1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <linux/highmem.h> 17 #include <linux/hrtimer.h> 18 #include <linux/kernel.h> 19 #include <linux/kvm_host.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mm.h> 24 #include <linux/objtool.h> 25 #include <linux/sched.h> 26 #include <linux/sched/smt.h> 27 #include <linux/slab.h> 28 #include <linux/tboot.h> 29 #include <linux/trace_events.h> 30 #include <linux/entry-kvm.h> 31 32 #include <asm/apic.h> 33 #include <asm/asm.h> 34 #include <asm/cpu.h> 35 #include <asm/cpu_device_id.h> 36 #include <asm/debugreg.h> 37 #include <asm/desc.h> 38 #include <asm/fpu/api.h> 39 #include <asm/fpu/xstate.h> 40 #include <asm/idtentry.h> 41 #include <asm/io.h> 42 #include <asm/irq_remapping.h> 43 #include <asm/kexec.h> 44 #include <asm/perf_event.h> 45 #include <asm/mmu_context.h> 46 #include <asm/mshyperv.h> 47 #include <asm/mwait.h> 48 #include <asm/spec-ctrl.h> 49 #include <asm/virtext.h> 50 #include <asm/vmx.h> 51 52 #include "capabilities.h" 53 #include "cpuid.h" 54 #include "evmcs.h" 55 #include "hyperv.h" 56 #include "kvm_onhyperv.h" 57 #include "irq.h" 58 #include "kvm_cache_regs.h" 59 #include "lapic.h" 60 #include "mmu.h" 61 #include "nested.h" 62 #include "pmu.h" 63 #include "sgx.h" 64 #include "trace.h" 65 #include "vmcs.h" 66 #include "vmcs12.h" 67 #include "vmx.h" 68 #include "x86.h" 69 70 MODULE_AUTHOR("Qumranet"); 71 MODULE_LICENSE("GPL"); 72 73 #ifdef MODULE 74 static const struct x86_cpu_id vmx_cpu_id[] = { 75 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 76 {} 77 }; 78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 79 #endif 80 81 bool __read_mostly enable_vpid = 1; 82 module_param_named(vpid, enable_vpid, bool, 0444); 83 84 static bool __read_mostly enable_vnmi = 1; 85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 86 87 bool __read_mostly flexpriority_enabled = 1; 88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 89 90 bool __read_mostly enable_ept = 1; 91 module_param_named(ept, enable_ept, bool, S_IRUGO); 92 93 bool __read_mostly enable_unrestricted_guest = 1; 94 module_param_named(unrestricted_guest, 95 enable_unrestricted_guest, bool, S_IRUGO); 96 97 bool __read_mostly enable_ept_ad_bits = 1; 98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 99 100 static bool __read_mostly emulate_invalid_guest_state = true; 101 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 102 103 static bool __read_mostly fasteoi = 1; 104 module_param(fasteoi, bool, S_IRUGO); 105 106 module_param(enable_apicv, bool, S_IRUGO); 107 108 /* 109 * If nested=1, nested virtualization is supported, i.e., guests may use 110 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 111 * use VMX instructions. 112 */ 113 static bool __read_mostly nested = 1; 114 module_param(nested, bool, S_IRUGO); 115 116 bool __read_mostly enable_pml = 1; 117 module_param_named(pml, enable_pml, bool, S_IRUGO); 118 119 static bool __read_mostly dump_invalid_vmcs = 0; 120 module_param(dump_invalid_vmcs, bool, 0644); 121 122 #define MSR_BITMAP_MODE_X2APIC 1 123 #define MSR_BITMAP_MODE_X2APIC_APICV 2 124 125 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 126 127 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 128 static int __read_mostly cpu_preemption_timer_multi; 129 static bool __read_mostly enable_preemption_timer = 1; 130 #ifdef CONFIG_X86_64 131 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 132 #endif 133 134 extern bool __read_mostly allow_smaller_maxphyaddr; 135 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 136 137 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 138 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 139 #define KVM_VM_CR0_ALWAYS_ON \ 140 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 141 142 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 143 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 144 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 145 146 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 147 148 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 149 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 150 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 151 RTIT_STATUS_BYTECNT)) 152 153 /* 154 * List of MSRs that can be directly passed to the guest. 155 * In addition to these x2apic and PT MSRs are handled specially. 156 */ 157 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 158 MSR_IA32_SPEC_CTRL, 159 MSR_IA32_PRED_CMD, 160 MSR_IA32_TSC, 161 #ifdef CONFIG_X86_64 162 MSR_FS_BASE, 163 MSR_GS_BASE, 164 MSR_KERNEL_GS_BASE, 165 MSR_IA32_XFD, 166 MSR_IA32_XFD_ERR, 167 #endif 168 MSR_IA32_SYSENTER_CS, 169 MSR_IA32_SYSENTER_ESP, 170 MSR_IA32_SYSENTER_EIP, 171 MSR_CORE_C1_RES, 172 MSR_CORE_C3_RESIDENCY, 173 MSR_CORE_C6_RESIDENCY, 174 MSR_CORE_C7_RESIDENCY, 175 }; 176 177 /* 178 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 179 * ple_gap: upper bound on the amount of time between two successive 180 * executions of PAUSE in a loop. Also indicate if ple enabled. 181 * According to test, this time is usually smaller than 128 cycles. 182 * ple_window: upper bound on the amount of time a guest is allowed to execute 183 * in a PAUSE loop. Tests indicate that most spinlocks are held for 184 * less than 2^12 cycles 185 * Time is measured based on a counter that runs at the same rate as the TSC, 186 * refer SDM volume 3b section 21.6.13 & 22.1.3. 187 */ 188 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 189 module_param(ple_gap, uint, 0444); 190 191 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 192 module_param(ple_window, uint, 0444); 193 194 /* Default doubles per-vcpu window every exit. */ 195 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 196 module_param(ple_window_grow, uint, 0444); 197 198 /* Default resets per-vcpu window every exit to ple_window. */ 199 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 200 module_param(ple_window_shrink, uint, 0444); 201 202 /* Default is to compute the maximum so we can never overflow. */ 203 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 204 module_param(ple_window_max, uint, 0444); 205 206 /* Default is SYSTEM mode, 1 for host-guest mode */ 207 int __read_mostly pt_mode = PT_MODE_SYSTEM; 208 module_param(pt_mode, int, S_IRUGO); 209 210 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 211 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 212 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 213 214 /* Storage for pre module init parameter parsing */ 215 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 216 217 static const struct { 218 const char *option; 219 bool for_parse; 220 } vmentry_l1d_param[] = { 221 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 222 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 223 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 224 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 225 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 226 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 227 }; 228 229 #define L1D_CACHE_ORDER 4 230 static void *vmx_l1d_flush_pages; 231 232 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 233 { 234 struct page *page; 235 unsigned int i; 236 237 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 238 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 239 return 0; 240 } 241 242 if (!enable_ept) { 243 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 244 return 0; 245 } 246 247 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 248 u64 msr; 249 250 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 251 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 252 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 253 return 0; 254 } 255 } 256 257 /* If set to auto use the default l1tf mitigation method */ 258 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 259 switch (l1tf_mitigation) { 260 case L1TF_MITIGATION_OFF: 261 l1tf = VMENTER_L1D_FLUSH_NEVER; 262 break; 263 case L1TF_MITIGATION_FLUSH_NOWARN: 264 case L1TF_MITIGATION_FLUSH: 265 case L1TF_MITIGATION_FLUSH_NOSMT: 266 l1tf = VMENTER_L1D_FLUSH_COND; 267 break; 268 case L1TF_MITIGATION_FULL: 269 case L1TF_MITIGATION_FULL_FORCE: 270 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 271 break; 272 } 273 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 274 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 275 } 276 277 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 278 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 279 /* 280 * This allocation for vmx_l1d_flush_pages is not tied to a VM 281 * lifetime and so should not be charged to a memcg. 282 */ 283 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 284 if (!page) 285 return -ENOMEM; 286 vmx_l1d_flush_pages = page_address(page); 287 288 /* 289 * Initialize each page with a different pattern in 290 * order to protect against KSM in the nested 291 * virtualization case. 292 */ 293 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 294 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 295 PAGE_SIZE); 296 } 297 } 298 299 l1tf_vmx_mitigation = l1tf; 300 301 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 302 static_branch_enable(&vmx_l1d_should_flush); 303 else 304 static_branch_disable(&vmx_l1d_should_flush); 305 306 if (l1tf == VMENTER_L1D_FLUSH_COND) 307 static_branch_enable(&vmx_l1d_flush_cond); 308 else 309 static_branch_disable(&vmx_l1d_flush_cond); 310 return 0; 311 } 312 313 static int vmentry_l1d_flush_parse(const char *s) 314 { 315 unsigned int i; 316 317 if (s) { 318 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 319 if (vmentry_l1d_param[i].for_parse && 320 sysfs_streq(s, vmentry_l1d_param[i].option)) 321 return i; 322 } 323 } 324 return -EINVAL; 325 } 326 327 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 328 { 329 int l1tf, ret; 330 331 l1tf = vmentry_l1d_flush_parse(s); 332 if (l1tf < 0) 333 return l1tf; 334 335 if (!boot_cpu_has(X86_BUG_L1TF)) 336 return 0; 337 338 /* 339 * Has vmx_init() run already? If not then this is the pre init 340 * parameter parsing. In that case just store the value and let 341 * vmx_init() do the proper setup after enable_ept has been 342 * established. 343 */ 344 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 345 vmentry_l1d_flush_param = l1tf; 346 return 0; 347 } 348 349 mutex_lock(&vmx_l1d_flush_mutex); 350 ret = vmx_setup_l1d_flush(l1tf); 351 mutex_unlock(&vmx_l1d_flush_mutex); 352 return ret; 353 } 354 355 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 356 { 357 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 358 return sprintf(s, "???\n"); 359 360 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 361 } 362 363 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 364 .set = vmentry_l1d_flush_set, 365 .get = vmentry_l1d_flush_get, 366 }; 367 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 368 369 static u32 vmx_segment_access_rights(struct kvm_segment *var); 370 371 void vmx_vmexit(void); 372 373 #define vmx_insn_failed(fmt...) \ 374 do { \ 375 WARN_ONCE(1, fmt); \ 376 pr_warn_ratelimited(fmt); \ 377 } while (0) 378 379 asmlinkage void vmread_error(unsigned long field, bool fault) 380 { 381 if (fault) 382 kvm_spurious_fault(); 383 else 384 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field); 385 } 386 387 noinline void vmwrite_error(unsigned long field, unsigned long value) 388 { 389 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n", 390 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 391 } 392 393 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 394 { 395 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr); 396 } 397 398 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 399 { 400 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr); 401 } 402 403 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 404 { 405 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 406 ext, vpid, gva); 407 } 408 409 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 410 { 411 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 412 ext, eptp, gpa); 413 } 414 415 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 416 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 417 /* 418 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 419 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 420 */ 421 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 422 423 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 424 static DEFINE_SPINLOCK(vmx_vpid_lock); 425 426 struct vmcs_config vmcs_config; 427 struct vmx_capability vmx_capability; 428 429 #define VMX_SEGMENT_FIELD(seg) \ 430 [VCPU_SREG_##seg] = { \ 431 .selector = GUEST_##seg##_SELECTOR, \ 432 .base = GUEST_##seg##_BASE, \ 433 .limit = GUEST_##seg##_LIMIT, \ 434 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 435 } 436 437 static const struct kvm_vmx_segment_field { 438 unsigned selector; 439 unsigned base; 440 unsigned limit; 441 unsigned ar_bytes; 442 } kvm_vmx_segment_fields[] = { 443 VMX_SEGMENT_FIELD(CS), 444 VMX_SEGMENT_FIELD(DS), 445 VMX_SEGMENT_FIELD(ES), 446 VMX_SEGMENT_FIELD(FS), 447 VMX_SEGMENT_FIELD(GS), 448 VMX_SEGMENT_FIELD(SS), 449 VMX_SEGMENT_FIELD(TR), 450 VMX_SEGMENT_FIELD(LDTR), 451 }; 452 453 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 454 { 455 vmx->segment_cache.bitmask = 0; 456 } 457 458 static unsigned long host_idt_base; 459 460 #if IS_ENABLED(CONFIG_HYPERV) 461 static bool __read_mostly enlightened_vmcs = true; 462 module_param(enlightened_vmcs, bool, 0444); 463 464 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu) 465 { 466 struct hv_enlightened_vmcs *evmcs; 467 struct hv_partition_assist_pg **p_hv_pa_pg = 468 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 469 /* 470 * Synthetic VM-Exit is not enabled in current code and so All 471 * evmcs in singe VM shares same assist page. 472 */ 473 if (!*p_hv_pa_pg) 474 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 475 476 if (!*p_hv_pa_pg) 477 return -ENOMEM; 478 479 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 480 481 evmcs->partition_assist_page = 482 __pa(*p_hv_pa_pg); 483 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 484 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 485 486 return 0; 487 } 488 489 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 490 491 /* 492 * Comment's format: document - errata name - stepping - processor name. 493 * Refer from 494 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 495 */ 496 static u32 vmx_preemption_cpu_tfms[] = { 497 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 498 0x000206E6, 499 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 500 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 501 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 502 0x00020652, 503 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 504 0x00020655, 505 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 506 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 507 /* 508 * 320767.pdf - AAP86 - B1 - 509 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 510 */ 511 0x000106E5, 512 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 513 0x000106A0, 514 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 515 0x000106A1, 516 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 517 0x000106A4, 518 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 519 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 520 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 521 0x000106A5, 522 /* Xeon E3-1220 V2 */ 523 0x000306A8, 524 }; 525 526 static inline bool cpu_has_broken_vmx_preemption_timer(void) 527 { 528 u32 eax = cpuid_eax(0x00000001), i; 529 530 /* Clear the reserved bits */ 531 eax &= ~(0x3U << 14 | 0xfU << 28); 532 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 533 if (eax == vmx_preemption_cpu_tfms[i]) 534 return true; 535 536 return false; 537 } 538 539 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 540 { 541 return flexpriority_enabled && lapic_in_kernel(vcpu); 542 } 543 544 static inline bool report_flexpriority(void) 545 { 546 return flexpriority_enabled; 547 } 548 549 static int possible_passthrough_msr_slot(u32 msr) 550 { 551 u32 i; 552 553 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 554 if (vmx_possible_passthrough_msrs[i] == msr) 555 return i; 556 557 return -ENOENT; 558 } 559 560 static bool is_valid_passthrough_msr(u32 msr) 561 { 562 bool r; 563 564 switch (msr) { 565 case 0x800 ... 0x8ff: 566 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 567 return true; 568 case MSR_IA32_RTIT_STATUS: 569 case MSR_IA32_RTIT_OUTPUT_BASE: 570 case MSR_IA32_RTIT_OUTPUT_MASK: 571 case MSR_IA32_RTIT_CR3_MATCH: 572 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 573 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 574 case MSR_LBR_SELECT: 575 case MSR_LBR_TOS: 576 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 577 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 578 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 579 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 580 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 581 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 582 return true; 583 } 584 585 r = possible_passthrough_msr_slot(msr) != -ENOENT; 586 587 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 588 589 return r; 590 } 591 592 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 593 { 594 int i; 595 596 i = kvm_find_user_return_msr(msr); 597 if (i >= 0) 598 return &vmx->guest_uret_msrs[i]; 599 return NULL; 600 } 601 602 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 603 struct vmx_uret_msr *msr, u64 data) 604 { 605 unsigned int slot = msr - vmx->guest_uret_msrs; 606 int ret = 0; 607 608 if (msr->load_into_hardware) { 609 preempt_disable(); 610 ret = kvm_set_user_return_msr(slot, data, msr->mask); 611 preempt_enable(); 612 } 613 if (!ret) 614 msr->data = data; 615 return ret; 616 } 617 618 #ifdef CONFIG_KEXEC_CORE 619 static void crash_vmclear_local_loaded_vmcss(void) 620 { 621 int cpu = raw_smp_processor_id(); 622 struct loaded_vmcs *v; 623 624 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 625 loaded_vmcss_on_cpu_link) 626 vmcs_clear(v->vmcs); 627 } 628 #endif /* CONFIG_KEXEC_CORE */ 629 630 static void __loaded_vmcs_clear(void *arg) 631 { 632 struct loaded_vmcs *loaded_vmcs = arg; 633 int cpu = raw_smp_processor_id(); 634 635 if (loaded_vmcs->cpu != cpu) 636 return; /* vcpu migration can race with cpu offline */ 637 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 638 per_cpu(current_vmcs, cpu) = NULL; 639 640 vmcs_clear(loaded_vmcs->vmcs); 641 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 642 vmcs_clear(loaded_vmcs->shadow_vmcs); 643 644 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 645 646 /* 647 * Ensure all writes to loaded_vmcs, including deleting it from its 648 * current percpu list, complete before setting loaded_vmcs->vcpu to 649 * -1, otherwise a different cpu can see vcpu == -1 first and add 650 * loaded_vmcs to its percpu list before it's deleted from this cpu's 651 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 652 */ 653 smp_wmb(); 654 655 loaded_vmcs->cpu = -1; 656 loaded_vmcs->launched = 0; 657 } 658 659 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 660 { 661 int cpu = loaded_vmcs->cpu; 662 663 if (cpu != -1) 664 smp_call_function_single(cpu, 665 __loaded_vmcs_clear, loaded_vmcs, 1); 666 } 667 668 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 669 unsigned field) 670 { 671 bool ret; 672 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 673 674 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 675 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 676 vmx->segment_cache.bitmask = 0; 677 } 678 ret = vmx->segment_cache.bitmask & mask; 679 vmx->segment_cache.bitmask |= mask; 680 return ret; 681 } 682 683 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 684 { 685 u16 *p = &vmx->segment_cache.seg[seg].selector; 686 687 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 688 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 689 return *p; 690 } 691 692 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 693 { 694 ulong *p = &vmx->segment_cache.seg[seg].base; 695 696 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 697 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 698 return *p; 699 } 700 701 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 702 { 703 u32 *p = &vmx->segment_cache.seg[seg].limit; 704 705 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 706 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 707 return *p; 708 } 709 710 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 711 { 712 u32 *p = &vmx->segment_cache.seg[seg].ar; 713 714 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 715 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 716 return *p; 717 } 718 719 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 720 { 721 u32 eb; 722 723 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 724 (1u << DB_VECTOR) | (1u << AC_VECTOR); 725 /* 726 * Guest access to VMware backdoor ports could legitimately 727 * trigger #GP because of TSS I/O permission bitmap. 728 * We intercept those #GP and allow access to them anyway 729 * as VMware does. 730 */ 731 if (enable_vmware_backdoor) 732 eb |= (1u << GP_VECTOR); 733 if ((vcpu->guest_debug & 734 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 735 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 736 eb |= 1u << BP_VECTOR; 737 if (to_vmx(vcpu)->rmode.vm86_active) 738 eb = ~0; 739 if (!vmx_need_pf_intercept(vcpu)) 740 eb &= ~(1u << PF_VECTOR); 741 742 /* When we are running a nested L2 guest and L1 specified for it a 743 * certain exception bitmap, we must trap the same exceptions and pass 744 * them to L1. When running L2, we will only handle the exceptions 745 * specified above if L1 did not want them. 746 */ 747 if (is_guest_mode(vcpu)) 748 eb |= get_vmcs12(vcpu)->exception_bitmap; 749 else { 750 int mask = 0, match = 0; 751 752 if (enable_ept && (eb & (1u << PF_VECTOR))) { 753 /* 754 * If EPT is enabled, #PF is currently only intercepted 755 * if MAXPHYADDR is smaller on the guest than on the 756 * host. In that case we only care about present, 757 * non-reserved faults. For vmcs02, however, PFEC_MASK 758 * and PFEC_MATCH are set in prepare_vmcs02_rare. 759 */ 760 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 761 match = PFERR_PRESENT_MASK; 762 } 763 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 764 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 765 } 766 767 /* 768 * Disabling xfd interception indicates that dynamic xfeatures 769 * might be used in the guest. Always trap #NM in this case 770 * to save guest xfd_err timely. 771 */ 772 if (vcpu->arch.xfd_no_write_intercept) 773 eb |= (1u << NM_VECTOR); 774 775 vmcs_write32(EXCEPTION_BITMAP, eb); 776 } 777 778 /* 779 * Check if MSR is intercepted for currently loaded MSR bitmap. 780 */ 781 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 782 { 783 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 784 return true; 785 786 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, 787 MSR_IA32_SPEC_CTRL); 788 } 789 790 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 791 unsigned long entry, unsigned long exit) 792 { 793 vm_entry_controls_clearbit(vmx, entry); 794 vm_exit_controls_clearbit(vmx, exit); 795 } 796 797 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 798 { 799 unsigned int i; 800 801 for (i = 0; i < m->nr; ++i) { 802 if (m->val[i].index == msr) 803 return i; 804 } 805 return -ENOENT; 806 } 807 808 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 809 { 810 int i; 811 struct msr_autoload *m = &vmx->msr_autoload; 812 813 switch (msr) { 814 case MSR_EFER: 815 if (cpu_has_load_ia32_efer()) { 816 clear_atomic_switch_msr_special(vmx, 817 VM_ENTRY_LOAD_IA32_EFER, 818 VM_EXIT_LOAD_IA32_EFER); 819 return; 820 } 821 break; 822 case MSR_CORE_PERF_GLOBAL_CTRL: 823 if (cpu_has_load_perf_global_ctrl()) { 824 clear_atomic_switch_msr_special(vmx, 825 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 826 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 827 return; 828 } 829 break; 830 } 831 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 832 if (i < 0) 833 goto skip_guest; 834 --m->guest.nr; 835 m->guest.val[i] = m->guest.val[m->guest.nr]; 836 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 837 838 skip_guest: 839 i = vmx_find_loadstore_msr_slot(&m->host, msr); 840 if (i < 0) 841 return; 842 843 --m->host.nr; 844 m->host.val[i] = m->host.val[m->host.nr]; 845 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 846 } 847 848 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 849 unsigned long entry, unsigned long exit, 850 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 851 u64 guest_val, u64 host_val) 852 { 853 vmcs_write64(guest_val_vmcs, guest_val); 854 if (host_val_vmcs != HOST_IA32_EFER) 855 vmcs_write64(host_val_vmcs, host_val); 856 vm_entry_controls_setbit(vmx, entry); 857 vm_exit_controls_setbit(vmx, exit); 858 } 859 860 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 861 u64 guest_val, u64 host_val, bool entry_only) 862 { 863 int i, j = 0; 864 struct msr_autoload *m = &vmx->msr_autoload; 865 866 switch (msr) { 867 case MSR_EFER: 868 if (cpu_has_load_ia32_efer()) { 869 add_atomic_switch_msr_special(vmx, 870 VM_ENTRY_LOAD_IA32_EFER, 871 VM_EXIT_LOAD_IA32_EFER, 872 GUEST_IA32_EFER, 873 HOST_IA32_EFER, 874 guest_val, host_val); 875 return; 876 } 877 break; 878 case MSR_CORE_PERF_GLOBAL_CTRL: 879 if (cpu_has_load_perf_global_ctrl()) { 880 add_atomic_switch_msr_special(vmx, 881 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 882 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 883 GUEST_IA32_PERF_GLOBAL_CTRL, 884 HOST_IA32_PERF_GLOBAL_CTRL, 885 guest_val, host_val); 886 return; 887 } 888 break; 889 case MSR_IA32_PEBS_ENABLE: 890 /* PEBS needs a quiescent period after being disabled (to write 891 * a record). Disabling PEBS through VMX MSR swapping doesn't 892 * provide that period, so a CPU could write host's record into 893 * guest's memory. 894 */ 895 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 896 } 897 898 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 899 if (!entry_only) 900 j = vmx_find_loadstore_msr_slot(&m->host, msr); 901 902 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 903 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 904 printk_once(KERN_WARNING "Not enough msr switch entries. " 905 "Can't add msr %x\n", msr); 906 return; 907 } 908 if (i < 0) { 909 i = m->guest.nr++; 910 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 911 } 912 m->guest.val[i].index = msr; 913 m->guest.val[i].value = guest_val; 914 915 if (entry_only) 916 return; 917 918 if (j < 0) { 919 j = m->host.nr++; 920 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 921 } 922 m->host.val[j].index = msr; 923 m->host.val[j].value = host_val; 924 } 925 926 static bool update_transition_efer(struct vcpu_vmx *vmx) 927 { 928 u64 guest_efer = vmx->vcpu.arch.efer; 929 u64 ignore_bits = 0; 930 int i; 931 932 /* Shadow paging assumes NX to be available. */ 933 if (!enable_ept) 934 guest_efer |= EFER_NX; 935 936 /* 937 * LMA and LME handled by hardware; SCE meaningless outside long mode. 938 */ 939 ignore_bits |= EFER_SCE; 940 #ifdef CONFIG_X86_64 941 ignore_bits |= EFER_LMA | EFER_LME; 942 /* SCE is meaningful only in long mode on Intel */ 943 if (guest_efer & EFER_LMA) 944 ignore_bits &= ~(u64)EFER_SCE; 945 #endif 946 947 /* 948 * On EPT, we can't emulate NX, so we must switch EFER atomically. 949 * On CPUs that support "load IA32_EFER", always switch EFER 950 * atomically, since it's faster than switching it manually. 951 */ 952 if (cpu_has_load_ia32_efer() || 953 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 954 if (!(guest_efer & EFER_LMA)) 955 guest_efer &= ~EFER_LME; 956 if (guest_efer != host_efer) 957 add_atomic_switch_msr(vmx, MSR_EFER, 958 guest_efer, host_efer, false); 959 else 960 clear_atomic_switch_msr(vmx, MSR_EFER); 961 return false; 962 } 963 964 i = kvm_find_user_return_msr(MSR_EFER); 965 if (i < 0) 966 return false; 967 968 clear_atomic_switch_msr(vmx, MSR_EFER); 969 970 guest_efer &= ~ignore_bits; 971 guest_efer |= host_efer & ignore_bits; 972 973 vmx->guest_uret_msrs[i].data = guest_efer; 974 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 975 976 return true; 977 } 978 979 #ifdef CONFIG_X86_32 980 /* 981 * On 32-bit kernels, VM exits still load the FS and GS bases from the 982 * VMCS rather than the segment table. KVM uses this helper to figure 983 * out the current bases to poke them into the VMCS before entry. 984 */ 985 static unsigned long segment_base(u16 selector) 986 { 987 struct desc_struct *table; 988 unsigned long v; 989 990 if (!(selector & ~SEGMENT_RPL_MASK)) 991 return 0; 992 993 table = get_current_gdt_ro(); 994 995 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 996 u16 ldt_selector = kvm_read_ldt(); 997 998 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 999 return 0; 1000 1001 table = (struct desc_struct *)segment_base(ldt_selector); 1002 } 1003 v = get_desc_base(&table[selector >> 3]); 1004 return v; 1005 } 1006 #endif 1007 1008 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1009 { 1010 return vmx_pt_mode_is_host_guest() && 1011 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1012 } 1013 1014 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1015 { 1016 /* The base must be 128-byte aligned and a legal physical address. */ 1017 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1018 } 1019 1020 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1021 { 1022 u32 i; 1023 1024 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1025 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1026 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1027 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1028 for (i = 0; i < addr_range; i++) { 1029 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1030 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1031 } 1032 } 1033 1034 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1035 { 1036 u32 i; 1037 1038 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1039 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1040 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1041 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1042 for (i = 0; i < addr_range; i++) { 1043 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1044 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1045 } 1046 } 1047 1048 static void pt_guest_enter(struct vcpu_vmx *vmx) 1049 { 1050 if (vmx_pt_mode_is_system()) 1051 return; 1052 1053 /* 1054 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1055 * Save host state before VM entry. 1056 */ 1057 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1058 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1059 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1060 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1061 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1062 } 1063 } 1064 1065 static void pt_guest_exit(struct vcpu_vmx *vmx) 1066 { 1067 if (vmx_pt_mode_is_system()) 1068 return; 1069 1070 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1071 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1072 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1073 } 1074 1075 /* 1076 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1077 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1078 */ 1079 if (vmx->pt_desc.host.ctl) 1080 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1081 } 1082 1083 void vmx_set_vmcs_host_state(struct vmcs_host_state *host, unsigned long cr3, 1084 u16 fs_sel, u16 gs_sel, 1085 unsigned long fs_base, unsigned long gs_base) 1086 { 1087 if (unlikely(cr3 != host->cr3)) { 1088 vmcs_writel(HOST_CR3, cr3); 1089 host->cr3 = cr3; 1090 } 1091 if (unlikely(fs_sel != host->fs_sel)) { 1092 if (!(fs_sel & 7)) 1093 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1094 else 1095 vmcs_write16(HOST_FS_SELECTOR, 0); 1096 host->fs_sel = fs_sel; 1097 } 1098 if (unlikely(gs_sel != host->gs_sel)) { 1099 if (!