xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision bbb774d9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/idtentry.h>
41 #include <asm/io.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/kexec.h>
44 #include <asm/perf_event.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/mwait.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/virtext.h>
50 #include <asm/vmx.h>
51 
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "evmcs.h"
55 #include "hyperv.h"
56 #include "kvm_onhyperv.h"
57 #include "irq.h"
58 #include "kvm_cache_regs.h"
59 #include "lapic.h"
60 #include "mmu.h"
61 #include "nested.h"
62 #include "pmu.h"
63 #include "sgx.h"
64 #include "trace.h"
65 #include "vmcs.h"
66 #include "vmcs12.h"
67 #include "vmx.h"
68 #include "x86.h"
69 
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72 
73 #ifdef MODULE
74 static const struct x86_cpu_id vmx_cpu_id[] = {
75 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
76 	{}
77 };
78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
79 #endif
80 
81 bool __read_mostly enable_vpid = 1;
82 module_param_named(vpid, enable_vpid, bool, 0444);
83 
84 static bool __read_mostly enable_vnmi = 1;
85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
86 
87 bool __read_mostly flexpriority_enabled = 1;
88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
89 
90 bool __read_mostly enable_ept = 1;
91 module_param_named(ept, enable_ept, bool, S_IRUGO);
92 
93 bool __read_mostly enable_unrestricted_guest = 1;
94 module_param_named(unrestricted_guest,
95 			enable_unrestricted_guest, bool, S_IRUGO);
96 
97 bool __read_mostly enable_ept_ad_bits = 1;
98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
99 
100 static bool __read_mostly emulate_invalid_guest_state = true;
101 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
102 
103 static bool __read_mostly fasteoi = 1;
104 module_param(fasteoi, bool, S_IRUGO);
105 
106 module_param(enable_apicv, bool, S_IRUGO);
107 
108 bool __read_mostly enable_ipiv = true;
109 module_param(enable_ipiv, bool, 0444);
110 
111 /*
112  * If nested=1, nested virtualization is supported, i.e., guests may use
113  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
114  * use VMX instructions.
115  */
116 static bool __read_mostly nested = 1;
117 module_param(nested, bool, S_IRUGO);
118 
119 bool __read_mostly enable_pml = 1;
120 module_param_named(pml, enable_pml, bool, S_IRUGO);
121 
122 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
123 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
124 
125 static bool __read_mostly dump_invalid_vmcs = 0;
126 module_param(dump_invalid_vmcs, bool, 0644);
127 
128 #define MSR_BITMAP_MODE_X2APIC		1
129 #define MSR_BITMAP_MODE_X2APIC_APICV	2
130 
131 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
132 
133 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
134 static int __read_mostly cpu_preemption_timer_multi;
135 static bool __read_mostly enable_preemption_timer = 1;
136 #ifdef CONFIG_X86_64
137 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
138 #endif
139 
140 extern bool __read_mostly allow_smaller_maxphyaddr;
141 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
142 
143 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
144 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
145 #define KVM_VM_CR0_ALWAYS_ON				\
146 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
147 
148 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
149 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
150 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
151 
152 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
153 
154 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
155 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
156 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
157 	RTIT_STATUS_BYTECNT))
158 
159 /*
160  * List of MSRs that can be directly passed to the guest.
161  * In addition to these x2apic and PT MSRs are handled specially.
162  */
163 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
164 	MSR_IA32_SPEC_CTRL,
165 	MSR_IA32_PRED_CMD,
166 	MSR_IA32_TSC,
167 #ifdef CONFIG_X86_64
168 	MSR_FS_BASE,
169 	MSR_GS_BASE,
170 	MSR_KERNEL_GS_BASE,
171 	MSR_IA32_XFD,
172 	MSR_IA32_XFD_ERR,
173 #endif
174 	MSR_IA32_SYSENTER_CS,
175 	MSR_IA32_SYSENTER_ESP,
176 	MSR_IA32_SYSENTER_EIP,
177 	MSR_CORE_C1_RES,
178 	MSR_CORE_C3_RESIDENCY,
179 	MSR_CORE_C6_RESIDENCY,
180 	MSR_CORE_C7_RESIDENCY,
181 };
182 
183 /*
184  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
185  * ple_gap:    upper bound on the amount of time between two successive
186  *             executions of PAUSE in a loop. Also indicate if ple enabled.
187  *             According to test, this time is usually smaller than 128 cycles.
188  * ple_window: upper bound on the amount of time a guest is allowed to execute
189  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
190  *             less than 2^12 cycles
191  * Time is measured based on a counter that runs at the same rate as the TSC,
192  * refer SDM volume 3b section 21.6.13 & 22.1.3.
193  */
194 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
195 module_param(ple_gap, uint, 0444);
196 
197 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
198 module_param(ple_window, uint, 0444);
199 
200 /* Default doubles per-vcpu window every exit. */
201 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
202 module_param(ple_window_grow, uint, 0444);
203 
204 /* Default resets per-vcpu window every exit to ple_window. */
205 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
206 module_param(ple_window_shrink, uint, 0444);
207 
208 /* Default is to compute the maximum so we can never overflow. */
209 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
210 module_param(ple_window_max, uint, 0444);
211 
212 /* Default is SYSTEM mode, 1 for host-guest mode */
213 int __read_mostly pt_mode = PT_MODE_SYSTEM;
214 module_param(pt_mode, int, S_IRUGO);
215 
216 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
217 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
218 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
219 
220 /* Storage for pre module init parameter parsing */
221 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
222 
223 static const struct {
224 	const char *option;
225 	bool for_parse;
226 } vmentry_l1d_param[] = {
227 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
228 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
229 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
230 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
231 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
232 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
233 };
234 
235 #define L1D_CACHE_ORDER 4
236 static void *vmx_l1d_flush_pages;
237 
238 /* Control for disabling CPU Fill buffer clear */
239 static bool __read_mostly vmx_fb_clear_ctrl_available;
240 
241 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
242 {
243 	struct page *page;
244 	unsigned int i;
245 
246 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
247 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
248 		return 0;
249 	}
250 
251 	if (!enable_ept) {
252 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
253 		return 0;
254 	}
255 
256 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
257 		u64 msr;
258 
259 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
260 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
261 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
262 			return 0;
263 		}
264 	}
265 
266 	/* If set to auto use the default l1tf mitigation method */
267 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
268 		switch (l1tf_mitigation) {
269 		case L1TF_MITIGATION_OFF:
270 			l1tf = VMENTER_L1D_FLUSH_NEVER;
271 			break;
272 		case L1TF_MITIGATION_FLUSH_NOWARN:
273 		case L1TF_MITIGATION_FLUSH:
274 		case L1TF_MITIGATION_FLUSH_NOSMT:
275 			l1tf = VMENTER_L1D_FLUSH_COND;
276 			break;
277 		case L1TF_MITIGATION_FULL:
278 		case L1TF_MITIGATION_FULL_FORCE:
279 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
280 			break;
281 		}
282 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
283 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
284 	}
285 
286 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
287 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
288 		/*
289 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
290 		 * lifetime and so should not be charged to a memcg.
291 		 */
292 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
293 		if (!page)
294 			return -ENOMEM;
295 		vmx_l1d_flush_pages = page_address(page);
296 
297 		/*
298 		 * Initialize each page with a different pattern in
299 		 * order to protect against KSM in the nested
300 		 * virtualization case.
301 		 */
302 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
303 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
304 			       PAGE_SIZE);
305 		}
306 	}
307 
308 	l1tf_vmx_mitigation = l1tf;
309 
310 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
311 		static_branch_enable(&vmx_l1d_should_flush);
312 	else
313 		static_branch_disable(&vmx_l1d_should_flush);
314 
315 	if (l1tf == VMENTER_L1D_FLUSH_COND)
316 		static_branch_enable(&vmx_l1d_flush_cond);
317 	else
318 		static_branch_disable(&vmx_l1d_flush_cond);
319 	return 0;
320 }
321 
322 static int vmentry_l1d_flush_parse(const char *s)
323 {
324 	unsigned int i;
325 
326 	if (s) {
327 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
328 			if (vmentry_l1d_param[i].for_parse &&
329 			    sysfs_streq(s, vmentry_l1d_param[i].option))
330 				return i;
331 		}
332 	}
333 	return -EINVAL;
334 }
335 
336 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
337 {
338 	int l1tf, ret;
339 
340 	l1tf = vmentry_l1d_flush_parse(s);
341 	if (l1tf < 0)
342 		return l1tf;
343 
344 	if (!boot_cpu_has(X86_BUG_L1TF))
345 		return 0;
346 
347 	/*
348 	 * Has vmx_init() run already? If not then this is the pre init
349 	 * parameter parsing. In that case just store the value and let
350 	 * vmx_init() do the proper setup after enable_ept has been
351 	 * established.
352 	 */
353 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
354 		vmentry_l1d_flush_param = l1tf;
355 		return 0;
356 	}
357 
358 	mutex_lock(&vmx_l1d_flush_mutex);
359 	ret = vmx_setup_l1d_flush(l1tf);
360 	mutex_unlock(&vmx_l1d_flush_mutex);
361 	return ret;
362 }
363 
364 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
365 {
366 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
367 		return sprintf(s, "???\n");
368 
369 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
370 }
371 
372 static void vmx_setup_fb_clear_ctrl(void)
373 {
374 	u64 msr;
375 
376 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
377 	    !boot_cpu_has_bug(X86_BUG_MDS) &&
378 	    !boot_cpu_has_bug(X86_BUG_TAA)) {
379 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
380 		if (msr & ARCH_CAP_FB_CLEAR_CTRL)
381 			vmx_fb_clear_ctrl_available = true;
382 	}
383 }
384 
385 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
386 {
387 	u64 msr;
388 
389 	if (!vmx->disable_fb_clear)
390 		return;
391 
392 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
393 	msr |= FB_CLEAR_DIS;
394 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
395 	/* Cache the MSR value to avoid reading it later */
396 	vmx->msr_ia32_mcu_opt_ctrl = msr;
397 }
398 
399 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
400 {
401 	if (!vmx->disable_fb_clear)
402 		return;
403 
404 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
405 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
406 }
407 
408 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
409 {
410 	vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
411 
412 	/*
413 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
414 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
415 	 * execute VERW.
416 	 */
417 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
418 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
419 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
420 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
421 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
422 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
423 		vmx->disable_fb_clear = false;
424 }
425 
426 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
427 	.set = vmentry_l1d_flush_set,
428 	.get = vmentry_l1d_flush_get,
429 };
430 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
431 
432 static u32 vmx_segment_access_rights(struct kvm_segment *var);
433 
434 void vmx_vmexit(void);
435 
436 #define vmx_insn_failed(fmt...)		\
437 do {					\
438 	WARN_ONCE(1, fmt);		\
439 	pr_warn_ratelimited(fmt);	\
440 } while (0)
441 
442 asmlinkage void vmread_error(unsigned long field, bool fault)
443 {
444 	if (fault)
445 		kvm_spurious_fault();
446 	else
447 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
448 }
449 
450 noinline void vmwrite_error(unsigned long field, unsigned long value)
451 {
452 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%u\n",
453 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
454 }
455 
456 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
457 {
458 	vmx_insn_failed("kvm: vmclear failed: %p/%llx err=%u\n",
459 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
460 }
461 
462 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
463 {
464 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx err=%u\n",
465 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
466 }
467 
468 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
469 {
470 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
471 			ext, vpid, gva);
472 }
473 
474 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
475 {
476 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
477 			ext, eptp, gpa);
478 }
479 
480 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
481 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
482 /*
483  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
484  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
485  */
486 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
487 
488 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
489 static DEFINE_SPINLOCK(vmx_vpid_lock);
490 
491 struct vmcs_config vmcs_config;
492 struct vmx_capability vmx_capability;
493 
494 #define VMX_SEGMENT_FIELD(seg)					\
495 	[VCPU_SREG_##seg] = {                                   \
496 		.selector = GUEST_##seg##_SELECTOR,		\
497 		.base = GUEST_##seg##_BASE,		   	\
498 		.limit = GUEST_##seg##_LIMIT,		   	\
499 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
500 	}
501 
502 static const struct kvm_vmx_segment_field {
503 	unsigned selector;
504 	unsigned base;
505 	unsigned limit;
506 	unsigned ar_bytes;
507 } kvm_vmx_segment_fields[] = {
508 	VMX_SEGMENT_FIELD(CS),
509 	VMX_SEGMENT_FIELD(DS),
510 	VMX_SEGMENT_FIELD(ES),
511 	VMX_SEGMENT_FIELD(FS),
512 	VMX_SEGMENT_FIELD(GS),
513 	VMX_SEGMENT_FIELD(SS),
514 	VMX_SEGMENT_FIELD(TR),
515 	VMX_SEGMENT_FIELD(LDTR),
516 };
517 
518 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
519 {
520 	vmx->segment_cache.bitmask = 0;
521 }
522 
523 static unsigned long host_idt_base;
524 
525 #if IS_ENABLED(CONFIG_HYPERV)
526 static bool __read_mostly enlightened_vmcs = true;
527 module_param(enlightened_vmcs, bool, 0444);
528 
529 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
530 {
531 	struct hv_enlightened_vmcs *evmcs;
532 	struct hv_partition_assist_pg **p_hv_pa_pg =
533 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
534 	/*
535 	 * Synthetic VM-Exit is not enabled in current code and so All
536 	 * evmcs in singe VM shares same assist page.
537 	 */
538 	if (!*p_hv_pa_pg)
539 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
540 
541 	if (!*p_hv_pa_pg)
542 		return -ENOMEM;
543 
544 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
545 
546 	evmcs->partition_assist_page =
547 		__pa(*p_hv_pa_pg);
548 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
549 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
550 
551 	return 0;
552 }
553 
554 #endif /* IS_ENABLED(CONFIG_HYPERV) */
555 
556 /*
557  * Comment's format: document - errata name - stepping - processor name.
558  * Refer from
559  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
560  */
561 static u32 vmx_preemption_cpu_tfms[] = {
562 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
563 0x000206E6,
564 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
565 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
566 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
567 0x00020652,
568 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
569 0x00020655,
570 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
571 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
572 /*
573  * 320767.pdf - AAP86  - B1 -
574  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
575  */
576 0x000106E5,
577 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
578 0x000106A0,
579 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
580 0x000106A1,
581 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
582 0x000106A4,
583  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
584  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
585  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
586 0x000106A5,
587  /* Xeon E3-1220 V2 */
588 0x000306A8,
589 };
590 
591 static inline bool cpu_has_broken_vmx_preemption_timer(void)
592 {
593 	u32 eax = cpuid_eax(0x00000001), i;
594 
595 	/* Clear the reserved bits */
596 	eax &= ~(0x3U << 14 | 0xfU << 28);
597 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
598 		if (eax == vmx_preemption_cpu_tfms[i])
599 			return true;
600 
601 	return false;
602 }
603 
604 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
605 {
606 	return flexpriority_enabled && lapic_in_kernel(vcpu);
607 }
608 
609 static int possible_passthrough_msr_slot(u32 msr)
610 {
611 	u32 i;
612 
613 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
614 		if (vmx_possible_passthrough_msrs[i] == msr)
615 			return i;
616 
617 	return -ENOENT;
618 }
619 
620 static bool is_valid_passthrough_msr(u32 msr)
621 {
622 	bool r;
623 
624 	switch (msr) {
625 	case 0x800 ... 0x8ff:
626 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
627 		return true;
628 	case MSR_IA32_RTIT_STATUS:
629 	case MSR_IA32_RTIT_OUTPUT_BASE:
630 	case MSR_IA32_RTIT_OUTPUT_MASK:
631 	case MSR_IA32_RTIT_CR3_MATCH:
632 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
633 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
634 	case MSR_LBR_SELECT:
635 	case MSR_LBR_TOS:
636 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
637 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
638 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
639 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
640 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
641 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
642 		return true;
643 	}
644 
645 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
646 
647 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
648 
649 	return r;
650 }
651 
652 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
653 {
654 	int i;
655 
656 	i = kvm_find_user_return_msr(msr);
657 	if (i >= 0)
658 		return &vmx->guest_uret_msrs[i];
659 	return NULL;
660 }
661 
662 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
663 				  struct vmx_uret_msr *msr, u64 data)
664 {
665 	unsigned int slot = msr - vmx->guest_uret_msrs;
666 	int ret = 0;
667 
668 	if (msr->load_into_hardware) {
669 		preempt_disable();
670 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
671 		preempt_enable();
672 	}
673 	if (!ret)
674 		msr->data = data;
675 	return ret;
676 }
677 
678 #ifdef CONFIG_KEXEC_CORE
679 static void crash_vmclear_local_loaded_vmcss(void)
680 {
681 	int cpu = raw_smp_processor_id();
682 	struct loaded_vmcs *v;
683 
684 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
685 			    loaded_vmcss_on_cpu_link)
686 		vmcs_clear(v->vmcs);
687 }
688 #endif /* CONFIG_KEXEC_CORE */
689 
690 static void __loaded_vmcs_clear(void *arg)
691 {
692 	struct loaded_vmcs *loaded_vmcs = arg;
693 	int cpu = raw_smp_processor_id();
694 
695 	if (loaded_vmcs->cpu != cpu)
696 		return; /* vcpu migration can race with cpu offline */
697 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
698 		per_cpu(current_vmcs, cpu) = NULL;
699 
700 	vmcs_clear(loaded_vmcs->vmcs);
701 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
702 		vmcs_clear(loaded_vmcs->shadow_vmcs);
703 
704 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
705 
706 	/*
707 	 * Ensure all writes to loaded_vmcs, including deleting it from its
708 	 * current percpu list, complete before setting loaded_vmcs->cpu to
709 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
710 	 * and add loaded_vmcs to its percpu list before it's deleted from this
711 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
712 	 */
713 	smp_wmb();
714 
715 	loaded_vmcs->cpu = -1;
716 	loaded_vmcs->launched = 0;
717 }
718 
719 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
720 {
721 	int cpu = loaded_vmcs->cpu;
722 
723 	if (cpu != -1)
724 		smp_call_function_single(cpu,
725 			 __loaded_vmcs_clear, loaded_vmcs, 1);
726 }
727 
728 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
729 				       unsigned field)
730 {
731 	bool ret;
732 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
733 
734 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
735 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
736 		vmx->segment_cache.bitmask = 0;
737 	}
738 	ret = vmx->segment_cache.bitmask & mask;
739 	vmx->segment_cache.bitmask |= mask;
740 	return ret;
741 }
742 
743 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
744 {
745 	u16 *p = &vmx->segment_cache.seg[seg].selector;
746 
747 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
748 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
749 	return *p;
750 }
751 
752 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
753 {
754 	ulong *p = &vmx->segment_cache.seg[seg].base;
755 
756 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
757 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
758 	return *p;
759 }
760 
761 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
762 {
763 	u32 *p = &vmx->segment_cache.seg[seg].limit;
764 
765 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
766 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
767 	return *p;
768 }
769 
770 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
771 {
772 	u32 *p = &vmx->segment_cache.seg[seg].ar;
773 
774 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
775 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
776 	return *p;
777 }
778 
779 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
780 {
781 	u32 eb;
782 
783 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
784 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
785 	/*
786 	 * Guest access to VMware backdoor ports could legitimately
787 	 * trigger #GP because of TSS I/O permission bitmap.
788 	 * We intercept those #GP and allow access to them anyway
789 	 * as VMware does.
790 	 */
791 	if (enable_vmware_backdoor)
792 		eb |= (1u << GP_VECTOR);
793 	if ((vcpu->guest_debug &
794 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
795 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
796 		eb |= 1u << BP_VECTOR;
797 	if (to_vmx(vcpu)->rmode.vm86_active)
798 		eb = ~0;
799 	if (!vmx_need_pf_intercept(vcpu))
800 		eb &= ~(1u << PF_VECTOR);
801 
802 	/* When we are running a nested L2 guest and L1 specified for it a
803 	 * certain exception bitmap, we must trap the same exceptions and pass
804 	 * them to L1. When running L2, we will only handle the exceptions
805 	 * specified above if L1 did not want them.
806 	 */
807 	if (is_guest_mode(vcpu))
808 		eb |= get_vmcs12(vcpu)->exception_bitmap;
809         else {
810 		int mask = 0, match = 0;
811 
812 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
813 			/*
814 			 * If EPT is enabled, #PF is currently only intercepted
815 			 * if MAXPHYADDR is smaller on the guest than on the
816 			 * host.  In that case we only care about present,
817 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
818 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
819 			 */
820 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
821 			match = PFERR_PRESENT_MASK;
822 		}
823 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
824 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
825 	}
826 
827 	/*
828 	 * Disabling xfd interception indicates that dynamic xfeatures
829 	 * might be used in the guest. Always trap #NM in this case
830 	 * to save guest xfd_err timely.
831 	 */
832 	if (vcpu->arch.xfd_no_write_intercept)
833 		eb |= (1u << NM_VECTOR);
834 
835 	vmcs_write32(EXCEPTION_BITMAP, eb);
836 }
837 
838 /*
839  * Check if MSR is intercepted for currently loaded MSR bitmap.
840  */
841 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
842 {
843 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
844 		return true;
845 
846 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
847 }
848 
849 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
850 {
851 	unsigned int flags = 0;
852 
853 	if (vmx->loaded_vmcs->launched)
854 		flags |= VMX_RUN_VMRESUME;
855 
856 	/*
857 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
858 	 * to change it directly without causing a vmexit.  In that case read
859 	 * it after vmexit and store it in vmx->spec_ctrl.
860 	 */
861 	if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
862 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
863 
864 	return flags;
865 }
866 
867 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
868 		unsigned long entry, unsigned long exit)
869 {
870 	vm_entry_controls_clearbit(vmx, entry);
871 	vm_exit_controls_clearbit(vmx, exit);
872 }
873 
874 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
875 {
876 	unsigned int i;
877 
878 	for (i = 0; i < m->nr; ++i) {
879 		if (m->val[i].index == msr)
880 			return i;
881 	}
882 	return -ENOENT;
883 }
884 
885 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
886 {
887 	int i;
888 	struct msr_autoload *m = &vmx->msr_autoload;
889 
890 	switch (msr) {
891 	case MSR_EFER:
892 		if (cpu_has_load_ia32_efer()) {
893 			clear_atomic_switch_msr_special(vmx,
894 					VM_ENTRY_LOAD_IA32_EFER,
895 					VM_EXIT_LOAD_IA32_EFER);
896 			return;
897 		}
898 		break;
899 	case MSR_CORE_PERF_GLOBAL_CTRL:
900 		if (cpu_has_load_perf_global_ctrl()) {
901 			clear_atomic_switch_msr_special(vmx,
902 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
903 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
904 			return;
905 		}
906 		break;
907 	}
908 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
909 	if (i < 0)
910 		goto skip_guest;
911 	--m->guest.nr;
912 	m->guest.val[i] = m->guest.val[m->guest.nr];
913 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
914 
915 skip_guest:
916 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
917 	if (i < 0)
918 		return;
919 
920 	--m->host.nr;
921 	m->host.val[i] = m->host.val[m->host.nr];
922 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
923 }
924 
925 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
926 		unsigned long entry, unsigned long exit,
927 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
928 		u64 guest_val, u64 host_val)
929 {
930 	vmcs_write64(guest_val_vmcs, guest_val);
931 	if (host_val_vmcs != HOST_IA32_EFER)
932 		vmcs_write64(host_val_vmcs, host_val);
933 	vm_entry_controls_setbit(vmx, entry);
934 	vm_exit_controls_setbit(vmx, exit);
935 }
936 
937 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
938 				  u64 guest_val, u64 host_val, bool entry_only)
939 {
940 	int i, j = 0;
941 	struct msr_autoload *m = &vmx->msr_autoload;
942 
943 	switch (msr) {
944 	case MSR_EFER:
945 		if (cpu_has_load_ia32_efer()) {
946 			add_atomic_switch_msr_special(vmx,
947 					VM_ENTRY_LOAD_IA32_EFER,
948 					VM_EXIT_LOAD_IA32_EFER,
949 					GUEST_IA32_EFER,
950 					HOST_IA32_EFER,
951 					guest_val, host_val);
952 			return;
953 		}
954 		break;
955 	case MSR_CORE_PERF_GLOBAL_CTRL:
956 		if (cpu_has_load_perf_global_ctrl()) {
957 			add_atomic_switch_msr_special(vmx,
958 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
959 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
960 					GUEST_IA32_PERF_GLOBAL_CTRL,
961 					HOST_IA32_PERF_GLOBAL_CTRL,
962 					guest_val, host_val);
963 			return;
964 		}
965 		break;
966 	case MSR_IA32_PEBS_ENABLE:
967 		/* PEBS needs a quiescent period after being disabled (to write
968 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
969 		 * provide that period, so a CPU could write host's record into
970 		 * guest's memory.
971 		 */
972 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
973 	}
974 
975 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
976 	if (!entry_only)
977 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
978 
979 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
980 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
981 		printk_once(KERN_WARNING "Not enough msr switch entries. "
982 				"Can't add msr %x\n", msr);
983 		return;
984 	}
985 	if (i < 0) {
986 		i = m->guest.nr++;
987 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
988 	}
989 	m->guest.val[i].index = msr;
990 	m->guest.val[i].value = guest_val;
991 
992 	if (entry_only)
993 		return;
994 
995 	if (j < 0) {
996 		j = m->host.nr++;
997 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
998 	}
999 	m->host.val[j].index = msr;
1000 	m->host.val[j].value = host_val;
1001 }
1002 
1003 static bool update_transition_efer(struct vcpu_vmx *vmx)
1004 {
1005 	u64 guest_efer = vmx->vcpu.arch.efer;
1006 	u64 ignore_bits = 0;
1007 	int i;
1008 
1009 	/* Shadow paging assumes NX to be available.  */
1010 	if (!enable_ept)
1011 		guest_efer |= EFER_NX;
1012 
1013 	/*
1014 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1015 	 */
1016 	ignore_bits |= EFER_SCE;
1017 #ifdef CONFIG_X86_64
1018 	ignore_bits |= EFER_LMA | EFER_LME;
1019 	/* SCE is meaningful only in long mode on Intel */
1020 	if (guest_efer & EFER_LMA)
1021 		ignore_bits &= ~(u64)EFER_SCE;
1022 #endif
1023 
1024 	/*
1025 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1026 	 * On CPUs that support "load IA32_EFER", always switch EFER
1027 	 * atomically, since it's faster than switching it manually.
1028 	 */
1029 	if (cpu_has_load_ia32_efer() ||
1030 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1031 		if (!(guest_efer & EFER_LMA))
1032 			guest_efer &= ~EFER_LME;
1033 		if (guest_efer != host_efer)
1034 			add_atomic_switch_msr(vmx, MSR_EFER,
1035 					      guest_efer, host_efer, false);
1036 		else
1037 			clear_atomic_switch_msr(vmx, MSR_EFER);
1038 		return false;
1039 	}
1040 
1041 	i = kvm_find_user_return_msr(MSR_EFER);
1042 	if (i < 0)
1043 		return false;
1044 
1045 	clear_atomic_switch_msr(vmx, MSR_EFER);
1046 
1047 	guest_efer &= ~ignore_bits;
1048 	guest_efer |= host_efer & ignore_bits;
1049 
1050 	vmx->guest_uret_msrs[i].data = guest_efer;
1051 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1052 
1053 	return true;
1054 }
1055 
1056 #ifdef CONFIG_X86_32
1057 /*
1058  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1059  * VMCS rather than the segment table.  KVM uses this helper to figure
1060  * out the current bases to poke them into the VMCS before entry.
1061  */
1062 static unsigned long segment_base(u16 selector)
1063 {
1064 	struct desc_struct *table;
1065 	unsigned long v;
1066 
1067 	if (!(selector & ~SEGMENT_RPL_MASK))
1068 		return 0;
1069 
1070 	table = get_current_gdt_ro();
1071 
1072 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1073 		u16 ldt_selector = kvm_read_ldt();
1074 
1075 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1076 			return 0;
1077 
1078 		table = (struct desc_struct *)segment_base(ldt_selector);
1079 	}
1080 	v = get_desc_base(&table[selector >> 3]);
1081 	return v;
1082 }
1083 #endif
1084 
1085 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1086 {
1087 	return vmx_pt_mode_is_host_guest() &&
1088 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1089 }
1090 
1091 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1092 {
1093 	/* The base must be 128-byte aligned and a legal physical address. */
1094 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1095 }
1096 
1097 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1098 {
1099 	u32 i;
1100 
1101 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1102 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1103 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1104 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1105 	for (i = 0; i < addr_range; i++) {
1106 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1107 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1108 	}
1109 }
1110 
1111 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1112 {
1113 	u32 i;
1114 
1115 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1116 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1117 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1118 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1119 	for (i = 0; i < addr_range; i++) {
1120 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1121 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1122 	}
1123 }
1124 
1125 static void pt_guest_enter(struct vcpu_vmx *vmx)
1126 {
1127 	if (vmx_pt_mode_is_system())
1128 		return;
1129 
1130 	/*
1131 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1132 	 * Save host state before VM entry.
