1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <linux/highmem.h> 17 #include <linux/hrtimer.h> 18 #include <linux/kernel.h> 19 #include <linux/kvm_host.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mm.h> 24 #include <linux/objtool.h> 25 #include <linux/sched.h> 26 #include <linux/sched/smt.h> 27 #include <linux/slab.h> 28 #include <linux/tboot.h> 29 #include <linux/trace_events.h> 30 #include <linux/entry-kvm.h> 31 32 #include <asm/apic.h> 33 #include <asm/asm.h> 34 #include <asm/cpu.h> 35 #include <asm/cpu_device_id.h> 36 #include <asm/debugreg.h> 37 #include <asm/desc.h> 38 #include <asm/fpu/api.h> 39 #include <asm/fpu/xstate.h> 40 #include <asm/idtentry.h> 41 #include <asm/io.h> 42 #include <asm/irq_remapping.h> 43 #include <asm/kexec.h> 44 #include <asm/perf_event.h> 45 #include <asm/mmu_context.h> 46 #include <asm/mshyperv.h> 47 #include <asm/mwait.h> 48 #include <asm/spec-ctrl.h> 49 #include <asm/virtext.h> 50 #include <asm/vmx.h> 51 52 #include "capabilities.h" 53 #include "cpuid.h" 54 #include "evmcs.h" 55 #include "hyperv.h" 56 #include "kvm_onhyperv.h" 57 #include "irq.h" 58 #include "kvm_cache_regs.h" 59 #include "lapic.h" 60 #include "mmu.h" 61 #include "nested.h" 62 #include "pmu.h" 63 #include "sgx.h" 64 #include "trace.h" 65 #include "vmcs.h" 66 #include "vmcs12.h" 67 #include "vmx.h" 68 #include "x86.h" 69 70 MODULE_AUTHOR("Qumranet"); 71 MODULE_LICENSE("GPL"); 72 73 #ifdef MODULE 74 static const struct x86_cpu_id vmx_cpu_id[] = { 75 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 76 {} 77 }; 78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 79 #endif 80 81 bool __read_mostly enable_vpid = 1; 82 module_param_named(vpid, enable_vpid, bool, 0444); 83 84 static bool __read_mostly enable_vnmi = 1; 85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 86 87 bool __read_mostly flexpriority_enabled = 1; 88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 89 90 bool __read_mostly enable_ept = 1; 91 module_param_named(ept, enable_ept, bool, S_IRUGO); 92 93 bool __read_mostly enable_unrestricted_guest = 1; 94 module_param_named(unrestricted_guest, 95 enable_unrestricted_guest, bool, S_IRUGO); 96 97 bool __read_mostly enable_ept_ad_bits = 1; 98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 99 100 static bool __read_mostly emulate_invalid_guest_state = true; 101 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 102 103 static bool __read_mostly fasteoi = 1; 104 module_param(fasteoi, bool, S_IRUGO); 105 106 module_param(enable_apicv, bool, S_IRUGO); 107 108 /* 109 * If nested=1, nested virtualization is supported, i.e., guests may use 110 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 111 * use VMX instructions. 112 */ 113 static bool __read_mostly nested = 1; 114 module_param(nested, bool, S_IRUGO); 115 116 bool __read_mostly enable_pml = 1; 117 module_param_named(pml, enable_pml, bool, S_IRUGO); 118 119 static bool __read_mostly dump_invalid_vmcs = 0; 120 module_param(dump_invalid_vmcs, bool, 0644); 121 122 #define MSR_BITMAP_MODE_X2APIC 1 123 #define MSR_BITMAP_MODE_X2APIC_APICV 2 124 125 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 126 127 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 128 static int __read_mostly cpu_preemption_timer_multi; 129 static bool __read_mostly enable_preemption_timer = 1; 130 #ifdef CONFIG_X86_64 131 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 132 #endif 133 134 extern bool __read_mostly allow_smaller_maxphyaddr; 135 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 136 137 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 138 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 139 #define KVM_VM_CR0_ALWAYS_ON \ 140 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 141 142 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 143 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 144 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 145 146 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 147 148 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 149 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 150 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 151 RTIT_STATUS_BYTECNT)) 152 153 /* 154 * List of MSRs that can be directly passed to the guest. 155 * In addition to these x2apic and PT MSRs are handled specially. 156 */ 157 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 158 MSR_IA32_SPEC_CTRL, 159 MSR_IA32_PRED_CMD, 160 MSR_IA32_TSC, 161 #ifdef CONFIG_X86_64 162 MSR_FS_BASE, 163 MSR_GS_BASE, 164 MSR_KERNEL_GS_BASE, 165 MSR_IA32_XFD, 166 MSR_IA32_XFD_ERR, 167 #endif 168 MSR_IA32_SYSENTER_CS, 169 MSR_IA32_SYSENTER_ESP, 170 MSR_IA32_SYSENTER_EIP, 171 MSR_CORE_C1_RES, 172 MSR_CORE_C3_RESIDENCY, 173 MSR_CORE_C6_RESIDENCY, 174 MSR_CORE_C7_RESIDENCY, 175 }; 176 177 /* 178 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 179 * ple_gap: upper bound on the amount of time between two successive 180 * executions of PAUSE in a loop. Also indicate if ple enabled. 181 * According to test, this time is usually smaller than 128 cycles. 182 * ple_window: upper bound on the amount of time a guest is allowed to execute 183 * in a PAUSE loop. Tests indicate that most spinlocks are held for 184 * less than 2^12 cycles 185 * Time is measured based on a counter that runs at the same rate as the TSC, 186 * refer SDM volume 3b section 21.6.13 & 22.1.3. 187 */ 188 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 189 module_param(ple_gap, uint, 0444); 190 191 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 192 module_param(ple_window, uint, 0444); 193 194 /* Default doubles per-vcpu window every exit. */ 195 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 196 module_param(ple_window_grow, uint, 0444); 197 198 /* Default resets per-vcpu window every exit to ple_window. */ 199 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 200 module_param(ple_window_shrink, uint, 0444); 201 202 /* Default is to compute the maximum so we can never overflow. */ 203 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 204 module_param(ple_window_max, uint, 0444); 205 206 /* Default is SYSTEM mode, 1 for host-guest mode */ 207 int __read_mostly pt_mode = PT_MODE_SYSTEM; 208 module_param(pt_mode, int, S_IRUGO); 209 210 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 211 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 212 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 213 214 /* Storage for pre module init parameter parsing */ 215 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 216 217 static const struct { 218 const char *option; 219 bool for_parse; 220 } vmentry_l1d_param[] = { 221 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 222 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 223 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 224 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 225 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 226 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 227 }; 228 229 #define L1D_CACHE_ORDER 4 230 static void *vmx_l1d_flush_pages; 231 232 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 233 { 234 struct page *page; 235 unsigned int i; 236 237 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 238 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 239 return 0; 240 } 241 242 if (!enable_ept) { 243 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 244 return 0; 245 } 246 247 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 248 u64 msr; 249 250 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 251 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 252 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 253 return 0; 254 } 255 } 256 257 /* If set to auto use the default l1tf mitigation method */ 258 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 259 switch (l1tf_mitigation) { 260 case L1TF_MITIGATION_OFF: 261 l1tf = VMENTER_L1D_FLUSH_NEVER; 262 break; 263 case L1TF_MITIGATION_FLUSH_NOWARN: 264 case L1TF_MITIGATION_FLUSH: 265 case L1TF_MITIGATION_FLUSH_NOSMT: 266 l1tf = VMENTER_L1D_FLUSH_COND; 267 break; 268 case L1TF_MITIGATION_FULL: 269 case L1TF_MITIGATION_FULL_FORCE: 270 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 271 break; 272 } 273 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 274 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 275 } 276 277 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 278 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 279 /* 280 * This allocation for vmx_l1d_flush_pages is not tied to a VM 281 * lifetime and so should not be charged to a memcg. 282 */ 283 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 284 if (!page) 285 return -ENOMEM; 286 vmx_l1d_flush_pages = page_address(page); 287 288 /* 289 * Initialize each page with a different pattern in 290 * order to protect against KSM in the nested 291 * virtualization case. 292 */ 293 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 294 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 295 PAGE_SIZE); 296 } 297 } 298 299 l1tf_vmx_mitigation = l1tf; 300 301 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 302 static_branch_enable(&vmx_l1d_should_flush); 303 else 304 static_branch_disable(&vmx_l1d_should_flush); 305 306 if (l1tf == VMENTER_L1D_FLUSH_COND) 307 static_branch_enable(&vmx_l1d_flush_cond); 308 else 309 static_branch_disable(&vmx_l1d_flush_cond); 310 return 0; 311 } 312 313 static int vmentry_l1d_flush_parse(const char *s) 314 { 315 unsigned int i; 316 317 if (s) { 318 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 319 if (vmentry_l1d_param[i].for_parse && 320 sysfs_streq(s, vmentry_l1d_param[i].option)) 321 return i; 322 } 323 } 324 return -EINVAL; 325 } 326 327 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 328 { 329 int l1tf, ret; 330 331 l1tf = vmentry_l1d_flush_parse(s); 332 if (l1tf < 0) 333 return l1tf; 334 335 if (!boot_cpu_has(X86_BUG_L1TF)) 336 return 0; 337 338 /* 339 * Has vmx_init() run already? If not then this is the pre init 340 * parameter parsing. In that case just store the value and let 341 * vmx_init() do the proper setup after enable_ept has been 342 * established. 343 */ 344 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 345 vmentry_l1d_flush_param = l1tf; 346 return 0; 347 } 348 349 mutex_lock(&vmx_l1d_flush_mutex); 350 ret = vmx_setup_l1d_flush(l1tf); 351 mutex_unlock(&vmx_l1d_flush_mutex); 352 return ret; 353 } 354 355 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 356 { 357 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 358 return sprintf(s, "???\n"); 359 360 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 361 } 362 363 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 364 .set = vmentry_l1d_flush_set, 365 .get = vmentry_l1d_flush_get, 366 }; 367 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 368 369 static u32 vmx_segment_access_rights(struct kvm_segment *var); 370 371 void vmx_vmexit(void); 372 373 #define vmx_insn_failed(fmt...) \ 374 do { \ 375 WARN_ONCE(1, fmt); \ 376 pr_warn_ratelimited(fmt); \ 377 } while (0) 378 379 asmlinkage void vmread_error(unsigned long field, bool fault) 380 { 381 if (fault) 382 kvm_spurious_fault(); 383 else 384 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field); 385 } 386 387 noinline void vmwrite_error(unsigned long field, unsigned long value) 388 { 389 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n", 390 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 391 } 392 393 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 394 { 395 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr); 396 } 397 398 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 399 { 400 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr); 401 } 402 403 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 404 { 405 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 406 ext, vpid, gva); 407 } 408 409 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 410 { 411 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 412 ext, eptp, gpa); 413 } 414 415 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 416 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 417 /* 418 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 419 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 420 */ 421 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 422 423 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 424 static DEFINE_SPINLOCK(vmx_vpid_lock); 425 426 struct vmcs_config vmcs_config; 427 struct vmx_capability vmx_capability; 428 429 #define VMX_SEGMENT_FIELD(seg) \ 430 [VCPU_SREG_##seg] = { \ 431 .selector = GUEST_##seg##_SELECTOR, \ 432 .base = GUEST_##seg##_BASE, \ 433 .limit = GUEST_##seg##_LIMIT, \ 434 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 435 } 436 437 static const struct kvm_vmx_segment_field { 438 unsigned selector; 439 unsigned base; 440 unsigned limit; 441 unsigned ar_bytes; 442 } kvm_vmx_segment_fields[] = { 443 VMX_SEGMENT_FIELD(CS), 444 VMX_SEGMENT_FIELD(DS), 445 VMX_SEGMENT_FIELD(ES), 446 VMX_SEGMENT_FIELD(FS), 447 VMX_SEGMENT_FIELD(GS), 448 VMX_SEGMENT_FIELD(SS), 449 VMX_SEGMENT_FIELD(TR), 450 VMX_SEGMENT_FIELD(LDTR), 451 }; 452 453 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 454 { 455 vmx->segment_cache.bitmask = 0; 456 } 457 458 static unsigned long host_idt_base; 459 460 #if IS_ENABLED(CONFIG_HYPERV) 461 static bool __read_mostly enlightened_vmcs = true; 462 module_param(enlightened_vmcs, bool, 0444); 463 464 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu) 465 { 466 struct hv_enlightened_vmcs *evmcs; 467 struct hv_partition_assist_pg **p_hv_pa_pg = 468 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 469 /* 470 * Synthetic VM-Exit is not enabled in current code and so All 471 * evmcs in singe VM shares same assist page. 472 */ 473 if (!*p_hv_pa_pg) 474 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 475 476 if (!*p_hv_pa_pg) 477 return -ENOMEM; 478 479 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 480 481 evmcs->partition_assist_page = 482 __pa(*p_hv_pa_pg); 483 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 484 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 485 486 return 0; 487 } 488 489 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 490 491 /* 492 * Comment's format: document - errata name - stepping - processor name. 493 * Refer from 494 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 495 */ 496 static u32 vmx_preemption_cpu_tfms[] = { 497 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 498 0x000206E6, 499 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 500 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 501 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 502 0x00020652, 503 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 504 0x00020655, 505 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 506 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 507 /* 508 * 320767.pdf - AAP86 - B1 - 509 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 510 */ 511 0x000106E5, 512 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 513 0x000106A0, 514 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 515 0x000106A1, 516 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 517 0x000106A4, 518 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 519 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 520 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 521 0x000106A5, 522 /* Xeon E3-1220 V2 */ 523 0x000306A8, 524 }; 525 526 static inline bool cpu_has_broken_vmx_preemption_timer(void) 527 { 528 u32 eax = cpuid_eax(0x00000001), i; 529 530 /* Clear the reserved bits */ 531 eax &= ~(0x3U << 14 | 0xfU << 28); 532 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 533 if (eax == vmx_preemption_cpu_tfms[i]) 534 return true; 535 536 return false; 537 } 538 539 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 540 { 541 return flexpriority_enabled && lapic_in_kernel(vcpu); 542 } 543 544 static int possible_passthrough_msr_slot(u32 msr) 545 { 546 u32 i; 547 548 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 549 if (vmx_possible_passthrough_msrs[i] == msr) 550 return i; 551 552 return -ENOENT; 553 } 554 555 static bool is_valid_passthrough_msr(u32 msr) 556 { 557 bool r; 558 559 switch (msr) { 560 case 0x800 ... 0x8ff: 561 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 562 return true; 563 case MSR_IA32_RTIT_STATUS: 564 case MSR_IA32_RTIT_OUTPUT_BASE: 565 case MSR_IA32_RTIT_OUTPUT_MASK: 566 case MSR_IA32_RTIT_CR3_MATCH: 567 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 568 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 569 case MSR_LBR_SELECT: 570 case MSR_LBR_TOS: 571 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 572 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 573 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 574 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 575 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 576 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 577 return true; 578 } 579 580 r = possible_passthrough_msr_slot(msr) != -ENOENT; 581 582 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 583 584 return r; 585 } 586 587 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 588 { 589 int i; 590 591 i = kvm_find_user_return_msr(msr); 592 if (i >= 0) 593 return &vmx->guest_uret_msrs[i]; 594 return NULL; 595 } 596 597 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 598 struct vmx_uret_msr *msr, u64 data) 599 { 600 unsigned int slot = msr - vmx->guest_uret_msrs; 601 int ret = 0; 602 603 if (msr->load_into_hardware) { 604 preempt_disable(); 605 ret = kvm_set_user_return_msr(slot, data, msr->mask); 606 preempt_enable(); 607 } 608 if (!ret) 609 msr->data = data; 610 return ret; 611 } 612 613 #ifdef CONFIG_KEXEC_CORE 614 static void crash_vmclear_local_loaded_vmcss(void) 615 { 616 int cpu = raw_smp_processor_id(); 617 struct loaded_vmcs *v; 618 619 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 620 loaded_vmcss_on_cpu_link) 621 vmcs_clear(v->vmcs); 622 } 623 #endif /* CONFIG_KEXEC_CORE */ 624 625 static void __loaded_vmcs_clear(void *arg) 626 { 627 struct loaded_vmcs *loaded_vmcs = arg; 628 int cpu = raw_smp_processor_id(); 629 630 if (loaded_vmcs->cpu != cpu) 631 return; /* vcpu migration can race with cpu offline */ 632 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 633 per_cpu(current_vmcs, cpu) = NULL; 634 635 vmcs_clear(loaded_vmcs->vmcs); 636 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 637 vmcs_clear(loaded_vmcs->shadow_vmcs); 638 639 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 640 641 /* 642 * Ensure all writes to loaded_vmcs, including deleting it from its 643 * current percpu list, complete before setting loaded_vmcs->cpu to 644 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first 645 * and add loaded_vmcs to its percpu list before it's deleted from this 646 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 647 */ 648 smp_wmb(); 649 650 loaded_vmcs->cpu = -1; 651 loaded_vmcs->launched = 0; 652 } 653 654 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 655 { 656 int cpu = loaded_vmcs->cpu; 657 658 if (cpu != -1) 659 smp_call_function_single(cpu, 660 __loaded_vmcs_clear, loaded_vmcs, 1); 661 } 662 663 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 664 unsigned field) 665 { 666 bool ret; 667 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 668 669 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 670 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 671 vmx->segment_cache.bitmask = 0; 672 } 673 ret = vmx->segment_cache.bitmask & mask; 674 vmx->segment_cache.bitmask |= mask; 675 return ret; 676 } 677 678 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 679 { 680 u16 *p = &vmx->segment_cache.seg[seg].selector; 681 682 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 683 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 684 return *p; 685 } 686 687 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 688 { 689 ulong *p = &vmx->segment_cache.seg[seg].base; 690 691 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 692 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 693 return *p; 694 } 695 696 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 697 { 698 u32 *p = &vmx->segment_cache.seg[seg].limit; 699 700 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 701 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 702 return *p; 703 } 704 705 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 706 { 707 u32 *p = &vmx->segment_cache.seg[seg].ar; 708 709 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 710 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 711 return *p; 712 } 713 714 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 715 { 716 u32 eb; 717 718 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 719 (1u << DB_VECTOR) | (1u << AC_VECTOR); 720 /* 721 * Guest access to VMware backdoor ports could legitimately 722 * trigger #GP because of TSS I/O permission bitmap. 723 * We intercept those #GP and allow access to them anyway 724 * as VMware does. 725 */ 726 if (enable_vmware_backdoor) 727 eb |= (1u << GP_VECTOR); 728 if ((vcpu->guest_debug & 729 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 730 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 731 eb |= 1u << BP_VECTOR; 732 if (to_vmx(vcpu)->rmode.vm86_active) 733 eb = ~0; 734 if (!vmx_need_pf_intercept(vcpu)) 735 eb &= ~(1u << PF_VECTOR); 736 737 /* When we are running a nested L2 guest and L1 specified for it a 738 * certain exception bitmap, we must trap the same exceptions and pass 739 * them to L1. When running L2, we will only handle the exceptions 740 * specified above if L1 did not want them. 741 */ 742 if (is_guest_mode(vcpu)) 743 eb |= get_vmcs12(vcpu)->exception_bitmap; 744 else { 745 int mask = 0, match = 0; 746 747 if (enable_ept && (eb & (1u << PF_VECTOR))) { 748 /* 749 * If EPT is enabled, #PF is currently only intercepted 750 * if MAXPHYADDR is smaller on the guest than on the 751 * host. In that case we only care about present, 752 * non-reserved faults. For vmcs02, however, PFEC_MASK 753 * and PFEC_MATCH are set in prepare_vmcs02_rare. 754 */ 755 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 756 match = PFERR_PRESENT_MASK; 757 } 758 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 759 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 760 } 761 762 /* 763 * Disabling xfd interception indicates that dynamic xfeatures 764 * might be used in the guest. Always trap #NM in this case 765 * to save guest xfd_err timely. 766 */ 767 if (vcpu->arch.xfd_no_write_intercept) 768 eb |= (1u << NM_VECTOR); 769 770 vmcs_write32(EXCEPTION_BITMAP, eb); 771 } 772 773 /* 774 * Check if MSR is intercepted for currently loaded MSR bitmap. 775 */ 776 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 777 { 778 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 779 return true; 780 781 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, 782 MSR_IA32_SPEC_CTRL); 783 } 784 785 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 786 unsigned long entry, unsigned long exit) 787 { 788 vm_entry_controls_clearbit(vmx, entry); 789 vm_exit_controls_clearbit(vmx, exit); 790 } 791 792 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 793 { 794 unsigned int i; 795 796 for (i = 0; i < m->nr; ++i) { 797 if (m->val[i].index == msr) 798 return i; 799 } 800 return -ENOENT; 801 } 802 803 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 804 { 805 int i; 806 struct msr_autoload *m = &vmx->msr_autoload; 807 808 switch (msr) { 809 case MSR_EFER: 810 if (cpu_has_load_ia32_efer()) { 811 clear_atomic_switch_msr_special(vmx, 812 VM_ENTRY_LOAD_IA32_EFER, 813 VM_EXIT_LOAD_IA32_EFER); 814 return; 815 } 816 break; 817 case MSR_CORE_PERF_GLOBAL_CTRL: 818 if (cpu_has_load_perf_global_ctrl()) { 819 clear_atomic_switch_msr_special(vmx, 820 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 821 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 822 return; 823 } 824 break; 825 } 826 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 827 if (i < 0) 828 goto skip_guest; 829 --m->guest.nr; 830 m->guest.val[i] = m->guest.val[m->guest.nr]; 831 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 832 833 skip_guest: 834 i = vmx_find_loadstore_msr_slot(&m->host, msr); 835 if (i < 0) 836 return; 837 838 --m->host.nr; 839 m->host.val[i] = m->host.val[m->host.nr]; 840 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 841 } 842 843 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 844 unsigned long entry, unsigned long exit, 845 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 846 u64 guest_val, u64 host_val) 847 { 848 vmcs_write64(guest_val_vmcs, guest_val); 849 if (host_val_vmcs != HOST_IA32_EFER) 850 vmcs_write64(host_val_vmcs, host_val); 851 vm_entry_controls_setbit(vmx, entry); 852 vm_exit_controls_setbit(vmx, exit); 853 } 854 855 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 856 u64 guest_val, u64 host_val, bool entry_only) 857 { 858 int i, j = 0; 859 struct msr_autoload *m = &vmx->msr_autoload; 860 861 switch (msr) { 862 case MSR_EFER: 863 if (cpu_has_load_ia32_efer()) { 864 add_atomic_switch_msr_special(vmx, 865 VM_ENTRY_LOAD_IA32_EFER, 866 VM_EXIT_LOAD_IA32_EFER, 867 GUEST_IA32_EFER, 868 HOST_IA32_EFER, 869 guest_val, host_val); 870 return; 871 } 872 break; 873 case MSR_CORE_PERF_GLOBAL_CTRL: 874 if (cpu_has_load_perf_global_ctrl()) { 875 add_atomic_switch_msr_special(vmx, 876 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 877 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 878 GUEST_IA32_PERF_GLOBAL_CTRL, 879 HOST_IA32_PERF_GLOBAL_CTRL, 880 guest_val, host_val); 881 return; 882 } 883 break; 884 case MSR_IA32_PEBS_ENABLE: 885 /* PEBS needs a quiescent period after being disabled (to write 886 * a record). Disabling PEBS through VMX MSR swapping doesn't 887 * provide that period, so a CPU could write host's record into 888 * guest's memory. 889 */ 890 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 891 } 892 893 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 894 if (!entry_only) 895 j = vmx_find_loadstore_msr_slot(&m->host, msr); 896 897 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 898 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 899 printk_once(KERN_WARNING "Not enough msr switch entries. " 900 "Can't add msr %x\n", msr); 901 return; 902 } 903 if (i < 0) { 904 i = m->guest.nr++; 905 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 906 } 907 m->guest.val[i].index = msr; 908 m->guest.val[i].value = guest_val; 909 910 if (entry_only) 911 return; 912 913 if (j < 0) { 914 j = m->host.nr++; 915 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 916 } 917 m->host.val[j].index = msr; 918 m->host.val[j].value = host_val; 919 } 920 921 static bool update_transition_efer(struct vcpu_vmx *vmx) 922 { 923 u64 guest_efer = vmx->vcpu.arch.efer; 924 u64 ignore_bits = 0; 925 int i; 926 927 /* Shadow paging assumes NX to be available. */ 928 if (!enable_ept) 929 guest_efer |= EFER_NX; 930 931 /* 932 * LMA and LME handled by hardware; SCE meaningless outside long mode. 933 */ 934 ignore_bits |= EFER_SCE; 935 #ifdef CONFIG_X86_64 936 ignore_bits |= EFER_LMA | EFER_LME; 937 /* SCE is meaningful only in long mode on Intel */ 938 if (guest_efer & EFER_LMA) 939 ignore_bits &= ~(u64)EFER_SCE; 940 #endif 941 942 /* 943 * On EPT, we can't emulate NX, so we must switch EFER atomically. 944 * On CPUs that support "load IA32_EFER", always switch EFER 945 * atomically, since it's faster than switching it manually. 946 */ 947 if (cpu_has_load_ia32_efer() || 948 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 949 if (!(guest_efer & EFER_LMA)) 950 guest_efer &= ~EFER_LME; 951 if (guest_efer != host_efer) 952 add_atomic_switch_msr(vmx, MSR_EFER, 953 guest_efer, host_efer, false); 954 else 955 clear_atomic_switch_msr(vmx, MSR_EFER); 956 return false; 957 } 958 959 i = kvm_find_user_return_msr(MSR_EFER); 960 if (i < 0) 961 return false; 962 963 clear_atomic_switch_msr(vmx, MSR_EFER); 964 965 guest_efer &= ~ignore_bits; 966 guest_efer |= host_efer & ignore_bits; 967 968 vmx->guest_uret_msrs[i].data = guest_efer; 969 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 970 971 return true; 972 } 973 974 #ifdef CONFIG_X86_32 975 /* 976 * On 32-bit kernels, VM exits still load the FS and GS bases from the 977 * VMCS rather than the segment table. KVM uses this helper to figure 978 * out the current bases to poke them into the VMCS before entry. 979 */ 980 static unsigned long segment_base(u16 selector) 981 { 982 struct desc_struct *table; 983 unsigned long v; 984 985 if (!(selector & ~SEGMENT_RPL_MASK)) 986 return 0; 987 988 table = get_current_gdt_ro(); 989 990 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 991 u16 ldt_selector = kvm_read_ldt(); 992 993 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 994 return 0; 995 996 table = (struct desc_struct *)segment_base(ldt_selector); 997 } 998 v = get_desc_base(&table[selector >> 3]); 999 return v; 1000 } 1001 #endif 1002 1003 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1004 { 1005 return vmx_pt_mode_is_host_guest() && 1006 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1007 } 1008 1009 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1010 { 1011 /* The base must be 128-byte aligned and a legal physical address. */ 1012 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1013 } 1014 1015 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1016 { 1017 u32 i; 1018 1019 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1020 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1021 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1022 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1023 for (i = 0; i < addr_range; i++) { 1024 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1025 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1026 } 1027 } 1028 1029 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1030 { 1031 u32 i; 1032 1033 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1034 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1035 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1036 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1037 for (i = 0; i < addr_range; i++) { 1038 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1039 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1040 } 1041 } 1042 1043 static void pt_guest_enter(struct vcpu_vmx *vmx) 1044 { 1045 if (vmx_pt_mode_is_system()) 1046 return; 1047 1048 /* 1049 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1050 * Save host state before VM entry. 1051 */ 1052 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1053 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1054 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1055 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1056 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1057 } 1058 } 1059 1060 static void pt_guest_exit(struct vcpu_vmx *vmx) 1061 { 1062 if (vmx_pt_mode_is_system()) 1063 return; 1064 1065 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1066 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1067 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1068 } 1069 1070 /* 1071 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1072 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1073 */ 1074 if (vmx->pt_desc.host.ctl) 1075 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1076 } 1077 1078 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1079 unsigned long fs_base, unsigned long gs_base) 1080 { 1081 if (unlikely(fs_sel != host->fs_sel)) { 1082 if (!(fs_sel & 7)) 1083 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1084 else 1085 vmcs_write16(HOST_FS_SELECTOR, 0); 1086 host->fs_sel = fs_sel; 1087 } 1088 if (unlikely(gs_sel != host->gs_sel)) { 1089 if (!