 6823 } 6824 } 6825 6826 static void vmx_set_rvi(int vector) 6827 { 6828 u16 status; 6829 u8 old; 6830 6831 if (vector == -1) 6832 vector = 0; 6833 6834 status = vmcs_read16(GUEST_INTR_STATUS); 6835 old = (u8)status & 0xff; 6836 if ((u8)vector != old) { 6837 status &= ~0xff; 6838 status |= (u8)vector; 6839 vmcs_write16(GUEST_INTR_STATUS, status); 6840 } 6841 } 6842 6843 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6844 { 6845 /* 6846 * When running L2, updating RVI is only relevant when 6847 * vmcs12 virtual-interrupt-delivery enabled. 6848 * However, it can be enabled only when L1 also 6849 * intercepts external-interrupts and in that case 6850 * we should not update vmcs02 RVI but instead intercept 6851 * interrupt. Therefore, do nothing when running L2. 6852 */ 6853 if (!is_guest_mode(vcpu)) 6854 vmx_set_rvi(max_irr); 6855 } 6856 6857 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6858 { 6859 struct vcpu_vmx *vmx = to_vmx(vcpu); 6860 int max_irr; 6861 bool got_posted_interrupt; 6862 6863 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6864 return -EIO; 6865 6866 if (pi_test_on(&vmx->pi_desc)) { 6867 pi_clear_on(&vmx->pi_desc); 6868 /* 6869 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6870 * But on x86 this is just a compiler barrier anyway. 6871 */ 6872 smp_mb__after_atomic(); 6873 got_posted_interrupt = 6874 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6875 } else { 6876 max_irr = kvm_lapic_find_highest_irr(vcpu); 6877 got_posted_interrupt = false; 6878 } 6879 6880 /* 6881 * Newly recognized interrupts are injected via either virtual interrupt 6882 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6883 * disabled in two cases: 6884 * 6885 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6886 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6887 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6888 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6889 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6890 * 6891 * 2) If APICv is disabled for this vCPU, assigned devices may still 6892 * attempt to post interrupts. The posted interrupt vector will cause 6893 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6894 */ 6895 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6896 vmx_set_rvi(max_irr); 6897 else if (got_posted_interrupt) 6898 kvm_make_request(KVM_REQ_EVENT, vcpu); 6899 6900 return max_irr; 6901 } 6902 6903 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6904 { 6905 if (!kvm_vcpu_apicv_active(vcpu)) 6906 return; 6907 6908 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6909 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6910 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6911 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6912 } 6913 6914 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6915 { 6916 struct vcpu_vmx *vmx = to_vmx(vcpu); 6917 6918 pi_clear_on(&vmx->pi_desc); 6919 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6920 } 6921 6922 void vmx_do_interrupt_irqoff(unsigned long entry); 6923 void vmx_do_nmi_irqoff(void); 6924 6925 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6926 { 6927 /* 6928 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6929 * MSR value is not clobbered by the host activity before the guest 6930 * has chance to consume it. 6931 * 6932 * Do not blindly read xfd_err here, since this exception might 6933 * be caused by L1 interception on a platform which doesn't 6934 * support xfd at all. 6935 * 6936 * Do it conditionally upon guest_fpu::xfd. xfd_err matters 6937 * only when xfd contains a non-zero value. 6938 * 6939 * Queuing exception is done in vmx_handle_exit. See comment there. 6940 */ 6941 if (vcpu->arch.guest_fpu.fpstate->xfd) 6942 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 6943 } 6944 6945 static void handle_exception_irqoff(struct vcpu_vmx *vmx) 6946 { 6947 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6948 6949 /* if exit due to PF check for async PF */ 6950 if (is_page_fault(intr_info)) 6951 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6952 /* if exit due to NM, handle before interrupts are enabled */ 6953 else if (is_nm_fault(intr_info)) 6954 handle_nm_fault_irqoff(&vmx->vcpu); 6955 /* Handle machine checks before interrupts are enabled */ 6956 else if (is_machine_check(intr_info)) 6957 kvm_machine_check(); 6958 } 6959 6960 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6961 { 6962 u32 intr_info = vmx_get_intr_info(vcpu); 6963 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6964 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6965 6966 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6967 "unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6968 return; 6969 6970 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 6971 vmx_do_interrupt_irqoff(gate_offset(desc)); 6972 kvm_after_interrupt(vcpu); 6973 6974 vcpu->arch.at_instruction_boundary = true; 6975 } 6976 6977 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6978 { 6979 struct vcpu_vmx *vmx = to_vmx(vcpu); 6980 6981 if (vmx->emulation_required) 6982 return; 6983 6984 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6985 handle_external_interrupt_irqoff(vcpu); 6986 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6987 handle_exception_irqoff(vmx); 6988 } 6989 6990 /* 6991 * The kvm parameter can be NULL (module initialization, or invocation before 6992 * VM creation). Be sure to check the kvm parameter before using it. 6993 */ 6994 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6995 { 6996 switch (index) { 6997 case MSR_IA32_SMBASE: 6998 if (!IS_ENABLED(CONFIG_KVM_SMM)) 6999 return false; 7000 /* 7001 * We cannot do SMM unless we can run the guest in big 7002 * real mode. 7003 */ 7004 return enable_unrestricted_guest || emulate_invalid_guest_state; 7005 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 7006 return nested; 7007 case MSR_AMD64_VIRT_SPEC_CTRL: 7008 case MSR_AMD64_TSC_RATIO: 7009 /* This is AMD only. */ 7010 return false; 7011 default: 7012 return true; 7013 } 7014 } 7015 7016 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 7017 { 7018 u32 exit_intr_info; 7019 bool unblock_nmi; 7020 u8 vector; 7021 bool idtv_info_valid; 7022 7023 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7024 7025 if (enable_vnmi) { 7026 if (vmx->loaded_vmcs->nmi_known_unmasked) 7027 return; 7028 7029 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 7030 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 7031 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 7032 /* 7033 * SDM 3: 27.7.1.2 (September 2008) 7034 * Re-set bit "block by NMI" before VM entry if vmexit caused by 7035 * a guest IRET fault. 7036 * SDM 3: 23.2.2 (September 2008) 7037 * Bit 12 is undefined in any of the following cases: 7038 * If the VM exit sets the valid bit in the IDT-vectoring 7039 * information field. 7040 * If the VM exit is due to a double fault. 