1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <linux/highmem.h> 17 #include <linux/hrtimer.h> 18 #include <linux/kernel.h> 19 #include <linux/kvm_host.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mm.h> 24 #include <linux/objtool.h> 25 #include <linux/sched.h> 26 #include <linux/sched/smt.h> 27 #include <linux/slab.h> 28 #include <linux/tboot.h> 29 #include <linux/trace_events.h> 30 #include <linux/entry-kvm.h> 31 32 #include <asm/apic.h> 33 #include <asm/asm.h> 34 #include <asm/cpu.h> 35 #include <asm/cpu_device_id.h> 36 #include <asm/debugreg.h> 37 #include <asm/desc.h> 38 #include <asm/fpu/api.h> 39 #include <asm/fpu/xstate.h> 40 #include <asm/idtentry.h> 41 #include <asm/io.h> 42 #include <asm/irq_remapping.h> 43 #include <asm/kexec.h> 44 #include <asm/perf_event.h> 45 #include <asm/mmu_context.h> 46 #include <asm/mshyperv.h> 47 #include <asm/mwait.h> 48 #include <asm/spec-ctrl.h> 49 #include <asm/virtext.h> 50 #include <asm/vmx.h> 51 52 #include "capabilities.h" 53 #include "cpuid.h" 54 #include "evmcs.h" 55 #include "hyperv.h" 56 #include "kvm_onhyperv.h" 57 #include "irq.h" 58 #include "kvm_cache_regs.h" 59 #include "lapic.h" 60 #include "mmu.h" 61 #include "nested.h" 62 #include "pmu.h" 63 #include "sgx.h" 64 #include "trace.h" 65 #include "vmcs.h" 66 #include "vmcs12.h" 67 #include "vmx.h" 68 #include "x86.h" 69 70 MODULE_AUTHOR("Qumranet"); 71 MODULE_LICENSE("GPL"); 72 73 #ifdef MODULE 74 static const struct x86_cpu_id vmx_cpu_id[] = { 75 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 76 {} 77 }; 78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 79 #endif 80 81 bool __read_mostly enable_vpid = 1; 82 module_param_named(vpid, enable_vpid, bool, 0444); 83 84 static bool __read_mostly enable_vnmi = 1; 85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 86 87 bool __read_mostly flexpriority_enabled = 1; 88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 89 90 bool __read_mostly enable_ept = 1; 91 module_param_named(ept, enable_ept, bool, S_IRUGO); 92 93 bool __read_mostly enable_unrestricted_guest = 1; 94 module_param_named(unrestricted_guest, 95 enable_unrestricted_guest, bool, S_IRUGO); 96 97 bool __read_mostly enable_ept_ad_bits = 1; 98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 99 100 static bool __read_mostly emulate_invalid_guest_state = true; 101 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 102 103 static bool __read_mostly fasteoi = 1; 104 module_param(fasteoi, bool, S_IRUGO); 105 106 module_param(enable_apicv, bool, S_IRUGO); 107 108 /* 109 * If nested=1, nested virtualization is supported, i.e., guests may use 110 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 111 * use VMX instructions. 112 */ 113 static bool __read_mostly nested = 1; 114 module_param(nested, bool, S_IRUGO); 115 116 bool __read_mostly enable_pml = 1; 117 module_param_named(pml, enable_pml, bool, S_IRUGO); 118 119 static bool __read_mostly dump_invalid_vmcs = 0; 120 module_param(dump_invalid_vmcs, bool, 0644); 121 122 #define MSR_BITMAP_MODE_X2APIC 1 123 #define MSR_BITMAP_MODE_X2APIC_APICV 2 124 125 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 126 127 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 128 static int __read_mostly cpu_preemption_timer_multi; 129 static bool __read_mostly enable_preemption_timer = 1; 130 #ifdef CONFIG_X86_64 131 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 132 #endif 133 134 extern bool __read_mostly allow_smaller_maxphyaddr; 135 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 136 137 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 138 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 139 #define KVM_VM_CR0_ALWAYS_ON \ 140 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 141 142 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 143 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 144 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 145 146 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 147 148 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 149 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 150 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 151 RTIT_STATUS_BYTECNT)) 152 153 /* 154 * List of MSRs that can be directly passed to the guest. 155 * In addition to these x2apic and PT MSRs are handled specially. 156 */ 157 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 158 MSR_IA32_SPEC_CTRL, 159 MSR_IA32_PRED_CMD, 160 MSR_IA32_TSC, 161 #ifdef CONFIG_X86_64 162 MSR_FS_BASE, 163 MSR_GS_BASE, 164 MSR_KERNEL_GS_BASE, 165 MSR_IA32_XFD, 166 MSR_IA32_XFD_ERR, 167 #endif 168 MSR_IA32_SYSENTER_CS, 169 MSR_IA32_SYSENTER_ESP, 170 MSR_IA32_SYSENTER_EIP, 171 MSR_CORE_C1_RES, 172 MSR_CORE_C3_RESIDENCY, 173 MSR_CORE_C6_RESIDENCY, 174 MSR_CORE_C7_RESIDENCY, 175 }; 176 177 /* 178 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 179 * ple_gap: upper bound on the amount of time between two successive 180 * executions of PAUSE in a loop. Also indicate if ple enabled. 181 * According to test, this time is usually smaller than 128 cycles. 182 * ple_window: upper bound on the amount of time a guest is allowed to execute 183 * in a PAUSE loop. Tests indicate that most spinlocks are held for 184 * less than 2^12 cycles 185 * Time is measured based on a counter that runs at the same rate as the TSC, 186 * refer SDM volume 3b section 21.6.13 & 22.1.3. 187 */ 188 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 189 module_param(ple_gap, uint, 0444); 190 191 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 192 module_param(ple_window, uint, 0444); 193 194 /* Default doubles per-vcpu window every exit. */ 195 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 196 module_param(ple_window_grow, uint, 0444); 197 198 /* Default resets per-vcpu window every exit to ple_window. */ 199 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 200 module_param(ple_window_shrink, uint, 0444); 201 202 /* Default is to compute the maximum so we can never overflow. */ 203 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 204 module_param(ple_window_max, uint, 0444); 205 206 /* Default is SYSTEM mode, 1 for host-guest mode */ 207 int __read_mostly pt_mode = PT_MODE_SYSTEM; 208 module_param(pt_mode, int, S_IRUGO); 209 210 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 211 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 212 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 213 214 /* Storage for pre module init parameter parsing */ 215 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 216 217 static const struct { 218 const char *option; 219 bool for_parse; 220 } vmentry_l1d_param[] = { 221 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 222 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 223 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 224 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 225 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 226 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 227 }; 228 229 #define L1D_CACHE_ORDER 4 230 static void *vmx_l1d_flush_pages; 231 232 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 233 { 234 struct page *page; 235 unsigned int i; 236 237 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 238 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 239 return 0; 240 } 241 242 if (!enable_ept) { 243 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 244 return 0; 245 } 246 247 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 248 u64 msr; 249 250 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 251 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 252 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 253 return 0; 254 } 255 } 256 257 /* If set to auto use the default l1tf mitigation method */ 258 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 259 switch (l1tf_mitigation) { 260 case L1TF_MITIGATION_OFF: 261 l1tf = VMENTER_L1D_FLUSH_NEVER; 262 break; 263 case L1TF_MITIGATION_FLUSH_NOWARN: 264 case L1TF_MITIGATION_FLUSH: 265 case L1TF_MITIGATION_FLUSH_NOSMT: 266 l1tf = VMENTER_L1D_FLUSH_COND; 267 break; 268 case L1TF_MITIGATION_FULL: 269 case L1TF_MITIGATION_FULL_FORCE: 270 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 271 break; 272 } 273 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 274 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 275 } 276 277 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 278 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 279 /* 280 * This allocation for vmx_l1d_flush_pages is not tied to a VM 281 * lifetime and so should not be charged to a memcg. 282 */ 283 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 284 if (!page) 285 return -ENOMEM; 286 vmx_l1d_flush_pages = page_address(page); 287 288 /* 289 * Initialize each page with a different pattern in 290 * order to protect against KSM in the nested 291 * virtualization case. 292 */ 293 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 294 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 295 PAGE_SIZE); 296 } 297 } 298 299 l1tf_vmx_mitigation = l1tf; 300 301 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 302 static_branch_enable(&vmx_l1d_should_flush); 303 else 304 static_branch_disable(&vmx_l1d_should_flush); 305 306 if (l1tf == VMENTER_L1D_FLUSH_COND) 307 static_branch_enable(&vmx_l1d_flush_cond); 308 else 309 static_branch_disable(&vmx_l1d_flush_cond); 310 return 0; 311 } 312 313 static int vmentry_l1d_flush_parse(const char *s) 314 { 315 unsigned int i; 316 317 if (s) { 318 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 319 if (vmentry_l1d_param[i].for_parse && 320 sysfs_streq(s, vmentry_l1d_param[i].option)) 321 return i; 322 } 323 } 324 return -EINVAL; 325 } 326 327 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 328 { 329 int l1tf, ret; 330 331 l1tf = vmentry_l1d_flush_parse(s); 332 if (l1tf < 0) 333 return l1tf; 334 335 if (!boot_cpu_has(X86_BUG_L1TF)) 336 return 0; 337 338 /* 339 * Has vmx_init() run already? If not then this is the pre init 340 * parameter parsing. In that case just store the value and let 341 * vmx_init() do the proper setup after enable_ept has been 342 * established. 343 */ 344 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 345 vmentry_l1d_flush_param = l1tf; 346 return 0; 347 } 348 349 mutex_lock(&vmx_l1d_flush_mutex); 350 ret = vmx_setup_l1d_flush(l1tf); 351 mutex_unlock(&vmx_l1d_flush_mutex); 352 return ret; 353 } 354 355 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 356 { 357 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 358 return sprintf(s, "???\n"); 359 360 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 361 } 362 363 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 364 .set = vmentry_l1d_flush_set, 365 .get = vmentry_l1d_flush_get, 366 }; 367 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 368 369 static u32 vmx_segment_access_rights(struct kvm_segment *var); 370 371 void vmx_vmexit(void); 372 373 #define vmx_insn_failed(fmt...) \ 374 do { \ 375 WARN_ONCE(1, fmt); \ 376 pr_warn_ratelimited(fmt); \ 377 } while (0) 378 379 asmlinkage void vmread_error(unsigned long field, bool fault) 380 { 381 if (fault) 382 kvm_spurious_fault(); 383 else 384 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field); 385 } 386 387 noinline void vmwrite_error(unsigned long field, unsigned long value) 388 { 389 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n", 390 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 391 } 392 393 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 394 { 395 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr); 396 } 397 398 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 399 { 400 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr); 401 } 402 403 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 404 { 405 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 406 ext, vpid, gva); 407 } 408 409 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 410 { 411 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 412 ext, eptp, gpa); 413 } 414 415 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 416 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 417 /* 418 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 419 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 420 */ 421 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 422 423 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 424 static DEFINE_SPINLOCK(vmx_vpid_lock); 425 426 struct vmcs_config vmcs_config; 427 struct vmx_capability vmx_capability; 428 429 #define VMX_SEGMENT_FIELD(seg) \ 430 [VCPU_SREG_##seg] = { \ 431 .selector = GUEST_##seg##_SELECTOR, \ 432 .base = GUEST_##seg##_BASE, \ 433 .limit = GUEST_##seg##_LIMIT, \ 434 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 435 } 436 437 static const struct kvm_vmx_segment_field { 438 unsigned selector; 439 unsigned base; 440 unsigned limit; 441 unsigned ar_bytes; 442 } kvm_vmx_segment_fields[] = { 443 VMX_SEGMENT_FIELD(CS), 444 VMX_SEGMENT_FIELD(DS), 445 VMX_SEGMENT_FIELD(ES), 446 VMX_SEGMENT_FIELD(FS), 447 VMX_SEGMENT_FIELD(GS), 448 VMX_SEGMENT_FIELD(SS), 449 VMX_SEGMENT_FIELD(TR), 450 VMX_SEGMENT_FIELD(LDTR), 451 }; 452 453 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 454 { 455 vmx->segment_cache.bitmask = 0; 456 } 457 458 static unsigned long host_idt_base; 459 460 #if IS_ENABLED(CONFIG_HYPERV) 461 static bool __read_mostly enlightened_vmcs = true; 462 module_param(enlightened_vmcs, bool, 0444); 463 464 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu) 465 { 466 struct hv_enlightened_vmcs *evmcs; 467 struct hv_partition_assist_pg **p_hv_pa_pg = 468 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 469 /* 470 * Synthetic VM-Exit is not enabled in current code and so All 471 * evmcs in singe VM shares same assist page. 472 */ 473 if (!*p_hv_pa_pg) 474 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 475 476 if (!*p_hv_pa_pg) 477 return -ENOMEM; 478 479 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 480 481 evmcs->partition_assist_page = 482 __pa(*p_hv_pa_pg); 483 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 484 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 485 486 return 0; 487 } 488 489 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 490 491 /* 492 * Comment's format: document - errata name - stepping - processor name. 493 * Refer from 494 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 495 */ 496 static u32 vmx_preemption_cpu_tfms[] = { 497 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 498 0x000206E6, 499 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 500 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 501 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 502 0x00020652, 503 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 504 0x00020655, 505 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 506 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 507 /* 508 * 320767.pdf - AAP86 - B1 - 509 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 510 */ 511 0x000106E5, 512 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 513 0x000106A0, 514 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 515 0x000106A1, 516 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 517 0x000106A4, 518 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 519 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 520 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 521 0x000106A5, 522 /* Xeon E3-1220 V2 */ 523 0x000306A8, 524 }; 525 526 static inline bool cpu_has_broken_vmx_preemption_timer(void) 527 { 528 u32 eax = cpuid_eax(0x00000001), i; 529 530 /* Clear the reserved bits */ 531 eax &= ~(0x3U << 14 | 0xfU << 28); 532 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 533 if (eax == vmx_preemption_cpu_tfms[i]) 534 return true; 535 536 return false; 537 } 538 539 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 540 { 541 return flexpriority_enabled && lapic_in_kernel(vcpu); 542 } 543 544 static inline bool report_flexpriority(void) 545 { 546 return flexpriority_enabled; 547 } 548 549 static int possible_passthrough_msr_slot(u32 msr) 550 { 551 u32 i; 552 553 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 554 if (vmx_possible_passthrough_msrs[i] == msr) 555 return i; 556 557 return -ENOENT; 558 } 559 560 static bool is_valid_passthrough_msr(u32 msr) 561 { 562 bool r; 563 564 switch (msr) { 565 case 0x800 ... 0x8ff: 566 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 567 return true; 568 case MSR_IA32_RTIT_STATUS: 569 case MSR_IA32_RTIT_OUTPUT_BASE: 570 case MSR_IA32_RTIT_OUTPUT_MASK: 571 case MSR_IA32_RTIT_CR3_MATCH: 572 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 573 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 574 case MSR_LBR_SELECT: 575 case MSR_LBR_TOS: 576 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 577 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 578 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 579 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 580 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 581 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 582 return true; 583 } 584 585 r = possible_passthrough_msr_slot(msr) != -ENOENT; 586 587 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 588 589 return r; 590 } 591 592 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 593 { 594 int i; 595 596 i = kvm_find_user_return_msr(msr); 597 if (i >= 0) 598 return &vmx->guest_uret_msrs[i]; 599 return NULL; 600 } 601 602 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 603 struct vmx_uret_msr *msr, u64 data) 604 { 605 unsigned int slot = msr - vmx->guest_uret_msrs; 606 int ret = 0; 607 608 if (msr->load_into_hardware) { 609 preempt_disable(); 610 ret = kvm_set_user_return_msr(slot, data, msr->mask); 611 preempt_enable(); 612 } 613 if (!ret) 614 msr->data = data; 615 return ret; 616 } 617 618 #ifdef CONFIG_KEXEC_CORE 619 static void crash_vmclear_local_loaded_vmcss(void) 620 { 621 int cpu = raw_smp_processor_id(); 622 struct loaded_vmcs *v; 623 624 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 625 loaded_vmcss_on_cpu_link) 626 vmcs_clear(v->vmcs); 627 } 628 #endif /* CONFIG_KEXEC_CORE */ 629 630 static void __loaded_vmcs_clear(void *arg) 631 { 632 struct loaded_vmcs *loaded_vmcs = arg; 633 int cpu = raw_smp_processor_id(); 634 635 if (loaded_vmcs->cpu != cpu) 636 return; /* vcpu migration can race with cpu offline */ 637 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 638 per_cpu(current_vmcs, cpu) = NULL; 639 640 vmcs_clear(loaded_vmcs->vmcs); 641 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 642 vmcs_clear(loaded_vmcs->shadow_vmcs); 643 644 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 645 646 /* 647 * Ensure all writes to loaded_vmcs, including deleting it from its 648 * current percpu list, complete before setting loaded_vmcs->vcpu to 649 * -1, otherwise a different cpu can see vcpu == -1 first and add 650 * loaded_vmcs to its percpu list before it's deleted from this cpu's 651 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 652 */ 653 smp_wmb(); 654 655 loaded_vmcs->cpu = -1; 656 loaded_vmcs->launched = 0; 657 } 658 659 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 660 { 661 int cpu = loaded_vmcs->cpu; 662 663 if (cpu != -1) 664 smp_call_function_single(cpu, 665 __loaded_vmcs_clear, loaded_vmcs, 1); 666 } 667 668 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 669 unsigned field) 670 { 671 bool ret; 672 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 673 674 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 675 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 676 vmx->segment_cache.bitmask = 0; 677 } 678 ret = vmx->segment_cache.bitmask & mask; 679 vmx->segment_cache.bitmask |= mask; 680 return ret; 681 } 682 683 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 684 { 685 u16 *p = &vmx->segment_cache.seg[seg].selector; 686 687 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 688 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 689 return *p; 690 } 691 692 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 693 { 694 ulong *p = &vmx->segment_cache.seg[seg].base; 695 696 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 697 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 698 return *p; 699 } 700 701 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 702 { 703 u32 *p = &vmx->segment_cache.seg[seg].limit; 704 705 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 706 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 707 return *p; 708 } 709 710 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 711 { 712 u32 *p = &vmx->segment_cache.seg[seg].ar; 713 714 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 715 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 716 return *p; 717 } 718 719 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 720 { 721 u32 eb; 722 723 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 724 (1u << DB_VECTOR) | (1u << AC_VECTOR); 725 /* 726 * Guest access to VMware backdoor ports could legitimately 727 * trigger #GP because of TSS I/O permission bitmap. 728 * We intercept those #GP and allow access to them anyway 729 * as VMware does. 730 */ 731 if (enable_vmware_backdoor) 732 eb |= (1u << GP_VECTOR); 733 if ((vcpu->guest_debug & 734 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 735 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 736 eb |= 1u << BP_VECTOR; 737 if (to_vmx(vcpu)->rmode.vm86_active) 738 eb = ~0; 739 if (!vmx_need_pf_intercept(vcpu)) 740 eb &= ~(1u << PF_VECTOR); 741 742 /* When we are running a nested L2 guest and L1 specified for it a 743 * certain exception bitmap, we must trap the same exceptions and pass 744 * them to L1. When running L2, we will only handle the exceptions 745 * specified above if L1 did not want them. 746 */ 747 if (is_guest_mode(vcpu)) 748 eb |= get_vmcs12(vcpu)->exception_bitmap; 749 else { 750 int mask = 0, match = 0; 751 752 if (enable_ept && (eb & (1u << PF_VECTOR))) { 753 /* 754 * If EPT is enabled, #PF is currently only intercepted 755 * if MAXPHYADDR is smaller on the guest than on the 756 * host. In that case we only care about present, 757 * non-reserved faults. For vmcs02, however, PFEC_MASK 758 * and PFEC_MATCH are set in prepare_vmcs02_rare. 759 */ 760 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 761 match = PFERR_PRESENT_MASK; 762 } 763 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 764 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 765 } 766 767 /* 768 * Disabling xfd interception indicates that dynamic xfeatures 769 * might be used in the guest. Always trap #NM in this case 770 * to save guest xfd_err timely. 771 */ 772 if (vcpu->arch.xfd_no_write_intercept) 773 eb |= (1u << NM_VECTOR); 774 775 vmcs_write32(EXCEPTION_BITMAP, eb); 776 } 777 778 /* 779 * Check if MSR is intercepted for currently loaded MSR bitmap. 780 */ 781 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 782 { 783 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 784 return true; 785 786 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, 787 MSR_IA32_SPEC_CTRL); 788 } 789 790 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 791 unsigned long entry, unsigned long exit) 792 { 793 vm_entry_controls_clearbit(vmx, entry); 794 vm_exit_controls_clearbit(vmx, exit); 795 } 796 797 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 798 { 799 unsigned int i; 800 801 for (i = 0; i < m->nr; ++i) { 802 if (m->val[i].index == msr) 803 return i; 804 } 805 return -ENOENT; 806 } 807 808 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 809 { 810 int i; 811 struct msr_autoload *m = &vmx->msr_autoload; 812 813 switch (msr) { 814 case MSR_EFER: 815 if (cpu_has_load_ia32_efer()) { 816 clear_atomic_switch_msr_special(vmx, 817 VM_ENTRY_LOAD_IA32_EFER, 818 VM_EXIT_LOAD_IA32_EFER); 819 return; 820 } 821 break; 822 case MSR_CORE_PERF_GLOBAL_CTRL: 823 if (cpu_has_load_perf_global_ctrl()) { 824 clear_atomic_switch_msr_special(vmx, 825 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 826 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 827 return; 828 } 829 break; 830 } 831 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 832 if (i < 0) 833 goto skip_guest; 834 --m->guest.nr; 835 m->guest.val[i] = m->guest.val[m->guest.nr]; 836 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 837 838 skip_guest: 839 i = vmx_find_loadstore_msr_slot(&m->host, msr); 840 if (i < 0) 841 return; 842 843 --m->host.nr; 844 m->host.val[i] = m->host.val[m->host.nr]; 845 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 846 } 847 848 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 849 unsigned long entry, unsigned long exit, 850 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 851 u64 guest_val, u64 host_val) 852 { 853 vmcs_write64(guest_val_vmcs, guest_val); 854 if (host_val_vmcs != HOST_IA32_EFER) 855 vmcs_write64(host_val_vmcs, host_val); 856 vm_entry_controls_setbit(vmx, entry); 857 vm_exit_controls_setbit(vmx, exit); 858 } 859 860 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 861 u64 guest_val, u64 host_val, bool entry_only) 862 { 863 int i, j = 0; 864 struct msr_autoload *m = &vmx->msr_autoload; 865 866 switch (msr) { 867 case MSR_EFER: 868 if (cpu_has_load_ia32_efer()) { 869 add_atomic_switch_msr_special(vmx, 870 VM_ENTRY_LOAD_IA32_EFER, 871 VM_EXIT_LOAD_IA32_EFER, 872 GUEST_IA32_EFER, 873 HOST_IA32_EFER, 874 guest_val, host_val); 875 return; 876 } 877 break; 878 case MSR_CORE_PERF_GLOBAL_CTRL: 879 if (cpu_has_load_perf_global_ctrl()) { 880 add_atomic_switch_msr_special(vmx, 881 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 882 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 883 GUEST_IA32_PERF_GLOBAL_CTRL, 884 HOST_IA32_PERF_GLOBAL_CTRL, 885 guest_val, host_val); 886 return; 887 } 888 break; 889 case MSR_IA32_PEBS_ENABLE: 890 /* PEBS needs a quiescent period after being disabled (to write 891 * a record). Disabling PEBS through VMX MSR swapping doesn't 892 * provide that period, so a CPU could write host's record into 893 * guest's memory. 894 */ 895 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 896 } 897 898 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 899 if (!entry_only) 900 j = vmx_find_loadstore_msr_slot(&m->host, msr); 901 902 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 903 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 904 printk_once(KERN_WARNING "Not enough msr switch entries. " 905 "Can't add msr %x\n", msr); 906 return; 907 } 908 if (i < 0) { 909 i = m->guest.nr++; 910 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 911 } 912 m->guest.val[i].index = msr; 913 m->guest.val[i].value = guest_val; 914 915 if (entry_only) 916 return; 917 918 if (j < 0) { 919 j = m->host.nr++; 920 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 921 } 922 m->host.val[j].index = msr; 923 m->host.val[j].value = host_val; 924 } 925 926 static bool update_transition_efer(struct vcpu_vmx *vmx) 927 { 928 u64 guest_efer = vmx->vcpu.arch.efer; 929 u64 ignore_bits = 0; 930 int i; 931 932 /* Shadow paging assumes NX to be available. */ 933 if (!enable_ept) 934 guest_efer |= EFER_NX; 935 936 /* 937 * LMA and LME handled by hardware; SCE meaningless outside long mode. 938 */ 939 ignore_bits |= EFER_SCE; 940 #ifdef CONFIG_X86_64 941 ignore_bits |= EFER_LMA | EFER_LME; 942 /* SCE is meaningful only in long mode on Intel */ 943 if (guest_efer & EFER_LMA) 944 ignore_bits &= ~(u64)EFER_SCE; 945 #endif 946 947 /* 948 * On EPT, we can't emulate NX, so we must switch EFER atomically. 949 * On CPUs that support "load IA32_EFER", always switch EFER 950 * atomically, since it's faster than switching it manually. 951 */ 952 if (cpu_has_load_ia32_efer() || 953 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 954 if (!(guest_efer & EFER_LMA)) 955 guest_efer &= ~EFER_LME; 956 if (guest_efer != host_efer) 957 add_atomic_switch_msr(vmx, MSR_EFER, 958 guest_efer, host_efer, false); 959 else 960 clear_atomic_switch_msr(vmx, MSR_EFER); 961 return false; 962 } 963 964 i = kvm_find_user_return_msr(MSR_EFER); 965 if (i < 0) 966 return false; 967 968 clear_atomic_switch_msr(vmx, MSR_EFER); 969 970 guest_efer &= ~ignore_bits; 971 guest_efer |= host_efer & ignore_bits; 972 973 vmx->guest_uret_msrs[i].data = guest_efer; 974 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 975 976 return true; 977 } 978 979 #ifdef CONFIG_X86_32 980 /* 981 * On 32-bit kernels, VM exits still load the FS and GS bases from the 982 * VMCS rather than the segment table. KVM uses this helper to figure 983 * out the current bases to poke them into the VMCS before entry. 984 */ 985 static unsigned long segment_base(u16 selector) 986 { 987 struct desc_struct *table; 988 unsigned long v; 989 990 if (!(selector & ~SEGMENT_RPL_MASK)) 991 return 0; 992 993 table = get_current_gdt_ro(); 994 995 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 996 u16 ldt_selector = kvm_read_ldt(); 997 998 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 999 return 0; 1000 1001 table = (struct desc_struct *)segment_base(ldt_selector); 1002 } 1003 v = get_desc_base(&table[selector >> 3]); 1004 return v; 1005 } 1006 #endif 1007 1008 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1009 { 1010 return vmx_pt_mode_is_host_guest() && 1011 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1012 } 1013 1014 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1015 { 1016 /* The base must be 128-byte aligned and a legal physical address. */ 1017 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1018 } 1019 1020 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1021 { 1022 u32 i; 1023 1024 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1025 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1026 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1027 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1028 for (i = 0; i < addr_range; i++) { 1029 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1030 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1031 } 1032 } 1033 1034 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1035 { 1036 u32 i; 1037 1038 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1039 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1040 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1041 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1042 for (i = 0; i < addr_range; i++) { 1043 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1044 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1045 } 1046 } 1047 1048 static void pt_guest_enter(struct vcpu_vmx *vmx) 1049 { 1050 if (vmx_pt_mode_is_system()) 1051 return; 1052 1053 /* 1054 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1055 * Save host state before VM entry. 1056 */ 1057 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1058 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1059 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1060 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1061 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1062 } 1063 } 1064 1065 static void pt_guest_exit(struct vcpu_vmx *vmx) 1066 { 1067 if (vmx_pt_mode_is_system()) 1068 return; 1069 1070 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1071 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1072 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1073 } 1074 1075 /* 1076 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1077 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1078 */ 1079 if (vmx->pt_desc.host.ctl) 1080 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1081 } 1082 1083 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1084 unsigned long fs_base, unsigned long gs_base) 1085 { 1086 if (unlikely(fs_sel != host->fs_sel)) { 1087 if (!(fs_sel & 7)) 1088 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1089 else 1090 vmcs_write16(HOST_FS_SELECTOR, 0); 1091 host->fs_sel = fs_sel; 1092 } 1093 if (unlikely(gs_sel != host->gs_sel)) { 1094 if (!