(gs_sel & 7)) 1090 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1091 else 1092 vmcs_write16(HOST_GS_SELECTOR, 0); 1093 host->gs_sel = gs_sel; 1094 } 1095 if (unlikely(fs_base != host->fs_base)) { 1096 vmcs_writel(HOST_FS_BASE, fs_base); 1097 host->fs_base = fs_base; 1098 } 1099 if (unlikely(gs_base != host->gs_base)) { 1100 vmcs_writel(HOST_GS_BASE, gs_base); 1101 host->gs_base = gs_base; 1102 } 1103 } 1104 1105 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1106 { 1107 struct vcpu_vmx *vmx = to_vmx(vcpu); 1108 struct vmcs_host_state *host_state; 1109 #ifdef CONFIG_X86_64 1110 int cpu = raw_smp_processor_id(); 1111 #endif 1112 unsigned long fs_base, gs_base; 1113 u16 fs_sel, gs_sel; 1114 int i; 1115 1116 vmx->req_immediate_exit = false; 1117 1118 /* 1119 * Note that guest MSRs to be saved/restored can also be changed 1120 * when guest state is loaded. This happens when guest transitions 1121 * to/from long-mode by setting MSR_EFER.LMA. 1122 */ 1123 if (!vmx->guest_uret_msrs_loaded) { 1124 vmx->guest_uret_msrs_loaded = true; 1125 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1126 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1127 continue; 1128 1129 kvm_set_user_return_msr(i, 1130 vmx->guest_uret_msrs[i].data, 1131 vmx->guest_uret_msrs[i].mask); 1132 } 1133 } 1134 1135 if (vmx->nested.need_vmcs12_to_shadow_sync) 1136 nested_sync_vmcs12_to_shadow(vcpu); 1137 1138 if (vmx->guest_state_loaded) 1139 return; 1140 1141 host_state = &vmx->loaded_vmcs->host_state; 1142 1143 /* 1144 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1145 * allow segment selectors with cpl > 0 or ti == 1. 1146 */ 1147 host_state->ldt_sel = kvm_read_ldt(); 1148 1149 #ifdef CONFIG_X86_64 1150 savesegment(ds, host_state->ds_sel); 1151 savesegment(es, host_state->es_sel); 1152 1153 gs_base = cpu_kernelmode_gs_base(cpu); 1154 if (likely(is_64bit_mm(current->mm))) { 1155 current_save_fsgs(); 1156 fs_sel = current->thread.fsindex; 1157 gs_sel = current->thread.gsindex; 1158 fs_base = current->thread.fsbase; 1159 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1160 } else { 1161 savesegment(fs, fs_sel); 1162 savesegment(gs, gs_sel); 1163 fs_base = read_msr(MSR_FS_BASE); 1164 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1165 } 1166 1167 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1168 #else 1169 savesegment(fs, fs_sel); 1170 savesegment(gs, gs_sel); 1171 fs_base = segment_base(fs_sel); 1172 gs_base = segment_base(gs_sel); 1173 #endif 1174 1175 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1176 vmx->guest_state_loaded = true; 1177 } 1178 1179 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1180 { 1181 struct vmcs_host_state *host_state; 1182 1183 if (!vmx->guest_state_loaded) 1184 return; 1185 1186 host_state = &vmx->loaded_vmcs->host_state; 1187 1188 ++vmx->vcpu.stat.host_state_reload; 1189 1190 #ifdef CONFIG_X86_64 1191 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1192 #endif 1193 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1194 kvm_load_ldt(host_state->ldt_sel); 1195 #ifdef CONFIG_X86_64 1196 load_gs_index(host_state->gs_sel); 1197 #else 1198 loadsegment(gs, host_state->gs_sel); 1199 #endif 1200 } 1201 if (host_state->fs_sel & 7) 1202 loadsegment(fs, host_state->fs_sel); 1203 #ifdef CONFIG_X86_64 1204 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1205 loadsegment(ds, host_state->ds_sel); 1206 loadsegment(es, host_state->es_sel); 1207 } 1208 #endif 1209 invalidate_tss_limit(); 1210 #ifdef CONFIG_X86_64 1211 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1212 #endif 1213 load_fixmap_gdt(raw_smp_processor_id()); 1214 vmx->guest_state_loaded = false; 1215 vmx->guest_uret_msrs_loaded = false; 1216 } 1217 1218 #ifdef CONFIG_X86_64 1219 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1220 { 1221 preempt_disable(); 1222 if (vmx->guest_state_loaded) 1223 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1224 preempt_enable(); 1225 return vmx->msr_guest_kernel_gs_base; 1226 } 1227 1228 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1229 { 1230 preempt_disable(); 1231 if (vmx->guest_state_loaded) 1232 wrmsrl(MSR_KERNEL_GS_BASE, data); 1233 preempt_enable(); 1234 vmx->msr_guest_kernel_gs_base = data; 1235 } 1236 #endif 1237 1238 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1239 struct loaded_vmcs *buddy) 1240 { 1241 struct vcpu_vmx *vmx = to_vmx(vcpu); 1242 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1243 struct vmcs *prev; 1244 1245 if (!already_loaded) { 1246 loaded_vmcs_clear(vmx->loaded_vmcs); 1247 local_irq_disable(); 1248 1249 /* 1250 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1251 * this cpu's percpu list, otherwise it may not yet be deleted 1252 * from its previous cpu's percpu list. Pairs with the 1253 * smb_wmb() in __loaded_vmcs_clear(). 1254 */ 1255 smp_rmb(); 1256 1257 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1258 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1259 local_irq_enable(); 1260 } 1261 1262 prev = per_cpu(current_vmcs, cpu); 1263 if (prev != vmx->loaded_vmcs->vmcs) { 1264 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1265 vmcs_load(vmx->loaded_vmcs->vmcs); 1266 1267 /* 1268 * No indirect branch prediction barrier needed when switching 1269 * the active VMCS within a guest, e.g. on nested VM-Enter. 1270 * The L1 VMM can protect itself with retpolines, IBPB or IBRS. 1271 */ 1272 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1273 indirect_branch_prediction_barrier(); 1274 } 1275 1276 if (!already_loaded) { 1277 void *gdt = get_current_gdt_ro(); 1278 1279 /* 1280 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1281 * TLB entries from its previous association with the vCPU. 1282 */ 1283 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1284 1285 /* 1286 * Linux uses per-cpu TSS and GDT, so set these when switching 1287 * processors. See 22.2.4. 1288 */ 1289 vmcs_writel(HOST_TR_BASE, 1290 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1291 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1292 1293 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1294 /* 22.2.3 */ 1295 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1296 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1297 } 1298 1299 vmx->loaded_vmcs->cpu = cpu; 1300 } 1301 } 1302 1303 /* 1304 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1305 * vcpu mutex is already taken. 1306 */ 1307 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1308 { 1309 struct vcpu_vmx *vmx = to_vmx(vcpu); 1310 1311 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1312 1313 vmx_vcpu_pi_load(vcpu, cpu); 1314 1315 vmx->host_debugctlmsr = get_debugctlmsr(); 1316 } 1317 1318 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1319 { 1320 vmx_vcpu_pi_put(vcpu); 1321 1322 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1323 } 1324 1325 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1326 { 1327 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1328 } 1329 1330 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1331 { 1332 struct vcpu_vmx *vmx = to_vmx(vcpu); 1333 unsigned long rflags, save_rflags; 1334 1335 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1336 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1337 rflags = vmcs_readl(GUEST_RFLAGS); 1338 if (vmx->rmode.vm86_active) { 1339 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1340 save_rflags = vmx->rmode.save_rflags; 1341 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1342 } 1343 vmx->rflags = rflags; 1344 } 1345 return vmx->rflags; 1346 } 1347 1348 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1349 { 1350 struct vcpu_vmx *vmx = to_vmx(vcpu); 1351 unsigned long old_rflags; 1352 1353 if (is_unrestricted_guest(vcpu)) { 1354 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1355 vmx->rflags = rflags; 1356 vmcs_writel(GUEST_RFLAGS, rflags); 1357 return; 1358 } 1359 1360 old_rflags = vmx_get_rflags(vcpu); 1361 vmx->rflags = rflags; 1362 if (vmx->rmode.vm86_active) { 1363 vmx->rmode.save_rflags = rflags; 1364 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1365 } 1366 vmcs_writel(GUEST_RFLAGS, rflags); 1367 1368 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1369 vmx->emulation_required = vmx_emulation_required(vcpu); 1370 } 1371 1372 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1373 { 1374 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1375 } 1376 1377 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1378 { 1379 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1380 int ret = 0; 1381 1382 if (interruptibility & GUEST_INTR_STATE_STI) 1383 ret |= KVM_X86_SHADOW_INT_STI; 1384 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1385 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1386 1387 return ret; 1388 } 1389 1390 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1391 { 1392 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1393 u32 interruptibility = interruptibility_old; 1394 1395 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1396 1397 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1398 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1399 else if (mask & KVM_X86_SHADOW_INT_STI) 1400 interruptibility |= GUEST_INTR_STATE_STI; 1401 1402 if ((interruptibility != interruptibility_old)) 1403 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1404 } 1405 1406 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1407 { 1408 struct vcpu_vmx *vmx = to_vmx(vcpu); 1409 unsigned long value; 1410 1411 /* 1412 * Any MSR write that attempts to change bits marked reserved will 1413 * case a #GP fault. 1414 */ 1415 if (data & vmx->pt_desc.ctl_bitmask) 1416 return 1; 1417 1418 /* 1419 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1420 * result in a #GP unless the same write also clears TraceEn. 1421 */ 1422 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1423 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1424 return 1; 1425 1426 /* 1427 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1428 * and FabricEn would cause #GP, if 1429 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1430 */ 1431 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1432 !(data & RTIT_CTL_FABRIC_EN) && 1433 !intel_pt_validate_cap(vmx->pt_desc.caps, 1434 PT_CAP_single_range_output)) 1435 return 1; 1436 1437 /* 1438 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1439 * utilize encodings marked reserved will cause a #GP fault. 1440 */ 1441 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1442 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1443 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1444 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1445 return 1; 1446 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1447 PT_CAP_cycle_thresholds); 1448 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1449 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1450 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1451 return 1; 1452 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1453 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1454 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1455 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1456 return 1; 1457 1458 /* 1459 * If ADDRx_CFG is reserved or the encodings is >2 will 1460 * cause a #GP fault. 1461 */ 1462 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1463 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1464 return 1; 1465 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1466 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1467 return 1; 1468 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1469 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1470 return 1; 1471 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1472 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1473 return 1; 1474 1475 return 0; 1476 } 1477 1478 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1479 void *insn, int insn_len) 1480 { 1481 /* 1482 * Emulation of instructions in SGX enclaves is impossible as RIP does 1483 * not point at the failing instruction, and even if it did, the code 1484 * stream is inaccessible. Inject #UD instead of exiting to userspace 1485 * so that guest userspace can't DoS the guest simply by triggering 1486 * emulation (enclaves are CPL3 only). 1487 */ 1488 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1489 kvm_queue_exception(vcpu, UD_VECTOR); 1490 return false; 1491 } 1492 return true; 1493 } 1494 1495 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1496 { 1497 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1498 unsigned long rip, orig_rip; 1499 u32 instr_len; 1500 1501 /* 1502 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1503 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1504 * set when EPT misconfig occurs. In practice, real hardware updates 1505 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1506 * (namely Hyper-V) don't set it due to it being undefined behavior, 1507 * i.e. we end up advancing IP with some random value. 1508 */ 1509 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1510 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1511 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1512 1513 /* 1514 * Emulating an enclave's instructions isn't supported as KVM 1515 * cannot access the enclave's memory or its true RIP, e.g. the 1516 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1517 * the RIP that actually triggered the VM-Exit. But, because 1518 * most instructions that cause VM-Exit will #UD in an enclave, 1519 * most instruction-based VM-Exits simply do not occur. 1520 * 1521 * There are a few exceptions, notably the debug instructions 1522 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1523 * and generate #DB/#BP as expected, which KVM might intercept. 1524 * But again, the CPU does the dirty work and saves an instr 1525 * length of zero so VMMs don't shoot themselves in the foot. 1526 * WARN if KVM tries to skip a non-zero length instruction on 1527 * a VM-Exit from an enclave. 1528 */ 1529 if (!instr_len) 1530 goto rip_updated; 1531 1532 WARN(exit_reason.enclave_mode, 1533 "KVM: skipping instruction after SGX enclave VM-Exit"); 1534 1535 orig_rip = kvm_rip_read(vcpu); 1536 rip = orig_rip + instr_len; 1537 #ifdef CONFIG_X86_64 1538 /* 1539 * We need to mask out the high 32 bits of RIP if not in 64-bit 1540 * mode, but just finding out that we are in 64-bit mode is 1541 * quite expensive. Only do it if there was a carry. 1542 */ 1543 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1544 rip = (u32)rip; 1545 #endif 1546 kvm_rip_write(vcpu, rip); 1547 } else { 1548 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1549 return 0; 1550 } 1551 1552 rip_updated: 1553 /* skipping an emulated instruction also counts */ 1554 vmx_set_interrupt_shadow(vcpu, 0); 1555 1556 return 1; 1557 } 1558 1559 /* 1560 * Recognizes a pending MTF VM-exit and records the nested state for later 1561 * delivery. 1562 */ 1563 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1564 { 1565 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1566 struct vcpu_vmx *vmx = to_vmx(vcpu); 1567 1568 if (!is_guest_mode(vcpu)) 1569 return; 1570 1571 /* 1572 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1573 * T-bit traps. As instruction emulation is completed (i.e. at the 1574 * instruction boundary), any #DB exception pending delivery must be a 1575 * debug-trap. Record the pending MTF state to be delivered in 1576 * vmx_check_nested_events(). 1577 */ 1578 if (nested_cpu_has_mtf(vmcs12) && 1579 (!vcpu->arch.exception.pending || 1580 vcpu->arch.exception.nr == DB_VECTOR)) 1581 vmx->nested.mtf_pending = true; 1582 else 1583 vmx->nested.mtf_pending = false; 1584 } 1585 1586 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1587 { 1588 vmx_update_emulated_instruction(vcpu); 1589 return skip_emulated_instruction(vcpu); 1590 } 1591 1592 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1593 { 1594 /* 1595 * Ensure that we clear the HLT state in the VMCS. We don't need to 1596 * explicitly skip the instruction because if the HLT state is set, 1597 * then the instruction is already executing and RIP has already been 1598 * advanced. 1599 */ 1600 if (kvm_hlt_in_guest(vcpu->kvm) && 1601 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1602 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1603 } 1604 1605 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1606 { 1607 struct vcpu_vmx *vmx = to_vmx(vcpu); 1608 unsigned nr = vcpu->arch.exception.nr; 1609 bool has_error_code = vcpu->arch.exception.has_error_code; 1610 u32 error_code = vcpu->arch.exception.error_code; 1611 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1612 1613 kvm_deliver_exception_payload(vcpu); 1614 1615 if (has_error_code) { 1616 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1617 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1618 } 1619 1620 if (vmx->rmode.vm86_active) { 1621 int inc_eip = 0; 1622 if (kvm_exception_is_soft(nr)) 1623 inc_eip = vcpu->arch.event_exit_inst_len; 1624 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip); 1625 return; 1626 } 1627 1628 WARN_ON_ONCE(vmx->emulation_required); 1629 1630 if (kvm_exception_is_soft(nr)) { 1631 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1632 vmx->vcpu.arch.event_exit_inst_len); 1633 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1634 } else 1635 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1636 1637 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1638 1639 vmx_clear_hlt(vcpu); 1640 } 1641 1642 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1643 bool load_into_hardware) 1644 { 1645 struct vmx_uret_msr *uret_msr; 1646 1647 uret_msr = vmx_find_uret_msr(vmx, msr); 1648 if (!uret_msr) 1649 return; 1650 1651 uret_msr->load_into_hardware = load_into_hardware; 1652 } 1653 1654 /* 1655 * Configuring user return MSRs to automatically save, load, and restore MSRs 1656 * that need to be shoved into hardware when running the guest. Note, omitting 1657 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1658 * loaded into hardware when running the guest. 1659 */ 1660 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1661 { 1662 #ifdef CONFIG_X86_64 1663 bool load_syscall_msrs; 1664 1665 /* 1666 * The SYSCALL MSRs are only needed on long mode guests, and only 1667 * when EFER.SCE is set. 1668 */ 1669 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1670 (vmx->vcpu.arch.efer & EFER_SCE); 1671 1672 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1673 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1674 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1675 #endif 1676 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1677 1678 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1679 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1680 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1681 1682 /* 1683 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1684 * kernel and old userspace. If those guests run on a tsx=off host, do 1685 * allow guests to use TSX_CTRL, but don't change the value in hardware 1686 * so that TSX remains always disabled. 1687 */ 1688 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1689 1690 /* 1691 * The set of MSRs to load may have changed, reload MSRs before the 1692 * next VM-Enter. 1693 */ 1694 vmx->guest_uret_msrs_loaded = false; 1695 } 1696 1697 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1698 { 1699 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1700 1701 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1702 return vmcs12->tsc_offset; 1703 1704 return 0; 1705 } 1706 1707 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1708 { 1709 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1710 1711 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1712 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1713 return vmcs12->tsc_multiplier; 1714 1715 return kvm_default_tsc_scaling_ratio; 1716 } 1717 1718 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1719 { 1720 vmcs_write64(TSC_OFFSET, offset); 1721 } 1722 1723 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1724 { 1725 vmcs_write64(TSC_MULTIPLIER, multiplier); 1726 } 1727 1728 /* 1729 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1730 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1731 * all guests if the "nested" module option is off, and can also be disabled 1732 * for a single guest by disabling its VMX cpuid bit. 1733 */ 1734 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1735 { 1736 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1737 } 1738 1739 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1740 uint64_t val) 1741 { 1742 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1743 1744 return !(val & ~valid_bits); 1745 } 1746 1747 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1748 { 1749 switch (msr->index) { 1750 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1751 if (!nested) 1752 return 1; 1753 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1754 case MSR_IA32_PERF_CAPABILITIES: 1755 msr->data = vmx_get_perf_capabilities(); 1756 return 0; 1757 default: 1758 return KVM_MSR_RET_INVALID; 1759 } 1760 } 1761 1762 /* 1763 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 1764 * Returns 0 on success, non-0 otherwise. 1765 * Assumes vcpu_load() was already called. 1766 */ 1767 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1768 { 1769 struct vcpu_vmx *vmx = to_vmx(vcpu); 1770 struct vmx_uret_msr *msr; 1771 u32 index; 1772 1773 switch (msr_info->index) { 1774 #ifdef CONFIG_X86_64 1775 case MSR_FS_BASE: 1776 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1777 break; 1778 case MSR_GS_BASE: 1779 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1780 break; 1781 case MSR_KERNEL_GS_BASE: 1782 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1783 break; 1784 #endif 1785 case MSR_EFER: 1786 return kvm_get_msr_common(vcpu, msr_info); 1787 case MSR_IA32_TSX_CTRL: 1788 if (!msr_info->host_initiated && 1789 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1790 return 1; 1791 goto find_uret_msr; 1792 case MSR_IA32_UMWAIT_CONTROL: 1793 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 1794 return 1; 1795 1796 msr_info->data = vmx->msr_ia32_umwait_control; 1797 break; 1798 case MSR_IA32_SPEC_CTRL: 1799 if (!msr_info->host_initiated && 1800 !guest_has_spec_ctrl_msr(vcpu)) 1801 return 1; 1802 1803 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1804 break; 1805 case MSR_IA32_SYSENTER_CS: 1806 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1807 break; 1808 case MSR_IA32_SYSENTER_EIP: 1809 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1810 break; 1811 case MSR_IA32_SYSENTER_ESP: 1812 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1813 break; 1814 case MSR_IA32_BNDCFGS: 1815 if (!kvm_mpx_supported() || 1816 (!msr_info->host_initiated && 1817 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1818 return 1; 1819 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1820 break; 1821 case MSR_IA32_MCG_EXT_CTL: 1822 if (!msr_info->host_initiated && 1823 !(vmx->msr_ia32_feature_control & 1824 FEAT_CTL_LMCE_ENABLED)) 1825 return 1; 1826 msr_info->data = vcpu->arch.mcg_ext_ctl; 1827 break; 1828 case MSR_IA32_FEAT_CTL: 1829 msr_info->data = vmx->msr_ia32_feature_control; 1830 break; 1831 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 1832 if (!msr_info->host_initiated && 1833 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 1834 return 1; 1835 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 1836 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 1837 break; 1838 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1839 if (!nested_vmx_allowed(vcpu)) 1840 return 1; 1841 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1842 &msr_info->data)) 1843 return 1; 1844 /* 1845 * Enlightened VMCS v1 doesn't have certain VMCS fields but 1846 * instead of just ignoring the features, different Hyper-V 1847 * versions are either trying to use them and fail or do some 1848 * sanity checking and refuse to boot. Filter all unsupported 1849 * features out. 1850 */ 1851 if (!msr_info->host_initiated && 1852 vmx->nested.enlightened_vmcs_enabled) 1853 nested_evmcs_filter_control_msr(msr_info->index, 1854 &msr_info->data); 1855 break; 1856 case MSR_IA32_RTIT_CTL: 1857 if (!vmx_pt_mode_is_host_guest()) 1858 return 1; 1859 msr_info->data = vmx->pt_desc.guest.ctl; 1860 break; 1861 case MSR_IA32_RTIT_STATUS: 1862 if (!vmx_pt_mode_is_host_guest()) 1863 return 1; 1864 msr_info->data = vmx->pt_desc.guest.status; 1865 break; 1866 case MSR_IA32_RTIT_CR3_MATCH: 1867 if (!vmx_pt_mode_is_host_guest() || 1868 !intel_pt_validate_cap(vmx->pt_desc.caps, 1869 PT_CAP_cr3_filtering)) 1870 return 1; 1871 msr_info->data = vmx->pt_desc.guest.cr3_match; 1872 break; 1873 case MSR_IA32_RTIT_OUTPUT_BASE: 1874 if (!vmx_pt_mode_is_host_guest() || 1875 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1876 PT_CAP_topa_output) && 1877 !intel_pt_validate_cap(vmx->pt_desc.caps, 1878 PT_CAP_single_range_output))) 1879 return 1; 1880 msr_info->data = vmx->pt_desc.guest.output_base; 1881 break; 1882 case MSR_IA32_RTIT_OUTPUT_MASK: 1883 if (!vmx_pt_mode_is_host_guest() || 1884 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1885 PT_CAP_topa_output) && 1886 !intel_pt_validate_cap(vmx->pt_desc.caps, 1887 PT_CAP_single_range_output))) 1888 return 1; 1889 msr_info->data = vmx->pt_desc.guest.output_mask; 1890 break; 1891 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1892 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1893 if (!vmx_pt_mode_is_host_guest() || 1894 (index >= 2 * vmx->pt_desc.num_address_ranges)) 1895 return 1; 1896 if (index % 2) 1897 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1898 else 1899 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1900 break; 1901 case MSR_IA32_DEBUGCTLMSR: 1902 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 1903 break; 1904 default: 1905 find_uret_msr: 1906 msr = vmx_find_uret_msr(vmx, msr_info->index); 1907 if (msr) { 1908 msr_info->data = msr->data; 1909 break; 1910 } 1911 return kvm_get_msr_common(vcpu, msr_info); 1912 } 1913 1914 return 0; 1915 } 1916 1917 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 1918 u64 data) 1919 { 1920 #ifdef CONFIG_X86_64 1921 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1922 return (u32)data; 1923 #endif 1924 return (unsigned long)data; 1925 } 1926 1927 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu) 1928 { 1929 u64 debugctl = vmx_supported_debugctl(); 1930 1931 if (!intel_pmu_lbr_is_enabled(vcpu)) 1932 debugctl &= ~DEBUGCTLMSR_LBR_MASK; 1933 1934 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1935 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT; 1936 1937 return debugctl; 1938 } 1939 1940 /* 1941 * Writes msr value into the appropriate "register". 1942 * Returns 0 on success, non-0 otherwise. 1943 * Assumes vcpu_load() was already called. 1944 */ 1945 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1946 { 1947 struct vcpu_vmx *vmx = to_vmx(vcpu); 1948 struct vmx_uret_msr *msr; 1949 int ret = 0; 1950 u32 msr_index = msr_info->index; 1951 u64 data = msr_info->data; 1952 u32 index; 1953 1954 switch (msr_index) { 1955 case MSR_EFER: 1956 ret = kvm_set_msr_common(vcpu, msr_info); 1957 break; 1958 #ifdef CONFIG_X86_64 1959 case MSR_FS_BASE: 1960 vmx_segment_cache_clear(vmx); 1961 vmcs_writel(GUEST_FS_BASE, data); 1962 break; 1963 case MSR_GS_BASE: 1964 vmx_segment_cache_clear(vmx); 1965 vmcs_writel(GUEST_GS_BASE, data); 1966 break; 1967 case MSR_KERNEL_GS_BASE: 1968 vmx_write_guest_kernel_gs_base(vmx, data); 1969 break; 1970 case MSR_IA32_XFD: 1971 ret = kvm_set_msr_common(vcpu, msr_info); 1972 /* 1973 * Always intercepting WRMSR could incur non-negligible 1974 * overhead given xfd might be changed frequently in 1975 * guest context switch. Disable write interception 1976 * upon the first write with a non-zero value (indicating 1977 * potential usage on dynamic xfeatures). Also update 1978 * exception bitmap to trap #NM for proper virtualization 1979 * of guest xfd_err. 1980 */ 1981 if (!ret && data) { 1982 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 1983 MSR_TYPE_RW); 1984 vcpu->arch.xfd_no_write_intercept = true; 1985 vmx_update_exception_bitmap(vcpu); 1986 } 1987 break; 1988 #endif 1989 case MSR_IA32_SYSENTER_CS: 1990 if (is_guest_mode(vcpu)) 1991 get_vmcs12(vcpu)->guest_sysenter_cs = data; 1992 vmcs_write32(GUEST_SYSENTER_CS, data); 1993 break; 1994 case MSR_IA32_SYSENTER_EIP: 1995 if (is_guest_mode(vcpu)) { 1996 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 1997 get_vmcs12(vcpu)->guest_sysenter_eip = data; 1998 } 1999 vmcs_writel(GUEST_SYSENTER_EIP, data); 2000 break; 2001 case MSR_IA32_SYSENTER_ESP: 2002 if (is_guest_mode(vcpu)) { 2003 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2004 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2005 } 2006 vmcs_writel(GUEST_SYSENTER_ESP, data); 2007 break; 2008 case MSR_IA32_DEBUGCTLMSR: { 2009 u64 invalid = data & ~vcpu_supported_debugctl(vcpu); 2010 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2011 if (report_ignored_msrs) 2012 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n", 2013 __func__, data); 2014 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2015 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2016 } 2017 2018 if (invalid) 2019 return 1; 2020 2021 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2022 VM_EXIT_SAVE_DEBUG_CONTROLS) 2023 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2024 2025 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2026 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2027 (data & DEBUGCTLMSR_LBR)) 2028 intel_pmu_create_guest_lbr_event(vcpu); 2029 return 0; 2030 } 2031 case MSR_IA32_BNDCFGS: 2032 if (!kvm_mpx_supported() || 2033 (!msr_info->host_initiated && 2034 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2035 return 1; 2036 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2037 (data & MSR_IA32_BNDCFGS_RSVD)) 2038 return 1; 2039 vmcs_write64(GUEST_BNDCFGS, data); 2040 break; 2041 case MSR_IA32_UMWAIT_CONTROL: 2042 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2043 return 1; 2044 2045 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2046 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2047 return 1; 2048 2049 vmx->msr_ia32_umwait_control = data; 2050 break; 2051 case MSR_IA32_SPEC_CTRL: 2052 if (!msr_info->host_initiated && 2053 !guest_has_spec_ctrl_msr(vcpu)) 2054 return 1; 2055 2056 if (kvm_spec_ctrl_test_value(data)) 2057 return 1; 2058 2059 vmx->spec_ctrl = data; 2060 if (!data) 2061 break; 2062 2063 /* 2064 * For non-nested: 2065 * When it's written (to non-zero) for the first time, pass 2066 * it through. 2067 * 2068 * For nested: 2069 * The handling of the MSR bitmap for L2 guests is done in 2070 * nested_vmx_prepare_msr_bitmap. We should not touch the 2071 * vmcs02.msr_bitmap here since it gets completely overwritten 2072 * in the merging. We update the vmcs01 here for L1 as well 2073 * since it will end up touching the MSR anyway now. 2074 */ 2075 vmx_disable_intercept_for_msr(vcpu, 2076 MSR_IA32_SPEC_CTRL, 2077 MSR_TYPE_RW); 2078 break; 2079 case MSR_IA32_TSX_CTRL: 2080 if (!msr_info->host_initiated && 2081 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2082 return 1; 2083 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2084 return 1; 2085 goto find_uret_msr; 2086 case MSR_IA32_PRED_CMD: 2087 if (!msr_info->host_initiated && 2088 !guest_has_pred_cmd_msr(vcpu)) 2089 return 1; 2090 2091 if (data & ~PRED_CMD_IBPB) 2092 return 1; 2093 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2094 return 1; 2095 if (!data) 2096 break; 2097 2098 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2099 2100 /* 2101 * For non-nested: 2102 * When it's written (to non-zero) for the first time, pass 2103 * it through. 2104 * 2105 * For nested: 2106 * The handling of the MSR bitmap for L2 guests is done in 2107 * nested_vmx_prepare_msr_bitmap. We should not touch the 2108 * vmcs02.msr_bitmap here since it gets completely overwritten 2109 * in the merging. 2110 */ 2111 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W); 2112 break; 2113 case MSR_IA32_CR_PAT: 2114 if (!kvm_pat_valid(data)) 2115 return 1; 2116 2117 if (is_guest_mode(vcpu) && 2118 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2119 get_vmcs12(vcpu)->guest_ia32_pat = data; 2120 2121 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2122 vmcs_write64(GUEST_IA32_PAT, data); 2123 vcpu->arch.pat = data; 2124 break; 2125 } 2126 ret = kvm_set_msr_common(vcpu, msr_info); 2127 break; 2128 case MSR_IA32_MCG_EXT_CTL: 2129 if ((!msr_info->host_initiated && 2130 !