7041 */ 7042 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 7043 vector != DF_VECTOR && !idtv_info_valid) 7044 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 7045 GUEST_INTR_STATE_NMI); 7046 else 7047 vmx->loaded_vmcs->nmi_known_unmasked = 7048 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 7049 & GUEST_INTR_STATE_NMI); 7050 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 7051 vmx->loaded_vmcs->vnmi_blocked_time += 7052 ktime_to_ns(ktime_sub(ktime_get(), 7053 vmx->loaded_vmcs->entry_time)); 7054 } 7055 7056 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 7057 u32 idt_vectoring_info, 7058 int instr_len_field, 7059 int error_code_field) 7060 { 7061 u8 vector; 7062 int type; 7063 bool idtv_info_valid; 7064 7065 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7066 7067 vcpu->arch.nmi_injected = false; 7068 kvm_clear_exception_queue(vcpu); 7069 kvm_clear_interrupt_queue(vcpu); 7070 7071 if (!idtv_info_valid) 7072 return; 7073 7074 kvm_make_request(KVM_REQ_EVENT, vcpu); 7075 7076 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 7077 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 7078 7079 switch (type) { 7080 case INTR_TYPE_NMI_INTR: 7081 vcpu->arch.nmi_injected = true; 7082 /* 7083 * SDM 3: 27.7.1.2 (September 2008) 7084 * Clear bit "block by NMI" before VM entry if a NMI 7085 * delivery faulted. 7086 */ 7087 vmx_set_nmi_mask(vcpu, false); 7088 break; 7089 case INTR_TYPE_SOFT_EXCEPTION: 7090 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7091 fallthrough; 7092 case INTR_TYPE_HARD_EXCEPTION: 7093 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 7094 u32 err = vmcs_read32(error_code_field); 7095 kvm_requeue_exception_e(vcpu, vector, err); 7096 } else 7097 kvm_requeue_exception(vcpu, vector); 7098 break; 7099 case INTR_TYPE_SOFT_INTR: 7100 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7101 fallthrough; 7102 case INTR_TYPE_EXT_INTR: 7103 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 7104 break; 7105 default: 7106 break; 7107 } 7108 } 7109 7110 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 7111 { 7112 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 7113 VM_EXIT_INSTRUCTION_LEN, 7114 IDT_VECTORING_ERROR_CODE); 7115 } 7116 7117 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 7118 { 7119 __vmx_complete_interrupts(vcpu, 7120 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 7121 VM_ENTRY_INSTRUCTION_LEN, 7122 VM_ENTRY_EXCEPTION_ERROR_CODE); 7123 7124 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 7125 } 7126 7127 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 7128 { 7129 int i, nr_msrs; 7130 struct perf_guest_switch_msr *msrs; 7131 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu); 7132 7133 pmu->host_cross_mapped_mask = 0; 7134 if (pmu->pebs_enable & pmu->global_ctrl) 7135 intel_pmu_cross_mapped_check(pmu); 7136 7137 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 7138 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu); 7139 if (!msrs) 7140 return; 7141 7142 for (i = 0; i < nr_msrs; i++) 7143 if (msrs[i].host == msrs[i].guest) 7144 clear_atomic_switch_msr(vmx, msrs[i].msr); 7145 else 7146 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 7147 msrs[i].host, false); 7148 } 7149 7150 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 7151 { 7152 struct vcpu_vmx *vmx = to_vmx(vcpu); 7153 u64 tscl; 7154 u32 delta_tsc; 7155 7156 if (vmx->req_immediate_exit) { 7157 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 7158 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7159 } else if (vmx->hv_deadline_tsc != -1) { 7160 tscl = rdtsc(); 7161 if (vmx->hv_deadline_tsc > tscl) 7162 /* set_hv_timer ensures the delta fits in 32-bits */ 7163 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 7164 cpu_preemption_timer_multi); 7165 else 7166 delta_tsc = 0; 7167 7168 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 7169 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7170 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 7171 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 7172 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 7173 } 7174 } 7175 7176 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 7177 { 7178 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 7179 vmx->loaded_vmcs->host_state.rsp = host_rsp; 7180 vmcs_writel(HOST_RSP, host_rsp); 7181 } 7182 } 7183 7184 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, 7185 unsigned int flags) 7186 { 7187 u64 hostval = this_cpu_read(x86_spec_ctrl_current); 7188 7189 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) 7190 return; 7191 7192 if (flags & VMX_RUN_SAVE_SPEC_CTRL) 7193 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL); 7194 7195 /* 7196 * If the guest/host SPEC_CTRL values differ, restore the host value. 7197 * 7198 * For legacy IBRS, the IBRS bit always needs to be written after 7199 * transitioning from a less privileged predictor mode, regardless of 7200 * whether the guest/host values differ. 7201 */ 7202 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) || 7203 vmx->spec_ctrl != hostval) 7204 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval); 7205 7206 barrier_nospec(); 7207 } 7208 7209 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 7210 { 7211 switch (to_vmx(vcpu)->exit_reason.basic) { 7212 case EXIT_REASON_MSR_WRITE: 7213 return handle_fastpath_set_msr_irqoff(vcpu); 7214 case EXIT_REASON_PREEMPTION_TIMER: 7215 return handle_fastpath_preemption_timer(vcpu); 7216 default: 7217 return EXIT_FASTPATH_NONE; 7218 } 7219 } 7220 7221 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 7222 unsigned int flags) 7223 { 7224 struct vcpu_vmx *vmx = to_vmx(vcpu); 7225 7226 guest_state_enter_irqoff(); 7227 7228 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 7229 if (static_branch_unlikely(&vmx_l1d_should_flush)) 7230 vmx_l1d_flush(vcpu); 7231 else if (static_branch_unlikely(&mds_user_clear)) 7232 mds_clear_cpu_buffers(); 7233 else if (static_branch_unlikely(&mmio_stale_data_clear) && 7234 kvm_arch_has_assigned_device(vcpu->kvm)) 7235 mds_clear_cpu_buffers(); 7236 7237 vmx_disable_fb_clear(vmx); 7238 7239 if (vcpu->arch.cr2 != native_read_cr2()) 7240 native_write_cr2(vcpu->arch.cr2); 7241 7242 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 7243 flags); 7244 7245 vcpu->arch.cr2 = native_read_cr2(); 7246 7247 vmx_enable_fb_clear(vmx); 7248 7249 if (unlikely(vmx->fail)) 7250 vmx->exit_reason.full = 0xdead; 7251 else 7252 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 7253 7254 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI && 7255 is_nmi(vmx_get_intr_info(vcpu))) { 7256 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 7257 vmx_do_nmi_irqoff(); 7258 kvm_after_interrupt(vcpu); 7259 } 7260 7261 guest_state_exit_irqoff(); 7262 } 7263 7264 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 7265 { 7266 struct vcpu_vmx *vmx = to_vmx(vcpu); 7267 unsigned long cr3, cr4; 7268 7269 /* Record the guest's net vcpu time for enforced NMI injections. */ 7270 if (unlikely(!enable_vnmi && 7271 vmx->loaded_vmcs->soft_vnmi_blocked)) 7272 vmx->loaded_vmcs->entry_time = ktime_get(); 7273 7274 /* 7275 * Don't enter VMX if guest state is invalid, let the exit handler 7276 * start emulation until we arrive back to a valid state. Synthesize a 7277 * consistency check VM-Exit due to invalid guest state and bail. 7278 */ 7279 if (unlikely(vmx->emulation_required)) { 7280 vmx->fail = 0; 7281 7282 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 7283 vmx->exit_reason.failed_vmentry = 1; 7284 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 7285 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 7286 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 7287 vmx->exit_intr_info = 0; 7288 return EXIT_FASTPATH_NONE; 7289 } 7290 7291 trace_kvm_entry(vcpu); 7292 7293 if (vmx->ple_window_dirty) { 7294 vmx->ple_window_dirty = false; 7295 vmcs_write32(PLE_WINDOW, vmx->ple_window); 7296 } 7297 7298 /* 7299 * We did this in