1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/highmem.h> 18 #include <linux/hrtimer.h> 19 #include <linux/kernel.h> 20 #include <linux/kvm_host.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/mm.h> 25 #include <linux/objtool.h> 26 #include <linux/sched.h> 27 #include <linux/sched/smt.h> 28 #include <linux/slab.h> 29 #include <linux/tboot.h> 30 #include <linux/trace_events.h> 31 #include <linux/entry-kvm.h> 32 33 #include <asm/apic.h> 34 #include <asm/asm.h> 35 #include <asm/cpu.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/debugreg.h> 38 #include <asm/desc.h> 39 #include <asm/fpu/api.h> 40 #include <asm/fpu/xstate.h> 41 #include <asm/idtentry.h> 42 #include <asm/io.h> 43 #include <asm/irq_remapping.h> 44 #include <asm/reboot.h> 45 #include <asm/perf_event.h> 46 #include <asm/mmu_context.h> 47 #include <asm/mshyperv.h> 48 #include <asm/mwait.h> 49 #include <asm/spec-ctrl.h> 50 #include <asm/vmx.h> 51 52 #include "capabilities.h" 53 #include "cpuid.h" 54 #include "hyperv.h" 55 #include "kvm_onhyperv.h" 56 #include "irq.h" 57 #include "kvm_cache_regs.h" 58 #include "lapic.h" 59 #include "mmu.h" 60 #include "nested.h" 61 #include "pmu.h" 62 #include "sgx.h" 63 #include "trace.h" 64 #include "vmcs.h" 65 #include "vmcs12.h" 66 #include "vmx.h" 67 #include "x86.h" 68 #include "smm.h" 69 70 MODULE_AUTHOR("Qumranet"); 71 MODULE_LICENSE("GPL"); 72 73 #ifdef MODULE 74 static const struct x86_cpu_id vmx_cpu_id[] = { 75 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 76 {} 77 }; 78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 79 #endif 80 81 bool __read_mostly enable_vpid = 1; 82 module_param_named(vpid, enable_vpid, bool, 0444); 83 84 static bool __read_mostly enable_vnmi = 1; 85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 86 87 bool __read_mostly flexpriority_enabled = 1; 88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 89 90 bool __read_mostly enable_ept = 1; 91 module_param_named(ept, enable_ept, bool, S_IRUGO); 92 93 bool __read_mostly enable_unrestricted_guest = 1; 94 module_param_named(unrestricted_guest, 95 enable_unrestricted_guest, bool, S_IRUGO); 96 97 bool __read_mostly enable_ept_ad_bits = 1; 98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 99 100 static bool __read_mostly emulate_invalid_guest_state = true; 101 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 102 103 static bool __read_mostly fasteoi = 1; 104 module_param(fasteoi, bool, S_IRUGO); 105 106 module_param(enable_apicv, bool, S_IRUGO); 107 108 bool __read_mostly enable_ipiv = true; 109 module_param(enable_ipiv, bool, 0444); 110 111 /* 112 * If nested=1, nested virtualization is supported, i.e., guests may use 113 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 114 * use VMX instructions. 115 */ 116 static bool __read_mostly nested = 1; 117 module_param(nested, bool, S_IRUGO); 118 119 bool __read_mostly enable_pml = 1; 120 module_param_named(pml, enable_pml, bool, S_IRUGO); 121 122 static bool __read_mostly error_on_inconsistent_vmcs_config = true; 123 module_param(error_on_inconsistent_vmcs_config, bool, 0444); 124 125 static bool __read_mostly dump_invalid_vmcs = 0; 126 module_param(dump_invalid_vmcs, bool, 0644); 127 128 #define MSR_BITMAP_MODE_X2APIC 1 129 #define MSR_BITMAP_MODE_X2APIC_APICV 2 130 131 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 132 133 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 134 static int __read_mostly cpu_preemption_timer_multi; 135 static bool __read_mostly enable_preemption_timer = 1; 136 #ifdef CONFIG_X86_64 137 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 138 #endif 139 140 extern bool __read_mostly allow_smaller_maxphyaddr; 141 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 142 143 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 144 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 145 #define KVM_VM_CR0_ALWAYS_ON \ 146 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 147 148 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 149 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 150 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 151 152 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 153 154 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 155 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 156 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 157 RTIT_STATUS_BYTECNT)) 158 159 /* 160 * List of MSRs that can be directly passed to the guest. 161 * In addition to these x2apic and PT MSRs are handled specially. 162 */ 163 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 164 MSR_IA32_SPEC_CTRL, 165 MSR_IA32_PRED_CMD, 166 MSR_IA32_FLUSH_CMD, 167 MSR_IA32_TSC, 168 #ifdef CONFIG_X86_64 169 MSR_FS_BASE, 170 MSR_GS_BASE, 171 MSR_KERNEL_GS_BASE, 172 MSR_IA32_XFD, 173 MSR_IA32_XFD_ERR, 174 #endif 175 MSR_IA32_SYSENTER_CS, 176 MSR_IA32_SYSENTER_ESP, 177 MSR_IA32_SYSENTER_EIP, 178 MSR_CORE_C1_RES, 179 MSR_CORE_C3_RESIDENCY, 180 MSR_CORE_C6_RESIDENCY, 181 MSR_CORE_C7_RESIDENCY, 182 }; 183 184 /* 185 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 186 * ple_gap: upper bound on the amount of time between two successive 187 * executions of PAUSE in a loop. Also indicate if ple enabled. 188 * According to test, this time is usually smaller than 128 cycles. 189 * ple_window: upper bound on the amount of time a guest is allowed to execute 190 * in a PAUSE loop. Tests indicate that most spinlocks are held for 191 * less than 2^12 cycles 192 * Time is measured based on a counter that runs at the same rate as the TSC, 193 * refer SDM volume 3b section 21.6.13 & 22.1.3. 194 */ 195 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 196 module_param(ple_gap, uint, 0444); 197 198 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 199 module_param(ple_window, uint, 0444); 200 201 /* Default doubles per-vcpu window every exit. */ 202 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 203 module_param(ple_window_grow, uint, 0444); 204 205 /* Default resets per-vcpu window every exit to ple_window. */ 206 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 207 module_param(ple_window_shrink, uint, 0444); 208 209 /* Default is to compute the maximum so we can never overflow. */ 210 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 211 module_param(ple_window_max, uint, 0444); 212 213 /* Default is SYSTEM mode, 1 for host-guest mode */ 214 int __read_mostly pt_mode = PT_MODE_SYSTEM; 215 module_param(pt_mode, int, S_IRUGO); 216 217 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 219 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 220 221 /* Storage for pre module init parameter parsing */ 222 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 223 224 static const struct { 225 const char *option; 226 bool for_parse; 227 } vmentry_l1d_param[] = { 228 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 229 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 230 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 231 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 232 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 233 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 234 }; 235 236 #define L1D_CACHE_ORDER 4 237 static void *vmx_l1d_flush_pages; 238 239 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 240 { 241 struct page *page; 242 unsigned int i; 243 244 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 245 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 246 return 0; 247 } 248 249 if (!enable_ept) { 250 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 251 return 0; 252 } 253 254 if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 255 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 256 return 0; 257 } 258 259 /* If set to auto use the default l1tf mitigation method */ 260 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 261 switch (l1tf_mitigation) { 262 case L1TF_MITIGATION_OFF: 263 l1tf = VMENTER_L1D_FLUSH_NEVER; 264 break; 265 case L1TF_MITIGATION_FLUSH_NOWARN: 266 case L1TF_MITIGATION_FLUSH: 267 case L1TF_MITIGATION_FLUSH_NOSMT: 268 l1tf = VMENTER_L1D_FLUSH_COND; 269 break; 270 case L1TF_MITIGATION_FULL: 271 case L1TF_MITIGATION_FULL_FORCE: 272 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 273 break; 274 } 275 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 276 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 277 } 278 279 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 280 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 281 /* 282 * This allocation for vmx_l1d_flush_pages is not tied to a VM 283 * lifetime and so should not be charged to a memcg. 284 */ 285 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 286 if (!page) 287 return -ENOMEM; 288 vmx_l1d_flush_pages = page_address(page); 289 290 /* 291 * Initialize each page with a different pattern in 292 * order to protect against KSM in the nested 293 * virtualization case. 294 */ 295 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 296 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 297 PAGE_SIZE); 298 } 299 } 300 301 l1tf_vmx_mitigation = l1tf; 302 303 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 304 static_branch_enable(&vmx_l1d_should_flush); 305 else 306 static_branch_disable(&vmx_l1d_should_flush); 307 308 if (l1tf == VMENTER_L1D_FLUSH_COND) 309 static_branch_enable(&vmx_l1d_flush_cond); 310 else 311 static_branch_disable(&vmx_l1d_flush_cond); 312 return 0; 313 } 314 315 static int vmentry_l1d_flush_parse(const char *s) 316 { 317 unsigned int i; 318 319 if (s) { 320 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 321 if (vmentry_l1d_param[i].for_parse && 322 sysfs_streq(s, vmentry_l1d_param[i].option)) 323 return i; 324 } 325 } 326 return -EINVAL; 327 } 328 329 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 330 { 331 int l1tf, ret; 332 333 l1tf = vmentry_l1d_flush_parse(s); 334 if (l1tf < 0) 335 return l1tf; 336 337 if (!boot_cpu_has(X86_BUG_L1TF)) 338 return 0; 339 340 /* 341 * Has vmx_init() run already? If not then this is the pre init 342 * parameter parsing. In that case just store the value and let 343 * vmx_init() do the proper setup after enable_ept has been 344 * established. 345 */ 346 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 347 vmentry_l1d_flush_param = l1tf; 348 return 0; 349 } 350 351 mutex_lock(&vmx_l1d_flush_mutex); 352 ret = vmx_setup_l1d_flush(l1tf); 353 mutex_unlock(&vmx_l1d_flush_mutex); 354 return ret; 355 } 356 357 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 358 { 359 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 360 return sysfs_emit(s, "???\n"); 361 362 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 363 } 364 365 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) 366 { 367 u64 msr; 368 369 if (!vmx->disable_fb_clear) 370 return; 371 372 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL); 373 msr |= FB_CLEAR_DIS; 374 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr); 375 /* Cache the MSR value to avoid reading it later */ 376 vmx->msr_ia32_mcu_opt_ctrl = msr; 377 } 378 379 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) 380 { 381 if (!vmx->disable_fb_clear) 382 return; 383 384 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; 385 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); 386 } 387 388 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) 389 { 390 /* 391 * Disable VERW's behavior of clearing CPU buffers for the guest if the 392 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled 393 * the mitigation. Disabling the clearing behavior provides a 394 * performance boost for guests that aren't aware that manually clearing 395 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry 396 * and VM-Exit. 397 */ 398 vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) && 399 (host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) && 400 !boot_cpu_has_bug(X86_BUG_MDS) && 401 !boot_cpu_has_bug(X86_BUG_TAA); 402 403 /* 404 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS 405 * at VMEntry. Skip the MSR read/write when a guest has no use case to 406 * execute VERW. 407 */ 408 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || 409 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && 410 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && 411 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && 412 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && 413 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) 414 vmx->disable_fb_clear = false; 415 } 416 417 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 418 .set = vmentry_l1d_flush_set, 419 .get = vmentry_l1d_flush_get, 420 }; 421 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 422 423 static u32 vmx_segment_access_rights(struct kvm_segment *var); 424 425 void vmx_vmexit(void); 426 427 #define vmx_insn_failed(fmt...) \ 428 do { \ 429 WARN_ONCE(1, fmt); \ 430 pr_warn_ratelimited(fmt); \ 431 } while (0) 432 433 noinline void vmread_error(unsigned long field) 434 { 435 vmx_insn_failed("vmread failed: field=%lx\n", field); 436 } 437 438 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT 439 noinstr void vmread_error_trampoline2(unsigned long field, bool fault) 440 { 441 if (fault) { 442 kvm_spurious_fault(); 443 } else { 444 instrumentation_begin(); 445 vmread_error(field); 446 instrumentation_end(); 447 } 448 } 449 #endif 450 451 noinline void vmwrite_error(unsigned long field, unsigned long value) 452 { 453 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n", 454 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 455 } 456 457 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 458 { 459 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n", 460 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 461 } 462 463 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 464 { 465 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n", 466 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 467 } 468 469 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 470 { 471 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 472 ext, vpid, gva); 473 } 474 475 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 476 { 477 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 478 ext, eptp, gpa); 479 } 480 481 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 482 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 483 /* 484 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 485 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 486 */ 487 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 488 489 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 490 static DEFINE_SPINLOCK(vmx_vpid_lock); 491 492 struct vmcs_config vmcs_config __ro_after_init; 493 struct vmx_capability vmx_capability __ro_after_init; 494 495 #define VMX_SEGMENT_FIELD(seg) \ 496 [VCPU_SREG_##seg] = { \ 497 .selector = GUEST_##seg##_SELECTOR, \ 498 .base = GUEST_##seg##_BASE, \ 499 .limit = GUEST_##seg##_LIMIT, \ 500 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 501 } 502 503 static const struct kvm_vmx_segment_field { 504 unsigned selector; 505 unsigned base; 506 unsigned limit; 507 unsigned ar_bytes; 508 } kvm_vmx_segment_fields[] = { 509 VMX_SEGMENT_FIELD(CS), 510 VMX_SEGMENT_FIELD(DS), 511 VMX_SEGMENT_FIELD(ES), 512 VMX_SEGMENT_FIELD(FS), 513 VMX_SEGMENT_FIELD(GS), 514 VMX_SEGMENT_FIELD(SS), 515 VMX_SEGMENT_FIELD(TR), 516 VMX_SEGMENT_FIELD(LDTR), 517 }; 518 519 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 520 { 521 vmx->segment_cache.bitmask = 0; 522 } 523 524 static unsigned long host_idt_base; 525 526 #if IS_ENABLED(CONFIG_HYPERV) 527 static struct kvm_x86_ops vmx_x86_ops __initdata; 528 529 static bool __read_mostly enlightened_vmcs = true; 530 module_param(enlightened_vmcs, bool, 0444); 531 532 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu) 533 { 534 struct hv_enlightened_vmcs *evmcs; 535 struct hv_partition_assist_pg **p_hv_pa_pg = 536 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 537 /* 538 * Synthetic VM-Exit is not enabled in current code and so All 539 * evmcs in singe VM shares same assist page. 540 */ 541 if (!*p_hv_pa_pg) 542 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 543 544 if (!*p_hv_pa_pg) 545 return -ENOMEM; 546 547 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 548 549 evmcs->partition_assist_page = 550 __pa(*p_hv_pa_pg); 551 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 552 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 553 554 return 0; 555 } 556 557 static __init void hv_init_evmcs(void) 558 { 559 int cpu; 560 561 if (!enlightened_vmcs) 562 return; 563 564 /* 565 * Enlightened VMCS usage should be recommended and the host needs 566 * to support eVMCS v1 or above. 567 */ 568 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 569 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 570 KVM_EVMCS_VERSION) { 571 572 /* Check that we have assist pages on all online CPUs */ 573 for_each_online_cpu(cpu) { 574 if (!hv_get_vp_assist_page(cpu)) { 575 enlightened_vmcs = false; 576 break; 577 } 578 } 579 580 if (enlightened_vmcs) { 581 pr_info("Using Hyper-V Enlightened VMCS\n"); 582 static_branch_enable(&__kvm_is_using_evmcs); 583 } 584 585 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 586 vmx_x86_ops.enable_l2_tlb_flush 587 = hv_enable_l2_tlb_flush; 588 589 } else { 590 enlightened_vmcs = false; 591 } 592 } 593 594 static void hv_reset_evmcs(void) 595 { 596 struct hv_vp_assist_page *vp_ap; 597 598 if (!kvm_is_using_evmcs()) 599 return; 600 601 /* 602 * KVM should enable eVMCS if and only if all CPUs have a VP assist 603 * page, and should reject CPU onlining if eVMCS is enabled the CPU 604 * doesn't have a VP assist page allocated. 605 */ 606 vp_ap = hv_get_vp_assist_page(smp_processor_id()); 607 if (WARN_ON_ONCE(!vp_ap)) 608 return; 609 610 /* 611 * Reset everything to support using non-enlightened VMCS access later 612 * (e.g. when we reload the module with enlightened_vmcs=0) 613 */ 614 vp_ap->nested_control.features.directhypercall = 0; 615 vp_ap->current_nested_vmcs = 0; 616 vp_ap->enlighten_vmentry = 0; 617 } 618 619 #else /* IS_ENABLED(CONFIG_HYPERV) */ 620 static void hv_init_evmcs(void) {} 621 static void hv_reset_evmcs(void) {} 622 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 623 624 /* 625 * Comment's format: document - errata name - stepping - processor name. 626 * Refer from 627 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 628 */ 629 static u32 vmx_preemption_cpu_tfms[] = { 630 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 631 0x000206E6, 632 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 633 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 634 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 635 0x00020652, 636 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 637 0x00020655, 638 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 639 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 640 /* 641 * 320767.pdf - AAP86 - B1 - 642 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 643 */ 644 0x000106E5, 645 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 646 0x000106A0, 647 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 648 0x000106A1, 649 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 650 0x000106A4, 651 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 652 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 653 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 654 0x000106A5, 655 /* Xeon E3-1220 V2 */ 656 0x000306A8, 657 }; 658 659 static inline bool cpu_has_broken_vmx_preemption_timer(void) 660 { 661 u32 eax = cpuid_eax(0x00000001), i; 662 663 /* Clear the reserved bits */ 664 eax &= ~(0x3U << 14 | 0xfU << 28); 665 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 666 if (eax == vmx_preemption_cpu_tfms[i]) 667 return true; 668 669 return false; 670 } 671 672 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 673 { 674 return flexpriority_enabled && lapic_in_kernel(vcpu); 675 } 676 677 static int possible_passthrough_msr_slot(u32 msr) 678 { 679 u32 i; 680 681 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 682 if (vmx_possible_passthrough_msrs[i] == msr) 683 return i; 684 685 return -ENOENT; 686 } 687 688 static bool is_valid_passthrough_msr(u32 msr) 689 { 690 bool r; 691 692 switch (msr) { 693 case 0x800 ... 0x8ff: 694 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 695 return true; 696 case MSR_IA32_RTIT_STATUS: 697 case MSR_IA32_RTIT_OUTPUT_BASE: 698 case MSR_IA32_RTIT_OUTPUT_MASK: 699 case MSR_IA32_RTIT_CR3_MATCH: 700 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 701 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 702 case MSR_LBR_SELECT: 703 case MSR_LBR_TOS: 704 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 705 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 706 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 707 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 708 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 709 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 710 return true; 711 } 712 713 r = possible_passthrough_msr_slot(msr) != -ENOENT; 714 715 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 716 717 return r; 718 } 719 720 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 721 { 722 int i; 723 724 i = kvm_find_user_return_msr(msr); 725 if (i >= 0) 726 return &vmx->guest_uret_msrs[i]; 727 return NULL; 728 } 729 730 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 731 struct vmx_uret_msr *msr, u64 data) 732 { 733 unsigned int slot = msr - vmx->guest_uret_msrs; 734 int ret = 0; 735 736 if (msr->load_into_hardware) { 737 preempt_disable(); 738 ret = kvm_set_user_return_msr(slot, data, msr->mask); 739 preempt_enable(); 740 } 741 if (!ret) 742 msr->data = data; 743 return ret; 744 } 745 746 /* 747 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults) 748 * 749 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to 750 * atomically track post-VMXON state, e.g. this may be called in NMI context. 751 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e. 752 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is 753 * magically in RM, VM86, compat mode, or at CPL>0. 754 */ 755 static int kvm_cpu_vmxoff(void) 756 { 757 asm goto("1: vmxoff\n\t" 758 _ASM_EXTABLE(1b, %l[fault]) 759 ::: "cc", "memory" : fault); 760 761 cr4_clear_bits(X86_CR4_VMXE); 762 return 0; 763 764 fault: 765 cr4_clear_bits(X86_CR4_VMXE); 766 return -EIO; 767 } 768 769 static void vmx_emergency_disable(void) 770 { 771 int cpu = raw_smp_processor_id(); 772 struct loaded_vmcs *v; 773 774 kvm_rebooting = true; 775 776 /* 777 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be 778 * set in task context. If this races with VMX is disabled by an NMI, 779 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to 780 * kvm_rebooting set. 781 */ 782 if (!(__read_cr4() & X86_CR4_VMXE)) 783 return; 784 785 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 786 loaded_vmcss_on_cpu_link) 787 vmcs_clear(v->vmcs); 788 789 kvm_cpu_vmxoff(); 790 } 791 792 static void __loaded_vmcs_clear(void *arg) 793 { 794 struct loaded_vmcs *loaded_vmcs = arg; 795 int cpu = raw_smp_processor_id(); 796 797 if (loaded_vmcs->cpu != cpu) 798 return; /* vcpu migration can race with cpu offline */ 799 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 800 per_cpu(current_vmcs, cpu) = NULL; 801 802 vmcs_clear(loaded_vmcs->vmcs); 803 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 804 vmcs_clear(loaded_vmcs->shadow_vmcs); 805 806 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 807 808 /* 809 * Ensure all writes to loaded_vmcs, including deleting it from its 810 * current percpu list, complete before setting loaded_vmcs->cpu to 811 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first 812 * and add loaded_vmcs to its percpu list before it's deleted from this 813 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 814 */ 815 smp_wmb(); 816 817 loaded_vmcs->cpu = -1; 818 loaded_vmcs->launched = 0; 819 } 820 821 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 822 { 823 int cpu = loaded_vmcs->cpu; 824 825 if (cpu != -1) 826 smp_call_function_single(cpu, 827 __loaded_vmcs_clear, loaded_vmcs, 1); 828 } 829 830 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 831 unsigned field) 832 { 833 bool ret; 834 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 835 836 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 837 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 838 vmx->segment_cache.bitmask = 0; 839 } 840 ret = vmx->segment_cache.bitmask & mask; 841 vmx->segment_cache.bitmask |= mask; 842 return ret; 843 } 844 845 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 846 { 847 u16 *p = &vmx->segment_cache.seg[seg].selector; 848 849 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 850 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 851 return *p; 852 } 853 854 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 855 { 856 ulong *p = &vmx->segment_cache.seg[seg].base; 857 858 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 859 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 860 return *p; 861 } 862 863 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 864 { 865 u32 *p = &vmx->segment_cache.seg[seg].limit; 866 867 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 868 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 869 return *p; 870 } 871 872 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 873 { 874 u32 *p = &vmx->segment_cache.seg[seg].ar; 875 876 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 877 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 878 return *p; 879 } 880 881 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 882 { 883 u32 eb; 884 885 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 886 (1u << DB_VECTOR) | (1u << AC_VECTOR); 887 /* 888 * Guest access to VMware backdoor ports could legitimately 889 * trigger #GP because of TSS I/O permission bitmap. 890 * We intercept those #GP and allow access to them anyway 891 * as VMware does. 892 */ 893 if (enable_vmware_backdoor) 894 eb |= (1u << GP_VECTOR); 895 if ((vcpu->guest_debug & 896 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 897 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 898 eb |= 1u << BP_VECTOR; 899 if (to_vmx(vcpu)->rmode.vm86_active) 900 eb = ~0; 901 if (!vmx_need_pf_intercept(vcpu)) 902 eb &= ~(1u << PF_VECTOR); 903 904 /* When we are running a nested L2 guest and L1 specified for it a 905 * certain exception bitmap, we must trap the same exceptions and pass 906 * them to L1. When running L2, we will only handle the exceptions 907 * specified above if L1 did not want them. 908 */ 909 if (is_guest_mode(vcpu)) 910 eb |= get_vmcs12(vcpu)->exception_bitmap; 911 else { 912 int mask = 0, match = 0; 913 914 if (enable_ept && (eb & (1u << PF_VECTOR))) { 915 /* 916 * If EPT is enabled, #PF is currently only intercepted 917 * if MAXPHYADDR is smaller on the guest than on the 918 * host. In that case we only care about present, 919 * non-reserved faults. For vmcs02, however, PFEC_MASK 920 * and PFEC_MATCH are set in prepare_vmcs02_rare. 921 */ 922 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 923 match = PFERR_PRESENT_MASK; 924 } 925 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 926 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 927 } 928 929 /* 930 * Disabling xfd interception indicates that dynamic xfeatures 931 * might be used in the guest. Always trap #NM in this case 932 * to save guest xfd_err timely. 933 */ 934 if (vcpu->arch.xfd_no_write_intercept) 935 eb |= (1u << NM_VECTOR); 936 937 vmcs_write32(EXCEPTION_BITMAP, eb); 938 } 939 940 /* 941 * Check if MSR is intercepted for currently loaded MSR bitmap. 942 */ 943 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 944 { 945 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 946 return true; 947 948 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); 949 } 950 951 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) 952 { 953 unsigned int flags = 0; 954 955 if (vmx->loaded_vmcs->launched) 956 flags |= VMX_RUN_VMRESUME; 957 958 /* 959 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free 960 * to change it directly without causing a vmexit. In that case read 961 * it after vmexit and store it in vmx->spec_ctrl. 962 */ 963 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)) 964 flags |= VMX_RUN_SAVE_SPEC_CTRL; 965 966 return flags; 967 } 968 969 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 970 unsigned long entry, unsigned long exit) 971 { 972 vm_entry_controls_clearbit(vmx, entry); 973 vm_exit_controls_clearbit(vmx, exit); 974 } 975 976 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 977 { 978 unsigned int i; 979 980 for (i = 0; i < m->nr; ++i) { 981 if (m->val[i].index == msr) 982 return i; 983 } 984 return -ENOENT; 985 } 986 987 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 988 { 989 int i; 990 struct msr_autoload *m = &vmx->msr_autoload; 991 992 switch (msr) { 993 case MSR_EFER: 994 if (cpu_has_load_ia32_efer()) { 995 clear_atomic_switch_msr_special(vmx, 996 VM_ENTRY_LOAD_IA32_EFER, 997 VM_EXIT_LOAD_IA32_EFER); 998 return; 999 } 1000 break; 1001 case MSR_CORE_PERF_GLOBAL_CTRL: 1002 if (cpu_has_load_perf_global_ctrl()) { 1003 clear_atomic_switch_msr_special(vmx, 1004 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 1005 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 1006 return; 1007 } 1008 break; 1009 } 1010 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1011 if (i < 0) 1012 goto skip_guest; 1013 --m->guest.nr; 1014 m->guest.val[i] = m->guest.val[m->guest.nr]; 1015 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1016 1017 skip_guest: 1018 i = vmx_find_loadstore_msr_slot(&m->host, msr); 1019 if (i < 0) 1020 return; 1021 1022 --m->host.nr; 1023 m->host.val[i] = m->host.val[m->host.nr]; 1024 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1025 } 1026 1027 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 1028 unsigned long entry, unsigned long exit, 1029 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 1030 u64 guest_val, u64 host_val) 1031 { 1032 vmcs_write64(guest_val_vmcs, guest_val); 1033 if (host_val_vmcs != HOST_IA32_EFER) 1034 vmcs_write64(host_val_vmcs, host_val); 1035 vm_entry_controls_setbit(vmx, entry); 1036 vm_exit_controls_setbit(vmx, exit); 1037 } 1038 1039 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 1040 u64 guest_val, u64 host_val, bool entry_only) 1041 { 1042 int i, j = 0; 1043 struct msr_autoload *m = &vmx->msr_autoload; 1044 1045 switch (msr) { 1046 case MSR_EFER: 1047 if (cpu_has_load_ia32_efer()) { 1048 add_atomic_switch_msr_special(vmx, 1049 VM_ENTRY_LOAD_IA32_EFER, 1050 VM_EXIT_LOAD_IA32_EFER, 1051 GUEST_IA32_EFER, 1052 HOST_IA32_EFER, 1053 guest_val, host_val); 1054 return; 1055 } 1056 break; 1057 case MSR_CORE_PERF_GLOBAL_CTRL: 1058 if (cpu_has_load_perf_global_ctrl()) { 1059 add_atomic_switch_msr_special(vmx, 1060 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 1061 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 1062 GUEST_IA32_PERF_GLOBAL_CTRL, 1063 HOST_IA32_PERF_GLOBAL_CTRL, 1064 guest_val, host_val); 1065 return; 1066 } 1067 break; 1068 case MSR_IA32_PEBS_ENABLE: 1069 /* PEBS needs a quiescent period after being disabled (to write 1070 * a record). Disabling PEBS through VMX MSR swapping doesn't 1071 * provide that period, so a CPU could write host's record into 1072 * guest's memory. 1073 */ 1074 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1075 } 1076 1077 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1078 if (!entry_only) 1079 j = vmx_find_loadstore_msr_slot(&m->host, msr); 1080 1081 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 1082 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 1083 printk_once(KERN_WARNING "Not enough msr switch entries. " 1084 "Can't add msr %x\n", msr); 1085 return; 1086 } 1087 if (i < 0) { 1088 i = m->guest.nr++; 1089 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1090 } 1091 m->guest.val[i].index = msr; 1092 m->guest.val[i].value = guest_val; 1093 1094 if (entry_only) 1095 return; 1096 1097 if (j < 0) { 1098 j = m->host.nr++; 1099 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1100 } 1101 m->host.val[j].index = msr; 1102 m->host.val[j].value = host_val; 1103 } 1104 1105 static bool update_transition_efer(struct vcpu_vmx *vmx) 1106 { 1107 u64 guest_efer = vmx->vcpu.arch.efer; 1108 u64 ignore_bits = 0; 1109 int i; 1110 1111 /* Shadow paging assumes NX to be available. */ 1112 if (!enable_ept) 1113 guest_efer |= EFER_NX; 1114 1115 /* 1116 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1117 */ 1118 ignore_bits |= EFER_SCE; 1119 #ifdef CONFIG_X86_64 1120 ignore_bits |= EFER_LMA | EFER_LME; 1121 /* SCE is meaningful only in long mode on Intel */ 1122 if (guest_efer & EFER_LMA) 1123 ignore_bits &= ~(u64)EFER_SCE; 1124 #endif 1125 1126 /* 1127 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1128 * On CPUs that support "load IA32_EFER", always switch EFER 1129 * atomically, since it's faster than switching it manually. 1130 */ 1131 if (cpu_has_load_ia32_efer() || 1132 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 1133 if (!(guest_efer & EFER_LMA)) 1134 guest_efer &= ~EFER_LME; 1135 if (guest_efer != host_efer) 1136 add_atomic_switch_msr(vmx, MSR_EFER, 1137 guest_efer, host_efer, false); 1138 else 1139 clear_atomic_switch_msr(vmx, MSR_EFER); 1140 return false; 1141 } 1142 1143 i = kvm_find_user_return_msr(MSR_EFER); 1144 if (i < 0) 1145 return false; 1146 1147 clear_atomic_switch_msr(vmx, MSR_EFER); 1148 1149 guest_efer &= ~ignore_bits; 1150 guest_efer |= host_efer & ignore_bits; 1151 1152 vmx->guest_uret_msrs[i].data = guest_efer; 1153 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1154 1155 return true; 1156 } 1157 1158 #ifdef CONFIG_X86_32 1159 /* 1160 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1161 * VMCS rather than the segment table. KVM uses this helper to figure 1162 * out the current bases to poke them into the VMCS before entry. 1163 */ 1164 static unsigned long segment_base(u16 selector) 1165 { 1166 struct desc_struct *table; 1167 unsigned long v; 1168 1169 if (!