(gs_sel & 7)) 1100 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1101 else 1102 vmcs_write16(HOST_GS_SELECTOR, 0); 1103 host->gs_sel = gs_sel; 1104 } 1105 if (unlikely(fs_base != host->fs_base)) { 1106 vmcs_writel(HOST_FS_BASE, fs_base); 1107 host->fs_base = fs_base; 1108 } 1109 if (unlikely(gs_base != host->gs_base)) { 1110 vmcs_writel(HOST_GS_BASE, gs_base); 1111 host->gs_base = gs_base; 1112 } 1113 } 1114 1115 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1116 { 1117 struct vcpu_vmx *vmx = to_vmx(vcpu); 1118 struct vmcs_host_state *host_state; 1119 #ifdef CONFIG_X86_64 1120 int cpu = raw_smp_processor_id(); 1121 #endif 1122 unsigned long fs_base, gs_base; 1123 u16 fs_sel, gs_sel; 1124 int i; 1125 1126 vmx->req_immediate_exit = false; 1127 1128 /* 1129 * Note that guest MSRs to be saved/restored can also be changed 1130 * when guest state is loaded. This happens when guest transitions 1131 * to/from long-mode by setting MSR_EFER.LMA. 1132 */ 1133 if (!vmx->guest_uret_msrs_loaded) { 1134 vmx->guest_uret_msrs_loaded = true; 1135 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1136 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1137 continue; 1138 1139 kvm_set_user_return_msr(i, 1140 vmx->guest_uret_msrs[i].data, 1141 vmx->guest_uret_msrs[i].mask); 1142 } 1143 } 1144 1145 if (vmx->nested.need_vmcs12_to_shadow_sync) 1146 nested_sync_vmcs12_to_shadow(vcpu); 1147 1148 if (vmx->guest_state_loaded) 1149 return; 1150 1151 host_state = &vmx->loaded_vmcs->host_state; 1152 1153 /* 1154 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1155 * allow segment selectors with cpl > 0 or ti == 1. 1156 */ 1157 host_state->ldt_sel = kvm_read_ldt(); 1158 1159 #ifdef CONFIG_X86_64 1160 savesegment(ds, host_state->ds_sel); 1161 savesegment(es, host_state->es_sel); 1162 1163 gs_base = cpu_kernelmode_gs_base(cpu); 1164 if (likely(is_64bit_mm(current->mm))) { 1165 current_save_fsgs(); 1166 fs_sel = current->thread.fsindex; 1167 gs_sel = current->thread.gsindex; 1168 fs_base = current->thread.fsbase; 1169 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1170 } else { 1171 savesegment(fs, fs_sel); 1172 savesegment(gs, gs_sel); 1173 fs_base = read_msr(MSR_FS_BASE); 1174 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1175 } 1176 1177 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1178 #else 1179 savesegment(fs, fs_sel); 1180 savesegment(gs, gs_sel); 1181 fs_base = segment_base(fs_sel); 1182 gs_base = segment_base(gs_sel); 1183 #endif 1184 1185 vmx_set_vmcs_host_state(host_state, __get_current_cr3_fast(), 1186 fs_sel, gs_sel, fs_base, gs_base); 1187 1188 vmx->guest_state_loaded = true; 1189 } 1190 1191 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1192 { 1193 struct vmcs_host_state *host_state; 1194 1195 if (!vmx->guest_state_loaded) 1196 return; 1197 1198 host_state = &vmx->loaded_vmcs->host_state; 1199 1200 ++vmx->vcpu.stat.host_state_reload; 1201 1202 #ifdef CONFIG_X86_64 1203 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1204 #endif 1205 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1206 kvm_load_ldt(host_state->ldt_sel); 1207 #ifdef CONFIG_X86_64 1208 load_gs_index(host_state->gs_sel); 1209 #else 1210 loadsegment(gs, host_state->gs_sel); 1211 #endif 1212 } 1213 if (host_state->fs_sel & 7) 1214 loadsegment(fs, host_state->fs_sel); 1215 #ifdef CONFIG_X86_64 1216 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1217 loadsegment(ds, host_state->ds_sel); 1218 loadsegment(es, host_state->es_sel); 1219 } 1220 #endif 1221 invalidate_tss_limit(); 1222 #ifdef CONFIG_X86_64 1223 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1224 #endif 1225 load_fixmap_gdt(raw_smp_processor_id()); 1226 vmx->guest_state_loaded = false; 1227 vmx->guest_uret_msrs_loaded = false; 1228 } 1229 1230 #ifdef CONFIG_X86_64 1231 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1232 { 1233 preempt_disable(); 1234 if (vmx->guest_state_loaded) 1235 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1236 preempt_enable(); 1237 return vmx->msr_guest_kernel_gs_base; 1238 } 1239 1240 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1241 { 1242 preempt_disable(); 1243 if (vmx->guest_state_loaded) 1244 wrmsrl(MSR_KERNEL_GS_BASE, data); 1245 preempt_enable(); 1246 vmx->msr_guest_kernel_gs_base = data; 1247 } 1248 #endif 1249 1250 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1251 struct loaded_vmcs *buddy) 1252 { 1253 struct vcpu_vmx *vmx = to_vmx(vcpu); 1254 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1255 struct vmcs *prev; 1256 1257 if (!already_loaded) { 1258 loaded_vmcs_clear(vmx->loaded_vmcs); 1259 local_irq_disable(); 1260 1261 /* 1262 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1263 * this cpu's percpu list, otherwise it may not yet be deleted 1264 * from its previous cpu's percpu list. Pairs with the 1265 * smb_wmb() in __loaded_vmcs_clear(). 1266 */ 1267 smp_rmb(); 1268 1269 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1270 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1271 local_irq_enable(); 1272 } 1273 1274 prev = per_cpu(current_vmcs, cpu); 1275 if (prev != vmx->loaded_vmcs->vmcs) { 1276 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1277 vmcs_load(vmx->loaded_vmcs->vmcs); 1278 1279 /* 1280 * No indirect branch prediction barrier needed when switching 1281 * the active VMCS within a guest, e.g. on nested VM-Enter. 1282 * The L1 VMM can protect itself with retpolines, IBPB or IBRS. 1283 */ 1284 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1285 indirect_branch_prediction_barrier(); 1286 } 1287 1288 if (!already_loaded) { 1289 void *gdt = get_current_gdt_ro(); 1290 1291 /* 1292 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1293 * TLB entries from its previous association with the vCPU. 1294 */ 1295 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1296 1297 /* 1298 * Linux uses per-cpu TSS and GDT, so set these when switching 1299 * processors. See 22.2.4. 1300 */ 1301 vmcs_writel(HOST_TR_BASE, 1302 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1303 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1304 1305 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1306 /* 22.2.3 */ 1307 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1308 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1309 } 1310 1311 vmx->loaded_vmcs->cpu = cpu; 1312 } 1313 } 1314 1315 /* 1316 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1317 * vcpu mutex is already taken. 1318 */ 1319 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1320 { 1321 struct vcpu_vmx *vmx = to_vmx(vcpu); 1322 1323 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1324 1325 vmx_vcpu_pi_load(vcpu, cpu); 1326 1327 vmx->host_debugctlmsr = get_debugctlmsr(); 1328 } 1329 1330 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1331 { 1332 vmx_vcpu_pi_put(vcpu); 1333 1334 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1335 } 1336 1337 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1338 { 1339 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1340 } 1341 1342 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1343 { 1344 struct vcpu_vmx *vmx = to_vmx(vcpu); 1345 unsigned long rflags, save_rflags; 1346 1347 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1348 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1349 rflags = vmcs_readl(GUEST_RFLAGS); 1350 if (vmx->rmode.vm86_active) { 1351 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1352 save_rflags = vmx->rmode.save_rflags; 1353 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1354 } 1355 vmx->rflags = rflags; 1356 } 1357 return vmx->rflags; 1358 } 1359 1360 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1361 { 1362 struct vcpu_vmx *vmx = to_vmx(vcpu); 1363 unsigned long old_rflags; 1364 1365 if (is_unrestricted_guest(vcpu)) { 1366 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1367 vmx->rflags = rflags; 1368 vmcs_writel(GUEST_RFLAGS, rflags); 1369 return; 1370 } 1371 1372 old_rflags = vmx_get_rflags(vcpu); 1373 vmx->rflags = rflags; 1374 if (vmx->rmode.vm86_active) { 1375 vmx->rmode.save_rflags = rflags; 1376 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1377 } 1378 vmcs_writel(GUEST_RFLAGS, rflags); 1379 1380 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1381 vmx->emulation_required = vmx_emulation_required(vcpu); 1382 } 1383 1384 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1385 { 1386 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1387 } 1388 1389 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1390 { 1391 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1392 int ret = 0; 1393 1394 if (interruptibility & GUEST_INTR_STATE_STI) 1395 ret |= KVM_X86_SHADOW_INT_STI; 1396 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1397 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1398 1399 return ret; 1400 } 1401 1402 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1403 { 1404 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1405 u32 interruptibility = interruptibility_old; 1406 1407 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1408 1409 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1410 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1411 else if (mask & KVM_X86_SHADOW_INT_STI) 1412 interruptibility |= GUEST_INTR_STATE_STI; 1413 1414 if ((interruptibility != interruptibility_old)) 1415 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1416 } 1417 1418 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1419 { 1420 struct vcpu_vmx *vmx = to_vmx(vcpu); 1421 unsigned long value; 1422 1423 /* 1424 * Any MSR write that attempts to change bits marked reserved will 1425 * case a #GP fault. 1426 */ 1427 if (data & vmx->pt_desc.ctl_bitmask) 1428 return 1; 1429 1430 /* 1431 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1432 * result in a #GP unless the same write also clears TraceEn. 1433 */ 1434 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1435 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1436 return 1; 1437 1438 /* 1439 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1440 * and FabricEn would cause #GP, if 1441 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1442 */ 1443 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1444 !(data & RTIT_CTL_FABRIC_EN) && 1445 !intel_pt_validate_cap(vmx->pt_desc.caps, 1446 PT_CAP_single_range_output)) 1447 return 1; 1448 1449 /* 1450 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1451 * utilize encodings marked reserved will cause a #GP fault. 1452 */ 1453 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1454 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1455 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1456 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1457 return 1; 1458 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1459 PT_CAP_cycle_thresholds); 1460 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1461 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1462 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1463 return 1; 1464 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1465 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1466 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1467 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1468 return 1; 1469 1470 /* 1471 * If ADDRx_CFG is reserved or the encodings is >2 will 1472 * cause a #GP fault. 1473 */ 1474 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1475 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1476 return 1; 1477 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1478 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1479 return 1; 1480 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1481 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1482 return 1; 1483 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1484 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1485 return 1; 1486 1487 return 0; 1488 } 1489 1490 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1491 void *insn, int insn_len) 1492 { 1493 /* 1494 * Emulation of instructions in SGX enclaves is impossible as RIP does 1495 * not point at the failing instruction, and even if it did, the code 1496 * stream is inaccessible. Inject #UD instead of exiting to userspace 1497 * so that guest userspace can't DoS the guest simply by triggering 1498 * emulation (enclaves are CPL3 only). 1499 */ 1500 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1501 kvm_queue_exception(vcpu, UD_VECTOR); 1502 return false; 1503 } 1504 return true; 1505 } 1506 1507 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1508 { 1509 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1510 unsigned long rip, orig_rip; 1511 u32 instr_len; 1512 1513 /* 1514 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1515 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1516 * set when EPT misconfig occurs. In practice, real hardware updates 1517 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1518 * (namely Hyper-V) don't set it due to it being undefined behavior, 1519 * i.e. we end up advancing IP with some random value. 1520 */ 1521 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1522 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1523 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1524 1525 /* 1526 * Emulating an enclave's instructions isn't supported as KVM 1527 * cannot access the enclave's memory or its true RIP, e.g. the 1528 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1529 * the RIP that actually triggered the VM-Exit. But, because 1530 * most instructions that cause VM-Exit will #UD in an enclave, 1531 * most instruction-based VM-Exits simply do not occur. 1532 * 1533 * There are a few exceptions, notably the debug instructions 1534 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1535 * and generate #DB/#BP as expected, which KVM might intercept. 1536 * But again, the CPU does the dirty work and saves an instr 1537 * length of zero so VMMs don't shoot themselves in the foot. 1538 * WARN if KVM tries to skip a non-zero length instruction on 1539 * a VM-Exit from an enclave. 1540 */ 1541 if (!instr_len) 1542 goto rip_updated; 1543 1544 WARN(exit_reason.enclave_mode, 1545 "KVM: skipping instruction after SGX enclave VM-Exit"); 1546 1547 orig_rip = kvm_rip_read(vcpu); 1548 rip = orig_rip + instr_len; 1549 #ifdef CONFIG_X86_64 1550 /* 1551 * We need to mask out the high 32 bits of RIP if not in 64-bit 1552 * mode, but just finding out that we are in 64-bit mode is 1553 * quite expensive. Only do it if there was a carry. 1554 */ 1555 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1556 rip = (u32)rip; 1557 #endif 1558 kvm_rip_write(vcpu, rip); 1559 } else { 1560 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1561 return 0; 1562 } 1563 1564 rip_updated: 1565 /* skipping an emulated instruction also counts */ 1566 vmx_set_interrupt_shadow(vcpu, 0); 1567 1568 return 1; 1569 } 1570 1571 /* 1572 * Recognizes a pending MTF VM-exit and records the nested state for later 1573 * delivery. 1574 */ 1575 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1576 { 1577 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1578 struct vcpu_vmx *vmx = to_vmx(vcpu); 1579 1580 if (!is_guest_mode(vcpu)) 1581 return; 1582 1583 /* 1584 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1585 * T-bit traps. As instruction emulation is completed (i.e. at the 1586 * instruction boundary), any #DB exception pending delivery must be a 1587 * debug-trap. Record the pending MTF state to be delivered in 1588 * vmx_check_nested_events(). 1589 */ 1590 if (nested_cpu_has_mtf(vmcs12) && 1591 (!vcpu->arch.exception.pending || 1592 vcpu->arch.exception.nr == DB_VECTOR)) 1593 vmx->nested.mtf_pending = true; 1594 else 1595 vmx->nested.mtf_pending = false; 1596 } 1597 1598 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1599 { 1600 vmx_update_emulated_instruction(vcpu); 1601 return skip_emulated_instruction(vcpu); 1602 } 1603 1604 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1605 { 1606 /* 1607 * Ensure that we clear the HLT state in the VMCS. We don't need to 1608 * explicitly skip the instruction because if the HLT state is set, 1609 * then the instruction is already executing and RIP has already been 1610 * advanced. 1611 */ 1612 if (kvm_hlt_in_guest(vcpu->kvm) && 1613 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1614 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1615 } 1616 1617 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1618 { 1619 struct vcpu_vmx *vmx = to_vmx(vcpu); 1620 unsigned nr = vcpu->arch.exception.nr; 1621 bool has_error_code = vcpu->arch.exception.has_error_code; 1622 u32 error_code = vcpu->arch.exception.error_code; 1623 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1624 1625 kvm_deliver_exception_payload(vcpu); 1626 1627 if (has_error_code) { 1628 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1629 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1630 } 1631 1632 if (vmx->rmode.vm86_active) { 1633 int inc_eip = 0; 1634 if (kvm_exception_is_soft(nr)) 1635 inc_eip = vcpu->arch.event_exit_inst_len; 1636 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip); 1637 return; 1638 } 1639 1640 WARN_ON_ONCE(vmx->emulation_required); 1641 1642 if (kvm_exception_is_soft(nr)) { 1643 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1644 vmx->vcpu.arch.event_exit_inst_len); 1645 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1646 } else 1647 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1648 1649 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1650 1651 vmx_clear_hlt(vcpu); 1652 } 1653 1654 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1655 bool load_into_hardware) 1656 { 1657 struct vmx_uret_msr *uret_msr; 1658 1659 uret_msr = vmx_find_uret_msr(vmx, msr); 1660 if (!uret_msr) 1661 return; 1662 1663 uret_msr->load_into_hardware = load_into_hardware; 1664 } 1665 1666 /* 1667 * Configuring user return MSRs to automatically save, load, and restore MSRs 1668 * that need to be shoved into hardware when running the guest. Note, omitting 1669 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1670 * loaded into hardware when running the guest. 1671 */ 1672 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1673 { 1674 #ifdef CONFIG_X86_64 1675 bool load_syscall_msrs; 1676 1677 /* 1678 * The SYSCALL MSRs are only needed on long mode guests, and only 1679 * when EFER.SCE is set. 1680 */ 1681 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1682 (vmx->vcpu.arch.efer & EFER_SCE); 1683 1684 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1685 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1686 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1687 #endif 1688 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1689 1690 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1691 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1692 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1693 1694 /* 1695 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1696 * kernel and old userspace. If those guests run on a tsx=off host, do 1697 * allow guests to use TSX_CTRL, but don't change the value in hardware 1698 * so that TSX remains always disabled. 1699 */ 1700 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1701 1702 /* 1703 * The set of MSRs to load may have changed, reload MSRs before the 1704 * next VM-Enter. 1705 */ 1706 vmx->guest_uret_msrs_loaded = false; 1707 } 1708 1709 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1710 { 1711 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1712 1713 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1714 return vmcs12->tsc_offset; 1715 1716 return 0; 1717 } 1718 1719 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1720 { 1721 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1722 1723 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1724 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1725 return vmcs12->tsc_multiplier; 1726 1727 return kvm_default_tsc_scaling_ratio; 1728 } 1729 1730 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1731 { 1732 vmcs_write64(TSC_OFFSET, offset); 1733 } 1734 1735 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1736 { 1737 vmcs_write64(TSC_MULTIPLIER, multiplier); 1738 } 1739 1740 /* 1741 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1742 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1743 * all guests if the "nested" module option is off, and can also be disabled 1744 * for a single guest by disabling its VMX cpuid bit. 1745 */ 1746 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1747 { 1748 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1749 } 1750 1751 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1752 uint64_t val) 1753 { 1754 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1755 1756 return !(val & ~valid_bits); 1757 } 1758 1759 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1760 { 1761 switch (msr->index) { 1762 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1763 if (!nested) 1764 return 1; 1765 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1766 case MSR_IA32_PERF_CAPABILITIES: 1767 msr->data = vmx_get_perf_capabilities(); 1768 return 0; 1769 default: 1770 return KVM_MSR_RET_INVALID; 1771 } 1772 } 1773 1774 /* 1775 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 1776 * Returns 0 on success, non-0 otherwise. 1777 * Assumes vcpu_load() was already called. 1778 */ 1779 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1780 { 1781 struct vcpu_vmx *vmx = to_vmx(vcpu); 1782 struct vmx_uret_msr *msr; 1783 u32 index; 1784 1785 switch (msr_info->index) { 1786 #ifdef CONFIG_X86_64 1787 case MSR_FS_BASE: 1788 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1789 break; 1790 case MSR_GS_BASE: 1791 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1792 break; 1793 case MSR_KERNEL_GS_BASE: 1794 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1795 break; 1796 #endif 1797 case MSR_EFER: 1798 return kvm_get_msr_common(vcpu, msr_info); 1799 case MSR_IA32_TSX_CTRL: 1800 if (!msr_info->host_initiated && 1801 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1802 return 1; 1803 goto find_uret_msr; 1804 case MSR_IA32_UMWAIT_CONTROL: 1805 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 1806 return 1; 1807 1808 msr_info->data = vmx->msr_ia32_umwait_control; 1809 break; 1810 case MSR_IA32_SPEC_CTRL: 1811 if (!msr_info->host_initiated && 1812 !guest_has_spec_ctrl_msr(vcpu)) 1813 return 1; 1814 1815 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1816 break; 1817 case MSR_IA32_SYSENTER_CS: 1818 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1819 break; 1820 case MSR_IA32_SYSENTER_EIP: 1821 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1822 break; 1823 case MSR_IA32_SYSENTER_ESP: 1824 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1825 break; 1826 case MSR_IA32_BNDCFGS: 1827 if (!kvm_mpx_supported() || 1828 (!msr_info->host_initiated && 1829 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1830 return 1; 1831 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1832 break; 1833 case MSR_IA32_MCG_EXT_CTL: 1834 if (!msr_info->host_initiated && 1835 !(vmx->msr_ia32_feature_control & 1836 FEAT_CTL_LMCE_ENABLED)) 1837 return 1; 1838 msr_info->data = vcpu->arch.mcg_ext_ctl; 1839 break; 1840 case MSR_IA32_FEAT_CTL: 1841 msr_info->data = vmx->msr_ia32_feature_control; 1842 break; 1843 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 1844 if (!msr_info->host_initiated && 1845 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 1846 return 1; 1847 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 1848 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 1849 break; 1850 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1851 if (!nested_vmx_allowed(vcpu)) 1852 return 1; 1853 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1854 &msr_info->data)) 1855 return 1; 1856 /* 1857 * Enlightened VMCS v1 doesn't have certain VMCS fields but 1858 * instead of just ignoring the features, different Hyper-V 1859 * versions are either trying to use them and fail or do some 1860 * sanity checking and refuse to boot. Filter all unsupported 1861 * features out. 1862 */ 1863 if (!msr_info->host_initiated && 1864 vmx->nested.enlightened_vmcs_enabled) 1865 nested_evmcs_filter_control_msr(msr_info->index, 1866 &msr_info->data); 1867 break; 1868 case MSR_IA32_RTIT_CTL: 1869 if (!vmx_pt_mode_is_host_guest()) 1870 return 1; 1871 msr_info->data = vmx->pt_desc.guest.ctl; 1872 break; 1873 case MSR_IA32_RTIT_STATUS: 1874 if (!vmx_pt_mode_is_host_guest()) 1875 return 1; 1876 msr_info->data = vmx->pt_desc.guest.status; 1877 break; 1878 case MSR_IA32_RTIT_CR3_MATCH: 1879 if (!vmx_pt_mode_is_host_guest() || 1880 !intel_pt_validate_cap(vmx->pt_desc.caps, 1881 PT_CAP_cr3_filtering)) 1882 return 1; 1883 msr_info->data = vmx->pt_desc.guest.cr3_match; 1884 break; 1885 case MSR_IA32_RTIT_OUTPUT_BASE: 1886 if (!vmx_pt_mode_is_host_guest() || 1887 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1888 PT_CAP_topa_output) && 1889 !intel_pt_validate_cap(vmx->pt_desc.caps, 1890 PT_CAP_single_range_output))) 1891 return 1; 1892 msr_info->data = vmx->pt_desc.guest.output_base; 1893 break; 1894 case MSR_IA32_RTIT_OUTPUT_MASK: 1895 if (!vmx_pt_mode_is_host_guest() || 1896 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1897 PT_CAP_topa_output) && 1898 !intel_pt_validate_cap(vmx->pt_desc.caps, 1899 PT_CAP_single_range_output))) 1900 return 1; 1901 msr_info->data = vmx->pt_desc.guest.output_mask; 1902 break; 1903 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1904 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1905 if (!vmx_pt_mode_is_host_guest() || 1906 (index >= 2 * vmx->pt_desc.num_address_ranges)) 1907 return 1; 1908 if (index % 2) 1909 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1910 else 1911 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1912 break; 1913 case MSR_IA32_DEBUGCTLMSR: 1914 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 1915 break; 1916 default: 1917 find_uret_msr: 1918 msr = vmx_find_uret_msr(vmx, msr_info->index); 1919 if (msr) { 1920 msr_info->data = msr->data; 1921 break; 1922 } 1923 return kvm_get_msr_common(vcpu, msr_info); 1924 } 1925 1926 return 0; 1927 } 1928 1929 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 1930 u64 data) 1931 { 1932 #ifdef CONFIG_X86_64 1933 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1934 return (u32)data; 1935 #endif 1936 return (unsigned long)data; 1937 } 1938 1939 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu) 1940 { 1941 u64 debugctl = vmx_supported_debugctl(); 1942 1943 if (!intel_pmu_lbr_is_enabled(vcpu)) 1944 debugctl &= ~DEBUGCTLMSR_LBR_MASK; 1945 1946 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1947 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT; 1948 1949 return debugctl; 1950 } 1951 1952 /* 1953 * Writes msr value into the appropriate "register". 1954 * Returns 0 on success, non-0 otherwise. 1955 * Assumes vcpu_load() was already called. 1956 */ 1957 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1958 { 1959 struct vcpu_vmx *vmx = to_vmx(vcpu); 1960 struct vmx_uret_msr *msr; 1961 int ret = 0; 1962 u32 msr_index = msr_info->index; 1963 u64 data = msr_info->data; 1964 u32 index; 1965 1966 switch (msr_index) { 1967 case MSR_EFER: 1968 ret = kvm_set_msr_common(vcpu, msr_info); 1969 break; 1970 #ifdef CONFIG_X86_64 1971 case MSR_FS_BASE: 1972 vmx_segment_cache_clear(vmx); 1973 vmcs_writel(GUEST_FS_BASE, data); 1974 break; 1975 case MSR_GS_BASE: 1976 vmx_segment_cache_clear(vmx); 1977 vmcs_writel(GUEST_GS_BASE, data); 1978 break; 1979 case MSR_KERNEL_GS_BASE: 1980 vmx_write_guest_kernel_gs_base(vmx, data); 1981 break; 1982 case MSR_IA32_XFD: 1983 ret = kvm_set_msr_common(vcpu, msr_info); 1984 /* 1985 * Always intercepting WRMSR could incur non-negligible 1986 * overhead given xfd might be changed frequently in 1987 * guest context switch. Disable write interception 1988 * upon the first write with a non-zero value (indicating 1989 * potential usage on dynamic xfeatures). Also update 1990 * exception bitmap to trap #NM for proper virtualization 1991 * of guest xfd_err. 1992 */ 1993 if (!ret && data) { 1994 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 1995 MSR_TYPE_RW); 1996 vcpu->arch.xfd_no_write_intercept = true; 1997 vmx_update_exception_bitmap(vcpu); 1998 } 1999 break; 2000 #endif 2001 case MSR_IA32_SYSENTER_CS: 2002 if (is_guest_mode(vcpu)) 2003 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2004 vmcs_write32(GUEST_SYSENTER_CS, data); 2005 break; 2006 case MSR_IA32_SYSENTER_EIP: 2007 if (is_guest_mode(vcpu)) { 2008 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2009 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2010 } 2011 vmcs_writel(GUEST_SYSENTER_EIP, data); 2012 break; 2013 case MSR_IA32_SYSENTER_ESP: 2014 if (is_guest_mode(vcpu)) { 2015 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2016 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2017 } 2018 vmcs_writel(GUEST_SYSENTER_ESP, data); 2019 break; 2020 case MSR_IA32_DEBUGCTLMSR: { 2021 u64 invalid = data & ~vcpu_supported_debugctl(vcpu); 2022 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2023 if (report_ignored_msrs) 2024 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n", 2025 __func__, data); 2026 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2027 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2028 } 2029 2030 if (invalid) 2031 return 1; 2032 2033 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2034 VM_EXIT_SAVE_DEBUG_CONTROLS) 2035 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2036 2037 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2038 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2039 (data & DEBUGCTLMSR_LBR)) 2040 intel_pmu_create_guest_lbr_event(vcpu); 2041 return 0; 2042 } 2043 case MSR_IA32_BNDCFGS: 2044 if (!kvm_mpx_supported() || 2045 (!msr_info->host_initiated && 2046 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2047 return 1; 2048 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2049 (data & MSR_IA32_BNDCFGS_RSVD)) 2050 return 1; 2051 vmcs_write64(GUEST_BNDCFGS, data); 2052 break; 2053 case MSR_IA32_UMWAIT_CONTROL: 2054 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2055 return 1; 2056 2057 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2058 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2059 return 1; 2060 2061 vmx->msr_ia32_umwait_control = data; 2062 break; 2063 case MSR_IA32_SPEC_CTRL: 2064 if (!msr_info->host_initiated && 2065 !guest_has_spec_ctrl_msr(vcpu)) 2066 return 1; 2067 2068 if (kvm_spec_ctrl_test_value(data)) 2069 return 1; 2070 2071 vmx->spec_ctrl = data; 2072 if (!data) 2073 break; 2074 2075 /* 2076 * For non-nested: 2077 * When it's written (to non-zero) for the first time, pass 2078 * it through. 2079 * 2080 * For nested: 2081 * The handling of the MSR bitmap for L2 guests is done in 2082 * nested_vmx_prepare_msr_bitmap. We should not touch the 2083 * vmcs02.msr_bitmap here since it gets completely overwritten 2084 * in the merging. We update the vmcs01 here for L1 as well 2085 * since it will end up touching the MSR anyway now. 2086 */ 2087 vmx_disable_intercept_for_msr(vcpu, 2088 MSR_IA32_SPEC_CTRL, 2089 MSR_TYPE_RW); 2090 break; 2091 case MSR_IA32_TSX_CTRL: 2092 if (!msr_info->host_initiated && 2093 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2094 return 1; 2095 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2096 return 1; 2097 goto find_uret_msr; 2098 case MSR_IA32_PRED_CMD: 2099 if (!msr_info->host_initiated && 2100 !guest_has_pred_cmd_msr(vcpu)) 2101 return 1; 2102 2103 if (data & ~PRED_CMD_IBPB) 2104 return 1; 2105 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2106 return 1; 2107 if (!data) 2108 break; 2109 2110 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2111 2112 /* 2113 * For non-nested: 2114 * When it's written (to non-zero) for the first time, pass 2115 * it through. 2116 * 2117 * For nested: 2118 * The handling of the MSR bitmap for L2 guests is done in 2119 * nested_vmx_prepare_msr_bitmap. We should not touch the 2120 * vmcs02.msr_bitmap here since it gets completely overwritten 2121 * in the merging. 