prepare_switch_to_guest, because it needs to 7300 * be within srcu_read_lock. 7301 */ 7302 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 7303 7304 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 7305 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 7306 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 7307 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 7308 vcpu->arch.regs_dirty = 0; 7309 7310 /* 7311 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately 7312 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time 7313 * it switches back to the current->mm, which can occur in KVM context 7314 * when switching to a temporary mm to patch kernel code, e.g. if KVM 7315 * toggles a static key while handling a VM-Exit. 7316 */ 7317 cr3 = __get_current_cr3_fast(); 7318 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 7319 vmcs_writel(HOST_CR3, cr3); 7320 vmx->loaded_vmcs->host_state.cr3 = cr3; 7321 } 7322 7323 cr4 = cr4_read_shadow(); 7324 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 7325 vmcs_writel(HOST_CR4, cr4); 7326 vmx->loaded_vmcs->host_state.cr4 = cr4; 7327 } 7328 7329 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 7330 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 7331 set_debugreg(vcpu->arch.dr6, 6); 7332 7333 /* When single-stepping over STI and MOV SS, we must clear the 7334 * corresponding interruptibility bits in the guest state. Otherwise 7335 * vmentry fails as it then expects bit 14 (BS) in pending debug 7336 * exceptions being set, but that's not correct for the guest debugging 7337 * case. */ 7338 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7339 vmx_set_interrupt_shadow(vcpu, 0); 7340 7341 kvm_load_guest_xsave_state(vcpu); 7342 7343 pt_guest_enter(vmx); 7344 7345 atomic_switch_perf_msrs(vmx); 7346 if (intel_pmu_lbr_is_enabled(vcpu)) 7347 vmx_passthrough_lbr_msrs(vcpu); 7348 7349 if (enable_preemption_timer) 7350 vmx_update_hv_timer(vcpu); 7351 7352 kvm_wait_lapic_expire(vcpu); 7353 7354 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 7355 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx)); 7356 7357 /* All fields are clean at this point */ 7358 if (kvm_is_using_evmcs()) { 7359 current_evmcs->hv_clean_fields |= 7360 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 7361 7362 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 7363 } 7364 7365 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 7366 if (vmx->host_debugctlmsr) 7367 update_debugctlmsr(vmx->host_debugctlmsr); 7368 7369 #ifndef CONFIG_X86_64 7370 /* 7371 * The sysexit path does not restore ds/es, so we must set them to 7372 * a reasonable value ourselves. 7373 * 7374 * We can't defer this to vmx_prepare_switch_to_host() since that 7375 * function may be executed in interrupt context, which saves and 7376 * restore segments around it, nullifying its effect. 7377 */ 7378 loadsegment(ds, __USER_DS); 7379 loadsegment(es, __USER_DS); 7380 #endif 7381 7382 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 7383 7384 pt_guest_exit(vmx); 7385 7386 kvm_load_host_xsave_state(vcpu); 7387 7388 if (is_guest_mode(vcpu)) { 7389 /* 7390 * Track VMLAUNCH/VMRESUME that have made past guest state 7391 * checking. 7392 */ 7393 if (vmx->nested.nested_run_pending && 7394 !vmx->exit_reason.failed_vmentry) 7395 ++vcpu->stat.nested_run; 7396 7397 vmx->nested.nested_run_pending = 0; 7398 } 7399 7400 vmx->idt_vectoring_info = 0; 7401 7402 if (unlikely(vmx->fail)) 7403 return EXIT_FASTPATH_NONE; 7404 7405 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 7406 kvm_machine_check(); 7407 7408 if (likely(!vmx->exit_reason.failed_vmentry)) 7409 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 7410 7411 trace_kvm_exit(vcpu, KVM_ISA_VMX); 7412 7413 if (unlikely(vmx->exit_reason.failed_vmentry)) 7414 return EXIT_FASTPATH_NONE; 7415 7416 vmx->loaded_vmcs->launched = 1; 7417 7418 vmx_recover_nmi_blocking(vmx); 7419 vmx_complete_interrupts(vmx); 7420 7421 if (is_guest_mode(vcpu)) 7422 return EXIT_FASTPATH_NONE; 7423 7424 return vmx_exit_handlers_fastpath(vcpu); 7425 } 7426 7427 static void vmx_vcpu_free(struct kvm_vcpu *vcpu) 7428 { 7429 struct vcpu_vmx *vmx = to_vmx(vcpu); 7430 7431 if (enable_pml) 7432 vmx_destroy_pml_buffer(vmx); 7433 free_vpid(vmx->vpid); 7434 nested_vmx_free_vcpu(vcpu); 7435 free_loaded_vmcs(vmx->loaded_vmcs); 7436 } 7437 7438 static int vmx_vcpu_create(struct kvm_vcpu *vcpu) 7439 { 7440 struct vmx_uret_msr *tsx_ctrl; 7441 struct vcpu_vmx *vmx; 7442 int i, err; 7443 7444 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 7445 vmx = to_vmx(vcpu); 7446 7447 INIT_LIST_HEAD(&vmx->pi_wakeup_list); 7448 7449 err = -ENOMEM; 7450 7451 vmx->vpid = allocate_vpid(); 7452 7453 /* 7454 * If PML is turned on, failure on enabling PML just results in failure 7455 * of creating the vcpu, therefore we can simplify PML logic (by 7456 * avoiding dealing with cases, such as enabling PML partially on vcpus 7457 * for the guest), etc. 7458 */ 7459 if (enable_pml) { 7460 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7461 if (!vmx->pml_pg) 7462 goto free_vpid; 7463 } 7464 7465 for (i = 0; i < kvm_nr_uret_msrs; ++i) 7466 vmx->guest_uret_msrs[i].mask = -1ull; 7467 if (boot_cpu_has(X86_FEATURE_RTM)) { 7468 /* 7469 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 7470 * Keep the host value unchanged to avoid changing CPUID bits 7471 * under the host kernel's feet. 7472 */ 7473 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7474 if (tsx_ctrl) 7475 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 7476 } 7477 7478 err = alloc_loaded_vmcs(&vmx->vmcs01); 7479 if (err < 0) 7480 goto free_pml; 7481 7482 /* 7483 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 7484 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 7485 * feature only for vmcs01, KVM currently isn't equipped to realize any 7486 * performance benefits from enabling it for vmcs02. 7487 */ 7488 if (kvm_is_using_evmcs() && 7489 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 7490 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 7491 7492 evmcs->hv_enlightenments_control.msr_bitmap = 1; 7493 } 7494 7495 /* The MSR bitmap starts with all ones */ 7496 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7497 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7498 7499 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 7500 #ifdef CONFIG_X86_64 7501 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 7502 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 7503 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 7504 #endif 7505 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 7506 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 7507 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 7508 if (kvm_cstate_in_guest(vcpu->kvm)) { 7509 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 7510 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 7511 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 7512 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 7513 } 7514 7515 vmx->loaded_vmcs = &vmx->vmcs01; 7516 7517 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7518 err = kvm_alloc_apic_access_page(vcpu->kvm); 7519 if (err) 7520 goto free_vmcs; 7521 } 7522 7523 if (enable_ept && !enable_unrestricted_guest) { 7524 err = init_rmode_identity_map(vcpu->kvm); 7525 if (err) 7526 goto free_vmcs; 7527 } 7528 7529 if (vmx_can_use_ipiv(vcpu)) 7530 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id], 7531 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID); 7532 7533 return 0; 7534 7535 free_vmcs: 7536 free_loaded_vmcs(vmx->loaded_vmcs); 7537 free_pml: 7538 vmx_destroy_pml_buffer(vmx); 7539 free_vpid: 7540 free_vpid(vmx->vpid); 7541 return err; 7542 } 7543 7544 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7545 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7546 7547 static int vmx_vm_init(struct kvm *kvm) 7548 { 7549 if (!ple_gap) 7550 kvm->arch.pause_in_guest = true; 7551 7552 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7553 switch (l1tf_mitigation) { 7554 case L1TF_MITIGATION_OFF: 7555 case L1TF_MITIGATION_FLUSH_NOWARN: 7556 /* 'I explicitly don't care' is set */ 7557 break; 7558 case L1TF_MITIGATION_FLUSH: 7559 case L1TF_MITIGATION_FLUSH_NOSMT: 7560 case L1TF_MITIGATION_FULL: 7561 /* 7562 * Warn upon starting the first VM in a potentially 7563 * insecure environment. 