(selector & ~SEGMENT_RPL_MASK)) 1170 return 0; 1171 1172 table = get_current_gdt_ro(); 1173 1174 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1175 u16 ldt_selector = kvm_read_ldt(); 1176 1177 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1178 return 0; 1179 1180 table = (struct desc_struct *)segment_base(ldt_selector); 1181 } 1182 v = get_desc_base(&table[selector >> 3]); 1183 return v; 1184 } 1185 #endif 1186 1187 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1188 { 1189 return vmx_pt_mode_is_host_guest() && 1190 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1191 } 1192 1193 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1194 { 1195 /* The base must be 128-byte aligned and a legal physical address. */ 1196 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1197 } 1198 1199 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1200 { 1201 u32 i; 1202 1203 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1204 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1205 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1206 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1207 for (i = 0; i < addr_range; i++) { 1208 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1209 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1210 } 1211 } 1212 1213 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1214 { 1215 u32 i; 1216 1217 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1218 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1219 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1220 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1221 for (i = 0; i < addr_range; i++) { 1222 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1223 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1224 } 1225 } 1226 1227 static void pt_guest_enter(struct vcpu_vmx *vmx) 1228 { 1229 if (vmx_pt_mode_is_system()) 1230 return; 1231 1232 /* 1233 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1234 * Save host state before VM entry. 1235 */ 1236 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1237 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1238 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1239 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1240 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1241 } 1242 } 1243 1244 static void pt_guest_exit(struct vcpu_vmx *vmx) 1245 { 1246 if (vmx_pt_mode_is_system()) 1247 return; 1248 1249 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1250 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1251 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1252 } 1253 1254 /* 1255 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1256 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1257 */ 1258 if (vmx->pt_desc.host.ctl) 1259 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1260 } 1261 1262 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1263 unsigned long fs_base, unsigned long gs_base) 1264 { 1265 if (unlikely(fs_sel != host->fs_sel)) { 1266 if (!(fs_sel & 7)) 1267 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1268 else 1269 vmcs_write16(HOST_FS_SELECTOR, 0); 1270 host->fs_sel = fs_sel; 1271 } 1272 if (unlikely(gs_sel != host->gs_sel)) { 1273 if (!(gs_sel & 7)) 1274 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1275 else 1276 vmcs_write16(HOST_GS_SELECTOR, 0); 1277 host->gs_sel = gs_sel; 1278 } 1279 if (unlikely(fs_base != host->fs_base)) { 1280 vmcs_writel(HOST_FS_BASE, fs_base); 1281 host->fs_base = fs_base; 1282 } 1283 if (unlikely(gs_base != host->gs_base)) { 1284 vmcs_writel(HOST_GS_BASE, gs_base); 1285 host->gs_base = gs_base; 1286 } 1287 } 1288 1289 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1290 { 1291 struct vcpu_vmx *vmx = to_vmx(vcpu); 1292 struct vmcs_host_state *host_state; 1293 #ifdef CONFIG_X86_64 1294 int cpu = raw_smp_processor_id(); 1295 #endif 1296 unsigned long fs_base, gs_base; 1297 u16 fs_sel, gs_sel; 1298 int i; 1299 1300 vmx->req_immediate_exit = false; 1301 1302 /* 1303 * Note that guest MSRs to be saved/restored can also be changed 1304 * when guest state is loaded. This happens when guest transitions 1305 * to/from long-mode by setting MSR_EFER.LMA. 1306 */ 1307 if (!vmx->guest_uret_msrs_loaded) { 1308 vmx->guest_uret_msrs_loaded = true; 1309 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1310 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1311 continue; 1312 1313 kvm_set_user_return_msr(i, 1314 vmx->guest_uret_msrs[i].data, 1315 vmx->guest_uret_msrs[i].mask); 1316 } 1317 } 1318 1319 if (vmx->nested.need_vmcs12_to_shadow_sync) 1320 nested_sync_vmcs12_to_shadow(vcpu); 1321 1322 if (vmx->guest_state_loaded) 1323 return; 1324 1325 host_state = &vmx->loaded_vmcs->host_state; 1326 1327 /* 1328 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1329 * allow segment selectors with cpl > 0 or ti == 1. 1330 */ 1331 host_state->ldt_sel = kvm_read_ldt(); 1332 1333 #ifdef CONFIG_X86_64 1334 savesegment(ds, host_state->ds_sel); 1335 savesegment(es, host_state->es_sel); 1336 1337 gs_base = cpu_kernelmode_gs_base(cpu); 1338 if (likely(is_64bit_mm(current->mm))) { 1339 current_save_fsgs(); 1340 fs_sel = current->thread.fsindex; 1341 gs_sel = current->thread.gsindex; 1342 fs_base = current->thread.fsbase; 1343 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1344 } else { 1345 savesegment(fs, fs_sel); 1346 savesegment(gs, gs_sel); 1347 fs_base = read_msr(MSR_FS_BASE); 1348 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1349 } 1350 1351 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1352 #else 1353 savesegment(fs, fs_sel); 1354 savesegment(gs, gs_sel); 1355 fs_base = segment_base(fs_sel); 1356 gs_base = segment_base(gs_sel); 1357 #endif 1358 1359 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1360 vmx->guest_state_loaded = true; 1361 } 1362 1363 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1364 { 1365 struct vmcs_host_state *host_state; 1366 1367 if (!vmx->guest_state_loaded) 1368 return; 1369 1370 host_state = &vmx->loaded_vmcs->host_state; 1371 1372 ++vmx->vcpu.stat.host_state_reload; 1373 1374 #ifdef CONFIG_X86_64 1375 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1376 #endif 1377 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1378 kvm_load_ldt(host_state->ldt_sel); 1379 #ifdef CONFIG_X86_64 1380 load_gs_index(host_state->gs_sel); 1381 #else 1382 loadsegment(gs, host_state->gs_sel); 1383 #endif 1384 } 1385 if (host_state->fs_sel & 7) 1386 loadsegment(fs, host_state->fs_sel); 1387 #ifdef CONFIG_X86_64 1388 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1389 loadsegment(ds, host_state->ds_sel); 1390 loadsegment(es, host_state->es_sel); 1391 } 1392 #endif 1393 invalidate_tss_limit(); 1394 #ifdef CONFIG_X86_64 1395 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1396 #endif 1397 load_fixmap_gdt(raw_smp_processor_id()); 1398 vmx->guest_state_loaded = false; 1399 vmx->guest_uret_msrs_loaded = false; 1400 } 1401 1402 #ifdef CONFIG_X86_64 1403 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1404 { 1405 preempt_disable(); 1406 if (vmx->guest_state_loaded) 1407 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1408 preempt_enable(); 1409 return vmx->msr_guest_kernel_gs_base; 1410 } 1411 1412 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1413 { 1414 preempt_disable(); 1415 if (vmx->guest_state_loaded) 1416 wrmsrl(MSR_KERNEL_GS_BASE, data); 1417 preempt_enable(); 1418 vmx->msr_guest_kernel_gs_base = data; 1419 } 1420 #endif 1421 1422 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1423 struct loaded_vmcs *buddy) 1424 { 1425 struct vcpu_vmx *vmx = to_vmx(vcpu); 1426 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1427 struct vmcs *prev; 1428 1429 if (!already_loaded) { 1430 loaded_vmcs_clear(vmx->loaded_vmcs); 1431 local_irq_disable(); 1432 1433 /* 1434 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1435 * this cpu's percpu list, otherwise it may not yet be deleted 1436 * from its previous cpu's percpu list. Pairs with the 1437 * smb_wmb() in __loaded_vmcs_clear(). 1438 */ 1439 smp_rmb(); 1440 1441 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1442 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1443 local_irq_enable(); 1444 } 1445 1446 prev = per_cpu(current_vmcs, cpu); 1447 if (prev != vmx->loaded_vmcs->vmcs) { 1448 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1449 vmcs_load(vmx->loaded_vmcs->vmcs); 1450 1451 /* 1452 * No indirect branch prediction barrier needed when switching 1453 * the active VMCS within a vCPU, unless IBRS is advertised to 1454 * the vCPU. To minimize the number of IBPBs executed, KVM 1455 * performs IBPB on nested VM-Exit (a single nested transition 1456 * may switch the active VMCS multiple times). 1457 */ 1458 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1459 indirect_branch_prediction_barrier(); 1460 } 1461 1462 if (!already_loaded) { 1463 void *gdt = get_current_gdt_ro(); 1464 1465 /* 1466 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1467 * TLB entries from its previous association with the vCPU. 1468 */ 1469 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1470 1471 /* 1472 * Linux uses per-cpu TSS and GDT, so set these when switching 1473 * processors. See 22.2.4. 1474 */ 1475 vmcs_writel(HOST_TR_BASE, 1476 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1477 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1478 1479 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1480 /* 22.2.3 */ 1481 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1482 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1483 } 1484 1485 vmx->loaded_vmcs->cpu = cpu; 1486 } 1487 } 1488 1489 /* 1490 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1491 * vcpu mutex is already taken. 1492 */ 1493 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1494 { 1495 struct vcpu_vmx *vmx = to_vmx(vcpu); 1496 1497 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1498 1499 vmx_vcpu_pi_load(vcpu, cpu); 1500 1501 vmx->host_debugctlmsr = get_debugctlmsr(); 1502 } 1503 1504 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1505 { 1506 vmx_vcpu_pi_put(vcpu); 1507 1508 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1509 } 1510 1511 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1512 { 1513 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1514 } 1515 1516 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1517 { 1518 struct vcpu_vmx *vmx = to_vmx(vcpu); 1519 unsigned long rflags, save_rflags; 1520 1521 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1522 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1523 rflags = vmcs_readl(GUEST_RFLAGS); 1524 if (vmx->rmode.vm86_active) { 1525 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1526 save_rflags = vmx->rmode.save_rflags; 1527 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1528 } 1529 vmx->rflags = rflags; 1530 } 1531 return vmx->rflags; 1532 } 1533 1534 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1535 { 1536 struct vcpu_vmx *vmx = to_vmx(vcpu); 1537 unsigned long old_rflags; 1538 1539 /* 1540 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU 1541 * is an unrestricted guest in order to mark L2 as needing emulation 1542 * if L1 runs L2 as a restricted guest. 1543 */ 1544 if (is_unrestricted_guest(vcpu)) { 1545 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1546 vmx->rflags = rflags; 1547 vmcs_writel(GUEST_RFLAGS, rflags); 1548 return; 1549 } 1550 1551 old_rflags = vmx_get_rflags(vcpu); 1552 vmx->rflags = rflags; 1553 if (vmx->rmode.vm86_active) { 1554 vmx->rmode.save_rflags = rflags; 1555 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1556 } 1557 vmcs_writel(GUEST_RFLAGS, rflags); 1558 1559 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1560 vmx->emulation_required = vmx_emulation_required(vcpu); 1561 } 1562 1563 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1564 { 1565 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1566 } 1567 1568 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1569 { 1570 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1571 int ret = 0; 1572 1573 if (interruptibility & GUEST_INTR_STATE_STI) 1574 ret |= KVM_X86_SHADOW_INT_STI; 1575 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1576 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1577 1578 return ret; 1579 } 1580 1581 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1582 { 1583 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1584 u32 interruptibility = interruptibility_old; 1585 1586 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1587 1588 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1589 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1590 else if (mask & KVM_X86_SHADOW_INT_STI) 1591 interruptibility |= GUEST_INTR_STATE_STI; 1592 1593 if ((interruptibility != interruptibility_old)) 1594 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1595 } 1596 1597 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1598 { 1599 struct vcpu_vmx *vmx = to_vmx(vcpu); 1600 unsigned long value; 1601 1602 /* 1603 * Any MSR write that attempts to change bits marked reserved will 1604 * case a #GP fault. 1605 */ 1606 if (data & vmx->pt_desc.ctl_bitmask) 1607 return 1; 1608 1609 /* 1610 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1611 * result in a #GP unless the same write also clears TraceEn. 1612 */ 1613 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1614 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1615 return 1; 1616 1617 /* 1618 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1619 * and FabricEn would cause #GP, if 1620 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1621 */ 1622 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1623 !(data & RTIT_CTL_FABRIC_EN) && 1624 !intel_pt_validate_cap(vmx->pt_desc.caps, 1625 PT_CAP_single_range_output)) 1626 return 1; 1627 1628 /* 1629 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1630 * utilize encodings marked reserved will cause a #GP fault. 1631 */ 1632 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1633 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1634 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1635 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1636 return 1; 1637 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1638 PT_CAP_cycle_thresholds); 1639 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1640 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1641 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1642 return 1; 1643 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1644 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1645 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1646 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1647 return 1; 1648 1649 /* 1650 * If ADDRx_CFG is reserved or the encodings is >2 will 1651 * cause a #GP fault. 1652 */ 1653 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1654 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1655 return 1; 1656 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1657 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1658 return 1; 1659 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1660 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1661 return 1; 1662 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1663 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1664 return 1; 1665 1666 return 0; 1667 } 1668 1669 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1670 void *insn, int insn_len) 1671 { 1672 /* 1673 * Emulation of instructions in SGX enclaves is impossible as RIP does 1674 * not point at the failing instruction, and even if it did, the code 1675 * stream is inaccessible. Inject #UD instead of exiting to userspace 1676 * so that guest userspace can't DoS the guest simply by triggering 1677 * emulation (enclaves are CPL3 only). 1678 */ 1679 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1680 kvm_queue_exception(vcpu, UD_VECTOR); 1681 return false; 1682 } 1683 return true; 1684 } 1685 1686 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1687 { 1688 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1689 unsigned long rip, orig_rip; 1690 u32 instr_len; 1691 1692 /* 1693 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1694 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1695 * set when EPT misconfig occurs. In practice, real hardware updates 1696 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1697 * (namely Hyper-V) don't set it due to it being undefined behavior, 1698 * i.e. we end up advancing IP with some random value. 1699 */ 1700 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1701 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1702 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1703 1704 /* 1705 * Emulating an enclave's instructions isn't supported as KVM 1706 * cannot access the enclave's memory or its true RIP, e.g. the 1707 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1708 * the RIP that actually triggered the VM-Exit. But, because 1709 * most instructions that cause VM-Exit will #UD in an enclave, 1710 * most instruction-based VM-Exits simply do not occur. 1711 * 1712 * There are a few exceptions, notably the debug instructions 1713 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1714 * and generate #DB/#BP as expected, which KVM might intercept. 1715 * But again, the CPU does the dirty work and saves an instr 1716 * length of zero so VMMs don't shoot themselves in the foot. 1717 * WARN if KVM tries to skip a non-zero length instruction on 1718 * a VM-Exit from an enclave. 1719 */ 1720 if (!instr_len) 1721 goto rip_updated; 1722 1723 WARN_ONCE(exit_reason.enclave_mode, 1724 "skipping instruction after SGX enclave VM-Exit"); 1725 1726 orig_rip = kvm_rip_read(vcpu); 1727 rip = orig_rip + instr_len; 1728 #ifdef CONFIG_X86_64 1729 /* 1730 * We need to mask out the high 32 bits of RIP if not in 64-bit 1731 * mode, but just finding out that we are in 64-bit mode is 1732 * quite expensive. Only do it if there was a carry. 1733 */ 1734 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1735 rip = (u32)rip; 1736 #endif 1737 kvm_rip_write(vcpu, rip); 1738 } else { 1739 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1740 return 0; 1741 } 1742 1743 rip_updated: 1744 /* skipping an emulated instruction also counts */ 1745 vmx_set_interrupt_shadow(vcpu, 0); 1746 1747 return 1; 1748 } 1749 1750 /* 1751 * Recognizes a pending MTF VM-exit and records the nested state for later 1752 * delivery. 1753 */ 1754 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1755 { 1756 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1757 struct vcpu_vmx *vmx = to_vmx(vcpu); 1758 1759 if (!is_guest_mode(vcpu)) 1760 return; 1761 1762 /* 1763 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1764 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps 1765 * or ICEBP (in the emulator proper), and skipping of ICEBP after an 1766 * intercepted #DB deliberately avoids single-step #DB and MTF updates 1767 * as ICEBP is higher priority than both. As instruction emulation is 1768 * completed at this point (i.e. KVM is at the instruction boundary), 1769 * any #DB exception pending delivery must be a debug-trap of lower 1770 * priority than MTF. Record the pending MTF state to be delivered in 1771 * vmx_check_nested_events(). 1772 */ 1773 if (nested_cpu_has_mtf(vmcs12) && 1774 (!vcpu->arch.exception.pending || 1775 vcpu->arch.exception.vector == DB_VECTOR) && 1776 (!vcpu->arch.exception_vmexit.pending || 1777 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) { 1778 vmx->nested.mtf_pending = true; 1779 kvm_make_request(KVM_REQ_EVENT, vcpu); 1780 } else { 1781 vmx->nested.mtf_pending = false; 1782 } 1783 } 1784 1785 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1786 { 1787 vmx_update_emulated_instruction(vcpu); 1788 return skip_emulated_instruction(vcpu); 1789 } 1790 1791 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1792 { 1793 /* 1794 * Ensure that we clear the HLT state in the VMCS. We don't need to 1795 * explicitly skip the instruction because if the HLT state is set, 1796 * then the instruction is already executing and RIP has already been 1797 * advanced. 1798 */ 1799 if (kvm_hlt_in_guest(vcpu->kvm) && 1800 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1801 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1802 } 1803 1804 static void vmx_inject_exception(struct kvm_vcpu *vcpu) 1805 { 1806 struct kvm_queued_exception *ex = &vcpu->arch.exception; 1807 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; 1808 struct vcpu_vmx *vmx = to_vmx(vcpu); 1809 1810 kvm_deliver_exception_payload(vcpu, ex); 1811 1812 if (ex->has_error_code) { 1813 /* 1814 * Despite the error code being architecturally defined as 32 1815 * bits, and the VMCS field being 32 bits, Intel CPUs and thus 1816 * VMX don't actually supporting setting bits 31:16. Hardware 1817 * will (should) never provide a bogus error code, but AMD CPUs 1818 * do generate error codes with bits 31:16 set, and so KVM's 1819 * ABI lets userspace shove in arbitrary 32-bit values. Drop 1820 * the upper bits to avoid VM-Fail, losing information that 1821 * does't really exist is preferable to killing the VM. 1822 */ 1823 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code); 1824 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1825 } 1826 1827 if (vmx->rmode.vm86_active) { 1828 int inc_eip = 0; 1829 if (kvm_exception_is_soft(ex->vector)) 1830 inc_eip = vcpu->arch.event_exit_inst_len; 1831 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip); 1832 return; 1833 } 1834 1835 WARN_ON_ONCE(vmx->emulation_required); 1836 1837 if (kvm_exception_is_soft(ex->vector)) { 1838 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1839 vmx->vcpu.arch.event_exit_inst_len); 1840 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1841 } else 1842 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1843 1844 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1845 1846 vmx_clear_hlt(vcpu); 1847 } 1848 1849 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1850 bool load_into_hardware) 1851 { 1852 struct vmx_uret_msr *uret_msr; 1853 1854 uret_msr = vmx_find_uret_msr(vmx, msr); 1855 if (!uret_msr) 1856 return; 1857 1858 uret_msr->load_into_hardware = load_into_hardware; 1859 } 1860 1861 /* 1862 * Configuring user return MSRs to automatically save, load, and restore MSRs 1863 * that need to be shoved into hardware when running the guest. Note, omitting 1864 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1865 * loaded into hardware when running the guest. 1866 */ 1867 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1868 { 1869 #ifdef CONFIG_X86_64 1870 bool load_syscall_msrs; 1871 1872 /* 1873 * The SYSCALL MSRs are only needed on long mode guests, and only 1874 * when EFER.SCE is set. 1875 */ 1876 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1877 (vmx->vcpu.arch.efer & EFER_SCE); 1878 1879 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1880 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1881 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1882 #endif 1883 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1884 1885 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1886 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1887 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1888 1889 /* 1890 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1891 * kernel and old userspace. If those guests run on a tsx=off host, do 1892 * allow guests to use TSX_CTRL, but don't change the value in hardware 1893 * so that TSX remains always disabled. 1894 */ 1895 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1896 1897 /* 1898 * The set of MSRs to load may have changed, reload MSRs before the 1899 * next VM-Enter. 1900 */ 1901 vmx->guest_uret_msrs_loaded = false; 1902 } 1903 1904 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1905 { 1906 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1907 1908 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1909 return vmcs12->tsc_offset; 1910 1911 return 0; 1912 } 1913 1914 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1915 { 1916 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1917 1918 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1919 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1920 return vmcs12->tsc_multiplier; 1921 1922 return kvm_caps.default_tsc_scaling_ratio; 1923 } 1924 1925 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu) 1926 { 1927 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); 1928 } 1929 1930 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1931 { 1932 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); 1933 } 1934 1935 /* 1936 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of 1937 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain 1938 * backwards compatibility even though KVM doesn't support emulating SMX. And 1939 * because userspace set "VMX in SMX", the guest must also be allowed to set it, 1940 * e.g. if the MSR is left unlocked and the guest does a RMW operation. 1941 */ 1942 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \ 1943 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \ 1944 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \ 1945 FEAT_CTL_SGX_LC_ENABLED | \ 1946 FEAT_CTL_SGX_ENABLED | \ 1947 FEAT_CTL_LMCE_ENABLED) 1948 1949 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx, 1950 struct msr_data *msr) 1951 { 1952 uint64_t valid_bits; 1953 1954 /* 1955 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are 1956 * exposed to the guest. 1957 */ 1958 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits & 1959 ~KVM_SUPPORTED_FEATURE_CONTROL); 1960 1961 if (!msr->host_initiated && 1962 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED)) 1963 return false; 1964 1965 if (msr->host_initiated) 1966 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL; 1967 else 1968 valid_bits = vmx->msr_ia32_feature_control_valid_bits; 1969 1970 return !(msr->data & ~valid_bits); 1971 } 1972 1973 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1974 { 1975 switch (msr->index) { 1976 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 1977 if (!nested) 1978 return 1; 1979 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1980 default: 1981 return KVM_MSR_RET_INVALID; 1982 } 1983 } 1984 1985 /* 1986 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 1987 * Returns 0 on success, non-0 otherwise. 1988 * Assumes vcpu_load() was already called. 1989 */ 1990 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1991 { 1992 struct vcpu_vmx *vmx = to_vmx(vcpu); 1993 struct vmx_uret_msr *msr; 1994 u32 index; 1995 1996 switch (msr_info->index) { 1997 #ifdef CONFIG_X86_64 1998 case MSR_FS_BASE: 1999 msr_info->data = vmcs_readl(GUEST_FS_BASE); 2000 break; 2001 case MSR_GS_BASE: 2002 msr_info->data = vmcs_readl(GUEST_GS_BASE); 2003 break; 2004 case MSR_KERNEL_GS_BASE: 2005 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 2006 break; 2007 #endif 2008 case MSR_EFER: 2009 return kvm_get_msr_common(vcpu, msr_info); 2010 case MSR_IA32_TSX_CTRL: 2011 if (!msr_info->host_initiated && 2012 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2013 return 1; 2014 goto find_uret_msr; 2015 case MSR_IA32_UMWAIT_CONTROL: 2016 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2017 return 1; 2018 2019 msr_info->data = vmx->msr_ia32_umwait_control; 2020 break; 2021 case MSR_IA32_SPEC_CTRL: 2022 if (!msr_info->host_initiated && 2023 !guest_has_spec_ctrl_msr(vcpu)) 2024 return 1; 2025 2026 msr_info->data = to_vmx(vcpu)->spec_ctrl; 2027 break; 2028 case MSR_IA32_SYSENTER_CS: 2029 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 2030 break; 2031 case MSR_IA32_SYSENTER_EIP: 2032 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 2033 break; 2034 case MSR_IA32_SYSENTER_ESP: 2035 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 2036 break; 2037 case MSR_IA32_BNDCFGS: 2038 if (!kvm_mpx_supported() || 2039 (!msr_info->host_initiated && 2040 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2041 return 1; 2042 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 2043 break; 2044 case MSR_IA32_MCG_EXT_CTL: 2045 if (!msr_info->host_initiated && 2046 !(vmx->msr_ia32_feature_control & 2047 FEAT_CTL_LMCE_ENABLED)) 2048 return 1; 2049 msr_info->data = vcpu->arch.mcg_ext_ctl; 2050 break; 2051 case MSR_IA32_FEAT_CTL: 2052 msr_info->data = vmx->msr_ia32_feature_control; 2053 break; 2054 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2055 if (!msr_info->host_initiated && 2056 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 2057 return 1; 2058 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 2059 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 2060 break; 2061 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2062 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 2063 return 1; 2064 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 2065 &msr_info->data)) 2066 return 1; 2067 /* 2068 * Enlightened VMCS v1 doesn't have certain VMCS fields but 2069 * instead of just ignoring the features, different Hyper-V 2070 * versions are either trying to use them and fail or do some 2071 * sanity checking and refuse to boot. Filter all unsupported 2072 * features out. 2073 */ 2074 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu)) 2075 nested_evmcs_filter_control_msr(vcpu, msr_info->index, 2076 &msr_info->data); 2077 break; 2078 case MSR_IA32_RTIT_CTL: 2079 if (!vmx_pt_mode_is_host_guest()) 2080 return 1; 2081 msr_info->data = vmx->pt_desc.guest.ctl; 2082 break; 2083 case MSR_IA32_RTIT_STATUS: 2084 if (!vmx_pt_mode_is_host_guest()) 2085 return 1; 2086 msr_info->data = vmx->pt_desc.guest.status; 2087 break; 2088 case MSR_IA32_RTIT_CR3_MATCH: 2089 if (!vmx_pt_mode_is_host_guest() || 2090 !intel_pt_validate_cap(vmx->pt_desc.caps, 2091 PT_CAP_cr3_filtering)) 2092 return 1; 2093 msr_info->data = vmx->pt_desc.guest.cr3_match; 2094 break; 2095 case MSR_IA32_RTIT_OUTPUT_BASE: 2096 if (!vmx_pt_mode_is_host_guest() || 2097 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2098 PT_CAP_topa_output) && 2099 !intel_pt_validate_cap(vmx->pt_desc.caps, 2100 PT_CAP_single_range_output))) 2101 return 1; 2102 msr_info->data = vmx->pt_desc.guest.output_base; 2103 break; 2104 case MSR_IA32_RTIT_OUTPUT_MASK: 2105 if (!vmx_pt_mode_is_host_guest() || 2106 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2107 PT_CAP_topa_output) && 2108 !intel_pt_validate_cap(vmx->pt_desc.caps, 2109 PT_CAP_single_range_output))) 2110 return 1; 2111 msr_info->data = vmx->pt_desc.guest.output_mask; 2112 break; 2113 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2114 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2115 if (!vmx_pt_mode_is_host_guest() || 2116 (index >= 2 * vmx->pt_desc.num_address_ranges)) 2117 return 1; 2118 if (index % 2) 2119 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 2120 else 2121 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 2122 break; 2123 case MSR_IA32_DEBUGCTLMSR: 2124 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 2125 break; 2126 default: 2127 find_uret_msr: 2128 msr = vmx_find_uret_msr(vmx, msr_info->index); 2129 if (msr) { 2130 msr_info->data = msr->data; 2131 break; 2132 } 2133 return kvm_get_msr_common(vcpu, msr_info); 2134 } 2135 2136 return 0; 2137 } 2138 2139 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 2140 u64 data) 2141 { 2142 #ifdef CONFIG_X86_64 2143 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 2144 return (u32)data; 2145 #endif 2146 return (unsigned long)data; 2147 } 2148 2149 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated) 2150 { 2151 u64 debugctl = 0; 2152 2153 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && 2154 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))) 2155 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT; 2156 2157 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) && 2158 (host_initiated || intel_pmu_lbr_is_enabled(vcpu))) 2159 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; 2160 2161 return debugctl; 2162 } 2163 2164 /* 2165 * Writes msr value into the appropriate "register". 2166 * Returns 0 on success, non-0 otherwise. 2167 * Assumes vcpu_load() was already called. 2168 */ 2169 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2170 { 2171 struct vcpu_vmx *vmx = to_vmx(vcpu); 2172 struct vmx_uret_msr *msr; 2173 int ret = 0; 2174 u32 msr_index = msr_info->index; 2175 u64 data = msr_info->data; 2176 u32 index; 2177 2178 switch (msr_index) { 2179 case MSR_EFER: 2180 ret = kvm_set_msr_common(vcpu, msr_info); 2181 break; 2182 #ifdef CONFIG_X86_64 2183 case MSR_FS_BASE: 2184 vmx_segment_cache_clear(vmx); 2185 vmcs_writel(GUEST_FS_BASE, data); 2186 break; 2187 case MSR_GS_BASE: 2188 vmx_segment_cache_clear(vmx); 2189 vmcs_writel(GUEST_GS_BASE, data); 2190 break; 2191 case MSR_KERNEL_GS_BASE: 2192 vmx_write_guest_kernel_gs_base(vmx, data); 2193 break; 2194 case MSR_IA32_XFD: 2195 ret = kvm_set_msr_common(vcpu, msr_info); 2196 /* 2197 * Always intercepting WRMSR could incur non-negligible 2198 * overhead given xfd might be changed frequently in 2199 * guest context switch. Disable write interception 2200 * upon the first write with a non-zero value (indicating 2201 * potential usage on dynamic xfeatures). Also update 2202 * exception bitmap to trap #NM for proper virtualization 2203 * of guest xfd_err. 2204 */ 2205 if (!ret && data) { 2206 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 2207 MSR_TYPE_RW); 2208 vcpu->arch.xfd_no_write_intercept = true; 2209 vmx_update_exception_bitmap(vcpu); 2210 } 2211 break; 2212 #endif 2213 case MSR_IA32_SYSENTER_CS: 2214 if (is_guest_mode(vcpu)) 2215 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2216 vmcs_write32(GUEST_SYSENTER_CS, data); 2217 break; 2218 case MSR_IA32_SYSENTER_EIP: 2219 if (is_guest_mode(vcpu)) { 2220 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2221 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2222 } 2223 vmcs_writel(GUEST_SYSENTER_EIP, data); 2224 break; 2225 case MSR_IA32_SYSENTER_ESP: 2226 if (is_guest_mode(vcpu)) { 2227 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2228 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2229 } 2230 vmcs_writel(GUEST_SYSENTER_ESP, data); 2231 break; 2232 case MSR_IA32_DEBUGCTLMSR: { 2233 u64 invalid; 2234 2235 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated); 2236 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2237 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data); 2238 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2239 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2240 } 2241 2242 if (invalid) 2243 return 1; 2244 2245 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2246 VM_EXIT_SAVE_DEBUG_CONTROLS) 2247 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2248 2249 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2250 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2251 (data & DEBUGCTLMSR_LBR)) 2252 intel_pmu_create_guest_lbr_event(vcpu); 2253 return 0; 2254 } 2255 case MSR_IA32_BNDCFGS: 2256 if (!kvm_mpx_supported() || 2257 (!msr_info->host_initiated && 2258 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2259 return 1; 2260 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2261 (data & MSR_IA32_BNDCFGS_RSVD)) 2262 return 1; 2263 2264 if (is_guest_mode(vcpu) && 2265 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) || 2266 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS))) 2267 get_vmcs12(vcpu)->guest_bndcfgs = data; 2268 2269 vmcs_write64(GUEST_BNDCFGS, data); 2270 break; 2271 case MSR_IA32_UMWAIT_CONTROL: 2272 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2273 return 1; 2274 2275 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2276 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2277 return 1; 2278 2279 vmx->msr_ia32_umwait_control = data; 2280 break; 2281 case MSR_IA32_SPEC_CTRL: 2282 if (!msr_info->host_initiated && 2283 !guest_has_spec_ctrl_msr(vcpu)) 2284 return 1; 2285 2286 if (kvm_spec_ctrl_test_value(data)) 2287 return 1; 2288 2289 vmx->spec_ctrl = data; 2290 if (!data) 2291 break; 2292 2293 /* 2294 * For non-nested: 2295 * When it's written (to non-zero) for the first time, pass 2296 * it through. 