xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision b625fe69)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/idtentry.h>
41 #include <asm/io.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/kexec.h>
44 #include <asm/perf_event.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/mwait.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/virtext.h>
50 #include <asm/vmx.h>
51 
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "evmcs.h"
55 #include "hyperv.h"
56 #include "kvm_onhyperv.h"
57 #include "irq.h"
58 #include "kvm_cache_regs.h"
59 #include "lapic.h"
60 #include "mmu.h"
61 #include "nested.h"
62 #include "pmu.h"
63 #include "sgx.h"
64 #include "trace.h"
65 #include "vmcs.h"
66 #include "vmcs12.h"
67 #include "vmx.h"
68 #include "x86.h"
69 
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72 
73 #ifdef MODULE
74 static const struct x86_cpu_id vmx_cpu_id[] = {
75 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
76 	{}
77 };
78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
79 #endif
80 
81 bool __read_mostly enable_vpid = 1;
82 module_param_named(vpid, enable_vpid, bool, 0444);
83 
84 static bool __read_mostly enable_vnmi = 1;
85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
86 
87 bool __read_mostly flexpriority_enabled = 1;
88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
89 
90 bool __read_mostly enable_ept = 1;
91 module_param_named(ept, enable_ept, bool, S_IRUGO);
92 
93 bool __read_mostly enable_unrestricted_guest = 1;
94 module_param_named(unrestricted_guest,
95 			enable_unrestricted_guest, bool, S_IRUGO);
96 
97 bool __read_mostly enable_ept_ad_bits = 1;
98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
99 
100 static bool __read_mostly emulate_invalid_guest_state = true;
101 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
102 
103 static bool __read_mostly fasteoi = 1;
104 module_param(fasteoi, bool, S_IRUGO);
105 
106 module_param(enable_apicv, bool, S_IRUGO);
107 
108 /*
109  * If nested=1, nested virtualization is supported, i.e., guests may use
110  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
111  * use VMX instructions.
112  */
113 static bool __read_mostly nested = 1;
114 module_param(nested, bool, S_IRUGO);
115 
116 bool __read_mostly enable_pml = 1;
117 module_param_named(pml, enable_pml, bool, S_IRUGO);
118 
119 static bool __read_mostly dump_invalid_vmcs = 0;
120 module_param(dump_invalid_vmcs, bool, 0644);
121 
122 #define MSR_BITMAP_MODE_X2APIC		1
123 #define MSR_BITMAP_MODE_X2APIC_APICV	2
124 
125 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
126 
127 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
128 static int __read_mostly cpu_preemption_timer_multi;
129 static bool __read_mostly enable_preemption_timer = 1;
130 #ifdef CONFIG_X86_64
131 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
132 #endif
133 
134 extern bool __read_mostly allow_smaller_maxphyaddr;
135 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
136 
137 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
138 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
139 #define KVM_VM_CR0_ALWAYS_ON				\
140 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
141 
142 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
143 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
144 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
145 
146 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
147 
148 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
149 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
150 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
151 	RTIT_STATUS_BYTECNT))
152 
153 /*
154  * List of MSRs that can be directly passed to the guest.
155  * In addition to these x2apic and PT MSRs are handled specially.
156  */
157 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
158 	MSR_IA32_SPEC_CTRL,
159 	MSR_IA32_PRED_CMD,
160 	MSR_IA32_TSC,
161 #ifdef CONFIG_X86_64
162 	MSR_FS_BASE,
163 	MSR_GS_BASE,
164 	MSR_KERNEL_GS_BASE,
165 	MSR_IA32_XFD,
166 	MSR_IA32_XFD_ERR,
167 #endif
168 	MSR_IA32_SYSENTER_CS,
169 	MSR_IA32_SYSENTER_ESP,
170 	MSR_IA32_SYSENTER_EIP,
171 	MSR_CORE_C1_RES,
172 	MSR_CORE_C3_RESIDENCY,
173 	MSR_CORE_C6_RESIDENCY,
174 	MSR_CORE_C7_RESIDENCY,
175 };
176 
177 /*
178  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
179  * ple_gap:    upper bound on the amount of time between two successive
180  *             executions of PAUSE in a loop. Also indicate if ple enabled.
181  *             According to test, this time is usually smaller than 128 cycles.
182  * ple_window: upper bound on the amount of time a guest is allowed to execute
183  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
184  *             less than 2^12 cycles
185  * Time is measured based on a counter that runs at the same rate as the TSC,
186  * refer SDM volume 3b section 21.6.13 & 22.1.3.
187  */
188 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
189 module_param(ple_gap, uint, 0444);
190 
191 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
192 module_param(ple_window, uint, 0444);
193 
194 /* Default doubles per-vcpu window every exit. */
195 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
196 module_param(ple_window_grow, uint, 0444);
197 
198 /* Default resets per-vcpu window every exit to ple_window. */
199 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
200 module_param(ple_window_shrink, uint, 0444);
201 
202 /* Default is to compute the maximum so we can never overflow. */
203 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
204 module_param(ple_window_max, uint, 0444);
205 
206 /* Default is SYSTEM mode, 1 for host-guest mode */
207 int __read_mostly pt_mode = PT_MODE_SYSTEM;
208 module_param(pt_mode, int, S_IRUGO);
209 
210 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
211 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
212 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
213 
214 /* Storage for pre module init parameter parsing */
215 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
216 
217 static const struct {
218 	const char *option;
219 	bool for_parse;
220 } vmentry_l1d_param[] = {
221 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
222 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
223 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
224 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
225 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
226 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
227 };
228 
229 #define L1D_CACHE_ORDER 4
230 static void *vmx_l1d_flush_pages;
231 
232 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
233 {
234 	struct page *page;
235 	unsigned int i;
236 
237 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
238 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
239 		return 0;
240 	}
241 
242 	if (!enable_ept) {
243 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
244 		return 0;
245 	}
246 
247 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
248 		u64 msr;
249 
250 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
251 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
252 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
253 			return 0;
254 		}
255 	}
256 
257 	/* If set to auto use the default l1tf mitigation method */
258 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
259 		switch (l1tf_mitigation) {
260 		case L1TF_MITIGATION_OFF:
261 			l1tf = VMENTER_L1D_FLUSH_NEVER;
262 			break;
263 		case L1TF_MITIGATION_FLUSH_NOWARN:
264 		case L1TF_MITIGATION_FLUSH:
265 		case L1TF_MITIGATION_FLUSH_NOSMT:
266 			l1tf = VMENTER_L1D_FLUSH_COND;
267 			break;
268 		case L1TF_MITIGATION_FULL:
269 		case L1TF_MITIGATION_FULL_FORCE:
270 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
271 			break;
272 		}
273 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
274 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
275 	}
276 
277 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
278 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
279 		/*
280 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
281 		 * lifetime and so should not be charged to a memcg.
282 		 */
283 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
284 		if (!page)
285 			return -ENOMEM;
286 		vmx_l1d_flush_pages = page_address(page);
287 
288 		/*
289 		 * Initialize each page with a different pattern in
290 		 * order to protect against KSM in the nested
291 		 * virtualization case.
292 		 */
293 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
294 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
295 			       PAGE_SIZE);
296 		}
297 	}
298 
299 	l1tf_vmx_mitigation = l1tf;
300 
301 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
302 		static_branch_enable(&vmx_l1d_should_flush);
303 	else
304 		static_branch_disable(&vmx_l1d_should_flush);
305 
306 	if (l1tf == VMENTER_L1D_FLUSH_COND)
307 		static_branch_enable(&vmx_l1d_flush_cond);
308 	else
309 		static_branch_disable(&vmx_l1d_flush_cond);
310 	return 0;
311 }
312 
313 static int vmentry_l1d_flush_parse(const char *s)
314 {
315 	unsigned int i;
316 
317 	if (s) {
318 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
319 			if (vmentry_l1d_param[i].for_parse &&
320 			    sysfs_streq(s, vmentry_l1d_param[i].option))
321 				return i;
322 		}
323 	}
324 	return -EINVAL;
325 }
326 
327 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
328 {
329 	int l1tf, ret;
330 
331 	l1tf = vmentry_l1d_flush_parse(s);
332 	if (l1tf < 0)
333 		return l1tf;
334 
335 	if (!boot_cpu_has(X86_BUG_L1TF))
336 		return 0;
337 
338 	/*
339 	 * Has vmx_init() run already? If not then this is the pre init
340 	 * parameter parsing. In that case just store the value and let
341 	 * vmx_init() do the proper setup after enable_ept has been
342 	 * established.
343 	 */
344 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
345 		vmentry_l1d_flush_param = l1tf;
346 		return 0;
347 	}
348 
349 	mutex_lock(&vmx_l1d_flush_mutex);
350 	ret = vmx_setup_l1d_flush(l1tf);
351 	mutex_unlock(&vmx_l1d_flush_mutex);
352 	return ret;
353 }
354 
355 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
356 {
357 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
358 		return sprintf(s, "???\n");
359 
360 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
361 }
362 
363 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
364 	.set = vmentry_l1d_flush_set,
365 	.get = vmentry_l1d_flush_get,
366 };
367 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
368 
369 static u32 vmx_segment_access_rights(struct kvm_segment *var);
370 
371 void vmx_vmexit(void);
372 
373 #define vmx_insn_failed(fmt...)		\
374 do {					\
375 	WARN_ONCE(1, fmt);		\
376 	pr_warn_ratelimited(fmt);	\
377 } while (0)
378 
379 asmlinkage void vmread_error(unsigned long field, bool fault)
380 {
381 	if (fault)
382 		kvm_spurious_fault();
383 	else
384 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
385 }
386 
387 noinline void vmwrite_error(unsigned long field, unsigned long value)
388 {
389 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
390 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
391 }
392 
393 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
394 {
395 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
396 }
397 
398 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
399 {
400 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
401 }
402 
403 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
404 {
405 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
406 			ext, vpid, gva);
407 }
408 
409 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
410 {
411 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
412 			ext, eptp, gpa);
413 }
414 
415 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
416 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
417 /*
418  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
419  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
420  */
421 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
422 
423 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
424 static DEFINE_SPINLOCK(vmx_vpid_lock);
425 
426 struct vmcs_config vmcs_config;
427 struct vmx_capability vmx_capability;
428 
429 #define VMX_SEGMENT_FIELD(seg)					\
430 	[VCPU_SREG_##seg] = {                                   \
431 		.selector = GUEST_##seg##_SELECTOR,		\
432 		.base = GUEST_##seg##_BASE,		   	\
433 		.limit = GUEST_##seg##_LIMIT,		   	\
434 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
435 	}
436 
437 static const struct kvm_vmx_segment_field {
438 	unsigned selector;
439 	unsigned base;
440 	unsigned limit;
441 	unsigned ar_bytes;
442 } kvm_vmx_segment_fields[] = {
443 	VMX_SEGMENT_FIELD(CS),
444 	VMX_SEGMENT_FIELD(DS),
445 	VMX_SEGMENT_FIELD(ES),
446 	VMX_SEGMENT_FIELD(FS),
447 	VMX_SEGMENT_FIELD(GS),
448 	VMX_SEGMENT_FIELD(SS),
449 	VMX_SEGMENT_FIELD(TR),
450 	VMX_SEGMENT_FIELD(LDTR),
451 };
452 
453 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
454 {
455 	vmx->segment_cache.bitmask = 0;
456 }
457 
458 static unsigned long host_idt_base;
459 
460 #if IS_ENABLED(CONFIG_HYPERV)
461 static bool __read_mostly enlightened_vmcs = true;
462 module_param(enlightened_vmcs, bool, 0444);
463 
464 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
465 {
466 	struct hv_enlightened_vmcs *evmcs;
467 	struct hv_partition_assist_pg **p_hv_pa_pg =
468 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
469 	/*
470 	 * Synthetic VM-Exit is not enabled in current code and so All
471 	 * evmcs in singe VM shares same assist page.
472 	 */
473 	if (!*p_hv_pa_pg)
474 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
475 
476 	if (!*p_hv_pa_pg)
477 		return -ENOMEM;
478 
479 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
480 
481 	evmcs->partition_assist_page =
482 		__pa(*p_hv_pa_pg);
483 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
484 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
485 
486 	return 0;
487 }
488 
489 #endif /* IS_ENABLED(CONFIG_HYPERV) */
490 
491 /*
492  * Comment's format: document - errata name - stepping - processor name.
493  * Refer from
494  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
495  */
496 static u32 vmx_preemption_cpu_tfms[] = {
497 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
498 0x000206E6,
499 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
500 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
501 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
502 0x00020652,
503 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
504 0x00020655,
505 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
506 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
507 /*
508  * 320767.pdf - AAP86  - B1 -
509  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
510  */
511 0x000106E5,
512 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
513 0x000106A0,
514 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
515 0x000106A1,
516 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
517 0x000106A4,
518  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
519  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
520  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
521 0x000106A5,
522  /* Xeon E3-1220 V2 */
523 0x000306A8,
524 };
525 
526 static inline bool cpu_has_broken_vmx_preemption_timer(void)
527 {
528 	u32 eax = cpuid_eax(0x00000001), i;
529 
530 	/* Clear the reserved bits */
531 	eax &= ~(0x3U << 14 | 0xfU << 28);
532 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
533 		if (eax == vmx_preemption_cpu_tfms[i])
534 			return true;
535 
536 	return false;
537 }
538 
539 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
540 {
541 	return flexpriority_enabled && lapic_in_kernel(vcpu);
542 }
543 
544 static inline bool report_flexpriority(void)
545 {
546 	return flexpriority_enabled;
547 }
548 
549 static int possible_passthrough_msr_slot(u32 msr)
550 {
551 	u32 i;
552 
553 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
554 		if (vmx_possible_passthrough_msrs[i] == msr)
555 			return i;
556 
557 	return -ENOENT;
558 }
559 
560 static bool is_valid_passthrough_msr(u32 msr)
561 {
562 	bool r;
563 
564 	switch (msr) {
565 	case 0x800 ... 0x8ff:
566 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
567 		return true;
568 	case MSR_IA32_RTIT_STATUS:
569 	case MSR_IA32_RTIT_OUTPUT_BASE:
570 	case MSR_IA32_RTIT_OUTPUT_MASK:
571 	case MSR_IA32_RTIT_CR3_MATCH:
572 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
573 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
574 	case MSR_LBR_SELECT:
575 	case MSR_LBR_TOS:
576 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
577 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
578 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
579 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
580 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
581 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
582 		return true;
583 	}
584 
585 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
586 
587 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
588 
589 	return r;
590 }
591 
592 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
593 {
594 	int i;
595 
596 	i = kvm_find_user_return_msr(msr);
597 	if (i >= 0)
598 		return &vmx->guest_uret_msrs[i];
599 	return NULL;
600 }
601 
602 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
603 				  struct vmx_uret_msr *msr, u64 data)
604 {
605 	unsigned int slot = msr - vmx->guest_uret_msrs;
606 	int ret = 0;
607 
608 	if (msr->load_into_hardware) {
609 		preempt_disable();
610 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
611 		preempt_enable();
612 	}
613 	if (!ret)
614 		msr->data = data;
615 	return ret;
616 }
617 
618 #ifdef CONFIG_KEXEC_CORE
619 static void crash_vmclear_local_loaded_vmcss(void)
620 {
621 	int cpu = raw_smp_processor_id();
622 	struct loaded_vmcs *v;
623 
624 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
625 			    loaded_vmcss_on_cpu_link)
626 		vmcs_clear(v->vmcs);
627 }
628 #endif /* CONFIG_KEXEC_CORE */
629 
630 static void __loaded_vmcs_clear(void *arg)
631 {
632 	struct loaded_vmcs *loaded_vmcs = arg;
633 	int cpu = raw_smp_processor_id();
634 
635 	if (loaded_vmcs->cpu != cpu)
636 		return; /* vcpu migration can race with cpu offline */
637 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
638 		per_cpu(current_vmcs, cpu) = NULL;
639 
640 	vmcs_clear(loaded_vmcs->vmcs);
641 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
642 		vmcs_clear(loaded_vmcs->shadow_vmcs);
643 
644 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
645 
646 	/*
647 	 * Ensure all writes to loaded_vmcs, including deleting it from its
648 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
649 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
650 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
651 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
652 	 */
653 	smp_wmb();
654 
655 	loaded_vmcs->cpu = -1;
656 	loaded_vmcs->launched = 0;
657 }
658 
659 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
660 {
661 	int cpu = loaded_vmcs->cpu;
662 
663 	if (cpu != -1)
664 		smp_call_function_single(cpu,
665 			 __loaded_vmcs_clear, loaded_vmcs, 1);
666 }
667 
668 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
669 				       unsigned field)
670 {
671 	bool ret;
672 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
673 
674 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
675 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
676 		vmx->segment_cache.bitmask = 0;
677 	}
678 	ret = vmx->segment_cache.bitmask & mask;
679 	vmx->segment_cache.bitmask |= mask;
680 	return ret;
681 }
682 
683 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
684 {
685 	u16 *p = &vmx->segment_cache.seg[seg].selector;
686 
687 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
688 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
689 	return *p;
690 }
691 
692 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
693 {
694 	ulong *p = &vmx->segment_cache.seg[seg].base;
695 
696 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
697 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
698 	return *p;
699 }
700 
701 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
702 {
703 	u32 *p = &vmx->segment_cache.seg[seg].limit;
704 
705 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
706 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
707 	return *p;
708 }
709 
710 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
711 {
712 	u32 *p = &vmx->segment_cache.seg[seg].ar;
713 
714 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
715 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
716 	return *p;
717 }
718 
719 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
720 {
721 	u32 eb;
722 
723 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
724 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
725 	/*
726 	 * Guest access to VMware backdoor ports could legitimately
727 	 * trigger #GP because of TSS I/O permission bitmap.
728 	 * We intercept those #GP and allow access to them anyway
729 	 * as VMware does.
730 	 */
731 	if (enable_vmware_backdoor)
732 		eb |= (1u << GP_VECTOR);
733 	if ((vcpu->guest_debug &
734 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
735 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
736 		eb |= 1u << BP_VECTOR;
737 	if (to_vmx(vcpu)->rmode.vm86_active)
738 		eb = ~0;
739 	if (!vmx_need_pf_intercept(vcpu))
740 		eb &= ~(1u << PF_VECTOR);
741 
742 	/* When we are running a nested L2 guest and L1 specified for it a
743 	 * certain exception bitmap, we must trap the same exceptions and pass
744 	 * them to L1. When running L2, we will only handle the exceptions
745 	 * specified above if L1 did not want them.
746 	 */
747 	if (is_guest_mode(vcpu))
748 		eb |= get_vmcs12(vcpu)->exception_bitmap;
749         else {
750 		int mask = 0, match = 0;
751 
752 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
753 			/*
754 			 * If EPT is enabled, #PF is currently only intercepted
755 			 * if MAXPHYADDR is smaller on the guest than on the
756 			 * host.  In that case we only care about present,
757 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
758 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
759 			 */
760 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
761 			match = PFERR_PRESENT_MASK;
762 		}
763 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
764 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
765 	}
766 
767 	/*
768 	 * Disabling xfd interception indicates that dynamic xfeatures
769 	 * might be used in the guest. Always trap #NM in this case
770 	 * to save guest xfd_err timely.
771 	 */
772 	if (vcpu->arch.xfd_no_write_intercept)
773 		eb |= (1u << NM_VECTOR);
774 
775 	vmcs_write32(EXCEPTION_BITMAP, eb);
776 }
777 
778 /*
779  * Check if MSR is intercepted for currently loaded MSR bitmap.
780  */
781 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
782 {
783 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
784 		return true;
785 
786 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap,
787 					 MSR_IA32_SPEC_CTRL);
788 }
789 
790 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
791 		unsigned long entry, unsigned long exit)
792 {
793 	vm_entry_controls_clearbit(vmx, entry);
794 	vm_exit_controls_clearbit(vmx, exit);
795 }
796 
797 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
798 {
799 	unsigned int i;
800 
801 	for (i = 0; i < m->nr; ++i) {
802 		if (m->val[i].index == msr)
803 			return i;
804 	}
805 	return -ENOENT;
806 }
807 
808 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
809 {
810 	int i;
811 	struct msr_autoload *m = &vmx->msr_autoload;
812 
813 	switch (msr) {
814 	case MSR_EFER:
815 		if (cpu_has_load_ia32_efer()) {
816 			clear_atomic_switch_msr_special(vmx,
817 					VM_ENTRY_LOAD_IA32_EFER,
818 					VM_EXIT_LOAD_IA32_EFER);
819 			return;
820 		}
821 		break;
822 	case MSR_CORE_PERF_GLOBAL_CTRL:
823 		if (cpu_has_load_perf_global_ctrl()) {
824 			clear_atomic_switch_msr_special(vmx,
825 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
826 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
827 			return;
828 		}
829 		break;
830 	}
831 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
832 	if (i < 0)
833 		goto skip_guest;
834 	--m->guest.nr;
835 	m->guest.val[i] = m->guest.val[m->guest.nr];
836 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
837 
838 skip_guest:
839 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
840 	if (i < 0)
841 		return;
842 
843 	--m->host.nr;
844 	m->host.val[i] = m->host.val[m->host.nr];
845 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
846 }
847 
848 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
849 		unsigned long entry, unsigned long exit,
850 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
851 		u64 guest_val, u64 host_val)
852 {
853 	vmcs_write64(guest_val_vmcs, guest_val);
854 	if (host_val_vmcs != HOST_IA32_EFER)
855 		vmcs_write64(host_val_vmcs, host_val);
856 	vm_entry_controls_setbit(vmx, entry);
857 	vm_exit_controls_setbit(vmx, exit);
858 }
859 
860 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
861 				  u64 guest_val, u64 host_val, bool entry_only)
862 {
863 	int i, j = 0;
864 	struct msr_autoload *m = &vmx->msr_autoload;
865 
866 	switch (msr) {
867 	case MSR_EFER:
868 		if (cpu_has_load_ia32_efer()) {
869 			add_atomic_switch_msr_special(vmx,
870 					VM_ENTRY_LOAD_IA32_EFER,
871 					VM_EXIT_LOAD_IA32_EFER,
872 					GUEST_IA32_EFER,
873 					HOST_IA32_EFER,
874 					guest_val, host_val);
875 			return;
876 		}
877 		break;
878 	case MSR_CORE_PERF_GLOBAL_CTRL:
879 		if (cpu_has_load_perf_global_ctrl()) {
880 			add_atomic_switch_msr_special(vmx,
881 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
882 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
883 					GUEST_IA32_PERF_GLOBAL_CTRL,
884 					HOST_IA32_PERF_GLOBAL_CTRL,
885 					guest_val, host_val);
886 			return;
887 		}
888 		break;
889 	case MSR_IA32_PEBS_ENABLE:
890 		/* PEBS needs a quiescent period after being disabled (to write
891 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
892 		 * provide that period, so a CPU could write host's record into
893 		 * guest's memory.
894 		 */
895 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
896 	}
897 
898 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
899 	if (!entry_only)
900 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
901 
902 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
903 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
904 		printk_once(KERN_WARNING "Not enough msr switch entries. "
905 				"Can't add msr %x\n", msr);
906 		return;
907 	}
908 	if (i < 0) {
909 		i = m->guest.nr++;
910 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
911 	}
912 	m->guest.val[i].index = msr;
913 	m->guest.val[i].value = guest_val;
914 
915 	if (entry_only)
916 		return;
917 
918 	if (j < 0) {
919 		j = m->host.nr++;
920 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
921 	}
922 	m->host.val[j].index = msr;
923 	m->host.val[j].value = host_val;
924 }
925 
926 static bool update_transition_efer(struct vcpu_vmx *vmx)
927 {
928 	u64 guest_efer = vmx->vcpu.arch.efer;
929 	u64 ignore_bits = 0;
930 	int i;
931 
932 	/* Shadow paging assumes NX to be available.  */
933 	if (!enable_ept)
934 		guest_efer |= EFER_NX;
935 
936 	/*
937 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
938 	 */
939 	ignore_bits |= EFER_SCE;
940 #ifdef CONFIG_X86_64
941 	ignore_bits |= EFER_LMA | EFER_LME;
942 	/* SCE is meaningful only in long mode on Intel */
943 	if (guest_efer & EFER_LMA)
944 		ignore_bits &= ~(u64)EFER_SCE;
945 #endif
946 
947 	/*
948 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
949 	 * On CPUs that support "load IA32_EFER", always switch EFER
950 	 * atomically, since it's faster than switching it manually.
951 	 */
952 	if (cpu_has_load_ia32_efer() ||
953 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
954 		if (!(guest_efer & EFER_LMA))
955 			guest_efer &= ~EFER_LME;
956 		if (guest_efer != host_efer)
957 			add_atomic_switch_msr(vmx, MSR_EFER,
958 					      guest_efer, host_efer, false);
959 		else
960 			clear_atomic_switch_msr(vmx, MSR_EFER);
961 		return false;
962 	}
963 
964 	i = kvm_find_user_return_msr(MSR_EFER);
965 	if (i < 0)
966 		return false;
967 
968 	clear_atomic_switch_msr(vmx, MSR_EFER);
969 
970 	guest_efer &= ~ignore_bits;
971 	guest_efer |= host_efer & ignore_bits;
972 
973 	vmx->guest_uret_msrs[i].data = guest_efer;
974 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
975 
976 	return true;
977 }
978 
979 #ifdef CONFIG_X86_32
980 /*
981  * On 32-bit kernels, VM exits still load the FS and GS bases from the
982  * VMCS rather than the segment table.  KVM uses this helper to figure
983  * out the current bases to poke them into the VMCS before entry.
984  */
985 static unsigned long segment_base(u16 selector)
986 {
987 	struct desc_struct *table;
988 	unsigned long v;
989 
990 	if (!(selector & ~SEGMENT_RPL_MASK))
991 		return 0;
992 
993 	table = get_current_gdt_ro();
994 
995 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
996 		u16 ldt_selector = kvm_read_ldt();
997 
998 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
999 			return 0;
1000 
1001 		table = (struct desc_struct *)segment_base(ldt_selector);
1002 	}
1003 	v = get_desc_base(&table[selector >> 3]);
1004 	return v;
1005 }
1006 #endif
1007 
1008 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1009 {
1010 	return vmx_pt_mode_is_host_guest() &&
1011 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1012 }
1013 
1014 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1015 {
1016 	/* The base must be 128-byte aligned and a legal physical address. */
1017 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1018 }
1019 
1020 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1021 {
1022 	u32 i;
1023 
1024 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1025 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1026 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1027 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1028 	for (i = 0; i < addr_range; i++) {
1029 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1030 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1031 	}
1032 }
1033 
1034 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1035 {
1036 	u32 i;
1037 
1038 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1039 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1040 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1041 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1042 	for (i = 0; i < addr_range; i++) {
1043 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1044 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1045 	}
1046 }
1047 
1048 static void pt_guest_enter(struct vcpu_vmx *vmx)
1049 {
1050 	if (vmx_pt_mode_is_system())
1051 		return;
1052 
1053 	/*
1054 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1055 	 * Save host state before VM entry.