7564 */ 7565 if (sched_smt_active()) 7566 pr_warn_once(L1TF_MSG_SMT); 7567 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7568 pr_warn_once(L1TF_MSG_L1D); 7569 break; 7570 case L1TF_MITIGATION_FULL_FORCE: 7571 /* Flush is enforced */ 7572 break; 7573 } 7574 } 7575 return 0; 7576 } 7577 7578 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7579 { 7580 u8 cache; 7581 7582 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 7583 * memory aliases with conflicting memory types and sometimes MCEs. 7584 * We have to be careful as to what are honored and when. 7585 * 7586 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 7587 * UC. The effective memory type is UC or WC depending on guest PAT. 7588 * This was historically the source of MCEs and we want to be 7589 * conservative. 7590 * 7591 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7592 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7593 * EPT memory type is set to WB. The effective memory type is forced 7594 * WB. 7595 * 7596 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7597 * EPT memory type is used to emulate guest CD/MTRR. 7598 */ 7599 7600 if (is_mmio) 7601 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7602 7603 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) 7604 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7605 7606 if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) { 7607 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7608 cache = MTRR_TYPE_WRBACK; 7609 else 7610 cache = MTRR_TYPE_UNCACHABLE; 7611 7612 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7613 } 7614 7615 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT; 7616 } 7617 7618 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7619 { 7620 /* 7621 * These bits in the secondary execution controls field 7622 * are dynamic, the others are mostly based on the hypervisor 7623 * architecture and the guest's CPUID. Do not touch the 7624 * dynamic bits. 7625 */ 7626 u32 mask = 7627 SECONDARY_EXEC_SHADOW_VMCS | 7628 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7629 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7630 SECONDARY_EXEC_DESC; 7631 7632 u32 cur_ctl = secondary_exec_controls_get(vmx); 7633 7634 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7635 } 7636 7637 /* 7638 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7639 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7640 */ 7641 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7642 { 7643 struct vcpu_vmx *vmx = to_vmx(vcpu); 7644 struct kvm_cpuid_entry2 *entry; 7645 7646 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7647 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7648 7649 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7650 if (entry && (entry->_reg & (_cpuid_mask))) \ 7651 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7652 } while (0) 7653 7654 entry = kvm_find_cpuid_entry(vcpu, 0x1); 7655 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7656 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7657 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7658 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7659 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7660 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7661 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7662 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7663 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7664 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7665 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7666 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7667 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7668 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7669 7670 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0); 7671 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7672 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7673 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7674 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7675 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7676 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7677 7678 #undef cr4_fixed1_update 7679 } 7680 7681 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7682 { 7683 struct vcpu_vmx *vmx = to_vmx(vcpu); 7684 struct kvm_cpuid_entry2 *best = NULL; 7685 int i; 7686 7687 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7688 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i); 7689 if (!best) 7690 return; 7691 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7692 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7693 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7694 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7695 } 7696 7697 /* Get the number of configurable Address Ranges for filtering */ 7698 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7699 PT_CAP_num_address_ranges); 7700 7701 /* Initialize and clear the no dependency bits */ 7702 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7703 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7704 RTIT_CTL_BRANCH_EN); 7705 7706 /* 7707 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7708 * will inject an #GP 7709 */ 7710 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7711 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7712 7713 /* 7714 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7715 * PSBFreq can be set 7716 */ 7717 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7718 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7719 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7720 7721 /* 7722 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7723 */ 7724 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7725 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7726 RTIT_CTL_MTC_RANGE); 7727 7728 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7729 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7730 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7731 RTIT_CTL_PTW_EN); 7732 7733 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7734 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7735 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7736 7737 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7738 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7739 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7740 7741 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7742 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7743 