2122 */ 2123 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W); 2124 break; 2125 case MSR_IA32_CR_PAT: 2126 if (!kvm_pat_valid(data)) 2127 return 1; 2128 2129 if (is_guest_mode(vcpu) && 2130 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2131 get_vmcs12(vcpu)->guest_ia32_pat = data; 2132 2133 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2134 vmcs_write64(GUEST_IA32_PAT, data); 2135 vcpu->arch.pat = data; 2136 break; 2137 } 2138 ret = kvm_set_msr_common(vcpu, msr_info); 2139 break; 2140 case MSR_IA32_MCG_EXT_CTL: 2141 if ((!msr_info->host_initiated && 2142 !(to_vmx(vcpu)->msr_ia32_feature_control & 2143 FEAT_CTL_LMCE_ENABLED)) || 2144 (data & ~MCG_EXT_CTL_LMCE_EN)) 2145 return 1; 2146 vcpu->arch.mcg_ext_ctl = data; 2147 break; 2148 case MSR_IA32_FEAT_CTL: 2149 if (!vmx_feature_control_msr_valid(vcpu, data) || 2150 (to_vmx(vcpu)->msr_ia32_feature_control & 2151 FEAT_CTL_LOCKED && !msr_info->host_initiated)) 2152 return 1; 2153 vmx->msr_ia32_feature_control = data; 2154 if (msr_info->host_initiated && data == 0) 2155 vmx_leave_nested(vcpu); 2156 2157 /* SGX may be enabled/disabled by guest's firmware */ 2158 vmx_write_encls_bitmap(vcpu, NULL); 2159 break; 2160 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2161 /* 2162 * On real hardware, the LE hash MSRs are writable before 2163 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2164 * at which point SGX related bits in IA32_FEATURE_CONTROL 2165 * become writable. 2166 * 2167 * KVM does not emulate SGX activation for simplicity, so 2168 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2169 * is unlocked. This is technically not architectural 2170 * behavior, but it's close enough. 2171 */ 2172 if (!msr_info->host_initiated && 2173 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2174 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2175 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2176 return 1; 2177 vmx->msr_ia32_sgxlepubkeyhash 2178 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2179 break; 2180 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 2181 if (!msr_info->host_initiated) 2182 return 1; /* they are read-only */ 2183 if (!nested_vmx_allowed(vcpu)) 2184 return 1; 2185 return vmx_set_vmx_msr(vcpu, msr_index, data); 2186 case MSR_IA32_RTIT_CTL: 2187 if (!vmx_pt_mode_is_host_guest() || 2188 vmx_rtit_ctl_check(vcpu, data) || 2189 vmx->nested.vmxon) 2190 return 1; 2191 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2192 vmx->pt_desc.guest.ctl = data; 2193 pt_update_intercept_for_msr(vcpu); 2194 break; 2195 case MSR_IA32_RTIT_STATUS: 2196 if (!pt_can_write_msr(vmx)) 2197 return 1; 2198 if (data & MSR_IA32_RTIT_STATUS_MASK) 2199 return 1; 2200 vmx->pt_desc.guest.status = data; 2201 break; 2202 case MSR_IA32_RTIT_CR3_MATCH: 2203 if (!pt_can_write_msr(vmx)) 2204 return 1; 2205 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2206 PT_CAP_cr3_filtering)) 2207 return 1; 2208 vmx->pt_desc.guest.cr3_match = data; 2209 break; 2210 case MSR_IA32_RTIT_OUTPUT_BASE: 2211 if (!pt_can_write_msr(vmx)) 2212 return 1; 2213 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2214 PT_CAP_topa_output) && 2215 !intel_pt_validate_cap(vmx->pt_desc.caps, 2216 PT_CAP_single_range_output)) 2217 return 1; 2218 if (!pt_output_base_valid(vcpu, data)) 2219 return 1; 2220 vmx->pt_desc.guest.output_base = data; 2221 break; 2222 case MSR_IA32_RTIT_OUTPUT_MASK: 2223 if (!pt_can_write_msr(vmx)) 2224 return 1; 2225 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2226 PT_CAP_topa_output) && 2227 !intel_pt_validate_cap(vmx->pt_desc.caps, 2228 PT_CAP_single_range_output)) 2229 return 1; 2230 vmx->pt_desc.guest.output_mask = data; 2231 break; 2232 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2233 if (!pt_can_write_msr(vmx)) 2234 return 1; 2235 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2236 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2237 return 1; 2238 if (is_noncanonical_address(data, vcpu)) 2239 return 1; 2240 if (index % 2) 2241 vmx->pt_desc.guest.addr_b[index / 2] = data; 2242 else 2243 vmx->pt_desc.guest.addr_a[index / 2] = data; 2244 break; 2245 case MSR_IA32_PERF_CAPABILITIES: 2246 if (data && !vcpu_to_pmu(vcpu)->version) 2247 return 1; 2248 if (data & PMU_CAP_LBR_FMT) { 2249 if ((data & PMU_CAP_LBR_FMT) != 2250 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT)) 2251 return 1; 2252 if (!intel_pmu_lbr_is_compatible(vcpu)) 2253 return 1; 2254 } 2255 ret = kvm_set_msr_common(vcpu, msr_info); 2256 break; 2257 2258 default: 2259 find_uret_msr: 2260 msr = vmx_find_uret_msr(vmx, msr_index); 2261 if (msr) 2262 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2263 else 2264 ret = kvm_set_msr_common(vcpu, msr_info); 2265 } 2266 2267 return ret; 2268 } 2269 2270 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2271 { 2272 unsigned long guest_owned_bits; 2273 2274 kvm_register_mark_available(vcpu, reg); 2275 2276 switch (reg) { 2277 case VCPU_REGS_RSP: 2278 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2279 break; 2280 case VCPU_REGS_RIP: 2281 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2282 break; 2283 case VCPU_EXREG_PDPTR: 2284 if (enable_ept) 2285 ept_save_pdptrs(vcpu); 2286 break; 2287 case VCPU_EXREG_CR0: 2288 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2289 2290 vcpu->arch.cr0 &= ~guest_owned_bits; 2291 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2292 break; 2293 case VCPU_EXREG_CR3: 2294 /* 2295 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2296 * CR3 is loaded into hardware, not the guest's CR3. 2297 */ 2298 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2299 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2300 break; 2301 case VCPU_EXREG_CR4: 2302 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2303 2304 vcpu->arch.cr4 &= ~guest_owned_bits; 2305 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2306 break; 2307 default: 2308 KVM_BUG_ON(1, vcpu->kvm); 2309 break; 2310 } 2311 } 2312 2313 static __init int cpu_has_kvm_support(void) 2314 { 2315 return cpu_has_vmx(); 2316 } 2317 2318 static __init int vmx_disabled_by_bios(void) 2319 { 2320 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2321 !boot_cpu_has(X86_FEATURE_VMX); 2322 } 2323 2324 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2325 { 2326 u64 msr; 2327 2328 cr4_set_bits(X86_CR4_VMXE); 2329 2330 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2331 _ASM_EXTABLE(1b, %l[fault]) 2332 : : [vmxon_pointer] "m"(vmxon_pointer) 2333 : : fault); 2334 return 0; 2335 2336 fault: 2337 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2338 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2339 cr4_clear_bits(X86_CR4_VMXE); 2340 2341 return -EFAULT; 2342 } 2343 2344 static int hardware_enable(void) 2345 { 2346 int cpu = raw_smp_processor_id(); 2347 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2348 int r; 2349 2350 if (cr4_read_shadow() & X86_CR4_VMXE) 2351 return -EBUSY; 2352 2353 /* 2354 * This can happen if we hot-added a CPU but failed to allocate 2355 * VP assist page for it. 2356 */ 2357 if (static_branch_unlikely(&enable_evmcs) && 2358 !hv_get_vp_assist_page(cpu)) 2359 return -EFAULT; 2360 2361 intel_pt_handle_vmx(1); 2362 2363 r = kvm_cpu_vmxon(phys_addr); 2364 if (r) { 2365 intel_pt_handle_vmx(0); 2366 return r; 2367 } 2368 2369 if (enable_ept) 2370 ept_sync_global(); 2371 2372 return 0; 2373 } 2374 2375 static void vmclear_local_loaded_vmcss(void) 2376 { 2377 int cpu = raw_smp_processor_id(); 2378 struct loaded_vmcs *v, *n; 2379 2380 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2381 loaded_vmcss_on_cpu_link) 2382 __loaded_vmcs_clear(v); 2383 } 2384 2385 static void hardware_disable(void) 2386 { 2387 vmclear_local_loaded_vmcss(); 2388 2389 if (cpu_vmxoff()) 2390 kvm_spurious_fault(); 2391 2392 intel_pt_handle_vmx(0); 2393 } 2394 2395 /* 2396 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2397 * directly instead of going through cpu_has(), to ensure KVM is trapping 2398 * ENCLS whenever it's supported in hardware. It does not matter whether 2399 * the host OS supports or has enabled SGX. 2400 */ 2401 static bool cpu_has_sgx(void) 2402 { 2403 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2404 } 2405 2406 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2407 u32 msr, u32 *result) 2408 { 2409 u32 vmx_msr_low, vmx_msr_high; 2410 u32 ctl = ctl_min | ctl_opt; 2411 2412 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2413 2414 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2415 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2416 2417 /* Ensure minimum (required) set of control bits are supported. */ 2418 if (ctl_min & ~ctl) 2419 return -EIO; 2420 2421 *result = ctl; 2422 return 0; 2423 } 2424 2425 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2426 struct vmx_capability *vmx_cap) 2427 { 2428 u32 vmx_msr_low, vmx_msr_high; 2429 u32 min, opt, min2, opt2; 2430 u32 _pin_based_exec_control = 0; 2431 u32 _cpu_based_exec_control = 0; 2432 u32 _cpu_based_2nd_exec_control = 0; 2433 u32 _vmexit_control = 0; 2434 u32 _vmentry_control = 0; 2435 2436 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2437 min = CPU_BASED_HLT_EXITING | 2438 #ifdef CONFIG_X86_64 2439 CPU_BASED_CR8_LOAD_EXITING | 2440 CPU_BASED_CR8_STORE_EXITING | 2441 #endif 2442 CPU_BASED_CR3_LOAD_EXITING | 2443 CPU_BASED_CR3_STORE_EXITING | 2444 CPU_BASED_UNCOND_IO_EXITING | 2445 CPU_BASED_MOV_DR_EXITING | 2446 CPU_BASED_USE_TSC_OFFSETTING | 2447 CPU_BASED_MWAIT_EXITING | 2448 CPU_BASED_MONITOR_EXITING | 2449 CPU_BASED_INVLPG_EXITING | 2450 CPU_BASED_RDPMC_EXITING; 2451 2452 opt = CPU_BASED_TPR_SHADOW | 2453 CPU_BASED_USE_MSR_BITMAPS | 2454 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2455 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2456 &_cpu_based_exec_control) < 0) 2457 return -EIO; 2458 #ifdef CONFIG_X86_64 2459 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2460 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2461 ~CPU_BASED_CR8_STORE_EXITING; 2462 #endif 2463 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2464 min2 = 0; 2465 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2466 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2467 SECONDARY_EXEC_WBINVD_EXITING | 2468 SECONDARY_EXEC_ENABLE_VPID | 2469 SECONDARY_EXEC_ENABLE_EPT | 2470 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2471 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2472 SECONDARY_EXEC_DESC | 2473 SECONDARY_EXEC_ENABLE_RDTSCP | 2474 SECONDARY_EXEC_ENABLE_INVPCID | 2475 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2476 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2477 SECONDARY_EXEC_SHADOW_VMCS | 2478 SECONDARY_EXEC_XSAVES | 2479 SECONDARY_EXEC_RDSEED_EXITING | 2480 SECONDARY_EXEC_RDRAND_EXITING | 2481 SECONDARY_EXEC_ENABLE_PML | 2482 SECONDARY_EXEC_TSC_SCALING | 2483 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | 2484 SECONDARY_EXEC_PT_USE_GPA | 2485 SECONDARY_EXEC_PT_CONCEAL_VMX | 2486 SECONDARY_EXEC_ENABLE_VMFUNC | 2487 SECONDARY_EXEC_BUS_LOCK_DETECTION; 2488 if (cpu_has_sgx()) 2489 opt2 |= SECONDARY_EXEC_ENCLS_EXITING; 2490 if (adjust_vmx_controls(min2, opt2, 2491 MSR_IA32_VMX_PROCBASED_CTLS2, 2492 &_cpu_based_2nd_exec_control) < 0) 2493 return -EIO; 2494 } 2495 #ifndef CONFIG_X86_64 2496 if (!(_cpu_based_2nd_exec_control & 2497 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2498 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2499 #endif 2500 2501 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2502 _cpu_based_2nd_exec_control &= ~( 2503 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2504 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2505 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2506 2507 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2508 &vmx_cap->ept, &vmx_cap->vpid); 2509 2510 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2511 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2512 enabled */ 2513 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2514 CPU_BASED_CR3_STORE_EXITING | 2515 CPU_BASED_INVLPG_EXITING); 2516 } else if (vmx_cap->ept) { 2517 vmx_cap->ept = 0; 2518 pr_warn_once("EPT CAP should not exist if not support " 2519 "1-setting enable EPT VM-execution control\n"); 2520 } 2521 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2522 vmx_cap->vpid) { 2523 vmx_cap->vpid = 0; 2524 pr_warn_once("VPID CAP should not exist if not support " 2525 "1-setting enable VPID VM-execution control\n"); 2526 } 2527 2528 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2529 #ifdef CONFIG_X86_64 2530 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2531 #endif 2532 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2533 VM_EXIT_LOAD_IA32_PAT | 2534 VM_EXIT_LOAD_IA32_EFER | 2535 VM_EXIT_CLEAR_BNDCFGS | 2536 VM_EXIT_PT_CONCEAL_PIP | 2537 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2538 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2539 &_vmexit_control) < 0) 2540 return -EIO; 2541 2542 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2543 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2544 PIN_BASED_VMX_PREEMPTION_TIMER; 2545 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2546 &_pin_based_exec_control) < 0) 2547 return -EIO; 2548 2549 if (cpu_has_broken_vmx_preemption_timer()) 2550 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2551 if (!(_cpu_based_2nd_exec_control & 2552 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2553 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2554 2555 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2556 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2557 VM_ENTRY_LOAD_IA32_PAT | 2558 VM_ENTRY_LOAD_IA32_EFER | 2559 VM_ENTRY_LOAD_BNDCFGS | 2560 VM_ENTRY_PT_CONCEAL_PIP | 2561 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2562 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2563 &_vmentry_control) < 0) 2564 return -EIO; 2565 2566 /* 2567 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2568 * can't be used due to an errata where VM Exit may incorrectly clear 2569 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2570 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2571 */ 2572 if (boot_cpu_data.x86 == 0x6) { 2573 switch (boot_cpu_data.x86_model) { 2574 case 26: /* AAK155 */ 2575 case 30: /* AAP115 */ 2576 case 37: /* AAT100 */ 2577 case 44: /* BC86,AAY89,BD102 */ 2578 case 46: /* BA97 */ 2579 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2580 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2581 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2582 "does not work properly. Using workaround\n"); 2583 break; 2584 default: 2585 break; 2586 } 2587 } 2588 2589 2590 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2591 2592 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2593 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2594 return -EIO; 2595 2596 #ifdef CONFIG_X86_64 2597 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2598 if (vmx_msr_high & (1u<<16)) 2599 return -EIO; 2600 #endif 2601 2602 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2603 if (((vmx_msr_high >> 18) & 15) != 6) 2604 return -EIO; 2605 2606 vmcs_conf->size = vmx_msr_high & 0x1fff; 2607 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2608 2609 vmcs_conf->revision_id = vmx_msr_low; 2610 2611 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2612 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2613 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2614 vmcs_conf->vmexit_ctrl = _vmexit_control; 2615 vmcs_conf->vmentry_ctrl = _vmentry_control; 2616 2617 #if IS_ENABLED(CONFIG_HYPERV) 2618 if (enlightened_vmcs) 2619 evmcs_sanitize_exec_ctrls(vmcs_conf); 2620 #endif 2621 2622 return 0; 2623 } 2624 2625 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2626 { 2627 int node = cpu_to_node(cpu); 2628 struct page *pages; 2629 struct vmcs *vmcs; 2630 2631 pages = __alloc_pages_node(node, flags, 0); 2632 if (!pages) 2633 return NULL; 2634 vmcs = page_address(pages); 2635 memset(vmcs, 0, vmcs_config.size); 2636 2637 /* KVM supports Enlightened VMCS v1 only */ 2638 if (static_branch_unlikely(&enable_evmcs)) 2639 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2640 else 2641 vmcs->hdr.revision_id = vmcs_config.revision_id; 2642 2643 if (shadow) 2644 vmcs->hdr.shadow_vmcs = 1; 2645 return vmcs; 2646 } 2647 2648 void free_vmcs(struct vmcs *vmcs) 2649 { 2650 free_page((unsigned long)vmcs); 2651 } 2652 2653 /* 2654 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2655 */ 2656 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2657 { 2658 if (!loaded_vmcs->vmcs) 2659 return; 2660 loaded_vmcs_clear(loaded_vmcs); 2661 free_vmcs(loaded_vmcs->vmcs); 2662 loaded_vmcs->vmcs = NULL; 2663 if (loaded_vmcs->msr_bitmap) 2664 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2665 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2666 } 2667 2668 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2669 { 2670 loaded_vmcs->vmcs = alloc_vmcs(false); 2671 if (!loaded_vmcs->vmcs) 2672 return -ENOMEM; 2673 2674 vmcs_clear(loaded_vmcs->vmcs); 2675 2676 loaded_vmcs->shadow_vmcs = NULL; 2677 loaded_vmcs->hv_timer_soft_disabled = false; 2678 loaded_vmcs->cpu = -1; 2679 loaded_vmcs->launched = 0; 2680 2681 if (cpu_has_vmx_msr_bitmap()) { 2682 loaded_vmcs->msr_bitmap = (unsigned long *) 2683 __get_free_page(GFP_KERNEL_ACCOUNT); 2684 if (!loaded_vmcs->msr_bitmap) 2685 goto out_vmcs; 2686 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2687 } 2688 2689 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2690 memset(&loaded_vmcs->controls_shadow, 0, 2691 sizeof(struct vmcs_controls_shadow)); 2692 2693 return 0; 2694 2695 out_vmcs: 2696 free_loaded_vmcs(loaded_vmcs); 2697 return -ENOMEM; 2698 } 2699 2700 static void free_kvm_area(void) 2701 { 2702 int cpu; 2703 2704 for_each_possible_cpu(cpu) { 2705 free_vmcs(per_cpu(vmxarea, cpu)); 2706 per_cpu(vmxarea, cpu) = NULL; 2707 } 2708 } 2709 2710 static __init int alloc_kvm_area(void) 2711 { 2712 int cpu; 2713 2714 for_each_possible_cpu(cpu) { 2715 struct vmcs *vmcs; 2716 2717 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2718 if (!vmcs) { 2719 free_kvm_area(); 2720 return -ENOMEM; 2721 } 2722 2723 /* 2724 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2725 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2726 * revision_id reported by MSR_IA32_VMX_BASIC. 2727 * 2728 * However, even though not explicitly documented by 2729 * TLFS, VMXArea passed as VMXON argument should 2730 * still be marked with revision_id reported by 2731 * physical CPU. 2732 */ 2733 if (static_branch_unlikely(&enable_evmcs)) 2734 vmcs->hdr.revision_id = vmcs_config.revision_id; 2735 2736 per_cpu(vmxarea, cpu) = vmcs; 2737 } 2738 return 0; 2739 } 2740 2741 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2742 struct kvm_segment *save) 2743 { 2744 if (!emulate_invalid_guest_state) { 2745 /* 2746 * CS and SS RPL should be equal during guest entry according 2747 * to VMX spec, but in reality it is not always so. Since vcpu 2748 * is in the middle of the transition from real mode to 2749 * protected mode it is safe to assume that RPL 0 is a good 2750 * default value. 2751 */ 2752 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2753 save->selector &= ~SEGMENT_RPL_MASK; 2754 save->dpl = save->selector & SEGMENT_RPL_MASK; 2755 save->s = 1; 2756 } 2757 __vmx_set_segment(vcpu, save, seg); 2758 } 2759 2760 static void enter_pmode(struct kvm_vcpu *vcpu) 2761 { 2762 unsigned long flags; 2763 struct vcpu_vmx *vmx = to_vmx(vcpu); 2764 2765 /* 2766 * Update real mode segment cache. It may be not up-to-date if segment 2767 * register was written while vcpu was in a guest mode. 2768 */ 2769 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2770 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2771 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2772 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2773 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2774 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2775 2776 vmx->rmode.vm86_active = 0; 2777 2778 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2779 2780 flags = vmcs_readl(GUEST_RFLAGS); 2781 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2782 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2783 vmcs_writel(GUEST_RFLAGS, flags); 2784 2785 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2786 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2787 2788 vmx_update_exception_bitmap(vcpu); 2789 2790 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2791 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2792 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2793 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2794 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2795 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2796 } 2797 2798 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2799 { 2800 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2801 struct kvm_segment var = *save; 2802 2803 var.dpl = 0x3; 2804 if (seg == VCPU_SREG_CS) 2805 var.type = 0x3; 2806 2807 if (!emulate_invalid_guest_state) { 2808 var.selector = var.base >> 4; 2809 var.base = var.base & 0xffff0; 2810 var.limit = 0xffff; 2811 var.g = 0; 2812 var.db = 0; 2813 var.present = 1; 2814 var.s = 1; 2815 var.l = 0; 2816 var.unusable = 0; 2817 var.type = 0x3; 2818 var.avl = 0; 2819 if (save->base & 0xf) 2820 printk_once(KERN_WARNING "kvm: segment base is not " 2821 "paragraph aligned when entering " 2822 "protected mode (seg=%d)", seg); 2823 } 2824 2825 vmcs_write16(sf->selector, var.selector); 2826 vmcs_writel(sf->base, var.base); 2827 vmcs_write32(sf->limit, var.limit); 2828 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2829 } 2830 2831 static void enter_rmode(struct kvm_vcpu *vcpu) 2832 { 2833 unsigned long flags; 2834 struct vcpu_vmx *vmx = to_vmx(vcpu); 2835 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2836 2837 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2838 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2839 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2840 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2841 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2842 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2843 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2844 2845 vmx->rmode.vm86_active = 1; 2846 2847 /* 2848 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2849 * vcpu. Warn the user that an update is overdue. 2850 */ 2851 if (!kvm_vmx->tss_addr) 2852 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2853 "called before entering vcpu\n"); 2854 2855 vmx_segment_cache_clear(vmx); 2856 2857 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2858 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2859 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2860 2861 flags = vmcs_readl(GUEST_RFLAGS); 2862 vmx->rmode.save_rflags = flags; 2863 2864 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2865 2866 vmcs_writel(GUEST_RFLAGS, flags); 2867 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2868 vmx_update_exception_bitmap(vcpu); 2869 2870 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2871 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2872 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2873 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2874 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2875 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2876 } 2877 2878 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2879 { 2880 struct vcpu_vmx *vmx = to_vmx(vcpu); 2881 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER); 2882 2883 /* Nothing to do if hardware doesn't support EFER. */ 2884 if (!msr) 2885 return 0; 2886 2887 vcpu->arch.efer = efer; 2888 if (efer & EFER_LMA) { 2889 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2890 msr->data = efer; 2891 } else { 2892 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2893 2894 msr->data = efer & ~EFER_LME; 2895 } 2896 vmx_setup_uret_msrs(vmx); 2897 return 0; 2898 } 2899 2900 #ifdef CONFIG_X86_64 2901 2902 static void enter_lmode(struct kvm_vcpu *vcpu) 2903 { 2904 u32 guest_tr_ar; 2905 2906 vmx_segment_cache_clear(to_vmx(vcpu)); 2907 2908 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2909 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2910 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2911 __func__); 2912 vmcs_write32(GUEST_TR_AR_BYTES, 2913 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 2914 | VMX_AR_TYPE_BUSY_64_TSS); 2915 } 2916 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 2917 } 2918 2919 static void exit_lmode(struct kvm_vcpu *vcpu) 2920 { 2921 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2922 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 2923 } 2924 2925 #endif 2926 2927 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 2928 { 2929 struct vcpu_vmx *vmx = to_vmx(vcpu); 2930 2931 /* 2932 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 2933 * the CPU is not required to invalidate guest-physical mappings on 2934 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 2935 * associated with the root EPT structure and not any particular VPID 2936 * (INVVPID also isn't required to invalidate guest-physical mappings). 2937 */ 2938 if (enable_ept) { 2939 ept_sync_global(); 2940 } else if (enable_vpid) { 2941 if (cpu_has_vmx_invvpid_global()) { 2942 vpid_sync_vcpu_global(); 2943 } else { 2944 vpid_sync_vcpu_single(vmx->vpid); 2945 vpid_sync_vcpu_single(vmx->nested.vpid02); 2946 } 2947 } 2948 } 2949 2950 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 2951 { 2952 if (is_guest_mode(vcpu)) 2953 return nested_get_vpid02(vcpu); 2954 return to_vmx(vcpu)->vpid; 2955 } 2956 2957 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 2958 { 2959 struct kvm_mmu *mmu = vcpu->arch.mmu; 2960 u64 root_hpa = mmu->root_hpa; 2961 2962 /* No flush required if the current context is invalid. */ 2963 if (!VALID_PAGE(root_hpa)) 2964 return; 2965 2966 if (enable_ept) 2967 ept_sync_context(construct_eptp(vcpu, root_hpa, 2968 mmu->shadow_root_level)); 2969 else 2970 vpid_sync_context(vmx_get_current_vpid(vcpu)); 2971 } 2972 2973 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 2974 { 2975 /* 2976 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 2977 * vmx_flush_tlb_guest() for an explanation of why this is ok. 2978 */ 2979 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 2980 } 2981 2982 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 2983 { 2984 /* 2985 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 2986 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 2987 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 2988 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 2989 * i.e. no explicit INVVPID is necessary. 2990 */ 2991 vpid_sync_context(vmx_get_current_vpid(vcpu)); 2992 } 2993 2994 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 2995 { 2996 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2997 2998 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 2999 return; 3000 3001 if (is_pae_paging(vcpu)) { 3002 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3003 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3004 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3005 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3006 } 3007 } 3008 3009 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3010 { 3011 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3012 3013 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3014 return; 3015 3016 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3017 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3018 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3019 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3020 3021 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3022 } 3023 3024 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3025 CPU_BASED_CR3_STORE_EXITING) 3026 3027 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3028 { 3029 struct vcpu_vmx *vmx = to_vmx(vcpu); 3030 unsigned long hw_cr0, old_cr0_pg; 3031 u32 tmp; 3032 3033 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3034 3035 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3036 if (is_unrestricted_guest(vcpu)) 3037 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3038 else { 3039 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3040 if (!enable_ept) 3041 hw_cr0 |= X86_CR0_WP; 3042 3043 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3044 enter_pmode(vcpu); 3045 3046 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3047 enter_rmode(vcpu); 3048 } 3049 3050 vmcs_writel(CR0_READ_SHADOW, cr0); 3051 vmcs_writel(GUEST_CR0, hw_cr0); 3052 vcpu->arch.cr0 = cr0; 3053 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3054 3055 #ifdef CONFIG_X86_64 3056 if (vcpu->arch.efer & EFER_LME) { 3057 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3058 enter_lmode(vcpu); 3059 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3060 exit_lmode(vcpu); 3061 } 3062 #endif 3063 3064 if (enable_ept && !is_unrestricted_guest(vcpu)) { 3065 /* 3066 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3067 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3068 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3069 * KVM's CR3 is installed. 3070 */ 3071 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3072 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3073 3074 /* 3075 * When running with EPT but not unrestricted guest, KVM must 3076 * intercept CR3 accesses when paging is _disabled_. This is 3077 * necessary because restricted guests can't actually run with 3078 * paging disabled, and so KVM stuffs its own CR3 in order to 3079 * run the guest when identity mapped page tables. 3080 * 3081 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3082 * update, it may be stale with respect to CR3 interception, 3083 * e.g. after nested VM-Enter. 3084 * 3085 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3086 * stores to forward them to L1, even if KVM does not need to 3087 * intercept them to preserve its identity mapped page tables. 3088 */ 3089 if (!(cr0 & X86_CR0_PG)) { 3090 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3091 } else if (!is_guest_mode(vcpu)) { 3092 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3093 } else { 3094 tmp = exec_controls_get(vmx); 3095 tmp &= ~CR3_EXITING_BITS; 3096 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3097 exec_controls_set(vmx, tmp); 3098 } 3099 3100 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3101 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3102 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3103 3104 /* 3105 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3106 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3107 */ 3108 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3109 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3110 } 3111 3112 /* depends on vcpu->arch.cr0 to be set to a new value */ 3113 vmx->emulation_required = vmx_emulation_required(vcpu); 3114 } 3115 3116 static int vmx_get_max_tdp_level(void) 3117 { 3118 if (cpu_has_vmx_ept_5levels()) 3119 return 5; 3120 return 4; 3121 } 3122 3123 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3124 { 3125 u64 eptp = VMX_EPTP_MT_WB; 3126 3127 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3128 3129 if (enable_ept_ad_bits && 3130 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3131 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3132 eptp |= root_hpa; 3133 3134 return eptp; 3135 } 3136 3137 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3138 int root_level) 3139 { 3140 struct kvm *kvm = vcpu->kvm; 3141 bool update_guest_cr3 = true; 3142 unsigned long guest_cr3; 3143 u64 eptp; 3144 3145 if (enable_ept) { 3146 eptp = construct_eptp(vcpu, root_hpa, root_level); 3147 vmcs_write64(EPT_POINTER, eptp); 3148 3149 hv_track_root_tdp(vcpu, root_hpa); 3150 3151 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3152 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3153 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3154 guest_cr3 = vcpu->arch.cr3; 3155 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3156 update_guest_cr3 = false; 3157 vmx_ept_load_pdptrs(vcpu); 3158 } else { 3159 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3160 } 3161 3162 if (update_guest_cr3) 3163 vmcs_writel(GUEST_CR3, guest_cr3); 3164 } 3165 3166 3167 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3168 { 3169 /* 3170 * We operate under the default treatment of SMM, so VMX cannot be 3171 * enabled under SMM. Note, whether or not VMXE is allowed at all is 3172 * handled by kvm_is_valid_cr4(). 