xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision b03afaa8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/debugreg.h>
36 #include <asm/desc.h>
37 #include <asm/fpu/internal.h>
38 #include <asm/io.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/kexec.h>
41 #include <asm/perf_event.h>
42 #include <asm/mce.h>
43 #include <asm/mmu_context.h>
44 #include <asm/mshyperv.h>
45 #include <asm/mwait.h>
46 #include <asm/spec-ctrl.h>
47 #include <asm/virtext.h>
48 #include <asm/vmx.h>
49 
50 #include "capabilities.h"
51 #include "cpuid.h"
52 #include "evmcs.h"
53 #include "irq.h"
54 #include "kvm_cache_regs.h"
55 #include "lapic.h"
56 #include "mmu.h"
57 #include "nested.h"
58 #include "ops.h"
59 #include "pmu.h"
60 #include "trace.h"
61 #include "vmcs.h"
62 #include "vmcs12.h"
63 #include "vmx.h"
64 #include "x86.h"
65 
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68 
69 #ifdef MODULE
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
72 	{}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 #endif
76 
77 bool __read_mostly enable_vpid = 1;
78 module_param_named(vpid, enable_vpid, bool, 0444);
79 
80 static bool __read_mostly enable_vnmi = 1;
81 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
82 
83 bool __read_mostly flexpriority_enabled = 1;
84 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
85 
86 bool __read_mostly enable_ept = 1;
87 module_param_named(ept, enable_ept, bool, S_IRUGO);
88 
89 bool __read_mostly enable_unrestricted_guest = 1;
90 module_param_named(unrestricted_guest,
91 			enable_unrestricted_guest, bool, S_IRUGO);
92 
93 bool __read_mostly enable_ept_ad_bits = 1;
94 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
95 
96 static bool __read_mostly emulate_invalid_guest_state = true;
97 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
98 
99 static bool __read_mostly fasteoi = 1;
100 module_param(fasteoi, bool, S_IRUGO);
101 
102 bool __read_mostly enable_apicv = 1;
103 module_param(enable_apicv, bool, S_IRUGO);
104 
105 /*
106  * If nested=1, nested virtualization is supported, i.e., guests may use
107  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
108  * use VMX instructions.
109  */
110 static bool __read_mostly nested = 1;
111 module_param(nested, bool, S_IRUGO);
112 
113 bool __read_mostly enable_pml = 1;
114 module_param_named(pml, enable_pml, bool, S_IRUGO);
115 
116 static bool __read_mostly dump_invalid_vmcs = 0;
117 module_param(dump_invalid_vmcs, bool, 0644);
118 
119 #define MSR_BITMAP_MODE_X2APIC		1
120 #define MSR_BITMAP_MODE_X2APIC_APICV	2
121 
122 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
123 
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
127 #ifdef CONFIG_X86_64
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #endif
130 
131 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
132 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
133 #define KVM_VM_CR0_ALWAYS_ON				\
134 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
135 	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
136 
137 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
138 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
139 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
140 
141 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
142 
143 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
144 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
145 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
146 	RTIT_STATUS_BYTECNT))
147 
148 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
149 	(~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
150 
151 /*
152  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
153  * ple_gap:    upper bound on the amount of time between two successive
154  *             executions of PAUSE in a loop. Also indicate if ple enabled.
155  *             According to test, this time is usually smaller than 128 cycles.
156  * ple_window: upper bound on the amount of time a guest is allowed to execute
157  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
158  *             less than 2^12 cycles
159  * Time is measured based on a counter that runs at the same rate as the TSC,
160  * refer SDM volume 3b section 21.6.13 & 22.1.3.
161  */
162 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
163 module_param(ple_gap, uint, 0444);
164 
165 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
166 module_param(ple_window, uint, 0444);
167 
168 /* Default doubles per-vcpu window every exit. */
169 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
170 module_param(ple_window_grow, uint, 0444);
171 
172 /* Default resets per-vcpu window every exit to ple_window. */
173 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
174 module_param(ple_window_shrink, uint, 0444);
175 
176 /* Default is to compute the maximum so we can never overflow. */
177 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
178 module_param(ple_window_max, uint, 0444);
179 
180 /* Default is SYSTEM mode, 1 for host-guest mode */
181 int __read_mostly pt_mode = PT_MODE_SYSTEM;
182 module_param(pt_mode, int, S_IRUGO);
183 
184 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
186 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
187 
188 /* Storage for pre module init parameter parsing */
189 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
190 
191 static const struct {
192 	const char *option;
193 	bool for_parse;
194 } vmentry_l1d_param[] = {
195 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
196 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
197 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
198 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
199 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
200 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
201 };
202 
203 #define L1D_CACHE_ORDER 4
204 static void *vmx_l1d_flush_pages;
205 
206 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
207 {
208 	struct page *page;
209 	unsigned int i;
210 
211 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
212 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
213 		return 0;
214 	}
215 
216 	if (!enable_ept) {
217 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
218 		return 0;
219 	}
220 
221 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
222 		u64 msr;
223 
224 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
225 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
226 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
227 			return 0;
228 		}
229 	}
230 
231 	/* If set to auto use the default l1tf mitigation method */
232 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
233 		switch (l1tf_mitigation) {
234 		case L1TF_MITIGATION_OFF:
235 			l1tf = VMENTER_L1D_FLUSH_NEVER;
236 			break;
237 		case L1TF_MITIGATION_FLUSH_NOWARN:
238 		case L1TF_MITIGATION_FLUSH:
239 		case L1TF_MITIGATION_FLUSH_NOSMT:
240 			l1tf = VMENTER_L1D_FLUSH_COND;
241 			break;
242 		case L1TF_MITIGATION_FULL:
243 		case L1TF_MITIGATION_FULL_FORCE:
244 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
245 			break;
246 		}
247 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
248 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
249 	}
250 
251 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
252 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
253 		/*
254 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
255 		 * lifetime and so should not be charged to a memcg.
256 		 */
257 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
258 		if (!page)
259 			return -ENOMEM;
260 		vmx_l1d_flush_pages = page_address(page);
261 
262 		/*
263 		 * Initialize each page with a different pattern in
264 		 * order to protect against KSM in the nested
265 		 * virtualization case.
266 		 */
267 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
268 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
269 			       PAGE_SIZE);
270 		}
271 	}
272 
273 	l1tf_vmx_mitigation = l1tf;
274 
275 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
276 		static_branch_enable(&vmx_l1d_should_flush);
277 	else
278 		static_branch_disable(&vmx_l1d_should_flush);
279 
280 	if (l1tf == VMENTER_L1D_FLUSH_COND)
281 		static_branch_enable(&vmx_l1d_flush_cond);
282 	else
283 		static_branch_disable(&vmx_l1d_flush_cond);
284 	return 0;
285 }
286 
287 static int vmentry_l1d_flush_parse(const char *s)
288 {
289 	unsigned int i;
290 
291 	if (s) {
292 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
293 			if (vmentry_l1d_param[i].for_parse &&
294 			    sysfs_streq(s, vmentry_l1d_param[i].option))
295 				return i;
296 		}
297 	}
298 	return -EINVAL;
299 }
300 
301 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
302 {
303 	int l1tf, ret;
304 
305 	l1tf = vmentry_l1d_flush_parse(s);
306 	if (l1tf < 0)
307 		return l1tf;
308 
309 	if (!boot_cpu_has(X86_BUG_L1TF))
310 		return 0;
311 
312 	/*
313 	 * Has vmx_init() run already? If not then this is the pre init
314 	 * parameter parsing. In that case just store the value and let
315 	 * vmx_init() do the proper setup after enable_ept has been
316 	 * established.
317 	 */
318 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
319 		vmentry_l1d_flush_param = l1tf;
320 		return 0;
321 	}
322 
323 	mutex_lock(&vmx_l1d_flush_mutex);
324 	ret = vmx_setup_l1d_flush(l1tf);
325 	mutex_unlock(&vmx_l1d_flush_mutex);
326 	return ret;
327 }
328 
329 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
330 {
331 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
332 		return sprintf(s, "???\n");
333 
334 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
335 }
336 
337 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
338 	.set = vmentry_l1d_flush_set,
339 	.get = vmentry_l1d_flush_get,
340 };
341 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
342 
343 static bool guest_state_valid(struct kvm_vcpu *vcpu);
344 static u32 vmx_segment_access_rights(struct kvm_segment *var);
345 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
346 							  u32 msr, int type);
347 
348 void vmx_vmexit(void);
349 
350 #define vmx_insn_failed(fmt...)		\
351 do {					\
352 	WARN_ONCE(1, fmt);		\
353 	pr_warn_ratelimited(fmt);	\
354 } while (0)
355 
356 asmlinkage void vmread_error(unsigned long field, bool fault)
357 {
358 	if (fault)
359 		kvm_spurious_fault();
360 	else
361 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
362 }
363 
364 noinline void vmwrite_error(unsigned long field, unsigned long value)
365 {
366 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
367 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
368 }
369 
370 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
371 {
372 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
373 }
374 
375 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
376 {
377 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
378 }
379 
380 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
381 {
382 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
383 			ext, vpid, gva);
384 }
385 
386 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
387 {
388 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
389 			ext, eptp, gpa);
390 }
391 
392 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
393 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
394 /*
395  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
396  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
397  */
398 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
399 
400 /*
401  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
402  * can find which vCPU should be waken up.
403  */
404 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
405 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
406 
407 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
408 static DEFINE_SPINLOCK(vmx_vpid_lock);
409 
410 struct vmcs_config vmcs_config;
411 struct vmx_capability vmx_capability;
412 
413 #define VMX_SEGMENT_FIELD(seg)					\
414 	[VCPU_SREG_##seg] = {                                   \
415 		.selector = GUEST_##seg##_SELECTOR,		\
416 		.base = GUEST_##seg##_BASE,		   	\
417 		.limit = GUEST_##seg##_LIMIT,		   	\
418 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
419 	}
420 
421 static const struct kvm_vmx_segment_field {
422 	unsigned selector;
423 	unsigned base;
424 	unsigned limit;
425 	unsigned ar_bytes;
426 } kvm_vmx_segment_fields[] = {
427 	VMX_SEGMENT_FIELD(CS),
428 	VMX_SEGMENT_FIELD(DS),
429 	VMX_SEGMENT_FIELD(ES),
430 	VMX_SEGMENT_FIELD(FS),
431 	VMX_SEGMENT_FIELD(GS),
432 	VMX_SEGMENT_FIELD(SS),
433 	VMX_SEGMENT_FIELD(TR),
434 	VMX_SEGMENT_FIELD(LDTR),
435 };
436 
437 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
438 {
439 	vmx->segment_cache.bitmask = 0;
440 }
441 
442 static unsigned long host_idt_base;
443 
444 /*
445  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
446  * will emulate SYSCALL in legacy mode if the vendor string in guest
447  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
448  * support this emulation, IA32_STAR must always be included in
449  * vmx_msr_index[], even in i386 builds.