1133 	 */
1134 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1135 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1136 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1137 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1138 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1139 	}
1140 }
1141 
1142 static void pt_guest_exit(struct vcpu_vmx *vmx)
1143 {
1144 	if (vmx_pt_mode_is_system())
1145 		return;
1146 
1147 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1148 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1149 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1150 	}
1151 
1152 	/*
1153 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1154 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1155 	 */
1156 	if (vmx->pt_desc.host.ctl)
1157 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1158 }
1159 
1160 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1161 			unsigned long fs_base, unsigned long gs_base)
1162 {
1163 	if (unlikely(fs_sel != host->fs_sel)) {
1164 		if (!(fs_sel & 7))
1165 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1166 		else
1167 			vmcs_write16(HOST_FS_SELECTOR, 0);
1168 		host->fs_sel = fs_sel;
1169 	}
1170 	if (unlikely(gs_sel != host->gs_sel)) {
1171 		if (!(gs_sel & 7))
1172 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1173 		else
1174 			vmcs_write16(HOST_GS_SELECTOR, 0);
1175 		host->gs_sel = gs_sel;
1176 	}
1177 	if (unlikely(fs_base != host->fs_base)) {
1178 		vmcs_writel(HOST_FS_BASE, fs_base);
1179 		host->fs_base = fs_base;
1180 	}
1181 	if (unlikely(gs_base != host->gs_base)) {
1182 		vmcs_writel(HOST_GS_BASE, gs_base);
1183 		host->gs_base = gs_base;
1184 	}
1185 }
1186 
1187 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1188 {
1189 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1190 	struct vmcs_host_state *host_state;
1191 #ifdef CONFIG_X86_64
1192 	int cpu = raw_smp_processor_id();
1193 #endif
1194 	unsigned long fs_base, gs_base;
1195 	u16 fs_sel, gs_sel;
1196 	int i;
1197 
1198 	vmx->req_immediate_exit = false;
1199 
1200 	/*
1201 	 * Note that guest MSRs to be saved/restored can also be changed
1202 	 * when guest state is loaded. This happens when guest transitions
1203 	 * to/from long-mode by setting MSR_EFER.LMA.
1204 	 */
1205 	if (!vmx->guest_uret_msrs_loaded) {
1206 		vmx->guest_uret_msrs_loaded = true;
1207 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1208 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1209 				continue;
1210 
1211 			kvm_set_user_return_msr(i,
1212 						vmx->guest_uret_msrs[i].data,
1213 						vmx->guest_uret_msrs[i].mask);
1214 		}
1215 	}
1216 
1217     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1218 		nested_sync_vmcs12_to_shadow(vcpu);
1219 
1220 	if (vmx->guest_state_loaded)
1221 		return;
1222 
1223 	host_state = &vmx->loaded_vmcs->host_state;
1224 
1225 	/*
1226 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1227 	 * allow segment selectors with cpl > 0 or ti == 1.
1228 	 */
1229 	host_state->ldt_sel = kvm_read_ldt();
1230 
1231 #ifdef CONFIG_X86_64
1232 	savesegment(ds, host_state->ds_sel);
1233 	savesegment(es, host_state->es_sel);
1234 
1235 	gs_base = cpu_kernelmode_gs_base(cpu);
1236 	if (likely(is_64bit_mm(current->mm))) {
1237 		current_save_fsgs();
1238 		fs_sel = current->thread.fsindex;
1239 		gs_sel = current->thread.gsindex;
1240 		fs_base = current->thread.fsbase;
1241 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1242 	} else {
1243 		savesegment(fs, fs_sel);
1244 		savesegment(gs, gs_sel);
1245 		fs_base = read_msr(MSR_FS_BASE);
1246 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1247 	}
1248 
1249 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1250 #else
1251 	savesegment(fs, fs_sel);
1252 	savesegment(gs, gs_sel);
1253 	fs_base = segment_base(fs_sel);
1254 	gs_base = segment_base(gs_sel);
1255 #endif
1256 
1257 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1258 	vmx->guest_state_loaded = true;
1259 }
1260 
1261 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1262 {
1263 	struct vmcs_host_state *host_state;
1264 
1265 	if (!vmx->guest_state_loaded)
1266 		return;
1267 
1268 	host_state = &vmx->loaded_vmcs->host_state;
1269 
1270 	++vmx->vcpu.stat.host_state_reload;
1271 
1272 #ifdef CONFIG_X86_64
1273 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1274 #endif
1275 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1276 		kvm_load_ldt(host_state->ldt_sel);
1277 #ifdef CONFIG_X86_64
1278 		load_gs_index(host_state->gs_sel);
1279 #else
1280 		loadsegment(gs, host_state->gs_sel);
1281 #endif
1282 	}
1283 	if (host_state->fs_sel & 7)
1284 		loadsegment(fs, host_state->fs_sel);
1285 #ifdef CONFIG_X86_64
1286 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1287 		loadsegment(ds, host_state->ds_sel);
1288 		loadsegment(es, host_state->es_sel);
1289 	}
1290 #endif
1291 	invalidate_tss_limit();
1292 #ifdef CONFIG_X86_64
1293 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1294 #endif
1295 	load_fixmap_gdt(raw_smp_processor_id());
1296 	vmx->guest_state_loaded = false;
1297 	vmx->guest_uret_msrs_loaded = false;
1298 }
1299 
1300 #ifdef CONFIG_X86_64
1301 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1302 {
1303 	preempt_disable();
1304 	if (vmx->guest_state_loaded)
1305 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1306 	preempt_enable();
1307 	return vmx->msr_guest_kernel_gs_base;
1308 }
1309 
1310 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1311 {
1312 	preempt_disable();
1313 	if (vmx->guest_state_loaded)
1314 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1315 	preempt_enable();
1316 	vmx->msr_guest_kernel_gs_base = data;
1317 }
1318 #endif
1319 
1320 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1321 			struct loaded_vmcs *buddy)
1322 {
1323 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1324 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1325 	struct vmcs *prev;
1326 
1327 	if (!already_loaded) {
1328 		loaded_vmcs_clear(vmx->loaded_vmcs);
1329 		local_irq_disable();
1330 
1331 		/*
1332 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1333 		 * this cpu's percpu list, otherwise it may not yet be deleted
1334 		 * from its previous cpu's percpu list.  Pairs with the
1335 		 * smb_wmb() in __loaded_vmcs_clear().
1336 		 */
1337 		smp_rmb();
1338 
1339 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1340 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1341 		local_irq_enable();
1342 	}
1343 
1344 	prev = per_cpu(current_vmcs, cpu);
1345 	if (prev != vmx->loaded_vmcs->vmcs) {
1346 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1347 		vmcs_load(vmx->loaded_vmcs->vmcs);
1348 
1349 		/*
1350 		 * No indirect branch prediction barrier needed when switching
1351 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1352 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1353 		 */
1354 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1355 			indirect_branch_prediction_barrier();
1356 	}
1357 
1358 	if (!already_loaded) {
1359 		void *gdt = get_current_gdt_ro();
1360 
1361 		/*
1362 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1363 		 * TLB entries from its previous association with the vCPU.
1364 		 */
1365 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1366 
1367 		/*
1368 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1369 		 * processors.  See 22.2.4.
1370 		 */
1371 		vmcs_writel(HOST_TR_BASE,
1372 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1373 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1374 
1375 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1376 			/* 22.2.3 */
1377 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1378 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1379 		}
1380 
1381 		vmx->loaded_vmcs->cpu = cpu;
1382 	}
1383 }
1384 
1385 /*
1386  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1387  * vcpu mutex is already taken.
1388  */
1389 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1390 {
1391 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1392 
1393 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1394 
1395 	vmx_vcpu_pi_load(vcpu, cpu);
1396 
1397 	vmx->host_debugctlmsr = get_debugctlmsr();
1398 }
1399 
1400 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1401 {
1402 	vmx_vcpu_pi_put(vcpu);
1403 
1404 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1405 }
1406 
1407 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1408 {
1409 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1410 }
1411 
1412 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1413 {
1414 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1415 	unsigned long rflags, save_rflags;
1416 
1417 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1418 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1419 		rflags = vmcs_readl(GUEST_RFLAGS);
1420 		if (vmx->rmode.vm86_active) {
1421 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1422 			save_rflags = vmx->rmode.save_rflags;
1423 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1424 		}
1425 		vmx->rflags = rflags;
1426 	}
1427 	return vmx->rflags;
1428 }
1429 
1430 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1431 {
1432 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1433 	unsigned long old_rflags;
1434 
1435 	if (is_unrestricted_guest(vcpu)) {
1436 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1437 		vmx->rflags = rflags;
1438 		vmcs_writel(GUEST_RFLAGS, rflags);
1439 		return;
1440 	}
1441 
1442 	old_rflags = vmx_get_rflags(vcpu);
1443 	vmx->rflags = rflags;
1444 	if (vmx->rmode.vm86_active) {
1445 		vmx->rmode.save_rflags = rflags;
1446 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1447 	}
1448 	vmcs_writel(GUEST_RFLAGS, rflags);
1449 
1450 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1451 		vmx->emulation_required = vmx_emulation_required(vcpu);
1452 }
1453 
1454 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1455 {
1456 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1457 }
1458 
1459 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1460 {
1461 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1462 	int ret = 0;
1463 
1464 	if (interruptibility & GUEST_INTR_STATE_STI)
1465 		ret |= KVM_X86_SHADOW_INT_STI;
1466 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1467 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1468 
1469 	return ret;
1470 }
1471 
1472 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1473 {
1474 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1475 	u32 interruptibility = interruptibility_old;
1476 
1477 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1478 
1479 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1480 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1481 	else if (mask & KVM_X86_SHADOW_INT_STI)
1482 		interruptibility |= GUEST_INTR_STATE_STI;
1483 
1484 	if ((interruptibility != interruptibility_old))
1485 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1486 }
1487 
1488 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1489 {
1490 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1491 	unsigned long value;
1492 
1493 	/*
1494 	 * Any MSR write that attempts to change bits marked reserved will
1495 	 * case a #GP fault.
1496 	 */
1497 	if (data & vmx->pt_desc.ctl_bitmask)
1498 		return 1;
1499 
1500 	/*
1501 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1502 	 * result in a #GP unless the same write also clears TraceEn.
1503 	 */
1504 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1505 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1506 		return 1;
1507 
1508 	/*
1509 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1510 	 * and FabricEn would cause #GP, if
1511 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1512 	 */
1513 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1514 		!(data & RTIT_CTL_FABRIC_EN) &&
1515 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1516 					PT_CAP_single_range_output))
1517 		return 1;
1518 
1519 	/*
1520 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1521 	 * utilize encodings marked reserved will cause a #GP fault.
1522 	 */
1523 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1524 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1525 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1526 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1527 		return 1;
1528 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1529 						PT_CAP_cycle_thresholds);
1530 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1531 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1532 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1533 		return 1;
1534 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1535 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1536 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1537 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1538 		return 1;
1539 
1540 	/*
1541 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1542 	 * cause a #GP fault.
1543 	 */
1544 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1545 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1546 		return 1;
1547 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1548 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1549 		return 1;
1550 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1551 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1552 		return 1;
1553 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1554 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1555 		return 1;
1556 
1557 	return 0;
1558 }
1559 
1560 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1561 					void *insn, int insn_len)
1562 {
1563 	/*
1564 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1565 	 * not point at the failing instruction, and even if it did, the code
1566 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1567 	 * so that guest userspace can't DoS the guest simply by triggering
1568 	 * emulation (enclaves are CPL3 only).
1569 	 */
1570 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1571 		kvm_queue_exception(vcpu, UD_VECTOR);
1572 		return false;
1573 	}
1574 	return true;
1575 }
1576 
1577 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1578 {
1579 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1580 	unsigned long rip, orig_rip;
1581 	u32 instr_len;
1582 
1583 	/*
1584 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1585 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1586 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1587 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1588 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1589 	 * i.e. we end up advancing IP with some random value.
1590 	 */
1591 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1592 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1593 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1594 
1595 		/*
1596 		 * Emulating an enclave's instructions isn't supported as KVM
1597 		 * cannot access the enclave's memory or its true RIP, e.g. the
1598 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1599 		 * the RIP that actually triggered the VM-Exit.  But, because
1600 		 * most instructions that cause VM-Exit will #UD in an enclave,
1601 		 * most instruction-based VM-Exits simply do not occur.
1602 		 *
1603 		 * There are a few exceptions, notably the debug instructions
1604 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1605 		 * and generate #DB/#BP as expected, which KVM might intercept.
1606 		 * But again, the CPU does the dirty work and saves an instr
1607 		 * length of zero so VMMs don't shoot themselves in the foot.
1608 		 * WARN if KVM tries to skip a non-zero length instruction on
1609 		 * a VM-Exit from an enclave.
1610 		 */
1611 		if (!instr_len)
1612 			goto rip_updated;
1613 
1614 		WARN(exit_reason.enclave_mode,
1615 		     "KVM: skipping instruction after SGX enclave VM-Exit");
1616 
1617 		orig_rip = kvm_rip_read(vcpu);
1618 		rip = orig_rip + instr_len;
1619 #ifdef CONFIG_X86_64
1620 		/*
1621 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1622 		 * mode, but just finding out that we are in 64-bit mode is
1623 		 * quite expensive.  Only do it if there was a carry.
1624 		 */
1625 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1626 			rip = (u32)rip;
1627 #endif
1628 		kvm_rip_write(vcpu, rip);
1629 	} else {
1630 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1631 			return 0;
1632 	}
1633 
1634 rip_updated:
1635 	/* skipping an emulated instruction also counts */
1636 	vmx_set_interrupt_shadow(vcpu, 0);
1637 
1638 	return 1;
1639 }
1640 
1641 /*
1642  * Recognizes a pending MTF VM-exit and records the nested state for later
1643  * delivery.
1644  */
1645 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1646 {
1647 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1648 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1649 
1650 	if (!is_guest_mode(vcpu))
1651 		return;
1652 
1653 	/*
1654 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1655 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1656 	 * instruction boundary), any #DB exception pending delivery must be a
1657 	 * debug-trap. Record the pending MTF state to be delivered in
1658 	 * vmx_check_nested_events().
1659 	 */
1660 	if (nested_cpu_has_mtf(vmcs12) &&
1661 	    (!vcpu->arch.exception.pending ||
1662 	     vcpu->arch.exception.nr == DB_VECTOR))
1663 		vmx->nested.mtf_pending = true;
1664 	else
1665 		vmx->nested.mtf_pending = false;
1666 }
1667 
1668 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1669 {
1670 	vmx_update_emulated_instruction(vcpu);
1671 	return skip_emulated_instruction(vcpu);
1672 }
1673 
1674 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1675 {
1676 	/*
1677 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1678 	 * explicitly skip the instruction because if the HLT state is set,
1679 	 * then the instruction is already executing and RIP has already been
1680 	 * advanced.
1681 	 */
1682 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1683 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1684 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1685 }
1686 
1687 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1688 {
1689 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1690 	unsigned nr = vcpu->arch.exception.nr;
1691 	bool has_error_code = vcpu->arch.exception.has_error_code;
1692 	u32 error_code = vcpu->arch.exception.error_code;
1693 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1694 
1695 	kvm_deliver_exception_payload(vcpu);
1696 
1697 	if (has_error_code) {
1698 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1699 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1700 	}
1701 
1702 	if (vmx->rmode.vm86_active) {
1703 		int inc_eip = 0;
1704 		if (kvm_exception_is_soft(nr))
1705 			inc_eip = vcpu->arch.event_exit_inst_len;
1706 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1707 		return;
1708 	}
1709 
1710 	WARN_ON_ONCE(vmx->emulation_required);
1711 
1712 	if (kvm_exception_is_soft(nr)) {
1713 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1714 			     vmx->vcpu.arch.event_exit_inst_len);
1715 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1716 	} else
1717 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1718 
1719 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1720 
1721 	vmx_clear_hlt(vcpu);
1722 }
1723 
1724 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1725 			       bool load_into_hardware)
1726 {
1727 	struct vmx_uret_msr *uret_msr;
1728 
1729 	uret_msr = vmx_find_uret_msr(vmx, msr);
1730 	if (!uret_msr)
1731 		return;
1732 
1733 	uret_msr->load_into_hardware = load_into_hardware;
1734 }
1735 
1736 /*
1737  * Configuring user return MSRs to automatically save, load, and restore MSRs
1738  * that need to be shoved into hardware when running the guest.  Note, omitting
1739  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1740  * loaded into hardware when running the guest.
1741  */
1742 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1743 {
1744 #ifdef CONFIG_X86_64
1745 	bool load_syscall_msrs;
1746 
1747 	/*
1748 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1749 	 * when EFER.SCE is set.
1750 	 */
1751 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1752 			    (vmx->vcpu.arch.efer & EFER_SCE);
1753 
1754 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1755 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1756 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1757 #endif
1758 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1759 
1760 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1761 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1762 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1763 
1764 	/*
1765 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1766 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1767 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1768 	 * so that TSX remains always disabled.
1769 	 */
1770 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1771 
1772 	/*
1773 	 * The set of MSRs to load may have changed, reload MSRs before the
1774 	 * next VM-Enter.
1775 	 */
1776 	vmx->guest_uret_msrs_loaded = false;
1777 }
1778 
1779 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1780 {
1781 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1782 
1783 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1784 		return vmcs12->tsc_offset;
1785 
1786 	return 0;
1787 }
1788 
1789 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1790 {
1791 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1792 
1793 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1794 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1795 		return vmcs12->tsc_multiplier;
1796 
1797 	return kvm_caps.default_tsc_scaling_ratio;
1798 }
1799 
1800 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1801 {
1802 	vmcs_write64(TSC_OFFSET, offset);
1803 }
1804 
1805 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1806 {
1807 	vmcs_write64(TSC_MULTIPLIER, multiplier);
1808 }
1809 
1810 /*
1811  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1812  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1813  * all guests if the "nested" module option is off, and can also be disabled
1814  * for a single guest by disabling its VMX cpuid bit.
1815  */
1816 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1817 {
1818 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1819 }
1820 
1821 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1822 						 uint64_t val)
1823 {
1824 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1825 
1826 	return !(val & ~valid_bits);
1827 }
1828 
1829 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1830 {
1831 	switch (msr->index) {
1832 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1833 		if (!nested)
1834 			return 1;
1835 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1836 	case MSR_IA32_PERF_CAPABILITIES:
1837 		msr->data = vmx_get_perf_capabilities();
1838 		return 0;
1839 	default:
1840 		return KVM_MSR_RET_INVALID;
1841 	}
1842 }
1843 
1844 /*
1845  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1846  * Returns 0 on success, non-0 otherwise.
1847  * Assumes vcpu_load() was already called.
1848  */
1849 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1850 {
1851 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1852 	struct vmx_uret_msr *msr;
1853 	u32 index;
1854 
1855 	switch (msr_info->index) {
1856 #ifdef CONFIG_X86_64
1857 	case MSR_FS_BASE:
1858 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1859 		break;
1860 	case MSR_GS_BASE:
1861 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1862 		break;
1863 	case MSR_KERNEL_GS_BASE:
1864 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1865 		break;
1866 #endif
1867 	case MSR_EFER:
1868 		return kvm_get_msr_common(vcpu, msr_info);
1869 	case MSR_IA32_TSX_CTRL:
1870 		if (!msr_info->host_initiated &&
1871 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1872 			return 1;
1873 		goto find_uret_msr;
1874 	case MSR_IA32_UMWAIT_CONTROL:
1875 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1876 			return 1;
1877 
1878 		msr_info->data = vmx->msr_ia32_umwait_control;
1879 		break;
1880 	case MSR_IA32_SPEC_CTRL:
1881 		if (!msr_info->host_initiated &&
1882 		    !guest_has_spec_ctrl_msr(vcpu))
1883 			return 1;
1884 
1885 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1886 		break;
1887 	case MSR_IA32_SYSENTER_CS:
1888 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1889 		break;
1890 	case MSR_IA32_SYSENTER_EIP:
1891 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1892 		break;
1893 	case MSR_IA32_SYSENTER_ESP:
1894 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1895 		break;
1896 	case MSR_IA32_BNDCFGS:
1897 		if (!kvm_mpx_supported() ||
1898 		    (!msr_info->host_initiated &&
1899 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1900 			return 1;
1901 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1902 		break;
1903 	case MSR_IA32_MCG_EXT_CTL:
1904 		if (!msr_info->host_initiated &&
1905 		    !(vmx->msr_ia32_feature_control &
1906 		      FEAT_CTL_LMCE_ENABLED))
1907 			return 1;
1908 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1909 		break;
1910 	case MSR_IA32_FEAT_CTL:
1911 		msr_info->data = vmx->msr_ia32_feature_control;
1912 		break;
1913 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1914 		if (!msr_info->host_initiated &&
1915 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1916 			return 1;
1917 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1918 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1919 		break;
1920 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1921 		if (!nested_vmx_allowed(vcpu))
1922 			return 1;
1923 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1924 				    &msr_info->data))
1925 			return 1;
1926 		/*
1927 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1928 		 * instead of just ignoring the features, different Hyper-V
1929 		 * versions are either trying to use them and fail or do some
1930 		 * sanity checking and refuse to boot. Filter all unsupported
1931 		 * features out.
1932 		 */
1933 		if (!msr_info->host_initiated &&
1934 		    vmx->nested.enlightened_vmcs_enabled)
1935 			nested_evmcs_filter_control_msr(msr_info->index,
1936 							&msr_info->data);
1937 		break;
1938 	case MSR_IA32_RTIT_CTL:
1939 		if (!vmx_pt_mode_is_host_guest())
1940 			return 1;
1941 		msr_info->data = vmx->pt_desc.guest.ctl;
1942 		break;
1943 	case MSR_IA32_RTIT_STATUS:
1944 		if (!vmx_pt_mode_is_host_guest())
1945 			return 1;
1946 		msr_info->data = vmx->pt_desc.guest.status;
1947 		break;
1948 	case MSR_IA32_RTIT_CR3_MATCH:
1949 		if (!vmx_pt_mode_is_host_guest() ||
1950 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1951 						PT_CAP_cr3_filtering))
1952 			return 1;
1953 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1954 		break;
1955 	case MSR_IA32_RTIT_OUTPUT_BASE:
1956 		if (!vmx_pt_mode_is_host_guest() ||
1957 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1958 					PT_CAP_topa_output) &&
1959 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1960 					PT_CAP_single_range_output)))
1961 			return 1;
1962 		msr_info->data = vmx->pt_desc.guest.output_base;
1963 		break;
1964 	case MSR_IA32_RTIT_OUTPUT_MASK:
1965 		if (!vmx_pt_mode_is_host_guest() ||
1966 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1967 					PT_CAP_topa_output) &&
1968 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1969 					PT_CAP_single_range_output)))
1970 			return 1;
1971 		msr_info->data = vmx->pt_desc.guest.output_mask;
1972 		break;
1973 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1974 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1975 		if (!vmx_pt_mode_is_host_guest() ||
1976 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
1977 			return 1;
1978 		if (index % 2)
1979 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1980 		else
1981 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1982 		break;
1983 	case MSR_IA32_DEBUGCTLMSR:
1984 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1985 		break;
1986 	default:
1987 	find_uret_msr:
1988 		msr = vmx_find_uret_msr(vmx, msr_info->index);
1989 		if (msr) {
1990 			msr_info->data = msr->data;
1991 			break;
1992 		}
1993 		return kvm_get_msr_common(vcpu, msr_info);
1994 	}
1995 
1996 	return 0;
1997 }
1998 
1999 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2000 						    u64 data)
2001 {
2002 #ifdef CONFIG_X86_64
2003 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2004 		return (u32)data;
2005 #endif
2006 	return (unsigned long)data;
2007 }
2008 
2009 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
2010 {
2011 	u64 debugctl = vmx_supported_debugctl();
2012 
2013 	if (!intel_pmu_lbr_is_enabled(vcpu))
2014 		debugctl &= ~DEBUGCTLMSR_LBR_MASK;
2015 
2016 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
2017 		debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
2018 
2019 	return debugctl;
2020 }
2021 
2022 /*
2023  * Writes msr value into the appropriate "register".
2024  * Returns 0 on success, non-0 otherwise.
2025  * Assumes vcpu_load() was already called.
2026  */
2027 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2028 {
2029 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2030 	struct vmx_uret_msr *msr;
2031 	int ret = 0;
2032 	u32 msr_index = msr_info->index;
2033 	u64 data = msr_info->data;
2034 	u32 index;
2035 
2036 	switch (msr_index) {
2037 	case MSR_EFER:
2038 		ret = kvm_set_msr_common(vcpu, msr_info);
2039 		break;
2040 #ifdef CONFIG_X86_64
2041 	case MSR_FS_BASE:
2042 		vmx_segment_cache_clear(vmx);
2043 		vmcs_writel(GUEST_FS_BASE, data);
2044 		break;
2045 	case MSR_GS_BASE:
2046 		vmx_segment_cache_clear(vmx);
2047 		vmcs_writel(GUEST_GS_BASE, data);
2048 		break;
2049 	case MSR_KERNEL_GS_BASE:
2050 		vmx_write_guest_kernel_gs_base(vmx, data);
2051 		break;
2052 	case MSR_IA32_XFD:
2053 		ret = kvm_set_msr_common(vcpu, msr_info);
2054 		/*
2055 		 * Always intercepting WRMSR could incur non-negligible
2056 		 * overhead given xfd might be changed frequently in
2057 		 * guest context switch. Disable write interception
2058 		 * upon the first write with a non-zero value (indicating
2059 		 * potential usage on dynamic xfeatures). Also update
2060 		 * exception bitmap to trap #NM for proper virtualization
2061 		 * of guest xfd_err.
2062 		 */
2063 		if (!ret && data) {
2064 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2065 						      MSR_TYPE_RW);
2066 			vcpu->arch.xfd_no_write_intercept = true;
2067 			vmx_update_exception_bitmap(vcpu);
2068 		}
2069 		break;
2070 #endif
2071 	case MSR_IA32_SYSENTER_CS:
2072 		if (is_guest_mode(vcpu))
2073 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2074 		vmcs_write32(GUEST_SYSENTER_CS, data);
2075 		break;
2076 	case MSR_IA32_SYSENTER_EIP:
2077 		if (is_guest_mode(vcpu)) {
2078 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2079 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2080 		}
2081 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2082 		break;
2083 	case MSR_IA32_SYSENTER_ESP:
2084 		if (is_guest_mode(vcpu)) {
2085 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2086 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2087 		}
2088 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2089 		break;
2090 	case MSR_IA32_DEBUGCTLMSR: {
2091 		u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
2092 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2093 			if (report_ignored_msrs)
2094 				vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
2095 					    __func__, data);
2096 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2097 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2098 		}
2099 
2100 		if (invalid)
2101 			return 1;
2102 
2103 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2104 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2105 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2106 
2107 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2108 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2109 		    (data & DEBUGCTLMSR_LBR))
2110 			intel_pmu_create_guest_lbr_event(vcpu);
2111 		return 0;
2112 	}
2113 	case MSR_IA32_BNDCFGS:
2114 		if (!kvm_mpx_supported() ||
2115 		    (!msr_info->host_initiated &&
2116 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2117 			return 1;
2118 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2119 		    (data & MSR_IA32_BNDCFGS_RSVD))
2120 			return 1;
2121 
2122 		if (is_guest_mode(vcpu) &&
2123 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2124 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2125 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2126 
2127 		vmcs_write64(GUEST_BNDCFGS, data);
2128 		break;
2129 	case MSR_IA32_UMWAIT_CONTROL:
2130 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2131 			return 1;
2132 
2133 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2134 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2135 			return 1;
2136 
2137 		vmx->msr_ia32_umwait_control = data;
2138 		break;
2139 	case MSR_IA32_SPEC_CTRL:
2140 		if (!msr_info->host_initiated &&
2141 		    !guest_has_spec_ctrl_msr(vcpu))
2142 			return 1;
2143 
2144 		if (kvm_spec_ctrl_test_value(data))
2145 			return 1;
2146 
2147 		vmx->spec_ctrl = data;
2148 		if (!data)
2149 			break;
2150 
2151 		/*
2152 		 * For non-nested:
2153 		 * When it's written (to non-zero) for the first time, pass
2154 		 * it through.