(gs_sel & 7)) 1095 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1096 else 1097 vmcs_write16(HOST_GS_SELECTOR, 0); 1098 host->gs_sel = gs_sel; 1099 } 1100 if (unlikely(fs_base != host->fs_base)) { 1101 vmcs_writel(HOST_FS_BASE, fs_base); 1102 host->fs_base = fs_base; 1103 } 1104 if (unlikely(gs_base != host->gs_base)) { 1105 vmcs_writel(HOST_GS_BASE, gs_base); 1106 host->gs_base = gs_base; 1107 } 1108 } 1109 1110 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1111 { 1112 struct vcpu_vmx *vmx = to_vmx(vcpu); 1113 struct vmcs_host_state *host_state; 1114 #ifdef CONFIG_X86_64 1115 int cpu = raw_smp_processor_id(); 1116 #endif 1117 unsigned long fs_base, gs_base; 1118 u16 fs_sel, gs_sel; 1119 int i; 1120 1121 vmx->req_immediate_exit = false; 1122 1123 /* 1124 * Note that guest MSRs to be saved/restored can also be changed 1125 * when guest state is loaded. This happens when guest transitions 1126 * to/from long-mode by setting MSR_EFER.LMA. 1127 */ 1128 if (!vmx->guest_uret_msrs_loaded) { 1129 vmx->guest_uret_msrs_loaded = true; 1130 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1131 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1132 continue; 1133 1134 kvm_set_user_return_msr(i, 1135 vmx->guest_uret_msrs[i].data, 1136 vmx->guest_uret_msrs[i].mask); 1137 } 1138 } 1139 1140 if (vmx->nested.need_vmcs12_to_shadow_sync) 1141 nested_sync_vmcs12_to_shadow(vcpu); 1142 1143 if (vmx->guest_state_loaded) 1144 return; 1145 1146 host_state = &vmx->loaded_vmcs->host_state; 1147 1148 /* 1149 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1150 * allow segment selectors with cpl > 0 or ti == 1. 1151 */ 1152 host_state->ldt_sel = kvm_read_ldt(); 1153 1154 #ifdef CONFIG_X86_64 1155 savesegment(ds, host_state->ds_sel); 1156 savesegment(es, host_state->es_sel); 1157 1158 gs_base = cpu_kernelmode_gs_base(cpu); 1159 if (likely(is_64bit_mm(current->mm))) { 1160 current_save_fsgs(); 1161 fs_sel = current->thread.fsindex; 1162 gs_sel = current->thread.gsindex; 1163 fs_base = current->thread.fsbase; 1164 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1165 } else { 1166 savesegment(fs, fs_sel); 1167 savesegment(gs, gs_sel); 1168 fs_base = read_msr(MSR_FS_BASE); 1169 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1170 } 1171 1172 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1173 #else 1174 savesegment(fs, fs_sel); 1175 savesegment(gs, gs_sel); 1176 fs_base = segment_base(fs_sel); 1177 gs_base = segment_base(gs_sel); 1178 #endif 1179 1180 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1181 vmx->guest_state_loaded = true; 1182 } 1183 1184 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1185 { 1186 struct vmcs_host_state *host_state; 1187 1188 if (!vmx->guest_state_loaded) 1189 return; 1190 1191 host_state = &vmx->loaded_vmcs->host_state; 1192 1193 ++vmx->vcpu.stat.host_state_reload; 1194 1195 #ifdef CONFIG_X86_64 1196 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1197 #endif 1198 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1199 kvm_load_ldt(host_state->ldt_sel); 1200 #ifdef CONFIG_X86_64 1201 load_gs_index(host_state->gs_sel); 1202 #else 1203 loadsegment(gs, host_state->gs_sel); 1204 #endif 1205 } 1206 if (host_state->fs_sel & 7) 1207 loadsegment(fs, host_state->fs_sel); 1208 #ifdef CONFIG_X86_64 1209 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1210 loadsegment(ds, host_state->ds_sel); 1211 loadsegment(es, host_state->es_sel); 1212 } 1213 #endif 1214 invalidate_tss_limit(); 1215 #ifdef CONFIG_X86_64 1216 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1217 #endif 1218 load_fixmap_gdt(raw_smp_processor_id()); 1219 vmx->guest_state_loaded = false; 1220 vmx->guest_uret_msrs_loaded = false; 1221 } 1222 1223 #ifdef CONFIG_X86_64 1224 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1225 { 1226 preempt_disable(); 1227 if (vmx->guest_state_loaded) 1228 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1229 preempt_enable(); 1230 return vmx->msr_guest_kernel_gs_base; 1231 } 1232 1233 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1234 { 1235 preempt_disable(); 1236 if (vmx->guest_state_loaded) 1237 wrmsrl(MSR_KERNEL_GS_BASE, data); 1238 preempt_enable(); 1239 vmx->msr_guest_kernel_gs_base = data; 1240 } 1241 #endif 1242 1243 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1244 struct loaded_vmcs *buddy) 1245 { 1246 struct vcpu_vmx *vmx = to_vmx(vcpu); 1247 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1248 struct vmcs *prev; 1249 1250 if (!already_loaded) { 1251 loaded_vmcs_clear(vmx->loaded_vmcs); 1252 local_irq_disable(); 1253 1254 /* 1255 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1256 * this cpu's percpu list, otherwise it may not yet be deleted 1257 * from its previous cpu's percpu list. Pairs with the 1258 * smb_wmb() in __loaded_vmcs_clear(). 1259 */ 1260 smp_rmb(); 1261 1262 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1263 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1264 local_irq_enable(); 1265 } 1266 1267 prev = per_cpu(current_vmcs, cpu); 1268 if (prev != vmx->loaded_vmcs->vmcs) { 1269 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1270 vmcs_load(vmx->loaded_vmcs->vmcs); 1271 1272 /* 1273 * No indirect branch prediction barrier needed when switching 1274 * the active VMCS within a guest, e.g. on nested VM-Enter. 1275 * The L1 VMM can protect itself with retpolines, IBPB or IBRS. 1276 */ 1277 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1278 indirect_branch_prediction_barrier(); 1279 } 1280 1281 if (!already_loaded) { 1282 void *gdt = get_current_gdt_ro(); 1283 1284 /* 1285 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1286 * TLB entries from its previous association with the vCPU. 1287 */ 1288 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1289 1290 /* 1291 * Linux uses per-cpu TSS and GDT, so set these when switching 1292 * processors. See 22.2.4. 1293 */ 1294 vmcs_writel(HOST_TR_BASE, 1295 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1296 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1297 1298 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1299 /* 22.2.3 */ 1300 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1301 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1302 } 1303 1304 vmx->loaded_vmcs->cpu = cpu; 1305 } 1306 } 1307 1308 /* 1309 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1310 * vcpu mutex is already taken. 1311 */ 1312 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1313 { 1314 struct vcpu_vmx *vmx = to_vmx(vcpu); 1315 1316 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1317 1318 vmx_vcpu_pi_load(vcpu, cpu); 1319 1320 vmx->host_debugctlmsr = get_debugctlmsr(); 1321 } 1322 1323 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1324 { 1325 vmx_vcpu_pi_put(vcpu); 1326 1327 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1328 } 1329 1330 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1331 { 1332 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1333 } 1334 1335 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1336 { 1337 struct vcpu_vmx *vmx = to_vmx(vcpu); 1338 unsigned long rflags, save_rflags; 1339 1340 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1341 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1342 rflags = vmcs_readl(GUEST_RFLAGS); 1343 if (vmx->rmode.vm86_active) { 1344 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1345 save_rflags = vmx->rmode.save_rflags; 1346 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1347 } 1348 vmx->rflags = rflags; 1349 } 1350 return vmx->rflags; 1351 } 1352 1353 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1354 { 1355 struct vcpu_vmx *vmx = to_vmx(vcpu); 1356 unsigned long old_rflags; 1357 1358 if (is_unrestricted_guest(vcpu)) { 1359 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1360 vmx->rflags = rflags; 1361 vmcs_writel(GUEST_RFLAGS, rflags); 1362 return; 1363 } 1364 1365 old_rflags = vmx_get_rflags(vcpu); 1366 vmx->rflags = rflags; 1367 if (vmx->rmode.vm86_active) { 1368 vmx->rmode.save_rflags = rflags; 1369 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1370 } 1371 vmcs_writel(GUEST_RFLAGS, rflags); 1372 1373 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1374 vmx->emulation_required = vmx_emulation_required(vcpu); 1375 } 1376 1377 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1378 { 1379 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1380 } 1381 1382 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1383 { 1384 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1385 int ret = 0; 1386 1387 if (interruptibility & GUEST_INTR_STATE_STI) 1388 ret |= KVM_X86_SHADOW_INT_STI; 1389 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1390 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1391 1392 return ret; 1393 } 1394 1395 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1396 { 1397 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1398 u32 interruptibility = interruptibility_old; 1399 1400 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1401 1402 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1403 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1404 else if (mask & KVM_X86_SHADOW_INT_STI) 1405 interruptibility |= GUEST_INTR_STATE_STI; 1406 1407 if ((interruptibility != interruptibility_old)) 1408 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1409 } 1410 1411 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1412 { 1413 struct vcpu_vmx *vmx = to_vmx(vcpu); 1414 unsigned long value; 1415 1416 /* 1417 * Any MSR write that attempts to change bits marked reserved will 1418 * case a #GP fault. 1419 */ 1420 if (data & vmx->pt_desc.ctl_bitmask) 1421 return 1; 1422 1423 /* 1424 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1425 * result in a #GP unless the same write also clears TraceEn. 1426 */ 1427 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1428 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1429 return 1; 1430 1431 /* 1432 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1433 * and FabricEn would cause #GP, if 1434 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1435 */ 1436 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1437 !(data & RTIT_CTL_FABRIC_EN) && 1438 !intel_pt_validate_cap(vmx->pt_desc.caps, 1439 PT_CAP_single_range_output)) 1440 return 1; 1441 1442 /* 1443 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1444 * utilize encodings marked reserved will cause a #GP fault. 1445 */ 1446 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1447 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1448 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1449 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1450 return 1; 1451 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1452 PT_CAP_cycle_thresholds); 1453 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1454 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1455 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1456 return 1; 1457 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1458 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1459 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1460 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1461 return 1; 1462 1463 /* 1464 * If ADDRx_CFG is reserved or the encodings is >2 will 1465 * cause a #GP fault. 1466 */ 1467 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1468 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1469 return 1; 1470 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1471 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1472 return 1; 1473 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1474 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1475 return 1; 1476 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1477 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1478 return 1; 1479 1480 return 0; 1481 } 1482 1483 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1484 void *insn, int insn_len) 1485 { 1486 /* 1487 * Emulation of instructions in SGX enclaves is impossible as RIP does 1488 * not point at the failing instruction, and even if it did, the code 1489 * stream is inaccessible. Inject #UD instead of exiting to userspace 1490 * so that guest userspace can't DoS the guest simply by triggering 1491 * emulation (enclaves are CPL3 only). 1492 */ 1493 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1494 kvm_queue_exception(vcpu, UD_VECTOR); 1495 return false; 1496 } 1497 return true; 1498 } 1499 1500 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1501 { 1502 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1503 unsigned long rip, orig_rip; 1504 u32 instr_len; 1505 1506 /* 1507 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1508 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1509 * set when EPT misconfig occurs. In practice, real hardware updates 1510 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1511 * (namely Hyper-V) don't set it due to it being undefined behavior, 1512 * i.e. we end up advancing IP with some random value. 1513 */ 1514 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1515 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1516 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1517 1518 /* 1519 * Emulating an enclave's instructions isn't supported as KVM 1520 * cannot access the enclave's memory or its true RIP, e.g. the 1521 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1522 * the RIP that actually triggered the VM-Exit. But, because 1523 * most instructions that cause VM-Exit will #UD in an enclave, 1524 * most instruction-based VM-Exits simply do not occur. 1525 * 1526 * There are a few exceptions, notably the debug instructions 1527 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1528 * and generate #DB/#BP as expected, which KVM might intercept. 1529 * But again, the CPU does the dirty work and saves an instr 1530 * length of zero so VMMs don't shoot themselves in the foot. 1531 * WARN if KVM tries to skip a non-zero length instruction on 1532 * a VM-Exit from an enclave. 1533 */ 1534 if (!instr_len) 1535 goto rip_updated; 1536 1537 WARN(exit_reason.enclave_mode, 1538 "KVM: skipping instruction after SGX enclave VM-Exit"); 1539 1540 orig_rip = kvm_rip_read(vcpu); 1541 rip = orig_rip + instr_len; 1542 #ifdef CONFIG_X86_64 1543 /* 1544 * We need to mask out the high 32 bits of RIP if not in 64-bit 1545 * mode, but just finding out that we are in 64-bit mode is 1546 * quite expensive. Only do it if there was a carry. 1547 */ 1548 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1549 rip = (u32)rip; 1550 #endif 1551 kvm_rip_write(vcpu, rip); 1552 } else { 1553 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1554 return 0; 1555 } 1556 1557 rip_updated: 1558 /* skipping an emulated instruction also counts */ 1559 vmx_set_interrupt_shadow(vcpu, 0); 1560 1561 return 1; 1562 } 1563 1564 /* 1565 * Recognizes a pending MTF VM-exit and records the nested state for later 1566 * delivery. 1567 */ 1568 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1569 { 1570 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1571 struct vcpu_vmx *vmx = to_vmx(vcpu); 1572 1573 if (!is_guest_mode(vcpu)) 1574 return; 1575 1576 /* 1577 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1578 * T-bit traps. As instruction emulation is completed (i.e. at the 1579 * instruction boundary), any #DB exception pending delivery must be a 1580 * debug-trap. Record the pending MTF state to be delivered in 1581 * vmx_check_nested_events(). 1582 */ 1583 if (nested_cpu_has_mtf(vmcs12) && 1584 (!vcpu->arch.exception.pending || 1585 vcpu->arch.exception.nr == DB_VECTOR)) 1586 vmx->nested.mtf_pending = true; 1587 else 1588 vmx->nested.mtf_pending = false; 1589 } 1590 1591 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1592 { 1593 vmx_update_emulated_instruction(vcpu); 1594 return skip_emulated_instruction(vcpu); 1595 } 1596 1597 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1598 { 1599 /* 1600 * Ensure that we clear the HLT state in the VMCS. We don't need to 1601 * explicitly skip the instruction because if the HLT state is set, 1602 * then the instruction is already executing and RIP has already been 1603 * advanced. 1604 */ 1605 if (kvm_hlt_in_guest(vcpu->kvm) && 1606 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1607 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1608 } 1609 1610 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1611 { 1612 struct vcpu_vmx *vmx = to_vmx(vcpu); 1613 unsigned nr = vcpu->arch.exception.nr; 1614 bool has_error_code = vcpu->arch.exception.has_error_code; 1615 u32 error_code = vcpu->arch.exception.error_code; 1616 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1617 1618 kvm_deliver_exception_payload(vcpu); 1619 1620 if (has_error_code) { 1621 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1622 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1623 } 1624 1625 if (vmx->rmode.vm86_active) { 1626 int inc_eip = 0; 1627 if (kvm_exception_is_soft(nr)) 1628 inc_eip = vcpu->arch.event_exit_inst_len; 1629 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip); 1630 return; 1631 } 1632 1633 WARN_ON_ONCE(vmx->emulation_required); 1634 1635 if (kvm_exception_is_soft(nr)) { 1636 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1637 vmx->vcpu.arch.event_exit_inst_len); 1638 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1639 } else 1640 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1641 1642 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1643 1644 vmx_clear_hlt(vcpu); 1645 } 1646 1647 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1648 bool load_into_hardware) 1649 { 1650 struct vmx_uret_msr *uret_msr; 1651 1652 uret_msr = vmx_find_uret_msr(vmx, msr); 1653 if (!uret_msr) 1654 return; 1655 1656 uret_msr->load_into_hardware = load_into_hardware; 1657 } 1658 1659 /* 1660 * Configuring user return MSRs to automatically save, load, and restore MSRs 1661 * that need to be shoved into hardware when running the guest. Note, omitting 1662 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1663 * loaded into hardware when running the guest. 1664 */ 1665 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1666 { 1667 #ifdef CONFIG_X86_64 1668 bool load_syscall_msrs; 1669 1670 /* 1671 * The SYSCALL MSRs are only needed on long mode guests, and only 1672 * when EFER.SCE is set. 1673 */ 1674 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1675 (vmx->vcpu.arch.efer & EFER_SCE); 1676 1677 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1678 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1679 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1680 #endif 1681 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1682 1683 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1684 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1685 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1686 1687 /* 1688 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1689 * kernel and old userspace. If those guests run on a tsx=off host, do 1690 * allow guests to use TSX_CTRL, but don't change the value in hardware 1691 * so that TSX remains always disabled. 1692 */ 1693 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1694 1695 /* 1696 * The set of MSRs to load may have changed, reload MSRs before the 1697 * next VM-Enter. 1698 */ 1699 vmx->guest_uret_msrs_loaded = false; 1700 } 1701 1702 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1703 { 1704 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1705 1706 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1707 return vmcs12->tsc_offset; 1708 1709 return 0; 1710 } 1711 1712 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1713 { 1714 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1715 1716 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1717 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1718 return vmcs12->tsc_multiplier; 1719 1720 return kvm_default_tsc_scaling_ratio; 1721 } 1722 1723 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1724 { 1725 vmcs_write64(TSC_OFFSET, offset); 1726 } 1727 1728 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1729 { 1730 vmcs_write64(TSC_MULTIPLIER, multiplier); 1731 } 1732 1733 /* 1734 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1735 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1736 * all guests if the "nested" module option is off, and can also be disabled 1737 * for a single guest by disabling its VMX cpuid bit. 1738 */ 1739 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1740 { 1741 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1742 } 1743 1744 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1745 uint64_t val) 1746 { 1747 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1748 1749 return !(val & ~valid_bits); 1750 } 1751 1752 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1753 { 1754 switch (msr->index) { 1755 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1756 if (!nested) 1757 return 1; 1758 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1759 case MSR_IA32_PERF_CAPABILITIES: 1760 msr->data = vmx_get_perf_capabilities(); 1761 return 0; 1762 default: 1763 return KVM_MSR_RET_INVALID; 1764 } 1765 } 1766 1767 /* 1768 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 1769 * Returns 0 on success, non-0 otherwise. 1770 * Assumes vcpu_load() was already called. 1771 */ 1772 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1773 { 1774 struct vcpu_vmx *vmx = to_vmx(vcpu); 1775 struct vmx_uret_msr *msr; 1776 u32 index; 1777 1778 switch (msr_info->index) { 1779 #ifdef CONFIG_X86_64 1780 case MSR_FS_BASE: 1781 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1782 break; 1783 case MSR_GS_BASE: 1784 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1785 break; 1786 case MSR_KERNEL_GS_BASE: 1787 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1788 break; 1789 #endif 1790 case MSR_EFER: 1791 return kvm_get_msr_common(vcpu, msr_info); 1792 case MSR_IA32_TSX_CTRL: 1793 if (!msr_info->host_initiated && 1794 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1795 return 1; 1796 goto find_uret_msr; 1797 case MSR_IA32_UMWAIT_CONTROL: 1798 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 1799 return 1; 1800 1801 msr_info->data = vmx->msr_ia32_umwait_control; 1802 break; 1803 case MSR_IA32_SPEC_CTRL: 1804 if (!msr_info->host_initiated && 1805 !guest_has_spec_ctrl_msr(vcpu)) 1806 return 1; 1807 1808 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1809 break; 1810 case MSR_IA32_SYSENTER_CS: 1811 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1812 break; 1813 case MSR_IA32_SYSENTER_EIP: 1814 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1815 break; 1816 case MSR_IA32_SYSENTER_ESP: 1817 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1818 break; 1819 case MSR_IA32_BNDCFGS: 1820 if (!kvm_mpx_supported() || 1821 (!msr_info->host_initiated && 1822 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1823 return 1; 1824 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1825 break; 1826 case MSR_IA32_MCG_EXT_CTL: 1827 if (!msr_info->host_initiated && 1828 !(vmx->msr_ia32_feature_control & 1829 FEAT_CTL_LMCE_ENABLED)) 1830 return 1; 1831 msr_info->data = vcpu->arch.mcg_ext_ctl; 1832 break; 1833 case MSR_IA32_FEAT_CTL: 1834 msr_info->data = vmx->msr_ia32_feature_control; 1835 break; 1836 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 1837 if (!msr_info->host_initiated && 1838 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 1839 return 1; 1840 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 1841 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 1842 break; 1843 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1844 if (!nested_vmx_allowed(vcpu)) 1845 return 1; 1846 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1847 &msr_info->data)) 1848 return 1; 1849 /* 1850 * Enlightened VMCS v1 doesn't have certain VMCS fields but 1851 * instead of just ignoring the features, different Hyper-V 1852 * versions are either trying to use them and fail or do some 1853 * sanity checking and refuse to boot. Filter all unsupported 1854 * features out. 1855 */ 1856 if (!msr_info->host_initiated && 1857 vmx->nested.enlightened_vmcs_enabled) 1858 nested_evmcs_filter_control_msr(msr_info->index, 1859 &msr_info->data); 1860 break; 1861 case MSR_IA32_RTIT_CTL: 1862 if (!vmx_pt_mode_is_host_guest()) 1863 return 1; 1864 msr_info->data = vmx->pt_desc.guest.ctl; 1865 break; 1866 case MSR_IA32_RTIT_STATUS: 1867 if (!vmx_pt_mode_is_host_guest()) 1868 return 1; 1869 msr_info->data = vmx->pt_desc.guest.status; 1870 break; 1871 case MSR_IA32_RTIT_CR3_MATCH: 1872 if (!vmx_pt_mode_is_host_guest() || 1873 !intel_pt_validate_cap(vmx->pt_desc.caps, 1874 PT_CAP_cr3_filtering)) 1875 return 1; 1876 msr_info->data = vmx->pt_desc.guest.cr3_match; 1877 break; 1878 case MSR_IA32_RTIT_OUTPUT_BASE: 1879 if (!vmx_pt_mode_is_host_guest() || 1880 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1881 PT_CAP_topa_output) && 1882 !intel_pt_validate_cap(vmx->pt_desc.caps, 1883 PT_CAP_single_range_output))) 1884 return 1; 1885 msr_info->data = vmx->pt_desc.guest.output_base; 1886 break; 1887 case MSR_IA32_RTIT_OUTPUT_MASK: 1888 if (!vmx_pt_mode_is_host_guest() || 1889 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1890 PT_CAP_topa_output) && 1891 !intel_pt_validate_cap(vmx->pt_desc.caps, 1892 PT_CAP_single_range_output))) 1893 return 1; 1894 msr_info->data = vmx->pt_desc.guest.output_mask; 1895 break; 1896 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1897 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1898 if (!vmx_pt_mode_is_host_guest() || 1899 (index >= 2 * vmx->pt_desc.num_address_ranges)) 1900 return 1; 1901 if (index % 2) 1902 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1903 else 1904 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1905 break; 1906 case MSR_IA32_DEBUGCTLMSR: 1907 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 1908 break; 1909 default: 1910 find_uret_msr: 1911 msr = vmx_find_uret_msr(vmx, msr_info->index); 1912 if (msr) { 1913 msr_info->data = msr->data; 1914 break; 1915 } 1916 return kvm_get_msr_common(vcpu, msr_info); 1917 } 1918 1919 return 0; 1920 } 1921 1922 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 1923 u64 data) 1924 { 1925 #ifdef CONFIG_X86_64 1926 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1927 return (u32)data; 1928 #endif 1929 return (unsigned long)data; 1930 } 1931 1932 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu) 1933 { 1934 u64 debugctl = vmx_supported_debugctl(); 1935 1936 if (!intel_pmu_lbr_is_enabled(vcpu)) 1937 debugctl &= ~DEBUGCTLMSR_LBR_MASK; 1938 1939 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1940 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT; 1941 1942 return debugctl; 1943 } 1944 1945 /* 1946 * Writes msr value into the appropriate "register". 1947 * Returns 0 on success, non-0 otherwise. 1948 * Assumes vcpu_load() was already called. 1949 */ 1950 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1951 { 1952 struct vcpu_vmx *vmx = to_vmx(vcpu); 1953 struct vmx_uret_msr *msr; 1954 int ret = 0; 1955 u32 msr_index = msr_info->index; 1956 u64 data = msr_info->data; 1957 u32 index; 1958 1959 switch (msr_index) { 1960 case MSR_EFER: 1961 ret = kvm_set_msr_common(vcpu, msr_info); 1962 break; 1963 #ifdef CONFIG_X86_64 1964 case MSR_FS_BASE: 1965 vmx_segment_cache_clear(vmx); 1966 vmcs_writel(GUEST_FS_BASE, data); 1967 break; 1968 case MSR_GS_BASE: 1969 vmx_segment_cache_clear(vmx); 1970 vmcs_writel(GUEST_GS_BASE, data); 1971 break; 1972 case MSR_KERNEL_GS_BASE: 1973 vmx_write_guest_kernel_gs_base(vmx, data); 1974 break; 1975 case MSR_IA32_XFD: 1976 ret = kvm_set_msr_common(vcpu, msr_info); 1977 /* 1978 * Always intercepting WRMSR could incur non-negligible 1979 * overhead given xfd might be changed frequently in 1980 * guest context switch. Disable write interception 1981 * upon the first write with a non-zero value (indicating 1982 * potential usage on dynamic xfeatures). Also update 1983 * exception bitmap to trap #NM for proper virtualization 1984 * of guest xfd_err. 1985 */ 1986 if (!ret && data) { 1987 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 1988 MSR_TYPE_RW); 1989 vcpu->arch.xfd_no_write_intercept = true; 1990 vmx_update_exception_bitmap(vcpu); 1991 } 1992 break; 1993 #endif 1994 case MSR_IA32_SYSENTER_CS: 1995 if (is_guest_mode(vcpu)) 1996 get_vmcs12(vcpu)->guest_sysenter_cs = data; 1997 vmcs_write32(GUEST_SYSENTER_CS, data); 1998 break; 1999 case MSR_IA32_SYSENTER_EIP: 2000 if (is_guest_mode(vcpu)) { 2001 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2002 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2003 } 2004 vmcs_writel(GUEST_SYSENTER_EIP, data); 2005 break; 2006 case MSR_IA32_SYSENTER_ESP: 2007 if (is_guest_mode(vcpu)) { 2008 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2009 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2010 } 2011 vmcs_writel(GUEST_SYSENTER_ESP, data); 2012 break; 2013 case MSR_IA32_DEBUGCTLMSR: { 2014 u64 invalid = data & ~vcpu_supported_debugctl(vcpu); 2015 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2016 if (report_ignored_msrs) 2017 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n", 2018 __func__, data); 2019 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2020 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2021 } 2022 2023 if (invalid) 2024 return 1; 2025 2026 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2027 VM_EXIT_SAVE_DEBUG_CONTROLS) 2028 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2029 2030 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2031 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2032 (data & DEBUGCTLMSR_LBR)) 2033 intel_pmu_create_guest_lbr_event(vcpu); 2034 return 0; 2035 } 2036 case MSR_IA32_BNDCFGS: 2037 if (!kvm_mpx_supported() || 2038 (!msr_info->host_initiated && 2039 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2040 return 1; 2041 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2042 (data & MSR_IA32_BNDCFGS_RSVD)) 2043 return 1; 2044 vmcs_write64(GUEST_BNDCFGS, data); 2045 break; 2046 case MSR_IA32_UMWAIT_CONTROL: 2047 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2048 return 1; 2049 2050 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2051 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2052 return 1; 2053 2054 vmx->msr_ia32_umwait_control = data; 2055 break; 2056 case MSR_IA32_SPEC_CTRL: 2057 if (!msr_info->host_initiated && 2058 !guest_has_spec_ctrl_msr(vcpu)) 2059 return 1; 2060 2061 if (kvm_spec_ctrl_test_value(data)) 2062 return 1; 2063 2064 vmx->spec_ctrl = data; 2065 if (!data) 2066 break; 2067 2068 /* 2069 * For non-nested: 2070 * When it's written (to non-zero) for the first time, pass 2071 * it through. 2072 * 2073 * For nested: 2074 * The handling of the MSR bitmap for L2 guests is done in 2075 * nested_vmx_prepare_msr_bitmap. We should not touch the 2076 * vmcs02.msr_bitmap here since it gets completely overwritten 2077 * in the merging. We update the vmcs01 here for L1 as well 2078 * since it will end up touching the MSR anyway now. 2079 */ 2080 vmx_disable_intercept_for_msr(vcpu, 2081 MSR_IA32_SPEC_CTRL, 2082 MSR_TYPE_RW); 2083 break; 2084 case MSR_IA32_TSX_CTRL: 2085 if (!msr_info->host_initiated && 2086 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2087 return 1; 2088 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2089 return 1; 2090 goto find_uret_msr; 2091 case MSR_IA32_PRED_CMD: 2092 if (!msr_info->host_initiated && 2093 !guest_has_pred_cmd_msr(vcpu)) 2094 return 1; 2095 2096 if (data & ~PRED_CMD_IBPB) 2097 return 1; 2098 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2099 return 1; 2100 if (!data) 2101 break; 2102 2103 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2104 2105 /* 2106 * For non-nested: 2107 * When it's written (to non-zero) for the first time, pass 2108 * it through. 2109 * 2110 * For nested: 2111 * The handling of the MSR bitmap for L2 guests is done in 2112 * nested_vmx_prepare_msr_bitmap. We should not touch the 2113 * vmcs02.msr_bitmap here since it gets completely overwritten 2114 * in the merging. 2115 */ 2116 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W); 2117 break; 2118 case MSR_IA32_CR_PAT: 2119 if (!kvm_pat_valid(data)) 2120 return 1; 2121 2122 if (is_guest_mode(vcpu) && 2123 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2124 get_vmcs12(vcpu)->guest_ia32_pat = data; 2125 2126 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2127 vmcs_write64(GUEST_IA32_PAT, data); 2128 vcpu->arch.pat = data; 2129 break; 2130 } 2131 ret = kvm_set_msr_common(vcpu, msr_info); 2132 break; 2133 case MSR_IA32_MCG_EXT_CTL: 2134 if ((!msr_info->host_initiated && 2135 !