450  */
451 const u32 vmx_msr_index[] = {
452 #ifdef CONFIG_X86_64
453 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
454 #endif
455 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
456 	MSR_IA32_TSX_CTRL,
457 };
458 
459 #if IS_ENABLED(CONFIG_HYPERV)
460 static bool __read_mostly enlightened_vmcs = true;
461 module_param(enlightened_vmcs, bool, 0444);
462 
463 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
464 static void check_ept_pointer_match(struct kvm *kvm)
465 {
466 	struct kvm_vcpu *vcpu;
467 	u64 tmp_eptp = INVALID_PAGE;
468 	int i;
469 
470 	kvm_for_each_vcpu(i, vcpu, kvm) {
471 		if (!VALID_PAGE(tmp_eptp)) {
472 			tmp_eptp = to_vmx(vcpu)->ept_pointer;
473 		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
474 			to_kvm_vmx(kvm)->ept_pointers_match
475 				= EPT_POINTERS_MISMATCH;
476 			return;
477 		}
478 	}
479 
480 	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
481 }
482 
483 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
484 		void *data)
485 {
486 	struct kvm_tlb_range *range = data;
487 
488 	return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
489 			range->pages);
490 }
491 
492 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
493 		struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
494 {
495 	u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
496 
497 	/*
498 	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
499 	 * of the base of EPT PML4 table, strip off EPT configuration
500 	 * information.
501 	 */
502 	if (range)
503 		return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
504 				kvm_fill_hv_flush_list_func, (void *)range);
505 	else
506 		return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
507 }
508 
509 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
510 		struct kvm_tlb_range *range)
511 {
512 	struct kvm_vcpu *vcpu;
513 	int ret = 0, i;
514 
515 	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
516 
517 	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
518 		check_ept_pointer_match(kvm);
519 
520 	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
521 		kvm_for_each_vcpu(i, vcpu, kvm) {
522 			/* If ept_pointer is invalid pointer, bypass flush request. */
523 			if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
524 				ret |= __hv_remote_flush_tlb_with_range(
525 					kvm, vcpu, range);
526 		}
527 	} else {
528 		ret = __hv_remote_flush_tlb_with_range(kvm,
529 				kvm_get_vcpu(kvm, 0), range);
530 	}
531 
532 	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
533 	return ret;
534 }
535 static int hv_remote_flush_tlb(struct kvm *kvm)
536 {
537 	return hv_remote_flush_tlb_with_range(kvm, NULL);
538 }
539 
540 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
541 {
542 	struct hv_enlightened_vmcs *evmcs;
543 	struct hv_partition_assist_pg **p_hv_pa_pg =
544 			&vcpu->kvm->arch.hyperv.hv_pa_pg;
545 	/*
546 	 * Synthetic VM-Exit is not enabled in current code and so All
547 	 * evmcs in singe VM shares same assist page.
548 	 */
549 	if (!*p_hv_pa_pg)
550 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
551 
552 	if (!*p_hv_pa_pg)
553 		return -ENOMEM;
554 
555 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
556 
557 	evmcs->partition_assist_page =
558 		__pa(*p_hv_pa_pg);
559 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
560 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
561 
562 	return 0;
563 }
564 
565 #endif /* IS_ENABLED(CONFIG_HYPERV) */
566 
567 /*
568  * Comment's format: document - errata name - stepping - processor name.
569  * Refer from
570  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
571  */
572 static u32 vmx_preemption_cpu_tfms[] = {
573 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
574 0x000206E6,
575 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
576 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
577 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
578 0x00020652,
579 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
580 0x00020655,
581 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
582 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
583 /*
584  * 320767.pdf - AAP86  - B1 -
585  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
586  */
587 0x000106E5,
588 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
589 0x000106A0,
590 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
591 0x000106A1,
592 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
593 0x000106A4,
594  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
595  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
596  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
597 0x000106A5,
598  /* Xeon E3-1220 V2 */
599 0x000306A8,
600 };
601 
602 static inline bool cpu_has_broken_vmx_preemption_timer(void)
603 {
604 	u32 eax = cpuid_eax(0x00000001), i;
605 
606 	/* Clear the reserved bits */
607 	eax &= ~(0x3U << 14 | 0xfU << 28);
608 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
609 		if (eax == vmx_preemption_cpu_tfms[i])
610 			return true;
611 
612 	return false;
613 }
614 
615 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
616 {
617 	return flexpriority_enabled && lapic_in_kernel(vcpu);
618 }
619 
620 static inline bool report_flexpriority(void)
621 {
622 	return flexpriority_enabled;
623 }
624 
625 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
626 {
627 	int i;
628 
629 	for (i = 0; i < vmx->nmsrs; ++i)
630 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
631 			return i;
632 	return -1;
633 }
634 
635 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
636 {
637 	int i;
638 
639 	i = __find_msr_index(vmx, msr);
640 	if (i >= 0)
641 		return &vmx->guest_msrs[i];
642 	return NULL;
643 }
644 
645 static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data)
646 {
647 	int ret = 0;
648 
649 	u64 old_msr_data = msr->data;
650 	msr->data = data;
651 	if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
652 		preempt_disable();
653 		ret = kvm_set_shared_msr(msr->index, msr->data,
654 					 msr->mask);
655 		preempt_enable();
656 		if (ret)
657 			msr->data = old_msr_data;
658 	}
659 	return ret;
660 }
661 
662 #ifdef CONFIG_KEXEC_CORE
663 static void crash_vmclear_local_loaded_vmcss(void)
664 {
665 	int cpu = raw_smp_processor_id();
666 	struct loaded_vmcs *v;
667 
668 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
669 			    loaded_vmcss_on_cpu_link)
670 		vmcs_clear(v->vmcs);
671 }
672 #endif /* CONFIG_KEXEC_CORE */
673 
674 static void __loaded_vmcs_clear(void *arg)
675 {
676 	struct loaded_vmcs *loaded_vmcs = arg;
677 	int cpu = raw_smp_processor_id();
678 
679 	if (loaded_vmcs->cpu != cpu)
680 		return; /* vcpu migration can race with cpu offline */
681 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
682 		per_cpu(current_vmcs, cpu) = NULL;
683 
684 	vmcs_clear(loaded_vmcs->vmcs);
685 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
686 		vmcs_clear(loaded_vmcs->shadow_vmcs);
687 
688 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
689 
690 	/*
691 	 * Ensure all writes to loaded_vmcs, including deleting it from its
692 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
693 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
694 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
695 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
696 	 */
697 	smp_wmb();
698 
699 	loaded_vmcs->cpu = -1;
700 	loaded_vmcs->launched = 0;
701 }
702 
703 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
704 {
705 	int cpu = loaded_vmcs->cpu;
706 
707 	if (cpu != -1)
708 		smp_call_function_single(cpu,
709 			 __loaded_vmcs_clear, loaded_vmcs, 1);
710 }
711 
712 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
713 				       unsigned field)
714 {
715 	bool ret;
716 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
717 
718 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
719 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
720 		vmx->segment_cache.bitmask = 0;
721 	}
722 	ret = vmx->segment_cache.bitmask & mask;
723 	vmx->segment_cache.bitmask |= mask;
724 	return ret;
725 }
726 
727 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
728 {
729 	u16 *p = &vmx->segment_cache.seg[seg].selector;
730 
731 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
732 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
733 	return *p;
734 }
735 
736 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
737 {
738 	ulong *p = &vmx->segment_cache.seg[seg].base;
739 
740 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
741 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
742 	return *p;
743 }
744 
745 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
746 {
747 	u32 *p = &vmx->segment_cache.seg[seg].limit;
748 
749 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
750 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
751 	return *p;
752 }
753 
754 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
755 {
756 	u32 *p = &vmx->segment_cache.seg[seg].ar;
757 
758 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
759 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
760 	return *p;
761 }
762 
763 void update_exception_bitmap(struct kvm_vcpu *vcpu)
764 {
765 	u32 eb;
766 
767 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
768 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
769 	/*
770 	 * Guest access to VMware backdoor ports could legitimately
771 	 * trigger #GP because of TSS I/O permission bitmap.
772 	 * We intercept those #GP and allow access to them anyway
773 	 * as VMware does.
774 	 */
775 	if (enable_vmware_backdoor)
776 		eb |= (1u << GP_VECTOR);
777 	if ((vcpu->guest_debug &
778 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
779 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
780 		eb |= 1u << BP_VECTOR;
781 	if (to_vmx(vcpu)->rmode.vm86_active)
782 		eb = ~0;
783 	if (enable_ept)
784 		eb &= ~(1u << PF_VECTOR);
785 
786 	/* When we are running a nested L2 guest and L1 specified for it a
787 	 * certain exception bitmap, we must trap the same exceptions and pass
788 	 * them to L1. When running L2, we will only handle the exceptions
789 	 * specified above if L1 did not want them.
790 	 */
791 	if (is_guest_mode(vcpu))
792 		eb |= get_vmcs12(vcpu)->exception_bitmap;
793 
794 	vmcs_write32(EXCEPTION_BITMAP, eb);
795 }
796 
797 /*
798  * Check if MSR is intercepted for currently loaded MSR bitmap.