3173 */ 3174 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3175 return false; 3176 3177 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3178 return false; 3179 3180 return true; 3181 } 3182 3183 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3184 { 3185 unsigned long old_cr4 = vcpu->arch.cr4; 3186 struct vcpu_vmx *vmx = to_vmx(vcpu); 3187 /* 3188 * Pass through host's Machine Check Enable value to hw_cr4, which 3189 * is in force while we are in guest mode. Do not let guests control 3190 * this bit, even if host CR4.MCE == 0. 3191 */ 3192 unsigned long hw_cr4; 3193 3194 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3195 if (is_unrestricted_guest(vcpu)) 3196 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3197 else if (vmx->rmode.vm86_active) 3198 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3199 else 3200 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3201 3202 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 3203 if (cr4 & X86_CR4_UMIP) { 3204 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3205 hw_cr4 &= ~X86_CR4_UMIP; 3206 } else if (!is_guest_mode(vcpu) || 3207 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3208 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3209 } 3210 } 3211 3212 vcpu->arch.cr4 = cr4; 3213 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3214 3215 if (!is_unrestricted_guest(vcpu)) { 3216 if (enable_ept) { 3217 if (!is_paging(vcpu)) { 3218 hw_cr4 &= ~X86_CR4_PAE; 3219 hw_cr4 |= X86_CR4_PSE; 3220 } else if (!(cr4 & X86_CR4_PAE)) { 3221 hw_cr4 &= ~X86_CR4_PAE; 3222 } 3223 } 3224 3225 /* 3226 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3227 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3228 * to be manually disabled when guest switches to non-paging 3229 * mode. 3230 * 3231 * If !enable_unrestricted_guest, the CPU is always running 3232 * with CR0.PG=1 and CR4 needs to be modified. 3233 * If enable_unrestricted_guest, the CPU automatically 3234 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3235 */ 3236 if (!is_paging(vcpu)) 3237 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3238 } 3239 3240 vmcs_writel(CR4_READ_SHADOW, cr4); 3241 vmcs_writel(GUEST_CR4, hw_cr4); 3242 3243 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3244 kvm_update_cpuid_runtime(vcpu); 3245 } 3246 3247 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3248 { 3249 struct vcpu_vmx *vmx = to_vmx(vcpu); 3250 u32 ar; 3251 3252 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3253 *var = vmx->rmode.segs[seg]; 3254 if (seg == VCPU_SREG_TR 3255 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3256 return; 3257 var->base = vmx_read_guest_seg_base(vmx, seg); 3258 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3259 return; 3260 } 3261 var->base = vmx_read_guest_seg_base(vmx, seg); 3262 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3263 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3264 ar = vmx_read_guest_seg_ar(vmx, seg); 3265 var->unusable = (ar >> 16) & 1; 3266 var->type = ar & 15; 3267 var->s = (ar >> 4) & 1; 3268 var->dpl = (ar >> 5) & 3; 3269 /* 3270 * Some userspaces do not preserve unusable property. Since usable 3271 * segment has to be present according to VMX spec we can use present 3272 * property to amend userspace bug by making unusable segment always 3273 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3274 * segment as unusable. 3275 */ 3276 var->present = !var->unusable; 3277 var->avl = (ar >> 12) & 1; 3278 var->l = (ar >> 13) & 1; 3279 var->db = (ar >> 14) & 1; 3280 var->g = (ar >> 15) & 1; 3281 } 3282 3283 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3284 { 3285 struct kvm_segment s; 3286 3287 if (to_vmx(vcpu)->rmode.vm86_active) { 3288 vmx_get_segment(vcpu, &s, seg); 3289 return s.base; 3290 } 3291 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3292 } 3293 3294 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3295 { 3296 struct vcpu_vmx *vmx = to_vmx(vcpu); 3297 3298 if (unlikely(vmx->rmode.vm86_active)) 3299 return 0; 3300 else { 3301 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3302 return VMX_AR_DPL(ar); 3303 } 3304 } 3305 3306 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3307 { 3308 u32 ar; 3309 3310 if (var->unusable || !var->present) 3311 ar = 1 << 16; 3312 else { 3313 ar = var->type & 15; 3314 ar |= (var->s & 1) << 4; 3315 ar |= (var->dpl & 3) << 5; 3316 ar |= (var->present & 1) << 7; 3317 ar |= (var->avl & 1) << 12; 3318 ar |= (var->l & 1) << 13; 3319 ar |= (var->db & 1) << 14; 3320 ar |= (var->g & 1) << 15; 3321 } 3322 3323 return ar; 3324 } 3325 3326 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3327 { 3328 struct vcpu_vmx *vmx = to_vmx(vcpu); 3329 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3330 3331 vmx_segment_cache_clear(vmx); 3332 3333 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3334 vmx->rmode.segs[seg] = *var; 3335 if (seg == VCPU_SREG_TR) 3336 vmcs_write16(sf->selector, var->selector); 3337 else if (var->s) 3338 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3339 return; 3340 } 3341 3342 vmcs_writel(sf->base, var->base); 3343 vmcs_write32(sf->limit, var->limit); 3344 vmcs_write16(sf->selector, var->selector); 3345 3346 /* 3347 * Fix the "Accessed" bit in AR field of segment registers for older 3348 * qemu binaries. 3349 * IA32 arch specifies that at the time of processor reset the 3350 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3351 * is setting it to 0 in the userland code. This causes invalid guest 3352 * state vmexit when "unrestricted guest" mode is turned on. 3353 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3354 * tree. Newer qemu binaries with that qemu fix would not need this 3355 * kvm hack. 3356 */ 3357 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3358 var->type |= 0x1; /* Accessed */ 3359 3360 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3361 } 3362 3363 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3364 { 3365 __vmx_set_segment(vcpu, var, seg); 3366 3367 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3368 } 3369 3370 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3371 { 3372 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3373 3374 *db = (ar >> 14) & 1; 3375 *l = (ar >> 13) & 1; 3376 } 3377 3378 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3379 { 3380 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3381 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3382 } 3383 3384 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3385 { 3386 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3387 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3388 } 3389 3390 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3391 { 3392 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3393 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3394 } 3395 3396 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3397 { 3398 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3399 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3400 } 3401 3402 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3403 { 3404 struct kvm_segment var; 3405 u32 ar; 3406 3407 vmx_get_segment(vcpu, &var, seg); 3408 var.dpl = 0x3; 3409 if (seg == VCPU_SREG_CS) 3410 var.type = 0x3; 3411 ar = vmx_segment_access_rights(&var); 3412 3413 if (var.base != (var.selector << 4)) 3414 return false; 3415 if (var.limit != 0xffff) 3416 return false; 3417 if (ar != 0xf3) 3418 return false; 3419 3420 return true; 3421 } 3422 3423 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3424 { 3425 struct kvm_segment cs; 3426 unsigned int cs_rpl; 3427 3428 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3429 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3430 3431 if (cs.unusable) 3432 return false; 3433 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3434 return false; 3435 if (!cs.s) 3436 return false; 3437 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3438 if (cs.dpl > cs_rpl) 3439 return false; 3440 } else { 3441 if (cs.dpl != cs_rpl) 3442 return false; 3443 } 3444 if (!cs.present) 3445 return false; 3446 3447 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3448 return true; 3449 } 3450 3451 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3452 { 3453 struct kvm_segment ss; 3454 unsigned int ss_rpl; 3455 3456 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3457 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3458 3459 if (ss.unusable) 3460 return true; 3461 if (ss.type != 3 && ss.type != 7) 3462 return false; 3463 if (!ss.s) 3464 return false; 3465 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3466 return false; 3467 if (!ss.present) 3468 return false; 3469 3470 return true; 3471 } 3472 3473 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3474 { 3475 struct kvm_segment var; 3476 unsigned int rpl; 3477 3478 vmx_get_segment(vcpu, &var, seg); 3479 rpl = var.selector & SEGMENT_RPL_MASK; 3480 3481 if (var.unusable) 3482 return true; 3483 if (!var.s) 3484 return false; 3485 if (!var.present) 3486 return false; 3487 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3488 if (var.dpl < rpl) /* DPL < RPL */ 3489 return false; 3490 } 3491 3492 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3493 * rights flags 3494 */ 3495 return true; 3496 } 3497 3498 static bool tr_valid(struct kvm_vcpu *vcpu) 3499 { 3500 struct kvm_segment tr; 3501 3502 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3503 3504 if (tr.unusable) 3505 return false; 3506 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3507 return false; 3508 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3509 return false; 3510 if (!tr.present) 3511 return false; 3512 3513 return true; 3514 } 3515 3516 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3517 { 3518 struct kvm_segment ldtr; 3519 3520 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3521 3522 if (ldtr.unusable) 3523 return true; 3524 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3525 return false; 3526 if (ldtr.type != 2) 3527 return false; 3528 if (!ldtr.present) 3529 return false; 3530 3531 return true; 3532 } 3533 3534 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3535 { 3536 struct kvm_segment cs, ss; 3537 3538 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3539 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3540 3541 return ((cs.selector & SEGMENT_RPL_MASK) == 3542 (ss.selector & SEGMENT_RPL_MASK)); 3543 } 3544 3545 /* 3546 * Check if guest state is valid. Returns true if valid, false if 3547 * not. 3548 * We assume that registers are always usable 3549 */ 3550 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3551 { 3552 /* real mode guest state checks */ 3553 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3554 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3555 return false; 3556 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3557 return false; 3558 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3559 return false; 3560 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3561 return false; 3562 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3563 return false; 3564 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3565 return false; 3566 } else { 3567 /* protected mode guest state checks */ 3568 if (!cs_ss_rpl_check(vcpu)) 3569 return false; 3570 if (!code_segment_valid(vcpu)) 3571 return false; 3572 if (!stack_segment_valid(vcpu)) 3573 return false; 3574 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3575 return false; 3576 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3577 return false; 3578 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3579 return false; 3580 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3581 return false; 3582 if (!tr_valid(vcpu)) 3583 return false; 3584 if (!ldtr_valid(vcpu)) 3585 return false; 3586 } 3587 /* TODO: 3588 * - Add checks on RIP 3589 * - Add checks on RFLAGS 3590 */ 3591 3592 return true; 3593 } 3594 3595 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3596 { 3597 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3598 u16 data; 3599 int i; 3600 3601 for (i = 0; i < 3; i++) { 3602 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3603 return -EFAULT; 3604 } 3605 3606 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3607 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3608 return -EFAULT; 3609 3610 data = ~0; 3611 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3612 return -EFAULT; 3613 3614 return 0; 3615 } 3616 3617 static int init_rmode_identity_map(struct kvm *kvm) 3618 { 3619 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3620 int i, r = 0; 3621 void __user *uaddr; 3622 u32 tmp; 3623 3624 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3625 mutex_lock(&kvm->slots_lock); 3626 3627 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3628 goto out; 3629 3630 if (!kvm_vmx->ept_identity_map_addr) 3631 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3632 3633 uaddr = __x86_set_memory_region(kvm, 3634 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3635 kvm_vmx->ept_identity_map_addr, 3636 PAGE_SIZE); 3637 if (IS_ERR(uaddr)) { 3638 r = PTR_ERR(uaddr); 3639 goto out; 3640 } 3641 3642 /* Set up identity-mapping pagetable for EPT in real mode */ 3643 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3644 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3645 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3646 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3647 r = -EFAULT; 3648 goto out; 3649 } 3650 } 3651 kvm_vmx->ept_identity_pagetable_done = true; 3652 3653 out: 3654 mutex_unlock(&kvm->slots_lock); 3655 return r; 3656 } 3657 3658 static void seg_setup(int seg) 3659 { 3660 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3661 unsigned int ar; 3662 3663 vmcs_write16(sf->selector, 0); 3664 vmcs_writel(sf->base, 0); 3665 vmcs_write32(sf->limit, 0xffff); 3666 ar = 0x93; 3667 if (seg == VCPU_SREG_CS) 3668 ar |= 0x08; /* code segment */ 3669 3670 vmcs_write32(sf->ar_bytes, ar); 3671 } 3672 3673 static int alloc_apic_access_page(struct kvm *kvm) 3674 { 3675 struct page *page; 3676 void __user *hva; 3677 int ret = 0; 3678 3679 mutex_lock(&kvm->slots_lock); 3680 if (kvm->arch.apic_access_memslot_enabled) 3681 goto out; 3682 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3683 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3684 if (IS_ERR(hva)) { 3685 ret = PTR_ERR(hva); 3686 goto out; 3687 } 3688 3689 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3690 if (is_error_page(page)) { 3691 ret = -EFAULT; 3692 goto out; 3693 } 3694 3695 /* 3696 * Do not pin the page in memory, so that memory hot-unplug 3697 * is able to migrate it. 3698 */ 3699 put_page(page); 3700 kvm->arch.apic_access_memslot_enabled = true; 3701 out: 3702 mutex_unlock(&kvm->slots_lock); 3703 return ret; 3704 } 3705 3706 int allocate_vpid(void) 3707 { 3708 int vpid; 3709 3710 if (!enable_vpid) 3711 return 0; 3712 spin_lock(&vmx_vpid_lock); 3713 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3714 if (vpid < VMX_NR_VPIDS) 3715 __set_bit(vpid, vmx_vpid_bitmap); 3716 else 3717 vpid = 0; 3718 spin_unlock(&vmx_vpid_lock); 3719 return vpid; 3720 } 3721 3722 void free_vpid(int vpid) 3723 { 3724 if (!enable_vpid || vpid == 0) 3725 return; 3726 spin_lock(&vmx_vpid_lock); 3727 __clear_bit(vpid, vmx_vpid_bitmap); 3728 spin_unlock(&vmx_vpid_lock); 3729 } 3730 3731 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3732 { 3733 /* 3734 * When KVM is a nested hypervisor on top of Hyper-V and uses 3735 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3736 * bitmap has changed. 3737 */ 3738 if (static_branch_unlikely(&enable_evmcs)) 3739 evmcs_touch_msr_bitmap(); 3740 3741 vmx->nested.force_msr_bitmap_recalc = true; 3742 } 3743 3744 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3745 { 3746 struct vcpu_vmx *vmx = to_vmx(vcpu); 3747 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3748 3749 if (!cpu_has_vmx_msr_bitmap()) 3750 return; 3751 3752 vmx_msr_bitmap_l01_changed(vmx); 3753 3754 /* 3755 * Mark the desired intercept state in shadow bitmap, this is needed 3756 * for resync when the MSR filters change. 3757 */ 3758 if (is_valid_passthrough_msr(msr)) { 3759 int idx = possible_passthrough_msr_slot(msr); 3760 3761 if (idx != -ENOENT) { 3762 if (type & MSR_TYPE_R) 3763 clear_bit(idx, vmx->shadow_msr_intercept.read); 3764 if (type & MSR_TYPE_W) 3765 clear_bit(idx, vmx->shadow_msr_intercept.write); 3766 } 3767 } 3768 3769 if ((type & MSR_TYPE_R) && 3770 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3771 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3772 type &= ~MSR_TYPE_R; 3773 } 3774 3775 if ((type & MSR_TYPE_W) && 3776 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3777 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3778 type &= ~MSR_TYPE_W; 3779 } 3780 3781 if (type & MSR_TYPE_R) 3782 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3783 3784 if (type & MSR_TYPE_W) 3785 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3786 } 3787 3788 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3789 { 3790 struct vcpu_vmx *vmx = to_vmx(vcpu); 3791 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3792 3793 if (!cpu_has_vmx_msr_bitmap()) 3794 return; 3795 3796 vmx_msr_bitmap_l01_changed(vmx); 3797 3798 /* 3799 * Mark the desired intercept state in shadow bitmap, this is needed 3800 * for resync when the MSR filter changes. 3801 */ 3802 if (is_valid_passthrough_msr(msr)) { 3803 int idx = possible_passthrough_msr_slot(msr); 3804 3805 if (idx != -ENOENT) { 3806 if (type & MSR_TYPE_R) 3807 set_bit(idx, vmx->shadow_msr_intercept.read); 3808 if (type & MSR_TYPE_W) 3809 set_bit(idx, vmx->shadow_msr_intercept.write); 3810 } 3811 } 3812 3813 if (type & MSR_TYPE_R) 3814 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3815 3816 if (type & MSR_TYPE_W) 3817 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3818 } 3819 3820 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode) 3821 { 3822 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; 3823 unsigned long read_intercept; 3824 int msr; 3825 3826 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3827 3828 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3829 unsigned int read_idx = msr / BITS_PER_LONG; 3830 unsigned int write_idx = read_idx + (0x800 / sizeof(long)); 3831 3832 msr_bitmap[read_idx] = read_intercept; 3833 msr_bitmap[write_idx] = ~0ul; 3834 } 3835 } 3836 3837 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 3838 { 3839 struct vcpu_vmx *vmx = to_vmx(vcpu); 3840 u8 mode; 3841 3842 if (!cpu_has_vmx_msr_bitmap()) 3843 return; 3844 3845 if (cpu_has_secondary_exec_ctrls() && 3846 (secondary_exec_controls_get(vmx) & 3847 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3848 mode = MSR_BITMAP_MODE_X2APIC; 3849 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3850 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3851 } else { 3852 mode = 0; 3853 } 3854 3855 if (mode == vmx->x2apic_msr_bitmap_mode) 3856 return; 3857 3858 vmx->x2apic_msr_bitmap_mode = mode; 3859 3860 vmx_reset_x2apic_msrs(vcpu, mode); 3861 3862 /* 3863 * TPR reads and writes can be virtualized even if virtual interrupt 3864 * delivery is not in use. 3865 */ 3866 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 3867 !(mode & MSR_BITMAP_MODE_X2APIC)); 3868 3869 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3870 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 3871 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3872 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3873 } 3874 } 3875 3876 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 3877 { 3878 struct vcpu_vmx *vmx = to_vmx(vcpu); 3879 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3880 u32 i; 3881 3882 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 3883 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 3884 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 3885 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 3886 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 3887 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3888 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3889 } 3890 } 3891 3892 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3893 { 3894 struct vcpu_vmx *vmx = to_vmx(vcpu); 3895 void *vapic_page; 3896 u32 vppr; 3897 int rvi; 3898 3899 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3900 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3901 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3902 return false; 3903 3904 rvi = vmx_get_rvi(); 3905 3906 vapic_page = vmx->nested.virtual_apic_map.hva; 3907 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 3908 3909 return ((rvi & 0xf0) > (vppr & 0xf0)); 3910 } 3911 3912 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 3913 { 3914 struct vcpu_vmx *vmx = to_vmx(vcpu); 3915 u32 i; 3916 3917 /* 3918 * Set intercept permissions for all potentially passed through MSRs 3919 * again. They will automatically get filtered through the MSR filter, 3920 * so we are back in sync after this. 3921 */ 3922 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 3923 u32 msr = vmx_possible_passthrough_msrs[i]; 3924 bool read = test_bit(i, vmx->shadow_msr_intercept.read); 3925 bool write = test_bit(i, vmx->shadow_msr_intercept.write); 3926 3927 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read); 3928 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write); 3929 } 3930 3931 pt_update_intercept_for_msr(vcpu); 3932 } 3933 3934 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 3935 int pi_vec) 3936 { 3937 #ifdef CONFIG_SMP 3938 if (vcpu->mode == IN_GUEST_MODE) { 3939 /* 3940 * The vector of interrupt to be delivered to vcpu had 3941 * been set in PIR before this function. 3942 * 3943 * Following cases will be reached in this block, and 3944 * we always send a notification event in all cases as 3945 * explained below. 3946 * 3947 * Case 1: vcpu keeps in non-root mode. Sending a 3948 * notification event posts the interrupt to vcpu. 3949 * 3950 * Case 2: vcpu exits to root mode and is still 3951 * runnable. PIR will be synced to vIRR before the 3952 * next vcpu entry. Sending a notification event in 3953 * this case has no effect, as vcpu is not in root 3954 * mode. 3955 * 3956 * Case 3: vcpu exits to root mode and is blocked. 3957 * vcpu_block() has already synced PIR to vIRR and 3958 * never blocks vcpu if vIRR is not cleared. Therefore, 3959 * a blocked vcpu here does not wait for any requested 3960 * interrupts in PIR, and sending a notification event 3961 * which has no effect is safe here. 3962 */ 3963 3964 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 3965 return; 3966 } 3967 #endif 3968 /* 3969 * The vCPU isn't in the guest; wake the vCPU in case it is blocking, 3970 * otherwise do nothing as KVM will grab the highest priority pending 3971 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). 3972 */ 3973 kvm_vcpu_wake_up(vcpu); 3974 } 3975 3976 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 3977 int vector) 3978 { 3979 struct vcpu_vmx *vmx = to_vmx(vcpu); 3980 3981 if (is_guest_mode(vcpu) && 3982 vector == vmx->nested.posted_intr_nv) { 3983 /* 3984 * If a posted intr is not recognized by hardware, 3985 * we will accomplish it in the next vmentry. 3986 */ 3987 vmx->nested.pi_pending = true; 3988 kvm_make_request(KVM_REQ_EVENT, vcpu); 3989 3990 /* 3991 * This pairs with the smp_mb_*() after setting vcpu->mode in 3992 * vcpu_enter_guest() to guarantee the vCPU sees the event 3993 * request if triggering a posted interrupt "fails" because 3994 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 3995 * the smb_wmb() in kvm_make_request() only ensures everything 3996 * done before making the request is visible when the request 3997 * is visible, it doesn't ensure ordering between the store to 3998 * vcpu->requests and the load from vcpu->mode. 3999 */ 4000 smp_mb__after_atomic(); 4001 4002 /* the PIR and ON have been set by L1. */ 4003 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); 4004 return 0; 4005 } 4006 return -1; 4007 } 4008 /* 4009 * Send interrupt to vcpu via posted interrupt way. 4010 * 1. If target vcpu is running(non-root mode), send posted interrupt 4011 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4012 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4013 * interrupt from PIR in next vmentry. 4014 */ 4015 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4016 { 4017 struct vcpu_vmx *vmx = to_vmx(vcpu); 4018 int r; 4019 4020 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4021 if (!r) 4022 return 0; 4023 4024 if (!vcpu->arch.apicv_active) 4025 return -1; 4026 4027 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4028 return 0; 4029 4030 /* If a previous notification has sent the IPI, nothing to do. */ 4031 if (pi_test_and_set_on(&vmx->pi_desc)) 4032 return 0; 4033 4034 /* 4035 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() 4036 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is 4037 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a 4038 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. 4039 */ 4040 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); 4041 return 0; 4042 } 4043 4044 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 4045 int trig_mode, int vector) 4046 { 4047 struct kvm_vcpu *vcpu = apic->vcpu; 4048 4049 if (vmx_deliver_posted_interrupt(vcpu, vector)) { 4050 kvm_lapic_set_irr(vector, apic); 4051 kvm_make_request(KVM_REQ_EVENT, vcpu); 4052 kvm_vcpu_kick(vcpu); 4053 } else { 4054 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 4055 trig_mode, vector); 4056 } 4057 } 4058 4059 /* 4060 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4061 * will not change in the lifetime of the guest. 4062 * Note that host-state that does change is set elsewhere. E.g., host-state 4063 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4064 */ 4065 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4066 { 4067 u32 low32, high32; 4068 unsigned long tmpl; 4069 unsigned long cr0, cr3, cr4; 4070 4071 cr0 = read_cr0(); 4072 WARN_ON(cr0 & X86_CR0_TS); 4073 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4074 4075 /* 4076 * Save the most likely value for this task's CR3 in the VMCS. 4077 * We can't use __get_current_cr3_fast() because we're not atomic. 4078 */ 4079 cr3 = __read_cr3(); 4080 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4081 vmx->loaded_vmcs->host_state.cr3 = cr3; 4082 4083 /* Save the most likely value for this task's CR4 in the VMCS. */ 4084 cr4 = cr4_read_shadow(); 4085 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4086 vmx->loaded_vmcs->host_state.cr4 = cr4; 4087 4088 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4089 #ifdef CONFIG_X86_64 4090 /* 4091 * Load null selectors, so we can avoid reloading them in 4092 * vmx_prepare_switch_to_host(), in case userspace uses 4093 * the null selectors too (the expected case). 4094 */ 4095 vmcs_write16(HOST_DS_SELECTOR, 0); 4096 vmcs_write16(HOST_ES_SELECTOR, 0); 4097 #else 4098 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4099 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4100 #endif 4101 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4102 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4103 4104 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4105 4106 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4107 4108 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4109 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4110 4111 /* 4112 * SYSENTER is used for 32-bit system calls on either 32-bit or 4113 * 64-bit kernels. It is always zero If neither is allowed, otherwise 4114 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may 4115 * have already done so!). 4116 */ 4117 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) 4118 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4119 4120 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4121 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4122 4123 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4124 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4125 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4126 } 4127 4128 if (cpu_has_load_ia32_efer()) 4129 vmcs_write64(HOST_IA32_EFER, host_efer); 4130 } 4131 4132 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4133 { 4134 struct kvm_vcpu *vcpu = &vmx->vcpu; 4135 4136 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4137 ~vcpu->arch.cr4_guest_rsvd_bits; 4138 if (!enable_ept) { 4139 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4140 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4141 } 4142 if (is_guest_mode(&vmx->vcpu)) 4143 vcpu->arch.cr4_guest_owned_bits &= 4144 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4145 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4146 } 4147 4148 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4149 { 4150 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4151 4152 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4153 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4154 4155 if (!enable_vnmi) 4156 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4157 4158 if (!enable_preemption_timer) 4159 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4160 4161 return pin_based_exec_ctrl; 4162 } 4163 4164 static u32 vmx_vmentry_ctrl(void) 4165 { 4166 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4167 4168 if (vmx_pt_mode_is_system()) 4169 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4170 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4171 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4172 return vmentry_ctrl & 4173 ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER); 4174 } 4175 4176 static u32 vmx_vmexit_ctrl(void) 4177 { 4178 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4179 4180 if (vmx_pt_mode_is_system()) 4181 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4182 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4183 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4184 return vmexit_ctrl & 4185 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4186 } 4187 4188 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4189 { 4190 struct vcpu_vmx *vmx = to_vmx(vcpu); 4191 4192 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4193 if (cpu_has_secondary_exec_ctrls()) { 4194 if (kvm_vcpu_apicv_active(vcpu)) 4195 secondary_exec_controls_setbit(vmx, 4196 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4197 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4198 else 4199 secondary_exec_controls_clearbit(vmx, 4200 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4201 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4202 } 4203 4204 vmx_update_msr_bitmap_x2apic(vcpu); 4205 } 4206 4207 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4208 { 4209 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4210 4211 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4212 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4213 4214 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 4215 exec_control &= ~CPU_BASED_TPR_SHADOW; 4216 #ifdef CONFIG_X86_64 4217 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4218 CPU_BASED_CR8_LOAD_EXITING; 4219 #endif 4220 } 4221 if (!enable_ept) 4222 exec_control |= CPU_BASED_CR3_STORE_EXITING | 4223 CPU_BASED_CR3_LOAD_EXITING | 4224 CPU_BASED_INVLPG_EXITING; 4225 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4226 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4227 CPU_BASED_MONITOR_EXITING); 4228 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4229 exec_control &= ~CPU_BASED_HLT_EXITING; 4230 return exec_control; 4231 } 4232 4233 /* 4234 * Adjust a single secondary execution control bit to intercept/allow an 4235 * instruction in the guest. This is usually done based on whether or not a 4236 * feature has been exposed to the guest in order to correctly emulate faults. 