(to_vmx(vcpu)->msr_ia32_feature_control & 2136 FEAT_CTL_LMCE_ENABLED)) || 2137 (data & ~MCG_EXT_CTL_LMCE_EN)) 2138 return 1; 2139 vcpu->arch.mcg_ext_ctl = data; 2140 break; 2141 case MSR_IA32_FEAT_CTL: 2142 if (!vmx_feature_control_msr_valid(vcpu, data) || 2143 (to_vmx(vcpu)->msr_ia32_feature_control & 2144 FEAT_CTL_LOCKED && !msr_info->host_initiated)) 2145 return 1; 2146 vmx->msr_ia32_feature_control = data; 2147 if (msr_info->host_initiated && data == 0) 2148 vmx_leave_nested(vcpu); 2149 2150 /* SGX may be enabled/disabled by guest's firmware */ 2151 vmx_write_encls_bitmap(vcpu, NULL); 2152 break; 2153 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2154 /* 2155 * On real hardware, the LE hash MSRs are writable before 2156 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2157 * at which point SGX related bits in IA32_FEATURE_CONTROL 2158 * become writable. 2159 * 2160 * KVM does not emulate SGX activation for simplicity, so 2161 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2162 * is unlocked. This is technically not architectural 2163 * behavior, but it's close enough. 2164 */ 2165 if (!msr_info->host_initiated && 2166 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2167 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2168 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2169 return 1; 2170 vmx->msr_ia32_sgxlepubkeyhash 2171 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2172 break; 2173 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 2174 if (!msr_info->host_initiated) 2175 return 1; /* they are read-only */ 2176 if (!nested_vmx_allowed(vcpu)) 2177 return 1; 2178 return vmx_set_vmx_msr(vcpu, msr_index, data); 2179 case MSR_IA32_RTIT_CTL: 2180 if (!vmx_pt_mode_is_host_guest() || 2181 vmx_rtit_ctl_check(vcpu, data) || 2182 vmx->nested.vmxon) 2183 return 1; 2184 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2185 vmx->pt_desc.guest.ctl = data; 2186 pt_update_intercept_for_msr(vcpu); 2187 break; 2188 case MSR_IA32_RTIT_STATUS: 2189 if (!pt_can_write_msr(vmx)) 2190 return 1; 2191 if (data & MSR_IA32_RTIT_STATUS_MASK) 2192 return 1; 2193 vmx->pt_desc.guest.status = data; 2194 break; 2195 case MSR_IA32_RTIT_CR3_MATCH: 2196 if (!pt_can_write_msr(vmx)) 2197 return 1; 2198 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2199 PT_CAP_cr3_filtering)) 2200 return 1; 2201 vmx->pt_desc.guest.cr3_match = data; 2202 break; 2203 case MSR_IA32_RTIT_OUTPUT_BASE: 2204 if (!pt_can_write_msr(vmx)) 2205 return 1; 2206 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2207 PT_CAP_topa_output) && 2208 !intel_pt_validate_cap(vmx->pt_desc.caps, 2209 PT_CAP_single_range_output)) 2210 return 1; 2211 if (!pt_output_base_valid(vcpu, data)) 2212 return 1; 2213 vmx->pt_desc.guest.output_base = data; 2214 break; 2215 case MSR_IA32_RTIT_OUTPUT_MASK: 2216 if (!pt_can_write_msr(vmx)) 2217 return 1; 2218 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2219 PT_CAP_topa_output) && 2220 !intel_pt_validate_cap(vmx->pt_desc.caps, 2221 PT_CAP_single_range_output)) 2222 return 1; 2223 vmx->pt_desc.guest.output_mask = data; 2224 break; 2225 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2226 if (!pt_can_write_msr(vmx)) 2227 return 1; 2228 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2229 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2230 return 1; 2231 if (is_noncanonical_address(data, vcpu)) 2232 return 1; 2233 if (index % 2) 2234 vmx->pt_desc.guest.addr_b[index / 2] = data; 2235 else 2236 vmx->pt_desc.guest.addr_a[index / 2] = data; 2237 break; 2238 case MSR_IA32_PERF_CAPABILITIES: 2239 if (data && !vcpu_to_pmu(vcpu)->version) 2240 return 1; 2241 if (data & PMU_CAP_LBR_FMT) { 2242 if ((data & PMU_CAP_LBR_FMT) != 2243 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT)) 2244 return 1; 2245 if (!intel_pmu_lbr_is_compatible(vcpu)) 2246 return 1; 2247 } 2248 ret = kvm_set_msr_common(vcpu, msr_info); 2249 break; 2250 2251 default: 2252 find_uret_msr: 2253 msr = vmx_find_uret_msr(vmx, msr_index); 2254 if (msr) 2255 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2256 else 2257 ret = kvm_set_msr_common(vcpu, msr_info); 2258 } 2259 2260 return ret; 2261 } 2262 2263 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2264 { 2265 unsigned long guest_owned_bits; 2266 2267 kvm_register_mark_available(vcpu, reg); 2268 2269 switch (reg) { 2270 case VCPU_REGS_RSP: 2271 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2272 break; 2273 case VCPU_REGS_RIP: 2274 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2275 break; 2276 case VCPU_EXREG_PDPTR: 2277 if (enable_ept) 2278 ept_save_pdptrs(vcpu); 2279 break; 2280 case VCPU_EXREG_CR0: 2281 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2282 2283 vcpu->arch.cr0 &= ~guest_owned_bits; 2284 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2285 break; 2286 case VCPU_EXREG_CR3: 2287 /* 2288 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2289 * CR3 is loaded into hardware, not the guest's CR3. 2290 */ 2291 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2292 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2293 break; 2294 case VCPU_EXREG_CR4: 2295 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2296 2297 vcpu->arch.cr4 &= ~guest_owned_bits; 2298 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2299 break; 2300 default: 2301 KVM_BUG_ON(1, vcpu->kvm); 2302 break; 2303 } 2304 } 2305 2306 static __init int cpu_has_kvm_support(void) 2307 { 2308 return cpu_has_vmx(); 2309 } 2310 2311 static __init int vmx_disabled_by_bios(void) 2312 { 2313 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2314 !boot_cpu_has(X86_FEATURE_VMX); 2315 } 2316 2317 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2318 { 2319 u64 msr; 2320 2321 cr4_set_bits(X86_CR4_VMXE); 2322 2323 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2324 _ASM_EXTABLE(1b, %l[fault]) 2325 : : [vmxon_pointer] "m"(vmxon_pointer) 2326 : : fault); 2327 return 0; 2328 2329 fault: 2330 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2331 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2332 cr4_clear_bits(X86_CR4_VMXE); 2333 2334 return -EFAULT; 2335 } 2336 2337 static int hardware_enable(void) 2338 { 2339 int cpu = raw_smp_processor_id(); 2340 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2341 int r; 2342 2343 if (cr4_read_shadow() & X86_CR4_VMXE) 2344 return -EBUSY; 2345 2346 /* 2347 * This can happen if we hot-added a CPU but failed to allocate 2348 * VP assist page for it. 2349 */ 2350 if (static_branch_unlikely(&enable_evmcs) && 2351 !hv_get_vp_assist_page(cpu)) 2352 return -EFAULT; 2353 2354 intel_pt_handle_vmx(1); 2355 2356 r = kvm_cpu_vmxon(phys_addr); 2357 if (r) { 2358 intel_pt_handle_vmx(0); 2359 return r; 2360 } 2361 2362 if (enable_ept) 2363 ept_sync_global(); 2364 2365 return 0; 2366 } 2367 2368 static void vmclear_local_loaded_vmcss(void) 2369 { 2370 int cpu = raw_smp_processor_id(); 2371 struct loaded_vmcs *v, *n; 2372 2373 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2374 loaded_vmcss_on_cpu_link) 2375 __loaded_vmcs_clear(v); 2376 } 2377 2378 static void hardware_disable(void) 2379 { 2380 vmclear_local_loaded_vmcss(); 2381 2382 if (cpu_vmxoff()) 2383 kvm_spurious_fault(); 2384 2385 intel_pt_handle_vmx(0); 2386 } 2387 2388 /* 2389 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2390 * directly instead of going through cpu_has(), to ensure KVM is trapping 2391 * ENCLS whenever it's supported in hardware. It does not matter whether 2392 * the host OS supports or has enabled SGX. 2393 */ 2394 static bool cpu_has_sgx(void) 2395 { 2396 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2397 } 2398 2399 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2400 u32 msr, u32 *result) 2401 { 2402 u32 vmx_msr_low, vmx_msr_high; 2403 u32 ctl = ctl_min | ctl_opt; 2404 2405 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2406 2407 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2408 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2409 2410 /* Ensure minimum (required) set of control bits are supported. */ 2411 if (ctl_min & ~ctl) 2412 return -EIO; 2413 2414 *result = ctl; 2415 return 0; 2416 } 2417 2418 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2419 struct vmx_capability *vmx_cap) 2420 { 2421 u32 vmx_msr_low, vmx_msr_high; 2422 u32 min, opt, min2, opt2; 2423 u32 _pin_based_exec_control = 0; 2424 u32 _cpu_based_exec_control = 0; 2425 u32 _cpu_based_2nd_exec_control = 0; 2426 u32 _vmexit_control = 0; 2427 u32 _vmentry_control = 0; 2428 2429 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2430 min = CPU_BASED_HLT_EXITING | 2431 #ifdef CONFIG_X86_64 2432 CPU_BASED_CR8_LOAD_EXITING | 2433 CPU_BASED_CR8_STORE_EXITING | 2434 #endif 2435 CPU_BASED_CR3_LOAD_EXITING | 2436 CPU_BASED_CR3_STORE_EXITING | 2437 CPU_BASED_UNCOND_IO_EXITING | 2438 CPU_BASED_MOV_DR_EXITING | 2439 CPU_BASED_USE_TSC_OFFSETTING | 2440 CPU_BASED_MWAIT_EXITING | 2441 CPU_BASED_MONITOR_EXITING | 2442 CPU_BASED_INVLPG_EXITING | 2443 CPU_BASED_RDPMC_EXITING; 2444 2445 opt = CPU_BASED_TPR_SHADOW | 2446 CPU_BASED_USE_MSR_BITMAPS | 2447 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2448 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2449 &_cpu_based_exec_control) < 0) 2450 return -EIO; 2451 #ifdef CONFIG_X86_64 2452 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2453 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2454 ~CPU_BASED_CR8_STORE_EXITING; 2455 #endif 2456 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2457 min2 = 0; 2458 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2459 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2460 SECONDARY_EXEC_WBINVD_EXITING | 2461 SECONDARY_EXEC_ENABLE_VPID | 2462 SECONDARY_EXEC_ENABLE_EPT | 2463 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2464 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2465 SECONDARY_EXEC_DESC | 2466 SECONDARY_EXEC_ENABLE_RDTSCP | 2467 SECONDARY_EXEC_ENABLE_INVPCID | 2468 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2469 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2470 SECONDARY_EXEC_SHADOW_VMCS | 2471 SECONDARY_EXEC_XSAVES | 2472 SECONDARY_EXEC_RDSEED_EXITING | 2473 SECONDARY_EXEC_RDRAND_EXITING | 2474 SECONDARY_EXEC_ENABLE_PML | 2475 SECONDARY_EXEC_TSC_SCALING | 2476 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | 2477 SECONDARY_EXEC_PT_USE_GPA | 2478 SECONDARY_EXEC_PT_CONCEAL_VMX | 2479 SECONDARY_EXEC_ENABLE_VMFUNC | 2480 SECONDARY_EXEC_BUS_LOCK_DETECTION; 2481 if (cpu_has_sgx()) 2482 opt2 |= SECONDARY_EXEC_ENCLS_EXITING; 2483 if (adjust_vmx_controls(min2, opt2, 2484 MSR_IA32_VMX_PROCBASED_CTLS2, 2485 &_cpu_based_2nd_exec_control) < 0) 2486 return -EIO; 2487 } 2488 #ifndef CONFIG_X86_64 2489 if (!(_cpu_based_2nd_exec_control & 2490 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2491 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2492 #endif 2493 2494 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2495 _cpu_based_2nd_exec_control &= ~( 2496 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2497 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2498 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2499 2500 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2501 &vmx_cap->ept, &vmx_cap->vpid); 2502 2503 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2504 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2505 enabled */ 2506 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2507 CPU_BASED_CR3_STORE_EXITING | 2508 CPU_BASED_INVLPG_EXITING); 2509 } else if (vmx_cap->ept) { 2510 vmx_cap->ept = 0; 2511 pr_warn_once("EPT CAP should not exist if not support " 2512 "1-setting enable EPT VM-execution control\n"); 2513 } 2514 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2515 vmx_cap->vpid) { 2516 vmx_cap->vpid = 0; 2517 pr_warn_once("VPID CAP should not exist if not support " 2518 "1-setting enable VPID VM-execution control\n"); 2519 } 2520 2521 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2522 #ifdef CONFIG_X86_64 2523 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2524 #endif 2525 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2526 VM_EXIT_LOAD_IA32_PAT | 2527 VM_EXIT_LOAD_IA32_EFER | 2528 VM_EXIT_CLEAR_BNDCFGS | 2529 VM_EXIT_PT_CONCEAL_PIP | 2530 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2531 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2532 &_vmexit_control) < 0) 2533 return -EIO; 2534 2535 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2536 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2537 PIN_BASED_VMX_PREEMPTION_TIMER; 2538 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2539 &_pin_based_exec_control) < 0) 2540 return -EIO; 2541 2542 if (cpu_has_broken_vmx_preemption_timer()) 2543 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2544 if (!(_cpu_based_2nd_exec_control & 2545 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2546 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2547 2548 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2549 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2550 VM_ENTRY_LOAD_IA32_PAT | 2551 VM_ENTRY_LOAD_IA32_EFER | 2552 VM_ENTRY_LOAD_BNDCFGS | 2553 VM_ENTRY_PT_CONCEAL_PIP | 2554 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2555 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2556 &_vmentry_control) < 0) 2557 return -EIO; 2558 2559 /* 2560 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2561 * can't be used due to an errata where VM Exit may incorrectly clear 2562 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2563 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2564 */ 2565 if (boot_cpu_data.x86 == 0x6) { 2566 switch (boot_cpu_data.x86_model) { 2567 case 26: /* AAK155 */ 2568 case 30: /* AAP115 */ 2569 case 37: /* AAT100 */ 2570 case 44: /* BC86,AAY89,BD102 */ 2571 case 46: /* BA97 */ 2572 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2573 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2574 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2575 "does not work properly. Using workaround\n"); 2576 break; 2577 default: 2578 break; 2579 } 2580 } 2581 2582 2583 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2584 2585 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2586 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2587 return -EIO; 2588 2589 #ifdef CONFIG_X86_64 2590 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2591 if (vmx_msr_high & (1u<<16)) 2592 return -EIO; 2593 #endif 2594 2595 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2596 if (((vmx_msr_high >> 18) & 15) != 6) 2597 return -EIO; 2598 2599 vmcs_conf->size = vmx_msr_high & 0x1fff; 2600 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2601 2602 vmcs_conf->revision_id = vmx_msr_low; 2603 2604 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2605 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2606 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2607 vmcs_conf->vmexit_ctrl = _vmexit_control; 2608 vmcs_conf->vmentry_ctrl = _vmentry_control; 2609 2610 #if IS_ENABLED(CONFIG_HYPERV) 2611 if (enlightened_vmcs) 2612 evmcs_sanitize_exec_ctrls(vmcs_conf); 2613 #endif 2614 2615 return 0; 2616 } 2617 2618 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2619 { 2620 int node = cpu_to_node(cpu); 2621 struct page *pages; 2622 struct vmcs *vmcs; 2623 2624 pages = __alloc_pages_node(node, flags, 0); 2625 if (!pages) 2626 return NULL; 2627 vmcs = page_address(pages); 2628 memset(vmcs, 0, vmcs_config.size); 2629 2630 /* KVM supports Enlightened VMCS v1 only */ 2631 if (static_branch_unlikely(&enable_evmcs)) 2632 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2633 else 2634 vmcs->hdr.revision_id = vmcs_config.revision_id; 2635 2636 if (shadow) 2637 vmcs->hdr.shadow_vmcs = 1; 2638 return vmcs; 2639 } 2640 2641 void free_vmcs(struct vmcs *vmcs) 2642 { 2643 free_page((unsigned long)vmcs); 2644 } 2645 2646 /* 2647 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2648 */ 2649 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2650 { 2651 if (!loaded_vmcs->vmcs) 2652 return; 2653 loaded_vmcs_clear(loaded_vmcs); 2654 free_vmcs(loaded_vmcs->vmcs); 2655 loaded_vmcs->vmcs = NULL; 2656 if (loaded_vmcs->msr_bitmap) 2657 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2658 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2659 } 2660 2661 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2662 { 2663 loaded_vmcs->vmcs = alloc_vmcs(false); 2664 if (!loaded_vmcs->vmcs) 2665 return -ENOMEM; 2666 2667 vmcs_clear(loaded_vmcs->vmcs); 2668 2669 loaded_vmcs->shadow_vmcs = NULL; 2670 loaded_vmcs->hv_timer_soft_disabled = false; 2671 loaded_vmcs->cpu = -1; 2672 loaded_vmcs->launched = 0; 2673 2674 if (cpu_has_vmx_msr_bitmap()) { 2675 loaded_vmcs->msr_bitmap = (unsigned long *) 2676 __get_free_page(GFP_KERNEL_ACCOUNT); 2677 if (!loaded_vmcs->msr_bitmap) 2678 goto out_vmcs; 2679 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2680 } 2681 2682 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2683 memset(&loaded_vmcs->controls_shadow, 0, 2684 sizeof(struct vmcs_controls_shadow)); 2685 2686 return 0; 2687 2688 out_vmcs: 2689 free_loaded_vmcs(loaded_vmcs); 2690 return -ENOMEM; 2691 } 2692 2693 static void free_kvm_area(void) 2694 { 2695 int cpu; 2696 2697 for_each_possible_cpu(cpu) { 2698 free_vmcs(per_cpu(vmxarea, cpu)); 2699 per_cpu(vmxarea, cpu) = NULL; 2700 } 2701 } 2702 2703 static __init int alloc_kvm_area(void) 2704 { 2705 int cpu; 2706 2707 for_each_possible_cpu(cpu) { 2708 struct vmcs *vmcs; 2709 2710 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2711 if (!vmcs) { 2712 free_kvm_area(); 2713 return -ENOMEM; 2714 } 2715 2716 /* 2717 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2718 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2719 * revision_id reported by MSR_IA32_VMX_BASIC. 2720 * 2721 * However, even though not explicitly documented by 2722 * TLFS, VMXArea passed as VMXON argument should 2723 * still be marked with revision_id reported by 2724 * physical CPU. 2725 */ 2726 if (static_branch_unlikely(&enable_evmcs)) 2727 vmcs->hdr.revision_id = vmcs_config.revision_id; 2728 2729 per_cpu(vmxarea, cpu) = vmcs; 2730 } 2731 return 0; 2732 } 2733 2734 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2735 struct kvm_segment *save) 2736 { 2737 if (!emulate_invalid_guest_state) { 2738 /* 2739 * CS and SS RPL should be equal during guest entry according 2740 * to VMX spec, but in reality it is not always so. Since vcpu 2741 * is in the middle of the transition from real mode to 2742 * protected mode it is safe to assume that RPL 0 is a good 2743 * default value. 2744 */ 2745 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2746 save->selector &= ~SEGMENT_RPL_MASK; 2747 save->dpl = save->selector & SEGMENT_RPL_MASK; 2748 save->s = 1; 2749 } 2750 __vmx_set_segment(vcpu, save, seg); 2751 } 2752 2753 static void enter_pmode(struct kvm_vcpu *vcpu) 2754 { 2755 unsigned long flags; 2756 struct vcpu_vmx *vmx = to_vmx(vcpu); 2757 2758 /* 2759 * Update real mode segment cache. It may be not up-to-date if segment 2760 * register was written while vcpu was in a guest mode. 2761 */ 2762 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2763 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2764 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2765 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2766 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2767 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2768 2769 vmx->rmode.vm86_active = 0; 2770 2771 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2772 2773 flags = vmcs_readl(GUEST_RFLAGS); 2774 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2775 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2776 vmcs_writel(GUEST_RFLAGS, flags); 2777 2778 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2779 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2780 2781 vmx_update_exception_bitmap(vcpu); 2782 2783 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2784 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2785 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2786 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2787 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2788 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2789 } 2790 2791 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2792 { 2793 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2794 struct kvm_segment var = *save; 2795 2796 var.dpl = 0x3; 2797 if (seg == VCPU_SREG_CS) 2798 var.type = 0x3; 2799 2800 if (!emulate_invalid_guest_state) { 2801 var.selector = var.base >> 4; 2802 var.base = var.base & 0xffff0; 2803 var.limit = 0xffff; 2804 var.g = 0; 2805 var.db = 0; 2806 var.present = 1; 2807 var.s = 1; 2808 var.l = 0; 2809 var.unusable = 0; 2810 var.type = 0x3; 2811 var.avl = 0; 2812 if (save->base & 0xf) 2813 printk_once(KERN_WARNING "kvm: segment base is not " 2814 "paragraph aligned when entering " 2815 "protected mode (seg=%d)", seg); 2816 } 2817 2818 vmcs_write16(sf->selector, var.selector); 2819 vmcs_writel(sf->base, var.base); 2820 vmcs_write32(sf->limit, var.limit); 2821 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2822 } 2823 2824 static void enter_rmode(struct kvm_vcpu *vcpu) 2825 { 2826 unsigned long flags; 2827 struct vcpu_vmx *vmx = to_vmx(vcpu); 2828 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2829 2830 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2831 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2832 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2833 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2834 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2835 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2836 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2837 2838 vmx->rmode.vm86_active = 1; 2839 2840 /* 2841 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2842 * vcpu. Warn the user that an update is overdue. 2843 */ 2844 if (!kvm_vmx->tss_addr) 2845 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2846 "called before entering vcpu\n"); 2847 2848 vmx_segment_cache_clear(vmx); 2849 2850 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2851 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2852 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2853 2854 flags = vmcs_readl(GUEST_RFLAGS); 2855 vmx->rmode.save_rflags = flags; 2856 2857 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2858 2859 vmcs_writel(GUEST_RFLAGS, flags); 2860 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2861 vmx_update_exception_bitmap(vcpu); 2862 2863 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2864 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2865 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2866 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2867 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2868 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2869 } 2870 2871 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2872 { 2873 struct vcpu_vmx *vmx = to_vmx(vcpu); 2874 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER); 2875 2876 /* Nothing to do if hardware doesn't support EFER. */ 2877 if (!msr) 2878 return 0; 2879 2880 vcpu->arch.efer = efer; 2881 if (efer & EFER_LMA) { 2882 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2883 msr->data = efer; 2884 } else { 2885 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2886 2887 msr->data = efer & ~EFER_LME; 2888 } 2889 vmx_setup_uret_msrs(vmx); 2890 return 0; 2891 } 2892 2893 #ifdef CONFIG_X86_64 2894 2895 static void enter_lmode(struct kvm_vcpu *vcpu) 2896 { 2897 u32 guest_tr_ar; 2898 2899 vmx_segment_cache_clear(to_vmx(vcpu)); 2900 2901 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2902 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2903 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2904 __func__); 2905 vmcs_write32(GUEST_TR_AR_BYTES, 2906 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 2907 | VMX_AR_TYPE_BUSY_64_TSS); 2908 } 2909 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 2910 } 2911 2912 static void exit_lmode(struct kvm_vcpu *vcpu) 2913 { 2914 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2915 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 2916 } 2917 2918 #endif 2919 2920 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 2921 { 2922 struct vcpu_vmx *vmx = to_vmx(vcpu); 2923 2924 /* 2925 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 2926 * the CPU is not required to invalidate guest-physical mappings on 2927 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 2928 * associated with the root EPT structure and not any particular VPID 2929 * (INVVPID also isn't required to invalidate guest-physical mappings). 2930 */ 2931 if (enable_ept) { 2932 ept_sync_global(); 2933 } else if (enable_vpid) { 2934 if (cpu_has_vmx_invvpid_global()) { 2935 vpid_sync_vcpu_global(); 2936 } else { 2937 vpid_sync_vcpu_single(vmx->vpid); 2938 vpid_sync_vcpu_single(vmx->nested.vpid02); 2939 } 2940 } 2941 } 2942 2943 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 2944 { 2945 if (is_guest_mode(vcpu)) 2946 return nested_get_vpid02(vcpu); 2947 return to_vmx(vcpu)->vpid; 2948 } 2949 2950 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 2951 { 2952 struct kvm_mmu *mmu = vcpu->arch.mmu; 2953 u64 root_hpa = mmu->root_hpa; 2954 2955 /* No flush required if the current context is invalid. */ 2956 if (!VALID_PAGE(root_hpa)) 2957 return; 2958 2959 if (enable_ept) 2960 ept_sync_context(construct_eptp(vcpu, root_hpa, 2961 mmu->shadow_root_level)); 2962 else 2963 vpid_sync_context(vmx_get_current_vpid(vcpu)); 2964 } 2965 2966 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 2967 { 2968 /* 2969 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 2970 * vmx_flush_tlb_guest() for an explanation of why this is ok. 2971 */ 2972 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 2973 } 2974 2975 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 2976 { 2977 /* 2978 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 2979 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 2980 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 2981 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 2982 * i.e. no explicit INVVPID is necessary. 2983 */ 2984 vpid_sync_context(vmx_get_current_vpid(vcpu)); 2985 } 2986 2987 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 2988 { 2989 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2990 2991 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 2992 return; 2993 2994 if (is_pae_paging(vcpu)) { 2995 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 2996 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 2997 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 2998 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 2999 } 3000 } 3001 3002 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3003 { 3004 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3005 3006 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3007 return; 3008 3009 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3010 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3011 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3012 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3013 3014 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3015 } 3016 3017 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3018 CPU_BASED_CR3_STORE_EXITING) 3019 3020 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3021 { 3022 struct vcpu_vmx *vmx = to_vmx(vcpu); 3023 unsigned long hw_cr0, old_cr0_pg; 3024 u32 tmp; 3025 3026 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3027 3028 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3029 if (is_unrestricted_guest(vcpu)) 3030 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3031 else { 3032 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3033 if (!enable_ept) 3034 hw_cr0 |= X86_CR0_WP; 3035 3036 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3037 enter_pmode(vcpu); 3038 3039 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3040 enter_rmode(vcpu); 3041 } 3042 3043 vmcs_writel(CR0_READ_SHADOW, cr0); 3044 vmcs_writel(GUEST_CR0, hw_cr0); 3045 vcpu->arch.cr0 = cr0; 3046 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3047 3048 #ifdef CONFIG_X86_64 3049 if (vcpu->arch.efer & EFER_LME) { 3050 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3051 enter_lmode(vcpu); 3052 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3053 exit_lmode(vcpu); 3054 } 3055 #endif 3056 3057 if (enable_ept && !is_unrestricted_guest(vcpu)) { 3058 /* 3059 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3060 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3061 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3062 * KVM's CR3 is installed. 3063 */ 3064 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3065 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3066 3067 /* 3068 * When running with EPT but not unrestricted guest, KVM must 3069 * intercept CR3 accesses when paging is _disabled_. This is 3070 * necessary because restricted guests can't actually run with 3071 * paging disabled, and so KVM stuffs its own CR3 in order to 3072 * run the guest when identity mapped page tables. 3073 * 3074 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3075 * update, it may be stale with respect to CR3 interception, 3076 * e.g. after nested VM-Enter. 3077 * 3078 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3079 * stores to forward them to L1, even if KVM does not need to 3080 * intercept them to preserve its identity mapped page tables. 3081 */ 3082 if (!(cr0 & X86_CR0_PG)) { 3083 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3084 } else if (!is_guest_mode(vcpu)) { 3085 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3086 } else { 3087 tmp = exec_controls_get(vmx); 3088 tmp &= ~CR3_EXITING_BITS; 3089 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3090 exec_controls_set(vmx, tmp); 3091 } 3092 3093 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3094 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3095 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3096 3097 /* 3098 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3099 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3100 */ 3101 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3102 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3103 } 3104 3105 /* depends on vcpu->arch.cr0 to be set to a new value */ 3106 vmx->emulation_required = vmx_emulation_required(vcpu); 3107 } 3108 3109 static int vmx_get_max_tdp_level(void) 3110 { 3111 if (cpu_has_vmx_ept_5levels()) 3112 return 5; 3113 return 4; 3114 } 3115 3116 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3117 { 3118 u64 eptp = VMX_EPTP_MT_WB; 3119 3120 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3121 3122 if (enable_ept_ad_bits && 3123 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3124 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3125 eptp |= root_hpa; 3126 3127 return eptp; 3128 } 3129 3130 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3131 int root_level) 3132 { 3133 struct kvm *kvm = vcpu->kvm; 3134 bool update_guest_cr3 = true; 3135 unsigned long guest_cr3; 3136 u64 eptp; 3137 3138 if (enable_ept) { 3139 eptp = construct_eptp(vcpu, root_hpa, root_level); 3140 vmcs_write64(EPT_POINTER, eptp); 3141 3142 hv_track_root_tdp(vcpu, root_hpa); 3143 3144 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3145 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3146 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3147 guest_cr3 = vcpu->arch.cr3; 3148 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3149 update_guest_cr3 = false; 3150 vmx_ept_load_pdptrs(vcpu); 3151 } else { 3152 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3153 } 3154 3155 if (update_guest_cr3) 3156 vmcs_writel(GUEST_CR3, guest_cr3); 3157 } 3158 3159 3160 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3161 { 3162 /* 3163 * We operate under the default treatment of SMM, so VMX cannot be 3164 * enabled under SMM. Note, whether or not VMXE is allowed at all is 3165 * handled by kvm_is_valid_cr4(). 