799  */
800 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
801 {
802 	unsigned long *msr_bitmap;
803 	int f = sizeof(unsigned long);
804 
805 	if (!cpu_has_vmx_msr_bitmap())
806 		return true;
807 
808 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
809 
810 	if (msr <= 0x1fff) {
811 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
812 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
813 		msr &= 0x1fff;
814 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
815 	}
816 
817 	return true;
818 }
819 
820 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
821 		unsigned long entry, unsigned long exit)
822 {
823 	vm_entry_controls_clearbit(vmx, entry);
824 	vm_exit_controls_clearbit(vmx, exit);
825 }
826 
827 int vmx_find_msr_index(struct vmx_msrs *m, u32 msr)
828 {
829 	unsigned int i;
830 
831 	for (i = 0; i < m->nr; ++i) {
832 		if (m->val[i].index == msr)
833 			return i;
834 	}
835 	return -ENOENT;
836 }
837 
838 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
839 {
840 	int i;
841 	struct msr_autoload *m = &vmx->msr_autoload;
842 
843 	switch (msr) {
844 	case MSR_EFER:
845 		if (cpu_has_load_ia32_efer()) {
846 			clear_atomic_switch_msr_special(vmx,
847 					VM_ENTRY_LOAD_IA32_EFER,
848 					VM_EXIT_LOAD_IA32_EFER);
849 			return;
850 		}
851 		break;
852 	case MSR_CORE_PERF_GLOBAL_CTRL:
853 		if (cpu_has_load_perf_global_ctrl()) {
854 			clear_atomic_switch_msr_special(vmx,
855 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
856 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
857 			return;
858 		}
859 		break;
860 	}
861 	i = vmx_find_msr_index(&m->guest, msr);
862 	if (i < 0)
863 		goto skip_guest;
864 	--m->guest.nr;
865 	m->guest.val[i] = m->guest.val[m->guest.nr];
866 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
867 
868 skip_guest:
869 	i = vmx_find_msr_index(&m->host, msr);
870 	if (i < 0)
871 		return;
872 
873 	--m->host.nr;
874 	m->host.val[i] = m->host.val[m->host.nr];
875 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
876 }
877 
878 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
879 		unsigned long entry, unsigned long exit,
880 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
881 		u64 guest_val, u64 host_val)
882 {
883 	vmcs_write64(guest_val_vmcs, guest_val);
884 	if (host_val_vmcs != HOST_IA32_EFER)
885 		vmcs_write64(host_val_vmcs, host_val);
886 	vm_entry_controls_setbit(vmx, entry);
887 	vm_exit_controls_setbit(vmx, exit);
888 }
889 
890 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
891 				  u64 guest_val, u64 host_val, bool entry_only)
892 {
893 	int i, j = 0;
894 	struct msr_autoload *m = &vmx->msr_autoload;
895 
896 	switch (msr) {
897 	case MSR_EFER:
898 		if (cpu_has_load_ia32_efer()) {
899 			add_atomic_switch_msr_special(vmx,
900 					VM_ENTRY_LOAD_IA32_EFER,
901 					VM_EXIT_LOAD_IA32_EFER,
902 					GUEST_IA32_EFER,
903 					HOST_IA32_EFER,
904 					guest_val, host_val);
905 			return;
906 		}
907 		break;
908 	case MSR_CORE_PERF_GLOBAL_CTRL:
909 		if (cpu_has_load_perf_global_ctrl()) {
910 			add_atomic_switch_msr_special(vmx,
911 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
912 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
913 					GUEST_IA32_PERF_GLOBAL_CTRL,
914 					HOST_IA32_PERF_GLOBAL_CTRL,
915 					guest_val, host_val);
916 			return;
917 		}
918 		break;
919 	case MSR_IA32_PEBS_ENABLE:
920 		/* PEBS needs a quiescent period after being disabled (to write
921 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
922 		 * provide that period, so a CPU could write host's record into
923 		 * guest's memory.
924 		 */
925 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
926 	}
927 
928 	i = vmx_find_msr_index(&m->guest, msr);
929 	if (!entry_only)
930 		j = vmx_find_msr_index(&m->host, msr);
931 
932 	if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) ||
933 		(j < 0 &&  m->host.nr == NR_LOADSTORE_MSRS)) {
934 		printk_once(KERN_WARNING "Not enough msr switch entries. "
935 				"Can't add msr %x\n", msr);
936 		return;
937 	}
938 	if (i < 0) {
939 		i = m->guest.nr++;
940 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
941 	}
942 	m->guest.val[i].index = msr;
943 	m->guest.val[i].value = guest_val;
944 
945 	if (entry_only)
946 		return;
947 
948 	if (j < 0) {
949 		j = m->host.nr++;
950 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
951 	}
952 	m->host.val[j].index = msr;
953 	m->host.val[j].value = host_val;
954 }
955 
956 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
957 {
958 	u64 guest_efer = vmx->vcpu.arch.efer;
959 	u64 ignore_bits = 0;
960 
961 	/* Shadow paging assumes NX to be available.  */
962 	if (!enable_ept)
963 		guest_efer |= EFER_NX;
964 
965 	/*
966 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
967 	 */
968 	ignore_bits |= EFER_SCE;
969 #ifdef CONFIG_X86_64
970 	ignore_bits |= EFER_LMA | EFER_LME;
971 	/* SCE is meaningful only in long mode on Intel */
972 	if (guest_efer & EFER_LMA)
973 		ignore_bits &= ~(u64)EFER_SCE;
974 #endif
975 
976 	/*
977 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
978 	 * On CPUs that support "load IA32_EFER", always switch EFER
979 	 * atomically, since it's faster than switching it manually.
980 	 */
981 	if (cpu_has_load_ia32_efer() ||
982 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
983 		if (!(guest_efer & EFER_LMA))
984 			guest_efer &= ~EFER_LME;
985 		if (guest_efer != host_efer)
986 			add_atomic_switch_msr(vmx, MSR_EFER,
987 					      guest_efer, host_efer, false);
988 		else
989 			clear_atomic_switch_msr(vmx, MSR_EFER);
990 		return false;
991 	} else {
992 		clear_atomic_switch_msr(vmx, MSR_EFER);
993 
994 		guest_efer &= ~ignore_bits;
995 		guest_efer |= host_efer & ignore_bits;
996 
997 		vmx->guest_msrs[efer_offset].data = guest_efer;
998 		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
999 
1000 		return true;
1001 	}
1002 }
1003 
1004 #ifdef CONFIG_X86_32
1005 /*
1006  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1007  * VMCS rather than the segment table.  KVM uses this helper to figure
1008  * out the current bases to poke them into the VMCS before entry.
1009  */
1010 static unsigned long segment_base(u16 selector)
1011 {
1012 	struct desc_struct *table;
1013 	unsigned long v;
1014 
1015 	if (!(selector & ~SEGMENT_RPL_MASK))
1016 		return 0;
1017 
1018 	table = get_current_gdt_ro();
1019 
1020 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1021 		u16 ldt_selector = kvm_read_ldt();
1022 
1023 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1024 			return 0;
1025 
1026 		table = (struct desc_struct *)segment_base(ldt_selector);
1027 	}
1028 	v = get_desc_base(&table[selector >> 3]);
1029 	return v;
1030 }
1031 #endif
1032 
1033 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1034 {
1035 	return vmx_pt_mode_is_host_guest() &&
1036 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1037 }
1038 
1039 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1040 {
1041 	u32 i;
1042 
1043 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1044 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1045 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1046 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1047 	for (i = 0; i < addr_range; i++) {
1048 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1049 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1050 	}
1051 }
1052 
1053 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1054 {
1055 	u32 i;
1056 
1057 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1058 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1059 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1060 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1061 	for (i = 0; i < addr_range; i++) {
1062 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1063 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1064 	}
1065 }
1066 
1067 static void pt_guest_enter(struct vcpu_vmx *vmx)
1068 {
1069 	if (vmx_pt_mode_is_system())
1070 		return;
1071 
1072 	/*
1073 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1074 	 * Save host state before VM entry.
1075 	 */
1076 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1077 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1078 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1079 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1080 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1081 	}
1082 }
1083 
1084 static void pt_guest_exit(struct vcpu_vmx *vmx)
1085 {
1086 	if (vmx_pt_mode_is_system())
1087 		return;
1088 
1089 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1090 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1091 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1092 	}
1093 
1094 	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1095 	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1096 }
1097 
1098 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1099 			unsigned long fs_base, unsigned long gs_base)
1100 {
1101 	if (unlikely(fs_sel != host->fs_sel)) {
1102 		if (!(fs_sel & 7))
1103 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1104 		else
1105 			vmcs_write16(HOST_FS_SELECTOR, 0);
1106 		host->fs_sel = fs_sel;
1107 	}
1108 	if (unlikely(gs_sel != host->gs_sel)) {
1109 		if (!(gs_sel & 7))
1110 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1111 		else
1112 			vmcs_write16(HOST_GS_SELECTOR, 0);
1113 		host->gs_sel = gs_sel;
1114 	}
1115 	if (unlikely(fs_base != host->fs_base)) {
1116 		vmcs_writel(HOST_FS_BASE, fs_base);
1117 		host->fs_base = fs_base;
1118 	}
1119 	if (unlikely(gs_base != host->gs_base)) {
1120 		vmcs_writel(HOST_GS_BASE, gs_base);
1121 		host->gs_base = gs_base;
1122 	}
1123 }
1124 
1125 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1126 {
1127 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1128 	struct vmcs_host_state *host_state;
1129 #ifdef CONFIG_X86_64
1130 	int cpu = raw_smp_processor_id();
1131 #endif
1132 	unsigned long fs_base, gs_base;
1133 	u16 fs_sel, gs_sel;
1134 	int i;
1135 
1136 	vmx->req_immediate_exit = false;
1137 
1138 	/*
1139 	 * Note that guest MSRs to be saved/restored can also be changed
1140 	 * when guest state is loaded. This happens when guest transitions
1141 	 * to/from long-mode by setting MSR_EFER.LMA.
1142 	 */
1143 	if (!vmx->guest_msrs_ready) {
1144 		vmx->guest_msrs_ready = true;
1145 		for (i = 0; i < vmx->save_nmsrs; ++i)
1146 			kvm_set_shared_msr(vmx->guest_msrs[i].index,
1147 					   vmx->guest_msrs[i].data,
1148 					   vmx->guest_msrs[i].mask);
1149 
1150 	}
1151 
1152     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1153 		nested_sync_vmcs12_to_shadow(vcpu);
1154 
1155 	if (vmx->guest_state_loaded)
1156 		return;
1157 
1158 	host_state = &vmx->loaded_vmcs->host_state;
1159 
1160 	/*
1161 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1162 	 * allow segment selectors with cpl > 0 or ti == 1.