(to_vmx(vcpu)->msr_ia32_feature_control & 2131 FEAT_CTL_LMCE_ENABLED)) || 2132 (data & ~MCG_EXT_CTL_LMCE_EN)) 2133 return 1; 2134 vcpu->arch.mcg_ext_ctl = data; 2135 break; 2136 case MSR_IA32_FEAT_CTL: 2137 if (!vmx_feature_control_msr_valid(vcpu, data) || 2138 (to_vmx(vcpu)->msr_ia32_feature_control & 2139 FEAT_CTL_LOCKED && !msr_info->host_initiated)) 2140 return 1; 2141 vmx->msr_ia32_feature_control = data; 2142 if (msr_info->host_initiated && data == 0) 2143 vmx_leave_nested(vcpu); 2144 2145 /* SGX may be enabled/disabled by guest's firmware */ 2146 vmx_write_encls_bitmap(vcpu, NULL); 2147 break; 2148 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2149 /* 2150 * On real hardware, the LE hash MSRs are writable before 2151 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2152 * at which point SGX related bits in IA32_FEATURE_CONTROL 2153 * become writable. 2154 * 2155 * KVM does not emulate SGX activation for simplicity, so 2156 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2157 * is unlocked. This is technically not architectural 2158 * behavior, but it's close enough. 2159 */ 2160 if (!msr_info->host_initiated && 2161 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2162 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2163 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2164 return 1; 2165 vmx->msr_ia32_sgxlepubkeyhash 2166 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2167 break; 2168 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 2169 if (!msr_info->host_initiated) 2170 return 1; /* they are read-only */ 2171 if (!nested_vmx_allowed(vcpu)) 2172 return 1; 2173 return vmx_set_vmx_msr(vcpu, msr_index, data); 2174 case MSR_IA32_RTIT_CTL: 2175 if (!vmx_pt_mode_is_host_guest() || 2176 vmx_rtit_ctl_check(vcpu, data) || 2177 vmx->nested.vmxon) 2178 return 1; 2179 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2180 vmx->pt_desc.guest.ctl = data; 2181 pt_update_intercept_for_msr(vcpu); 2182 break; 2183 case MSR_IA32_RTIT_STATUS: 2184 if (!pt_can_write_msr(vmx)) 2185 return 1; 2186 if (data & MSR_IA32_RTIT_STATUS_MASK) 2187 return 1; 2188 vmx->pt_desc.guest.status = data; 2189 break; 2190 case MSR_IA32_RTIT_CR3_MATCH: 2191 if (!pt_can_write_msr(vmx)) 2192 return 1; 2193 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2194 PT_CAP_cr3_filtering)) 2195 return 1; 2196 vmx->pt_desc.guest.cr3_match = data; 2197 break; 2198 case MSR_IA32_RTIT_OUTPUT_BASE: 2199 if (!pt_can_write_msr(vmx)) 2200 return 1; 2201 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2202 PT_CAP_topa_output) && 2203 !intel_pt_validate_cap(vmx->pt_desc.caps, 2204 PT_CAP_single_range_output)) 2205 return 1; 2206 if (!pt_output_base_valid(vcpu, data)) 2207 return 1; 2208 vmx->pt_desc.guest.output_base = data; 2209 break; 2210 case MSR_IA32_RTIT_OUTPUT_MASK: 2211 if (!pt_can_write_msr(vmx)) 2212 return 1; 2213 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2214 PT_CAP_topa_output) && 2215 !intel_pt_validate_cap(vmx->pt_desc.caps, 2216 PT_CAP_single_range_output)) 2217 return 1; 2218 vmx->pt_desc.guest.output_mask = data; 2219 break; 2220 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2221 if (!pt_can_write_msr(vmx)) 2222 return 1; 2223 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2224 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2225 return 1; 2226 if (is_noncanonical_address(data, vcpu)) 2227 return 1; 2228 if (index % 2) 2229 vmx->pt_desc.guest.addr_b[index / 2] = data; 2230 else 2231 vmx->pt_desc.guest.addr_a[index / 2] = data; 2232 break; 2233 case MSR_IA32_PERF_CAPABILITIES: 2234 if (data && !vcpu_to_pmu(vcpu)->version) 2235 return 1; 2236 if (data & PMU_CAP_LBR_FMT) { 2237 if ((data & PMU_CAP_LBR_FMT) != 2238 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT)) 2239 return 1; 2240 if (!intel_pmu_lbr_is_compatible(vcpu)) 2241 return 1; 2242 } 2243 ret = kvm_set_msr_common(vcpu, msr_info); 2244 break; 2245 2246 default: 2247 find_uret_msr: 2248 msr = vmx_find_uret_msr(vmx, msr_index); 2249 if (msr) 2250 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2251 else 2252 ret = kvm_set_msr_common(vcpu, msr_info); 2253 } 2254 2255 return ret; 2256 } 2257 2258 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2259 { 2260 unsigned long guest_owned_bits; 2261 2262 kvm_register_mark_available(vcpu, reg); 2263 2264 switch (reg) { 2265 case VCPU_REGS_RSP: 2266 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2267 break; 2268 case VCPU_REGS_RIP: 2269 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2270 break; 2271 case VCPU_EXREG_PDPTR: 2272 if (enable_ept) 2273 ept_save_pdptrs(vcpu); 2274 break; 2275 case VCPU_EXREG_CR0: 2276 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2277 2278 vcpu->arch.cr0 &= ~guest_owned_bits; 2279 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2280 break; 2281 case VCPU_EXREG_CR3: 2282 /* 2283 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2284 * CR3 is loaded into hardware, not the guest's CR3. 2285 */ 2286 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2287 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2288 break; 2289 case VCPU_EXREG_CR4: 2290 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2291 2292 vcpu->arch.cr4 &= ~guest_owned_bits; 2293 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2294 break; 2295 default: 2296 KVM_BUG_ON(1, vcpu->kvm); 2297 break; 2298 } 2299 } 2300 2301 static __init int cpu_has_kvm_support(void) 2302 { 2303 return cpu_has_vmx(); 2304 } 2305 2306 static __init int vmx_disabled_by_bios(void) 2307 { 2308 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2309 !boot_cpu_has(X86_FEATURE_VMX); 2310 } 2311 2312 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2313 { 2314 u64 msr; 2315 2316 cr4_set_bits(X86_CR4_VMXE); 2317 2318 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2319 _ASM_EXTABLE(1b, %l[fault]) 2320 : : [vmxon_pointer] "m"(vmxon_pointer) 2321 : : fault); 2322 return 0; 2323 2324 fault: 2325 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2326 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2327 cr4_clear_bits(X86_CR4_VMXE); 2328 2329 return -EFAULT; 2330 } 2331 2332 static int vmx_hardware_enable(void) 2333 { 2334 int cpu = raw_smp_processor_id(); 2335 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2336 int r; 2337 2338 if (cr4_read_shadow() & X86_CR4_VMXE) 2339 return -EBUSY; 2340 2341 /* 2342 * This can happen if we hot-added a CPU but failed to allocate 2343 * VP assist page for it. 2344 */ 2345 if (static_branch_unlikely(&enable_evmcs) && 2346 !hv_get_vp_assist_page(cpu)) 2347 return -EFAULT; 2348 2349 intel_pt_handle_vmx(1); 2350 2351 r = kvm_cpu_vmxon(phys_addr); 2352 if (r) { 2353 intel_pt_handle_vmx(0); 2354 return r; 2355 } 2356 2357 if (enable_ept) 2358 ept_sync_global(); 2359 2360 return 0; 2361 } 2362 2363 static void vmclear_local_loaded_vmcss(void) 2364 { 2365 int cpu = raw_smp_processor_id(); 2366 struct loaded_vmcs *v, *n; 2367 2368 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2369 loaded_vmcss_on_cpu_link) 2370 __loaded_vmcs_clear(v); 2371 } 2372 2373 static void vmx_hardware_disable(void) 2374 { 2375 vmclear_local_loaded_vmcss(); 2376 2377 if (cpu_vmxoff()) 2378 kvm_spurious_fault(); 2379 2380 intel_pt_handle_vmx(0); 2381 } 2382 2383 /* 2384 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2385 * directly instead of going through cpu_has(), to ensure KVM is trapping 2386 * ENCLS whenever it's supported in hardware. It does not matter whether 2387 * the host OS supports or has enabled SGX. 2388 */ 2389 static bool cpu_has_sgx(void) 2390 { 2391 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2392 } 2393 2394 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2395 u32 msr, u32 *result) 2396 { 2397 u32 vmx_msr_low, vmx_msr_high; 2398 u32 ctl = ctl_min | ctl_opt; 2399 2400 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2401 2402 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2403 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2404 2405 /* Ensure minimum (required) set of control bits are supported. */ 2406 if (ctl_min & ~ctl) 2407 return -EIO; 2408 2409 *result = ctl; 2410 return 0; 2411 } 2412 2413 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2414 struct vmx_capability *vmx_cap) 2415 { 2416 u32 vmx_msr_low, vmx_msr_high; 2417 u32 min, opt, min2, opt2; 2418 u32 _pin_based_exec_control = 0; 2419 u32 _cpu_based_exec_control = 0; 2420 u32 _cpu_based_2nd_exec_control = 0; 2421 u32 _vmexit_control = 0; 2422 u32 _vmentry_control = 0; 2423 2424 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2425 min = CPU_BASED_HLT_EXITING | 2426 #ifdef CONFIG_X86_64 2427 CPU_BASED_CR8_LOAD_EXITING | 2428 CPU_BASED_CR8_STORE_EXITING | 2429 #endif 2430 CPU_BASED_CR3_LOAD_EXITING | 2431 CPU_BASED_CR3_STORE_EXITING | 2432 CPU_BASED_UNCOND_IO_EXITING | 2433 CPU_BASED_MOV_DR_EXITING | 2434 CPU_BASED_USE_TSC_OFFSETTING | 2435 CPU_BASED_MWAIT_EXITING | 2436 CPU_BASED_MONITOR_EXITING | 2437 CPU_BASED_INVLPG_EXITING | 2438 CPU_BASED_RDPMC_EXITING; 2439 2440 opt = CPU_BASED_TPR_SHADOW | 2441 CPU_BASED_USE_MSR_BITMAPS | 2442 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2443 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2444 &_cpu_based_exec_control) < 0) 2445 return -EIO; 2446 #ifdef CONFIG_X86_64 2447 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2448 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2449 ~CPU_BASED_CR8_STORE_EXITING; 2450 #endif 2451 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2452 min2 = 0; 2453 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2454 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2455 SECONDARY_EXEC_WBINVD_EXITING | 2456 SECONDARY_EXEC_ENABLE_VPID | 2457 SECONDARY_EXEC_ENABLE_EPT | 2458 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2459 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2460 SECONDARY_EXEC_DESC | 2461 SECONDARY_EXEC_ENABLE_RDTSCP | 2462 SECONDARY_EXEC_ENABLE_INVPCID | 2463 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2464 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2465 SECONDARY_EXEC_SHADOW_VMCS | 2466 SECONDARY_EXEC_XSAVES | 2467 SECONDARY_EXEC_RDSEED_EXITING | 2468 SECONDARY_EXEC_RDRAND_EXITING | 2469 SECONDARY_EXEC_ENABLE_PML | 2470 SECONDARY_EXEC_TSC_SCALING | 2471 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | 2472 SECONDARY_EXEC_PT_USE_GPA | 2473 SECONDARY_EXEC_PT_CONCEAL_VMX | 2474 SECONDARY_EXEC_ENABLE_VMFUNC | 2475 SECONDARY_EXEC_BUS_LOCK_DETECTION; 2476 if (cpu_has_sgx()) 2477 opt2 |= SECONDARY_EXEC_ENCLS_EXITING; 2478 if (adjust_vmx_controls(min2, opt2, 2479 MSR_IA32_VMX_PROCBASED_CTLS2, 2480 &_cpu_based_2nd_exec_control) < 0) 2481 return -EIO; 2482 } 2483 #ifndef CONFIG_X86_64 2484 if (!(_cpu_based_2nd_exec_control & 2485 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2486 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2487 #endif 2488 2489 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2490 _cpu_based_2nd_exec_control &= ~( 2491 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2492 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2493 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2494 2495 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2496 &vmx_cap->ept, &vmx_cap->vpid); 2497 2498 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2499 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2500 enabled */ 2501 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2502 CPU_BASED_CR3_STORE_EXITING | 2503 CPU_BASED_INVLPG_EXITING); 2504 } else if (vmx_cap->ept) { 2505 vmx_cap->ept = 0; 2506 pr_warn_once("EPT CAP should not exist if not support " 2507 "1-setting enable EPT VM-execution control\n"); 2508 } 2509 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2510 vmx_cap->vpid) { 2511 vmx_cap->vpid = 0; 2512 pr_warn_once("VPID CAP should not exist if not support " 2513 "1-setting enable VPID VM-execution control\n"); 2514 } 2515 2516 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2517 #ifdef CONFIG_X86_64 2518 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2519 #endif 2520 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2521 VM_EXIT_LOAD_IA32_PAT | 2522 VM_EXIT_LOAD_IA32_EFER | 2523 VM_EXIT_CLEAR_BNDCFGS | 2524 VM_EXIT_PT_CONCEAL_PIP | 2525 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2526 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2527 &_vmexit_control) < 0) 2528 return -EIO; 2529 2530 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2531 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2532 PIN_BASED_VMX_PREEMPTION_TIMER; 2533 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2534 &_pin_based_exec_control) < 0) 2535 return -EIO; 2536 2537 if (cpu_has_broken_vmx_preemption_timer()) 2538 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2539 if (!(_cpu_based_2nd_exec_control & 2540 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2541 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2542 2543 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2544 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2545 VM_ENTRY_LOAD_IA32_PAT | 2546 VM_ENTRY_LOAD_IA32_EFER | 2547 VM_ENTRY_LOAD_BNDCFGS | 2548 VM_ENTRY_PT_CONCEAL_PIP | 2549 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2550 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2551 &_vmentry_control) < 0) 2552 return -EIO; 2553 2554 /* 2555 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2556 * can't be used due to an errata where VM Exit may incorrectly clear 2557 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2558 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2559 */ 2560 if (boot_cpu_data.x86 == 0x6) { 2561 switch (boot_cpu_data.x86_model) { 2562 case 26: /* AAK155 */ 2563 case 30: /* AAP115 */ 2564 case 37: /* AAT100 */ 2565 case 44: /* BC86,AAY89,BD102 */ 2566 case 46: /* BA97 */ 2567 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2568 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2569 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2570 "does not work properly. Using workaround\n"); 2571 break; 2572 default: 2573 break; 2574 } 2575 } 2576 2577 2578 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2579 2580 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2581 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2582 return -EIO; 2583 2584 #ifdef CONFIG_X86_64 2585 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2586 if (vmx_msr_high & (1u<<16)) 2587 return -EIO; 2588 #endif 2589 2590 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2591 if (((vmx_msr_high >> 18) & 15) != 6) 2592 return -EIO; 2593 2594 vmcs_conf->size = vmx_msr_high & 0x1fff; 2595 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2596 2597 vmcs_conf->revision_id = vmx_msr_low; 2598 2599 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2600 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2601 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2602 vmcs_conf->vmexit_ctrl = _vmexit_control; 2603 vmcs_conf->vmentry_ctrl = _vmentry_control; 2604 2605 #if IS_ENABLED(CONFIG_HYPERV) 2606 if (enlightened_vmcs) 2607 evmcs_sanitize_exec_ctrls(vmcs_conf); 2608 #endif 2609 2610 return 0; 2611 } 2612 2613 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2614 { 2615 int node = cpu_to_node(cpu); 2616 struct page *pages; 2617 struct vmcs *vmcs; 2618 2619 pages = __alloc_pages_node(node, flags, 0); 2620 if (!pages) 2621 return NULL; 2622 vmcs = page_address(pages); 2623 memset(vmcs, 0, vmcs_config.size); 2624 2625 /* KVM supports Enlightened VMCS v1 only */ 2626 if (static_branch_unlikely(&enable_evmcs)) 2627 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2628 else 2629 vmcs->hdr.revision_id = vmcs_config.revision_id; 2630 2631 if (shadow) 2632 vmcs->hdr.shadow_vmcs = 1; 2633 return vmcs; 2634 } 2635 2636 void free_vmcs(struct vmcs *vmcs) 2637 { 2638 free_page((unsigned long)vmcs); 2639 } 2640 2641 /* 2642 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2643 */ 2644 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2645 { 2646 if (!loaded_vmcs->vmcs) 2647 return; 2648 loaded_vmcs_clear(loaded_vmcs); 2649 free_vmcs(loaded_vmcs->vmcs); 2650 loaded_vmcs->vmcs = NULL; 2651 if (loaded_vmcs->msr_bitmap) 2652 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2653 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2654 } 2655 2656 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2657 { 2658 loaded_vmcs->vmcs = alloc_vmcs(false); 2659 if (!loaded_vmcs->vmcs) 2660 return -ENOMEM; 2661 2662 vmcs_clear(loaded_vmcs->vmcs); 2663 2664 loaded_vmcs->shadow_vmcs = NULL; 2665 loaded_vmcs->hv_timer_soft_disabled = false; 2666 loaded_vmcs->cpu = -1; 2667 loaded_vmcs->launched = 0; 2668 2669 if (cpu_has_vmx_msr_bitmap()) { 2670 loaded_vmcs->msr_bitmap = (unsigned long *) 2671 __get_free_page(GFP_KERNEL_ACCOUNT); 2672 if (!loaded_vmcs->msr_bitmap) 2673 goto out_vmcs; 2674 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2675 } 2676 2677 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2678 memset(&loaded_vmcs->controls_shadow, 0, 2679 sizeof(struct vmcs_controls_shadow)); 2680 2681 return 0; 2682 2683 out_vmcs: 2684 free_loaded_vmcs(loaded_vmcs); 2685 return -ENOMEM; 2686 } 2687 2688 static void free_kvm_area(void) 2689 { 2690 int cpu; 2691 2692 for_each_possible_cpu(cpu) { 2693 free_vmcs(per_cpu(vmxarea, cpu)); 2694 per_cpu(vmxarea, cpu) = NULL; 2695 } 2696 } 2697 2698 static __init int alloc_kvm_area(void) 2699 { 2700 int cpu; 2701 2702 for_each_possible_cpu(cpu) { 2703 struct vmcs *vmcs; 2704 2705 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2706 if (!vmcs) { 2707 free_kvm_area(); 2708 return -ENOMEM; 2709 } 2710 2711 /* 2712 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2713 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2714 * revision_id reported by MSR_IA32_VMX_BASIC. 2715 * 2716 * However, even though not explicitly documented by 2717 * TLFS, VMXArea passed as VMXON argument should 2718 * still be marked with revision_id reported by 2719 * physical CPU. 2720 */ 2721 if (static_branch_unlikely(&enable_evmcs)) 2722 vmcs->hdr.revision_id = vmcs_config.revision_id; 2723 2724 per_cpu(vmxarea, cpu) = vmcs; 2725 } 2726 return 0; 2727 } 2728 2729 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2730 struct kvm_segment *save) 2731 { 2732 if (!emulate_invalid_guest_state) { 2733 /* 2734 * CS and SS RPL should be equal during guest entry according 2735 * to VMX spec, but in reality it is not always so. Since vcpu 2736 * is in the middle of the transition from real mode to 2737 * protected mode it is safe to assume that RPL 0 is a good 2738 * default value. 2739 */ 2740 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2741 save->selector &= ~SEGMENT_RPL_MASK; 2742 save->dpl = save->selector & SEGMENT_RPL_MASK; 2743 save->s = 1; 2744 } 2745 __vmx_set_segment(vcpu, save, seg); 2746 } 2747 2748 static void enter_pmode(struct kvm_vcpu *vcpu) 2749 { 2750 unsigned long flags; 2751 struct vcpu_vmx *vmx = to_vmx(vcpu); 2752 2753 /* 2754 * Update real mode segment cache. It may be not up-to-date if segment 2755 * register was written while vcpu was in a guest mode. 2756 */ 2757 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2758 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2759 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2760 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2761 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2762 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2763 2764 vmx->rmode.vm86_active = 0; 2765 2766 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2767 2768 flags = vmcs_readl(GUEST_RFLAGS); 2769 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2770 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2771 vmcs_writel(GUEST_RFLAGS, flags); 2772 2773 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2774 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2775 2776 vmx_update_exception_bitmap(vcpu); 2777 2778 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2779 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2780 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2781 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2782 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2783 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2784 } 2785 2786 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2787 { 2788 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2789 struct kvm_segment var = *save; 2790 2791 var.dpl = 0x3; 2792 if (seg == VCPU_SREG_CS) 2793 var.type = 0x3; 2794 2795 if (!emulate_invalid_guest_state) { 2796 var.selector = var.base >> 4; 2797 var.base = var.base & 0xffff0; 2798 var.limit = 0xffff; 2799 var.g = 0; 2800 var.db = 0; 2801 var.present = 1; 2802 var.s = 1; 2803 var.l = 0; 2804 var.unusable = 0; 2805 var.type = 0x3; 2806 var.avl = 0; 2807 if (save->base & 0xf) 2808 printk_once(KERN_WARNING "kvm: segment base is not " 2809 "paragraph aligned when entering " 2810 "protected mode (seg=%d)", seg); 2811 } 2812 2813 vmcs_write16(sf->selector, var.selector); 2814 vmcs_writel(sf->base, var.base); 2815 vmcs_write32(sf->limit, var.limit); 2816 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2817 } 2818 2819 static void enter_rmode(struct kvm_vcpu *vcpu) 2820 { 2821 unsigned long flags; 2822 struct vcpu_vmx *vmx = to_vmx(vcpu); 2823 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2824 2825 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2826 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2827 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2828 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2829 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2830 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2831 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2832 2833 vmx->rmode.vm86_active = 1; 2834 2835 /* 2836 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2837 * vcpu. Warn the user that an update is overdue. 2838 */ 2839 if (!kvm_vmx->tss_addr) 2840 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2841 "called before entering vcpu\n"); 2842 2843 vmx_segment_cache_clear(vmx); 2844 2845 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2846 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2847 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2848 2849 flags = vmcs_readl(GUEST_RFLAGS); 2850 vmx->rmode.save_rflags = flags; 2851 2852 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2853 2854 vmcs_writel(GUEST_RFLAGS, flags); 2855 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2856 vmx_update_exception_bitmap(vcpu); 2857 2858 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2859 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2860 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2861 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2862 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2863 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2864 } 2865 2866 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2867 { 2868 struct vcpu_vmx *vmx = to_vmx(vcpu); 2869 2870 /* Nothing to do if hardware doesn't support EFER. */ 2871 if (!vmx_find_uret_msr(vmx, MSR_EFER)) 2872 return 0; 2873 2874 vcpu->arch.efer = efer; 2875 if (efer & EFER_LMA) 2876 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); 2877 else 2878 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); 2879 2880 vmx_setup_uret_msrs(vmx); 2881 return 0; 2882 } 2883 2884 #ifdef CONFIG_X86_64 2885 2886 static void enter_lmode(struct kvm_vcpu *vcpu) 2887 { 2888 u32 guest_tr_ar; 2889 2890 vmx_segment_cache_clear(to_vmx(vcpu)); 2891 2892 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2893 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2894 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2895 __func__); 2896 vmcs_write32(GUEST_TR_AR_BYTES, 2897 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 2898 | VMX_AR_TYPE_BUSY_64_TSS); 2899 } 2900 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 2901 } 2902 2903 static void exit_lmode(struct kvm_vcpu *vcpu) 2904 { 2905 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 2906 } 2907 2908 #endif 2909 2910 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 2911 { 2912 struct vcpu_vmx *vmx = to_vmx(vcpu); 2913 2914 /* 2915 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 2916 * the CPU is not required to invalidate guest-physical mappings on 2917 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 2918 * associated with the root EPT structure and not any particular VPID 2919 * (INVVPID also isn't required to invalidate guest-physical mappings). 2920 */ 2921 if (enable_ept) { 2922 ept_sync_global(); 2923 } else if (enable_vpid) { 2924 if (cpu_has_vmx_invvpid_global()) { 2925 vpid_sync_vcpu_global(); 2926 } else { 2927 vpid_sync_vcpu_single(vmx->vpid); 2928 vpid_sync_vcpu_single(vmx->nested.vpid02); 2929 } 2930 } 2931 } 2932 2933 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 2934 { 2935 if (is_guest_mode(vcpu)) 2936 return nested_get_vpid02(vcpu); 2937 return to_vmx(vcpu)->vpid; 2938 } 2939 2940 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 2941 { 2942 struct kvm_mmu *mmu = vcpu->arch.mmu; 2943 u64 root_hpa = mmu->root.hpa; 2944 2945 /* No flush required if the current context is invalid. */ 2946 if (!VALID_PAGE(root_hpa)) 2947 return; 2948 2949 if (enable_ept) 2950 ept_sync_context(construct_eptp(vcpu, root_hpa, 2951 mmu->shadow_root_level)); 2952 else 2953 vpid_sync_context(vmx_get_current_vpid(vcpu)); 2954 } 2955 2956 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 2957 { 2958 /* 2959 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 2960 * vmx_flush_tlb_guest() for an explanation of why this is ok. 2961 */ 2962 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 2963 } 2964 2965 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 2966 { 2967 /* 2968 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 2969 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 2970 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 2971 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 2972 * i.e. no explicit INVVPID is necessary. 2973 */ 2974 vpid_sync_context(vmx_get_current_vpid(vcpu)); 2975 } 2976 2977 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 2978 { 2979 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2980 2981 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 2982 return; 2983 2984 if (is_pae_paging(vcpu)) { 2985 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 2986 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 2987 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 2988 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 2989 } 2990 } 2991 2992 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 2993 { 2994 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2995 2996 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 2997 return; 2998 2999 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3000 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3001 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3002 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3003 3004 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3005 } 3006 3007 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3008 CPU_BASED_CR3_STORE_EXITING) 3009 3010 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3011 { 3012 struct vcpu_vmx *vmx = to_vmx(vcpu); 3013 unsigned long hw_cr0, old_cr0_pg; 3014 u32 tmp; 3015 3016 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3017 3018 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3019 if (is_unrestricted_guest(vcpu)) 3020 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3021 else { 3022 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3023 if (!enable_ept) 3024 hw_cr0 |= X86_CR0_WP; 3025 3026 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3027 enter_pmode(vcpu); 3028 3029 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3030 enter_rmode(vcpu); 3031 } 3032 3033 vmcs_writel(CR0_READ_SHADOW, cr0); 3034 vmcs_writel(GUEST_CR0, hw_cr0); 3035 vcpu->arch.cr0 = cr0; 3036 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3037 3038 #ifdef CONFIG_X86_64 3039 if (vcpu->arch.efer & EFER_LME) { 3040 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3041 enter_lmode(vcpu); 3042 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3043 exit_lmode(vcpu); 3044 } 3045 #endif 3046 3047 if (enable_ept && !is_unrestricted_guest(vcpu)) { 3048 /* 3049 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3050 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3051 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3052 * KVM's CR3 is installed. 3053 */ 3054 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3055 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3056 3057 /* 3058 * When running with EPT but not unrestricted guest, KVM must 3059 * intercept CR3 accesses when paging is _disabled_. This is 3060 * necessary because restricted guests can't actually run with 3061 * paging disabled, and so KVM stuffs its own CR3 in order to 3062 * run the guest when identity mapped page tables. 3063 * 3064 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3065 * update, it may be stale with respect to CR3 interception, 3066 * e.g. after nested VM-Enter. 3067 * 3068 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3069 * stores to forward them to L1, even if KVM does not need to 3070 * intercept them to preserve its identity mapped page tables. 3071 */ 3072 if (!(cr0 & X86_CR0_PG)) { 3073 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3074 } else if (!is_guest_mode(vcpu)) { 3075 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3076 } else { 3077 tmp = exec_controls_get(vmx); 3078 tmp &= ~CR3_EXITING_BITS; 3079 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3080 exec_controls_set(vmx, tmp); 3081 } 3082 3083 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3084 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3085 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3086 3087 /* 3088 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3089 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3090 */ 3091 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3092 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3093 } 3094 3095 /* depends on vcpu->arch.cr0 to be set to a new value */ 3096 vmx->emulation_required = vmx_emulation_required(vcpu); 3097 } 3098 3099 static int vmx_get_max_tdp_level(void) 3100 { 3101 if (cpu_has_vmx_ept_5levels()) 3102 return 5; 3103 return 4; 3104 } 3105 3106 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3107 { 3108 u64 eptp = VMX_EPTP_MT_WB; 3109 3110 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3111 3112 if (enable_ept_ad_bits && 3113 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3114 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3115 eptp |= root_hpa; 3116 3117 return eptp; 3118 } 3119 3120 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3121 int root_level) 3122 { 3123 struct kvm *kvm = vcpu->kvm; 3124 bool update_guest_cr3 = true; 3125 unsigned long guest_cr3; 3126 u64 eptp; 3127 3128 if (enable_ept) { 3129 eptp = construct_eptp(vcpu, root_hpa, root_level); 3130 vmcs_write64(EPT_POINTER, eptp); 3131 3132 hv_track_root_tdp(vcpu, root_hpa); 3133 3134 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3135 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3136 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3137 guest_cr3 = vcpu->arch.cr3; 3138 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3139 update_guest_cr3 = false; 3140 vmx_ept_load_pdptrs(vcpu); 3141 } else { 3142 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3143 } 3144 3145 if (update_guest_cr3) 3146 vmcs_writel(GUEST_CR3, guest_cr3); 3147 } 3148 3149 3150 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3151 { 3152 /* 3153 * We operate under the default treatment of SMM, so VMX cannot be 3154 * enabled under SMM. Note, whether or not VMXE is allowed at all is 3155 * handled by kvm_is_valid_cr4(). 