2155 		 *
2156 		 * For nested:
2157 		 * The handling of the MSR bitmap for L2 guests is done in
2158 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2159 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2160 		 * in the merging. We update the vmcs01 here for L1 as well
2161 		 * since it will end up touching the MSR anyway now.
2162 		 */
2163 		vmx_disable_intercept_for_msr(vcpu,
2164 					      MSR_IA32_SPEC_CTRL,
2165 					      MSR_TYPE_RW);
2166 		break;
2167 	case MSR_IA32_TSX_CTRL:
2168 		if (!msr_info->host_initiated &&
2169 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2170 			return 1;
2171 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2172 			return 1;
2173 		goto find_uret_msr;
2174 	case MSR_IA32_PRED_CMD:
2175 		if (!msr_info->host_initiated &&
2176 		    !guest_has_pred_cmd_msr(vcpu))
2177 			return 1;
2178 
2179 		if (data & ~PRED_CMD_IBPB)
2180 			return 1;
2181 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2182 			return 1;
2183 		if (!data)
2184 			break;
2185 
2186 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2187 
2188 		/*
2189 		 * For non-nested:
2190 		 * When it's written (to non-zero) for the first time, pass
2191 		 * it through.
2192 		 *
2193 		 * For nested:
2194 		 * The handling of the MSR bitmap for L2 guests is done in
2195 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2196 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2197 		 * in the merging.
2198 		 */
2199 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2200 		break;
2201 	case MSR_IA32_CR_PAT:
2202 		if (!kvm_pat_valid(data))
2203 			return 1;
2204 
2205 		if (is_guest_mode(vcpu) &&
2206 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2207 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2208 
2209 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2210 			vmcs_write64(GUEST_IA32_PAT, data);
2211 			vcpu->arch.pat = data;
2212 			break;
2213 		}
2214 		ret = kvm_set_msr_common(vcpu, msr_info);
2215 		break;
2216 	case MSR_IA32_MCG_EXT_CTL:
2217 		if ((!msr_info->host_initiated &&
2218 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2219 		       FEAT_CTL_LMCE_ENABLED)) ||
2220 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2221 			return 1;
2222 		vcpu->arch.mcg_ext_ctl = data;
2223 		break;
2224 	case MSR_IA32_FEAT_CTL:
2225 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2226 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2227 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2228 			return 1;
2229 		vmx->msr_ia32_feature_control = data;
2230 		if (msr_info->host_initiated && data == 0)
2231 			vmx_leave_nested(vcpu);
2232 
2233 		/* SGX may be enabled/disabled by guest's firmware */
2234 		vmx_write_encls_bitmap(vcpu, NULL);
2235 		break;
2236 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2237 		/*
2238 		 * On real hardware, the LE hash MSRs are writable before
2239 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2240 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2241 		 * become writable.
2242 		 *
2243 		 * KVM does not emulate SGX activation for simplicity, so
2244 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2245 		 * is unlocked.  This is technically not architectural
2246 		 * behavior, but it's close enough.
2247 		 */
2248 		if (!msr_info->host_initiated &&
2249 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2250 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2251 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2252 			return 1;
2253 		vmx->msr_ia32_sgxlepubkeyhash
2254 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2255 		break;
2256 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2257 		if (!msr_info->host_initiated)
2258 			return 1; /* they are read-only */
2259 		if (!nested_vmx_allowed(vcpu))
2260 			return 1;
2261 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2262 	case MSR_IA32_RTIT_CTL:
2263 		if (!vmx_pt_mode_is_host_guest() ||
2264 			vmx_rtit_ctl_check(vcpu, data) ||
2265 			vmx->nested.vmxon)
2266 			return 1;
2267 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2268 		vmx->pt_desc.guest.ctl = data;
2269 		pt_update_intercept_for_msr(vcpu);
2270 		break;
2271 	case MSR_IA32_RTIT_STATUS:
2272 		if (!pt_can_write_msr(vmx))
2273 			return 1;
2274 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2275 			return 1;
2276 		vmx->pt_desc.guest.status = data;
2277 		break;
2278 	case MSR_IA32_RTIT_CR3_MATCH:
2279 		if (!pt_can_write_msr(vmx))
2280 			return 1;
2281 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2282 					   PT_CAP_cr3_filtering))
2283 			return 1;
2284 		vmx->pt_desc.guest.cr3_match = data;
2285 		break;
2286 	case MSR_IA32_RTIT_OUTPUT_BASE:
2287 		if (!pt_can_write_msr(vmx))
2288 			return 1;
2289 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2290 					   PT_CAP_topa_output) &&
2291 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2292 					   PT_CAP_single_range_output))
2293 			return 1;
2294 		if (!pt_output_base_valid(vcpu, data))
2295 			return 1;
2296 		vmx->pt_desc.guest.output_base = data;
2297 		break;
2298 	case MSR_IA32_RTIT_OUTPUT_MASK:
2299 		if (!pt_can_write_msr(vmx))
2300 			return 1;
2301 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2302 					   PT_CAP_topa_output) &&
2303 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2304 					   PT_CAP_single_range_output))
2305 			return 1;
2306 		vmx->pt_desc.guest.output_mask = data;
2307 		break;
2308 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2309 		if (!pt_can_write_msr(vmx))
2310 			return 1;
2311 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2312 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2313 			return 1;
2314 		if (is_noncanonical_address(data, vcpu))
2315 			return 1;
2316 		if (index % 2)
2317 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2318 		else
2319 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2320 		break;
2321 	case MSR_IA32_PERF_CAPABILITIES:
2322 		if (data && !vcpu_to_pmu(vcpu)->version)
2323 			return 1;
2324 		if (data & PMU_CAP_LBR_FMT) {
2325 			if ((data & PMU_CAP_LBR_FMT) !=
2326 			    (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2327 				return 1;
2328 			if (!cpuid_model_is_consistent(vcpu))
2329 				return 1;
2330 		}
2331 		if (data & PERF_CAP_PEBS_FORMAT) {
2332 			if ((data & PERF_CAP_PEBS_MASK) !=
2333 			    (vmx_get_perf_capabilities() & PERF_CAP_PEBS_MASK))
2334 				return 1;
2335 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2336 				return 1;
2337 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2338 				return 1;
2339 			if (!cpuid_model_is_consistent(vcpu))
2340 				return 1;
2341 		}
2342 		ret = kvm_set_msr_common(vcpu, msr_info);
2343 		break;
2344 
2345 	default:
2346 	find_uret_msr:
2347 		msr = vmx_find_uret_msr(vmx, msr_index);
2348 		if (msr)
2349 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2350 		else
2351 			ret = kvm_set_msr_common(vcpu, msr_info);
2352 	}
2353 
2354 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2355 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2356 		vmx_update_fb_clear_dis(vcpu, vmx);
2357 
2358 	return ret;
2359 }
2360 
2361 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2362 {
2363 	unsigned long guest_owned_bits;
2364 
2365 	kvm_register_mark_available(vcpu, reg);
2366 
2367 	switch (reg) {
2368 	case VCPU_REGS_RSP:
2369 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2370 		break;
2371 	case VCPU_REGS_RIP:
2372 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2373 		break;
2374 	case VCPU_EXREG_PDPTR:
2375 		if (enable_ept)
2376 			ept_save_pdptrs(vcpu);
2377 		break;
2378 	case VCPU_EXREG_CR0:
2379 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2380 
2381 		vcpu->arch.cr0 &= ~guest_owned_bits;
2382 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2383 		break;
2384 	case VCPU_EXREG_CR3:
2385 		/*
2386 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2387 		 * CR3 is loaded into hardware, not the guest's CR3.
2388 		 */
2389 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2390 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2391 		break;
2392 	case VCPU_EXREG_CR4:
2393 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2394 
2395 		vcpu->arch.cr4 &= ~guest_owned_bits;
2396 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2397 		break;
2398 	default:
2399 		KVM_BUG_ON(1, vcpu->kvm);
2400 		break;
2401 	}
2402 }
2403 
2404 static __init int cpu_has_kvm_support(void)
2405 {
2406 	return cpu_has_vmx();
2407 }
2408 
2409 static __init int vmx_disabled_by_bios(void)
2410 {
2411 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2412 	       !boot_cpu_has(X86_FEATURE_VMX);
2413 }
2414 
2415 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2416 {
2417 	u64 msr;
2418 
2419 	cr4_set_bits(X86_CR4_VMXE);
2420 
2421 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2422 			  _ASM_EXTABLE(1b, %l[fault])
2423 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2424 			  : : fault);
2425 	return 0;
2426 
2427 fault:
2428 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2429 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2430 	cr4_clear_bits(X86_CR4_VMXE);
2431 
2432 	return -EFAULT;
2433 }
2434 
2435 static int vmx_hardware_enable(void)
2436 {
2437 	int cpu = raw_smp_processor_id();
2438 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2439 	int r;
2440 
2441 	if (cr4_read_shadow() & X86_CR4_VMXE)
2442 		return -EBUSY;
2443 
2444 	/*
2445 	 * This can happen if we hot-added a CPU but failed to allocate
2446 	 * VP assist page for it.
2447 	 */
2448 	if (static_branch_unlikely(&enable_evmcs) &&
2449 	    !hv_get_vp_assist_page(cpu))
2450 		return -EFAULT;
2451 
2452 	intel_pt_handle_vmx(1);
2453 
2454 	r = kvm_cpu_vmxon(phys_addr);
2455 	if (r) {
2456 		intel_pt_handle_vmx(0);
2457 		return r;
2458 	}
2459 
2460 	if (enable_ept)
2461 		ept_sync_global();
2462 
2463 	return 0;
2464 }
2465 
2466 static void vmclear_local_loaded_vmcss(void)
2467 {
2468 	int cpu = raw_smp_processor_id();
2469 	struct loaded_vmcs *v, *n;
2470 
2471 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2472 				 loaded_vmcss_on_cpu_link)
2473 		__loaded_vmcs_clear(v);
2474 }
2475 
2476 static void vmx_hardware_disable(void)
2477 {
2478 	vmclear_local_loaded_vmcss();
2479 
2480 	if (cpu_vmxoff())
2481 		kvm_spurious_fault();
2482 
2483 	intel_pt_handle_vmx(0);
2484 }
2485 
2486 /*
2487  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2488  * directly instead of going through cpu_has(), to ensure KVM is trapping
2489  * ENCLS whenever it's supported in hardware.  It does not matter whether
2490  * the host OS supports or has enabled SGX.
2491  */
2492 static bool cpu_has_sgx(void)
2493 {
2494 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2495 }
2496 
2497 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2498 				      u32 msr, u32 *result)
2499 {
2500 	u32 vmx_msr_low, vmx_msr_high;
2501 	u32 ctl = ctl_min | ctl_opt;
2502 
2503 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2504 
2505 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2506 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2507 
2508 	/* Ensure minimum (required) set of control bits are supported. */
2509 	if (ctl_min & ~ctl)
2510 		return -EIO;
2511 
2512 	*result = ctl;
2513 	return 0;
2514 }
2515 
2516 static __init u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2517 {
2518 	u64 allowed;
2519 
2520 	rdmsrl(msr, allowed);
2521 
2522 	return  ctl_opt & allowed;
2523 }
2524 
2525 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2526 				    struct vmx_capability *vmx_cap)
2527 {
2528 	u32 vmx_msr_low, vmx_msr_high;
2529 	u32 min, opt, min2, opt2;
2530 	u32 _pin_based_exec_control = 0;
2531 	u32 _cpu_based_exec_control = 0;
2532 	u32 _cpu_based_2nd_exec_control = 0;
2533 	u64 _cpu_based_3rd_exec_control = 0;
2534 	u32 _vmexit_control = 0;
2535 	u32 _vmentry_control = 0;
2536 	int i;
2537 
2538 	/*
2539 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2540 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2541 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2542 	 */
2543 	struct {
2544 		u32 entry_control;
2545 		u32 exit_control;
2546 	} const vmcs_entry_exit_pairs[] = {
2547 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2548 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2549 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2550 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2551 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2552 	};
2553 
2554 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2555 	min = CPU_BASED_HLT_EXITING |
2556 #ifdef CONFIG_X86_64
2557 	      CPU_BASED_CR8_LOAD_EXITING |
2558 	      CPU_BASED_CR8_STORE_EXITING |
2559 #endif
2560 	      CPU_BASED_CR3_LOAD_EXITING |
2561 	      CPU_BASED_CR3_STORE_EXITING |
2562 	      CPU_BASED_UNCOND_IO_EXITING |
2563 	      CPU_BASED_MOV_DR_EXITING |
2564 	      CPU_BASED_USE_TSC_OFFSETTING |
2565 	      CPU_BASED_MWAIT_EXITING |
2566 	      CPU_BASED_MONITOR_EXITING |
2567 	      CPU_BASED_INVLPG_EXITING |
2568 	      CPU_BASED_RDPMC_EXITING;
2569 
2570 	opt = CPU_BASED_TPR_SHADOW |
2571 	      CPU_BASED_USE_MSR_BITMAPS |
2572 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS |
2573 	      CPU_BASED_ACTIVATE_TERTIARY_CONTROLS;
2574 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2575 				&_cpu_based_exec_control) < 0)
2576 		return -EIO;
2577 #ifdef CONFIG_X86_64
2578 	if (_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)
2579 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2580 					   ~CPU_BASED_CR8_STORE_EXITING;
2581 #endif
2582 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2583 		min2 = 0;
2584 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2585 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2586 			SECONDARY_EXEC_WBINVD_EXITING |
2587 			SECONDARY_EXEC_ENABLE_VPID |
2588 			SECONDARY_EXEC_ENABLE_EPT |
2589 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2590 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2591 			SECONDARY_EXEC_DESC |
2592 			SECONDARY_EXEC_ENABLE_RDTSCP |
2593 			SECONDARY_EXEC_ENABLE_INVPCID |
2594 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2595 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2596 			SECONDARY_EXEC_SHADOW_VMCS |
2597 			SECONDARY_EXEC_XSAVES |
2598 			SECONDARY_EXEC_RDSEED_EXITING |
2599 			SECONDARY_EXEC_RDRAND_EXITING |
2600 			SECONDARY_EXEC_ENABLE_PML |
2601 			SECONDARY_EXEC_TSC_SCALING |
2602 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2603 			SECONDARY_EXEC_PT_USE_GPA |
2604 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2605 			SECONDARY_EXEC_ENABLE_VMFUNC |
2606 			SECONDARY_EXEC_BUS_LOCK_DETECTION |
2607 			SECONDARY_EXEC_NOTIFY_VM_EXITING;
2608 		if (cpu_has_sgx())
2609 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2610 		if (adjust_vmx_controls(min2, opt2,
2611 					MSR_IA32_VMX_PROCBASED_CTLS2,
2612 					&_cpu_based_2nd_exec_control) < 0)
2613 			return -EIO;
2614 	}
2615 #ifndef CONFIG_X86_64
2616 	if (!(_cpu_based_2nd_exec_control &
2617 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2618 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2619 #endif
2620 
2621 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2622 		_cpu_based_2nd_exec_control &= ~(
2623 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2624 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2625 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2626 
2627 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2628 		&vmx_cap->ept, &vmx_cap->vpid);
2629 
2630 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2631 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2632 		   enabled */
2633 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2634 					     CPU_BASED_CR3_STORE_EXITING |
2635 					     CPU_BASED_INVLPG_EXITING);
2636 	} else if (vmx_cap->ept) {
2637 		pr_warn_once("EPT CAP should not exist if not support "
2638 				"1-setting enable EPT VM-execution control\n");
2639 
2640 		if (error_on_inconsistent_vmcs_config)
2641 			return -EIO;
2642 
2643 		vmx_cap->ept = 0;
2644 	}
2645 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2646 	    vmx_cap->vpid) {
2647 		pr_warn_once("VPID CAP should not exist if not support "
2648 				"1-setting enable VPID VM-execution control\n");
2649 
2650 		if (error_on_inconsistent_vmcs_config)
2651 			return -EIO;
2652 
2653 		vmx_cap->vpid = 0;
2654 	}
2655 
2656 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) {
2657 		u64 opt3 = TERTIARY_EXEC_IPI_VIRT;
2658 
2659 		_cpu_based_3rd_exec_control = adjust_vmx_controls64(opt3,
2660 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2661 	}
2662 
2663 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2664 #ifdef CONFIG_X86_64
2665 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2666 #endif
2667 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2668 	      VM_EXIT_LOAD_IA32_PAT |
2669 	      VM_EXIT_LOAD_IA32_EFER |
2670 	      VM_EXIT_CLEAR_BNDCFGS |
2671 	      VM_EXIT_PT_CONCEAL_PIP |
2672 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2673 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2674 				&_vmexit_control) < 0)
2675 		return -EIO;
2676 
2677 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2678 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2679 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2680 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2681 				&_pin_based_exec_control) < 0)
2682 		return -EIO;
2683 
2684 	if (cpu_has_broken_vmx_preemption_timer())
2685 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2686 	if (!(_cpu_based_2nd_exec_control &
2687 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2688 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2689 
2690 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2691 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2692 	      VM_ENTRY_LOAD_IA32_PAT |
2693 	      VM_ENTRY_LOAD_IA32_EFER |
2694 	      VM_ENTRY_LOAD_BNDCFGS |
2695 	      VM_ENTRY_PT_CONCEAL_PIP |
2696 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2697 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2698 				&_vmentry_control) < 0)
2699 		return -EIO;
2700 
2701 	for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2702 		u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2703 		u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2704 
2705 		if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2706 			continue;
2707 
2708 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2709 			     _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2710 
2711 		if (error_on_inconsistent_vmcs_config)
2712 			return -EIO;
2713 
2714 		_vmentry_control &= ~n_ctrl;
2715 		_vmexit_control &= ~x_ctrl;
2716 	}
2717 
2718 	/*
2719 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2720 	 * can't be used due to an errata where VM Exit may incorrectly clear
2721 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2722 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2723 	 */
2724 	if (boot_cpu_data.x86 == 0x6) {
2725 		switch (boot_cpu_data.x86_model) {
2726 		case 26: /* AAK155 */
2727 		case 30: /* AAP115 */
2728 		case 37: /* AAT100 */
2729 		case 44: /* BC86,AAY89,BD102 */
2730 		case 46: /* BA97 */
2731 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2732 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2733 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2734 					"does not work properly. Using workaround\n");
2735 			break;
2736 		default:
2737 			break;
2738 		}
2739 	}
2740 
2741 
2742 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2743 
2744 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2745 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2746 		return -EIO;
2747 
2748 #ifdef CONFIG_X86_64
2749 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2750 	if (vmx_msr_high & (1u<<16))
2751 		return -EIO;
2752 #endif
2753 
2754 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2755 	if (((vmx_msr_high >> 18) & 15) != 6)
2756 		return -EIO;
2757 
2758 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2759 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2760 
2761 	vmcs_conf->revision_id = vmx_msr_low;
2762 
2763 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2764 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2765 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2766 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2767 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2768 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2769 
2770 #if IS_ENABLED(CONFIG_HYPERV)
2771 	if (enlightened_vmcs)
2772 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2773 #endif
2774 
2775 	return 0;
2776 }
2777 
2778 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2779 {
2780 	int node = cpu_to_node(cpu);
2781 	struct page *pages;
2782 	struct vmcs *vmcs;
2783 
2784 	pages = __alloc_pages_node(node, flags, 0);
2785 	if (!pages)
2786 		return NULL;
2787 	vmcs = page_address(pages);
2788 	memset(vmcs, 0, vmcs_config.size);
2789 
2790 	/* KVM supports Enlightened VMCS v1 only */
2791 	if (static_branch_unlikely(&enable_evmcs))
2792 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2793 	else
2794 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2795 
2796 	if (shadow)
2797 		vmcs->hdr.shadow_vmcs = 1;
2798 	return vmcs;
2799 }
2800 
2801 void free_vmcs(struct vmcs *vmcs)
2802 {
2803 	free_page((unsigned long)vmcs);
2804 }
2805 
2806 /*
2807  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2808  */
2809 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2810 {
2811 	if (!loaded_vmcs->vmcs)
2812 		return;
2813 	loaded_vmcs_clear(loaded_vmcs);
2814 	free_vmcs(loaded_vmcs->vmcs);
2815 	loaded_vmcs->vmcs = NULL;
2816 	if (loaded_vmcs->msr_bitmap)
2817 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2818 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2819 }
2820 
2821 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2822 {
2823 	loaded_vmcs->vmcs = alloc_vmcs(false);
2824 	if (!loaded_vmcs->vmcs)
2825 		return -ENOMEM;
2826 
2827 	vmcs_clear(loaded_vmcs->vmcs);
2828 
2829 	loaded_vmcs->shadow_vmcs = NULL;
2830 	loaded_vmcs->hv_timer_soft_disabled = false;
2831 	loaded_vmcs->cpu = -1;
2832 	loaded_vmcs->launched = 0;
2833 
2834 	if (cpu_has_vmx_msr_bitmap()) {
2835 		loaded_vmcs->msr_bitmap = (unsigned long *)
2836 				__get_free_page(GFP_KERNEL_ACCOUNT);
2837 		if (!loaded_vmcs->msr_bitmap)
2838 			goto out_vmcs;
2839 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2840 	}
2841 
2842 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2843 	memset(&loaded_vmcs->controls_shadow, 0,
2844 		sizeof(struct vmcs_controls_shadow));
2845 
2846 	return 0;
2847 
2848 out_vmcs:
2849 	free_loaded_vmcs(loaded_vmcs);
2850 	return -ENOMEM;
2851 }
2852 
2853 static void free_kvm_area(void)
2854 {
2855 	int cpu;
2856 
2857 	for_each_possible_cpu(cpu) {
2858 		free_vmcs(per_cpu(vmxarea, cpu));
2859 		per_cpu(vmxarea, cpu) = NULL;
2860 	}
2861 }
2862 
2863 static __init int alloc_kvm_area(void)
2864 {
2865 	int cpu;
2866 
2867 	for_each_possible_cpu(cpu) {
2868 		struct vmcs *vmcs;
2869 
2870 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2871 		if (!vmcs) {
2872 			free_kvm_area();
2873 			return -ENOMEM;
2874 		}
2875 
2876 		/*
2877 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2878 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2879 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2880 		 *
2881 		 * However, even though not explicitly documented by
2882 		 * TLFS, VMXArea passed as VMXON argument should
2883 		 * still be marked with revision_id reported by
2884 		 * physical CPU.
2885 		 */
2886 		if (static_branch_unlikely(&enable_evmcs))
2887 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2888 
2889 		per_cpu(vmxarea, cpu) = vmcs;
2890 	}
2891 	return 0;
2892 }
2893 
2894 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2895 		struct kvm_segment *save)
2896 {
2897 	if (!emulate_invalid_guest_state) {
2898 		/*
2899 		 * CS and SS RPL should be equal during guest entry according
2900 		 * to VMX spec, but in reality it is not always so. Since vcpu
2901 		 * is in the middle of the transition from real mode to
2902 		 * protected mode it is safe to assume that RPL 0 is a good
2903 		 * default value.
2904 		 */
2905 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2906 			save->selector &= ~SEGMENT_RPL_MASK;
2907 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2908 		save->s = 1;
2909 	}
2910 	__vmx_set_segment(vcpu, save, seg);
2911 }
2912 
2913 static void enter_pmode(struct kvm_vcpu *vcpu)
2914 {
2915 	unsigned long flags;
2916 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2917 
2918 	/*
2919 	 * Update real mode segment cache. It may be not up-to-date if segment
2920 	 * register was written while vcpu was in a guest mode.
2921 	 */
2922 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2923 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2924 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2925 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2926 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2927 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2928 
2929 	vmx->rmode.vm86_active = 0;
2930 
2931 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2932 
2933 	flags = vmcs_readl(GUEST_RFLAGS);
2934 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2935 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2936 	vmcs_writel(GUEST_RFLAGS, flags);
2937 
2938 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2939 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2940 
2941 	vmx_update_exception_bitmap(vcpu);
2942 
2943 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2944 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2945 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2946 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2947 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2948 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2949 }
2950 
2951 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2952 {
2953 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2954 	struct kvm_segment var = *save;
2955 
2956 	var.dpl = 0x3;
2957 	if (seg == VCPU_SREG_CS)
2958 		var.type = 0x3;
2959 
2960 	if (!emulate_invalid_guest_state) {
2961 		var.selector = var.base >> 4;
2962 		var.base = var.base & 0xffff0;
2963 		var.limit = 0xffff;
2964 		var.g = 0;
2965 		var.db = 0;
2966 		var.present = 1;
2967 		var.s = 1;
2968 		var.l = 0;
2969 		var.unusable = 0;
2970 		var.type = 0x3;
2971 		var.avl = 0;
2972 		if (save->base & 0xf)
2973 			printk_once(KERN_WARNING "kvm: segment base is not "
2974 					"paragraph aligned when entering "
2975 					"protected mode (seg=%d)", seg);
2976 	}
2977 
2978 	vmcs_write16(sf->selector, var.selector);
2979 	vmcs_writel(sf->base, var.base);
2980 	vmcs_write32(sf->limit, var.limit);
2981 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2982 }
2983 
2984 static void enter_rmode(struct kvm_vcpu *vcpu)
2985 {
2986 	unsigned long flags;
2987 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2988 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2989 
2990 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2991 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2992 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2993 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2994 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2995 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2996 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2997 
2998 	vmx->rmode.vm86_active = 1;
2999 
3000 	/*
3001 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3002 	 * vcpu. Warn the user that an update is overdue.
3003 	 */
3004 	if (!kvm_vmx->tss_addr)
3005 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3006 			     "called before entering vcpu\n");
3007 
3008 	vmx_segment_cache_clear(vmx);
3009 
3010 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3011 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3012 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3013 
3014 	flags = vmcs_readl(GUEST_RFLAGS);
3015 	vmx->rmode.save_rflags = flags;
3016 
3017 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3018 
3019 	vmcs_writel(GUEST_RFLAGS, flags);
3020 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3021 	vmx_update_exception_bitmap(vcpu);
3022 
3023 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3024 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3025 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3026 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3027 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3028 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3029 }
3030 
3031 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3032 {
3033 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3034 
3035 	/* Nothing to do if hardware doesn't support EFER. */
3036 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3037 		return 0;
3038 
3039 	vcpu->arch.efer = efer;
3040 	if (efer & EFER_LMA)
3041 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3042 	else
3043 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3044 
3045 	vmx_setup_uret_msrs(vmx);
3046 	return 0;
3047 }
3048 
3049 #ifdef CONFIG_X86_64
3050 
3051 static void enter_lmode(struct kvm_vcpu *vcpu)
3052 {
3053 	u32 guest_tr_ar;
3054 
3055 	vmx_segment_cache_clear(to_vmx(vcpu));
3056 
3057 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3058 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3059 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3060 				     __func__);
3061 		vmcs_write32(GUEST_TR_AR_BYTES,
3062 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3063 			     | VMX_AR_TYPE_BUSY_64_TSS);
3064 	}
3065 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3066 }
3067 
3068 static void exit_lmode(struct kvm_vcpu *vcpu)
3069 {
3070 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3071 }
3072 
3073 #endif
3074 
3075 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3076 {
3077 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3078 
3079 	/*
3080 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3081 	 * the CPU is not required to invalidate guest-physical mappings on
3082 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3083 	 * associated with the root EPT structure and not any particular VPID
3084 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3085 	 */
3086 	if (enable_ept) {
3087 		ept_sync_global();
3088 	} else if (enable_vpid) {
3089 		if (cpu_has_vmx_invvpid_global()) {
3090 			vpid_sync_vcpu_global();
3091 		} else {
3092 			vpid_sync_vcpu_single(vmx->vpid);
3093 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3094 		}
3095 	}
3096 }
3097 
3098 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3099 {
3100 	if (is_guest_mode(vcpu))
3101 		return nested_get_vpid02(vcpu);
3102 	return to_vmx(vcpu)->vpid;
3103 }
3104 
3105 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3106 {
3107 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3108 	u64 root_hpa = mmu->root.hpa;
3109 
3110 	/* No flush required if the current context is invalid. */
3111 	if (!VALID_PAGE(root_hpa))
3112 		return;
3113 
3114 	if (enable_ept)
3115 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3116 						mmu->root_role.level));
3117 	else
3118 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3119 }
3120 
3121 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3122 {
3123 	/*
3124 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3125 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3126 	 */
3127 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3128 }
3129 
3130 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3131 {
3132 	/*
3133 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3134 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3135 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3136 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3137 	 * i.e. no explicit INVVPID is necessary.