1056 	 */
1057 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1058 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1059 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1060 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1061 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1062 	}
1063 }
1064 
1065 static void pt_guest_exit(struct vcpu_vmx *vmx)
1066 {
1067 	if (vmx_pt_mode_is_system())
1068 		return;
1069 
1070 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1071 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1072 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1073 	}
1074 
1075 	/*
1076 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1077 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1078 	 */
1079 	if (vmx->pt_desc.host.ctl)
1080 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1081 }
1082 
1083 void vmx_set_vmcs_host_state(struct vmcs_host_state *host, unsigned long cr3,
1084 			     u16 fs_sel, u16 gs_sel,
1085 			     unsigned long fs_base, unsigned long gs_base)
1086 {
1087 	if (unlikely(cr3 != host->cr3)) {
1088 		vmcs_writel(HOST_CR3, cr3);
1089 		host->cr3 = cr3;
1090 	}
1091 	if (unlikely(fs_sel != host->fs_sel)) {
1092 		if (!(fs_sel & 7))
1093 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1094 		else
1095 			vmcs_write16(HOST_FS_SELECTOR, 0);
1096 		host->fs_sel = fs_sel;
1097 	}
1098 	if (unlikely(gs_sel != host->gs_sel)) {
1099 		if (!(gs_sel & 7))
1100 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1101 		else
1102 			vmcs_write16(HOST_GS_SELECTOR, 0);
1103 		host->gs_sel = gs_sel;
1104 	}
1105 	if (unlikely(fs_base != host->fs_base)) {
1106 		vmcs_writel(HOST_FS_BASE, fs_base);
1107 		host->fs_base = fs_base;
1108 	}
1109 	if (unlikely(gs_base != host->gs_base)) {
1110 		vmcs_writel(HOST_GS_BASE, gs_base);
1111 		host->gs_base = gs_base;
1112 	}
1113 }
1114 
1115 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1116 {
1117 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1118 	struct vmcs_host_state *host_state;
1119 #ifdef CONFIG_X86_64
1120 	int cpu = raw_smp_processor_id();
1121 #endif
1122 	unsigned long fs_base, gs_base;
1123 	u16 fs_sel, gs_sel;
1124 	int i;
1125 
1126 	vmx->req_immediate_exit = false;
1127 
1128 	/*
1129 	 * Note that guest MSRs to be saved/restored can also be changed
1130 	 * when guest state is loaded. This happens when guest transitions
1131 	 * to/from long-mode by setting MSR_EFER.LMA.
1132 	 */
1133 	if (!vmx->guest_uret_msrs_loaded) {
1134 		vmx->guest_uret_msrs_loaded = true;
1135 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1136 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1137 				continue;
1138 
1139 			kvm_set_user_return_msr(i,
1140 						vmx->guest_uret_msrs[i].data,
1141 						vmx->guest_uret_msrs[i].mask);
1142 		}
1143 	}
1144 
1145     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1146 		nested_sync_vmcs12_to_shadow(vcpu);
1147 
1148 	if (vmx->guest_state_loaded)
1149 		return;
1150 
1151 	host_state = &vmx->loaded_vmcs->host_state;
1152 
1153 	/*
1154 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1155 	 * allow segment selectors with cpl > 0 or ti == 1.
1156 	 */
1157 	host_state->ldt_sel = kvm_read_ldt();
1158 
1159 #ifdef CONFIG_X86_64
1160 	savesegment(ds, host_state->ds_sel);
1161 	savesegment(es, host_state->es_sel);
1162 
1163 	gs_base = cpu_kernelmode_gs_base(cpu);
1164 	if (likely(is_64bit_mm(current->mm))) {
1165 		current_save_fsgs();
1166 		fs_sel = current->thread.fsindex;
1167 		gs_sel = current->thread.gsindex;
1168 		fs_base = current->thread.fsbase;
1169 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1170 	} else {
1171 		savesegment(fs, fs_sel);
1172 		savesegment(gs, gs_sel);
1173 		fs_base = read_msr(MSR_FS_BASE);
1174 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1175 	}
1176 
1177 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1178 #else
1179 	savesegment(fs, fs_sel);
1180 	savesegment(gs, gs_sel);
1181 	fs_base = segment_base(fs_sel);
1182 	gs_base = segment_base(gs_sel);
1183 #endif
1184 
1185 	vmx_set_vmcs_host_state(host_state, __get_current_cr3_fast(),
1186 				fs_sel, gs_sel, fs_base, gs_base);
1187 
1188 	vmx->guest_state_loaded = true;
1189 }
1190 
1191 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1192 {
1193 	struct vmcs_host_state *host_state;
1194 
1195 	if (!vmx->guest_state_loaded)
1196 		return;
1197 
1198 	host_state = &vmx->loaded_vmcs->host_state;
1199 
1200 	++vmx->vcpu.stat.host_state_reload;
1201 
1202 #ifdef CONFIG_X86_64
1203 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1204 #endif
1205 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1206 		kvm_load_ldt(host_state->ldt_sel);
1207 #ifdef CONFIG_X86_64
1208 		load_gs_index(host_state->gs_sel);
1209 #else
1210 		loadsegment(gs, host_state->gs_sel);
1211 #endif
1212 	}
1213 	if (host_state->fs_sel & 7)
1214 		loadsegment(fs, host_state->fs_sel);
1215 #ifdef CONFIG_X86_64
1216 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1217 		loadsegment(ds, host_state->ds_sel);
1218 		loadsegment(es, host_state->es_sel);
1219 	}
1220 #endif
1221 	invalidate_tss_limit();
1222 #ifdef CONFIG_X86_64
1223 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1224 #endif
1225 	load_fixmap_gdt(raw_smp_processor_id());
1226 	vmx->guest_state_loaded = false;
1227 	vmx->guest_uret_msrs_loaded = false;
1228 }
1229 
1230 #ifdef CONFIG_X86_64
1231 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1232 {
1233 	preempt_disable();
1234 	if (vmx->guest_state_loaded)
1235 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1236 	preempt_enable();
1237 	return vmx->msr_guest_kernel_gs_base;
1238 }
1239 
1240 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1241 {
1242 	preempt_disable();
1243 	if (vmx->guest_state_loaded)
1244 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1245 	preempt_enable();
1246 	vmx->msr_guest_kernel_gs_base = data;
1247 }
1248 #endif
1249 
1250 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1251 			struct loaded_vmcs *buddy)
1252 {
1253 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1254 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1255 	struct vmcs *prev;
1256 
1257 	if (!already_loaded) {
1258 		loaded_vmcs_clear(vmx->loaded_vmcs);
1259 		local_irq_disable();
1260 
1261 		/*
1262 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1263 		 * this cpu's percpu list, otherwise it may not yet be deleted
1264 		 * from its previous cpu's percpu list.  Pairs with the
1265 		 * smb_wmb() in __loaded_vmcs_clear().
1266 		 */
1267 		smp_rmb();
1268 
1269 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1270 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1271 		local_irq_enable();
1272 	}
1273 
1274 	prev = per_cpu(current_vmcs, cpu);
1275 	if (prev != vmx->loaded_vmcs->vmcs) {
1276 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1277 		vmcs_load(vmx->loaded_vmcs->vmcs);
1278 
1279 		/*
1280 		 * No indirect branch prediction barrier needed when switching
1281 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1282 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1283 		 */
1284 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1285 			indirect_branch_prediction_barrier();
1286 	}
1287 
1288 	if (!already_loaded) {
1289 		void *gdt = get_current_gdt_ro();
1290 
1291 		/*
1292 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1293 		 * TLB entries from its previous association with the vCPU.
1294 		 */
1295 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1296 
1297 		/*
1298 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1299 		 * processors.  See 22.2.4.
1300 		 */
1301 		vmcs_writel(HOST_TR_BASE,
1302 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1303 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1304 
1305 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1306 			/* 22.2.3 */
1307 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1308 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1309 		}
1310 
1311 		vmx->loaded_vmcs->cpu = cpu;
1312 	}
1313 }
1314 
1315 /*
1316  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1317  * vcpu mutex is already taken.
1318  */
1319 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1320 {
1321 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1322 
1323 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1324 
1325 	vmx_vcpu_pi_load(vcpu, cpu);
1326 
1327 	vmx->host_debugctlmsr = get_debugctlmsr();
1328 }
1329 
1330 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1331 {
1332 	vmx_vcpu_pi_put(vcpu);
1333 
1334 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1335 }
1336 
1337 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1338 {
1339 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1340 }
1341 
1342 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1343 {
1344 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1345 	unsigned long rflags, save_rflags;
1346 
1347 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1348 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1349 		rflags = vmcs_readl(GUEST_RFLAGS);
1350 		if (vmx->rmode.vm86_active) {
1351 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1352 			save_rflags = vmx->rmode.save_rflags;
1353 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1354 		}
1355 		vmx->rflags = rflags;
1356 	}
1357 	return vmx->rflags;
1358 }
1359 
1360 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1361 {
1362 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1363 	unsigned long old_rflags;
1364 
1365 	if (is_unrestricted_guest(vcpu)) {
1366 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1367 		vmx->rflags = rflags;
1368 		vmcs_writel(GUEST_RFLAGS, rflags);
1369 		return;
1370 	}
1371 
1372 	old_rflags = vmx_get_rflags(vcpu);
1373 	vmx->rflags = rflags;
1374 	if (vmx->rmode.vm86_active) {
1375 		vmx->rmode.save_rflags = rflags;
1376 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1377 	}
1378 	vmcs_writel(GUEST_RFLAGS, rflags);
1379 
1380 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1381 		vmx->emulation_required = vmx_emulation_required(vcpu);
1382 }
1383 
1384 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1385 {
1386 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1387 }
1388 
1389 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1390 {
1391 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1392 	int ret = 0;
1393 
1394 	if (interruptibility & GUEST_INTR_STATE_STI)
1395 		ret |= KVM_X86_SHADOW_INT_STI;
1396 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1397 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1398 
1399 	return ret;
1400 }
1401 
1402 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1403 {
1404 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1405 	u32 interruptibility = interruptibility_old;
1406 
1407 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1408 
1409 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1410 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1411 	else if (mask & KVM_X86_SHADOW_INT_STI)
1412 		interruptibility |= GUEST_INTR_STATE_STI;
1413 
1414 	if ((interruptibility != interruptibility_old))
1415 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1416 }
1417 
1418 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1419 {
1420 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1421 	unsigned long value;
1422 
1423 	/*
1424 	 * Any MSR write that attempts to change bits marked reserved will
1425 	 * case a #GP fault.
1426 	 */
1427 	if (data & vmx->pt_desc.ctl_bitmask)
1428 		return 1;
1429 
1430 	/*
1431 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1432 	 * result in a #GP unless the same write also clears TraceEn.
1433 	 */
1434 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1435 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1436 		return 1;
1437 
1438 	/*
1439 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1440 	 * and FabricEn would cause #GP, if
1441 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1442 	 */
1443 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1444 		!(data & RTIT_CTL_FABRIC_EN) &&
1445 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1446 					PT_CAP_single_range_output))
1447 		return 1;
1448 
1449 	/*
1450 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1451 	 * utilize encodings marked reserved will cause a #GP fault.
1452 	 */
1453 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1454 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1455 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1456 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1457 		return 1;
1458 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1459 						PT_CAP_cycle_thresholds);
1460 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1461 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1462 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1463 		return 1;
1464 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1465 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1466 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1467 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1468 		return 1;
1469 
1470 	/*
1471 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1472 	 * cause a #GP fault.
1473 	 */
1474 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1475 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1476 		return 1;
1477 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1478 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1479 		return 1;
1480 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1481 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1482 		return 1;
1483 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1484 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1485 		return 1;
1486 
1487 	return 0;
1488 }
1489 
1490 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1491 					void *insn, int insn_len)
1492 {
1493 	/*
1494 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1495 	 * not point at the failing instruction, and even if it did, the code
1496 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1497 	 * so that guest userspace can't DoS the guest simply by triggering
1498 	 * emulation (enclaves are CPL3 only).
1499 	 */
1500 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1501 		kvm_queue_exception(vcpu, UD_VECTOR);
1502 		return false;
1503 	}
1504 	return true;
1505 }
1506 
1507 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1508 {
1509 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1510 	unsigned long rip, orig_rip;
1511 	u32 instr_len;
1512 
1513 	/*
1514 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1515 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1516 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1517 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1518 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1519 	 * i.e. we end up advancing IP with some random value.
1520 	 */
1521 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1522 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1523 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1524 
1525 		/*
1526 		 * Emulating an enclave's instructions isn't supported as KVM
1527 		 * cannot access the enclave's memory or its true RIP, e.g. the
1528 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1529 		 * the RIP that actually triggered the VM-Exit.  But, because
1530 		 * most instructions that cause VM-Exit will #UD in an enclave,
1531 		 * most instruction-based VM-Exits simply do not occur.
1532 		 *
1533 		 * There are a few exceptions, notably the debug instructions
1534 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1535 		 * and generate #DB/#BP as expected, which KVM might intercept.
1536 		 * But again, the CPU does the dirty work and saves an instr
1537 		 * length of zero so VMMs don't shoot themselves in the foot.
1538 		 * WARN if KVM tries to skip a non-zero length instruction on
1539 		 * a VM-Exit from an enclave.
1540 		 */
1541 		if (!instr_len)
1542 			goto rip_updated;
1543 
1544 		WARN(exit_reason.enclave_mode,
1545 		     "KVM: skipping instruction after SGX enclave VM-Exit");
1546 
1547 		orig_rip = kvm_rip_read(vcpu);
1548 		rip = orig_rip + instr_len;
1549 #ifdef CONFIG_X86_64
1550 		/*
1551 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1552 		 * mode, but just finding out that we are in 64-bit mode is
1553 		 * quite expensive.  Only do it if there was a carry.
1554 		 */
1555 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1556 			rip = (u32)rip;
1557 #endif
1558 		kvm_rip_write(vcpu, rip);
1559 	} else {
1560 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1561 			return 0;
1562 	}
1563 
1564 rip_updated:
1565 	/* skipping an emulated instruction also counts */
1566 	vmx_set_interrupt_shadow(vcpu, 0);
1567 
1568 	return 1;
1569 }
1570 
1571 /*
1572  * Recognizes a pending MTF VM-exit and records the nested state for later
1573  * delivery.
1574  */
1575 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1576 {
1577 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1578 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1579 
1580 	if (!is_guest_mode(vcpu))
1581 		return;
1582 
1583 	/*
1584 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1585 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1586 	 * instruction boundary), any #DB exception pending delivery must be a
1587 	 * debug-trap. Record the pending MTF state to be delivered in
1588 	 * vmx_check_nested_events().
1589 	 */
1590 	if (nested_cpu_has_mtf(vmcs12) &&
1591 	    (!vcpu->arch.exception.pending ||
1592 	     vcpu->arch.exception.nr == DB_VECTOR))
1593 		vmx->nested.mtf_pending = true;
1594 	else
1595 		vmx->nested.mtf_pending = false;
1596 }
1597 
1598 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1599 {
1600 	vmx_update_emulated_instruction(vcpu);
1601 	return skip_emulated_instruction(vcpu);
1602 }
1603 
1604 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1605 {
1606 	/*
1607 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1608 	 * explicitly skip the instruction because if the HLT state is set,
1609 	 * then the instruction is already executing and RIP has already been
1610 	 * advanced.
1611 	 */
1612 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1613 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1614 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1615 }
1616 
1617 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1618 {
1619 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1620 	unsigned nr = vcpu->arch.exception.nr;
1621 	bool has_error_code = vcpu->arch.exception.has_error_code;
1622 	u32 error_code = vcpu->arch.exception.error_code;
1623 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1624 
1625 	kvm_deliver_exception_payload(vcpu);
1626 
1627 	if (has_error_code) {
1628 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1629 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1630 	}
1631 
1632 	if (vmx->rmode.vm86_active) {
1633 		int inc_eip = 0;
1634 		if (kvm_exception_is_soft(nr))
1635 			inc_eip = vcpu->arch.event_exit_inst_len;
1636 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1637 		return;
1638 	}
1639 
1640 	WARN_ON_ONCE(vmx->emulation_required);
1641 
1642 	if (kvm_exception_is_soft(nr)) {
1643 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1644 			     vmx->vcpu.arch.event_exit_inst_len);
1645 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1646 	} else
1647 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1648 
1649 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1650 
1651 	vmx_clear_hlt(vcpu);
1652 }
1653 
1654 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1655 			       bool load_into_hardware)
1656 {
1657 	struct vmx_uret_msr *uret_msr;
1658 
1659 	uret_msr = vmx_find_uret_msr(vmx, msr);
1660 	if (!uret_msr)
1661 		return;
1662 
1663 	uret_msr->load_into_hardware = load_into_hardware;
1664 }
1665 
1666 /*
1667  * Configuring user return MSRs to automatically save, load, and restore MSRs
1668  * that need to be shoved into hardware when running the guest.  Note, omitting
1669  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1670  * loaded into hardware when running the guest.
1671  */
1672 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1673 {
1674 #ifdef CONFIG_X86_64
1675 	bool load_syscall_msrs;
1676 
1677 	/*
1678 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1679 	 * when EFER.SCE is set.
1680 	 */
1681 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1682 			    (vmx->vcpu.arch.efer & EFER_SCE);
1683 
1684 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1685 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1686 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1687 #endif
1688 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1689 
1690 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1691 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1692 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1693 
1694 	/*
1695 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1696 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1697 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1698 	 * so that TSX remains always disabled.
1699 	 */
1700 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1701 
1702 	/*
1703 	 * The set of MSRs to load may have changed, reload MSRs before the
1704 	 * next VM-Enter.
1705 	 */
1706 	vmx->guest_uret_msrs_loaded = false;
1707 }
1708 
1709 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1710 {
1711 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1712 
1713 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1714 		return vmcs12->tsc_offset;
1715 
1716 	return 0;
1717 }
1718 
1719 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1720 {
1721 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1722 
1723 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1724 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1725 		return vmcs12->tsc_multiplier;
1726 
1727 	return kvm_default_tsc_scaling_ratio;
1728 }
1729 
1730 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1731 {
1732 	vmcs_write64(TSC_OFFSET, offset);
1733 }
1734 
1735 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1736 {
1737 	vmcs_write64(TSC_MULTIPLIER, multiplier);
1738 }
1739 
1740 /*
1741  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1742  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1743  * all guests if the "nested" module option is off, and can also be disabled
1744  * for a single guest by disabling its VMX cpuid bit.
1745  */
1746 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1747 {
1748 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1749 }
1750 
1751 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1752 						 uint64_t val)
1753 {
1754 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1755 
1756 	return !(val & ~valid_bits);
1757 }
1758 
1759 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1760 {
1761 	switch (msr->index) {
1762 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1763 		if (!nested)
1764 			return 1;
1765 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1766 	case MSR_IA32_PERF_CAPABILITIES:
1767 		msr->data = vmx_get_perf_capabilities();
1768 		return 0;
1769 	default:
1770 		return KVM_MSR_RET_INVALID;
1771 	}
1772 }
1773 
1774 /*
1775  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1776  * Returns 0 on success, non-0 otherwise.
1777  * Assumes vcpu_load() was already called.
1778  */
1779 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1780 {
1781 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1782 	struct vmx_uret_msr *msr;
1783 	u32 index;
1784 
1785 	switch (msr_info->index) {
1786 #ifdef CONFIG_X86_64
1787 	case MSR_FS_BASE:
1788 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1789 		break;
1790 	case MSR_GS_BASE:
1791 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1792 		break;
1793 	case MSR_KERNEL_GS_BASE:
1794 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1795 		break;
1796 #endif
1797 	case MSR_EFER:
1798 		return kvm_get_msr_common(vcpu, msr_info);
1799 	case MSR_IA32_TSX_CTRL:
1800 		if (!msr_info->host_initiated &&
1801 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1802 			return 1;
1803 		goto find_uret_msr;
1804 	case MSR_IA32_UMWAIT_CONTROL:
1805 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1806 			return 1;
1807 
1808 		msr_info->data = vmx->msr_ia32_umwait_control;
1809 		break;
1810 	case MSR_IA32_SPEC_CTRL:
1811 		if (!msr_info->host_initiated &&
1812 		    !guest_has_spec_ctrl_msr(vcpu))
1813 			return 1;
1814 
1815 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1816 		break;
1817 	case MSR_IA32_SYSENTER_CS:
1818 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1819 		break;
1820 	case MSR_IA32_SYSENTER_EIP:
1821 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1822 		break;
1823 	case MSR_IA32_SYSENTER_ESP:
1824 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1825 		break;
1826 	case MSR_IA32_BNDCFGS:
1827 		if (!kvm_mpx_supported() ||
1828 		    (!msr_info->host_initiated &&
1829 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1830 			return 1;
1831 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1832 		break;
1833 	case MSR_IA32_MCG_EXT_CTL:
1834 		if (!msr_info->host_initiated &&
1835 		    !(vmx->msr_ia32_feature_control &
1836 		      FEAT_CTL_LMCE_ENABLED))
1837 			return 1;
1838 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1839 		break;
1840 	case MSR_IA32_FEAT_CTL:
1841 		msr_info->data = vmx->msr_ia32_feature_control;
1842 		break;
1843 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1844 		if (!msr_info->host_initiated &&
1845 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1846 			return 1;
1847 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1848 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1849 		break;
1850 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1851 		if (!nested_vmx_allowed(vcpu))
1852 			return 1;
1853 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1854 				    &msr_info->data))
1855 			return 1;
1856 		/*
1857 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1858 		 * instead of just ignoring the features, different Hyper-V
1859 		 * versions are either trying to use them and fail or do some
1860 		 * sanity checking and refuse to boot. Filter all unsupported
1861 		 * features out.
1862 		 */
1863 		if (!msr_info->host_initiated &&
1864 		    vmx->nested.enlightened_vmcs_enabled)
1865 			nested_evmcs_filter_control_msr(msr_info->index,
1866 							&msr_info->data);
1867 		break;
1868 	case MSR_IA32_RTIT_CTL:
1869 		if (!vmx_pt_mode_is_host_guest())
1870 			return 1;
1871 		msr_info->data = vmx->pt_desc.guest.ctl;
1872 		break;
1873 	case MSR_IA32_RTIT_STATUS:
1874 		if (!vmx_pt_mode_is_host_guest())
1875 			return 1;
1876 		msr_info->data = vmx->pt_desc.guest.status;
1877 		break;
1878 	case MSR_IA32_RTIT_CR3_MATCH:
1879 		if (!vmx_pt_mode_is_host_guest() ||
1880 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1881 						PT_CAP_cr3_filtering))
1882 			return 1;
1883 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1884 		break;
1885 	case MSR_IA32_RTIT_OUTPUT_BASE:
1886 		if (!vmx_pt_mode_is_host_guest() ||
1887 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1888 					PT_CAP_topa_output) &&
1889 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1890 					PT_CAP_single_range_output)))
1891 			return 1;
1892 		msr_info->data = vmx->pt_desc.guest.output_base;
1893 		break;
1894 	case MSR_IA32_RTIT_OUTPUT_MASK:
1895 		if (!vmx_pt_mode_is_host_guest() ||
1896 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1897 					PT_CAP_topa_output) &&
1898 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1899 					PT_CAP_single_range_output)))
1900 			return 1;
1901 		msr_info->data = vmx->pt_desc.guest.output_mask;
1902 		break;
1903 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1904 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1905 		if (!vmx_pt_mode_is_host_guest() ||
1906 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
1907 			return 1;
1908 		if (index % 2)
1909 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1910 		else
1911 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1912 		break;
1913 	case MSR_IA32_DEBUGCTLMSR:
1914 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1915 		break;
1916 	default:
1917 	find_uret_msr:
1918 		msr = vmx_find_uret_msr(vmx, msr_info->index);
1919 		if (msr) {
1920 			msr_info->data = msr->data;
1921 			break;
1922 		}
1923 		return kvm_get_msr_common(vcpu, msr_info);
1924 	}
1925 
1926 	return 0;
1927 }
1928 
1929 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1930 						    u64 data)
1931 {
1932 #ifdef CONFIG_X86_64
1933 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1934 		return (u32)data;
1935 #endif
1936 	return (unsigned long)data;
1937 }
1938 
1939 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1940 {
1941 	u64 debugctl = vmx_supported_debugctl();
1942 
1943 	if (!intel_pmu_lbr_is_enabled(vcpu))
1944 		debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1945 
1946 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1947 		debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1948 
1949 	return debugctl;
1950 }
1951 
1952 /*
1953  * Writes msr value into the appropriate "register".
1954  * Returns 0 on success, non-0 otherwise.
1955  * Assumes vcpu_load() was already called.
1956  */
1957 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1958 {
1959 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1960 	struct vmx_uret_msr *msr;
1961 	int ret = 0;
1962 	u32 msr_index = msr_info->index;
1963 	u64 data = msr_info->data;
1964 	u32 index;
1965 
1966 	switch (msr_index) {
1967 	case MSR_EFER:
1968 		ret = kvm_set_msr_common(vcpu, msr_info);
1969 		break;
1970 #ifdef CONFIG_X86_64
1971 	case MSR_FS_BASE:
1972 		vmx_segment_cache_clear(vmx);
1973 		vmcs_writel(GUEST_FS_BASE, data);
1974 		break;
1975 	case MSR_GS_BASE:
1976 		vmx_segment_cache_clear(vmx);
1977 		vmcs_writel(GUEST_GS_BASE, data);
1978 		break;
1979 	case MSR_KERNEL_GS_BASE:
1980 		vmx_write_guest_kernel_gs_base(vmx, data);
1981 		break;
1982 	case MSR_IA32_XFD:
1983 		ret = kvm_set_msr_common(vcpu, msr_info);
1984 		/*
1985 		 * Always intercepting WRMSR could incur non-negligible
1986 		 * overhead given xfd might be changed frequently in
1987 		 * guest context switch. Disable write interception
1988 		 * upon the first write with a non-zero value (indicating
1989 		 * potential usage on dynamic xfeatures). Also update
1990 		 * exception bitmap to trap #NM for proper virtualization
1991 		 * of guest xfd_err.
1992 		 */
1993 		if (!ret && data) {
1994 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
1995 						      MSR_TYPE_RW);
1996 			vcpu->arch.xfd_no_write_intercept = true;
1997 			vmx_update_exception_bitmap(vcpu);
1998 		}
1999 		break;
2000 #endif
2001 	case MSR_IA32_SYSENTER_CS:
2002 		if (is_guest_mode(vcpu))
2003 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2004 		vmcs_write32(GUEST_SYSENTER_CS, data);
2005 		break;
2006 	case MSR_IA32_SYSENTER_EIP:
2007 		if (is_guest_mode(vcpu)) {
2008 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2009 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2010 		}
2011 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2012 		break;
2013 	case MSR_IA32_SYSENTER_ESP:
2014 		if (is_guest_mode(vcpu)) {
2015 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2016 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2017 		}
2018 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2019 		break;
2020 	case MSR_IA32_DEBUGCTLMSR: {
2021 		u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
2022 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2023 			if (report_ignored_msrs)
2024 				vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
2025 					    __func__, data);
2026 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2027 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2028 		}
2029 
2030 		if (invalid)
2031 			return 1;
2032 
2033 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2034 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2035 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2036 
2037 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2038 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2039 		    (data & DEBUGCTLMSR_LBR))
2040 			intel_pmu_create_guest_lbr_event(vcpu);
2041 		return 0;
2042 	}
2043 	case MSR_IA32_BNDCFGS:
2044 		if (!kvm_mpx_supported() ||
2045 		    (!msr_info->host_initiated &&
2046 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2047 			return 1;
2048 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2049 		    (data & MSR_IA32_BNDCFGS_RSVD))
2050 			return 1;
2051 		vmcs_write64(GUEST_BNDCFGS, data);
2052 		break;
2053 	case MSR_IA32_UMWAIT_CONTROL:
2054 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2055 			return 1;
2056 
2057 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2058 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2059 			return 1;
2060 
2061 		vmx->msr_ia32_umwait_control = data;
2062 		break;
2063 	case MSR_IA32_SPEC_CTRL:
2064 		if (!msr_info->host_initiated &&
2065 		    !guest_has_spec_ctrl_msr(vcpu))
2066 			return 1;
2067 
2068 		if (kvm_spec_ctrl_test_value(data))
2069 			return 1;
2070 
2071 		vmx->spec_ctrl = data;
2072 		if (!data)
2073 			break;
2074 
2075 		/*
2076 		 * For non-nested:
2077 		 * When it's written (to non-zero) for the first time, pass
2078 		 * it through.