2297 * 2298 * For nested: 2299 * The handling of the MSR bitmap for L2 guests is done in 2300 * nested_vmx_prepare_msr_bitmap. We should not touch the 2301 * vmcs02.msr_bitmap here since it gets completely overwritten 2302 * in the merging. We update the vmcs01 here for L1 as well 2303 * since it will end up touching the MSR anyway now. 2304 */ 2305 vmx_disable_intercept_for_msr(vcpu, 2306 MSR_IA32_SPEC_CTRL, 2307 MSR_TYPE_RW); 2308 break; 2309 case MSR_IA32_TSX_CTRL: 2310 if (!msr_info->host_initiated && 2311 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2312 return 1; 2313 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2314 return 1; 2315 goto find_uret_msr; 2316 case MSR_IA32_CR_PAT: 2317 ret = kvm_set_msr_common(vcpu, msr_info); 2318 if (ret) 2319 break; 2320 2321 if (is_guest_mode(vcpu) && 2322 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2323 get_vmcs12(vcpu)->guest_ia32_pat = data; 2324 2325 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 2326 vmcs_write64(GUEST_IA32_PAT, data); 2327 break; 2328 case MSR_IA32_MCG_EXT_CTL: 2329 if ((!msr_info->host_initiated && 2330 !(to_vmx(vcpu)->msr_ia32_feature_control & 2331 FEAT_CTL_LMCE_ENABLED)) || 2332 (data & ~MCG_EXT_CTL_LMCE_EN)) 2333 return 1; 2334 vcpu->arch.mcg_ext_ctl = data; 2335 break; 2336 case MSR_IA32_FEAT_CTL: 2337 if (!is_vmx_feature_control_msr_valid(vmx, msr_info)) 2338 return 1; 2339 2340 vmx->msr_ia32_feature_control = data; 2341 if (msr_info->host_initiated && data == 0) 2342 vmx_leave_nested(vcpu); 2343 2344 /* SGX may be enabled/disabled by guest's firmware */ 2345 vmx_write_encls_bitmap(vcpu, NULL); 2346 break; 2347 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2348 /* 2349 * On real hardware, the LE hash MSRs are writable before 2350 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2351 * at which point SGX related bits in IA32_FEATURE_CONTROL 2352 * become writable. 2353 * 2354 * KVM does not emulate SGX activation for simplicity, so 2355 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2356 * is unlocked. This is technically not architectural 2357 * behavior, but it's close enough. 2358 */ 2359 if (!msr_info->host_initiated && 2360 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2361 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2362 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2363 return 1; 2364 vmx->msr_ia32_sgxlepubkeyhash 2365 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2366 break; 2367 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2368 if (!msr_info->host_initiated) 2369 return 1; /* they are read-only */ 2370 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 2371 return 1; 2372 return vmx_set_vmx_msr(vcpu, msr_index, data); 2373 case MSR_IA32_RTIT_CTL: 2374 if (!vmx_pt_mode_is_host_guest() || 2375 vmx_rtit_ctl_check(vcpu, data) || 2376 vmx->nested.vmxon) 2377 return 1; 2378 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2379 vmx->pt_desc.guest.ctl = data; 2380 pt_update_intercept_for_msr(vcpu); 2381 break; 2382 case MSR_IA32_RTIT_STATUS: 2383 if (!pt_can_write_msr(vmx)) 2384 return 1; 2385 if (data & MSR_IA32_RTIT_STATUS_MASK) 2386 return 1; 2387 vmx->pt_desc.guest.status = data; 2388 break; 2389 case MSR_IA32_RTIT_CR3_MATCH: 2390 if (!pt_can_write_msr(vmx)) 2391 return 1; 2392 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2393 PT_CAP_cr3_filtering)) 2394 return 1; 2395 vmx->pt_desc.guest.cr3_match = data; 2396 break; 2397 case MSR_IA32_RTIT_OUTPUT_BASE: 2398 if (!pt_can_write_msr(vmx)) 2399 return 1; 2400 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2401 PT_CAP_topa_output) && 2402 !intel_pt_validate_cap(vmx->pt_desc.caps, 2403 PT_CAP_single_range_output)) 2404 return 1; 2405 if (!pt_output_base_valid(vcpu, data)) 2406 return 1; 2407 vmx->pt_desc.guest.output_base = data; 2408 break; 2409 case MSR_IA32_RTIT_OUTPUT_MASK: 2410 if (!pt_can_write_msr(vmx)) 2411 return 1; 2412 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2413 PT_CAP_topa_output) && 2414 !intel_pt_validate_cap(vmx->pt_desc.caps, 2415 PT_CAP_single_range_output)) 2416 return 1; 2417 vmx->pt_desc.guest.output_mask = data; 2418 break; 2419 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2420 if (!pt_can_write_msr(vmx)) 2421 return 1; 2422 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2423 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2424 return 1; 2425 if (is_noncanonical_address(data, vcpu)) 2426 return 1; 2427 if (index % 2) 2428 vmx->pt_desc.guest.addr_b[index / 2] = data; 2429 else 2430 vmx->pt_desc.guest.addr_a[index / 2] = data; 2431 break; 2432 case MSR_IA32_PERF_CAPABILITIES: 2433 if (data && !vcpu_to_pmu(vcpu)->version) 2434 return 1; 2435 if (data & PMU_CAP_LBR_FMT) { 2436 if ((data & PMU_CAP_LBR_FMT) != 2437 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT)) 2438 return 1; 2439 if (!cpuid_model_is_consistent(vcpu)) 2440 return 1; 2441 } 2442 if (data & PERF_CAP_PEBS_FORMAT) { 2443 if ((data & PERF_CAP_PEBS_MASK) != 2444 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK)) 2445 return 1; 2446 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS)) 2447 return 1; 2448 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64)) 2449 return 1; 2450 if (!cpuid_model_is_consistent(vcpu)) 2451 return 1; 2452 } 2453 ret = kvm_set_msr_common(vcpu, msr_info); 2454 break; 2455 2456 default: 2457 find_uret_msr: 2458 msr = vmx_find_uret_msr(vmx, msr_index); 2459 if (msr) 2460 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2461 else 2462 ret = kvm_set_msr_common(vcpu, msr_info); 2463 } 2464 2465 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ 2466 if (msr_index == MSR_IA32_ARCH_CAPABILITIES) 2467 vmx_update_fb_clear_dis(vcpu, vmx); 2468 2469 return ret; 2470 } 2471 2472 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2473 { 2474 unsigned long guest_owned_bits; 2475 2476 kvm_register_mark_available(vcpu, reg); 2477 2478 switch (reg) { 2479 case VCPU_REGS_RSP: 2480 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2481 break; 2482 case VCPU_REGS_RIP: 2483 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2484 break; 2485 case VCPU_EXREG_PDPTR: 2486 if (enable_ept) 2487 ept_save_pdptrs(vcpu); 2488 break; 2489 case VCPU_EXREG_CR0: 2490 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2491 2492 vcpu->arch.cr0 &= ~guest_owned_bits; 2493 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2494 break; 2495 case VCPU_EXREG_CR3: 2496 /* 2497 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2498 * CR3 is loaded into hardware, not the guest's CR3. 2499 */ 2500 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2501 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2502 break; 2503 case VCPU_EXREG_CR4: 2504 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2505 2506 vcpu->arch.cr4 &= ~guest_owned_bits; 2507 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2508 break; 2509 default: 2510 KVM_BUG_ON(1, vcpu->kvm); 2511 break; 2512 } 2513 } 2514 2515 /* 2516 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2517 * directly instead of going through cpu_has(), to ensure KVM is trapping 2518 * ENCLS whenever it's supported in hardware. It does not matter whether 2519 * the host OS supports or has enabled SGX. 2520 */ 2521 static bool cpu_has_sgx(void) 2522 { 2523 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2524 } 2525 2526 /* 2527 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2528 * can't be used due to errata where VM Exit may incorrectly clear 2529 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the 2530 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2531 */ 2532 static bool cpu_has_perf_global_ctrl_bug(void) 2533 { 2534 if (boot_cpu_data.x86 == 0x6) { 2535 switch (boot_cpu_data.x86_model) { 2536 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */ 2537 case INTEL_FAM6_NEHALEM: /* AAP115 */ 2538 case INTEL_FAM6_WESTMERE: /* AAT100 */ 2539 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */ 2540 case INTEL_FAM6_NEHALEM_EX: /* BA97 */ 2541 return true; 2542 default: 2543 break; 2544 } 2545 } 2546 2547 return false; 2548 } 2549 2550 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) 2551 { 2552 u32 vmx_msr_low, vmx_msr_high; 2553 u32 ctl = ctl_min | ctl_opt; 2554 2555 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2556 2557 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2558 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2559 2560 /* Ensure minimum (required) set of control bits are supported. */ 2561 if (ctl_min & ~ctl) 2562 return -EIO; 2563 2564 *result = ctl; 2565 return 0; 2566 } 2567 2568 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr) 2569 { 2570 u64 allowed; 2571 2572 rdmsrl(msr, allowed); 2573 2574 return ctl_opt & allowed; 2575 } 2576 2577 static int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2578 struct vmx_capability *vmx_cap) 2579 { 2580 u32 vmx_msr_low, vmx_msr_high; 2581 u32 _pin_based_exec_control = 0; 2582 u32 _cpu_based_exec_control = 0; 2583 u32 _cpu_based_2nd_exec_control = 0; 2584 u64 _cpu_based_3rd_exec_control = 0; 2585 u32 _vmexit_control = 0; 2586 u32 _vmentry_control = 0; 2587 u64 misc_msr; 2588 int i; 2589 2590 /* 2591 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory. 2592 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always 2593 * intercepts writes to PAT and EFER, i.e. never enables those controls. 2594 */ 2595 struct { 2596 u32 entry_control; 2597 u32 exit_control; 2598 } const vmcs_entry_exit_pairs[] = { 2599 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL }, 2600 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT }, 2601 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER }, 2602 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS }, 2603 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL }, 2604 }; 2605 2606 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2607 2608 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL, 2609 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL, 2610 MSR_IA32_VMX_PROCBASED_CTLS, 2611 &_cpu_based_exec_control)) 2612 return -EIO; 2613 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2614 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL, 2615 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL, 2616 MSR_IA32_VMX_PROCBASED_CTLS2, 2617 &_cpu_based_2nd_exec_control)) 2618 return -EIO; 2619 } 2620 #ifndef CONFIG_X86_64 2621 if (!(_cpu_based_2nd_exec_control & 2622 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2623 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2624 #endif 2625 2626 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2627 _cpu_based_2nd_exec_control &= ~( 2628 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2629 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2630 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2631 2632 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2633 &vmx_cap->ept, &vmx_cap->vpid); 2634 2635 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 2636 vmx_cap->ept) { 2637 pr_warn_once("EPT CAP should not exist if not support " 2638 "1-setting enable EPT VM-execution control\n"); 2639 2640 if (error_on_inconsistent_vmcs_config) 2641 return -EIO; 2642 2643 vmx_cap->ept = 0; 2644 } 2645 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2646 vmx_cap->vpid) { 2647 pr_warn_once("VPID CAP should not exist if not support " 2648 "1-setting enable VPID VM-execution control\n"); 2649 2650 if (error_on_inconsistent_vmcs_config) 2651 return -EIO; 2652 2653 vmx_cap->vpid = 0; 2654 } 2655 2656 if (!cpu_has_sgx()) 2657 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING; 2658 2659 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) 2660 _cpu_based_3rd_exec_control = 2661 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL, 2662 MSR_IA32_VMX_PROCBASED_CTLS3); 2663 2664 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS, 2665 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS, 2666 MSR_IA32_VMX_EXIT_CTLS, 2667 &_vmexit_control)) 2668 return -EIO; 2669 2670 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL, 2671 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL, 2672 MSR_IA32_VMX_PINBASED_CTLS, 2673 &_pin_based_exec_control)) 2674 return -EIO; 2675 2676 if (cpu_has_broken_vmx_preemption_timer()) 2677 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2678 if (!(_cpu_based_2nd_exec_control & 2679 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2680 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2681 2682 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS, 2683 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS, 2684 MSR_IA32_VMX_ENTRY_CTLS, 2685 &_vmentry_control)) 2686 return -EIO; 2687 2688 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) { 2689 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control; 2690 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control; 2691 2692 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl)) 2693 continue; 2694 2695 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n", 2696 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl); 2697 2698 if (error_on_inconsistent_vmcs_config) 2699 return -EIO; 2700 2701 _vmentry_control &= ~n_ctrl; 2702 _vmexit_control &= ~x_ctrl; 2703 } 2704 2705 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2706 2707 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2708 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2709 return -EIO; 2710 2711 #ifdef CONFIG_X86_64 2712 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2713 if (vmx_msr_high & (1u<<16)) 2714 return -EIO; 2715 #endif 2716 2717 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2718 if (((vmx_msr_high >> 18) & 15) != 6) 2719 return -EIO; 2720 2721 rdmsrl(MSR_IA32_VMX_MISC, misc_msr); 2722 2723 vmcs_conf->size = vmx_msr_high & 0x1fff; 2724 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2725 2726 vmcs_conf->revision_id = vmx_msr_low; 2727 2728 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2729 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2730 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2731 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control; 2732 vmcs_conf->vmexit_ctrl = _vmexit_control; 2733 vmcs_conf->vmentry_ctrl = _vmentry_control; 2734 vmcs_conf->misc = misc_msr; 2735 2736 #if IS_ENABLED(CONFIG_HYPERV) 2737 if (enlightened_vmcs) 2738 evmcs_sanitize_exec_ctrls(vmcs_conf); 2739 #endif 2740 2741 return 0; 2742 } 2743 2744 static bool __kvm_is_vmx_supported(void) 2745 { 2746 int cpu = smp_processor_id(); 2747 2748 if (!(cpuid_ecx(1) & feature_bit(VMX))) { 2749 pr_err("VMX not supported by CPU %d\n", cpu); 2750 return false; 2751 } 2752 2753 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2754 !this_cpu_has(X86_FEATURE_VMX)) { 2755 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu); 2756 return false; 2757 } 2758 2759 return true; 2760 } 2761 2762 static bool kvm_is_vmx_supported(void) 2763 { 2764 bool supported; 2765 2766 migrate_disable(); 2767 supported = __kvm_is_vmx_supported(); 2768 migrate_enable(); 2769 2770 return supported; 2771 } 2772 2773 static int vmx_check_processor_compat(void) 2774 { 2775 int cpu = raw_smp_processor_id(); 2776 struct vmcs_config vmcs_conf; 2777 struct vmx_capability vmx_cap; 2778 2779 if (!__kvm_is_vmx_supported()) 2780 return -EIO; 2781 2782 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) { 2783 pr_err("Failed to setup VMCS config on CPU %d\n", cpu); 2784 return -EIO; 2785 } 2786 if (nested) 2787 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept); 2788 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) { 2789 pr_err("Inconsistent VMCS config on CPU %d\n", cpu); 2790 return -EIO; 2791 } 2792 return 0; 2793 } 2794 2795 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2796 { 2797 u64 msr; 2798 2799 cr4_set_bits(X86_CR4_VMXE); 2800 2801 asm goto("1: vmxon %[vmxon_pointer]\n\t" 2802 _ASM_EXTABLE(1b, %l[fault]) 2803 : : [vmxon_pointer] "m"(vmxon_pointer) 2804 : : fault); 2805 return 0; 2806 2807 fault: 2808 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2809 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2810 cr4_clear_bits(X86_CR4_VMXE); 2811 2812 return -EFAULT; 2813 } 2814 2815 static int vmx_hardware_enable(void) 2816 { 2817 int cpu = raw_smp_processor_id(); 2818 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2819 int r; 2820 2821 if (cr4_read_shadow() & X86_CR4_VMXE) 2822 return -EBUSY; 2823 2824 /* 2825 * This can happen if we hot-added a CPU but failed to allocate 2826 * VP assist page for it. 2827 */ 2828 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu)) 2829 return -EFAULT; 2830 2831 intel_pt_handle_vmx(1); 2832 2833 r = kvm_cpu_vmxon(phys_addr); 2834 if (r) { 2835 intel_pt_handle_vmx(0); 2836 return r; 2837 } 2838 2839 if (enable_ept) 2840 ept_sync_global(); 2841 2842 return 0; 2843 } 2844 2845 static void vmclear_local_loaded_vmcss(void) 2846 { 2847 int cpu = raw_smp_processor_id(); 2848 struct loaded_vmcs *v, *n; 2849 2850 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2851 loaded_vmcss_on_cpu_link) 2852 __loaded_vmcs_clear(v); 2853 } 2854 2855 static void vmx_hardware_disable(void) 2856 { 2857 vmclear_local_loaded_vmcss(); 2858 2859 if (kvm_cpu_vmxoff()) 2860 kvm_spurious_fault(); 2861 2862 hv_reset_evmcs(); 2863 2864 intel_pt_handle_vmx(0); 2865 } 2866 2867 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2868 { 2869 int node = cpu_to_node(cpu); 2870 struct page *pages; 2871 struct vmcs *vmcs; 2872 2873 pages = __alloc_pages_node(node, flags, 0); 2874 if (!pages) 2875 return NULL; 2876 vmcs = page_address(pages); 2877 memset(vmcs, 0, vmcs_config.size); 2878 2879 /* KVM supports Enlightened VMCS v1 only */ 2880 if (kvm_is_using_evmcs()) 2881 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2882 else 2883 vmcs->hdr.revision_id = vmcs_config.revision_id; 2884 2885 if (shadow) 2886 vmcs->hdr.shadow_vmcs = 1; 2887 return vmcs; 2888 } 2889 2890 void free_vmcs(struct vmcs *vmcs) 2891 { 2892 free_page((unsigned long)vmcs); 2893 } 2894 2895 /* 2896 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2897 */ 2898 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2899 { 2900 if (!loaded_vmcs->vmcs) 2901 return; 2902 loaded_vmcs_clear(loaded_vmcs); 2903 free_vmcs(loaded_vmcs->vmcs); 2904 loaded_vmcs->vmcs = NULL; 2905 if (loaded_vmcs->msr_bitmap) 2906 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2907 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2908 } 2909 2910 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2911 { 2912 loaded_vmcs->vmcs = alloc_vmcs(false); 2913 if (!loaded_vmcs->vmcs) 2914 return -ENOMEM; 2915 2916 vmcs_clear(loaded_vmcs->vmcs); 2917 2918 loaded_vmcs->shadow_vmcs = NULL; 2919 loaded_vmcs->hv_timer_soft_disabled = false; 2920 loaded_vmcs->cpu = -1; 2921 loaded_vmcs->launched = 0; 2922 2923 if (cpu_has_vmx_msr_bitmap()) { 2924 loaded_vmcs->msr_bitmap = (unsigned long *) 2925 __get_free_page(GFP_KERNEL_ACCOUNT); 2926 if (!loaded_vmcs->msr_bitmap) 2927 goto out_vmcs; 2928 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2929 } 2930 2931 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2932 memset(&loaded_vmcs->controls_shadow, 0, 2933 sizeof(struct vmcs_controls_shadow)); 2934 2935 return 0; 2936 2937 out_vmcs: 2938 free_loaded_vmcs(loaded_vmcs); 2939 return -ENOMEM; 2940 } 2941 2942 static void free_kvm_area(void) 2943 { 2944 int cpu; 2945 2946 for_each_possible_cpu(cpu) { 2947 free_vmcs(per_cpu(vmxarea, cpu)); 2948 per_cpu(vmxarea, cpu) = NULL; 2949 } 2950 } 2951 2952 static __init int alloc_kvm_area(void) 2953 { 2954 int cpu; 2955 2956 for_each_possible_cpu(cpu) { 2957 struct vmcs *vmcs; 2958 2959 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2960 if (!vmcs) { 2961 free_kvm_area(); 2962 return -ENOMEM; 2963 } 2964 2965 /* 2966 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2967 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2968 * revision_id reported by MSR_IA32_VMX_BASIC. 2969 * 2970 * However, even though not explicitly documented by 2971 * TLFS, VMXArea passed as VMXON argument should 2972 * still be marked with revision_id reported by 2973 * physical CPU. 2974 */ 2975 if (kvm_is_using_evmcs()) 2976 vmcs->hdr.revision_id = vmcs_config.revision_id; 2977 2978 per_cpu(vmxarea, cpu) = vmcs; 2979 } 2980 return 0; 2981 } 2982 2983 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2984 struct kvm_segment *save) 2985 { 2986 if (!emulate_invalid_guest_state) { 2987 /* 2988 * CS and SS RPL should be equal during guest entry according 2989 * to VMX spec, but in reality it is not always so. Since vcpu 2990 * is in the middle of the transition from real mode to 2991 * protected mode it is safe to assume that RPL 0 is a good 2992 * default value. 2993 */ 2994 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2995 save->selector &= ~SEGMENT_RPL_MASK; 2996 save->dpl = save->selector & SEGMENT_RPL_MASK; 2997 save->s = 1; 2998 } 2999 __vmx_set_segment(vcpu, save, seg); 3000 } 3001 3002 static void enter_pmode(struct kvm_vcpu *vcpu) 3003 { 3004 unsigned long flags; 3005 struct vcpu_vmx *vmx = to_vmx(vcpu); 3006 3007 /* 3008 * Update real mode segment cache. It may be not up-to-date if segment 3009 * register was written while vcpu was in a guest mode. 3010 */ 3011 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3012 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3013 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3014 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3015 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3016 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3017 3018 vmx->rmode.vm86_active = 0; 3019 3020 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3021 3022 flags = vmcs_readl(GUEST_RFLAGS); 3023 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 3024 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 3025 vmcs_writel(GUEST_RFLAGS, flags); 3026 3027 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 3028 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 3029 3030 vmx_update_exception_bitmap(vcpu); 3031 3032 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3033 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3034 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3035 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3036 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3037 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3038 } 3039 3040 static void fix_rmode_seg(int seg, struct kvm_segment *save) 3041 { 3042 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3043 struct kvm_segment var = *save; 3044 3045 var.dpl = 0x3; 3046 if (seg == VCPU_SREG_CS) 3047 var.type = 0x3; 3048 3049 if (!emulate_invalid_guest_state) { 3050 var.selector = var.base >> 4; 3051 var.base = var.base & 0xffff0; 3052 var.limit = 0xffff; 3053 var.g = 0; 3054 var.db = 0; 3055 var.present = 1; 3056 var.s = 1; 3057 var.l = 0; 3058 var.unusable = 0; 3059 var.type = 0x3; 3060 var.avl = 0; 3061 if (save->base & 0xf) 3062 pr_warn_once("segment base is not paragraph aligned " 3063 "when entering protected mode (seg=%d)", seg); 3064 } 3065 3066 vmcs_write16(sf->selector, var.selector); 3067 vmcs_writel(sf->base, var.base); 3068 vmcs_write32(sf->limit, var.limit); 3069 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 3070 } 3071 3072 static void enter_rmode(struct kvm_vcpu *vcpu) 3073 { 3074 unsigned long flags; 3075 struct vcpu_vmx *vmx = to_vmx(vcpu); 3076 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 3077 3078 /* 3079 * KVM should never use VM86 to virtualize Real Mode when L2 is active, 3080 * as using VM86 is unnecessary if unrestricted guest is enabled, and 3081 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0 3082 * should VM-Fail and KVM should reject userspace attempts to stuff 3083 * CR0.PG=0 when L2 is active. 3084 */ 3085 WARN_ON_ONCE(is_guest_mode(vcpu)); 3086 3087 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3088 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3089 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3090 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3091 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3092 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3093 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3094 3095 vmx->rmode.vm86_active = 1; 3096 3097 vmx_segment_cache_clear(vmx); 3098 3099 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 3100 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 3101 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 3102 3103 flags = vmcs_readl(GUEST_RFLAGS); 3104 vmx->rmode.save_rflags = flags; 3105 3106 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 3107 3108 vmcs_writel(GUEST_RFLAGS, flags); 3109 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 3110 vmx_update_exception_bitmap(vcpu); 3111 3112 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3113 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3114 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3115 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3116 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3117 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3118 } 3119 3120 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 3121 { 3122 struct vcpu_vmx *vmx = to_vmx(vcpu); 3123 3124 /* Nothing to do if hardware doesn't support EFER. */ 3125 if (!vmx_find_uret_msr(vmx, MSR_EFER)) 3126 return 0; 3127 3128 vcpu->arch.efer = efer; 3129 #ifdef CONFIG_X86_64 3130 if (efer & EFER_LMA) 3131 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); 3132 else 3133 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); 3134 #else 3135 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm)) 3136 return 1; 3137 #endif 3138 3139 vmx_setup_uret_msrs(vmx); 3140 return 0; 3141 } 3142 3143 #ifdef CONFIG_X86_64 3144 3145 static void enter_lmode(struct kvm_vcpu *vcpu) 3146 { 3147 u32 guest_tr_ar; 3148 3149 vmx_segment_cache_clear(to_vmx(vcpu)); 3150 3151 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 3152 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 3153 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 3154 __func__); 3155 vmcs_write32(GUEST_TR_AR_BYTES, 3156 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 3157 | VMX_AR_TYPE_BUSY_64_TSS); 3158 } 3159 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 3160 } 3161 3162 static void exit_lmode(struct kvm_vcpu *vcpu) 3163 { 3164 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 3165 } 3166 3167 #endif 3168 3169 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 3170 { 3171 struct vcpu_vmx *vmx = to_vmx(vcpu); 3172 3173 /* 3174 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 3175 * the CPU is not required to invalidate guest-physical mappings on 3176 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 3177 * associated with the root EPT structure and not any particular VPID 3178 * (INVVPID also isn't required to invalidate guest-physical mappings). 3179 */ 3180 if (enable_ept) { 3181 ept_sync_global(); 3182 } else if (enable_vpid) { 3183 if (cpu_has_vmx_invvpid_global()) { 3184 vpid_sync_vcpu_global(); 3185 } else { 3186 vpid_sync_vcpu_single(vmx->vpid); 3187 vpid_sync_vcpu_single(vmx->nested.vpid02); 3188 } 3189 } 3190 } 3191 3192 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 3193 { 3194 if (is_guest_mode(vcpu)) 3195 return nested_get_vpid02(vcpu); 3196 return to_vmx(vcpu)->vpid; 3197 } 3198 3199 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 3200 { 3201 struct kvm_mmu *mmu = vcpu->arch.mmu; 3202 u64 root_hpa = mmu->root.hpa; 3203 3204 /* No flush required if the current context is invalid. */ 3205 if (!VALID_PAGE(root_hpa)) 3206 return; 3207 3208 if (enable_ept) 3209 ept_sync_context(construct_eptp(vcpu, root_hpa, 3210 mmu->root_role.level)); 3211 else 3212 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3213 } 3214 3215 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 3216 { 3217 /* 3218 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 3219 * vmx_flush_tlb_guest() for an explanation of why this is ok. 3220 */ 3221 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 3222 } 3223 3224 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 3225 { 3226 /* 3227 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 3228 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 3229 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 3230 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 3231 * i.e. no explicit INVVPID is necessary. 3232 */ 3233 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3234 } 3235 3236 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 3237 { 3238 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3239 3240 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 3241 return; 3242 3243 if (is_pae_paging(vcpu)) { 3244 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3245 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3246 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3247 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3248 } 3249 } 3250 3251 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3252 { 3253 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3254 3255 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3256 return; 3257 3258 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3259 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3260 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3261 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3262 3263 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3264 } 3265 3266 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3267 CPU_BASED_CR3_STORE_EXITING) 3268 3269 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3270 { 3271 if (is_guest_mode(vcpu)) 3272 return nested_guest_cr0_valid(vcpu, cr0); 3273 3274 if (to_vmx(vcpu)->nested.vmxon) 3275 return nested_host_cr0_valid(vcpu, cr0); 3276 3277 return true; 3278 } 3279 3280 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3281 { 3282 struct vcpu_vmx *vmx = to_vmx(vcpu); 3283 unsigned long hw_cr0, old_cr0_pg; 3284 u32 tmp; 3285 3286 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3287 3288 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3289 if (enable_unrestricted_guest) 3290 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3291 else { 3292 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3293 if (!enable_ept) 3294 hw_cr0 |= X86_CR0_WP; 3295 3296 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3297 enter_pmode(vcpu); 3298 3299 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3300 enter_rmode(vcpu); 3301 } 3302 3303 vmcs_writel(CR0_READ_SHADOW, cr0); 3304 vmcs_writel(GUEST_CR0, hw_cr0); 3305 vcpu->arch.cr0 = cr0; 3306 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3307 3308 #ifdef CONFIG_X86_64 3309 if (vcpu->arch.efer & EFER_LME) { 3310 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3311 enter_lmode(vcpu); 3312 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3313 exit_lmode(vcpu); 3314 } 3315 #endif 3316 3317 if (enable_ept && !enable_unrestricted_guest) { 3318 /* 3319 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3320 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3321 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3322 * KVM's CR3 is installed. 3323 */ 3324 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3325 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3326 3327 /* 3328 * When running with EPT but not unrestricted guest, KVM must 3329 * intercept CR3 accesses when paging is _disabled_. This is 3330 * necessary because restricted guests can't actually run with 3331 * paging disabled, and so KVM stuffs its own CR3 in order to 3332 * run the guest when identity mapped page tables. 3333 * 3334 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3335 * update, it may be stale with respect to CR3 interception, 3336 * e.g. after nested VM-Enter. 3337 * 3338 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3339 * stores to forward them to L1, even if KVM does not need to 3340 * intercept them to preserve its identity mapped page tables. 3341 */ 3342 if (!