4237 */ 4238 static inline void 4239 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4240 u32 control, bool enabled, bool exiting) 4241 { 4242 /* 4243 * If the control is for an opt-in feature, clear the control if the 4244 * feature is not exposed to the guest, i.e. not enabled. If the 4245 * control is opt-out, i.e. an exiting control, clear the control if 4246 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4247 * disabled for the associated instruction. Note, the caller is 4248 * responsible presetting exec_control to set all supported bits. 4249 */ 4250 if (enabled == exiting) 4251 *exec_control &= ~control; 4252 4253 /* 4254 * Update the nested MSR settings so that a nested VMM can/can't set 4255 * controls for features that are/aren't exposed to the guest. 4256 */ 4257 if (nested) { 4258 if (enabled) 4259 vmx->nested.msrs.secondary_ctls_high |= control; 4260 else 4261 vmx->nested.msrs.secondary_ctls_high &= ~control; 4262 } 4263 } 4264 4265 /* 4266 * Wrapper macro for the common case of adjusting a secondary execution control 4267 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4268 * verifies that the control is actually supported by KVM and hardware. 4269 */ 4270 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4271 ({ \ 4272 bool __enabled; \ 4273 \ 4274 if (cpu_has_vmx_##name()) { \ 4275 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4276 X86_FEATURE_##feat_name); \ 4277 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4278 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4279 } \ 4280 }) 4281 4282 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4283 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4284 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4285 4286 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4287 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4288 4289 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4290 { 4291 struct kvm_vcpu *vcpu = &vmx->vcpu; 4292 4293 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4294 4295 if (vmx_pt_mode_is_system()) 4296 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4297 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4298 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4299 if (vmx->vpid == 0) 4300 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4301 if (!enable_ept) { 4302 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4303 enable_unrestricted_guest = 0; 4304 } 4305 if (!enable_unrestricted_guest) 4306 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4307 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4308 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4309 if (!kvm_vcpu_apicv_active(vcpu)) 4310 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4311 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4312 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4313 4314 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4315 * in vmx_set_cr4. */ 4316 exec_control &= ~SECONDARY_EXEC_DESC; 4317 4318 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4319 (handle_vmptrld). 4320 We can NOT enable shadow_vmcs here because we don't have yet 4321 a current VMCS12 4322 */ 4323 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4324 4325 /* 4326 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4327 * it needs to be set here when dirty logging is already active, e.g. 4328 * if this vCPU was created after dirty logging was enabled. 4329 */ 4330 if (!vcpu->kvm->arch.cpu_dirty_logging_count) 4331 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4332 4333 if (cpu_has_vmx_xsaves()) { 4334 /* Exposing XSAVES only when XSAVE is exposed */ 4335 bool xsaves_enabled = 4336 boot_cpu_has(X86_FEATURE_XSAVE) && 4337 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4338 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4339 4340 vcpu->arch.xsaves_enabled = xsaves_enabled; 4341 4342 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4343 SECONDARY_EXEC_XSAVES, 4344 xsaves_enabled, false); 4345 } 4346 4347 /* 4348 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4349 * feature is exposed to the guest. This creates a virtualization hole 4350 * if both are supported in hardware but only one is exposed to the 4351 * guest, but letting the guest execute RDTSCP or RDPID when either one 4352 * is advertised is preferable to emulating the advertised instruction 4353 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4354 */ 4355 if (cpu_has_vmx_rdtscp()) { 4356 bool rdpid_or_rdtscp_enabled = 4357 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4358 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4359 4360 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4361 SECONDARY_EXEC_ENABLE_RDTSCP, 4362 rdpid_or_rdtscp_enabled, false); 4363 } 4364 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4365 4366 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4367 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4368 4369 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4370 ENABLE_USR_WAIT_PAUSE, false); 4371 4372 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4373 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4374 4375 return exec_control; 4376 } 4377 4378 #define VMX_XSS_EXIT_BITMAP 0 4379 4380 static void init_vmcs(struct vcpu_vmx *vmx) 4381 { 4382 if (nested) 4383 nested_vmx_set_vmcs_shadowing_bitmap(); 4384 4385 if (cpu_has_vmx_msr_bitmap()) 4386 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4387 4388 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4389 4390 /* Control */ 4391 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4392 4393 exec_controls_set(vmx, vmx_exec_control(vmx)); 4394 4395 if (cpu_has_secondary_exec_ctrls()) 4396 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4397 4398 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4399 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4400 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4401 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4402 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4403 4404 vmcs_write16(GUEST_INTR_STATUS, 0); 4405 4406 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4407 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4408 } 4409 4410 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4411 vmcs_write32(PLE_GAP, ple_gap); 4412 vmx->ple_window = ple_window; 4413 vmx->ple_window_dirty = true; 4414 } 4415 4416 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4417 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4418 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4419 4420 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4421 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4422 vmx_set_constant_host_state(vmx); 4423 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4424 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4425 4426 if (cpu_has_vmx_vmfunc()) 4427 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4428 4429 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4430 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4431 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4432 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4433 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4434 4435 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4436 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4437 4438 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4439 4440 /* 22.2.1, 20.8.1 */ 4441 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4442 4443 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS; 4444 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4445 4446 set_cr4_guest_host_mask(vmx); 4447 4448 if (vmx->vpid != 0) 4449 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4450 4451 if (cpu_has_vmx_xsaves()) 4452 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4453 4454 if (enable_pml) { 4455 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4456 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4457 } 4458 4459 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4460 4461 if (vmx_pt_mode_is_host_guest()) { 4462 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4463 /* Bit[6~0] are forced to 1, writes are ignored. */ 4464 vmx->pt_desc.guest.output_mask = 0x7F; 4465 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4466 } 4467 4468 vmcs_write32(GUEST_SYSENTER_CS, 0); 4469 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4470 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4471 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4472 4473 if (cpu_has_vmx_tpr_shadow()) { 4474 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4475 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4476 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4477 __pa(vmx->vcpu.arch.apic->regs)); 4478 vmcs_write32(TPR_THRESHOLD, 0); 4479 } 4480 4481 vmx_setup_uret_msrs(vmx); 4482 } 4483 4484 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4485 { 4486 struct vcpu_vmx *vmx = to_vmx(vcpu); 4487 4488 init_vmcs(vmx); 4489 4490 if (nested) 4491 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4492 4493 vcpu_setup_sgx_lepubkeyhash(vcpu); 4494 4495 vmx->nested.posted_intr_nv = -1; 4496 vmx->nested.vmxon_ptr = INVALID_GPA; 4497 vmx->nested.current_vmptr = INVALID_GPA; 4498 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4499 4500 vcpu->arch.microcode_version = 0x100000000ULL; 4501 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4502 4503 /* 4504 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4505 * or POSTED_INTR_WAKEUP_VECTOR. 4506 */ 4507 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4508 vmx->pi_desc.sn = 1; 4509 } 4510 4511 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4512 { 4513 struct vcpu_vmx *vmx = to_vmx(vcpu); 4514 4515 if (!init_event) 4516 __vmx_vcpu_reset(vcpu); 4517 4518 vmx->rmode.vm86_active = 0; 4519 vmx->spec_ctrl = 0; 4520 4521 vmx->msr_ia32_umwait_control = 0; 4522 4523 vmx->hv_deadline_tsc = -1; 4524 kvm_set_cr8(vcpu, 0); 4525 4526 vmx_segment_cache_clear(vmx); 4527 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4528 4529 seg_setup(VCPU_SREG_CS); 4530 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4531 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4532 4533 seg_setup(VCPU_SREG_DS); 4534 seg_setup(VCPU_SREG_ES); 4535 seg_setup(VCPU_SREG_FS); 4536 seg_setup(VCPU_SREG_GS); 4537 seg_setup(VCPU_SREG_SS); 4538 4539 vmcs_write16(GUEST_TR_SELECTOR, 0); 4540 vmcs_writel(GUEST_TR_BASE, 0); 4541 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4542 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4543 4544 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4545 vmcs_writel(GUEST_LDTR_BASE, 0); 4546 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4547 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4548 4549 vmcs_writel(GUEST_GDTR_BASE, 0); 4550 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4551 4552 vmcs_writel(GUEST_IDTR_BASE, 0); 4553 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4554 4555 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4556 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4557 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4558 if (kvm_mpx_supported()) 4559 vmcs_write64(GUEST_BNDCFGS, 0); 4560 4561 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4562 4563 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4564 4565 vpid_sync_context(vmx->vpid); 4566 } 4567 4568 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4569 { 4570 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4571 } 4572 4573 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4574 { 4575 if (!enable_vnmi || 4576 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4577 vmx_enable_irq_window(vcpu); 4578 return; 4579 } 4580 4581 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4582 } 4583 4584 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4585 { 4586 struct vcpu_vmx *vmx = to_vmx(vcpu); 4587 uint32_t intr; 4588 int irq = vcpu->arch.interrupt.nr; 4589 4590 trace_kvm_inj_virq(irq); 4591 4592 ++vcpu->stat.irq_injections; 4593 if (vmx->rmode.vm86_active) { 4594 int inc_eip = 0; 4595 if (vcpu->arch.interrupt.soft) 4596 inc_eip = vcpu->arch.event_exit_inst_len; 4597 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4598 return; 4599 } 4600 intr = irq | INTR_INFO_VALID_MASK; 4601 if (vcpu->arch.interrupt.soft) { 4602 intr |= INTR_TYPE_SOFT_INTR; 4603 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4604 vmx->vcpu.arch.event_exit_inst_len); 4605 } else 4606 intr |= INTR_TYPE_EXT_INTR; 4607 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4608 4609 vmx_clear_hlt(vcpu); 4610 } 4611 4612 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4613 { 4614 struct vcpu_vmx *vmx = to_vmx(vcpu); 4615 4616 if (!enable_vnmi) { 4617 /* 4618 * Tracking the NMI-blocked state in software is built upon 4619 * finding the next open IRQ window. This, in turn, depends on 4620 * well-behaving guests: They have to keep IRQs disabled at 4621 * least as long as the NMI handler runs. Otherwise we may 4622 * cause NMI nesting, maybe breaking the guest. But as this is 4623 * highly unlikely, we can live with the residual risk. 4624 */ 4625 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4626 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4627 } 4628 4629 ++vcpu->stat.nmi_injections; 4630 vmx->loaded_vmcs->nmi_known_unmasked = false; 4631 4632 if (vmx->rmode.vm86_active) { 4633 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4634 return; 4635 } 4636 4637 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4638 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4639 4640 vmx_clear_hlt(vcpu); 4641 } 4642 4643 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4644 { 4645 struct vcpu_vmx *vmx = to_vmx(vcpu); 4646 bool masked; 4647 4648 if (!enable_vnmi) 4649 return vmx->loaded_vmcs->soft_vnmi_blocked; 4650 if (vmx->loaded_vmcs->nmi_known_unmasked) 4651 return false; 4652 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4653 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4654 return masked; 4655 } 4656 4657 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4658 { 4659 struct vcpu_vmx *vmx = to_vmx(vcpu); 4660 4661 if (!enable_vnmi) { 4662 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4663 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4664 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4665 } 4666 } else { 4667 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4668 if (masked) 4669 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4670 GUEST_INTR_STATE_NMI); 4671 else 4672 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4673 GUEST_INTR_STATE_NMI); 4674 } 4675 } 4676 4677 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 4678 { 4679 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4680 return false; 4681 4682 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4683 return true; 4684 4685 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4686 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 4687 GUEST_INTR_STATE_NMI)); 4688 } 4689 4690 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4691 { 4692 if (to_vmx(vcpu)->nested.nested_run_pending) 4693 return -EBUSY; 4694 4695 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 4696 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4697 return -EBUSY; 4698 4699 return !vmx_nmi_blocked(vcpu); 4700 } 4701 4702 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 4703 { 4704 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4705 return false; 4706 4707 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 4708 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4709 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4710 } 4711 4712 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4713 { 4714 if (to_vmx(vcpu)->nested.nested_run_pending) 4715 return -EBUSY; 4716 4717 /* 4718 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 4719 * e.g. if the IRQ arrived asynchronously after checking nested events. 4720 */ 4721 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4722 return -EBUSY; 4723 4724 return !vmx_interrupt_blocked(vcpu); 4725 } 4726 4727 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4728 { 4729 void __user *ret; 4730 4731 if (enable_unrestricted_guest) 4732 return 0; 4733 4734 mutex_lock(&kvm->slots_lock); 4735 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4736 PAGE_SIZE * 3); 4737 mutex_unlock(&kvm->slots_lock); 4738 4739 if (IS_ERR(ret)) 4740 return PTR_ERR(ret); 4741 4742 to_kvm_vmx(kvm)->tss_addr = addr; 4743 4744 return init_rmode_tss(kvm, ret); 4745 } 4746 4747 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4748 { 4749 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4750 return 0; 4751 } 4752 4753 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4754 { 4755 switch (vec) { 4756 case BP_VECTOR: 4757 /* 4758 * Update instruction length as we may reinject the exception 4759 * from user space while in guest debugging mode. 4760 */ 4761 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4762 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4763 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4764 return false; 4765 fallthrough; 4766 case DB_VECTOR: 4767 return !(vcpu->guest_debug & 4768 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 4769 case DE_VECTOR: 4770 case OF_VECTOR: 4771 case BR_VECTOR: 4772 case UD_VECTOR: 4773 case DF_VECTOR: 4774 case SS_VECTOR: 4775 case GP_VECTOR: 4776 case MF_VECTOR: 4777 return true; 4778 } 4779 return false; 4780 } 4781 4782 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4783 int vec, u32 err_code) 4784 { 4785 /* 4786 * Instruction with address size override prefix opcode 0x67 4787 * Cause the #SS fault with 0 error code in VM86 mode. 4788 */ 4789 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4790 if (kvm_emulate_instruction(vcpu, 0)) { 4791 if (vcpu->arch.halt_request) { 4792 vcpu->arch.halt_request = 0; 4793 return kvm_emulate_halt_noskip(vcpu); 4794 } 4795 return 1; 4796 } 4797 return 0; 4798 } 4799 4800 /* 4801 * Forward all other exceptions that are valid in real mode. 4802 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4803 * the required debugging infrastructure rework. 4804 */ 4805 kvm_queue_exception(vcpu, vec); 4806 return 1; 4807 } 4808 4809 static int handle_machine_check(struct kvm_vcpu *vcpu) 4810 { 4811 /* handled by vmx_vcpu_run() */ 4812 return 1; 4813 } 4814 4815 /* 4816 * If the host has split lock detection disabled, then #AC is 4817 * unconditionally injected into the guest, which is the pre split lock 4818 * detection behaviour. 4819 * 4820 * If the host has split lock detection enabled then #AC is 4821 * only injected into the guest when: 4822 * - Guest CPL == 3 (user mode) 4823 * - Guest has #AC detection enabled in CR0 4824 * - Guest EFLAGS has AC bit set 4825 */ 4826 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 4827 { 4828 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 4829 return true; 4830 4831 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) && 4832 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 4833 } 4834 4835 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 4836 { 4837 struct vcpu_vmx *vmx = to_vmx(vcpu); 4838 struct kvm_run *kvm_run = vcpu->run; 4839 u32 intr_info, ex_no, error_code; 4840 unsigned long cr2, dr6; 4841 u32 vect_info; 4842 4843 vect_info = vmx->idt_vectoring_info; 4844 intr_info = vmx_get_intr_info(vcpu); 4845 4846 if (is_machine_check(intr_info) || is_nmi(intr_info)) 4847 return 1; /* handled by handle_exception_nmi_irqoff() */ 4848 4849 /* 4850 * Queue the exception here instead of in handle_nm_fault_irqoff(). 4851 * This ensures the nested_vmx check is not skipped so vmexit can 4852 * be reflected to L1 (when it intercepts #NM) before reaching this 4853 * point. 4854 */ 4855 if (is_nm_fault(intr_info)) { 4856 kvm_queue_exception(vcpu, NM_VECTOR); 4857 return 1; 4858 } 4859 4860 if (is_invalid_opcode(intr_info)) 4861 return handle_ud(vcpu); 4862 4863 error_code = 0; 4864 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4865 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4866 4867 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4868 WARN_ON_ONCE(!enable_vmware_backdoor); 4869 4870 /* 4871 * VMware backdoor emulation on #GP interception only handles 4872 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 4873 * error code on #GP. 4874 */ 4875 if (error_code) { 4876 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4877 return 1; 4878 } 4879 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 4880 } 4881 4882 /* 4883 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4884 * MMIO, it is better to report an internal error. 4885 * See the comments in vmx_handle_exit. 4886 */ 4887 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4888 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4889 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4890 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4891 vcpu->run->internal.ndata = 4; 4892 vcpu->run->internal.data[0] = vect_info; 4893 vcpu->run->internal.data[1] = intr_info; 4894 vcpu->run->internal.data[2] = error_code; 4895 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 4896 return 0; 4897 } 4898 4899 if (is_page_fault(intr_info)) { 4900 cr2 = vmx_get_exit_qual(vcpu); 4901 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 4902 /* 4903 * EPT will cause page fault only if we need to 4904 * detect illegal GPAs. 4905 */ 4906 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 4907 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 4908 return 1; 4909 } else 4910 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4911 } 4912 4913 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4914 4915 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4916 return handle_rmode_exception(vcpu, ex_no, error_code); 4917 4918 switch (ex_no) { 4919 case DB_VECTOR: 4920 dr6 = vmx_get_exit_qual(vcpu); 4921 if (!(vcpu->guest_debug & 4922 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4923 /* 4924 * If the #DB was due to ICEBP, a.k.a. INT1, skip the 4925 * instruction. ICEBP generates a trap-like #DB, but 4926 * despite its interception control being tied to #DB, 4927 * is an instruction intercept, i.e. the VM-Exit occurs 4928 * on the ICEBP itself. Note, skipping ICEBP also 4929 * clears STI and MOVSS blocking. 4930 * 4931 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS 4932 * if single-step is enabled in RFLAGS and STI or MOVSS 4933 * blocking is active, as the CPU doesn't set the bit 4934 * on VM-Exit due to #DB interception. VM-Entry has a 4935 * consistency check that a single-step #DB is pending 4936 * in this scenario as the previous instruction cannot 4937 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV 4938 * don't modify RFLAGS), therefore the one instruction 4939 * delay when activating single-step breakpoints must 4940 * have already expired. Note, the CPU sets/clears BS 4941 * as appropriate for all other VM-Exits types. 4942 */ 4943 if (is_icebp(intr_info)) 4944 WARN_ON(!skip_emulated_instruction(vcpu)); 4945 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && 4946 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4947 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) 4948 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 4949 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); 4950 4951 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 4952 return 1; 4953 } 4954 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 4955 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4956 fallthrough; 4957 case BP_VECTOR: 4958 /* 4959 * Update instruction length as we may reinject #BP from 4960 * user space while in guest debugging mode. Reading it for 4961 * #DB as well causes no harm, it is not used in that case. 4962 */ 4963 vmx->vcpu.arch.event_exit_inst_len = 4964 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4965 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4966 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 4967 kvm_run->debug.arch.exception = ex_no; 4968 break; 4969 case AC_VECTOR: 4970 if (vmx_guest_inject_ac(vcpu)) { 4971 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4972 return 1; 4973 } 4974 4975 /* 4976 * Handle split lock. Depending on detection mode this will 4977 * either warn and disable split lock detection for this 4978 * task or force SIGBUS on it. 4979 */ 4980 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 4981 return 1; 4982 fallthrough; 4983 default: 4984 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4985 kvm_run->ex.exception = ex_no; 4986 kvm_run->ex.error_code = error_code; 4987 break; 4988 } 4989 return 0; 4990 } 4991 4992 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 4993 { 4994 ++vcpu->stat.irq_exits; 4995 return 1; 4996 } 4997 4998 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4999 { 5000 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5001 vcpu->mmio_needed = 0; 5002 return 0; 5003 } 5004 5005 static int handle_io(struct kvm_vcpu *vcpu) 5006 { 5007 unsigned long exit_qualification; 5008 int size, in, string; 5009 unsigned port; 5010 5011 exit_qualification = vmx_get_exit_qual(vcpu); 5012 string = (exit_qualification & 16) != 0; 5013 5014 ++vcpu->stat.io_exits; 5015 5016 if (string) 5017 return kvm_emulate_instruction(vcpu, 0); 5018 5019 port = exit_qualification >> 16; 5020 size = (exit_qualification & 7) + 1; 5021 in = (exit_qualification & 8) != 0; 5022 5023 return kvm_fast_pio(vcpu, size, port, in); 5024 } 5025 5026 static void 5027 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5028 { 5029 /* 5030 * Patch in the VMCALL instruction: 5031 */ 5032 hypercall[0] = 0x0f; 5033 hypercall[1] = 0x01; 5034 hypercall[2] = 0xc1; 5035 } 5036 5037 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5038 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5039 { 5040 if (is_guest_mode(vcpu)) { 5041 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5042 unsigned long orig_val = val; 5043 5044 /* 5045 * We get here when L2 changed cr0 in a way that did not change 5046 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5047 * but did change L0 shadowed bits. So we first calculate the 5048 * effective cr0 value that L1 would like to write into the 5049 * hardware. It consists of the L2-owned bits from the new 5050 * value combined with the L1-owned bits from L1's guest_cr0. 5051 */ 5052 val = (val & ~vmcs12->cr0_guest_host_mask) | 5053 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5054 5055 if (!nested_guest_cr0_valid(vcpu, val)) 5056 return 1; 5057 5058 if (kvm_set_cr0(vcpu, val)) 5059 return 1; 5060 vmcs_writel(CR0_READ_SHADOW, orig_val); 5061 return 0; 5062 } else { 5063 if (to_vmx(vcpu)->nested.vmxon && 5064 !nested_host_cr0_valid(vcpu, val)) 5065 return 1; 5066 5067 return kvm_set_cr0(vcpu, val); 5068 } 5069 } 5070 5071 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5072 { 5073 if (is_guest_mode(vcpu)) { 5074 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5075 unsigned long orig_val = val; 5076 5077 /* analogously to handle_set_cr0 */ 5078 val = (val & ~vmcs12->cr4_guest_host_mask) | 5079 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5080 if (kvm_set_cr4(vcpu, val)) 5081 return 1; 5082 vmcs_writel(CR4_READ_SHADOW, orig_val); 5083 return 0; 5084 } else 5085 return kvm_set_cr4(vcpu, val); 5086 } 5087 5088 static int handle_desc(struct kvm_vcpu *vcpu) 5089 { 5090 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 5091 return kvm_emulate_instruction(vcpu, 0); 5092 } 5093 5094 static int handle_cr(struct kvm_vcpu *vcpu) 5095 { 5096 unsigned long exit_qualification, val; 5097 int cr; 5098 int reg; 5099 int err; 5100 int ret; 5101 5102 exit_qualification = vmx_get_exit_qual(vcpu); 5103 cr = exit_qualification & 15; 5104 reg = (exit_qualification >> 8) & 15; 5105 switch ((exit_qualification >> 4) & 3) { 5106 case 0: /* mov to cr */ 5107 val = kvm_register_read(vcpu, reg); 5108 trace_kvm_cr_write(cr, val); 5109 switch (cr) { 5110 case 0: 5111 err = handle_set_cr0(vcpu, val); 5112 return kvm_complete_insn_gp(vcpu, err); 5113 case 3: 5114 WARN_ON_ONCE(enable_unrestricted_guest); 5115 5116 err = kvm_set_cr3(vcpu, val); 5117 return kvm_complete_insn_gp(vcpu, err); 5118 case 4: 5119 err = handle_set_cr4(vcpu, val); 5120 return kvm_complete_insn_gp(vcpu, err); 5121 case 8: { 5122 u8 cr8_prev = kvm_get_cr8(vcpu); 5123 u8 cr8 = (u8)val; 5124 err = kvm_set_cr8(vcpu, cr8); 5125 ret = kvm_complete_insn_gp(vcpu, err); 5126 if (lapic_in_kernel(vcpu)) 5127 return ret; 5128 if (cr8_prev <= cr8) 5129 return ret; 5130 /* 5131 * TODO: we might be squashing a 5132 * KVM_GUESTDBG_SINGLESTEP-triggered 5133 * KVM_EXIT_DEBUG here. 5134 */ 5135 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5136 return 0; 5137 } 5138 } 5139 break; 5140 case 2: /* clts */ 5141 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5142 return -EIO; 5143 case 1: /*mov from cr*/ 5144 switch (cr) { 5145 case 3: 5146 WARN_ON_ONCE(enable_unrestricted_guest); 5147 5148 val = kvm_read_cr3(vcpu); 5149 kvm_register_write(vcpu, reg, val); 5150 trace_kvm_cr_read(cr, val); 5151 return kvm_skip_emulated_instruction(vcpu); 5152 case 8: 5153 val = kvm_get_cr8(vcpu); 5154 kvm_register_write(vcpu, reg, val); 5155 trace_kvm_cr_read(cr, val); 5156 return kvm_skip_emulated_instruction(vcpu); 5157 } 5158 break; 5159 case 3: /* lmsw */ 5160 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5161 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 5162 kvm_lmsw(vcpu, val); 5163 5164 return kvm_skip_emulated_instruction(vcpu); 5165 default: 5166 break; 5167 } 5168 vcpu->run->exit_reason = 0; 5169 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5170 (int)(exit_qualification >> 4) & 3, cr); 5171 return 0; 5172 } 5173 5174 static int handle_dr(struct kvm_vcpu *vcpu) 5175 { 5176 unsigned long exit_qualification; 5177 int dr, dr7, reg; 5178 int err = 1; 5179 5180 exit_qualification = vmx_get_exit_qual(vcpu); 5181 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5182 5183 /* First, if DR does not exist, trigger UD */ 5184 if (!kvm_require_dr(vcpu, dr)) 5185 return 1; 5186 5187 if (kvm_x86_ops.get_cpl(vcpu) > 0) 5188 goto out; 5189 5190 dr7 = vmcs_readl(GUEST_DR7); 5191 if (dr7 & DR7_GD) { 5192 /* 5193 * As the vm-exit takes precedence over the debug trap, we 5194 * need to emulate the latter, either for the host or the 5195 * guest debugging itself. 5196 */ 5197 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5198 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5199 vcpu->run->debug.arch.dr7 = dr7; 5200 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5201 vcpu->run->debug.arch.exception = DB_VECTOR; 5202 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5203 return 0; 5204 } else { 5205 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5206 return 1; 5207 } 5208 } 5209 5210 if (vcpu->guest_debug == 0) { 5211 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5212 5213 /* 5214 * No more DR vmexits; force a reload of the debug registers 5215 * and reenter on this instruction. The next vmexit will 5216 * retrieve the full state of the debug registers. 5217 */ 5218 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5219 return 1; 5220 } 5221 5222 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5223 if (exit_qualification & TYPE_MOV_FROM_DR) { 5224 unsigned long val; 5225 5226 kvm_get_dr(vcpu, dr, &val); 5227 kvm_register_write(vcpu, reg, val); 5228 err = 0; 5229 } else { 5230 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5231 } 5232 5233 out: 5234 return kvm_complete_insn_gp(vcpu, err); 5235 } 5236 5237 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5238 { 5239 get_debugreg(vcpu->arch.db[0], 0); 5240 get_debugreg(vcpu->arch.db[1], 1); 5241 get_debugreg(vcpu->arch.db[2], 2); 5242 get_debugreg(vcpu->arch.db[3], 3); 5243 get_debugreg(vcpu->arch.dr6, 6); 5244 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5245 5246 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5247 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5248 5249 /* 5250 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5251 * a stale dr6 from the guest. 