3138 	 */
3139 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3140 }
3141 
3142 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3143 {
3144 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3145 
3146 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3147 		return;
3148 
3149 	if (is_pae_paging(vcpu)) {
3150 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3151 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3152 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3153 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3154 	}
3155 }
3156 
3157 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3158 {
3159 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3160 
3161 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3162 		return;
3163 
3164 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3165 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3166 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3167 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3168 
3169 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3170 }
3171 
3172 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3173 			  CPU_BASED_CR3_STORE_EXITING)
3174 
3175 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3176 {
3177 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3178 	unsigned long hw_cr0, old_cr0_pg;
3179 	u32 tmp;
3180 
3181 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3182 
3183 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3184 	if (is_unrestricted_guest(vcpu))
3185 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3186 	else {
3187 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3188 		if (!enable_ept)
3189 			hw_cr0 |= X86_CR0_WP;
3190 
3191 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3192 			enter_pmode(vcpu);
3193 
3194 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3195 			enter_rmode(vcpu);
3196 	}
3197 
3198 	vmcs_writel(CR0_READ_SHADOW, cr0);
3199 	vmcs_writel(GUEST_CR0, hw_cr0);
3200 	vcpu->arch.cr0 = cr0;
3201 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3202 
3203 #ifdef CONFIG_X86_64
3204 	if (vcpu->arch.efer & EFER_LME) {
3205 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3206 			enter_lmode(vcpu);
3207 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3208 			exit_lmode(vcpu);
3209 	}
3210 #endif
3211 
3212 	if (enable_ept && !is_unrestricted_guest(vcpu)) {
3213 		/*
3214 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3215 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3216 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3217 		 * KVM's CR3 is installed.
3218 		 */
3219 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3220 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3221 
3222 		/*
3223 		 * When running with EPT but not unrestricted guest, KVM must
3224 		 * intercept CR3 accesses when paging is _disabled_.  This is
3225 		 * necessary because restricted guests can't actually run with
3226 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3227 		 * run the guest when identity mapped page tables.
3228 		 *
3229 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3230 		 * update, it may be stale with respect to CR3 interception,
3231 		 * e.g. after nested VM-Enter.
3232 		 *
3233 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3234 		 * stores to forward them to L1, even if KVM does not need to
3235 		 * intercept them to preserve its identity mapped page tables.
3236 		 */
3237 		if (!(cr0 & X86_CR0_PG)) {
3238 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3239 		} else if (!is_guest_mode(vcpu)) {
3240 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3241 		} else {
3242 			tmp = exec_controls_get(vmx);
3243 			tmp &= ~CR3_EXITING_BITS;
3244 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3245 			exec_controls_set(vmx, tmp);
3246 		}
3247 
3248 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3249 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3250 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3251 
3252 		/*
3253 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3254 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3255 		 */
3256 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3257 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3258 	}
3259 
3260 	/* depends on vcpu->arch.cr0 to be set to a new value */
3261 	vmx->emulation_required = vmx_emulation_required(vcpu);
3262 }
3263 
3264 static int vmx_get_max_tdp_level(void)
3265 {
3266 	if (cpu_has_vmx_ept_5levels())
3267 		return 5;
3268 	return 4;
3269 }
3270 
3271 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3272 {
3273 	u64 eptp = VMX_EPTP_MT_WB;
3274 
3275 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3276 
3277 	if (enable_ept_ad_bits &&
3278 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3279 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3280 	eptp |= root_hpa;
3281 
3282 	return eptp;
3283 }
3284 
3285 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3286 			     int root_level)
3287 {
3288 	struct kvm *kvm = vcpu->kvm;
3289 	bool update_guest_cr3 = true;
3290 	unsigned long guest_cr3;
3291 	u64 eptp;
3292 
3293 	if (enable_ept) {
3294 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3295 		vmcs_write64(EPT_POINTER, eptp);
3296 
3297 		hv_track_root_tdp(vcpu, root_hpa);
3298 
3299 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3300 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3301 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3302 			guest_cr3 = vcpu->arch.cr3;
3303 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3304 			update_guest_cr3 = false;
3305 		vmx_ept_load_pdptrs(vcpu);
3306 	} else {
3307 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3308 	}
3309 
3310 	if (update_guest_cr3)
3311 		vmcs_writel(GUEST_CR3, guest_cr3);
3312 }
3313 
3314 
3315 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3316 {
3317 	/*
3318 	 * We operate under the default treatment of SMM, so VMX cannot be
3319 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3320 	 * i.e. is a reserved bit, is handled by common x86 code.
3321 	 */
3322 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3323 		return false;
3324 
3325 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3326 		return false;
3327 
3328 	return true;
3329 }
3330 
3331 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3332 {
3333 	unsigned long old_cr4 = vcpu->arch.cr4;
3334 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3335 	/*
3336 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3337 	 * is in force while we are in guest mode.  Do not let guests control
3338 	 * this bit, even if host CR4.MCE == 0.
3339 	 */
3340 	unsigned long hw_cr4;
3341 
3342 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3343 	if (is_unrestricted_guest(vcpu))
3344 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3345 	else if (vmx->rmode.vm86_active)
3346 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3347 	else
3348 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3349 
3350 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3351 		if (cr4 & X86_CR4_UMIP) {
3352 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3353 			hw_cr4 &= ~X86_CR4_UMIP;
3354 		} else if (!is_guest_mode(vcpu) ||
3355 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3356 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3357 		}
3358 	}
3359 
3360 	vcpu->arch.cr4 = cr4;
3361 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3362 
3363 	if (!is_unrestricted_guest(vcpu)) {
3364 		if (enable_ept) {
3365 			if (!is_paging(vcpu)) {
3366 				hw_cr4 &= ~X86_CR4_PAE;
3367 				hw_cr4 |= X86_CR4_PSE;
3368 			} else if (!(cr4 & X86_CR4_PAE)) {
3369 				hw_cr4 &= ~X86_CR4_PAE;
3370 			}
3371 		}
3372 
3373 		/*
3374 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3375 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3376 		 * to be manually disabled when guest switches to non-paging
3377 		 * mode.
3378 		 *
3379 		 * If !enable_unrestricted_guest, the CPU is always running
3380 		 * with CR0.PG=1 and CR4 needs to be modified.
3381 		 * If enable_unrestricted_guest, the CPU automatically
3382 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3383 		 */
3384 		if (!is_paging(vcpu))
3385 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3386 	}
3387 
3388 	vmcs_writel(CR4_READ_SHADOW, cr4);
3389 	vmcs_writel(GUEST_CR4, hw_cr4);
3390 
3391 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3392 		kvm_update_cpuid_runtime(vcpu);
3393 }
3394 
3395 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3396 {
3397 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3398 	u32 ar;
3399 
3400 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3401 		*var = vmx->rmode.segs[seg];
3402 		if (seg == VCPU_SREG_TR
3403 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3404 			return;
3405 		var->base = vmx_read_guest_seg_base(vmx, seg);
3406 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3407 		return;
3408 	}
3409 	var->base = vmx_read_guest_seg_base(vmx, seg);
3410 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3411 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3412 	ar = vmx_read_guest_seg_ar(vmx, seg);
3413 	var->unusable = (ar >> 16) & 1;
3414 	var->type = ar & 15;
3415 	var->s = (ar >> 4) & 1;
3416 	var->dpl = (ar >> 5) & 3;
3417 	/*
3418 	 * Some userspaces do not preserve unusable property. Since usable
3419 	 * segment has to be present according to VMX spec we can use present
3420 	 * property to amend userspace bug by making unusable segment always
3421 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3422 	 * segment as unusable.
3423 	 */
3424 	var->present = !var->unusable;
3425 	var->avl = (ar >> 12) & 1;
3426 	var->l = (ar >> 13) & 1;
3427 	var->db = (ar >> 14) & 1;
3428 	var->g = (ar >> 15) & 1;
3429 }
3430 
3431 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3432 {
3433 	struct kvm_segment s;
3434 
3435 	if (to_vmx(vcpu)->rmode.vm86_active) {
3436 		vmx_get_segment(vcpu, &s, seg);
3437 		return s.base;
3438 	}
3439 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3440 }
3441 
3442 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3443 {
3444 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3445 
3446 	if (unlikely(vmx->rmode.vm86_active))
3447 		return 0;
3448 	else {
3449 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3450 		return VMX_AR_DPL(ar);
3451 	}
3452 }
3453 
3454 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3455 {
3456 	u32 ar;
3457 
3458 	if (var->unusable || !var->present)
3459 		ar = 1 << 16;
3460 	else {
3461 		ar = var->type & 15;
3462 		ar |= (var->s & 1) << 4;
3463 		ar |= (var->dpl & 3) << 5;
3464 		ar |= (var->present & 1) << 7;
3465 		ar |= (var->avl & 1) << 12;
3466 		ar |= (var->l & 1) << 13;
3467 		ar |= (var->db & 1) << 14;
3468 		ar |= (var->g & 1) << 15;
3469 	}
3470 
3471 	return ar;
3472 }
3473 
3474 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3475 {
3476 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3477 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3478 
3479 	vmx_segment_cache_clear(vmx);
3480 
3481 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3482 		vmx->rmode.segs[seg] = *var;
3483 		if (seg == VCPU_SREG_TR)
3484 			vmcs_write16(sf->selector, var->selector);
3485 		else if (var->s)
3486 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3487 		return;
3488 	}
3489 
3490 	vmcs_writel(sf->base, var->base);
3491 	vmcs_write32(sf->limit, var->limit);
3492 	vmcs_write16(sf->selector, var->selector);
3493 
3494 	/*
3495 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3496 	 * qemu binaries.
3497 	 *   IA32 arch specifies that at the time of processor reset the
3498 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3499 	 * is setting it to 0 in the userland code. This causes invalid guest
3500 	 * state vmexit when "unrestricted guest" mode is turned on.
3501 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3502 	 * tree. Newer qemu binaries with that qemu fix would not need this
3503 	 * kvm hack.
3504 	 */
3505 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3506 		var->type |= 0x1; /* Accessed */
3507 
3508 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3509 }
3510 
3511 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3512 {
3513 	__vmx_set_segment(vcpu, var, seg);
3514 
3515 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3516 }
3517 
3518 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3519 {
3520 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3521 
3522 	*db = (ar >> 14) & 1;
3523 	*l = (ar >> 13) & 1;
3524 }
3525 
3526 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3527 {
3528 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3529 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3530 }
3531 
3532 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3533 {
3534 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3535 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3536 }
3537 
3538 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3539 {
3540 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3541 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3542 }
3543 
3544 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3545 {
3546 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3547 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3548 }
3549 
3550 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3551 {
3552 	struct kvm_segment var;
3553 	u32 ar;
3554 
3555 	vmx_get_segment(vcpu, &var, seg);
3556 	var.dpl = 0x3;
3557 	if (seg == VCPU_SREG_CS)
3558 		var.type = 0x3;
3559 	ar = vmx_segment_access_rights(&var);
3560 
3561 	if (var.base != (var.selector << 4))
3562 		return false;
3563 	if (var.limit != 0xffff)
3564 		return false;
3565 	if (ar != 0xf3)
3566 		return false;
3567 
3568 	return true;
3569 }
3570 
3571 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3572 {
3573 	struct kvm_segment cs;
3574 	unsigned int cs_rpl;
3575 
3576 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3577 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3578 
3579 	if (cs.unusable)
3580 		return false;
3581 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3582 		return false;
3583 	if (!cs.s)
3584 		return false;
3585 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3586 		if (cs.dpl > cs_rpl)
3587 			return false;
3588 	} else {
3589 		if (cs.dpl != cs_rpl)
3590 			return false;
3591 	}
3592 	if (!cs.present)
3593 		return false;
3594 
3595 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3596 	return true;
3597 }
3598 
3599 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3600 {
3601 	struct kvm_segment ss;
3602 	unsigned int ss_rpl;
3603 
3604 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3605 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3606 
3607 	if (ss.unusable)
3608 		return true;
3609 	if (ss.type != 3 && ss.type != 7)
3610 		return false;
3611 	if (!ss.s)
3612 		return false;
3613 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3614 		return false;
3615 	if (!ss.present)
3616 		return false;
3617 
3618 	return true;
3619 }
3620 
3621 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3622 {
3623 	struct kvm_segment var;
3624 	unsigned int rpl;
3625 
3626 	vmx_get_segment(vcpu, &var, seg);
3627 	rpl = var.selector & SEGMENT_RPL_MASK;
3628 
3629 	if (var.unusable)
3630 		return true;
3631 	if (!var.s)
3632 		return false;
3633 	if (!var.present)
3634 		return false;
3635 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3636 		if (var.dpl < rpl) /* DPL < RPL */
3637 			return false;
3638 	}
3639 
3640 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3641 	 * rights flags
3642 	 */
3643 	return true;
3644 }
3645 
3646 static bool tr_valid(struct kvm_vcpu *vcpu)
3647 {
3648 	struct kvm_segment tr;
3649 
3650 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3651 
3652 	if (tr.unusable)
3653 		return false;
3654 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3655 		return false;
3656 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3657 		return false;
3658 	if (!tr.present)
3659 		return false;
3660 
3661 	return true;
3662 }
3663 
3664 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3665 {
3666 	struct kvm_segment ldtr;
3667 
3668 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3669 
3670 	if (ldtr.unusable)
3671 		return true;
3672 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3673 		return false;
3674 	if (ldtr.type != 2)
3675 		return false;
3676 	if (!ldtr.present)
3677 		return false;
3678 
3679 	return true;
3680 }
3681 
3682 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3683 {
3684 	struct kvm_segment cs, ss;
3685 
3686 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3687 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3688 
3689 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3690 		 (ss.selector & SEGMENT_RPL_MASK));
3691 }
3692 
3693 /*
3694  * Check if guest state is valid. Returns true if valid, false if
3695  * not.
3696  * We assume that registers are always usable
3697  */
3698 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3699 {
3700 	/* real mode guest state checks */
3701 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3702 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3703 			return false;
3704 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3705 			return false;
3706 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3707 			return false;
3708 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3709 			return false;
3710 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3711 			return false;
3712 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3713 			return false;
3714 	} else {
3715 	/* protected mode guest state checks */
3716 		if (!cs_ss_rpl_check(vcpu))
3717 			return false;
3718 		if (!code_segment_valid(vcpu))
3719 			return false;
3720 		if (!stack_segment_valid(vcpu))
3721 			return false;
3722 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3723 			return false;
3724 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3725 			return false;
3726 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3727 			return false;
3728 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3729 			return false;
3730 		if (!tr_valid(vcpu))
3731 			return false;
3732 		if (!ldtr_valid(vcpu))
3733 			return false;
3734 	}
3735 	/* TODO:
3736 	 * - Add checks on RIP
3737 	 * - Add checks on RFLAGS
3738 	 */
3739 
3740 	return true;
3741 }
3742 
3743 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3744 {
3745 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3746 	u16 data;
3747 	int i;
3748 
3749 	for (i = 0; i < 3; i++) {
3750 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3751 			return -EFAULT;
3752 	}
3753 
3754 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3755 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3756 		return -EFAULT;
3757 
3758 	data = ~0;
3759 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3760 		return -EFAULT;
3761 
3762 	return 0;
3763 }
3764 
3765 static int init_rmode_identity_map(struct kvm *kvm)
3766 {
3767 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3768 	int i, r = 0;
3769 	void __user *uaddr;
3770 	u32 tmp;
3771 
3772 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3773 	mutex_lock(&kvm->slots_lock);
3774 
3775 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3776 		goto out;
3777 
3778 	if (!kvm_vmx->ept_identity_map_addr)
3779 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3780 
3781 	uaddr = __x86_set_memory_region(kvm,
3782 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3783 					kvm_vmx->ept_identity_map_addr,
3784 					PAGE_SIZE);
3785 	if (IS_ERR(uaddr)) {
3786 		r = PTR_ERR(uaddr);
3787 		goto out;
3788 	}
3789 
3790 	/* Set up identity-mapping pagetable for EPT in real mode */
3791 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3792 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3793 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3794 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3795 			r = -EFAULT;
3796 			goto out;
3797 		}
3798 	}
3799 	kvm_vmx->ept_identity_pagetable_done = true;
3800 
3801 out:
3802 	mutex_unlock(&kvm->slots_lock);
3803 	return r;
3804 }
3805 
3806 static void seg_setup(int seg)
3807 {
3808 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3809 	unsigned int ar;
3810 
3811 	vmcs_write16(sf->selector, 0);
3812 	vmcs_writel(sf->base, 0);
3813 	vmcs_write32(sf->limit, 0xffff);
3814 	ar = 0x93;
3815 	if (seg == VCPU_SREG_CS)
3816 		ar |= 0x08; /* code segment */
3817 
3818 	vmcs_write32(sf->ar_bytes, ar);
3819 }
3820 
3821 static int alloc_apic_access_page(struct kvm *kvm)
3822 {
3823 	struct page *page;
3824 	void __user *hva;
3825 	int ret = 0;
3826 
3827 	mutex_lock(&kvm->slots_lock);
3828 	if (kvm->arch.apic_access_memslot_enabled)
3829 		goto out;
3830 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3831 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3832 	if (IS_ERR(hva)) {
3833 		ret = PTR_ERR(hva);
3834 		goto out;
3835 	}
3836 
3837 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3838 	if (is_error_page(page)) {
3839 		ret = -EFAULT;
3840 		goto out;
3841 	}
3842 
3843 	/*
3844 	 * Do not pin the page in memory, so that memory hot-unplug
3845 	 * is able to migrate it.
3846 	 */
3847 	put_page(page);
3848 	kvm->arch.apic_access_memslot_enabled = true;
3849 out:
3850 	mutex_unlock(&kvm->slots_lock);
3851 	return ret;
3852 }
3853 
3854 int allocate_vpid(void)
3855 {
3856 	int vpid;
3857 
3858 	if (!enable_vpid)
3859 		return 0;
3860 	spin_lock(&vmx_vpid_lock);
3861 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3862 	if (vpid < VMX_NR_VPIDS)
3863 		__set_bit(vpid, vmx_vpid_bitmap);
3864 	else
3865 		vpid = 0;
3866 	spin_unlock(&vmx_vpid_lock);
3867 	return vpid;
3868 }
3869 
3870 void free_vpid(int vpid)
3871 {
3872 	if (!enable_vpid || vpid == 0)
3873 		return;
3874 	spin_lock(&vmx_vpid_lock);
3875 	__clear_bit(vpid, vmx_vpid_bitmap);
3876 	spin_unlock(&vmx_vpid_lock);
3877 }
3878 
3879 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3880 {
3881 	/*
3882 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3883 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3884 	 * bitmap has changed.
3885 	 */
3886 	if (static_branch_unlikely(&enable_evmcs))
3887 		evmcs_touch_msr_bitmap();
3888 
3889 	vmx->nested.force_msr_bitmap_recalc = true;
3890 }
3891 
3892 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3893 {
3894 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3895 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3896 
3897 	if (!cpu_has_vmx_msr_bitmap())
3898 		return;
3899 
3900 	vmx_msr_bitmap_l01_changed(vmx);
3901 
3902 	/*
3903 	 * Mark the desired intercept state in shadow bitmap, this is needed
3904 	 * for resync when the MSR filters change.
3905 	*/
3906 	if (is_valid_passthrough_msr(msr)) {
3907 		int idx = possible_passthrough_msr_slot(msr);
3908 
3909 		if (idx != -ENOENT) {
3910 			if (type & MSR_TYPE_R)
3911 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3912 			if (type & MSR_TYPE_W)
3913 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3914 		}
3915 	}
3916 
3917 	if ((type & MSR_TYPE_R) &&
3918 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3919 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3920 		type &= ~MSR_TYPE_R;
3921 	}
3922 
3923 	if ((type & MSR_TYPE_W) &&
3924 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3925 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3926 		type &= ~MSR_TYPE_W;
3927 	}
3928 
3929 	if (type & MSR_TYPE_R)
3930 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3931 
3932 	if (type & MSR_TYPE_W)
3933 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3934 }
3935 
3936 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3937 {
3938 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3939 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3940 
3941 	if (!cpu_has_vmx_msr_bitmap())
3942 		return;
3943 
3944 	vmx_msr_bitmap_l01_changed(vmx);
3945 
3946 	/*
3947 	 * Mark the desired intercept state in shadow bitmap, this is needed
3948 	 * for resync when the MSR filter changes.
3949 	*/
3950 	if (is_valid_passthrough_msr(msr)) {
3951 		int idx = possible_passthrough_msr_slot(msr);
3952 
3953 		if (idx != -ENOENT) {
3954 			if (type & MSR_TYPE_R)
3955 				set_bit(idx, vmx->shadow_msr_intercept.read);
3956 			if (type & MSR_TYPE_W)
3957 				set_bit(idx, vmx->shadow_msr_intercept.write);
3958 		}
3959 	}
3960 
3961 	if (type & MSR_TYPE_R)
3962 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3963 
3964 	if (type & MSR_TYPE_W)
3965 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3966 }
3967 
3968 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3969 {
3970 	unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3971 	unsigned long read_intercept;
3972 	int msr;
3973 
3974 	read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3975 
3976 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3977 		unsigned int read_idx = msr / BITS_PER_LONG;
3978 		unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3979 
3980 		msr_bitmap[read_idx] = read_intercept;
3981 		msr_bitmap[write_idx] = ~0ul;
3982 	}
3983 }
3984 
3985 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3986 {
3987 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3988 	u8 mode;
3989 
3990 	if (!cpu_has_vmx_msr_bitmap())
3991 		return;
3992 
3993 	if (cpu_has_secondary_exec_ctrls() &&
3994 	    (secondary_exec_controls_get(vmx) &
3995 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3996 		mode = MSR_BITMAP_MODE_X2APIC;
3997 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3998 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3999 	} else {
4000 		mode = 0;
4001 	}
4002 
4003 	if (mode == vmx->x2apic_msr_bitmap_mode)
4004 		return;
4005 
4006 	vmx->x2apic_msr_bitmap_mode = mode;
4007 
4008 	vmx_reset_x2apic_msrs(vcpu, mode);
4009 
4010 	/*
4011 	 * TPR reads and writes can be virtualized even if virtual interrupt
4012 	 * delivery is not in use.
4013 	 */
4014 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4015 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4016 
4017 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4018 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4019 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4020 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4021 		if (enable_ipiv)
4022 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4023 	}
4024 }
4025 
4026 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4027 {
4028 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4029 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4030 	u32 i;
4031 
4032 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4033 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4034 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4035 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4036 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4037 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4038 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4039 	}
4040 }
4041 
4042 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4043 {
4044 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4045 	void *vapic_page;
4046 	u32 vppr;
4047 	int rvi;
4048 
4049 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4050 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4051 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4052 		return false;
4053 
4054 	rvi = vmx_get_rvi();
4055 
4056 	vapic_page = vmx->nested.virtual_apic_map.hva;
4057 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4058 
4059 	return ((rvi & 0xf0) > (vppr & 0xf0));
4060 }
4061 
4062 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4063 {
4064 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4065 	u32 i;
4066 
4067 	/*
4068 	 * Redo intercept permissions for MSRs that KVM is passing through to
4069 	 * the guest.  Disabling interception will check the new MSR filter and
4070 	 * ensure that KVM enables interception if usersepace wants to filter
4071 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4072 	 * refreshed since KVM is going to intercept them regardless of what
4073 	 * userspace wants.
4074 	 */
4075 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4076 		u32 msr = vmx_possible_passthrough_msrs[i];
4077 
4078 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4079 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4080 
4081 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4082 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4083 	}
4084 
4085 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4086 	if (vmx_pt_mode_is_host_guest())
4087 		pt_update_intercept_for_msr(vcpu);
4088 }
4089 
4090 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4091 						     int pi_vec)
4092 {
4093 #ifdef CONFIG_SMP
4094 	if (vcpu->mode == IN_GUEST_MODE) {
4095 		/*
4096 		 * The vector of the virtual has already been set in the PIR.
4097 		 * Send a notification event to deliver the virtual interrupt
4098 		 * unless the vCPU is the currently running vCPU, i.e. the
4099 		 * event is being sent from a fastpath VM-Exit handler, in
4100 		 * which case the PIR will be synced to the vIRR before
4101 		 * re-entering the guest.
4102 		 *
4103 		 * When the target is not the running vCPU, the following
4104 		 * possibilities emerge:
4105 		 *
4106 		 * Case 1: vCPU stays in non-root mode. Sending a notification
4107 		 * event posts the interrupt to the vCPU.
4108 		 *
4109 		 * Case 2: vCPU exits to root mode and is still runnable. The
4110 		 * PIR will be synced to the vIRR before re-entering the guest.
4111 		 * Sending a notification event is ok as the host IRQ handler
4112 		 * will ignore the spurious event.
4113 		 *
4114 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4115 		 * has already synced PIR to vIRR and never blocks the vCPU if
4116 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4117 		 * not wait for any requested interrupts in PIR, and sending a
4118 		 * notification event also results in a benign, spurious event.
4119 		 */
4120 
4121 		if (vcpu != kvm_get_running_vcpu())
4122 			apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4123 		return;
4124 	}
4125 #endif
4126 	/*
4127 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4128 	 * otherwise do nothing as KVM will grab the highest priority pending
4129 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4130 	 */
4131 	kvm_vcpu_wake_up(vcpu);
4132 }
4133 
4134 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4135 						int vector)
4136 {
4137 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4138 
4139 	if (is_guest_mode(vcpu) &&
4140 	    vector == vmx->nested.posted_intr_nv) {
4141 		/*
4142 		 * If a posted intr is not recognized by hardware,
4143 		 * we will accomplish it in the next vmentry.
4144 		 */
4145 		vmx->nested.pi_pending = true;
4146 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4147 
4148 		/*
4149 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4150 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4151 		 * request if triggering a posted interrupt "fails" because
4152 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4153 		 * the smb_wmb() in kvm_make_request() only ensures everything
4154 		 * done before making the request is visible when the request
4155 		 * is visible, it doesn't ensure ordering between the store to
4156 		 * vcpu->requests and the load from vcpu->mode.
4157 		 */
4158 		smp_mb__after_atomic();
4159 
4160 		/* the PIR and ON have been set by L1. */
4161 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4162 		return 0;
4163 	}
4164 	return -1;
4165 }
4166 /*
4167  * Send interrupt to vcpu via posted interrupt way.
4168  * 1. If target vcpu is running(non-root mode), send posted interrupt
4169  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4170  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4171  * interrupt from PIR in next vmentry.
4172  */
4173 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4174 {
4175 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4176 	int r;
4177 
4178 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4179 	if (!r)
4180 		return 0;
4181 
4182 	/* Note, this is called iff the local APIC is in-kernel. */
4183 	if (!vcpu->arch.apic->apicv_active)
4184 		return -1;
4185 
4186 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4187 		return 0;
4188 
4189 	/* If a previous notification has sent the IPI, nothing to do.  */
4190 	if (pi_test_and_set_on(&vmx->pi_desc))
4191 		return 0;
4192 
4193 	/*
4194 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4195 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4196 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4197 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4198 	 */
4199 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4200 	return 0;
4201 }
4202 
4203 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4204 				  int trig_mode, int vector)
4205 {
4206 	struct kvm_vcpu *vcpu = apic->vcpu;
4207 
4208 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4209 		kvm_lapic_set_irr(vector, apic);
4210 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4211 		kvm_vcpu_kick(vcpu);
4212 	} else {
4213 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4214 					   trig_mode, vector);
4215 	}
4216 }
4217 
4218 /*
4219  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4220  * will not change in the lifetime of the guest.
4221  * Note that host-state that does change is set elsewhere. E.g., host-state
4222  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4223  */
4224 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4225 {
4226 	u32 low32, high32;
4227 	unsigned long tmpl;
4228 	unsigned long cr0, cr3, cr4;
4229 
4230 	cr0 = read_cr0();
4231 	WARN_ON(cr0 & X86_CR0_TS);
4232 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4233 
4234 	/*
4235 	 * Save the most likely value for this task's CR3 in the VMCS.
4236 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4237 	 */
4238 	cr3 = __read_cr3();
4239 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4240 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4241 
4242 	/* Save the most likely value for this task's CR4 in the VMCS. */
4243 	cr4 = cr4_read_shadow();
4244 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4245 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4246 
4247 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4248 #ifdef CONFIG_X86_64
4249 	/*
4250 	 * Load null selectors, so we can avoid reloading them in
4251 	 * vmx_prepare_switch_to_host(), in case userspace uses
4252 	 * the null selectors too (the expected case).