3166 */ 3167 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3168 return false; 3169 3170 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3171 return false; 3172 3173 return true; 3174 } 3175 3176 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3177 { 3178 unsigned long old_cr4 = vcpu->arch.cr4; 3179 struct vcpu_vmx *vmx = to_vmx(vcpu); 3180 /* 3181 * Pass through host's Machine Check Enable value to hw_cr4, which 3182 * is in force while we are in guest mode. Do not let guests control 3183 * this bit, even if host CR4.MCE == 0. 3184 */ 3185 unsigned long hw_cr4; 3186 3187 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3188 if (is_unrestricted_guest(vcpu)) 3189 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3190 else if (vmx->rmode.vm86_active) 3191 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3192 else 3193 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3194 3195 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 3196 if (cr4 & X86_CR4_UMIP) { 3197 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3198 hw_cr4 &= ~X86_CR4_UMIP; 3199 } else if (!is_guest_mode(vcpu) || 3200 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3201 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3202 } 3203 } 3204 3205 vcpu->arch.cr4 = cr4; 3206 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3207 3208 if (!is_unrestricted_guest(vcpu)) { 3209 if (enable_ept) { 3210 if (!is_paging(vcpu)) { 3211 hw_cr4 &= ~X86_CR4_PAE; 3212 hw_cr4 |= X86_CR4_PSE; 3213 } else if (!(cr4 & X86_CR4_PAE)) { 3214 hw_cr4 &= ~X86_CR4_PAE; 3215 } 3216 } 3217 3218 /* 3219 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3220 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3221 * to be manually disabled when guest switches to non-paging 3222 * mode. 3223 * 3224 * If !enable_unrestricted_guest, the CPU is always running 3225 * with CR0.PG=1 and CR4 needs to be modified. 3226 * If enable_unrestricted_guest, the CPU automatically 3227 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3228 */ 3229 if (!is_paging(vcpu)) 3230 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3231 } 3232 3233 vmcs_writel(CR4_READ_SHADOW, cr4); 3234 vmcs_writel(GUEST_CR4, hw_cr4); 3235 3236 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3237 kvm_update_cpuid_runtime(vcpu); 3238 } 3239 3240 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3241 { 3242 struct vcpu_vmx *vmx = to_vmx(vcpu); 3243 u32 ar; 3244 3245 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3246 *var = vmx->rmode.segs[seg]; 3247 if (seg == VCPU_SREG_TR 3248 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3249 return; 3250 var->base = vmx_read_guest_seg_base(vmx, seg); 3251 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3252 return; 3253 } 3254 var->base = vmx_read_guest_seg_base(vmx, seg); 3255 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3256 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3257 ar = vmx_read_guest_seg_ar(vmx, seg); 3258 var->unusable = (ar >> 16) & 1; 3259 var->type = ar & 15; 3260 var->s = (ar >> 4) & 1; 3261 var->dpl = (ar >> 5) & 3; 3262 /* 3263 * Some userspaces do not preserve unusable property. Since usable 3264 * segment has to be present according to VMX spec we can use present 3265 * property to amend userspace bug by making unusable segment always 3266 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3267 * segment as unusable. 3268 */ 3269 var->present = !var->unusable; 3270 var->avl = (ar >> 12) & 1; 3271 var->l = (ar >> 13) & 1; 3272 var->db = (ar >> 14) & 1; 3273 var->g = (ar >> 15) & 1; 3274 } 3275 3276 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3277 { 3278 struct kvm_segment s; 3279 3280 if (to_vmx(vcpu)->rmode.vm86_active) { 3281 vmx_get_segment(vcpu, &s, seg); 3282 return s.base; 3283 } 3284 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3285 } 3286 3287 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3288 { 3289 struct vcpu_vmx *vmx = to_vmx(vcpu); 3290 3291 if (unlikely(vmx->rmode.vm86_active)) 3292 return 0; 3293 else { 3294 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3295 return VMX_AR_DPL(ar); 3296 } 3297 } 3298 3299 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3300 { 3301 u32 ar; 3302 3303 if (var->unusable || !var->present) 3304 ar = 1 << 16; 3305 else { 3306 ar = var->type & 15; 3307 ar |= (var->s & 1) << 4; 3308 ar |= (var->dpl & 3) << 5; 3309 ar |= (var->present & 1) << 7; 3310 ar |= (var->avl & 1) << 12; 3311 ar |= (var->l & 1) << 13; 3312 ar |= (var->db & 1) << 14; 3313 ar |= (var->g & 1) << 15; 3314 } 3315 3316 return ar; 3317 } 3318 3319 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3320 { 3321 struct vcpu_vmx *vmx = to_vmx(vcpu); 3322 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3323 3324 vmx_segment_cache_clear(vmx); 3325 3326 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3327 vmx->rmode.segs[seg] = *var; 3328 if (seg == VCPU_SREG_TR) 3329 vmcs_write16(sf->selector, var->selector); 3330 else if (var->s) 3331 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3332 return; 3333 } 3334 3335 vmcs_writel(sf->base, var->base); 3336 vmcs_write32(sf->limit, var->limit); 3337 vmcs_write16(sf->selector, var->selector); 3338 3339 /* 3340 * Fix the "Accessed" bit in AR field of segment registers for older 3341 * qemu binaries. 3342 * IA32 arch specifies that at the time of processor reset the 3343 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3344 * is setting it to 0 in the userland code. This causes invalid guest 3345 * state vmexit when "unrestricted guest" mode is turned on. 3346 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3347 * tree. Newer qemu binaries with that qemu fix would not need this 3348 * kvm hack. 3349 */ 3350 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3351 var->type |= 0x1; /* Accessed */ 3352 3353 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3354 } 3355 3356 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3357 { 3358 __vmx_set_segment(vcpu, var, seg); 3359 3360 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3361 } 3362 3363 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3364 { 3365 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3366 3367 *db = (ar >> 14) & 1; 3368 *l = (ar >> 13) & 1; 3369 } 3370 3371 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3372 { 3373 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3374 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3375 } 3376 3377 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3378 { 3379 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3380 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3381 } 3382 3383 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3384 { 3385 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3386 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3387 } 3388 3389 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3390 { 3391 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3392 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3393 } 3394 3395 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3396 { 3397 struct kvm_segment var; 3398 u32 ar; 3399 3400 vmx_get_segment(vcpu, &var, seg); 3401 var.dpl = 0x3; 3402 if (seg == VCPU_SREG_CS) 3403 var.type = 0x3; 3404 ar = vmx_segment_access_rights(&var); 3405 3406 if (var.base != (var.selector << 4)) 3407 return false; 3408 if (var.limit != 0xffff) 3409 return false; 3410 if (ar != 0xf3) 3411 return false; 3412 3413 return true; 3414 } 3415 3416 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3417 { 3418 struct kvm_segment cs; 3419 unsigned int cs_rpl; 3420 3421 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3422 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3423 3424 if (cs.unusable) 3425 return false; 3426 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3427 return false; 3428 if (!cs.s) 3429 return false; 3430 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3431 if (cs.dpl > cs_rpl) 3432 return false; 3433 } else { 3434 if (cs.dpl != cs_rpl) 3435 return false; 3436 } 3437 if (!cs.present) 3438 return false; 3439 3440 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3441 return true; 3442 } 3443 3444 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3445 { 3446 struct kvm_segment ss; 3447 unsigned int ss_rpl; 3448 3449 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3450 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3451 3452 if (ss.unusable) 3453 return true; 3454 if (ss.type != 3 && ss.type != 7) 3455 return false; 3456 if (!ss.s) 3457 return false; 3458 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3459 return false; 3460 if (!ss.present) 3461 return false; 3462 3463 return true; 3464 } 3465 3466 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3467 { 3468 struct kvm_segment var; 3469 unsigned int rpl; 3470 3471 vmx_get_segment(vcpu, &var, seg); 3472 rpl = var.selector & SEGMENT_RPL_MASK; 3473 3474 if (var.unusable) 3475 return true; 3476 if (!var.s) 3477 return false; 3478 if (!var.present) 3479 return false; 3480 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3481 if (var.dpl < rpl) /* DPL < RPL */ 3482 return false; 3483 } 3484 3485 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3486 * rights flags 3487 */ 3488 return true; 3489 } 3490 3491 static bool tr_valid(struct kvm_vcpu *vcpu) 3492 { 3493 struct kvm_segment tr; 3494 3495 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3496 3497 if (tr.unusable) 3498 return false; 3499 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3500 return false; 3501 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3502 return false; 3503 if (!tr.present) 3504 return false; 3505 3506 return true; 3507 } 3508 3509 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3510 { 3511 struct kvm_segment ldtr; 3512 3513 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3514 3515 if (ldtr.unusable) 3516 return true; 3517 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3518 return false; 3519 if (ldtr.type != 2) 3520 return false; 3521 if (!ldtr.present) 3522 return false; 3523 3524 return true; 3525 } 3526 3527 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3528 { 3529 struct kvm_segment cs, ss; 3530 3531 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3532 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3533 3534 return ((cs.selector & SEGMENT_RPL_MASK) == 3535 (ss.selector & SEGMENT_RPL_MASK)); 3536 } 3537 3538 /* 3539 * Check if guest state is valid. Returns true if valid, false if 3540 * not. 3541 * We assume that registers are always usable 3542 */ 3543 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3544 { 3545 /* real mode guest state checks */ 3546 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3547 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3548 return false; 3549 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3550 return false; 3551 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3552 return false; 3553 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3554 return false; 3555 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3556 return false; 3557 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3558 return false; 3559 } else { 3560 /* protected mode guest state checks */ 3561 if (!cs_ss_rpl_check(vcpu)) 3562 return false; 3563 if (!code_segment_valid(vcpu)) 3564 return false; 3565 if (!stack_segment_valid(vcpu)) 3566 return false; 3567 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3568 return false; 3569 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3570 return false; 3571 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3572 return false; 3573 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3574 return false; 3575 if (!tr_valid(vcpu)) 3576 return false; 3577 if (!ldtr_valid(vcpu)) 3578 return false; 3579 } 3580 /* TODO: 3581 * - Add checks on RIP 3582 * - Add checks on RFLAGS 3583 */ 3584 3585 return true; 3586 } 3587 3588 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3589 { 3590 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3591 u16 data; 3592 int i; 3593 3594 for (i = 0; i < 3; i++) { 3595 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3596 return -EFAULT; 3597 } 3598 3599 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3600 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3601 return -EFAULT; 3602 3603 data = ~0; 3604 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3605 return -EFAULT; 3606 3607 return 0; 3608 } 3609 3610 static int init_rmode_identity_map(struct kvm *kvm) 3611 { 3612 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3613 int i, r = 0; 3614 void __user *uaddr; 3615 u32 tmp; 3616 3617 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3618 mutex_lock(&kvm->slots_lock); 3619 3620 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3621 goto out; 3622 3623 if (!kvm_vmx->ept_identity_map_addr) 3624 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3625 3626 uaddr = __x86_set_memory_region(kvm, 3627 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3628 kvm_vmx->ept_identity_map_addr, 3629 PAGE_SIZE); 3630 if (IS_ERR(uaddr)) { 3631 r = PTR_ERR(uaddr); 3632 goto out; 3633 } 3634 3635 /* Set up identity-mapping pagetable for EPT in real mode */ 3636 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3637 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3638 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3639 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3640 r = -EFAULT; 3641 goto out; 3642 } 3643 } 3644 kvm_vmx->ept_identity_pagetable_done = true; 3645 3646 out: 3647 mutex_unlock(&kvm->slots_lock); 3648 return r; 3649 } 3650 3651 static void seg_setup(int seg) 3652 { 3653 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3654 unsigned int ar; 3655 3656 vmcs_write16(sf->selector, 0); 3657 vmcs_writel(sf->base, 0); 3658 vmcs_write32(sf->limit, 0xffff); 3659 ar = 0x93; 3660 if (seg == VCPU_SREG_CS) 3661 ar |= 0x08; /* code segment */ 3662 3663 vmcs_write32(sf->ar_bytes, ar); 3664 } 3665 3666 static int alloc_apic_access_page(struct kvm *kvm) 3667 { 3668 struct page *page; 3669 void __user *hva; 3670 int ret = 0; 3671 3672 mutex_lock(&kvm->slots_lock); 3673 if (kvm->arch.apic_access_memslot_enabled) 3674 goto out; 3675 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3676 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3677 if (IS_ERR(hva)) { 3678 ret = PTR_ERR(hva); 3679 goto out; 3680 } 3681 3682 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3683 if (is_error_page(page)) { 3684 ret = -EFAULT; 3685 goto out; 3686 } 3687 3688 /* 3689 * Do not pin the page in memory, so that memory hot-unplug 3690 * is able to migrate it. 3691 */ 3692 put_page(page); 3693 kvm->arch.apic_access_memslot_enabled = true; 3694 out: 3695 mutex_unlock(&kvm->slots_lock); 3696 return ret; 3697 } 3698 3699 int allocate_vpid(void) 3700 { 3701 int vpid; 3702 3703 if (!enable_vpid) 3704 return 0; 3705 spin_lock(&vmx_vpid_lock); 3706 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3707 if (vpid < VMX_NR_VPIDS) 3708 __set_bit(vpid, vmx_vpid_bitmap); 3709 else 3710 vpid = 0; 3711 spin_unlock(&vmx_vpid_lock); 3712 return vpid; 3713 } 3714 3715 void free_vpid(int vpid) 3716 { 3717 if (!enable_vpid || vpid == 0) 3718 return; 3719 spin_lock(&vmx_vpid_lock); 3720 __clear_bit(vpid, vmx_vpid_bitmap); 3721 spin_unlock(&vmx_vpid_lock); 3722 } 3723 3724 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3725 { 3726 /* 3727 * When KVM is a nested hypervisor on top of Hyper-V and uses 3728 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3729 * bitmap has changed. 3730 */ 3731 if (static_branch_unlikely(&enable_evmcs)) 3732 evmcs_touch_msr_bitmap(); 3733 3734 vmx->nested.force_msr_bitmap_recalc = true; 3735 } 3736 3737 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3738 { 3739 struct vcpu_vmx *vmx = to_vmx(vcpu); 3740 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3741 3742 if (!cpu_has_vmx_msr_bitmap()) 3743 return; 3744 3745 vmx_msr_bitmap_l01_changed(vmx); 3746 3747 /* 3748 * Mark the desired intercept state in shadow bitmap, this is needed 3749 * for resync when the MSR filters change. 3750 */ 3751 if (is_valid_passthrough_msr(msr)) { 3752 int idx = possible_passthrough_msr_slot(msr); 3753 3754 if (idx != -ENOENT) { 3755 if (type & MSR_TYPE_R) 3756 clear_bit(idx, vmx->shadow_msr_intercept.read); 3757 if (type & MSR_TYPE_W) 3758 clear_bit(idx, vmx->shadow_msr_intercept.write); 3759 } 3760 } 3761 3762 if ((type & MSR_TYPE_R) && 3763 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3764 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3765 type &= ~MSR_TYPE_R; 3766 } 3767 3768 if ((type & MSR_TYPE_W) && 3769 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3770 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3771 type &= ~MSR_TYPE_W; 3772 } 3773 3774 if (type & MSR_TYPE_R) 3775 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3776 3777 if (type & MSR_TYPE_W) 3778 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3779 } 3780 3781 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3782 { 3783 struct vcpu_vmx *vmx = to_vmx(vcpu); 3784 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3785 3786 if (!cpu_has_vmx_msr_bitmap()) 3787 return; 3788 3789 vmx_msr_bitmap_l01_changed(vmx); 3790 3791 /* 3792 * Mark the desired intercept state in shadow bitmap, this is needed 3793 * for resync when the MSR filter changes. 3794 */ 3795 if (is_valid_passthrough_msr(msr)) { 3796 int idx = possible_passthrough_msr_slot(msr); 3797 3798 if (idx != -ENOENT) { 3799 if (type & MSR_TYPE_R) 3800 set_bit(idx, vmx->shadow_msr_intercept.read); 3801 if (type & MSR_TYPE_W) 3802 set_bit(idx, vmx->shadow_msr_intercept.write); 3803 } 3804 } 3805 3806 if (type & MSR_TYPE_R) 3807 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3808 3809 if (type & MSR_TYPE_W) 3810 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3811 } 3812 3813 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode) 3814 { 3815 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; 3816 unsigned long read_intercept; 3817 int msr; 3818 3819 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3820 3821 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3822 unsigned int read_idx = msr / BITS_PER_LONG; 3823 unsigned int write_idx = read_idx + (0x800 / sizeof(long)); 3824 3825 msr_bitmap[read_idx] = read_intercept; 3826 msr_bitmap[write_idx] = ~0ul; 3827 } 3828 } 3829 3830 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 3831 { 3832 struct vcpu_vmx *vmx = to_vmx(vcpu); 3833 u8 mode; 3834 3835 if (!cpu_has_vmx_msr_bitmap()) 3836 return; 3837 3838 if (cpu_has_secondary_exec_ctrls() && 3839 (secondary_exec_controls_get(vmx) & 3840 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3841 mode = MSR_BITMAP_MODE_X2APIC; 3842 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3843 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3844 } else { 3845 mode = 0; 3846 } 3847 3848 if (mode == vmx->x2apic_msr_bitmap_mode) 3849 return; 3850 3851 vmx->x2apic_msr_bitmap_mode = mode; 3852 3853 vmx_reset_x2apic_msrs(vcpu, mode); 3854 3855 /* 3856 * TPR reads and writes can be virtualized even if virtual interrupt 3857 * delivery is not in use. 3858 */ 3859 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 3860 !(mode & MSR_BITMAP_MODE_X2APIC)); 3861 3862 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3863 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 3864 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3865 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3866 } 3867 } 3868 3869 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 3870 { 3871 struct vcpu_vmx *vmx = to_vmx(vcpu); 3872 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3873 u32 i; 3874 3875 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 3876 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 3877 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 3878 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 3879 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 3880 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3881 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3882 } 3883 } 3884 3885 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3886 { 3887 struct vcpu_vmx *vmx = to_vmx(vcpu); 3888 void *vapic_page; 3889 u32 vppr; 3890 int rvi; 3891 3892 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3893 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3894 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3895 return false; 3896 3897 rvi = vmx_get_rvi(); 3898 3899 vapic_page = vmx->nested.virtual_apic_map.hva; 3900 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 3901 3902 return ((rvi & 0xf0) > (vppr & 0xf0)); 3903 } 3904 3905 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 3906 { 3907 struct vcpu_vmx *vmx = to_vmx(vcpu); 3908 u32 i; 3909 3910 /* 3911 * Set intercept permissions for all potentially passed through MSRs 3912 * again. They will automatically get filtered through the MSR filter, 3913 * so we are back in sync after this. 3914 */ 3915 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 3916 u32 msr = vmx_possible_passthrough_msrs[i]; 3917 bool read = test_bit(i, vmx->shadow_msr_intercept.read); 3918 bool write = test_bit(i, vmx->shadow_msr_intercept.write); 3919 3920 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read); 3921 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write); 3922 } 3923 3924 pt_update_intercept_for_msr(vcpu); 3925 } 3926 3927 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 3928 int pi_vec) 3929 { 3930 #ifdef CONFIG_SMP 3931 if (vcpu->mode == IN_GUEST_MODE) { 3932 /* 3933 * The vector of interrupt to be delivered to vcpu had 3934 * been set in PIR before this function. 3935 * 3936 * Following cases will be reached in this block, and 3937 * we always send a notification event in all cases as 3938 * explained below. 3939 * 3940 * Case 1: vcpu keeps in non-root mode. Sending a 3941 * notification event posts the interrupt to vcpu. 3942 * 3943 * Case 2: vcpu exits to root mode and is still 3944 * runnable. PIR will be synced to vIRR before the 3945 * next vcpu entry. Sending a notification event in 3946 * this case has no effect, as vcpu is not in root 3947 * mode. 3948 * 3949 * Case 3: vcpu exits to root mode and is blocked. 3950 * vcpu_block() has already synced PIR to vIRR and 3951 * never blocks vcpu if vIRR is not cleared. Therefore, 3952 * a blocked vcpu here does not wait for any requested 3953 * interrupts in PIR, and sending a notification event 3954 * which has no effect is safe here. 3955 */ 3956 3957 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 3958 return; 3959 } 3960 #endif 3961 /* 3962 * The vCPU isn't in the guest; wake the vCPU in case it is blocking, 3963 * otherwise do nothing as KVM will grab the highest priority pending 3964 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). 3965 */ 3966 kvm_vcpu_wake_up(vcpu); 3967 } 3968 3969 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 3970 int vector) 3971 { 3972 struct vcpu_vmx *vmx = to_vmx(vcpu); 3973 3974 if (is_guest_mode(vcpu) && 3975 vector == vmx->nested.posted_intr_nv) { 3976 /* 3977 * If a posted intr is not recognized by hardware, 3978 * we will accomplish it in the next vmentry. 3979 */ 3980 vmx->nested.pi_pending = true; 3981 kvm_make_request(KVM_REQ_EVENT, vcpu); 3982 3983 /* 3984 * This pairs with the smp_mb_*() after setting vcpu->mode in 3985 * vcpu_enter_guest() to guarantee the vCPU sees the event 3986 * request if triggering a posted interrupt "fails" because 3987 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 3988 * the smb_wmb() in kvm_make_request() only ensures everything 3989 * done before making the request is visible when the request 3990 * is visible, it doesn't ensure ordering between the store to 3991 * vcpu->requests and the load from vcpu->mode. 3992 */ 3993 smp_mb__after_atomic(); 3994 3995 /* the PIR and ON have been set by L1. */ 3996 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); 3997 return 0; 3998 } 3999 return -1; 4000 } 4001 /* 4002 * Send interrupt to vcpu via posted interrupt way. 4003 * 1. If target vcpu is running(non-root mode), send posted interrupt 4004 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4005 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4006 * interrupt from PIR in next vmentry. 4007 */ 4008 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4009 { 4010 struct vcpu_vmx *vmx = to_vmx(vcpu); 4011 int r; 4012 4013 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4014 if (!r) 4015 return 0; 4016 4017 if (!vcpu->arch.apicv_active) 4018 return -1; 4019 4020 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4021 return 0; 4022 4023 /* If a previous notification has sent the IPI, nothing to do. */ 4024 if (pi_test_and_set_on(&vmx->pi_desc)) 4025 return 0; 4026 4027 /* 4028 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() 4029 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is 4030 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a 4031 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. 4032 */ 4033 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); 4034 return 0; 4035 } 4036 4037 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 4038 int trig_mode, int vector) 4039 { 4040 struct kvm_vcpu *vcpu = apic->vcpu; 4041 4042 if (vmx_deliver_posted_interrupt(vcpu, vector)) { 4043 kvm_lapic_set_irr(vector, apic); 4044 kvm_make_request(KVM_REQ_EVENT, vcpu); 4045 kvm_vcpu_kick(vcpu); 4046 } else { 4047 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 4048 trig_mode, vector); 4049 } 4050 } 4051 4052 /* 4053 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4054 * will not change in the lifetime of the guest. 4055 * Note that host-state that does change is set elsewhere. E.g., host-state 4056 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4057 */ 4058 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4059 { 4060 u32 low32, high32; 4061 unsigned long tmpl; 4062 unsigned long cr0, cr3, cr4; 4063 4064 cr0 = read_cr0(); 4065 WARN_ON(cr0 & X86_CR0_TS); 4066 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4067 4068 /* 4069 * Save the most likely value for this task's CR3 in the VMCS. 4070 * We can't use __get_current_cr3_fast() because we're not atomic. 4071 */ 4072 cr3 = __read_cr3(); 4073 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4074 vmx->loaded_vmcs->host_state.cr3 = cr3; 4075 4076 /* Save the most likely value for this task's CR4 in the VMCS. */ 4077 cr4 = cr4_read_shadow(); 4078 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4079 vmx->loaded_vmcs->host_state.cr4 = cr4; 4080 4081 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4082 #ifdef CONFIG_X86_64 4083 /* 4084 * Load null selectors, so we can avoid reloading them in 4085 * vmx_prepare_switch_to_host(), in case userspace uses 4086 * the null selectors too (the expected case). 4087 */ 4088 vmcs_write16(HOST_DS_SELECTOR, 0); 4089 vmcs_write16(HOST_ES_SELECTOR, 0); 4090 #else 4091 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4092 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4093 #endif 4094 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4095 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4096 4097 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4098 4099 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4100 4101 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4102 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4103 4104 /* 4105 * SYSENTER is used for 32-bit system calls on either 32-bit or 4106 * 64-bit kernels. It is always zero If neither is allowed, otherwise 4107 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may 4108 * have already done so!). 4109 */ 4110 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) 4111 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4112 4113 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4114 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4115 4116 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4117 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4118 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4119 } 4120 4121 if (cpu_has_load_ia32_efer()) 4122 vmcs_write64(HOST_IA32_EFER, host_efer); 4123 } 4124 4125 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4126 { 4127 struct kvm_vcpu *vcpu = &vmx->vcpu; 4128 4129 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4130 ~vcpu->arch.cr4_guest_rsvd_bits; 4131 if (!enable_ept) { 4132 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4133 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4134 } 4135 if (is_guest_mode(&vmx->vcpu)) 4136 vcpu->arch.cr4_guest_owned_bits &= 4137 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4138 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4139 } 4140 4141 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4142 { 4143 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4144 4145 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4146 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4147 4148 if (!enable_vnmi) 4149 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4150 4151 if (!enable_preemption_timer) 4152 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4153 4154 return pin_based_exec_ctrl; 4155 } 4156 4157 static u32 vmx_vmentry_ctrl(void) 4158 { 4159 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4160 4161 if (vmx_pt_mode_is_system()) 4162 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4163 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4164 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4165 return vmentry_ctrl & 4166 ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER); 4167 } 4168 4169 static u32 vmx_vmexit_ctrl(void) 4170 { 4171 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4172 4173 if (vmx_pt_mode_is_system()) 4174 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4175 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4176 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4177 return vmexit_ctrl & 4178 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4179 } 4180 4181 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4182 { 4183 struct vcpu_vmx *vmx = to_vmx(vcpu); 4184 4185 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4186 if (cpu_has_secondary_exec_ctrls()) { 4187 if (kvm_vcpu_apicv_active(vcpu)) 4188 secondary_exec_controls_setbit(vmx, 4189 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4190 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4191 else 4192 secondary_exec_controls_clearbit(vmx, 4193 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4194 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4195 } 4196 4197 vmx_update_msr_bitmap_x2apic(vcpu); 4198 } 4199 4200 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4201 { 4202 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4203 4204 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4205 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4206 4207 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 4208 exec_control &= ~CPU_BASED_TPR_SHADOW; 4209 #ifdef CONFIG_X86_64 4210 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4211 CPU_BASED_CR8_LOAD_EXITING; 4212 #endif 4213 } 4214 if (!enable_ept) 4215 exec_control |= CPU_BASED_CR3_STORE_EXITING | 4216 CPU_BASED_CR3_LOAD_EXITING | 4217 CPU_BASED_INVLPG_EXITING; 4218 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4219 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4220 CPU_BASED_MONITOR_EXITING); 4221 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4222 exec_control &= ~CPU_BASED_HLT_EXITING; 4223 return exec_control; 4224 } 4225 4226 /* 4227 * Adjust a single secondary execution control bit to intercept/allow an 4228 * instruction in the guest. This is usually done based on whether or not a 4229 * feature has been exposed to the guest in order to correctly emulate faults. 