2079 		 *
2080 		 * For nested:
2081 		 * The handling of the MSR bitmap for L2 guests is done in
2082 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2083 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2084 		 * in the merging. We update the vmcs01 here for L1 as well
2085 		 * since it will end up touching the MSR anyway now.
2086 		 */
2087 		vmx_disable_intercept_for_msr(vcpu,
2088 					      MSR_IA32_SPEC_CTRL,
2089 					      MSR_TYPE_RW);
2090 		break;
2091 	case MSR_IA32_TSX_CTRL:
2092 		if (!msr_info->host_initiated &&
2093 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2094 			return 1;
2095 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2096 			return 1;
2097 		goto find_uret_msr;
2098 	case MSR_IA32_PRED_CMD:
2099 		if (!msr_info->host_initiated &&
2100 		    !guest_has_pred_cmd_msr(vcpu))
2101 			return 1;
2102 
2103 		if (data & ~PRED_CMD_IBPB)
2104 			return 1;
2105 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2106 			return 1;
2107 		if (!data)
2108 			break;
2109 
2110 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2111 
2112 		/*
2113 		 * For non-nested:
2114 		 * When it's written (to non-zero) for the first time, pass
2115 		 * it through.
2116 		 *
2117 		 * For nested:
2118 		 * The handling of the MSR bitmap for L2 guests is done in
2119 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2120 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2121 		 * in the merging.
2122 		 */
2123 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2124 		break;
2125 	case MSR_IA32_CR_PAT:
2126 		if (!kvm_pat_valid(data))
2127 			return 1;
2128 
2129 		if (is_guest_mode(vcpu) &&
2130 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2131 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2132 
2133 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2134 			vmcs_write64(GUEST_IA32_PAT, data);
2135 			vcpu->arch.pat = data;
2136 			break;
2137 		}
2138 		ret = kvm_set_msr_common(vcpu, msr_info);
2139 		break;
2140 	case MSR_IA32_MCG_EXT_CTL:
2141 		if ((!msr_info->host_initiated &&
2142 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2143 		       FEAT_CTL_LMCE_ENABLED)) ||
2144 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2145 			return 1;
2146 		vcpu->arch.mcg_ext_ctl = data;
2147 		break;
2148 	case MSR_IA32_FEAT_CTL:
2149 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2150 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2151 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2152 			return 1;
2153 		vmx->msr_ia32_feature_control = data;
2154 		if (msr_info->host_initiated && data == 0)
2155 			vmx_leave_nested(vcpu);
2156 
2157 		/* SGX may be enabled/disabled by guest's firmware */
2158 		vmx_write_encls_bitmap(vcpu, NULL);
2159 		break;
2160 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2161 		/*
2162 		 * On real hardware, the LE hash MSRs are writable before
2163 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2164 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2165 		 * become writable.
2166 		 *
2167 		 * KVM does not emulate SGX activation for simplicity, so
2168 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2169 		 * is unlocked.  This is technically not architectural
2170 		 * behavior, but it's close enough.
2171 		 */
2172 		if (!msr_info->host_initiated &&
2173 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2174 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2175 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2176 			return 1;
2177 		vmx->msr_ia32_sgxlepubkeyhash
2178 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2179 		break;
2180 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2181 		if (!msr_info->host_initiated)
2182 			return 1; /* they are read-only */
2183 		if (!nested_vmx_allowed(vcpu))
2184 			return 1;
2185 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2186 	case MSR_IA32_RTIT_CTL:
2187 		if (!vmx_pt_mode_is_host_guest() ||
2188 			vmx_rtit_ctl_check(vcpu, data) ||
2189 			vmx->nested.vmxon)
2190 			return 1;
2191 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2192 		vmx->pt_desc.guest.ctl = data;
2193 		pt_update_intercept_for_msr(vcpu);
2194 		break;
2195 	case MSR_IA32_RTIT_STATUS:
2196 		if (!pt_can_write_msr(vmx))
2197 			return 1;
2198 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2199 			return 1;
2200 		vmx->pt_desc.guest.status = data;
2201 		break;
2202 	case MSR_IA32_RTIT_CR3_MATCH:
2203 		if (!pt_can_write_msr(vmx))
2204 			return 1;
2205 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2206 					   PT_CAP_cr3_filtering))
2207 			return 1;
2208 		vmx->pt_desc.guest.cr3_match = data;
2209 		break;
2210 	case MSR_IA32_RTIT_OUTPUT_BASE:
2211 		if (!pt_can_write_msr(vmx))
2212 			return 1;
2213 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2214 					   PT_CAP_topa_output) &&
2215 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2216 					   PT_CAP_single_range_output))
2217 			return 1;
2218 		if (!pt_output_base_valid(vcpu, data))
2219 			return 1;
2220 		vmx->pt_desc.guest.output_base = data;
2221 		break;
2222 	case MSR_IA32_RTIT_OUTPUT_MASK:
2223 		if (!pt_can_write_msr(vmx))
2224 			return 1;
2225 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2226 					   PT_CAP_topa_output) &&
2227 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2228 					   PT_CAP_single_range_output))
2229 			return 1;
2230 		vmx->pt_desc.guest.output_mask = data;
2231 		break;
2232 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2233 		if (!pt_can_write_msr(vmx))
2234 			return 1;
2235 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2236 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2237 			return 1;
2238 		if (is_noncanonical_address(data, vcpu))
2239 			return 1;
2240 		if (index % 2)
2241 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2242 		else
2243 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2244 		break;
2245 	case MSR_IA32_PERF_CAPABILITIES:
2246 		if (data && !vcpu_to_pmu(vcpu)->version)
2247 			return 1;
2248 		if (data & PMU_CAP_LBR_FMT) {
2249 			if ((data & PMU_CAP_LBR_FMT) !=
2250 			    (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2251 				return 1;
2252 			if (!intel_pmu_lbr_is_compatible(vcpu))
2253 				return 1;
2254 		}
2255 		ret = kvm_set_msr_common(vcpu, msr_info);
2256 		break;
2257 
2258 	default:
2259 	find_uret_msr:
2260 		msr = vmx_find_uret_msr(vmx, msr_index);
2261 		if (msr)
2262 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2263 		else
2264 			ret = kvm_set_msr_common(vcpu, msr_info);
2265 	}
2266 
2267 	return ret;
2268 }
2269 
2270 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2271 {
2272 	unsigned long guest_owned_bits;
2273 
2274 	kvm_register_mark_available(vcpu, reg);
2275 
2276 	switch (reg) {
2277 	case VCPU_REGS_RSP:
2278 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2279 		break;
2280 	case VCPU_REGS_RIP:
2281 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2282 		break;
2283 	case VCPU_EXREG_PDPTR:
2284 		if (enable_ept)
2285 			ept_save_pdptrs(vcpu);
2286 		break;
2287 	case VCPU_EXREG_CR0:
2288 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2289 
2290 		vcpu->arch.cr0 &= ~guest_owned_bits;
2291 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2292 		break;
2293 	case VCPU_EXREG_CR3:
2294 		/*
2295 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2296 		 * CR3 is loaded into hardware, not the guest's CR3.
2297 		 */
2298 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2299 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2300 		break;
2301 	case VCPU_EXREG_CR4:
2302 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2303 
2304 		vcpu->arch.cr4 &= ~guest_owned_bits;
2305 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2306 		break;
2307 	default:
2308 		KVM_BUG_ON(1, vcpu->kvm);
2309 		break;
2310 	}
2311 }
2312 
2313 static __init int cpu_has_kvm_support(void)
2314 {
2315 	return cpu_has_vmx();
2316 }
2317 
2318 static __init int vmx_disabled_by_bios(void)
2319 {
2320 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2321 	       !boot_cpu_has(X86_FEATURE_VMX);
2322 }
2323 
2324 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2325 {
2326 	u64 msr;
2327 
2328 	cr4_set_bits(X86_CR4_VMXE);
2329 
2330 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2331 			  _ASM_EXTABLE(1b, %l[fault])
2332 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2333 			  : : fault);
2334 	return 0;
2335 
2336 fault:
2337 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2338 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2339 	cr4_clear_bits(X86_CR4_VMXE);
2340 
2341 	return -EFAULT;
2342 }
2343 
2344 static int hardware_enable(void)
2345 {
2346 	int cpu = raw_smp_processor_id();
2347 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2348 	int r;
2349 
2350 	if (cr4_read_shadow() & X86_CR4_VMXE)
2351 		return -EBUSY;
2352 
2353 	/*
2354 	 * This can happen if we hot-added a CPU but failed to allocate
2355 	 * VP assist page for it.
2356 	 */
2357 	if (static_branch_unlikely(&enable_evmcs) &&
2358 	    !hv_get_vp_assist_page(cpu))
2359 		return -EFAULT;
2360 
2361 	intel_pt_handle_vmx(1);
2362 
2363 	r = kvm_cpu_vmxon(phys_addr);
2364 	if (r) {
2365 		intel_pt_handle_vmx(0);
2366 		return r;
2367 	}
2368 
2369 	if (enable_ept)
2370 		ept_sync_global();
2371 
2372 	return 0;
2373 }
2374 
2375 static void vmclear_local_loaded_vmcss(void)
2376 {
2377 	int cpu = raw_smp_processor_id();
2378 	struct loaded_vmcs *v, *n;
2379 
2380 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2381 				 loaded_vmcss_on_cpu_link)
2382 		__loaded_vmcs_clear(v);
2383 }
2384 
2385 static void hardware_disable(void)
2386 {
2387 	vmclear_local_loaded_vmcss();
2388 
2389 	if (cpu_vmxoff())
2390 		kvm_spurious_fault();
2391 
2392 	intel_pt_handle_vmx(0);
2393 }
2394 
2395 /*
2396  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2397  * directly instead of going through cpu_has(), to ensure KVM is trapping
2398  * ENCLS whenever it's supported in hardware.  It does not matter whether
2399  * the host OS supports or has enabled SGX.
2400  */
2401 static bool cpu_has_sgx(void)
2402 {
2403 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2404 }
2405 
2406 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2407 				      u32 msr, u32 *result)
2408 {
2409 	u32 vmx_msr_low, vmx_msr_high;
2410 	u32 ctl = ctl_min | ctl_opt;
2411 
2412 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2413 
2414 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2415 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2416 
2417 	/* Ensure minimum (required) set of control bits are supported. */
2418 	if (ctl_min & ~ctl)
2419 		return -EIO;
2420 
2421 	*result = ctl;
2422 	return 0;
2423 }
2424 
2425 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2426 				    struct vmx_capability *vmx_cap)
2427 {
2428 	u32 vmx_msr_low, vmx_msr_high;
2429 	u32 min, opt, min2, opt2;
2430 	u32 _pin_based_exec_control = 0;
2431 	u32 _cpu_based_exec_control = 0;
2432 	u32 _cpu_based_2nd_exec_control = 0;
2433 	u32 _vmexit_control = 0;
2434 	u32 _vmentry_control = 0;
2435 
2436 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2437 	min = CPU_BASED_HLT_EXITING |
2438 #ifdef CONFIG_X86_64
2439 	      CPU_BASED_CR8_LOAD_EXITING |
2440 	      CPU_BASED_CR8_STORE_EXITING |
2441 #endif
2442 	      CPU_BASED_CR3_LOAD_EXITING |
2443 	      CPU_BASED_CR3_STORE_EXITING |
2444 	      CPU_BASED_UNCOND_IO_EXITING |
2445 	      CPU_BASED_MOV_DR_EXITING |
2446 	      CPU_BASED_USE_TSC_OFFSETTING |
2447 	      CPU_BASED_MWAIT_EXITING |
2448 	      CPU_BASED_MONITOR_EXITING |
2449 	      CPU_BASED_INVLPG_EXITING |
2450 	      CPU_BASED_RDPMC_EXITING;
2451 
2452 	opt = CPU_BASED_TPR_SHADOW |
2453 	      CPU_BASED_USE_MSR_BITMAPS |
2454 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2455 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2456 				&_cpu_based_exec_control) < 0)
2457 		return -EIO;
2458 #ifdef CONFIG_X86_64
2459 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2460 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2461 					   ~CPU_BASED_CR8_STORE_EXITING;
2462 #endif
2463 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2464 		min2 = 0;
2465 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2466 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2467 			SECONDARY_EXEC_WBINVD_EXITING |
2468 			SECONDARY_EXEC_ENABLE_VPID |
2469 			SECONDARY_EXEC_ENABLE_EPT |
2470 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2471 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2472 			SECONDARY_EXEC_DESC |
2473 			SECONDARY_EXEC_ENABLE_RDTSCP |
2474 			SECONDARY_EXEC_ENABLE_INVPCID |
2475 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2476 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2477 			SECONDARY_EXEC_SHADOW_VMCS |
2478 			SECONDARY_EXEC_XSAVES |
2479 			SECONDARY_EXEC_RDSEED_EXITING |
2480 			SECONDARY_EXEC_RDRAND_EXITING |
2481 			SECONDARY_EXEC_ENABLE_PML |
2482 			SECONDARY_EXEC_TSC_SCALING |
2483 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2484 			SECONDARY_EXEC_PT_USE_GPA |
2485 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2486 			SECONDARY_EXEC_ENABLE_VMFUNC |
2487 			SECONDARY_EXEC_BUS_LOCK_DETECTION;
2488 		if (cpu_has_sgx())
2489 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2490 		if (adjust_vmx_controls(min2, opt2,
2491 					MSR_IA32_VMX_PROCBASED_CTLS2,
2492 					&_cpu_based_2nd_exec_control) < 0)
2493 			return -EIO;
2494 	}
2495 #ifndef CONFIG_X86_64
2496 	if (!(_cpu_based_2nd_exec_control &
2497 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2498 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2499 #endif
2500 
2501 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2502 		_cpu_based_2nd_exec_control &= ~(
2503 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2504 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2505 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2506 
2507 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2508 		&vmx_cap->ept, &vmx_cap->vpid);
2509 
2510 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2511 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2512 		   enabled */
2513 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2514 					     CPU_BASED_CR3_STORE_EXITING |
2515 					     CPU_BASED_INVLPG_EXITING);
2516 	} else if (vmx_cap->ept) {
2517 		vmx_cap->ept = 0;
2518 		pr_warn_once("EPT CAP should not exist if not support "
2519 				"1-setting enable EPT VM-execution control\n");
2520 	}
2521 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2522 		vmx_cap->vpid) {
2523 		vmx_cap->vpid = 0;
2524 		pr_warn_once("VPID CAP should not exist if not support "
2525 				"1-setting enable VPID VM-execution control\n");
2526 	}
2527 
2528 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2529 #ifdef CONFIG_X86_64
2530 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2531 #endif
2532 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2533 	      VM_EXIT_LOAD_IA32_PAT |
2534 	      VM_EXIT_LOAD_IA32_EFER |
2535 	      VM_EXIT_CLEAR_BNDCFGS |
2536 	      VM_EXIT_PT_CONCEAL_PIP |
2537 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2538 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2539 				&_vmexit_control) < 0)
2540 		return -EIO;
2541 
2542 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2543 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2544 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2545 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2546 				&_pin_based_exec_control) < 0)
2547 		return -EIO;
2548 
2549 	if (cpu_has_broken_vmx_preemption_timer())
2550 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2551 	if (!(_cpu_based_2nd_exec_control &
2552 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2553 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2554 
2555 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2556 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2557 	      VM_ENTRY_LOAD_IA32_PAT |
2558 	      VM_ENTRY_LOAD_IA32_EFER |
2559 	      VM_ENTRY_LOAD_BNDCFGS |
2560 	      VM_ENTRY_PT_CONCEAL_PIP |
2561 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2562 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2563 				&_vmentry_control) < 0)
2564 		return -EIO;
2565 
2566 	/*
2567 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2568 	 * can't be used due to an errata where VM Exit may incorrectly clear
2569 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2570 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2571 	 */
2572 	if (boot_cpu_data.x86 == 0x6) {
2573 		switch (boot_cpu_data.x86_model) {
2574 		case 26: /* AAK155 */
2575 		case 30: /* AAP115 */
2576 		case 37: /* AAT100 */
2577 		case 44: /* BC86,AAY89,BD102 */
2578 		case 46: /* BA97 */
2579 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2580 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2581 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2582 					"does not work properly. Using workaround\n");
2583 			break;
2584 		default:
2585 			break;
2586 		}
2587 	}
2588 
2589 
2590 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2591 
2592 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2593 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2594 		return -EIO;
2595 
2596 #ifdef CONFIG_X86_64
2597 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2598 	if (vmx_msr_high & (1u<<16))
2599 		return -EIO;
2600 #endif
2601 
2602 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2603 	if (((vmx_msr_high >> 18) & 15) != 6)
2604 		return -EIO;
2605 
2606 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2607 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2608 
2609 	vmcs_conf->revision_id = vmx_msr_low;
2610 
2611 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2612 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2613 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2614 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2615 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2616 
2617 #if IS_ENABLED(CONFIG_HYPERV)
2618 	if (enlightened_vmcs)
2619 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2620 #endif
2621 
2622 	return 0;
2623 }
2624 
2625 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2626 {
2627 	int node = cpu_to_node(cpu);
2628 	struct page *pages;
2629 	struct vmcs *vmcs;
2630 
2631 	pages = __alloc_pages_node(node, flags, 0);
2632 	if (!pages)
2633 		return NULL;
2634 	vmcs = page_address(pages);
2635 	memset(vmcs, 0, vmcs_config.size);
2636 
2637 	/* KVM supports Enlightened VMCS v1 only */
2638 	if (static_branch_unlikely(&enable_evmcs))
2639 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2640 	else
2641 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2642 
2643 	if (shadow)
2644 		vmcs->hdr.shadow_vmcs = 1;
2645 	return vmcs;
2646 }
2647 
2648 void free_vmcs(struct vmcs *vmcs)
2649 {
2650 	free_page((unsigned long)vmcs);
2651 }
2652 
2653 /*
2654  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2655  */
2656 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2657 {
2658 	if (!loaded_vmcs->vmcs)
2659 		return;
2660 	loaded_vmcs_clear(loaded_vmcs);
2661 	free_vmcs(loaded_vmcs->vmcs);
2662 	loaded_vmcs->vmcs = NULL;
2663 	if (loaded_vmcs->msr_bitmap)
2664 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2665 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2666 }
2667 
2668 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2669 {
2670 	loaded_vmcs->vmcs = alloc_vmcs(false);
2671 	if (!loaded_vmcs->vmcs)
2672 		return -ENOMEM;
2673 
2674 	vmcs_clear(loaded_vmcs->vmcs);
2675 
2676 	loaded_vmcs->shadow_vmcs = NULL;
2677 	loaded_vmcs->hv_timer_soft_disabled = false;
2678 	loaded_vmcs->cpu = -1;
2679 	loaded_vmcs->launched = 0;
2680 
2681 	if (cpu_has_vmx_msr_bitmap()) {
2682 		loaded_vmcs->msr_bitmap = (unsigned long *)
2683 				__get_free_page(GFP_KERNEL_ACCOUNT);
2684 		if (!loaded_vmcs->msr_bitmap)
2685 			goto out_vmcs;
2686 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2687 	}
2688 
2689 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2690 	memset(&loaded_vmcs->controls_shadow, 0,
2691 		sizeof(struct vmcs_controls_shadow));
2692 
2693 	return 0;
2694 
2695 out_vmcs:
2696 	free_loaded_vmcs(loaded_vmcs);
2697 	return -ENOMEM;
2698 }
2699 
2700 static void free_kvm_area(void)
2701 {
2702 	int cpu;
2703 
2704 	for_each_possible_cpu(cpu) {
2705 		free_vmcs(per_cpu(vmxarea, cpu));
2706 		per_cpu(vmxarea, cpu) = NULL;
2707 	}
2708 }
2709 
2710 static __init int alloc_kvm_area(void)
2711 {
2712 	int cpu;
2713 
2714 	for_each_possible_cpu(cpu) {
2715 		struct vmcs *vmcs;
2716 
2717 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2718 		if (!vmcs) {
2719 			free_kvm_area();
2720 			return -ENOMEM;
2721 		}
2722 
2723 		/*
2724 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2725 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2726 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2727 		 *
2728 		 * However, even though not explicitly documented by
2729 		 * TLFS, VMXArea passed as VMXON argument should
2730 		 * still be marked with revision_id reported by
2731 		 * physical CPU.
2732 		 */
2733 		if (static_branch_unlikely(&enable_evmcs))
2734 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2735 
2736 		per_cpu(vmxarea, cpu) = vmcs;
2737 	}
2738 	return 0;
2739 }
2740 
2741 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2742 		struct kvm_segment *save)
2743 {
2744 	if (!emulate_invalid_guest_state) {
2745 		/*
2746 		 * CS and SS RPL should be equal during guest entry according
2747 		 * to VMX spec, but in reality it is not always so. Since vcpu
2748 		 * is in the middle of the transition from real mode to
2749 		 * protected mode it is safe to assume that RPL 0 is a good
2750 		 * default value.
2751 		 */
2752 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2753 			save->selector &= ~SEGMENT_RPL_MASK;
2754 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2755 		save->s = 1;
2756 	}
2757 	__vmx_set_segment(vcpu, save, seg);
2758 }
2759 
2760 static void enter_pmode(struct kvm_vcpu *vcpu)
2761 {
2762 	unsigned long flags;
2763 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2764 
2765 	/*
2766 	 * Update real mode segment cache. It may be not up-to-date if segment
2767 	 * register was written while vcpu was in a guest mode.
2768 	 */
2769 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2770 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2771 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2772 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2773 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2774 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2775 
2776 	vmx->rmode.vm86_active = 0;
2777 
2778 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2779 
2780 	flags = vmcs_readl(GUEST_RFLAGS);
2781 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2782 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2783 	vmcs_writel(GUEST_RFLAGS, flags);
2784 
2785 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2786 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2787 
2788 	vmx_update_exception_bitmap(vcpu);
2789 
2790 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2791 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2792 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2793 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2794 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2795 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2796 }
2797 
2798 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2799 {
2800 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2801 	struct kvm_segment var = *save;
2802 
2803 	var.dpl = 0x3;
2804 	if (seg == VCPU_SREG_CS)
2805 		var.type = 0x3;
2806 
2807 	if (!emulate_invalid_guest_state) {
2808 		var.selector = var.base >> 4;
2809 		var.base = var.base & 0xffff0;
2810 		var.limit = 0xffff;
2811 		var.g = 0;
2812 		var.db = 0;
2813 		var.present = 1;
2814 		var.s = 1;
2815 		var.l = 0;
2816 		var.unusable = 0;
2817 		var.type = 0x3;
2818 		var.avl = 0;
2819 		if (save->base & 0xf)
2820 			printk_once(KERN_WARNING "kvm: segment base is not "
2821 					"paragraph aligned when entering "
2822 					"protected mode (seg=%d)", seg);
2823 	}
2824 
2825 	vmcs_write16(sf->selector, var.selector);
2826 	vmcs_writel(sf->base, var.base);
2827 	vmcs_write32(sf->limit, var.limit);
2828 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2829 }
2830 
2831 static void enter_rmode(struct kvm_vcpu *vcpu)
2832 {
2833 	unsigned long flags;
2834 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2835 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2836 
2837 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2838 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2839 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2840 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2841 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2842 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2843 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2844 
2845 	vmx->rmode.vm86_active = 1;
2846 
2847 	/*
2848 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2849 	 * vcpu. Warn the user that an update is overdue.
2850 	 */
2851 	if (!kvm_vmx->tss_addr)
2852 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2853 			     "called before entering vcpu\n");
2854 
2855 	vmx_segment_cache_clear(vmx);
2856 
2857 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2858 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2859 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2860 
2861 	flags = vmcs_readl(GUEST_RFLAGS);
2862 	vmx->rmode.save_rflags = flags;
2863 
2864 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2865 
2866 	vmcs_writel(GUEST_RFLAGS, flags);
2867 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2868 	vmx_update_exception_bitmap(vcpu);
2869 
2870 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2871 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2872 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2873 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2874 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2875 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2876 }
2877 
2878 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2879 {
2880 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2881 	struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2882 
2883 	/* Nothing to do if hardware doesn't support EFER. */
2884 	if (!msr)
2885 		return 0;
2886 
2887 	vcpu->arch.efer = efer;
2888 	if (efer & EFER_LMA) {
2889 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2890 		msr->data = efer;
2891 	} else {
2892 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2893 
2894 		msr->data = efer & ~EFER_LME;
2895 	}
2896 	vmx_setup_uret_msrs(vmx);
2897 	return 0;
2898 }
2899 
2900 #ifdef CONFIG_X86_64
2901 
2902 static void enter_lmode(struct kvm_vcpu *vcpu)
2903 {
2904 	u32 guest_tr_ar;
2905 
2906 	vmx_segment_cache_clear(to_vmx(vcpu));
2907 
2908 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2909 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2910 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2911 				     __func__);
2912 		vmcs_write32(GUEST_TR_AR_BYTES,
2913 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2914 			     | VMX_AR_TYPE_BUSY_64_TSS);
2915 	}
2916 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2917 }
2918 
2919 static void exit_lmode(struct kvm_vcpu *vcpu)
2920 {
2921 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2922 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2923 }
2924 
2925 #endif
2926 
2927 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2928 {
2929 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2930 
2931 	/*
2932 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2933 	 * the CPU is not required to invalidate guest-physical mappings on
2934 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2935 	 * associated with the root EPT structure and not any particular VPID
2936 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
2937 	 */
2938 	if (enable_ept) {
2939 		ept_sync_global();
2940 	} else if (enable_vpid) {
2941 		if (cpu_has_vmx_invvpid_global()) {
2942 			vpid_sync_vcpu_global();
2943 		} else {
2944 			vpid_sync_vcpu_single(vmx->vpid);
2945 			vpid_sync_vcpu_single(vmx->nested.vpid02);
2946 		}
2947 	}
2948 }
2949 
2950 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
2951 {
2952 	if (is_guest_mode(vcpu))
2953 		return nested_get_vpid02(vcpu);
2954 	return to_vmx(vcpu)->vpid;
2955 }
2956 
2957 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2958 {
2959 	struct kvm_mmu *mmu = vcpu->arch.mmu;
2960 	u64 root_hpa = mmu->root_hpa;
2961 
2962 	/* No flush required if the current context is invalid. */
2963 	if (!VALID_PAGE(root_hpa))
2964 		return;
2965 
2966 	if (enable_ept)
2967 		ept_sync_context(construct_eptp(vcpu, root_hpa,
2968 						mmu->shadow_root_level));
2969 	else
2970 		vpid_sync_context(vmx_get_current_vpid(vcpu));
2971 }
2972 
2973 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2974 {
2975 	/*
2976 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
2977 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2978 	 */
2979 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
2980 }
2981 
2982 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2983 {
2984 	/*
2985 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
2986 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
2987 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2988 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2989 	 * i.e. no explicit INVVPID is necessary.