1163 	 */
1164 	host_state->ldt_sel = kvm_read_ldt();
1165 
1166 #ifdef CONFIG_X86_64
1167 	savesegment(ds, host_state->ds_sel);
1168 	savesegment(es, host_state->es_sel);
1169 
1170 	gs_base = cpu_kernelmode_gs_base(cpu);
1171 	if (likely(is_64bit_mm(current->mm))) {
1172 		save_fsgs_for_kvm();
1173 		fs_sel = current->thread.fsindex;
1174 		gs_sel = current->thread.gsindex;
1175 		fs_base = current->thread.fsbase;
1176 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1177 	} else {
1178 		savesegment(fs, fs_sel);
1179 		savesegment(gs, gs_sel);
1180 		fs_base = read_msr(MSR_FS_BASE);
1181 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1182 	}
1183 
1184 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1185 #else
1186 	savesegment(fs, fs_sel);
1187 	savesegment(gs, gs_sel);
1188 	fs_base = segment_base(fs_sel);
1189 	gs_base = segment_base(gs_sel);
1190 #endif
1191 
1192 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1193 	vmx->guest_state_loaded = true;
1194 }
1195 
1196 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1197 {
1198 	struct vmcs_host_state *host_state;
1199 
1200 	if (!vmx->guest_state_loaded)
1201 		return;
1202 
1203 	host_state = &vmx->loaded_vmcs->host_state;
1204 
1205 	++vmx->vcpu.stat.host_state_reload;
1206 
1207 #ifdef CONFIG_X86_64
1208 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1209 #endif
1210 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1211 		kvm_load_ldt(host_state->ldt_sel);
1212 #ifdef CONFIG_X86_64
1213 		load_gs_index(host_state->gs_sel);
1214 #else
1215 		loadsegment(gs, host_state->gs_sel);
1216 #endif
1217 	}
1218 	if (host_state->fs_sel & 7)
1219 		loadsegment(fs, host_state->fs_sel);
1220 #ifdef CONFIG_X86_64
1221 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1222 		loadsegment(ds, host_state->ds_sel);
1223 		loadsegment(es, host_state->es_sel);
1224 	}
1225 #endif
1226 	invalidate_tss_limit();
1227 #ifdef CONFIG_X86_64
1228 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1229 #endif
1230 	load_fixmap_gdt(raw_smp_processor_id());
1231 	vmx->guest_state_loaded = false;
1232 	vmx->guest_msrs_ready = false;
1233 }
1234 
1235 #ifdef CONFIG_X86_64
1236 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1237 {
1238 	preempt_disable();
1239 	if (vmx->guest_state_loaded)
1240 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1241 	preempt_enable();
1242 	return vmx->msr_guest_kernel_gs_base;
1243 }
1244 
1245 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1246 {
1247 	preempt_disable();
1248 	if (vmx->guest_state_loaded)
1249 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1250 	preempt_enable();
1251 	vmx->msr_guest_kernel_gs_base = data;
1252 }
1253 #endif
1254 
1255 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1256 {
1257 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1258 	struct pi_desc old, new;
1259 	unsigned int dest;
1260 
1261 	/*
1262 	 * In case of hot-plug or hot-unplug, we may have to undo
1263 	 * vmx_vcpu_pi_put even if there is no assigned device.  And we
1264 	 * always keep PI.NDST up to date for simplicity: it makes the
1265 	 * code easier, and CPU migration is not a fast path.
1266 	 */
1267 	if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1268 		return;
1269 
1270 	/*
1271 	 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1272 	 * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1273 	 * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1274 	 * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1275 	 * correctly.
1276 	 */
1277 	if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1278 		pi_clear_sn(pi_desc);
1279 		goto after_clear_sn;
1280 	}
1281 
1282 	/* The full case.  */
1283 	do {
1284 		old.control = new.control = pi_desc->control;
1285 
1286 		dest = cpu_physical_id(cpu);
1287 
1288 		if (x2apic_enabled())
1289 			new.ndst = dest;
1290 		else
1291 			new.ndst = (dest << 8) & 0xFF00;
1292 
1293 		new.sn = 0;
1294 	} while (cmpxchg64(&pi_desc->control, old.control,
1295 			   new.control) != old.control);
1296 
1297 after_clear_sn:
1298 
1299 	/*
1300 	 * Clear SN before reading the bitmap.  The VT-d firmware
1301 	 * writes the bitmap and reads SN atomically (5.2.3 in the
1302 	 * spec), so it doesn't really have a memory barrier that
1303 	 * pairs with this, but we cannot do that and we need one.
1304 	 */
1305 	smp_mb__after_atomic();
1306 
1307 	if (!pi_is_pir_empty(pi_desc))
1308 		pi_set_on(pi_desc);
1309 }
1310 
1311 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1312 			struct loaded_vmcs *buddy)
1313 {
1314 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1315 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1316 	struct vmcs *prev;
1317 
1318 	if (!already_loaded) {
1319 		loaded_vmcs_clear(vmx->loaded_vmcs);
1320 		local_irq_disable();
1321 
1322 		/*
1323 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1324 		 * this cpu's percpu list, otherwise it may not yet be deleted
1325 		 * from its previous cpu's percpu list.  Pairs with the
1326 		 * smb_wmb() in __loaded_vmcs_clear().
1327 		 */
1328 		smp_rmb();
1329 
1330 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1331 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1332 		local_irq_enable();
1333 	}
1334 
1335 	prev = per_cpu(current_vmcs, cpu);
1336 	if (prev != vmx->loaded_vmcs->vmcs) {
1337 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1338 		vmcs_load(vmx->loaded_vmcs->vmcs);
1339 
1340 		/*
1341 		 * No indirect branch prediction barrier needed when switching
1342 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1343 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1344 		 */
1345 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1346 			indirect_branch_prediction_barrier();
1347 	}
1348 
1349 	if (!already_loaded) {
1350 		void *gdt = get_current_gdt_ro();
1351 		unsigned long sysenter_esp;
1352 
1353 		/*
1354 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1355 		 * TLB entries from its previous association with the vCPU.
1356 		 */
1357 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1358 
1359 		/*
1360 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1361 		 * processors.  See 22.2.4.
1362 		 */
1363 		vmcs_writel(HOST_TR_BASE,
1364 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1365 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1366 
1367 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1368 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1369 
1370 		vmx->loaded_vmcs->cpu = cpu;
1371 	}
1372 
1373 	/* Setup TSC multiplier */
1374 	if (kvm_has_tsc_control &&
1375 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1376 		decache_tsc_multiplier(vmx);
1377 }
1378 
1379 /*
1380  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1381  * vcpu mutex is already taken.
1382  */
1383 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1384 {
1385 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1386 
1387 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1388 
1389 	vmx_vcpu_pi_load(vcpu, cpu);
1390 
1391 	vmx->host_debugctlmsr = get_debugctlmsr();
1392 }
1393 
1394 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1395 {
1396 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1397 
1398 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1399 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
1400 		!kvm_vcpu_apicv_active(vcpu))
1401 		return;
1402 
1403 	/* Set SN when the vCPU is preempted */
1404 	if (vcpu->preempted)
1405 		pi_set_sn(pi_desc);
1406 }
1407 
1408 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1409 {
1410 	vmx_vcpu_pi_put(vcpu);
1411 
1412 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1413 }
1414 
1415 static bool emulation_required(struct kvm_vcpu *vcpu)
1416 {
1417 	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1418 }
1419 
1420 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1421 {
1422 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1423 	unsigned long rflags, save_rflags;
1424 
1425 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1426 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1427 		rflags = vmcs_readl(GUEST_RFLAGS);
1428 		if (vmx->rmode.vm86_active) {
1429 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1430 			save_rflags = vmx->rmode.save_rflags;
1431 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1432 		}
1433 		vmx->rflags = rflags;
1434 	}
1435 	return vmx->rflags;
1436 }
1437 
1438 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1439 {
1440 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1441 	unsigned long old_rflags;
1442 
1443 	if (enable_unrestricted_guest) {
1444 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1445 		vmx->rflags = rflags;
1446 		vmcs_writel(GUEST_RFLAGS, rflags);
1447 		return;
1448 	}
1449 
1450 	old_rflags = vmx_get_rflags(vcpu);
1451 	vmx->rflags = rflags;
1452 	if (vmx->rmode.vm86_active) {
1453 		vmx->rmode.save_rflags = rflags;
1454 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1455 	}
1456 	vmcs_writel(GUEST_RFLAGS, rflags);
1457 
1458 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1459 		vmx->emulation_required = emulation_required(vcpu);
1460 }
1461 
1462 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1463 {
1464 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1465 	int ret = 0;
1466 
1467 	if (interruptibility & GUEST_INTR_STATE_STI)
1468 		ret |= KVM_X86_SHADOW_INT_STI;
1469 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1470 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1471 
1472 	return ret;
1473 }
1474 
1475 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1476 {
1477 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1478 	u32 interruptibility = interruptibility_old;
1479 
1480 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1481 
1482 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1483 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1484 	else if (mask & KVM_X86_SHADOW_INT_STI)
1485 		interruptibility |= GUEST_INTR_STATE_STI;
1486 
1487 	if ((interruptibility != interruptibility_old))
1488 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1489 }
1490 
1491 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1492 {
1493 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1494 	unsigned long value;
1495 
1496 	/*
1497 	 * Any MSR write that attempts to change bits marked reserved will
1498 	 * case a #GP fault.
1499 	 */
1500 	if (data & vmx->pt_desc.ctl_bitmask)
1501 		return 1;
1502 
1503 	/*
1504 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1505 	 * result in a #GP unless the same write also clears TraceEn.
1506 	 */
1507 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1508 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1509 		return 1;
1510 
1511 	/*
1512 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1513 	 * and FabricEn would cause #GP, if
1514 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1515 	 */
1516 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1517 		!(data & RTIT_CTL_FABRIC_EN) &&
1518 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1519 					PT_CAP_single_range_output))
1520 		return 1;
1521 
1522 	/*
1523 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1524 	 * utilize encodings marked reserved will casue a #GP fault.
1525 	 */
1526 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1527 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1528 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1529 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1530 		return 1;
1531 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1532 						PT_CAP_cycle_thresholds);
1533 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1534 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1535 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1536 		return 1;
1537 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1538 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1539 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1540 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1541 		return 1;
1542 
1543 	/*
1544 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1545 	 * cause a #GP fault.