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7744 7745 /* unmask address range configure area */ 7746 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7747 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7748 } 7749 7750 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7751 { 7752 struct vcpu_vmx *vmx = to_vmx(vcpu); 7753 7754 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7755 vcpu->arch.xsaves_enabled = false; 7756 7757 vmx_setup_uret_msrs(vmx); 7758 7759 if (cpu_has_secondary_exec_ctrls()) 7760 vmcs_set_secondary_exec_control(vmx, 7761 vmx_secondary_exec_control(vmx)); 7762 7763 if (nested_vmx_allowed(vcpu)) 7764 vmx->msr_ia32_feature_control_valid_bits |= 7765 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7766 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7767 else 7768 vmx->msr_ia32_feature_control_valid_bits &= 7769 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7770 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7771 7772 if (nested_vmx_allowed(vcpu)) 7773 nested_vmx_cr_fixed1_bits_update(vcpu); 7774 7775 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7776 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7777 update_intel_pt_cfg(vcpu); 7778 7779 if (boot_cpu_has(X86_FEATURE_RTM)) { 7780 struct vmx_uret_msr *msr; 7781 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7782 if (msr) { 7783 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7784 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7785 } 7786 } 7787 7788 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 7789 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 7790 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); 7791 7792 if (boot_cpu_has(X86_FEATURE_IBPB)) 7793 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, 7794 !guest_has_pred_cmd_msr(vcpu)); 7795 7796 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 7797 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, 7798 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 7799 7800 set_cr4_guest_host_mask(vmx); 7801 7802 vmx_write_encls_bitmap(vcpu, NULL); 7803 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7804 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7805 else 7806 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7807 7808 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7809 vmx->msr_ia32_feature_control_valid_bits |= 7810 FEAT_CTL_SGX_LC_ENABLED; 7811 else 7812 vmx->msr_ia32_feature_control_valid_bits &= 7813 ~FEAT_CTL_SGX_LC_ENABLED; 7814 7815 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7816 vmx_update_exception_bitmap(vcpu); 7817 } 7818 7819 static u64 vmx_get_perf_capabilities(void) 7820 { 7821 u64 perf_cap = PMU_CAP_FW_WRITES; 7822 struct x86_pmu_lbr lbr; 7823 u64 host_perf_cap = 0; 7824 7825 if (!enable_pmu) 7826 return 0; 7827 7828 if (boot_cpu_has(X86_FEATURE_PDCM)) 7829 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap); 7830 7831 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) { 7832 x86_perf_get_lbr(&lbr); 7833 if (lbr.nr) 7834 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT; 7835 } 7836 7837 if (vmx_pebs_supported()) { 7838 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK; 7839 if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4) 7840 perf_cap &= ~PERF_CAP_PEBS_BASELINE; 7841 } 7842 7843 return perf_cap; 7844 } 7845 7846 static __init void vmx_set_cpu_caps(void) 7847 { 7848 kvm_set_cpu_caps(); 7849 7850 /* CPUID 0x1 */ 7851 if (nested) 7852 kvm_cpu_cap_set(X86_FEATURE_VMX); 7853 7854 /* CPUID 0x7 */ 7855 if (kvm_mpx_supported()) 7856 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7857 if (!cpu_has_vmx_invpcid()) 7858 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7859 if (vmx_pt_mode_is_host_guest()) 7860 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7861 if (vmx_pebs_supported()) { 7862 kvm_cpu_cap_check_and_set(X86_FEATURE_DS); 7863 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64); 7864 } 7865 7866 if (!enable_pmu) 7867 kvm_cpu_cap_clear(X86_FEATURE_PDCM); 7868 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities(); 7869 7870 if (!enable_sgx) { 7871 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7872 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7873 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7874 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7875 } 7876 7877 if (vmx_umip_emulated()) 7878 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7879 7880 /* CPUID 0xD.1 */ 7881 kvm_caps.supported_xss = 0; 7882 if (!cpu_has_vmx_xsaves()) 7883 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7884 7885 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7886 if (!cpu_has_vmx_rdtscp()) { 7887 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7888 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7889 } 7890 7891 if (cpu_has_vmx_waitpkg()) 7892 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7893 } 7894 7895 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7896 { 7897 to_vmx(vcpu)->req_immediate_exit = true; 7898 } 7899 7900 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7901 struct x86_instruction_info *info) 7902 { 7903 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7904 unsigned short port; 7905 bool intercept; 7906 int size; 7907 7908 if (info->intercept == x86_intercept_in || 7909 info->intercept == x86_intercept_ins) { 7910 port = info->src_val; 7911 size = info->dst_bytes; 7912 } else { 7913 port = info->dst_val; 7914 size = info->src_bytes; 7915 } 7916 7917 /* 7918 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7919 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7920 * control. 7921 * 7922 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7923 */ 7924 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7925 intercept = nested_cpu_has(vmcs12, 7926 CPU_BASED_UNCOND_IO_EXITING); 7927 else 7928 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7929 7930 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7931 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7932 } 7933 7934 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7935 struct x86_instruction_info *info, 7936 enum x86_intercept_stage stage, 7937 struct x86_exception *exception) 7938 { 7939 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7940 7941 switch (info->intercept) { 7942 /* 7943 * RDPID causes #UD if disabled through secondary execution controls. 7944 * Because it is marked as EmulateOnUD, we need to intercept it here. 7945 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7946 */ 7947 case x86_intercept_rdpid: 7948 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7949 exception->vector = UD_VECTOR; 7950 exception->error_code_valid = false; 7951 return X86EMUL_PROPAGATE_FAULT; 7952 } 7953 break; 7954 7955 case x86_intercept_in: 7956 case x86_intercept_ins: 7957 case x86_intercept_out: 7958 case x86_intercept_outs: 7959 return vmx_check_intercept_io(vcpu, info); 7960 7961 case x86_intercept_lgdt: 7962 case x86_intercept_lidt: 7963 case x86_intercept_lldt: 7964 case x86_intercept_ltr: 7965 case x86_intercept_sgdt: 7966 case x86_intercept_sidt: 7967 case x86_intercept_sldt: 7968 case x86_intercept_str: 7969 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7970 return X86EMUL_CONTINUE; 7971 7972 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7973 break; 7974 7975 case x86_intercept_pause: 7976 /* 7977 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides 7978 * with vanilla NOPs in the emulator. Apply the interception 7979 * check only to actual PAUSE instructions. Don't check 7980 * PAUSE-loop-exiting, software can't expect a given PAUSE to 7981 * exit, i.e. KVM is within its rights to allow L2 to execute 7982 * the PAUSE. 