(cr0 & X86_CR0_PG)) { 3343 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3344 } else if (!is_guest_mode(vcpu)) { 3345 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3346 } else { 3347 tmp = exec_controls_get(vmx); 3348 tmp &= ~CR3_EXITING_BITS; 3349 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3350 exec_controls_set(vmx, tmp); 3351 } 3352 3353 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3354 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3355 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3356 3357 /* 3358 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3359 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3360 */ 3361 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3362 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3363 } 3364 3365 /* depends on vcpu->arch.cr0 to be set to a new value */ 3366 vmx->emulation_required = vmx_emulation_required(vcpu); 3367 } 3368 3369 static int vmx_get_max_ept_level(void) 3370 { 3371 if (cpu_has_vmx_ept_5levels()) 3372 return 5; 3373 return 4; 3374 } 3375 3376 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3377 { 3378 u64 eptp = VMX_EPTP_MT_WB; 3379 3380 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3381 3382 if (enable_ept_ad_bits && 3383 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3384 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3385 eptp |= root_hpa; 3386 3387 return eptp; 3388 } 3389 3390 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3391 int root_level) 3392 { 3393 struct kvm *kvm = vcpu->kvm; 3394 bool update_guest_cr3 = true; 3395 unsigned long guest_cr3; 3396 u64 eptp; 3397 3398 if (enable_ept) { 3399 eptp = construct_eptp(vcpu, root_hpa, root_level); 3400 vmcs_write64(EPT_POINTER, eptp); 3401 3402 hv_track_root_tdp(vcpu, root_hpa); 3403 3404 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3405 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3406 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3407 guest_cr3 = vcpu->arch.cr3; 3408 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3409 update_guest_cr3 = false; 3410 vmx_ept_load_pdptrs(vcpu); 3411 } else { 3412 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3413 } 3414 3415 if (update_guest_cr3) 3416 vmcs_writel(GUEST_CR3, guest_cr3); 3417 } 3418 3419 3420 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3421 { 3422 /* 3423 * We operate under the default treatment of SMM, so VMX cannot be 3424 * enabled under SMM. Note, whether or not VMXE is allowed at all, 3425 * i.e. is a reserved bit, is handled by common x86 code. 3426 */ 3427 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3428 return false; 3429 3430 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3431 return false; 3432 3433 return true; 3434 } 3435 3436 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3437 { 3438 unsigned long old_cr4 = kvm_read_cr4(vcpu); 3439 struct vcpu_vmx *vmx = to_vmx(vcpu); 3440 unsigned long hw_cr4; 3441 3442 /* 3443 * Pass through host's Machine Check Enable value to hw_cr4, which 3444 * is in force while we are in guest mode. Do not let guests control 3445 * this bit, even if host CR4.MCE == 0. 3446 */ 3447 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3448 if (enable_unrestricted_guest) 3449 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3450 else if (vmx->rmode.vm86_active) 3451 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3452 else 3453 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3454 3455 if (vmx_umip_emulated()) { 3456 if (cr4 & X86_CR4_UMIP) { 3457 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3458 hw_cr4 &= ~X86_CR4_UMIP; 3459 } else if (!is_guest_mode(vcpu) || 3460 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3461 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3462 } 3463 } 3464 3465 vcpu->arch.cr4 = cr4; 3466 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3467 3468 if (!enable_unrestricted_guest) { 3469 if (enable_ept) { 3470 if (!is_paging(vcpu)) { 3471 hw_cr4 &= ~X86_CR4_PAE; 3472 hw_cr4 |= X86_CR4_PSE; 3473 } else if (!(cr4 & X86_CR4_PAE)) { 3474 hw_cr4 &= ~X86_CR4_PAE; 3475 } 3476 } 3477 3478 /* 3479 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3480 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3481 * to be manually disabled when guest switches to non-paging 3482 * mode. 3483 * 3484 * If !enable_unrestricted_guest, the CPU is always running 3485 * with CR0.PG=1 and CR4 needs to be modified. 3486 * If enable_unrestricted_guest, the CPU automatically 3487 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3488 */ 3489 if (!is_paging(vcpu)) 3490 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3491 } 3492 3493 vmcs_writel(CR4_READ_SHADOW, cr4); 3494 vmcs_writel(GUEST_CR4, hw_cr4); 3495 3496 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3497 kvm_update_cpuid_runtime(vcpu); 3498 } 3499 3500 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3501 { 3502 struct vcpu_vmx *vmx = to_vmx(vcpu); 3503 u32 ar; 3504 3505 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3506 *var = vmx->rmode.segs[seg]; 3507 if (seg == VCPU_SREG_TR 3508 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3509 return; 3510 var->base = vmx_read_guest_seg_base(vmx, seg); 3511 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3512 return; 3513 } 3514 var->base = vmx_read_guest_seg_base(vmx, seg); 3515 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3516 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3517 ar = vmx_read_guest_seg_ar(vmx, seg); 3518 var->unusable = (ar >> 16) & 1; 3519 var->type = ar & 15; 3520 var->s = (ar >> 4) & 1; 3521 var->dpl = (ar >> 5) & 3; 3522 /* 3523 * Some userspaces do not preserve unusable property. Since usable 3524 * segment has to be present according to VMX spec we can use present 3525 * property to amend userspace bug by making unusable segment always 3526 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3527 * segment as unusable. 3528 */ 3529 var->present = !var->unusable; 3530 var->avl = (ar >> 12) & 1; 3531 var->l = (ar >> 13) & 1; 3532 var->db = (ar >> 14) & 1; 3533 var->g = (ar >> 15) & 1; 3534 } 3535 3536 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3537 { 3538 struct kvm_segment s; 3539 3540 if (to_vmx(vcpu)->rmode.vm86_active) { 3541 vmx_get_segment(vcpu, &s, seg); 3542 return s.base; 3543 } 3544 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3545 } 3546 3547 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3548 { 3549 struct vcpu_vmx *vmx = to_vmx(vcpu); 3550 3551 if (unlikely(vmx->rmode.vm86_active)) 3552 return 0; 3553 else { 3554 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3555 return VMX_AR_DPL(ar); 3556 } 3557 } 3558 3559 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3560 { 3561 u32 ar; 3562 3563 ar = var->type & 15; 3564 ar |= (var->s & 1) << 4; 3565 ar |= (var->dpl & 3) << 5; 3566 ar |= (var->present & 1) << 7; 3567 ar |= (var->avl & 1) << 12; 3568 ar |= (var->l & 1) << 13; 3569 ar |= (var->db & 1) << 14; 3570 ar |= (var->g & 1) << 15; 3571 ar |= (var->unusable || !var->present) << 16; 3572 3573 return ar; 3574 } 3575 3576 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3577 { 3578 struct vcpu_vmx *vmx = to_vmx(vcpu); 3579 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3580 3581 vmx_segment_cache_clear(vmx); 3582 3583 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3584 vmx->rmode.segs[seg] = *var; 3585 if (seg == VCPU_SREG_TR) 3586 vmcs_write16(sf->selector, var->selector); 3587 else if (var->s) 3588 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3589 return; 3590 } 3591 3592 vmcs_writel(sf->base, var->base); 3593 vmcs_write32(sf->limit, var->limit); 3594 vmcs_write16(sf->selector, var->selector); 3595 3596 /* 3597 * Fix the "Accessed" bit in AR field of segment registers for older 3598 * qemu binaries. 3599 * IA32 arch specifies that at the time of processor reset the 3600 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3601 * is setting it to 0 in the userland code. This causes invalid guest 3602 * state vmexit when "unrestricted guest" mode is turned on. 3603 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3604 * tree. Newer qemu binaries with that qemu fix would not need this 3605 * kvm hack. 3606 */ 3607 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3608 var->type |= 0x1; /* Accessed */ 3609 3610 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3611 } 3612 3613 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3614 { 3615 __vmx_set_segment(vcpu, var, seg); 3616 3617 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3618 } 3619 3620 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3621 { 3622 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3623 3624 *db = (ar >> 14) & 1; 3625 *l = (ar >> 13) & 1; 3626 } 3627 3628 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3629 { 3630 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3631 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3632 } 3633 3634 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3635 { 3636 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3637 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3638 } 3639 3640 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3641 { 3642 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3643 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3644 } 3645 3646 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3647 { 3648 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3649 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3650 } 3651 3652 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3653 { 3654 struct kvm_segment var; 3655 u32 ar; 3656 3657 vmx_get_segment(vcpu, &var, seg); 3658 var.dpl = 0x3; 3659 if (seg == VCPU_SREG_CS) 3660 var.type = 0x3; 3661 ar = vmx_segment_access_rights(&var); 3662 3663 if (var.base != (var.selector << 4)) 3664 return false; 3665 if (var.limit != 0xffff) 3666 return false; 3667 if (ar != 0xf3) 3668 return false; 3669 3670 return true; 3671 } 3672 3673 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3674 { 3675 struct kvm_segment cs; 3676 unsigned int cs_rpl; 3677 3678 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3679 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3680 3681 if (cs.unusable) 3682 return false; 3683 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3684 return false; 3685 if (!cs.s) 3686 return false; 3687 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3688 if (cs.dpl > cs_rpl) 3689 return false; 3690 } else { 3691 if (cs.dpl != cs_rpl) 3692 return false; 3693 } 3694 if (!cs.present) 3695 return false; 3696 3697 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3698 return true; 3699 } 3700 3701 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3702 { 3703 struct kvm_segment ss; 3704 unsigned int ss_rpl; 3705 3706 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3707 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3708 3709 if (ss.unusable) 3710 return true; 3711 if (ss.type != 3 && ss.type != 7) 3712 return false; 3713 if (!ss.s) 3714 return false; 3715 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3716 return false; 3717 if (!ss.present) 3718 return false; 3719 3720 return true; 3721 } 3722 3723 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3724 { 3725 struct kvm_segment var; 3726 unsigned int rpl; 3727 3728 vmx_get_segment(vcpu, &var, seg); 3729 rpl = var.selector & SEGMENT_RPL_MASK; 3730 3731 if (var.unusable) 3732 return true; 3733 if (!var.s) 3734 return false; 3735 if (!var.present) 3736 return false; 3737 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3738 if (var.dpl < rpl) /* DPL < RPL */ 3739 return false; 3740 } 3741 3742 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3743 * rights flags 3744 */ 3745 return true; 3746 } 3747 3748 static bool tr_valid(struct kvm_vcpu *vcpu) 3749 { 3750 struct kvm_segment tr; 3751 3752 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3753 3754 if (tr.unusable) 3755 return false; 3756 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3757 return false; 3758 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3759 return false; 3760 if (!tr.present) 3761 return false; 3762 3763 return true; 3764 } 3765 3766 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3767 { 3768 struct kvm_segment ldtr; 3769 3770 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3771 3772 if (ldtr.unusable) 3773 return true; 3774 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3775 return false; 3776 if (ldtr.type != 2) 3777 return false; 3778 if (!ldtr.present) 3779 return false; 3780 3781 return true; 3782 } 3783 3784 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3785 { 3786 struct kvm_segment cs, ss; 3787 3788 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3789 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3790 3791 return ((cs.selector & SEGMENT_RPL_MASK) == 3792 (ss.selector & SEGMENT_RPL_MASK)); 3793 } 3794 3795 /* 3796 * Check if guest state is valid. Returns true if valid, false if 3797 * not. 3798 * We assume that registers are always usable 3799 */ 3800 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3801 { 3802 /* real mode guest state checks */ 3803 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3804 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3805 return false; 3806 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3807 return false; 3808 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3809 return false; 3810 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3811 return false; 3812 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3813 return false; 3814 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3815 return false; 3816 } else { 3817 /* protected mode guest state checks */ 3818 if (!cs_ss_rpl_check(vcpu)) 3819 return false; 3820 if (!code_segment_valid(vcpu)) 3821 return false; 3822 if (!stack_segment_valid(vcpu)) 3823 return false; 3824 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3825 return false; 3826 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3827 return false; 3828 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3829 return false; 3830 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3831 return false; 3832 if (!tr_valid(vcpu)) 3833 return false; 3834 if (!ldtr_valid(vcpu)) 3835 return false; 3836 } 3837 /* TODO: 3838 * - Add checks on RIP 3839 * - Add checks on RFLAGS 3840 */ 3841 3842 return true; 3843 } 3844 3845 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3846 { 3847 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3848 u16 data; 3849 int i; 3850 3851 for (i = 0; i < 3; i++) { 3852 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3853 return -EFAULT; 3854 } 3855 3856 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3857 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3858 return -EFAULT; 3859 3860 data = ~0; 3861 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3862 return -EFAULT; 3863 3864 return 0; 3865 } 3866 3867 static int init_rmode_identity_map(struct kvm *kvm) 3868 { 3869 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3870 int i, r = 0; 3871 void __user *uaddr; 3872 u32 tmp; 3873 3874 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3875 mutex_lock(&kvm->slots_lock); 3876 3877 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3878 goto out; 3879 3880 if (!kvm_vmx->ept_identity_map_addr) 3881 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3882 3883 uaddr = __x86_set_memory_region(kvm, 3884 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3885 kvm_vmx->ept_identity_map_addr, 3886 PAGE_SIZE); 3887 if (IS_ERR(uaddr)) { 3888 r = PTR_ERR(uaddr); 3889 goto out; 3890 } 3891 3892 /* Set up identity-mapping pagetable for EPT in real mode */ 3893 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) { 3894 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3895 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3896 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3897 r = -EFAULT; 3898 goto out; 3899 } 3900 } 3901 kvm_vmx->ept_identity_pagetable_done = true; 3902 3903 out: 3904 mutex_unlock(&kvm->slots_lock); 3905 return r; 3906 } 3907 3908 static void seg_setup(int seg) 3909 { 3910 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3911 unsigned int ar; 3912 3913 vmcs_write16(sf->selector, 0); 3914 vmcs_writel(sf->base, 0); 3915 vmcs_write32(sf->limit, 0xffff); 3916 ar = 0x93; 3917 if (seg == VCPU_SREG_CS) 3918 ar |= 0x08; /* code segment */ 3919 3920 vmcs_write32(sf->ar_bytes, ar); 3921 } 3922 3923 int allocate_vpid(void) 3924 { 3925 int vpid; 3926 3927 if (!enable_vpid) 3928 return 0; 3929 spin_lock(&vmx_vpid_lock); 3930 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3931 if (vpid < VMX_NR_VPIDS) 3932 __set_bit(vpid, vmx_vpid_bitmap); 3933 else 3934 vpid = 0; 3935 spin_unlock(&vmx_vpid_lock); 3936 return vpid; 3937 } 3938 3939 void free_vpid(int vpid) 3940 { 3941 if (!enable_vpid || vpid == 0) 3942 return; 3943 spin_lock(&vmx_vpid_lock); 3944 __clear_bit(vpid, vmx_vpid_bitmap); 3945 spin_unlock(&vmx_vpid_lock); 3946 } 3947 3948 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3949 { 3950 /* 3951 * When KVM is a nested hypervisor on top of Hyper-V and uses 3952 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3953 * bitmap has changed. 3954 */ 3955 if (kvm_is_using_evmcs()) { 3956 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 3957 3958 if (evmcs->hv_enlightenments_control.msr_bitmap) 3959 evmcs->hv_clean_fields &= 3960 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; 3961 } 3962 3963 vmx->nested.force_msr_bitmap_recalc = true; 3964 } 3965 3966 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3967 { 3968 struct vcpu_vmx *vmx = to_vmx(vcpu); 3969 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3970 3971 if (!cpu_has_vmx_msr_bitmap()) 3972 return; 3973 3974 vmx_msr_bitmap_l01_changed(vmx); 3975 3976 /* 3977 * Mark the desired intercept state in shadow bitmap, this is needed 3978 * for resync when the MSR filters change. 3979 */ 3980 if (is_valid_passthrough_msr(msr)) { 3981 int idx = possible_passthrough_msr_slot(msr); 3982 3983 if (idx != -ENOENT) { 3984 if (type & MSR_TYPE_R) 3985 clear_bit(idx, vmx->shadow_msr_intercept.read); 3986 if (type & MSR_TYPE_W) 3987 clear_bit(idx, vmx->shadow_msr_intercept.write); 3988 } 3989 } 3990 3991 if ((type & MSR_TYPE_R) && 3992 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3993 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3994 type &= ~MSR_TYPE_R; 3995 } 3996 3997 if ((type & MSR_TYPE_W) && 3998 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3999 vmx_set_msr_bitmap_write(msr_bitmap, msr); 4000 type &= ~MSR_TYPE_W; 4001 } 4002 4003 if (type & MSR_TYPE_R) 4004 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 4005 4006 if (type & MSR_TYPE_W) 4007 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 4008 } 4009 4010 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 4011 { 4012 struct vcpu_vmx *vmx = to_vmx(vcpu); 4013 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 4014 4015 if (!cpu_has_vmx_msr_bitmap()) 4016 return; 4017 4018 vmx_msr_bitmap_l01_changed(vmx); 4019 4020 /* 4021 * Mark the desired intercept state in shadow bitmap, this is needed 4022 * for resync when the MSR filter changes. 4023 */ 4024 if (is_valid_passthrough_msr(msr)) { 4025 int idx = possible_passthrough_msr_slot(msr); 4026 4027 if (idx != -ENOENT) { 4028 if (type & MSR_TYPE_R) 4029 set_bit(idx, vmx->shadow_msr_intercept.read); 4030 if (type & MSR_TYPE_W) 4031 set_bit(idx, vmx->shadow_msr_intercept.write); 4032 } 4033 } 4034 4035 if (type & MSR_TYPE_R) 4036 vmx_set_msr_bitmap_read(msr_bitmap, msr); 4037 4038 if (type & MSR_TYPE_W) 4039 vmx_set_msr_bitmap_write(msr_bitmap, msr); 4040 } 4041 4042 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 4043 { 4044 /* 4045 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves 4046 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0, 4047 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits. 4048 */ 4049 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG; 4050 const int write_idx = read_idx + (0x800 / sizeof(u64)); 4051 struct vcpu_vmx *vmx = to_vmx(vcpu); 4052 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap; 4053 u8 mode; 4054 4055 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu))) 4056 return; 4057 4058 if (cpu_has_secondary_exec_ctrls() && 4059 (secondary_exec_controls_get(vmx) & 4060 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 4061 mode = MSR_BITMAP_MODE_X2APIC; 4062 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 4063 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 4064 } else { 4065 mode = 0; 4066 } 4067 4068 if (mode == vmx->x2apic_msr_bitmap_mode) 4069 return; 4070 4071 vmx->x2apic_msr_bitmap_mode = mode; 4072 4073 /* 4074 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended 4075 * registers (0x840 and above) intercepted, KVM doesn't support them. 4076 * Intercept all writes by default and poke holes as needed. Pass 4077 * through reads for all valid registers by default in x2APIC+APICv 4078 * mode, only the current timer count needs on-demand emulation by KVM. 4079 */ 4080 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) 4081 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic); 4082 else 4083 msr_bitmap[read_idx] = ~0ull; 4084 msr_bitmap[write_idx] = ~0ull; 4085 4086 /* 4087 * TPR reads and writes can be virtualized even if virtual interrupt 4088 * delivery is not in use. 4089 */ 4090 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 4091 !(mode & MSR_BITMAP_MODE_X2APIC)); 4092 4093 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 4094 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 4095 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 4096 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 4097 if (enable_ipiv) 4098 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW); 4099 } 4100 } 4101 4102 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 4103 { 4104 struct vcpu_vmx *vmx = to_vmx(vcpu); 4105 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 4106 u32 i; 4107 4108 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 4109 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 4110 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 4111 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 4112 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 4113 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 4114 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 4115 } 4116 } 4117 4118 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 4119 { 4120 struct vcpu_vmx *vmx = to_vmx(vcpu); 4121 void *vapic_page; 4122 u32 vppr; 4123 int rvi; 4124 4125 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 4126 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 4127 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 4128 return false; 4129 4130 rvi = vmx_get_rvi(); 4131 4132 vapic_page = vmx->nested.virtual_apic_map.hva; 4133 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 4134 4135 return ((rvi & 0xf0) > (vppr & 0xf0)); 4136 } 4137 4138 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 4139 { 4140 struct vcpu_vmx *vmx = to_vmx(vcpu); 4141 u32 i; 4142 4143 /* 4144 * Redo intercept permissions for MSRs that KVM is passing through to 4145 * the guest. Disabling interception will check the new MSR filter and 4146 * ensure that KVM enables interception if usersepace wants to filter 4147 * the MSR. MSRs that KVM is already intercepting don't need to be 4148 * refreshed since KVM is going to intercept them regardless of what 4149 * userspace wants. 4150 */ 4151 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 4152 u32 msr = vmx_possible_passthrough_msrs[i]; 4153 4154 if (!test_bit(i, vmx->shadow_msr_intercept.read)) 4155 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R); 4156 4157 if (!test_bit(i, vmx->shadow_msr_intercept.write)) 4158 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W); 4159 } 4160 4161 /* PT MSRs can be passed through iff PT is exposed to the guest. */ 4162 if (vmx_pt_mode_is_host_guest()) 4163 pt_update_intercept_for_msr(vcpu); 4164 } 4165 4166 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 4167 int pi_vec) 4168 { 4169 #ifdef CONFIG_SMP 4170 if (vcpu->mode == IN_GUEST_MODE) { 4171 /* 4172 * The vector of the virtual has already been set in the PIR. 4173 * Send a notification event to deliver the virtual interrupt 4174 * unless the vCPU is the currently running vCPU, i.e. the 4175 * event is being sent from a fastpath VM-Exit handler, in 4176 * which case the PIR will be synced to the vIRR before 4177 * re-entering the guest. 4178 * 4179 * When the target is not the running vCPU, the following 4180 * possibilities emerge: 4181 * 4182 * Case 1: vCPU stays in non-root mode. Sending a notification 4183 * event posts the interrupt to the vCPU. 4184 * 4185 * Case 2: vCPU exits to root mode and is still runnable. The 4186 * PIR will be synced to the vIRR before re-entering the guest. 4187 * Sending a notification event is ok as the host IRQ handler 4188 * will ignore the spurious event. 4189 * 4190 * Case 3: vCPU exits to root mode and is blocked. vcpu_block() 4191 * has already synced PIR to vIRR and never blocks the vCPU if 4192 * the vIRR is not empty. Therefore, a blocked vCPU here does 4193 * not wait for any requested interrupts in PIR, and sending a 4194 * notification event also results in a benign, spurious event. 4195 */ 4196 4197 if (vcpu != kvm_get_running_vcpu()) 4198 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 4199 return; 4200 } 4201 #endif 4202 /* 4203 * The vCPU isn't in the guest; wake the vCPU in case it is blocking, 4204 * otherwise do nothing as KVM will grab the highest priority pending 4205 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). 4206 */ 4207 kvm_vcpu_wake_up(vcpu); 4208 } 4209 4210 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 4211 int vector) 4212 { 4213 struct vcpu_vmx *vmx = to_vmx(vcpu); 4214 4215 if (is_guest_mode(vcpu) && 4216 vector == vmx->nested.posted_intr_nv) { 4217 /* 4218 * If a posted intr is not recognized by hardware, 4219 * we will accomplish it in the next vmentry. 4220 */ 4221 vmx->nested.pi_pending = true; 4222 kvm_make_request(KVM_REQ_EVENT, vcpu); 4223 4224 /* 4225 * This pairs with the smp_mb_*() after setting vcpu->mode in 4226 * vcpu_enter_guest() to guarantee the vCPU sees the event 4227 * request if triggering a posted interrupt "fails" because 4228 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 4229 * the smb_wmb() in kvm_make_request() only ensures everything 4230 * done before making the request is visible when the request 4231 * is visible, it doesn't ensure ordering between the store to 4232 * vcpu->requests and the load from vcpu->mode. 4233 */ 4234 smp_mb__after_atomic(); 4235 4236 /* the PIR and ON have been set by L1. */ 4237 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); 4238 return 0; 4239 } 4240 return -1; 4241 } 4242 /* 4243 * Send interrupt to vcpu via posted interrupt way. 4244 * 1. If target vcpu is running(non-root mode), send posted interrupt 4245 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4246 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4247 * interrupt from PIR in next vmentry. 4248 */ 4249 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4250 { 4251 struct vcpu_vmx *vmx = to_vmx(vcpu); 4252 int r; 4253 4254 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4255 if (!r) 4256 return 0; 4257 4258 /* Note, this is called iff the local APIC is in-kernel. */ 4259 if (!vcpu->arch.apic->apicv_active) 4260 return -1; 4261 4262 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4263 return 0; 4264 4265 /* If a previous notification has sent the IPI, nothing to do. */ 4266 if (pi_test_and_set_on(&vmx->pi_desc)) 4267 return 0; 4268 4269 /* 4270 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() 4271 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is 4272 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a 4273 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. 4274 */ 4275 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); 4276 return 0; 4277 } 4278 4279 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 4280 int trig_mode, int vector) 4281 { 4282 struct kvm_vcpu *vcpu = apic->vcpu; 4283 4284 if (vmx_deliver_posted_interrupt(vcpu, vector)) { 4285 kvm_lapic_set_irr(vector, apic); 4286 kvm_make_request(KVM_REQ_EVENT, vcpu); 4287 kvm_vcpu_kick(vcpu); 4288 } else { 4289 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 4290 trig_mode, vector); 4291 } 4292 } 4293 4294 /* 4295 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4296 * will not change in the lifetime of the guest. 4297 * Note that host-state that does change is set elsewhere. E.g., host-state 4298 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4299 */ 4300 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4301 { 4302 u32 low32, high32; 4303 unsigned long tmpl; 4304 unsigned long cr0, cr3, cr4; 4305 4306 cr0 = read_cr0(); 4307 WARN_ON(cr0 & X86_CR0_TS); 4308 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4309 4310 /* 4311 * Save the most likely value for this task's CR3 in the VMCS. 4312 * We can't use __get_current_cr3_fast() because we're not atomic. 4313 */ 4314 cr3 = __read_cr3(); 4315 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4316 vmx->loaded_vmcs->host_state.cr3 = cr3; 4317 4318 /* Save the most likely value for this task's CR4 in the VMCS. */ 4319 cr4 = cr4_read_shadow(); 4320 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4321 vmx->loaded_vmcs->host_state.cr4 = cr4; 4322 4323 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4324 #ifdef CONFIG_X86_64 4325 /* 4326 * Load null selectors, so we can avoid reloading them in 4327 * vmx_prepare_switch_to_host(), in case userspace uses 4328 * the null selectors too (the expected case). 4329 */ 4330 vmcs_write16(HOST_DS_SELECTOR, 0); 4331 vmcs_write16(HOST_ES_SELECTOR, 0); 4332 #else 4333 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4334 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4335 #endif 4336 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4337 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4338 4339 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4340 4341 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4342 4343 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4344 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4345 4346 /* 4347 * SYSENTER is used for 32-bit system calls on either 32-bit or 4348 * 64-bit kernels. It is always zero If neither is allowed, otherwise 4349 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may 4350 * have already done so!). 4351 */ 4352 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) 4353 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4354 4355 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4356 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4357 4358 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4359 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4360 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4361 } 4362 4363 if (cpu_has_load_ia32_efer()) 4364 vmcs_write64(HOST_IA32_EFER, host_efer); 4365 } 4366 4367 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4368 { 4369 struct kvm_vcpu *vcpu = &vmx->vcpu; 4370 4371 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4372 ~vcpu->arch.cr4_guest_rsvd_bits; 4373 if (!enable_ept) { 4374 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4375 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4376 } 4377 if (is_guest_mode(&vmx->vcpu)) 4378 vcpu->arch.cr4_guest_owned_bits &= 4379 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4380 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4381 } 4382 4383 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4384 { 4385 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4386 4387 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4388 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4389 4390 if (!enable_vnmi) 4391 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4392 4393 if (!enable_preemption_timer) 4394 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4395 4396 return pin_based_exec_ctrl; 4397 } 4398 4399 static u32 vmx_vmentry_ctrl(void) 4400 { 4401 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4402 4403 if (vmx_pt_mode_is_system()) 4404 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4405 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4406 /* 4407 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically. 4408 */ 4409 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 4410 VM_ENTRY_LOAD_IA32_EFER | 4411 VM_ENTRY_IA32E_MODE); 4412 4413 if (cpu_has_perf_global_ctrl_bug()) 4414 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 4415 4416 return vmentry_ctrl; 4417 } 4418 4419 static u32 vmx_vmexit_ctrl(void) 4420 { 4421 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4422 4423 /* 4424 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for 4425 * nested virtualization and thus allowed to be set in vmcs12. 4426 */ 4427 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER | 4428 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER); 4429 4430 if (vmx_pt_mode_is_system()) 4431 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4432 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4433 4434 if (cpu_has_perf_global_ctrl_bug()) 4435 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 4436 4437 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4438 return vmexit_ctrl & 4439 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4440 } 4441 4442 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4443 { 4444 struct vcpu_vmx *vmx = to_vmx(vcpu); 4445 4446 if (is_guest_mode(vcpu)) { 4447 vmx->nested.update_vmcs01_apicv_status = true; 4448 return; 4449 } 4450 4451 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4452 4453 if (kvm_vcpu_apicv_active(vcpu)) { 4454 secondary_exec_controls_setbit(vmx, 4455 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4456 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4457 if (enable_ipiv) 4458 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4459 } else { 4460 secondary_exec_controls_clearbit(vmx, 4461 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4462 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4463 if (enable_ipiv) 4464 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4465 } 4466 4467 vmx_update_msr_bitmap_x2apic(vcpu); 4468 } 4469 4470 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4471 { 4472 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4473 4474 /* 4475 * Not used by KVM, but fully supported for nesting, i.e. are allowed in 4476 * vmcs12 and propagated to vmcs02 when set in vmcs12. 4477 */ 4478 exec_control &= ~(CPU_BASED_RDTSC_EXITING | 4479 CPU_BASED_USE_IO_BITMAPS | 4480 CPU_BASED_MONITOR_TRAP_FLAG | 4481 CPU_BASED_PAUSE_EXITING); 4482 4483 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */ 4484 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING | 4485 CPU_BASED_NMI_WINDOW_EXITING); 4486 4487 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4488 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4489 4490 if (!cpu_need_tpr_shadow(&vmx->vcpu)) 4491 exec_control &= ~CPU_BASED_TPR_SHADOW; 4492 4493 #ifdef CONFIG_X86_64 4494 if (exec_control & CPU_BASED_TPR_SHADOW) 4495 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING | 4496 CPU_BASED_CR8_STORE_EXITING); 4497 else 4498 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4499 CPU_BASED_CR8_LOAD_EXITING; 4500 #endif 4501 /* No need to intercept CR3 access or INVPLG when using EPT. */ 4502 if (enable_ept) 4503 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 4504 CPU_BASED_CR3_STORE_EXITING | 4505 CPU_BASED_INVLPG_EXITING); 4506 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4507 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4508 CPU_BASED_MONITOR_EXITING); 4509 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4510 exec_control &= ~CPU_BASED_HLT_EXITING; 4511 return exec_control; 4512 } 4513 4514 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx) 4515 { 4516 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl; 4517 4518 /* 4519 * IPI virtualization relies on APICv. Disable IPI virtualization if 4520 * APICv is inhibited. 