1546 	 */
1547 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1548 	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1549 		return 1;
1550 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1551 	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1552 		return 1;
1553 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1554 	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1555 		return 1;
1556 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1557 	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1558 		return 1;
1559 
1560 	return 0;
1561 }
1562 
1563 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1564 {
1565 	unsigned long rip, orig_rip;
1566 
1567 	/*
1568 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1569 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1570 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1571 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1572 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1573 	 * i.e. we end up advancing IP with some random value.
1574 	 */
1575 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1576 	    to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1577 		orig_rip = kvm_rip_read(vcpu);
1578 		rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1579 #ifdef CONFIG_X86_64
1580 		/*
1581 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1582 		 * mode, but just finding out that we are in 64-bit mode is
1583 		 * quite expensive.  Only do it if there was a carry.
1584 		 */
1585 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1586 			rip = (u32)rip;
1587 #endif
1588 		kvm_rip_write(vcpu, rip);
1589 	} else {
1590 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1591 			return 0;
1592 	}
1593 
1594 	/* skipping an emulated instruction also counts */
1595 	vmx_set_interrupt_shadow(vcpu, 0);
1596 
1597 	return 1;
1598 }
1599 
1600 /*
1601  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
1602  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
1603  * indicates whether exit to userspace is needed.
1604  */
1605 int vmx_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
1606 			      struct x86_exception *e)
1607 {
1608 	if (r == X86EMUL_PROPAGATE_FAULT) {
1609 		kvm_inject_emulated_page_fault(vcpu, e);
1610 		return 1;
1611 	}
1612 
1613 	/*
1614 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
1615 	 * while handling a VMX instruction KVM could've handled the request
1616 	 * correctly by exiting to userspace and performing I/O but there
1617 	 * doesn't seem to be a real use-case behind such requests, just return
1618 	 * KVM_EXIT_INTERNAL_ERROR for now.
1619 	 */
1620 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1621 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1622 	vcpu->run->internal.ndata = 0;
1623 
1624 	return 0;
1625 }
1626 
1627 /*
1628  * Recognizes a pending MTF VM-exit and records the nested state for later
1629  * delivery.
1630  */
1631 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1632 {
1633 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1634 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1635 
1636 	if (!is_guest_mode(vcpu))
1637 		return;
1638 
1639 	/*
1640 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1641 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1642 	 * instruction boundary), any #DB exception pending delivery must be a
1643 	 * debug-trap. Record the pending MTF state to be delivered in
1644 	 * vmx_check_nested_events().
1645 	 */
1646 	if (nested_cpu_has_mtf(vmcs12) &&
1647 	    (!vcpu->arch.exception.pending ||
1648 	     vcpu->arch.exception.nr == DB_VECTOR))
1649 		vmx->nested.mtf_pending = true;
1650 	else
1651 		vmx->nested.mtf_pending = false;
1652 }
1653 
1654 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1655 {
1656 	vmx_update_emulated_instruction(vcpu);
1657 	return skip_emulated_instruction(vcpu);
1658 }
1659 
1660 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1661 {
1662 	/*
1663 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1664 	 * explicitly skip the instruction because if the HLT state is set,
1665 	 * then the instruction is already executing and RIP has already been
1666 	 * advanced.
1667 	 */
1668 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1669 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1670 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1671 }
1672 
1673 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1674 {
1675 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1676 	unsigned nr = vcpu->arch.exception.nr;
1677 	bool has_error_code = vcpu->arch.exception.has_error_code;
1678 	u32 error_code = vcpu->arch.exception.error_code;
1679 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1680 
1681 	kvm_deliver_exception_payload(vcpu);
1682 
1683 	if (has_error_code) {
1684 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1685 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1686 	}
1687 
1688 	if (vmx->rmode.vm86_active) {
1689 		int inc_eip = 0;
1690 		if (kvm_exception_is_soft(nr))
1691 			inc_eip = vcpu->arch.event_exit_inst_len;
1692 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1693 		return;
1694 	}
1695 
1696 	WARN_ON_ONCE(vmx->emulation_required);
1697 
1698 	if (kvm_exception_is_soft(nr)) {
1699 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1700 			     vmx->vcpu.arch.event_exit_inst_len);
1701 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1702 	} else
1703 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1704 
1705 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1706 
1707 	vmx_clear_hlt(vcpu);
1708 }
1709 
1710 /*
1711  * Swap MSR entry in host/guest MSR entry array.
1712  */
1713 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1714 {
1715 	struct shared_msr_entry tmp;
1716 
1717 	tmp = vmx->guest_msrs[to];
1718 	vmx->guest_msrs[to] = vmx->guest_msrs[from];
1719 	vmx->guest_msrs[from] = tmp;
1720 }
1721 
1722 /*
1723  * Set up the vmcs to automatically save and restore system
1724  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1725  * mode, as fiddling with msrs is very expensive.
1726  */
1727 static void setup_msrs(struct vcpu_vmx *vmx)
1728 {
1729 	int save_nmsrs, index;
1730 
1731 	save_nmsrs = 0;
1732 #ifdef CONFIG_X86_64
1733 	/*
1734 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1735 	 * when EFER.SCE is set.
1736 	 */
1737 	if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1738 		index = __find_msr_index(vmx, MSR_STAR);
1739 		if (index >= 0)
1740 			move_msr_up(vmx, index, save_nmsrs++);
1741 		index = __find_msr_index(vmx, MSR_LSTAR);
1742 		if (index >= 0)
1743 			move_msr_up(vmx, index, save_nmsrs++);
1744 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1745 		if (index >= 0)
1746 			move_msr_up(vmx, index, save_nmsrs++);
1747 	}
1748 #endif
1749 	index = __find_msr_index(vmx, MSR_EFER);
1750 	if (index >= 0 && update_transition_efer(vmx, index))
1751 		move_msr_up(vmx, index, save_nmsrs++);
1752 	index = __find_msr_index(vmx, MSR_TSC_AUX);
1753 	if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1754 		move_msr_up(vmx, index, save_nmsrs++);
1755 	index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL);
1756 	if (index >= 0)
1757 		move_msr_up(vmx, index, save_nmsrs++);
1758 
1759 	vmx->save_nmsrs = save_nmsrs;
1760 	vmx->guest_msrs_ready = false;
1761 
1762 	if (cpu_has_vmx_msr_bitmap())
1763 		vmx_update_msr_bitmap(&vmx->vcpu);
1764 }
1765 
1766 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1767 {
1768 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1769 	u64 g_tsc_offset = 0;
1770 
1771 	/*
1772 	 * We're here if L1 chose not to trap WRMSR to TSC. According
1773 	 * to the spec, this should set L1's TSC; The offset that L1
1774 	 * set for L2 remains unchanged, and still needs to be added
1775 	 * to the newly set TSC to get L2's TSC.
1776 	 */
1777 	if (is_guest_mode(vcpu) &&
1778 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1779 		g_tsc_offset = vmcs12->tsc_offset;
1780 
1781 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1782 				   vcpu->arch.tsc_offset - g_tsc_offset,
1783 				   offset);
1784 	vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1785 	return offset + g_tsc_offset;
1786 }
1787 
1788 /*
1789  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1790  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1791  * all guests if the "nested" module option is off, and can also be disabled
1792  * for a single guest by disabling its VMX cpuid bit.
1793  */
1794 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1795 {
1796 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1797 }
1798 
1799 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1800 						 uint64_t val)
1801 {
1802 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1803 
1804 	return !(val & ~valid_bits);
1805 }
1806 
1807 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1808 {
1809 	switch (msr->index) {
1810 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1811 		if (!nested)
1812 			return 1;
1813 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1814 	case MSR_IA32_PERF_CAPABILITIES:
1815 		msr->data = vmx_get_perf_capabilities();
1816 		return 0;
1817 	default:
1818 		return 1;
1819 	}
1820 }
1821 
1822 /*
1823  * Reads an msr value (of 'msr_index') into 'pdata'.
1824  * Returns 0 on success, non-0 otherwise.
1825  * Assumes vcpu_load() was already called.
1826  */
1827 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1828 {
1829 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1830 	struct shared_msr_entry *msr;
1831 	u32 index;
1832 
1833 	switch (msr_info->index) {
1834 #ifdef CONFIG_X86_64
1835 	case MSR_FS_BASE:
1836 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1837 		break;
1838 	case MSR_GS_BASE:
1839 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1840 		break;
1841 	case MSR_KERNEL_GS_BASE:
1842 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1843 		break;
1844 #endif
1845 	case MSR_EFER:
1846 		return kvm_get_msr_common(vcpu, msr_info);
1847 	case MSR_IA32_TSX_CTRL:
1848 		if (!msr_info->host_initiated &&
1849 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1850 			return 1;
1851 		goto find_shared_msr;
1852 	case MSR_IA32_UMWAIT_CONTROL:
1853 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1854 			return 1;
1855 
1856 		msr_info->data = vmx->msr_ia32_umwait_control;
1857 		break;
1858 	case MSR_IA32_SPEC_CTRL:
1859 		if (!msr_info->host_initiated &&
1860 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1861 			return 1;
1862 
1863 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1864 		break;
1865 	case MSR_IA32_SYSENTER_CS:
1866 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1867 		break;
1868 	case MSR_IA32_SYSENTER_EIP:
1869 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1870 		break;
1871 	case MSR_IA32_SYSENTER_ESP:
1872 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1873 		break;
1874 	case MSR_IA32_BNDCFGS:
1875 		if (!kvm_mpx_supported() ||
1876 		    (!msr_info->host_initiated &&
1877 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1878 			return 1;
1879 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1880 		break;
1881 	case MSR_IA32_MCG_EXT_CTL:
1882 		if (!msr_info->host_initiated &&
1883 		    !(vmx->msr_ia32_feature_control &
1884 		      FEAT_CTL_LMCE_ENABLED))
1885 			return 1;
1886 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1887 		break;
1888 	case MSR_IA32_FEAT_CTL:
1889 		msr_info->data = vmx->msr_ia32_feature_control;
1890 		break;
1891 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1892 		if (!nested_vmx_allowed(vcpu))
1893 			return 1;
1894 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1895 				    &msr_info->data))
1896 			return 1;
1897 		/*
1898 		 * Enlightened VMCS v1 doesn't have certain fields, but buggy
1899 		 * Hyper-V versions are still trying to use corresponding
1900 		 * features when they are exposed. Filter out the essential
1901 		 * minimum.