2990 	 */
2991 	vpid_sync_context(vmx_get_current_vpid(vcpu));
2992 }
2993 
2994 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2995 {
2996 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2997 
2998 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2999 		return;
3000 
3001 	if (is_pae_paging(vcpu)) {
3002 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3003 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3004 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3005 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3006 	}
3007 }
3008 
3009 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3010 {
3011 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3012 
3013 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3014 		return;
3015 
3016 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3017 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3018 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3019 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3020 
3021 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3022 }
3023 
3024 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3025 			  CPU_BASED_CR3_STORE_EXITING)
3026 
3027 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3028 {
3029 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3030 	unsigned long hw_cr0, old_cr0_pg;
3031 	u32 tmp;
3032 
3033 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3034 
3035 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3036 	if (is_unrestricted_guest(vcpu))
3037 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3038 	else {
3039 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3040 		if (!enable_ept)
3041 			hw_cr0 |= X86_CR0_WP;
3042 
3043 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3044 			enter_pmode(vcpu);
3045 
3046 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3047 			enter_rmode(vcpu);
3048 	}
3049 
3050 	vmcs_writel(CR0_READ_SHADOW, cr0);
3051 	vmcs_writel(GUEST_CR0, hw_cr0);
3052 	vcpu->arch.cr0 = cr0;
3053 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3054 
3055 #ifdef CONFIG_X86_64
3056 	if (vcpu->arch.efer & EFER_LME) {
3057 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3058 			enter_lmode(vcpu);
3059 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3060 			exit_lmode(vcpu);
3061 	}
3062 #endif
3063 
3064 	if (enable_ept && !is_unrestricted_guest(vcpu)) {
3065 		/*
3066 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3067 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3068 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3069 		 * KVM's CR3 is installed.
3070 		 */
3071 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3072 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3073 
3074 		/*
3075 		 * When running with EPT but not unrestricted guest, KVM must
3076 		 * intercept CR3 accesses when paging is _disabled_.  This is
3077 		 * necessary because restricted guests can't actually run with
3078 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3079 		 * run the guest when identity mapped page tables.
3080 		 *
3081 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3082 		 * update, it may be stale with respect to CR3 interception,
3083 		 * e.g. after nested VM-Enter.
3084 		 *
3085 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3086 		 * stores to forward them to L1, even if KVM does not need to
3087 		 * intercept them to preserve its identity mapped page tables.
3088 		 */
3089 		if (!(cr0 & X86_CR0_PG)) {
3090 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3091 		} else if (!is_guest_mode(vcpu)) {
3092 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3093 		} else {
3094 			tmp = exec_controls_get(vmx);
3095 			tmp &= ~CR3_EXITING_BITS;
3096 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3097 			exec_controls_set(vmx, tmp);
3098 		}
3099 
3100 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3101 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3102 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3103 
3104 		/*
3105 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3106 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3107 		 */
3108 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3109 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3110 	}
3111 
3112 	/* depends on vcpu->arch.cr0 to be set to a new value */
3113 	vmx->emulation_required = vmx_emulation_required(vcpu);
3114 }
3115 
3116 static int vmx_get_max_tdp_level(void)
3117 {
3118 	if (cpu_has_vmx_ept_5levels())
3119 		return 5;
3120 	return 4;
3121 }
3122 
3123 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3124 {
3125 	u64 eptp = VMX_EPTP_MT_WB;
3126 
3127 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3128 
3129 	if (enable_ept_ad_bits &&
3130 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3131 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3132 	eptp |= root_hpa;
3133 
3134 	return eptp;
3135 }
3136 
3137 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3138 			     int root_level)
3139 {
3140 	struct kvm *kvm = vcpu->kvm;
3141 	bool update_guest_cr3 = true;
3142 	unsigned long guest_cr3;
3143 	u64 eptp;
3144 
3145 	if (enable_ept) {
3146 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3147 		vmcs_write64(EPT_POINTER, eptp);
3148 
3149 		hv_track_root_tdp(vcpu, root_hpa);
3150 
3151 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3152 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3153 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3154 			guest_cr3 = vcpu->arch.cr3;
3155 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3156 			update_guest_cr3 = false;
3157 		vmx_ept_load_pdptrs(vcpu);
3158 	} else {
3159 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3160 	}
3161 
3162 	if (update_guest_cr3)
3163 		vmcs_writel(GUEST_CR3, guest_cr3);
3164 }
3165 
3166 
3167 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3168 {
3169 	/*
3170 	 * We operate under the default treatment of SMM, so VMX cannot be
3171 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3172 	 * handled by kvm_is_valid_cr4().
3173 	 */
3174 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3175 		return false;
3176 
3177 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3178 		return false;
3179 
3180 	return true;
3181 }
3182 
3183 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3184 {
3185 	unsigned long old_cr4 = vcpu->arch.cr4;
3186 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3187 	/*
3188 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3189 	 * is in force while we are in guest mode.  Do not let guests control
3190 	 * this bit, even if host CR4.MCE == 0.
3191 	 */
3192 	unsigned long hw_cr4;
3193 
3194 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3195 	if (is_unrestricted_guest(vcpu))
3196 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3197 	else if (vmx->rmode.vm86_active)
3198 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3199 	else
3200 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3201 
3202 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3203 		if (cr4 & X86_CR4_UMIP) {
3204 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3205 			hw_cr4 &= ~X86_CR4_UMIP;
3206 		} else if (!is_guest_mode(vcpu) ||
3207 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3208 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3209 		}
3210 	}
3211 
3212 	vcpu->arch.cr4 = cr4;
3213 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3214 
3215 	if (!is_unrestricted_guest(vcpu)) {
3216 		if (enable_ept) {
3217 			if (!is_paging(vcpu)) {
3218 				hw_cr4 &= ~X86_CR4_PAE;
3219 				hw_cr4 |= X86_CR4_PSE;
3220 			} else if (!(cr4 & X86_CR4_PAE)) {
3221 				hw_cr4 &= ~X86_CR4_PAE;
3222 			}
3223 		}
3224 
3225 		/*
3226 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3227 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3228 		 * to be manually disabled when guest switches to non-paging
3229 		 * mode.
3230 		 *
3231 		 * If !enable_unrestricted_guest, the CPU is always running
3232 		 * with CR0.PG=1 and CR4 needs to be modified.
3233 		 * If enable_unrestricted_guest, the CPU automatically
3234 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3235 		 */
3236 		if (!is_paging(vcpu))
3237 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3238 	}
3239 
3240 	vmcs_writel(CR4_READ_SHADOW, cr4);
3241 	vmcs_writel(GUEST_CR4, hw_cr4);
3242 
3243 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3244 		kvm_update_cpuid_runtime(vcpu);
3245 }
3246 
3247 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3248 {
3249 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3250 	u32 ar;
3251 
3252 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3253 		*var = vmx->rmode.segs[seg];
3254 		if (seg == VCPU_SREG_TR
3255 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3256 			return;
3257 		var->base = vmx_read_guest_seg_base(vmx, seg);
3258 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3259 		return;
3260 	}
3261 	var->base = vmx_read_guest_seg_base(vmx, seg);
3262 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3263 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3264 	ar = vmx_read_guest_seg_ar(vmx, seg);
3265 	var->unusable = (ar >> 16) & 1;
3266 	var->type = ar & 15;
3267 	var->s = (ar >> 4) & 1;
3268 	var->dpl = (ar >> 5) & 3;
3269 	/*
3270 	 * Some userspaces do not preserve unusable property. Since usable
3271 	 * segment has to be present according to VMX spec we can use present
3272 	 * property to amend userspace bug by making unusable segment always
3273 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3274 	 * segment as unusable.
3275 	 */
3276 	var->present = !var->unusable;
3277 	var->avl = (ar >> 12) & 1;
3278 	var->l = (ar >> 13) & 1;
3279 	var->db = (ar >> 14) & 1;
3280 	var->g = (ar >> 15) & 1;
3281 }
3282 
3283 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3284 {
3285 	struct kvm_segment s;
3286 
3287 	if (to_vmx(vcpu)->rmode.vm86_active) {
3288 		vmx_get_segment(vcpu, &s, seg);
3289 		return s.base;
3290 	}
3291 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3292 }
3293 
3294 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3295 {
3296 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3297 
3298 	if (unlikely(vmx->rmode.vm86_active))
3299 		return 0;
3300 	else {
3301 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3302 		return VMX_AR_DPL(ar);
3303 	}
3304 }
3305 
3306 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3307 {
3308 	u32 ar;
3309 
3310 	if (var->unusable || !var->present)
3311 		ar = 1 << 16;
3312 	else {
3313 		ar = var->type & 15;
3314 		ar |= (var->s & 1) << 4;
3315 		ar |= (var->dpl & 3) << 5;
3316 		ar |= (var->present & 1) << 7;
3317 		ar |= (var->avl & 1) << 12;
3318 		ar |= (var->l & 1) << 13;
3319 		ar |= (var->db & 1) << 14;
3320 		ar |= (var->g & 1) << 15;
3321 	}
3322 
3323 	return ar;
3324 }
3325 
3326 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3327 {
3328 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3329 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3330 
3331 	vmx_segment_cache_clear(vmx);
3332 
3333 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3334 		vmx->rmode.segs[seg] = *var;
3335 		if (seg == VCPU_SREG_TR)
3336 			vmcs_write16(sf->selector, var->selector);
3337 		else if (var->s)
3338 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3339 		return;
3340 	}
3341 
3342 	vmcs_writel(sf->base, var->base);
3343 	vmcs_write32(sf->limit, var->limit);
3344 	vmcs_write16(sf->selector, var->selector);
3345 
3346 	/*
3347 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3348 	 * qemu binaries.
3349 	 *   IA32 arch specifies that at the time of processor reset the
3350 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3351 	 * is setting it to 0 in the userland code. This causes invalid guest
3352 	 * state vmexit when "unrestricted guest" mode is turned on.
3353 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3354 	 * tree. Newer qemu binaries with that qemu fix would not need this
3355 	 * kvm hack.
3356 	 */
3357 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3358 		var->type |= 0x1; /* Accessed */
3359 
3360 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3361 }
3362 
3363 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3364 {
3365 	__vmx_set_segment(vcpu, var, seg);
3366 
3367 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3368 }
3369 
3370 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3371 {
3372 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3373 
3374 	*db = (ar >> 14) & 1;
3375 	*l = (ar >> 13) & 1;
3376 }
3377 
3378 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3379 {
3380 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3381 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3382 }
3383 
3384 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3385 {
3386 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3387 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3388 }
3389 
3390 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3391 {
3392 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3393 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3394 }
3395 
3396 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3397 {
3398 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3399 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3400 }
3401 
3402 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3403 {
3404 	struct kvm_segment var;
3405 	u32 ar;
3406 
3407 	vmx_get_segment(vcpu, &var, seg);
3408 	var.dpl = 0x3;
3409 	if (seg == VCPU_SREG_CS)
3410 		var.type = 0x3;
3411 	ar = vmx_segment_access_rights(&var);
3412 
3413 	if (var.base != (var.selector << 4))
3414 		return false;
3415 	if (var.limit != 0xffff)
3416 		return false;
3417 	if (ar != 0xf3)
3418 		return false;
3419 
3420 	return true;
3421 }
3422 
3423 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3424 {
3425 	struct kvm_segment cs;
3426 	unsigned int cs_rpl;
3427 
3428 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3429 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3430 
3431 	if (cs.unusable)
3432 		return false;
3433 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3434 		return false;
3435 	if (!cs.s)
3436 		return false;
3437 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3438 		if (cs.dpl > cs_rpl)
3439 			return false;
3440 	} else {
3441 		if (cs.dpl != cs_rpl)
3442 			return false;
3443 	}
3444 	if (!cs.present)
3445 		return false;
3446 
3447 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3448 	return true;
3449 }
3450 
3451 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3452 {
3453 	struct kvm_segment ss;
3454 	unsigned int ss_rpl;
3455 
3456 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3457 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3458 
3459 	if (ss.unusable)
3460 		return true;
3461 	if (ss.type != 3 && ss.type != 7)
3462 		return false;
3463 	if (!ss.s)
3464 		return false;
3465 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3466 		return false;
3467 	if (!ss.present)
3468 		return false;
3469 
3470 	return true;
3471 }
3472 
3473 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3474 {
3475 	struct kvm_segment var;
3476 	unsigned int rpl;
3477 
3478 	vmx_get_segment(vcpu, &var, seg);
3479 	rpl = var.selector & SEGMENT_RPL_MASK;
3480 
3481 	if (var.unusable)
3482 		return true;
3483 	if (!var.s)
3484 		return false;
3485 	if (!var.present)
3486 		return false;
3487 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3488 		if (var.dpl < rpl) /* DPL < RPL */
3489 			return false;
3490 	}
3491 
3492 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3493 	 * rights flags
3494 	 */
3495 	return true;
3496 }
3497 
3498 static bool tr_valid(struct kvm_vcpu *vcpu)
3499 {
3500 	struct kvm_segment tr;
3501 
3502 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3503 
3504 	if (tr.unusable)
3505 		return false;
3506 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3507 		return false;
3508 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3509 		return false;
3510 	if (!tr.present)
3511 		return false;
3512 
3513 	return true;
3514 }
3515 
3516 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3517 {
3518 	struct kvm_segment ldtr;
3519 
3520 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3521 
3522 	if (ldtr.unusable)
3523 		return true;
3524 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3525 		return false;
3526 	if (ldtr.type != 2)
3527 		return false;
3528 	if (!ldtr.present)
3529 		return false;
3530 
3531 	return true;
3532 }
3533 
3534 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3535 {
3536 	struct kvm_segment cs, ss;
3537 
3538 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3539 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3540 
3541 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3542 		 (ss.selector & SEGMENT_RPL_MASK));
3543 }
3544 
3545 /*
3546  * Check if guest state is valid. Returns true if valid, false if
3547  * not.
3548  * We assume that registers are always usable
3549  */
3550 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3551 {
3552 	/* real mode guest state checks */
3553 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3554 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3555 			return false;
3556 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3557 			return false;
3558 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3559 			return false;
3560 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3561 			return false;
3562 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3563 			return false;
3564 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3565 			return false;
3566 	} else {
3567 	/* protected mode guest state checks */
3568 		if (!cs_ss_rpl_check(vcpu))
3569 			return false;
3570 		if (!code_segment_valid(vcpu))
3571 			return false;
3572 		if (!stack_segment_valid(vcpu))
3573 			return false;
3574 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3575 			return false;
3576 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3577 			return false;
3578 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3579 			return false;
3580 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3581 			return false;
3582 		if (!tr_valid(vcpu))
3583 			return false;
3584 		if (!ldtr_valid(vcpu))
3585 			return false;
3586 	}
3587 	/* TODO:
3588 	 * - Add checks on RIP
3589 	 * - Add checks on RFLAGS
3590 	 */
3591 
3592 	return true;
3593 }
3594 
3595 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3596 {
3597 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3598 	u16 data;
3599 	int i;
3600 
3601 	for (i = 0; i < 3; i++) {
3602 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3603 			return -EFAULT;
3604 	}
3605 
3606 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3607 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3608 		return -EFAULT;
3609 
3610 	data = ~0;
3611 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3612 		return -EFAULT;
3613 
3614 	return 0;
3615 }
3616 
3617 static int init_rmode_identity_map(struct kvm *kvm)
3618 {
3619 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3620 	int i, r = 0;
3621 	void __user *uaddr;
3622 	u32 tmp;
3623 
3624 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3625 	mutex_lock(&kvm->slots_lock);
3626 
3627 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3628 		goto out;
3629 
3630 	if (!kvm_vmx->ept_identity_map_addr)
3631 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3632 
3633 	uaddr = __x86_set_memory_region(kvm,
3634 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3635 					kvm_vmx->ept_identity_map_addr,
3636 					PAGE_SIZE);
3637 	if (IS_ERR(uaddr)) {
3638 		r = PTR_ERR(uaddr);
3639 		goto out;
3640 	}
3641 
3642 	/* Set up identity-mapping pagetable for EPT in real mode */
3643 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3644 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3645 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3646 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3647 			r = -EFAULT;
3648 			goto out;
3649 		}
3650 	}
3651 	kvm_vmx->ept_identity_pagetable_done = true;
3652 
3653 out:
3654 	mutex_unlock(&kvm->slots_lock);
3655 	return r;
3656 }
3657 
3658 static void seg_setup(int seg)
3659 {
3660 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3661 	unsigned int ar;
3662 
3663 	vmcs_write16(sf->selector, 0);
3664 	vmcs_writel(sf->base, 0);
3665 	vmcs_write32(sf->limit, 0xffff);
3666 	ar = 0x93;
3667 	if (seg == VCPU_SREG_CS)
3668 		ar |= 0x08; /* code segment */
3669 
3670 	vmcs_write32(sf->ar_bytes, ar);
3671 }
3672 
3673 static int alloc_apic_access_page(struct kvm *kvm)
3674 {
3675 	struct page *page;
3676 	void __user *hva;
3677 	int ret = 0;
3678 
3679 	mutex_lock(&kvm->slots_lock);
3680 	if (kvm->arch.apic_access_memslot_enabled)
3681 		goto out;
3682 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3683 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3684 	if (IS_ERR(hva)) {
3685 		ret = PTR_ERR(hva);
3686 		goto out;
3687 	}
3688 
3689 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3690 	if (is_error_page(page)) {
3691 		ret = -EFAULT;
3692 		goto out;
3693 	}
3694 
3695 	/*
3696 	 * Do not pin the page in memory, so that memory hot-unplug
3697 	 * is able to migrate it.
3698 	 */
3699 	put_page(page);
3700 	kvm->arch.apic_access_memslot_enabled = true;
3701 out:
3702 	mutex_unlock(&kvm->slots_lock);
3703 	return ret;
3704 }
3705 
3706 int allocate_vpid(void)
3707 {
3708 	int vpid;
3709 
3710 	if (!enable_vpid)
3711 		return 0;
3712 	spin_lock(&vmx_vpid_lock);
3713 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3714 	if (vpid < VMX_NR_VPIDS)
3715 		__set_bit(vpid, vmx_vpid_bitmap);
3716 	else
3717 		vpid = 0;
3718 	spin_unlock(&vmx_vpid_lock);
3719 	return vpid;
3720 }
3721 
3722 void free_vpid(int vpid)
3723 {
3724 	if (!enable_vpid || vpid == 0)
3725 		return;
3726 	spin_lock(&vmx_vpid_lock);
3727 	__clear_bit(vpid, vmx_vpid_bitmap);
3728 	spin_unlock(&vmx_vpid_lock);
3729 }
3730 
3731 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3732 {
3733 	/*
3734 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3735 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3736 	 * bitmap has changed.
3737 	 */
3738 	if (static_branch_unlikely(&enable_evmcs))
3739 		evmcs_touch_msr_bitmap();
3740 
3741 	vmx->nested.force_msr_bitmap_recalc = true;
3742 }
3743 
3744 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3745 {
3746 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3747 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3748 
3749 	if (!cpu_has_vmx_msr_bitmap())
3750 		return;
3751 
3752 	vmx_msr_bitmap_l01_changed(vmx);
3753 
3754 	/*
3755 	 * Mark the desired intercept state in shadow bitmap, this is needed
3756 	 * for resync when the MSR filters change.
3757 	*/
3758 	if (is_valid_passthrough_msr(msr)) {
3759 		int idx = possible_passthrough_msr_slot(msr);
3760 
3761 		if (idx != -ENOENT) {
3762 			if (type & MSR_TYPE_R)
3763 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3764 			if (type & MSR_TYPE_W)
3765 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3766 		}
3767 	}
3768 
3769 	if ((type & MSR_TYPE_R) &&
3770 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3771 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3772 		type &= ~MSR_TYPE_R;
3773 	}
3774 
3775 	if ((type & MSR_TYPE_W) &&
3776 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3777 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3778 		type &= ~MSR_TYPE_W;
3779 	}
3780 
3781 	if (type & MSR_TYPE_R)
3782 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3783 
3784 	if (type & MSR_TYPE_W)
3785 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3786 }
3787 
3788 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3789 {
3790 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3791 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3792 
3793 	if (!cpu_has_vmx_msr_bitmap())
3794 		return;
3795 
3796 	vmx_msr_bitmap_l01_changed(vmx);
3797 
3798 	/*
3799 	 * Mark the desired intercept state in shadow bitmap, this is needed
3800 	 * for resync when the MSR filter changes.
3801 	*/
3802 	if (is_valid_passthrough_msr(msr)) {
3803 		int idx = possible_passthrough_msr_slot(msr);
3804 
3805 		if (idx != -ENOENT) {
3806 			if (type & MSR_TYPE_R)
3807 				set_bit(idx, vmx->shadow_msr_intercept.read);
3808 			if (type & MSR_TYPE_W)
3809 				set_bit(idx, vmx->shadow_msr_intercept.write);
3810 		}
3811 	}
3812 
3813 	if (type & MSR_TYPE_R)
3814 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3815 
3816 	if (type & MSR_TYPE_W)
3817 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3818 }
3819 
3820 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3821 {
3822 	unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3823 	unsigned long read_intercept;
3824 	int msr;
3825 
3826 	read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3827 
3828 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3829 		unsigned int read_idx = msr / BITS_PER_LONG;
3830 		unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3831 
3832 		msr_bitmap[read_idx] = read_intercept;
3833 		msr_bitmap[write_idx] = ~0ul;
3834 	}
3835 }
3836 
3837 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3838 {
3839 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3840 	u8 mode;
3841 
3842 	if (!cpu_has_vmx_msr_bitmap())
3843 		return;
3844 
3845 	if (cpu_has_secondary_exec_ctrls() &&
3846 	    (secondary_exec_controls_get(vmx) &
3847 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3848 		mode = MSR_BITMAP_MODE_X2APIC;
3849 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3850 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3851 	} else {
3852 		mode = 0;
3853 	}
3854 
3855 	if (mode == vmx->x2apic_msr_bitmap_mode)
3856 		return;
3857 
3858 	vmx->x2apic_msr_bitmap_mode = mode;
3859 
3860 	vmx_reset_x2apic_msrs(vcpu, mode);
3861 
3862 	/*
3863 	 * TPR reads and writes can be virtualized even if virtual interrupt
3864 	 * delivery is not in use.
3865 	 */
3866 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3867 				  !(mode & MSR_BITMAP_MODE_X2APIC));
3868 
3869 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3870 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3871 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3872 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3873 	}
3874 }
3875 
3876 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3877 {
3878 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3879 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3880 	u32 i;
3881 
3882 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3883 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3884 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3885 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3886 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
3887 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3888 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3889 	}
3890 }
3891 
3892 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3893 {
3894 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3895 	void *vapic_page;
3896 	u32 vppr;
3897 	int rvi;
3898 
3899 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3900 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3901 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3902 		return false;
3903 
3904 	rvi = vmx_get_rvi();
3905 
3906 	vapic_page = vmx->nested.virtual_apic_map.hva;
3907 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3908 
3909 	return ((rvi & 0xf0) > (vppr & 0xf0));
3910 }
3911 
3912 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3913 {
3914 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3915 	u32 i;
3916 
3917 	/*
3918 	 * Set intercept permissions for all potentially passed through MSRs
3919 	 * again. They will automatically get filtered through the MSR filter,
3920 	 * so we are back in sync after this.
3921 	 */
3922 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3923 		u32 msr = vmx_possible_passthrough_msrs[i];
3924 		bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3925 		bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3926 
3927 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3928 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3929 	}
3930 
3931 	pt_update_intercept_for_msr(vcpu);
3932 }
3933 
3934 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3935 						     int pi_vec)
3936 {
3937 #ifdef CONFIG_SMP
3938 	if (vcpu->mode == IN_GUEST_MODE) {
3939 		/*
3940 		 * The vector of interrupt to be delivered to vcpu had
3941 		 * been set in PIR before this function.
3942 		 *
3943 		 * Following cases will be reached in this block, and
3944 		 * we always send a notification event in all cases as
3945 		 * explained below.
3946 		 *
3947 		 * Case 1: vcpu keeps in non-root mode. Sending a
3948 		 * notification event posts the interrupt to vcpu.
3949 		 *
3950 		 * Case 2: vcpu exits to root mode and is still
3951 		 * runnable. PIR will be synced to vIRR before the
3952 		 * next vcpu entry. Sending a notification event in
3953 		 * this case has no effect, as vcpu is not in root
3954 		 * mode.
3955 		 *
3956 		 * Case 3: vcpu exits to root mode and is blocked.
3957 		 * vcpu_block() has already synced PIR to vIRR and
3958 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3959 		 * a blocked vcpu here does not wait for any requested
3960 		 * interrupts in PIR, and sending a notification event
3961 		 * which has no effect is safe here.
3962 		 */
3963 
3964 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3965 		return;
3966 	}
3967 #endif
3968 	/*
3969 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
3970 	 * otherwise do nothing as KVM will grab the highest priority pending
3971 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
3972 	 */
3973 	kvm_vcpu_wake_up(vcpu);
3974 }
3975 
3976 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3977 						int vector)
3978 {
3979 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3980 
3981 	if (is_guest_mode(vcpu) &&
3982 	    vector == vmx->nested.posted_intr_nv) {
3983 		/*
3984 		 * If a posted intr is not recognized by hardware,
3985 		 * we will accomplish it in the next vmentry.
3986 		 */
3987 		vmx->nested.pi_pending = true;
3988 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3989 
3990 		/*
3991 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
3992 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
3993 		 * request if triggering a posted interrupt "fails" because
3994 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
3995 		 * the smb_wmb() in kvm_make_request() only ensures everything
3996 		 * done before making the request is visible when the request
3997 		 * is visible, it doesn't ensure ordering between the store to
3998 		 * vcpu->requests and the load from vcpu->mode.
3999 		 */
4000 		smp_mb__after_atomic();
4001 
4002 		/* the PIR and ON have been set by L1. */
4003 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4004 		return 0;
4005 	}
4006 	return -1;
4007 }
4008 /*
4009  * Send interrupt to vcpu via posted interrupt way.
4010  * 1. If target vcpu is running(non-root mode), send posted interrupt
4011  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4012  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4013  * interrupt from PIR in next vmentry.
4014  */
4015 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4016 {
4017 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4018 	int r;
4019 
4020 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4021 	if (!r)
4022 		return 0;
4023 
4024 	if (!vcpu->arch.apicv_active)
4025 		return -1;
4026 
4027 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4028 		return 0;
4029 
4030 	/* If a previous notification has sent the IPI, nothing to do.  */
4031 	if (pi_test_and_set_on(&vmx->pi_desc))
4032 		return 0;
4033 
4034 	/*
4035 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4036 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4037 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4038 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4039 	 */
4040 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4041 	return 0;
4042 }
4043 
4044 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4045 				  int trig_mode, int vector)
4046 {
4047 	struct kvm_vcpu *vcpu = apic->vcpu;
4048 
4049 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4050 		kvm_lapic_set_irr(vector, apic);
4051 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4052 		kvm_vcpu_kick(vcpu);
4053 	} else {
4054 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4055 					   trig_mode, vector);
4056 	}
4057 }
4058 
4059 /*
4060  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4061  * will not change in the lifetime of the guest.
4062  * Note that host-state that does change is set elsewhere. E.g., host-state
4063  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4064  */
4065 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4066 {
4067 	u32 low32, high32;
4068 	unsigned long tmpl;
4069 	unsigned long cr0, cr3, cr4;
4070 
4071 	cr0 = read_cr0();
4072 	WARN_ON(cr0 & X86_CR0_TS);
4073 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4074 
4075 	/*
4076 	 * Save the most likely value for this task's CR3 in the VMCS.