4521 */ 4522 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu)) 4523 exec_control &= ~TERTIARY_EXEC_IPI_VIRT; 4524 4525 return exec_control; 4526 } 4527 4528 /* 4529 * Adjust a single secondary execution control bit to intercept/allow an 4530 * instruction in the guest. This is usually done based on whether or not a 4531 * feature has been exposed to the guest in order to correctly emulate faults. 4532 */ 4533 static inline void 4534 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4535 u32 control, bool enabled, bool exiting) 4536 { 4537 /* 4538 * If the control is for an opt-in feature, clear the control if the 4539 * feature is not exposed to the guest, i.e. not enabled. If the 4540 * control is opt-out, i.e. an exiting control, clear the control if 4541 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4542 * disabled for the associated instruction. Note, the caller is 4543 * responsible presetting exec_control to set all supported bits. 4544 */ 4545 if (enabled == exiting) 4546 *exec_control &= ~control; 4547 4548 /* 4549 * Update the nested MSR settings so that a nested VMM can/can't set 4550 * controls for features that are/aren't exposed to the guest. 4551 */ 4552 if (nested) { 4553 /* 4554 * All features that can be added or removed to VMX MSRs must 4555 * be supported in the first place for nested virtualization. 4556 */ 4557 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control))) 4558 enabled = false; 4559 4560 if (enabled) 4561 vmx->nested.msrs.secondary_ctls_high |= control; 4562 else 4563 vmx->nested.msrs.secondary_ctls_high &= ~control; 4564 } 4565 } 4566 4567 /* 4568 * Wrapper macro for the common case of adjusting a secondary execution control 4569 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4570 * verifies that the control is actually supported by KVM and hardware. 4571 */ 4572 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4573 ({ \ 4574 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \ 4575 bool __enabled; \ 4576 \ 4577 if (cpu_has_vmx_##name()) { \ 4578 if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \ 4579 __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \ 4580 else \ 4581 __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \ 4582 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\ 4583 __enabled, exiting); \ 4584 } \ 4585 }) 4586 4587 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4588 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4589 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4590 4591 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4592 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4593 4594 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4595 { 4596 struct kvm_vcpu *vcpu = &vmx->vcpu; 4597 4598 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4599 4600 if (vmx_pt_mode_is_system()) 4601 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4602 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4603 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4604 if (vmx->vpid == 0) 4605 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4606 if (!enable_ept) { 4607 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4608 enable_unrestricted_guest = 0; 4609 } 4610 if (!enable_unrestricted_guest) 4611 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4612 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4613 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4614 if (!kvm_vcpu_apicv_active(vcpu)) 4615 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4616 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4617 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4618 4619 /* 4620 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's 4621 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2. 4622 */ 4623 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC; 4624 4625 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4626 * in vmx_set_cr4. */ 4627 exec_control &= ~SECONDARY_EXEC_DESC; 4628 4629 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4630 (handle_vmptrld). 4631 We can NOT enable shadow_vmcs here because we don't have yet 4632 a current VMCS12 4633 */ 4634 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4635 4636 /* 4637 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4638 * it needs to be set here when dirty logging is already active, e.g. 4639 * if this vCPU was created after dirty logging was enabled. 4640 */ 4641 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 4642 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4643 4644 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES); 4645 4646 /* 4647 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4648 * feature is exposed to the guest. This creates a virtualization hole 4649 * if both are supported in hardware but only one is exposed to the 4650 * guest, but letting the guest execute RDTSCP or RDPID when either one 4651 * is advertised is preferable to emulating the advertised instruction 4652 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4653 */ 4654 if (cpu_has_vmx_rdtscp()) { 4655 bool rdpid_or_rdtscp_enabled = 4656 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4657 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4658 4659 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4660 SECONDARY_EXEC_ENABLE_RDTSCP, 4661 rdpid_or_rdtscp_enabled, false); 4662 } 4663 4664 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4665 4666 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4667 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4668 4669 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4670 ENABLE_USR_WAIT_PAUSE, false); 4671 4672 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4673 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4674 4675 if (!kvm_notify_vmexit_enabled(vcpu->kvm)) 4676 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING; 4677 4678 return exec_control; 4679 } 4680 4681 static inline int vmx_get_pid_table_order(struct kvm *kvm) 4682 { 4683 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table)); 4684 } 4685 4686 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm) 4687 { 4688 struct page *pages; 4689 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4690 4691 if (!irqchip_in_kernel(kvm) || !enable_ipiv) 4692 return 0; 4693 4694 if (kvm_vmx->pid_table) 4695 return 0; 4696 4697 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 4698 vmx_get_pid_table_order(kvm)); 4699 if (!pages) 4700 return -ENOMEM; 4701 4702 kvm_vmx->pid_table = (void *)page_address(pages); 4703 return 0; 4704 } 4705 4706 static int vmx_vcpu_precreate(struct kvm *kvm) 4707 { 4708 return vmx_alloc_ipiv_pid_table(kvm); 4709 } 4710 4711 #define VMX_XSS_EXIT_BITMAP 0 4712 4713 static void init_vmcs(struct vcpu_vmx *vmx) 4714 { 4715 struct kvm *kvm = vmx->vcpu.kvm; 4716 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4717 4718 if (nested) 4719 nested_vmx_set_vmcs_shadowing_bitmap(); 4720 4721 if (cpu_has_vmx_msr_bitmap()) 4722 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4723 4724 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4725 4726 /* Control */ 4727 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4728 4729 exec_controls_set(vmx, vmx_exec_control(vmx)); 4730 4731 if (cpu_has_secondary_exec_ctrls()) 4732 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4733 4734 if (cpu_has_tertiary_exec_ctrls()) 4735 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx)); 4736 4737 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) { 4738 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4739 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4740 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4741 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4742 4743 vmcs_write16(GUEST_INTR_STATUS, 0); 4744 4745 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4746 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4747 } 4748 4749 if (vmx_can_use_ipiv(&vmx->vcpu)) { 4750 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table)); 4751 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1); 4752 } 4753 4754 if (!kvm_pause_in_guest(kvm)) { 4755 vmcs_write32(PLE_GAP, ple_gap); 4756 vmx->ple_window = ple_window; 4757 vmx->ple_window_dirty = true; 4758 } 4759 4760 if (kvm_notify_vmexit_enabled(kvm)) 4761 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); 4762 4763 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4764 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4765 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4766 4767 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4768 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4769 vmx_set_constant_host_state(vmx); 4770 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4771 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4772 4773 if (cpu_has_vmx_vmfunc()) 4774 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4775 4776 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4777 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4778 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4779 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4780 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4781 4782 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4783 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4784 4785 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4786 4787 /* 22.2.1, 20.8.1 */ 4788 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4789 4790 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); 4791 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4792 4793 set_cr4_guest_host_mask(vmx); 4794 4795 if (vmx->vpid != 0) 4796 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4797 4798 if (cpu_has_vmx_xsaves()) 4799 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4800 4801 if (enable_pml) { 4802 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4803 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4804 } 4805 4806 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4807 4808 if (vmx_pt_mode_is_host_guest()) { 4809 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4810 /* Bit[6~0] are forced to 1, writes are ignored. */ 4811 vmx->pt_desc.guest.output_mask = 0x7F; 4812 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4813 } 4814 4815 vmcs_write32(GUEST_SYSENTER_CS, 0); 4816 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4817 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4818 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4819 4820 if (cpu_has_vmx_tpr_shadow()) { 4821 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4822 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4823 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4824 __pa(vmx->vcpu.arch.apic->regs)); 4825 vmcs_write32(TPR_THRESHOLD, 0); 4826 } 4827 4828 vmx_setup_uret_msrs(vmx); 4829 } 4830 4831 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4832 { 4833 struct vcpu_vmx *vmx = to_vmx(vcpu); 4834 4835 init_vmcs(vmx); 4836 4837 if (nested) 4838 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4839 4840 vcpu_setup_sgx_lepubkeyhash(vcpu); 4841 4842 vmx->nested.posted_intr_nv = -1; 4843 vmx->nested.vmxon_ptr = INVALID_GPA; 4844 vmx->nested.current_vmptr = INVALID_GPA; 4845 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4846 4847 vcpu->arch.microcode_version = 0x100000000ULL; 4848 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4849 4850 /* 4851 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4852 * or POSTED_INTR_WAKEUP_VECTOR. 4853 */ 4854 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4855 vmx->pi_desc.sn = 1; 4856 } 4857 4858 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4859 { 4860 struct vcpu_vmx *vmx = to_vmx(vcpu); 4861 4862 if (!init_event) 4863 __vmx_vcpu_reset(vcpu); 4864 4865 vmx->rmode.vm86_active = 0; 4866 vmx->spec_ctrl = 0; 4867 4868 vmx->msr_ia32_umwait_control = 0; 4869 4870 vmx->hv_deadline_tsc = -1; 4871 kvm_set_cr8(vcpu, 0); 4872 4873 vmx_segment_cache_clear(vmx); 4874 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4875 4876 seg_setup(VCPU_SREG_CS); 4877 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4878 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4879 4880 seg_setup(VCPU_SREG_DS); 4881 seg_setup(VCPU_SREG_ES); 4882 seg_setup(VCPU_SREG_FS); 4883 seg_setup(VCPU_SREG_GS); 4884 seg_setup(VCPU_SREG_SS); 4885 4886 vmcs_write16(GUEST_TR_SELECTOR, 0); 4887 vmcs_writel(GUEST_TR_BASE, 0); 4888 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4889 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4890 4891 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4892 vmcs_writel(GUEST_LDTR_BASE, 0); 4893 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4894 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4895 4896 vmcs_writel(GUEST_GDTR_BASE, 0); 4897 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4898 4899 vmcs_writel(GUEST_IDTR_BASE, 0); 4900 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4901 4902 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4903 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4904 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4905 if (kvm_mpx_supported()) 4906 vmcs_write64(GUEST_BNDCFGS, 0); 4907 4908 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4909 4910 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4911 4912 vpid_sync_context(vmx->vpid); 4913 4914 vmx_update_fb_clear_dis(vcpu, vmx); 4915 } 4916 4917 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4918 { 4919 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4920 } 4921 4922 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4923 { 4924 if (!enable_vnmi || 4925 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4926 vmx_enable_irq_window(vcpu); 4927 return; 4928 } 4929 4930 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4931 } 4932 4933 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 4934 { 4935 struct vcpu_vmx *vmx = to_vmx(vcpu); 4936 uint32_t intr; 4937 int irq = vcpu->arch.interrupt.nr; 4938 4939 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected); 4940 4941 ++vcpu->stat.irq_injections; 4942 if (vmx->rmode.vm86_active) { 4943 int inc_eip = 0; 4944 if (vcpu->arch.interrupt.soft) 4945 inc_eip = vcpu->arch.event_exit_inst_len; 4946 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4947 return; 4948 } 4949 intr = irq | INTR_INFO_VALID_MASK; 4950 if (vcpu->arch.interrupt.soft) { 4951 intr |= INTR_TYPE_SOFT_INTR; 4952 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4953 vmx->vcpu.arch.event_exit_inst_len); 4954 } else 4955 intr |= INTR_TYPE_EXT_INTR; 4956 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4957 4958 vmx_clear_hlt(vcpu); 4959 } 4960 4961 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4962 { 4963 struct vcpu_vmx *vmx = to_vmx(vcpu); 4964 4965 if (!enable_vnmi) { 4966 /* 4967 * Tracking the NMI-blocked state in software is built upon 4968 * finding the next open IRQ window. This, in turn, depends on 4969 * well-behaving guests: They have to keep IRQs disabled at 4970 * least as long as the NMI handler runs. Otherwise we may 4971 * cause NMI nesting, maybe breaking the guest. But as this is 4972 * highly unlikely, we can live with the residual risk. 4973 */ 4974 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4975 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4976 } 4977 4978 ++vcpu->stat.nmi_injections; 4979 vmx->loaded_vmcs->nmi_known_unmasked = false; 4980 4981 if (vmx->rmode.vm86_active) { 4982 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4983 return; 4984 } 4985 4986 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4987 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4988 4989 vmx_clear_hlt(vcpu); 4990 } 4991 4992 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4993 { 4994 struct vcpu_vmx *vmx = to_vmx(vcpu); 4995 bool masked; 4996 4997 if (!enable_vnmi) 4998 return vmx->loaded_vmcs->soft_vnmi_blocked; 4999 if (vmx->loaded_vmcs->nmi_known_unmasked) 5000 return false; 5001 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 5002 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5003 return masked; 5004 } 5005 5006 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 5007 { 5008 struct vcpu_vmx *vmx = to_vmx(vcpu); 5009 5010 if (!enable_vnmi) { 5011 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 5012 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 5013 vmx->loaded_vmcs->vnmi_blocked_time = 0; 5014 } 5015 } else { 5016 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5017 if (masked) 5018 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5019 GUEST_INTR_STATE_NMI); 5020 else 5021 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 5022 GUEST_INTR_STATE_NMI); 5023 } 5024 } 5025 5026 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 5027 { 5028 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5029 return false; 5030 5031 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 5032 return true; 5033 5034 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5035 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 5036 GUEST_INTR_STATE_NMI)); 5037 } 5038 5039 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5040 { 5041 if (to_vmx(vcpu)->nested.nested_run_pending) 5042 return -EBUSY; 5043 5044 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 5045 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5046 return -EBUSY; 5047 5048 return !vmx_nmi_blocked(vcpu); 5049 } 5050 5051 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 5052 { 5053 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5054 return false; 5055 5056 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 5057 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5058 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 5059 } 5060 5061 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5062 { 5063 if (to_vmx(vcpu)->nested.nested_run_pending) 5064 return -EBUSY; 5065 5066 /* 5067 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 5068 * e.g. if the IRQ arrived asynchronously after checking nested events. 5069 */ 5070 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5071 return -EBUSY; 5072 5073 return !vmx_interrupt_blocked(vcpu); 5074 } 5075 5076 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 5077 { 5078 void __user *ret; 5079 5080 if (enable_unrestricted_guest) 5081 return 0; 5082 5083 mutex_lock(&kvm->slots_lock); 5084 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 5085 PAGE_SIZE * 3); 5086 mutex_unlock(&kvm->slots_lock); 5087 5088 if (IS_ERR(ret)) 5089 return PTR_ERR(ret); 5090 5091 to_kvm_vmx(kvm)->tss_addr = addr; 5092 5093 return init_rmode_tss(kvm, ret); 5094 } 5095 5096 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 5097 { 5098 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 5099 return 0; 5100 } 5101 5102 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 5103 { 5104 switch (vec) { 5105 case BP_VECTOR: 5106 /* 5107 * Update instruction length as we may reinject the exception 5108 * from user space while in guest debugging mode. 5109 */ 5110 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 5111 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5112 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 5113 return false; 5114 fallthrough; 5115 case DB_VECTOR: 5116 return !(vcpu->guest_debug & 5117 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 5118 case DE_VECTOR: 5119 case OF_VECTOR: 5120 case BR_VECTOR: 5121 case UD_VECTOR: 5122 case DF_VECTOR: 5123 case SS_VECTOR: 5124 case GP_VECTOR: 5125 case MF_VECTOR: 5126 return true; 5127 } 5128 return false; 5129 } 5130 5131 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 5132 int vec, u32 err_code) 5133 { 5134 /* 5135 * Instruction with address size override prefix opcode 0x67 5136 * Cause the #SS fault with 0 error code in VM86 mode. 5137 */ 5138 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 5139 if (kvm_emulate_instruction(vcpu, 0)) { 5140 if (vcpu->arch.halt_request) { 5141 vcpu->arch.halt_request = 0; 5142 return kvm_emulate_halt_noskip(vcpu); 5143 } 5144 return 1; 5145 } 5146 return 0; 5147 } 5148 5149 /* 5150 * Forward all other exceptions that are valid in real mode. 5151 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 5152 * the required debugging infrastructure rework. 5153 */ 5154 kvm_queue_exception(vcpu, vec); 5155 return 1; 5156 } 5157 5158 static int handle_machine_check(struct kvm_vcpu *vcpu) 5159 { 5160 /* handled by vmx_vcpu_run() */ 5161 return 1; 5162 } 5163 5164 /* 5165 * If the host has split lock detection disabled, then #AC is 5166 * unconditionally injected into the guest, which is the pre split lock 5167 * detection behaviour. 5168 * 5169 * If the host has split lock detection enabled then #AC is 5170 * only injected into the guest when: 5171 * - Guest CPL == 3 (user mode) 5172 * - Guest has #AC detection enabled in CR0 5173 * - Guest EFLAGS has AC bit set 5174 */ 5175 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 5176 { 5177 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5178 return true; 5179 5180 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) && 5181 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 5182 } 5183 5184 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 5185 { 5186 struct vcpu_vmx *vmx = to_vmx(vcpu); 5187 struct kvm_run *kvm_run = vcpu->run; 5188 u32 intr_info, ex_no, error_code; 5189 unsigned long cr2, dr6; 5190 u32 vect_info; 5191 5192 vect_info = vmx->idt_vectoring_info; 5193 intr_info = vmx_get_intr_info(vcpu); 5194 5195 /* 5196 * Machine checks are handled by handle_exception_irqoff(), or by 5197 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by 5198 * vmx_vcpu_enter_exit(). 5199 */ 5200 if (is_machine_check(intr_info) || is_nmi(intr_info)) 5201 return 1; 5202 5203 /* 5204 * Queue the exception here instead of in handle_nm_fault_irqoff(). 5205 * This ensures the nested_vmx check is not skipped so vmexit can 5206 * be reflected to L1 (when it intercepts #NM) before reaching this 5207 * point. 5208 */ 5209 if (is_nm_fault(intr_info)) { 5210 kvm_queue_exception(vcpu, NM_VECTOR); 5211 return 1; 5212 } 5213 5214 if (is_invalid_opcode(intr_info)) 5215 return handle_ud(vcpu); 5216 5217 error_code = 0; 5218 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 5219 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5220 5221 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 5222 WARN_ON_ONCE(!enable_vmware_backdoor); 5223 5224 /* 5225 * VMware backdoor emulation on #GP interception only handles 5226 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 5227 * error code on #GP. 5228 */ 5229 if (error_code) { 5230 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 5231 return 1; 5232 } 5233 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 5234 } 5235 5236 /* 5237 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 5238 * MMIO, it is better to report an internal error. 5239 * See the comments in vmx_handle_exit. 5240 */ 5241 if ((vect_info & VECTORING_INFO_VALID_MASK) && 5242 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 5243 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5244 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 5245 vcpu->run->internal.ndata = 4; 5246 vcpu->run->internal.data[0] = vect_info; 5247 vcpu->run->internal.data[1] = intr_info; 5248 vcpu->run->internal.data[2] = error_code; 5249 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 5250 return 0; 5251 } 5252 5253 if (is_page_fault(intr_info)) { 5254 cr2 = vmx_get_exit_qual(vcpu); 5255 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 5256 /* 5257 * EPT will cause page fault only if we need to 5258 * detect illegal GPAs. 5259 */ 5260 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 5261 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 5262 return 1; 5263 } else 5264 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 5265 } 5266 5267 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 5268 5269 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 5270 return handle_rmode_exception(vcpu, ex_no, error_code); 5271 5272 switch (ex_no) { 5273 case DB_VECTOR: 5274 dr6 = vmx_get_exit_qual(vcpu); 5275 if (!(vcpu->guest_debug & 5276 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 5277 /* 5278 * If the #DB was due to ICEBP, a.k.a. INT1, skip the 5279 * instruction. ICEBP generates a trap-like #DB, but 5280 * despite its interception control being tied to #DB, 5281 * is an instruction intercept, i.e. the VM-Exit occurs 5282 * on the ICEBP itself. Use the inner "skip" helper to 5283 * avoid single-step #DB and MTF updates, as ICEBP is 5284 * higher priority. Note, skipping ICEBP still clears 5285 * STI and MOVSS blocking. 5286 * 5287 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS 5288 * if single-step is enabled in RFLAGS and STI or MOVSS 5289 * blocking is active, as the CPU doesn't set the bit 5290 * on VM-Exit due to #DB interception. VM-Entry has a 5291 * consistency check that a single-step #DB is pending 5292 * in this scenario as the previous instruction cannot 5293 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV 5294 * don't modify RFLAGS), therefore the one instruction 5295 * delay when activating single-step breakpoints must 5296 * have already expired. Note, the CPU sets/clears BS 5297 * as appropriate for all other VM-Exits types. 5298 */ 5299 if (is_icebp(intr_info)) 5300 WARN_ON(!skip_emulated_instruction(vcpu)); 5301 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && 5302 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5303 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) 5304 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 5305 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); 5306 5307 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 5308 return 1; 5309 } 5310 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 5311 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 5312 fallthrough; 5313 case BP_VECTOR: 5314 /* 5315 * Update instruction length as we may reinject #BP from 5316 * user space while in guest debugging mode. Reading it for 5317 * #DB as well causes no harm, it is not used in that case. 5318 */ 5319 vmx->vcpu.arch.event_exit_inst_len = 5320 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5321 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5322 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5323 kvm_run->debug.arch.exception = ex_no; 5324 break; 5325 case AC_VECTOR: 5326 if (vmx_guest_inject_ac(vcpu)) { 5327 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 5328 return 1; 5329 } 5330 5331 /* 5332 * Handle split lock. Depending on detection mode this will 5333 * either warn and disable split lock detection for this 5334 * task or force SIGBUS on it. 5335 */ 5336 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 5337 return 1; 5338 fallthrough; 5339 default: 5340 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 5341 kvm_run->ex.exception = ex_no; 5342 kvm_run->ex.error_code = error_code; 5343 break; 5344 } 5345 return 0; 5346 } 5347 5348 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 5349 { 5350 ++vcpu->stat.irq_exits; 5351 return 1; 5352 } 5353 5354 static int handle_triple_fault(struct kvm_vcpu *vcpu) 5355 { 5356 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5357 vcpu->mmio_needed = 0; 5358 return 0; 5359 } 5360 5361 static int handle_io(struct kvm_vcpu *vcpu) 5362 { 5363 unsigned long exit_qualification; 5364 int size, in, string; 5365 unsigned port; 5366 5367 exit_qualification = vmx_get_exit_qual(vcpu); 5368 string = (exit_qualification & 16) != 0; 5369 5370 ++vcpu->stat.io_exits; 5371 5372 if (string) 5373 return kvm_emulate_instruction(vcpu, 0); 5374 5375 port = exit_qualification >> 16; 5376 size = (exit_qualification & 7) + 1; 5377 in = (exit_qualification & 8) != 0; 5378 5379 return kvm_fast_pio(vcpu, size, port, in); 5380 } 5381 5382 static void 5383 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5384 { 5385 /* 5386 * Patch in the VMCALL instruction: 5387 */ 5388 hypercall[0] = 0x0f; 5389 hypercall[1] = 0x01; 5390 hypercall[2] = 0xc1; 5391 } 5392 5393 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5394 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5395 { 5396 if (is_guest_mode(vcpu)) { 5397 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5398 unsigned long orig_val = val; 5399 5400 /* 5401 * We get here when L2 changed cr0 in a way that did not change 5402 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5403 * but did change L0 shadowed bits. So we first calculate the 5404 * effective cr0 value that L1 would like to write into the 5405 * hardware. It consists of the L2-owned bits from the new 5406 * value combined with the L1-owned bits from L1's guest_cr0. 5407 */ 5408 val = (val & ~vmcs12->cr0_guest_host_mask) | 5409 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5410 5411 if (kvm_set_cr0(vcpu, val)) 5412 return 1; 5413 vmcs_writel(CR0_READ_SHADOW, orig_val); 5414 return 0; 5415 } else { 5416 return kvm_set_cr0(vcpu, val); 5417 } 5418 } 5419 5420 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5421 { 5422 if (is_guest_mode(vcpu)) { 5423 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5424 unsigned long orig_val = val; 5425 5426 /* analogously to handle_set_cr0 */ 5427 val = (val & ~vmcs12->cr4_guest_host_mask) | 5428 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5429 if (kvm_set_cr4(vcpu, val)) 5430 return 1; 5431 vmcs_writel(CR4_READ_SHADOW, orig_val); 5432 return 0; 5433 } else 5434 return kvm_set_cr4(vcpu, val); 5435 } 5436 5437 static int handle_desc(struct kvm_vcpu *vcpu) 5438 { 5439 /* 5440 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this 5441 * and other code needs to be updated if UMIP can be guest owned. 5442 */ 5443 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP); 5444 5445 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP)); 5446 return kvm_emulate_instruction(vcpu, 0); 5447 } 5448 5449 static int handle_cr(struct kvm_vcpu *vcpu) 5450 { 5451 unsigned long exit_qualification, val; 5452 int cr; 5453 int reg; 5454 int err; 5455 int ret; 5456 5457 exit_qualification = vmx_get_exit_qual(vcpu); 5458 cr = exit_qualification & 15; 5459 reg = (exit_qualification >> 8) & 15; 5460 switch ((exit_qualification >> 4) & 3) { 5461 case 0: /* mov to cr */ 5462 val = kvm_register_read(vcpu, reg); 5463 trace_kvm_cr_write(cr, val); 5464 switch (cr) { 5465 case 0: 5466 err = handle_set_cr0(vcpu, val); 5467 return kvm_complete_insn_gp(vcpu, err); 5468 case 3: 5469 WARN_ON_ONCE(enable_unrestricted_guest); 5470 5471 err = kvm_set_cr3(vcpu, val); 5472 return kvm_complete_insn_gp(vcpu, err); 5473 case 4: 5474 err = handle_set_cr4(vcpu, val); 5475 return kvm_complete_insn_gp(vcpu, err); 5476 case 8: { 5477 u8 cr8_prev = kvm_get_cr8(vcpu); 5478 u8 cr8 = (u8)val; 5479 err = kvm_set_cr8(vcpu, cr8); 5480 ret = kvm_complete_insn_gp(vcpu, err); 5481 if (lapic_in_kernel(vcpu)) 5482 return ret; 5483 if (cr8_prev <= cr8) 5484 return ret; 5485 /* 5486 * TODO: we might be squashing a 5487 * KVM_GUESTDBG_SINGLESTEP-triggered 5488 * KVM_EXIT_DEBUG here. 5489 */ 5490 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5491 return 0; 5492 } 5493 } 5494 break; 5495 case 2: /* clts */ 5496 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5497 return -EIO; 5498 case 1: /*mov from cr*/ 5499 switch (cr) { 5500 case 3: 5501 WARN_ON_ONCE(enable_unrestricted_guest); 5502 5503 val = kvm_read_cr3(vcpu); 5504 kvm_register_write(vcpu, reg, val); 5505 trace_kvm_cr_read(cr, val); 5506 return kvm_skip_emulated_instruction(vcpu); 5507 case 8: 5508 val = kvm_get_cr8(vcpu); 5509 kvm_register_write(vcpu, reg, val); 5510 trace_kvm_cr_read(cr, val); 5511 return kvm_skip_emulated_instruction(vcpu); 5512 } 5513 break; 5514 case 3: /* lmsw */ 5515 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5516 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val)); 5517 kvm_lmsw(vcpu, val); 5518 5519 return kvm_skip_emulated_instruction(vcpu); 5520 default: 5521 break; 5522 } 5523 vcpu->run->exit_reason = 0; 5524 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5525 (int)(exit_qualification >> 4) & 3, cr); 5526 return 0; 5527 } 5528 5529 static int handle_dr(struct kvm_vcpu *vcpu) 5530 { 5531 unsigned long exit_qualification; 5532 int dr, dr7, reg; 5533 int err = 1; 5534 5535 exit_qualification = vmx_get_exit_qual(vcpu); 5536 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5537 5538 /* First, if DR does not exist, trigger UD */ 5539 if (!kvm_require_dr(vcpu, dr)) 5540 return 1; 5541 5542 if (vmx_get_cpl(vcpu) > 0) 5543 goto out; 5544 5545 dr7 = vmcs_readl(GUEST_DR7); 5546 if (dr7 & DR7_GD) { 5547 /* 5548 * As the vm-exit takes precedence over the debug trap, we 5549 * need to emulate the latter, either for the host or the 5550 * guest debugging itself. 5551 */ 5552 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5553 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5554 vcpu->run->debug.arch.dr7 = dr7; 5555 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5556 vcpu->run->debug.arch.exception = DB_VECTOR; 5557 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5558 return 0; 5559 } else { 5560 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5561 return 1; 5562 } 5563 } 5564 5565 if (vcpu->guest_debug == 0) { 5566 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5567 5568 /* 5569 * No more DR vmexits; force a reload of the debug registers 5570 * and reenter on this instruction. The next vmexit will 5571 * retrieve the full state of the debug registers. 