1902 		 */
1903 		if (!msr_info->host_initiated &&
1904 		    vmx->nested.enlightened_vmcs_enabled)
1905 			nested_evmcs_filter_control_msr(msr_info->index,
1906 							&msr_info->data);
1907 		break;
1908 	case MSR_IA32_RTIT_CTL:
1909 		if (!vmx_pt_mode_is_host_guest())
1910 			return 1;
1911 		msr_info->data = vmx->pt_desc.guest.ctl;
1912 		break;
1913 	case MSR_IA32_RTIT_STATUS:
1914 		if (!vmx_pt_mode_is_host_guest())
1915 			return 1;
1916 		msr_info->data = vmx->pt_desc.guest.status;
1917 		break;
1918 	case MSR_IA32_RTIT_CR3_MATCH:
1919 		if (!vmx_pt_mode_is_host_guest() ||
1920 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1921 						PT_CAP_cr3_filtering))
1922 			return 1;
1923 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1924 		break;
1925 	case MSR_IA32_RTIT_OUTPUT_BASE:
1926 		if (!vmx_pt_mode_is_host_guest() ||
1927 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1928 					PT_CAP_topa_output) &&
1929 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1930 					PT_CAP_single_range_output)))
1931 			return 1;
1932 		msr_info->data = vmx->pt_desc.guest.output_base;
1933 		break;
1934 	case MSR_IA32_RTIT_OUTPUT_MASK:
1935 		if (!vmx_pt_mode_is_host_guest() ||
1936 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1937 					PT_CAP_topa_output) &&
1938 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1939 					PT_CAP_single_range_output)))
1940 			return 1;
1941 		msr_info->data = vmx->pt_desc.guest.output_mask;
1942 		break;
1943 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1944 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1945 		if (!vmx_pt_mode_is_host_guest() ||
1946 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1947 					PT_CAP_num_address_ranges)))
1948 			return 1;
1949 		if (index % 2)
1950 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1951 		else
1952 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1953 		break;
1954 	case MSR_TSC_AUX:
1955 		if (!msr_info->host_initiated &&
1956 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1957 			return 1;
1958 		goto find_shared_msr;
1959 	default:
1960 	find_shared_msr:
1961 		msr = find_msr_entry(vmx, msr_info->index);
1962 		if (msr) {
1963 			msr_info->data = msr->data;
1964 			break;
1965 		}
1966 		return kvm_get_msr_common(vcpu, msr_info);
1967 	}
1968 
1969 	return 0;
1970 }
1971 
1972 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1973 						    u64 data)
1974 {
1975 #ifdef CONFIG_X86_64
1976 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1977 		return (u32)data;
1978 #endif
1979 	return (unsigned long)data;
1980 }
1981 
1982 /*
1983  * Writes msr value into the appropriate "register".
1984  * Returns 0 on success, non-0 otherwise.
1985  * Assumes vcpu_load() was already called.
1986  */
1987 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1988 {
1989 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1990 	struct shared_msr_entry *msr;
1991 	int ret = 0;
1992 	u32 msr_index = msr_info->index;
1993 	u64 data = msr_info->data;
1994 	u32 index;
1995 
1996 	switch (msr_index) {
1997 	case MSR_EFER:
1998 		ret = kvm_set_msr_common(vcpu, msr_info);
1999 		break;
2000 #ifdef CONFIG_X86_64
2001 	case MSR_FS_BASE:
2002 		vmx_segment_cache_clear(vmx);
2003 		vmcs_writel(GUEST_FS_BASE, data);
2004 		break;
2005 	case MSR_GS_BASE:
2006 		vmx_segment_cache_clear(vmx);
2007 		vmcs_writel(GUEST_GS_BASE, data);
2008 		break;
2009 	case MSR_KERNEL_GS_BASE:
2010 		vmx_write_guest_kernel_gs_base(vmx, data);
2011 		break;
2012 #endif
2013 	case MSR_IA32_SYSENTER_CS:
2014 		if (is_guest_mode(vcpu))
2015 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2016 		vmcs_write32(GUEST_SYSENTER_CS, data);
2017 		break;
2018 	case MSR_IA32_SYSENTER_EIP:
2019 		if (is_guest_mode(vcpu)) {
2020 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2021 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2022 		}
2023 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2024 		break;
2025 	case MSR_IA32_SYSENTER_ESP:
2026 		if (is_guest_mode(vcpu)) {
2027 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2028 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2029 		}
2030 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2031 		break;
2032 	case MSR_IA32_DEBUGCTLMSR:
2033 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2034 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2035 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2036 
2037 		ret = kvm_set_msr_common(vcpu, msr_info);
2038 		break;
2039 
2040 	case MSR_IA32_BNDCFGS:
2041 		if (!kvm_mpx_supported() ||
2042 		    (!msr_info->host_initiated &&
2043 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2044 			return 1;
2045 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2046 		    (data & MSR_IA32_BNDCFGS_RSVD))
2047 			return 1;
2048 		vmcs_write64(GUEST_BNDCFGS, data);
2049 		break;
2050 	case MSR_IA32_UMWAIT_CONTROL:
2051 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2052 			return 1;
2053 
2054 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2055 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2056 			return 1;
2057 
2058 		vmx->msr_ia32_umwait_control = data;
2059 		break;
2060 	case MSR_IA32_SPEC_CTRL:
2061 		if (!msr_info->host_initiated &&
2062 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2063 			return 1;
2064 
2065 		if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
2066 			return 1;
2067 
2068 		vmx->spec_ctrl = data;
2069 		if (!data)
2070 			break;
2071 
2072 		/*
2073 		 * For non-nested:
2074 		 * When it's written (to non-zero) for the first time, pass
2075 		 * it through.
2076 		 *
2077 		 * For nested:
2078 		 * The handling of the MSR bitmap for L2 guests is done in
2079 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2080 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2081 		 * in the merging. We update the vmcs01 here for L1 as well
2082 		 * since it will end up touching the MSR anyway now.
2083 		 */
2084 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2085 					      MSR_IA32_SPEC_CTRL,
2086 					      MSR_TYPE_RW);
2087 		break;
2088 	case MSR_IA32_TSX_CTRL:
2089 		if (!msr_info->host_initiated &&
2090 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2091 			return 1;
2092 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2093 			return 1;
2094 		goto find_shared_msr;
2095 	case MSR_IA32_PRED_CMD:
2096 		if (!msr_info->host_initiated &&
2097 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2098 			return 1;
2099 
2100 		if (data & ~PRED_CMD_IBPB)
2101 			return 1;
2102 		if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL))
2103 			return 1;
2104 		if (!data)
2105 			break;
2106 
2107 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2108 
2109 		/*
2110 		 * For non-nested:
2111 		 * When it's written (to non-zero) for the first time, pass
2112 		 * it through.
2113 		 *
2114 		 * For nested:
2115 		 * The handling of the MSR bitmap for L2 guests is done in
2116 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2117 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2118 		 * in the merging.
2119 		 */
2120 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2121 					      MSR_TYPE_W);
2122 		break;
2123 	case MSR_IA32_CR_PAT:
2124 		if (!kvm_pat_valid(data))
2125 			return 1;
2126 
2127 		if (is_guest_mode(vcpu) &&
2128 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2129 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2130 
2131 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2132 			vmcs_write64(GUEST_IA32_PAT, data);
2133 			vcpu->arch.pat = data;
2134 			break;
2135 		}
2136 		ret = kvm_set_msr_common(vcpu, msr_info);
2137 		break;
2138 	case MSR_IA32_TSC_ADJUST:
2139 		ret = kvm_set_msr_common(vcpu, msr_info);
2140 		break;
2141 	case MSR_IA32_MCG_EXT_CTL:
2142 		if ((!msr_info->host_initiated &&
2143 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2144 		       FEAT_CTL_LMCE_ENABLED)) ||
2145 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2146 			return 1;
2147 		vcpu->arch.mcg_ext_ctl = data;
2148 		break;
2149 	case MSR_IA32_FEAT_CTL:
2150 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2151 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2152 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2153 			return 1;
2154 		vmx->msr_ia32_feature_control = data;
2155 		if (msr_info->host_initiated && data == 0)
2156 			vmx_leave_nested(vcpu);
2157 		break;
2158 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2159 		if (!msr_info->host_initiated)
2160 			return 1; /* they are read-only */
2161 		if (!nested_vmx_allowed(vcpu))
2162 			return 1;
2163 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2164 	case MSR_IA32_RTIT_CTL:
2165 		if (!vmx_pt_mode_is_host_guest() ||
2166 			vmx_rtit_ctl_check(vcpu, data) ||
2167 			vmx->nested.vmxon)
2168 			return 1;
2169 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2170 		vmx->pt_desc.guest.ctl = data;
2171 		pt_update_intercept_for_msr(vmx);
2172 		break;
2173 	case MSR_IA32_RTIT_STATUS:
2174 		if (!pt_can_write_msr(vmx))
2175 			return 1;
2176 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2177 			return 1;
2178 		vmx->pt_desc.guest.status = data;
2179 		break;
2180 	case MSR_IA32_RTIT_CR3_MATCH:
2181 		if (!pt_can_write_msr(vmx))
2182 			return 1;
2183 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2184 					   PT_CAP_cr3_filtering))
2185 			return 1;
2186 		vmx->pt_desc.guest.cr3_match = data;
2187 		break;
2188 	case MSR_IA32_RTIT_OUTPUT_BASE:
2189 		if (!pt_can_write_msr(vmx))
2190 			return 1;
2191 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2192 					   PT_CAP_topa_output) &&
2193 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2194 					   PT_CAP_single_range_output))
2195 			return 1;
2196 		if (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)
2197 			return 1;
2198 		vmx->pt_desc.guest.output_base = data;
2199 		break;
2200 	case MSR_IA32_RTIT_OUTPUT_MASK:
2201 		if (!pt_can_write_msr(vmx))
2202 			return 1;
2203 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2204 					   PT_CAP_topa_output) &&
2205 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2206 					   PT_CAP_single_range_output))
2207 			return 1;
2208 		vmx->pt_desc.guest.output_mask = data;
2209 		break;
2210 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2211 		if (!pt_can_write_msr(vmx))
2212 			return 1;
2213 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2214 		if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2215 						       PT_CAP_num_address_ranges))
2216 			return 1;
2217 		if (is_noncanonical_address(data, vcpu))
2218 			return 1;
2219 		if (index % 2)
2220 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2221 		else
2222 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2223 		break;
2224 	case MSR_TSC_AUX:
2225 		if (!msr_info->host_initiated &&
2226 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2227 			return 1;