4230 */ 4231 static inline void 4232 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4233 u32 control, bool enabled, bool exiting) 4234 { 4235 /* 4236 * If the control is for an opt-in feature, clear the control if the 4237 * feature is not exposed to the guest, i.e. not enabled. If the 4238 * control is opt-out, i.e. an exiting control, clear the control if 4239 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4240 * disabled for the associated instruction. Note, the caller is 4241 * responsible presetting exec_control to set all supported bits. 4242 */ 4243 if (enabled == exiting) 4244 *exec_control &= ~control; 4245 4246 /* 4247 * Update the nested MSR settings so that a nested VMM can/can't set 4248 * controls for features that are/aren't exposed to the guest. 4249 */ 4250 if (nested) { 4251 if (enabled) 4252 vmx->nested.msrs.secondary_ctls_high |= control; 4253 else 4254 vmx->nested.msrs.secondary_ctls_high &= ~control; 4255 } 4256 } 4257 4258 /* 4259 * Wrapper macro for the common case of adjusting a secondary execution control 4260 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4261 * verifies that the control is actually supported by KVM and hardware. 4262 */ 4263 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4264 ({ \ 4265 bool __enabled; \ 4266 \ 4267 if (cpu_has_vmx_##name()) { \ 4268 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4269 X86_FEATURE_##feat_name); \ 4270 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4271 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4272 } \ 4273 }) 4274 4275 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4276 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4277 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4278 4279 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4280 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4281 4282 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4283 { 4284 struct kvm_vcpu *vcpu = &vmx->vcpu; 4285 4286 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4287 4288 if (vmx_pt_mode_is_system()) 4289 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4290 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4291 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4292 if (vmx->vpid == 0) 4293 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4294 if (!enable_ept) { 4295 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4296 enable_unrestricted_guest = 0; 4297 } 4298 if (!enable_unrestricted_guest) 4299 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4300 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4301 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4302 if (!kvm_vcpu_apicv_active(vcpu)) 4303 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4304 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4305 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4306 4307 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4308 * in vmx_set_cr4. */ 4309 exec_control &= ~SECONDARY_EXEC_DESC; 4310 4311 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4312 (handle_vmptrld). 4313 We can NOT enable shadow_vmcs here because we don't have yet 4314 a current VMCS12 4315 */ 4316 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4317 4318 /* 4319 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4320 * it needs to be set here when dirty logging is already active, e.g. 4321 * if this vCPU was created after dirty logging was enabled. 4322 */ 4323 if (!vcpu->kvm->arch.cpu_dirty_logging_count) 4324 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4325 4326 if (cpu_has_vmx_xsaves()) { 4327 /* Exposing XSAVES only when XSAVE is exposed */ 4328 bool xsaves_enabled = 4329 boot_cpu_has(X86_FEATURE_XSAVE) && 4330 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4331 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4332 4333 vcpu->arch.xsaves_enabled = xsaves_enabled; 4334 4335 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4336 SECONDARY_EXEC_XSAVES, 4337 xsaves_enabled, false); 4338 } 4339 4340 /* 4341 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4342 * feature is exposed to the guest. This creates a virtualization hole 4343 * if both are supported in hardware but only one is exposed to the 4344 * guest, but letting the guest execute RDTSCP or RDPID when either one 4345 * is advertised is preferable to emulating the advertised instruction 4346 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4347 */ 4348 if (cpu_has_vmx_rdtscp()) { 4349 bool rdpid_or_rdtscp_enabled = 4350 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4351 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4352 4353 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4354 SECONDARY_EXEC_ENABLE_RDTSCP, 4355 rdpid_or_rdtscp_enabled, false); 4356 } 4357 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4358 4359 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4360 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4361 4362 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4363 ENABLE_USR_WAIT_PAUSE, false); 4364 4365 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4366 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4367 4368 return exec_control; 4369 } 4370 4371 #define VMX_XSS_EXIT_BITMAP 0 4372 4373 static void init_vmcs(struct vcpu_vmx *vmx) 4374 { 4375 if (nested) 4376 nested_vmx_set_vmcs_shadowing_bitmap(); 4377 4378 if (cpu_has_vmx_msr_bitmap()) 4379 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4380 4381 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4382 4383 /* Control */ 4384 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4385 4386 exec_controls_set(vmx, vmx_exec_control(vmx)); 4387 4388 if (cpu_has_secondary_exec_ctrls()) 4389 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4390 4391 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4392 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4393 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4394 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4395 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4396 4397 vmcs_write16(GUEST_INTR_STATUS, 0); 4398 4399 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4400 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4401 } 4402 4403 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4404 vmcs_write32(PLE_GAP, ple_gap); 4405 vmx->ple_window = ple_window; 4406 vmx->ple_window_dirty = true; 4407 } 4408 4409 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4410 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4411 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4412 4413 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4414 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4415 vmx_set_constant_host_state(vmx); 4416 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4417 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4418 4419 if (cpu_has_vmx_vmfunc()) 4420 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4421 4422 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4423 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4424 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4425 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4426 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4427 4428 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4429 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4430 4431 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4432 4433 /* 22.2.1, 20.8.1 */ 4434 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4435 4436 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS; 4437 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4438 4439 set_cr4_guest_host_mask(vmx); 4440 4441 if (vmx->vpid != 0) 4442 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4443 4444 if (cpu_has_vmx_xsaves()) 4445 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4446 4447 if (enable_pml) { 4448 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4449 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4450 } 4451 4452 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4453 4454 if (vmx_pt_mode_is_host_guest()) { 4455 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4456 /* Bit[6~0] are forced to 1, writes are ignored. */ 4457 vmx->pt_desc.guest.output_mask = 0x7F; 4458 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4459 } 4460 4461 vmcs_write32(GUEST_SYSENTER_CS, 0); 4462 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4463 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4464 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4465 4466 if (cpu_has_vmx_tpr_shadow()) { 4467 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4468 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4469 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4470 __pa(vmx->vcpu.arch.apic->regs)); 4471 vmcs_write32(TPR_THRESHOLD, 0); 4472 } 4473 4474 vmx_setup_uret_msrs(vmx); 4475 } 4476 4477 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4478 { 4479 struct vcpu_vmx *vmx = to_vmx(vcpu); 4480 4481 init_vmcs(vmx); 4482 4483 if (nested) 4484 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4485 4486 vcpu_setup_sgx_lepubkeyhash(vcpu); 4487 4488 vmx->nested.posted_intr_nv = -1; 4489 vmx->nested.vmxon_ptr = INVALID_GPA; 4490 vmx->nested.current_vmptr = INVALID_GPA; 4491 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4492 4493 vcpu->arch.microcode_version = 0x100000000ULL; 4494 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4495 4496 /* 4497 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4498 * or POSTED_INTR_WAKEUP_VECTOR. 4499 */ 4500 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4501 vmx->pi_desc.sn = 1; 4502 } 4503 4504 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4505 { 4506 struct vcpu_vmx *vmx = to_vmx(vcpu); 4507 4508 if (!init_event) 4509 __vmx_vcpu_reset(vcpu); 4510 4511 vmx->rmode.vm86_active = 0; 4512 vmx->spec_ctrl = 0; 4513 4514 vmx->msr_ia32_umwait_control = 0; 4515 4516 vmx->hv_deadline_tsc = -1; 4517 kvm_set_cr8(vcpu, 0); 4518 4519 vmx_segment_cache_clear(vmx); 4520 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4521 4522 seg_setup(VCPU_SREG_CS); 4523 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4524 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4525 4526 seg_setup(VCPU_SREG_DS); 4527 seg_setup(VCPU_SREG_ES); 4528 seg_setup(VCPU_SREG_FS); 4529 seg_setup(VCPU_SREG_GS); 4530 seg_setup(VCPU_SREG_SS); 4531 4532 vmcs_write16(GUEST_TR_SELECTOR, 0); 4533 vmcs_writel(GUEST_TR_BASE, 0); 4534 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4535 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4536 4537 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4538 vmcs_writel(GUEST_LDTR_BASE, 0); 4539 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4540 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4541 4542 vmcs_writel(GUEST_GDTR_BASE, 0); 4543 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4544 4545 vmcs_writel(GUEST_IDTR_BASE, 0); 4546 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4547 4548 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4549 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4550 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4551 if (kvm_mpx_supported()) 4552 vmcs_write64(GUEST_BNDCFGS, 0); 4553 4554 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4555 4556 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4557 4558 vpid_sync_context(vmx->vpid); 4559 } 4560 4561 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4562 { 4563 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4564 } 4565 4566 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4567 { 4568 if (!enable_vnmi || 4569 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4570 vmx_enable_irq_window(vcpu); 4571 return; 4572 } 4573 4574 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4575 } 4576 4577 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4578 { 4579 struct vcpu_vmx *vmx = to_vmx(vcpu); 4580 uint32_t intr; 4581 int irq = vcpu->arch.interrupt.nr; 4582 4583 trace_kvm_inj_virq(irq); 4584 4585 ++vcpu->stat.irq_injections; 4586 if (vmx->rmode.vm86_active) { 4587 int inc_eip = 0; 4588 if (vcpu->arch.interrupt.soft) 4589 inc_eip = vcpu->arch.event_exit_inst_len; 4590 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4591 return; 4592 } 4593 intr = irq | INTR_INFO_VALID_MASK; 4594 if (vcpu->arch.interrupt.soft) { 4595 intr |= INTR_TYPE_SOFT_INTR; 4596 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4597 vmx->vcpu.arch.event_exit_inst_len); 4598 } else 4599 intr |= INTR_TYPE_EXT_INTR; 4600 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4601 4602 vmx_clear_hlt(vcpu); 4603 } 4604 4605 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4606 { 4607 struct vcpu_vmx *vmx = to_vmx(vcpu); 4608 4609 if (!enable_vnmi) { 4610 /* 4611 * Tracking the NMI-blocked state in software is built upon 4612 * finding the next open IRQ window. This, in turn, depends on 4613 * well-behaving guests: They have to keep IRQs disabled at 4614 * least as long as the NMI handler runs. Otherwise we may 4615 * cause NMI nesting, maybe breaking the guest. But as this is 4616 * highly unlikely, we can live with the residual risk. 4617 */ 4618 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4619 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4620 } 4621 4622 ++vcpu->stat.nmi_injections; 4623 vmx->loaded_vmcs->nmi_known_unmasked = false; 4624 4625 if (vmx->rmode.vm86_active) { 4626 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4627 return; 4628 } 4629 4630 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4631 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4632 4633 vmx_clear_hlt(vcpu); 4634 } 4635 4636 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4637 { 4638 struct vcpu_vmx *vmx = to_vmx(vcpu); 4639 bool masked; 4640 4641 if (!enable_vnmi) 4642 return vmx->loaded_vmcs->soft_vnmi_blocked; 4643 if (vmx->loaded_vmcs->nmi_known_unmasked) 4644 return false; 4645 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4646 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4647 return masked; 4648 } 4649 4650 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4651 { 4652 struct vcpu_vmx *vmx = to_vmx(vcpu); 4653 4654 if (!enable_vnmi) { 4655 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4656 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4657 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4658 } 4659 } else { 4660 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4661 if (masked) 4662 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4663 GUEST_INTR_STATE_NMI); 4664 else 4665 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4666 GUEST_INTR_STATE_NMI); 4667 } 4668 } 4669 4670 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 4671 { 4672 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4673 return false; 4674 4675 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4676 return true; 4677 4678 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4679 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 4680 GUEST_INTR_STATE_NMI)); 4681 } 4682 4683 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4684 { 4685 if (to_vmx(vcpu)->nested.nested_run_pending) 4686 return -EBUSY; 4687 4688 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 4689 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4690 return -EBUSY; 4691 4692 return !vmx_nmi_blocked(vcpu); 4693 } 4694 4695 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 4696 { 4697 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4698 return false; 4699 4700 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 4701 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4702 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4703 } 4704 4705 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4706 { 4707 if (to_vmx(vcpu)->nested.nested_run_pending) 4708 return -EBUSY; 4709 4710 /* 4711 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 4712 * e.g. if the IRQ arrived asynchronously after checking nested events. 4713 */ 4714 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4715 return -EBUSY; 4716 4717 return !vmx_interrupt_blocked(vcpu); 4718 } 4719 4720 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4721 { 4722 void __user *ret; 4723 4724 if (enable_unrestricted_guest) 4725 return 0; 4726 4727 mutex_lock(&kvm->slots_lock); 4728 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4729 PAGE_SIZE * 3); 4730 mutex_unlock(&kvm->slots_lock); 4731 4732 if (IS_ERR(ret)) 4733 return PTR_ERR(ret); 4734 4735 to_kvm_vmx(kvm)->tss_addr = addr; 4736 4737 return init_rmode_tss(kvm, ret); 4738 } 4739 4740 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4741 { 4742 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4743 return 0; 4744 } 4745 4746 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4747 { 4748 switch (vec) { 4749 case BP_VECTOR: 4750 /* 4751 * Update instruction length as we may reinject the exception 4752 * from user space while in guest debugging mode. 4753 */ 4754 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4755 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4756 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4757 return false; 4758 fallthrough; 4759 case DB_VECTOR: 4760 return !(vcpu->guest_debug & 4761 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 4762 case DE_VECTOR: 4763 case OF_VECTOR: 4764 case BR_VECTOR: 4765 case UD_VECTOR: 4766 case DF_VECTOR: 4767 case SS_VECTOR: 4768 case GP_VECTOR: 4769 case MF_VECTOR: 4770 return true; 4771 } 4772 return false; 4773 } 4774 4775 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4776 int vec, u32 err_code) 4777 { 4778 /* 4779 * Instruction with address size override prefix opcode 0x67 4780 * Cause the #SS fault with 0 error code in VM86 mode. 4781 */ 4782 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4783 if (kvm_emulate_instruction(vcpu, 0)) { 4784 if (vcpu->arch.halt_request) { 4785 vcpu->arch.halt_request = 0; 4786 return kvm_emulate_halt_noskip(vcpu); 4787 } 4788 return 1; 4789 } 4790 return 0; 4791 } 4792 4793 /* 4794 * Forward all other exceptions that are valid in real mode. 4795 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4796 * the required debugging infrastructure rework. 4797 */ 4798 kvm_queue_exception(vcpu, vec); 4799 return 1; 4800 } 4801 4802 static int handle_machine_check(struct kvm_vcpu *vcpu) 4803 { 4804 /* handled by vmx_vcpu_run() */ 4805 return 1; 4806 } 4807 4808 /* 4809 * If the host has split lock detection disabled, then #AC is 4810 * unconditionally injected into the guest, which is the pre split lock 4811 * detection behaviour. 4812 * 4813 * If the host has split lock detection enabled then #AC is 4814 * only injected into the guest when: 4815 * - Guest CPL == 3 (user mode) 4816 * - Guest has #AC detection enabled in CR0 4817 * - Guest EFLAGS has AC bit set 4818 */ 4819 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 4820 { 4821 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 4822 return true; 4823 4824 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) && 4825 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 4826 } 4827 4828 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 4829 { 4830 struct vcpu_vmx *vmx = to_vmx(vcpu); 4831 struct kvm_run *kvm_run = vcpu->run; 4832 u32 intr_info, ex_no, error_code; 4833 unsigned long cr2, dr6; 4834 u32 vect_info; 4835 4836 vect_info = vmx->idt_vectoring_info; 4837 intr_info = vmx_get_intr_info(vcpu); 4838 4839 if (is_machine_check(intr_info) || is_nmi(intr_info)) 4840 return 1; /* handled by handle_exception_nmi_irqoff() */ 4841 4842 /* 4843 * Queue the exception here instead of in handle_nm_fault_irqoff(). 4844 * This ensures the nested_vmx check is not skipped so vmexit can 4845 * be reflected to L1 (when it intercepts #NM) before reaching this 4846 * point. 4847 */ 4848 if (is_nm_fault(intr_info)) { 4849 kvm_queue_exception(vcpu, NM_VECTOR); 4850 return 1; 4851 } 4852 4853 if (is_invalid_opcode(intr_info)) 4854 return handle_ud(vcpu); 4855 4856 error_code = 0; 4857 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4858 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4859 4860 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4861 WARN_ON_ONCE(!enable_vmware_backdoor); 4862 4863 /* 4864 * VMware backdoor emulation on #GP interception only handles 4865 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 4866 * error code on #GP. 4867 */ 4868 if (error_code) { 4869 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4870 return 1; 4871 } 4872 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 4873 } 4874 4875 /* 4876 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4877 * MMIO, it is better to report an internal error. 4878 * See the comments in vmx_handle_exit. 4879 */ 4880 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4881 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4882 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4883 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4884 vcpu->run->internal.ndata = 4; 4885 vcpu->run->internal.data[0] = vect_info; 4886 vcpu->run->internal.data[1] = intr_info; 4887 vcpu->run->internal.data[2] = error_code; 4888 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 4889 return 0; 4890 } 4891 4892 if (is_page_fault(intr_info)) { 4893 cr2 = vmx_get_exit_qual(vcpu); 4894 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 4895 /* 4896 * EPT will cause page fault only if we need to 4897 * detect illegal GPAs. 4898 */ 4899 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 4900 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 4901 return 1; 4902 } else 4903 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4904 } 4905 4906 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4907 4908 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4909 return handle_rmode_exception(vcpu, ex_no, error_code); 4910 4911 switch (ex_no) { 4912 case DB_VECTOR: 4913 dr6 = vmx_get_exit_qual(vcpu); 4914 if (!(vcpu->guest_debug & 4915 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4916 /* 4917 * If the #DB was due to ICEBP, a.k.a. INT1, skip the 4918 * instruction. ICEBP generates a trap-like #DB, but 4919 * despite its interception control being tied to #DB, 4920 * is an instruction intercept, i.e. the VM-Exit occurs 4921 * on the ICEBP itself. Note, skipping ICEBP also 4922 * clears STI and MOVSS blocking. 4923 * 4924 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS 4925 * if single-step is enabled in RFLAGS and STI or MOVSS 4926 * blocking is active, as the CPU doesn't set the bit 4927 * on VM-Exit due to #DB interception. VM-Entry has a 4928 * consistency check that a single-step #DB is pending 4929 * in this scenario as the previous instruction cannot 4930 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV 4931 * don't modify RFLAGS), therefore the one instruction 4932 * delay when activating single-step breakpoints must 4933 * have already expired. Note, the CPU sets/clears BS 4934 * as appropriate for all other VM-Exits types. 4935 */ 4936 if (is_icebp(intr_info)) 4937 WARN_ON(!skip_emulated_instruction(vcpu)); 4938 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && 4939 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4940 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) 4941 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 4942 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); 4943 4944 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 4945 return 1; 4946 } 4947 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 4948 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4949 fallthrough; 4950 case BP_VECTOR: 4951 /* 4952 * Update instruction length as we may reinject #BP from 4953 * user space while in guest debugging mode. Reading it for 4954 * #DB as well causes no harm, it is not used in that case. 4955 */ 4956 vmx->vcpu.arch.event_exit_inst_len = 4957 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4958 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4959 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 4960 kvm_run->debug.arch.exception = ex_no; 4961 break; 4962 case AC_VECTOR: 4963 if (vmx_guest_inject_ac(vcpu)) { 4964 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4965 return 1; 4966 } 4967 4968 /* 4969 * Handle split lock. Depending on detection mode this will 4970 * either warn and disable split lock detection for this 4971 * task or force SIGBUS on it. 4972 */ 4973 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 4974 return 1; 4975 fallthrough; 4976 default: 4977 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4978 kvm_run->ex.exception = ex_no; 4979 kvm_run->ex.error_code = error_code; 4980 break; 4981 } 4982 return 0; 4983 } 4984 4985 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 4986 { 4987 ++vcpu->stat.irq_exits; 4988 return 1; 4989 } 4990 4991 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4992 { 4993 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 4994 vcpu->mmio_needed = 0; 4995 return 0; 4996 } 4997 4998 static int handle_io(struct kvm_vcpu *vcpu) 4999 { 5000 unsigned long exit_qualification; 5001 int size, in, string; 5002 unsigned port; 5003 5004 exit_qualification = vmx_get_exit_qual(vcpu); 5005 string = (exit_qualification & 16) != 0; 5006 5007 ++vcpu->stat.io_exits; 5008 5009 if (string) 5010 return kvm_emulate_instruction(vcpu, 0); 5011 5012 port = exit_qualification >> 16; 5013 size = (exit_qualification & 7) + 1; 5014 in = (exit_qualification & 8) != 0; 5015 5016 return kvm_fast_pio(vcpu, size, port, in); 5017 } 5018 5019 static void 5020 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5021 { 5022 /* 5023 * Patch in the VMCALL instruction: 5024 */ 5025 hypercall[0] = 0x0f; 5026 hypercall[1] = 0x01; 5027 hypercall[2] = 0xc1; 5028 } 5029 5030 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5031 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5032 { 5033 if (is_guest_mode(vcpu)) { 5034 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5035 unsigned long orig_val = val; 5036 5037 /* 5038 * We get here when L2 changed cr0 in a way that did not change 5039 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5040 * but did change L0 shadowed bits. So we first calculate the 5041 * effective cr0 value that L1 would like to write into the 5042 * hardware. It consists of the L2-owned bits from the new 5043 * value combined with the L1-owned bits from L1's guest_cr0. 5044 */ 5045 val = (val & ~vmcs12->cr0_guest_host_mask) | 5046 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5047 5048 if (!nested_guest_cr0_valid(vcpu, val)) 5049 return 1; 5050 5051 if (kvm_set_cr0(vcpu, val)) 5052 return 1; 5053 vmcs_writel(CR0_READ_SHADOW, orig_val); 5054 return 0; 5055 } else { 5056 if (to_vmx(vcpu)->nested.vmxon && 5057 !nested_host_cr0_valid(vcpu, val)) 5058 return 1; 5059 5060 return kvm_set_cr0(vcpu, val); 5061 } 5062 } 5063 5064 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5065 { 5066 if (is_guest_mode(vcpu)) { 5067 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5068 unsigned long orig_val = val; 5069 5070 /* analogously to handle_set_cr0 */ 5071 val = (val & ~vmcs12->cr4_guest_host_mask) | 5072 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5073 if (kvm_set_cr4(vcpu, val)) 5074 return 1; 5075 vmcs_writel(CR4_READ_SHADOW, orig_val); 5076 return 0; 5077 } else 5078 return kvm_set_cr4(vcpu, val); 5079 } 5080 5081 static int handle_desc(struct kvm_vcpu *vcpu) 5082 { 5083 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 5084 return kvm_emulate_instruction(vcpu, 0); 5085 } 5086 5087 static int handle_cr(struct kvm_vcpu *vcpu) 5088 { 5089 unsigned long exit_qualification, val; 5090 int cr; 5091 int reg; 5092 int err; 5093 int ret; 5094 5095 exit_qualification = vmx_get_exit_qual(vcpu); 5096 cr = exit_qualification & 15; 5097 reg = (exit_qualification >> 8) & 15; 5098 switch ((exit_qualification >> 4) & 3) { 5099 case 0: /* mov to cr */ 5100 val = kvm_register_read(vcpu, reg); 5101 trace_kvm_cr_write(cr, val); 5102 switch (cr) { 5103 case 0: 5104 err = handle_set_cr0(vcpu, val); 5105 return kvm_complete_insn_gp(vcpu, err); 5106 case 3: 5107 WARN_ON_ONCE(enable_unrestricted_guest); 5108 5109 err = kvm_set_cr3(vcpu, val); 5110 return kvm_complete_insn_gp(vcpu, err); 5111 case 4: 5112 err = handle_set_cr4(vcpu, val); 5113 return kvm_complete_insn_gp(vcpu, err); 5114 case 8: { 5115 u8 cr8_prev = kvm_get_cr8(vcpu); 5116 u8 cr8 = (u8)val; 5117 err = kvm_set_cr8(vcpu, cr8); 5118 ret = kvm_complete_insn_gp(vcpu, err); 5119 if (lapic_in_kernel(vcpu)) 5120 return ret; 5121 if (cr8_prev <= cr8) 5122 return ret; 5123 /* 5124 * TODO: we might be squashing a 5125 * KVM_GUESTDBG_SINGLESTEP-triggered 5126 * KVM_EXIT_DEBUG here. 5127 */ 5128 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5129 return 0; 5130 } 5131 } 5132 break; 5133 case 2: /* clts */ 5134 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5135 return -EIO; 5136 case 1: /*mov from cr*/ 5137 switch (cr) { 5138 case 3: 5139 WARN_ON_ONCE(enable_unrestricted_guest); 5140 5141 val = kvm_read_cr3(vcpu); 5142 kvm_register_write(vcpu, reg, val); 5143 trace_kvm_cr_read(cr, val); 5144 return kvm_skip_emulated_instruction(vcpu); 5145 case 8: 5146 val = kvm_get_cr8(vcpu); 5147 kvm_register_write(vcpu, reg, val); 5148 trace_kvm_cr_read(cr, val); 5149 return kvm_skip_emulated_instruction(vcpu); 5150 } 5151 break; 5152 case 3: /* lmsw */ 5153 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5154 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 5155 kvm_lmsw(vcpu, val); 5156 5157 return kvm_skip_emulated_instruction(vcpu); 5158 default: 5159 break; 5160 } 5161 vcpu->run->exit_reason = 0; 5162 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5163 (int)(exit_qualification >> 4) & 3, cr); 5164 return 0; 5165 } 5166 5167 static int handle_dr(struct kvm_vcpu *vcpu) 5168 { 5169 unsigned long exit_qualification; 5170 int dr, dr7, reg; 5171 int err = 1; 5172 5173 exit_qualification = vmx_get_exit_qual(vcpu); 5174 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5175 5176 /* First, if DR does not exist, trigger UD */ 5177 if (!kvm_require_dr(vcpu, dr)) 5178 return 1; 5179 5180 if (kvm_x86_ops.get_cpl(vcpu) > 0) 5181 goto out; 5182 5183 dr7 = vmcs_readl(GUEST_DR7); 5184 if (dr7 & DR7_GD) { 5185 /* 5186 * As the vm-exit takes precedence over the debug trap, we 5187 * need to emulate the latter, either for the host or the 5188 * guest debugging itself. 5189 */ 5190 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5191 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5192 vcpu->run->debug.arch.dr7 = dr7; 5193 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5194 vcpu->run->debug.arch.exception = DB_VECTOR; 5195 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5196 return 0; 5197 } else { 5198 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5199 return 1; 5200 } 5201 } 5202 5203 if (vcpu->guest_debug == 0) { 5204 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5205 5206 /* 5207 * No more DR vmexits; force a reload of the debug registers 5208 * and reenter on this instruction. The next vmexit will 5209 * retrieve the full state of the debug registers. 5210 */ 5211 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5212 return 1; 5213 } 5214 5215 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5216 if (exit_qualification & TYPE_MOV_FROM_DR) { 5217 unsigned long val; 5218 5219 kvm_get_dr(vcpu, dr, &val); 5220 kvm_register_write(vcpu, reg, val); 5221 err = 0; 5222 } else { 5223 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5224 } 5225 5226 out: 5227 return kvm_complete_insn_gp(vcpu, err); 5228 } 5229 5230 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5231 { 5232 get_debugreg(vcpu->arch.db[0], 0); 5233 get_debugreg(vcpu->arch.db[1], 1); 5234 get_debugreg(vcpu->arch.db[2], 2); 5235 get_debugreg(vcpu->arch.db[3], 3); 5236 get_debugreg(vcpu->arch.dr6, 6); 5237 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5238 5239 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5240 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5241 5242 /* 5243 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5244 * a stale dr6 from the guest. 