5252 */ 5253 set_debugreg(DR6_RESERVED, 6); 5254 } 5255 5256 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5257 { 5258 vmcs_writel(GUEST_DR7, val); 5259 } 5260 5261 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5262 { 5263 kvm_apic_update_ppr(vcpu); 5264 return 1; 5265 } 5266 5267 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5268 { 5269 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5270 5271 kvm_make_request(KVM_REQ_EVENT, vcpu); 5272 5273 ++vcpu->stat.irq_window_exits; 5274 return 1; 5275 } 5276 5277 static int handle_invlpg(struct kvm_vcpu *vcpu) 5278 { 5279 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5280 5281 kvm_mmu_invlpg(vcpu, exit_qualification); 5282 return kvm_skip_emulated_instruction(vcpu); 5283 } 5284 5285 static int handle_apic_access(struct kvm_vcpu *vcpu) 5286 { 5287 if (likely(fasteoi)) { 5288 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5289 int access_type, offset; 5290 5291 access_type = exit_qualification & APIC_ACCESS_TYPE; 5292 offset = exit_qualification & APIC_ACCESS_OFFSET; 5293 /* 5294 * Sane guest uses MOV to write EOI, with written value 5295 * not cared. So make a short-circuit here by avoiding 5296 * heavy instruction emulation. 5297 */ 5298 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5299 (offset == APIC_EOI)) { 5300 kvm_lapic_set_eoi(vcpu); 5301 return kvm_skip_emulated_instruction(vcpu); 5302 } 5303 } 5304 return kvm_emulate_instruction(vcpu, 0); 5305 } 5306 5307 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5308 { 5309 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5310 int vector = exit_qualification & 0xff; 5311 5312 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5313 kvm_apic_set_eoi_accelerated(vcpu, vector); 5314 return 1; 5315 } 5316 5317 static int handle_apic_write(struct kvm_vcpu *vcpu) 5318 { 5319 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5320 u32 offset = exit_qualification & 0xfff; 5321 5322 /* APIC-write VM exit is trap-like and thus no need to adjust IP */ 5323 kvm_apic_write_nodecode(vcpu, offset); 5324 return 1; 5325 } 5326 5327 static int handle_task_switch(struct kvm_vcpu *vcpu) 5328 { 5329 struct vcpu_vmx *vmx = to_vmx(vcpu); 5330 unsigned long exit_qualification; 5331 bool has_error_code = false; 5332 u32 error_code = 0; 5333 u16 tss_selector; 5334 int reason, type, idt_v, idt_index; 5335 5336 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5337 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5338 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5339 5340 exit_qualification = vmx_get_exit_qual(vcpu); 5341 5342 reason = (u32)exit_qualification >> 30; 5343 if (reason == TASK_SWITCH_GATE && idt_v) { 5344 switch (type) { 5345 case INTR_TYPE_NMI_INTR: 5346 vcpu->arch.nmi_injected = false; 5347 vmx_set_nmi_mask(vcpu, true); 5348 break; 5349 case INTR_TYPE_EXT_INTR: 5350 case INTR_TYPE_SOFT_INTR: 5351 kvm_clear_interrupt_queue(vcpu); 5352 break; 5353 case INTR_TYPE_HARD_EXCEPTION: 5354 if (vmx->idt_vectoring_info & 5355 VECTORING_INFO_DELIVER_CODE_MASK) { 5356 has_error_code = true; 5357 error_code = 5358 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5359 } 5360 fallthrough; 5361 case INTR_TYPE_SOFT_EXCEPTION: 5362 kvm_clear_exception_queue(vcpu); 5363 break; 5364 default: 5365 break; 5366 } 5367 } 5368 tss_selector = exit_qualification; 5369 5370 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5371 type != INTR_TYPE_EXT_INTR && 5372 type != INTR_TYPE_NMI_INTR)) 5373 WARN_ON(!skip_emulated_instruction(vcpu)); 5374 5375 /* 5376 * TODO: What about debug traps on tss switch? 5377 * Are we supposed to inject them and update dr6? 5378 */ 5379 return kvm_task_switch(vcpu, tss_selector, 5380 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5381 reason, has_error_code, error_code); 5382 } 5383 5384 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5385 { 5386 unsigned long exit_qualification; 5387 gpa_t gpa; 5388 u64 error_code; 5389 5390 exit_qualification = vmx_get_exit_qual(vcpu); 5391 5392 /* 5393 * EPT violation happened while executing iret from NMI, 5394 * "blocked by NMI" bit has to be set before next VM entry. 5395 * There are errata that may cause this bit to not be set: 5396 * AAK134, BY25. 5397 */ 5398 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5399 enable_vnmi && 5400 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5401 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5402 5403 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5404 trace_kvm_page_fault(gpa, exit_qualification); 5405 5406 /* Is it a read fault? */ 5407 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5408 ? PFERR_USER_MASK : 0; 5409 /* Is it a write fault? */ 5410 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5411 ? PFERR_WRITE_MASK : 0; 5412 /* Is it a fetch fault? */ 5413 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5414 ? PFERR_FETCH_MASK : 0; 5415 /* ept page table entry is present? */ 5416 error_code |= (exit_qualification & 5417 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5418 EPT_VIOLATION_EXECUTABLE)) 5419 ? PFERR_PRESENT_MASK : 0; 5420 5421 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5422 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5423 5424 vcpu->arch.exit_qualification = exit_qualification; 5425 5426 /* 5427 * Check that the GPA doesn't exceed physical memory limits, as that is 5428 * a guest page fault. We have to emulate the instruction here, because 5429 * if the illegal address is that of a paging structure, then 5430 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5431 * would also use advanced VM-exit information for EPT violations to 5432 * reconstruct the page fault error code. 5433 */ 5434 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5435 return kvm_emulate_instruction(vcpu, 0); 5436 5437 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5438 } 5439 5440 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5441 { 5442 gpa_t gpa; 5443 5444 if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) 5445 return 1; 5446 5447 /* 5448 * A nested guest cannot optimize MMIO vmexits, because we have an 5449 * nGPA here instead of the required GPA. 5450 */ 5451 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5452 if (!is_guest_mode(vcpu) && 5453 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5454 trace_kvm_fast_mmio(gpa); 5455 return kvm_skip_emulated_instruction(vcpu); 5456 } 5457 5458 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5459 } 5460 5461 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5462 { 5463 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5464 return -EIO; 5465 5466 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5467 ++vcpu->stat.nmi_window_exits; 5468 kvm_make_request(KVM_REQ_EVENT, vcpu); 5469 5470 return 1; 5471 } 5472 5473 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) 5474 { 5475 struct vcpu_vmx *vmx = to_vmx(vcpu); 5476 5477 return vmx->emulation_required && !vmx->rmode.vm86_active && 5478 vcpu->arch.exception.pending; 5479 } 5480 5481 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5482 { 5483 struct vcpu_vmx *vmx = to_vmx(vcpu); 5484 bool intr_window_requested; 5485 unsigned count = 130; 5486 5487 intr_window_requested = exec_controls_get(vmx) & 5488 CPU_BASED_INTR_WINDOW_EXITING; 5489 5490 while (vmx->emulation_required && count-- != 0) { 5491 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5492 return handle_interrupt_window(&vmx->vcpu); 5493 5494 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5495 return 1; 5496 5497 if (!kvm_emulate_instruction(vcpu, 0)) 5498 return 0; 5499 5500 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5501 kvm_prepare_emulation_failure_exit(vcpu); 5502 return 0; 5503 } 5504 5505 if (vcpu->arch.halt_request) { 5506 vcpu->arch.halt_request = 0; 5507 return kvm_emulate_halt_noskip(vcpu); 5508 } 5509 5510 /* 5511 * Note, return 1 and not 0, vcpu_run() will invoke 5512 * xfer_to_guest_mode() which will create a proper return 5513 * code. 5514 */ 5515 if (__xfer_to_guest_mode_work_pending()) 5516 return 1; 5517 } 5518 5519 return 1; 5520 } 5521 5522 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) 5523 { 5524 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5525 kvm_prepare_emulation_failure_exit(vcpu); 5526 return 0; 5527 } 5528 5529 return 1; 5530 } 5531 5532 static void grow_ple_window(struct kvm_vcpu *vcpu) 5533 { 5534 struct vcpu_vmx *vmx = to_vmx(vcpu); 5535 unsigned int old = vmx->ple_window; 5536 5537 vmx->ple_window = __grow_ple_window(old, ple_window, 5538 ple_window_grow, 5539 ple_window_max); 5540 5541 if (vmx->ple_window != old) { 5542 vmx->ple_window_dirty = true; 5543 trace_kvm_ple_window_update(vcpu->vcpu_id, 5544 vmx->ple_window, old); 5545 } 5546 } 5547 5548 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5549 { 5550 struct vcpu_vmx *vmx = to_vmx(vcpu); 5551 unsigned int old = vmx->ple_window; 5552 5553 vmx->ple_window = __shrink_ple_window(old, ple_window, 5554 ple_window_shrink, 5555 ple_window); 5556 5557 if (vmx->ple_window != old) { 5558 vmx->ple_window_dirty = true; 5559 trace_kvm_ple_window_update(vcpu->vcpu_id, 5560 vmx->ple_window, old); 5561 } 5562 } 5563 5564 /* 5565 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5566 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5567 */ 5568 static int handle_pause(struct kvm_vcpu *vcpu) 5569 { 5570 if (!kvm_pause_in_guest(vcpu->kvm)) 5571 grow_ple_window(vcpu); 5572 5573 /* 5574 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5575 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5576 * never set PAUSE_EXITING and just set PLE if supported, 5577 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5578 */ 5579 kvm_vcpu_on_spin(vcpu, true); 5580 return kvm_skip_emulated_instruction(vcpu); 5581 } 5582 5583 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5584 { 5585 return 1; 5586 } 5587 5588 static int handle_invpcid(struct kvm_vcpu *vcpu) 5589 { 5590 u32 vmx_instruction_info; 5591 unsigned long type; 5592 gva_t gva; 5593 struct { 5594 u64 pcid; 5595 u64 gla; 5596 } operand; 5597 int gpr_index; 5598 5599 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5600 kvm_queue_exception(vcpu, UD_VECTOR); 5601 return 1; 5602 } 5603 5604 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5605 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5606 type = kvm_register_read(vcpu, gpr_index); 5607 5608 /* According to the Intel instruction reference, the memory operand 5609 * is read even if it isn't needed (e.g., for type==all) 5610 */ 5611 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5612 vmx_instruction_info, false, 5613 sizeof(operand), &gva)) 5614 return 1; 5615 5616 return kvm_handle_invpcid(vcpu, type, gva); 5617 } 5618 5619 static int handle_pml_full(struct kvm_vcpu *vcpu) 5620 { 5621 unsigned long exit_qualification; 5622 5623 trace_kvm_pml_full(vcpu->vcpu_id); 5624 5625 exit_qualification = vmx_get_exit_qual(vcpu); 5626 5627 /* 5628 * PML buffer FULL happened while executing iret from NMI, 5629 * "blocked by NMI" bit has to be set before next VM entry. 5630 */ 5631 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5632 enable_vnmi && 5633 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5634 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5635 GUEST_INTR_STATE_NMI); 5636 5637 /* 5638 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5639 * here.., and there's no userspace involvement needed for PML. 5640 */ 5641 return 1; 5642 } 5643 5644 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5645 { 5646 struct vcpu_vmx *vmx = to_vmx(vcpu); 5647 5648 if (!vmx->req_immediate_exit && 5649 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 5650 kvm_lapic_expired_hv_timer(vcpu); 5651 return EXIT_FASTPATH_REENTER_GUEST; 5652 } 5653 5654 return EXIT_FASTPATH_NONE; 5655 } 5656 5657 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5658 { 5659 handle_fastpath_preemption_timer(vcpu); 5660 return 1; 5661 } 5662 5663 /* 5664 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5665 * are overwritten by nested_vmx_setup() when nested=1. 5666 */ 5667 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5668 { 5669 kvm_queue_exception(vcpu, UD_VECTOR); 5670 return 1; 5671 } 5672 5673 #ifndef CONFIG_X86_SGX_KVM 5674 static int handle_encls(struct kvm_vcpu *vcpu) 5675 { 5676 /* 5677 * SGX virtualization is disabled. There is no software enable bit for 5678 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 5679 * the guest from executing ENCLS (when SGX is supported by hardware). 5680 */ 5681 kvm_queue_exception(vcpu, UD_VECTOR); 5682 return 1; 5683 } 5684 #endif /* CONFIG_X86_SGX_KVM */ 5685 5686 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 5687 { 5688 /* 5689 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 5690 * VM-Exits. Unconditionally set the flag here and leave the handling to 5691 * vmx_handle_exit(). 5692 */ 5693 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 5694 return 1; 5695 } 5696 5697 /* 5698 * The exit handlers return 1 if the exit was handled fully and guest execution 5699 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5700 * to be done to userspace and return 0. 5701 */ 5702 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5703 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 5704 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5705 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5706 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5707 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5708 [EXIT_REASON_CR_ACCESS] = handle_cr, 5709 [EXIT_REASON_DR_ACCESS] = handle_dr, 5710 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 5711 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 5712 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 5713 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 5714 [EXIT_REASON_HLT] = kvm_emulate_halt, 5715 [EXIT_REASON_INVD] = kvm_emulate_invd, 5716 [EXIT_REASON_INVLPG] = handle_invlpg, 5717 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 5718 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 5719 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5720 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5721 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5722 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5723 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5724 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5725 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5726 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5727 [EXIT_REASON_VMON] = handle_vmx_instruction, 5728 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5729 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5730 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5731 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5732 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 5733 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 5734 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5735 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5736 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5737 [EXIT_REASON_LDTR_TR] = handle_desc, 5738 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5739 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5740 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5741 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 5742 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5743 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 5744 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5745 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5746 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 5747 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 5748 [EXIT_REASON_PML_FULL] = handle_pml_full, 5749 [EXIT_REASON_INVPCID] = handle_invpcid, 5750 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5751 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5752 [EXIT_REASON_ENCLS] = handle_encls, 5753 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 5754 }; 5755 5756 static const int kvm_vmx_max_exit_handlers = 5757 ARRAY_SIZE(kvm_vmx_exit_handlers); 5758 5759 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 5760 u64 *info1, u64 *info2, 5761 u32 *intr_info, u32 *error_code) 5762 { 5763 struct vcpu_vmx *vmx = to_vmx(vcpu); 5764 5765 *reason = vmx->exit_reason.full; 5766 *info1 = vmx_get_exit_qual(vcpu); 5767 if (!(vmx->exit_reason.failed_vmentry)) { 5768 *info2 = vmx->idt_vectoring_info; 5769 *intr_info = vmx_get_intr_info(vcpu); 5770 if (is_exception_with_error_code(*intr_info)) 5771 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5772 else 5773 *error_code = 0; 5774 } else { 5775 *info2 = 0; 5776 *intr_info = 0; 5777 *error_code = 0; 5778 } 5779 } 5780 5781 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5782 { 5783 if (vmx->pml_pg) { 5784 __free_page(vmx->pml_pg); 5785 vmx->pml_pg = NULL; 5786 } 5787 } 5788 5789 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5790 { 5791 struct vcpu_vmx *vmx = to_vmx(vcpu); 5792 u64 *pml_buf; 5793 u16 pml_idx; 5794 5795 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5796 5797 /* Do nothing if PML buffer is empty */ 5798 if (pml_idx == (PML_ENTITY_NUM - 1)) 5799 return; 5800 5801 /* PML index always points to next available PML buffer entity */ 5802 if (pml_idx >= PML_ENTITY_NUM) 5803 pml_idx = 0; 5804 else 5805 pml_idx++; 5806 5807 pml_buf = page_address(vmx->pml_pg); 5808 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5809 u64 gpa; 5810 5811 gpa = pml_buf[pml_idx]; 5812 WARN_ON(gpa & (PAGE_SIZE - 1)); 5813 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5814 } 5815 5816 /* reset PML index */ 5817 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5818 } 5819 5820 static void vmx_dump_sel(char *name, uint32_t sel) 5821 { 5822 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5823 name, vmcs_read16(sel), 5824 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5825 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5826 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5827 } 5828 5829 static void vmx_dump_dtsel(char *name, uint32_t limit) 5830 { 5831 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5832 name, vmcs_read32(limit), 5833 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5834 } 5835 5836 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 5837 { 5838 unsigned int i; 5839 struct vmx_msr_entry *e; 5840 5841 pr_err("MSR %s:\n", name); 5842 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 5843 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 5844 } 5845 5846 void dump_vmcs(struct kvm_vcpu *vcpu) 5847 { 5848 struct vcpu_vmx *vmx = to_vmx(vcpu); 5849 u32 vmentry_ctl, vmexit_ctl; 5850 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 5851 unsigned long cr4; 5852 int efer_slot; 5853 5854 if (!dump_invalid_vmcs) { 5855 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 5856 return; 5857 } 5858 5859 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5860 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5861 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5862 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5863 cr4 = vmcs_readl(GUEST_CR4); 5864 secondary_exec_control = 0; 5865 if (cpu_has_secondary_exec_ctrls()) 5866 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5867 5868 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 5869 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 5870 pr_err("*** Guest State ***\n"); 5871 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5872 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5873 vmcs_readl(CR0_GUEST_HOST_MASK)); 5874 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5875 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5876 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5877 if (cpu_has_vmx_ept()) { 5878 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5879 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5880 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5881 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5882 } 5883 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5884 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5885 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5886 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5887 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5888 vmcs_readl(GUEST_SYSENTER_ESP), 5889 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5890 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5891 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5892 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5893 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5894 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5895 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5896 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5897 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5898 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5899 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5900 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 5901 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 5902 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 5903 else if (efer_slot >= 0) 5904 pr_err("EFER= 0x%016llx (autoload)\n", 5905 vmx->msr_autoload.guest.val[efer_slot].value); 5906 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 5907 pr_err("EFER= 0x%016llx (effective)\n", 5908 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 5909 else 5910 pr_err("EFER= 0x%016llx (effective)\n", 5911 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 5912 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 5913 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 5914 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5915 vmcs_read64(GUEST_IA32_DEBUGCTL), 5916 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5917 if (cpu_has_load_perf_global_ctrl() && 5918 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5919 pr_err("PerfGlobCtl = 0x%016llx\n", 5920 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5921 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5922 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5923 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5924 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5925 vmcs_read32(GUEST_ACTIVITY_STATE)); 5926 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5927 pr_err("InterruptStatus = %04x\n", 5928 vmcs_read16(GUEST_INTR_STATUS)); 5929 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 5930 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 5931 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 5932 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 5933 5934 pr_err("*** Host State ***\n"); 5935 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5936 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5937 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5938 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5939 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5940 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5941 vmcs_read16(HOST_TR_SELECTOR)); 5942 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5943 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5944 vmcs_readl(HOST_TR_BASE)); 5945 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5946 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5947 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5948 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5949 vmcs_readl(HOST_CR4)); 5950 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5951 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5952 vmcs_read32(HOST_IA32_SYSENTER_CS), 5953 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5954 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 5955 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 5956 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 5957 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 5958 if (cpu_has_load_perf_global_ctrl() && 5959 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5960 pr_err("PerfGlobCtl = 0x%016llx\n", 5961 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5962 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 5963 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 5964 5965 pr_err("*** Control State ***\n"); 5966 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5967 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5968 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5969 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5970 vmcs_read32(EXCEPTION_BITMAP), 5971 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5972 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5973 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5974 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5975 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5976 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5977 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5978 vmcs_read32(VM_EXIT_INTR_INFO), 5979 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5980 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5981 pr_err(" reason=%08x qualification=%016lx\n", 5982 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5983 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5984 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5985 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5986 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5987 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5988 pr_err("TSC Multiplier = 0x%016llx\n", 5989 vmcs_read64(TSC_MULTIPLIER)); 5990 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5991 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5992 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5993 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5994 } 5995 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5996 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5997 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5998 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5999 } 6000 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 6001 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 6002 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 6003 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 6004 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 6005 pr_err("PLE Gap=%08x Window=%08x\n", 6006 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 6007 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 6008 pr_err("Virtual processor ID = 0x%04x\n", 6009 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 6010 } 6011 6012 /* 6013 * The guest has exited. See if we can fix it or if we need userspace 6014 * assistance. 6015 */ 6016 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6017 { 6018 struct vcpu_vmx *vmx = to_vmx(vcpu); 6019 union vmx_exit_reason exit_reason = vmx->exit_reason; 6020 u32 vectoring_info = vmx->idt_vectoring_info; 6021 u16 exit_handler_index; 6022 6023 /* 6024 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 6025 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 6026 * querying dirty_bitmap, we only need to kick all vcpus out of guest 6027 * mode as if vcpus is in root mode, the PML buffer must has been 6028 * flushed already. Note, PML is never enabled in hardware while 6029 * running L2. 6030 */ 6031 if (enable_pml && !is_guest_mode(vcpu)) 6032 vmx_flush_pml_buffer(vcpu); 6033 6034 /* 6035 * KVM should never reach this point with a pending nested VM-Enter. 6036 * More specifically, short-circuiting VM-Entry to emulate L2 due to 6037 * invalid guest state should never happen as that means KVM knowingly 6038 * allowed a nested VM-Enter with an invalid vmcs12. More below. 6039 */ 6040 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 6041 return -EIO; 6042 6043 if (is_guest_mode(vcpu)) { 6044 /* 6045 * PML is never enabled when running L2, bail immediately if a 6046 * PML full exit occurs as something is horribly wrong. 6047 */ 6048 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6049 goto unexpected_vmexit; 6050 6051 /* 6052 * The host physical addresses of some pages of guest memory 6053 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6054 * Page). The CPU may write to these pages via their host 6055 * physical address while L2 is running, bypassing any 6056 * address-translation-based dirty tracking (e.g. EPT write 6057 * protection). 6058 * 6059 * Mark them dirty on every exit from L2 to prevent them from 6060 * getting out of sync with dirty tracking. 6061 */ 6062 nested_mark_vmcs12_pages_dirty(vcpu); 6063 6064 /* 6065 * Synthesize a triple fault if L2 state is invalid. In normal 6066 * operation, nested VM-Enter rejects any attempt to enter L2 6067 * with invalid state. However, those checks are skipped if 6068 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6069 * L2 state is invalid, it means either L1 modified SMRAM state 6070 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6071 * doing so is architecturally allowed in the RSM case, and is 6072 * the least awful solution for the userspace case without 6073 * risking false positives. 6074 */ 6075 if (vmx->emulation_required) { 6076 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6077 return 1; 6078 } 6079 6080 if (nested_vmx_reflect_vmexit(vcpu)) 6081 return 1; 6082 } 6083 6084 /* If guest state is invalid, start emulating. L2 is handled above. */ 6085 if (vmx->emulation_required) 6086 return handle_invalid_guest_state(vcpu); 6087 6088 if (exit_reason.failed_vmentry) { 6089 dump_vmcs(vcpu); 6090 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6091 vcpu->run->fail_entry.hardware_entry_failure_reason 6092 = exit_reason.full; 6093 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6094 return 0; 6095 } 6096 6097 if (unlikely(vmx->fail)) { 6098 dump_vmcs(vcpu); 6099 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6100 vcpu->run->fail_entry.hardware_entry_failure_reason 6101 = vmcs_read32(VM_INSTRUCTION_ERROR); 6102 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6103 return 0; 6104 } 6105 6106 /* 6107 * Note: 6108 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6109 * delivery event since it indicates guest is accessing MMIO. 6110 * The vm-exit can be triggered again after return to guest that 6111 * will cause infinite loop. 6112 */ 6113 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6114 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6115 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6116 exit_reason.basic != EXIT_REASON_PML_FULL && 6117 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6118 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) { 6119 int ndata = 3; 6120 6121 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6122 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6123 vcpu->run->internal.data[0] = vectoring_info; 6124 vcpu->run->internal.data[1] = exit_reason.full; 6125 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 6126 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6127 vcpu->run->internal.data[ndata++] = 6128 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6129 } 6130 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6131 vcpu->run->internal.ndata = ndata; 6132 return 0; 6133 } 6134 6135 if (unlikely(!enable_vnmi && 6136 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6137 if (!vmx_interrupt_blocked(vcpu)) { 6138 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6139 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6140 vcpu->arch.nmi_pending) { 6141 /* 6142 * This CPU don't support us in finding the end of an 6143 * NMI-blocked window if the guest runs with IRQs 6144 * disabled. So we pull the trigger after 1 s of 6145 * futile waiting, but inform the user about this. 6146 */ 6147 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6148 "state on VCPU %d after 1 s timeout\n", 6149 __func__, vcpu->vcpu_id); 6150 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6151 } 6152 } 6153 6154 if (exit_fastpath != EXIT_FASTPATH_NONE) 6155 return 1; 6156 6157 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6158 goto unexpected_vmexit; 6159 #ifdef CONFIG_RETPOLINE 6160 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6161 return kvm_emulate_wrmsr(vcpu); 6162 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6163 return handle_preemption_timer(vcpu); 6164 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6165 return handle_interrupt_window(vcpu); 6166 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6167 return handle_external_interrupt(vcpu); 6168 else if (exit_reason.basic == EXIT_REASON_HLT) 6169 return kvm_emulate_halt(vcpu); 6170 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6171 return handle_ept_misconfig(vcpu); 6172 #endif 6173 6174 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6175 kvm_vmx_max_exit_handlers); 6176 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6177 goto unexpected_vmexit; 6178 6179 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6180 6181 unexpected_vmexit: 6182 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6183 exit_reason.full); 6184 dump_vmcs(vcpu); 6185 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6186 vcpu->run->internal.suberror = 6187 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6188 vcpu->run->internal.ndata = 2; 6189 vcpu->run->internal.data[0] = exit_reason.full; 6190 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6191 return 0; 6192 } 6193 6194 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6195 { 6196 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6197 6198 /* 6199 * Exit to user space when bus lock detected to inform that there is 6200 * a bus lock in guest. 