2228 		/* Check reserved bit, higher 32 bits should be zero */
2229 		if ((data >> 32) != 0)
2230 			return 1;
2231 		goto find_shared_msr;
2232 
2233 	default:
2234 	find_shared_msr:
2235 		msr = find_msr_entry(vmx, msr_index);
2236 		if (msr)
2237 			ret = vmx_set_guest_msr(vmx, msr, data);
2238 		else
2239 			ret = kvm_set_msr_common(vcpu, msr_info);
2240 	}
2241 
2242 	return ret;
2243 }
2244 
2245 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2246 {
2247 	unsigned long guest_owned_bits;
2248 
2249 	kvm_register_mark_available(vcpu, reg);
2250 
2251 	switch (reg) {
2252 	case VCPU_REGS_RSP:
2253 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2254 		break;
2255 	case VCPU_REGS_RIP:
2256 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2257 		break;
2258 	case VCPU_EXREG_PDPTR:
2259 		if (enable_ept)
2260 			ept_save_pdptrs(vcpu);
2261 		break;
2262 	case VCPU_EXREG_CR0:
2263 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2264 
2265 		vcpu->arch.cr0 &= ~guest_owned_bits;
2266 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2267 		break;
2268 	case VCPU_EXREG_CR3:
2269 		if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2270 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2271 		break;
2272 	case VCPU_EXREG_CR4:
2273 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2274 
2275 		vcpu->arch.cr4 &= ~guest_owned_bits;
2276 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2277 		break;
2278 	default:
2279 		WARN_ON_ONCE(1);
2280 		break;
2281 	}
2282 }
2283 
2284 static __init int cpu_has_kvm_support(void)
2285 {
2286 	return cpu_has_vmx();
2287 }
2288 
2289 static __init int vmx_disabled_by_bios(void)
2290 {
2291 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2292 	       !boot_cpu_has(X86_FEATURE_VMX);
2293 }
2294 
2295 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2296 {
2297 	u64 msr;
2298 
2299 	cr4_set_bits(X86_CR4_VMXE);
2300 	intel_pt_handle_vmx(1);
2301 
2302 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2303 			  _ASM_EXTABLE(1b, %l[fault])
2304 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2305 			  : : fault);
2306 	return 0;
2307 
2308 fault:
2309 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2310 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2311 	intel_pt_handle_vmx(0);
2312 	cr4_clear_bits(X86_CR4_VMXE);
2313 
2314 	return -EFAULT;
2315 }
2316 
2317 static int hardware_enable(void)
2318 {
2319 	int cpu = raw_smp_processor_id();
2320 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2321 	int r;
2322 
2323 	if (cr4_read_shadow() & X86_CR4_VMXE)
2324 		return -EBUSY;
2325 
2326 	/*
2327 	 * This can happen if we hot-added a CPU but failed to allocate
2328 	 * VP assist page for it.
2329 	 */
2330 	if (static_branch_unlikely(&enable_evmcs) &&
2331 	    !hv_get_vp_assist_page(cpu))
2332 		return -EFAULT;
2333 
2334 	r = kvm_cpu_vmxon(phys_addr);
2335 	if (r)
2336 		return r;
2337 
2338 	if (enable_ept)
2339 		ept_sync_global();
2340 
2341 	return 0;
2342 }
2343 
2344 static void vmclear_local_loaded_vmcss(void)
2345 {
2346 	int cpu = raw_smp_processor_id();
2347 	struct loaded_vmcs *v, *n;
2348 
2349 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2350 				 loaded_vmcss_on_cpu_link)
2351 		__loaded_vmcs_clear(v);
2352 }
2353 
2354 
2355 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2356  * tricks.
2357  */
2358 static void kvm_cpu_vmxoff(void)
2359 {
2360 	asm volatile (__ex("vmxoff"));
2361 
2362 	intel_pt_handle_vmx(0);
2363 	cr4_clear_bits(X86_CR4_VMXE);
2364 }
2365 
2366 static void hardware_disable(void)
2367 {
2368 	vmclear_local_loaded_vmcss();
2369 	kvm_cpu_vmxoff();
2370 }
2371 
2372 /*
2373  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2374  * directly instead of going through cpu_has(), to ensure KVM is trapping
2375  * ENCLS whenever it's supported in hardware.  It does not matter whether
2376  * the host OS supports or has enabled SGX.
2377  */
2378 static bool cpu_has_sgx(void)
2379 {
2380 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2381 }
2382 
2383 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2384 				      u32 msr, u32 *result)
2385 {
2386 	u32 vmx_msr_low, vmx_msr_high;
2387 	u32 ctl = ctl_min | ctl_opt;
2388 
2389 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2390 
2391 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2392 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2393 
2394 	/* Ensure minimum (required) set of control bits are supported. */
2395 	if (ctl_min & ~ctl)
2396 		return -EIO;
2397 
2398 	*result = ctl;
2399 	return 0;
2400 }
2401 
2402 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2403 				    struct vmx_capability *vmx_cap)
2404 {
2405 	u32 vmx_msr_low, vmx_msr_high;
2406 	u32 min, opt, min2, opt2;
2407 	u32 _pin_based_exec_control = 0;
2408 	u32 _cpu_based_exec_control = 0;
2409 	u32 _cpu_based_2nd_exec_control = 0;
2410 	u32 _vmexit_control = 0;
2411 	u32 _vmentry_control = 0;
2412 
2413 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2414 	min = CPU_BASED_HLT_EXITING |
2415 #ifdef CONFIG_X86_64
2416 	      CPU_BASED_CR8_LOAD_EXITING |
2417 	      CPU_BASED_CR8_STORE_EXITING |
2418 #endif
2419 	      CPU_BASED_CR3_LOAD_EXITING |
2420 	      CPU_BASED_CR3_STORE_EXITING |
2421 	      CPU_BASED_UNCOND_IO_EXITING |
2422 	      CPU_BASED_MOV_DR_EXITING |
2423 	      CPU_BASED_USE_TSC_OFFSETTING |
2424 	      CPU_BASED_MWAIT_EXITING |
2425 	      CPU_BASED_MONITOR_EXITING |
2426 	      CPU_BASED_INVLPG_EXITING |
2427 	      CPU_BASED_RDPMC_EXITING;
2428 
2429 	opt = CPU_BASED_TPR_SHADOW |
2430 	      CPU_BASED_USE_MSR_BITMAPS |
2431 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2432 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2433 				&_cpu_based_exec_control) < 0)
2434 		return -EIO;
2435 #ifdef CONFIG_X86_64
2436 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2437 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2438 					   ~CPU_BASED_CR8_STORE_EXITING;
2439 #endif
2440 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2441 		min2 = 0;
2442 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2443 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2444 			SECONDARY_EXEC_WBINVD_EXITING |
2445 			SECONDARY_EXEC_ENABLE_VPID |
2446 			SECONDARY_EXEC_ENABLE_EPT |
2447 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2448 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2449 			SECONDARY_EXEC_DESC |
2450 			SECONDARY_EXEC_RDTSCP |
2451 			SECONDARY_EXEC_ENABLE_INVPCID |
2452 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2453 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2454 			SECONDARY_EXEC_SHADOW_VMCS |
2455 			SECONDARY_EXEC_XSAVES |
2456 			SECONDARY_EXEC_RDSEED_EXITING |
2457 			SECONDARY_EXEC_RDRAND_EXITING |
2458 			SECONDARY_EXEC_ENABLE_PML |
2459 			SECONDARY_EXEC_TSC_SCALING |
2460 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2461 			SECONDARY_EXEC_PT_USE_GPA |
2462 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2463 			SECONDARY_EXEC_ENABLE_VMFUNC;
2464 		if (cpu_has_sgx())
2465 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2466 		if (adjust_vmx_controls(min2, opt2,
2467 					MSR_IA32_VMX_PROCBASED_CTLS2,
2468 					&_cpu_based_2nd_exec_control) < 0)
2469 			return -EIO;
2470 	}
2471 #ifndef CONFIG_X86_64
2472 	if (!(_cpu_based_2nd_exec_control &
2473 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2474 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2475 #endif
2476 
2477 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2478 		_cpu_based_2nd_exec_control &= ~(
2479 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2480 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2481 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2482 
2483 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2484 		&vmx_cap->ept, &vmx_cap->vpid);
2485 
2486 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2487 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2488 		   enabled */
2489 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2490 					     CPU_BASED_CR3_STORE_EXITING |
2491 					     CPU_BASED_INVLPG_EXITING);
2492 	} else if (vmx_cap->ept) {
2493 		vmx_cap->ept = 0;
2494 		pr_warn_once("EPT CAP should not exist if not support "
2495 				"1-setting enable EPT VM-execution control\n");
2496 	}
2497 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2498 		vmx_cap->vpid) {
2499 		vmx_cap->vpid = 0;
2500 		pr_warn_once("VPID CAP should not exist if not support "
2501 				"1-setting enable VPID VM-execution control\n");
2502 	}
2503 
2504 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2505 #ifdef CONFIG_X86_64
2506 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2507 #endif
2508 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2509 	      VM_EXIT_LOAD_IA32_PAT |
2510 	      VM_EXIT_LOAD_IA32_EFER |
2511 	      VM_EXIT_CLEAR_BNDCFGS |
2512 	      VM_EXIT_PT_CONCEAL_PIP |
2513 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2514 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2515 				&_vmexit_control) < 0)
2516 		return -EIO;
2517 
2518 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2519 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2520 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2521 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2522 				&_pin_based_exec_control) < 0)
2523 		return -EIO;
2524 
2525 	if (cpu_has_broken_vmx_preemption_timer())
2526 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2527 	if (!(_cpu_based_2nd_exec_control &
2528 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2529 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2530 
2531 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2532 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2533 	      VM_ENTRY_LOAD_IA32_PAT |
2534 	      VM_ENTRY_LOAD_IA32_EFER |
2535 	      VM_ENTRY_LOAD_BNDCFGS |
2536 	      VM_ENTRY_PT_CONCEAL_PIP |
2537 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2538 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2539 				&_vmentry_control) < 0)
2540 		return -EIO;
2541 
2542 	/*
2543 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2544 	 * can't be used due to an errata where VM Exit may incorrectly clear
2545 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2546 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2547 	 */
2548 	if (boot_cpu_data.x86 == 0x6) {
2549 		switch (boot_cpu_data.x86_model) {
2550 		case 26: /* AAK155 */
2551 		case 30: /* AAP115 */
2552 		case 37: /* AAT100 */
2553 		case 44: /* BC86,AAY89,BD102 */
2554 		case 46: /* BA97 */
2555 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2556 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2557 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2558 					"does not work properly. Using workaround\n");
2559 			break;
2560 		default:
2561 			break;
2562 		}
2563 	}
2564 
2565 
2566 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2567 