4077 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4078 	 */
4079 	cr3 = __read_cr3();
4080 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4081 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4082 
4083 	/* Save the most likely value for this task's CR4 in the VMCS. */
4084 	cr4 = cr4_read_shadow();
4085 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4086 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4087 
4088 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4089 #ifdef CONFIG_X86_64
4090 	/*
4091 	 * Load null selectors, so we can avoid reloading them in
4092 	 * vmx_prepare_switch_to_host(), in case userspace uses
4093 	 * the null selectors too (the expected case).
4094 	 */
4095 	vmcs_write16(HOST_DS_SELECTOR, 0);
4096 	vmcs_write16(HOST_ES_SELECTOR, 0);
4097 #else
4098 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4099 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4100 #endif
4101 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4102 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4103 
4104 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4105 
4106 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4107 
4108 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4109 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4110 
4111 	/*
4112 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4113 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4114 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4115 	 * have already done so!).
4116 	 */
4117 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4118 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4119 
4120 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4121 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4122 
4123 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4124 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4125 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4126 	}
4127 
4128 	if (cpu_has_load_ia32_efer())
4129 		vmcs_write64(HOST_IA32_EFER, host_efer);
4130 }
4131 
4132 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4133 {
4134 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4135 
4136 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4137 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4138 	if (!enable_ept) {
4139 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4140 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4141 	}
4142 	if (is_guest_mode(&vmx->vcpu))
4143 		vcpu->arch.cr4_guest_owned_bits &=
4144 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4145 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4146 }
4147 
4148 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4149 {
4150 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4151 
4152 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4153 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4154 
4155 	if (!enable_vnmi)
4156 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4157 
4158 	if (!enable_preemption_timer)
4159 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4160 
4161 	return pin_based_exec_ctrl;
4162 }
4163 
4164 static u32 vmx_vmentry_ctrl(void)
4165 {
4166 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4167 
4168 	if (vmx_pt_mode_is_system())
4169 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4170 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4171 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4172 	return vmentry_ctrl &
4173 		~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
4174 }
4175 
4176 static u32 vmx_vmexit_ctrl(void)
4177 {
4178 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4179 
4180 	if (vmx_pt_mode_is_system())
4181 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4182 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4183 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4184 	return vmexit_ctrl &
4185 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4186 }
4187 
4188 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4189 {
4190 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4191 
4192 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4193 	if (cpu_has_secondary_exec_ctrls()) {
4194 		if (kvm_vcpu_apicv_active(vcpu))
4195 			secondary_exec_controls_setbit(vmx,
4196 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4197 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4198 		else
4199 			secondary_exec_controls_clearbit(vmx,
4200 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4201 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4202 	}
4203 
4204 	vmx_update_msr_bitmap_x2apic(vcpu);
4205 }
4206 
4207 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4208 {
4209 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4210 
4211 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4212 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4213 
4214 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4215 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4216 #ifdef CONFIG_X86_64
4217 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4218 				CPU_BASED_CR8_LOAD_EXITING;
4219 #endif
4220 	}
4221 	if (!enable_ept)
4222 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4223 				CPU_BASED_CR3_LOAD_EXITING  |
4224 				CPU_BASED_INVLPG_EXITING;
4225 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4226 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4227 				CPU_BASED_MONITOR_EXITING);
4228 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4229 		exec_control &= ~CPU_BASED_HLT_EXITING;
4230 	return exec_control;
4231 }
4232 
4233 /*
4234  * Adjust a single secondary execution control bit to intercept/allow an
4235  * instruction in the guest.  This is usually done based on whether or not a
4236  * feature has been exposed to the guest in order to correctly emulate faults.
4237  */
4238 static inline void
4239 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4240 				  u32 control, bool enabled, bool exiting)
4241 {
4242 	/*
4243 	 * If the control is for an opt-in feature, clear the control if the
4244 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4245 	 * control is opt-out, i.e. an exiting control, clear the control if
4246 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4247 	 * disabled for the associated instruction.  Note, the caller is
4248 	 * responsible presetting exec_control to set all supported bits.
4249 	 */
4250 	if (enabled == exiting)
4251 		*exec_control &= ~control;
4252 
4253 	/*
4254 	 * Update the nested MSR settings so that a nested VMM can/can't set
4255 	 * controls for features that are/aren't exposed to the guest.
4256 	 */
4257 	if (nested) {
4258 		if (enabled)
4259 			vmx->nested.msrs.secondary_ctls_high |= control;
4260 		else
4261 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4262 	}
4263 }
4264 
4265 /*
4266  * Wrapper macro for the common case of adjusting a secondary execution control
4267  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4268  * verifies that the control is actually supported by KVM and hardware.
4269  */
4270 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4271 ({									 \
4272 	bool __enabled;							 \
4273 									 \
4274 	if (cpu_has_vmx_##name()) {					 \
4275 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4276 					    X86_FEATURE_##feat_name);	 \
4277 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4278 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4279 	}								 \
4280 })
4281 
4282 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4283 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4284 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4285 
4286 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4287 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4288 
4289 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4290 {
4291 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4292 
4293 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4294 
4295 	if (vmx_pt_mode_is_system())
4296 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4297 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4298 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4299 	if (vmx->vpid == 0)
4300 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4301 	if (!enable_ept) {
4302 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4303 		enable_unrestricted_guest = 0;
4304 	}
4305 	if (!enable_unrestricted_guest)
4306 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4307 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4308 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4309 	if (!kvm_vcpu_apicv_active(vcpu))
4310 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4311 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4312 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4313 
4314 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4315 	 * in vmx_set_cr4.  */
4316 	exec_control &= ~SECONDARY_EXEC_DESC;
4317 
4318 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4319 	   (handle_vmptrld).
4320 	   We can NOT enable shadow_vmcs here because we don't have yet
4321 	   a current VMCS12
4322 	*/
4323 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4324 
4325 	/*
4326 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4327 	 * it needs to be set here when dirty logging is already active, e.g.
4328 	 * if this vCPU was created after dirty logging was enabled.
4329 	 */
4330 	if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4331 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4332 
4333 	if (cpu_has_vmx_xsaves()) {
4334 		/* Exposing XSAVES only when XSAVE is exposed */
4335 		bool xsaves_enabled =
4336 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4337 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4338 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4339 
4340 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4341 
4342 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4343 						  SECONDARY_EXEC_XSAVES,
4344 						  xsaves_enabled, false);
4345 	}
4346 
4347 	/*
4348 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4349 	 * feature is exposed to the guest.  This creates a virtualization hole
4350 	 * if both are supported in hardware but only one is exposed to the
4351 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4352 	 * is advertised is preferable to emulating the advertised instruction
4353 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4354 	 */
4355 	if (cpu_has_vmx_rdtscp()) {
4356 		bool rdpid_or_rdtscp_enabled =
4357 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4358 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4359 
4360 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4361 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4362 						  rdpid_or_rdtscp_enabled, false);
4363 	}
4364 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4365 
4366 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4367 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4368 
4369 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4370 				    ENABLE_USR_WAIT_PAUSE, false);
4371 
4372 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4373 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4374 
4375 	return exec_control;
4376 }
4377 
4378 #define VMX_XSS_EXIT_BITMAP 0
4379 
4380 static void init_vmcs(struct vcpu_vmx *vmx)
4381 {
4382 	if (nested)
4383 		nested_vmx_set_vmcs_shadowing_bitmap();
4384 
4385 	if (cpu_has_vmx_msr_bitmap())
4386 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4387 
4388 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4389 
4390 	/* Control */
4391 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4392 
4393 	exec_controls_set(vmx, vmx_exec_control(vmx));
4394 
4395 	if (cpu_has_secondary_exec_ctrls())
4396 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4397 
4398 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4399 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4400 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4401 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4402 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4403 
4404 		vmcs_write16(GUEST_INTR_STATUS, 0);
4405 
4406 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4407 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4408 	}
4409 
4410 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4411 		vmcs_write32(PLE_GAP, ple_gap);
4412 		vmx->ple_window = ple_window;
4413 		vmx->ple_window_dirty = true;
4414 	}
4415 
4416 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4417 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4418 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4419 
4420 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4421 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4422 	vmx_set_constant_host_state(vmx);
4423 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4424 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4425 
4426 	if (cpu_has_vmx_vmfunc())
4427 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4428 
4429 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4430 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4431 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4432 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4433 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4434 
4435 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4436 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4437 
4438 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4439 
4440 	/* 22.2.1, 20.8.1 */
4441 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4442 
4443 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4444 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4445 
4446 	set_cr4_guest_host_mask(vmx);
4447 
4448 	if (vmx->vpid != 0)
4449 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4450 
4451 	if (cpu_has_vmx_xsaves())
4452 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4453 
4454 	if (enable_pml) {
4455 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4456 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4457 	}
4458 
4459 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4460 
4461 	if (vmx_pt_mode_is_host_guest()) {
4462 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4463 		/* Bit[6~0] are forced to 1, writes are ignored. */
4464 		vmx->pt_desc.guest.output_mask = 0x7F;
4465 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4466 	}
4467 
4468 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4469 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4470 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4471 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4472 
4473 	if (cpu_has_vmx_tpr_shadow()) {
4474 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4475 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4476 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4477 				     __pa(vmx->vcpu.arch.apic->regs));
4478 		vmcs_write32(TPR_THRESHOLD, 0);
4479 	}
4480 
4481 	vmx_setup_uret_msrs(vmx);
4482 }
4483 
4484 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4485 {
4486 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4487 
4488 	init_vmcs(vmx);
4489 
4490 	if (nested)
4491 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4492 
4493 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4494 
4495 	vmx->nested.posted_intr_nv = -1;
4496 	vmx->nested.vmxon_ptr = INVALID_GPA;
4497 	vmx->nested.current_vmptr = INVALID_GPA;
4498 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4499 
4500 	vcpu->arch.microcode_version = 0x100000000ULL;
4501 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4502 
4503 	/*
4504 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4505 	 * or POSTED_INTR_WAKEUP_VECTOR.
4506 	 */
4507 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4508 	vmx->pi_desc.sn = 1;
4509 }
4510 
4511 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4512 {
4513 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4514 
4515 	if (!init_event)
4516 		__vmx_vcpu_reset(vcpu);
4517 
4518 	vmx->rmode.vm86_active = 0;
4519 	vmx->spec_ctrl = 0;
4520 
4521 	vmx->msr_ia32_umwait_control = 0;
4522 
4523 	vmx->hv_deadline_tsc = -1;
4524 	kvm_set_cr8(vcpu, 0);
4525 
4526 	vmx_segment_cache_clear(vmx);
4527 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4528 
4529 	seg_setup(VCPU_SREG_CS);
4530 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4531 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4532 
4533 	seg_setup(VCPU_SREG_DS);
4534 	seg_setup(VCPU_SREG_ES);
4535 	seg_setup(VCPU_SREG_FS);
4536 	seg_setup(VCPU_SREG_GS);
4537 	seg_setup(VCPU_SREG_SS);
4538 
4539 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4540 	vmcs_writel(GUEST_TR_BASE, 0);
4541 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4542 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4543 
4544 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4545 	vmcs_writel(GUEST_LDTR_BASE, 0);
4546 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4547 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4548 
4549 	vmcs_writel(GUEST_GDTR_BASE, 0);
4550 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4551 
4552 	vmcs_writel(GUEST_IDTR_BASE, 0);
4553 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4554 
4555 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4556 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4557 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4558 	if (kvm_mpx_supported())
4559 		vmcs_write64(GUEST_BNDCFGS, 0);
4560 
4561 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4562 
4563 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4564 
4565 	vpid_sync_context(vmx->vpid);
4566 }
4567 
4568 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4569 {
4570 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4571 }
4572 
4573 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4574 {
4575 	if (!enable_vnmi ||
4576 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4577 		vmx_enable_irq_window(vcpu);
4578 		return;
4579 	}
4580 
4581 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4582 }
4583 
4584 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4585 {
4586 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4587 	uint32_t intr;
4588 	int irq = vcpu->arch.interrupt.nr;
4589 
4590 	trace_kvm_inj_virq(irq);
4591 
4592 	++vcpu->stat.irq_injections;
4593 	if (vmx->rmode.vm86_active) {
4594 		int inc_eip = 0;
4595 		if (vcpu->arch.interrupt.soft)
4596 			inc_eip = vcpu->arch.event_exit_inst_len;
4597 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4598 		return;
4599 	}
4600 	intr = irq | INTR_INFO_VALID_MASK;
4601 	if (vcpu->arch.interrupt.soft) {
4602 		intr |= INTR_TYPE_SOFT_INTR;
4603 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4604 			     vmx->vcpu.arch.event_exit_inst_len);
4605 	} else
4606 		intr |= INTR_TYPE_EXT_INTR;
4607 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4608 
4609 	vmx_clear_hlt(vcpu);
4610 }
4611 
4612 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4613 {
4614 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4615 
4616 	if (!enable_vnmi) {
4617 		/*
4618 		 * Tracking the NMI-blocked state in software is built upon
4619 		 * finding the next open IRQ window. This, in turn, depends on
4620 		 * well-behaving guests: They have to keep IRQs disabled at
4621 		 * least as long as the NMI handler runs. Otherwise we may
4622 		 * cause NMI nesting, maybe breaking the guest. But as this is
4623 		 * highly unlikely, we can live with the residual risk.
4624 		 */
4625 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4626 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4627 	}
4628 
4629 	++vcpu->stat.nmi_injections;
4630 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4631 
4632 	if (vmx->rmode.vm86_active) {
4633 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4634 		return;
4635 	}
4636 
4637 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4638 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4639 
4640 	vmx_clear_hlt(vcpu);
4641 }
4642 
4643 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4644 {
4645 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4646 	bool masked;
4647 
4648 	if (!enable_vnmi)
4649 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4650 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4651 		return false;
4652 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4653 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4654 	return masked;
4655 }
4656 
4657 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4658 {
4659 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4660 
4661 	if (!enable_vnmi) {
4662 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4663 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4664 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4665 		}
4666 	} else {
4667 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4668 		if (masked)
4669 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4670 				      GUEST_INTR_STATE_NMI);
4671 		else
4672 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4673 					GUEST_INTR_STATE_NMI);
4674 	}
4675 }
4676 
4677 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4678 {
4679 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4680 		return false;
4681 
4682 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4683 		return true;
4684 
4685 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4686 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4687 		 GUEST_INTR_STATE_NMI));
4688 }
4689 
4690 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4691 {
4692 	if (to_vmx(vcpu)->nested.nested_run_pending)
4693 		return -EBUSY;
4694 
4695 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4696 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4697 		return -EBUSY;
4698 
4699 	return !vmx_nmi_blocked(vcpu);
4700 }
4701 
4702 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4703 {
4704 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4705 		return false;
4706 
4707 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4708 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4709 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4710 }
4711 
4712 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4713 {
4714 	if (to_vmx(vcpu)->nested.nested_run_pending)
4715 		return -EBUSY;
4716 
4717        /*
4718         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4719         * e.g. if the IRQ arrived asynchronously after checking nested events.
4720         */
4721 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4722 		return -EBUSY;
4723 
4724 	return !vmx_interrupt_blocked(vcpu);
4725 }
4726 
4727 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4728 {
4729 	void __user *ret;
4730 
4731 	if (enable_unrestricted_guest)
4732 		return 0;
4733 
4734 	mutex_lock(&kvm->slots_lock);
4735 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4736 				      PAGE_SIZE * 3);
4737 	mutex_unlock(&kvm->slots_lock);
4738 
4739 	if (IS_ERR(ret))
4740 		return PTR_ERR(ret);
4741 
4742 	to_kvm_vmx(kvm)->tss_addr = addr;
4743 
4744 	return init_rmode_tss(kvm, ret);
4745 }
4746 
4747 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4748 {
4749 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4750 	return 0;
4751 }
4752 
4753 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4754 {
4755 	switch (vec) {
4756 	case BP_VECTOR:
4757 		/*
4758 		 * Update instruction length as we may reinject the exception
4759 		 * from user space while in guest debugging mode.
4760 		 */
4761 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4762 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4763 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4764 			return false;
4765 		fallthrough;
4766 	case DB_VECTOR:
4767 		return !(vcpu->guest_debug &
4768 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4769 	case DE_VECTOR:
4770 	case OF_VECTOR:
4771 	case BR_VECTOR:
4772 	case UD_VECTOR:
4773 	case DF_VECTOR:
4774 	case SS_VECTOR:
4775 	case GP_VECTOR:
4776 	case MF_VECTOR:
4777 		return true;
4778 	}
4779 	return false;
4780 }
4781 
4782 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4783 				  int vec, u32 err_code)
4784 {
4785 	/*
4786 	 * Instruction with address size override prefix opcode 0x67
4787 	 * Cause the #SS fault with 0 error code in VM86 mode.
4788 	 */
4789 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4790 		if (kvm_emulate_instruction(vcpu, 0)) {
4791 			if (vcpu->arch.halt_request) {
4792 				vcpu->arch.halt_request = 0;
4793 				return kvm_emulate_halt_noskip(vcpu);
4794 			}
4795 			return 1;
4796 		}
4797 		return 0;
4798 	}
4799 
4800 	/*
4801 	 * Forward all other exceptions that are valid in real mode.
4802 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4803 	 *        the required debugging infrastructure rework.
4804 	 */
4805 	kvm_queue_exception(vcpu, vec);
4806 	return 1;
4807 }
4808 
4809 static int handle_machine_check(struct kvm_vcpu *vcpu)
4810 {
4811 	/* handled by vmx_vcpu_run() */
4812 	return 1;
4813 }
4814 
4815 /*
4816  * If the host has split lock detection disabled, then #AC is
4817  * unconditionally injected into the guest, which is the pre split lock
4818  * detection behaviour.
4819  *
4820  * If the host has split lock detection enabled then #AC is
4821  * only injected into the guest when:
4822  *  - Guest CPL == 3 (user mode)
4823  *  - Guest has #AC detection enabled in CR0
4824  *  - Guest EFLAGS has AC bit set
4825  */
4826 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4827 {
4828 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4829 		return true;
4830 
4831 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4832 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4833 }
4834 
4835 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4836 {
4837 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4838 	struct kvm_run *kvm_run = vcpu->run;
4839 	u32 intr_info, ex_no, error_code;
4840 	unsigned long cr2, dr6;
4841 	u32 vect_info;
4842 
4843 	vect_info = vmx->idt_vectoring_info;
4844 	intr_info = vmx_get_intr_info(vcpu);
4845 
4846 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4847 		return 1; /* handled by handle_exception_nmi_irqoff() */
4848 
4849 	/*
4850 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
4851 	 * This ensures the nested_vmx check is not skipped so vmexit can
4852 	 * be reflected to L1 (when it intercepts #NM) before reaching this
4853 	 * point.
4854 	 */
4855 	if (is_nm_fault(intr_info)) {
4856 		kvm_queue_exception(vcpu, NM_VECTOR);
4857 		return 1;
4858 	}
4859 
4860 	if (is_invalid_opcode(intr_info))
4861 		return handle_ud(vcpu);
4862 
4863 	error_code = 0;
4864 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4865 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4866 
4867 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4868 		WARN_ON_ONCE(!enable_vmware_backdoor);
4869 
4870 		/*
4871 		 * VMware backdoor emulation on #GP interception only handles
4872 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4873 		 * error code on #GP.
4874 		 */
4875 		if (error_code) {
4876 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4877 			return 1;
4878 		}
4879 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4880 	}
4881 
4882 	/*
4883 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4884 	 * MMIO, it is better to report an internal error.
4885 	 * See the comments in vmx_handle_exit.
4886 	 */
4887 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4888 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4889 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4890 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4891 		vcpu->run->internal.ndata = 4;
4892 		vcpu->run->internal.data[0] = vect_info;
4893 		vcpu->run->internal.data[1] = intr_info;
4894 		vcpu->run->internal.data[2] = error_code;
4895 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4896 		return 0;
4897 	}
4898 
4899 	if (is_page_fault(intr_info)) {
4900 		cr2 = vmx_get_exit_qual(vcpu);
4901 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4902 			/*
4903 			 * EPT will cause page fault only if we need to
4904 			 * detect illegal GPAs.
4905 			 */
4906 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4907 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4908 			return 1;
4909 		} else
4910 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4911 	}
4912 
4913 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4914 
4915 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4916 		return handle_rmode_exception(vcpu, ex_no, error_code);
4917 
4918 	switch (ex_no) {
4919 	case DB_VECTOR:
4920 		dr6 = vmx_get_exit_qual(vcpu);
4921 		if (!(vcpu->guest_debug &
4922 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4923 			/*
4924 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
4925 			 * instruction.  ICEBP generates a trap-like #DB, but
4926 			 * despite its interception control being tied to #DB,
4927 			 * is an instruction intercept, i.e. the VM-Exit occurs
4928 			 * on the ICEBP itself.  Note, skipping ICEBP also
4929 			 * clears STI and MOVSS blocking.
4930 			 *
4931 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
4932 			 * if single-step is enabled in RFLAGS and STI or MOVSS
4933 			 * blocking is active, as the CPU doesn't set the bit
4934 			 * on VM-Exit due to #DB interception.  VM-Entry has a
4935 			 * consistency check that a single-step #DB is pending
4936 			 * in this scenario as the previous instruction cannot
4937 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
4938 			 * don't modify RFLAGS), therefore the one instruction
4939 			 * delay when activating single-step breakpoints must
4940 			 * have already expired.  Note, the CPU sets/clears BS
4941 			 * as appropriate for all other VM-Exits types.
4942 			 */
4943 			if (is_icebp(intr_info))
4944 				WARN_ON(!skip_emulated_instruction(vcpu));
4945 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
4946 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4947 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
4948 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
4949 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
4950 
4951 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4952 			return 1;
4953 		}
4954 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4955 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4956 		fallthrough;
4957 	case BP_VECTOR:
4958 		/*
4959 		 * Update instruction length as we may reinject #BP from
4960 		 * user space while in guest debugging mode. Reading it for
4961 		 * #DB as well causes no harm, it is not used in that case.
4962 		 */
4963 		vmx->vcpu.arch.event_exit_inst_len =
4964 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4965 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4966 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4967 		kvm_run->debug.arch.exception = ex_no;
4968 		break;
4969 	case AC_VECTOR:
4970 		if (vmx_guest_inject_ac(vcpu)) {
4971 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4972 			return 1;
4973 		}
4974 
4975 		/*
4976 		 * Handle split lock. Depending on detection mode this will
4977 		 * either warn and disable split lock detection for this
4978 		 * task or force SIGBUS on it.
4979 		 */
4980 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4981 			return 1;
4982 		fallthrough;
4983 	default:
4984 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4985 		kvm_run->ex.exception = ex_no;
4986 		kvm_run->ex.error_code = error_code;
4987 		break;
4988 	}
4989 	return 0;
4990 }
4991 
4992 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4993 {
4994 	++vcpu->stat.irq_exits;
4995 	return 1;
4996 }
4997 
4998 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4999 {
5000 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5001 	vcpu->mmio_needed = 0;
5002 	return 0;
5003 }
5004 
5005 static int handle_io(struct kvm_vcpu *vcpu)
5006 {
5007 	unsigned long exit_qualification;
5008 	int size, in, string;
5009 	unsigned port;
5010 
5011 	exit_qualification = vmx_get_exit_qual(vcpu);
5012 	string = (exit_qualification & 16) != 0;
5013 
5014 	++vcpu->stat.io_exits;
5015 
5016 	if (string)
5017 		return kvm_emulate_instruction(vcpu, 0);
5018 
5019 	port = exit_qualification >> 16;
5020 	size = (exit_qualification & 7) + 1;
5021 	in = (exit_qualification & 8) != 0;
5022 
5023 	return kvm_fast_pio(vcpu, size, port, in);
5024 }
5025 
5026 static void
5027 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5028 {
5029 	/*
5030 	 * Patch in the VMCALL instruction:
5031 	 */
5032 	hypercall[0] = 0x0f;
5033 	hypercall[1] = 0x01;
5034 	hypercall[2] = 0xc1;
5035 }
5036 
5037 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5038 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5039 {
5040 	if (is_guest_mode(vcpu)) {
5041 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5042 		unsigned long orig_val = val;
5043 
5044 		/*
5045 		 * We get here when L2 changed cr0 in a way that did not change
5046 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5047 		 * but did change L0 shadowed bits. So we first calculate the
5048 		 * effective cr0 value that L1 would like to write into the
5049 		 * hardware. It consists of the L2-owned bits from the new
5050 		 * value combined with the L1-owned bits from L1's guest_cr0.
5051 		 */
5052 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5053 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5054 
5055 		if (!nested_guest_cr0_valid(vcpu, val))
5056 			return 1;
5057 
5058 		if (kvm_set_cr0(vcpu, val))
5059 			return 1;
5060 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5061 		return 0;
5062 	} else {
5063 		if (to_vmx(vcpu)->nested.vmxon &&
5064 		    !nested_host_cr0_valid(vcpu, val))
5065 			return 1;
5066 
5067 		return kvm_set_cr0(vcpu, val);
5068 	}
5069 }
5070 
5071 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5072 {
5073 	if (is_guest_mode(vcpu)) {
5074 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5075 		unsigned long orig_val = val;
5076 
5077 		/* analogously to handle_set_cr0 */
5078 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5079 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5080 		if (kvm_set_cr4(vcpu, val))
5081 			return 1;
5082 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5083 		return 0;
5084 	} else
5085 		return kvm_set_cr4(vcpu, val);
5086 }
5087 
5088 static int handle_desc(struct kvm_vcpu *vcpu)
5089 {
5090 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5091 	return kvm_emulate_instruction(vcpu, 0);
5092 }
5093 
5094 static int handle_cr(struct kvm_vcpu *vcpu)
5095 {
5096 	unsigned long exit_qualification, val;
5097 	int cr;
5098 	int reg;
5099 	int err;
5100 	int ret;
5101 
5102 	exit_qualification = vmx_get_exit_qual(vcpu);
5103 	cr = exit_qualification & 15;
5104 	reg = (exit_qualification >> 8) & 15;
5105 	switch ((exit_qualification >> 4) & 3) {
5106 	case 0: /* mov to cr */
5107 		val = kvm_register_read(vcpu, reg);
5108 		trace_kvm_cr_write(cr, val);
5109 		switch (cr) {
5110 		case 0:
5111 			err = handle_set_cr0(vcpu, val);
5112 			return kvm_complete_insn_gp(vcpu, err);
5113 		case 3:
5114 			WARN_ON_ONCE(enable_unrestricted_guest);
5115 
5116 			err = kvm_set_cr3(vcpu, val);
5117 			return kvm_complete_insn_gp(vcpu, err);
5118 		case 4:
5119 			err = handle_set_cr4(vcpu, val);
5120 			return kvm_complete_insn_gp(vcpu, err);
5121 		case 8: {
5122 				u8 cr8_prev = kvm_get_cr8(vcpu);
5123 				u8 cr8 = (u8)val;
5124 				err = kvm_set_cr8(vcpu, cr8);
5125 				ret = kvm_complete_insn_gp(vcpu, err);
5126 				if (lapic_in_kernel(vcpu))
5127 					return ret;
5128 				if (cr8_prev <= cr8)
5129 					return ret;
5130 				/*
5131 				 * TODO: we might be squashing a
5132 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5133 				 * KVM_EXIT_DEBUG here.