5572 */ 5573 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5574 return 1; 5575 } 5576 5577 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5578 if (exit_qualification & TYPE_MOV_FROM_DR) { 5579 unsigned long val; 5580 5581 kvm_get_dr(vcpu, dr, &val); 5582 kvm_register_write(vcpu, reg, val); 5583 err = 0; 5584 } else { 5585 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5586 } 5587 5588 out: 5589 return kvm_complete_insn_gp(vcpu, err); 5590 } 5591 5592 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5593 { 5594 get_debugreg(vcpu->arch.db[0], 0); 5595 get_debugreg(vcpu->arch.db[1], 1); 5596 get_debugreg(vcpu->arch.db[2], 2); 5597 get_debugreg(vcpu->arch.db[3], 3); 5598 get_debugreg(vcpu->arch.dr6, 6); 5599 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5600 5601 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5602 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5603 5604 /* 5605 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5606 * a stale dr6 from the guest. 5607 */ 5608 set_debugreg(DR6_RESERVED, 6); 5609 } 5610 5611 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5612 { 5613 vmcs_writel(GUEST_DR7, val); 5614 } 5615 5616 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5617 { 5618 kvm_apic_update_ppr(vcpu); 5619 return 1; 5620 } 5621 5622 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5623 { 5624 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5625 5626 kvm_make_request(KVM_REQ_EVENT, vcpu); 5627 5628 ++vcpu->stat.irq_window_exits; 5629 return 1; 5630 } 5631 5632 static int handle_invlpg(struct kvm_vcpu *vcpu) 5633 { 5634 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5635 5636 kvm_mmu_invlpg(vcpu, exit_qualification); 5637 return kvm_skip_emulated_instruction(vcpu); 5638 } 5639 5640 static int handle_apic_access(struct kvm_vcpu *vcpu) 5641 { 5642 if (likely(fasteoi)) { 5643 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5644 int access_type, offset; 5645 5646 access_type = exit_qualification & APIC_ACCESS_TYPE; 5647 offset = exit_qualification & APIC_ACCESS_OFFSET; 5648 /* 5649 * Sane guest uses MOV to write EOI, with written value 5650 * not cared. So make a short-circuit here by avoiding 5651 * heavy instruction emulation. 5652 */ 5653 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5654 (offset == APIC_EOI)) { 5655 kvm_lapic_set_eoi(vcpu); 5656 return kvm_skip_emulated_instruction(vcpu); 5657 } 5658 } 5659 return kvm_emulate_instruction(vcpu, 0); 5660 } 5661 5662 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5663 { 5664 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5665 int vector = exit_qualification & 0xff; 5666 5667 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5668 kvm_apic_set_eoi_accelerated(vcpu, vector); 5669 return 1; 5670 } 5671 5672 static int handle_apic_write(struct kvm_vcpu *vcpu) 5673 { 5674 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5675 5676 /* 5677 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and 5678 * hardware has done any necessary aliasing, offset adjustments, etc... 5679 * for the access. I.e. the correct value has already been written to 5680 * the vAPIC page for the correct 16-byte chunk. KVM needs only to 5681 * retrieve the register value and emulate the access. 5682 */ 5683 u32 offset = exit_qualification & 0xff0; 5684 5685 kvm_apic_write_nodecode(vcpu, offset); 5686 return 1; 5687 } 5688 5689 static int handle_task_switch(struct kvm_vcpu *vcpu) 5690 { 5691 struct vcpu_vmx *vmx = to_vmx(vcpu); 5692 unsigned long exit_qualification; 5693 bool has_error_code = false; 5694 u32 error_code = 0; 5695 u16 tss_selector; 5696 int reason, type, idt_v, idt_index; 5697 5698 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5699 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5700 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5701 5702 exit_qualification = vmx_get_exit_qual(vcpu); 5703 5704 reason = (u32)exit_qualification >> 30; 5705 if (reason == TASK_SWITCH_GATE && idt_v) { 5706 switch (type) { 5707 case INTR_TYPE_NMI_INTR: 5708 vcpu->arch.nmi_injected = false; 5709 vmx_set_nmi_mask(vcpu, true); 5710 break; 5711 case INTR_TYPE_EXT_INTR: 5712 case INTR_TYPE_SOFT_INTR: 5713 kvm_clear_interrupt_queue(vcpu); 5714 break; 5715 case INTR_TYPE_HARD_EXCEPTION: 5716 if (vmx->idt_vectoring_info & 5717 VECTORING_INFO_DELIVER_CODE_MASK) { 5718 has_error_code = true; 5719 error_code = 5720 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5721 } 5722 fallthrough; 5723 case INTR_TYPE_SOFT_EXCEPTION: 5724 kvm_clear_exception_queue(vcpu); 5725 break; 5726 default: 5727 break; 5728 } 5729 } 5730 tss_selector = exit_qualification; 5731 5732 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5733 type != INTR_TYPE_EXT_INTR && 5734 type != INTR_TYPE_NMI_INTR)) 5735 WARN_ON(!skip_emulated_instruction(vcpu)); 5736 5737 /* 5738 * TODO: What about debug traps on tss switch? 5739 * Are we supposed to inject them and update dr6? 5740 */ 5741 return kvm_task_switch(vcpu, tss_selector, 5742 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5743 reason, has_error_code, error_code); 5744 } 5745 5746 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5747 { 5748 unsigned long exit_qualification; 5749 gpa_t gpa; 5750 u64 error_code; 5751 5752 exit_qualification = vmx_get_exit_qual(vcpu); 5753 5754 /* 5755 * EPT violation happened while executing iret from NMI, 5756 * "blocked by NMI" bit has to be set before next VM entry. 5757 * There are errata that may cause this bit to not be set: 5758 * AAK134, BY25. 5759 */ 5760 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5761 enable_vnmi && 5762 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5763 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5764 5765 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5766 trace_kvm_page_fault(vcpu, gpa, exit_qualification); 5767 5768 /* Is it a read fault? */ 5769 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5770 ? PFERR_USER_MASK : 0; 5771 /* Is it a write fault? */ 5772 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5773 ? PFERR_WRITE_MASK : 0; 5774 /* Is it a fetch fault? */ 5775 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5776 ? PFERR_FETCH_MASK : 0; 5777 /* ept page table entry is present? */ 5778 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK) 5779 ? PFERR_PRESENT_MASK : 0; 5780 5781 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5782 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5783 5784 vcpu->arch.exit_qualification = exit_qualification; 5785 5786 /* 5787 * Check that the GPA doesn't exceed physical memory limits, as that is 5788 * a guest page fault. We have to emulate the instruction here, because 5789 * if the illegal address is that of a paging structure, then 5790 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5791 * would also use advanced VM-exit information for EPT violations to 5792 * reconstruct the page fault error code. 5793 */ 5794 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5795 return kvm_emulate_instruction(vcpu, 0); 5796 5797 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5798 } 5799 5800 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5801 { 5802 gpa_t gpa; 5803 5804 if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) 5805 return 1; 5806 5807 /* 5808 * A nested guest cannot optimize MMIO vmexits, because we have an 5809 * nGPA here instead of the required GPA. 5810 */ 5811 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5812 if (!is_guest_mode(vcpu) && 5813 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5814 trace_kvm_fast_mmio(gpa); 5815 return kvm_skip_emulated_instruction(vcpu); 5816 } 5817 5818 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5819 } 5820 5821 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5822 { 5823 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5824 return -EIO; 5825 5826 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5827 ++vcpu->stat.nmi_window_exits; 5828 kvm_make_request(KVM_REQ_EVENT, vcpu); 5829 5830 return 1; 5831 } 5832 5833 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) 5834 { 5835 struct vcpu_vmx *vmx = to_vmx(vcpu); 5836 5837 return vmx->emulation_required && !vmx->rmode.vm86_active && 5838 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected); 5839 } 5840 5841 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5842 { 5843 struct vcpu_vmx *vmx = to_vmx(vcpu); 5844 bool intr_window_requested; 5845 unsigned count = 130; 5846 5847 intr_window_requested = exec_controls_get(vmx) & 5848 CPU_BASED_INTR_WINDOW_EXITING; 5849 5850 while (vmx->emulation_required && count-- != 0) { 5851 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5852 return handle_interrupt_window(&vmx->vcpu); 5853 5854 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5855 return 1; 5856 5857 if (!kvm_emulate_instruction(vcpu, 0)) 5858 return 0; 5859 5860 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5861 kvm_prepare_emulation_failure_exit(vcpu); 5862 return 0; 5863 } 5864 5865 if (vcpu->arch.halt_request) { 5866 vcpu->arch.halt_request = 0; 5867 return kvm_emulate_halt_noskip(vcpu); 5868 } 5869 5870 /* 5871 * Note, return 1 and not 0, vcpu_run() will invoke 5872 * xfer_to_guest_mode() which will create a proper return 5873 * code. 5874 */ 5875 if (__xfer_to_guest_mode_work_pending()) 5876 return 1; 5877 } 5878 5879 return 1; 5880 } 5881 5882 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) 5883 { 5884 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5885 kvm_prepare_emulation_failure_exit(vcpu); 5886 return 0; 5887 } 5888 5889 return 1; 5890 } 5891 5892 static void grow_ple_window(struct kvm_vcpu *vcpu) 5893 { 5894 struct vcpu_vmx *vmx = to_vmx(vcpu); 5895 unsigned int old = vmx->ple_window; 5896 5897 vmx->ple_window = __grow_ple_window(old, ple_window, 5898 ple_window_grow, 5899 ple_window_max); 5900 5901 if (vmx->ple_window != old) { 5902 vmx->ple_window_dirty = true; 5903 trace_kvm_ple_window_update(vcpu->vcpu_id, 5904 vmx->ple_window, old); 5905 } 5906 } 5907 5908 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5909 { 5910 struct vcpu_vmx *vmx = to_vmx(vcpu); 5911 unsigned int old = vmx->ple_window; 5912 5913 vmx->ple_window = __shrink_ple_window(old, ple_window, 5914 ple_window_shrink, 5915 ple_window); 5916 5917 if (vmx->ple_window != old) { 5918 vmx->ple_window_dirty = true; 5919 trace_kvm_ple_window_update(vcpu->vcpu_id, 5920 vmx->ple_window, old); 5921 } 5922 } 5923 5924 /* 5925 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5926 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5927 */ 5928 static int handle_pause(struct kvm_vcpu *vcpu) 5929 { 5930 if (!kvm_pause_in_guest(vcpu->kvm)) 5931 grow_ple_window(vcpu); 5932 5933 /* 5934 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5935 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5936 * never set PAUSE_EXITING and just set PLE if supported, 5937 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5938 */ 5939 kvm_vcpu_on_spin(vcpu, true); 5940 return kvm_skip_emulated_instruction(vcpu); 5941 } 5942 5943 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5944 { 5945 return 1; 5946 } 5947 5948 static int handle_invpcid(struct kvm_vcpu *vcpu) 5949 { 5950 u32 vmx_instruction_info; 5951 unsigned long type; 5952 gva_t gva; 5953 struct { 5954 u64 pcid; 5955 u64 gla; 5956 } operand; 5957 int gpr_index; 5958 5959 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5960 kvm_queue_exception(vcpu, UD_VECTOR); 5961 return 1; 5962 } 5963 5964 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5965 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5966 type = kvm_register_read(vcpu, gpr_index); 5967 5968 /* According to the Intel instruction reference, the memory operand 5969 * is read even if it isn't needed (e.g., for type==all) 5970 */ 5971 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5972 vmx_instruction_info, false, 5973 sizeof(operand), &gva)) 5974 return 1; 5975 5976 return kvm_handle_invpcid(vcpu, type, gva); 5977 } 5978 5979 static int handle_pml_full(struct kvm_vcpu *vcpu) 5980 { 5981 unsigned long exit_qualification; 5982 5983 trace_kvm_pml_full(vcpu->vcpu_id); 5984 5985 exit_qualification = vmx_get_exit_qual(vcpu); 5986 5987 /* 5988 * PML buffer FULL happened while executing iret from NMI, 5989 * "blocked by NMI" bit has to be set before next VM entry. 5990 */ 5991 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5992 enable_vnmi && 5993 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5994 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5995 GUEST_INTR_STATE_NMI); 5996 5997 /* 5998 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5999 * here.., and there's no userspace involvement needed for PML. 6000 */ 6001 return 1; 6002 } 6003 6004 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 6005 { 6006 struct vcpu_vmx *vmx = to_vmx(vcpu); 6007 6008 if (!vmx->req_immediate_exit && 6009 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 6010 kvm_lapic_expired_hv_timer(vcpu); 6011 return EXIT_FASTPATH_REENTER_GUEST; 6012 } 6013 6014 return EXIT_FASTPATH_NONE; 6015 } 6016 6017 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 6018 { 6019 handle_fastpath_preemption_timer(vcpu); 6020 return 1; 6021 } 6022 6023 /* 6024 * When nested=0, all VMX instruction VM Exits filter here. The handlers 6025 * are overwritten by nested_vmx_setup() when nested=1. 6026 */ 6027 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 6028 { 6029 kvm_queue_exception(vcpu, UD_VECTOR); 6030 return 1; 6031 } 6032 6033 #ifndef CONFIG_X86_SGX_KVM 6034 static int handle_encls(struct kvm_vcpu *vcpu) 6035 { 6036 /* 6037 * SGX virtualization is disabled. There is no software enable bit for 6038 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 6039 * the guest from executing ENCLS (when SGX is supported by hardware). 6040 */ 6041 kvm_queue_exception(vcpu, UD_VECTOR); 6042 return 1; 6043 } 6044 #endif /* CONFIG_X86_SGX_KVM */ 6045 6046 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 6047 { 6048 /* 6049 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 6050 * VM-Exits. Unconditionally set the flag here and leave the handling to 6051 * vmx_handle_exit(). 6052 */ 6053 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 6054 return 1; 6055 } 6056 6057 static int handle_notify(struct kvm_vcpu *vcpu) 6058 { 6059 unsigned long exit_qual = vmx_get_exit_qual(vcpu); 6060 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID; 6061 6062 ++vcpu->stat.notify_window_exits; 6063 6064 /* 6065 * Notify VM exit happened while executing iret from NMI, 6066 * "blocked by NMI" bit has to be set before next VM entry. 6067 */ 6068 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI)) 6069 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6070 GUEST_INTR_STATE_NMI); 6071 6072 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER || 6073 context_invalid) { 6074 vcpu->run->exit_reason = KVM_EXIT_NOTIFY; 6075 vcpu->run->notify.flags = context_invalid ? 6076 KVM_NOTIFY_CONTEXT_INVALID : 0; 6077 return 0; 6078 } 6079 6080 return 1; 6081 } 6082 6083 /* 6084 * The exit handlers return 1 if the exit was handled fully and guest execution 6085 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 6086 * to be done to userspace and return 0. 6087 */ 6088 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 6089 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 6090 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 6091 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 6092 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 6093 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 6094 [EXIT_REASON_CR_ACCESS] = handle_cr, 6095 [EXIT_REASON_DR_ACCESS] = handle_dr, 6096 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 6097 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 6098 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 6099 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 6100 [EXIT_REASON_HLT] = kvm_emulate_halt, 6101 [EXIT_REASON_INVD] = kvm_emulate_invd, 6102 [EXIT_REASON_INVLPG] = handle_invlpg, 6103 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 6104 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 6105 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 6106 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 6107 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 6108 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 6109 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 6110 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 6111 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 6112 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 6113 [EXIT_REASON_VMON] = handle_vmx_instruction, 6114 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 6115 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 6116 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 6117 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 6118 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 6119 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 6120 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 6121 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 6122 [EXIT_REASON_GDTR_IDTR] = handle_desc, 6123 [EXIT_REASON_LDTR_TR] = handle_desc, 6124 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 6125 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 6126 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 6127 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 6128 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 6129 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 6130 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 6131 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 6132 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 6133 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 6134 [EXIT_REASON_PML_FULL] = handle_pml_full, 6135 [EXIT_REASON_INVPCID] = handle_invpcid, 6136 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 6137 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 6138 [EXIT_REASON_ENCLS] = handle_encls, 6139 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 6140 [EXIT_REASON_NOTIFY] = handle_notify, 6141 }; 6142 6143 static const int kvm_vmx_max_exit_handlers = 6144 ARRAY_SIZE(kvm_vmx_exit_handlers); 6145 6146 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 6147 u64 *info1, u64 *info2, 6148 u32 *intr_info, u32 *error_code) 6149 { 6150 struct vcpu_vmx *vmx = to_vmx(vcpu); 6151 6152 *reason = vmx->exit_reason.full; 6153 *info1 = vmx_get_exit_qual(vcpu); 6154 if (!(vmx->exit_reason.failed_vmentry)) { 6155 *info2 = vmx->idt_vectoring_info; 6156 *intr_info = vmx_get_intr_info(vcpu); 6157 if (is_exception_with_error_code(*intr_info)) 6158 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 6159 else 6160 *error_code = 0; 6161 } else { 6162 *info2 = 0; 6163 *intr_info = 0; 6164 *error_code = 0; 6165 } 6166 } 6167 6168 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 6169 { 6170 if (vmx->pml_pg) { 6171 __free_page(vmx->pml_pg); 6172 vmx->pml_pg = NULL; 6173 } 6174 } 6175 6176 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 6177 { 6178 struct vcpu_vmx *vmx = to_vmx(vcpu); 6179 u64 *pml_buf; 6180 u16 pml_idx; 6181 6182 pml_idx = vmcs_read16(GUEST_PML_INDEX); 6183 6184 /* Do nothing if PML buffer is empty */ 6185 if (pml_idx == (PML_ENTITY_NUM - 1)) 6186 return; 6187 6188 /* PML index always points to next available PML buffer entity */ 6189 if (pml_idx >= PML_ENTITY_NUM) 6190 pml_idx = 0; 6191 else 6192 pml_idx++; 6193 6194 pml_buf = page_address(vmx->pml_pg); 6195 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 6196 u64 gpa; 6197 6198 gpa = pml_buf[pml_idx]; 6199 WARN_ON(gpa & (PAGE_SIZE - 1)); 6200 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 6201 } 6202 6203 /* reset PML index */ 6204 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 6205 } 6206 6207 static void vmx_dump_sel(char *name, uint32_t sel) 6208 { 6209 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 6210 name, vmcs_read16(sel), 6211 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 6212 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 6213 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 6214 } 6215 6216 static void vmx_dump_dtsel(char *name, uint32_t limit) 6217 { 6218 pr_err("%s limit=0x%08x, base=0x%016lx\n", 6219 name, vmcs_read32(limit), 6220 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 6221 } 6222 6223 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 6224 { 6225 unsigned int i; 6226 struct vmx_msr_entry *e; 6227 6228 pr_err("MSR %s:\n", name); 6229 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 6230 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 6231 } 6232 6233 void dump_vmcs(struct kvm_vcpu *vcpu) 6234 { 6235 struct vcpu_vmx *vmx = to_vmx(vcpu); 6236 u32 vmentry_ctl, vmexit_ctl; 6237 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 6238 u64 tertiary_exec_control; 6239 unsigned long cr4; 6240 int efer_slot; 6241 6242 if (!dump_invalid_vmcs) { 6243 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 6244 return; 6245 } 6246 6247 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 6248 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 6249 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 6250 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 6251 cr4 = vmcs_readl(GUEST_CR4); 6252 6253 if (cpu_has_secondary_exec_ctrls()) 6254 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 6255 else 6256 secondary_exec_control = 0; 6257 6258 if (cpu_has_tertiary_exec_ctrls()) 6259 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL); 6260 else 6261 tertiary_exec_control = 0; 6262 6263 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 6264 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 6265 pr_err("*** Guest State ***\n"); 6266 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6267 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 6268 vmcs_readl(CR0_GUEST_HOST_MASK)); 6269 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6270 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 6271 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 6272 if (cpu_has_vmx_ept()) { 6273 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 6274 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 6275 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 6276 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 6277 } 6278 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 6279 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 6280 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 6281 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 6282 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6283 vmcs_readl(GUEST_SYSENTER_ESP), 6284 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 6285 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 6286 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 6287 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 6288 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 6289 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 6290 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 6291 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 6292 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 6293 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 6294 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 6295 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 6296 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 6297 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 6298 else if (efer_slot >= 0) 6299 pr_err("EFER= 0x%016llx (autoload)\n", 6300 vmx->msr_autoload.guest.val[efer_slot].value); 6301 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 6302 pr_err("EFER= 0x%016llx (effective)\n", 6303 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 6304 else 6305 pr_err("EFER= 0x%016llx (effective)\n", 6306 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 6307 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 6308 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 6309 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 6310 vmcs_read64(GUEST_IA32_DEBUGCTL), 6311 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 6312 if (cpu_has_load_perf_global_ctrl() && 6313 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 6314 pr_err("PerfGlobCtl = 0x%016llx\n", 6315 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 6316 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 6317 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 6318 pr_err("Interruptibility = %08x ActivityState = %08x\n", 6319 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 6320 vmcs_read32(GUEST_ACTIVITY_STATE)); 6321 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 6322 pr_err("InterruptStatus = %04x\n", 6323 vmcs_read16(GUEST_INTR_STATUS)); 6324 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 6325 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 6326 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 6327 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 6328 6329 pr_err("*** Host State ***\n"); 6330 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 6331 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 6332 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 6333 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 6334 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 6335 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 6336 vmcs_read16(HOST_TR_SELECTOR)); 6337 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 6338 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 6339 vmcs_readl(HOST_TR_BASE)); 6340 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 6341 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 6342 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 6343 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 6344 vmcs_readl(HOST_CR4)); 6345 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6346 vmcs_readl(HOST_IA32_SYSENTER_ESP), 6347 vmcs_read32(HOST_IA32_SYSENTER_CS), 6348 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 6349 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 6350 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 6351 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 6352 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 6353 if (cpu_has_load_perf_global_ctrl() && 6354 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 6355 pr_err("PerfGlobCtl = 0x%016llx\n", 6356 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 6357 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 6358 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 6359 6360 pr_err("*** Control State ***\n"); 6361 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n", 6362 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control); 6363 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n", 6364 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl); 6365 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 6366 vmcs_read32(EXCEPTION_BITMAP), 6367 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 6368 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 6369 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 6370 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6371 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 6372 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 6373 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 6374 vmcs_read32(VM_EXIT_INTR_INFO), 6375 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 6376 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 6377 pr_err(" reason=%08x qualification=%016lx\n", 6378 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 6379 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 6380 vmcs_read32(IDT_VECTORING_INFO_FIELD), 6381 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 6382 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 6383 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 6384 pr_err("TSC Multiplier = 0x%016llx\n", 6385 vmcs_read64(TSC_MULTIPLIER)); 6386 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 6387 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 6388 u16 status = vmcs_read16(GUEST_INTR_STATUS); 6389 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 6390 } 6391 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 6392 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 6393 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 6394 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 6395 } 6396 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 6397 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 6398 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 6399 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 6400 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 6401 pr_err("PLE Gap=%08x Window=%08x\n", 6402 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 6403 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 6404 pr_err("Virtual processor ID = 0x%04x\n", 6405 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 6406 } 6407 6408 /* 6409 * The guest has exited. See if we can fix it or if we need userspace 6410 * assistance. 6411 */ 6412 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6413 { 6414 struct vcpu_vmx *vmx = to_vmx(vcpu); 6415 union vmx_exit_reason exit_reason = vmx->exit_reason; 6416 u32 vectoring_info = vmx->idt_vectoring_info; 6417 u16 exit_handler_index; 6418 6419 /* 6420 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 6421 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 6422 * querying dirty_bitmap, we only need to kick all vcpus out of guest 6423 * mode as if vcpus is in root mode, the PML buffer must has been 6424 * flushed already. Note, PML is never enabled in hardware while 6425 * running L2. 6426 */ 6427 if (enable_pml && !is_guest_mode(vcpu)) 6428 vmx_flush_pml_buffer(vcpu); 6429 6430 /* 6431 * KVM should never reach this point with a pending nested VM-Enter. 6432 * More specifically, short-circuiting VM-Entry to emulate L2 due to 6433 * invalid guest state should never happen as that means KVM knowingly 6434 * allowed a nested VM-Enter with an invalid vmcs12. More below. 6435 */ 6436 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 6437 return -EIO; 6438 6439 if (is_guest_mode(vcpu)) { 6440 /* 6441 * PML is never enabled when running L2, bail immediately if a 6442 * PML full exit occurs as something is horribly wrong. 6443 */ 6444 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6445 goto unexpected_vmexit; 6446 6447 /* 6448 * The host physical addresses of some pages of guest memory 6449 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6450 * Page). The CPU may write to these pages via their host 6451 * physical address while L2 is running, bypassing any 6452 * address-translation-based dirty tracking (e.g. EPT write 6453 * protection). 6454 * 6455 * Mark them dirty on every exit from L2 to prevent them from 6456 * getting out of sync with dirty tracking. 6457 */ 6458 nested_mark_vmcs12_pages_dirty(vcpu); 6459 6460 /* 6461 * Synthesize a triple fault if L2 state is invalid. In normal 6462 * operation, nested VM-Enter rejects any attempt to enter L2 6463 * with invalid state. However, those checks are skipped if 6464 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6465 * L2 state is invalid, it means either L1 modified SMRAM state 6466 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6467 * doing so is architecturally allowed in the RSM case, and is 6468 * the least awful solution for the userspace case without 6469 * risking false positives. 6470 */ 6471 if (vmx->emulation_required) { 6472 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6473 return 1; 6474 } 6475 6476 if (nested_vmx_reflect_vmexit(vcpu)) 6477 return 1; 6478 } 6479 6480 /* If guest state is invalid, start emulating. L2 is handled above. */ 6481 if (vmx->emulation_required) 6482 return handle_invalid_guest_state(vcpu); 6483 6484 if (exit_reason.failed_vmentry) { 6485 dump_vmcs(vcpu); 6486 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6487 vcpu->run->fail_entry.hardware_entry_failure_reason 6488 = exit_reason.full; 6489 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6490 return 0; 6491 } 6492 6493 if (unlikely(vmx->fail)) { 6494 dump_vmcs(vcpu); 6495 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6496 vcpu->run->fail_entry.hardware_entry_failure_reason 6497 = vmcs_read32(VM_INSTRUCTION_ERROR); 6498 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6499 return 0; 6500 } 6501 6502 /* 6503 * Note: 6504 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6505 * delivery event since it indicates guest is accessing MMIO. 6506 * The vm-exit can be triggered again after return to guest that 6507 * will cause infinite loop. 6508 */ 6509 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6510 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6511 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6512 exit_reason.basic != EXIT_REASON_PML_FULL && 6513 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6514 exit_reason.basic != EXIT_REASON_TASK_SWITCH && 6515 exit_reason.basic != EXIT_REASON_NOTIFY)) { 6516 int ndata = 3; 6517 6518 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6519 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6520 vcpu->run->internal.data[0] = vectoring_info; 6521 vcpu->run->internal.data[1] = exit_reason.full; 6522 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 6523 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6524 vcpu->run->internal.data[ndata++] = 6525 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6526 } 6527 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6528 vcpu->run->internal.ndata = ndata; 6529 return 0; 6530 } 6531 6532 if (unlikely(!enable_vnmi && 6533 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6534 if (!vmx_interrupt_blocked(vcpu)) { 6535 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6536 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6537 vcpu->arch.nmi_pending) { 6538 /* 6539 * This CPU don't support us in finding the end of an 6540 * NMI-blocked window if the guest runs with IRQs 6541 * disabled. So we pull the trigger after 1 s of 6542 * futile waiting, but inform the user about this. 6543 */ 6544 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6545 "state on VCPU %d after 1 s timeout\n", 6546 __func__, vcpu->vcpu_id); 6547 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6548 } 6549 } 6550 6551 if (exit_fastpath != EXIT_FASTPATH_NONE) 6552 return 1; 6553 6554 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6555 goto unexpected_vmexit; 6556 #ifdef CONFIG_RETPOLINE 6557 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6558 return kvm_emulate_wrmsr(vcpu); 6559 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6560 return handle_preemption_timer(vcpu); 6561 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6562 return handle_interrupt_window(vcpu); 6563 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6564 return handle_external_interrupt(vcpu); 6565 else if (exit_reason.basic == EXIT_REASON_HLT) 6566 return kvm_emulate_halt(vcpu); 6567 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6568 return handle_ept_misconfig(vcpu); 6569 #endif 6570 6571 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6572 kvm_vmx_max_exit_handlers); 6573 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6574 goto unexpected_vmexit; 6575 6576 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6577 6578 unexpected_vmexit: 6579 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6580 exit_reason.full); 6581 dump_vmcs(vcpu); 6582 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6583 vcpu->run->internal.suberror = 6584 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6585 vcpu->run->internal.ndata = 2; 6586 vcpu->run->internal.data[0] = exit_reason.full; 6587 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6588 return 0; 6589 } 6590 6591 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6592 { 6593 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6594 6595 /* 6596 * Exit to user space when bus lock detected to inform that there is 6597 * a bus lock in guest. 