3156 */ 3157 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3158 return false; 3159 3160 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3161 return false; 3162 3163 return true; 3164 } 3165 3166 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3167 { 3168 unsigned long old_cr4 = vcpu->arch.cr4; 3169 struct vcpu_vmx *vmx = to_vmx(vcpu); 3170 /* 3171 * Pass through host's Machine Check Enable value to hw_cr4, which 3172 * is in force while we are in guest mode. Do not let guests control 3173 * this bit, even if host CR4.MCE == 0. 3174 */ 3175 unsigned long hw_cr4; 3176 3177 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3178 if (is_unrestricted_guest(vcpu)) 3179 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3180 else if (vmx->rmode.vm86_active) 3181 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3182 else 3183 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3184 3185 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 3186 if (cr4 & X86_CR4_UMIP) { 3187 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3188 hw_cr4 &= ~X86_CR4_UMIP; 3189 } else if (!is_guest_mode(vcpu) || 3190 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3191 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3192 } 3193 } 3194 3195 vcpu->arch.cr4 = cr4; 3196 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3197 3198 if (!is_unrestricted_guest(vcpu)) { 3199 if (enable_ept) { 3200 if (!is_paging(vcpu)) { 3201 hw_cr4 &= ~X86_CR4_PAE; 3202 hw_cr4 |= X86_CR4_PSE; 3203 } else if (!(cr4 & X86_CR4_PAE)) { 3204 hw_cr4 &= ~X86_CR4_PAE; 3205 } 3206 } 3207 3208 /* 3209 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3210 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3211 * to be manually disabled when guest switches to non-paging 3212 * mode. 3213 * 3214 * If !enable_unrestricted_guest, the CPU is always running 3215 * with CR0.PG=1 and CR4 needs to be modified. 3216 * If enable_unrestricted_guest, the CPU automatically 3217 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3218 */ 3219 if (!is_paging(vcpu)) 3220 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3221 } 3222 3223 vmcs_writel(CR4_READ_SHADOW, cr4); 3224 vmcs_writel(GUEST_CR4, hw_cr4); 3225 3226 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3227 kvm_update_cpuid_runtime(vcpu); 3228 } 3229 3230 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3231 { 3232 struct vcpu_vmx *vmx = to_vmx(vcpu); 3233 u32 ar; 3234 3235 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3236 *var = vmx->rmode.segs[seg]; 3237 if (seg == VCPU_SREG_TR 3238 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3239 return; 3240 var->base = vmx_read_guest_seg_base(vmx, seg); 3241 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3242 return; 3243 } 3244 var->base = vmx_read_guest_seg_base(vmx, seg); 3245 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3246 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3247 ar = vmx_read_guest_seg_ar(vmx, seg); 3248 var->unusable = (ar >> 16) & 1; 3249 var->type = ar & 15; 3250 var->s = (ar >> 4) & 1; 3251 var->dpl = (ar >> 5) & 3; 3252 /* 3253 * Some userspaces do not preserve unusable property. Since usable 3254 * segment has to be present according to VMX spec we can use present 3255 * property to amend userspace bug by making unusable segment always 3256 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3257 * segment as unusable. 3258 */ 3259 var->present = !var->unusable; 3260 var->avl = (ar >> 12) & 1; 3261 var->l = (ar >> 13) & 1; 3262 var->db = (ar >> 14) & 1; 3263 var->g = (ar >> 15) & 1; 3264 } 3265 3266 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3267 { 3268 struct kvm_segment s; 3269 3270 if (to_vmx(vcpu)->rmode.vm86_active) { 3271 vmx_get_segment(vcpu, &s, seg); 3272 return s.base; 3273 } 3274 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3275 } 3276 3277 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3278 { 3279 struct vcpu_vmx *vmx = to_vmx(vcpu); 3280 3281 if (unlikely(vmx->rmode.vm86_active)) 3282 return 0; 3283 else { 3284 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3285 return VMX_AR_DPL(ar); 3286 } 3287 } 3288 3289 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3290 { 3291 u32 ar; 3292 3293 if (var->unusable || !var->present) 3294 ar = 1 << 16; 3295 else { 3296 ar = var->type & 15; 3297 ar |= (var->s & 1) << 4; 3298 ar |= (var->dpl & 3) << 5; 3299 ar |= (var->present & 1) << 7; 3300 ar |= (var->avl & 1) << 12; 3301 ar |= (var->l & 1) << 13; 3302 ar |= (var->db & 1) << 14; 3303 ar |= (var->g & 1) << 15; 3304 } 3305 3306 return ar; 3307 } 3308 3309 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3310 { 3311 struct vcpu_vmx *vmx = to_vmx(vcpu); 3312 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3313 3314 vmx_segment_cache_clear(vmx); 3315 3316 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3317 vmx->rmode.segs[seg] = *var; 3318 if (seg == VCPU_SREG_TR) 3319 vmcs_write16(sf->selector, var->selector); 3320 else if (var->s) 3321 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3322 return; 3323 } 3324 3325 vmcs_writel(sf->base, var->base); 3326 vmcs_write32(sf->limit, var->limit); 3327 vmcs_write16(sf->selector, var->selector); 3328 3329 /* 3330 * Fix the "Accessed" bit in AR field of segment registers for older 3331 * qemu binaries. 3332 * IA32 arch specifies that at the time of processor reset the 3333 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3334 * is setting it to 0 in the userland code. This causes invalid guest 3335 * state vmexit when "unrestricted guest" mode is turned on. 3336 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3337 * tree. Newer qemu binaries with that qemu fix would not need this 3338 * kvm hack. 3339 */ 3340 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3341 var->type |= 0x1; /* Accessed */ 3342 3343 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3344 } 3345 3346 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3347 { 3348 __vmx_set_segment(vcpu, var, seg); 3349 3350 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3351 } 3352 3353 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3354 { 3355 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3356 3357 *db = (ar >> 14) & 1; 3358 *l = (ar >> 13) & 1; 3359 } 3360 3361 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3362 { 3363 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3364 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3365 } 3366 3367 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3368 { 3369 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3370 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3371 } 3372 3373 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3374 { 3375 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3376 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3377 } 3378 3379 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3380 { 3381 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3382 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3383 } 3384 3385 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3386 { 3387 struct kvm_segment var; 3388 u32 ar; 3389 3390 vmx_get_segment(vcpu, &var, seg); 3391 var.dpl = 0x3; 3392 if (seg == VCPU_SREG_CS) 3393 var.type = 0x3; 3394 ar = vmx_segment_access_rights(&var); 3395 3396 if (var.base != (var.selector << 4)) 3397 return false; 3398 if (var.limit != 0xffff) 3399 return false; 3400 if (ar != 0xf3) 3401 return false; 3402 3403 return true; 3404 } 3405 3406 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3407 { 3408 struct kvm_segment cs; 3409 unsigned int cs_rpl; 3410 3411 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3412 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3413 3414 if (cs.unusable) 3415 return false; 3416 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3417 return false; 3418 if (!cs.s) 3419 return false; 3420 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3421 if (cs.dpl > cs_rpl) 3422 return false; 3423 } else { 3424 if (cs.dpl != cs_rpl) 3425 return false; 3426 } 3427 if (!cs.present) 3428 return false; 3429 3430 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3431 return true; 3432 } 3433 3434 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3435 { 3436 struct kvm_segment ss; 3437 unsigned int ss_rpl; 3438 3439 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3440 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3441 3442 if (ss.unusable) 3443 return true; 3444 if (ss.type != 3 && ss.type != 7) 3445 return false; 3446 if (!ss.s) 3447 return false; 3448 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3449 return false; 3450 if (!ss.present) 3451 return false; 3452 3453 return true; 3454 } 3455 3456 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3457 { 3458 struct kvm_segment var; 3459 unsigned int rpl; 3460 3461 vmx_get_segment(vcpu, &var, seg); 3462 rpl = var.selector & SEGMENT_RPL_MASK; 3463 3464 if (var.unusable) 3465 return true; 3466 if (!var.s) 3467 return false; 3468 if (!var.present) 3469 return false; 3470 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3471 if (var.dpl < rpl) /* DPL < RPL */ 3472 return false; 3473 } 3474 3475 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3476 * rights flags 3477 */ 3478 return true; 3479 } 3480 3481 static bool tr_valid(struct kvm_vcpu *vcpu) 3482 { 3483 struct kvm_segment tr; 3484 3485 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3486 3487 if (tr.unusable) 3488 return false; 3489 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3490 return false; 3491 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3492 return false; 3493 if (!tr.present) 3494 return false; 3495 3496 return true; 3497 } 3498 3499 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3500 { 3501 struct kvm_segment ldtr; 3502 3503 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3504 3505 if (ldtr.unusable) 3506 return true; 3507 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3508 return false; 3509 if (ldtr.type != 2) 3510 return false; 3511 if (!ldtr.present) 3512 return false; 3513 3514 return true; 3515 } 3516 3517 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3518 { 3519 struct kvm_segment cs, ss; 3520 3521 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3522 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3523 3524 return ((cs.selector & SEGMENT_RPL_MASK) == 3525 (ss.selector & SEGMENT_RPL_MASK)); 3526 } 3527 3528 /* 3529 * Check if guest state is valid. Returns true if valid, false if 3530 * not. 3531 * We assume that registers are always usable 3532 */ 3533 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3534 { 3535 /* real mode guest state checks */ 3536 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3537 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3538 return false; 3539 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3540 return false; 3541 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3542 return false; 3543 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3544 return false; 3545 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3546 return false; 3547 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3548 return false; 3549 } else { 3550 /* protected mode guest state checks */ 3551 if (!cs_ss_rpl_check(vcpu)) 3552 return false; 3553 if (!code_segment_valid(vcpu)) 3554 return false; 3555 if (!stack_segment_valid(vcpu)) 3556 return false; 3557 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3558 return false; 3559 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3560 return false; 3561 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3562 return false; 3563 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3564 return false; 3565 if (!tr_valid(vcpu)) 3566 return false; 3567 if (!ldtr_valid(vcpu)) 3568 return false; 3569 } 3570 /* TODO: 3571 * - Add checks on RIP 3572 * - Add checks on RFLAGS 3573 */ 3574 3575 return true; 3576 } 3577 3578 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3579 { 3580 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3581 u16 data; 3582 int i; 3583 3584 for (i = 0; i < 3; i++) { 3585 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3586 return -EFAULT; 3587 } 3588 3589 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3590 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3591 return -EFAULT; 3592 3593 data = ~0; 3594 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3595 return -EFAULT; 3596 3597 return 0; 3598 } 3599 3600 static int init_rmode_identity_map(struct kvm *kvm) 3601 { 3602 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3603 int i, r = 0; 3604 void __user *uaddr; 3605 u32 tmp; 3606 3607 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3608 mutex_lock(&kvm->slots_lock); 3609 3610 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3611 goto out; 3612 3613 if (!kvm_vmx->ept_identity_map_addr) 3614 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3615 3616 uaddr = __x86_set_memory_region(kvm, 3617 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3618 kvm_vmx->ept_identity_map_addr, 3619 PAGE_SIZE); 3620 if (IS_ERR(uaddr)) { 3621 r = PTR_ERR(uaddr); 3622 goto out; 3623 } 3624 3625 /* Set up identity-mapping pagetable for EPT in real mode */ 3626 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3627 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3628 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3629 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3630 r = -EFAULT; 3631 goto out; 3632 } 3633 } 3634 kvm_vmx->ept_identity_pagetable_done = true; 3635 3636 out: 3637 mutex_unlock(&kvm->slots_lock); 3638 return r; 3639 } 3640 3641 static void seg_setup(int seg) 3642 { 3643 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3644 unsigned int ar; 3645 3646 vmcs_write16(sf->selector, 0); 3647 vmcs_writel(sf->base, 0); 3648 vmcs_write32(sf->limit, 0xffff); 3649 ar = 0x93; 3650 if (seg == VCPU_SREG_CS) 3651 ar |= 0x08; /* code segment */ 3652 3653 vmcs_write32(sf->ar_bytes, ar); 3654 } 3655 3656 static int alloc_apic_access_page(struct kvm *kvm) 3657 { 3658 struct page *page; 3659 void __user *hva; 3660 int ret = 0; 3661 3662 mutex_lock(&kvm->slots_lock); 3663 if (kvm->arch.apic_access_memslot_enabled) 3664 goto out; 3665 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3666 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3667 if (IS_ERR(hva)) { 3668 ret = PTR_ERR(hva); 3669 goto out; 3670 } 3671 3672 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3673 if (is_error_page(page)) { 3674 ret = -EFAULT; 3675 goto out; 3676 } 3677 3678 /* 3679 * Do not pin the page in memory, so that memory hot-unplug 3680 * is able to migrate it. 3681 */ 3682 put_page(page); 3683 kvm->arch.apic_access_memslot_enabled = true; 3684 out: 3685 mutex_unlock(&kvm->slots_lock); 3686 return ret; 3687 } 3688 3689 int allocate_vpid(void) 3690 { 3691 int vpid; 3692 3693 if (!enable_vpid) 3694 return 0; 3695 spin_lock(&vmx_vpid_lock); 3696 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3697 if (vpid < VMX_NR_VPIDS) 3698 __set_bit(vpid, vmx_vpid_bitmap); 3699 else 3700 vpid = 0; 3701 spin_unlock(&vmx_vpid_lock); 3702 return vpid; 3703 } 3704 3705 void free_vpid(int vpid) 3706 { 3707 if (!enable_vpid || vpid == 0) 3708 return; 3709 spin_lock(&vmx_vpid_lock); 3710 __clear_bit(vpid, vmx_vpid_bitmap); 3711 spin_unlock(&vmx_vpid_lock); 3712 } 3713 3714 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3715 { 3716 /* 3717 * When KVM is a nested hypervisor on top of Hyper-V and uses 3718 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3719 * bitmap has changed. 3720 */ 3721 if (static_branch_unlikely(&enable_evmcs)) 3722 evmcs_touch_msr_bitmap(); 3723 3724 vmx->nested.force_msr_bitmap_recalc = true; 3725 } 3726 3727 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3728 { 3729 struct vcpu_vmx *vmx = to_vmx(vcpu); 3730 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3731 3732 if (!cpu_has_vmx_msr_bitmap()) 3733 return; 3734 3735 vmx_msr_bitmap_l01_changed(vmx); 3736 3737 /* 3738 * Mark the desired intercept state in shadow bitmap, this is needed 3739 * for resync when the MSR filters change. 3740 */ 3741 if (is_valid_passthrough_msr(msr)) { 3742 int idx = possible_passthrough_msr_slot(msr); 3743 3744 if (idx != -ENOENT) { 3745 if (type & MSR_TYPE_R) 3746 clear_bit(idx, vmx->shadow_msr_intercept.read); 3747 if (type & MSR_TYPE_W) 3748 clear_bit(idx, vmx->shadow_msr_intercept.write); 3749 } 3750 } 3751 3752 if ((type & MSR_TYPE_R) && 3753 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3754 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3755 type &= ~MSR_TYPE_R; 3756 } 3757 3758 if ((type & MSR_TYPE_W) && 3759 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3760 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3761 type &= ~MSR_TYPE_W; 3762 } 3763 3764 if (type & MSR_TYPE_R) 3765 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3766 3767 if (type & MSR_TYPE_W) 3768 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3769 } 3770 3771 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3772 { 3773 struct vcpu_vmx *vmx = to_vmx(vcpu); 3774 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3775 3776 if (!cpu_has_vmx_msr_bitmap()) 3777 return; 3778 3779 vmx_msr_bitmap_l01_changed(vmx); 3780 3781 /* 3782 * Mark the desired intercept state in shadow bitmap, this is needed 3783 * for resync when the MSR filter changes. 3784 */ 3785 if (is_valid_passthrough_msr(msr)) { 3786 int idx = possible_passthrough_msr_slot(msr); 3787 3788 if (idx != -ENOENT) { 3789 if (type & MSR_TYPE_R) 3790 set_bit(idx, vmx->shadow_msr_intercept.read); 3791 if (type & MSR_TYPE_W) 3792 set_bit(idx, vmx->shadow_msr_intercept.write); 3793 } 3794 } 3795 3796 if (type & MSR_TYPE_R) 3797 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3798 3799 if (type & MSR_TYPE_W) 3800 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3801 } 3802 3803 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode) 3804 { 3805 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; 3806 unsigned long read_intercept; 3807 int msr; 3808 3809 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3810 3811 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3812 unsigned int read_idx = msr / BITS_PER_LONG; 3813 unsigned int write_idx = read_idx + (0x800 / sizeof(long)); 3814 3815 msr_bitmap[read_idx] = read_intercept; 3816 msr_bitmap[write_idx] = ~0ul; 3817 } 3818 } 3819 3820 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 3821 { 3822 struct vcpu_vmx *vmx = to_vmx(vcpu); 3823 u8 mode; 3824 3825 if (!cpu_has_vmx_msr_bitmap()) 3826 return; 3827 3828 if (cpu_has_secondary_exec_ctrls() && 3829 (secondary_exec_controls_get(vmx) & 3830 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3831 mode = MSR_BITMAP_MODE_X2APIC; 3832 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3833 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3834 } else { 3835 mode = 0; 3836 } 3837 3838 if (mode == vmx->x2apic_msr_bitmap_mode) 3839 return; 3840 3841 vmx->x2apic_msr_bitmap_mode = mode; 3842 3843 vmx_reset_x2apic_msrs(vcpu, mode); 3844 3845 /* 3846 * TPR reads and writes can be virtualized even if virtual interrupt 3847 * delivery is not in use. 3848 */ 3849 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 3850 !(mode & MSR_BITMAP_MODE_X2APIC)); 3851 3852 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3853 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 3854 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3855 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3856 } 3857 } 3858 3859 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 3860 { 3861 struct vcpu_vmx *vmx = to_vmx(vcpu); 3862 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3863 u32 i; 3864 3865 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 3866 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 3867 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 3868 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 3869 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 3870 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3871 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3872 } 3873 } 3874 3875 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3876 { 3877 struct vcpu_vmx *vmx = to_vmx(vcpu); 3878 void *vapic_page; 3879 u32 vppr; 3880 int rvi; 3881 3882 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3883 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3884 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3885 return false; 3886 3887 rvi = vmx_get_rvi(); 3888 3889 vapic_page = vmx->nested.virtual_apic_map.hva; 3890 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 3891 3892 return ((rvi & 0xf0) > (vppr & 0xf0)); 3893 } 3894 3895 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 3896 { 3897 struct vcpu_vmx *vmx = to_vmx(vcpu); 3898 u32 i; 3899 3900 /* 3901 * Set intercept permissions for all potentially passed through MSRs 3902 * again. They will automatically get filtered through the MSR filter, 3903 * so we are back in sync after this. 3904 */ 3905 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 3906 u32 msr = vmx_possible_passthrough_msrs[i]; 3907 bool read = test_bit(i, vmx->shadow_msr_intercept.read); 3908 bool write = test_bit(i, vmx->shadow_msr_intercept.write); 3909 3910 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read); 3911 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write); 3912 } 3913 3914 pt_update_intercept_for_msr(vcpu); 3915 } 3916 3917 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 3918 int pi_vec) 3919 { 3920 #ifdef CONFIG_SMP 3921 if (vcpu->mode == IN_GUEST_MODE) { 3922 /* 3923 * The vector of the virtual has already been set in the PIR. 3924 * Send a notification event to deliver the virtual interrupt 3925 * unless the vCPU is the currently running vCPU, i.e. the 3926 * event is being sent from a fastpath VM-Exit handler, in 3927 * which case the PIR will be synced to the vIRR before 3928 * re-entering the guest. 3929 * 3930 * When the target is not the running vCPU, the following 3931 * possibilities emerge: 3932 * 3933 * Case 1: vCPU stays in non-root mode. Sending a notification 3934 * event posts the interrupt to the vCPU. 3935 * 3936 * Case 2: vCPU exits to root mode and is still runnable. The 3937 * PIR will be synced to the vIRR before re-entering the guest. 3938 * Sending a notification event is ok as the host IRQ handler 3939 * will ignore the spurious event. 3940 * 3941 * Case 3: vCPU exits to root mode and is blocked. vcpu_block() 3942 * has already synced PIR to vIRR and never blocks the vCPU if 3943 * the vIRR is not empty. Therefore, a blocked vCPU here does 3944 * not wait for any requested interrupts in PIR, and sending a 3945 * notification event also results in a benign, spurious event. 3946 */ 3947 3948 if (vcpu != kvm_get_running_vcpu()) 3949 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 3950 return; 3951 } 3952 #endif 3953 /* 3954 * The vCPU isn't in the guest; wake the vCPU in case it is blocking, 3955 * otherwise do nothing as KVM will grab the highest priority pending 3956 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). 3957 */ 3958 kvm_vcpu_wake_up(vcpu); 3959 } 3960 3961 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 3962 int vector) 3963 { 3964 struct vcpu_vmx *vmx = to_vmx(vcpu); 3965 3966 if (is_guest_mode(vcpu) && 3967 vector == vmx->nested.posted_intr_nv) { 3968 /* 3969 * If a posted intr is not recognized by hardware, 3970 * we will accomplish it in the next vmentry. 3971 */ 3972 vmx->nested.pi_pending = true; 3973 kvm_make_request(KVM_REQ_EVENT, vcpu); 3974 3975 /* 3976 * This pairs with the smp_mb_*() after setting vcpu->mode in 3977 * vcpu_enter_guest() to guarantee the vCPU sees the event 3978 * request if triggering a posted interrupt "fails" because 3979 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 3980 * the smb_wmb() in kvm_make_request() only ensures everything 3981 * done before making the request is visible when the request 3982 * is visible, it doesn't ensure ordering between the store to 3983 * vcpu->requests and the load from vcpu->mode. 3984 */ 3985 smp_mb__after_atomic(); 3986 3987 /* the PIR and ON have been set by L1. */ 3988 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); 3989 return 0; 3990 } 3991 return -1; 3992 } 3993 /* 3994 * Send interrupt to vcpu via posted interrupt way. 3995 * 1. If target vcpu is running(non-root mode), send posted interrupt 3996 * notification to vcpu and hardware will sync PIR to vIRR atomically. 3997 * 2. If target vcpu isn't running(root mode), kick it to pick up the 3998 * interrupt from PIR in next vmentry. 3999 */ 4000 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4001 { 4002 struct vcpu_vmx *vmx = to_vmx(vcpu); 4003 int r; 4004 4005 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4006 if (!r) 4007 return 0; 4008 4009 if (!vcpu->arch.apicv_active) 4010 return -1; 4011 4012 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4013 return 0; 4014 4015 /* If a previous notification has sent the IPI, nothing to do. */ 4016 if (pi_test_and_set_on(&vmx->pi_desc)) 4017 return 0; 4018 4019 /* 4020 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() 4021 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is 4022 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a 4023 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. 4024 */ 4025 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); 4026 return 0; 4027 } 4028 4029 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 4030 int trig_mode, int vector) 4031 { 4032 struct kvm_vcpu *vcpu = apic->vcpu; 4033 4034 if (vmx_deliver_posted_interrupt(vcpu, vector)) { 4035 kvm_lapic_set_irr(vector, apic); 4036 kvm_make_request(KVM_REQ_EVENT, vcpu); 4037 kvm_vcpu_kick(vcpu); 4038 } else { 4039 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 4040 trig_mode, vector); 4041 } 4042 } 4043 4044 /* 4045 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4046 * will not change in the lifetime of the guest. 4047 * Note that host-state that does change is set elsewhere. E.g., host-state 4048 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4049 */ 4050 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4051 { 4052 u32 low32, high32; 4053 unsigned long tmpl; 4054 unsigned long cr0, cr3, cr4; 4055 4056 cr0 = read_cr0(); 4057 WARN_ON(cr0 & X86_CR0_TS); 4058 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4059 4060 /* 4061 * Save the most likely value for this task's CR3 in the VMCS. 4062 * We can't use __get_current_cr3_fast() because we're not atomic. 4063 */ 4064 cr3 = __read_cr3(); 4065 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4066 vmx->loaded_vmcs->host_state.cr3 = cr3; 4067 4068 /* Save the most likely value for this task's CR4 in the VMCS. */ 4069 cr4 = cr4_read_shadow(); 4070 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4071 vmx->loaded_vmcs->host_state.cr4 = cr4; 4072 4073 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4074 #ifdef CONFIG_X86_64 4075 /* 4076 * Load null selectors, so we can avoid reloading them in 4077 * vmx_prepare_switch_to_host(), in case userspace uses 4078 * the null selectors too (the expected case). 4079 */ 4080 vmcs_write16(HOST_DS_SELECTOR, 0); 4081 vmcs_write16(HOST_ES_SELECTOR, 0); 4082 #else 4083 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4084 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4085 #endif 4086 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4087 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4088 4089 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4090 4091 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4092 4093 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4094 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4095 4096 /* 4097 * SYSENTER is used for 32-bit system calls on either 32-bit or 4098 * 64-bit kernels. It is always zero If neither is allowed, otherwise 4099 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may 4100 * have already done so!). 4101 */ 4102 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) 4103 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4104 4105 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4106 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4107 4108 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4109 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4110 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4111 } 4112 4113 if (cpu_has_load_ia32_efer()) 4114 vmcs_write64(HOST_IA32_EFER, host_efer); 4115 } 4116 4117 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4118 { 4119 struct kvm_vcpu *vcpu = &vmx->vcpu; 4120 4121 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4122 ~vcpu->arch.cr4_guest_rsvd_bits; 4123 if (!enable_ept) { 4124 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4125 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4126 } 4127 if (is_guest_mode(&vmx->vcpu)) 4128 vcpu->arch.cr4_guest_owned_bits &= 4129 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4130 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4131 } 4132 4133 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4134 { 4135 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4136 4137 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4138 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4139 4140 if (!enable_vnmi) 4141 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4142 4143 if (!enable_preemption_timer) 4144 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4145 4146 return pin_based_exec_ctrl; 4147 } 4148 4149 static u32 vmx_vmentry_ctrl(void) 4150 { 4151 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4152 4153 if (vmx_pt_mode_is_system()) 4154 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4155 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4156 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4157 return vmentry_ctrl & 4158 ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER); 4159 } 4160 4161 static u32 vmx_vmexit_ctrl(void) 4162 { 4163 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4164 4165 if (vmx_pt_mode_is_system()) 4166 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4167 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4168 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4169 return vmexit_ctrl & 4170 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4171 } 4172 4173 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4174 { 4175 struct vcpu_vmx *vmx = to_vmx(vcpu); 4176 4177 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4178 if (cpu_has_secondary_exec_ctrls()) { 4179 if (kvm_vcpu_apicv_active(vcpu)) 4180 secondary_exec_controls_setbit(vmx, 4181 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4182 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4183 else 4184 secondary_exec_controls_clearbit(vmx, 4185 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4186 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4187 } 4188 4189 vmx_update_msr_bitmap_x2apic(vcpu); 4190 } 4191 4192 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4193 { 4194 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4195 4196 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4197 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4198 4199 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 4200 exec_control &= ~CPU_BASED_TPR_SHADOW; 4201 #ifdef CONFIG_X86_64 4202 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4203 CPU_BASED_CR8_LOAD_EXITING; 4204 #endif 4205 } 4206 if (!enable_ept) 4207 exec_control |= CPU_BASED_CR3_STORE_EXITING | 4208 CPU_BASED_CR3_LOAD_EXITING | 4209 CPU_BASED_INVLPG_EXITING; 4210 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4211 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4212 CPU_BASED_MONITOR_EXITING); 4213 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4214 exec_control &= ~CPU_BASED_HLT_EXITING; 4215 return exec_control; 4216 } 4217 4218 /* 4219 * Adjust a single secondary execution control bit to intercept/allow an 4220 * instruction in the guest. This is usually done based on whether or not a 4221 * feature has been exposed to the guest in order to correctly emulate faults. 