4253 	 */
4254 	vmcs_write16(HOST_DS_SELECTOR, 0);
4255 	vmcs_write16(HOST_ES_SELECTOR, 0);
4256 #else
4257 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4258 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4259 #endif
4260 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4261 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4262 
4263 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4264 
4265 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4266 
4267 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4268 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4269 
4270 	/*
4271 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4272 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4273 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4274 	 * have already done so!).
4275 	 */
4276 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4277 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4278 
4279 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4280 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4281 
4282 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4283 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4284 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4285 	}
4286 
4287 	if (cpu_has_load_ia32_efer())
4288 		vmcs_write64(HOST_IA32_EFER, host_efer);
4289 }
4290 
4291 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4292 {
4293 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4294 
4295 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4296 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4297 	if (!enable_ept) {
4298 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4299 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4300 	}
4301 	if (is_guest_mode(&vmx->vcpu))
4302 		vcpu->arch.cr4_guest_owned_bits &=
4303 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4304 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4305 }
4306 
4307 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4308 {
4309 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4310 
4311 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4312 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4313 
4314 	if (!enable_vnmi)
4315 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4316 
4317 	if (!enable_preemption_timer)
4318 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4319 
4320 	return pin_based_exec_ctrl;
4321 }
4322 
4323 static u32 vmx_vmentry_ctrl(void)
4324 {
4325 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4326 
4327 	if (vmx_pt_mode_is_system())
4328 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4329 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4330 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4331 	return vmentry_ctrl &
4332 		~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
4333 }
4334 
4335 static u32 vmx_vmexit_ctrl(void)
4336 {
4337 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4338 
4339 	if (vmx_pt_mode_is_system())
4340 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4341 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4342 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4343 	return vmexit_ctrl &
4344 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4345 }
4346 
4347 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4348 {
4349 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4350 
4351 	if (is_guest_mode(vcpu)) {
4352 		vmx->nested.update_vmcs01_apicv_status = true;
4353 		return;
4354 	}
4355 
4356 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4357 
4358 	if (kvm_vcpu_apicv_active(vcpu)) {
4359 		secondary_exec_controls_setbit(vmx,
4360 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4361 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4362 		if (enable_ipiv)
4363 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4364 	} else {
4365 		secondary_exec_controls_clearbit(vmx,
4366 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4367 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4368 		if (enable_ipiv)
4369 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4370 	}
4371 
4372 	vmx_update_msr_bitmap_x2apic(vcpu);
4373 }
4374 
4375 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4376 {
4377 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4378 
4379 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4380 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4381 
4382 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4383 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4384 #ifdef CONFIG_X86_64
4385 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4386 				CPU_BASED_CR8_LOAD_EXITING;
4387 #endif
4388 	}
4389 	if (!enable_ept)
4390 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4391 				CPU_BASED_CR3_LOAD_EXITING  |
4392 				CPU_BASED_INVLPG_EXITING;
4393 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4394 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4395 				CPU_BASED_MONITOR_EXITING);
4396 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4397 		exec_control &= ~CPU_BASED_HLT_EXITING;
4398 	return exec_control;
4399 }
4400 
4401 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4402 {
4403 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4404 
4405 	/*
4406 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4407 	 * APICv is inhibited.
4408 	 */
4409 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4410 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4411 
4412 	return exec_control;
4413 }
4414 
4415 /*
4416  * Adjust a single secondary execution control bit to intercept/allow an
4417  * instruction in the guest.  This is usually done based on whether or not a
4418  * feature has been exposed to the guest in order to correctly emulate faults.
4419  */
4420 static inline void
4421 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4422 				  u32 control, bool enabled, bool exiting)
4423 {
4424 	/*
4425 	 * If the control is for an opt-in feature, clear the control if the
4426 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4427 	 * control is opt-out, i.e. an exiting control, clear the control if
4428 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4429 	 * disabled for the associated instruction.  Note, the caller is
4430 	 * responsible presetting exec_control to set all supported bits.
4431 	 */
4432 	if (enabled == exiting)
4433 		*exec_control &= ~control;
4434 
4435 	/*
4436 	 * Update the nested MSR settings so that a nested VMM can/can't set
4437 	 * controls for features that are/aren't exposed to the guest.
4438 	 */
4439 	if (nested) {
4440 		if (enabled)
4441 			vmx->nested.msrs.secondary_ctls_high |= control;
4442 		else
4443 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4444 	}
4445 }
4446 
4447 /*
4448  * Wrapper macro for the common case of adjusting a secondary execution control
4449  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4450  * verifies that the control is actually supported by KVM and hardware.
4451  */
4452 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4453 ({									 \
4454 	bool __enabled;							 \
4455 									 \
4456 	if (cpu_has_vmx_##name()) {					 \
4457 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4458 					    X86_FEATURE_##feat_name);	 \
4459 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4460 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4461 	}								 \
4462 })
4463 
4464 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4465 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4466 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4467 
4468 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4469 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4470 
4471 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4472 {
4473 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4474 
4475 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4476 
4477 	if (vmx_pt_mode_is_system())
4478 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4479 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4480 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4481 	if (vmx->vpid == 0)
4482 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4483 	if (!enable_ept) {
4484 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4485 		enable_unrestricted_guest = 0;
4486 	}
4487 	if (!enable_unrestricted_guest)
4488 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4489 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4490 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4491 	if (!kvm_vcpu_apicv_active(vcpu))
4492 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4493 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4494 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4495 
4496 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4497 	 * in vmx_set_cr4.  */
4498 	exec_control &= ~SECONDARY_EXEC_DESC;
4499 
4500 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4501 	   (handle_vmptrld).
4502 	   We can NOT enable shadow_vmcs here because we don't have yet
4503 	   a current VMCS12
4504 	*/
4505 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4506 
4507 	/*
4508 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4509 	 * it needs to be set here when dirty logging is already active, e.g.
4510 	 * if this vCPU was created after dirty logging was enabled.
4511 	 */
4512 	if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4513 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4514 
4515 	if (cpu_has_vmx_xsaves()) {
4516 		/* Exposing XSAVES only when XSAVE is exposed */
4517 		bool xsaves_enabled =
4518 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4519 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4520 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4521 
4522 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4523 
4524 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4525 						  SECONDARY_EXEC_XSAVES,
4526 						  xsaves_enabled, false);
4527 	}
4528 
4529 	/*
4530 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4531 	 * feature is exposed to the guest.  This creates a virtualization hole
4532 	 * if both are supported in hardware but only one is exposed to the
4533 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4534 	 * is advertised is preferable to emulating the advertised instruction
4535 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4536 	 */
4537 	if (cpu_has_vmx_rdtscp()) {
4538 		bool rdpid_or_rdtscp_enabled =
4539 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4540 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4541 
4542 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4543 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4544 						  rdpid_or_rdtscp_enabled, false);
4545 	}
4546 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4547 
4548 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4549 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4550 
4551 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4552 				    ENABLE_USR_WAIT_PAUSE, false);
4553 
4554 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4555 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4556 
4557 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4558 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4559 
4560 	return exec_control;
4561 }
4562 
4563 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4564 {
4565 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4566 }
4567 
4568 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4569 {
4570 	struct page *pages;
4571 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4572 
4573 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4574 		return 0;
4575 
4576 	if (kvm_vmx->pid_table)
4577 		return 0;
4578 
4579 	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, vmx_get_pid_table_order(kvm));
4580 	if (!pages)
4581 		return -ENOMEM;
4582 
4583 	kvm_vmx->pid_table = (void *)page_address(pages);
4584 	return 0;
4585 }
4586 
4587 static int vmx_vcpu_precreate(struct kvm *kvm)
4588 {
4589 	return vmx_alloc_ipiv_pid_table(kvm);
4590 }
4591 
4592 #define VMX_XSS_EXIT_BITMAP 0
4593 
4594 static void init_vmcs(struct vcpu_vmx *vmx)
4595 {
4596 	struct kvm *kvm = vmx->vcpu.kvm;
4597 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4598 
4599 	if (nested)
4600 		nested_vmx_set_vmcs_shadowing_bitmap();
4601 
4602 	if (cpu_has_vmx_msr_bitmap())
4603 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4604 
4605 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4606 
4607 	/* Control */
4608 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4609 
4610 	exec_controls_set(vmx, vmx_exec_control(vmx));
4611 
4612 	if (cpu_has_secondary_exec_ctrls())
4613 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4614 
4615 	if (cpu_has_tertiary_exec_ctrls())
4616 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4617 
4618 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4619 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4620 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4621 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4622 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4623 
4624 		vmcs_write16(GUEST_INTR_STATUS, 0);
4625 
4626 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4627 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4628 	}
4629 
4630 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4631 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4632 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4633 	}
4634 
4635 	if (!kvm_pause_in_guest(kvm)) {
4636 		vmcs_write32(PLE_GAP, ple_gap);
4637 		vmx->ple_window = ple_window;
4638 		vmx->ple_window_dirty = true;
4639 	}
4640 
4641 	if (kvm_notify_vmexit_enabled(kvm))
4642 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4643 
4644 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4645 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4646 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4647 
4648 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4649 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4650 	vmx_set_constant_host_state(vmx);
4651 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4652 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4653 
4654 	if (cpu_has_vmx_vmfunc())
4655 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4656 
4657 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4658 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4659 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4660 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4661 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4662 
4663 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4664 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4665 
4666 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4667 
4668 	/* 22.2.1, 20.8.1 */
4669 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4670 
4671 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4672 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4673 
4674 	set_cr4_guest_host_mask(vmx);
4675 
4676 	if (vmx->vpid != 0)
4677 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4678 
4679 	if (cpu_has_vmx_xsaves())
4680 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4681 
4682 	if (enable_pml) {
4683 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4684 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4685 	}
4686 
4687 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4688 
4689 	if (vmx_pt_mode_is_host_guest()) {
4690 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4691 		/* Bit[6~0] are forced to 1, writes are ignored. */
4692 		vmx->pt_desc.guest.output_mask = 0x7F;
4693 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4694 	}
4695 
4696 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4697 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4698 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4699 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4700 
4701 	if (cpu_has_vmx_tpr_shadow()) {
4702 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4703 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4704 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4705 				     __pa(vmx->vcpu.arch.apic->regs));
4706 		vmcs_write32(TPR_THRESHOLD, 0);
4707 	}
4708 
4709 	vmx_setup_uret_msrs(vmx);
4710 }
4711 
4712 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4713 {
4714 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4715 
4716 	init_vmcs(vmx);
4717 
4718 	if (nested)
4719 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4720 
4721 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4722 
4723 	vmx->nested.posted_intr_nv = -1;
4724 	vmx->nested.vmxon_ptr = INVALID_GPA;
4725 	vmx->nested.current_vmptr = INVALID_GPA;
4726 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4727 
4728 	vcpu->arch.microcode_version = 0x100000000ULL;
4729 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4730 
4731 	/*
4732 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4733 	 * or POSTED_INTR_WAKEUP_VECTOR.
4734 	 */
4735 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4736 	vmx->pi_desc.sn = 1;
4737 }
4738 
4739 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4740 {
4741 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4742 
4743 	if (!init_event)
4744 		__vmx_vcpu_reset(vcpu);
4745 
4746 	vmx->rmode.vm86_active = 0;
4747 	vmx->spec_ctrl = 0;
4748 
4749 	vmx->msr_ia32_umwait_control = 0;
4750 
4751 	vmx->hv_deadline_tsc = -1;
4752 	kvm_set_cr8(vcpu, 0);
4753 
4754 	vmx_segment_cache_clear(vmx);
4755 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4756 
4757 	seg_setup(VCPU_SREG_CS);
4758 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4759 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4760 
4761 	seg_setup(VCPU_SREG_DS);
4762 	seg_setup(VCPU_SREG_ES);
4763 	seg_setup(VCPU_SREG_FS);
4764 	seg_setup(VCPU_SREG_GS);
4765 	seg_setup(VCPU_SREG_SS);
4766 
4767 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4768 	vmcs_writel(GUEST_TR_BASE, 0);
4769 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4770 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4771 
4772 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4773 	vmcs_writel(GUEST_LDTR_BASE, 0);
4774 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4775 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4776 
4777 	vmcs_writel(GUEST_GDTR_BASE, 0);
4778 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4779 
4780 	vmcs_writel(GUEST_IDTR_BASE, 0);
4781 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4782 
4783 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4784 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4785 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4786 	if (kvm_mpx_supported())
4787 		vmcs_write64(GUEST_BNDCFGS, 0);
4788 
4789 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4790 
4791 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4792 
4793 	vpid_sync_context(vmx->vpid);
4794 
4795 	vmx_update_fb_clear_dis(vcpu, vmx);
4796 }
4797 
4798 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4799 {
4800 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4801 }
4802 
4803 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4804 {
4805 	if (!enable_vnmi ||
4806 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4807 		vmx_enable_irq_window(vcpu);
4808 		return;
4809 	}
4810 
4811 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4812 }
4813 
4814 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4815 {
4816 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4817 	uint32_t intr;
4818 	int irq = vcpu->arch.interrupt.nr;
4819 
4820 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4821 
4822 	++vcpu->stat.irq_injections;
4823 	if (vmx->rmode.vm86_active) {
4824 		int inc_eip = 0;
4825 		if (vcpu->arch.interrupt.soft)
4826 			inc_eip = vcpu->arch.event_exit_inst_len;
4827 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4828 		return;
4829 	}
4830 	intr = irq | INTR_INFO_VALID_MASK;
4831 	if (vcpu->arch.interrupt.soft) {
4832 		intr |= INTR_TYPE_SOFT_INTR;
4833 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4834 			     vmx->vcpu.arch.event_exit_inst_len);
4835 	} else
4836 		intr |= INTR_TYPE_EXT_INTR;
4837 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4838 
4839 	vmx_clear_hlt(vcpu);
4840 }
4841 
4842 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4843 {
4844 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4845 
4846 	if (!enable_vnmi) {
4847 		/*
4848 		 * Tracking the NMI-blocked state in software is built upon
4849 		 * finding the next open IRQ window. This, in turn, depends on
4850 		 * well-behaving guests: They have to keep IRQs disabled at
4851 		 * least as long as the NMI handler runs. Otherwise we may
4852 		 * cause NMI nesting, maybe breaking the guest. But as this is
4853 		 * highly unlikely, we can live with the residual risk.
4854 		 */
4855 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4856 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4857 	}
4858 
4859 	++vcpu->stat.nmi_injections;
4860 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4861 
4862 	if (vmx->rmode.vm86_active) {
4863 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4864 		return;
4865 	}
4866 
4867 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4868 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4869 
4870 	vmx_clear_hlt(vcpu);
4871 }
4872 
4873 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4874 {
4875 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4876 	bool masked;
4877 
4878 	if (!enable_vnmi)
4879 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4880 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4881 		return false;
4882 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4883 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4884 	return masked;
4885 }
4886 
4887 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4888 {
4889 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4890 
4891 	if (!enable_vnmi) {
4892 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4893 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4894 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4895 		}
4896 	} else {
4897 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4898 		if (masked)
4899 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4900 				      GUEST_INTR_STATE_NMI);
4901 		else
4902 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4903 					GUEST_INTR_STATE_NMI);
4904 	}
4905 }
4906 
4907 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4908 {
4909 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4910 		return false;
4911 
4912 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4913 		return true;
4914 
4915 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4916 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4917 		 GUEST_INTR_STATE_NMI));
4918 }
4919 
4920 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4921 {
4922 	if (to_vmx(vcpu)->nested.nested_run_pending)
4923 		return -EBUSY;
4924 
4925 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4926 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4927 		return -EBUSY;
4928 
4929 	return !vmx_nmi_blocked(vcpu);
4930 }
4931 
4932 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4933 {
4934 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4935 		return false;
4936 
4937 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4938 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4939 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4940 }
4941 
4942 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4943 {
4944 	if (to_vmx(vcpu)->nested.nested_run_pending)
4945 		return -EBUSY;
4946 
4947        /*
4948         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4949         * e.g. if the IRQ arrived asynchronously after checking nested events.
4950         */
4951 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4952 		return -EBUSY;
4953 
4954 	return !vmx_interrupt_blocked(vcpu);
4955 }
4956 
4957 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4958 {
4959 	void __user *ret;
4960 
4961 	if (enable_unrestricted_guest)
4962 		return 0;
4963 
4964 	mutex_lock(&kvm->slots_lock);
4965 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4966 				      PAGE_SIZE * 3);
4967 	mutex_unlock(&kvm->slots_lock);
4968 
4969 	if (IS_ERR(ret))
4970 		return PTR_ERR(ret);
4971 
4972 	to_kvm_vmx(kvm)->tss_addr = addr;
4973 
4974 	return init_rmode_tss(kvm, ret);
4975 }
4976 
4977 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4978 {
4979 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4980 	return 0;
4981 }
4982 
4983 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4984 {
4985 	switch (vec) {
4986 	case BP_VECTOR:
4987 		/*
4988 		 * Update instruction length as we may reinject the exception
4989 		 * from user space while in guest debugging mode.
4990 		 */
4991 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4992 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4993 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4994 			return false;
4995 		fallthrough;
4996 	case DB_VECTOR:
4997 		return !(vcpu->guest_debug &
4998 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4999 	case DE_VECTOR:
5000 	case OF_VECTOR:
5001 	case BR_VECTOR:
5002 	case UD_VECTOR:
5003 	case DF_VECTOR:
5004 	case SS_VECTOR:
5005 	case GP_VECTOR:
5006 	case MF_VECTOR:
5007 		return true;
5008 	}
5009 	return false;
5010 }
5011 
5012 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5013 				  int vec, u32 err_code)
5014 {
5015 	/*
5016 	 * Instruction with address size override prefix opcode 0x67
5017 	 * Cause the #SS fault with 0 error code in VM86 mode.
5018 	 */
5019 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5020 		if (kvm_emulate_instruction(vcpu, 0)) {
5021 			if (vcpu->arch.halt_request) {
5022 				vcpu->arch.halt_request = 0;
5023 				return kvm_emulate_halt_noskip(vcpu);
5024 			}
5025 			return 1;
5026 		}
5027 		return 0;
5028 	}
5029 
5030 	/*
5031 	 * Forward all other exceptions that are valid in real mode.
5032 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5033 	 *        the required debugging infrastructure rework.
5034 	 */
5035 	kvm_queue_exception(vcpu, vec);
5036 	return 1;
5037 }
5038 
5039 static int handle_machine_check(struct kvm_vcpu *vcpu)
5040 {
5041 	/* handled by vmx_vcpu_run() */
5042 	return 1;
5043 }
5044 
5045 /*
5046  * If the host has split lock detection disabled, then #AC is
5047  * unconditionally injected into the guest, which is the pre split lock
5048  * detection behaviour.
5049  *
5050  * If the host has split lock detection enabled then #AC is
5051  * only injected into the guest when:
5052  *  - Guest CPL == 3 (user mode)
5053  *  - Guest has #AC detection enabled in CR0
5054  *  - Guest EFLAGS has AC bit set
5055  */
5056 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5057 {
5058 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5059 		return true;
5060 
5061 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
5062 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5063 }
5064 
5065 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5066 {
5067 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5068 	struct kvm_run *kvm_run = vcpu->run;
5069 	u32 intr_info, ex_no, error_code;
5070 	unsigned long cr2, dr6;
5071 	u32 vect_info;
5072 
5073 	vect_info = vmx->idt_vectoring_info;
5074 	intr_info = vmx_get_intr_info(vcpu);
5075 
5076 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5077 		return 1; /* handled by handle_exception_nmi_irqoff() */
5078 
5079 	/*
5080 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5081 	 * This ensures the nested_vmx check is not skipped so vmexit can
5082 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5083 	 * point.
5084 	 */
5085 	if (is_nm_fault(intr_info)) {
5086 		kvm_queue_exception(vcpu, NM_VECTOR);
5087 		return 1;
5088 	}
5089 
5090 	if (is_invalid_opcode(intr_info))
5091 		return handle_ud(vcpu);
5092 
5093 	error_code = 0;
5094 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5095 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5096 
5097 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5098 		WARN_ON_ONCE(!enable_vmware_backdoor);
5099 
5100 		/*
5101 		 * VMware backdoor emulation on #GP interception only handles
5102 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5103 		 * error code on #GP.
5104 		 */
5105 		if (error_code) {
5106 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5107 			return 1;
5108 		}
5109 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5110 	}
5111 
5112 	/*
5113 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5114 	 * MMIO, it is better to report an internal error.
5115 	 * See the comments in vmx_handle_exit.
5116 	 */
5117 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5118 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5119 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5120 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5121 		vcpu->run->internal.ndata = 4;
5122 		vcpu->run->internal.data[0] = vect_info;
5123 		vcpu->run->internal.data[1] = intr_info;
5124 		vcpu->run->internal.data[2] = error_code;
5125 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5126 		return 0;
5127 	}
5128 
5129 	if (is_page_fault(intr_info)) {
5130 		cr2 = vmx_get_exit_qual(vcpu);
5131 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5132 			/*
5133 			 * EPT will cause page fault only if we need to
5134 			 * detect illegal GPAs.
5135 			 */
5136 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5137 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5138 			return 1;
5139 		} else
5140 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5141 	}
5142 
5143 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5144 
5145 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5146 		return handle_rmode_exception(vcpu, ex_no, error_code);
5147 
5148 	switch (ex_no) {
5149 	case DB_VECTOR:
5150 		dr6 = vmx_get_exit_qual(vcpu);
5151 		if (!(vcpu->guest_debug &
5152 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5153 			/*
5154 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5155 			 * instruction.  ICEBP generates a trap-like #DB, but
5156 			 * despite its interception control being tied to #DB,
5157 			 * is an instruction intercept, i.e. the VM-Exit occurs
5158 			 * on the ICEBP itself.  Note, skipping ICEBP also
5159 			 * clears STI and MOVSS blocking.
5160 			 *
5161 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5162 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5163 			 * blocking is active, as the CPU doesn't set the bit
5164 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5165 			 * consistency check that a single-step #DB is pending
5166 			 * in this scenario as the previous instruction cannot
5167 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5168 			 * don't modify RFLAGS), therefore the one instruction
5169 			 * delay when activating single-step breakpoints must
5170 			 * have already expired.  Note, the CPU sets/clears BS
5171 			 * as appropriate for all other VM-Exits types.
5172 			 */
5173 			if (is_icebp(intr_info))
5174 				WARN_ON(!skip_emulated_instruction(vcpu));
5175 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5176 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5177 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5178 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5179 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5180 
5181 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5182 			return 1;
5183 		}
5184 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5185 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5186 		fallthrough;
5187 	case BP_VECTOR:
5188 		/*
5189 		 * Update instruction length as we may reinject #BP from
5190 		 * user space while in guest debugging mode. Reading it for
5191 		 * #DB as well causes no harm, it is not used in that case.
5192 		 */
5193 		vmx->vcpu.arch.event_exit_inst_len =
5194 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5195 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5196 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5197 		kvm_run->debug.arch.exception = ex_no;
5198 		break;
5199 	case AC_VECTOR:
5200 		if (vmx_guest_inject_ac(vcpu)) {
5201 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5202 			return 1;
5203 		}
5204 
5205 		/*
5206 		 * Handle split lock. Depending on detection mode this will
5207 		 * either warn and disable split lock detection for this
5208 		 * task or force SIGBUS on it.
5209 		 */
5210 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5211 			return 1;
5212 		fallthrough;
5213 	default:
5214 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5215 		kvm_run->ex.exception = ex_no;
5216 		kvm_run->ex.error_code = error_code;
5217 		break;
5218 	}
5219 	return 0;
5220 }
5221 
5222 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5223 {
5224 	++vcpu->stat.irq_exits;
5225 	return 1;
5226 }
5227 
5228 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5229 {
5230 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5231 	vcpu->mmio_needed = 0;
5232 	return 0;
5233 }
5234 
5235 static int handle_io(struct kvm_vcpu *vcpu)
5236 {
5237 	unsigned long exit_qualification;
5238 	int size, in, string;
5239 	unsigned port;
5240 
5241 	exit_qualification = vmx_get_exit_qual(vcpu);
5242 	string = (exit_qualification & 16) != 0;
5243 
5244 	++vcpu->stat.io_exits;
5245 
5246 	if (string)
5247 		return kvm_emulate_instruction(vcpu, 0);
5248 
5249 	port = exit_qualification >> 16;
5250 	size = (exit_qualification & 7) + 1;
5251 	in = (exit_qualification & 8) != 0;
5252 
5253 	return kvm_fast_pio(vcpu, size, port, in);
5254 }
5255 
5256 static void
5257 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5258 {
5259 	/*
5260 	 * Patch in the VMCALL instruction:
5261 	 */
5262 	hypercall[0] = 0x0f;
5263 	hypercall[1] = 0x01;
5264 	hypercall[2] = 0xc1;
5265 }
5266 
5267 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5268 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5269 {
5270 	if (is_guest_mode(vcpu)) {
5271 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5272 		unsigned long orig_val = val;
5273 
5274 		/*
5275 		 * We get here when L2 changed cr0 in a way that did not change
5276 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5277 		 * but did change L0 shadowed bits. So we first calculate the
5278 		 * effective cr0 value that L1 would like to write into the
5279 		 * hardware. It consists of the L2-owned bits from the new
5280 		 * value combined with the L1-owned bits from L1's guest_cr0.
5281 		 */
5282 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5283 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5284 
5285 		if (!nested_guest_cr0_valid(vcpu, val))
5286 			return 1;
5287 
5288 		if (kvm_set_cr0(vcpu, val))
5289 			return 1;
5290 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5291 		return 0;
5292 	} else {
5293 		if (to_vmx(vcpu)->nested.vmxon &&
5294 		    !nested_host_cr0_valid(vcpu, val))
5295 			return 1;
5296 
5297 		return kvm_set_cr0(vcpu, val);
5298 	}
5299 }
5300 
5301 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5302 {
5303 	if (is_guest_mode(vcpu)) {
5304 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5305 		unsigned long orig_val = val;
5306 
5307 		/* analogously to handle_set_cr0 */
5308 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5309 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5310 		if (kvm_set_cr4(vcpu, val))
5311 			return 1;
5312 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5313 		return 0;
5314 	} else
5315 		return kvm_set_cr4(vcpu, val);
5316 }
5317 
5318 static int handle_desc(struct kvm_vcpu *vcpu)
5319 {
5320 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5321 	return kvm_emulate_instruction(vcpu, 0);
5322 }
5323 
5324 static int handle_cr(struct kvm_vcpu *vcpu)
5325 {
5326 	unsigned long exit_qualification, val;
5327 	int cr;
5328 	int reg;
5329 	int err;
5330 	int ret;
5331 
5332 	exit_qualification = vmx_get_exit_qual(vcpu);
5333 	cr = exit_qualification & 15;
5334 	reg = (exit_qualification >> 8) & 15;
5335 	switch ((exit_qualification >> 4) & 3) {
5336 	case 0: /* mov to cr */
5337 		val = kvm_register_read(vcpu, reg);
5338 		trace_kvm_cr_write(cr, val);
5339 		switch (cr) {
5340 		case 0:
5341 			err = handle_set_cr0(vcpu, val);
5342 			return kvm_complete_insn_gp(vcpu, err);
5343 		case 3:
5344 			WARN_ON_ONCE(enable_unrestricted_guest);
5345 
5346 			err = kvm_set_cr3(vcpu, val);
5347 			return kvm_complete_insn_gp(vcpu, err);
5348 		case 4:
5349 			err = handle_set_cr4(vcpu, val);
5350 			return kvm_complete_insn_gp(vcpu, err);
5351 		case 8: {
5352 				u8 cr8_prev = kvm_get_cr8(vcpu);
5353 				u8 cr8 = (u8)val;
5354 				err = kvm_set_cr8(vcpu, cr8);
5355 				ret = kvm_complete_insn_gp(vcpu, err);
5356 				if (lapic_in_kernel(vcpu))
5357 					return ret;
5358 				if (cr8_prev <= cr8)
5359 					return ret;
5360 				/*
5361 				 * TODO: we might be squashing a
5362 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5363 				 * KVM_EXIT_DEBUG here.