5134 				 */
5135 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5136 				return 0;
5137 			}
5138 		}
5139 		break;
5140 	case 2: /* clts */
5141 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5142 		return -EIO;
5143 	case 1: /*mov from cr*/
5144 		switch (cr) {
5145 		case 3:
5146 			WARN_ON_ONCE(enable_unrestricted_guest);
5147 
5148 			val = kvm_read_cr3(vcpu);
5149 			kvm_register_write(vcpu, reg, val);
5150 			trace_kvm_cr_read(cr, val);
5151 			return kvm_skip_emulated_instruction(vcpu);
5152 		case 8:
5153 			val = kvm_get_cr8(vcpu);
5154 			kvm_register_write(vcpu, reg, val);
5155 			trace_kvm_cr_read(cr, val);
5156 			return kvm_skip_emulated_instruction(vcpu);
5157 		}
5158 		break;
5159 	case 3: /* lmsw */
5160 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5161 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5162 		kvm_lmsw(vcpu, val);
5163 
5164 		return kvm_skip_emulated_instruction(vcpu);
5165 	default:
5166 		break;
5167 	}
5168 	vcpu->run->exit_reason = 0;
5169 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5170 	       (int)(exit_qualification >> 4) & 3, cr);
5171 	return 0;
5172 }
5173 
5174 static int handle_dr(struct kvm_vcpu *vcpu)
5175 {
5176 	unsigned long exit_qualification;
5177 	int dr, dr7, reg;
5178 	int err = 1;
5179 
5180 	exit_qualification = vmx_get_exit_qual(vcpu);
5181 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5182 
5183 	/* First, if DR does not exist, trigger UD */
5184 	if (!kvm_require_dr(vcpu, dr))
5185 		return 1;
5186 
5187 	if (kvm_x86_ops.get_cpl(vcpu) > 0)
5188 		goto out;
5189 
5190 	dr7 = vmcs_readl(GUEST_DR7);
5191 	if (dr7 & DR7_GD) {
5192 		/*
5193 		 * As the vm-exit takes precedence over the debug trap, we
5194 		 * need to emulate the latter, either for the host or the
5195 		 * guest debugging itself.
5196 		 */
5197 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5198 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5199 			vcpu->run->debug.arch.dr7 = dr7;
5200 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5201 			vcpu->run->debug.arch.exception = DB_VECTOR;
5202 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5203 			return 0;
5204 		} else {
5205 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5206 			return 1;
5207 		}
5208 	}
5209 
5210 	if (vcpu->guest_debug == 0) {
5211 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5212 
5213 		/*
5214 		 * No more DR vmexits; force a reload of the debug registers
5215 		 * and reenter on this instruction.  The next vmexit will
5216 		 * retrieve the full state of the debug registers.
5217 		 */
5218 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5219 		return 1;
5220 	}
5221 
5222 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5223 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5224 		unsigned long val;
5225 
5226 		kvm_get_dr(vcpu, dr, &val);
5227 		kvm_register_write(vcpu, reg, val);
5228 		err = 0;
5229 	} else {
5230 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5231 	}
5232 
5233 out:
5234 	return kvm_complete_insn_gp(vcpu, err);
5235 }
5236 
5237 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5238 {
5239 	get_debugreg(vcpu->arch.db[0], 0);
5240 	get_debugreg(vcpu->arch.db[1], 1);
5241 	get_debugreg(vcpu->arch.db[2], 2);
5242 	get_debugreg(vcpu->arch.db[3], 3);
5243 	get_debugreg(vcpu->arch.dr6, 6);
5244 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5245 
5246 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5247 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5248 
5249 	/*
5250 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5251 	 * a stale dr6 from the guest.
5252 	 */
5253 	set_debugreg(DR6_RESERVED, 6);
5254 }
5255 
5256 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5257 {
5258 	vmcs_writel(GUEST_DR7, val);
5259 }
5260 
5261 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5262 {
5263 	kvm_apic_update_ppr(vcpu);
5264 	return 1;
5265 }
5266 
5267 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5268 {
5269 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5270 
5271 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5272 
5273 	++vcpu->stat.irq_window_exits;
5274 	return 1;
5275 }
5276 
5277 static int handle_invlpg(struct kvm_vcpu *vcpu)
5278 {
5279 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5280 
5281 	kvm_mmu_invlpg(vcpu, exit_qualification);
5282 	return kvm_skip_emulated_instruction(vcpu);
5283 }
5284 
5285 static int handle_apic_access(struct kvm_vcpu *vcpu)
5286 {
5287 	if (likely(fasteoi)) {
5288 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5289 		int access_type, offset;
5290 
5291 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5292 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5293 		/*
5294 		 * Sane guest uses MOV to write EOI, with written value
5295 		 * not cared. So make a short-circuit here by avoiding
5296 		 * heavy instruction emulation.
5297 		 */
5298 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5299 		    (offset == APIC_EOI)) {
5300 			kvm_lapic_set_eoi(vcpu);
5301 			return kvm_skip_emulated_instruction(vcpu);
5302 		}
5303 	}
5304 	return kvm_emulate_instruction(vcpu, 0);
5305 }
5306 
5307 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5308 {
5309 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5310 	int vector = exit_qualification & 0xff;
5311 
5312 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5313 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5314 	return 1;
5315 }
5316 
5317 static int handle_apic_write(struct kvm_vcpu *vcpu)
5318 {
5319 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5320 	u32 offset = exit_qualification & 0xfff;
5321 
5322 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5323 	kvm_apic_write_nodecode(vcpu, offset);
5324 	return 1;
5325 }
5326 
5327 static int handle_task_switch(struct kvm_vcpu *vcpu)
5328 {
5329 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5330 	unsigned long exit_qualification;
5331 	bool has_error_code = false;
5332 	u32 error_code = 0;
5333 	u16 tss_selector;
5334 	int reason, type, idt_v, idt_index;
5335 
5336 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5337 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5338 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5339 
5340 	exit_qualification = vmx_get_exit_qual(vcpu);
5341 
5342 	reason = (u32)exit_qualification >> 30;
5343 	if (reason == TASK_SWITCH_GATE && idt_v) {
5344 		switch (type) {
5345 		case INTR_TYPE_NMI_INTR:
5346 			vcpu->arch.nmi_injected = false;
5347 			vmx_set_nmi_mask(vcpu, true);
5348 			break;
5349 		case INTR_TYPE_EXT_INTR:
5350 		case INTR_TYPE_SOFT_INTR:
5351 			kvm_clear_interrupt_queue(vcpu);
5352 			break;
5353 		case INTR_TYPE_HARD_EXCEPTION:
5354 			if (vmx->idt_vectoring_info &
5355 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5356 				has_error_code = true;
5357 				error_code =
5358 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5359 			}
5360 			fallthrough;
5361 		case INTR_TYPE_SOFT_EXCEPTION:
5362 			kvm_clear_exception_queue(vcpu);
5363 			break;
5364 		default:
5365 			break;
5366 		}
5367 	}
5368 	tss_selector = exit_qualification;
5369 
5370 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5371 		       type != INTR_TYPE_EXT_INTR &&
5372 		       type != INTR_TYPE_NMI_INTR))
5373 		WARN_ON(!skip_emulated_instruction(vcpu));
5374 
5375 	/*
5376 	 * TODO: What about debug traps on tss switch?
5377 	 *       Are we supposed to inject them and update dr6?
5378 	 */
5379 	return kvm_task_switch(vcpu, tss_selector,
5380 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5381 			       reason, has_error_code, error_code);
5382 }
5383 
5384 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5385 {
5386 	unsigned long exit_qualification;
5387 	gpa_t gpa;
5388 	u64 error_code;
5389 
5390 	exit_qualification = vmx_get_exit_qual(vcpu);
5391 
5392 	/*
5393 	 * EPT violation happened while executing iret from NMI,
5394 	 * "blocked by NMI" bit has to be set before next VM entry.
5395 	 * There are errata that may cause this bit to not be set:
5396 	 * AAK134, BY25.
5397 	 */
5398 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5399 			enable_vnmi &&
5400 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5401 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5402 
5403 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5404 	trace_kvm_page_fault(gpa, exit_qualification);
5405 
5406 	/* Is it a read fault? */
5407 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5408 		     ? PFERR_USER_MASK : 0;
5409 	/* Is it a write fault? */
5410 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5411 		      ? PFERR_WRITE_MASK : 0;
5412 	/* Is it a fetch fault? */
5413 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5414 		      ? PFERR_FETCH_MASK : 0;
5415 	/* ept page table entry is present? */
5416 	error_code |= (exit_qualification &
5417 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5418 			EPT_VIOLATION_EXECUTABLE))
5419 		      ? PFERR_PRESENT_MASK : 0;
5420 
5421 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5422 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5423 
5424 	vcpu->arch.exit_qualification = exit_qualification;
5425 
5426 	/*
5427 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5428 	 * a guest page fault.  We have to emulate the instruction here, because
5429 	 * if the illegal address is that of a paging structure, then
5430 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5431 	 * would also use advanced VM-exit information for EPT violations to
5432 	 * reconstruct the page fault error code.
5433 	 */
5434 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5435 		return kvm_emulate_instruction(vcpu, 0);
5436 
5437 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5438 }
5439 
5440 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5441 {
5442 	gpa_t gpa;
5443 
5444 	if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5445 		return 1;
5446 
5447 	/*
5448 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5449 	 * nGPA here instead of the required GPA.
5450 	 */
5451 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5452 	if (!is_guest_mode(vcpu) &&
5453 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5454 		trace_kvm_fast_mmio(gpa);
5455 		return kvm_skip_emulated_instruction(vcpu);
5456 	}
5457 
5458 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5459 }
5460 
5461 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5462 {
5463 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5464 		return -EIO;
5465 
5466 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5467 	++vcpu->stat.nmi_window_exits;
5468 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5469 
5470 	return 1;
5471 }
5472 
5473 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5474 {
5475 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5476 
5477 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5478 	       vcpu->arch.exception.pending;
5479 }
5480 
5481 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5482 {
5483 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5484 	bool intr_window_requested;
5485 	unsigned count = 130;
5486 
5487 	intr_window_requested = exec_controls_get(vmx) &
5488 				CPU_BASED_INTR_WINDOW_EXITING;
5489 
5490 	while (vmx->emulation_required && count-- != 0) {
5491 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5492 			return handle_interrupt_window(&vmx->vcpu);
5493 
5494 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5495 			return 1;
5496 
5497 		if (!kvm_emulate_instruction(vcpu, 0))
5498 			return 0;
5499 
5500 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5501 			kvm_prepare_emulation_failure_exit(vcpu);
5502 			return 0;
5503 		}
5504 
5505 		if (vcpu->arch.halt_request) {
5506 			vcpu->arch.halt_request = 0;
5507 			return kvm_emulate_halt_noskip(vcpu);
5508 		}
5509 
5510 		/*
5511 		 * Note, return 1 and not 0, vcpu_run() will invoke
5512 		 * xfer_to_guest_mode() which will create a proper return
5513 		 * code.
5514 		 */
5515 		if (__xfer_to_guest_mode_work_pending())
5516 			return 1;
5517 	}
5518 
5519 	return 1;
5520 }
5521 
5522 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5523 {
5524 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5525 		kvm_prepare_emulation_failure_exit(vcpu);
5526 		return 0;
5527 	}
5528 
5529 	return 1;
5530 }
5531 
5532 static void grow_ple_window(struct kvm_vcpu *vcpu)
5533 {
5534 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5535 	unsigned int old = vmx->ple_window;
5536 
5537 	vmx->ple_window = __grow_ple_window(old, ple_window,
5538 					    ple_window_grow,
5539 					    ple_window_max);
5540 
5541 	if (vmx->ple_window != old) {
5542 		vmx->ple_window_dirty = true;
5543 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5544 					    vmx->ple_window, old);
5545 	}
5546 }
5547 
5548 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5549 {
5550 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5551 	unsigned int old = vmx->ple_window;
5552 
5553 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5554 					      ple_window_shrink,
5555 					      ple_window);
5556 
5557 	if (vmx->ple_window != old) {
5558 		vmx->ple_window_dirty = true;
5559 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5560 					    vmx->ple_window, old);
5561 	}
5562 }
5563 
5564 /*
5565  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5566  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5567  */
5568 static int handle_pause(struct kvm_vcpu *vcpu)
5569 {
5570 	if (!kvm_pause_in_guest(vcpu->kvm))
5571 		grow_ple_window(vcpu);
5572 
5573 	/*
5574 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5575 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5576 	 * never set PAUSE_EXITING and just set PLE if supported,
5577 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5578 	 */
5579 	kvm_vcpu_on_spin(vcpu, true);
5580 	return kvm_skip_emulated_instruction(vcpu);
5581 }
5582 
5583 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5584 {
5585 	return 1;
5586 }
5587 
5588 static int handle_invpcid(struct kvm_vcpu *vcpu)
5589 {
5590 	u32 vmx_instruction_info;
5591 	unsigned long type;
5592 	gva_t gva;
5593 	struct {
5594 		u64 pcid;
5595 		u64 gla;
5596 	} operand;
5597 	int gpr_index;
5598 
5599 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5600 		kvm_queue_exception(vcpu, UD_VECTOR);
5601 		return 1;
5602 	}
5603 
5604 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5605 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5606 	type = kvm_register_read(vcpu, gpr_index);
5607 
5608 	/* According to the Intel instruction reference, the memory operand
5609 	 * is read even if it isn't needed (e.g., for type==all)
5610 	 */
5611 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5612 				vmx_instruction_info, false,
5613 				sizeof(operand), &gva))
5614 		return 1;
5615 
5616 	return kvm_handle_invpcid(vcpu, type, gva);
5617 }
5618 
5619 static int handle_pml_full(struct kvm_vcpu *vcpu)
5620 {
5621 	unsigned long exit_qualification;
5622 
5623 	trace_kvm_pml_full(vcpu->vcpu_id);
5624 
5625 	exit_qualification = vmx_get_exit_qual(vcpu);
5626 
5627 	/*
5628 	 * PML buffer FULL happened while executing iret from NMI,
5629 	 * "blocked by NMI" bit has to be set before next VM entry.
5630 	 */
5631 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5632 			enable_vnmi &&
5633 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5634 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5635 				GUEST_INTR_STATE_NMI);
5636 
5637 	/*
5638 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5639 	 * here.., and there's no userspace involvement needed for PML.
5640 	 */
5641 	return 1;
5642 }
5643 
5644 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5645 {
5646 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5647 
5648 	if (!vmx->req_immediate_exit &&
5649 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5650 		kvm_lapic_expired_hv_timer(vcpu);
5651 		return EXIT_FASTPATH_REENTER_GUEST;
5652 	}
5653 
5654 	return EXIT_FASTPATH_NONE;
5655 }
5656 
5657 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5658 {
5659 	handle_fastpath_preemption_timer(vcpu);
5660 	return 1;
5661 }
5662 
5663 /*
5664  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5665  * are overwritten by nested_vmx_setup() when nested=1.
5666  */
5667 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5668 {
5669 	kvm_queue_exception(vcpu, UD_VECTOR);
5670 	return 1;
5671 }
5672 
5673 #ifndef CONFIG_X86_SGX_KVM
5674 static int handle_encls(struct kvm_vcpu *vcpu)
5675 {
5676 	/*
5677 	 * SGX virtualization is disabled.  There is no software enable bit for
5678 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5679 	 * the guest from executing ENCLS (when SGX is supported by hardware).
5680 	 */
5681 	kvm_queue_exception(vcpu, UD_VECTOR);
5682 	return 1;
5683 }
5684 #endif /* CONFIG_X86_SGX_KVM */
5685 
5686 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5687 {
5688 	/*
5689 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5690 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
5691 	 * vmx_handle_exit().
5692 	 */
5693 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
5694 	return 1;
5695 }
5696 
5697 /*
5698  * The exit handlers return 1 if the exit was handled fully and guest execution
5699  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5700  * to be done to userspace and return 0.
5701  */
5702 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5703 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5704 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5705 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5706 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5707 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5708 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5709 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5710 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5711 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5712 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5713 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5714 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5715 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
5716 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5717 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5718 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5719 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5720 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5721 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5722 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5723 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5724 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5725 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5726 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5727 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5728 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5729 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5730 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5731 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5732 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5733 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5734 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5735 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5736 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5737 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5738 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5739 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5740 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5741 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
5742 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5743 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
5744 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5745 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5746 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
5747 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
5748 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5749 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5750 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5751 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5752 	[EXIT_REASON_ENCLS]		      = handle_encls,
5753 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5754 };
5755 
5756 static const int kvm_vmx_max_exit_handlers =
5757 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5758 
5759 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
5760 			      u64 *info1, u64 *info2,
5761 			      u32 *intr_info, u32 *error_code)
5762 {
5763 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5764 
5765 	*reason = vmx->exit_reason.full;
5766 	*info1 = vmx_get_exit_qual(vcpu);
5767 	if (!(vmx->exit_reason.failed_vmentry)) {
5768 		*info2 = vmx->idt_vectoring_info;
5769 		*intr_info = vmx_get_intr_info(vcpu);
5770 		if (is_exception_with_error_code(*intr_info))
5771 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5772 		else
5773 			*error_code = 0;
5774 	} else {
5775 		*info2 = 0;
5776 		*intr_info = 0;
5777 		*error_code = 0;
5778 	}
5779 }
5780 
5781 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5782 {
5783 	if (vmx->pml_pg) {
5784 		__free_page(vmx->pml_pg);
5785 		vmx->pml_pg = NULL;
5786 	}
5787 }
5788 
5789 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5790 {
5791 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5792 	u64 *pml_buf;
5793 	u16 pml_idx;
5794 
5795 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5796 
5797 	/* Do nothing if PML buffer is empty */
5798 	if (pml_idx == (PML_ENTITY_NUM - 1))
5799 		return;
5800 
5801 	/* PML index always points to next available PML buffer entity */
5802 	if (pml_idx >= PML_ENTITY_NUM)
5803 		pml_idx = 0;
5804 	else
5805 		pml_idx++;
5806 
5807 	pml_buf = page_address(vmx->pml_pg);
5808 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5809 		u64 gpa;
5810 
5811 		gpa = pml_buf[pml_idx];
5812 		WARN_ON(gpa & (PAGE_SIZE - 1));
5813 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5814 	}
5815 
5816 	/* reset PML index */
5817 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5818 }
5819 
5820 static void vmx_dump_sel(char *name, uint32_t sel)
5821 {
5822 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5823 	       name, vmcs_read16(sel),
5824 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5825 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5826 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5827 }
5828 
5829 static void vmx_dump_dtsel(char *name, uint32_t limit)
5830 {
5831 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5832 	       name, vmcs_read32(limit),
5833 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5834 }
5835 
5836 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5837 {
5838 	unsigned int i;
5839 	struct vmx_msr_entry *e;
5840 
5841 	pr_err("MSR %s:\n", name);
5842 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5843 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5844 }
5845 
5846 void dump_vmcs(struct kvm_vcpu *vcpu)
5847 {
5848 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5849 	u32 vmentry_ctl, vmexit_ctl;
5850 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5851 	unsigned long cr4;
5852 	int efer_slot;
5853 
5854 	if (!dump_invalid_vmcs) {
5855 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5856 		return;
5857 	}
5858 
5859 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5860 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5861 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5862 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5863 	cr4 = vmcs_readl(GUEST_CR4);
5864 	secondary_exec_control = 0;
5865 	if (cpu_has_secondary_exec_ctrls())
5866 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5867 
5868 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
5869 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
5870 	pr_err("*** Guest State ***\n");
5871 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5872 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5873 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5874 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5875 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5876 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5877 	if (cpu_has_vmx_ept()) {
5878 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5879 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5880 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5881 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5882 	}
5883 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5884 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5885 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5886 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5887 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5888 	       vmcs_readl(GUEST_SYSENTER_ESP),
5889 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5890 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5891 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5892 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5893 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5894 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5895 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5896 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5897 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5898 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5899 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5900 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5901 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5902 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5903 	else if (efer_slot >= 0)
5904 		pr_err("EFER= 0x%016llx (autoload)\n",
5905 		       vmx->msr_autoload.guest.val[efer_slot].value);
5906 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5907 		pr_err("EFER= 0x%016llx (effective)\n",
5908 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
5909 	else
5910 		pr_err("EFER= 0x%016llx (effective)\n",
5911 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5912 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5913 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5914 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5915 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5916 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5917 	if (cpu_has_load_perf_global_ctrl() &&
5918 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5919 		pr_err("PerfGlobCtl = 0x%016llx\n",
5920 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5921 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5922 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5923 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5924 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5925 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5926 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5927 		pr_err("InterruptStatus = %04x\n",
5928 		       vmcs_read16(GUEST_INTR_STATUS));
5929 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5930 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5931 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5932 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5933 
5934 	pr_err("*** Host State ***\n");
5935 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5936 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5937 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5938 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5939 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5940 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5941 	       vmcs_read16(HOST_TR_SELECTOR));
5942 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5943 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5944 	       vmcs_readl(HOST_TR_BASE));
5945 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5946 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5947 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5948 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5949 	       vmcs_readl(HOST_CR4));
5950 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5951 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5952 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5953 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5954 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
5955 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
5956 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
5957 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
5958 	if (cpu_has_load_perf_global_ctrl() &&
5959 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5960 		pr_err("PerfGlobCtl = 0x%016llx\n",
5961 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5962 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
5963 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
5964 
5965 	pr_err("*** Control State ***\n");
5966 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5967 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5968 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5969 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5970 	       vmcs_read32(EXCEPTION_BITMAP),
5971 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5972 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5973 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5974 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5975 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5976 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5977 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5978 	       vmcs_read32(VM_EXIT_INTR_INFO),
5979 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5980 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5981 	pr_err("        reason=%08x qualification=%016lx\n",
5982 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5983 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5984 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5985 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5986 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5987 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5988 		pr_err("TSC Multiplier = 0x%016llx\n",
5989 		       vmcs_read64(TSC_MULTIPLIER));
5990 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5991 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5992 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5993 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5994 		}
5995 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5996 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5997 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5998 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5999 	}
6000 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6001 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6002 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6003 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6004 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6005 		pr_err("PLE Gap=%08x Window=%08x\n",
6006 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6007 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6008 		pr_err("Virtual processor ID = 0x%04x\n",
6009 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6010 }
6011 
6012 /*
6013  * The guest has exited.  See if we can fix it or if we need userspace
6014  * assistance.
6015  */
6016 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6017 {
6018 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6019 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6020 	u32 vectoring_info = vmx->idt_vectoring_info;
6021 	u16 exit_handler_index;
6022 
6023 	/*
6024 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6025 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6026 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6027 	 * mode as if vcpus is in root mode, the PML buffer must has been
6028 	 * flushed already.  Note, PML is never enabled in hardware while
6029 	 * running L2.
6030 	 */
6031 	if (enable_pml && !is_guest_mode(vcpu))
6032 		vmx_flush_pml_buffer(vcpu);
6033 
6034 	/*
6035 	 * KVM should never reach this point with a pending nested VM-Enter.
6036 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6037 	 * invalid guest state should never happen as that means KVM knowingly
6038 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6039 	 */
6040 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6041 		return -EIO;
6042 
6043 	if (is_guest_mode(vcpu)) {
6044 		/*
6045 		 * PML is never enabled when running L2, bail immediately if a
6046 		 * PML full exit occurs as something is horribly wrong.
6047 		 */
6048 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6049 			goto unexpected_vmexit;
6050 
6051 		/*
6052 		 * The host physical addresses of some pages of guest memory
6053 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6054 		 * Page). The CPU may write to these pages via their host
6055 		 * physical address while L2 is running, bypassing any
6056 		 * address-translation-based dirty tracking (e.g. EPT write
6057 		 * protection).
6058 		 *
6059 		 * Mark them dirty on every exit from L2 to prevent them from
6060 		 * getting out of sync with dirty tracking.
6061 		 */
6062 		nested_mark_vmcs12_pages_dirty(vcpu);
6063 
6064 		/*
6065 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6066 		 * operation, nested VM-Enter rejects any attempt to enter L2
6067 		 * with invalid state.  However, those checks are skipped if
6068 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6069 		 * L2 state is invalid, it means either L1 modified SMRAM state
6070 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6071 		 * doing so is architecturally allowed in the RSM case, and is
6072 		 * the least awful solution for the userspace case without
6073 		 * risking false positives.
6074 		 */
6075 		if (vmx->emulation_required) {
6076 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6077 			return 1;
6078 		}
6079 
6080 		if (nested_vmx_reflect_vmexit(vcpu))
6081 			return 1;
6082 	}
6083 
6084 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6085 	if (vmx->emulation_required)
6086 		return handle_invalid_guest_state(vcpu);
6087 
6088 	if (exit_reason.failed_vmentry) {
6089 		dump_vmcs(vcpu);
6090 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6091 		vcpu->run->fail_entry.hardware_entry_failure_reason
6092 			= exit_reason.full;
6093 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6094 		return 0;
6095 	}
6096 
6097 	if (unlikely(vmx->fail)) {
6098 		dump_vmcs(vcpu);
6099 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6100 		vcpu->run->fail_entry.hardware_entry_failure_reason
6101 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6102 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6103 		return 0;
6104 	}
6105 
6106 	/*
6107 	 * Note:
6108 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6109 	 * delivery event since it indicates guest is accessing MMIO.
6110 	 * The vm-exit can be triggered again after return to guest that
6111 	 * will cause infinite loop.
6112 	 */
6113 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6114 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6115 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6116 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6117 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6118 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6119 		int ndata = 3;
6120 
6121 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6122 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6123 		vcpu->run->internal.data[0] = vectoring_info;
6124 		vcpu->run->internal.data[1] = exit_reason.full;
6125 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6126 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6127 			vcpu->run->internal.data[ndata++] =
6128 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6129 		}
6130 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6131 		vcpu->run->internal.ndata = ndata;
6132 		return 0;
6133 	}
6134 
6135 	if (unlikely(!enable_vnmi &&
6136 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6137 		if (!vmx_interrupt_blocked(vcpu)) {
6138 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6139 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6140 			   vcpu->arch.nmi_pending) {
6141 			/*
6142 			 * This CPU don't support us in finding the end of an
6143 			 * NMI-blocked window if the guest runs with IRQs
6144 			 * disabled. So we pull the trigger after 1 s of
6145 			 * futile waiting, but inform the user about this.
6146 			 */
6147 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6148 			       "state on VCPU %d after 1 s timeout\n",
6149 			       __func__, vcpu->vcpu_id);
6150 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6151 		}
6152 	}
6153 
6154 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6155 		return 1;
6156 
6157 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6158 		goto unexpected_vmexit;
6159 #ifdef CONFIG_RETPOLINE
6160 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6161 		return kvm_emulate_wrmsr(vcpu);
6162 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6163 		return handle_preemption_timer(vcpu);
6164 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6165 		return handle_interrupt_window(vcpu);
6166 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6167 		return handle_external_interrupt(vcpu);
6168 	else if (exit_reason.basic == EXIT_REASON_HLT)
6169 		return kvm_emulate_halt(vcpu);
6170 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6171 		return handle_ept_misconfig(vcpu);
6172 #endif
6173 
6174 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6175 						kvm_vmx_max_exit_handlers);
6176 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6177 		goto unexpected_vmexit;
6178 
6179 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6180 
6181 unexpected_vmexit:
6182 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6183 		    exit_reason.full);
6184 	dump_vmcs(vcpu);
6185 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6186 	vcpu->run->internal.suberror =
6187 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6188 	vcpu->run->internal.ndata = 2;
6189 	vcpu->run->internal.data[0] = exit_reason.full;
6190 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6191 	return 0;
6192 }
6193 
6194 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6195 {
6196 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6197 
6198 	/*
6199 	 * Exit to user space when bus lock detected to inform that there is
6200 	 * a bus lock in guest.
6201 	 */
6202 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6203 		if (ret > 0)
6204 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6205 
6206 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6207 		return 0;
6208 	}
6209 	return ret;
6210 }
6211 
6212 /*
6213  * Software based L1D cache flush which is used when microcode providing
6214  * the cache control MSR is not loaded.