4222 */ 4223 static inline void 4224 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4225 u32 control, bool enabled, bool exiting) 4226 { 4227 /* 4228 * If the control is for an opt-in feature, clear the control if the 4229 * feature is not exposed to the guest, i.e. not enabled. If the 4230 * control is opt-out, i.e. an exiting control, clear the control if 4231 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4232 * disabled for the associated instruction. Note, the caller is 4233 * responsible presetting exec_control to set all supported bits. 4234 */ 4235 if (enabled == exiting) 4236 *exec_control &= ~control; 4237 4238 /* 4239 * Update the nested MSR settings so that a nested VMM can/can't set 4240 * controls for features that are/aren't exposed to the guest. 4241 */ 4242 if (nested) { 4243 if (enabled) 4244 vmx->nested.msrs.secondary_ctls_high |= control; 4245 else 4246 vmx->nested.msrs.secondary_ctls_high &= ~control; 4247 } 4248 } 4249 4250 /* 4251 * Wrapper macro for the common case of adjusting a secondary execution control 4252 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4253 * verifies that the control is actually supported by KVM and hardware. 4254 */ 4255 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4256 ({ \ 4257 bool __enabled; \ 4258 \ 4259 if (cpu_has_vmx_##name()) { \ 4260 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4261 X86_FEATURE_##feat_name); \ 4262 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4263 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4264 } \ 4265 }) 4266 4267 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4268 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4269 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4270 4271 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4272 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4273 4274 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4275 { 4276 struct kvm_vcpu *vcpu = &vmx->vcpu; 4277 4278 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4279 4280 if (vmx_pt_mode_is_system()) 4281 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4282 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4283 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4284 if (vmx->vpid == 0) 4285 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4286 if (!enable_ept) { 4287 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4288 enable_unrestricted_guest = 0; 4289 } 4290 if (!enable_unrestricted_guest) 4291 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4292 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4293 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4294 if (!kvm_vcpu_apicv_active(vcpu)) 4295 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4296 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4297 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4298 4299 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4300 * in vmx_set_cr4. */ 4301 exec_control &= ~SECONDARY_EXEC_DESC; 4302 4303 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4304 (handle_vmptrld). 4305 We can NOT enable shadow_vmcs here because we don't have yet 4306 a current VMCS12 4307 */ 4308 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4309 4310 /* 4311 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4312 * it needs to be set here when dirty logging is already active, e.g. 4313 * if this vCPU was created after dirty logging was enabled. 4314 */ 4315 if (!vcpu->kvm->arch.cpu_dirty_logging_count) 4316 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4317 4318 if (cpu_has_vmx_xsaves()) { 4319 /* Exposing XSAVES only when XSAVE is exposed */ 4320 bool xsaves_enabled = 4321 boot_cpu_has(X86_FEATURE_XSAVE) && 4322 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4323 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4324 4325 vcpu->arch.xsaves_enabled = xsaves_enabled; 4326 4327 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4328 SECONDARY_EXEC_XSAVES, 4329 xsaves_enabled, false); 4330 } 4331 4332 /* 4333 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4334 * feature is exposed to the guest. This creates a virtualization hole 4335 * if both are supported in hardware but only one is exposed to the 4336 * guest, but letting the guest execute RDTSCP or RDPID when either one 4337 * is advertised is preferable to emulating the advertised instruction 4338 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4339 */ 4340 if (cpu_has_vmx_rdtscp()) { 4341 bool rdpid_or_rdtscp_enabled = 4342 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4343 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4344 4345 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4346 SECONDARY_EXEC_ENABLE_RDTSCP, 4347 rdpid_or_rdtscp_enabled, false); 4348 } 4349 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4350 4351 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4352 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4353 4354 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4355 ENABLE_USR_WAIT_PAUSE, false); 4356 4357 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4358 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4359 4360 return exec_control; 4361 } 4362 4363 #define VMX_XSS_EXIT_BITMAP 0 4364 4365 static void init_vmcs(struct vcpu_vmx *vmx) 4366 { 4367 if (nested) 4368 nested_vmx_set_vmcs_shadowing_bitmap(); 4369 4370 if (cpu_has_vmx_msr_bitmap()) 4371 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4372 4373 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4374 4375 /* Control */ 4376 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4377 4378 exec_controls_set(vmx, vmx_exec_control(vmx)); 4379 4380 if (cpu_has_secondary_exec_ctrls()) 4381 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4382 4383 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4384 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4385 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4386 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4387 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4388 4389 vmcs_write16(GUEST_INTR_STATUS, 0); 4390 4391 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4392 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4393 } 4394 4395 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4396 vmcs_write32(PLE_GAP, ple_gap); 4397 vmx->ple_window = ple_window; 4398 vmx->ple_window_dirty = true; 4399 } 4400 4401 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4402 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4403 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4404 4405 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4406 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4407 vmx_set_constant_host_state(vmx); 4408 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4409 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4410 4411 if (cpu_has_vmx_vmfunc()) 4412 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4413 4414 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4415 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4416 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4417 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4418 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4419 4420 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4421 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4422 4423 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4424 4425 /* 22.2.1, 20.8.1 */ 4426 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4427 4428 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS; 4429 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4430 4431 set_cr4_guest_host_mask(vmx); 4432 4433 if (vmx->vpid != 0) 4434 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4435 4436 if (cpu_has_vmx_xsaves()) 4437 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4438 4439 if (enable_pml) { 4440 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4441 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4442 } 4443 4444 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4445 4446 if (vmx_pt_mode_is_host_guest()) { 4447 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4448 /* Bit[6~0] are forced to 1, writes are ignored. */ 4449 vmx->pt_desc.guest.output_mask = 0x7F; 4450 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4451 } 4452 4453 vmcs_write32(GUEST_SYSENTER_CS, 0); 4454 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4455 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4456 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4457 4458 if (cpu_has_vmx_tpr_shadow()) { 4459 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4460 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4461 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4462 __pa(vmx->vcpu.arch.apic->regs)); 4463 vmcs_write32(TPR_THRESHOLD, 0); 4464 } 4465 4466 vmx_setup_uret_msrs(vmx); 4467 } 4468 4469 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4470 { 4471 struct vcpu_vmx *vmx = to_vmx(vcpu); 4472 4473 init_vmcs(vmx); 4474 4475 if (nested) 4476 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4477 4478 vcpu_setup_sgx_lepubkeyhash(vcpu); 4479 4480 vmx->nested.posted_intr_nv = -1; 4481 vmx->nested.vmxon_ptr = INVALID_GPA; 4482 vmx->nested.current_vmptr = INVALID_GPA; 4483 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4484 4485 vcpu->arch.microcode_version = 0x100000000ULL; 4486 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4487 4488 /* 4489 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4490 * or POSTED_INTR_WAKEUP_VECTOR. 4491 */ 4492 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4493 vmx->pi_desc.sn = 1; 4494 } 4495 4496 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4497 { 4498 struct vcpu_vmx *vmx = to_vmx(vcpu); 4499 4500 if (!init_event) 4501 __vmx_vcpu_reset(vcpu); 4502 4503 vmx->rmode.vm86_active = 0; 4504 vmx->spec_ctrl = 0; 4505 4506 vmx->msr_ia32_umwait_control = 0; 4507 4508 vmx->hv_deadline_tsc = -1; 4509 kvm_set_cr8(vcpu, 0); 4510 4511 vmx_segment_cache_clear(vmx); 4512 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4513 4514 seg_setup(VCPU_SREG_CS); 4515 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4516 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4517 4518 seg_setup(VCPU_SREG_DS); 4519 seg_setup(VCPU_SREG_ES); 4520 seg_setup(VCPU_SREG_FS); 4521 seg_setup(VCPU_SREG_GS); 4522 seg_setup(VCPU_SREG_SS); 4523 4524 vmcs_write16(GUEST_TR_SELECTOR, 0); 4525 vmcs_writel(GUEST_TR_BASE, 0); 4526 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4527 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4528 4529 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4530 vmcs_writel(GUEST_LDTR_BASE, 0); 4531 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4532 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4533 4534 vmcs_writel(GUEST_GDTR_BASE, 0); 4535 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4536 4537 vmcs_writel(GUEST_IDTR_BASE, 0); 4538 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4539 4540 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4541 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4542 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4543 if (kvm_mpx_supported()) 4544 vmcs_write64(GUEST_BNDCFGS, 0); 4545 4546 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4547 4548 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4549 4550 vpid_sync_context(vmx->vpid); 4551 } 4552 4553 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4554 { 4555 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4556 } 4557 4558 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4559 { 4560 if (!enable_vnmi || 4561 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4562 vmx_enable_irq_window(vcpu); 4563 return; 4564 } 4565 4566 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4567 } 4568 4569 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4570 { 4571 struct vcpu_vmx *vmx = to_vmx(vcpu); 4572 uint32_t intr; 4573 int irq = vcpu->arch.interrupt.nr; 4574 4575 trace_kvm_inj_virq(irq); 4576 4577 ++vcpu->stat.irq_injections; 4578 if (vmx->rmode.vm86_active) { 4579 int inc_eip = 0; 4580 if (vcpu->arch.interrupt.soft) 4581 inc_eip = vcpu->arch.event_exit_inst_len; 4582 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4583 return; 4584 } 4585 intr = irq | INTR_INFO_VALID_MASK; 4586 if (vcpu->arch.interrupt.soft) { 4587 intr |= INTR_TYPE_SOFT_INTR; 4588 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4589 vmx->vcpu.arch.event_exit_inst_len); 4590 } else 4591 intr |= INTR_TYPE_EXT_INTR; 4592 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4593 4594 vmx_clear_hlt(vcpu); 4595 } 4596 4597 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4598 { 4599 struct vcpu_vmx *vmx = to_vmx(vcpu); 4600 4601 if (!enable_vnmi) { 4602 /* 4603 * Tracking the NMI-blocked state in software is built upon 4604 * finding the next open IRQ window. This, in turn, depends on 4605 * well-behaving guests: They have to keep IRQs disabled at 4606 * least as long as the NMI handler runs. Otherwise we may 4607 * cause NMI nesting, maybe breaking the guest. But as this is 4608 * highly unlikely, we can live with the residual risk. 4609 */ 4610 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4611 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4612 } 4613 4614 ++vcpu->stat.nmi_injections; 4615 vmx->loaded_vmcs->nmi_known_unmasked = false; 4616 4617 if (vmx->rmode.vm86_active) { 4618 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4619 return; 4620 } 4621 4622 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4623 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4624 4625 vmx_clear_hlt(vcpu); 4626 } 4627 4628 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4629 { 4630 struct vcpu_vmx *vmx = to_vmx(vcpu); 4631 bool masked; 4632 4633 if (!enable_vnmi) 4634 return vmx->loaded_vmcs->soft_vnmi_blocked; 4635 if (vmx->loaded_vmcs->nmi_known_unmasked) 4636 return false; 4637 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4638 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4639 return masked; 4640 } 4641 4642 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4643 { 4644 struct vcpu_vmx *vmx = to_vmx(vcpu); 4645 4646 if (!enable_vnmi) { 4647 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4648 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4649 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4650 } 4651 } else { 4652 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4653 if (masked) 4654 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4655 GUEST_INTR_STATE_NMI); 4656 else 4657 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4658 GUEST_INTR_STATE_NMI); 4659 } 4660 } 4661 4662 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 4663 { 4664 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4665 return false; 4666 4667 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4668 return true; 4669 4670 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4671 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 4672 GUEST_INTR_STATE_NMI)); 4673 } 4674 4675 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4676 { 4677 if (to_vmx(vcpu)->nested.nested_run_pending) 4678 return -EBUSY; 4679 4680 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 4681 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4682 return -EBUSY; 4683 4684 return !vmx_nmi_blocked(vcpu); 4685 } 4686 4687 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 4688 { 4689 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4690 return false; 4691 4692 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 4693 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4694 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4695 } 4696 4697 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4698 { 4699 if (to_vmx(vcpu)->nested.nested_run_pending) 4700 return -EBUSY; 4701 4702 /* 4703 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 4704 * e.g. if the IRQ arrived asynchronously after checking nested events. 4705 */ 4706 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4707 return -EBUSY; 4708 4709 return !vmx_interrupt_blocked(vcpu); 4710 } 4711 4712 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4713 { 4714 void __user *ret; 4715 4716 if (enable_unrestricted_guest) 4717 return 0; 4718 4719 mutex_lock(&kvm->slots_lock); 4720 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4721 PAGE_SIZE * 3); 4722 mutex_unlock(&kvm->slots_lock); 4723 4724 if (IS_ERR(ret)) 4725 return PTR_ERR(ret); 4726 4727 to_kvm_vmx(kvm)->tss_addr = addr; 4728 4729 return init_rmode_tss(kvm, ret); 4730 } 4731 4732 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4733 { 4734 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4735 return 0; 4736 } 4737 4738 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4739 { 4740 switch (vec) { 4741 case BP_VECTOR: 4742 /* 4743 * Update instruction length as we may reinject the exception 4744 * from user space while in guest debugging mode. 4745 */ 4746 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4747 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4748 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4749 return false; 4750 fallthrough; 4751 case DB_VECTOR: 4752 return !(vcpu->guest_debug & 4753 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 4754 case DE_VECTOR: 4755 case OF_VECTOR: 4756 case BR_VECTOR: 4757 case UD_VECTOR: 4758 case DF_VECTOR: 4759 case SS_VECTOR: 4760 case GP_VECTOR: 4761 case MF_VECTOR: 4762 return true; 4763 } 4764 return false; 4765 } 4766 4767 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4768 int vec, u32 err_code) 4769 { 4770 /* 4771 * Instruction with address size override prefix opcode 0x67 4772 * Cause the #SS fault with 0 error code in VM86 mode. 4773 */ 4774 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4775 if (kvm_emulate_instruction(vcpu, 0)) { 4776 if (vcpu->arch.halt_request) { 4777 vcpu->arch.halt_request = 0; 4778 return kvm_emulate_halt_noskip(vcpu); 4779 } 4780 return 1; 4781 } 4782 return 0; 4783 } 4784 4785 /* 4786 * Forward all other exceptions that are valid in real mode. 4787 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4788 * the required debugging infrastructure rework. 4789 */ 4790 kvm_queue_exception(vcpu, vec); 4791 return 1; 4792 } 4793 4794 static int handle_machine_check(struct kvm_vcpu *vcpu) 4795 { 4796 /* handled by vmx_vcpu_run() */ 4797 return 1; 4798 } 4799 4800 /* 4801 * If the host has split lock detection disabled, then #AC is 4802 * unconditionally injected into the guest, which is the pre split lock 4803 * detection behaviour. 4804 * 4805 * If the host has split lock detection enabled then #AC is 4806 * only injected into the guest when: 4807 * - Guest CPL == 3 (user mode) 4808 * - Guest has #AC detection enabled in CR0 4809 * - Guest EFLAGS has AC bit set 4810 */ 4811 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 4812 { 4813 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 4814 return true; 4815 4816 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) && 4817 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 4818 } 4819 4820 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 4821 { 4822 struct vcpu_vmx *vmx = to_vmx(vcpu); 4823 struct kvm_run *kvm_run = vcpu->run; 4824 u32 intr_info, ex_no, error_code; 4825 unsigned long cr2, dr6; 4826 u32 vect_info; 4827 4828 vect_info = vmx->idt_vectoring_info; 4829 intr_info = vmx_get_intr_info(vcpu); 4830 4831 if (is_machine_check(intr_info) || is_nmi(intr_info)) 4832 return 1; /* handled by handle_exception_nmi_irqoff() */ 4833 4834 /* 4835 * Queue the exception here instead of in handle_nm_fault_irqoff(). 4836 * This ensures the nested_vmx check is not skipped so vmexit can 4837 * be reflected to L1 (when it intercepts #NM) before reaching this 4838 * point. 4839 */ 4840 if (is_nm_fault(intr_info)) { 4841 kvm_queue_exception(vcpu, NM_VECTOR); 4842 return 1; 4843 } 4844 4845 if (is_invalid_opcode(intr_info)) 4846 return handle_ud(vcpu); 4847 4848 error_code = 0; 4849 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4850 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4851 4852 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4853 WARN_ON_ONCE(!enable_vmware_backdoor); 4854 4855 /* 4856 * VMware backdoor emulation on #GP interception only handles 4857 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 4858 * error code on #GP. 4859 */ 4860 if (error_code) { 4861 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4862 return 1; 4863 } 4864 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 4865 } 4866 4867 /* 4868 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4869 * MMIO, it is better to report an internal error. 4870 * See the comments in vmx_handle_exit. 4871 */ 4872 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4873 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4874 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4875 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4876 vcpu->run->internal.ndata = 4; 4877 vcpu->run->internal.data[0] = vect_info; 4878 vcpu->run->internal.data[1] = intr_info; 4879 vcpu->run->internal.data[2] = error_code; 4880 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 4881 return 0; 4882 } 4883 4884 if (is_page_fault(intr_info)) { 4885 cr2 = vmx_get_exit_qual(vcpu); 4886 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 4887 /* 4888 * EPT will cause page fault only if we need to 4889 * detect illegal GPAs. 4890 */ 4891 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 4892 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 4893 return 1; 4894 } else 4895 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4896 } 4897 4898 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4899 4900 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4901 return handle_rmode_exception(vcpu, ex_no, error_code); 4902 4903 switch (ex_no) { 4904 case DB_VECTOR: 4905 dr6 = vmx_get_exit_qual(vcpu); 4906 if (!(vcpu->guest_debug & 4907 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4908 /* 4909 * If the #DB was due to ICEBP, a.k.a. INT1, skip the 4910 * instruction. ICEBP generates a trap-like #DB, but 4911 * despite its interception control being tied to #DB, 4912 * is an instruction intercept, i.e. the VM-Exit occurs 4913 * on the ICEBP itself. Note, skipping ICEBP also 4914 * clears STI and MOVSS blocking. 4915 * 4916 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS 4917 * if single-step is enabled in RFLAGS and STI or MOVSS 4918 * blocking is active, as the CPU doesn't set the bit 4919 * on VM-Exit due to #DB interception. VM-Entry has a 4920 * consistency check that a single-step #DB is pending 4921 * in this scenario as the previous instruction cannot 4922 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV 4923 * don't modify RFLAGS), therefore the one instruction 4924 * delay when activating single-step breakpoints must 4925 * have already expired. Note, the CPU sets/clears BS 4926 * as appropriate for all other VM-Exits types. 4927 */ 4928 if (is_icebp(intr_info)) 4929 WARN_ON(!skip_emulated_instruction(vcpu)); 4930 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && 4931 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4932 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) 4933 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 4934 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); 4935 4936 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 4937 return 1; 4938 } 4939 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 4940 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4941 fallthrough; 4942 case BP_VECTOR: 4943 /* 4944 * Update instruction length as we may reinject #BP from 4945 * user space while in guest debugging mode. Reading it for 4946 * #DB as well causes no harm, it is not used in that case. 4947 */ 4948 vmx->vcpu.arch.event_exit_inst_len = 4949 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4950 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4951 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 4952 kvm_run->debug.arch.exception = ex_no; 4953 break; 4954 case AC_VECTOR: 4955 if (vmx_guest_inject_ac(vcpu)) { 4956 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4957 return 1; 4958 } 4959 4960 /* 4961 * Handle split lock. Depending on detection mode this will 4962 * either warn and disable split lock detection for this 4963 * task or force SIGBUS on it. 4964 */ 4965 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 4966 return 1; 4967 fallthrough; 4968 default: 4969 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4970 kvm_run->ex.exception = ex_no; 4971 kvm_run->ex.error_code = error_code; 4972 break; 4973 } 4974 return 0; 4975 } 4976 4977 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 4978 { 4979 ++vcpu->stat.irq_exits; 4980 return 1; 4981 } 4982 4983 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4984 { 4985 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 4986 vcpu->mmio_needed = 0; 4987 return 0; 4988 } 4989 4990 static int handle_io(struct kvm_vcpu *vcpu) 4991 { 4992 unsigned long exit_qualification; 4993 int size, in, string; 4994 unsigned port; 4995 4996 exit_qualification = vmx_get_exit_qual(vcpu); 4997 string = (exit_qualification & 16) != 0; 4998 4999 ++vcpu->stat.io_exits; 5000 5001 if (string) 5002 return kvm_emulate_instruction(vcpu, 0); 5003 5004 port = exit_qualification >> 16; 5005 size = (exit_qualification & 7) + 1; 5006 in = (exit_qualification & 8) != 0; 5007 5008 return kvm_fast_pio(vcpu, size, port, in); 5009 } 5010 5011 static void 5012 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5013 { 5014 /* 5015 * Patch in the VMCALL instruction: 5016 */ 5017 hypercall[0] = 0x0f; 5018 hypercall[1] = 0x01; 5019 hypercall[2] = 0xc1; 5020 } 5021 5022 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5023 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5024 { 5025 if (is_guest_mode(vcpu)) { 5026 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5027 unsigned long orig_val = val; 5028 5029 /* 5030 * We get here when L2 changed cr0 in a way that did not change 5031 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5032 * but did change L0 shadowed bits. So we first calculate the 5033 * effective cr0 value that L1 would like to write into the 5034 * hardware. It consists of the L2-owned bits from the new 5035 * value combined with the L1-owned bits from L1's guest_cr0. 5036 */ 5037 val = (val & ~vmcs12->cr0_guest_host_mask) | 5038 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5039 5040 if (!nested_guest_cr0_valid(vcpu, val)) 5041 return 1; 5042 5043 if (kvm_set_cr0(vcpu, val)) 5044 return 1; 5045 vmcs_writel(CR0_READ_SHADOW, orig_val); 5046 return 0; 5047 } else { 5048 if (to_vmx(vcpu)->nested.vmxon && 5049 !nested_host_cr0_valid(vcpu, val)) 5050 return 1; 5051 5052 return kvm_set_cr0(vcpu, val); 5053 } 5054 } 5055 5056 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5057 { 5058 if (is_guest_mode(vcpu)) { 5059 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5060 unsigned long orig_val = val; 5061 5062 /* analogously to handle_set_cr0 */ 5063 val = (val & ~vmcs12->cr4_guest_host_mask) | 5064 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5065 if (kvm_set_cr4(vcpu, val)) 5066 return 1; 5067 vmcs_writel(CR4_READ_SHADOW, orig_val); 5068 return 0; 5069 } else 5070 return kvm_set_cr4(vcpu, val); 5071 } 5072 5073 static int handle_desc(struct kvm_vcpu *vcpu) 5074 { 5075 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 5076 return kvm_emulate_instruction(vcpu, 0); 5077 } 5078 5079 static int handle_cr(struct kvm_vcpu *vcpu) 5080 { 5081 unsigned long exit_qualification, val; 5082 int cr; 5083 int reg; 5084 int err; 5085 int ret; 5086 5087 exit_qualification = vmx_get_exit_qual(vcpu); 5088 cr = exit_qualification & 15; 5089 reg = (exit_qualification >> 8) & 15; 5090 switch ((exit_qualification >> 4) & 3) { 5091 case 0: /* mov to cr */ 5092 val = kvm_register_read(vcpu, reg); 5093 trace_kvm_cr_write(cr, val); 5094 switch (cr) { 5095 case 0: 5096 err = handle_set_cr0(vcpu, val); 5097 return kvm_complete_insn_gp(vcpu, err); 5098 case 3: 5099 WARN_ON_ONCE(enable_unrestricted_guest); 5100 5101 err = kvm_set_cr3(vcpu, val); 5102 return kvm_complete_insn_gp(vcpu, err); 5103 case 4: 5104 err = handle_set_cr4(vcpu, val); 5105 return kvm_complete_insn_gp(vcpu, err); 5106 case 8: { 5107 u8 cr8_prev = kvm_get_cr8(vcpu); 5108 u8 cr8 = (u8)val; 5109 err = kvm_set_cr8(vcpu, cr8); 5110 ret = kvm_complete_insn_gp(vcpu, err); 5111 if (lapic_in_kernel(vcpu)) 5112 return ret; 5113 if (cr8_prev <= cr8) 5114 return ret; 5115 /* 5116 * TODO: we might be squashing a 5117 * KVM_GUESTDBG_SINGLESTEP-triggered 5118 * KVM_EXIT_DEBUG here. 5119 */ 5120 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5121 return 0; 5122 } 5123 } 5124 break; 5125 case 2: /* clts */ 5126 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5127 return -EIO; 5128 case 1: /*mov from cr*/ 5129 switch (cr) { 5130 case 3: 5131 WARN_ON_ONCE(enable_unrestricted_guest); 5132 5133 val = kvm_read_cr3(vcpu); 5134 kvm_register_write(vcpu, reg, val); 5135 trace_kvm_cr_read(cr, val); 5136 return kvm_skip_emulated_instruction(vcpu); 5137 case 8: 5138 val = kvm_get_cr8(vcpu); 5139 kvm_register_write(vcpu, reg, val); 5140 trace_kvm_cr_read(cr, val); 5141 return kvm_skip_emulated_instruction(vcpu); 5142 } 5143 break; 5144 case 3: /* lmsw */ 5145 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5146 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 5147 kvm_lmsw(vcpu, val); 5148 5149 return kvm_skip_emulated_instruction(vcpu); 5150 default: 5151 break; 5152 } 5153 vcpu->run->exit_reason = 0; 5154 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5155 (int)(exit_qualification >> 4) & 3, cr); 5156 return 0; 5157 } 5158 5159 static int handle_dr(struct kvm_vcpu *vcpu) 5160 { 5161 unsigned long exit_qualification; 5162 int dr, dr7, reg; 5163 int err = 1; 5164 5165 exit_qualification = vmx_get_exit_qual(vcpu); 5166 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5167 5168 /* First, if DR does not exist, trigger UD */ 5169 if (!kvm_require_dr(vcpu, dr)) 5170 return 1; 5171 5172 if (vmx_get_cpl(vcpu) > 0) 5173 goto out; 5174 5175 dr7 = vmcs_readl(GUEST_DR7); 5176 if (dr7 & DR7_GD) { 5177 /* 5178 * As the vm-exit takes precedence over the debug trap, we 5179 * need to emulate the latter, either for the host or the 5180 * guest debugging itself. 5181 */ 5182 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5183 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5184 vcpu->run->debug.arch.dr7 = dr7; 5185 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5186 vcpu->run->debug.arch.exception = DB_VECTOR; 5187 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5188 return 0; 5189 } else { 5190 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5191 return 1; 5192 } 5193 } 5194 5195 if (vcpu->guest_debug == 0) { 5196 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5197 5198 /* 5199 * No more DR vmexits; force a reload of the debug registers 5200 * and reenter on this instruction. The next vmexit will 5201 * retrieve the full state of the debug registers. 5202 */ 5203 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5204 return 1; 5205 } 5206 5207 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5208 if (exit_qualification & TYPE_MOV_FROM_DR) { 5209 unsigned long val; 5210 5211 kvm_get_dr(vcpu, dr, &val); 5212 kvm_register_write(vcpu, reg, val); 5213 err = 0; 5214 } else { 5215 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5216 } 5217 5218 out: 5219 return kvm_complete_insn_gp(vcpu, err); 5220 } 5221 5222 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5223 { 5224 get_debugreg(vcpu->arch.db[0], 0); 5225 get_debugreg(vcpu->arch.db[1], 1); 5226 get_debugreg(vcpu->arch.db[2], 2); 5227 get_debugreg(vcpu->arch.db[3], 3); 5228 get_debugreg(vcpu->arch.dr6, 6); 5229 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5230 5231 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5232 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5233 5234 /* 5235 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5236 * a stale dr6 from the guest. 