5245 */ 5246 set_debugreg(DR6_RESERVED, 6); 5247 } 5248 5249 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5250 { 5251 vmcs_writel(GUEST_DR7, val); 5252 } 5253 5254 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5255 { 5256 kvm_apic_update_ppr(vcpu); 5257 return 1; 5258 } 5259 5260 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5261 { 5262 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5263 5264 kvm_make_request(KVM_REQ_EVENT, vcpu); 5265 5266 ++vcpu->stat.irq_window_exits; 5267 return 1; 5268 } 5269 5270 static int handle_invlpg(struct kvm_vcpu *vcpu) 5271 { 5272 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5273 5274 kvm_mmu_invlpg(vcpu, exit_qualification); 5275 return kvm_skip_emulated_instruction(vcpu); 5276 } 5277 5278 static int handle_apic_access(struct kvm_vcpu *vcpu) 5279 { 5280 if (likely(fasteoi)) { 5281 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5282 int access_type, offset; 5283 5284 access_type = exit_qualification & APIC_ACCESS_TYPE; 5285 offset = exit_qualification & APIC_ACCESS_OFFSET; 5286 /* 5287 * Sane guest uses MOV to write EOI, with written value 5288 * not cared. So make a short-circuit here by avoiding 5289 * heavy instruction emulation. 5290 */ 5291 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5292 (offset == APIC_EOI)) { 5293 kvm_lapic_set_eoi(vcpu); 5294 return kvm_skip_emulated_instruction(vcpu); 5295 } 5296 } 5297 return kvm_emulate_instruction(vcpu, 0); 5298 } 5299 5300 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5301 { 5302 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5303 int vector = exit_qualification & 0xff; 5304 5305 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5306 kvm_apic_set_eoi_accelerated(vcpu, vector); 5307 return 1; 5308 } 5309 5310 static int handle_apic_write(struct kvm_vcpu *vcpu) 5311 { 5312 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5313 u32 offset = exit_qualification & 0xfff; 5314 5315 /* APIC-write VM exit is trap-like and thus no need to adjust IP */ 5316 kvm_apic_write_nodecode(vcpu, offset); 5317 return 1; 5318 } 5319 5320 static int handle_task_switch(struct kvm_vcpu *vcpu) 5321 { 5322 struct vcpu_vmx *vmx = to_vmx(vcpu); 5323 unsigned long exit_qualification; 5324 bool has_error_code = false; 5325 u32 error_code = 0; 5326 u16 tss_selector; 5327 int reason, type, idt_v, idt_index; 5328 5329 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5330 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5331 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5332 5333 exit_qualification = vmx_get_exit_qual(vcpu); 5334 5335 reason = (u32)exit_qualification >> 30; 5336 if (reason == TASK_SWITCH_GATE && idt_v) { 5337 switch (type) { 5338 case INTR_TYPE_NMI_INTR: 5339 vcpu->arch.nmi_injected = false; 5340 vmx_set_nmi_mask(vcpu, true); 5341 break; 5342 case INTR_TYPE_EXT_INTR: 5343 case INTR_TYPE_SOFT_INTR: 5344 kvm_clear_interrupt_queue(vcpu); 5345 break; 5346 case INTR_TYPE_HARD_EXCEPTION: 5347 if (vmx->idt_vectoring_info & 5348 VECTORING_INFO_DELIVER_CODE_MASK) { 5349 has_error_code = true; 5350 error_code = 5351 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5352 } 5353 fallthrough; 5354 case INTR_TYPE_SOFT_EXCEPTION: 5355 kvm_clear_exception_queue(vcpu); 5356 break; 5357 default: 5358 break; 5359 } 5360 } 5361 tss_selector = exit_qualification; 5362 5363 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5364 type != INTR_TYPE_EXT_INTR && 5365 type != INTR_TYPE_NMI_INTR)) 5366 WARN_ON(!skip_emulated_instruction(vcpu)); 5367 5368 /* 5369 * TODO: What about debug traps on tss switch? 5370 * Are we supposed to inject them and update dr6? 5371 */ 5372 return kvm_task_switch(vcpu, tss_selector, 5373 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5374 reason, has_error_code, error_code); 5375 } 5376 5377 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5378 { 5379 unsigned long exit_qualification; 5380 gpa_t gpa; 5381 u64 error_code; 5382 5383 exit_qualification = vmx_get_exit_qual(vcpu); 5384 5385 /* 5386 * EPT violation happened while executing iret from NMI, 5387 * "blocked by NMI" bit has to be set before next VM entry. 5388 * There are errata that may cause this bit to not be set: 5389 * AAK134, BY25. 5390 */ 5391 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5392 enable_vnmi && 5393 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5394 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5395 5396 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5397 trace_kvm_page_fault(gpa, exit_qualification); 5398 5399 /* Is it a read fault? */ 5400 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5401 ? PFERR_USER_MASK : 0; 5402 /* Is it a write fault? */ 5403 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5404 ? PFERR_WRITE_MASK : 0; 5405 /* Is it a fetch fault? */ 5406 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5407 ? PFERR_FETCH_MASK : 0; 5408 /* ept page table entry is present? */ 5409 error_code |= (exit_qualification & 5410 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5411 EPT_VIOLATION_EXECUTABLE)) 5412 ? PFERR_PRESENT_MASK : 0; 5413 5414 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5415 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5416 5417 vcpu->arch.exit_qualification = exit_qualification; 5418 5419 /* 5420 * Check that the GPA doesn't exceed physical memory limits, as that is 5421 * a guest page fault. We have to emulate the instruction here, because 5422 * if the illegal address is that of a paging structure, then 5423 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5424 * would also use advanced VM-exit information for EPT violations to 5425 * reconstruct the page fault error code. 5426 */ 5427 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5428 return kvm_emulate_instruction(vcpu, 0); 5429 5430 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5431 } 5432 5433 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5434 { 5435 gpa_t gpa; 5436 5437 if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) 5438 return 1; 5439 5440 /* 5441 * A nested guest cannot optimize MMIO vmexits, because we have an 5442 * nGPA here instead of the required GPA. 5443 */ 5444 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5445 if (!is_guest_mode(vcpu) && 5446 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5447 trace_kvm_fast_mmio(gpa); 5448 return kvm_skip_emulated_instruction(vcpu); 5449 } 5450 5451 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5452 } 5453 5454 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5455 { 5456 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5457 return -EIO; 5458 5459 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5460 ++vcpu->stat.nmi_window_exits; 5461 kvm_make_request(KVM_REQ_EVENT, vcpu); 5462 5463 return 1; 5464 } 5465 5466 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) 5467 { 5468 struct vcpu_vmx *vmx = to_vmx(vcpu); 5469 5470 return vmx->emulation_required && !vmx->rmode.vm86_active && 5471 vcpu->arch.exception.pending; 5472 } 5473 5474 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5475 { 5476 struct vcpu_vmx *vmx = to_vmx(vcpu); 5477 bool intr_window_requested; 5478 unsigned count = 130; 5479 5480 intr_window_requested = exec_controls_get(vmx) & 5481 CPU_BASED_INTR_WINDOW_EXITING; 5482 5483 while (vmx->emulation_required && count-- != 0) { 5484 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5485 return handle_interrupt_window(&vmx->vcpu); 5486 5487 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5488 return 1; 5489 5490 if (!kvm_emulate_instruction(vcpu, 0)) 5491 return 0; 5492 5493 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5494 kvm_prepare_emulation_failure_exit(vcpu); 5495 return 0; 5496 } 5497 5498 if (vcpu->arch.halt_request) { 5499 vcpu->arch.halt_request = 0; 5500 return kvm_emulate_halt_noskip(vcpu); 5501 } 5502 5503 /* 5504 * Note, return 1 and not 0, vcpu_run() will invoke 5505 * xfer_to_guest_mode() which will create a proper return 5506 * code. 5507 */ 5508 if (__xfer_to_guest_mode_work_pending()) 5509 return 1; 5510 } 5511 5512 return 1; 5513 } 5514 5515 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) 5516 { 5517 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5518 kvm_prepare_emulation_failure_exit(vcpu); 5519 return 0; 5520 } 5521 5522 return 1; 5523 } 5524 5525 static void grow_ple_window(struct kvm_vcpu *vcpu) 5526 { 5527 struct vcpu_vmx *vmx = to_vmx(vcpu); 5528 unsigned int old = vmx->ple_window; 5529 5530 vmx->ple_window = __grow_ple_window(old, ple_window, 5531 ple_window_grow, 5532 ple_window_max); 5533 5534 if (vmx->ple_window != old) { 5535 vmx->ple_window_dirty = true; 5536 trace_kvm_ple_window_update(vcpu->vcpu_id, 5537 vmx->ple_window, old); 5538 } 5539 } 5540 5541 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5542 { 5543 struct vcpu_vmx *vmx = to_vmx(vcpu); 5544 unsigned int old = vmx->ple_window; 5545 5546 vmx->ple_window = __shrink_ple_window(old, ple_window, 5547 ple_window_shrink, 5548 ple_window); 5549 5550 if (vmx->ple_window != old) { 5551 vmx->ple_window_dirty = true; 5552 trace_kvm_ple_window_update(vcpu->vcpu_id, 5553 vmx->ple_window, old); 5554 } 5555 } 5556 5557 /* 5558 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5559 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5560 */ 5561 static int handle_pause(struct kvm_vcpu *vcpu) 5562 { 5563 if (!kvm_pause_in_guest(vcpu->kvm)) 5564 grow_ple_window(vcpu); 5565 5566 /* 5567 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5568 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5569 * never set PAUSE_EXITING and just set PLE if supported, 5570 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5571 */ 5572 kvm_vcpu_on_spin(vcpu, true); 5573 return kvm_skip_emulated_instruction(vcpu); 5574 } 5575 5576 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5577 { 5578 return 1; 5579 } 5580 5581 static int handle_invpcid(struct kvm_vcpu *vcpu) 5582 { 5583 u32 vmx_instruction_info; 5584 unsigned long type; 5585 gva_t gva; 5586 struct { 5587 u64 pcid; 5588 u64 gla; 5589 } operand; 5590 int gpr_index; 5591 5592 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5593 kvm_queue_exception(vcpu, UD_VECTOR); 5594 return 1; 5595 } 5596 5597 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5598 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5599 type = kvm_register_read(vcpu, gpr_index); 5600 5601 /* According to the Intel instruction reference, the memory operand 5602 * is read even if it isn't needed (e.g., for type==all) 5603 */ 5604 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5605 vmx_instruction_info, false, 5606 sizeof(operand), &gva)) 5607 return 1; 5608 5609 return kvm_handle_invpcid(vcpu, type, gva); 5610 } 5611 5612 static int handle_pml_full(struct kvm_vcpu *vcpu) 5613 { 5614 unsigned long exit_qualification; 5615 5616 trace_kvm_pml_full(vcpu->vcpu_id); 5617 5618 exit_qualification = vmx_get_exit_qual(vcpu); 5619 5620 /* 5621 * PML buffer FULL happened while executing iret from NMI, 5622 * "blocked by NMI" bit has to be set before next VM entry. 5623 */ 5624 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5625 enable_vnmi && 5626 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5627 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5628 GUEST_INTR_STATE_NMI); 5629 5630 /* 5631 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5632 * here.., and there's no userspace involvement needed for PML. 5633 */ 5634 return 1; 5635 } 5636 5637 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5638 { 5639 struct vcpu_vmx *vmx = to_vmx(vcpu); 5640 5641 if (!vmx->req_immediate_exit && 5642 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 5643 kvm_lapic_expired_hv_timer(vcpu); 5644 return EXIT_FASTPATH_REENTER_GUEST; 5645 } 5646 5647 return EXIT_FASTPATH_NONE; 5648 } 5649 5650 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5651 { 5652 handle_fastpath_preemption_timer(vcpu); 5653 return 1; 5654 } 5655 5656 /* 5657 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5658 * are overwritten by nested_vmx_setup() when nested=1. 5659 */ 5660 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5661 { 5662 kvm_queue_exception(vcpu, UD_VECTOR); 5663 return 1; 5664 } 5665 5666 #ifndef CONFIG_X86_SGX_KVM 5667 static int handle_encls(struct kvm_vcpu *vcpu) 5668 { 5669 /* 5670 * SGX virtualization is disabled. There is no software enable bit for 5671 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 5672 * the guest from executing ENCLS (when SGX is supported by hardware). 5673 */ 5674 kvm_queue_exception(vcpu, UD_VECTOR); 5675 return 1; 5676 } 5677 #endif /* CONFIG_X86_SGX_KVM */ 5678 5679 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 5680 { 5681 /* 5682 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 5683 * VM-Exits. Unconditionally set the flag here and leave the handling to 5684 * vmx_handle_exit(). 5685 */ 5686 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 5687 return 1; 5688 } 5689 5690 /* 5691 * The exit handlers return 1 if the exit was handled fully and guest execution 5692 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5693 * to be done to userspace and return 0. 5694 */ 5695 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5696 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 5697 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5698 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5699 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5700 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5701 [EXIT_REASON_CR_ACCESS] = handle_cr, 5702 [EXIT_REASON_DR_ACCESS] = handle_dr, 5703 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 5704 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 5705 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 5706 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 5707 [EXIT_REASON_HLT] = kvm_emulate_halt, 5708 [EXIT_REASON_INVD] = kvm_emulate_invd, 5709 [EXIT_REASON_INVLPG] = handle_invlpg, 5710 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 5711 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 5712 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5713 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5714 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5715 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5716 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5717 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5718 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5719 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5720 [EXIT_REASON_VMON] = handle_vmx_instruction, 5721 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5722 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5723 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5724 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5725 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 5726 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 5727 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5728 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5729 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5730 [EXIT_REASON_LDTR_TR] = handle_desc, 5731 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5732 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5733 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5734 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 5735 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5736 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 5737 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5738 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5739 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 5740 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 5741 [EXIT_REASON_PML_FULL] = handle_pml_full, 5742 [EXIT_REASON_INVPCID] = handle_invpcid, 5743 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5744 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5745 [EXIT_REASON_ENCLS] = handle_encls, 5746 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 5747 }; 5748 5749 static const int kvm_vmx_max_exit_handlers = 5750 ARRAY_SIZE(kvm_vmx_exit_handlers); 5751 5752 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 5753 u64 *info1, u64 *info2, 5754 u32 *intr_info, u32 *error_code) 5755 { 5756 struct vcpu_vmx *vmx = to_vmx(vcpu); 5757 5758 *reason = vmx->exit_reason.full; 5759 *info1 = vmx_get_exit_qual(vcpu); 5760 if (!(vmx->exit_reason.failed_vmentry)) { 5761 *info2 = vmx->idt_vectoring_info; 5762 *intr_info = vmx_get_intr_info(vcpu); 5763 if (is_exception_with_error_code(*intr_info)) 5764 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5765 else 5766 *error_code = 0; 5767 } else { 5768 *info2 = 0; 5769 *intr_info = 0; 5770 *error_code = 0; 5771 } 5772 } 5773 5774 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5775 { 5776 if (vmx->pml_pg) { 5777 __free_page(vmx->pml_pg); 5778 vmx->pml_pg = NULL; 5779 } 5780 } 5781 5782 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5783 { 5784 struct vcpu_vmx *vmx = to_vmx(vcpu); 5785 u64 *pml_buf; 5786 u16 pml_idx; 5787 5788 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5789 5790 /* Do nothing if PML buffer is empty */ 5791 if (pml_idx == (PML_ENTITY_NUM - 1)) 5792 return; 5793 5794 /* PML index always points to next available PML buffer entity */ 5795 if (pml_idx >= PML_ENTITY_NUM) 5796 pml_idx = 0; 5797 else 5798 pml_idx++; 5799 5800 pml_buf = page_address(vmx->pml_pg); 5801 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5802 u64 gpa; 5803 5804 gpa = pml_buf[pml_idx]; 5805 WARN_ON(gpa & (PAGE_SIZE - 1)); 5806 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5807 } 5808 5809 /* reset PML index */ 5810 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5811 } 5812 5813 static void vmx_dump_sel(char *name, uint32_t sel) 5814 { 5815 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5816 name, vmcs_read16(sel), 5817 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5818 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5819 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5820 } 5821 5822 static void vmx_dump_dtsel(char *name, uint32_t limit) 5823 { 5824 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5825 name, vmcs_read32(limit), 5826 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5827 } 5828 5829 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 5830 { 5831 unsigned int i; 5832 struct vmx_msr_entry *e; 5833 5834 pr_err("MSR %s:\n", name); 5835 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 5836 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 5837 } 5838 5839 void dump_vmcs(struct kvm_vcpu *vcpu) 5840 { 5841 struct vcpu_vmx *vmx = to_vmx(vcpu); 5842 u32 vmentry_ctl, vmexit_ctl; 5843 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 5844 unsigned long cr4; 5845 int efer_slot; 5846 5847 if (!dump_invalid_vmcs) { 5848 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 5849 return; 5850 } 5851 5852 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5853 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5854 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5855 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5856 cr4 = vmcs_readl(GUEST_CR4); 5857 secondary_exec_control = 0; 5858 if (cpu_has_secondary_exec_ctrls()) 5859 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5860 5861 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 5862 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 5863 pr_err("*** Guest State ***\n"); 5864 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5865 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5866 vmcs_readl(CR0_GUEST_HOST_MASK)); 5867 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5868 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5869 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5870 if (cpu_has_vmx_ept()) { 5871 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5872 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5873 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5874 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5875 } 5876 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5877 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5878 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5879 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5880 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5881 vmcs_readl(GUEST_SYSENTER_ESP), 5882 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5883 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5884 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5885 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5886 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5887 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5888 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5889 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5890 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5891 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5892 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5893 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 5894 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 5895 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 5896 else if (efer_slot >= 0) 5897 pr_err("EFER= 0x%016llx (autoload)\n", 5898 vmx->msr_autoload.guest.val[efer_slot].value); 5899 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 5900 pr_err("EFER= 0x%016llx (effective)\n", 5901 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 5902 else 5903 pr_err("EFER= 0x%016llx (effective)\n", 5904 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 5905 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 5906 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 5907 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5908 vmcs_read64(GUEST_IA32_DEBUGCTL), 5909 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5910 if (cpu_has_load_perf_global_ctrl() && 5911 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5912 pr_err("PerfGlobCtl = 0x%016llx\n", 5913 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5914 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5915 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5916 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5917 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5918 vmcs_read32(GUEST_ACTIVITY_STATE)); 5919 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5920 pr_err("InterruptStatus = %04x\n", 5921 vmcs_read16(GUEST_INTR_STATUS)); 5922 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 5923 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 5924 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 5925 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 5926 5927 pr_err("*** Host State ***\n"); 5928 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5929 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5930 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5931 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5932 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5933 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5934 vmcs_read16(HOST_TR_SELECTOR)); 5935 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5936 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5937 vmcs_readl(HOST_TR_BASE)); 5938 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5939 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5940 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5941 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5942 vmcs_readl(HOST_CR4)); 5943 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5944 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5945 vmcs_read32(HOST_IA32_SYSENTER_CS), 5946 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5947 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 5948 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 5949 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 5950 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 5951 if (cpu_has_load_perf_global_ctrl() && 5952 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5953 pr_err("PerfGlobCtl = 0x%016llx\n", 5954 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5955 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 5956 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 5957 5958 pr_err("*** Control State ***\n"); 5959 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5960 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5961 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5962 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5963 vmcs_read32(EXCEPTION_BITMAP), 5964 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5965 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5966 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5967 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5968 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5969 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5970 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5971 vmcs_read32(VM_EXIT_INTR_INFO), 5972 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5973 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5974 pr_err(" reason=%08x qualification=%016lx\n", 5975 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5976 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5977 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5978 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5979 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5980 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5981 pr_err("TSC Multiplier = 0x%016llx\n", 5982 vmcs_read64(TSC_MULTIPLIER)); 5983 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5984 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5985 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5986 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5987 } 5988 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5989 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5990 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5991 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5992 } 5993 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 5994 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 5995 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 5996 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 5997 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 5998 pr_err("PLE Gap=%08x Window=%08x\n", 5999 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 6000 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 6001 pr_err("Virtual processor ID = 0x%04x\n", 6002 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 6003 } 6004 6005 /* 6006 * The guest has exited. See if we can fix it or if we need userspace 6007 * assistance. 6008 */ 6009 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6010 { 6011 struct vcpu_vmx *vmx = to_vmx(vcpu); 6012 union vmx_exit_reason exit_reason = vmx->exit_reason; 6013 u32 vectoring_info = vmx->idt_vectoring_info; 6014 u16 exit_handler_index; 6015 6016 /* 6017 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 6018 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 6019 * querying dirty_bitmap, we only need to kick all vcpus out of guest 6020 * mode as if vcpus is in root mode, the PML buffer must has been 6021 * flushed already. Note, PML is never enabled in hardware while 6022 * running L2. 6023 */ 6024 if (enable_pml && !is_guest_mode(vcpu)) 6025 vmx_flush_pml_buffer(vcpu); 6026 6027 /* 6028 * KVM should never reach this point with a pending nested VM-Enter. 6029 * More specifically, short-circuiting VM-Entry to emulate L2 due to 6030 * invalid guest state should never happen as that means KVM knowingly 6031 * allowed a nested VM-Enter with an invalid vmcs12. More below. 6032 */ 6033 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 6034 return -EIO; 6035 6036 if (is_guest_mode(vcpu)) { 6037 /* 6038 * PML is never enabled when running L2, bail immediately if a 6039 * PML full exit occurs as something is horribly wrong. 6040 */ 6041 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6042 goto unexpected_vmexit; 6043 6044 /* 6045 * The host physical addresses of some pages of guest memory 6046 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6047 * Page). The CPU may write to these pages via their host 6048 * physical address while L2 is running, bypassing any 6049 * address-translation-based dirty tracking (e.g. EPT write 6050 * protection). 6051 * 6052 * Mark them dirty on every exit from L2 to prevent them from 6053 * getting out of sync with dirty tracking. 6054 */ 6055 nested_mark_vmcs12_pages_dirty(vcpu); 6056 6057 /* 6058 * Synthesize a triple fault if L2 state is invalid. In normal 6059 * operation, nested VM-Enter rejects any attempt to enter L2 6060 * with invalid state. However, those checks are skipped if 6061 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6062 * L2 state is invalid, it means either L1 modified SMRAM state 6063 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6064 * doing so is architecturally allowed in the RSM case, and is 6065 * the least awful solution for the userspace case without 6066 * risking false positives. 6067 */ 6068 if (vmx->emulation_required) { 6069 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6070 return 1; 6071 } 6072 6073 if (nested_vmx_reflect_vmexit(vcpu)) 6074 return 1; 6075 } 6076 6077 /* If guest state is invalid, start emulating. L2 is handled above. */ 6078 if (vmx->emulation_required) 6079 return handle_invalid_guest_state(vcpu); 6080 6081 if (exit_reason.failed_vmentry) { 6082 dump_vmcs(vcpu); 6083 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6084 vcpu->run->fail_entry.hardware_entry_failure_reason 6085 = exit_reason.full; 6086 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6087 return 0; 6088 } 6089 6090 if (unlikely(vmx->fail)) { 6091 dump_vmcs(vcpu); 6092 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6093 vcpu->run->fail_entry.hardware_entry_failure_reason 6094 = vmcs_read32(VM_INSTRUCTION_ERROR); 6095 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6096 return 0; 6097 } 6098 6099 /* 6100 * Note: 6101 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6102 * delivery event since it indicates guest is accessing MMIO. 6103 * The vm-exit can be triggered again after return to guest that 6104 * will cause infinite loop. 6105 */ 6106 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6107 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6108 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6109 exit_reason.basic != EXIT_REASON_PML_FULL && 6110 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6111 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) { 6112 int ndata = 3; 6113 6114 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6115 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6116 vcpu->run->internal.data[0] = vectoring_info; 6117 vcpu->run->internal.data[1] = exit_reason.full; 6118 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 6119 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6120 vcpu->run->internal.data[ndata++] = 6121 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6122 } 6123 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6124 vcpu->run->internal.ndata = ndata; 6125 return 0; 6126 } 6127 6128 if (unlikely(!enable_vnmi && 6129 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6130 if (!vmx_interrupt_blocked(vcpu)) { 6131 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6132 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6133 vcpu->arch.nmi_pending) { 6134 /* 6135 * This CPU don't support us in finding the end of an 6136 * NMI-blocked window if the guest runs with IRQs 6137 * disabled. So we pull the trigger after 1 s of 6138 * futile waiting, but inform the user about this. 6139 */ 6140 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6141 "state on VCPU %d after 1 s timeout\n", 6142 __func__, vcpu->vcpu_id); 6143 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6144 } 6145 } 6146 6147 if (exit_fastpath != EXIT_FASTPATH_NONE) 6148 return 1; 6149 6150 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6151 goto unexpected_vmexit; 6152 #ifdef CONFIG_RETPOLINE 6153 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6154 return kvm_emulate_wrmsr(vcpu); 6155 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6156 return handle_preemption_timer(vcpu); 6157 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6158 return handle_interrupt_window(vcpu); 6159 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6160 return handle_external_interrupt(vcpu); 6161 else if (exit_reason.basic == EXIT_REASON_HLT) 6162 return kvm_emulate_halt(vcpu); 6163 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6164 return handle_ept_misconfig(vcpu); 6165 #endif 6166 6167 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6168 kvm_vmx_max_exit_handlers); 6169 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6170 goto unexpected_vmexit; 6171 6172 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6173 6174 unexpected_vmexit: 6175 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6176 exit_reason.full); 6177 dump_vmcs(vcpu); 6178 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6179 vcpu->run->internal.suberror = 6180 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6181 vcpu->run->internal.ndata = 2; 6182 vcpu->run->internal.data[0] = exit_reason.full; 6183 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6184 return 0; 6185 } 6186 6187 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6188 { 6189 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6190 6191 /* 6192 * Exit to user space when bus lock detected to inform that there is 6193 * a bus lock in guest. 