6215  *
6216  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6217  * flush it is required to read in 64 KiB because the replacement algorithm
6218  * is not exactly LRU. This could be sized at runtime via topology
6219  * information but as all relevant affected CPUs have 32KiB L1D cache size
6220  * there is no point in doing so.
6221  */
6222 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6223 {
6224 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6225 
6226 	/*
6227 	 * This code is only executed when the the flush mode is 'cond' or
6228 	 * 'always'
6229 	 */
6230 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6231 		bool flush_l1d;
6232 
6233 		/*
6234 		 * Clear the per-vcpu flush bit, it gets set again
6235 		 * either from vcpu_run() or from one of the unsafe
6236 		 * VMEXIT handlers.
6237 		 */
6238 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6239 		vcpu->arch.l1tf_flush_l1d = false;
6240 
6241 		/*
6242 		 * Clear the per-cpu flush bit, it gets set again from
6243 		 * the interrupt handlers.
6244 		 */
6245 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6246 		kvm_clear_cpu_l1tf_flush_l1d();
6247 
6248 		if (!flush_l1d)
6249 			return;
6250 	}
6251 
6252 	vcpu->stat.l1d_flush++;
6253 
6254 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6255 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6256 		return;
6257 	}
6258 
6259 	asm volatile(
6260 		/* First ensure the pages are in the TLB */
6261 		"xorl	%%eax, %%eax\n"
6262 		".Lpopulate_tlb:\n\t"
6263 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6264 		"addl	$4096, %%eax\n\t"
6265 		"cmpl	%%eax, %[size]\n\t"
6266 		"jne	.Lpopulate_tlb\n\t"
6267 		"xorl	%%eax, %%eax\n\t"
6268 		"cpuid\n\t"
6269 		/* Now fill the cache */
6270 		"xorl	%%eax, %%eax\n"
6271 		".Lfill_cache:\n"
6272 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6273 		"addl	$64, %%eax\n\t"
6274 		"cmpl	%%eax, %[size]\n\t"
6275 		"jne	.Lfill_cache\n\t"
6276 		"lfence\n"
6277 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6278 		    [size] "r" (size)
6279 		: "eax", "ebx", "ecx", "edx");
6280 }
6281 
6282 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6283 {
6284 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6285 	int tpr_threshold;
6286 
6287 	if (is_guest_mode(vcpu) &&
6288 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6289 		return;
6290 
6291 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6292 	if (is_guest_mode(vcpu))
6293 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6294 	else
6295 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6296 }
6297 
6298 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6299 {
6300 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6301 	u32 sec_exec_control;
6302 
6303 	if (!lapic_in_kernel(vcpu))
6304 		return;
6305 
6306 	if (!flexpriority_enabled &&
6307 	    !cpu_has_vmx_virtualize_x2apic_mode())
6308 		return;
6309 
6310 	/* Postpone execution until vmcs01 is the current VMCS. */
6311 	if (is_guest_mode(vcpu)) {
6312 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6313 		return;
6314 	}
6315 
6316 	sec_exec_control = secondary_exec_controls_get(vmx);
6317 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6318 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6319 
6320 	switch (kvm_get_apic_mode(vcpu)) {
6321 	case LAPIC_MODE_INVALID:
6322 		WARN_ONCE(true, "Invalid local APIC state");
6323 		break;
6324 	case LAPIC_MODE_DISABLED:
6325 		break;
6326 	case LAPIC_MODE_XAPIC:
6327 		if (flexpriority_enabled) {
6328 			sec_exec_control |=
6329 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6330 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6331 
6332 			/*
6333 			 * Flush the TLB, reloading the APIC access page will
6334 			 * only do so if its physical address has changed, but
6335 			 * the guest may have inserted a non-APIC mapping into
6336 			 * the TLB while the APIC access page was disabled.
6337 			 */
6338 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6339 		}
6340 		break;
6341 	case LAPIC_MODE_X2APIC:
6342 		if (cpu_has_vmx_virtualize_x2apic_mode())
6343 			sec_exec_control |=
6344 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6345 		break;
6346 	}
6347 	secondary_exec_controls_set(vmx, sec_exec_control);
6348 
6349 	vmx_update_msr_bitmap_x2apic(vcpu);
6350 }
6351 
6352 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6353 {
6354 	struct page *page;
6355 
6356 	/* Defer reload until vmcs01 is the current VMCS. */
6357 	if (is_guest_mode(vcpu)) {
6358 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6359 		return;
6360 	}
6361 
6362 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6363 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6364 		return;
6365 
6366 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6367 	if (is_error_page(page))
6368 		return;
6369 
6370 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6371 	vmx_flush_tlb_current(vcpu);
6372 
6373 	/*
6374 	 * Do not pin apic access page in memory, the MMU notifier
6375 	 * will call us again if it is migrated or swapped out.
6376 	 */
6377 	put_page(page);
6378 }
6379 
6380 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6381 {
6382 	u16 status;
6383 	u8 old;
6384 
6385 	if (max_isr == -1)
6386 		max_isr = 0;
6387 
6388 	status = vmcs_read16(GUEST_INTR_STATUS);
6389 	old = status >> 8;
6390 	if (max_isr != old) {
6391 		status &= 0xff;
6392 		status |= max_isr << 8;
6393 		vmcs_write16(GUEST_INTR_STATUS, status);
6394 	}
6395 }
6396 
6397 static void vmx_set_rvi(int vector)
6398 {
6399 	u16 status;
6400 	u8 old;
6401 
6402 	if (vector == -1)
6403 		vector = 0;
6404 
6405 	status = vmcs_read16(GUEST_INTR_STATUS);
6406 	old = (u8)status & 0xff;
6407 	if ((u8)vector != old) {
6408 		status &= ~0xff;
6409 		status |= (u8)vector;
6410 		vmcs_write16(GUEST_INTR_STATUS, status);
6411 	}
6412 }
6413 
6414 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6415 {
6416 	/*
6417 	 * When running L2, updating RVI is only relevant when
6418 	 * vmcs12 virtual-interrupt-delivery enabled.
6419 	 * However, it can be enabled only when L1 also
6420 	 * intercepts external-interrupts and in that case
6421 	 * we should not update vmcs02 RVI but instead intercept
6422 	 * interrupt. Therefore, do nothing when running L2.
6423 	 */
6424 	if (!is_guest_mode(vcpu))
6425 		vmx_set_rvi(max_irr);
6426 }
6427 
6428 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6429 {
6430 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6431 	int max_irr;
6432 	bool got_posted_interrupt;
6433 
6434 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6435 		return -EIO;
6436 
6437 	if (pi_test_on(&vmx->pi_desc)) {
6438 		pi_clear_on(&vmx->pi_desc);
6439 		/*
6440 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6441 		 * But on x86 this is just a compiler barrier anyway.
6442 		 */
6443 		smp_mb__after_atomic();
6444 		got_posted_interrupt =
6445 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6446 	} else {
6447 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6448 		got_posted_interrupt = false;
6449 	}
6450 
6451 	/*
6452 	 * Newly recognized interrupts are injected via either virtual interrupt
6453 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6454 	 * disabled in two cases:
6455 	 *
6456 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6457 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6458 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6459 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6460 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6461 	 *
6462 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6463 	 * attempt to post interrupts.  The posted interrupt vector will cause
6464 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6465 	 */
6466 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6467 		vmx_set_rvi(max_irr);
6468 	else if (got_posted_interrupt)
6469 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6470 
6471 	return max_irr;
6472 }
6473 
6474 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6475 {
6476 	if (!kvm_vcpu_apicv_active(vcpu))
6477 		return;
6478 
6479 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6480 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6481 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6482 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6483 }
6484 
6485 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6486 {
6487 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6488 
6489 	pi_clear_on(&vmx->pi_desc);
6490 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6491 }
6492 
6493 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6494 
6495 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6496 					unsigned long entry)
6497 {
6498 	bool is_nmi = entry == (unsigned long)asm_exc_nmi_noist;
6499 
6500 	kvm_before_interrupt(vcpu, is_nmi ? KVM_HANDLING_NMI : KVM_HANDLING_IRQ);
6501 	vmx_do_interrupt_nmi_irqoff(entry);
6502 	kvm_after_interrupt(vcpu);
6503 }
6504 
6505 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6506 {
6507 	/*
6508 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6509 	 * MSR value is not clobbered by the host activity before the guest
6510 	 * has chance to consume it.
6511 	 *
6512 	 * Do not blindly read xfd_err here, since this exception might
6513 	 * be caused by L1 interception on a platform which doesn't
6514 	 * support xfd at all.
6515 	 *
6516 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6517 	 * only when xfd contains a non-zero value.
6518 	 *
6519 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6520 	 */
6521 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6522 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6523 }
6524 
6525 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6526 {
6527 	const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6528 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6529 
6530 	/* if exit due to PF check for async PF */
6531 	if (is_page_fault(intr_info))
6532 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6533 	/* if exit due to NM, handle before interrupts are enabled */
6534 	else if (is_nm_fault(intr_info))
6535 		handle_nm_fault_irqoff(&vmx->vcpu);
6536 	/* Handle machine checks before interrupts are enabled */
6537 	else if (is_machine_check(intr_info))
6538 		kvm_machine_check();
6539 	/* We need to handle NMIs before interrupts are enabled */
6540 	else if (is_nmi(intr_info))
6541 		handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6542 }
6543 
6544 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6545 {
6546 	u32 intr_info = vmx_get_intr_info(vcpu);
6547 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6548 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6549 
6550 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6551 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6552 		return;
6553 
6554 	handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6555 }
6556 
6557 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6558 {
6559 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6560 
6561 	if (vmx->emulation_required)
6562 		return;
6563 
6564 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6565 		handle_external_interrupt_irqoff(vcpu);
6566 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6567 		handle_exception_nmi_irqoff(vmx);
6568 }
6569 
6570 /*
6571  * The kvm parameter can be NULL (module initialization, or invocation before
6572  * VM creation). Be sure to check the kvm parameter before using it.
6573  */
6574 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6575 {
6576 	switch (index) {
6577 	case MSR_IA32_SMBASE:
6578 		/*
6579 		 * We cannot do SMM unless we can run the guest in big
6580 		 * real mode.
6581 		 */
6582 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6583 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6584 		return nested;
6585 	case MSR_AMD64_VIRT_SPEC_CTRL:
6586 	case MSR_AMD64_TSC_RATIO:
6587 		/* This is AMD only.  */
6588 		return false;
6589 	default:
6590 		return true;
6591 	}
6592 }
6593 
6594 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6595 {
6596 	u32 exit_intr_info;
6597 	bool unblock_nmi;
6598 	u8 vector;
6599 	bool idtv_info_valid;
6600 
6601 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6602 
6603 	if (enable_vnmi) {
6604 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6605 			return;
6606 
6607 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6608 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6609 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6610 		/*
6611 		 * SDM 3: 27.7.1.2 (September 2008)
6612 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6613 		 * a guest IRET fault.
6614 		 * SDM 3: 23.2.2 (September 2008)
6615 		 * Bit 12 is undefined in any of the following cases:
6616 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6617 		 *   information field.
6618 		 *  If the VM exit is due to a double fault.
6619 		 */
6620 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6621 		    vector != DF_VECTOR && !idtv_info_valid)
6622 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6623 				      GUEST_INTR_STATE_NMI);
6624 		else
6625 			vmx->loaded_vmcs->nmi_known_unmasked =
6626 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6627 				  & GUEST_INTR_STATE_NMI);
6628 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6629 		vmx->loaded_vmcs->vnmi_blocked_time +=
6630 			ktime_to_ns(ktime_sub(ktime_get(),
6631 					      vmx->loaded_vmcs->entry_time));
6632 }
6633 
6634 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6635 				      u32 idt_vectoring_info,
6636 				      int instr_len_field,
6637 				      int error_code_field)
6638 {
6639 	u8 vector;
6640 	int type;
6641 	bool idtv_info_valid;
6642 
6643 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6644 
6645 	vcpu->arch.nmi_injected = false;
6646 	kvm_clear_exception_queue(vcpu);
6647 	kvm_clear_interrupt_queue(vcpu);
6648 
6649 	if (!idtv_info_valid)
6650 		return;
6651 
6652 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6653 
6654 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6655 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6656 
6657 	switch (type) {
6658 	case INTR_TYPE_NMI_INTR:
6659 		vcpu->arch.nmi_injected = true;
6660 		/*
6661 		 * SDM 3: 27.7.1.2 (September 2008)
6662 		 * Clear bit "block by NMI" before VM entry if a NMI
6663 		 * delivery faulted.
6664 		 */
6665 		vmx_set_nmi_mask(vcpu, false);
6666 		break;
6667 	case INTR_TYPE_SOFT_EXCEPTION:
6668 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6669 		fallthrough;
6670 	case INTR_TYPE_HARD_EXCEPTION:
6671 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6672 			u32 err = vmcs_read32(error_code_field);
6673 			kvm_requeue_exception_e(vcpu, vector, err);
6674 		} else
6675 			kvm_requeue_exception(vcpu, vector);
6676 		break;
6677 	case INTR_TYPE_SOFT_INTR:
6678 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6679 		fallthrough;
6680 	case INTR_TYPE_EXT_INTR:
6681 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6682 		break;
6683 	default:
6684 		break;
6685 	}
6686 }
6687 
6688 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6689 {
6690 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6691 				  VM_EXIT_INSTRUCTION_LEN,
6692 				  IDT_VECTORING_ERROR_CODE);
6693 }
6694 
6695 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6696 {
6697 	__vmx_complete_interrupts(vcpu,
6698 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6699 				  VM_ENTRY_INSTRUCTION_LEN,
6700 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6701 
6702 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6703 }
6704 
6705 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6706 {
6707 	int i, nr_msrs;
6708 	struct perf_guest_switch_msr *msrs;
6709 
6710 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6711 	msrs = perf_guest_get_msrs(&nr_msrs);
6712 	if (!msrs)
6713 		return;
6714 
6715 	for (i = 0; i < nr_msrs; i++)
6716 		if (msrs[i].host == msrs[i].guest)
6717 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6718 		else
6719 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6720 					msrs[i].host, false);
6721 }
6722 
6723 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6724 {
6725 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6726 	u64 tscl;
6727 	u32 delta_tsc;
6728 
6729 	if (vmx->req_immediate_exit) {
6730 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6731 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6732 	} else if (vmx->hv_deadline_tsc != -1) {
6733 		tscl = rdtsc();
6734 		if (vmx->hv_deadline_tsc > tscl)
6735 			/* set_hv_timer ensures the delta fits in 32-bits */
6736 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6737 				cpu_preemption_timer_multi);
6738 		else
6739 			delta_tsc = 0;
6740 
6741 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6742 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6743 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6744 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6745 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6746 	}
6747 }
6748 
6749 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6750 {
6751 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6752 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6753 		vmcs_writel(HOST_RSP, host_rsp);
6754 	}
6755 }
6756 
6757 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6758 {
6759 	switch (to_vmx(vcpu)->exit_reason.basic) {
6760 	case EXIT_REASON_MSR_WRITE:
6761 		return handle_fastpath_set_msr_irqoff(vcpu);
6762 	case EXIT_REASON_PREEMPTION_TIMER:
6763 		return handle_fastpath_preemption_timer(vcpu);
6764 	default:
6765 		return EXIT_FASTPATH_NONE;
6766 	}
6767 }
6768 
6769 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6770 					struct vcpu_vmx *vmx)
6771 {
6772 	guest_state_enter_irqoff();
6773 
6774 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6775 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6776 		vmx_l1d_flush(vcpu);
6777 	else if (static_branch_unlikely(&mds_user_clear))
6778 		mds_clear_cpu_buffers();
6779 
6780 	if (vcpu->arch.cr2 != native_read_cr2())
6781 		native_write_cr2(vcpu->arch.cr2);
6782 
6783 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6784 				   vmx->loaded_vmcs->launched);
6785 
6786 	vcpu->arch.cr2 = native_read_cr2();
6787 
6788 	guest_state_exit_irqoff();
6789 }
6790 
6791 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6792 {
6793 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6794 	unsigned long cr4;
6795 
6796 	/* Record the guest's net vcpu time for enforced NMI injections. */
6797 	if (unlikely(!enable_vnmi &&
6798 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6799 		vmx->loaded_vmcs->entry_time = ktime_get();
6800 
6801 	/*
6802 	 * Don't enter VMX if guest state is invalid, let the exit handler
6803 	 * start emulation until we arrive back to a valid state.  Synthesize a
6804 	 * consistency check VM-Exit due to invalid guest state and bail.
6805 	 */
6806 	if (unlikely(vmx->emulation_required)) {
6807 		vmx->fail = 0;
6808 
6809 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
6810 		vmx->exit_reason.failed_vmentry = 1;
6811 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
6812 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
6813 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
6814 		vmx->exit_intr_info = 0;
6815 		return EXIT_FASTPATH_NONE;
6816 	}
6817 
6818 	trace_kvm_entry(vcpu);
6819 
6820 	if (vmx->ple_window_dirty) {
6821 		vmx->ple_window_dirty = false;
6822 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6823 	}
6824 
6825 	/*
6826 	 * We did this in prepare_switch_to_guest, because it needs to
6827 	 * be within srcu_read_lock.
6828 	 */
6829 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6830 
6831 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6832 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6833 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6834 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6835 	vcpu->arch.regs_dirty = 0;
6836 
6837 	cr4 = cr4_read_shadow();
6838 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6839 		vmcs_writel(HOST_CR4, cr4);
6840 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6841 	}
6842 
6843 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
6844 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
6845 		set_debugreg(vcpu->arch.dr6, 6);
6846 
6847 	/* When single-stepping over STI and MOV SS, we must clear the
6848 	 * corresponding interruptibility bits in the guest state. Otherwise
6849 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6850 	 * exceptions being set, but that's not correct for the guest debugging
6851 	 * case. */
6852 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6853 		vmx_set_interrupt_shadow(vcpu, 0);
6854 
6855 	kvm_load_guest_xsave_state(vcpu);
6856 
6857 	pt_guest_enter(vmx);
6858 
6859 	atomic_switch_perf_msrs(vmx);
6860 	if (intel_pmu_lbr_is_enabled(vcpu))
6861 		vmx_passthrough_lbr_msrs(vcpu);
6862 
6863 	if (enable_preemption_timer)
6864 		vmx_update_hv_timer(vcpu);
6865 
6866 	kvm_wait_lapic_expire(vcpu);
6867 
6868 	/*
6869 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6870 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6871 	 * is no need to worry about the conditional branch over the wrmsr
6872 	 * being speculatively taken.
6873 	 */
6874 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6875 
6876 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
6877 	vmx_vcpu_enter_exit(vcpu, vmx);
6878 
6879 	/*
6880 	 * We do not use IBRS in the kernel. If this vCPU has used the
6881 	 * SPEC_CTRL MSR it may have left it on; save the value and
6882 	 * turn it off. This is much more efficient than blindly adding
6883 	 * it to the atomic save/restore list. Especially as the former
6884 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6885 	 *
6886 	 * For non-nested case:
6887 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6888 	 * save it.
6889 	 *
6890 	 * For nested case:
6891 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6892 	 * save it.
6893 	 */
6894 	if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
6895 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6896 
6897 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6898 
6899 	/* All fields are clean at this point */
6900 	if (static_branch_unlikely(&enable_evmcs)) {
6901 		current_evmcs->hv_clean_fields |=
6902 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6903 
6904 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6905 	}
6906 
6907 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6908 	if (vmx->host_debugctlmsr)
6909 		update_debugctlmsr(vmx->host_debugctlmsr);
6910 
6911 #ifndef CONFIG_X86_64
6912 	/*
6913 	 * The sysexit path does not restore ds/es, so we must set them to
6914 	 * a reasonable value ourselves.
6915 	 *
6916 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6917 	 * function may be executed in interrupt context, which saves and
6918 	 * restore segments around it, nullifying its effect.
6919 	 */
6920 	loadsegment(ds, __USER_DS);
6921 	loadsegment(es, __USER_DS);
6922 #endif
6923 
6924 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
6925 
6926 	pt_guest_exit(vmx);
6927 
6928 	kvm_load_host_xsave_state(vcpu);
6929 
6930 	if (is_guest_mode(vcpu)) {
6931 		/*
6932 		 * Track VMLAUNCH/VMRESUME that have made past guest state
6933 		 * checking.
6934 		 */
6935 		if (vmx->nested.nested_run_pending &&
6936 		    !vmx->exit_reason.failed_vmentry)
6937 			++vcpu->stat.nested_run;
6938 
6939 		vmx->nested.nested_run_pending = 0;
6940 	}
6941 
6942 	vmx->idt_vectoring_info = 0;
6943 
6944 	if (unlikely(vmx->fail)) {
6945 		vmx->exit_reason.full = 0xdead;
6946 		return EXIT_FASTPATH_NONE;
6947 	}
6948 
6949 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6950 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6951 		kvm_machine_check();
6952 
6953 	if (likely(!vmx->exit_reason.failed_vmentry))
6954 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6955 
6956 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
6957 
6958 	if (unlikely(vmx->exit_reason.failed_vmentry))
6959 		return EXIT_FASTPATH_NONE;
6960 
6961 	vmx->loaded_vmcs->launched = 1;
6962 
6963 	vmx_recover_nmi_blocking(vmx);
6964 	vmx_complete_interrupts(vmx);
6965 
6966 	if (is_guest_mode(vcpu))
6967 		return EXIT_FASTPATH_NONE;
6968 
6969 	return vmx_exit_handlers_fastpath(vcpu);
6970 }
6971 
6972 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6973 {
6974 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6975 
6976 	if (enable_pml)
6977 		vmx_destroy_pml_buffer(vmx);
6978 	free_vpid(vmx->vpid);
6979 	nested_vmx_free_vcpu(vcpu);
6980 	free_loaded_vmcs(vmx->loaded_vmcs);
6981 }
6982 
6983 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6984 {
6985 	struct vmx_uret_msr *tsx_ctrl;
6986 	struct vcpu_vmx *vmx;
6987 	int i, err;
6988 
6989 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6990 	vmx = to_vmx(vcpu);
6991 
6992 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
6993 
6994 	err = -ENOMEM;
6995 
6996 	vmx->vpid = allocate_vpid();
6997 
6998 	/*
6999 	 * If PML is turned on, failure on enabling PML just results in failure
7000 	 * of creating the vcpu, therefore we can simplify PML logic (by
7001 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7002 	 * for the guest), etc.
7003 	 */
7004 	if (enable_pml) {
7005 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7006 		if (!vmx->pml_pg)
7007 			goto free_vpid;
7008 	}
7009 
7010 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7011 		vmx->guest_uret_msrs[i].mask = -1ull;
7012 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7013 		/*
7014 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7015 		 * Keep the host value unchanged to avoid changing CPUID bits
7016 		 * under the host kernel's feet.
7017 		 */
7018 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7019 		if (tsx_ctrl)
7020 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7021 	}
7022 
7023 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7024 	if (err < 0)
7025 		goto free_pml;
7026 
7027 	/*
7028 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7029 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7030 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7031 	 * performance benefits from enabling it for vmcs02.
7032 	 */
7033 	if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) &&
7034 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7035 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7036 
7037 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7038 	}
7039 
7040 	/* The MSR bitmap starts with all ones */
7041 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7042 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7043 
7044 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7045 #ifdef CONFIG_X86_64
7046 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7047 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7048 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7049 #endif
7050 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7051 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7052 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7053 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7054 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7055 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7056 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7057 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7058 	}
7059 
7060 	vmx->loaded_vmcs = &vmx->vmcs01;
7061 
7062 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7063 		err = alloc_apic_access_page(vcpu->kvm);
7064 		if (err)
7065 			goto free_vmcs;
7066 	}
7067 
7068 	if (enable_ept && !enable_unrestricted_guest) {
7069 		err = init_rmode_identity_map(vcpu->kvm);
7070 		if (err)
7071 			goto free_vmcs;
7072 	}
7073 
7074 	return 0;
7075 
7076 free_vmcs:
7077 	free_loaded_vmcs(vmx->loaded_vmcs);
7078 free_pml:
7079 	vmx_destroy_pml_buffer(vmx);
7080 free_vpid:
7081 	free_vpid(vmx->vpid);
7082 	return err;
7083 }
7084 
7085 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7086 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7087 
7088 static int vmx_vm_init(struct kvm *kvm)
7089 {
7090 	if (!ple_gap)
7091 		kvm->arch.pause_in_guest = true;
7092 
7093 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7094 		switch (l1tf_mitigation) {
7095 		case L1TF_MITIGATION_OFF:
7096 		case L1TF_MITIGATION_FLUSH_NOWARN:
7097 			/* 'I explicitly don't care' is set */
7098 			break;
7099 		case L1TF_MITIGATION_FLUSH:
7100 		case L1TF_MITIGATION_FLUSH_NOSMT:
7101 		case L1TF_MITIGATION_FULL:
7102 			/*
7103 			 * Warn upon starting the first VM in a potentially
7104 			 * insecure environment.
7105 			 */
7106 			if (sched_smt_active())
7107 				pr_warn_once(L1TF_MSG_SMT);
7108 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7109 				pr_warn_once(L1TF_MSG_L1D);
7110 			break;
7111 		case L1TF_MITIGATION_FULL_FORCE:
7112 			/* Flush is enforced */
7113 			break;
7114 		}
7115 	}
7116 	return 0;
7117 }
7118 
7119 static int __init vmx_check_processor_compat(void)
7120 {
7121 	struct vmcs_config vmcs_conf;
7122 	struct vmx_capability vmx_cap;
7123 
7124 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7125 	    !this_cpu_has(X86_FEATURE_VMX)) {
7126 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7127 		return -EIO;
7128 	}
7129 
7130 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7131 		return -EIO;
7132 	if (nested)
7133 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7134 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7135 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7136 				smp_processor_id());
7137 		return -EIO;
7138 	}
7139 	return 0;
7140 }
7141 
7142 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7143 {
7144 	u8 cache;
7145 
7146 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7147 	 * memory aliases with conflicting memory types and sometimes MCEs.
7148 	 * We have to be careful as to what are honored and when.
7149 	 *
7150 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7151 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7152 	 * This was historically the source of MCEs and we want to be
7153 	 * conservative.
7154 	 *
7155 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7156 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7157 	 * EPT memory type is set to WB.  The effective memory type is forced
7158 	 * WB.
7159 	 *
7160 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7161 	 * EPT memory type is used to emulate guest CD/MTRR.
7162 	 */
7163 
7164 	if (is_mmio)
7165 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7166 
7167 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7168 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7169 
7170 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7171 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7172 			cache = MTRR_TYPE_WRBACK;
7173 		else
7174 			cache = MTRR_TYPE_UNCACHABLE;
7175 
7176 		return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7177 	}
7178 
7179 	return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7180 }
7181 
7182 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7183 {
7184 	/*
7185 	 * These bits in the secondary execution controls field
7186 	 * are dynamic, the others are mostly based on the hypervisor
7187 	 * architecture and the guest's CPUID.  Do not touch the
7188 	 * dynamic bits.