6201 */ 6202 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6203 if (ret > 0) 6204 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6205 6206 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6207 return 0; 6208 } 6209 return ret; 6210 } 6211 6212 /* 6213 * Software based L1D cache flush which is used when microcode providing 6214 * the cache control MSR is not loaded. 6215 * 6216 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6217 * flush it is required to read in 64 KiB because the replacement algorithm 6218 * is not exactly LRU. This could be sized at runtime via topology 6219 * information but as all relevant affected CPUs have 32KiB L1D cache size 6220 * there is no point in doing so. 6221 */ 6222 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6223 { 6224 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6225 6226 /* 6227 * This code is only executed when the the flush mode is 'cond' or 6228 * 'always' 6229 */ 6230 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6231 bool flush_l1d; 6232 6233 /* 6234 * Clear the per-vcpu flush bit, it gets set again 6235 * either from vcpu_run() or from one of the unsafe 6236 * VMEXIT handlers. 6237 */ 6238 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6239 vcpu->arch.l1tf_flush_l1d = false; 6240 6241 /* 6242 * Clear the per-cpu flush bit, it gets set again from 6243 * the interrupt handlers. 6244 */ 6245 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6246 kvm_clear_cpu_l1tf_flush_l1d(); 6247 6248 if (!flush_l1d) 6249 return; 6250 } 6251 6252 vcpu->stat.l1d_flush++; 6253 6254 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6255 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6256 return; 6257 } 6258 6259 asm volatile( 6260 /* First ensure the pages are in the TLB */ 6261 "xorl %%eax, %%eax\n" 6262 ".Lpopulate_tlb:\n\t" 6263 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6264 "addl $4096, %%eax\n\t" 6265 "cmpl %%eax, %[size]\n\t" 6266 "jne .Lpopulate_tlb\n\t" 6267 "xorl %%eax, %%eax\n\t" 6268 "cpuid\n\t" 6269 /* Now fill the cache */ 6270 "xorl %%eax, %%eax\n" 6271 ".Lfill_cache:\n" 6272 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6273 "addl $64, %%eax\n\t" 6274 "cmpl %%eax, %[size]\n\t" 6275 "jne .Lfill_cache\n\t" 6276 "lfence\n" 6277 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6278 [size] "r" (size) 6279 : "eax", "ebx", "ecx", "edx"); 6280 } 6281 6282 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6283 { 6284 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6285 int tpr_threshold; 6286 6287 if (is_guest_mode(vcpu) && 6288 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6289 return; 6290 6291 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6292 if (is_guest_mode(vcpu)) 6293 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6294 else 6295 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6296 } 6297 6298 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6299 { 6300 struct vcpu_vmx *vmx = to_vmx(vcpu); 6301 u32 sec_exec_control; 6302 6303 if (!lapic_in_kernel(vcpu)) 6304 return; 6305 6306 if (!flexpriority_enabled && 6307 !cpu_has_vmx_virtualize_x2apic_mode()) 6308 return; 6309 6310 /* Postpone execution until vmcs01 is the current VMCS. */ 6311 if (is_guest_mode(vcpu)) { 6312 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6313 return; 6314 } 6315 6316 sec_exec_control = secondary_exec_controls_get(vmx); 6317 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6318 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6319 6320 switch (kvm_get_apic_mode(vcpu)) { 6321 case LAPIC_MODE_INVALID: 6322 WARN_ONCE(true, "Invalid local APIC state"); 6323 break; 6324 case LAPIC_MODE_DISABLED: 6325 break; 6326 case LAPIC_MODE_XAPIC: 6327 if (flexpriority_enabled) { 6328 sec_exec_control |= 6329 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6330 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6331 6332 /* 6333 * Flush the TLB, reloading the APIC access page will 6334 * only do so if its physical address has changed, but 6335 * the guest may have inserted a non-APIC mapping into 6336 * the TLB while the APIC access page was disabled. 6337 */ 6338 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6339 } 6340 break; 6341 case LAPIC_MODE_X2APIC: 6342 if (cpu_has_vmx_virtualize_x2apic_mode()) 6343 sec_exec_control |= 6344 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6345 break; 6346 } 6347 secondary_exec_controls_set(vmx, sec_exec_control); 6348 6349 vmx_update_msr_bitmap_x2apic(vcpu); 6350 } 6351 6352 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6353 { 6354 struct page *page; 6355 6356 /* Defer reload until vmcs01 is the current VMCS. */ 6357 if (is_guest_mode(vcpu)) { 6358 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6359 return; 6360 } 6361 6362 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6363 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6364 return; 6365 6366 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6367 if (is_error_page(page)) 6368 return; 6369 6370 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page)); 6371 vmx_flush_tlb_current(vcpu); 6372 6373 /* 6374 * Do not pin apic access page in memory, the MMU notifier 6375 * will call us again if it is migrated or swapped out. 6376 */ 6377 put_page(page); 6378 } 6379 6380 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6381 { 6382 u16 status; 6383 u8 old; 6384 6385 if (max_isr == -1) 6386 max_isr = 0; 6387 6388 status = vmcs_read16(GUEST_INTR_STATUS); 6389 old = status >> 8; 6390 if (max_isr != old) { 6391 status &= 0xff; 6392 status |= max_isr << 8; 6393 vmcs_write16(GUEST_INTR_STATUS, status); 6394 } 6395 } 6396 6397 static void vmx_set_rvi(int vector) 6398 { 6399 u16 status; 6400 u8 old; 6401 6402 if (vector == -1) 6403 vector = 0; 6404 6405 status = vmcs_read16(GUEST_INTR_STATUS); 6406 old = (u8)status & 0xff; 6407 if ((u8)vector != old) { 6408 status &= ~0xff; 6409 status |= (u8)vector; 6410 vmcs_write16(GUEST_INTR_STATUS, status); 6411 } 6412 } 6413 6414 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6415 { 6416 /* 6417 * When running L2, updating RVI is only relevant when 6418 * vmcs12 virtual-interrupt-delivery enabled. 6419 * However, it can be enabled only when L1 also 6420 * intercepts external-interrupts and in that case 6421 * we should not update vmcs02 RVI but instead intercept 6422 * interrupt. Therefore, do nothing when running L2. 6423 */ 6424 if (!is_guest_mode(vcpu)) 6425 vmx_set_rvi(max_irr); 6426 } 6427 6428 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6429 { 6430 struct vcpu_vmx *vmx = to_vmx(vcpu); 6431 int max_irr; 6432 bool got_posted_interrupt; 6433 6434 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6435 return -EIO; 6436 6437 if (pi_test_on(&vmx->pi_desc)) { 6438 pi_clear_on(&vmx->pi_desc); 6439 /* 6440 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6441 * But on x86 this is just a compiler barrier anyway. 6442 */ 6443 smp_mb__after_atomic(); 6444 got_posted_interrupt = 6445 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6446 } else { 6447 max_irr = kvm_lapic_find_highest_irr(vcpu); 6448 got_posted_interrupt = false; 6449 } 6450 6451 /* 6452 * Newly recognized interrupts are injected via either virtual interrupt 6453 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6454 * disabled in two cases: 6455 * 6456 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6457 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6458 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6459 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6460 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6461 * 6462 * 2) If APICv is disabled for this vCPU, assigned devices may still 6463 * attempt to post interrupts. The posted interrupt vector will cause 6464 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6465 */ 6466 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6467 vmx_set_rvi(max_irr); 6468 else if (got_posted_interrupt) 6469 kvm_make_request(KVM_REQ_EVENT, vcpu); 6470 6471 return max_irr; 6472 } 6473 6474 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6475 { 6476 if (!kvm_vcpu_apicv_active(vcpu)) 6477 return; 6478 6479 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6480 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6481 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6482 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6483 } 6484 6485 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6486 { 6487 struct vcpu_vmx *vmx = to_vmx(vcpu); 6488 6489 pi_clear_on(&vmx->pi_desc); 6490 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6491 } 6492 6493 void vmx_do_interrupt_nmi_irqoff(unsigned long entry); 6494 6495 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, 6496 unsigned long entry) 6497 { 6498 bool is_nmi = entry == (unsigned long)asm_exc_nmi_noist; 6499 6500 kvm_before_interrupt(vcpu, is_nmi ? KVM_HANDLING_NMI : KVM_HANDLING_IRQ); 6501 vmx_do_interrupt_nmi_irqoff(entry); 6502 kvm_after_interrupt(vcpu); 6503 } 6504 6505 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6506 { 6507 /* 6508 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6509 * MSR value is not clobbered by the host activity before the guest 6510 * has chance to consume it. 6511 * 6512 * Do not blindly read xfd_err here, since this exception might 6513 * be caused by L1 interception on a platform which doesn't 6514 * support xfd at all. 6515 * 6516 * Do it conditionally upon guest_fpu::xfd. xfd_err matters 6517 * only when xfd contains a non-zero value. 6518 * 6519 * Queuing exception is done in vmx_handle_exit. See comment there. 6520 */ 6521 if (vcpu->arch.guest_fpu.fpstate->xfd) 6522 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 6523 } 6524 6525 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) 6526 { 6527 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist; 6528 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6529 6530 /* if exit due to PF check for async PF */ 6531 if (is_page_fault(intr_info)) 6532 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6533 /* if exit due to NM, handle before interrupts are enabled */ 6534 else if (is_nm_fault(intr_info)) 6535 handle_nm_fault_irqoff(&vmx->vcpu); 6536 /* Handle machine checks before interrupts are enabled */ 6537 else if (is_machine_check(intr_info)) 6538 kvm_machine_check(); 6539 /* We need to handle NMIs before interrupts are enabled */ 6540 else if (is_nmi(intr_info)) 6541 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry); 6542 } 6543 6544 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6545 { 6546 u32 intr_info = vmx_get_intr_info(vcpu); 6547 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6548 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6549 6550 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6551 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6552 return; 6553 6554 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc)); 6555 } 6556 6557 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6558 { 6559 struct vcpu_vmx *vmx = to_vmx(vcpu); 6560 6561 if (vmx->emulation_required) 6562 return; 6563 6564 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6565 handle_external_interrupt_irqoff(vcpu); 6566 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6567 handle_exception_nmi_irqoff(vmx); 6568 } 6569 6570 /* 6571 * The kvm parameter can be NULL (module initialization, or invocation before 6572 * VM creation). Be sure to check the kvm parameter before using it. 6573 */ 6574 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6575 { 6576 switch (index) { 6577 case MSR_IA32_SMBASE: 6578 /* 6579 * We cannot do SMM unless we can run the guest in big 6580 * real mode. 6581 */ 6582 return enable_unrestricted_guest || emulate_invalid_guest_state; 6583 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 6584 return nested; 6585 case MSR_AMD64_VIRT_SPEC_CTRL: 6586 case MSR_AMD64_TSC_RATIO: 6587 /* This is AMD only. */ 6588 return false; 6589 default: 6590 return true; 6591 } 6592 } 6593 6594 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6595 { 6596 u32 exit_intr_info; 6597 bool unblock_nmi; 6598 u8 vector; 6599 bool idtv_info_valid; 6600 6601 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6602 6603 if (enable_vnmi) { 6604 if (vmx->loaded_vmcs->nmi_known_unmasked) 6605 return; 6606 6607 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 6608 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6609 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6610 /* 6611 * SDM 3: 27.7.1.2 (September 2008) 6612 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6613 * a guest IRET fault. 6614 * SDM 3: 23.2.2 (September 2008) 6615 * Bit 12 is undefined in any of the following cases: 6616 * If the VM exit sets the valid bit in the IDT-vectoring 6617 * information field. 6618 * If the VM exit is due to a double fault. 6619 */ 6620 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6621 vector != DF_VECTOR && !idtv_info_valid) 6622 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6623 GUEST_INTR_STATE_NMI); 6624 else 6625 vmx->loaded_vmcs->nmi_known_unmasked = 6626 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6627 & GUEST_INTR_STATE_NMI); 6628 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6629 vmx->loaded_vmcs->vnmi_blocked_time += 6630 ktime_to_ns(ktime_sub(ktime_get(), 6631 vmx->loaded_vmcs->entry_time)); 6632 } 6633 6634 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6635 u32 idt_vectoring_info, 6636 int instr_len_field, 6637 int error_code_field) 6638 { 6639 u8 vector; 6640 int type; 6641 bool idtv_info_valid; 6642 6643 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6644 6645 vcpu->arch.nmi_injected = false; 6646 kvm_clear_exception_queue(vcpu); 6647 kvm_clear_interrupt_queue(vcpu); 6648 6649 if (!idtv_info_valid) 6650 return; 6651 6652 kvm_make_request(KVM_REQ_EVENT, vcpu); 6653 6654 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6655 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6656 6657 switch (type) { 6658 case INTR_TYPE_NMI_INTR: 6659 vcpu->arch.nmi_injected = true; 6660 /* 6661 * SDM 3: 27.7.1.2 (September 2008) 6662 * Clear bit "block by NMI" before VM entry if a NMI 6663 * delivery faulted. 6664 */ 6665 vmx_set_nmi_mask(vcpu, false); 6666 break; 6667 case INTR_TYPE_SOFT_EXCEPTION: 6668 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6669 fallthrough; 6670 case INTR_TYPE_HARD_EXCEPTION: 6671 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6672 u32 err = vmcs_read32(error_code_field); 6673 kvm_requeue_exception_e(vcpu, vector, err); 6674 } else 6675 kvm_requeue_exception(vcpu, vector); 6676 break; 6677 case INTR_TYPE_SOFT_INTR: 6678 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6679 fallthrough; 6680 case INTR_TYPE_EXT_INTR: 6681 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6682 break; 6683 default: 6684 break; 6685 } 6686 } 6687 6688 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6689 { 6690 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6691 VM_EXIT_INSTRUCTION_LEN, 6692 IDT_VECTORING_ERROR_CODE); 6693 } 6694 6695 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6696 { 6697 __vmx_complete_interrupts(vcpu, 6698 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6699 VM_ENTRY_INSTRUCTION_LEN, 6700 VM_ENTRY_EXCEPTION_ERROR_CODE); 6701 6702 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6703 } 6704 6705 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6706 { 6707 int i, nr_msrs; 6708 struct perf_guest_switch_msr *msrs; 6709 6710 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 6711 msrs = perf_guest_get_msrs(&nr_msrs); 6712 if (!msrs) 6713 return; 6714 6715 for (i = 0; i < nr_msrs; i++) 6716 if (msrs[i].host == msrs[i].guest) 6717 clear_atomic_switch_msr(vmx, msrs[i].msr); 6718 else 6719 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6720 msrs[i].host, false); 6721 } 6722 6723 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6724 { 6725 struct vcpu_vmx *vmx = to_vmx(vcpu); 6726 u64 tscl; 6727 u32 delta_tsc; 6728 6729 if (vmx->req_immediate_exit) { 6730 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 6731 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6732 } else if (vmx->hv_deadline_tsc != -1) { 6733 tscl = rdtsc(); 6734 if (vmx->hv_deadline_tsc > tscl) 6735 /* set_hv_timer ensures the delta fits in 32-bits */ 6736 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6737 cpu_preemption_timer_multi); 6738 else 6739 delta_tsc = 0; 6740 6741 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 6742 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6743 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 6744 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 6745 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 6746 } 6747 } 6748 6749 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6750 { 6751 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6752 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6753 vmcs_writel(HOST_RSP, host_rsp); 6754 } 6755 } 6756 6757 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 6758 { 6759 switch (to_vmx(vcpu)->exit_reason.basic) { 6760 case EXIT_REASON_MSR_WRITE: 6761 return handle_fastpath_set_msr_irqoff(vcpu); 6762 case EXIT_REASON_PREEMPTION_TIMER: 6763 return handle_fastpath_preemption_timer(vcpu); 6764 default: 6765 return EXIT_FASTPATH_NONE; 6766 } 6767 } 6768 6769 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 6770 struct vcpu_vmx *vmx) 6771 { 6772 guest_state_enter_irqoff(); 6773 6774 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6775 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6776 vmx_l1d_flush(vcpu); 6777 else if (static_branch_unlikely(&mds_user_clear)) 6778 mds_clear_cpu_buffers(); 6779 6780 if (vcpu->arch.cr2 != native_read_cr2()) 6781 native_write_cr2(vcpu->arch.cr2); 6782 6783 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6784 vmx->loaded_vmcs->launched); 6785 6786 vcpu->arch.cr2 = native_read_cr2(); 6787 6788 guest_state_exit_irqoff(); 6789 } 6790 6791 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 6792 { 6793 struct vcpu_vmx *vmx = to_vmx(vcpu); 6794 unsigned long cr4; 6795 6796 /* Record the guest's net vcpu time for enforced NMI injections. */ 6797 if (unlikely(!enable_vnmi && 6798 vmx->loaded_vmcs->soft_vnmi_blocked)) 6799 vmx->loaded_vmcs->entry_time = ktime_get(); 6800 6801 /* 6802 * Don't enter VMX if guest state is invalid, let the exit handler 6803 * start emulation until we arrive back to a valid state. Synthesize a 6804 * consistency check VM-Exit due to invalid guest state and bail. 6805 */ 6806 if (unlikely(vmx->emulation_required)) { 6807 vmx->fail = 0; 6808 6809 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 6810 vmx->exit_reason.failed_vmentry = 1; 6811 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 6812 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 6813 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 6814 vmx->exit_intr_info = 0; 6815 return EXIT_FASTPATH_NONE; 6816 } 6817 6818 trace_kvm_entry(vcpu); 6819 6820 if (vmx->ple_window_dirty) { 6821 vmx->ple_window_dirty = false; 6822 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6823 } 6824 6825 /* 6826 * We did this in prepare_switch_to_guest, because it needs to 6827 * be within srcu_read_lock. 6828 */ 6829 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 6830 6831 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 6832 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6833 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 6834 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6835 vcpu->arch.regs_dirty = 0; 6836 6837 cr4 = cr4_read_shadow(); 6838 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6839 vmcs_writel(HOST_CR4, cr4); 6840 vmx->loaded_vmcs->host_state.cr4 = cr4; 6841 } 6842 6843 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 6844 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 6845 set_debugreg(vcpu->arch.dr6, 6); 6846 6847 /* When single-stepping over STI and MOV SS, we must clear the 6848 * corresponding interruptibility bits in the guest state. Otherwise 6849 * vmentry fails as it then expects bit 14 (BS) in pending debug 6850 * exceptions being set, but that's not correct for the guest debugging 6851 * case. */ 6852 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6853 vmx_set_interrupt_shadow(vcpu, 0); 6854 6855 kvm_load_guest_xsave_state(vcpu); 6856 6857 pt_guest_enter(vmx); 6858 6859 atomic_switch_perf_msrs(vmx); 6860 if (intel_pmu_lbr_is_enabled(vcpu)) 6861 vmx_passthrough_lbr_msrs(vcpu); 6862 6863 if (enable_preemption_timer) 6864 vmx_update_hv_timer(vcpu); 6865 6866 kvm_wait_lapic_expire(vcpu); 6867 6868 /* 6869 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6870 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6871 * is no need to worry about the conditional branch over the wrmsr 6872 * being speculatively taken. 6873 */ 6874 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6875 6876 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 6877 vmx_vcpu_enter_exit(vcpu, vmx); 6878 6879 /* 6880 * We do not use IBRS in the kernel. If this vCPU has used the 6881 * SPEC_CTRL MSR it may have left it on; save the value and 6882 * turn it off. This is much more efficient than blindly adding 6883 * it to the atomic save/restore list. Especially as the former 6884 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6885 * 6886 * For non-nested case: 6887 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6888 * save it. 6889 * 6890 * For nested case: 6891 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6892 * save it. 6893 */ 6894 if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))) 6895 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6896 6897 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6898 6899 /* All fields are clean at this point */ 6900 if (static_branch_unlikely(&enable_evmcs)) { 6901 current_evmcs->hv_clean_fields |= 6902 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6903 6904 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 6905 } 6906 6907 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6908 if (vmx->host_debugctlmsr) 6909 update_debugctlmsr(vmx->host_debugctlmsr); 6910 6911 #ifndef CONFIG_X86_64 6912 /* 6913 * The sysexit path does not restore ds/es, so we must set them to 6914 * a reasonable value ourselves. 6915 * 6916 * We can't defer this to vmx_prepare_switch_to_host() since that 6917 * function may be executed in interrupt context, which saves and 6918 * restore segments around it, nullifying its effect. 6919 */ 6920 loadsegment(ds, __USER_DS); 6921 loadsegment(es, __USER_DS); 6922 #endif 6923 6924 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 6925 6926 pt_guest_exit(vmx); 6927 6928 kvm_load_host_xsave_state(vcpu); 6929 6930 if (is_guest_mode(vcpu)) { 6931 /* 6932 * Track VMLAUNCH/VMRESUME that have made past guest state 6933 * checking. 6934 */ 6935 if (vmx->nested.nested_run_pending && 6936 !vmx->exit_reason.failed_vmentry) 6937 ++vcpu->stat.nested_run; 6938 6939 vmx->nested.nested_run_pending = 0; 6940 } 6941 6942 vmx->idt_vectoring_info = 0; 6943 6944 if (unlikely(vmx->fail)) { 6945 vmx->exit_reason.full = 0xdead; 6946 return EXIT_FASTPATH_NONE; 6947 } 6948 6949 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 6950 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 6951 kvm_machine_check(); 6952 6953 if (likely(!vmx->exit_reason.failed_vmentry)) 6954 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6955 6956 trace_kvm_exit(vcpu, KVM_ISA_VMX); 6957 6958 if (unlikely(vmx->exit_reason.failed_vmentry)) 6959 return EXIT_FASTPATH_NONE; 6960 6961 vmx->loaded_vmcs->launched = 1; 6962 6963 vmx_recover_nmi_blocking(vmx); 6964 vmx_complete_interrupts(vmx); 6965 6966 if (is_guest_mode(vcpu)) 6967 return EXIT_FASTPATH_NONE; 6968 6969 return vmx_exit_handlers_fastpath(vcpu); 6970 } 6971 6972 static void vmx_free_vcpu(struct kvm_vcpu *vcpu) 6973 { 6974 struct vcpu_vmx *vmx = to_vmx(vcpu); 6975 6976 if (enable_pml) 6977 vmx_destroy_pml_buffer(vmx); 6978 free_vpid(vmx->vpid); 6979 nested_vmx_free_vcpu(vcpu); 6980 free_loaded_vmcs(vmx->loaded_vmcs); 6981 } 6982 6983 static int vmx_create_vcpu(struct kvm_vcpu *vcpu) 6984 { 6985 struct vmx_uret_msr *tsx_ctrl; 6986 struct vcpu_vmx *vmx; 6987 int i, err; 6988 6989 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 6990 vmx = to_vmx(vcpu); 6991 6992 INIT_LIST_HEAD(&vmx->pi_wakeup_list); 6993 6994 err = -ENOMEM; 6995 6996 vmx->vpid = allocate_vpid(); 6997 6998 /* 6999 * If PML is turned on, failure on enabling PML just results in failure 7000 * of creating the vcpu, therefore we can simplify PML logic (by 7001 * avoiding dealing with cases, such as enabling PML partially on vcpus 7002 * for the guest), etc. 7003 */ 7004 if (enable_pml) { 7005 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7006 if (!vmx->pml_pg) 7007 goto free_vpid; 7008 } 7009 7010 for (i = 0; i < kvm_nr_uret_msrs; ++i) 7011 vmx->guest_uret_msrs[i].mask = -1ull; 7012 if (boot_cpu_has(X86_FEATURE_RTM)) { 7013 /* 7014 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 7015 * Keep the host value unchanged to avoid changing CPUID bits 7016 * under the host kernel's feet. 7017 */ 7018 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7019 if (tsx_ctrl) 7020 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 7021 } 7022 7023 err = alloc_loaded_vmcs(&vmx->vmcs01); 7024 if (err < 0) 7025 goto free_pml; 7026 7027 /* 7028 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 7029 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 7030 * feature only for vmcs01, KVM currently isn't equipped to realize any 7031 * performance benefits from enabling it for vmcs02. 7032 */ 7033 if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) && 7034 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 7035 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 7036 7037 evmcs->hv_enlightenments_control.msr_bitmap = 1; 7038 } 7039 7040 /* The MSR bitmap starts with all ones */ 7041 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7042 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7043 7044 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 7045 #ifdef CONFIG_X86_64 7046 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 7047 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 7048 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 7049 #endif 7050 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 7051 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 7052 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 7053 if (kvm_cstate_in_guest(vcpu->kvm)) { 7054 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 7055 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 7056 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 7057 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 7058 } 7059 7060 vmx->loaded_vmcs = &vmx->vmcs01; 7061 7062 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7063 err = alloc_apic_access_page(vcpu->kvm); 7064 if (err) 7065 goto free_vmcs; 7066 } 7067 7068 if (enable_ept && !enable_unrestricted_guest) { 7069 err = init_rmode_identity_map(vcpu->kvm); 7070 if (err) 7071 goto free_vmcs; 7072 } 7073 7074 return 0; 7075 7076 free_vmcs: 7077 free_loaded_vmcs(vmx->loaded_vmcs); 7078 free_pml: 7079 vmx_destroy_pml_buffer(vmx); 7080 free_vpid: 7081 free_vpid(vmx->vpid); 7082 return err; 7083 } 7084 7085 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7086 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7087 7088 static int vmx_vm_init(struct kvm *kvm) 7089 { 7090 if (!ple_gap) 7091 kvm->arch.pause_in_guest = true; 7092 7093 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7094 switch (l1tf_mitigation) { 7095 case L1TF_MITIGATION_OFF: 7096 case L1TF_MITIGATION_FLUSH_NOWARN: 7097 /* 'I explicitly don't care' is set */ 7098 break; 7099 case L1TF_MITIGATION_FLUSH: 7100 case L1TF_MITIGATION_FLUSH_NOSMT: 7101 case L1TF_MITIGATION_FULL: 7102 /* 7103 * Warn upon starting the first VM in a potentially 7104 * insecure environment. 7105 */ 7106 if (sched_smt_active()) 7107 pr_warn_once(L1TF_MSG_SMT); 7108 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7109 pr_warn_once(L1TF_MSG_L1D); 7110 break; 7111 case L1TF_MITIGATION_FULL_FORCE: 7112 /* Flush is enforced */ 7113 break; 7114 } 7115 } 7116 return 0; 7117 } 7118 7119 static int __init vmx_check_processor_compat(void) 7120 { 7121 struct vmcs_config vmcs_conf; 7122 struct vmx_capability vmx_cap; 7123 7124 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 7125 !this_cpu_has(X86_FEATURE_VMX)) { 7126 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id()); 7127 return -EIO; 7128 } 7129 7130 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 7131 return -EIO; 7132 if (nested) 7133 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept); 7134 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 7135 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 7136 smp_processor_id()); 7137 return -EIO; 7138 } 7139 return 0; 7140 } 7141 7142 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7143 { 7144 u8 cache; 7145 7146 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 7147 * memory aliases with conflicting memory types and sometimes MCEs. 7148 * We have to be careful as to what are honored and when. 7149 * 7150 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 7151 * UC. The effective memory type is UC or WC depending on guest PAT. 7152 * This was historically the source of MCEs and we want to be 7153 * conservative. 