5237 */ 5238 set_debugreg(DR6_RESERVED, 6); 5239 } 5240 5241 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5242 { 5243 vmcs_writel(GUEST_DR7, val); 5244 } 5245 5246 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5247 { 5248 kvm_apic_update_ppr(vcpu); 5249 return 1; 5250 } 5251 5252 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5253 { 5254 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5255 5256 kvm_make_request(KVM_REQ_EVENT, vcpu); 5257 5258 ++vcpu->stat.irq_window_exits; 5259 return 1; 5260 } 5261 5262 static int handle_invlpg(struct kvm_vcpu *vcpu) 5263 { 5264 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5265 5266 kvm_mmu_invlpg(vcpu, exit_qualification); 5267 return kvm_skip_emulated_instruction(vcpu); 5268 } 5269 5270 static int handle_apic_access(struct kvm_vcpu *vcpu) 5271 { 5272 if (likely(fasteoi)) { 5273 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5274 int access_type, offset; 5275 5276 access_type = exit_qualification & APIC_ACCESS_TYPE; 5277 offset = exit_qualification & APIC_ACCESS_OFFSET; 5278 /* 5279 * Sane guest uses MOV to write EOI, with written value 5280 * not cared. So make a short-circuit here by avoiding 5281 * heavy instruction emulation. 5282 */ 5283 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5284 (offset == APIC_EOI)) { 5285 kvm_lapic_set_eoi(vcpu); 5286 return kvm_skip_emulated_instruction(vcpu); 5287 } 5288 } 5289 return kvm_emulate_instruction(vcpu, 0); 5290 } 5291 5292 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5293 { 5294 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5295 int vector = exit_qualification & 0xff; 5296 5297 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5298 kvm_apic_set_eoi_accelerated(vcpu, vector); 5299 return 1; 5300 } 5301 5302 static int handle_apic_write(struct kvm_vcpu *vcpu) 5303 { 5304 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5305 5306 /* 5307 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and 5308 * hardware has done any necessary aliasing, offset adjustments, etc... 5309 * for the access. I.e. the correct value has already been written to 5310 * the vAPIC page for the correct 16-byte chunk. KVM needs only to 5311 * retrieve the register value and emulate the access. 5312 */ 5313 u32 offset = exit_qualification & 0xff0; 5314 5315 kvm_apic_write_nodecode(vcpu, offset); 5316 return 1; 5317 } 5318 5319 static int handle_task_switch(struct kvm_vcpu *vcpu) 5320 { 5321 struct vcpu_vmx *vmx = to_vmx(vcpu); 5322 unsigned long exit_qualification; 5323 bool has_error_code = false; 5324 u32 error_code = 0; 5325 u16 tss_selector; 5326 int reason, type, idt_v, idt_index; 5327 5328 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5329 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5330 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5331 5332 exit_qualification = vmx_get_exit_qual(vcpu); 5333 5334 reason = (u32)exit_qualification >> 30; 5335 if (reason == TASK_SWITCH_GATE && idt_v) { 5336 switch (type) { 5337 case INTR_TYPE_NMI_INTR: 5338 vcpu->arch.nmi_injected = false; 5339 vmx_set_nmi_mask(vcpu, true); 5340 break; 5341 case INTR_TYPE_EXT_INTR: 5342 case INTR_TYPE_SOFT_INTR: 5343 kvm_clear_interrupt_queue(vcpu); 5344 break; 5345 case INTR_TYPE_HARD_EXCEPTION: 5346 if (vmx->idt_vectoring_info & 5347 VECTORING_INFO_DELIVER_CODE_MASK) { 5348 has_error_code = true; 5349 error_code = 5350 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5351 } 5352 fallthrough; 5353 case INTR_TYPE_SOFT_EXCEPTION: 5354 kvm_clear_exception_queue(vcpu); 5355 break; 5356 default: 5357 break; 5358 } 5359 } 5360 tss_selector = exit_qualification; 5361 5362 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5363 type != INTR_TYPE_EXT_INTR && 5364 type != INTR_TYPE_NMI_INTR)) 5365 WARN_ON(!skip_emulated_instruction(vcpu)); 5366 5367 /* 5368 * TODO: What about debug traps on tss switch? 5369 * Are we supposed to inject them and update dr6? 5370 */ 5371 return kvm_task_switch(vcpu, tss_selector, 5372 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5373 reason, has_error_code, error_code); 5374 } 5375 5376 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5377 { 5378 unsigned long exit_qualification; 5379 gpa_t gpa; 5380 u64 error_code; 5381 5382 exit_qualification = vmx_get_exit_qual(vcpu); 5383 5384 /* 5385 * EPT violation happened while executing iret from NMI, 5386 * "blocked by NMI" bit has to be set before next VM entry. 5387 * There are errata that may cause this bit to not be set: 5388 * AAK134, BY25. 5389 */ 5390 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5391 enable_vnmi && 5392 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5393 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5394 5395 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5396 trace_kvm_page_fault(gpa, exit_qualification); 5397 5398 /* Is it a read fault? */ 5399 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5400 ? PFERR_USER_MASK : 0; 5401 /* Is it a write fault? */ 5402 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5403 ? PFERR_WRITE_MASK : 0; 5404 /* Is it a fetch fault? */ 5405 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5406 ? PFERR_FETCH_MASK : 0; 5407 /* ept page table entry is present? */ 5408 error_code |= (exit_qualification & 5409 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5410 EPT_VIOLATION_EXECUTABLE)) 5411 ? PFERR_PRESENT_MASK : 0; 5412 5413 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5414 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5415 5416 vcpu->arch.exit_qualification = exit_qualification; 5417 5418 /* 5419 * Check that the GPA doesn't exceed physical memory limits, as that is 5420 * a guest page fault. We have to emulate the instruction here, because 5421 * if the illegal address is that of a paging structure, then 5422 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5423 * would also use advanced VM-exit information for EPT violations to 5424 * reconstruct the page fault error code. 5425 */ 5426 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5427 return kvm_emulate_instruction(vcpu, 0); 5428 5429 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5430 } 5431 5432 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5433 { 5434 gpa_t gpa; 5435 5436 if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) 5437 return 1; 5438 5439 /* 5440 * A nested guest cannot optimize MMIO vmexits, because we have an 5441 * nGPA here instead of the required GPA. 5442 */ 5443 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5444 if (!is_guest_mode(vcpu) && 5445 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5446 trace_kvm_fast_mmio(gpa); 5447 return kvm_skip_emulated_instruction(vcpu); 5448 } 5449 5450 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5451 } 5452 5453 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5454 { 5455 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5456 return -EIO; 5457 5458 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5459 ++vcpu->stat.nmi_window_exits; 5460 kvm_make_request(KVM_REQ_EVENT, vcpu); 5461 5462 return 1; 5463 } 5464 5465 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) 5466 { 5467 struct vcpu_vmx *vmx = to_vmx(vcpu); 5468 5469 return vmx->emulation_required && !vmx->rmode.vm86_active && 5470 vcpu->arch.exception.pending; 5471 } 5472 5473 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5474 { 5475 struct vcpu_vmx *vmx = to_vmx(vcpu); 5476 bool intr_window_requested; 5477 unsigned count = 130; 5478 5479 intr_window_requested = exec_controls_get(vmx) & 5480 CPU_BASED_INTR_WINDOW_EXITING; 5481 5482 while (vmx->emulation_required && count-- != 0) { 5483 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5484 return handle_interrupt_window(&vmx->vcpu); 5485 5486 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5487 return 1; 5488 5489 if (!kvm_emulate_instruction(vcpu, 0)) 5490 return 0; 5491 5492 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5493 kvm_prepare_emulation_failure_exit(vcpu); 5494 return 0; 5495 } 5496 5497 if (vcpu->arch.halt_request) { 5498 vcpu->arch.halt_request = 0; 5499 return kvm_emulate_halt_noskip(vcpu); 5500 } 5501 5502 /* 5503 * Note, return 1 and not 0, vcpu_run() will invoke 5504 * xfer_to_guest_mode() which will create a proper return 5505 * code. 5506 */ 5507 if (__xfer_to_guest_mode_work_pending()) 5508 return 1; 5509 } 5510 5511 return 1; 5512 } 5513 5514 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) 5515 { 5516 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5517 kvm_prepare_emulation_failure_exit(vcpu); 5518 return 0; 5519 } 5520 5521 return 1; 5522 } 5523 5524 static void grow_ple_window(struct kvm_vcpu *vcpu) 5525 { 5526 struct vcpu_vmx *vmx = to_vmx(vcpu); 5527 unsigned int old = vmx->ple_window; 5528 5529 vmx->ple_window = __grow_ple_window(old, ple_window, 5530 ple_window_grow, 5531 ple_window_max); 5532 5533 if (vmx->ple_window != old) { 5534 vmx->ple_window_dirty = true; 5535 trace_kvm_ple_window_update(vcpu->vcpu_id, 5536 vmx->ple_window, old); 5537 } 5538 } 5539 5540 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5541 { 5542 struct vcpu_vmx *vmx = to_vmx(vcpu); 5543 unsigned int old = vmx->ple_window; 5544 5545 vmx->ple_window = __shrink_ple_window(old, ple_window, 5546 ple_window_shrink, 5547 ple_window); 5548 5549 if (vmx->ple_window != old) { 5550 vmx->ple_window_dirty = true; 5551 trace_kvm_ple_window_update(vcpu->vcpu_id, 5552 vmx->ple_window, old); 5553 } 5554 } 5555 5556 /* 5557 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5558 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5559 */ 5560 static int handle_pause(struct kvm_vcpu *vcpu) 5561 { 5562 if (!kvm_pause_in_guest(vcpu->kvm)) 5563 grow_ple_window(vcpu); 5564 5565 /* 5566 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5567 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5568 * never set PAUSE_EXITING and just set PLE if supported, 5569 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5570 */ 5571 kvm_vcpu_on_spin(vcpu, true); 5572 return kvm_skip_emulated_instruction(vcpu); 5573 } 5574 5575 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5576 { 5577 return 1; 5578 } 5579 5580 static int handle_invpcid(struct kvm_vcpu *vcpu) 5581 { 5582 u32 vmx_instruction_info; 5583 unsigned long type; 5584 gva_t gva; 5585 struct { 5586 u64 pcid; 5587 u64 gla; 5588 } operand; 5589 int gpr_index; 5590 5591 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5592 kvm_queue_exception(vcpu, UD_VECTOR); 5593 return 1; 5594 } 5595 5596 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5597 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5598 type = kvm_register_read(vcpu, gpr_index); 5599 5600 /* According to the Intel instruction reference, the memory operand 5601 * is read even if it isn't needed (e.g., for type==all) 5602 */ 5603 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5604 vmx_instruction_info, false, 5605 sizeof(operand), &gva)) 5606 return 1; 5607 5608 return kvm_handle_invpcid(vcpu, type, gva); 5609 } 5610 5611 static int handle_pml_full(struct kvm_vcpu *vcpu) 5612 { 5613 unsigned long exit_qualification; 5614 5615 trace_kvm_pml_full(vcpu->vcpu_id); 5616 5617 exit_qualification = vmx_get_exit_qual(vcpu); 5618 5619 /* 5620 * PML buffer FULL happened while executing iret from NMI, 5621 * "blocked by NMI" bit has to be set before next VM entry. 5622 */ 5623 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5624 enable_vnmi && 5625 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5626 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5627 GUEST_INTR_STATE_NMI); 5628 5629 /* 5630 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5631 * here.., and there's no userspace involvement needed for PML. 5632 */ 5633 return 1; 5634 } 5635 5636 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5637 { 5638 struct vcpu_vmx *vmx = to_vmx(vcpu); 5639 5640 if (!vmx->req_immediate_exit && 5641 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 5642 kvm_lapic_expired_hv_timer(vcpu); 5643 return EXIT_FASTPATH_REENTER_GUEST; 5644 } 5645 5646 return EXIT_FASTPATH_NONE; 5647 } 5648 5649 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5650 { 5651 handle_fastpath_preemption_timer(vcpu); 5652 return 1; 5653 } 5654 5655 /* 5656 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5657 * are overwritten by nested_vmx_setup() when nested=1. 5658 */ 5659 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5660 { 5661 kvm_queue_exception(vcpu, UD_VECTOR); 5662 return 1; 5663 } 5664 5665 #ifndef CONFIG_X86_SGX_KVM 5666 static int handle_encls(struct kvm_vcpu *vcpu) 5667 { 5668 /* 5669 * SGX virtualization is disabled. There is no software enable bit for 5670 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 5671 * the guest from executing ENCLS (when SGX is supported by hardware). 5672 */ 5673 kvm_queue_exception(vcpu, UD_VECTOR); 5674 return 1; 5675 } 5676 #endif /* CONFIG_X86_SGX_KVM */ 5677 5678 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 5679 { 5680 /* 5681 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 5682 * VM-Exits. Unconditionally set the flag here and leave the handling to 5683 * vmx_handle_exit(). 5684 */ 5685 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 5686 return 1; 5687 } 5688 5689 /* 5690 * The exit handlers return 1 if the exit was handled fully and guest execution 5691 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5692 * to be done to userspace and return 0. 5693 */ 5694 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5695 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 5696 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5697 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5698 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5699 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5700 [EXIT_REASON_CR_ACCESS] = handle_cr, 5701 [EXIT_REASON_DR_ACCESS] = handle_dr, 5702 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 5703 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 5704 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 5705 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 5706 [EXIT_REASON_HLT] = kvm_emulate_halt, 5707 [EXIT_REASON_INVD] = kvm_emulate_invd, 5708 [EXIT_REASON_INVLPG] = handle_invlpg, 5709 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 5710 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 5711 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5712 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5713 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5714 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5715 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5716 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5717 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5718 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5719 [EXIT_REASON_VMON] = handle_vmx_instruction, 5720 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5721 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5722 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5723 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5724 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 5725 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 5726 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5727 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5728 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5729 [EXIT_REASON_LDTR_TR] = handle_desc, 5730 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5731 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5732 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5733 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 5734 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5735 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 5736 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5737 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5738 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 5739 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 5740 [EXIT_REASON_PML_FULL] = handle_pml_full, 5741 [EXIT_REASON_INVPCID] = handle_invpcid, 5742 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5743 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5744 [EXIT_REASON_ENCLS] = handle_encls, 5745 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 5746 }; 5747 5748 static const int kvm_vmx_max_exit_handlers = 5749 ARRAY_SIZE(kvm_vmx_exit_handlers); 5750 5751 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 5752 u64 *info1, u64 *info2, 5753 u32 *intr_info, u32 *error_code) 5754 { 5755 struct vcpu_vmx *vmx = to_vmx(vcpu); 5756 5757 *reason = vmx->exit_reason.full; 5758 *info1 = vmx_get_exit_qual(vcpu); 5759 if (!(vmx->exit_reason.failed_vmentry)) { 5760 *info2 = vmx->idt_vectoring_info; 5761 *intr_info = vmx_get_intr_info(vcpu); 5762 if (is_exception_with_error_code(*intr_info)) 5763 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5764 else 5765 *error_code = 0; 5766 } else { 5767 *info2 = 0; 5768 *intr_info = 0; 5769 *error_code = 0; 5770 } 5771 } 5772 5773 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5774 { 5775 if (vmx->pml_pg) { 5776 __free_page(vmx->pml_pg); 5777 vmx->pml_pg = NULL; 5778 } 5779 } 5780 5781 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5782 { 5783 struct vcpu_vmx *vmx = to_vmx(vcpu); 5784 u64 *pml_buf; 5785 u16 pml_idx; 5786 5787 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5788 5789 /* Do nothing if PML buffer is empty */ 5790 if (pml_idx == (PML_ENTITY_NUM - 1)) 5791 return; 5792 5793 /* PML index always points to next available PML buffer entity */ 5794 if (pml_idx >= PML_ENTITY_NUM) 5795 pml_idx = 0; 5796 else 5797 pml_idx++; 5798 5799 pml_buf = page_address(vmx->pml_pg); 5800 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5801 u64 gpa; 5802 5803 gpa = pml_buf[pml_idx]; 5804 WARN_ON(gpa & (PAGE_SIZE - 1)); 5805 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5806 } 5807 5808 /* reset PML index */ 5809 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5810 } 5811 5812 static void vmx_dump_sel(char *name, uint32_t sel) 5813 { 5814 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5815 name, vmcs_read16(sel), 5816 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5817 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5818 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5819 } 5820 5821 static void vmx_dump_dtsel(char *name, uint32_t limit) 5822 { 5823 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5824 name, vmcs_read32(limit), 5825 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5826 } 5827 5828 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 5829 { 5830 unsigned int i; 5831 struct vmx_msr_entry *e; 5832 5833 pr_err("MSR %s:\n", name); 5834 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 5835 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 5836 } 5837 5838 void dump_vmcs(struct kvm_vcpu *vcpu) 5839 { 5840 struct vcpu_vmx *vmx = to_vmx(vcpu); 5841 u32 vmentry_ctl, vmexit_ctl; 5842 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 5843 unsigned long cr4; 5844 int efer_slot; 5845 5846 if (!dump_invalid_vmcs) { 5847 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 5848 return; 5849 } 5850 5851 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5852 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5853 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5854 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5855 cr4 = vmcs_readl(GUEST_CR4); 5856 secondary_exec_control = 0; 5857 if (cpu_has_secondary_exec_ctrls()) 5858 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5859 5860 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 5861 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 5862 pr_err("*** Guest State ***\n"); 5863 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5864 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5865 vmcs_readl(CR0_GUEST_HOST_MASK)); 5866 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5867 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5868 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5869 if (cpu_has_vmx_ept()) { 5870 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5871 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5872 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5873 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5874 } 5875 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5876 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5877 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5878 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5879 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5880 vmcs_readl(GUEST_SYSENTER_ESP), 5881 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5882 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5883 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5884 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5885 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5886 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5887 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5888 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5889 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5890 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5891 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5892 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 5893 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 5894 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 5895 else if (efer_slot >= 0) 5896 pr_err("EFER= 0x%016llx (autoload)\n", 5897 vmx->msr_autoload.guest.val[efer_slot].value); 5898 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 5899 pr_err("EFER= 0x%016llx (effective)\n", 5900 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 5901 else 5902 pr_err("EFER= 0x%016llx (effective)\n", 5903 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 5904 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 5905 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 5906 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5907 vmcs_read64(GUEST_IA32_DEBUGCTL), 5908 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5909 if (cpu_has_load_perf_global_ctrl() && 5910 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5911 pr_err("PerfGlobCtl = 0x%016llx\n", 5912 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5913 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5914 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5915 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5916 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5917 vmcs_read32(GUEST_ACTIVITY_STATE)); 5918 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5919 pr_err("InterruptStatus = %04x\n", 5920 vmcs_read16(GUEST_INTR_STATUS)); 5921 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 5922 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 5923 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 5924 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 5925 5926 pr_err("*** Host State ***\n"); 5927 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5928 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5929 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5930 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5931 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5932 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5933 vmcs_read16(HOST_TR_SELECTOR)); 5934 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5935 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5936 vmcs_readl(HOST_TR_BASE)); 5937 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5938 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5939 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5940 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5941 vmcs_readl(HOST_CR4)); 5942 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5943 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5944 vmcs_read32(HOST_IA32_SYSENTER_CS), 5945 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5946 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 5947 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 5948 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 5949 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 5950 if (cpu_has_load_perf_global_ctrl() && 5951 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5952 pr_err("PerfGlobCtl = 0x%016llx\n", 5953 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5954 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 5955 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 5956 5957 pr_err("*** Control State ***\n"); 5958 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5959 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5960 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5961 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5962 vmcs_read32(EXCEPTION_BITMAP), 5963 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5964 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5965 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5966 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5967 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5968 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5969 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5970 vmcs_read32(VM_EXIT_INTR_INFO), 5971 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5972 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5973 pr_err(" reason=%08x qualification=%016lx\n", 5974 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5975 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5976 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5977 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5978 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5979 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5980 pr_err("TSC Multiplier = 0x%016llx\n", 5981 vmcs_read64(TSC_MULTIPLIER)); 5982 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5983 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5984 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5985 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5986 } 5987 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5988 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5989 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5990 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5991 } 5992 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 5993 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 5994 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 5995 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 5996 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 5997 pr_err("PLE Gap=%08x Window=%08x\n", 5998 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 5999 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 6000 pr_err("Virtual processor ID = 0x%04x\n", 6001 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 6002 } 6003 6004 /* 6005 * The guest has exited. See if we can fix it or if we need userspace 6006 * assistance. 6007 */ 6008 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6009 { 6010 struct vcpu_vmx *vmx = to_vmx(vcpu); 6011 union vmx_exit_reason exit_reason = vmx->exit_reason; 6012 u32 vectoring_info = vmx->idt_vectoring_info; 6013 u16 exit_handler_index; 6014 6015 /* 6016 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 6017 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 6018 * querying dirty_bitmap, we only need to kick all vcpus out of guest 6019 * mode as if vcpus is in root mode, the PML buffer must has been 6020 * flushed already. Note, PML is never enabled in hardware while 6021 * running L2. 6022 */ 6023 if (enable_pml && !is_guest_mode(vcpu)) 6024 vmx_flush_pml_buffer(vcpu); 6025 6026 /* 6027 * KVM should never reach this point with a pending nested VM-Enter. 6028 * More specifically, short-circuiting VM-Entry to emulate L2 due to 6029 * invalid guest state should never happen as that means KVM knowingly 6030 * allowed a nested VM-Enter with an invalid vmcs12. More below. 6031 */ 6032 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 6033 return -EIO; 6034 6035 if (is_guest_mode(vcpu)) { 6036 /* 6037 * PML is never enabled when running L2, bail immediately if a 6038 * PML full exit occurs as something is horribly wrong. 6039 */ 6040 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6041 goto unexpected_vmexit; 6042 6043 /* 6044 * The host physical addresses of some pages of guest memory 6045 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6046 * Page). The CPU may write to these pages via their host 6047 * physical address while L2 is running, bypassing any 6048 * address-translation-based dirty tracking (e.g. EPT write 6049 * protection). 6050 * 6051 * Mark them dirty on every exit from L2 to prevent them from 6052 * getting out of sync with dirty tracking. 6053 */ 6054 nested_mark_vmcs12_pages_dirty(vcpu); 6055 6056 /* 6057 * Synthesize a triple fault if L2 state is invalid. In normal 6058 * operation, nested VM-Enter rejects any attempt to enter L2 6059 * with invalid state. However, those checks are skipped if 6060 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6061 * L2 state is invalid, it means either L1 modified SMRAM state 6062 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6063 * doing so is architecturally allowed in the RSM case, and is 6064 * the least awful solution for the userspace case without 6065 * risking false positives. 6066 */ 6067 if (vmx->emulation_required) { 6068 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6069 return 1; 6070 } 6071 6072 if (nested_vmx_reflect_vmexit(vcpu)) 6073 return 1; 6074 } 6075 6076 /* If guest state is invalid, start emulating. L2 is handled above. */ 6077 if (vmx->emulation_required) 6078 return handle_invalid_guest_state(vcpu); 6079 6080 if (exit_reason.failed_vmentry) { 6081 dump_vmcs(vcpu); 6082 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6083 vcpu->run->fail_entry.hardware_entry_failure_reason 6084 = exit_reason.full; 6085 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6086 return 0; 6087 } 6088 6089 if (unlikely(vmx->fail)) { 6090 dump_vmcs(vcpu); 6091 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6092 vcpu->run->fail_entry.hardware_entry_failure_reason 6093 = vmcs_read32(VM_INSTRUCTION_ERROR); 6094 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6095 return 0; 6096 } 6097 6098 /* 6099 * Note: 6100 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6101 * delivery event since it indicates guest is accessing MMIO. 6102 * The vm-exit can be triggered again after return to guest that 6103 * will cause infinite loop. 6104 */ 6105 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6106 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6107 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6108 exit_reason.basic != EXIT_REASON_PML_FULL && 6109 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6110 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) { 6111 int ndata = 3; 6112 6113 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6114 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6115 vcpu->run->internal.data[0] = vectoring_info; 6116 vcpu->run->internal.data[1] = exit_reason.full; 6117 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 6118 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6119 vcpu->run->internal.data[ndata++] = 6120 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6121 } 6122 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6123 vcpu->run->internal.ndata = ndata; 6124 return 0; 6125 } 6126 6127 if (unlikely(!enable_vnmi && 6128 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6129 if (!vmx_interrupt_blocked(vcpu)) { 6130 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6131 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6132 vcpu->arch.nmi_pending) { 6133 /* 6134 * This CPU don't support us in finding the end of an 6135 * NMI-blocked window if the guest runs with IRQs 6136 * disabled. So we pull the trigger after 1 s of 6137 * futile waiting, but inform the user about this. 6138 */ 6139 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6140 "state on VCPU %d after 1 s timeout\n", 6141 __func__, vcpu->vcpu_id); 6142 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6143 } 6144 } 6145 6146 if (exit_fastpath != EXIT_FASTPATH_NONE) 6147 return 1; 6148 6149 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6150 goto unexpected_vmexit; 6151 #ifdef CONFIG_RETPOLINE 6152 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6153 return kvm_emulate_wrmsr(vcpu); 6154 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6155 return handle_preemption_timer(vcpu); 6156 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6157 return handle_interrupt_window(vcpu); 6158 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6159 return handle_external_interrupt(vcpu); 6160 else if (exit_reason.basic == EXIT_REASON_HLT) 6161 return kvm_emulate_halt(vcpu); 6162 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6163 return handle_ept_misconfig(vcpu); 6164 #endif 6165 6166 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6167 kvm_vmx_max_exit_handlers); 6168 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6169 goto unexpected_vmexit; 6170 6171 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6172 6173 unexpected_vmexit: 6174 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6175 exit_reason.full); 6176 dump_vmcs(vcpu); 6177 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6178 vcpu->run->internal.suberror = 6179 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6180 vcpu->run->internal.ndata = 2; 6181 vcpu->run->internal.data[0] = exit_reason.full; 6182 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6183 return 0; 6184 } 6185 6186 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6187 { 6188 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6189 6190 /* 6191 * Exit to user space when bus lock detected to inform that there is 6192 * a bus lock in guest. 