7189 	 */
7190 	u32 mask =
7191 		SECONDARY_EXEC_SHADOW_VMCS |
7192 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7193 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7194 		SECONDARY_EXEC_DESC;
7195 
7196 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7197 
7198 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7199 }
7200 
7201 /*
7202  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7203  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7204  */
7205 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7206 {
7207 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7208 	struct kvm_cpuid_entry2 *entry;
7209 
7210 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7211 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7212 
7213 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7214 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7215 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7216 } while (0)
7217 
7218 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7219 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7220 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7221 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7222 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7223 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7224 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7225 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7226 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7227 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7228 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7229 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7230 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7231 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7232 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7233 
7234 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7235 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7236 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7237 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7238 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7239 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7240 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7241 
7242 #undef cr4_fixed1_update
7243 }
7244 
7245 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7246 {
7247 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7248 
7249 	if (kvm_mpx_supported()) {
7250 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7251 
7252 		if (mpx_enabled) {
7253 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7254 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7255 		} else {
7256 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7257 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7258 		}
7259 	}
7260 }
7261 
7262 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7263 {
7264 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7265 	struct kvm_cpuid_entry2 *best = NULL;
7266 	int i;
7267 
7268 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7269 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7270 		if (!best)
7271 			return;
7272 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7273 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7274 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7275 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7276 	}
7277 
7278 	/* Get the number of configurable Address Ranges for filtering */
7279 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7280 						PT_CAP_num_address_ranges);
7281 
7282 	/* Initialize and clear the no dependency bits */
7283 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7284 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7285 			RTIT_CTL_BRANCH_EN);
7286 
7287 	/*
7288 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7289 	 * will inject an #GP
7290 	 */
7291 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7292 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7293 
7294 	/*
7295 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7296 	 * PSBFreq can be set
7297 	 */
7298 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7299 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7300 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7301 
7302 	/*
7303 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7304 	 */
7305 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7306 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7307 					      RTIT_CTL_MTC_RANGE);
7308 
7309 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7310 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7311 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7312 							RTIT_CTL_PTW_EN);
7313 
7314 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7315 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7316 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7317 
7318 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7319 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7320 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7321 
7322 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7323 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7324 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7325 
7326 	/* unmask address range configure area */
7327 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7328 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7329 }
7330 
7331 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7332 {
7333 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7334 
7335 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7336 	vcpu->arch.xsaves_enabled = false;
7337 
7338 	vmx_setup_uret_msrs(vmx);
7339 
7340 	if (cpu_has_secondary_exec_ctrls())
7341 		vmcs_set_secondary_exec_control(vmx,
7342 						vmx_secondary_exec_control(vmx));
7343 
7344 	if (nested_vmx_allowed(vcpu))
7345 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7346 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7347 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7348 	else
7349 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7350 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7351 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7352 
7353 	if (nested_vmx_allowed(vcpu)) {
7354 		nested_vmx_cr_fixed1_bits_update(vcpu);
7355 		nested_vmx_entry_exit_ctls_update(vcpu);
7356 	}
7357 
7358 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7359 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7360 		update_intel_pt_cfg(vcpu);
7361 
7362 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7363 		struct vmx_uret_msr *msr;
7364 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7365 		if (msr) {
7366 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7367 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7368 		}
7369 	}
7370 
7371 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7372 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7373 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7374 
7375 
7376 	set_cr4_guest_host_mask(vmx);
7377 
7378 	vmx_write_encls_bitmap(vcpu, NULL);
7379 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7380 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7381 	else
7382 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7383 
7384 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7385 		vmx->msr_ia32_feature_control_valid_bits |=
7386 			FEAT_CTL_SGX_LC_ENABLED;
7387 	else
7388 		vmx->msr_ia32_feature_control_valid_bits &=
7389 			~FEAT_CTL_SGX_LC_ENABLED;
7390 
7391 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7392 	vmx_update_exception_bitmap(vcpu);
7393 }
7394 
7395 static __init void vmx_set_cpu_caps(void)
7396 {
7397 	kvm_set_cpu_caps();
7398 
7399 	/* CPUID 0x1 */
7400 	if (nested)
7401 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7402 
7403 	/* CPUID 0x7 */
7404 	if (kvm_mpx_supported())
7405 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7406 	if (!cpu_has_vmx_invpcid())
7407 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7408 	if (vmx_pt_mode_is_host_guest())
7409 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7410 
7411 	if (!enable_sgx) {
7412 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7413 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7414 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7415 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7416 	}
7417 
7418 	if (vmx_umip_emulated())
7419 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7420 
7421 	/* CPUID 0xD.1 */
7422 	supported_xss = 0;
7423 	if (!cpu_has_vmx_xsaves())
7424 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7425 
7426 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7427 	if (!cpu_has_vmx_rdtscp()) {
7428 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7429 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7430 	}
7431 
7432 	if (cpu_has_vmx_waitpkg())
7433 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7434 }
7435 
7436 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7437 {
7438 	to_vmx(vcpu)->req_immediate_exit = true;
7439 }
7440 
7441 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7442 				  struct x86_instruction_info *info)
7443 {
7444 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7445 	unsigned short port;
7446 	bool intercept;
7447 	int size;
7448 
7449 	if (info->intercept == x86_intercept_in ||
7450 	    info->intercept == x86_intercept_ins) {
7451 		port = info->src_val;
7452 		size = info->dst_bytes;
7453 	} else {
7454 		port = info->dst_val;
7455 		size = info->src_bytes;
7456 	}
7457 
7458 	/*
7459 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7460 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7461 	 * control.
7462 	 *
7463 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7464 	 */
7465 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7466 		intercept = nested_cpu_has(vmcs12,
7467 					   CPU_BASED_UNCOND_IO_EXITING);
7468 	else
7469 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7470 
7471 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7472 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7473 }
7474 
7475 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7476 			       struct x86_instruction_info *info,
7477 			       enum x86_intercept_stage stage,
7478 			       struct x86_exception *exception)
7479 {
7480 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7481 
7482 	switch (info->intercept) {
7483 	/*
7484 	 * RDPID causes #UD if disabled through secondary execution controls.
7485 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7486 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7487 	 */
7488 	case x86_intercept_rdpid:
7489 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7490 			exception->vector = UD_VECTOR;
7491 			exception->error_code_valid = false;
7492 			return X86EMUL_PROPAGATE_FAULT;
7493 		}
7494 		break;
7495 
7496 	case x86_intercept_in:
7497 	case x86_intercept_ins:
7498 	case x86_intercept_out:
7499 	case x86_intercept_outs:
7500 		return vmx_check_intercept_io(vcpu, info);
7501 
7502 	case x86_intercept_lgdt:
7503 	case x86_intercept_lidt:
7504 	case x86_intercept_lldt:
7505 	case x86_intercept_ltr:
7506 	case x86_intercept_sgdt:
7507 	case x86_intercept_sidt:
7508 	case x86_intercept_sldt:
7509 	case x86_intercept_str:
7510 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7511 			return X86EMUL_CONTINUE;
7512 
7513 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7514 		break;
7515 
7516 	/* TODO: check more intercepts... */
7517 	default:
7518 		break;
7519 	}
7520 
7521 	return X86EMUL_UNHANDLEABLE;
7522 }
7523 
7524 #ifdef CONFIG_X86_64
7525 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7526 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7527 				  u64 divisor, u64 *result)
7528 {
7529 	u64 low = a << shift, high = a >> (64 - shift);
7530 
7531 	/* To avoid the overflow on divq */
7532 	if (high >= divisor)
7533 		return 1;
7534 
7535 	/* Low hold the result, high hold rem which is discarded */
7536 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7537 	    "rm" (divisor), "0" (low), "1" (high));
7538 	*result = low;
7539 
7540 	return 0;
7541 }
7542 
7543 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7544 			    bool *expired)
7545 {
7546 	struct vcpu_vmx *vmx;
7547 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7548 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7549 
7550 	vmx = to_vmx(vcpu);
7551 	tscl = rdtsc();
7552 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7553 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7554 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7555 						    ktimer->timer_advance_ns);
7556 
7557 	if (delta_tsc > lapic_timer_advance_cycles)
7558 		delta_tsc -= lapic_timer_advance_cycles;
7559 	else
7560 		delta_tsc = 0;
7561 
7562 	/* Convert to host delta tsc if tsc scaling is enabled */
7563 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7564 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7565 				kvm_tsc_scaling_ratio_frac_bits,
7566 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7567 		return -ERANGE;
7568 
7569 	/*
7570 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7571 	 * we can't use the preemption timer.
7572 	 * It's possible that it fits on later vmentries, but checking
7573 	 * on every vmentry is costly so we just use an hrtimer.
7574 	 */
7575 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7576 		return -ERANGE;
7577 
7578 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7579 	*expired = !delta_tsc;
7580 	return 0;
7581 }
7582 
7583 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7584 {
7585 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7586 }
7587 #endif
7588 
7589 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7590 {
7591 	if (!kvm_pause_in_guest(vcpu->kvm))
7592 		shrink_ple_window(vcpu);
7593 }
7594 
7595 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7596 {
7597 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7598 
7599 	if (is_guest_mode(vcpu)) {
7600 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7601 		return;
7602 	}
7603 
7604 	/*
7605 	 * Note, cpu_dirty_logging_count can be changed concurrent with this
7606 	 * code, but in that case another update request will be made and so
7607 	 * the guest will never run with a stale PML value.
7608 	 */
7609 	if (vcpu->kvm->arch.cpu_dirty_logging_count)
7610 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7611 	else
7612 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7613 }
7614 
7615 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7616 {
7617 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7618 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7619 			FEAT_CTL_LMCE_ENABLED;
7620 	else
7621 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7622 			~FEAT_CTL_LMCE_ENABLED;
7623 }
7624 
7625 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7626 {
7627 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7628 	if (to_vmx(vcpu)->nested.nested_run_pending)
7629 		return -EBUSY;
7630 	return !is_smm(vcpu);
7631 }
7632 
7633 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7634 {
7635 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7636 
7637 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7638 	if (vmx->nested.smm.guest_mode)
7639 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7640 
7641 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7642 	vmx->nested.vmxon = false;
7643 	vmx_clear_hlt(vcpu);
7644 	return 0;
7645 }
7646 
7647 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7648 {
7649 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7650 	int ret;
7651 
7652 	if (vmx->nested.smm.vmxon) {
7653 		vmx->nested.vmxon = true;
7654 		vmx->nested.smm.vmxon = false;
7655 	}
7656 
7657 	if (vmx->nested.smm.guest_mode) {
7658 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7659 		if (ret)
7660 			return ret;
7661 
7662 		vmx->nested.nested_run_pending = 1;
7663 		vmx->nested.smm.guest_mode = false;
7664 	}
7665 	return 0;
7666 }
7667 
7668 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7669 {
7670 	/* RSM will cause a vmexit anyway.  */
7671 }
7672 
7673 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7674 {
7675 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7676 }
7677 
7678 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7679 {
7680 	if (is_guest_mode(vcpu)) {
7681 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7682 
7683 		if (hrtimer_try_to_cancel(timer) == 1)
7684 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7685 	}
7686 }
7687 
7688 static void hardware_unsetup(void)
7689 {
7690 	kvm_set_posted_intr_wakeup_handler(NULL);
7691 
7692 	if (nested)
7693 		nested_vmx_hardware_unsetup();
7694 
7695 	free_kvm_area();
7696 }
7697 
7698 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7699 {
7700 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7701 			  BIT(APICV_INHIBIT_REASON_ABSENT) |
7702 			  BIT(APICV_INHIBIT_REASON_HYPERV) |
7703 			  BIT(APICV_INHIBIT_REASON_BLOCKIRQ);
7704 
7705 	return supported & BIT(bit);
7706 }
7707 
7708 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7709 	.name = "kvm_intel",
7710 
7711 	.hardware_unsetup = hardware_unsetup,
7712 
7713 	.hardware_enable = hardware_enable,
7714 	.hardware_disable = hardware_disable,
7715 	.cpu_has_accelerated_tpr = report_flexpriority,
7716 	.has_emulated_msr = vmx_has_emulated_msr,
7717 
7718 	.vm_size = sizeof(struct kvm_vmx),
7719 	.vm_init = vmx_vm_init,
7720 
7721 	.vcpu_create = vmx_create_vcpu,
7722 	.vcpu_free = vmx_free_vcpu,
7723 	.vcpu_reset = vmx_vcpu_reset,
7724 
7725 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7726 	.vcpu_load = vmx_vcpu_load,
7727 	.vcpu_put = vmx_vcpu_put,
7728 
7729 	.update_exception_bitmap = vmx_update_exception_bitmap,
7730 	.get_msr_feature = vmx_get_msr_feature,
7731 	.get_msr = vmx_get_msr,
7732 	.set_msr = vmx_set_msr,
7733 	.get_segment_base = vmx_get_segment_base,
7734 	.get_segment = vmx_get_segment,
7735 	.set_segment = vmx_set_segment,
7736 	.get_cpl = vmx_get_cpl,
7737 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7738 	.set_cr0 = vmx_set_cr0,
7739 	.is_valid_cr4 = vmx_is_valid_cr4,
7740 	.set_cr4 = vmx_set_cr4,
7741 	.set_efer = vmx_set_efer,
7742 	.get_idt = vmx_get_idt,
7743 	.set_idt = vmx_set_idt,
7744 	.get_gdt = vmx_get_gdt,
7745 	.set_gdt = vmx_set_gdt,
7746 	.set_dr7 = vmx_set_dr7,
7747 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7748 	.cache_reg = vmx_cache_reg,
7749 	.get_rflags = vmx_get_rflags,
7750 	.set_rflags = vmx_set_rflags,
7751 	.get_if_flag = vmx_get_if_flag,
7752 
7753 	.tlb_flush_all = vmx_flush_tlb_all,
7754 	.tlb_flush_current = vmx_flush_tlb_current,
7755 	.tlb_flush_gva = vmx_flush_tlb_gva,
7756 	.tlb_flush_guest = vmx_flush_tlb_guest,
7757 
7758 	.vcpu_pre_run = vmx_vcpu_pre_run,
7759 	.run = vmx_vcpu_run,
7760 	.handle_exit = vmx_handle_exit,
7761 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7762 	.update_emulated_instruction = vmx_update_emulated_instruction,
7763 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7764 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7765 	.patch_hypercall = vmx_patch_hypercall,
7766 	.set_irq = vmx_inject_irq,
7767 	.set_nmi = vmx_inject_nmi,
7768 	.queue_exception = vmx_queue_exception,
7769 	.cancel_injection = vmx_cancel_injection,
7770 	.interrupt_allowed = vmx_interrupt_allowed,
7771 	.nmi_allowed = vmx_nmi_allowed,
7772 	.get_nmi_mask = vmx_get_nmi_mask,
7773 	.set_nmi_mask = vmx_set_nmi_mask,
7774 	.enable_nmi_window = vmx_enable_nmi_window,
7775 	.enable_irq_window = vmx_enable_irq_window,
7776 	.update_cr8_intercept = vmx_update_cr8_intercept,
7777 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7778 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7779 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7780 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7781 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7782 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7783 	.hwapic_irr_update = vmx_hwapic_irr_update,
7784 	.hwapic_isr_update = vmx_hwapic_isr_update,
7785 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7786 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7787 	.deliver_interrupt = vmx_deliver_interrupt,
7788 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7789 
7790 	.set_tss_addr = vmx_set_tss_addr,
7791 	.set_identity_map_addr = vmx_set_identity_map_addr,
7792 	.get_mt_mask = vmx_get_mt_mask,
7793 
7794 	.get_exit_info = vmx_get_exit_info,
7795 
7796 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7797 
7798 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7799 
7800 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
7801 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
7802 	.write_tsc_offset = vmx_write_tsc_offset,
7803 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
7804 
7805 	.load_mmu_pgd = vmx_load_mmu_pgd,
7806 
7807 	.check_intercept = vmx_check_intercept,
7808 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7809 
7810 	.request_immediate_exit = vmx_request_immediate_exit,
7811 
7812 	.sched_in = vmx_sched_in,
7813 
7814 	.cpu_dirty_log_size = PML_ENTITY_NUM,
7815 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7816 
7817 	.pmu_ops = &intel_pmu_ops,
7818 	.nested_ops = &vmx_nested_ops,
7819 
7820 	.update_pi_irte = pi_update_irte,
7821 	.start_assignment = vmx_pi_start_assignment,
7822 
7823 #ifdef CONFIG_X86_64
7824 	.set_hv_timer = vmx_set_hv_timer,
7825 	.cancel_hv_timer = vmx_cancel_hv_timer,
7826 #endif
7827 
7828 	.setup_mce = vmx_setup_mce,
7829 
7830 	.smi_allowed = vmx_smi_allowed,
7831 	.enter_smm = vmx_enter_smm,
7832 	.leave_smm = vmx_leave_smm,
7833 	.enable_smi_window = vmx_enable_smi_window,
7834 
7835 	.can_emulate_instruction = vmx_can_emulate_instruction,
7836 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7837 	.migrate_timers = vmx_migrate_timers,
7838 
7839 	.msr_filter_changed = vmx_msr_filter_changed,
7840 	.complete_emulated_msr = kvm_complete_insn_gp,
7841 
7842 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7843 };
7844 
7845 static unsigned int vmx_handle_intel_pt_intr(void)
7846 {
7847 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
7848 
7849 	/* '0' on failure so that the !PT case can use a RET0 static call. */
7850 	if (!kvm_arch_pmi_in_guest(vcpu))
7851 		return 0;
7852 
7853 	kvm_make_request(KVM_REQ_PMI, vcpu);
7854 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7855 		  (unsigned long *)&vcpu->arch.pmu.global_status);
7856 	return 1;
7857 }
7858 
7859 static __init void vmx_setup_user_return_msrs(void)
7860 {
7861 
7862 	/*
7863 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7864 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
7865 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7866 	 * support this emulation, MSR_STAR is included in the list for i386,
7867 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
7868 	 * into hardware and is here purely for emulation purposes.
7869 	 */
7870 	const u32 vmx_uret_msrs_list[] = {
7871 	#ifdef CONFIG_X86_64
7872 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7873 	#endif
7874 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7875 		MSR_IA32_TSX_CTRL,
7876 	};
7877 	int i;
7878 
7879 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7880 
7881 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7882 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7883 }
7884 
7885 static struct kvm_x86_init_ops vmx_init_ops __initdata;
7886 
7887 static __init int hardware_setup(void)
7888 {
7889 	unsigned long host_bndcfgs;
7890 	struct desc_ptr dt;
7891 	int r;
7892 
7893 	store_idt(&dt);
7894 	host_idt_base = dt.address;
7895 
7896 	vmx_setup_user_return_msrs();
7897 
7898 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7899 		return -EIO;
7900 
7901 	if (boot_cpu_has(X86_FEATURE_NX))
7902 		kvm_enable_efer_bits(EFER_NX);
7903 
7904 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7905 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7906 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7907 	}
7908 
7909 	if (!cpu_has_vmx_mpx())
7910 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7911 				    XFEATURE_MASK_BNDCSR);
7912 
7913 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7914 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7915 		enable_vpid = 0;
7916 
7917 	if (!cpu_has_vmx_ept() ||
7918 	    !cpu_has_vmx_ept_4levels() ||
7919 	    !cpu_has_vmx_ept_mt_wb() ||
7920 	    !cpu_has_vmx_invept_global())
7921 		enable_ept = 0;
7922 
7923 	/* NX support is required for shadow paging. */
7924 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
7925 		pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
7926 		return -EOPNOTSUPP;
7927 	}
7928 
7929 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7930 		enable_ept_ad_bits = 0;
7931 
7932 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7933 		enable_unrestricted_guest = 0;
7934 
7935 	if (!cpu_has_vmx_flexpriority())
7936 		flexpriority_enabled = 0;
7937 
7938 	if (!cpu_has_virtual_nmis())
7939 		enable_vnmi = 0;
7940 
7941 	/*
7942 	 * set_apic_access_page_addr() is used to reload apic access
7943 	 * page upon invalidation.  No need to do anything if not
7944 	 * using the APIC_ACCESS_ADDR VMCS field.
7945 	 */
7946 	if (!flexpriority_enabled)
7947 		vmx_x86_ops.set_apic_access_page_addr = NULL;
7948 
7949 	if (!cpu_has_vmx_tpr_shadow())
7950 		vmx_x86_ops.update_cr8_intercept = NULL;
7951 
7952 #if IS_ENABLED(CONFIG_HYPERV)
7953 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7954 	    && enable_ept) {
7955 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7956 		vmx_x86_ops.tlb_remote_flush_with_range =
7957 				hv_remote_flush_tlb_with_range;
7958 	}
7959 #endif
7960 
7961 	if (!cpu_has_vmx_ple()) {
7962 		ple_gap = 0;
7963 		ple_window = 0;
7964 		ple_window_grow = 0;
7965 		ple_window_max = 0;
7966 		ple_window_shrink = 0;
7967 	}
7968 
7969 	if (!cpu_has_vmx_apicv())
7970 		enable_apicv = 0;
7971 	if (!enable_apicv)
7972 		vmx_x86_ops.sync_pir_to_irr = NULL;
7973 
7974 	if (cpu_has_vmx_tsc_scaling()) {
7975 		kvm_has_tsc_control = true;
7976 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7977 		kvm_tsc_scaling_ratio_frac_bits = 48;
7978 	}
7979 
7980 	kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7981 
7982 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7983 
7984 	if (enable_ept)
7985 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
7986 				      cpu_has_vmx_ept_execute_only());
7987 
7988 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
7989 			  ept_caps_to_lpage_level(vmx_capability.ept));
7990 
7991 	/*
7992 	 * Only enable PML when hardware supports PML feature, and both EPT
7993 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7994 	 */
7995 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7996 		enable_pml = 0;
7997 
7998 	if (!enable_pml)
7999 		vmx_x86_ops.cpu_dirty_log_size = 0;
8000 
8001 	if (!cpu_has_vmx_preemption_timer())
8002 		enable_preemption_timer = false;
8003 
8004 	if (enable_preemption_timer) {
8005 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8006 		u64 vmx_msr;
8007 
8008 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
8009 		cpu_preemption_timer_multi =
8010 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8011 
8012 		if (tsc_khz)
8013 			use_timer_freq = (u64)tsc_khz * 1000;
8014 		use_timer_freq >>= cpu_preemption_timer_multi;
8015 
8016 		/*
8017 		 * KVM "disables" the preemption timer by setting it to its max
8018 		 * value.  Don't use the timer if it might cause spurious exits
8019 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8020 		 */
8021 		if (use_timer_freq > 0xffffffffu / 10)
8022 			enable_preemption_timer = false;
8023 	}
8024 
8025 	if (!enable_preemption_timer) {
8026 		vmx_x86_ops.set_hv_timer = NULL;
8027 		vmx_x86_ops.cancel_hv_timer = NULL;
8028 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8029 	}
8030 
8031 	kvm_mce_cap_supported |= MCG_LMCE_P;
8032 
8033 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8034 		return -EINVAL;
8035 	if (!enable_ept || !cpu_has_vmx_intel_pt())
8036 		pt_mode = PT_MODE_SYSTEM;
8037 	if (pt_mode == PT_MODE_HOST_GUEST)
8038 		vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8039 	else
8040 		vmx_init_ops.handle_intel_pt_intr = NULL;
8041 
8042 	setup_default_sgx_lepubkeyhash();
8043 
8044 	if (nested) {
8045 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8046 					   vmx_capability.ept);
8047 
8048 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8049 		if (r)
8050 			return r;
8051 	}
8052 
8053 	vmx_set_cpu_caps();
8054 
8055 	r = alloc_kvm_area();
8056 	if (r)
8057 		nested_vmx_hardware_unsetup();
8058 
8059 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8060 
8061 	return r;
8062 }
8063 
8064 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8065 	.cpu_has_kvm_support = cpu_has_kvm_support,
8066 	.disabled_by_bios = vmx_disabled_by_bios,
8067 	.check_processor_compatibility = vmx_check_processor_compat,
8068 	.hardware_setup = hardware_setup,
8069 	.handle_intel_pt_intr = NULL,
8070 
8071 	.runtime_ops = &vmx_x86_ops,
8072 };
8073 
8074 static void vmx_cleanup_l1d_flush(void)
8075 {
8076 	if (vmx_l1d_flush_pages) {
8077 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8078 		vmx_l1d_flush_pages = NULL;
8079 	}
8080 	/* Restore state so sysfs ignores VMX */
8081 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8082 }
8083 
8084 static void vmx_exit(void)
8085 {
8086 #ifdef CONFIG_KEXEC_CORE
8087 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8088 	synchronize_rcu();
8089 #endif
8090 
8091 	kvm_exit();
8092 
8093 #if IS_ENABLED(CONFIG_HYPERV)
8094 	if (static_branch_unlikely(&enable_evmcs)) {
8095 		int cpu;
8096 		struct hv_vp_assist_page *vp_ap;
8097 		/*
8098 		 * Reset everything to support using non-enlightened VMCS
8099 		 * access later (e.g. when we reload the module with
8100 		 * enlightened_vmcs=0)
8101 		 */
8102 		for_each_online_cpu(cpu) {
8103 			vp_ap =	hv_get_vp_assist_page(cpu);
8104 
8105 			if (!vp_ap)
8106 				continue;
8107 
8108 			vp_ap->nested_control.features.directhypercall = 0;
8109 			vp_ap->current_nested_vmcs = 0;
8110 			vp_ap->enlighten_vmentry = 0;
8111 		}
8112 
8113 		static_branch_disable(&enable_evmcs);
8114 	}
8115 #endif
8116 	vmx_cleanup_l1d_flush();
8117 
8118 	allow_smaller_maxphyaddr = false;
8119 }
8120 module_exit(vmx_exit);
8121 
8122 static int __init vmx_init(void)
8123 {
8124 	int r, cpu;
8125 
8126 #if IS_ENABLED(CONFIG_HYPERV)
8127 	/*
8128 	 * Enlightened VMCS usage should be recommended and the host needs
8129 	 * to support eVMCS v1 or above. We can also disable eVMCS support
8130 	 * with module parameter.
8131 	 */
8132 	if (enlightened_vmcs &&
8133 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8134 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8135 	    KVM_EVMCS_VERSION) {
8136 		int cpu;
8137 
8138 		/* Check that we have assist pages on all online CPUs */
8139 		for_each_online_cpu(cpu) {
8140 			if (!hv_get_vp_assist_page(cpu)) {
8141 				enlightened_vmcs = false;
8142 				break;
8143 			}
8144 		}
8145 
8146 		if (enlightened_vmcs) {
8147 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8148 			static_branch_enable(&enable_evmcs);
8149 		}
8150 
8151 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8152 			vmx_x86_ops.enable_direct_tlbflush
8153 				= hv_enable_direct_tlbflush;
8154 
8155 	} else {
8156 		enlightened_vmcs = false;
8157 	}
8158 #endif
8159 
8160 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8161 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8162 	if (r)
8163 		return r;
8164 
8165 	/*
8166 	 * Must be called after kvm_init() so enable_ept is properly set
8167 	 * up. Hand the parameter mitigation value in which was stored in
8168 	 * the pre module init parser. If no parameter was given, it will
8169 	 * contain 'auto' which will be turned into the default 'cond'
8170 	 * mitigation mode.
8171 	 */
8172 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8173 	if (r) {
8174 		vmx_exit();
8175 		return r;
8176 	}
8177 
8178 	for_each_possible_cpu(cpu) {
8179 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8180 
8181 		pi_init_cpu(cpu);
8182 	}
8183 
8184 #ifdef CONFIG_KEXEC_CORE
8185 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8186 			   crash_vmclear_local_loaded_vmcss);
8187 #endif
8188 	vmx_check_vmcs12_offsets();
8189 
8190 	/*
8191 	 * Shadow paging doesn't have a (further) performance penalty
8192 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8193 	 * by default
8194 	 */
8195 	if (!enable_ept)
8196 		allow_smaller_maxphyaddr = true;
8197 
8198 	return 0;
8199 }
8200 module_init(vmx_init);
8201