5364 				 */
5365 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5366 				return 0;
5367 			}
5368 		}
5369 		break;
5370 	case 2: /* clts */
5371 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5372 		return -EIO;
5373 	case 1: /*mov from cr*/
5374 		switch (cr) {
5375 		case 3:
5376 			WARN_ON_ONCE(enable_unrestricted_guest);
5377 
5378 			val = kvm_read_cr3(vcpu);
5379 			kvm_register_write(vcpu, reg, val);
5380 			trace_kvm_cr_read(cr, val);
5381 			return kvm_skip_emulated_instruction(vcpu);
5382 		case 8:
5383 			val = kvm_get_cr8(vcpu);
5384 			kvm_register_write(vcpu, reg, val);
5385 			trace_kvm_cr_read(cr, val);
5386 			return kvm_skip_emulated_instruction(vcpu);
5387 		}
5388 		break;
5389 	case 3: /* lmsw */
5390 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5391 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5392 		kvm_lmsw(vcpu, val);
5393 
5394 		return kvm_skip_emulated_instruction(vcpu);
5395 	default:
5396 		break;
5397 	}
5398 	vcpu->run->exit_reason = 0;
5399 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5400 	       (int)(exit_qualification >> 4) & 3, cr);
5401 	return 0;
5402 }
5403 
5404 static int handle_dr(struct kvm_vcpu *vcpu)
5405 {
5406 	unsigned long exit_qualification;
5407 	int dr, dr7, reg;
5408 	int err = 1;
5409 
5410 	exit_qualification = vmx_get_exit_qual(vcpu);
5411 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5412 
5413 	/* First, if DR does not exist, trigger UD */
5414 	if (!kvm_require_dr(vcpu, dr))
5415 		return 1;
5416 
5417 	if (vmx_get_cpl(vcpu) > 0)
5418 		goto out;
5419 
5420 	dr7 = vmcs_readl(GUEST_DR7);
5421 	if (dr7 & DR7_GD) {
5422 		/*
5423 		 * As the vm-exit takes precedence over the debug trap, we
5424 		 * need to emulate the latter, either for the host or the
5425 		 * guest debugging itself.
5426 		 */
5427 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5428 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5429 			vcpu->run->debug.arch.dr7 = dr7;
5430 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5431 			vcpu->run->debug.arch.exception = DB_VECTOR;
5432 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5433 			return 0;
5434 		} else {
5435 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5436 			return 1;
5437 		}
5438 	}
5439 
5440 	if (vcpu->guest_debug == 0) {
5441 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5442 
5443 		/*
5444 		 * No more DR vmexits; force a reload of the debug registers
5445 		 * and reenter on this instruction.  The next vmexit will
5446 		 * retrieve the full state of the debug registers.
5447 		 */
5448 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5449 		return 1;
5450 	}
5451 
5452 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5453 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5454 		unsigned long val;
5455 
5456 		kvm_get_dr(vcpu, dr, &val);
5457 		kvm_register_write(vcpu, reg, val);
5458 		err = 0;
5459 	} else {
5460 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5461 	}
5462 
5463 out:
5464 	return kvm_complete_insn_gp(vcpu, err);
5465 }
5466 
5467 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5468 {
5469 	get_debugreg(vcpu->arch.db[0], 0);
5470 	get_debugreg(vcpu->arch.db[1], 1);
5471 	get_debugreg(vcpu->arch.db[2], 2);
5472 	get_debugreg(vcpu->arch.db[3], 3);
5473 	get_debugreg(vcpu->arch.dr6, 6);
5474 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5475 
5476 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5477 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5478 
5479 	/*
5480 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5481 	 * a stale dr6 from the guest.
5482 	 */
5483 	set_debugreg(DR6_RESERVED, 6);
5484 }
5485 
5486 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5487 {
5488 	vmcs_writel(GUEST_DR7, val);
5489 }
5490 
5491 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5492 {
5493 	kvm_apic_update_ppr(vcpu);
5494 	return 1;
5495 }
5496 
5497 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5498 {
5499 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5500 
5501 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5502 
5503 	++vcpu->stat.irq_window_exits;
5504 	return 1;
5505 }
5506 
5507 static int handle_invlpg(struct kvm_vcpu *vcpu)
5508 {
5509 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5510 
5511 	kvm_mmu_invlpg(vcpu, exit_qualification);
5512 	return kvm_skip_emulated_instruction(vcpu);
5513 }
5514 
5515 static int handle_apic_access(struct kvm_vcpu *vcpu)
5516 {
5517 	if (likely(fasteoi)) {
5518 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5519 		int access_type, offset;
5520 
5521 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5522 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5523 		/*
5524 		 * Sane guest uses MOV to write EOI, with written value
5525 		 * not cared. So make a short-circuit here by avoiding
5526 		 * heavy instruction emulation.
5527 		 */
5528 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5529 		    (offset == APIC_EOI)) {
5530 			kvm_lapic_set_eoi(vcpu);
5531 			return kvm_skip_emulated_instruction(vcpu);
5532 		}
5533 	}
5534 	return kvm_emulate_instruction(vcpu, 0);
5535 }
5536 
5537 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5538 {
5539 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5540 	int vector = exit_qualification & 0xff;
5541 
5542 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5543 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5544 	return 1;
5545 }
5546 
5547 static int handle_apic_write(struct kvm_vcpu *vcpu)
5548 {
5549 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5550 
5551 	/*
5552 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5553 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5554 	 * for the access.  I.e. the correct value has already been  written to
5555 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5556 	 * retrieve the register value and emulate the access.
5557 	 */
5558 	u32 offset = exit_qualification & 0xff0;
5559 
5560 	kvm_apic_write_nodecode(vcpu, offset);
5561 	return 1;
5562 }
5563 
5564 static int handle_task_switch(struct kvm_vcpu *vcpu)
5565 {
5566 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5567 	unsigned long exit_qualification;
5568 	bool has_error_code = false;
5569 	u32 error_code = 0;
5570 	u16 tss_selector;
5571 	int reason, type, idt_v, idt_index;
5572 
5573 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5574 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5575 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5576 
5577 	exit_qualification = vmx_get_exit_qual(vcpu);
5578 
5579 	reason = (u32)exit_qualification >> 30;
5580 	if (reason == TASK_SWITCH_GATE && idt_v) {
5581 		switch (type) {
5582 		case INTR_TYPE_NMI_INTR:
5583 			vcpu->arch.nmi_injected = false;
5584 			vmx_set_nmi_mask(vcpu, true);
5585 			break;
5586 		case INTR_TYPE_EXT_INTR:
5587 		case INTR_TYPE_SOFT_INTR:
5588 			kvm_clear_interrupt_queue(vcpu);
5589 			break;
5590 		case INTR_TYPE_HARD_EXCEPTION:
5591 			if (vmx->idt_vectoring_info &
5592 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5593 				has_error_code = true;
5594 				error_code =
5595 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5596 			}
5597 			fallthrough;
5598 		case INTR_TYPE_SOFT_EXCEPTION:
5599 			kvm_clear_exception_queue(vcpu);
5600 			break;
5601 		default:
5602 			break;
5603 		}
5604 	}
5605 	tss_selector = exit_qualification;
5606 
5607 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5608 		       type != INTR_TYPE_EXT_INTR &&
5609 		       type != INTR_TYPE_NMI_INTR))
5610 		WARN_ON(!skip_emulated_instruction(vcpu));
5611 
5612 	/*
5613 	 * TODO: What about debug traps on tss switch?
5614 	 *       Are we supposed to inject them and update dr6?
5615 	 */
5616 	return kvm_task_switch(vcpu, tss_selector,
5617 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5618 			       reason, has_error_code, error_code);
5619 }
5620 
5621 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5622 {
5623 	unsigned long exit_qualification;
5624 	gpa_t gpa;
5625 	u64 error_code;
5626 
5627 	exit_qualification = vmx_get_exit_qual(vcpu);
5628 
5629 	/*
5630 	 * EPT violation happened while executing iret from NMI,
5631 	 * "blocked by NMI" bit has to be set before next VM entry.
5632 	 * There are errata that may cause this bit to not be set:
5633 	 * AAK134, BY25.
5634 	 */
5635 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5636 			enable_vnmi &&
5637 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5638 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5639 
5640 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5641 	trace_kvm_page_fault(gpa, exit_qualification);
5642 
5643 	/* Is it a read fault? */
5644 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5645 		     ? PFERR_USER_MASK : 0;
5646 	/* Is it a write fault? */
5647 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5648 		      ? PFERR_WRITE_MASK : 0;
5649 	/* Is it a fetch fault? */
5650 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5651 		      ? PFERR_FETCH_MASK : 0;
5652 	/* ept page table entry is present? */
5653 	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5654 		      ? PFERR_PRESENT_MASK : 0;
5655 
5656 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5657 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5658 
5659 	vcpu->arch.exit_qualification = exit_qualification;
5660 
5661 	/*
5662 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5663 	 * a guest page fault.  We have to emulate the instruction here, because
5664 	 * if the illegal address is that of a paging structure, then
5665 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5666 	 * would also use advanced VM-exit information for EPT violations to
5667 	 * reconstruct the page fault error code.
5668 	 */
5669 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5670 		return kvm_emulate_instruction(vcpu, 0);
5671 
5672 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5673 }
5674 
5675 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5676 {
5677 	gpa_t gpa;
5678 
5679 	if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5680 		return 1;
5681 
5682 	/*
5683 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5684 	 * nGPA here instead of the required GPA.
5685 	 */
5686 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5687 	if (!is_guest_mode(vcpu) &&
5688 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5689 		trace_kvm_fast_mmio(gpa);
5690 		return kvm_skip_emulated_instruction(vcpu);
5691 	}
5692 
5693 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5694 }
5695 
5696 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5697 {
5698 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5699 		return -EIO;
5700 
5701 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5702 	++vcpu->stat.nmi_window_exits;
5703 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5704 
5705 	return 1;
5706 }
5707 
5708 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5709 {
5710 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5711 
5712 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5713 	       (vcpu->arch.exception.pending || vcpu->arch.exception.injected);
5714 }
5715 
5716 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5717 {
5718 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5719 	bool intr_window_requested;
5720 	unsigned count = 130;
5721 
5722 	intr_window_requested = exec_controls_get(vmx) &
5723 				CPU_BASED_INTR_WINDOW_EXITING;
5724 
5725 	while (vmx->emulation_required && count-- != 0) {
5726 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5727 			return handle_interrupt_window(&vmx->vcpu);
5728 
5729 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5730 			return 1;
5731 
5732 		if (!kvm_emulate_instruction(vcpu, 0))
5733 			return 0;
5734 
5735 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5736 			kvm_prepare_emulation_failure_exit(vcpu);
5737 			return 0;
5738 		}
5739 
5740 		if (vcpu->arch.halt_request) {
5741 			vcpu->arch.halt_request = 0;
5742 			return kvm_emulate_halt_noskip(vcpu);
5743 		}
5744 
5745 		/*
5746 		 * Note, return 1 and not 0, vcpu_run() will invoke
5747 		 * xfer_to_guest_mode() which will create a proper return
5748 		 * code.
5749 		 */
5750 		if (__xfer_to_guest_mode_work_pending())
5751 			return 1;
5752 	}
5753 
5754 	return 1;
5755 }
5756 
5757 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5758 {
5759 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5760 		kvm_prepare_emulation_failure_exit(vcpu);
5761 		return 0;
5762 	}
5763 
5764 	return 1;
5765 }
5766 
5767 static void grow_ple_window(struct kvm_vcpu *vcpu)
5768 {
5769 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5770 	unsigned int old = vmx->ple_window;
5771 
5772 	vmx->ple_window = __grow_ple_window(old, ple_window,
5773 					    ple_window_grow,
5774 					    ple_window_max);
5775 
5776 	if (vmx->ple_window != old) {
5777 		vmx->ple_window_dirty = true;
5778 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5779 					    vmx->ple_window, old);
5780 	}
5781 }
5782 
5783 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5784 {
5785 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5786 	unsigned int old = vmx->ple_window;
5787 
5788 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5789 					      ple_window_shrink,
5790 					      ple_window);
5791 
5792 	if (vmx->ple_window != old) {
5793 		vmx->ple_window_dirty = true;
5794 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5795 					    vmx->ple_window, old);
5796 	}
5797 }
5798 
5799 /*
5800  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5801  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5802  */
5803 static int handle_pause(struct kvm_vcpu *vcpu)
5804 {
5805 	if (!kvm_pause_in_guest(vcpu->kvm))
5806 		grow_ple_window(vcpu);
5807 
5808 	/*
5809 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5810 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5811 	 * never set PAUSE_EXITING and just set PLE if supported,
5812 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5813 	 */
5814 	kvm_vcpu_on_spin(vcpu, true);
5815 	return kvm_skip_emulated_instruction(vcpu);
5816 }
5817 
5818 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5819 {
5820 	return 1;
5821 }
5822 
5823 static int handle_invpcid(struct kvm_vcpu *vcpu)
5824 {
5825 	u32 vmx_instruction_info;
5826 	unsigned long type;
5827 	gva_t gva;
5828 	struct {
5829 		u64 pcid;
5830 		u64 gla;
5831 	} operand;
5832 	int gpr_index;
5833 
5834 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5835 		kvm_queue_exception(vcpu, UD_VECTOR);
5836 		return 1;
5837 	}
5838 
5839 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5840 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5841 	type = kvm_register_read(vcpu, gpr_index);
5842 
5843 	/* According to the Intel instruction reference, the memory operand
5844 	 * is read even if it isn't needed (e.g., for type==all)
5845 	 */
5846 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5847 				vmx_instruction_info, false,
5848 				sizeof(operand), &gva))
5849 		return 1;
5850 
5851 	return kvm_handle_invpcid(vcpu, type, gva);
5852 }
5853 
5854 static int handle_pml_full(struct kvm_vcpu *vcpu)
5855 {
5856 	unsigned long exit_qualification;
5857 
5858 	trace_kvm_pml_full(vcpu->vcpu_id);
5859 
5860 	exit_qualification = vmx_get_exit_qual(vcpu);
5861 
5862 	/*
5863 	 * PML buffer FULL happened while executing iret from NMI,
5864 	 * "blocked by NMI" bit has to be set before next VM entry.
5865 	 */
5866 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5867 			enable_vnmi &&
5868 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5869 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5870 				GUEST_INTR_STATE_NMI);
5871 
5872 	/*
5873 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5874 	 * here.., and there's no userspace involvement needed for PML.
5875 	 */
5876 	return 1;
5877 }
5878 
5879 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5880 {
5881 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5882 
5883 	if (!vmx->req_immediate_exit &&
5884 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5885 		kvm_lapic_expired_hv_timer(vcpu);
5886 		return EXIT_FASTPATH_REENTER_GUEST;
5887 	}
5888 
5889 	return EXIT_FASTPATH_NONE;
5890 }
5891 
5892 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5893 {
5894 	handle_fastpath_preemption_timer(vcpu);
5895 	return 1;
5896 }
5897 
5898 /*
5899  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5900  * are overwritten by nested_vmx_setup() when nested=1.
5901  */
5902 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5903 {
5904 	kvm_queue_exception(vcpu, UD_VECTOR);
5905 	return 1;
5906 }
5907 
5908 #ifndef CONFIG_X86_SGX_KVM
5909 static int handle_encls(struct kvm_vcpu *vcpu)
5910 {
5911 	/*
5912 	 * SGX virtualization is disabled.  There is no software enable bit for
5913 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5914 	 * the guest from executing ENCLS (when SGX is supported by hardware).
5915 	 */
5916 	kvm_queue_exception(vcpu, UD_VECTOR);
5917 	return 1;
5918 }
5919 #endif /* CONFIG_X86_SGX_KVM */
5920 
5921 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5922 {
5923 	/*
5924 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5925 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
5926 	 * vmx_handle_exit().
5927 	 */
5928 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
5929 	return 1;
5930 }
5931 
5932 static int handle_notify(struct kvm_vcpu *vcpu)
5933 {
5934 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5935 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
5936 
5937 	++vcpu->stat.notify_window_exits;
5938 
5939 	/*
5940 	 * Notify VM exit happened while executing iret from NMI,
5941 	 * "blocked by NMI" bit has to be set before next VM entry.
5942 	 */
5943 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
5944 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5945 			      GUEST_INTR_STATE_NMI);
5946 
5947 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
5948 	    context_invalid) {
5949 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
5950 		vcpu->run->notify.flags = context_invalid ?
5951 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
5952 		return 0;
5953 	}
5954 
5955 	return 1;
5956 }
5957 
5958 /*
5959  * The exit handlers return 1 if the exit was handled fully and guest execution
5960  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5961  * to be done to userspace and return 0.
5962  */
5963 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5964 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5965 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5966 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5967 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5968 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5969 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5970 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5971 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5972 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5973 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5974 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5975 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5976 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
5977 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5978 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5979 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5980 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5981 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5982 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5983 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5984 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5985 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5986 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5987 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5988 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5989 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5990 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5991 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5992 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5993 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5994 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5995 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5996 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5997 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5998 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5999 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6000 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6001 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6002 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6003 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6004 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6005 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6006 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6007 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6008 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6009 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6010 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6011 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6012 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6013 	[EXIT_REASON_ENCLS]		      = handle_encls,
6014 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6015 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6016 };
6017 
6018 static const int kvm_vmx_max_exit_handlers =
6019 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6020 
6021 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6022 			      u64 *info1, u64 *info2,
6023 			      u32 *intr_info, u32 *error_code)
6024 {
6025 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6026 
6027 	*reason = vmx->exit_reason.full;
6028 	*info1 = vmx_get_exit_qual(vcpu);
6029 	if (!(vmx->exit_reason.failed_vmentry)) {
6030 		*info2 = vmx->idt_vectoring_info;
6031 		*intr_info = vmx_get_intr_info(vcpu);
6032 		if (is_exception_with_error_code(*intr_info))
6033 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6034 		else
6035 			*error_code = 0;
6036 	} else {
6037 		*info2 = 0;
6038 		*intr_info = 0;
6039 		*error_code = 0;
6040 	}
6041 }
6042 
6043 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6044 {
6045 	if (vmx->pml_pg) {
6046 		__free_page(vmx->pml_pg);
6047 		vmx->pml_pg = NULL;
6048 	}
6049 }
6050 
6051 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6052 {
6053 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6054 	u64 *pml_buf;
6055 	u16 pml_idx;
6056 
6057 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6058 
6059 	/* Do nothing if PML buffer is empty */
6060 	if (pml_idx == (PML_ENTITY_NUM - 1))
6061 		return;
6062 
6063 	/* PML index always points to next available PML buffer entity */
6064 	if (pml_idx >= PML_ENTITY_NUM)
6065 		pml_idx = 0;
6066 	else
6067 		pml_idx++;
6068 
6069 	pml_buf = page_address(vmx->pml_pg);
6070 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6071 		u64 gpa;
6072 
6073 		gpa = pml_buf[pml_idx];
6074 		WARN_ON(gpa & (PAGE_SIZE - 1));
6075 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6076 	}
6077 
6078 	/* reset PML index */
6079 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6080 }
6081 
6082 static void vmx_dump_sel(char *name, uint32_t sel)
6083 {
6084 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6085 	       name, vmcs_read16(sel),
6086 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6087 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6088 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6089 }
6090 
6091 static void vmx_dump_dtsel(char *name, uint32_t limit)
6092 {
6093 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6094 	       name, vmcs_read32(limit),
6095 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6096 }
6097 
6098 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6099 {
6100 	unsigned int i;
6101 	struct vmx_msr_entry *e;
6102 
6103 	pr_err("MSR %s:\n", name);
6104 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6105 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6106 }
6107 
6108 void dump_vmcs(struct kvm_vcpu *vcpu)
6109 {
6110 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6111 	u32 vmentry_ctl, vmexit_ctl;
6112 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6113 	u64 tertiary_exec_control;
6114 	unsigned long cr4;
6115 	int efer_slot;
6116 
6117 	if (!dump_invalid_vmcs) {
6118 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6119 		return;
6120 	}
6121 
6122 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6123 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6124 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6125 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6126 	cr4 = vmcs_readl(GUEST_CR4);
6127 
6128 	if (cpu_has_secondary_exec_ctrls())
6129 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6130 	else
6131 		secondary_exec_control = 0;
6132 
6133 	if (cpu_has_tertiary_exec_ctrls())
6134 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6135 	else
6136 		tertiary_exec_control = 0;
6137 
6138 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6139 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6140 	pr_err("*** Guest State ***\n");
6141 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6142 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6143 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6144 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6145 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6146 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6147 	if (cpu_has_vmx_ept()) {
6148 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6149 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6150 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6151 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6152 	}
6153 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6154 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6155 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6156 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6157 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6158 	       vmcs_readl(GUEST_SYSENTER_ESP),
6159 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6160 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6161 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6162 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6163 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6164 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6165 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6166 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6167 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6168 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6169 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6170 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6171 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6172 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6173 	else if (efer_slot >= 0)
6174 		pr_err("EFER= 0x%016llx (autoload)\n",
6175 		       vmx->msr_autoload.guest.val[efer_slot].value);
6176 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6177 		pr_err("EFER= 0x%016llx (effective)\n",
6178 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6179 	else
6180 		pr_err("EFER= 0x%016llx (effective)\n",
6181 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6182 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6183 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6184 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6185 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6186 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6187 	if (cpu_has_load_perf_global_ctrl() &&
6188 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6189 		pr_err("PerfGlobCtl = 0x%016llx\n",
6190 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6191 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6192 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6193 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6194 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6195 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6196 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6197 		pr_err("InterruptStatus = %04x\n",
6198 		       vmcs_read16(GUEST_INTR_STATUS));
6199 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6200 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6201 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6202 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6203 
6204 	pr_err("*** Host State ***\n");
6205 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6206 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6207 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6208 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6209 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6210 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6211 	       vmcs_read16(HOST_TR_SELECTOR));
6212 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6213 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6214 	       vmcs_readl(HOST_TR_BASE));
6215 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6216 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6217 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6218 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6219 	       vmcs_readl(HOST_CR4));
6220 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6221 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6222 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6223 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6224 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6225 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6226 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6227 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6228 	if (cpu_has_load_perf_global_ctrl() &&
6229 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6230 		pr_err("PerfGlobCtl = 0x%016llx\n",
6231 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6232 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6233 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6234 
6235 	pr_err("*** Control State ***\n");
6236 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6237 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6238 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6239 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6240 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6241 	       vmcs_read32(EXCEPTION_BITMAP),
6242 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6243 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6244 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6245 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6246 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6247 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6248 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6249 	       vmcs_read32(VM_EXIT_INTR_INFO),
6250 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6251 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6252 	pr_err("        reason=%08x qualification=%016lx\n",
6253 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6254 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6255 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6256 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6257 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6258 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6259 		pr_err("TSC Multiplier = 0x%016llx\n",
6260 		       vmcs_read64(TSC_MULTIPLIER));
6261 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6262 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6263 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6264 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6265 		}
6266 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6267 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6268 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6269 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6270 	}
6271 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6272 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6273 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6274 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6275 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6276 		pr_err("PLE Gap=%08x Window=%08x\n",
6277 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6278 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6279 		pr_err("Virtual processor ID = 0x%04x\n",
6280 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6281 }
6282 
6283 /*
6284  * The guest has exited.  See if we can fix it or if we need userspace
6285  * assistance.
6286  */
6287 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6288 {
6289 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6290 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6291 	u32 vectoring_info = vmx->idt_vectoring_info;
6292 	u16 exit_handler_index;
6293 
6294 	/*
6295 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6296 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6297 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6298 	 * mode as if vcpus is in root mode, the PML buffer must has been
6299 	 * flushed already.  Note, PML is never enabled in hardware while
6300 	 * running L2.
6301 	 */
6302 	if (enable_pml && !is_guest_mode(vcpu))
6303 		vmx_flush_pml_buffer(vcpu);
6304 
6305 	/*
6306 	 * KVM should never reach this point with a pending nested VM-Enter.
6307 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6308 	 * invalid guest state should never happen as that means KVM knowingly
6309 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6310 	 */
6311 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6312 		return -EIO;
6313 
6314 	if (is_guest_mode(vcpu)) {
6315 		/*
6316 		 * PML is never enabled when running L2, bail immediately if a
6317 		 * PML full exit occurs as something is horribly wrong.
6318 		 */
6319 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6320 			goto unexpected_vmexit;
6321 
6322 		/*
6323 		 * The host physical addresses of some pages of guest memory
6324 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6325 		 * Page). The CPU may write to these pages via their host
6326 		 * physical address while L2 is running, bypassing any
6327 		 * address-translation-based dirty tracking (e.g. EPT write
6328 		 * protection).
6329 		 *
6330 		 * Mark them dirty on every exit from L2 to prevent them from
6331 		 * getting out of sync with dirty tracking.
6332 		 */
6333 		nested_mark_vmcs12_pages_dirty(vcpu);
6334 
6335 		/*
6336 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6337 		 * operation, nested VM-Enter rejects any attempt to enter L2
6338 		 * with invalid state.  However, those checks are skipped if
6339 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6340 		 * L2 state is invalid, it means either L1 modified SMRAM state
6341 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6342 		 * doing so is architecturally allowed in the RSM case, and is
6343 		 * the least awful solution for the userspace case without
6344 		 * risking false positives.
6345 		 */
6346 		if (vmx->emulation_required) {
6347 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6348 			return 1;
6349 		}
6350 
6351 		if (nested_vmx_reflect_vmexit(vcpu))
6352 			return 1;
6353 	}
6354 
6355 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6356 	if (vmx->emulation_required)
6357 		return handle_invalid_guest_state(vcpu);
6358 
6359 	if (exit_reason.failed_vmentry) {
6360 		dump_vmcs(vcpu);
6361 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6362 		vcpu->run->fail_entry.hardware_entry_failure_reason
6363 			= exit_reason.full;
6364 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6365 		return 0;
6366 	}
6367 
6368 	if (unlikely(vmx->fail)) {
6369 		dump_vmcs(vcpu);
6370 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6371 		vcpu->run->fail_entry.hardware_entry_failure_reason
6372 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6373 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6374 		return 0;
6375 	}
6376 
6377 	/*
6378 	 * Note:
6379 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6380 	 * delivery event since it indicates guest is accessing MMIO.
6381 	 * The vm-exit can be triggered again after return to guest that
6382 	 * will cause infinite loop.
6383 	 */
6384 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6385 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6386 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6387 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6388 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6389 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6390 	     exit_reason.basic != EXIT_REASON_NOTIFY)) {
6391 		int ndata = 3;
6392 
6393 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6394 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6395 		vcpu->run->internal.data[0] = vectoring_info;
6396 		vcpu->run->internal.data[1] = exit_reason.full;
6397 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6398 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6399 			vcpu->run->internal.data[ndata++] =
6400 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6401 		}
6402 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6403 		vcpu->run->internal.ndata = ndata;
6404 		return 0;
6405 	}
6406 
6407 	if (unlikely(!enable_vnmi &&
6408 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6409 		if (!vmx_interrupt_blocked(vcpu)) {
6410 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6411 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6412 			   vcpu->arch.nmi_pending) {
6413 			/*
6414 			 * This CPU don't support us in finding the end of an
6415 			 * NMI-blocked window if the guest runs with IRQs
6416 			 * disabled. So we pull the trigger after 1 s of
6417 			 * futile waiting, but inform the user about this.
6418 			 */
6419 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6420 			       "state on VCPU %d after 1 s timeout\n",
6421 			       __func__, vcpu->vcpu_id);
6422 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6423 		}
6424 	}
6425 
6426 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6427 		return 1;
6428 
6429 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6430 		goto unexpected_vmexit;
6431 #ifdef CONFIG_RETPOLINE
6432 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6433 		return kvm_emulate_wrmsr(vcpu);
6434 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6435 		return handle_preemption_timer(vcpu);
6436 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6437 		return handle_interrupt_window(vcpu);
6438 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6439 		return handle_external_interrupt(vcpu);
6440 	else if (exit_reason.basic == EXIT_REASON_HLT)
6441 		return kvm_emulate_halt(vcpu);
6442 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6443 		return handle_ept_misconfig(vcpu);
6444 #endif
6445 
6446 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6447 						kvm_vmx_max_exit_handlers);
6448 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6449 		goto unexpected_vmexit;
6450 
6451 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6452 
6453 unexpected_vmexit:
6454 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6455 		    exit_reason.full);
6456 	dump_vmcs(vcpu);
6457 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6458 	vcpu->run->internal.suberror =
6459 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6460 	vcpu->run->internal.ndata = 2;
6461 	vcpu->run->internal.data[0] = exit_reason.full;
6462 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6463 	return 0;
6464 }
6465 
6466 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6467 {
6468 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6469 
6470 	/*
6471 	 * Exit to user space when bus lock detected to inform that there is
6472 	 * a bus lock in guest.