6193 */ 6194 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6195 if (ret > 0) 6196 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6197 6198 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6199 return 0; 6200 } 6201 return ret; 6202 } 6203 6204 /* 6205 * Software based L1D cache flush which is used when microcode providing 6206 * the cache control MSR is not loaded. 6207 * 6208 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6209 * flush it is required to read in 64 KiB because the replacement algorithm 6210 * is not exactly LRU. This could be sized at runtime via topology 6211 * information but as all relevant affected CPUs have 32KiB L1D cache size 6212 * there is no point in doing so. 6213 */ 6214 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6215 { 6216 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6217 6218 /* 6219 * This code is only executed when the the flush mode is 'cond' or 6220 * 'always' 6221 */ 6222 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6223 bool flush_l1d; 6224 6225 /* 6226 * Clear the per-vcpu flush bit, it gets set again 6227 * either from vcpu_run() or from one of the unsafe 6228 * VMEXIT handlers. 6229 */ 6230 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6231 vcpu->arch.l1tf_flush_l1d = false; 6232 6233 /* 6234 * Clear the per-cpu flush bit, it gets set again from 6235 * the interrupt handlers. 6236 */ 6237 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6238 kvm_clear_cpu_l1tf_flush_l1d(); 6239 6240 if (!flush_l1d) 6241 return; 6242 } 6243 6244 vcpu->stat.l1d_flush++; 6245 6246 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6247 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6248 return; 6249 } 6250 6251 asm volatile( 6252 /* First ensure the pages are in the TLB */ 6253 "xorl %%eax, %%eax\n" 6254 ".Lpopulate_tlb:\n\t" 6255 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6256 "addl $4096, %%eax\n\t" 6257 "cmpl %%eax, %[size]\n\t" 6258 "jne .Lpopulate_tlb\n\t" 6259 "xorl %%eax, %%eax\n\t" 6260 "cpuid\n\t" 6261 /* Now fill the cache */ 6262 "xorl %%eax, %%eax\n" 6263 ".Lfill_cache:\n" 6264 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6265 "addl $64, %%eax\n\t" 6266 "cmpl %%eax, %[size]\n\t" 6267 "jne .Lfill_cache\n\t" 6268 "lfence\n" 6269 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6270 [size] "r" (size) 6271 : "eax", "ebx", "ecx", "edx"); 6272 } 6273 6274 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6275 { 6276 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6277 int tpr_threshold; 6278 6279 if (is_guest_mode(vcpu) && 6280 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6281 return; 6282 6283 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6284 if (is_guest_mode(vcpu)) 6285 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6286 else 6287 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6288 } 6289 6290 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6291 { 6292 struct vcpu_vmx *vmx = to_vmx(vcpu); 6293 u32 sec_exec_control; 6294 6295 if (!lapic_in_kernel(vcpu)) 6296 return; 6297 6298 if (!flexpriority_enabled && 6299 !cpu_has_vmx_virtualize_x2apic_mode()) 6300 return; 6301 6302 /* Postpone execution until vmcs01 is the current VMCS. */ 6303 if (is_guest_mode(vcpu)) { 6304 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6305 return; 6306 } 6307 6308 sec_exec_control = secondary_exec_controls_get(vmx); 6309 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6310 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6311 6312 switch (kvm_get_apic_mode(vcpu)) { 6313 case LAPIC_MODE_INVALID: 6314 WARN_ONCE(true, "Invalid local APIC state"); 6315 break; 6316 case LAPIC_MODE_DISABLED: 6317 break; 6318 case LAPIC_MODE_XAPIC: 6319 if (flexpriority_enabled) { 6320 sec_exec_control |= 6321 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6322 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6323 6324 /* 6325 * Flush the TLB, reloading the APIC access page will 6326 * only do so if its physical address has changed, but 6327 * the guest may have inserted a non-APIC mapping into 6328 * the TLB while the APIC access page was disabled. 6329 */ 6330 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6331 } 6332 break; 6333 case LAPIC_MODE_X2APIC: 6334 if (cpu_has_vmx_virtualize_x2apic_mode()) 6335 sec_exec_control |= 6336 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6337 break; 6338 } 6339 secondary_exec_controls_set(vmx, sec_exec_control); 6340 6341 vmx_update_msr_bitmap_x2apic(vcpu); 6342 } 6343 6344 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6345 { 6346 struct page *page; 6347 6348 /* Defer reload until vmcs01 is the current VMCS. */ 6349 if (is_guest_mode(vcpu)) { 6350 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6351 return; 6352 } 6353 6354 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6355 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6356 return; 6357 6358 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6359 if (is_error_page(page)) 6360 return; 6361 6362 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page)); 6363 vmx_flush_tlb_current(vcpu); 6364 6365 /* 6366 * Do not pin apic access page in memory, the MMU notifier 6367 * will call us again if it is migrated or swapped out. 6368 */ 6369 put_page(page); 6370 } 6371 6372 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6373 { 6374 u16 status; 6375 u8 old; 6376 6377 if (max_isr == -1) 6378 max_isr = 0; 6379 6380 status = vmcs_read16(GUEST_INTR_STATUS); 6381 old = status >> 8; 6382 if (max_isr != old) { 6383 status &= 0xff; 6384 status |= max_isr << 8; 6385 vmcs_write16(GUEST_INTR_STATUS, status); 6386 } 6387 } 6388 6389 static void vmx_set_rvi(int vector) 6390 { 6391 u16 status; 6392 u8 old; 6393 6394 if (vector == -1) 6395 vector = 0; 6396 6397 status = vmcs_read16(GUEST_INTR_STATUS); 6398 old = (u8)status & 0xff; 6399 if ((u8)vector != old) { 6400 status &= ~0xff; 6401 status |= (u8)vector; 6402 vmcs_write16(GUEST_INTR_STATUS, status); 6403 } 6404 } 6405 6406 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6407 { 6408 /* 6409 * When running L2, updating RVI is only relevant when 6410 * vmcs12 virtual-interrupt-delivery enabled. 6411 * However, it can be enabled only when L1 also 6412 * intercepts external-interrupts and in that case 6413 * we should not update vmcs02 RVI but instead intercept 6414 * interrupt. Therefore, do nothing when running L2. 6415 */ 6416 if (!is_guest_mode(vcpu)) 6417 vmx_set_rvi(max_irr); 6418 } 6419 6420 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6421 { 6422 struct vcpu_vmx *vmx = to_vmx(vcpu); 6423 int max_irr; 6424 bool got_posted_interrupt; 6425 6426 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6427 return -EIO; 6428 6429 if (pi_test_on(&vmx->pi_desc)) { 6430 pi_clear_on(&vmx->pi_desc); 6431 /* 6432 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6433 * But on x86 this is just a compiler barrier anyway. 6434 */ 6435 smp_mb__after_atomic(); 6436 got_posted_interrupt = 6437 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6438 } else { 6439 max_irr = kvm_lapic_find_highest_irr(vcpu); 6440 got_posted_interrupt = false; 6441 } 6442 6443 /* 6444 * Newly recognized interrupts are injected via either virtual interrupt 6445 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6446 * disabled in two cases: 6447 * 6448 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6449 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6450 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6451 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6452 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6453 * 6454 * 2) If APICv is disabled for this vCPU, assigned devices may still 6455 * attempt to post interrupts. The posted interrupt vector will cause 6456 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6457 */ 6458 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6459 vmx_set_rvi(max_irr); 6460 else if (got_posted_interrupt) 6461 kvm_make_request(KVM_REQ_EVENT, vcpu); 6462 6463 return max_irr; 6464 } 6465 6466 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6467 { 6468 if (!kvm_vcpu_apicv_active(vcpu)) 6469 return; 6470 6471 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6472 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6473 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6474 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6475 } 6476 6477 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6478 { 6479 struct vcpu_vmx *vmx = to_vmx(vcpu); 6480 6481 pi_clear_on(&vmx->pi_desc); 6482 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6483 } 6484 6485 void vmx_do_interrupt_nmi_irqoff(unsigned long entry); 6486 6487 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, 6488 unsigned long entry) 6489 { 6490 bool is_nmi = entry == (unsigned long)asm_exc_nmi_noist; 6491 6492 kvm_before_interrupt(vcpu, is_nmi ? KVM_HANDLING_NMI : KVM_HANDLING_IRQ); 6493 vmx_do_interrupt_nmi_irqoff(entry); 6494 kvm_after_interrupt(vcpu); 6495 } 6496 6497 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6498 { 6499 /* 6500 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6501 * MSR value is not clobbered by the host activity before the guest 6502 * has chance to consume it. 6503 * 6504 * Do not blindly read xfd_err here, since this exception might 6505 * be caused by L1 interception on a platform which doesn't 6506 * support xfd at all. 6507 * 6508 * Do it conditionally upon guest_fpu::xfd. xfd_err matters 6509 * only when xfd contains a non-zero value. 6510 * 6511 * Queuing exception is done in vmx_handle_exit. See comment there. 6512 */ 6513 if (vcpu->arch.guest_fpu.fpstate->xfd) 6514 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 6515 } 6516 6517 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) 6518 { 6519 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist; 6520 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6521 6522 /* if exit due to PF check for async PF */ 6523 if (is_page_fault(intr_info)) 6524 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6525 /* if exit due to NM, handle before interrupts are enabled */ 6526 else if (is_nm_fault(intr_info)) 6527 handle_nm_fault_irqoff(&vmx->vcpu); 6528 /* Handle machine checks before interrupts are enabled */ 6529 else if (is_machine_check(intr_info)) 6530 kvm_machine_check(); 6531 /* We need to handle NMIs before interrupts are enabled */ 6532 else if (is_nmi(intr_info)) 6533 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry); 6534 } 6535 6536 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6537 { 6538 u32 intr_info = vmx_get_intr_info(vcpu); 6539 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6540 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6541 6542 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6543 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6544 return; 6545 6546 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc)); 6547 } 6548 6549 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6550 { 6551 struct vcpu_vmx *vmx = to_vmx(vcpu); 6552 6553 if (vmx->emulation_required) 6554 return; 6555 6556 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6557 handle_external_interrupt_irqoff(vcpu); 6558 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6559 handle_exception_nmi_irqoff(vmx); 6560 } 6561 6562 /* 6563 * The kvm parameter can be NULL (module initialization, or invocation before 6564 * VM creation). Be sure to check the kvm parameter before using it. 6565 */ 6566 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6567 { 6568 switch (index) { 6569 case MSR_IA32_SMBASE: 6570 /* 6571 * We cannot do SMM unless we can run the guest in big 6572 * real mode. 6573 */ 6574 return enable_unrestricted_guest || emulate_invalid_guest_state; 6575 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 6576 return nested; 6577 case MSR_AMD64_VIRT_SPEC_CTRL: 6578 case MSR_AMD64_TSC_RATIO: 6579 /* This is AMD only. */ 6580 return false; 6581 default: 6582 return true; 6583 } 6584 } 6585 6586 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6587 { 6588 u32 exit_intr_info; 6589 bool unblock_nmi; 6590 u8 vector; 6591 bool idtv_info_valid; 6592 6593 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6594 6595 if (enable_vnmi) { 6596 if (vmx->loaded_vmcs->nmi_known_unmasked) 6597 return; 6598 6599 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 6600 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6601 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6602 /* 6603 * SDM 3: 27.7.1.2 (September 2008) 6604 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6605 * a guest IRET fault. 6606 * SDM 3: 23.2.2 (September 2008) 6607 * Bit 12 is undefined in any of the following cases: 6608 * If the VM exit sets the valid bit in the IDT-vectoring 6609 * information field. 6610 * If the VM exit is due to a double fault. 6611 */ 6612 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6613 vector != DF_VECTOR && !idtv_info_valid) 6614 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6615 GUEST_INTR_STATE_NMI); 6616 else 6617 vmx->loaded_vmcs->nmi_known_unmasked = 6618 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6619 & GUEST_INTR_STATE_NMI); 6620 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6621 vmx->loaded_vmcs->vnmi_blocked_time += 6622 ktime_to_ns(ktime_sub(ktime_get(), 6623 vmx->loaded_vmcs->entry_time)); 6624 } 6625 6626 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6627 u32 idt_vectoring_info, 6628 int instr_len_field, 6629 int error_code_field) 6630 { 6631 u8 vector; 6632 int type; 6633 bool idtv_info_valid; 6634 6635 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6636 6637 vcpu->arch.nmi_injected = false; 6638 kvm_clear_exception_queue(vcpu); 6639 kvm_clear_interrupt_queue(vcpu); 6640 6641 if (!idtv_info_valid) 6642 return; 6643 6644 kvm_make_request(KVM_REQ_EVENT, vcpu); 6645 6646 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6647 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6648 6649 switch (type) { 6650 case INTR_TYPE_NMI_INTR: 6651 vcpu->arch.nmi_injected = true; 6652 /* 6653 * SDM 3: 27.7.1.2 (September 2008) 6654 * Clear bit "block by NMI" before VM entry if a NMI 6655 * delivery faulted. 6656 */ 6657 vmx_set_nmi_mask(vcpu, false); 6658 break; 6659 case INTR_TYPE_SOFT_EXCEPTION: 6660 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6661 fallthrough; 6662 case INTR_TYPE_HARD_EXCEPTION: 6663 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6664 u32 err = vmcs_read32(error_code_field); 6665 kvm_requeue_exception_e(vcpu, vector, err); 6666 } else 6667 kvm_requeue_exception(vcpu, vector); 6668 break; 6669 case INTR_TYPE_SOFT_INTR: 6670 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6671 fallthrough; 6672 case INTR_TYPE_EXT_INTR: 6673 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6674 break; 6675 default: 6676 break; 6677 } 6678 } 6679 6680 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6681 { 6682 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6683 VM_EXIT_INSTRUCTION_LEN, 6684 IDT_VECTORING_ERROR_CODE); 6685 } 6686 6687 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6688 { 6689 __vmx_complete_interrupts(vcpu, 6690 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6691 VM_ENTRY_INSTRUCTION_LEN, 6692 VM_ENTRY_EXCEPTION_ERROR_CODE); 6693 6694 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6695 } 6696 6697 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6698 { 6699 int i, nr_msrs; 6700 struct perf_guest_switch_msr *msrs; 6701 6702 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 6703 msrs = perf_guest_get_msrs(&nr_msrs); 6704 if (!msrs) 6705 return; 6706 6707 for (i = 0; i < nr_msrs; i++) 6708 if (msrs[i].host == msrs[i].guest) 6709 clear_atomic_switch_msr(vmx, msrs[i].msr); 6710 else 6711 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6712 msrs[i].host, false); 6713 } 6714 6715 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6716 { 6717 struct vcpu_vmx *vmx = to_vmx(vcpu); 6718 u64 tscl; 6719 u32 delta_tsc; 6720 6721 if (vmx->req_immediate_exit) { 6722 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 6723 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6724 } else if (vmx->hv_deadline_tsc != -1) { 6725 tscl = rdtsc(); 6726 if (vmx->hv_deadline_tsc > tscl) 6727 /* set_hv_timer ensures the delta fits in 32-bits */ 6728 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6729 cpu_preemption_timer_multi); 6730 else 6731 delta_tsc = 0; 6732 6733 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 6734 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6735 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 6736 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 6737 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 6738 } 6739 } 6740 6741 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6742 { 6743 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6744 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6745 vmcs_writel(HOST_RSP, host_rsp); 6746 } 6747 } 6748 6749 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 6750 { 6751 switch (to_vmx(vcpu)->exit_reason.basic) { 6752 case EXIT_REASON_MSR_WRITE: 6753 return handle_fastpath_set_msr_irqoff(vcpu); 6754 case EXIT_REASON_PREEMPTION_TIMER: 6755 return handle_fastpath_preemption_timer(vcpu); 6756 default: 6757 return EXIT_FASTPATH_NONE; 6758 } 6759 } 6760 6761 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 6762 struct vcpu_vmx *vmx) 6763 { 6764 guest_state_enter_irqoff(); 6765 6766 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6767 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6768 vmx_l1d_flush(vcpu); 6769 else if (static_branch_unlikely(&mds_user_clear)) 6770 mds_clear_cpu_buffers(); 6771 6772 if (vcpu->arch.cr2 != native_read_cr2()) 6773 native_write_cr2(vcpu->arch.cr2); 6774 6775 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6776 vmx->loaded_vmcs->launched); 6777 6778 vcpu->arch.cr2 = native_read_cr2(); 6779 6780 guest_state_exit_irqoff(); 6781 } 6782 6783 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 6784 { 6785 struct vcpu_vmx *vmx = to_vmx(vcpu); 6786 unsigned long cr3, cr4; 6787 6788 /* Record the guest's net vcpu time for enforced NMI injections. */ 6789 if (unlikely(!enable_vnmi && 6790 vmx->loaded_vmcs->soft_vnmi_blocked)) 6791 vmx->loaded_vmcs->entry_time = ktime_get(); 6792 6793 /* 6794 * Don't enter VMX if guest state is invalid, let the exit handler 6795 * start emulation until we arrive back to a valid state. Synthesize a 6796 * consistency check VM-Exit due to invalid guest state and bail. 6797 */ 6798 if (unlikely(vmx->emulation_required)) { 6799 vmx->fail = 0; 6800 6801 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 6802 vmx->exit_reason.failed_vmentry = 1; 6803 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 6804 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 6805 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 6806 vmx->exit_intr_info = 0; 6807 return EXIT_FASTPATH_NONE; 6808 } 6809 6810 trace_kvm_entry(vcpu); 6811 6812 if (vmx->ple_window_dirty) { 6813 vmx->ple_window_dirty = false; 6814 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6815 } 6816 6817 /* 6818 * We did this in prepare_switch_to_guest, because it needs to 6819 * be within srcu_read_lock. 6820 */ 6821 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 6822 6823 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 6824 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6825 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 6826 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6827 vcpu->arch.regs_dirty = 0; 6828 6829 /* 6830 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately 6831 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time 6832 * it switches back to the current->mm, which can occur in KVM context 6833 * when switching to a temporary mm to patch kernel code, e.g. if KVM 6834 * toggles a static key while handling a VM-Exit. 6835 */ 6836 cr3 = __get_current_cr3_fast(); 6837 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 6838 vmcs_writel(HOST_CR3, cr3); 6839 vmx->loaded_vmcs->host_state.cr3 = cr3; 6840 } 6841 6842 cr4 = cr4_read_shadow(); 6843 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6844 vmcs_writel(HOST_CR4, cr4); 6845 vmx->loaded_vmcs->host_state.cr4 = cr4; 6846 } 6847 6848 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 6849 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 6850 set_debugreg(vcpu->arch.dr6, 6); 6851 6852 /* When single-stepping over STI and MOV SS, we must clear the 6853 * corresponding interruptibility bits in the guest state. Otherwise 6854 * vmentry fails as it then expects bit 14 (BS) in pending debug 6855 * exceptions being set, but that's not correct for the guest debugging 6856 * case. */ 6857 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6858 vmx_set_interrupt_shadow(vcpu, 0); 6859 6860 kvm_load_guest_xsave_state(vcpu); 6861 6862 pt_guest_enter(vmx); 6863 6864 atomic_switch_perf_msrs(vmx); 6865 if (intel_pmu_lbr_is_enabled(vcpu)) 6866 vmx_passthrough_lbr_msrs(vcpu); 6867 6868 if (enable_preemption_timer) 6869 vmx_update_hv_timer(vcpu); 6870 6871 kvm_wait_lapic_expire(vcpu); 6872 6873 /* 6874 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6875 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6876 * is no need to worry about the conditional branch over the wrmsr 6877 * being speculatively taken. 6878 */ 6879 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6880 6881 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 6882 vmx_vcpu_enter_exit(vcpu, vmx); 6883 6884 /* 6885 * We do not use IBRS in the kernel. If this vCPU has used the 6886 * SPEC_CTRL MSR it may have left it on; save the value and 6887 * turn it off. This is much more efficient than blindly adding 6888 * it to the atomic save/restore list. Especially as the former 6889 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6890 * 6891 * For non-nested case: 6892 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6893 * save it. 6894 * 6895 * For nested case: 6896 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6897 * save it. 6898 */ 6899 if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))) 6900 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6901 6902 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6903 6904 /* All fields are clean at this point */ 6905 if (static_branch_unlikely(&enable_evmcs)) { 6906 current_evmcs->hv_clean_fields |= 6907 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6908 6909 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 6910 } 6911 6912 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6913 if (vmx->host_debugctlmsr) 6914 update_debugctlmsr(vmx->host_debugctlmsr); 6915 6916 #ifndef CONFIG_X86_64 6917 /* 6918 * The sysexit path does not restore ds/es, so we must set them to 6919 * a reasonable value ourselves. 6920 * 6921 * We can't defer this to vmx_prepare_switch_to_host() since that 6922 * function may be executed in interrupt context, which saves and 6923 * restore segments around it, nullifying its effect. 6924 */ 6925 loadsegment(ds, __USER_DS); 6926 loadsegment(es, __USER_DS); 6927 #endif 6928 6929 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 6930 6931 pt_guest_exit(vmx); 6932 6933 kvm_load_host_xsave_state(vcpu); 6934 6935 if (is_guest_mode(vcpu)) { 6936 /* 6937 * Track VMLAUNCH/VMRESUME that have made past guest state 6938 * checking. 6939 */ 6940 if (vmx->nested.nested_run_pending && 6941 !vmx->exit_reason.failed_vmentry) 6942 ++vcpu->stat.nested_run; 6943 6944 vmx->nested.nested_run_pending = 0; 6945 } 6946 6947 vmx->idt_vectoring_info = 0; 6948 6949 if (unlikely(vmx->fail)) { 6950 vmx->exit_reason.full = 0xdead; 6951 return EXIT_FASTPATH_NONE; 6952 } 6953 6954 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 6955 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 6956 kvm_machine_check(); 6957 6958 if (likely(!vmx->exit_reason.failed_vmentry)) 6959 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6960 6961 trace_kvm_exit(vcpu, KVM_ISA_VMX); 6962 6963 if (unlikely(vmx->exit_reason.failed_vmentry)) 6964 return EXIT_FASTPATH_NONE; 6965 6966 vmx->loaded_vmcs->launched = 1; 6967 6968 vmx_recover_nmi_blocking(vmx); 6969 vmx_complete_interrupts(vmx); 6970 6971 if (is_guest_mode(vcpu)) 6972 return EXIT_FASTPATH_NONE; 6973 6974 return vmx_exit_handlers_fastpath(vcpu); 6975 } 6976 6977 static void vmx_vcpu_free(struct kvm_vcpu *vcpu) 6978 { 6979 struct vcpu_vmx *vmx = to_vmx(vcpu); 6980 6981 if (enable_pml) 6982 vmx_destroy_pml_buffer(vmx); 6983 free_vpid(vmx->vpid); 6984 nested_vmx_free_vcpu(vcpu); 6985 free_loaded_vmcs(vmx->loaded_vmcs); 6986 } 6987 6988 static int vmx_vcpu_create(struct kvm_vcpu *vcpu) 6989 { 6990 struct vmx_uret_msr *tsx_ctrl; 6991 struct vcpu_vmx *vmx; 6992 int i, err; 6993 6994 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 6995 vmx = to_vmx(vcpu); 6996 6997 INIT_LIST_HEAD(&vmx->pi_wakeup_list); 6998 6999 err = -ENOMEM; 7000 7001 vmx->vpid = allocate_vpid(); 7002 7003 /* 7004 * If PML is turned on, failure on enabling PML just results in failure 7005 * of creating the vcpu, therefore we can simplify PML logic (by 7006 * avoiding dealing with cases, such as enabling PML partially on vcpus 7007 * for the guest), etc. 7008 */ 7009 if (enable_pml) { 7010 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7011 if (!vmx->pml_pg) 7012 goto free_vpid; 7013 } 7014 7015 for (i = 0; i < kvm_nr_uret_msrs; ++i) 7016 vmx->guest_uret_msrs[i].mask = -1ull; 7017 if (boot_cpu_has(X86_FEATURE_RTM)) { 7018 /* 7019 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 7020 * Keep the host value unchanged to avoid changing CPUID bits 7021 * under the host kernel's feet. 7022 */ 7023 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7024 if (tsx_ctrl) 7025 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 7026 } 7027 7028 err = alloc_loaded_vmcs(&vmx->vmcs01); 7029 if (err < 0) 7030 goto free_pml; 7031 7032 /* 7033 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 7034 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 7035 * feature only for vmcs01, KVM currently isn't equipped to realize any 7036 * performance benefits from enabling it for vmcs02. 7037 */ 7038 if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) && 7039 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 7040 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 7041 7042 evmcs->hv_enlightenments_control.msr_bitmap = 1; 7043 } 7044 7045 /* The MSR bitmap starts with all ones */ 7046 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7047 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7048 7049 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 7050 #ifdef CONFIG_X86_64 7051 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 7052 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 7053 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 7054 #endif 7055 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 7056 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 7057 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 7058 if (kvm_cstate_in_guest(vcpu->kvm)) { 7059 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 7060 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 7061 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 7062 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 7063 } 7064 7065 vmx->loaded_vmcs = &vmx->vmcs01; 7066 7067 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7068 err = alloc_apic_access_page(vcpu->kvm); 7069 if (err) 7070 goto free_vmcs; 7071 } 7072 7073 if (enable_ept && !enable_unrestricted_guest) { 7074 err = init_rmode_identity_map(vcpu->kvm); 7075 if (err) 7076 goto free_vmcs; 7077 } 7078 7079 return 0; 7080 7081 free_vmcs: 7082 free_loaded_vmcs(vmx->loaded_vmcs); 7083 free_pml: 7084 vmx_destroy_pml_buffer(vmx); 7085 free_vpid: 7086 free_vpid(vmx->vpid); 7087 return err; 7088 } 7089 7090 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7091 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7092 7093 static int vmx_vm_init(struct kvm *kvm) 7094 { 7095 if (!ple_gap) 7096 kvm->arch.pause_in_guest = true; 7097 7098 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7099 switch (l1tf_mitigation) { 7100 case L1TF_MITIGATION_OFF: 7101 case L1TF_MITIGATION_FLUSH_NOWARN: 7102 /* 'I explicitly don't care' is set */ 7103 break; 7104 case L1TF_MITIGATION_FLUSH: 7105 case L1TF_MITIGATION_FLUSH_NOSMT: 7106 case L1TF_MITIGATION_FULL: 7107 /* 7108 * Warn upon starting the first VM in a potentially 7109 * insecure environment. 7110 */ 7111 if (sched_smt_active()) 7112 pr_warn_once(L1TF_MSG_SMT); 7113 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7114 pr_warn_once(L1TF_MSG_L1D); 7115 break; 7116 case L1TF_MITIGATION_FULL_FORCE: 7117 /* Flush is enforced */ 7118 break; 7119 } 7120 } 7121 return 0; 7122 } 7123 7124 static int __init vmx_check_processor_compat(void) 7125 { 7126 struct vmcs_config vmcs_conf; 7127 struct vmx_capability vmx_cap; 7128 7129 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 7130 !this_cpu_has(X86_FEATURE_VMX)) { 7131 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id()); 7132 return -EIO; 7133 } 7134 7135 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 7136 return -EIO; 7137 if (nested) 7138 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept); 7139 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 7140 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 7141 smp_processor_id()); 7142 return -EIO; 7143 } 7144 return 0; 7145 } 7146 7147 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7148 { 7149 u8 cache; 7150 7151 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 7152 * memory aliases with conflicting memory types and sometimes MCEs. 7153 * We have to be careful as to what are honored and when. 7154 * 7155 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 7156 * UC. The effective memory type is UC or WC depending on guest PAT. 7157 * This was historically the source of MCEs and we want to be 7158 * conservative. 