7983 */ 7984 if ((info->rep_prefix != REPE_PREFIX) || 7985 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING)) 7986 return X86EMUL_CONTINUE; 7987 7988 break; 7989 7990 /* TODO: check more intercepts... */ 7991 default: 7992 break; 7993 } 7994 7995 return X86EMUL_UNHANDLEABLE; 7996 } 7997 7998 #ifdef CONFIG_X86_64 7999 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 8000 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 8001 u64 divisor, u64 *result) 8002 { 8003 u64 low = a << shift, high = a >> (64 - shift); 8004 8005 /* To avoid the overflow on divq */ 8006 if (high >= divisor) 8007 return 1; 8008 8009 /* Low hold the result, high hold rem which is discarded */ 8010 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 8011 "rm" (divisor), "0" (low), "1" (high)); 8012 *result = low; 8013 8014 return 0; 8015 } 8016 8017 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 8018 bool *expired) 8019 { 8020 struct vcpu_vmx *vmx; 8021 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 8022 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 8023 8024 vmx = to_vmx(vcpu); 8025 tscl = rdtsc(); 8026 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 8027 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 8028 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 8029 ktimer->timer_advance_ns); 8030 8031 if (delta_tsc > lapic_timer_advance_cycles) 8032 delta_tsc -= lapic_timer_advance_cycles; 8033 else 8034 delta_tsc = 0; 8035 8036 /* Convert to host delta tsc if tsc scaling is enabled */ 8037 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio && 8038 delta_tsc && u64_shl_div_u64(delta_tsc, 8039 kvm_caps.tsc_scaling_ratio_frac_bits, 8040 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 8041 return -ERANGE; 8042 8043 /* 8044 * If the delta tsc can't fit in the 32 bit after the multi shift, 8045 * we can't use the preemption timer. 8046 * It's possible that it fits on later vmentries, but checking 8047 * on every vmentry is costly so we just use an hrtimer. 8048 */ 8049 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 8050 return -ERANGE; 8051 8052 vmx->hv_deadline_tsc = tscl + delta_tsc; 8053 *expired = !delta_tsc; 8054 return 0; 8055 } 8056 8057 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 8058 { 8059 to_vmx(vcpu)->hv_deadline_tsc = -1; 8060 } 8061 #endif 8062 8063 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 8064 { 8065 if (!kvm_pause_in_guest(vcpu->kvm)) 8066 shrink_ple_window(vcpu); 8067 } 8068 8069 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 8070 { 8071 struct vcpu_vmx *vmx = to_vmx(vcpu); 8072 8073 if (WARN_ON_ONCE(!enable_pml)) 8074 return; 8075 8076 if (is_guest_mode(vcpu)) { 8077 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 8078 return; 8079 } 8080 8081 /* 8082 * Note, nr_memslots_dirty_logging can be changed concurrent with this 8083 * code, but in that case another update request will be made and so 8084 * the guest will never run with a stale PML value. 8085 */ 8086 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 8087 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8088 else 8089 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8090 } 8091 8092 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 8093 { 8094 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 8095 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 8096 FEAT_CTL_LMCE_ENABLED; 8097 else 8098 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 8099 ~FEAT_CTL_LMCE_ENABLED; 8100 } 8101 8102 #ifdef CONFIG_KVM_SMM 8103 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 8104 { 8105 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 8106 if (to_vmx(vcpu)->nested.nested_run_pending) 8107 return -EBUSY; 8108 return !is_smm(vcpu); 8109 } 8110 8111 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 8112 { 8113 struct vcpu_vmx *vmx = to_vmx(vcpu); 8114 8115 /* 8116 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on 8117 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong 8118 * SMI and RSM only modify state that is saved and restored via SMRAM. 8119 * E.g. most MSRs are left untouched, but many are modified by VM-Exit 8120 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM. 8121 */ 8122 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 8123 if (vmx->nested.smm.guest_mode) 8124 nested_vmx_vmexit(vcpu, -1, 0, 0); 8125 8126 vmx->nested.smm.vmxon = vmx->nested.vmxon; 8127 vmx->nested.vmxon = false; 8128 vmx_clear_hlt(vcpu); 8129 return 0; 8130 } 8131 8132 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 8133 { 8134 struct vcpu_vmx *vmx = to_vmx(vcpu); 8135 int ret; 8136 8137 if (vmx->nested.smm.vmxon) { 8138 vmx->nested.vmxon = true; 8139 vmx->nested.smm.vmxon = false; 8140 } 8141 8142 if (vmx->nested.smm.guest_mode) { 8143 ret = nested_vmx_enter_non_root_mode(vcpu, false); 8144 if (ret) 8145 return ret; 8146 8147 vmx->nested.nested_run_pending = 1; 8148 vmx->nested.smm.guest_mode = false; 8149 } 8150 return 0; 8151 } 8152 8153 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 8154 { 8155 /* RSM will cause a vmexit anyway. */ 8156 } 8157 #endif 8158 8159 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 8160 { 8161 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 8162 } 8163 8164 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 8165 { 8166 if (is_guest_mode(vcpu)) { 8167 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 8168 8169 if (hrtimer_try_to_cancel(timer) == 1) 8170 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 8171 } 8172 } 8173 8174 static void vmx_hardware_unsetup(void) 8175 { 8176 kvm_set_posted_intr_wakeup_handler(NULL); 8177 8178 if (nested) 8179 nested_vmx_hardware_unsetup(); 8180 8181 free_kvm_area(); 8182 } 8183 8184 #define VMX_REQUIRED_APICV_INHIBITS \ 8185 ( \ 8186 BIT(APICV_INHIBIT_REASON_DISABLE)| \ 8187 BIT(APICV_INHIBIT_REASON_ABSENT) | \ 8188 BIT(APICV_INHIBIT_REASON_HYPERV) | \ 8189 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \ 8190 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \ 8191 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \ 8192 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \ 8193 ) 8194 8195 static void vmx_vm_destroy(struct kvm *kvm) 8196 { 8197 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 8198 8199 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm)); 8200 } 8201 8202 static struct kvm_x86_ops vmx_x86_ops __initdata = { 8203 .name = KBUILD_MODNAME, 8204 8205 .check_processor_compatibility = vmx_check_processor_compat, 8206 8207 .hardware_unsetup = vmx_hardware_unsetup, 8208 8209 .hardware_enable = vmx_hardware_enable, 8210 .hardware_disable = vmx_hardware_disable, 8211 .has_emulated_msr = vmx_has_emulated_msr, 8212 8213 .vm_size = sizeof(struct kvm_vmx), 8214 .vm_init = vmx_vm_init, 8215 .vm_destroy = vmx_vm_destroy, 8216 8217 .vcpu_precreate = vmx_vcpu_precreate, 8218 .vcpu_create = vmx_vcpu_create, 8219 .vcpu_free = vmx_vcpu_free, 8220 .vcpu_reset = vmx_vcpu_reset, 8221 8222 .prepare_switch_to_guest = vmx_prepare_switch_to_guest, 8223 .vcpu_load = vmx_vcpu_load, 8224 .vcpu_put = vmx_vcpu_put, 8225 8226 .update_exception_bitmap = vmx_update_exception_bitmap, 8227 .get_msr_feature = vmx_get_msr_feature, 8228 .get_msr = vmx_get_msr, 8229 .set_msr = vmx_set_msr, 8230 .get_segment_base = vmx_get_segment_base, 8231 .get_segment = vmx_get_segment, 8232 .set_segment = vmx_set_segment, 8233 .get_cpl = vmx_get_cpl, 8234 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 8235 .is_valid_cr0 = vmx_is_valid_cr0, 8236 .set_cr0 = vmx_set_cr0, 8237 .is_valid_cr4 = vmx_is_valid_cr4, 8238 .set_cr4 = vmx_set_cr4, 8239 .set_efer = vmx_set_efer, 8240 .get_idt = vmx_get_idt, 8241 .set_idt = vmx_set_idt, 8242 .get_gdt = vmx_get_gdt, 8243 .set_gdt = vmx_set_gdt, 8244 .set_dr7 = vmx_set_dr7, 8245 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 8246 .cache_reg = vmx_cache_reg, 8247 .get_rflags = vmx_get_rflags, 8248 .set_rflags = vmx_set_rflags, 8249 .get_if_flag = vmx_get_if_flag, 8250 8251 .flush_tlb_all = vmx_flush_tlb_all, 8252 .flush_tlb_current = vmx_flush_tlb_current, 8253 .flush_tlb_gva = vmx_flush_tlb_gva, 8254 .flush_tlb_guest = vmx_flush_tlb_guest, 8255 8256 .vcpu_pre_run = vmx_vcpu_pre_run, 8257 .vcpu_run = vmx_vcpu_run, 8258 .handle_exit = vmx_handle_exit, 8259 .skip_emulated_instruction = vmx_skip_emulated_instruction, 8260 .update_emulated_instruction = vmx_update_emulated_instruction, 8261 .set_interrupt_shadow = vmx_set_interrupt_shadow, 8262 .get_interrupt_shadow = vmx_get_interrupt_shadow, 8263 .patch_hypercall = vmx_patch_hypercall, 8264 .inject_irq = vmx_inject_irq, 8265 .inject_nmi = vmx_inject_nmi, 8266 .inject_exception = vmx_inject_exception, 8267 .cancel_injection = vmx_cancel_injection, 8268 .interrupt_allowed = vmx_interrupt_allowed, 8269 .nmi_allowed = vmx_nmi_allowed, 8270 .get_nmi_mask = vmx_get_nmi_mask, 8271 .set_nmi_mask = vmx_set_nmi_mask, 8272 .enable_nmi_window = vmx_enable_nmi_window, 8273 .enable_irq_window = vmx_enable_irq_window, 8274 .update_cr8_intercept = vmx_update_cr8_intercept, 8275 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 8276 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 8277 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 8278 .load_eoi_exitmap = vmx_load_eoi_exitmap, 8279 .apicv_post_state_restore = vmx_apicv_post_state_restore, 8280 .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS, 8281 .hwapic_irr_update = vmx_hwapic_irr_update, 8282 .hwapic_isr_update = vmx_hwapic_isr_update, 8283 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 8284 .sync_pir_to_irr = vmx_sync_pir_to_irr, 8285 .deliver_interrupt = vmx_deliver_interrupt, 8286 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 8287 8288 .set_tss_addr = vmx_set_tss_addr, 8289 .set_identity_map_addr = vmx_set_identity_map_addr, 8290 .get_mt_mask = vmx_get_mt_mask, 8291 8292 .get_exit_info = vmx_get_exit_info, 8293 8294 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 8295 8296 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 8297 8298 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 8299 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 8300 .write_tsc_offset = vmx_write_tsc_offset, 8301 .write_tsc_multiplier = vmx_write_tsc_multiplier, 8302 8303 .load_mmu_pgd = vmx_load_mmu_pgd, 8304 8305 .check_intercept = vmx_check_intercept, 8306 .handle_exit_irqoff = vmx_handle_exit_irqoff, 8307 8308 .request_immediate_exit = vmx_request_immediate_exit, 8309 8310 .sched_in = vmx_sched_in, 8311 8312 .cpu_dirty_log_size = PML_ENTITY_NUM, 8313 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 8314 8315 .nested_ops = &vmx_nested_ops, 8316 8317 .pi_update_irte = vmx_pi_update_irte, 8318 .pi_start_assignment = vmx_pi_start_assignment, 8319 8320 #ifdef CONFIG_X86_64 8321 .set_hv_timer = vmx_set_hv_timer, 8322 .cancel_hv_timer = vmx_cancel_hv_timer, 8323 #endif 8324 8325 .setup_mce = vmx_setup_mce, 8326 8327 #ifdef CONFIG_KVM_SMM 8328 .smi_allowed = vmx_smi_allowed, 8329 .enter_smm = vmx_enter_smm, 8330 .leave_smm = vmx_leave_smm, 8331 .enable_smi_window = vmx_enable_smi_window, 8332 #endif 8333 8334 .can_emulate_instruction = vmx_can_emulate_instruction, 8335 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 8336 .migrate_timers = vmx_migrate_timers, 8337 8338 .msr_filter_changed = vmx_msr_filter_changed, 8339 .complete_emulated_msr = kvm_complete_insn_gp, 8340 8341 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 8342 }; 8343 8344 static unsigned int vmx_handle_intel_pt_intr(void) 8345 { 8346 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 8347 8348 /* '0' on failure so that the !PT case can use a RET0 static call. */ 8349 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu)) 8350 return 0; 8351 8352 kvm_make_request(KVM_REQ_PMI, vcpu); 8353 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 8354 (unsigned long *)&vcpu->arch.pmu.global_status); 8355 return 1; 8356 } 8357 8358 static __init void vmx_setup_user_return_msrs(void) 8359 { 8360 8361 /* 8362 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 8363 * will emulate SYSCALL in legacy mode if the vendor string in guest 8364 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 8365 * support this emulation, MSR_STAR is included in the list for i386, 8366 * but is never loaded into hardware. MSR_CSTAR is also never loaded 8367 * into hardware and is here purely for emulation purposes. 8368 */ 8369 const u32 vmx_uret_msrs_list[] = { 8370 #ifdef CONFIG_X86_64 8371 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 8372 #endif 8373 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 8374 MSR_IA32_TSX_CTRL, 8375 }; 8376 int i; 8377 8378 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 8379 8380 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 8381 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 8382 } 8383 8384 static void __init vmx_setup_me_spte_mask(void) 8385 { 8386 u64 me_mask = 0; 8387 8388 /* 8389 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use 8390 * the former to avoid exposing shadow_phys_bits. 8391 * 8392 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to 8393 * shadow_phys_bits. On MKTME and/or TDX capable systems, 8394 * boot_cpu_data.x86_phys_bits holds the actual physical address 8395 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR 8396 * reported by CPUID. Those bits between are KeyID bits. 8397 */ 8398 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits()) 8399 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits, 8400 kvm_get_shadow_phys_bits() - 1); 8401 /* 8402 * Unlike SME, host kernel doesn't support setting up any 8403 * MKTME KeyID on Intel platforms. No memory encryption 8404 * bits should be included into the SPTE. 8405 */ 8406 kvm_mmu_set_me_spte_mask(0, me_mask); 8407 } 8408 8409 static struct kvm_x86_init_ops vmx_init_ops __initdata; 8410 8411 static __init int hardware_setup(void) 8412 { 8413 unsigned long host_bndcfgs; 8414 struct desc_ptr dt; 8415 int r; 8416 8417 store_idt(&dt); 8418 host_idt_base = dt.address; 8419 8420 vmx_setup_user_return_msrs(); 8421 8422 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 8423 return -EIO; 8424 8425 if (cpu_has_perf_global_ctrl_bug()) 8426 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 8427 "does not work properly. Using workaround\n"); 8428 8429 if (boot_cpu_has(X86_FEATURE_NX)) 8430 kvm_enable_efer_bits(EFER_NX); 8431 8432 if (boot_cpu_has(X86_FEATURE_MPX)) { 8433 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 8434 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost"); 8435 } 8436 8437 if (!cpu_has_vmx_mpx()) 8438 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 