6598 */ 6599 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6600 if (ret > 0) 6601 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6602 6603 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6604 return 0; 6605 } 6606 return ret; 6607 } 6608 6609 /* 6610 * Software based L1D cache flush which is used when microcode providing 6611 * the cache control MSR is not loaded. 6612 * 6613 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6614 * flush it is required to read in 64 KiB because the replacement algorithm 6615 * is not exactly LRU. This could be sized at runtime via topology 6616 * information but as all relevant affected CPUs have 32KiB L1D cache size 6617 * there is no point in doing so. 6618 */ 6619 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6620 { 6621 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6622 6623 /* 6624 * This code is only executed when the flush mode is 'cond' or 6625 * 'always' 6626 */ 6627 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6628 bool flush_l1d; 6629 6630 /* 6631 * Clear the per-vcpu flush bit, it gets set again 6632 * either from vcpu_run() or from one of the unsafe 6633 * VMEXIT handlers. 6634 */ 6635 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6636 vcpu->arch.l1tf_flush_l1d = false; 6637 6638 /* 6639 * Clear the per-cpu flush bit, it gets set again from 6640 * the interrupt handlers. 6641 */ 6642 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6643 kvm_clear_cpu_l1tf_flush_l1d(); 6644 6645 if (!flush_l1d) 6646 return; 6647 } 6648 6649 vcpu->stat.l1d_flush++; 6650 6651 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6652 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6653 return; 6654 } 6655 6656 asm volatile( 6657 /* First ensure the pages are in the TLB */ 6658 "xorl %%eax, %%eax\n" 6659 ".Lpopulate_tlb:\n\t" 6660 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6661 "addl $4096, %%eax\n\t" 6662 "cmpl %%eax, %[size]\n\t" 6663 "jne .Lpopulate_tlb\n\t" 6664 "xorl %%eax, %%eax\n\t" 6665 "cpuid\n\t" 6666 /* Now fill the cache */ 6667 "xorl %%eax, %%eax\n" 6668 ".Lfill_cache:\n" 6669 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6670 "addl $64, %%eax\n\t" 6671 "cmpl %%eax, %[size]\n\t" 6672 "jne .Lfill_cache\n\t" 6673 "lfence\n" 6674 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6675 [size] "r" (size) 6676 : "eax", "ebx", "ecx", "edx"); 6677 } 6678 6679 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6680 { 6681 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6682 int tpr_threshold; 6683 6684 if (is_guest_mode(vcpu) && 6685 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6686 return; 6687 6688 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6689 if (is_guest_mode(vcpu)) 6690 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6691 else 6692 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6693 } 6694 6695 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6696 { 6697 struct vcpu_vmx *vmx = to_vmx(vcpu); 6698 u32 sec_exec_control; 6699 6700 if (!lapic_in_kernel(vcpu)) 6701 return; 6702 6703 if (!flexpriority_enabled && 6704 !cpu_has_vmx_virtualize_x2apic_mode()) 6705 return; 6706 6707 /* Postpone execution until vmcs01 is the current VMCS. */ 6708 if (is_guest_mode(vcpu)) { 6709 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6710 return; 6711 } 6712 6713 sec_exec_control = secondary_exec_controls_get(vmx); 6714 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6715 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6716 6717 switch (kvm_get_apic_mode(vcpu)) { 6718 case LAPIC_MODE_INVALID: 6719 WARN_ONCE(true, "Invalid local APIC state"); 6720 break; 6721 case LAPIC_MODE_DISABLED: 6722 break; 6723 case LAPIC_MODE_XAPIC: 6724 if (flexpriority_enabled) { 6725 sec_exec_control |= 6726 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6727 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6728 6729 /* 6730 * Flush the TLB, reloading the APIC access page will 6731 * only do so if its physical address has changed, but 6732 * the guest may have inserted a non-APIC mapping into 6733 * the TLB while the APIC access page was disabled. 6734 */ 6735 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6736 } 6737 break; 6738 case LAPIC_MODE_X2APIC: 6739 if (cpu_has_vmx_virtualize_x2apic_mode()) 6740 sec_exec_control |= 6741 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6742 break; 6743 } 6744 secondary_exec_controls_set(vmx, sec_exec_control); 6745 6746 vmx_update_msr_bitmap_x2apic(vcpu); 6747 } 6748 6749 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6750 { 6751 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT; 6752 struct kvm *kvm = vcpu->kvm; 6753 struct kvm_memslots *slots = kvm_memslots(kvm); 6754 struct kvm_memory_slot *slot; 6755 unsigned long mmu_seq; 6756 kvm_pfn_t pfn; 6757 6758 /* Defer reload until vmcs01 is the current VMCS. */ 6759 if (is_guest_mode(vcpu)) { 6760 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6761 return; 6762 } 6763 6764 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6765 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6766 return; 6767 6768 /* 6769 * Grab the memslot so that the hva lookup for the mmu_notifier retry 6770 * is guaranteed to use the same memslot as the pfn lookup, i.e. rely 6771 * on the pfn lookup's validation of the memslot to ensure a valid hva 6772 * is used for the retry check. 6773 */ 6774 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT); 6775 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 6776 return; 6777 6778 /* 6779 * Ensure that the mmu_notifier sequence count is read before KVM 6780 * retrieves the pfn from the primary MMU. Note, the memslot is 6781 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb() 6782 * in kvm_mmu_invalidate_end(). 6783 */ 6784 mmu_seq = kvm->mmu_invalidate_seq; 6785 smp_rmb(); 6786 6787 /* 6788 * No need to retry if the memslot does not exist or is invalid. KVM 6789 * controls the APIC-access page memslot, and only deletes the memslot 6790 * if APICv is permanently inhibited, i.e. the memslot won't reappear. 6791 */ 6792 pfn = gfn_to_pfn_memslot(slot, gfn); 6793 if (is_error_noslot_pfn(pfn)) 6794 return; 6795 6796 read_lock(&vcpu->kvm->mmu_lock); 6797 if (mmu_invalidate_retry_hva(kvm, mmu_seq, 6798 gfn_to_hva_memslot(slot, gfn))) { 6799 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6800 read_unlock(&vcpu->kvm->mmu_lock); 6801 goto out; 6802 } 6803 6804 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn)); 6805 read_unlock(&vcpu->kvm->mmu_lock); 6806 6807 /* 6808 * No need for a manual TLB flush at this point, KVM has already done a 6809 * flush if there were SPTEs pointing at the previous page. 6810 */ 6811 out: 6812 /* 6813 * Do not pin apic access page in memory, the MMU notifier 6814 * will call us again if it is migrated or swapped out. 6815 */ 6816 kvm_release_pfn_clean(pfn); 6817 } 6818 6819 static void vmx_hwapic_isr_update(int max_isr) 6820 { 6821 u16 status; 6822 u8 old; 6823 6824 if (max_isr == -1) 6825 max_isr = 0; 6826 6827 status = vmcs_read16(GUEST_INTR_STATUS); 6828 old = status >> 8; 6829 if (max_isr != old) { 6830 status &= 0xff; 6831 status |= max_isr << 8; 6832 vmcs_write16(GUEST_INTR_STATUS, status); 6833 } 6834 } 6835 6836 static void vmx_set_rvi(int vector) 6837 { 6838 u16 status; 6839 u8 old; 6840 6841 if (vector == -1) 6842 vector = 0; 6843 6844 status = vmcs_read16(GUEST_INTR_STATUS); 6845 old = (u8)status & 0xff; 6846 if ((u8)vector != old) { 6847 status &= ~0xff; 6848 status |= (u8)vector; 6849 vmcs_write16(GUEST_INTR_STATUS, status); 6850 } 6851 } 6852 6853 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6854 { 6855 /* 6856 * When running L2, updating RVI is only relevant when 6857 * vmcs12 virtual-interrupt-delivery enabled. 6858 * However, it can be enabled only when L1 also 6859 * intercepts external-interrupts and in that case 6860 * we should not update vmcs02 RVI but instead intercept 6861 * interrupt. Therefore, do nothing when running L2. 6862 */ 6863 if (!is_guest_mode(vcpu)) 6864 vmx_set_rvi(max_irr); 6865 } 6866 6867 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6868 { 6869 struct vcpu_vmx *vmx = to_vmx(vcpu); 6870 int max_irr; 6871 bool got_posted_interrupt; 6872 6873 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6874 return -EIO; 6875 6876 if (pi_test_on(&vmx->pi_desc)) { 6877 pi_clear_on(&vmx->pi_desc); 6878 /* 6879 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6880 * But on x86 this is just a compiler barrier anyway. 6881 */ 6882 smp_mb__after_atomic(); 6883 got_posted_interrupt = 6884 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6885 } else { 6886 max_irr = kvm_lapic_find_highest_irr(vcpu); 6887 got_posted_interrupt = false; 6888 } 6889 6890 /* 6891 * Newly recognized interrupts are injected via either virtual interrupt 6892 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6893 * disabled in two cases: 6894 * 6895 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6896 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6897 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6898 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6899 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6900 * 6901 * 2) If APICv is disabled for this vCPU, assigned devices may still 6902 * attempt to post interrupts. The posted interrupt vector will cause 6903 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6904 */ 6905 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6906 vmx_set_rvi(max_irr); 6907 else if (got_posted_interrupt) 6908 kvm_make_request(KVM_REQ_EVENT, vcpu); 6909 6910 return max_irr; 6911 } 6912 6913 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6914 { 6915 if (!kvm_vcpu_apicv_active(vcpu)) 6916 return; 6917 6918 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6919 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6920 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6921 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6922 } 6923 6924 static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu) 6925 { 6926 struct vcpu_vmx *vmx = to_vmx(vcpu); 6927 6928 pi_clear_on(&vmx->pi_desc); 6929 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6930 } 6931 6932 void vmx_do_interrupt_irqoff(unsigned long entry); 6933 void vmx_do_nmi_irqoff(void); 6934 6935 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6936 { 6937 /* 6938 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6939 * MSR value is not clobbered by the host activity before the guest 6940 * has chance to consume it. 6941 * 6942 * Do not blindly read xfd_err here, since this exception might 6943 * be caused by L1 interception on a platform which doesn't 6944 * support xfd at all. 6945 * 6946 * Do it conditionally upon guest_fpu::xfd. xfd_err matters 6947 * only when xfd contains a non-zero value. 6948 * 6949 * Queuing exception is done in vmx_handle_exit. See comment there. 6950 */ 6951 if (vcpu->arch.guest_fpu.fpstate->xfd) 6952 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 6953 } 6954 6955 static void handle_exception_irqoff(struct vcpu_vmx *vmx) 6956 { 6957 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6958 6959 /* if exit due to PF check for async PF */ 6960 if (is_page_fault(intr_info)) 6961 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6962 /* if exit due to NM, handle before interrupts are enabled */ 6963 else if (is_nm_fault(intr_info)) 6964 handle_nm_fault_irqoff(&vmx->vcpu); 6965 /* Handle machine checks before interrupts are enabled */ 6966 else if (is_machine_check(intr_info)) 6967 kvm_machine_check(); 6968 } 6969 6970 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6971 { 6972 u32 intr_info = vmx_get_intr_info(vcpu); 6973 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6974 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6975 6976 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6977 "unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6978 return; 6979 6980 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 6981 vmx_do_interrupt_irqoff(gate_offset(desc)); 6982 kvm_after_interrupt(vcpu); 6983 6984 vcpu->arch.at_instruction_boundary = true; 6985 } 6986 6987 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6988 { 6989 struct vcpu_vmx *vmx = to_vmx(vcpu); 6990 6991 if (vmx->emulation_required) 6992 return; 6993 6994 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6995 handle_external_interrupt_irqoff(vcpu); 6996 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6997 handle_exception_irqoff(vmx); 6998 } 6999 7000 /* 7001 * The kvm parameter can be NULL (module initialization, or invocation before 7002 * VM creation). Be sure to check the kvm parameter before using it. 7003 */ 7004 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 7005 { 7006 switch (index) { 7007 case MSR_IA32_SMBASE: 7008 if (!IS_ENABLED(CONFIG_KVM_SMM)) 7009 return false; 7010 /* 7011 * We cannot do SMM unless we can run the guest in big 7012 * real mode. 7013 */ 7014 return enable_unrestricted_guest || emulate_invalid_guest_state; 7015 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 7016 return nested; 7017 case MSR_AMD64_VIRT_SPEC_CTRL: 7018 case MSR_AMD64_TSC_RATIO: 7019 /* This is AMD only. */ 7020 return false; 7021 default: 7022 return true; 7023 } 7024 } 7025 7026 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 7027 { 7028 u32 exit_intr_info; 7029 bool unblock_nmi; 7030 u8 vector; 7031 bool idtv_info_valid; 7032 7033 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7034 7035 if (enable_vnmi) { 7036 if (vmx->loaded_vmcs->nmi_known_unmasked) 7037 return; 7038 7039 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 7040 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 7041 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 7042 /* 7043 * SDM 3: 27.7.1.2 (September 2008) 7044 * Re-set bit "block by NMI" before VM entry if vmexit caused by 7045 * a guest IRET fault. 7046 * SDM 3: 23.2.2 (September 2008) 7047 * Bit 12 is undefined in any of the following cases: 7048 * If the VM exit sets the valid bit in the IDT-vectoring 7049 * information field. 7050 * If the VM exit is due to a double fault. 7051 */ 7052 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 7053 vector != DF_VECTOR && !idtv_info_valid) 7054 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 7055 GUEST_INTR_STATE_NMI); 7056 else 7057 vmx->loaded_vmcs->nmi_known_unmasked = 7058 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 7059 & GUEST_INTR_STATE_NMI); 7060 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 7061 vmx->loaded_vmcs->vnmi_blocked_time += 7062 ktime_to_ns(ktime_sub(ktime_get(), 7063 vmx->loaded_vmcs->entry_time)); 7064 } 7065 7066 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 7067 u32 idt_vectoring_info, 7068 int instr_len_field, 7069 int error_code_field) 7070 { 7071 u8 vector; 7072 int type; 7073 bool idtv_info_valid; 7074 7075 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7076 7077 vcpu->arch.nmi_injected = false; 7078 kvm_clear_exception_queue(vcpu); 7079 kvm_clear_interrupt_queue(vcpu); 7080 7081 if (!idtv_info_valid) 7082 return; 7083 7084 kvm_make_request(KVM_REQ_EVENT, vcpu); 7085 7086 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 7087 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 7088 7089 switch (type) { 7090 case INTR_TYPE_NMI_INTR: 7091 vcpu->arch.nmi_injected = true; 7092 /* 7093 * SDM 3: 27.7.1.2 (September 2008) 7094 * Clear bit "block by NMI" before VM entry if a NMI 7095 * delivery faulted. 7096 */ 7097 vmx_set_nmi_mask(vcpu, false); 7098 break; 7099 case INTR_TYPE_SOFT_EXCEPTION: 7100 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7101 fallthrough; 7102 case INTR_TYPE_HARD_EXCEPTION: 7103 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 7104 u32 err = vmcs_read32(error_code_field); 7105 kvm_requeue_exception_e(vcpu, vector, err); 7106 } else 7107 kvm_requeue_exception(vcpu, vector); 7108 break; 7109 case INTR_TYPE_SOFT_INTR: 7110 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7111 fallthrough; 7112 case INTR_TYPE_EXT_INTR: 7113 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 7114 break; 7115 default: 7116 break; 7117 } 7118 } 7119 7120 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 7121 { 7122 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 7123 VM_EXIT_INSTRUCTION_LEN, 7124 IDT_VECTORING_ERROR_CODE); 7125 } 7126 7127 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 7128 { 7129 __vmx_complete_interrupts(vcpu, 7130 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 7131 VM_ENTRY_INSTRUCTION_LEN, 7132 VM_ENTRY_EXCEPTION_ERROR_CODE); 7133 7134 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 7135 } 7136 7137 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 7138 { 7139 int i, nr_msrs; 7140 struct perf_guest_switch_msr *msrs; 7141 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu); 7142 7143 pmu->host_cross_mapped_mask = 0; 7144 if (pmu->pebs_enable & pmu->global_ctrl) 7145 intel_pmu_cross_mapped_check(pmu); 7146 7147 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 7148 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu); 7149 if (!msrs) 7150 return; 7151 7152 for (i = 0; i < nr_msrs; i++) 7153 if (msrs[i].host == msrs[i].guest) 7154 clear_atomic_switch_msr(vmx, msrs[i].msr); 7155 else 7156 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 7157 msrs[i].host, false); 7158 } 7159 7160 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 7161 { 7162 struct vcpu_vmx *vmx = to_vmx(vcpu); 7163 u64 tscl; 7164 u32 delta_tsc; 7165 7166 if (vmx->req_immediate_exit) { 7167 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 7168 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7169 } else if (vmx->hv_deadline_tsc != -1) { 7170 tscl = rdtsc(); 7171 if (vmx->hv_deadline_tsc > tscl) 7172 /* set_hv_timer ensures the delta fits in 32-bits */ 7173 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 7174 cpu_preemption_timer_multi); 7175 else 7176 delta_tsc = 0; 7177 7178 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 7179 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7180 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 7181 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 7182 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 7183 } 7184 } 7185 7186 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 7187 { 7188 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 7189 vmx->loaded_vmcs->host_state.rsp = host_rsp; 7190 vmcs_writel(HOST_RSP, host_rsp); 7191 } 7192 } 7193 7194 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, 7195 unsigned int flags) 7196 { 7197 u64 hostval = this_cpu_read(x86_spec_ctrl_current); 7198 7199 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) 7200 return; 7201 7202 if (flags & VMX_RUN_SAVE_SPEC_CTRL) 7203 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL); 7204 7205 /* 7206 * If the guest/host SPEC_CTRL values differ, restore the host value. 7207 * 7208 * For legacy IBRS, the IBRS bit always needs to be written after 7209 * transitioning from a less privileged predictor mode, regardless of 7210 * whether the guest/host values differ. 7211 */ 7212 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) || 7213 vmx->spec_ctrl != hostval) 7214 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval); 7215 7216 barrier_nospec(); 7217 } 7218 7219 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 7220 { 7221 switch (to_vmx(vcpu)->exit_reason.basic) { 7222 case EXIT_REASON_MSR_WRITE: 7223 return handle_fastpath_set_msr_irqoff(vcpu); 7224 case EXIT_REASON_PREEMPTION_TIMER: 7225 return handle_fastpath_preemption_timer(vcpu); 7226 default: 7227 return EXIT_FASTPATH_NONE; 7228 } 7229 } 7230 7231 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 7232 unsigned int flags) 7233 { 7234 struct vcpu_vmx *vmx = to_vmx(vcpu); 7235 7236 guest_state_enter_irqoff(); 7237 7238 /* 7239 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW 7240 * mitigation for MDS is done late in VMentry and is still 7241 * executed in spite of L1D Flush. This is because an extra VERW 7242 * should not matter much after the big hammer L1D Flush. 7243 */ 7244 if (static_branch_unlikely(&vmx_l1d_should_flush)) 7245 vmx_l1d_flush(vcpu); 7246 else if (static_branch_unlikely(&mmio_stale_data_clear) && 7247 kvm_arch_has_assigned_device(vcpu->kvm)) 7248 mds_clear_cpu_buffers(); 7249 7250 vmx_disable_fb_clear(vmx); 7251 7252 if (vcpu->arch.cr2 != native_read_cr2()) 7253 native_write_cr2(vcpu->arch.cr2); 7254 7255 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 7256 flags); 7257 7258 vcpu->arch.cr2 = native_read_cr2(); 7259 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 7260 7261 vmx->idt_vectoring_info = 0; 7262 7263 vmx_enable_fb_clear(vmx); 7264 7265 if (unlikely(vmx->fail)) { 7266 vmx->exit_reason.full = 0xdead; 7267 goto out; 7268 } 7269 7270 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 7271 if (likely(!vmx->exit_reason.failed_vmentry)) 7272 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 7273 7274 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI && 7275 is_nmi(vmx_get_intr_info(vcpu))) { 7276 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 7277 vmx_do_nmi_irqoff(); 7278 kvm_after_interrupt(vcpu); 7279 } 7280 7281 out: 7282 guest_state_exit_irqoff(); 7283 } 7284 7285 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 7286 { 7287 struct vcpu_vmx *vmx = to_vmx(vcpu); 7288 unsigned long cr3, cr4; 7289 7290 /* Record the guest's net vcpu time for enforced NMI injections. */ 7291 if (unlikely(!enable_vnmi && 7292 vmx->loaded_vmcs->soft_vnmi_blocked)) 7293 vmx->loaded_vmcs->entry_time = ktime_get(); 7294 7295 /* 7296 * Don't enter VMX if guest state is invalid, let the exit handler 7297 * start emulation until we arrive back to a valid state. Synthesize a 7298 * consistency check VM-Exit due to invalid guest state and bail. 7299 */ 7300 if (unlikely(vmx->emulation_required)) { 7301 vmx->fail = 0; 7302 7303 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 7304 vmx->exit_reason.failed_vmentry = 1; 7305 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 7306 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 7307 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 7308 vmx->exit_intr_info = 0; 7309 return EXIT_FASTPATH_NONE; 7310 } 7311 7312 trace_kvm_entry(vcpu); 7313 7314 if (vmx->ple_window_dirty) { 7315 vmx->ple_window_dirty = false; 7316 vmcs_write32(PLE_WINDOW, vmx->ple_window); 7317 } 7318 7319 /* 7320 * We did this in prepare_switch_to_guest, because it needs to 7321 * be within srcu_read_lock. 7322 */ 7323 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 7324 7325 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 7326 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 7327 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 7328 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 7329 vcpu->arch.regs_dirty = 0; 7330 7331 /* 7332 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately 7333 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time 7334 * it switches back to the current->mm, which can occur in KVM context 7335 * when switching to a temporary mm to patch kernel code, e.g. if KVM 7336 * toggles a static key while handling a VM-Exit. 7337 */ 7338 cr3 = __get_current_cr3_fast(); 7339 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 7340 vmcs_writel(HOST_CR3, cr3); 7341 vmx->loaded_vmcs->host_state.cr3 = cr3; 7342 } 7343 7344 cr4 = cr4_read_shadow(); 7345 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 7346 vmcs_writel(HOST_CR4, cr4); 7347 vmx->loaded_vmcs->host_state.cr4 = cr4; 7348 } 7349 7350 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 7351 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 7352 set_debugreg(vcpu->arch.dr6, 6); 7353 7354 /* When single-stepping over STI and MOV SS, we must clear the 7355 * corresponding interruptibility bits in the guest state. Otherwise 7356 * vmentry fails as it then expects bit 14 (BS) in pending debug 7357 * exceptions being set, but that's not correct for the guest debugging 7358 * case. */ 7359 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7360 vmx_set_interrupt_shadow(vcpu, 0); 7361 7362 kvm_load_guest_xsave_state(vcpu); 7363 7364 pt_guest_enter(vmx); 7365 7366 atomic_switch_perf_msrs(vmx); 7367 if (intel_pmu_lbr_is_enabled(vcpu)) 7368 vmx_passthrough_lbr_msrs(vcpu); 7369 7370 if (enable_preemption_timer) 7371 vmx_update_hv_timer(vcpu); 7372 7373 kvm_wait_lapic_expire(vcpu); 7374 7375 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 7376 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx)); 7377 7378 /* All fields are clean at this point */ 7379 if (kvm_is_using_evmcs()) { 7380 current_evmcs->hv_clean_fields |= 7381 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 7382 7383 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 7384 } 7385 7386 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 7387 if (vmx->host_debugctlmsr) 7388 update_debugctlmsr(vmx->host_debugctlmsr); 7389 7390 #ifndef CONFIG_X86_64 7391 /* 7392 * The sysexit path does not restore ds/es, so we must set them to 7393 * a reasonable value ourselves. 7394 * 7395 * We can't defer this to vmx_prepare_switch_to_host() since that 7396 * function may be executed in interrupt context, which saves and 7397 * restore segments around it, nullifying its effect. 7398 */ 7399 loadsegment(ds, __USER_DS); 7400 loadsegment(es, __USER_DS); 7401 #endif 7402 7403 pt_guest_exit(vmx); 7404 7405 kvm_load_host_xsave_state(vcpu); 7406 7407 if (is_guest_mode(vcpu)) { 7408 /* 7409 * Track VMLAUNCH/VMRESUME that have made past guest state 7410 * checking. 7411 */ 7412 if (vmx->nested.nested_run_pending && 7413 !vmx->exit_reason.failed_vmentry) 7414 ++vcpu->stat.nested_run; 7415 7416 vmx->nested.nested_run_pending = 0; 7417 } 7418 7419 if (unlikely(vmx->fail)) 7420 return EXIT_FASTPATH_NONE; 7421 7422 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 7423 kvm_machine_check(); 7424 7425 trace_kvm_exit(vcpu, KVM_ISA_VMX); 7426 7427 if (unlikely(vmx->exit_reason.failed_vmentry)) 7428 return EXIT_FASTPATH_NONE; 7429 7430 vmx->loaded_vmcs->launched = 1; 7431 7432 vmx_recover_nmi_blocking(vmx); 7433 vmx_complete_interrupts(vmx); 7434 7435 if (is_guest_mode(vcpu)) 7436 return EXIT_FASTPATH_NONE; 7437 7438 return vmx_exit_handlers_fastpath(vcpu); 7439 } 7440 7441 static void vmx_vcpu_free(struct kvm_vcpu *vcpu) 7442 { 7443 struct vcpu_vmx *vmx = to_vmx(vcpu); 7444 7445 if (enable_pml) 7446 vmx_destroy_pml_buffer(vmx); 7447 free_vpid(vmx->vpid); 7448 nested_vmx_free_vcpu(vcpu); 7449 free_loaded_vmcs(vmx->loaded_vmcs); 7450 } 7451 7452 static int vmx_vcpu_create(struct kvm_vcpu *vcpu) 7453 { 7454 struct vmx_uret_msr *tsx_ctrl; 7455 struct vcpu_vmx *vmx; 7456 int i, err; 7457 7458 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 7459 vmx = to_vmx(vcpu); 7460 7461 INIT_LIST_HEAD(&vmx->pi_wakeup_list); 7462 7463 err = -ENOMEM; 7464 7465 vmx->vpid = allocate_vpid(); 7466 7467 /* 7468 * If PML is turned on, failure on enabling PML just results in failure 7469 * of creating the vcpu, therefore we can simplify PML logic (by 7470 * avoiding dealing with cases, such as enabling PML partially on vcpus 7471 * for the guest), etc. 7472 */ 7473 if (enable_pml) { 7474 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7475 if (!vmx->pml_pg) 7476 goto free_vpid; 7477 } 7478 7479 for (i = 0; i < kvm_nr_uret_msrs; ++i) 7480 vmx->guest_uret_msrs[i].mask = -1ull; 7481 if (boot_cpu_has(X86_FEATURE_RTM)) { 7482 /* 7483 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 7484 * Keep the host value unchanged to avoid changing CPUID bits 7485 * under the host kernel's feet. 7486 */ 7487 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7488 if (tsx_ctrl) 7489 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 7490 } 7491 7492 err = alloc_loaded_vmcs(&vmx->vmcs01); 7493 if (err < 0) 7494 goto free_pml; 7495 7496 /* 7497 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 7498 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 7499 * feature only for vmcs01, KVM currently isn't equipped to realize any 7500 * performance benefits from enabling it for vmcs02. 7501 */ 7502 if (kvm_is_using_evmcs() && 7503 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 7504 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 7505 7506 evmcs->hv_enlightenments_control.msr_bitmap = 1; 7507 } 7508 7509 /* The MSR bitmap starts with all ones */ 7510 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7511 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7512 7513 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 7514 #ifdef CONFIG_X86_64 7515 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 7516 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 7517 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 7518 #endif 7519 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 7520 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 7521 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 7522 if (kvm_cstate_in_guest(vcpu->kvm)) { 7523 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 7524 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 7525 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 7526 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 7527 } 7528 7529 vmx->loaded_vmcs = &vmx->vmcs01; 7530 7531 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7532 err = kvm_alloc_apic_access_page(vcpu->kvm); 7533 if (err) 7534 goto free_vmcs; 7535 } 7536 7537 if (enable_ept && !enable_unrestricted_guest) { 7538 err = init_rmode_identity_map(vcpu->kvm); 7539 if (err) 7540 goto free_vmcs; 7541 } 7542 7543 if (vmx_can_use_ipiv(vcpu)) 7544 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id], 7545 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID); 7546 7547 return 0; 7548 7549 free_vmcs: 7550 free_loaded_vmcs(vmx->loaded_vmcs); 7551 free_pml: 7552 vmx_destroy_pml_buffer(vmx); 7553 free_vpid: 7554 free_vpid(vmx->vpid); 7555 return err; 7556 } 7557 7558 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7559 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7560 7561 static int vmx_vm_init(struct kvm *kvm) 7562 { 7563 if (!ple_gap) 7564 kvm->arch.pause_in_guest = true; 7565 7566 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7567 switch (l1tf_mitigation) { 7568 case L1TF_MITIGATION_OFF: 7569 case L1TF_MITIGATION_FLUSH_NOWARN: 7570 /* 'I explicitly don't care' is set */ 7571 break; 7572 case L1TF_MITIGATION_FLUSH: 7573 case L1TF_MITIGATION_FLUSH_NOSMT: 7574 case L1TF_MITIGATION_FULL: 7575 /* 7576 * Warn upon starting the first VM in a potentially 7577 * insecure environment. 7578 */ 7579 if (sched_smt_active()) 7580 pr_warn_once(L1TF_MSG_SMT); 7581 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7582 pr_warn_once(L1TF_MSG_L1D); 7583 break; 7584 case L1TF_MITIGATION_FULL_FORCE: 7585 /* Flush is enforced */ 7586 break; 7587 } 7588 } 7589 return 0; 7590 } 7591 7592 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7593 { 7594 u8 cache; 7595 7596 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 7597 * memory aliases with conflicting memory types and sometimes MCEs. 7598 * We have to be careful as to what are honored and when. 7599 * 7600 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 7601 * UC. The effective memory type is UC or WC depending on guest PAT. 7602 * This was historically the source of MCEs and we want to be 7603 * conservative. 