7154 * 7155 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7156 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7157 * EPT memory type is set to WB. The effective memory type is forced 7158 * WB. 7159 * 7160 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7161 * EPT memory type is used to emulate guest CD/MTRR. 7162 */ 7163 7164 if (is_mmio) 7165 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7166 7167 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) 7168 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7169 7170 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 7171 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7172 cache = MTRR_TYPE_WRBACK; 7173 else 7174 cache = MTRR_TYPE_UNCACHABLE; 7175 7176 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7177 } 7178 7179 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT; 7180 } 7181 7182 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7183 { 7184 /* 7185 * These bits in the secondary execution controls field 7186 * are dynamic, the others are mostly based on the hypervisor 7187 * architecture and the guest's CPUID. Do not touch the 7188 * dynamic bits. 7189 */ 7190 u32 mask = 7191 SECONDARY_EXEC_SHADOW_VMCS | 7192 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7193 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7194 SECONDARY_EXEC_DESC; 7195 7196 u32 cur_ctl = secondary_exec_controls_get(vmx); 7197 7198 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7199 } 7200 7201 /* 7202 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7203 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7204 */ 7205 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7206 { 7207 struct vcpu_vmx *vmx = to_vmx(vcpu); 7208 struct kvm_cpuid_entry2 *entry; 7209 7210 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7211 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7212 7213 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7214 if (entry && (entry->_reg & (_cpuid_mask))) \ 7215 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7216 } while (0) 7217 7218 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 7219 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7220 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7221 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7222 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7223 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7224 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7225 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7226 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7227 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7228 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7229 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7230 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7231 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7232 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7233 7234 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 7235 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7236 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7237 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7238 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7239 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7240 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7241 7242 #undef cr4_fixed1_update 7243 } 7244 7245 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 7246 { 7247 struct vcpu_vmx *vmx = to_vmx(vcpu); 7248 7249 if (kvm_mpx_supported()) { 7250 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 7251 7252 if (mpx_enabled) { 7253 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 7254 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 7255 } else { 7256 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 7257 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 7258 } 7259 } 7260 } 7261 7262 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7263 { 7264 struct vcpu_vmx *vmx = to_vmx(vcpu); 7265 struct kvm_cpuid_entry2 *best = NULL; 7266 int i; 7267 7268 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7269 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 7270 if (!best) 7271 return; 7272 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7273 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7274 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7275 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7276 } 7277 7278 /* Get the number of configurable Address Ranges for filtering */ 7279 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7280 PT_CAP_num_address_ranges); 7281 7282 /* Initialize and clear the no dependency bits */ 7283 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7284 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7285 RTIT_CTL_BRANCH_EN); 7286 7287 /* 7288 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7289 * will inject an #GP 7290 */ 7291 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7292 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7293 7294 /* 7295 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7296 * PSBFreq can be set 7297 */ 7298 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7299 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7300 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7301 7302 /* 7303 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7304 */ 7305 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7306 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7307 RTIT_CTL_MTC_RANGE); 7308 7309 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7310 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7311 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7312 RTIT_CTL_PTW_EN); 7313 7314 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7315 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7316 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7317 7318 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7319 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7320 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7321 7322 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7323 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7324 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7325 7326 /* unmask address range configure area */ 7327 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7328 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7329 } 7330 7331 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7332 { 7333 struct vcpu_vmx *vmx = to_vmx(vcpu); 7334 7335 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7336 vcpu->arch.xsaves_enabled = false; 7337 7338 vmx_setup_uret_msrs(vmx); 7339 7340 if (cpu_has_secondary_exec_ctrls()) 7341 vmcs_set_secondary_exec_control(vmx, 7342 vmx_secondary_exec_control(vmx)); 7343 7344 if (nested_vmx_allowed(vcpu)) 7345 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7346 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7347 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7348 else 7349 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7350 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7351 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7352 7353 if (nested_vmx_allowed(vcpu)) { 7354 nested_vmx_cr_fixed1_bits_update(vcpu); 7355 nested_vmx_entry_exit_ctls_update(vcpu); 7356 } 7357 7358 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7359 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7360 update_intel_pt_cfg(vcpu); 7361 7362 if (boot_cpu_has(X86_FEATURE_RTM)) { 7363 struct vmx_uret_msr *msr; 7364 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7365 if (msr) { 7366 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7367 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7368 } 7369 } 7370 7371 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 7372 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 7373 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); 7374 7375 7376 set_cr4_guest_host_mask(vmx); 7377 7378 vmx_write_encls_bitmap(vcpu, NULL); 7379 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7380 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7381 else 7382 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7383 7384 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7385 vmx->msr_ia32_feature_control_valid_bits |= 7386 FEAT_CTL_SGX_LC_ENABLED; 7387 else 7388 vmx->msr_ia32_feature_control_valid_bits &= 7389 ~FEAT_CTL_SGX_LC_ENABLED; 7390 7391 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7392 vmx_update_exception_bitmap(vcpu); 7393 } 7394 7395 static __init void vmx_set_cpu_caps(void) 7396 { 7397 kvm_set_cpu_caps(); 7398 7399 /* CPUID 0x1 */ 7400 if (nested) 7401 kvm_cpu_cap_set(X86_FEATURE_VMX); 7402 7403 /* CPUID 0x7 */ 7404 if (kvm_mpx_supported()) 7405 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7406 if (!cpu_has_vmx_invpcid()) 7407 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7408 if (vmx_pt_mode_is_host_guest()) 7409 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7410 7411 if (!enable_sgx) { 7412 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7413 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7414 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7415 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7416 } 7417 7418 if (vmx_umip_emulated()) 7419 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7420 7421 /* CPUID 0xD.1 */ 7422 supported_xss = 0; 7423 if (!cpu_has_vmx_xsaves()) 7424 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7425 7426 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7427 if (!cpu_has_vmx_rdtscp()) { 7428 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7429 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7430 } 7431 7432 if (cpu_has_vmx_waitpkg()) 7433 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7434 } 7435 7436 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7437 { 7438 to_vmx(vcpu)->req_immediate_exit = true; 7439 } 7440 7441 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7442 struct x86_instruction_info *info) 7443 { 7444 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7445 unsigned short port; 7446 bool intercept; 7447 int size; 7448 7449 if (info->intercept == x86_intercept_in || 7450 info->intercept == x86_intercept_ins) { 7451 port = info->src_val; 7452 size = info->dst_bytes; 7453 } else { 7454 port = info->dst_val; 7455 size = info->src_bytes; 7456 } 7457 7458 /* 7459 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7460 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7461 * control. 7462 * 7463 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7464 */ 7465 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7466 intercept = nested_cpu_has(vmcs12, 7467 CPU_BASED_UNCOND_IO_EXITING); 7468 else 7469 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7470 7471 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7472 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7473 } 7474 7475 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7476 struct x86_instruction_info *info, 7477 enum x86_intercept_stage stage, 7478 struct x86_exception *exception) 7479 { 7480 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7481 7482 switch (info->intercept) { 7483 /* 7484 * RDPID causes #UD if disabled through secondary execution controls. 7485 * Because it is marked as EmulateOnUD, we need to intercept it here. 7486 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7487 */ 7488 case x86_intercept_rdpid: 7489 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7490 exception->vector = UD_VECTOR; 7491 exception->error_code_valid = false; 7492 return X86EMUL_PROPAGATE_FAULT; 7493 } 7494 break; 7495 7496 case x86_intercept_in: 7497 case x86_intercept_ins: 7498 case x86_intercept_out: 7499 case x86_intercept_outs: 7500 return vmx_check_intercept_io(vcpu, info); 7501 7502 case x86_intercept_lgdt: 7503 case x86_intercept_lidt: 7504 case x86_intercept_lldt: 7505 case x86_intercept_ltr: 7506 case x86_intercept_sgdt: 7507 case x86_intercept_sidt: 7508 case x86_intercept_sldt: 7509 case x86_intercept_str: 7510 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7511 return X86EMUL_CONTINUE; 7512 7513 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7514 break; 7515 7516 /* TODO: check more intercepts... */ 7517 default: 7518 break; 7519 } 7520 7521 return X86EMUL_UNHANDLEABLE; 7522 } 7523 7524 #ifdef CONFIG_X86_64 7525 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7526 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7527 u64 divisor, u64 *result) 7528 { 7529 u64 low = a << shift, high = a >> (64 - shift); 7530 7531 /* To avoid the overflow on divq */ 7532 if (high >= divisor) 7533 return 1; 7534 7535 /* Low hold the result, high hold rem which is discarded */ 7536 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7537 "rm" (divisor), "0" (low), "1" (high)); 7538 *result = low; 7539 7540 return 0; 7541 } 7542 7543 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7544 bool *expired) 7545 { 7546 struct vcpu_vmx *vmx; 7547 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7548 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7549 7550 vmx = to_vmx(vcpu); 7551 tscl = rdtsc(); 7552 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7553 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7554 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7555 ktimer->timer_advance_ns); 7556 7557 if (delta_tsc > lapic_timer_advance_cycles) 7558 delta_tsc -= lapic_timer_advance_cycles; 7559 else 7560 delta_tsc = 0; 7561 7562 /* Convert to host delta tsc if tsc scaling is enabled */ 7563 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7564 delta_tsc && u64_shl_div_u64(delta_tsc, 7565 kvm_tsc_scaling_ratio_frac_bits, 7566 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 7567 return -ERANGE; 7568 7569 /* 7570 * If the delta tsc can't fit in the 32 bit after the multi shift, 7571 * we can't use the preemption timer. 7572 * It's possible that it fits on later vmentries, but checking 7573 * on every vmentry is costly so we just use an hrtimer. 7574 */ 7575 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7576 return -ERANGE; 7577 7578 vmx->hv_deadline_tsc = tscl + delta_tsc; 7579 *expired = !delta_tsc; 7580 return 0; 7581 } 7582 7583 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7584 { 7585 to_vmx(vcpu)->hv_deadline_tsc = -1; 7586 } 7587 #endif 7588 7589 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7590 { 7591 if (!kvm_pause_in_guest(vcpu->kvm)) 7592 shrink_ple_window(vcpu); 7593 } 7594 7595 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 7596 { 7597 struct vcpu_vmx *vmx = to_vmx(vcpu); 7598 7599 if (is_guest_mode(vcpu)) { 7600 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 7601 return; 7602 } 7603 7604 /* 7605 * Note, cpu_dirty_logging_count can be changed concurrent with this 7606 * code, but in that case another update request will be made and so 7607 * the guest will never run with a stale PML value. 7608 */ 7609 if (vcpu->kvm->arch.cpu_dirty_logging_count) 7610 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7611 else 7612 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7613 } 7614 7615 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7616 { 7617 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7618 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7619 FEAT_CTL_LMCE_ENABLED; 7620 else 7621 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7622 ~FEAT_CTL_LMCE_ENABLED; 7623 } 7624 7625 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 7626 { 7627 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7628 if (to_vmx(vcpu)->nested.nested_run_pending) 7629 return -EBUSY; 7630 return !is_smm(vcpu); 7631 } 7632 7633 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7634 { 7635 struct vcpu_vmx *vmx = to_vmx(vcpu); 7636 7637 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7638 if (vmx->nested.smm.guest_mode) 7639 nested_vmx_vmexit(vcpu, -1, 0, 0); 7640 7641 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7642 vmx->nested.vmxon = false; 7643 vmx_clear_hlt(vcpu); 7644 return 0; 7645 } 7646 7647 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7648 { 7649 struct vcpu_vmx *vmx = to_vmx(vcpu); 7650 int ret; 7651 7652 if (vmx->nested.smm.vmxon) { 7653 vmx->nested.vmxon = true; 7654 vmx->nested.smm.vmxon = false; 7655 } 7656 7657 if (vmx->nested.smm.guest_mode) { 7658 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7659 if (ret) 7660 return ret; 7661 7662 vmx->nested.nested_run_pending = 1; 7663 vmx->nested.smm.guest_mode = false; 7664 } 7665 return 0; 7666 } 7667 7668 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 7669 { 7670 /* RSM will cause a vmexit anyway. */ 7671 } 7672 7673 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 7674 { 7675 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 7676 } 7677 7678 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 7679 { 7680 if (is_guest_mode(vcpu)) { 7681 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 7682 7683 if (hrtimer_try_to_cancel(timer) == 1) 7684 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 7685 } 7686 } 7687 7688 static void hardware_unsetup(void) 7689 { 7690 kvm_set_posted_intr_wakeup_handler(NULL); 7691 7692 if (nested) 7693 nested_vmx_hardware_unsetup(); 7694 7695 free_kvm_area(); 7696 } 7697 7698 static bool vmx_check_apicv_inhibit_reasons(ulong bit) 7699 { 7700 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 7701 BIT(APICV_INHIBIT_REASON_ABSENT) | 7702 BIT(APICV_INHIBIT_REASON_HYPERV) | 7703 BIT(APICV_INHIBIT_REASON_BLOCKIRQ); 7704 7705 return supported & BIT(bit); 7706 } 7707 7708 static struct kvm_x86_ops vmx_x86_ops __initdata = { 7709 .name = "kvm_intel", 7710 7711 .hardware_unsetup = hardware_unsetup, 7712 7713 .hardware_enable = hardware_enable, 7714 .hardware_disable = hardware_disable, 7715 .cpu_has_accelerated_tpr = report_flexpriority, 7716 .has_emulated_msr = vmx_has_emulated_msr, 7717 7718 .vm_size = sizeof(struct kvm_vmx), 7719 .vm_init = vmx_vm_init, 7720 7721 .vcpu_create = vmx_create_vcpu, 7722 .vcpu_free = vmx_free_vcpu, 7723 .vcpu_reset = vmx_vcpu_reset, 7724 7725 .prepare_guest_switch = vmx_prepare_switch_to_guest, 7726 .vcpu_load = vmx_vcpu_load, 7727 .vcpu_put = vmx_vcpu_put, 7728 7729 .update_exception_bitmap = vmx_update_exception_bitmap, 7730 .get_msr_feature = vmx_get_msr_feature, 7731 .get_msr = vmx_get_msr, 7732 .set_msr = vmx_set_msr, 7733 .get_segment_base = vmx_get_segment_base, 7734 .get_segment = vmx_get_segment, 7735 .set_segment = vmx_set_segment, 7736 .get_cpl = vmx_get_cpl, 7737 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7738 .set_cr0 = vmx_set_cr0, 7739 .is_valid_cr4 = vmx_is_valid_cr4, 7740 .set_cr4 = vmx_set_cr4, 7741 .set_efer = vmx_set_efer, 7742 .get_idt = vmx_get_idt, 7743 .set_idt = vmx_set_idt, 7744 .get_gdt = vmx_get_gdt, 7745 .set_gdt = vmx_set_gdt, 7746 .set_dr7 = vmx_set_dr7, 7747 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7748 .cache_reg = vmx_cache_reg, 7749 .get_rflags = vmx_get_rflags, 7750 .set_rflags = vmx_set_rflags, 7751 .get_if_flag = vmx_get_if_flag, 7752 7753 .tlb_flush_all = vmx_flush_tlb_all, 7754 .tlb_flush_current = vmx_flush_tlb_current, 7755 .tlb_flush_gva = vmx_flush_tlb_gva, 7756 .tlb_flush_guest = vmx_flush_tlb_guest, 7757 7758 .vcpu_pre_run = vmx_vcpu_pre_run, 7759 .run = vmx_vcpu_run, 7760 .handle_exit = vmx_handle_exit, 7761 .skip_emulated_instruction = vmx_skip_emulated_instruction, 7762 .update_emulated_instruction = vmx_update_emulated_instruction, 7763 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7764 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7765 .patch_hypercall = vmx_patch_hypercall, 7766 .set_irq = vmx_inject_irq, 7767 .set_nmi = vmx_inject_nmi, 7768 .queue_exception = vmx_queue_exception, 7769 .cancel_injection = vmx_cancel_injection, 7770 .interrupt_allowed = vmx_interrupt_allowed, 7771 .nmi_allowed = vmx_nmi_allowed, 7772 .get_nmi_mask = vmx_get_nmi_mask, 7773 .set_nmi_mask = vmx_set_nmi_mask, 7774 .enable_nmi_window = vmx_enable_nmi_window, 7775 .enable_irq_window = vmx_enable_irq_window, 7776 .update_cr8_intercept = vmx_update_cr8_intercept, 7777 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7778 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7779 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7780 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7781 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7782 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons, 7783 .hwapic_irr_update = vmx_hwapic_irr_update, 7784 .hwapic_isr_update = vmx_hwapic_isr_update, 7785 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7786 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7787 .deliver_interrupt = vmx_deliver_interrupt, 7788 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 7789 7790 .set_tss_addr = vmx_set_tss_addr, 7791 .set_identity_map_addr = vmx_set_identity_map_addr, 7792 .get_mt_mask = vmx_get_mt_mask, 7793 7794 .get_exit_info = vmx_get_exit_info, 7795 7796 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 7797 7798 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7799 7800 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 7801 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 7802 .write_tsc_offset = vmx_write_tsc_offset, 7803 .write_tsc_multiplier = vmx_write_tsc_multiplier, 7804 7805 .load_mmu_pgd = vmx_load_mmu_pgd, 7806 7807 .check_intercept = vmx_check_intercept, 7808 .handle_exit_irqoff = vmx_handle_exit_irqoff, 7809 7810 .request_immediate_exit = vmx_request_immediate_exit, 7811 7812 .sched_in = vmx_sched_in, 7813 7814 .cpu_dirty_log_size = PML_ENTITY_NUM, 7815 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 7816 7817 .pmu_ops = &intel_pmu_ops, 7818 .nested_ops = &vmx_nested_ops, 7819 7820 .update_pi_irte = pi_update_irte, 7821 .start_assignment = vmx_pi_start_assignment, 7822 7823 #ifdef CONFIG_X86_64 7824 .set_hv_timer = vmx_set_hv_timer, 7825 .cancel_hv_timer = vmx_cancel_hv_timer, 7826 #endif 7827 7828 .setup_mce = vmx_setup_mce, 7829 7830 .smi_allowed = vmx_smi_allowed, 7831 .enter_smm = vmx_enter_smm, 7832 .leave_smm = vmx_leave_smm, 7833 .enable_smi_window = vmx_enable_smi_window, 7834 7835 .can_emulate_instruction = vmx_can_emulate_instruction, 7836 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 7837 .migrate_timers = vmx_migrate_timers, 7838 7839 .msr_filter_changed = vmx_msr_filter_changed, 7840 .complete_emulated_msr = kvm_complete_insn_gp, 7841 7842 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 7843 }; 7844 7845 static unsigned int vmx_handle_intel_pt_intr(void) 7846 { 7847 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 7848 7849 /* '0' on failure so that the !PT case can use a RET0 static call. */ 7850 if (!kvm_arch_pmi_in_guest(vcpu)) 7851 return 0; 7852 7853 kvm_make_request(KVM_REQ_PMI, vcpu); 7854 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 7855 (unsigned long *)&vcpu->arch.pmu.global_status); 7856 return 1; 7857 } 7858 7859 static __init void vmx_setup_user_return_msrs(void) 7860 { 7861 7862 /* 7863 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 7864 * will emulate SYSCALL in legacy mode if the vendor string in guest 7865 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 7866 * support this emulation, MSR_STAR is included in the list for i386, 7867 * but is never loaded into hardware. MSR_CSTAR is also never loaded 7868 * into hardware and is here purely for emulation purposes. 7869 */ 7870 const u32 vmx_uret_msrs_list[] = { 7871 #ifdef CONFIG_X86_64 7872 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 7873 #endif 7874 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 7875 MSR_IA32_TSX_CTRL, 7876 }; 7877 int i; 7878 7879 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 7880 7881 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 7882 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 7883 } 7884 7885 static struct kvm_x86_init_ops vmx_init_ops __initdata; 7886 7887 static __init int hardware_setup(void) 7888 { 7889 unsigned long host_bndcfgs; 7890 struct desc_ptr dt; 7891 int r; 7892 7893 store_idt(&dt); 7894 host_idt_base = dt.address; 7895 7896 vmx_setup_user_return_msrs(); 7897 7898 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7899 return -EIO; 7900 7901 if (boot_cpu_has(X86_FEATURE_NX)) 7902 kvm_enable_efer_bits(EFER_NX); 7903 7904 if (boot_cpu_has(X86_FEATURE_MPX)) { 7905 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7906 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7907 } 7908 7909 if (!cpu_has_vmx_mpx()) 7910 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 7911 XFEATURE_MASK_BNDCSR); 7912 7913 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7914 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7915 enable_vpid = 0; 7916 7917 if (!cpu_has_vmx_ept() || 7918 !cpu_has_vmx_ept_4levels() || 7919 !cpu_has_vmx_ept_mt_wb() || 7920 !cpu_has_vmx_invept_global()) 7921 enable_ept = 0; 7922 7923 /* NX support is required for shadow paging. */ 7924 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 7925 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n"); 7926 return -EOPNOTSUPP; 7927 } 7928 7929 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7930 enable_ept_ad_bits = 0; 7931 7932 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7933 enable_unrestricted_guest = 0; 7934 7935 if (!cpu_has_vmx_flexpriority()) 7936 flexpriority_enabled = 0; 7937 7938 if (!cpu_has_virtual_nmis()) 7939 enable_vnmi = 0; 7940 7941 /* 7942 * set_apic_access_page_addr() is used to reload apic access 7943 * page upon invalidation. No need to do anything if not 7944 * using the APIC_ACCESS_ADDR VMCS field. 7945 */ 7946 if (!flexpriority_enabled) 7947 vmx_x86_ops.set_apic_access_page_addr = NULL; 7948 7949 if (!cpu_has_vmx_tpr_shadow()) 7950 vmx_x86_ops.update_cr8_intercept = NULL; 7951 7952 #if IS_ENABLED(CONFIG_HYPERV) 7953 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7954 && enable_ept) { 7955 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb; 7956 vmx_x86_ops.tlb_remote_flush_with_range = 7957 hv_remote_flush_tlb_with_range; 7958 } 7959 #endif 7960 7961 if (!cpu_has_vmx_ple()) { 7962 ple_gap = 0; 7963 ple_window = 0; 7964 ple_window_grow = 0; 7965 ple_window_max = 0; 7966 ple_window_shrink = 0; 7967 } 7968 7969 if (!cpu_has_vmx_apicv()) 7970 enable_apicv = 0; 7971 if (!enable_apicv) 7972 vmx_x86_ops.sync_pir_to_irr = NULL; 7973 7974 if (cpu_has_vmx_tsc_scaling()) { 7975 kvm_has_tsc_control = true; 7976 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7977 kvm_tsc_scaling_ratio_frac_bits = 48; 7978 } 7979 7980 kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 7981 7982 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7983 7984 if (enable_ept) 7985 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 7986 cpu_has_vmx_ept_execute_only()); 7987 7988 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(), 7989 ept_caps_to_lpage_level(vmx_capability.ept)); 7990 7991 /* 7992 * Only enable PML when hardware supports PML feature, and both EPT 7993 * and EPT A/D bit features are enabled -- PML depends on them to work. 7994 */ 7995 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 7996 enable_pml = 0; 7997 7998 if (!enable_pml) 7999 vmx_x86_ops.cpu_dirty_log_size = 0; 8000 8001 if (!cpu_has_vmx_preemption_timer()) 8002 enable_preemption_timer = false; 8003 8004 if (enable_preemption_timer) { 8005 u64 use_timer_freq = 5000ULL * 1000 * 1000; 8006 u64 vmx_msr; 8007 8008 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 8009 cpu_preemption_timer_multi = 8010 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 8011 8012 if (tsc_khz) 8013 use_timer_freq = (u64)tsc_khz * 1000; 8014 use_timer_freq >>= cpu_preemption_timer_multi; 8015 8016 /* 8017 * KVM "disables" the preemption timer by setting it to its max 8018 * value. Don't use the timer if it might cause spurious exits 8019 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 8020 */ 8021 if (use_timer_freq > 0xffffffffu / 10) 8022 enable_preemption_timer = false; 8023 } 8024 8025 if (!enable_preemption_timer) { 8026 vmx_x86_ops.set_hv_timer = NULL; 8027 vmx_x86_ops.cancel_hv_timer = NULL; 8028 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 8029 } 8030 8031 kvm_mce_cap_supported |= MCG_LMCE_P; 8032 8033 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 8034 return -EINVAL; 8035 if (!enable_ept || !cpu_has_vmx_intel_pt()) 8036 pt_mode = PT_MODE_SYSTEM; 8037 if (pt_mode == PT_MODE_HOST_GUEST) 8038 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 8039 else 8040 vmx_init_ops.handle_intel_pt_intr = NULL; 8041 8042 setup_default_sgx_lepubkeyhash(); 8043 8044 if (nested) { 8045 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 8046 vmx_capability.ept); 8047 8048 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8049 if (r) 8050 return r; 8051 } 8052 8053 vmx_set_cpu_caps(); 8054 8055 r = alloc_kvm_area(); 8056 if (r) 8057 nested_vmx_hardware_unsetup(); 8058 8059 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8060 8061 return r; 8062 } 8063 8064 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 8065 .cpu_has_kvm_support = cpu_has_kvm_support, 8066 .disabled_by_bios = vmx_disabled_by_bios, 8067 .check_processor_compatibility = vmx_check_processor_compat, 8068 .hardware_setup = hardware_setup, 8069 .handle_intel_pt_intr = NULL, 8070 8071 .runtime_ops = &vmx_x86_ops, 8072 }; 8073 8074 static void vmx_cleanup_l1d_flush(void) 8075 { 8076 if (vmx_l1d_flush_pages) { 8077 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8078 vmx_l1d_flush_pages = NULL; 8079 } 8080 /* Restore state so sysfs ignores VMX */ 8081 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8082 } 8083 8084 static void vmx_exit(void) 8085 { 8086 #ifdef CONFIG_KEXEC_CORE 8087 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 8088 synchronize_rcu(); 8089 #endif 8090 8091 kvm_exit(); 8092 8093 #if IS_ENABLED(CONFIG_HYPERV) 8094 if (static_branch_unlikely(&enable_evmcs)) { 8095 int cpu; 8096 struct hv_vp_assist_page *vp_ap; 8097 /* 8098 * Reset everything to support using non-enlightened VMCS 8099 * access later (e.g. when we reload the module with 8100 * enlightened_vmcs=0) 8101 */ 8102 for_each_online_cpu(cpu) { 8103 vp_ap = hv_get_vp_assist_page(cpu); 8104 8105 if (!vp_ap) 8106 continue; 8107 8108 vp_ap->nested_control.features.directhypercall = 0; 8109 vp_ap->current_nested_vmcs = 0; 8110 vp_ap->enlighten_vmentry = 0; 8111 } 8112 8113 static_branch_disable(&enable_evmcs); 8114 } 8115 #endif 8116 vmx_cleanup_l1d_flush(); 8117 8118 allow_smaller_maxphyaddr = false; 8119 } 8120 module_exit(vmx_exit); 8121 8122 static int __init vmx_init(void) 8123 { 8124 int r, cpu; 8125 8126 #if IS_ENABLED(CONFIG_HYPERV) 8127 /* 8128 * Enlightened VMCS usage should be recommended and the host needs 8129 * to support eVMCS v1 or above. We can also disable eVMCS support 8130 * with module parameter. 8131 */ 8132 if (enlightened_vmcs && 8133 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 8134 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 8135 KVM_EVMCS_VERSION) { 8136 int cpu; 8137 8138 /* Check that we have assist pages on all online CPUs */ 8139 for_each_online_cpu(cpu) { 8140 if (!hv_get_vp_assist_page(cpu)) { 8141 enlightened_vmcs = false; 8142 break; 8143 } 8144 } 8145 8146 if (enlightened_vmcs) { 8147 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 8148 static_branch_enable(&enable_evmcs); 8149 } 8150 8151 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 8152 vmx_x86_ops.enable_direct_tlbflush 8153 = hv_enable_direct_tlbflush; 8154 8155 } else { 8156 enlightened_vmcs = false; 8157 } 8158 #endif 8159 8160 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx), 8161 __alignof__(struct vcpu_vmx), THIS_MODULE); 8162 if (r) 8163 return r; 8164 8165 /* 8166 * Must be called after kvm_init() so enable_ept is properly set 8167 * up. Hand the parameter mitigation value in which was stored in 8168 * the pre module init parser. If no parameter was given, it will 8169 * contain 'auto' which will be turned into the default 'cond' 8170 * mitigation mode. 8171 */ 8172 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8173 if (r) { 8174 vmx_exit(); 8175 return r; 8176 } 8177 8178 for_each_possible_cpu(cpu) { 8179 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8180 8181 pi_init_cpu(cpu); 8182 } 8183 8184 #ifdef CONFIG_KEXEC_CORE 8185 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 8186 crash_vmclear_local_loaded_vmcss); 8187 #endif 8188 vmx_check_vmcs12_offsets(); 8189 8190 /* 8191 * Shadow paging doesn't have a (further) performance penalty 8192 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8193 * by default 8194 */ 8195 if (!enable_ept) 8196 allow_smaller_maxphyaddr = true; 8197 8198 return 0; 8199 } 8200 module_init(vmx_init); 8201