8439 XFEATURE_MASK_BNDCSR); 8440 8441 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 8442 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 8443 enable_vpid = 0; 8444 8445 if (!cpu_has_vmx_ept() || 8446 !cpu_has_vmx_ept_4levels() || 8447 !cpu_has_vmx_ept_mt_wb() || 8448 !cpu_has_vmx_invept_global()) 8449 enable_ept = 0; 8450 8451 /* NX support is required for shadow paging. */ 8452 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 8453 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 8454 return -EOPNOTSUPP; 8455 } 8456 8457 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 8458 enable_ept_ad_bits = 0; 8459 8460 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 8461 enable_unrestricted_guest = 0; 8462 8463 if (!cpu_has_vmx_flexpriority()) 8464 flexpriority_enabled = 0; 8465 8466 if (!cpu_has_virtual_nmis()) 8467 enable_vnmi = 0; 8468 8469 #ifdef CONFIG_X86_SGX_KVM 8470 if (!cpu_has_vmx_encls_vmexit()) 8471 enable_sgx = false; 8472 #endif 8473 8474 /* 8475 * set_apic_access_page_addr() is used to reload apic access 8476 * page upon invalidation. No need to do anything if not 8477 * using the APIC_ACCESS_ADDR VMCS field. 8478 */ 8479 if (!flexpriority_enabled) 8480 vmx_x86_ops.set_apic_access_page_addr = NULL; 8481 8482 if (!cpu_has_vmx_tpr_shadow()) 8483 vmx_x86_ops.update_cr8_intercept = NULL; 8484 8485 #if IS_ENABLED(CONFIG_HYPERV) 8486 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 8487 && enable_ept) { 8488 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs; 8489 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range; 8490 } 8491 #endif 8492 8493 if (!cpu_has_vmx_ple()) { 8494 ple_gap = 0; 8495 ple_window = 0; 8496 ple_window_grow = 0; 8497 ple_window_max = 0; 8498 ple_window_shrink = 0; 8499 } 8500 8501 if (!cpu_has_vmx_apicv()) 8502 enable_apicv = 0; 8503 if (!enable_apicv) 8504 vmx_x86_ops.sync_pir_to_irr = NULL; 8505 8506 if (!enable_apicv || !cpu_has_vmx_ipiv()) 8507 enable_ipiv = false; 8508 8509 if (cpu_has_vmx_tsc_scaling()) 8510 kvm_caps.has_tsc_control = true; 8511 8512 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 8513 kvm_caps.tsc_scaling_ratio_frac_bits = 48; 8514 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 8515 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit(); 8516 8517 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 8518 8519 if (enable_ept) 8520 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 8521 cpu_has_vmx_ept_execute_only()); 8522 8523 /* 8524 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID 8525 * bits to shadow_zero_check. 8526 */ 8527 vmx_setup_me_spte_mask(); 8528 8529 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(), 8530 ept_caps_to_lpage_level(vmx_capability.ept)); 8531 8532 /* 8533 * Only enable PML when hardware supports PML feature, and both EPT 8534 * and EPT A/D bit features are enabled -- PML depends on them to work. 8535 */ 8536 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 8537 enable_pml = 0; 8538 8539 if (!enable_pml) 8540 vmx_x86_ops.cpu_dirty_log_size = 0; 8541 8542 if (!cpu_has_vmx_preemption_timer()) 8543 enable_preemption_timer = false; 8544 8545 if (enable_preemption_timer) { 8546 u64 use_timer_freq = 5000ULL * 1000 * 1000; 8547 8548 cpu_preemption_timer_multi = 8549 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 8550 8551 if (tsc_khz) 8552 use_timer_freq = (u64)tsc_khz * 1000; 8553 use_timer_freq >>= cpu_preemption_timer_multi; 8554 8555 /* 8556 * KVM "disables" the preemption timer by setting it to its max 8557 * value. Don't use the timer if it might cause spurious exits 8558 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 8559 */ 8560 if (use_timer_freq > 0xffffffffu / 10) 8561 enable_preemption_timer = false; 8562 } 8563 8564 if (!enable_preemption_timer) { 8565 vmx_x86_ops.set_hv_timer = NULL; 8566 vmx_x86_ops.cancel_hv_timer = NULL; 8567 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 8568 } 8569 8570 kvm_caps.supported_mce_cap |= MCG_LMCE_P; 8571 kvm_caps.supported_mce_cap |= MCG_CMCI_P; 8572 8573 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 8574 return -EINVAL; 8575 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt()) 8576 pt_mode = PT_MODE_SYSTEM; 8577 if (pt_mode == PT_MODE_HOST_GUEST) 8578 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 8579 else 8580 vmx_init_ops.handle_intel_pt_intr = NULL; 8581 8582 setup_default_sgx_lepubkeyhash(); 8583 8584 if (nested) { 8585 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept); 8586 8587 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8588 if (r) 8589 return r; 8590 } 8591 8592 vmx_set_cpu_caps(); 8593 8594 r = alloc_kvm_area(); 8595 if (r && nested) 8596 nested_vmx_hardware_unsetup(); 8597 8598 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8599 8600 return r; 8601 } 8602 8603 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 8604 .hardware_setup = hardware_setup, 8605 .handle_intel_pt_intr = NULL, 8606 8607 .runtime_ops = &vmx_x86_ops, 8608 .pmu_ops = &intel_pmu_ops, 8609 }; 8610 8611 static void vmx_cleanup_l1d_flush(void) 8612 { 8613 if (vmx_l1d_flush_pages) { 8614 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8615 vmx_l1d_flush_pages = NULL; 8616 } 8617 /* Restore state so sysfs ignores VMX */ 8618 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8619 } 8620 8621 static void __vmx_exit(void) 8622 { 8623 allow_smaller_maxphyaddr = false; 8624 8625 #ifdef CONFIG_KEXEC_CORE 8626 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 8627 synchronize_rcu(); 8628 #endif 8629 vmx_cleanup_l1d_flush(); 8630 } 8631 8632 static void vmx_exit(void) 8633 { 8634 kvm_exit(); 8635 kvm_x86_vendor_exit(); 8636 8637 __vmx_exit(); 8638 } 8639 module_exit(vmx_exit); 8640 8641 static int __init vmx_init(void) 8642 { 8643 int r, cpu; 8644 8645 if (!kvm_is_vmx_supported()) 8646 return -EOPNOTSUPP; 8647 8648 /* 8649 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing 8650 * to unwind if a later step fails. 8651 */ 8652 hv_init_evmcs(); 8653 8654 r = kvm_x86_vendor_init(&vmx_init_ops); 8655 if (r) 8656 return r; 8657 8658 /* 8659 * Must be called after common x86 init so enable_ept is properly set 8660 * up. Hand the parameter mitigation value in which was stored in 8661 * the pre module init parser. If no parameter was given, it will 8662 * contain 'auto' which will be turned into the default 'cond' 8663 * mitigation mode. 8664 */ 8665 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8666 if (r) 8667 goto err_l1d_flush; 8668 8669 vmx_setup_fb_clear_ctrl(); 8670 8671 for_each_possible_cpu(cpu) { 8672 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8673 8674 pi_init_cpu(cpu); 8675 } 8676 8677 #ifdef CONFIG_KEXEC_CORE 8678 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 8679 crash_vmclear_local_loaded_vmcss); 8680 #endif 8681 vmx_check_vmcs12_offsets(); 8682 8683 /* 8684 * Shadow paging doesn't have a (further) performance penalty 8685 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8686 * by default 8687 */ 8688 if (!enable_ept) 8689 allow_smaller_maxphyaddr = true; 8690 8691 /* 8692 * Common KVM initialization _must_ come last, after this, /dev/kvm is 8693 * exposed to userspace! 8694 */ 8695 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), 8696 THIS_MODULE); 8697 if (r) 8698 goto err_kvm_init; 8699 8700 return 0; 8701 8702 err_kvm_init: 8703 __vmx_exit(); 8704 err_l1d_flush: 8705 kvm_x86_vendor_exit(); 8706 return r; 8707 } 8708 module_init(vmx_init); 8709