7604 * 7605 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7606 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7607 * EPT memory type is set to WB. The effective memory type is forced 7608 * WB. 7609 * 7610 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7611 * EPT memory type is used to emulate guest CD/MTRR. 7612 */ 7613 7614 if (is_mmio) 7615 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7616 7617 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) 7618 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7619 7620 if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) { 7621 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7622 cache = MTRR_TYPE_WRBACK; 7623 else 7624 cache = MTRR_TYPE_UNCACHABLE; 7625 7626 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7627 } 7628 7629 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT; 7630 } 7631 7632 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7633 { 7634 /* 7635 * These bits in the secondary execution controls field 7636 * are dynamic, the others are mostly based on the hypervisor 7637 * architecture and the guest's CPUID. Do not touch the 7638 * dynamic bits. 7639 */ 7640 u32 mask = 7641 SECONDARY_EXEC_SHADOW_VMCS | 7642 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7643 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7644 SECONDARY_EXEC_DESC; 7645 7646 u32 cur_ctl = secondary_exec_controls_get(vmx); 7647 7648 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7649 } 7650 7651 /* 7652 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7653 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7654 */ 7655 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7656 { 7657 struct vcpu_vmx *vmx = to_vmx(vcpu); 7658 struct kvm_cpuid_entry2 *entry; 7659 7660 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7661 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7662 7663 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7664 if (entry && (entry->_reg & (_cpuid_mask))) \ 7665 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7666 } while (0) 7667 7668 entry = kvm_find_cpuid_entry(vcpu, 0x1); 7669 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7670 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7671 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7672 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7673 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7674 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7675 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7676 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7677 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7678 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7679 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7680 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7681 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7682 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7683 7684 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0); 7685 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7686 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7687 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7688 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7689 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7690 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7691 7692 #undef cr4_fixed1_update 7693 } 7694 7695 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7696 { 7697 struct vcpu_vmx *vmx = to_vmx(vcpu); 7698 struct kvm_cpuid_entry2 *best = NULL; 7699 int i; 7700 7701 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7702 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i); 7703 if (!best) 7704 return; 7705 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7706 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7707 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7708 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7709 } 7710 7711 /* Get the number of configurable Address Ranges for filtering */ 7712 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7713 PT_CAP_num_address_ranges); 7714 7715 /* Initialize and clear the no dependency bits */ 7716 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7717 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7718 RTIT_CTL_BRANCH_EN); 7719 7720 /* 7721 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7722 * will inject an #GP 7723 */ 7724 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7725 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7726 7727 /* 7728 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7729 * PSBFreq can be set 7730 */ 7731 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7732 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7733 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7734 7735 /* 7736 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7737 */ 7738 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7739 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7740 RTIT_CTL_MTC_RANGE); 7741 7742 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7743 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7744 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7745 RTIT_CTL_PTW_EN); 7746 7747 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7748 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7749 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7750 7751 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7752 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7753 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7754 7755 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7756 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7757 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7758 7759 /* unmask address range configure area */ 7760 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7761 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7762 } 7763 7764 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7765 { 7766 struct vcpu_vmx *vmx = to_vmx(vcpu); 7767 7768 /* 7769 * XSAVES is effectively enabled if and only if XSAVE is also exposed 7770 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be 7771 * set if and only if XSAVE is supported. 7772 */ 7773 if (boot_cpu_has(X86_FEATURE_XSAVE) && 7774 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 7775 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES); 7776 7777 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX); 7778 7779 vmx_setup_uret_msrs(vmx); 7780 7781 if (cpu_has_secondary_exec_ctrls()) 7782 vmcs_set_secondary_exec_control(vmx, 7783 vmx_secondary_exec_control(vmx)); 7784 7785 if (guest_can_use(vcpu, X86_FEATURE_VMX)) 7786 vmx->msr_ia32_feature_control_valid_bits |= 7787 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7788 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7789 else 7790 vmx->msr_ia32_feature_control_valid_bits &= 7791 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7792 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7793 7794 if (guest_can_use(vcpu, X86_FEATURE_VMX)) 7795 nested_vmx_cr_fixed1_bits_update(vcpu); 7796 7797 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7798 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7799 update_intel_pt_cfg(vcpu); 7800 7801 if (boot_cpu_has(X86_FEATURE_RTM)) { 7802 struct vmx_uret_msr *msr; 7803 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7804 if (msr) { 7805 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7806 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7807 } 7808 } 7809 7810 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 7811 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 7812 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); 7813 7814 if (boot_cpu_has(X86_FEATURE_IBPB)) 7815 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, 7816 !guest_has_pred_cmd_msr(vcpu)); 7817 7818 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 7819 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, 7820 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 7821 7822 set_cr4_guest_host_mask(vmx); 7823 7824 vmx_write_encls_bitmap(vcpu, NULL); 7825 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7826 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7827 else 7828 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7829 7830 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7831 vmx->msr_ia32_feature_control_valid_bits |= 7832 FEAT_CTL_SGX_LC_ENABLED; 7833 else 7834 vmx->msr_ia32_feature_control_valid_bits &= 7835 ~FEAT_CTL_SGX_LC_ENABLED; 7836 7837 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7838 vmx_update_exception_bitmap(vcpu); 7839 } 7840 7841 static u64 vmx_get_perf_capabilities(void) 7842 { 7843 u64 perf_cap = PMU_CAP_FW_WRITES; 7844 struct x86_pmu_lbr lbr; 7845 u64 host_perf_cap = 0; 7846 7847 if (!enable_pmu) 7848 return 0; 7849 7850 if (boot_cpu_has(X86_FEATURE_PDCM)) 7851 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap); 7852 7853 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) { 7854 x86_perf_get_lbr(&lbr); 7855 if (lbr.nr) 7856 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT; 7857 } 7858 7859 if (vmx_pebs_supported()) { 7860 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK; 7861 7862 /* 7863 * Disallow adaptive PEBS as it is functionally broken, can be 7864 * used by the guest to read *host* LBRs, and can be used to 7865 * bypass userspace event filters. To correctly and safely 7866 * support adaptive PEBS, KVM needs to: 7867 * 7868 * 1. Account for the ADAPTIVE flag when (re)programming fixed 7869 * counters. 7870 * 7871 * 2. Gain support from perf (or take direct control of counter 7872 * programming) to support events without adaptive PEBS 7873 * enabled for the hardware counter. 7874 * 7875 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with 7876 * adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1. 7877 * 7878 * 4. Document which PMU events are effectively exposed to the 7879 * guest via adaptive PEBS, and make adaptive PEBS mutually 7880 * exclusive with KVM_SET_PMU_EVENT_FILTER if necessary. 7881 */ 7882 perf_cap &= ~PERF_CAP_PEBS_BASELINE; 7883 } 7884 7885 return perf_cap; 7886 } 7887 7888 static __init void vmx_set_cpu_caps(void) 7889 { 7890 kvm_set_cpu_caps(); 7891 7892 /* CPUID 0x1 */ 7893 if (nested) 7894 kvm_cpu_cap_set(X86_FEATURE_VMX); 7895 7896 /* CPUID 0x7 */ 7897 if (kvm_mpx_supported()) 7898 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7899 if (!cpu_has_vmx_invpcid()) 7900 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7901 if (vmx_pt_mode_is_host_guest()) 7902 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7903 if (vmx_pebs_supported()) { 7904 kvm_cpu_cap_check_and_set(X86_FEATURE_DS); 7905 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64); 7906 } 7907 7908 if (!enable_pmu) 7909 kvm_cpu_cap_clear(X86_FEATURE_PDCM); 7910 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities(); 7911 7912 if (!enable_sgx) { 7913 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7914 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7915 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7916 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7917 } 7918 7919 if (vmx_umip_emulated()) 7920 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7921 7922 /* CPUID 0xD.1 */ 7923 kvm_caps.supported_xss = 0; 7924 if (!cpu_has_vmx_xsaves()) 7925 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7926 7927 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7928 if (!cpu_has_vmx_rdtscp()) { 7929 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7930 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7931 } 7932 7933 if (cpu_has_vmx_waitpkg()) 7934 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7935 } 7936 7937 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7938 { 7939 to_vmx(vcpu)->req_immediate_exit = true; 7940 } 7941 7942 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7943 struct x86_instruction_info *info) 7944 { 7945 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7946 unsigned short port; 7947 bool intercept; 7948 int size; 7949 7950 if (info->intercept == x86_intercept_in || 7951 info->intercept == x86_intercept_ins) { 7952 port = info->src_val; 7953 size = info->dst_bytes; 7954 } else { 7955 port = info->dst_val; 7956 size = info->src_bytes; 7957 } 7958 7959 /* 7960 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7961 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7962 * control. 7963 * 7964 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7965 */ 7966 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7967 intercept = nested_cpu_has(vmcs12, 7968 CPU_BASED_UNCOND_IO_EXITING); 7969 else 7970 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7971 7972 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7973 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7974 } 7975 7976 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7977 struct x86_instruction_info *info, 7978 enum x86_intercept_stage stage, 7979 struct x86_exception *exception) 7980 { 7981 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7982 7983 switch (info->intercept) { 7984 /* 7985 * RDPID causes #UD if disabled through secondary execution controls. 7986 * Because it is marked as EmulateOnUD, we need to intercept it here. 7987 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7988 */ 7989 case x86_intercept_rdpid: 7990 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7991 exception->vector = UD_VECTOR; 7992 exception->error_code_valid = false; 7993 return X86EMUL_PROPAGATE_FAULT; 7994 } 7995 break; 7996 7997 case x86_intercept_in: 7998 case x86_intercept_ins: 7999 case x86_intercept_out: 8000 case x86_intercept_outs: 8001 return vmx_check_intercept_io(vcpu, info); 8002 8003 case x86_intercept_lgdt: 8004 case x86_intercept_lidt: 8005 case x86_intercept_lldt: 8006 case x86_intercept_ltr: 8007 case x86_intercept_sgdt: 8008 case x86_intercept_sidt: 8009 case x86_intercept_sldt: 8010 case x86_intercept_str: 8011 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 8012 return X86EMUL_CONTINUE; 8013 8014 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 8015 break; 8016 8017 case x86_intercept_pause: 8018 /* 8019 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides 8020 * with vanilla NOPs in the emulator. Apply the interception 8021 * check only to actual PAUSE instructions. Don't check 8022 * PAUSE-loop-exiting, software can't expect a given PAUSE to 8023 * exit, i.e. KVM is within its rights to allow L2 to execute 8024 * the PAUSE. 8025 */ 8026 if ((info->rep_prefix != REPE_PREFIX) || 8027 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING)) 8028 return X86EMUL_CONTINUE; 8029 8030 break; 8031 8032 /* TODO: check more intercepts... */ 8033 default: 8034 break; 8035 } 8036 8037 return X86EMUL_UNHANDLEABLE; 8038 } 8039 8040 #ifdef CONFIG_X86_64 8041 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 8042 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 8043 u64 divisor, u64 *result) 8044 { 8045 u64 low = a << shift, high = a >> (64 - shift); 8046 8047 /* To avoid the overflow on divq */ 8048 if (high >= divisor) 8049 return 1; 8050 8051 /* Low hold the result, high hold rem which is discarded */ 8052 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 8053 "rm" (divisor), "0" (low), "1" (high)); 8054 *result = low; 8055 8056 return 0; 8057 } 8058 8059 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 8060 bool *expired) 8061 { 8062 struct vcpu_vmx *vmx; 8063 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 8064 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 8065 8066 vmx = to_vmx(vcpu); 8067 tscl = rdtsc(); 8068 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 8069 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 8070 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 8071 ktimer->timer_advance_ns); 8072 8073 if (delta_tsc > lapic_timer_advance_cycles) 8074 delta_tsc -= lapic_timer_advance_cycles; 8075 else 8076 delta_tsc = 0; 8077 8078 /* Convert to host delta tsc if tsc scaling is enabled */ 8079 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio && 8080 delta_tsc && u64_shl_div_u64(delta_tsc, 8081 kvm_caps.tsc_scaling_ratio_frac_bits, 8082 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 8083 return -ERANGE; 8084 8085 /* 8086 * If the delta tsc can't fit in the 32 bit after the multi shift, 8087 * we can't use the preemption timer. 8088 * It's possible that it fits on later vmentries, but checking 8089 * on every vmentry is costly so we just use an hrtimer. 8090 */ 8091 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 8092 return -ERANGE; 8093 8094 vmx->hv_deadline_tsc = tscl + delta_tsc; 8095 *expired = !delta_tsc; 8096 return 0; 8097 } 8098 8099 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 8100 { 8101 to_vmx(vcpu)->hv_deadline_tsc = -1; 8102 } 8103 #endif 8104 8105 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 8106 { 8107 if (!kvm_pause_in_guest(vcpu->kvm)) 8108 shrink_ple_window(vcpu); 8109 } 8110 8111 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 8112 { 8113 struct vcpu_vmx *vmx = to_vmx(vcpu); 8114 8115 if (WARN_ON_ONCE(!enable_pml)) 8116 return; 8117 8118 if (is_guest_mode(vcpu)) { 8119 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 8120 return; 8121 } 8122 8123 /* 8124 * Note, nr_memslots_dirty_logging can be changed concurrent with this 8125 * code, but in that case another update request will be made and so 8126 * the guest will never run with a stale PML value. 8127 */ 8128 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 8129 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8130 else 8131 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8132 } 8133 8134 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 8135 { 8136 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 8137 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 8138 FEAT_CTL_LMCE_ENABLED; 8139 else 8140 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 8141 ~FEAT_CTL_LMCE_ENABLED; 8142 } 8143 8144 #ifdef CONFIG_KVM_SMM 8145 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 8146 { 8147 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 8148 if (to_vmx(vcpu)->nested.nested_run_pending) 8149 return -EBUSY; 8150 return !is_smm(vcpu); 8151 } 8152 8153 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 8154 { 8155 struct vcpu_vmx *vmx = to_vmx(vcpu); 8156 8157 /* 8158 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on 8159 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong 8160 * SMI and RSM only modify state that is saved and restored via SMRAM. 8161 * E.g. most MSRs are left untouched, but many are modified by VM-Exit 8162 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM. 8163 */ 8164 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 8165 if (vmx->nested.smm.guest_mode) 8166 nested_vmx_vmexit(vcpu, -1, 0, 0); 8167 8168 vmx->nested.smm.vmxon = vmx->nested.vmxon; 8169 vmx->nested.vmxon = false; 8170 vmx_clear_hlt(vcpu); 8171 return 0; 8172 } 8173 8174 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 8175 { 8176 struct vcpu_vmx *vmx = to_vmx(vcpu); 8177 int ret; 8178 8179 if (vmx->nested.smm.vmxon) { 8180 vmx->nested.vmxon = true; 8181 vmx->nested.smm.vmxon = false; 8182 } 8183 8184 if (vmx->nested.smm.guest_mode) { 8185 ret = nested_vmx_enter_non_root_mode(vcpu, false); 8186 if (ret) 8187 return ret; 8188 8189 vmx->nested.nested_run_pending = 1; 8190 vmx->nested.smm.guest_mode = false; 8191 } 8192 return 0; 8193 } 8194 8195 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 8196 { 8197 /* RSM will cause a vmexit anyway. */ 8198 } 8199 #endif 8200 8201 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 8202 { 8203 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 8204 } 8205 8206 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 8207 { 8208 if (is_guest_mode(vcpu)) { 8209 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 8210 8211 if (hrtimer_try_to_cancel(timer) == 1) 8212 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 8213 } 8214 } 8215 8216 static void vmx_hardware_unsetup(void) 8217 { 8218 kvm_set_posted_intr_wakeup_handler(NULL); 8219 8220 if (nested) 8221 nested_vmx_hardware_unsetup(); 8222 8223 free_kvm_area(); 8224 } 8225 8226 #define VMX_REQUIRED_APICV_INHIBITS \ 8227 ( \ 8228 BIT(APICV_INHIBIT_REASON_DISABLE)| \ 8229 BIT(APICV_INHIBIT_REASON_ABSENT) | \ 8230 BIT(APICV_INHIBIT_REASON_HYPERV) | \ 8231 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \ 8232 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \ 8233 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \ 8234 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \ 8235 ) 8236 8237 static void vmx_vm_destroy(struct kvm *kvm) 8238 { 8239 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 8240 8241 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm)); 8242 } 8243 8244 static struct kvm_x86_ops vmx_x86_ops __initdata = { 8245 .name = KBUILD_MODNAME, 8246 8247 .check_processor_compatibility = vmx_check_processor_compat, 8248 8249 .hardware_unsetup = vmx_hardware_unsetup, 8250 8251 .hardware_enable = vmx_hardware_enable, 8252 .hardware_disable = vmx_hardware_disable, 8253 .has_emulated_msr = vmx_has_emulated_msr, 8254 8255 .vm_size = sizeof(struct kvm_vmx), 8256 .vm_init = vmx_vm_init, 8257 .vm_destroy = vmx_vm_destroy, 8258 8259 .vcpu_precreate = vmx_vcpu_precreate, 8260 .vcpu_create = vmx_vcpu_create, 8261 .vcpu_free = vmx_vcpu_free, 8262 .vcpu_reset = vmx_vcpu_reset, 8263 8264 .prepare_switch_to_guest = vmx_prepare_switch_to_guest, 8265 .vcpu_load = vmx_vcpu_load, 8266 .vcpu_put = vmx_vcpu_put, 8267 8268 .update_exception_bitmap = vmx_update_exception_bitmap, 8269 .get_msr_feature = vmx_get_msr_feature, 8270 .get_msr = vmx_get_msr, 8271 .set_msr = vmx_set_msr, 8272 .get_segment_base = vmx_get_segment_base, 8273 .get_segment = vmx_get_segment, 8274 .set_segment = vmx_set_segment, 8275 .get_cpl = vmx_get_cpl, 8276 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 8277 .is_valid_cr0 = vmx_is_valid_cr0, 8278 .set_cr0 = vmx_set_cr0, 8279 .is_valid_cr4 = vmx_is_valid_cr4, 8280 .set_cr4 = vmx_set_cr4, 8281 .set_efer = vmx_set_efer, 8282 .get_idt = vmx_get_idt, 8283 .set_idt = vmx_set_idt, 8284 .get_gdt = vmx_get_gdt, 8285 .set_gdt = vmx_set_gdt, 8286 .set_dr7 = vmx_set_dr7, 8287 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 8288 .cache_reg = vmx_cache_reg, 8289 .get_rflags = vmx_get_rflags, 8290 .set_rflags = vmx_set_rflags, 8291 .get_if_flag = vmx_get_if_flag, 8292 8293 .flush_tlb_all = vmx_flush_tlb_all, 8294 .flush_tlb_current = vmx_flush_tlb_current, 8295 .flush_tlb_gva = vmx_flush_tlb_gva, 8296 .flush_tlb_guest = vmx_flush_tlb_guest, 8297 8298 .vcpu_pre_run = vmx_vcpu_pre_run, 8299 .vcpu_run = vmx_vcpu_run, 8300 .handle_exit = vmx_handle_exit, 8301 .skip_emulated_instruction = vmx_skip_emulated_instruction, 8302 .update_emulated_instruction = vmx_update_emulated_instruction, 8303 .set_interrupt_shadow = vmx_set_interrupt_shadow, 8304 .get_interrupt_shadow = vmx_get_interrupt_shadow, 8305 .patch_hypercall = vmx_patch_hypercall, 8306 .inject_irq = vmx_inject_irq, 8307 .inject_nmi = vmx_inject_nmi, 8308 .inject_exception = vmx_inject_exception, 8309 .cancel_injection = vmx_cancel_injection, 8310 .interrupt_allowed = vmx_interrupt_allowed, 8311 .nmi_allowed = vmx_nmi_allowed, 8312 .get_nmi_mask = vmx_get_nmi_mask, 8313 .set_nmi_mask = vmx_set_nmi_mask, 8314 .enable_nmi_window = vmx_enable_nmi_window, 8315 .enable_irq_window = vmx_enable_irq_window, 8316 .update_cr8_intercept = vmx_update_cr8_intercept, 8317 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 8318 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 8319 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 8320 .load_eoi_exitmap = vmx_load_eoi_exitmap, 8321 .apicv_pre_state_restore = vmx_apicv_pre_state_restore, 8322 .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS, 8323 .hwapic_irr_update = vmx_hwapic_irr_update, 8324 .hwapic_isr_update = vmx_hwapic_isr_update, 8325 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 8326 .sync_pir_to_irr = vmx_sync_pir_to_irr, 8327 .deliver_interrupt = vmx_deliver_interrupt, 8328 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 8329 8330 .set_tss_addr = vmx_set_tss_addr, 8331 .set_identity_map_addr = vmx_set_identity_map_addr, 8332 .get_mt_mask = vmx_get_mt_mask, 8333 8334 .get_exit_info = vmx_get_exit_info, 8335 8336 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 8337 8338 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 8339 8340 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 8341 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 8342 .write_tsc_offset = vmx_write_tsc_offset, 8343 .write_tsc_multiplier = vmx_write_tsc_multiplier, 8344 8345 .load_mmu_pgd = vmx_load_mmu_pgd, 8346 8347 .check_intercept = vmx_check_intercept, 8348 .handle_exit_irqoff = vmx_handle_exit_irqoff, 8349 8350 .request_immediate_exit = vmx_request_immediate_exit, 8351 8352 .sched_in = vmx_sched_in, 8353 8354 .cpu_dirty_log_size = PML_ENTITY_NUM, 8355 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 8356 8357 .nested_ops = &vmx_nested_ops, 8358 8359 .pi_update_irte = vmx_pi_update_irte, 8360 .pi_start_assignment = vmx_pi_start_assignment, 8361 8362 #ifdef CONFIG_X86_64 8363 .set_hv_timer = vmx_set_hv_timer, 8364 .cancel_hv_timer = vmx_cancel_hv_timer, 8365 #endif 8366 8367 .setup_mce = vmx_setup_mce, 8368 8369 #ifdef CONFIG_KVM_SMM 8370 .smi_allowed = vmx_smi_allowed, 8371 .enter_smm = vmx_enter_smm, 8372 .leave_smm = vmx_leave_smm, 8373 .enable_smi_window = vmx_enable_smi_window, 8374 #endif 8375 8376 .can_emulate_instruction = vmx_can_emulate_instruction, 8377 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 8378 .migrate_timers = vmx_migrate_timers, 8379 8380 .msr_filter_changed = vmx_msr_filter_changed, 8381 .complete_emulated_msr = kvm_complete_insn_gp, 8382 8383 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 8384 }; 8385 8386 static unsigned int vmx_handle_intel_pt_intr(void) 8387 { 8388 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 8389 8390 /* '0' on failure so that the !PT case can use a RET0 static call. */ 8391 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu)) 8392 return 0; 8393 8394 kvm_make_request(KVM_REQ_PMI, vcpu); 8395 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 8396 (unsigned long *)&vcpu->arch.pmu.global_status); 8397 return 1; 8398 } 8399 8400 static __init void vmx_setup_user_return_msrs(void) 8401 { 8402 8403 /* 8404 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 8405 * will emulate SYSCALL in legacy mode if the vendor string in guest 8406 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 8407 * support this emulation, MSR_STAR is included in the list for i386, 8408 * but is never loaded into hardware. MSR_CSTAR is also never loaded 8409 * into hardware and is here purely for emulation purposes. 8410 */ 8411 const u32 vmx_uret_msrs_list[] = { 8412 #ifdef CONFIG_X86_64 8413 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 8414 #endif 8415 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 8416 MSR_IA32_TSX_CTRL, 8417 }; 8418 int i; 8419 8420 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 8421 8422 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 8423 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 8424 } 8425 8426 static void __init vmx_setup_me_spte_mask(void) 8427 { 8428 u64 me_mask = 0; 8429 8430 /* 8431 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use 8432 * the former to avoid exposing shadow_phys_bits. 8433 * 8434 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to 8435 * shadow_phys_bits. On MKTME and/or TDX capable systems, 8436 * boot_cpu_data.x86_phys_bits holds the actual physical address 8437 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR 8438 * reported by CPUID. Those bits between are KeyID bits. 8439 */ 8440 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits()) 8441 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits, 8442 kvm_get_shadow_phys_bits() - 1); 8443 /* 8444 * Unlike SME, host kernel doesn't support setting up any 8445 * MKTME KeyID on Intel platforms. No memory encryption 8446 * bits should be included into the SPTE. 8447 */ 8448 kvm_mmu_set_me_spte_mask(0, me_mask); 8449 } 8450 8451 static struct kvm_x86_init_ops vmx_init_ops __initdata; 8452 8453 static __init int hardware_setup(void) 8454 { 8455 unsigned long host_bndcfgs; 8456 struct desc_ptr dt; 8457 int r; 8458 8459 store_idt(&dt); 8460 host_idt_base = dt.address; 8461 8462 vmx_setup_user_return_msrs(); 8463 8464 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 8465 return -EIO; 8466 8467 if (cpu_has_perf_global_ctrl_bug()) 8468 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 8469 "does not work properly. Using workaround\n"); 8470 8471 if (boot_cpu_has(X86_FEATURE_NX)) 8472 kvm_enable_efer_bits(EFER_NX); 8473 8474 if (boot_cpu_has(X86_FEATURE_MPX)) { 8475 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 8476 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost"); 8477 } 8478 8479 if (!cpu_has_vmx_mpx()) 8480 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 8481 XFEATURE_MASK_BNDCSR); 8482 8483 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 8484 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 8485 enable_vpid = 0; 8486 8487 if (!cpu_has_vmx_ept() || 8488 !cpu_has_vmx_ept_4levels() || 8489 !cpu_has_vmx_ept_mt_wb() || 8490 !cpu_has_vmx_invept_global()) 8491 enable_ept = 0; 8492 8493 /* NX support is required for shadow paging. */ 8494 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 8495 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 8496 return -EOPNOTSUPP; 8497 } 8498 8499 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 8500 enable_ept_ad_bits = 0; 8501 8502 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 8503 enable_unrestricted_guest = 0; 8504 8505 if (!cpu_has_vmx_flexpriority()) 8506 flexpriority_enabled = 0; 8507 8508 if (!cpu_has_virtual_nmis()) 8509 enable_vnmi = 0; 8510 8511 #ifdef CONFIG_X86_SGX_KVM 8512 if (!cpu_has_vmx_encls_vmexit()) 8513 enable_sgx = false; 8514 #endif 8515 8516 /* 8517 * set_apic_access_page_addr() is used to reload apic access 8518 * page upon invalidation. No need to do anything if not 8519 * using the APIC_ACCESS_ADDR VMCS field. 8520 */ 8521 if (!flexpriority_enabled) 8522 vmx_x86_ops.set_apic_access_page_addr = NULL; 8523 8524 if (!cpu_has_vmx_tpr_shadow()) 8525 vmx_x86_ops.update_cr8_intercept = NULL; 8526 8527 #if IS_ENABLED(CONFIG_HYPERV) 8528 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 8529 && enable_ept) { 8530 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs; 8531 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range; 8532 } 8533 #endif 8534 8535 if (!cpu_has_vmx_ple()) { 8536 ple_gap = 0; 8537 ple_window = 0; 8538 ple_window_grow = 0; 8539 ple_window_max = 0; 8540 ple_window_shrink = 0; 8541 } 8542 8543 if (!cpu_has_vmx_apicv()) 8544 enable_apicv = 0; 8545 if (!enable_apicv) 8546 vmx_x86_ops.sync_pir_to_irr = NULL; 8547 8548 if (!enable_apicv || !cpu_has_vmx_ipiv()) 8549 enable_ipiv = false; 8550 8551 if (cpu_has_vmx_tsc_scaling()) 8552 kvm_caps.has_tsc_control = true; 8553 8554 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 8555 kvm_caps.tsc_scaling_ratio_frac_bits = 48; 8556 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 8557 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit(); 8558 8559 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 8560 8561 if (enable_ept) 8562 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 8563 cpu_has_vmx_ept_execute_only()); 8564 8565 /* 8566 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID 8567 * bits to shadow_zero_check. 8568 */ 8569 vmx_setup_me_spte_mask(); 8570 8571 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(), 8572 ept_caps_to_lpage_level(vmx_capability.ept)); 8573 8574 /* 8575 * Only enable PML when hardware supports PML feature, and both EPT 8576 * and EPT A/D bit features are enabled -- PML depends on them to work. 8577 */ 8578 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 8579 enable_pml = 0; 8580 8581 if (!enable_pml) 8582 vmx_x86_ops.cpu_dirty_log_size = 0; 8583 8584 if (!cpu_has_vmx_preemption_timer()) 8585 enable_preemption_timer = false; 8586 8587 if (enable_preemption_timer) { 8588 u64 use_timer_freq = 5000ULL * 1000 * 1000; 8589 8590 cpu_preemption_timer_multi = 8591 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 8592 8593 if (tsc_khz) 8594 use_timer_freq = (u64)tsc_khz * 1000; 8595 use_timer_freq >>= cpu_preemption_timer_multi; 8596 8597 /* 8598 * KVM "disables" the preemption timer by setting it to its max 8599 * value. Don't use the timer if it might cause spurious exits 8600 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 8601 */ 8602 if (use_timer_freq > 0xffffffffu / 10) 8603 enable_preemption_timer = false; 8604 } 8605 8606 if (!enable_preemption_timer) { 8607 vmx_x86_ops.set_hv_timer = NULL; 8608 vmx_x86_ops.cancel_hv_timer = NULL; 8609 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 8610 } 8611 8612 kvm_caps.supported_mce_cap |= MCG_LMCE_P; 8613 kvm_caps.supported_mce_cap |= MCG_CMCI_P; 8614 8615 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 8616 return -EINVAL; 8617 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt()) 8618 pt_mode = PT_MODE_SYSTEM; 8619 if (pt_mode == PT_MODE_HOST_GUEST) 8620 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 8621 else 8622 vmx_init_ops.handle_intel_pt_intr = NULL; 8623 8624 setup_default_sgx_lepubkeyhash(); 8625 8626 if (nested) { 8627 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept); 8628 8629 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8630 if (r) 8631 return r; 8632 } 8633 8634 vmx_set_cpu_caps(); 8635 8636 r = alloc_kvm_area(); 8637 if (r && nested) 8638 nested_vmx_hardware_unsetup(); 8639 8640 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8641 8642 return r; 8643 } 8644 8645 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 8646 .hardware_setup = hardware_setup, 8647 .handle_intel_pt_intr = NULL, 8648 8649 .runtime_ops = &vmx_x86_ops, 8650 .pmu_ops = &intel_pmu_ops, 8651 }; 8652 8653 static void vmx_cleanup_l1d_flush(void) 8654 { 8655 if (vmx_l1d_flush_pages) { 8656 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8657 vmx_l1d_flush_pages = NULL; 8658 } 8659 /* Restore state so sysfs ignores VMX */ 8660 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8661 } 8662 8663 static void __vmx_exit(void) 8664 { 8665 allow_smaller_maxphyaddr = false; 8666 8667 cpu_emergency_unregister_virt_callback(vmx_emergency_disable); 8668 8669 vmx_cleanup_l1d_flush(); 8670 } 8671 8672 static void vmx_exit(void) 8673 { 8674 kvm_exit(); 8675 kvm_x86_vendor_exit(); 8676 8677 __vmx_exit(); 8678 } 8679 module_exit(vmx_exit); 8680 8681 static int __init vmx_init(void) 8682 { 8683 int r, cpu; 8684 8685 if (!kvm_is_vmx_supported()) 8686 return -EOPNOTSUPP; 8687 8688 /* 8689 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing 8690 * to unwind if a later step fails. 8691 */ 8692 hv_init_evmcs(); 8693 8694 r = kvm_x86_vendor_init(&vmx_init_ops); 8695 if (r) 8696 return r; 8697 8698 /* 8699 * Must be called after common x86 init so enable_ept is properly set 8700 * up. Hand the parameter mitigation value in which was stored in 8701 * the pre module init parser. If no parameter was given, it will 8702 * contain 'auto' which will be turned into the default 'cond' 8703 * mitigation mode. 8704 */ 8705 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8706 if (r) 8707 goto err_l1d_flush; 8708 8709 for_each_possible_cpu(cpu) { 8710 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8711 8712 pi_init_cpu(cpu); 8713 } 8714 8715 cpu_emergency_register_virt_callback(vmx_emergency_disable); 8716 8717 vmx_check_vmcs12_offsets(); 8718 8719 /* 8720 * Shadow paging doesn't have a (further) performance penalty 8721 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8722 * by default 8723 */ 8724 if (!enable_ept) 8725 allow_smaller_maxphyaddr = true; 8726 8727 /* 8728 * Common KVM initialization _must_ come last, after this, /dev/kvm is 8729 * exposed to userspace! 8730 */ 8731 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), 8732 THIS_MODULE); 8733 if (r) 8734 goto err_kvm_init; 8735 8736 return 0; 8737 8738 err_kvm_init: 8739 __vmx_exit(); 8740 err_l1d_flush: 8741 kvm_x86_vendor_exit(); 8742 return r; 8743 } 8744 module_init(vmx_init); 8745