6473 	 */
6474 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6475 		if (ret > 0)
6476 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6477 
6478 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6479 		return 0;
6480 	}
6481 	return ret;
6482 }
6483 
6484 /*
6485  * Software based L1D cache flush which is used when microcode providing
6486  * the cache control MSR is not loaded.
6487  *
6488  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6489  * flush it is required to read in 64 KiB because the replacement algorithm
6490  * is not exactly LRU. This could be sized at runtime via topology
6491  * information but as all relevant affected CPUs have 32KiB L1D cache size
6492  * there is no point in doing so.
6493  */
6494 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6495 {
6496 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6497 
6498 	/*
6499 	 * This code is only executed when the flush mode is 'cond' or
6500 	 * 'always'
6501 	 */
6502 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6503 		bool flush_l1d;
6504 
6505 		/*
6506 		 * Clear the per-vcpu flush bit, it gets set again
6507 		 * either from vcpu_run() or from one of the unsafe
6508 		 * VMEXIT handlers.
6509 		 */
6510 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6511 		vcpu->arch.l1tf_flush_l1d = false;
6512 
6513 		/*
6514 		 * Clear the per-cpu flush bit, it gets set again from
6515 		 * the interrupt handlers.
6516 		 */
6517 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6518 		kvm_clear_cpu_l1tf_flush_l1d();
6519 
6520 		if (!flush_l1d)
6521 			return;
6522 	}
6523 
6524 	vcpu->stat.l1d_flush++;
6525 
6526 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6527 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6528 		return;
6529 	}
6530 
6531 	asm volatile(
6532 		/* First ensure the pages are in the TLB */
6533 		"xorl	%%eax, %%eax\n"
6534 		".Lpopulate_tlb:\n\t"
6535 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6536 		"addl	$4096, %%eax\n\t"
6537 		"cmpl	%%eax, %[size]\n\t"
6538 		"jne	.Lpopulate_tlb\n\t"
6539 		"xorl	%%eax, %%eax\n\t"
6540 		"cpuid\n\t"
6541 		/* Now fill the cache */
6542 		"xorl	%%eax, %%eax\n"
6543 		".Lfill_cache:\n"
6544 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6545 		"addl	$64, %%eax\n\t"
6546 		"cmpl	%%eax, %[size]\n\t"
6547 		"jne	.Lfill_cache\n\t"
6548 		"lfence\n"
6549 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6550 		    [size] "r" (size)
6551 		: "eax", "ebx", "ecx", "edx");
6552 }
6553 
6554 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6555 {
6556 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6557 	int tpr_threshold;
6558 
6559 	if (is_guest_mode(vcpu) &&
6560 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6561 		return;
6562 
6563 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6564 	if (is_guest_mode(vcpu))
6565 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6566 	else
6567 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6568 }
6569 
6570 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6571 {
6572 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6573 	u32 sec_exec_control;
6574 
6575 	if (!lapic_in_kernel(vcpu))
6576 		return;
6577 
6578 	if (!flexpriority_enabled &&
6579 	    !cpu_has_vmx_virtualize_x2apic_mode())
6580 		return;
6581 
6582 	/* Postpone execution until vmcs01 is the current VMCS. */
6583 	if (is_guest_mode(vcpu)) {
6584 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6585 		return;
6586 	}
6587 
6588 	sec_exec_control = secondary_exec_controls_get(vmx);
6589 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6590 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6591 
6592 	switch (kvm_get_apic_mode(vcpu)) {
6593 	case LAPIC_MODE_INVALID:
6594 		WARN_ONCE(true, "Invalid local APIC state");
6595 		break;
6596 	case LAPIC_MODE_DISABLED:
6597 		break;
6598 	case LAPIC_MODE_XAPIC:
6599 		if (flexpriority_enabled) {
6600 			sec_exec_control |=
6601 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6602 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6603 
6604 			/*
6605 			 * Flush the TLB, reloading the APIC access page will
6606 			 * only do so if its physical address has changed, but
6607 			 * the guest may have inserted a non-APIC mapping into
6608 			 * the TLB while the APIC access page was disabled.
6609 			 */
6610 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6611 		}
6612 		break;
6613 	case LAPIC_MODE_X2APIC:
6614 		if (cpu_has_vmx_virtualize_x2apic_mode())
6615 			sec_exec_control |=
6616 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6617 		break;
6618 	}
6619 	secondary_exec_controls_set(vmx, sec_exec_control);
6620 
6621 	vmx_update_msr_bitmap_x2apic(vcpu);
6622 }
6623 
6624 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6625 {
6626 	struct page *page;
6627 
6628 	/* Defer reload until vmcs01 is the current VMCS. */
6629 	if (is_guest_mode(vcpu)) {
6630 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6631 		return;
6632 	}
6633 
6634 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6635 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6636 		return;
6637 
6638 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6639 	if (is_error_page(page))
6640 		return;
6641 
6642 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6643 	vmx_flush_tlb_current(vcpu);
6644 
6645 	/*
6646 	 * Do not pin apic access page in memory, the MMU notifier
6647 	 * will call us again if it is migrated or swapped out.
6648 	 */
6649 	put_page(page);
6650 }
6651 
6652 static void vmx_hwapic_isr_update(int max_isr)
6653 {
6654 	u16 status;
6655 	u8 old;
6656 
6657 	if (max_isr == -1)
6658 		max_isr = 0;
6659 
6660 	status = vmcs_read16(GUEST_INTR_STATUS);
6661 	old = status >> 8;
6662 	if (max_isr != old) {
6663 		status &= 0xff;
6664 		status |= max_isr << 8;
6665 		vmcs_write16(GUEST_INTR_STATUS, status);
6666 	}
6667 }
6668 
6669 static void vmx_set_rvi(int vector)
6670 {
6671 	u16 status;
6672 	u8 old;
6673 
6674 	if (vector == -1)
6675 		vector = 0;
6676 
6677 	status = vmcs_read16(GUEST_INTR_STATUS);
6678 	old = (u8)status & 0xff;
6679 	if ((u8)vector != old) {
6680 		status &= ~0xff;
6681 		status |= (u8)vector;
6682 		vmcs_write16(GUEST_INTR_STATUS, status);
6683 	}
6684 }
6685 
6686 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6687 {
6688 	/*
6689 	 * When running L2, updating RVI is only relevant when
6690 	 * vmcs12 virtual-interrupt-delivery enabled.
6691 	 * However, it can be enabled only when L1 also
6692 	 * intercepts external-interrupts and in that case
6693 	 * we should not update vmcs02 RVI but instead intercept
6694 	 * interrupt. Therefore, do nothing when running L2.
6695 	 */
6696 	if (!is_guest_mode(vcpu))
6697 		vmx_set_rvi(max_irr);
6698 }
6699 
6700 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6701 {
6702 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6703 	int max_irr;
6704 	bool got_posted_interrupt;
6705 
6706 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6707 		return -EIO;
6708 
6709 	if (pi_test_on(&vmx->pi_desc)) {
6710 		pi_clear_on(&vmx->pi_desc);
6711 		/*
6712 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6713 		 * But on x86 this is just a compiler barrier anyway.
6714 		 */
6715 		smp_mb__after_atomic();
6716 		got_posted_interrupt =
6717 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6718 	} else {
6719 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6720 		got_posted_interrupt = false;
6721 	}
6722 
6723 	/*
6724 	 * Newly recognized interrupts are injected via either virtual interrupt
6725 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6726 	 * disabled in two cases:
6727 	 *
6728 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6729 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6730 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6731 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6732 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6733 	 *
6734 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6735 	 * attempt to post interrupts.  The posted interrupt vector will cause
6736 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6737 	 */
6738 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6739 		vmx_set_rvi(max_irr);
6740 	else if (got_posted_interrupt)
6741 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6742 
6743 	return max_irr;
6744 }
6745 
6746 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6747 {
6748 	if (!kvm_vcpu_apicv_active(vcpu))
6749 		return;
6750 
6751 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6752 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6753 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6754 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6755 }
6756 
6757 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6758 {
6759 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6760 
6761 	pi_clear_on(&vmx->pi_desc);
6762 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6763 }
6764 
6765 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6766 
6767 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6768 					unsigned long entry)
6769 {
6770 	bool is_nmi = entry == (unsigned long)asm_exc_nmi_noist;
6771 
6772 	kvm_before_interrupt(vcpu, is_nmi ? KVM_HANDLING_NMI : KVM_HANDLING_IRQ);
6773 	vmx_do_interrupt_nmi_irqoff(entry);
6774 	kvm_after_interrupt(vcpu);
6775 }
6776 
6777 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6778 {
6779 	/*
6780 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6781 	 * MSR value is not clobbered by the host activity before the guest
6782 	 * has chance to consume it.
6783 	 *
6784 	 * Do not blindly read xfd_err here, since this exception might
6785 	 * be caused by L1 interception on a platform which doesn't
6786 	 * support xfd at all.
6787 	 *
6788 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6789 	 * only when xfd contains a non-zero value.
6790 	 *
6791 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6792 	 */
6793 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6794 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6795 }
6796 
6797 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6798 {
6799 	const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6800 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6801 
6802 	/* if exit due to PF check for async PF */
6803 	if (is_page_fault(intr_info))
6804 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6805 	/* if exit due to NM, handle before interrupts are enabled */
6806 	else if (is_nm_fault(intr_info))
6807 		handle_nm_fault_irqoff(&vmx->vcpu);
6808 	/* Handle machine checks before interrupts are enabled */
6809 	else if (is_machine_check(intr_info))
6810 		kvm_machine_check();
6811 	/* We need to handle NMIs before interrupts are enabled */
6812 	else if (is_nmi(intr_info))
6813 		handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6814 }
6815 
6816 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6817 {
6818 	u32 intr_info = vmx_get_intr_info(vcpu);
6819 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6820 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6821 
6822 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6823 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6824 		return;
6825 
6826 	handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6827 	vcpu->arch.at_instruction_boundary = true;
6828 }
6829 
6830 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6831 {
6832 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6833 
6834 	if (vmx->emulation_required)
6835 		return;
6836 
6837 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6838 		handle_external_interrupt_irqoff(vcpu);
6839 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6840 		handle_exception_nmi_irqoff(vmx);
6841 }
6842 
6843 /*
6844  * The kvm parameter can be NULL (module initialization, or invocation before
6845  * VM creation). Be sure to check the kvm parameter before using it.
6846  */
6847 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6848 {
6849 	switch (index) {
6850 	case MSR_IA32_SMBASE:
6851 		/*
6852 		 * We cannot do SMM unless we can run the guest in big
6853 		 * real mode.
6854 		 */
6855 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6856 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6857 		return nested;
6858 	case MSR_AMD64_VIRT_SPEC_CTRL:
6859 	case MSR_AMD64_TSC_RATIO:
6860 		/* This is AMD only.  */
6861 		return false;
6862 	default:
6863 		return true;
6864 	}
6865 }
6866 
6867 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6868 {
6869 	u32 exit_intr_info;
6870 	bool unblock_nmi;
6871 	u8 vector;
6872 	bool idtv_info_valid;
6873 
6874 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6875 
6876 	if (enable_vnmi) {
6877 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6878 			return;
6879 
6880 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6881 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6882 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6883 		/*
6884 		 * SDM 3: 27.7.1.2 (September 2008)
6885 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6886 		 * a guest IRET fault.
6887 		 * SDM 3: 23.2.2 (September 2008)
6888 		 * Bit 12 is undefined in any of the following cases:
6889 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6890 		 *   information field.
6891 		 *  If the VM exit is due to a double fault.
6892 		 */
6893 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6894 		    vector != DF_VECTOR && !idtv_info_valid)
6895 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6896 				      GUEST_INTR_STATE_NMI);
6897 		else
6898 			vmx->loaded_vmcs->nmi_known_unmasked =
6899 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6900 				  & GUEST_INTR_STATE_NMI);
6901 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6902 		vmx->loaded_vmcs->vnmi_blocked_time +=
6903 			ktime_to_ns(ktime_sub(ktime_get(),
6904 					      vmx->loaded_vmcs->entry_time));
6905 }
6906 
6907 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6908 				      u32 idt_vectoring_info,
6909 				      int instr_len_field,
6910 				      int error_code_field)
6911 {
6912 	u8 vector;
6913 	int type;
6914 	bool idtv_info_valid;
6915 
6916 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6917 
6918 	vcpu->arch.nmi_injected = false;
6919 	kvm_clear_exception_queue(vcpu);
6920 	kvm_clear_interrupt_queue(vcpu);
6921 
6922 	if (!idtv_info_valid)
6923 		return;
6924 
6925 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6926 
6927 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6928 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6929 
6930 	switch (type) {
6931 	case INTR_TYPE_NMI_INTR:
6932 		vcpu->arch.nmi_injected = true;
6933 		/*
6934 		 * SDM 3: 27.7.1.2 (September 2008)
6935 		 * Clear bit "block by NMI" before VM entry if a NMI
6936 		 * delivery faulted.
6937 		 */
6938 		vmx_set_nmi_mask(vcpu, false);
6939 		break;
6940 	case INTR_TYPE_SOFT_EXCEPTION:
6941 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6942 		fallthrough;
6943 	case INTR_TYPE_HARD_EXCEPTION:
6944 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6945 			u32 err = vmcs_read32(error_code_field);
6946 			kvm_requeue_exception_e(vcpu, vector, err);
6947 		} else
6948 			kvm_requeue_exception(vcpu, vector);
6949 		break;
6950 	case INTR_TYPE_SOFT_INTR:
6951 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6952 		fallthrough;
6953 	case INTR_TYPE_EXT_INTR:
6954 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6955 		break;
6956 	default:
6957 		break;
6958 	}
6959 }
6960 
6961 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6962 {
6963 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6964 				  VM_EXIT_INSTRUCTION_LEN,
6965 				  IDT_VECTORING_ERROR_CODE);
6966 }
6967 
6968 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6969 {
6970 	__vmx_complete_interrupts(vcpu,
6971 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6972 				  VM_ENTRY_INSTRUCTION_LEN,
6973 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6974 
6975 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6976 }
6977 
6978 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6979 {
6980 	int i, nr_msrs;
6981 	struct perf_guest_switch_msr *msrs;
6982 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
6983 
6984 	pmu->host_cross_mapped_mask = 0;
6985 	if (pmu->pebs_enable & pmu->global_ctrl)
6986 		intel_pmu_cross_mapped_check(pmu);
6987 
6988 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6989 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
6990 	if (!msrs)
6991 		return;
6992 
6993 	for (i = 0; i < nr_msrs; i++)
6994 		if (msrs[i].host == msrs[i].guest)
6995 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6996 		else
6997 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6998 					msrs[i].host, false);
6999 }
7000 
7001 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
7002 {
7003 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7004 	u64 tscl;
7005 	u32 delta_tsc;
7006 
7007 	if (vmx->req_immediate_exit) {
7008 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7009 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7010 	} else if (vmx->hv_deadline_tsc != -1) {
7011 		tscl = rdtsc();
7012 		if (vmx->hv_deadline_tsc > tscl)
7013 			/* set_hv_timer ensures the delta fits in 32-bits */
7014 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7015 				cpu_preemption_timer_multi);
7016 		else
7017 			delta_tsc = 0;
7018 
7019 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7020 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7021 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7022 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7023 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7024 	}
7025 }
7026 
7027 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7028 {
7029 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7030 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7031 		vmcs_writel(HOST_RSP, host_rsp);
7032 	}
7033 }
7034 
7035 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7036 					unsigned int flags)
7037 {
7038 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7039 
7040 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7041 		return;
7042 
7043 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7044 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7045 
7046 	/*
7047 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7048 	 *
7049 	 * For legacy IBRS, the IBRS bit always needs to be written after
7050 	 * transitioning from a less privileged predictor mode, regardless of
7051 	 * whether the guest/host values differ.
7052 	 */
7053 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7054 	    vmx->spec_ctrl != hostval)
7055 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7056 
7057 	barrier_nospec();
7058 }
7059 
7060 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7061 {
7062 	switch (to_vmx(vcpu)->exit_reason.basic) {
7063 	case EXIT_REASON_MSR_WRITE:
7064 		return handle_fastpath_set_msr_irqoff(vcpu);
7065 	case EXIT_REASON_PREEMPTION_TIMER:
7066 		return handle_fastpath_preemption_timer(vcpu);
7067 	default:
7068 		return EXIT_FASTPATH_NONE;
7069 	}
7070 }
7071 
7072 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7073 					struct vcpu_vmx *vmx,
7074 					unsigned long flags)
7075 {
7076 	guest_state_enter_irqoff();
7077 
7078 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
7079 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7080 		vmx_l1d_flush(vcpu);
7081 	else if (static_branch_unlikely(&mds_user_clear))
7082 		mds_clear_cpu_buffers();
7083 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7084 		 kvm_arch_has_assigned_device(vcpu->kvm))
7085 		mds_clear_cpu_buffers();
7086 
7087 	vmx_disable_fb_clear(vmx);
7088 
7089 	if (vcpu->arch.cr2 != native_read_cr2())
7090 		native_write_cr2(vcpu->arch.cr2);
7091 
7092 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7093 				   flags);
7094 
7095 	vcpu->arch.cr2 = native_read_cr2();
7096 
7097 	vmx_enable_fb_clear(vmx);
7098 
7099 	guest_state_exit_irqoff();
7100 }
7101 
7102 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7103 {
7104 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7105 	unsigned long cr3, cr4;
7106 
7107 	/* Record the guest's net vcpu time for enforced NMI injections. */
7108 	if (unlikely(!enable_vnmi &&
7109 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7110 		vmx->loaded_vmcs->entry_time = ktime_get();
7111 
7112 	/*
7113 	 * Don't enter VMX if guest state is invalid, let the exit handler
7114 	 * start emulation until we arrive back to a valid state.  Synthesize a
7115 	 * consistency check VM-Exit due to invalid guest state and bail.
7116 	 */
7117 	if (unlikely(vmx->emulation_required)) {
7118 		vmx->fail = 0;
7119 
7120 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7121 		vmx->exit_reason.failed_vmentry = 1;
7122 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7123 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7124 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7125 		vmx->exit_intr_info = 0;
7126 		return EXIT_FASTPATH_NONE;
7127 	}
7128 
7129 	trace_kvm_entry(vcpu);
7130 
7131 	if (vmx->ple_window_dirty) {
7132 		vmx->ple_window_dirty = false;
7133 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7134 	}
7135 
7136 	/*
7137 	 * We did this in prepare_switch_to_guest, because it needs to
7138 	 * be within srcu_read_lock.
7139 	 */
7140 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7141 
7142 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7143 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7144 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7145 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7146 	vcpu->arch.regs_dirty = 0;
7147 
7148 	/*
7149 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7150 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7151 	 * it switches back to the current->mm, which can occur in KVM context
7152 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7153 	 * toggles a static key while handling a VM-Exit.
7154 	 */
7155 	cr3 = __get_current_cr3_fast();
7156 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7157 		vmcs_writel(HOST_CR3, cr3);
7158 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7159 	}
7160 
7161 	cr4 = cr4_read_shadow();
7162 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7163 		vmcs_writel(HOST_CR4, cr4);
7164 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7165 	}
7166 
7167 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7168 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7169 		set_debugreg(vcpu->arch.dr6, 6);
7170 
7171 	/* When single-stepping over STI and MOV SS, we must clear the
7172 	 * corresponding interruptibility bits in the guest state. Otherwise
7173 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7174 	 * exceptions being set, but that's not correct for the guest debugging
7175 	 * case. */
7176 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7177 		vmx_set_interrupt_shadow(vcpu, 0);
7178 
7179 	kvm_load_guest_xsave_state(vcpu);
7180 
7181 	pt_guest_enter(vmx);
7182 
7183 	atomic_switch_perf_msrs(vmx);
7184 	if (intel_pmu_lbr_is_enabled(vcpu))
7185 		vmx_passthrough_lbr_msrs(vcpu);
7186 
7187 	if (enable_preemption_timer)
7188 		vmx_update_hv_timer(vcpu);
7189 
7190 	kvm_wait_lapic_expire(vcpu);
7191 
7192 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7193 	vmx_vcpu_enter_exit(vcpu, vmx, __vmx_vcpu_run_flags(vmx));
7194 
7195 	/* All fields are clean at this point */
7196 	if (static_branch_unlikely(&enable_evmcs)) {
7197 		current_evmcs->hv_clean_fields |=
7198 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7199 
7200 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7201 	}
7202 
7203 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7204 	if (vmx->host_debugctlmsr)
7205 		update_debugctlmsr(vmx->host_debugctlmsr);
7206 
7207 #ifndef CONFIG_X86_64
7208 	/*
7209 	 * The sysexit path does not restore ds/es, so we must set them to
7210 	 * a reasonable value ourselves.
7211 	 *
7212 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7213 	 * function may be executed in interrupt context, which saves and
7214 	 * restore segments around it, nullifying its effect.
7215 	 */
7216 	loadsegment(ds, __USER_DS);
7217 	loadsegment(es, __USER_DS);
7218 #endif
7219 
7220 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7221 
7222 	pt_guest_exit(vmx);
7223 
7224 	kvm_load_host_xsave_state(vcpu);
7225 
7226 	if (is_guest_mode(vcpu)) {
7227 		/*
7228 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7229 		 * checking.
7230 		 */
7231 		if (vmx->nested.nested_run_pending &&
7232 		    !vmx->exit_reason.failed_vmentry)
7233 			++vcpu->stat.nested_run;
7234 
7235 		vmx->nested.nested_run_pending = 0;
7236 	}
7237 
7238 	vmx->idt_vectoring_info = 0;
7239 
7240 	if (unlikely(vmx->fail)) {
7241 		vmx->exit_reason.full = 0xdead;
7242 		return EXIT_FASTPATH_NONE;
7243 	}
7244 
7245 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7246 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7247 		kvm_machine_check();
7248 
7249 	if (likely(!vmx->exit_reason.failed_vmentry))
7250 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7251 
7252 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7253 
7254 	if (unlikely(vmx->exit_reason.failed_vmentry))
7255 		return EXIT_FASTPATH_NONE;
7256 
7257 	vmx->loaded_vmcs->launched = 1;
7258 
7259 	vmx_recover_nmi_blocking(vmx);
7260 	vmx_complete_interrupts(vmx);
7261 
7262 	if (is_guest_mode(vcpu))
7263 		return EXIT_FASTPATH_NONE;
7264 
7265 	return vmx_exit_handlers_fastpath(vcpu);
7266 }
7267 
7268 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7269 {
7270 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7271 
7272 	if (enable_pml)
7273 		vmx_destroy_pml_buffer(vmx);
7274 	free_vpid(vmx->vpid);
7275 	nested_vmx_free_vcpu(vcpu);
7276 	free_loaded_vmcs(vmx->loaded_vmcs);
7277 }
7278 
7279 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7280 {
7281 	struct vmx_uret_msr *tsx_ctrl;
7282 	struct vcpu_vmx *vmx;
7283 	int i, err;
7284 
7285 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7286 	vmx = to_vmx(vcpu);
7287 
7288 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7289 
7290 	err = -ENOMEM;
7291 
7292 	vmx->vpid = allocate_vpid();
7293 
7294 	/*
7295 	 * If PML is turned on, failure on enabling PML just results in failure
7296 	 * of creating the vcpu, therefore we can simplify PML logic (by
7297 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7298 	 * for the guest), etc.
7299 	 */
7300 	if (enable_pml) {
7301 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7302 		if (!vmx->pml_pg)
7303 			goto free_vpid;
7304 	}
7305 
7306 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7307 		vmx->guest_uret_msrs[i].mask = -1ull;
7308 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7309 		/*
7310 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7311 		 * Keep the host value unchanged to avoid changing CPUID bits
7312 		 * under the host kernel's feet.
7313 		 */
7314 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7315 		if (tsx_ctrl)
7316 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7317 	}
7318 
7319 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7320 	if (err < 0)
7321 		goto free_pml;
7322 
7323 	/*
7324 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7325 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7326 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7327 	 * performance benefits from enabling it for vmcs02.
7328 	 */
7329 	if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) &&
7330 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7331 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7332 
7333 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7334 	}
7335 
7336 	/* The MSR bitmap starts with all ones */
7337 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7338 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7339 
7340 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7341 #ifdef CONFIG_X86_64
7342 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7343 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7344 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7345 #endif
7346 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7347 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7348 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7349 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7350 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7351 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7352 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7353 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7354 	}
7355 
7356 	vmx->loaded_vmcs = &vmx->vmcs01;
7357 
7358 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7359 		err = alloc_apic_access_page(vcpu->kvm);
7360 		if (err)
7361 			goto free_vmcs;
7362 	}
7363 
7364 	if (enable_ept && !enable_unrestricted_guest) {
7365 		err = init_rmode_identity_map(vcpu->kvm);
7366 		if (err)
7367 			goto free_vmcs;
7368 	}
7369 
7370 	if (vmx_can_use_ipiv(vcpu))
7371 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7372 			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7373 
7374 	return 0;
7375 
7376 free_vmcs:
7377 	free_loaded_vmcs(vmx->loaded_vmcs);
7378 free_pml:
7379 	vmx_destroy_pml_buffer(vmx);
7380 free_vpid:
7381 	free_vpid(vmx->vpid);
7382 	return err;
7383 }
7384 
7385 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7386 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7387 
7388 static int vmx_vm_init(struct kvm *kvm)
7389 {
7390 	if (!ple_gap)
7391 		kvm->arch.pause_in_guest = true;
7392 
7393 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7394 		switch (l1tf_mitigation) {
7395 		case L1TF_MITIGATION_OFF:
7396 		case L1TF_MITIGATION_FLUSH_NOWARN:
7397 			/* 'I explicitly don't care' is set */
7398 			break;
7399 		case L1TF_MITIGATION_FLUSH:
7400 		case L1TF_MITIGATION_FLUSH_NOSMT:
7401 		case L1TF_MITIGATION_FULL:
7402 			/*
7403 			 * Warn upon starting the first VM in a potentially
7404 			 * insecure environment.
7405 			 */
7406 			if (sched_smt_active())
7407 				pr_warn_once(L1TF_MSG_SMT);
7408 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7409 				pr_warn_once(L1TF_MSG_L1D);
7410 			break;
7411 		case L1TF_MITIGATION_FULL_FORCE:
7412 			/* Flush is enforced */
7413 			break;
7414 		}
7415 	}
7416 	return 0;
7417 }
7418 
7419 static int __init vmx_check_processor_compat(void)
7420 {
7421 	struct vmcs_config vmcs_conf;
7422 	struct vmx_capability vmx_cap;
7423 
7424 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7425 	    !this_cpu_has(X86_FEATURE_VMX)) {
7426 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7427 		return -EIO;
7428 	}
7429 
7430 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7431 		return -EIO;
7432 	if (nested)
7433 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7434 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7435 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7436 				smp_processor_id());
7437 		return -EIO;
7438 	}
7439 	return 0;
7440 }
7441 
7442 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7443 {
7444 	u8 cache;
7445 
7446 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7447 	 * memory aliases with conflicting memory types and sometimes MCEs.
7448 	 * We have to be careful as to what are honored and when.
7449 	 *
7450 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7451 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7452 	 * This was historically the source of MCEs and we want to be
7453 	 * conservative.
7454 	 *
7455 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7456 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7457 	 * EPT memory type is set to WB.  The effective memory type is forced
7458 	 * WB.
7459 	 *
7460 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7461 	 * EPT memory type is used to emulate guest CD/MTRR.
7462 	 */
7463 
7464 	if (is_mmio)
7465 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7466 
7467 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7468 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7469 
7470 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7471 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7472 			cache = MTRR_TYPE_WRBACK;
7473 		else
7474 			cache = MTRR_TYPE_UNCACHABLE;
7475 
7476 		return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7477 	}
7478 
7479 	return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7480 }
7481 
7482 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7483 {
7484 	/*
7485 	 * These bits in the secondary execution controls field
7486 	 * are dynamic, the others are mostly based on the hypervisor
7487 	 * architecture and the guest's CPUID.  Do not touch the
7488 	 * dynamic bits.