6194 */ 6195 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6196 if (ret > 0) 6197 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6198 6199 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6200 return 0; 6201 } 6202 return ret; 6203 } 6204 6205 /* 6206 * Software based L1D cache flush which is used when microcode providing 6207 * the cache control MSR is not loaded. 6208 * 6209 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6210 * flush it is required to read in 64 KiB because the replacement algorithm 6211 * is not exactly LRU. This could be sized at runtime via topology 6212 * information but as all relevant affected CPUs have 32KiB L1D cache size 6213 * there is no point in doing so. 6214 */ 6215 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6216 { 6217 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6218 6219 /* 6220 * This code is only executed when the the flush mode is 'cond' or 6221 * 'always' 6222 */ 6223 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6224 bool flush_l1d; 6225 6226 /* 6227 * Clear the per-vcpu flush bit, it gets set again 6228 * either from vcpu_run() or from one of the unsafe 6229 * VMEXIT handlers. 6230 */ 6231 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6232 vcpu->arch.l1tf_flush_l1d = false; 6233 6234 /* 6235 * Clear the per-cpu flush bit, it gets set again from 6236 * the interrupt handlers. 6237 */ 6238 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6239 kvm_clear_cpu_l1tf_flush_l1d(); 6240 6241 if (!flush_l1d) 6242 return; 6243 } 6244 6245 vcpu->stat.l1d_flush++; 6246 6247 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6248 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6249 return; 6250 } 6251 6252 asm volatile( 6253 /* First ensure the pages are in the TLB */ 6254 "xorl %%eax, %%eax\n" 6255 ".Lpopulate_tlb:\n\t" 6256 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6257 "addl $4096, %%eax\n\t" 6258 "cmpl %%eax, %[size]\n\t" 6259 "jne .Lpopulate_tlb\n\t" 6260 "xorl %%eax, %%eax\n\t" 6261 "cpuid\n\t" 6262 /* Now fill the cache */ 6263 "xorl %%eax, %%eax\n" 6264 ".Lfill_cache:\n" 6265 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6266 "addl $64, %%eax\n\t" 6267 "cmpl %%eax, %[size]\n\t" 6268 "jne .Lfill_cache\n\t" 6269 "lfence\n" 6270 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6271 [size] "r" (size) 6272 : "eax", "ebx", "ecx", "edx"); 6273 } 6274 6275 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6276 { 6277 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6278 int tpr_threshold; 6279 6280 if (is_guest_mode(vcpu) && 6281 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6282 return; 6283 6284 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6285 if (is_guest_mode(vcpu)) 6286 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6287 else 6288 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6289 } 6290 6291 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6292 { 6293 struct vcpu_vmx *vmx = to_vmx(vcpu); 6294 u32 sec_exec_control; 6295 6296 if (!lapic_in_kernel(vcpu)) 6297 return; 6298 6299 if (!flexpriority_enabled && 6300 !cpu_has_vmx_virtualize_x2apic_mode()) 6301 return; 6302 6303 /* Postpone execution until vmcs01 is the current VMCS. */ 6304 if (is_guest_mode(vcpu)) { 6305 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6306 return; 6307 } 6308 6309 sec_exec_control = secondary_exec_controls_get(vmx); 6310 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6311 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6312 6313 switch (kvm_get_apic_mode(vcpu)) { 6314 case LAPIC_MODE_INVALID: 6315 WARN_ONCE(true, "Invalid local APIC state"); 6316 break; 6317 case LAPIC_MODE_DISABLED: 6318 break; 6319 case LAPIC_MODE_XAPIC: 6320 if (flexpriority_enabled) { 6321 sec_exec_control |= 6322 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6323 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6324 6325 /* 6326 * Flush the TLB, reloading the APIC access page will 6327 * only do so if its physical address has changed, but 6328 * the guest may have inserted a non-APIC mapping into 6329 * the TLB while the APIC access page was disabled. 6330 */ 6331 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6332 } 6333 break; 6334 case LAPIC_MODE_X2APIC: 6335 if (cpu_has_vmx_virtualize_x2apic_mode()) 6336 sec_exec_control |= 6337 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6338 break; 6339 } 6340 secondary_exec_controls_set(vmx, sec_exec_control); 6341 6342 vmx_update_msr_bitmap_x2apic(vcpu); 6343 } 6344 6345 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6346 { 6347 struct page *page; 6348 6349 /* Defer reload until vmcs01 is the current VMCS. */ 6350 if (is_guest_mode(vcpu)) { 6351 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6352 return; 6353 } 6354 6355 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6356 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6357 return; 6358 6359 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6360 if (is_error_page(page)) 6361 return; 6362 6363 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page)); 6364 vmx_flush_tlb_current(vcpu); 6365 6366 /* 6367 * Do not pin apic access page in memory, the MMU notifier 6368 * will call us again if it is migrated or swapped out. 6369 */ 6370 put_page(page); 6371 } 6372 6373 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6374 { 6375 u16 status; 6376 u8 old; 6377 6378 if (max_isr == -1) 6379 max_isr = 0; 6380 6381 status = vmcs_read16(GUEST_INTR_STATUS); 6382 old = status >> 8; 6383 if (max_isr != old) { 6384 status &= 0xff; 6385 status |= max_isr << 8; 6386 vmcs_write16(GUEST_INTR_STATUS, status); 6387 } 6388 } 6389 6390 static void vmx_set_rvi(int vector) 6391 { 6392 u16 status; 6393 u8 old; 6394 6395 if (vector == -1) 6396 vector = 0; 6397 6398 status = vmcs_read16(GUEST_INTR_STATUS); 6399 old = (u8)status & 0xff; 6400 if ((u8)vector != old) { 6401 status &= ~0xff; 6402 status |= (u8)vector; 6403 vmcs_write16(GUEST_INTR_STATUS, status); 6404 } 6405 } 6406 6407 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6408 { 6409 /* 6410 * When running L2, updating RVI is only relevant when 6411 * vmcs12 virtual-interrupt-delivery enabled. 6412 * However, it can be enabled only when L1 also 6413 * intercepts external-interrupts and in that case 6414 * we should not update vmcs02 RVI but instead intercept 6415 * interrupt. Therefore, do nothing when running L2. 6416 */ 6417 if (!is_guest_mode(vcpu)) 6418 vmx_set_rvi(max_irr); 6419 } 6420 6421 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6422 { 6423 struct vcpu_vmx *vmx = to_vmx(vcpu); 6424 int max_irr; 6425 bool got_posted_interrupt; 6426 6427 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6428 return -EIO; 6429 6430 if (pi_test_on(&vmx->pi_desc)) { 6431 pi_clear_on(&vmx->pi_desc); 6432 /* 6433 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6434 * But on x86 this is just a compiler barrier anyway. 6435 */ 6436 smp_mb__after_atomic(); 6437 got_posted_interrupt = 6438 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6439 } else { 6440 max_irr = kvm_lapic_find_highest_irr(vcpu); 6441 got_posted_interrupt = false; 6442 } 6443 6444 /* 6445 * Newly recognized interrupts are injected via either virtual interrupt 6446 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6447 * disabled in two cases: 6448 * 6449 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6450 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6451 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6452 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6453 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6454 * 6455 * 2) If APICv is disabled for this vCPU, assigned devices may still 6456 * attempt to post interrupts. The posted interrupt vector will cause 6457 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6458 */ 6459 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6460 vmx_set_rvi(max_irr); 6461 else if (got_posted_interrupt) 6462 kvm_make_request(KVM_REQ_EVENT, vcpu); 6463 6464 return max_irr; 6465 } 6466 6467 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6468 { 6469 if (!kvm_vcpu_apicv_active(vcpu)) 6470 return; 6471 6472 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6473 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6474 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6475 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6476 } 6477 6478 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6479 { 6480 struct vcpu_vmx *vmx = to_vmx(vcpu); 6481 6482 pi_clear_on(&vmx->pi_desc); 6483 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6484 } 6485 6486 void vmx_do_interrupt_nmi_irqoff(unsigned long entry); 6487 6488 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, 6489 unsigned long entry) 6490 { 6491 bool is_nmi = entry == (unsigned long)asm_exc_nmi_noist; 6492 6493 kvm_before_interrupt(vcpu, is_nmi ? KVM_HANDLING_NMI : KVM_HANDLING_IRQ); 6494 vmx_do_interrupt_nmi_irqoff(entry); 6495 kvm_after_interrupt(vcpu); 6496 } 6497 6498 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6499 { 6500 /* 6501 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6502 * MSR value is not clobbered by the host activity before the guest 6503 * has chance to consume it. 6504 * 6505 * Do not blindly read xfd_err here, since this exception might 6506 * be caused by L1 interception on a platform which doesn't 6507 * support xfd at all. 6508 * 6509 * Do it conditionally upon guest_fpu::xfd. xfd_err matters 6510 * only when xfd contains a non-zero value. 6511 * 6512 * Queuing exception is done in vmx_handle_exit. See comment there. 6513 */ 6514 if (vcpu->arch.guest_fpu.fpstate->xfd) 6515 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 6516 } 6517 6518 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) 6519 { 6520 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist; 6521 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6522 6523 /* if exit due to PF check for async PF */ 6524 if (is_page_fault(intr_info)) 6525 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6526 /* if exit due to NM, handle before interrupts are enabled */ 6527 else if (is_nm_fault(intr_info)) 6528 handle_nm_fault_irqoff(&vmx->vcpu); 6529 /* Handle machine checks before interrupts are enabled */ 6530 else if (is_machine_check(intr_info)) 6531 kvm_machine_check(); 6532 /* We need to handle NMIs before interrupts are enabled */ 6533 else if (is_nmi(intr_info)) 6534 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry); 6535 } 6536 6537 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6538 { 6539 u32 intr_info = vmx_get_intr_info(vcpu); 6540 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6541 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6542 6543 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6544 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6545 return; 6546 6547 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc)); 6548 } 6549 6550 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6551 { 6552 struct vcpu_vmx *vmx = to_vmx(vcpu); 6553 6554 if (vmx->emulation_required) 6555 return; 6556 6557 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6558 handle_external_interrupt_irqoff(vcpu); 6559 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6560 handle_exception_nmi_irqoff(vmx); 6561 } 6562 6563 /* 6564 * The kvm parameter can be NULL (module initialization, or invocation before 6565 * VM creation). Be sure to check the kvm parameter before using it. 6566 */ 6567 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6568 { 6569 switch (index) { 6570 case MSR_IA32_SMBASE: 6571 /* 6572 * We cannot do SMM unless we can run the guest in big 6573 * real mode. 6574 */ 6575 return enable_unrestricted_guest || emulate_invalid_guest_state; 6576 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 6577 return nested; 6578 case MSR_AMD64_VIRT_SPEC_CTRL: 6579 case MSR_AMD64_TSC_RATIO: 6580 /* This is AMD only. */ 6581 return false; 6582 default: 6583 return true; 6584 } 6585 } 6586 6587 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6588 { 6589 u32 exit_intr_info; 6590 bool unblock_nmi; 6591 u8 vector; 6592 bool idtv_info_valid; 6593 6594 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6595 6596 if (enable_vnmi) { 6597 if (vmx->loaded_vmcs->nmi_known_unmasked) 6598 return; 6599 6600 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 6601 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6602 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6603 /* 6604 * SDM 3: 27.7.1.2 (September 2008) 6605 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6606 * a guest IRET fault. 6607 * SDM 3: 23.2.2 (September 2008) 6608 * Bit 12 is undefined in any of the following cases: 6609 * If the VM exit sets the valid bit in the IDT-vectoring 6610 * information field. 6611 * If the VM exit is due to a double fault. 6612 */ 6613 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6614 vector != DF_VECTOR && !idtv_info_valid) 6615 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6616 GUEST_INTR_STATE_NMI); 6617 else 6618 vmx->loaded_vmcs->nmi_known_unmasked = 6619 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6620 & GUEST_INTR_STATE_NMI); 6621 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6622 vmx->loaded_vmcs->vnmi_blocked_time += 6623 ktime_to_ns(ktime_sub(ktime_get(), 6624 vmx->loaded_vmcs->entry_time)); 6625 } 6626 6627 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6628 u32 idt_vectoring_info, 6629 int instr_len_field, 6630 int error_code_field) 6631 { 6632 u8 vector; 6633 int type; 6634 bool idtv_info_valid; 6635 6636 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6637 6638 vcpu->arch.nmi_injected = false; 6639 kvm_clear_exception_queue(vcpu); 6640 kvm_clear_interrupt_queue(vcpu); 6641 6642 if (!idtv_info_valid) 6643 return; 6644 6645 kvm_make_request(KVM_REQ_EVENT, vcpu); 6646 6647 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6648 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6649 6650 switch (type) { 6651 case INTR_TYPE_NMI_INTR: 6652 vcpu->arch.nmi_injected = true; 6653 /* 6654 * SDM 3: 27.7.1.2 (September 2008) 6655 * Clear bit "block by NMI" before VM entry if a NMI 6656 * delivery faulted. 6657 */ 6658 vmx_set_nmi_mask(vcpu, false); 6659 break; 6660 case INTR_TYPE_SOFT_EXCEPTION: 6661 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6662 fallthrough; 6663 case INTR_TYPE_HARD_EXCEPTION: 6664 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6665 u32 err = vmcs_read32(error_code_field); 6666 kvm_requeue_exception_e(vcpu, vector, err); 6667 } else 6668 kvm_requeue_exception(vcpu, vector); 6669 break; 6670 case INTR_TYPE_SOFT_INTR: 6671 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6672 fallthrough; 6673 case INTR_TYPE_EXT_INTR: 6674 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6675 break; 6676 default: 6677 break; 6678 } 6679 } 6680 6681 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6682 { 6683 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6684 VM_EXIT_INSTRUCTION_LEN, 6685 IDT_VECTORING_ERROR_CODE); 6686 } 6687 6688 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6689 { 6690 __vmx_complete_interrupts(vcpu, 6691 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6692 VM_ENTRY_INSTRUCTION_LEN, 6693 VM_ENTRY_EXCEPTION_ERROR_CODE); 6694 6695 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6696 } 6697 6698 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6699 { 6700 int i, nr_msrs; 6701 struct perf_guest_switch_msr *msrs; 6702 6703 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 6704 msrs = perf_guest_get_msrs(&nr_msrs); 6705 if (!msrs) 6706 return; 6707 6708 for (i = 0; i < nr_msrs; i++) 6709 if (msrs[i].host == msrs[i].guest) 6710 clear_atomic_switch_msr(vmx, msrs[i].msr); 6711 else 6712 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6713 msrs[i].host, false); 6714 } 6715 6716 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6717 { 6718 struct vcpu_vmx *vmx = to_vmx(vcpu); 6719 u64 tscl; 6720 u32 delta_tsc; 6721 6722 if (vmx->req_immediate_exit) { 6723 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 6724 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6725 } else if (vmx->hv_deadline_tsc != -1) { 6726 tscl = rdtsc(); 6727 if (vmx->hv_deadline_tsc > tscl) 6728 /* set_hv_timer ensures the delta fits in 32-bits */ 6729 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6730 cpu_preemption_timer_multi); 6731 else 6732 delta_tsc = 0; 6733 6734 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 6735 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6736 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 6737 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 6738 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 6739 } 6740 } 6741 6742 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6743 { 6744 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6745 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6746 vmcs_writel(HOST_RSP, host_rsp); 6747 } 6748 } 6749 6750 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 6751 { 6752 switch (to_vmx(vcpu)->exit_reason.basic) { 6753 case EXIT_REASON_MSR_WRITE: 6754 return handle_fastpath_set_msr_irqoff(vcpu); 6755 case EXIT_REASON_PREEMPTION_TIMER: 6756 return handle_fastpath_preemption_timer(vcpu); 6757 default: 6758 return EXIT_FASTPATH_NONE; 6759 } 6760 } 6761 6762 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 6763 struct vcpu_vmx *vmx) 6764 { 6765 guest_state_enter_irqoff(); 6766 6767 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6768 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6769 vmx_l1d_flush(vcpu); 6770 else if (static_branch_unlikely(&mds_user_clear)) 6771 mds_clear_cpu_buffers(); 6772 6773 if (vcpu->arch.cr2 != native_read_cr2()) 6774 native_write_cr2(vcpu->arch.cr2); 6775 6776 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6777 vmx->loaded_vmcs->launched); 6778 6779 vcpu->arch.cr2 = native_read_cr2(); 6780 6781 guest_state_exit_irqoff(); 6782 } 6783 6784 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 6785 { 6786 struct vcpu_vmx *vmx = to_vmx(vcpu); 6787 unsigned long cr3, cr4; 6788 6789 /* Record the guest's net vcpu time for enforced NMI injections. */ 6790 if (unlikely(!enable_vnmi && 6791 vmx->loaded_vmcs->soft_vnmi_blocked)) 6792 vmx->loaded_vmcs->entry_time = ktime_get(); 6793 6794 /* 6795 * Don't enter VMX if guest state is invalid, let the exit handler 6796 * start emulation until we arrive back to a valid state. Synthesize a 6797 * consistency check VM-Exit due to invalid guest state and bail. 6798 */ 6799 if (unlikely(vmx->emulation_required)) { 6800 vmx->fail = 0; 6801 6802 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 6803 vmx->exit_reason.failed_vmentry = 1; 6804 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 6805 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 6806 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 6807 vmx->exit_intr_info = 0; 6808 return EXIT_FASTPATH_NONE; 6809 } 6810 6811 trace_kvm_entry(vcpu); 6812 6813 if (vmx->ple_window_dirty) { 6814 vmx->ple_window_dirty = false; 6815 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6816 } 6817 6818 /* 6819 * We did this in prepare_switch_to_guest, because it needs to 6820 * be within srcu_read_lock. 6821 */ 6822 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 6823 6824 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 6825 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6826 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 6827 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6828 vcpu->arch.regs_dirty = 0; 6829 6830 /* 6831 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately 6832 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time 6833 * it switches back to the current->mm, which can occur in KVM context 6834 * when switching to a temporary mm to patch kernel code, e.g. if KVM 6835 * toggles a static key while handling a VM-Exit. 6836 */ 6837 cr3 = __get_current_cr3_fast(); 6838 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 6839 vmcs_writel(HOST_CR3, cr3); 6840 vmx->loaded_vmcs->host_state.cr3 = cr3; 6841 } 6842 6843 cr4 = cr4_read_shadow(); 6844 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6845 vmcs_writel(HOST_CR4, cr4); 6846 vmx->loaded_vmcs->host_state.cr4 = cr4; 6847 } 6848 6849 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 6850 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 6851 set_debugreg(vcpu->arch.dr6, 6); 6852 6853 /* When single-stepping over STI and MOV SS, we must clear the 6854 * corresponding interruptibility bits in the guest state. Otherwise 6855 * vmentry fails as it then expects bit 14 (BS) in pending debug 6856 * exceptions being set, but that's not correct for the guest debugging 6857 * case. */ 6858 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6859 vmx_set_interrupt_shadow(vcpu, 0); 6860 6861 kvm_load_guest_xsave_state(vcpu); 6862 6863 pt_guest_enter(vmx); 6864 6865 atomic_switch_perf_msrs(vmx); 6866 if (intel_pmu_lbr_is_enabled(vcpu)) 6867 vmx_passthrough_lbr_msrs(vcpu); 6868 6869 if (enable_preemption_timer) 6870 vmx_update_hv_timer(vcpu); 6871 6872 kvm_wait_lapic_expire(vcpu); 6873 6874 /* 6875 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6876 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6877 * is no need to worry about the conditional branch over the wrmsr 6878 * being speculatively taken. 6879 */ 6880 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6881 6882 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 6883 vmx_vcpu_enter_exit(vcpu, vmx); 6884 6885 /* 6886 * We do not use IBRS in the kernel. If this vCPU has used the 6887 * SPEC_CTRL MSR it may have left it on; save the value and 6888 * turn it off. This is much more efficient than blindly adding 6889 * it to the atomic save/restore list. Especially as the former 6890 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6891 * 6892 * For non-nested case: 6893 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6894 * save it. 6895 * 6896 * For nested case: 6897 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6898 * save it. 6899 */ 6900 if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))) 6901 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6902 6903 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6904 6905 /* All fields are clean at this point */ 6906 if (static_branch_unlikely(&enable_evmcs)) { 6907 current_evmcs->hv_clean_fields |= 6908 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6909 6910 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 6911 } 6912 6913 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6914 if (vmx->host_debugctlmsr) 6915 update_debugctlmsr(vmx->host_debugctlmsr); 6916 6917 #ifndef CONFIG_X86_64 6918 /* 6919 * The sysexit path does not restore ds/es, so we must set them to 6920 * a reasonable value ourselves. 6921 * 6922 * We can't defer this to vmx_prepare_switch_to_host() since that 6923 * function may be executed in interrupt context, which saves and 6924 * restore segments around it, nullifying its effect. 6925 */ 6926 loadsegment(ds, __USER_DS); 6927 loadsegment(es, __USER_DS); 6928 #endif 6929 6930 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 6931 6932 pt_guest_exit(vmx); 6933 6934 kvm_load_host_xsave_state(vcpu); 6935 6936 if (is_guest_mode(vcpu)) { 6937 /* 6938 * Track VMLAUNCH/VMRESUME that have made past guest state 6939 * checking. 6940 */ 6941 if (vmx->nested.nested_run_pending && 6942 !vmx->exit_reason.failed_vmentry) 6943 ++vcpu->stat.nested_run; 6944 6945 vmx->nested.nested_run_pending = 0; 6946 } 6947 6948 vmx->idt_vectoring_info = 0; 6949 6950 if (unlikely(vmx->fail)) { 6951 vmx->exit_reason.full = 0xdead; 6952 return EXIT_FASTPATH_NONE; 6953 } 6954 6955 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 6956 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 6957 kvm_machine_check(); 6958 6959 if (likely(!vmx->exit_reason.failed_vmentry)) 6960 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6961 6962 trace_kvm_exit(vcpu, KVM_ISA_VMX); 6963 6964 if (unlikely(vmx->exit_reason.failed_vmentry)) 6965 return EXIT_FASTPATH_NONE; 6966 6967 vmx->loaded_vmcs->launched = 1; 6968 6969 vmx_recover_nmi_blocking(vmx); 6970 vmx_complete_interrupts(vmx); 6971 6972 if (is_guest_mode(vcpu)) 6973 return EXIT_FASTPATH_NONE; 6974 6975 return vmx_exit_handlers_fastpath(vcpu); 6976 } 6977 6978 static void vmx_free_vcpu(struct kvm_vcpu *vcpu) 6979 { 6980 struct vcpu_vmx *vmx = to_vmx(vcpu); 6981 6982 if (enable_pml) 6983 vmx_destroy_pml_buffer(vmx); 6984 free_vpid(vmx->vpid); 6985 nested_vmx_free_vcpu(vcpu); 6986 free_loaded_vmcs(vmx->loaded_vmcs); 6987 } 6988 6989 static int vmx_create_vcpu(struct kvm_vcpu *vcpu) 6990 { 6991 struct vmx_uret_msr *tsx_ctrl; 6992 struct vcpu_vmx *vmx; 6993 int i, err; 6994 6995 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 6996 vmx = to_vmx(vcpu); 6997 6998 INIT_LIST_HEAD(&vmx->pi_wakeup_list); 6999 7000 err = -ENOMEM; 7001 7002 vmx->vpid = allocate_vpid(); 7003 7004 /* 7005 * If PML is turned on, failure on enabling PML just results in failure 7006 * of creating the vcpu, therefore we can simplify PML logic (by 7007 * avoiding dealing with cases, such as enabling PML partially on vcpus 7008 * for the guest), etc. 7009 */ 7010 if (enable_pml) { 7011 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7012 if (!vmx->pml_pg) 7013 goto free_vpid; 7014 } 7015 7016 for (i = 0; i < kvm_nr_uret_msrs; ++i) 7017 vmx->guest_uret_msrs[i].mask = -1ull; 7018 if (boot_cpu_has(X86_FEATURE_RTM)) { 7019 /* 7020 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 7021 * Keep the host value unchanged to avoid changing CPUID bits 7022 * under the host kernel's feet. 7023 */ 7024 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7025 if (tsx_ctrl) 7026 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 7027 } 7028 7029 err = alloc_loaded_vmcs(&vmx->vmcs01); 7030 if (err < 0) 7031 goto free_pml; 7032 7033 /* 7034 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 7035 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 7036 * feature only for vmcs01, KVM currently isn't equipped to realize any 7037 * performance benefits from enabling it for vmcs02. 7038 */ 7039 if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) && 7040 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 7041 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 7042 7043 evmcs->hv_enlightenments_control.msr_bitmap = 1; 7044 } 7045 7046 /* The MSR bitmap starts with all ones */ 7047 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7048 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7049 7050 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 7051 #ifdef CONFIG_X86_64 7052 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 7053 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 7054 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 7055 #endif 7056 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 7057 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 7058 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 7059 if (kvm_cstate_in_guest(vcpu->kvm)) { 7060 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 7061 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 7062 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 7063 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 7064 } 7065 7066 vmx->loaded_vmcs = &vmx->vmcs01; 7067 7068 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7069 err = alloc_apic_access_page(vcpu->kvm); 7070 if (err) 7071 goto free_vmcs; 7072 } 7073 7074 if (enable_ept && !enable_unrestricted_guest) { 7075 err = init_rmode_identity_map(vcpu->kvm); 7076 if (err) 7077 goto free_vmcs; 7078 } 7079 7080 return 0; 7081 7082 free_vmcs: 7083 free_loaded_vmcs(vmx->loaded_vmcs); 7084 free_pml: 7085 vmx_destroy_pml_buffer(vmx); 7086 free_vpid: 7087 free_vpid(vmx->vpid); 7088 return err; 7089 } 7090 7091 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7092 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7093 7094 static int vmx_vm_init(struct kvm *kvm) 7095 { 7096 if (!ple_gap) 7097 kvm->arch.pause_in_guest = true; 7098 7099 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7100 switch (l1tf_mitigation) { 7101 case L1TF_MITIGATION_OFF: 7102 case L1TF_MITIGATION_FLUSH_NOWARN: 7103 /* 'I explicitly don't care' is set */ 7104 break; 7105 case L1TF_MITIGATION_FLUSH: 7106 case L1TF_MITIGATION_FLUSH_NOSMT: 7107 case L1TF_MITIGATION_FULL: 7108 /* 7109 * Warn upon starting the first VM in a potentially 7110 * insecure environment. 7111 */ 7112 if (sched_smt_active()) 7113 pr_warn_once(L1TF_MSG_SMT); 7114 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7115 pr_warn_once(L1TF_MSG_L1D); 7116 break; 7117 case L1TF_MITIGATION_FULL_FORCE: 7118 /* Flush is enforced */ 7119 break; 7120 } 7121 } 7122 return 0; 7123 } 7124 7125 static int __init vmx_check_processor_compat(void) 7126 { 7127 struct vmcs_config vmcs_conf; 7128 struct vmx_capability vmx_cap; 7129 7130 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 7131 !this_cpu_has(X86_FEATURE_VMX)) { 7132 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id()); 7133 return -EIO; 7134 } 7135 7136 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 7137 return -EIO; 7138 if (nested) 7139 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept); 7140 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 7141 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 7142 smp_processor_id()); 7143 return -EIO; 7144 } 7145 return 0; 7146 } 7147 7148 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7149 { 7150 u8 cache; 7151 7152 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 7153 * memory aliases with conflicting memory types and sometimes MCEs. 7154 * We have to be careful as to what are honored and when. 7155 * 7156 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 7157 * UC. The effective memory type is UC or WC depending on guest PAT. 7158 * This was historically the source of MCEs and we want to be 7159 * conservative. 