7159 * 7160 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7161 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7162 * EPT memory type is set to WB. The effective memory type is forced 7163 * WB. 7164 * 7165 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7166 * EPT memory type is used to emulate guest CD/MTRR. 7167 */ 7168 7169 if (is_mmio) 7170 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7171 7172 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) 7173 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7174 7175 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 7176 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7177 cache = MTRR_TYPE_WRBACK; 7178 else 7179 cache = MTRR_TYPE_UNCACHABLE; 7180 7181 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7182 } 7183 7184 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT; 7185 } 7186 7187 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7188 { 7189 /* 7190 * These bits in the secondary execution controls field 7191 * are dynamic, the others are mostly based on the hypervisor 7192 * architecture and the guest's CPUID. Do not touch the 7193 * dynamic bits. 7194 */ 7195 u32 mask = 7196 SECONDARY_EXEC_SHADOW_VMCS | 7197 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7198 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7199 SECONDARY_EXEC_DESC; 7200 7201 u32 cur_ctl = secondary_exec_controls_get(vmx); 7202 7203 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7204 } 7205 7206 /* 7207 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7208 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7209 */ 7210 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7211 { 7212 struct vcpu_vmx *vmx = to_vmx(vcpu); 7213 struct kvm_cpuid_entry2 *entry; 7214 7215 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7216 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7217 7218 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7219 if (entry && (entry->_reg & (_cpuid_mask))) \ 7220 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7221 } while (0) 7222 7223 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 7224 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7225 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7226 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7227 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7228 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7229 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7230 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7231 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7232 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7233 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7234 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7235 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7236 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7237 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7238 7239 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 7240 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7241 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7242 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7243 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7244 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7245 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7246 7247 #undef cr4_fixed1_update 7248 } 7249 7250 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 7251 { 7252 struct vcpu_vmx *vmx = to_vmx(vcpu); 7253 7254 if (kvm_mpx_supported()) { 7255 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 7256 7257 if (mpx_enabled) { 7258 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 7259 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 7260 } else { 7261 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 7262 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 7263 } 7264 } 7265 } 7266 7267 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7268 { 7269 struct vcpu_vmx *vmx = to_vmx(vcpu); 7270 struct kvm_cpuid_entry2 *best = NULL; 7271 int i; 7272 7273 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7274 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 7275 if (!best) 7276 return; 7277 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7278 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7279 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7280 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7281 } 7282 7283 /* Get the number of configurable Address Ranges for filtering */ 7284 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7285 PT_CAP_num_address_ranges); 7286 7287 /* Initialize and clear the no dependency bits */ 7288 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7289 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7290 RTIT_CTL_BRANCH_EN); 7291 7292 /* 7293 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7294 * will inject an #GP 7295 */ 7296 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7297 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7298 7299 /* 7300 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7301 * PSBFreq can be set 7302 */ 7303 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7304 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7305 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7306 7307 /* 7308 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7309 */ 7310 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7311 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7312 RTIT_CTL_MTC_RANGE); 7313 7314 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7315 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7316 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7317 RTIT_CTL_PTW_EN); 7318 7319 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7320 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7321 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7322 7323 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7324 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7325 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7326 7327 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7328 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7329 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7330 7331 /* unmask address range configure area */ 7332 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7333 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7334 } 7335 7336 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7337 { 7338 struct vcpu_vmx *vmx = to_vmx(vcpu); 7339 7340 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7341 vcpu->arch.xsaves_enabled = false; 7342 7343 vmx_setup_uret_msrs(vmx); 7344 7345 if (cpu_has_secondary_exec_ctrls()) 7346 vmcs_set_secondary_exec_control(vmx, 7347 vmx_secondary_exec_control(vmx)); 7348 7349 if (nested_vmx_allowed(vcpu)) 7350 vmx->msr_ia32_feature_control_valid_bits |= 7351 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7352 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7353 else 7354 vmx->msr_ia32_feature_control_valid_bits &= 7355 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7356 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7357 7358 if (nested_vmx_allowed(vcpu)) { 7359 nested_vmx_cr_fixed1_bits_update(vcpu); 7360 nested_vmx_entry_exit_ctls_update(vcpu); 7361 } 7362 7363 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7364 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7365 update_intel_pt_cfg(vcpu); 7366 7367 if (boot_cpu_has(X86_FEATURE_RTM)) { 7368 struct vmx_uret_msr *msr; 7369 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7370 if (msr) { 7371 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7372 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7373 } 7374 } 7375 7376 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 7377 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 7378 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); 7379 7380 7381 set_cr4_guest_host_mask(vmx); 7382 7383 vmx_write_encls_bitmap(vcpu, NULL); 7384 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7385 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7386 else 7387 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7388 7389 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7390 vmx->msr_ia32_feature_control_valid_bits |= 7391 FEAT_CTL_SGX_LC_ENABLED; 7392 else 7393 vmx->msr_ia32_feature_control_valid_bits &= 7394 ~FEAT_CTL_SGX_LC_ENABLED; 7395 7396 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7397 vmx_update_exception_bitmap(vcpu); 7398 } 7399 7400 static __init void vmx_set_cpu_caps(void) 7401 { 7402 kvm_set_cpu_caps(); 7403 7404 /* CPUID 0x1 */ 7405 if (nested) 7406 kvm_cpu_cap_set(X86_FEATURE_VMX); 7407 7408 /* CPUID 0x7 */ 7409 if (kvm_mpx_supported()) 7410 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7411 if (!cpu_has_vmx_invpcid()) 7412 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7413 if (vmx_pt_mode_is_host_guest()) 7414 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7415 7416 if (!enable_sgx) { 7417 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7418 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7419 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7420 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7421 } 7422 7423 if (vmx_umip_emulated()) 7424 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7425 7426 /* CPUID 0xD.1 */ 7427 supported_xss = 0; 7428 if (!cpu_has_vmx_xsaves()) 7429 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7430 7431 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7432 if (!cpu_has_vmx_rdtscp()) { 7433 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7434 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7435 } 7436 7437 if (cpu_has_vmx_waitpkg()) 7438 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7439 } 7440 7441 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7442 { 7443 to_vmx(vcpu)->req_immediate_exit = true; 7444 } 7445 7446 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7447 struct x86_instruction_info *info) 7448 { 7449 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7450 unsigned short port; 7451 bool intercept; 7452 int size; 7453 7454 if (info->intercept == x86_intercept_in || 7455 info->intercept == x86_intercept_ins) { 7456 port = info->src_val; 7457 size = info->dst_bytes; 7458 } else { 7459 port = info->dst_val; 7460 size = info->src_bytes; 7461 } 7462 7463 /* 7464 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7465 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7466 * control. 7467 * 7468 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7469 */ 7470 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7471 intercept = nested_cpu_has(vmcs12, 7472 CPU_BASED_UNCOND_IO_EXITING); 7473 else 7474 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7475 7476 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7477 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7478 } 7479 7480 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7481 struct x86_instruction_info *info, 7482 enum x86_intercept_stage stage, 7483 struct x86_exception *exception) 7484 { 7485 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7486 7487 switch (info->intercept) { 7488 /* 7489 * RDPID causes #UD if disabled through secondary execution controls. 7490 * Because it is marked as EmulateOnUD, we need to intercept it here. 7491 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7492 */ 7493 case x86_intercept_rdpid: 7494 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7495 exception->vector = UD_VECTOR; 7496 exception->error_code_valid = false; 7497 return X86EMUL_PROPAGATE_FAULT; 7498 } 7499 break; 7500 7501 case x86_intercept_in: 7502 case x86_intercept_ins: 7503 case x86_intercept_out: 7504 case x86_intercept_outs: 7505 return vmx_check_intercept_io(vcpu, info); 7506 7507 case x86_intercept_lgdt: 7508 case x86_intercept_lidt: 7509 case x86_intercept_lldt: 7510 case x86_intercept_ltr: 7511 case x86_intercept_sgdt: 7512 case x86_intercept_sidt: 7513 case x86_intercept_sldt: 7514 case x86_intercept_str: 7515 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7516 return X86EMUL_CONTINUE; 7517 7518 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7519 break; 7520 7521 /* TODO: check more intercepts... */ 7522 default: 7523 break; 7524 } 7525 7526 return X86EMUL_UNHANDLEABLE; 7527 } 7528 7529 #ifdef CONFIG_X86_64 7530 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7531 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7532 u64 divisor, u64 *result) 7533 { 7534 u64 low = a << shift, high = a >> (64 - shift); 7535 7536 /* To avoid the overflow on divq */ 7537 if (high >= divisor) 7538 return 1; 7539 7540 /* Low hold the result, high hold rem which is discarded */ 7541 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7542 "rm" (divisor), "0" (low), "1" (high)); 7543 *result = low; 7544 7545 return 0; 7546 } 7547 7548 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7549 bool *expired) 7550 { 7551 struct vcpu_vmx *vmx; 7552 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7553 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7554 7555 vmx = to_vmx(vcpu); 7556 tscl = rdtsc(); 7557 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7558 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7559 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7560 ktimer->timer_advance_ns); 7561 7562 if (delta_tsc > lapic_timer_advance_cycles) 7563 delta_tsc -= lapic_timer_advance_cycles; 7564 else 7565 delta_tsc = 0; 7566 7567 /* Convert to host delta tsc if tsc scaling is enabled */ 7568 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7569 delta_tsc && u64_shl_div_u64(delta_tsc, 7570 kvm_tsc_scaling_ratio_frac_bits, 7571 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 7572 return -ERANGE; 7573 7574 /* 7575 * If the delta tsc can't fit in the 32 bit after the multi shift, 7576 * we can't use the preemption timer. 7577 * It's possible that it fits on later vmentries, but checking 7578 * on every vmentry is costly so we just use an hrtimer. 7579 */ 7580 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7581 return -ERANGE; 7582 7583 vmx->hv_deadline_tsc = tscl + delta_tsc; 7584 *expired = !delta_tsc; 7585 return 0; 7586 } 7587 7588 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7589 { 7590 to_vmx(vcpu)->hv_deadline_tsc = -1; 7591 } 7592 #endif 7593 7594 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7595 { 7596 if (!kvm_pause_in_guest(vcpu->kvm)) 7597 shrink_ple_window(vcpu); 7598 } 7599 7600 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 7601 { 7602 struct vcpu_vmx *vmx = to_vmx(vcpu); 7603 7604 if (is_guest_mode(vcpu)) { 7605 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 7606 return; 7607 } 7608 7609 /* 7610 * Note, cpu_dirty_logging_count can be changed concurrent with this 7611 * code, but in that case another update request will be made and so 7612 * the guest will never run with a stale PML value. 7613 */ 7614 if (vcpu->kvm->arch.cpu_dirty_logging_count) 7615 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7616 else 7617 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7618 } 7619 7620 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7621 { 7622 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7623 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7624 FEAT_CTL_LMCE_ENABLED; 7625 else 7626 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7627 ~FEAT_CTL_LMCE_ENABLED; 7628 } 7629 7630 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 7631 { 7632 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7633 if (to_vmx(vcpu)->nested.nested_run_pending) 7634 return -EBUSY; 7635 return !is_smm(vcpu); 7636 } 7637 7638 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7639 { 7640 struct vcpu_vmx *vmx = to_vmx(vcpu); 7641 7642 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7643 if (vmx->nested.smm.guest_mode) 7644 nested_vmx_vmexit(vcpu, -1, 0, 0); 7645 7646 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7647 vmx->nested.vmxon = false; 7648 vmx_clear_hlt(vcpu); 7649 return 0; 7650 } 7651 7652 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7653 { 7654 struct vcpu_vmx *vmx = to_vmx(vcpu); 7655 int ret; 7656 7657 if (vmx->nested.smm.vmxon) { 7658 vmx->nested.vmxon = true; 7659 vmx->nested.smm.vmxon = false; 7660 } 7661 7662 if (vmx->nested.smm.guest_mode) { 7663 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7664 if (ret) 7665 return ret; 7666 7667 vmx->nested.nested_run_pending = 1; 7668 vmx->nested.smm.guest_mode = false; 7669 } 7670 return 0; 7671 } 7672 7673 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 7674 { 7675 /* RSM will cause a vmexit anyway. */ 7676 } 7677 7678 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 7679 { 7680 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 7681 } 7682 7683 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 7684 { 7685 if (is_guest_mode(vcpu)) { 7686 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 7687 7688 if (hrtimer_try_to_cancel(timer) == 1) 7689 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 7690 } 7691 } 7692 7693 static void vmx_hardware_unsetup(void) 7694 { 7695 kvm_set_posted_intr_wakeup_handler(NULL); 7696 7697 if (nested) 7698 nested_vmx_hardware_unsetup(); 7699 7700 free_kvm_area(); 7701 } 7702 7703 static bool vmx_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason) 7704 { 7705 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 7706 BIT(APICV_INHIBIT_REASON_ABSENT) | 7707 BIT(APICV_INHIBIT_REASON_HYPERV) | 7708 BIT(APICV_INHIBIT_REASON_BLOCKIRQ); 7709 7710 return supported & BIT(reason); 7711 } 7712 7713 static struct kvm_x86_ops vmx_x86_ops __initdata = { 7714 .name = "kvm_intel", 7715 7716 .hardware_unsetup = vmx_hardware_unsetup, 7717 7718 .hardware_enable = vmx_hardware_enable, 7719 .hardware_disable = vmx_hardware_disable, 7720 .has_emulated_msr = vmx_has_emulated_msr, 7721 7722 .vm_size = sizeof(struct kvm_vmx), 7723 .vm_init = vmx_vm_init, 7724 7725 .vcpu_create = vmx_vcpu_create, 7726 .vcpu_free = vmx_vcpu_free, 7727 .vcpu_reset = vmx_vcpu_reset, 7728 7729 .prepare_switch_to_guest = vmx_prepare_switch_to_guest, 7730 .vcpu_load = vmx_vcpu_load, 7731 .vcpu_put = vmx_vcpu_put, 7732 7733 .update_exception_bitmap = vmx_update_exception_bitmap, 7734 .get_msr_feature = vmx_get_msr_feature, 7735 .get_msr = vmx_get_msr, 7736 .set_msr = vmx_set_msr, 7737 .get_segment_base = vmx_get_segment_base, 7738 .get_segment = vmx_get_segment, 7739 .set_segment = vmx_set_segment, 7740 .get_cpl = vmx_get_cpl, 7741 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7742 .set_cr0 = vmx_set_cr0, 7743 .is_valid_cr4 = vmx_is_valid_cr4, 7744 .set_cr4 = vmx_set_cr4, 7745 .set_efer = vmx_set_efer, 7746 .get_idt = vmx_get_idt, 7747 .set_idt = vmx_set_idt, 7748 .get_gdt = vmx_get_gdt, 7749 .set_gdt = vmx_set_gdt, 7750 .set_dr7 = vmx_set_dr7, 7751 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7752 .cache_reg = vmx_cache_reg, 7753 .get_rflags = vmx_get_rflags, 7754 .set_rflags = vmx_set_rflags, 7755 .get_if_flag = vmx_get_if_flag, 7756 7757 .flush_tlb_all = vmx_flush_tlb_all, 7758 .flush_tlb_current = vmx_flush_tlb_current, 7759 .flush_tlb_gva = vmx_flush_tlb_gva, 7760 .flush_tlb_guest = vmx_flush_tlb_guest, 7761 7762 .vcpu_pre_run = vmx_vcpu_pre_run, 7763 .vcpu_run = vmx_vcpu_run, 7764 .handle_exit = vmx_handle_exit, 7765 .skip_emulated_instruction = vmx_skip_emulated_instruction, 7766 .update_emulated_instruction = vmx_update_emulated_instruction, 7767 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7768 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7769 .patch_hypercall = vmx_patch_hypercall, 7770 .inject_irq = vmx_inject_irq, 7771 .inject_nmi = vmx_inject_nmi, 7772 .queue_exception = vmx_queue_exception, 7773 .cancel_injection = vmx_cancel_injection, 7774 .interrupt_allowed = vmx_interrupt_allowed, 7775 .nmi_allowed = vmx_nmi_allowed, 7776 .get_nmi_mask = vmx_get_nmi_mask, 7777 .set_nmi_mask = vmx_set_nmi_mask, 7778 .enable_nmi_window = vmx_enable_nmi_window, 7779 .enable_irq_window = vmx_enable_irq_window, 7780 .update_cr8_intercept = vmx_update_cr8_intercept, 7781 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7782 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7783 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7784 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7785 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7786 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons, 7787 .hwapic_irr_update = vmx_hwapic_irr_update, 7788 .hwapic_isr_update = vmx_hwapic_isr_update, 7789 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7790 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7791 .deliver_interrupt = vmx_deliver_interrupt, 7792 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 7793 7794 .set_tss_addr = vmx_set_tss_addr, 7795 .set_identity_map_addr = vmx_set_identity_map_addr, 7796 .get_mt_mask = vmx_get_mt_mask, 7797 7798 .get_exit_info = vmx_get_exit_info, 7799 7800 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 7801 7802 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7803 7804 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 7805 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 7806 .write_tsc_offset = vmx_write_tsc_offset, 7807 .write_tsc_multiplier = vmx_write_tsc_multiplier, 7808 7809 .load_mmu_pgd = vmx_load_mmu_pgd, 7810 7811 .check_intercept = vmx_check_intercept, 7812 .handle_exit_irqoff = vmx_handle_exit_irqoff, 7813 7814 .request_immediate_exit = vmx_request_immediate_exit, 7815 7816 .sched_in = vmx_sched_in, 7817 7818 .cpu_dirty_log_size = PML_ENTITY_NUM, 7819 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 7820 7821 .pmu_ops = &intel_pmu_ops, 7822 .nested_ops = &vmx_nested_ops, 7823 7824 .pi_update_irte = vmx_pi_update_irte, 7825 .pi_start_assignment = vmx_pi_start_assignment, 7826 7827 #ifdef CONFIG_X86_64 7828 .set_hv_timer = vmx_set_hv_timer, 7829 .cancel_hv_timer = vmx_cancel_hv_timer, 7830 #endif 7831 7832 .setup_mce = vmx_setup_mce, 7833 7834 .smi_allowed = vmx_smi_allowed, 7835 .enter_smm = vmx_enter_smm, 7836 .leave_smm = vmx_leave_smm, 7837 .enable_smi_window = vmx_enable_smi_window, 7838 7839 .can_emulate_instruction = vmx_can_emulate_instruction, 7840 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 7841 .migrate_timers = vmx_migrate_timers, 7842 7843 .msr_filter_changed = vmx_msr_filter_changed, 7844 .complete_emulated_msr = kvm_complete_insn_gp, 7845 7846 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 7847 }; 7848 7849 static unsigned int vmx_handle_intel_pt_intr(void) 7850 { 7851 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 7852 7853 /* '0' on failure so that the !PT case can use a RET0 static call. */ 7854 if (!kvm_arch_pmi_in_guest(vcpu)) 7855 return 0; 7856 7857 kvm_make_request(KVM_REQ_PMI, vcpu); 7858 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 7859 (unsigned long *)&vcpu->arch.pmu.global_status); 7860 return 1; 7861 } 7862 7863 static __init void vmx_setup_user_return_msrs(void) 7864 { 7865 7866 /* 7867 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 7868 * will emulate SYSCALL in legacy mode if the vendor string in guest 7869 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 7870 * support this emulation, MSR_STAR is included in the list for i386, 7871 * but is never loaded into hardware. MSR_CSTAR is also never loaded 7872 * into hardware and is here purely for emulation purposes. 7873 */ 7874 const u32 vmx_uret_msrs_list[] = { 7875 #ifdef CONFIG_X86_64 7876 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 7877 #endif 7878 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 7879 MSR_IA32_TSX_CTRL, 7880 }; 7881 int i; 7882 7883 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 7884 7885 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 7886 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 7887 } 7888 7889 static struct kvm_x86_init_ops vmx_init_ops __initdata; 7890 7891 static __init int hardware_setup(void) 7892 { 7893 unsigned long host_bndcfgs; 7894 struct desc_ptr dt; 7895 int r; 7896 7897 store_idt(&dt); 7898 host_idt_base = dt.address; 7899 7900 vmx_setup_user_return_msrs(); 7901 7902 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7903 return -EIO; 7904 7905 if (boot_cpu_has(X86_FEATURE_NX)) 7906 kvm_enable_efer_bits(EFER_NX); 7907 7908 if (boot_cpu_has(X86_FEATURE_MPX)) { 7909 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7910 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7911 } 7912 7913 if (!cpu_has_vmx_mpx()) 7914 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 7915 XFEATURE_MASK_BNDCSR); 7916 7917 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7918 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7919 enable_vpid = 0; 7920 7921 if (!cpu_has_vmx_ept() || 7922 !cpu_has_vmx_ept_4levels() || 7923 !cpu_has_vmx_ept_mt_wb() || 7924 !cpu_has_vmx_invept_global()) 7925 enable_ept = 0; 7926 7927 /* NX support is required for shadow paging. */ 7928 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 7929 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n"); 7930 return -EOPNOTSUPP; 7931 } 7932 7933 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7934 enable_ept_ad_bits = 0; 7935 7936 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7937 enable_unrestricted_guest = 0; 7938 7939 if (!cpu_has_vmx_flexpriority()) 7940 flexpriority_enabled = 0; 7941 7942 if (!cpu_has_virtual_nmis()) 7943 enable_vnmi = 0; 7944 7945 /* 7946 * set_apic_access_page_addr() is used to reload apic access 7947 * page upon invalidation. No need to do anything if not 7948 * using the APIC_ACCESS_ADDR VMCS field. 7949 */ 7950 if (!flexpriority_enabled) 7951 vmx_x86_ops.set_apic_access_page_addr = NULL; 7952 7953 if (!cpu_has_vmx_tpr_shadow()) 7954 vmx_x86_ops.update_cr8_intercept = NULL; 7955 7956 #if IS_ENABLED(CONFIG_HYPERV) 7957 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7958 && enable_ept) { 7959 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb; 7960 vmx_x86_ops.tlb_remote_flush_with_range = 7961 hv_remote_flush_tlb_with_range; 7962 } 7963 #endif 7964 7965 if (!cpu_has_vmx_ple()) { 7966 ple_gap = 0; 7967 ple_window = 0; 7968 ple_window_grow = 0; 7969 ple_window_max = 0; 7970 ple_window_shrink = 0; 7971 } 7972 7973 if (!cpu_has_vmx_apicv()) 7974 enable_apicv = 0; 7975 if (!enable_apicv) 7976 vmx_x86_ops.sync_pir_to_irr = NULL; 7977 7978 if (cpu_has_vmx_tsc_scaling()) 7979 kvm_has_tsc_control = true; 7980 7981 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7982 kvm_tsc_scaling_ratio_frac_bits = 48; 7983 kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 7984 7985 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7986 7987 if (enable_ept) 7988 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 7989 cpu_has_vmx_ept_execute_only()); 7990 7991 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(), 7992 ept_caps_to_lpage_level(vmx_capability.ept)); 7993 7994 /* 7995 * Only enable PML when hardware supports PML feature, and both EPT 7996 * and EPT A/D bit features are enabled -- PML depends on them to work. 7997 */ 7998 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 7999 enable_pml = 0; 8000 8001 if (!enable_pml) 8002 vmx_x86_ops.cpu_dirty_log_size = 0; 8003 8004 if (!cpu_has_vmx_preemption_timer()) 8005 enable_preemption_timer = false; 8006 8007 if (enable_preemption_timer) { 8008 u64 use_timer_freq = 5000ULL * 1000 * 1000; 8009 u64 vmx_msr; 8010 8011 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 8012 cpu_preemption_timer_multi = 8013 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 8014 8015 if (tsc_khz) 8016 use_timer_freq = (u64)tsc_khz * 1000; 8017 use_timer_freq >>= cpu_preemption_timer_multi; 8018 8019 /* 8020 * KVM "disables" the preemption timer by setting it to its max 8021 * value. Don't use the timer if it might cause spurious exits 8022 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 8023 */ 8024 if (use_timer_freq > 0xffffffffu / 10) 8025 enable_preemption_timer = false; 8026 } 8027 8028 if (!enable_preemption_timer) { 8029 vmx_x86_ops.set_hv_timer = NULL; 8030 vmx_x86_ops.cancel_hv_timer = NULL; 8031 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 8032 } 8033 8034 kvm_mce_cap_supported |= MCG_LMCE_P; 8035 8036 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 8037 return -EINVAL; 8038 if (!enable_ept || !cpu_has_vmx_intel_pt()) 8039 pt_mode = PT_MODE_SYSTEM; 8040 if (pt_mode == PT_MODE_HOST_GUEST) 8041 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 8042 else 8043 vmx_init_ops.handle_intel_pt_intr = NULL; 8044 8045 setup_default_sgx_lepubkeyhash(); 8046 8047 if (nested) { 8048 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 8049 vmx_capability.ept); 8050 8051 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8052 if (r) 8053 return r; 8054 } 8055 8056 vmx_set_cpu_caps(); 8057 8058 r = alloc_kvm_area(); 8059 if (r && nested) 8060 nested_vmx_hardware_unsetup(); 8061 8062 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8063 8064 return r; 8065 } 8066 8067 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 8068 .cpu_has_kvm_support = cpu_has_kvm_support, 8069 .disabled_by_bios = vmx_disabled_by_bios, 8070 .check_processor_compatibility = vmx_check_processor_compat, 8071 .hardware_setup = hardware_setup, 8072 .handle_intel_pt_intr = NULL, 8073 8074 .runtime_ops = &vmx_x86_ops, 8075 }; 8076 8077 static void vmx_cleanup_l1d_flush(void) 8078 { 8079 if (vmx_l1d_flush_pages) { 8080 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8081 vmx_l1d_flush_pages = NULL; 8082 } 8083 /* Restore state so sysfs ignores VMX */ 8084 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8085 } 8086 8087 static void vmx_exit(void) 8088 { 8089 #ifdef CONFIG_KEXEC_CORE 8090 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 8091 synchronize_rcu(); 8092 #endif 8093 8094 kvm_exit(); 8095 8096 #if IS_ENABLED(CONFIG_HYPERV) 8097 if (static_branch_unlikely(&enable_evmcs)) { 8098 int cpu; 8099 struct hv_vp_assist_page *vp_ap; 8100 /* 8101 * Reset everything to support using non-enlightened VMCS 8102 * access later (e.g. when we reload the module with 8103 * enlightened_vmcs=0) 8104 */ 8105 for_each_online_cpu(cpu) { 8106 vp_ap = hv_get_vp_assist_page(cpu); 8107 8108 if (!vp_ap) 8109 continue; 8110 8111 vp_ap->nested_control.features.directhypercall = 0; 8112 vp_ap->current_nested_vmcs = 0; 8113 vp_ap->enlighten_vmentry = 0; 8114 } 8115 8116 static_branch_disable(&enable_evmcs); 8117 } 8118 #endif 8119 vmx_cleanup_l1d_flush(); 8120 8121 allow_smaller_maxphyaddr = false; 8122 } 8123 module_exit(vmx_exit); 8124 8125 static int __init vmx_init(void) 8126 { 8127 int r, cpu; 8128 8129 #if IS_ENABLED(CONFIG_HYPERV) 8130 /* 8131 * Enlightened VMCS usage should be recommended and the host needs 8132 * to support eVMCS v1 or above. We can also disable eVMCS support 8133 * with module parameter. 8134 */ 8135 if (enlightened_vmcs && 8136 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 8137 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 8138 KVM_EVMCS_VERSION) { 8139 8140 /* Check that we have assist pages on all online CPUs */ 8141 for_each_online_cpu(cpu) { 8142 if (!hv_get_vp_assist_page(cpu)) { 8143 enlightened_vmcs = false; 8144 break; 8145 } 8146 } 8147 8148 if (enlightened_vmcs) { 8149 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 8150 static_branch_enable(&enable_evmcs); 8151 } 8152 8153 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 8154 vmx_x86_ops.enable_direct_tlbflush 8155 = hv_enable_direct_tlbflush; 8156 8157 } else { 8158 enlightened_vmcs = false; 8159 } 8160 #endif 8161 8162 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx), 8163 __alignof__(struct vcpu_vmx), THIS_MODULE); 8164 if (r) 8165 return r; 8166 8167 /* 8168 * Must be called after kvm_init() so enable_ept is properly set 8169 * up. Hand the parameter mitigation value in which was stored in 8170 * the pre module init parser. If no parameter was given, it will 8171 * contain 'auto' which will be turned into the default 'cond' 8172 * mitigation mode. 8173 */ 8174 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8175 if (r) { 8176 vmx_exit(); 8177 return r; 8178 } 8179 8180 for_each_possible_cpu(cpu) { 8181 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8182 8183 pi_init_cpu(cpu); 8184 } 8185 8186 #ifdef CONFIG_KEXEC_CORE 8187 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 8188 crash_vmclear_local_loaded_vmcss); 8189 #endif 8190 vmx_check_vmcs12_offsets(); 8191 8192 /* 8193 * Shadow paging doesn't have a (further) performance penalty 8194 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8195 * by default 8196 */ 8197 if (!enable_ept) 8198 allow_smaller_maxphyaddr = true; 8199 8200 return 0; 8201 } 8202 module_init(vmx_init); 8203