7489 	 */
7490 	u32 mask =
7491 		SECONDARY_EXEC_SHADOW_VMCS |
7492 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7493 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7494 		SECONDARY_EXEC_DESC;
7495 
7496 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7497 
7498 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7499 }
7500 
7501 /*
7502  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7503  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7504  */
7505 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7506 {
7507 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7508 	struct kvm_cpuid_entry2 *entry;
7509 
7510 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7511 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7512 
7513 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7514 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7515 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7516 } while (0)
7517 
7518 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7519 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7520 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7521 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7522 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7523 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7524 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7525 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7526 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7527 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7528 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7529 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7530 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7531 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7532 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7533 
7534 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7535 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7536 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7537 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7538 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7539 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7540 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7541 
7542 #undef cr4_fixed1_update
7543 }
7544 
7545 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7546 {
7547 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7548 	struct kvm_cpuid_entry2 *best = NULL;
7549 	int i;
7550 
7551 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7552 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7553 		if (!best)
7554 			return;
7555 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7556 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7557 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7558 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7559 	}
7560 
7561 	/* Get the number of configurable Address Ranges for filtering */
7562 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7563 						PT_CAP_num_address_ranges);
7564 
7565 	/* Initialize and clear the no dependency bits */
7566 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7567 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7568 			RTIT_CTL_BRANCH_EN);
7569 
7570 	/*
7571 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7572 	 * will inject an #GP
7573 	 */
7574 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7575 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7576 
7577 	/*
7578 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7579 	 * PSBFreq can be set
7580 	 */
7581 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7582 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7583 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7584 
7585 	/*
7586 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7587 	 */
7588 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7589 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7590 					      RTIT_CTL_MTC_RANGE);
7591 
7592 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7593 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7594 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7595 							RTIT_CTL_PTW_EN);
7596 
7597 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7598 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7599 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7600 
7601 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7602 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7603 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7604 
7605 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7606 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7607 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7608 
7609 	/* unmask address range configure area */
7610 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7611 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7612 }
7613 
7614 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7615 {
7616 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7617 
7618 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7619 	vcpu->arch.xsaves_enabled = false;
7620 
7621 	vmx_setup_uret_msrs(vmx);
7622 
7623 	if (cpu_has_secondary_exec_ctrls())
7624 		vmcs_set_secondary_exec_control(vmx,
7625 						vmx_secondary_exec_control(vmx));
7626 
7627 	if (nested_vmx_allowed(vcpu))
7628 		vmx->msr_ia32_feature_control_valid_bits |=
7629 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7630 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7631 	else
7632 		vmx->msr_ia32_feature_control_valid_bits &=
7633 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7634 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7635 
7636 	if (nested_vmx_allowed(vcpu))
7637 		nested_vmx_cr_fixed1_bits_update(vcpu);
7638 
7639 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7640 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7641 		update_intel_pt_cfg(vcpu);
7642 
7643 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7644 		struct vmx_uret_msr *msr;
7645 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7646 		if (msr) {
7647 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7648 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7649 		}
7650 	}
7651 
7652 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7653 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7654 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7655 
7656 
7657 	set_cr4_guest_host_mask(vmx);
7658 
7659 	vmx_write_encls_bitmap(vcpu, NULL);
7660 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7661 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7662 	else
7663 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7664 
7665 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7666 		vmx->msr_ia32_feature_control_valid_bits |=
7667 			FEAT_CTL_SGX_LC_ENABLED;
7668 	else
7669 		vmx->msr_ia32_feature_control_valid_bits &=
7670 			~FEAT_CTL_SGX_LC_ENABLED;
7671 
7672 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7673 	vmx_update_exception_bitmap(vcpu);
7674 }
7675 
7676 static __init void vmx_set_cpu_caps(void)
7677 {
7678 	kvm_set_cpu_caps();
7679 
7680 	/* CPUID 0x1 */
7681 	if (nested)
7682 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7683 
7684 	/* CPUID 0x7 */
7685 	if (kvm_mpx_supported())
7686 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7687 	if (!cpu_has_vmx_invpcid())
7688 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7689 	if (vmx_pt_mode_is_host_guest())
7690 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7691 	if (vmx_pebs_supported()) {
7692 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7693 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7694 	}
7695 
7696 	if (!enable_pmu)
7697 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7698 
7699 	if (!enable_sgx) {
7700 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7701 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7702 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7703 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7704 	}
7705 
7706 	if (vmx_umip_emulated())
7707 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7708 
7709 	/* CPUID 0xD.1 */
7710 	kvm_caps.supported_xss = 0;
7711 	if (!cpu_has_vmx_xsaves())
7712 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7713 
7714 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7715 	if (!cpu_has_vmx_rdtscp()) {
7716 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7717 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7718 	}
7719 
7720 	if (cpu_has_vmx_waitpkg())
7721 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7722 }
7723 
7724 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7725 {
7726 	to_vmx(vcpu)->req_immediate_exit = true;
7727 }
7728 
7729 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7730 				  struct x86_instruction_info *info)
7731 {
7732 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7733 	unsigned short port;
7734 	bool intercept;
7735 	int size;
7736 
7737 	if (info->intercept == x86_intercept_in ||
7738 	    info->intercept == x86_intercept_ins) {
7739 		port = info->src_val;
7740 		size = info->dst_bytes;
7741 	} else {
7742 		port = info->dst_val;
7743 		size = info->src_bytes;
7744 	}
7745 
7746 	/*
7747 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7748 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7749 	 * control.
7750 	 *
7751 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7752 	 */
7753 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7754 		intercept = nested_cpu_has(vmcs12,
7755 					   CPU_BASED_UNCOND_IO_EXITING);
7756 	else
7757 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7758 
7759 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7760 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7761 }
7762 
7763 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7764 			       struct x86_instruction_info *info,
7765 			       enum x86_intercept_stage stage,
7766 			       struct x86_exception *exception)
7767 {
7768 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7769 
7770 	switch (info->intercept) {
7771 	/*
7772 	 * RDPID causes #UD if disabled through secondary execution controls.
7773 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7774 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7775 	 */
7776 	case x86_intercept_rdpid:
7777 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7778 			exception->vector = UD_VECTOR;
7779 			exception->error_code_valid = false;
7780 			return X86EMUL_PROPAGATE_FAULT;
7781 		}
7782 		break;
7783 
7784 	case x86_intercept_in:
7785 	case x86_intercept_ins:
7786 	case x86_intercept_out:
7787 	case x86_intercept_outs:
7788 		return vmx_check_intercept_io(vcpu, info);
7789 
7790 	case x86_intercept_lgdt:
7791 	case x86_intercept_lidt:
7792 	case x86_intercept_lldt:
7793 	case x86_intercept_ltr:
7794 	case x86_intercept_sgdt:
7795 	case x86_intercept_sidt:
7796 	case x86_intercept_sldt:
7797 	case x86_intercept_str:
7798 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7799 			return X86EMUL_CONTINUE;
7800 
7801 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7802 		break;
7803 
7804 	/* TODO: check more intercepts... */
7805 	default:
7806 		break;
7807 	}
7808 
7809 	return X86EMUL_UNHANDLEABLE;
7810 }
7811 
7812 #ifdef CONFIG_X86_64
7813 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7814 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7815 				  u64 divisor, u64 *result)
7816 {
7817 	u64 low = a << shift, high = a >> (64 - shift);
7818 
7819 	/* To avoid the overflow on divq */
7820 	if (high >= divisor)
7821 		return 1;
7822 
7823 	/* Low hold the result, high hold rem which is discarded */
7824 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7825 	    "rm" (divisor), "0" (low), "1" (high));
7826 	*result = low;
7827 
7828 	return 0;
7829 }
7830 
7831 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7832 			    bool *expired)
7833 {
7834 	struct vcpu_vmx *vmx;
7835 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7836 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7837 
7838 	vmx = to_vmx(vcpu);
7839 	tscl = rdtsc();
7840 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7841 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7842 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7843 						    ktimer->timer_advance_ns);
7844 
7845 	if (delta_tsc > lapic_timer_advance_cycles)
7846 		delta_tsc -= lapic_timer_advance_cycles;
7847 	else
7848 		delta_tsc = 0;
7849 
7850 	/* Convert to host delta tsc if tsc scaling is enabled */
7851 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
7852 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7853 				kvm_caps.tsc_scaling_ratio_frac_bits,
7854 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7855 		return -ERANGE;
7856 
7857 	/*
7858 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7859 	 * we can't use the preemption timer.
7860 	 * It's possible that it fits on later vmentries, but checking
7861 	 * on every vmentry is costly so we just use an hrtimer.
7862 	 */
7863 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7864 		return -ERANGE;
7865 
7866 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7867 	*expired = !delta_tsc;
7868 	return 0;
7869 }
7870 
7871 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7872 {
7873 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7874 }
7875 #endif
7876 
7877 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7878 {
7879 	if (!kvm_pause_in_guest(vcpu->kvm))
7880 		shrink_ple_window(vcpu);
7881 }
7882 
7883 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7884 {
7885 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7886 
7887 	if (is_guest_mode(vcpu)) {
7888 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7889 		return;
7890 	}
7891 
7892 	/*
7893 	 * Note, cpu_dirty_logging_count can be changed concurrent with this
7894 	 * code, but in that case another update request will be made and so
7895 	 * the guest will never run with a stale PML value.
7896 	 */
7897 	if (vcpu->kvm->arch.cpu_dirty_logging_count)
7898 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7899 	else
7900 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7901 }
7902 
7903 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7904 {
7905 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7906 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7907 			FEAT_CTL_LMCE_ENABLED;
7908 	else
7909 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7910 			~FEAT_CTL_LMCE_ENABLED;
7911 }
7912 
7913 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7914 {
7915 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7916 	if (to_vmx(vcpu)->nested.nested_run_pending)
7917 		return -EBUSY;
7918 	return !is_smm(vcpu);
7919 }
7920 
7921 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7922 {
7923 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7924 
7925 	/*
7926 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
7927 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
7928 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
7929 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
7930 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
7931 	 */
7932 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7933 	if (vmx->nested.smm.guest_mode)
7934 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7935 
7936 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7937 	vmx->nested.vmxon = false;
7938 	vmx_clear_hlt(vcpu);
7939 	return 0;
7940 }
7941 
7942 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7943 {
7944 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7945 	int ret;
7946 
7947 	if (vmx->nested.smm.vmxon) {
7948 		vmx->nested.vmxon = true;
7949 		vmx->nested.smm.vmxon = false;
7950 	}
7951 
7952 	if (vmx->nested.smm.guest_mode) {
7953 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7954 		if (ret)
7955 			return ret;
7956 
7957 		vmx->nested.nested_run_pending = 1;
7958 		vmx->nested.smm.guest_mode = false;
7959 	}
7960 	return 0;
7961 }
7962 
7963 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7964 {
7965 	/* RSM will cause a vmexit anyway.  */
7966 }
7967 
7968 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7969 {
7970 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7971 }
7972 
7973 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7974 {
7975 	if (is_guest_mode(vcpu)) {
7976 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7977 
7978 		if (hrtimer_try_to_cancel(timer) == 1)
7979 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7980 	}
7981 }
7982 
7983 static void vmx_hardware_unsetup(void)
7984 {
7985 	kvm_set_posted_intr_wakeup_handler(NULL);
7986 
7987 	if (nested)
7988 		nested_vmx_hardware_unsetup();
7989 
7990 	free_kvm_area();
7991 }
7992 
7993 static bool vmx_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason)
7994 {
7995 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7996 			  BIT(APICV_INHIBIT_REASON_ABSENT) |
7997 			  BIT(APICV_INHIBIT_REASON_HYPERV) |
7998 			  BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |
7999 			  BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |
8000 			  BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED);
8001 
8002 	return supported & BIT(reason);
8003 }
8004 
8005 static void vmx_vm_destroy(struct kvm *kvm)
8006 {
8007 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8008 
8009 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8010 }
8011 
8012 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8013 	.name = "kvm_intel",
8014 
8015 	.hardware_unsetup = vmx_hardware_unsetup,
8016 
8017 	.hardware_enable = vmx_hardware_enable,
8018 	.hardware_disable = vmx_hardware_disable,
8019 	.has_emulated_msr = vmx_has_emulated_msr,
8020 
8021 	.vm_size = sizeof(struct kvm_vmx),
8022 	.vm_init = vmx_vm_init,
8023 	.vm_destroy = vmx_vm_destroy,
8024 
8025 	.vcpu_precreate = vmx_vcpu_precreate,
8026 	.vcpu_create = vmx_vcpu_create,
8027 	.vcpu_free = vmx_vcpu_free,
8028 	.vcpu_reset = vmx_vcpu_reset,
8029 
8030 	.prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8031 	.vcpu_load = vmx_vcpu_load,
8032 	.vcpu_put = vmx_vcpu_put,
8033 
8034 	.update_exception_bitmap = vmx_update_exception_bitmap,
8035 	.get_msr_feature = vmx_get_msr_feature,
8036 	.get_msr = vmx_get_msr,
8037 	.set_msr = vmx_set_msr,
8038 	.get_segment_base = vmx_get_segment_base,
8039 	.get_segment = vmx_get_segment,
8040 	.set_segment = vmx_set_segment,
8041 	.get_cpl = vmx_get_cpl,
8042 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8043 	.set_cr0 = vmx_set_cr0,
8044 	.is_valid_cr4 = vmx_is_valid_cr4,
8045 	.set_cr4 = vmx_set_cr4,
8046 	.set_efer = vmx_set_efer,
8047 	.get_idt = vmx_get_idt,
8048 	.set_idt = vmx_set_idt,
8049 	.get_gdt = vmx_get_gdt,
8050 	.set_gdt = vmx_set_gdt,
8051 	.set_dr7 = vmx_set_dr7,
8052 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8053 	.cache_reg = vmx_cache_reg,
8054 	.get_rflags = vmx_get_rflags,
8055 	.set_rflags = vmx_set_rflags,
8056 	.get_if_flag = vmx_get_if_flag,
8057 
8058 	.flush_tlb_all = vmx_flush_tlb_all,
8059 	.flush_tlb_current = vmx_flush_tlb_current,
8060 	.flush_tlb_gva = vmx_flush_tlb_gva,
8061 	.flush_tlb_guest = vmx_flush_tlb_guest,
8062 
8063 	.vcpu_pre_run = vmx_vcpu_pre_run,
8064 	.vcpu_run = vmx_vcpu_run,
8065 	.handle_exit = vmx_handle_exit,
8066 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
8067 	.update_emulated_instruction = vmx_update_emulated_instruction,
8068 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
8069 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
8070 	.patch_hypercall = vmx_patch_hypercall,
8071 	.inject_irq = vmx_inject_irq,
8072 	.inject_nmi = vmx_inject_nmi,
8073 	.queue_exception = vmx_queue_exception,
8074 	.cancel_injection = vmx_cancel_injection,
8075 	.interrupt_allowed = vmx_interrupt_allowed,
8076 	.nmi_allowed = vmx_nmi_allowed,
8077 	.get_nmi_mask = vmx_get_nmi_mask,
8078 	.set_nmi_mask = vmx_set_nmi_mask,
8079 	.enable_nmi_window = vmx_enable_nmi_window,
8080 	.enable_irq_window = vmx_enable_irq_window,
8081 	.update_cr8_intercept = vmx_update_cr8_intercept,
8082 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8083 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8084 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8085 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
8086 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
8087 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
8088 	.hwapic_irr_update = vmx_hwapic_irr_update,
8089 	.hwapic_isr_update = vmx_hwapic_isr_update,
8090 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8091 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
8092 	.deliver_interrupt = vmx_deliver_interrupt,
8093 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8094 
8095 	.set_tss_addr = vmx_set_tss_addr,
8096 	.set_identity_map_addr = vmx_set_identity_map_addr,
8097 	.get_mt_mask = vmx_get_mt_mask,
8098 
8099 	.get_exit_info = vmx_get_exit_info,
8100 
8101 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8102 
8103 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8104 
8105 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8106 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8107 	.write_tsc_offset = vmx_write_tsc_offset,
8108 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
8109 
8110 	.load_mmu_pgd = vmx_load_mmu_pgd,
8111 
8112 	.check_intercept = vmx_check_intercept,
8113 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
8114 
8115 	.request_immediate_exit = vmx_request_immediate_exit,
8116 
8117 	.sched_in = vmx_sched_in,
8118 
8119 	.cpu_dirty_log_size = PML_ENTITY_NUM,
8120 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8121 
8122 	.nested_ops = &vmx_nested_ops,
8123 
8124 	.pi_update_irte = vmx_pi_update_irte,
8125 	.pi_start_assignment = vmx_pi_start_assignment,
8126 
8127 #ifdef CONFIG_X86_64
8128 	.set_hv_timer = vmx_set_hv_timer,
8129 	.cancel_hv_timer = vmx_cancel_hv_timer,
8130 #endif
8131 
8132 	.setup_mce = vmx_setup_mce,
8133 
8134 	.smi_allowed = vmx_smi_allowed,
8135 	.enter_smm = vmx_enter_smm,
8136 	.leave_smm = vmx_leave_smm,
8137 	.enable_smi_window = vmx_enable_smi_window,
8138 
8139 	.can_emulate_instruction = vmx_can_emulate_instruction,
8140 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8141 	.migrate_timers = vmx_migrate_timers,
8142 
8143 	.msr_filter_changed = vmx_msr_filter_changed,
8144 	.complete_emulated_msr = kvm_complete_insn_gp,
8145 
8146 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8147 };
8148 
8149 static unsigned int vmx_handle_intel_pt_intr(void)
8150 {
8151 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8152 
8153 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8154 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8155 		return 0;
8156 
8157 	kvm_make_request(KVM_REQ_PMI, vcpu);
8158 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8159 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8160 	return 1;
8161 }
8162 
8163 static __init void vmx_setup_user_return_msrs(void)
8164 {
8165 
8166 	/*
8167 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8168 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8169 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8170 	 * support this emulation, MSR_STAR is included in the list for i386,
8171 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8172 	 * into hardware and is here purely for emulation purposes.
8173 	 */
8174 	const u32 vmx_uret_msrs_list[] = {
8175 	#ifdef CONFIG_X86_64
8176 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8177 	#endif
8178 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8179 		MSR_IA32_TSX_CTRL,
8180 	};
8181 	int i;
8182 
8183 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8184 
8185 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8186 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8187 }
8188 
8189 static void __init vmx_setup_me_spte_mask(void)
8190 {
8191 	u64 me_mask = 0;
8192 
8193 	/*
8194 	 * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
8195 	 * the former to avoid exposing shadow_phys_bits.
8196 	 *
8197 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8198 	 * shadow_phys_bits.  On MKTME and/or TDX capable systems,
8199 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8200 	 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8201 	 * reported by CPUID.  Those bits between are KeyID bits.
8202 	 */
8203 	if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8204 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8205 			kvm_get_shadow_phys_bits() - 1);
8206 	/*
8207 	 * Unlike SME, host kernel doesn't support setting up any
8208 	 * MKTME KeyID on Intel platforms.  No memory encryption
8209 	 * bits should be included into the SPTE.
8210 	 */
8211 	kvm_mmu_set_me_spte_mask(0, me_mask);
8212 }
8213 
8214 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8215 
8216 static __init int hardware_setup(void)
8217 {
8218 	unsigned long host_bndcfgs;
8219 	struct desc_ptr dt;
8220 	int r;
8221 
8222 	store_idt(&dt);
8223 	host_idt_base = dt.address;
8224 
8225 	vmx_setup_user_return_msrs();
8226 
8227 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8228 		return -EIO;
8229 
8230 	if (boot_cpu_has(X86_FEATURE_NX))
8231 		kvm_enable_efer_bits(EFER_NX);
8232 
8233 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8234 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8235 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
8236 	}
8237 
8238 	if (!cpu_has_vmx_mpx())
8239 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8240 					     XFEATURE_MASK_BNDCSR);
8241 
8242 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8243 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8244 		enable_vpid = 0;
8245 
8246 	if (!cpu_has_vmx_ept() ||
8247 	    !cpu_has_vmx_ept_4levels() ||
8248 	    !cpu_has_vmx_ept_mt_wb() ||
8249 	    !cpu_has_vmx_invept_global())
8250 		enable_ept = 0;
8251 
8252 	/* NX support is required for shadow paging. */
8253 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8254 		pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
8255 		return -EOPNOTSUPP;
8256 	}
8257 
8258 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8259 		enable_ept_ad_bits = 0;
8260 
8261 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8262 		enable_unrestricted_guest = 0;
8263 
8264 	if (!cpu_has_vmx_flexpriority())
8265 		flexpriority_enabled = 0;
8266 
8267 	if (!cpu_has_virtual_nmis())
8268 		enable_vnmi = 0;
8269 
8270 	/*
8271 	 * set_apic_access_page_addr() is used to reload apic access
8272 	 * page upon invalidation.  No need to do anything if not
8273 	 * using the APIC_ACCESS_ADDR VMCS field.
8274 	 */
8275 	if (!flexpriority_enabled)
8276 		vmx_x86_ops.set_apic_access_page_addr = NULL;
8277 
8278 	if (!cpu_has_vmx_tpr_shadow())
8279 		vmx_x86_ops.update_cr8_intercept = NULL;
8280 
8281 #if IS_ENABLED(CONFIG_HYPERV)
8282 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8283 	    && enable_ept) {
8284 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
8285 		vmx_x86_ops.tlb_remote_flush_with_range =
8286 				hv_remote_flush_tlb_with_range;
8287 	}
8288 #endif
8289 
8290 	if (!cpu_has_vmx_ple()) {
8291 		ple_gap = 0;
8292 		ple_window = 0;
8293 		ple_window_grow = 0;
8294 		ple_window_max = 0;
8295 		ple_window_shrink = 0;
8296 	}
8297 
8298 	if (!cpu_has_vmx_apicv())
8299 		enable_apicv = 0;
8300 	if (!enable_apicv)
8301 		vmx_x86_ops.sync_pir_to_irr = NULL;
8302 
8303 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8304 		enable_ipiv = false;
8305 
8306 	if (cpu_has_vmx_tsc_scaling())
8307 		kvm_caps.has_tsc_control = true;
8308 
8309 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8310 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8311 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8312 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8313 
8314 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8315 
8316 	if (enable_ept)
8317 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8318 				      cpu_has_vmx_ept_execute_only());
8319 
8320 	/*
8321 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8322 	 * bits to shadow_zero_check.
8323 	 */
8324 	vmx_setup_me_spte_mask();
8325 
8326 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
8327 			  ept_caps_to_lpage_level(vmx_capability.ept));
8328 
8329 	/*
8330 	 * Only enable PML when hardware supports PML feature, and both EPT
8331 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8332 	 */
8333 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8334 		enable_pml = 0;
8335 
8336 	if (!enable_pml)
8337 		vmx_x86_ops.cpu_dirty_log_size = 0;
8338 
8339 	if (!cpu_has_vmx_preemption_timer())
8340 		enable_preemption_timer = false;
8341 
8342 	if (enable_preemption_timer) {
8343 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8344 		u64 vmx_msr;
8345 
8346 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
8347 		cpu_preemption_timer_multi =
8348 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8349 
8350 		if (tsc_khz)
8351 			use_timer_freq = (u64)tsc_khz * 1000;
8352 		use_timer_freq >>= cpu_preemption_timer_multi;
8353 
8354 		/*
8355 		 * KVM "disables" the preemption timer by setting it to its max
8356 		 * value.  Don't use the timer if it might cause spurious exits
8357 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8358 		 */
8359 		if (use_timer_freq > 0xffffffffu / 10)
8360 			enable_preemption_timer = false;
8361 	}
8362 
8363 	if (!enable_preemption_timer) {
8364 		vmx_x86_ops.set_hv_timer = NULL;
8365 		vmx_x86_ops.cancel_hv_timer = NULL;
8366 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8367 	}
8368 
8369 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8370 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8371 
8372 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8373 		return -EINVAL;
8374 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8375 		pt_mode = PT_MODE_SYSTEM;
8376 	if (pt_mode == PT_MODE_HOST_GUEST)
8377 		vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8378 	else
8379 		vmx_init_ops.handle_intel_pt_intr = NULL;
8380 
8381 	setup_default_sgx_lepubkeyhash();
8382 
8383 	if (nested) {
8384 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8385 					   vmx_capability.ept);
8386 
8387 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8388 		if (r)
8389 			return r;
8390 	}
8391 
8392 	vmx_set_cpu_caps();
8393 
8394 	r = alloc_kvm_area();
8395 	if (r && nested)
8396 		nested_vmx_hardware_unsetup();
8397 
8398 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8399 
8400 	return r;
8401 }
8402 
8403 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8404 	.cpu_has_kvm_support = cpu_has_kvm_support,
8405 	.disabled_by_bios = vmx_disabled_by_bios,
8406 	.check_processor_compatibility = vmx_check_processor_compat,
8407 	.hardware_setup = hardware_setup,
8408 	.handle_intel_pt_intr = NULL,
8409 
8410 	.runtime_ops = &vmx_x86_ops,
8411 	.pmu_ops = &intel_pmu_ops,
8412 };
8413 
8414 static void vmx_cleanup_l1d_flush(void)
8415 {
8416 	if (vmx_l1d_flush_pages) {
8417 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8418 		vmx_l1d_flush_pages = NULL;
8419 	}
8420 	/* Restore state so sysfs ignores VMX */
8421 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8422 }
8423 
8424 static void vmx_exit(void)
8425 {
8426 #ifdef CONFIG_KEXEC_CORE
8427 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8428 	synchronize_rcu();
8429 #endif
8430 
8431 	kvm_exit();
8432 
8433 #if IS_ENABLED(CONFIG_HYPERV)
8434 	if (static_branch_unlikely(&enable_evmcs)) {
8435 		int cpu;
8436 		struct hv_vp_assist_page *vp_ap;
8437 		/*
8438 		 * Reset everything to support using non-enlightened VMCS
8439 		 * access later (e.g. when we reload the module with
8440 		 * enlightened_vmcs=0)
8441 		 */
8442 		for_each_online_cpu(cpu) {
8443 			vp_ap =	hv_get_vp_assist_page(cpu);
8444 
8445 			if (!vp_ap)
8446 				continue;
8447 
8448 			vp_ap->nested_control.features.directhypercall = 0;
8449 			vp_ap->current_nested_vmcs = 0;
8450 			vp_ap->enlighten_vmentry = 0;
8451 		}
8452 
8453 		static_branch_disable(&enable_evmcs);
8454 	}
8455 #endif
8456 	vmx_cleanup_l1d_flush();
8457 
8458 	allow_smaller_maxphyaddr = false;
8459 }
8460 module_exit(vmx_exit);
8461 
8462 static int __init vmx_init(void)
8463 {
8464 	int r, cpu;
8465 
8466 #if IS_ENABLED(CONFIG_HYPERV)
8467 	/*
8468 	 * Enlightened VMCS usage should be recommended and the host needs
8469 	 * to support eVMCS v1 or above. We can also disable eVMCS support
8470 	 * with module parameter.
8471 	 */
8472 	if (enlightened_vmcs &&
8473 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8474 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8475 	    KVM_EVMCS_VERSION) {
8476 
8477 		/* Check that we have assist pages on all online CPUs */
8478 		for_each_online_cpu(cpu) {
8479 			if (!hv_get_vp_assist_page(cpu)) {
8480 				enlightened_vmcs = false;
8481 				break;
8482 			}
8483 		}
8484 
8485 		if (enlightened_vmcs) {
8486 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8487 			static_branch_enable(&enable_evmcs);
8488 		}
8489 
8490 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8491 			vmx_x86_ops.enable_direct_tlbflush
8492 				= hv_enable_direct_tlbflush;
8493 
8494 	} else {
8495 		enlightened_vmcs = false;
8496 	}
8497 #endif
8498 
8499 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8500 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8501 	if (r)
8502 		return r;
8503 
8504 	/*
8505 	 * Must be called after kvm_init() so enable_ept is properly set
8506 	 * up. Hand the parameter mitigation value in which was stored in
8507 	 * the pre module init parser. If no parameter was given, it will
8508 	 * contain 'auto' which will be turned into the default 'cond'
8509 	 * mitigation mode.
8510 	 */
8511 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8512 	if (r) {
8513 		vmx_exit();
8514 		return r;
8515 	}
8516 
8517 	vmx_setup_fb_clear_ctrl();
8518 
8519 	for_each_possible_cpu(cpu) {
8520 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8521 
8522 		pi_init_cpu(cpu);
8523 	}
8524 
8525 #ifdef CONFIG_KEXEC_CORE
8526 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8527 			   crash_vmclear_local_loaded_vmcss);
8528 #endif
8529 	vmx_check_vmcs12_offsets();
8530 
8531 	/*
8532 	 * Shadow paging doesn't have a (further) performance penalty
8533 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8534 	 * by default
8535 	 */
8536 	if (!enable_ept)
8537 		allow_smaller_maxphyaddr = true;
8538 
8539 	return 0;
8540 }
8541 module_init(vmx_init);
8542