7160 * 7161 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7162 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7163 * EPT memory type is set to WB. The effective memory type is forced 7164 * WB. 7165 * 7166 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7167 * EPT memory type is used to emulate guest CD/MTRR. 7168 */ 7169 7170 if (is_mmio) 7171 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7172 7173 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) 7174 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7175 7176 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 7177 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7178 cache = MTRR_TYPE_WRBACK; 7179 else 7180 cache = MTRR_TYPE_UNCACHABLE; 7181 7182 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7183 } 7184 7185 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT; 7186 } 7187 7188 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7189 { 7190 /* 7191 * These bits in the secondary execution controls field 7192 * are dynamic, the others are mostly based on the hypervisor 7193 * architecture and the guest's CPUID. Do not touch the 7194 * dynamic bits. 7195 */ 7196 u32 mask = 7197 SECONDARY_EXEC_SHADOW_VMCS | 7198 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7199 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7200 SECONDARY_EXEC_DESC; 7201 7202 u32 cur_ctl = secondary_exec_controls_get(vmx); 7203 7204 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7205 } 7206 7207 /* 7208 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7209 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7210 */ 7211 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7212 { 7213 struct vcpu_vmx *vmx = to_vmx(vcpu); 7214 struct kvm_cpuid_entry2 *entry; 7215 7216 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7217 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7218 7219 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7220 if (entry && (entry->_reg & (_cpuid_mask))) \ 7221 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7222 } while (0) 7223 7224 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 7225 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7226 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7227 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7228 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7229 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7230 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7231 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7232 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7233 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7234 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7235 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7236 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7237 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7238 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7239 7240 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 7241 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7242 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7243 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7244 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7245 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7246 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7247 7248 #undef cr4_fixed1_update 7249 } 7250 7251 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 7252 { 7253 struct vcpu_vmx *vmx = to_vmx(vcpu); 7254 7255 if (kvm_mpx_supported()) { 7256 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 7257 7258 if (mpx_enabled) { 7259 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 7260 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 7261 } else { 7262 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 7263 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 7264 } 7265 } 7266 } 7267 7268 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7269 { 7270 struct vcpu_vmx *vmx = to_vmx(vcpu); 7271 struct kvm_cpuid_entry2 *best = NULL; 7272 int i; 7273 7274 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7275 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 7276 if (!best) 7277 return; 7278 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7279 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7280 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7281 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7282 } 7283 7284 /* Get the number of configurable Address Ranges for filtering */ 7285 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7286 PT_CAP_num_address_ranges); 7287 7288 /* Initialize and clear the no dependency bits */ 7289 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7290 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7291 RTIT_CTL_BRANCH_EN); 7292 7293 /* 7294 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7295 * will inject an #GP 7296 */ 7297 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7298 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7299 7300 /* 7301 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7302 * PSBFreq can be set 7303 */ 7304 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7305 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7306 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7307 7308 /* 7309 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7310 */ 7311 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7312 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7313 RTIT_CTL_MTC_RANGE); 7314 7315 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7316 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7317 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7318 RTIT_CTL_PTW_EN); 7319 7320 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7321 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7322 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7323 7324 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7325 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7326 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7327 7328 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7329 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7330 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7331 7332 /* unmask address range configure area */ 7333 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7334 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7335 } 7336 7337 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7338 { 7339 struct vcpu_vmx *vmx = to_vmx(vcpu); 7340 7341 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7342 vcpu->arch.xsaves_enabled = false; 7343 7344 vmx_setup_uret_msrs(vmx); 7345 7346 if (cpu_has_secondary_exec_ctrls()) 7347 vmcs_set_secondary_exec_control(vmx, 7348 vmx_secondary_exec_control(vmx)); 7349 7350 if (nested_vmx_allowed(vcpu)) 7351 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7352 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7353 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7354 else 7355 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7356 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7357 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7358 7359 if (nested_vmx_allowed(vcpu)) { 7360 nested_vmx_cr_fixed1_bits_update(vcpu); 7361 nested_vmx_entry_exit_ctls_update(vcpu); 7362 } 7363 7364 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7365 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7366 update_intel_pt_cfg(vcpu); 7367 7368 if (boot_cpu_has(X86_FEATURE_RTM)) { 7369 struct vmx_uret_msr *msr; 7370 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7371 if (msr) { 7372 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7373 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7374 } 7375 } 7376 7377 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 7378 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 7379 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); 7380 7381 7382 set_cr4_guest_host_mask(vmx); 7383 7384 vmx_write_encls_bitmap(vcpu, NULL); 7385 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7386 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7387 else 7388 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7389 7390 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7391 vmx->msr_ia32_feature_control_valid_bits |= 7392 FEAT_CTL_SGX_LC_ENABLED; 7393 else 7394 vmx->msr_ia32_feature_control_valid_bits &= 7395 ~FEAT_CTL_SGX_LC_ENABLED; 7396 7397 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7398 vmx_update_exception_bitmap(vcpu); 7399 } 7400 7401 static __init void vmx_set_cpu_caps(void) 7402 { 7403 kvm_set_cpu_caps(); 7404 7405 /* CPUID 0x1 */ 7406 if (nested) 7407 kvm_cpu_cap_set(X86_FEATURE_VMX); 7408 7409 /* CPUID 0x7 */ 7410 if (kvm_mpx_supported()) 7411 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7412 if (!cpu_has_vmx_invpcid()) 7413 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7414 if (vmx_pt_mode_is_host_guest()) 7415 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7416 7417 if (!enable_sgx) { 7418 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7419 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7420 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7421 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7422 } 7423 7424 if (vmx_umip_emulated()) 7425 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7426 7427 /* CPUID 0xD.1 */ 7428 supported_xss = 0; 7429 if (!cpu_has_vmx_xsaves()) 7430 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7431 7432 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7433 if (!cpu_has_vmx_rdtscp()) { 7434 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7435 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7436 } 7437 7438 if (cpu_has_vmx_waitpkg()) 7439 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7440 } 7441 7442 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7443 { 7444 to_vmx(vcpu)->req_immediate_exit = true; 7445 } 7446 7447 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7448 struct x86_instruction_info *info) 7449 { 7450 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7451 unsigned short port; 7452 bool intercept; 7453 int size; 7454 7455 if (info->intercept == x86_intercept_in || 7456 info->intercept == x86_intercept_ins) { 7457 port = info->src_val; 7458 size = info->dst_bytes; 7459 } else { 7460 port = info->dst_val; 7461 size = info->src_bytes; 7462 } 7463 7464 /* 7465 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7466 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7467 * control. 7468 * 7469 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7470 */ 7471 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7472 intercept = nested_cpu_has(vmcs12, 7473 CPU_BASED_UNCOND_IO_EXITING); 7474 else 7475 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7476 7477 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7478 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7479 } 7480 7481 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7482 struct x86_instruction_info *info, 7483 enum x86_intercept_stage stage, 7484 struct x86_exception *exception) 7485 { 7486 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7487 7488 switch (info->intercept) { 7489 /* 7490 * RDPID causes #UD if disabled through secondary execution controls. 7491 * Because it is marked as EmulateOnUD, we need to intercept it here. 7492 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7493 */ 7494 case x86_intercept_rdpid: 7495 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7496 exception->vector = UD_VECTOR; 7497 exception->error_code_valid = false; 7498 return X86EMUL_PROPAGATE_FAULT; 7499 } 7500 break; 7501 7502 case x86_intercept_in: 7503 case x86_intercept_ins: 7504 case x86_intercept_out: 7505 case x86_intercept_outs: 7506 return vmx_check_intercept_io(vcpu, info); 7507 7508 case x86_intercept_lgdt: 7509 case x86_intercept_lidt: 7510 case x86_intercept_lldt: 7511 case x86_intercept_ltr: 7512 case x86_intercept_sgdt: 7513 case x86_intercept_sidt: 7514 case x86_intercept_sldt: 7515 case x86_intercept_str: 7516 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7517 return X86EMUL_CONTINUE; 7518 7519 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7520 break; 7521 7522 /* TODO: check more intercepts... */ 7523 default: 7524 break; 7525 } 7526 7527 return X86EMUL_UNHANDLEABLE; 7528 } 7529 7530 #ifdef CONFIG_X86_64 7531 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7532 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7533 u64 divisor, u64 *result) 7534 { 7535 u64 low = a << shift, high = a >> (64 - shift); 7536 7537 /* To avoid the overflow on divq */ 7538 if (high >= divisor) 7539 return 1; 7540 7541 /* Low hold the result, high hold rem which is discarded */ 7542 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7543 "rm" (divisor), "0" (low), "1" (high)); 7544 *result = low; 7545 7546 return 0; 7547 } 7548 7549 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7550 bool *expired) 7551 { 7552 struct vcpu_vmx *vmx; 7553 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7554 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7555 7556 vmx = to_vmx(vcpu); 7557 tscl = rdtsc(); 7558 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7559 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7560 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7561 ktimer->timer_advance_ns); 7562 7563 if (delta_tsc > lapic_timer_advance_cycles) 7564 delta_tsc -= lapic_timer_advance_cycles; 7565 else 7566 delta_tsc = 0; 7567 7568 /* Convert to host delta tsc if tsc scaling is enabled */ 7569 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7570 delta_tsc && u64_shl_div_u64(delta_tsc, 7571 kvm_tsc_scaling_ratio_frac_bits, 7572 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 7573 return -ERANGE; 7574 7575 /* 7576 * If the delta tsc can't fit in the 32 bit after the multi shift, 7577 * we can't use the preemption timer. 7578 * It's possible that it fits on later vmentries, but checking 7579 * on every vmentry is costly so we just use an hrtimer. 7580 */ 7581 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7582 return -ERANGE; 7583 7584 vmx->hv_deadline_tsc = tscl + delta_tsc; 7585 *expired = !delta_tsc; 7586 return 0; 7587 } 7588 7589 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7590 { 7591 to_vmx(vcpu)->hv_deadline_tsc = -1; 7592 } 7593 #endif 7594 7595 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7596 { 7597 if (!kvm_pause_in_guest(vcpu->kvm)) 7598 shrink_ple_window(vcpu); 7599 } 7600 7601 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 7602 { 7603 struct vcpu_vmx *vmx = to_vmx(vcpu); 7604 7605 if (is_guest_mode(vcpu)) { 7606 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 7607 return; 7608 } 7609 7610 /* 7611 * Note, cpu_dirty_logging_count can be changed concurrent with this 7612 * code, but in that case another update request will be made and so 7613 * the guest will never run with a stale PML value. 7614 */ 7615 if (vcpu->kvm->arch.cpu_dirty_logging_count) 7616 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7617 else 7618 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7619 } 7620 7621 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7622 { 7623 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7624 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7625 FEAT_CTL_LMCE_ENABLED; 7626 else 7627 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7628 ~FEAT_CTL_LMCE_ENABLED; 7629 } 7630 7631 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 7632 { 7633 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7634 if (to_vmx(vcpu)->nested.nested_run_pending) 7635 return -EBUSY; 7636 return !is_smm(vcpu); 7637 } 7638 7639 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7640 { 7641 struct vcpu_vmx *vmx = to_vmx(vcpu); 7642 7643 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7644 if (vmx->nested.smm.guest_mode) 7645 nested_vmx_vmexit(vcpu, -1, 0, 0); 7646 7647 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7648 vmx->nested.vmxon = false; 7649 vmx_clear_hlt(vcpu); 7650 return 0; 7651 } 7652 7653 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7654 { 7655 struct vcpu_vmx *vmx = to_vmx(vcpu); 7656 int ret; 7657 7658 if (vmx->nested.smm.vmxon) { 7659 vmx->nested.vmxon = true; 7660 vmx->nested.smm.vmxon = false; 7661 } 7662 7663 if (vmx->nested.smm.guest_mode) { 7664 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7665 if (ret) 7666 return ret; 7667 7668 vmx->nested.nested_run_pending = 1; 7669 vmx->nested.smm.guest_mode = false; 7670 } 7671 return 0; 7672 } 7673 7674 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 7675 { 7676 /* RSM will cause a vmexit anyway. */ 7677 } 7678 7679 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 7680 { 7681 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 7682 } 7683 7684 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 7685 { 7686 if (is_guest_mode(vcpu)) { 7687 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 7688 7689 if (hrtimer_try_to_cancel(timer) == 1) 7690 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 7691 } 7692 } 7693 7694 static void hardware_unsetup(void) 7695 { 7696 kvm_set_posted_intr_wakeup_handler(NULL); 7697 7698 if (nested) 7699 nested_vmx_hardware_unsetup(); 7700 7701 free_kvm_area(); 7702 } 7703 7704 static bool vmx_check_apicv_inhibit_reasons(ulong bit) 7705 { 7706 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 7707 BIT(APICV_INHIBIT_REASON_ABSENT) | 7708 BIT(APICV_INHIBIT_REASON_HYPERV) | 7709 BIT(APICV_INHIBIT_REASON_BLOCKIRQ); 7710 7711 return supported & BIT(bit); 7712 } 7713 7714 static struct kvm_x86_ops vmx_x86_ops __initdata = { 7715 .name = "kvm_intel", 7716 7717 .hardware_unsetup = hardware_unsetup, 7718 7719 .hardware_enable = hardware_enable, 7720 .hardware_disable = hardware_disable, 7721 .cpu_has_accelerated_tpr = report_flexpriority, 7722 .has_emulated_msr = vmx_has_emulated_msr, 7723 7724 .vm_size = sizeof(struct kvm_vmx), 7725 .vm_init = vmx_vm_init, 7726 7727 .vcpu_create = vmx_create_vcpu, 7728 .vcpu_free = vmx_free_vcpu, 7729 .vcpu_reset = vmx_vcpu_reset, 7730 7731 .prepare_guest_switch = vmx_prepare_switch_to_guest, 7732 .vcpu_load = vmx_vcpu_load, 7733 .vcpu_put = vmx_vcpu_put, 7734 7735 .update_exception_bitmap = vmx_update_exception_bitmap, 7736 .get_msr_feature = vmx_get_msr_feature, 7737 .get_msr = vmx_get_msr, 7738 .set_msr = vmx_set_msr, 7739 .get_segment_base = vmx_get_segment_base, 7740 .get_segment = vmx_get_segment, 7741 .set_segment = vmx_set_segment, 7742 .get_cpl = vmx_get_cpl, 7743 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7744 .set_cr0 = vmx_set_cr0, 7745 .is_valid_cr4 = vmx_is_valid_cr4, 7746 .set_cr4 = vmx_set_cr4, 7747 .set_efer = vmx_set_efer, 7748 .get_idt = vmx_get_idt, 7749 .set_idt = vmx_set_idt, 7750 .get_gdt = vmx_get_gdt, 7751 .set_gdt = vmx_set_gdt, 7752 .set_dr7 = vmx_set_dr7, 7753 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7754 .cache_reg = vmx_cache_reg, 7755 .get_rflags = vmx_get_rflags, 7756 .set_rflags = vmx_set_rflags, 7757 .get_if_flag = vmx_get_if_flag, 7758 7759 .tlb_flush_all = vmx_flush_tlb_all, 7760 .tlb_flush_current = vmx_flush_tlb_current, 7761 .tlb_flush_gva = vmx_flush_tlb_gva, 7762 .tlb_flush_guest = vmx_flush_tlb_guest, 7763 7764 .vcpu_pre_run = vmx_vcpu_pre_run, 7765 .run = vmx_vcpu_run, 7766 .handle_exit = vmx_handle_exit, 7767 .skip_emulated_instruction = vmx_skip_emulated_instruction, 7768 .update_emulated_instruction = vmx_update_emulated_instruction, 7769 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7770 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7771 .patch_hypercall = vmx_patch_hypercall, 7772 .set_irq = vmx_inject_irq, 7773 .set_nmi = vmx_inject_nmi, 7774 .queue_exception = vmx_queue_exception, 7775 .cancel_injection = vmx_cancel_injection, 7776 .interrupt_allowed = vmx_interrupt_allowed, 7777 .nmi_allowed = vmx_nmi_allowed, 7778 .get_nmi_mask = vmx_get_nmi_mask, 7779 .set_nmi_mask = vmx_set_nmi_mask, 7780 .enable_nmi_window = vmx_enable_nmi_window, 7781 .enable_irq_window = vmx_enable_irq_window, 7782 .update_cr8_intercept = vmx_update_cr8_intercept, 7783 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7784 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7785 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7786 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7787 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7788 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons, 7789 .hwapic_irr_update = vmx_hwapic_irr_update, 7790 .hwapic_isr_update = vmx_hwapic_isr_update, 7791 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7792 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7793 .deliver_interrupt = vmx_deliver_interrupt, 7794 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 7795 7796 .set_tss_addr = vmx_set_tss_addr, 7797 .set_identity_map_addr = vmx_set_identity_map_addr, 7798 .get_mt_mask = vmx_get_mt_mask, 7799 7800 .get_exit_info = vmx_get_exit_info, 7801 7802 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 7803 7804 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7805 7806 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 7807 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 7808 .write_tsc_offset = vmx_write_tsc_offset, 7809 .write_tsc_multiplier = vmx_write_tsc_multiplier, 7810 7811 .load_mmu_pgd = vmx_load_mmu_pgd, 7812 7813 .check_intercept = vmx_check_intercept, 7814 .handle_exit_irqoff = vmx_handle_exit_irqoff, 7815 7816 .request_immediate_exit = vmx_request_immediate_exit, 7817 7818 .sched_in = vmx_sched_in, 7819 7820 .cpu_dirty_log_size = PML_ENTITY_NUM, 7821 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 7822 7823 .pmu_ops = &intel_pmu_ops, 7824 .nested_ops = &vmx_nested_ops, 7825 7826 .update_pi_irte = pi_update_irte, 7827 .start_assignment = vmx_pi_start_assignment, 7828 7829 #ifdef CONFIG_X86_64 7830 .set_hv_timer = vmx_set_hv_timer, 7831 .cancel_hv_timer = vmx_cancel_hv_timer, 7832 #endif 7833 7834 .setup_mce = vmx_setup_mce, 7835 7836 .smi_allowed = vmx_smi_allowed, 7837 .enter_smm = vmx_enter_smm, 7838 .leave_smm = vmx_leave_smm, 7839 .enable_smi_window = vmx_enable_smi_window, 7840 7841 .can_emulate_instruction = vmx_can_emulate_instruction, 7842 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 7843 .migrate_timers = vmx_migrate_timers, 7844 7845 .msr_filter_changed = vmx_msr_filter_changed, 7846 .complete_emulated_msr = kvm_complete_insn_gp, 7847 7848 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 7849 }; 7850 7851 static unsigned int vmx_handle_intel_pt_intr(void) 7852 { 7853 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 7854 7855 /* '0' on failure so that the !PT case can use a RET0 static call. */ 7856 if (!kvm_arch_pmi_in_guest(vcpu)) 7857 return 0; 7858 7859 kvm_make_request(KVM_REQ_PMI, vcpu); 7860 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 7861 (unsigned long *)&vcpu->arch.pmu.global_status); 7862 return 1; 7863 } 7864 7865 static __init void vmx_setup_user_return_msrs(void) 7866 { 7867 7868 /* 7869 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 7870 * will emulate SYSCALL in legacy mode if the vendor string in guest 7871 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 7872 * support this emulation, MSR_STAR is included in the list for i386, 7873 * but is never loaded into hardware. MSR_CSTAR is also never loaded 7874 * into hardware and is here purely for emulation purposes. 7875 */ 7876 const u32 vmx_uret_msrs_list[] = { 7877 #ifdef CONFIG_X86_64 7878 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 7879 #endif 7880 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 7881 MSR_IA32_TSX_CTRL, 7882 }; 7883 int i; 7884 7885 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 7886 7887 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 7888 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 7889 } 7890 7891 static struct kvm_x86_init_ops vmx_init_ops __initdata; 7892 7893 static __init int hardware_setup(void) 7894 { 7895 unsigned long host_bndcfgs; 7896 struct desc_ptr dt; 7897 int r; 7898 7899 store_idt(&dt); 7900 host_idt_base = dt.address; 7901 7902 vmx_setup_user_return_msrs(); 7903 7904 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7905 return -EIO; 7906 7907 if (boot_cpu_has(X86_FEATURE_NX)) 7908 kvm_enable_efer_bits(EFER_NX); 7909 7910 if (boot_cpu_has(X86_FEATURE_MPX)) { 7911 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7912 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7913 } 7914 7915 if (!cpu_has_vmx_mpx()) 7916 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 7917 XFEATURE_MASK_BNDCSR); 7918 7919 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7920 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7921 enable_vpid = 0; 7922 7923 if (!cpu_has_vmx_ept() || 7924 !cpu_has_vmx_ept_4levels() || 7925 !cpu_has_vmx_ept_mt_wb() || 7926 !cpu_has_vmx_invept_global()) 7927 enable_ept = 0; 7928 7929 /* NX support is required for shadow paging. */ 7930 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 7931 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n"); 7932 return -EOPNOTSUPP; 7933 } 7934 7935 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7936 enable_ept_ad_bits = 0; 7937 7938 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7939 enable_unrestricted_guest = 0; 7940 7941 if (!cpu_has_vmx_flexpriority()) 7942 flexpriority_enabled = 0; 7943 7944 if (!cpu_has_virtual_nmis()) 7945 enable_vnmi = 0; 7946 7947 /* 7948 * set_apic_access_page_addr() is used to reload apic access 7949 * page upon invalidation. No need to do anything if not 7950 * using the APIC_ACCESS_ADDR VMCS field. 7951 */ 7952 if (!flexpriority_enabled) 7953 vmx_x86_ops.set_apic_access_page_addr = NULL; 7954 7955 if (!cpu_has_vmx_tpr_shadow()) 7956 vmx_x86_ops.update_cr8_intercept = NULL; 7957 7958 #if IS_ENABLED(CONFIG_HYPERV) 7959 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7960 && enable_ept) { 7961 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb; 7962 vmx_x86_ops.tlb_remote_flush_with_range = 7963 hv_remote_flush_tlb_with_range; 7964 } 7965 #endif 7966 7967 if (!cpu_has_vmx_ple()) { 7968 ple_gap = 0; 7969 ple_window = 0; 7970 ple_window_grow = 0; 7971 ple_window_max = 0; 7972 ple_window_shrink = 0; 7973 } 7974 7975 if (!cpu_has_vmx_apicv()) 7976 enable_apicv = 0; 7977 if (!enable_apicv) 7978 vmx_x86_ops.sync_pir_to_irr = NULL; 7979 7980 if (cpu_has_vmx_tsc_scaling()) { 7981 kvm_has_tsc_control = true; 7982 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7983 kvm_tsc_scaling_ratio_frac_bits = 48; 7984 } 7985 7986 kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 7987 7988 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7989 7990 if (enable_ept) 7991 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 7992 cpu_has_vmx_ept_execute_only()); 7993 7994 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(), 7995 ept_caps_to_lpage_level(vmx_capability.ept)); 7996 7997 /* 7998 * Only enable PML when hardware supports PML feature, and both EPT 7999 * and EPT A/D bit features are enabled -- PML depends on them to work. 8000 */ 8001 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 8002 enable_pml = 0; 8003 8004 if (!enable_pml) 8005 vmx_x86_ops.cpu_dirty_log_size = 0; 8006 8007 if (!cpu_has_vmx_preemption_timer()) 8008 enable_preemption_timer = false; 8009 8010 if (enable_preemption_timer) { 8011 u64 use_timer_freq = 5000ULL * 1000 * 1000; 8012 u64 vmx_msr; 8013 8014 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 8015 cpu_preemption_timer_multi = 8016 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 8017 8018 if (tsc_khz) 8019 use_timer_freq = (u64)tsc_khz * 1000; 8020 use_timer_freq >>= cpu_preemption_timer_multi; 8021 8022 /* 8023 * KVM "disables" the preemption timer by setting it to its max 8024 * value. Don't use the timer if it might cause spurious exits 8025 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 8026 */ 8027 if (use_timer_freq > 0xffffffffu / 10) 8028 enable_preemption_timer = false; 8029 } 8030 8031 if (!enable_preemption_timer) { 8032 vmx_x86_ops.set_hv_timer = NULL; 8033 vmx_x86_ops.cancel_hv_timer = NULL; 8034 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 8035 } 8036 8037 kvm_mce_cap_supported |= MCG_LMCE_P; 8038 8039 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 8040 return -EINVAL; 8041 if (!enable_ept || !cpu_has_vmx_intel_pt()) 8042 pt_mode = PT_MODE_SYSTEM; 8043 if (pt_mode == PT_MODE_HOST_GUEST) 8044 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 8045 else 8046 vmx_init_ops.handle_intel_pt_intr = NULL; 8047 8048 setup_default_sgx_lepubkeyhash(); 8049 8050 if (nested) { 8051 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 8052 vmx_capability.ept); 8053 8054 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8055 if (r) 8056 return r; 8057 } 8058 8059 vmx_set_cpu_caps(); 8060 8061 r = alloc_kvm_area(); 8062 if (r) 8063 nested_vmx_hardware_unsetup(); 8064 8065 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8066 8067 return r; 8068 } 8069 8070 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 8071 .cpu_has_kvm_support = cpu_has_kvm_support, 8072 .disabled_by_bios = vmx_disabled_by_bios, 8073 .check_processor_compatibility = vmx_check_processor_compat, 8074 .hardware_setup = hardware_setup, 8075 .handle_intel_pt_intr = NULL, 8076 8077 .runtime_ops = &vmx_x86_ops, 8078 }; 8079 8080 static void vmx_cleanup_l1d_flush(void) 8081 { 8082 if (vmx_l1d_flush_pages) { 8083 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8084 vmx_l1d_flush_pages = NULL; 8085 } 8086 /* Restore state so sysfs ignores VMX */ 8087 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8088 } 8089 8090 static void vmx_exit(void) 8091 { 8092 #ifdef CONFIG_KEXEC_CORE 8093 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 8094 synchronize_rcu(); 8095 #endif 8096 8097 kvm_exit(); 8098 8099 #if IS_ENABLED(CONFIG_HYPERV) 8100 if (static_branch_unlikely(&enable_evmcs)) { 8101 int cpu; 8102 struct hv_vp_assist_page *vp_ap; 8103 /* 8104 * Reset everything to support using non-enlightened VMCS 8105 * access later (e.g. when we reload the module with 8106 * enlightened_vmcs=0) 8107 */ 8108 for_each_online_cpu(cpu) { 8109 vp_ap = hv_get_vp_assist_page(cpu); 8110 8111 if (!vp_ap) 8112 continue; 8113 8114 vp_ap->nested_control.features.directhypercall = 0; 8115 vp_ap->current_nested_vmcs = 0; 8116 vp_ap->enlighten_vmentry = 0; 8117 } 8118 8119 static_branch_disable(&enable_evmcs); 8120 } 8121 #endif 8122 vmx_cleanup_l1d_flush(); 8123 8124 allow_smaller_maxphyaddr = false; 8125 } 8126 module_exit(vmx_exit); 8127 8128 static int __init vmx_init(void) 8129 { 8130 int r, cpu; 8131 8132 #if IS_ENABLED(CONFIG_HYPERV) 8133 /* 8134 * Enlightened VMCS usage should be recommended and the host needs 8135 * to support eVMCS v1 or above. We can also disable eVMCS support 8136 * with module parameter. 8137 */ 8138 if (enlightened_vmcs && 8139 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 8140 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 8141 KVM_EVMCS_VERSION) { 8142 int cpu; 8143 8144 /* Check that we have assist pages on all online CPUs */ 8145 for_each_online_cpu(cpu) { 8146 if (!hv_get_vp_assist_page(cpu)) { 8147 enlightened_vmcs = false; 8148 break; 8149 } 8150 } 8151 8152 if (enlightened_vmcs) { 8153 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 8154 static_branch_enable(&enable_evmcs); 8155 } 8156 8157 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 8158 vmx_x86_ops.enable_direct_tlbflush 8159 = hv_enable_direct_tlbflush; 8160 8161 } else { 8162 enlightened_vmcs = false; 8163 } 8164 #endif 8165 8166 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx), 8167 __alignof__(struct vcpu_vmx), THIS_MODULE); 8168 if (r) 8169 return r; 8170 8171 /* 8172 * Must be called after kvm_init() so enable_ept is properly set 8173 * up. Hand the parameter mitigation value in which was stored in 8174 * the pre module init parser. If no parameter was given, it will 8175 * contain 'auto' which will be turned into the default 'cond' 8176 * mitigation mode. 8177 */ 8178 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8179 if (r) { 8180 vmx_exit(); 8181 return r; 8182 } 8183 8184 for_each_possible_cpu(cpu) { 8185 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8186 8187 pi_init_cpu(cpu); 8188 } 8189 8190 #ifdef CONFIG_KEXEC_CORE 8191 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 8192 crash_vmclear_local_loaded_vmcss); 8193 #endif 8194 vmx_check_vmcs12_offsets(); 8195 8196 /* 8197 * Shadow paging doesn't have a (further) performance penalty 8198 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8199 * by default 8200 */ 8201 if (!enable_ept) 8202 allow_smaller_maxphyaddr = true; 8203 8204 return 0; 8205 } 8206 module_init(vmx_init); 8207