2568 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2569 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2570 		return -EIO;
2571 
2572 #ifdef CONFIG_X86_64
2573 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2574 	if (vmx_msr_high & (1u<<16))
2575 		return -EIO;
2576 #endif
2577 
2578 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2579 	if (((vmx_msr_high >> 18) & 15) != 6)
2580 		return -EIO;
2581 
2582 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2583 	vmcs_conf->order = get_order(vmcs_conf->size);
2584 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2585 
2586 	vmcs_conf->revision_id = vmx_msr_low;
2587 
2588 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2589 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2590 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2591 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2592 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2593 
2594 	if (static_branch_unlikely(&enable_evmcs))
2595 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2596 
2597 	return 0;
2598 }
2599 
2600 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2601 {
2602 	int node = cpu_to_node(cpu);
2603 	struct page *pages;
2604 	struct vmcs *vmcs;
2605 
2606 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2607 	if (!pages)
2608 		return NULL;
2609 	vmcs = page_address(pages);
2610 	memset(vmcs, 0, vmcs_config.size);
2611 
2612 	/* KVM supports Enlightened VMCS v1 only */
2613 	if (static_branch_unlikely(&enable_evmcs))
2614 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2615 	else
2616 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2617 
2618 	if (shadow)
2619 		vmcs->hdr.shadow_vmcs = 1;
2620 	return vmcs;
2621 }
2622 
2623 void free_vmcs(struct vmcs *vmcs)
2624 {
2625 	free_pages((unsigned long)vmcs, vmcs_config.order);
2626 }
2627 
2628 /*
2629  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2630  */
2631 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2632 {
2633 	if (!loaded_vmcs->vmcs)
2634 		return;
2635 	loaded_vmcs_clear(loaded_vmcs);
2636 	free_vmcs(loaded_vmcs->vmcs);
2637 	loaded_vmcs->vmcs = NULL;
2638 	if (loaded_vmcs->msr_bitmap)
2639 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2640 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2641 }
2642 
2643 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2644 {
2645 	loaded_vmcs->vmcs = alloc_vmcs(false);
2646 	if (!loaded_vmcs->vmcs)
2647 		return -ENOMEM;
2648 
2649 	vmcs_clear(loaded_vmcs->vmcs);
2650 
2651 	loaded_vmcs->shadow_vmcs = NULL;
2652 	loaded_vmcs->hv_timer_soft_disabled = false;
2653 	loaded_vmcs->cpu = -1;
2654 	loaded_vmcs->launched = 0;
2655 
2656 	if (cpu_has_vmx_msr_bitmap()) {
2657 		loaded_vmcs->msr_bitmap = (unsigned long *)
2658 				__get_free_page(GFP_KERNEL_ACCOUNT);
2659 		if (!loaded_vmcs->msr_bitmap)
2660 			goto out_vmcs;
2661 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2662 
2663 		if (IS_ENABLED(CONFIG_HYPERV) &&
2664 		    static_branch_unlikely(&enable_evmcs) &&
2665 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2666 			struct hv_enlightened_vmcs *evmcs =
2667 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2668 
2669 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2670 		}
2671 	}
2672 
2673 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2674 	memset(&loaded_vmcs->controls_shadow, 0,
2675 		sizeof(struct vmcs_controls_shadow));
2676 
2677 	return 0;
2678 
2679 out_vmcs:
2680 	free_loaded_vmcs(loaded_vmcs);
2681 	return -ENOMEM;
2682 }
2683 
2684 static void free_kvm_area(void)
2685 {
2686 	int cpu;
2687 
2688 	for_each_possible_cpu(cpu) {
2689 		free_vmcs(per_cpu(vmxarea, cpu));
2690 		per_cpu(vmxarea, cpu) = NULL;
2691 	}
2692 }
2693 
2694 static __init int alloc_kvm_area(void)
2695 {
2696 	int cpu;
2697 
2698 	for_each_possible_cpu(cpu) {
2699 		struct vmcs *vmcs;
2700 
2701 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2702 		if (!vmcs) {
2703 			free_kvm_area();
2704 			return -ENOMEM;
2705 		}
2706 
2707 		/*
2708 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2709 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2710 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2711 		 *
2712 		 * However, even though not explicitly documented by
2713 		 * TLFS, VMXArea passed as VMXON argument should
2714 		 * still be marked with revision_id reported by
2715 		 * physical CPU.
2716 		 */
2717 		if (static_branch_unlikely(&enable_evmcs))
2718 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2719 
2720 		per_cpu(vmxarea, cpu) = vmcs;
2721 	}
2722 	return 0;
2723 }
2724 
2725 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2726 		struct kvm_segment *save)
2727 {
2728 	if (!emulate_invalid_guest_state) {
2729 		/*
2730 		 * CS and SS RPL should be equal during guest entry according
2731 		 * to VMX spec, but in reality it is not always so. Since vcpu
2732 		 * is in the middle of the transition from real mode to
2733 		 * protected mode it is safe to assume that RPL 0 is a good
2734 		 * default value.
2735 		 */
2736 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2737 			save->selector &= ~SEGMENT_RPL_MASK;
2738 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2739 		save->s = 1;
2740 	}
2741 	vmx_set_segment(vcpu, save, seg);
2742 }
2743 
2744 static void enter_pmode(struct kvm_vcpu *vcpu)
2745 {
2746 	unsigned long flags;
2747 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2748 
2749 	/*
2750 	 * Update real mode segment cache. It may be not up-to-date if sement
2751 	 * register was written while vcpu was in a guest mode.
2752 	 */
2753 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2754 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2755 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2756 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2757 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2758 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2759 
2760 	vmx->rmode.vm86_active = 0;
2761 
2762 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2763 
2764 	flags = vmcs_readl(GUEST_RFLAGS);
2765 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2766 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2767 	vmcs_writel(GUEST_RFLAGS, flags);
2768 
2769 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2770 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2771 
2772 	update_exception_bitmap(vcpu);
2773 
2774 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2775 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2776 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2777 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2778 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2779 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2780 }
2781 
2782 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2783 {
2784 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2785 	struct kvm_segment var = *save;
2786 
2787 	var.dpl = 0x3;
2788 	if (seg == VCPU_SREG_CS)
2789 		var.type = 0x3;
2790 
2791 	if (!emulate_invalid_guest_state) {
2792 		var.selector = var.base >> 4;
2793 		var.base = var.base & 0xffff0;
2794 		var.limit = 0xffff;
2795 		var.g = 0;
2796 		var.db = 0;
2797 		var.present = 1;
2798 		var.s = 1;
2799 		var.l = 0;
2800 		var.unusable = 0;
2801 		var.type = 0x3;
2802 		var.avl = 0;
2803 		if (save->base & 0xf)
2804 			printk_once(KERN_WARNING "kvm: segment base is not "
2805 					"paragraph aligned when entering "
2806 					"protected mode (seg=%d)", seg);
2807 	}
2808 
2809 	vmcs_write16(sf->selector, var.selector);
2810 	vmcs_writel(sf->base, var.base);
2811 	vmcs_write32(sf->limit, var.limit);
2812 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2813 }
2814 
2815 static void enter_rmode(struct kvm_vcpu *vcpu)
2816 {
2817 	unsigned long flags;
2818 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2819 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2820 
2821 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2822 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2823 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2824 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2825 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2826 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2827 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2828 
2829 	vmx->rmode.vm86_active = 1;
2830 
2831 	/*
2832 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2833 	 * vcpu. Warn the user that an update is overdue.
2834 	 */
2835 	if (!kvm_vmx->tss_addr)
2836 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2837 			     "called before entering vcpu\n");
2838 
2839 	vmx_segment_cache_clear(vmx);
2840 
2841 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2842 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2843 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2844 
2845 	flags = vmcs_readl(GUEST_RFLAGS);
2846 	vmx->rmode.save_rflags = flags;
2847 
2848 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2849 
2850 	vmcs_writel(GUEST_RFLAGS, flags);
2851 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2852 	update_exception_bitmap(vcpu);
2853 
2854 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2855 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2856 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2857 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2858 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2859 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2860 
2861 	kvm_mmu_reset_context(vcpu);
2862 }
2863 
2864 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2865 {
2866 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2867 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2868 
2869 	if (!msr)
2870 		return;
2871 
2872 	vcpu->arch.efer = efer;
2873 	if (efer & EFER_LMA) {
2874 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2875 		msr->data = efer;
2876 	} else {
2877 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2878 
2879 		msr->data = efer & ~EFER_LME;
2880 	}
2881 	setup_msrs(vmx);
2882 }
2883 
2884 #ifdef CONFIG_X86_64
2885 
2886 static void enter_lmode(struct kvm_vcpu *vcpu)
2887 {
2888 	u32 guest_tr_ar;
2889 
2890 	vmx_segment_cache_clear(to_vmx(vcpu));
2891 
2892 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2893 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2894 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2895 				     __func__);
2896 		vmcs_write32(GUEST_TR_AR_BYTES,
2897 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2898 			     | VMX_AR_TYPE_BUSY_64_TSS);
2899 	}
2900 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2901 }
2902 
2903 static void exit_lmode(struct kvm_vcpu *vcpu)
2904 {
2905 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2906 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2907 }
2908 
2909 #endif
2910 
2911 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2912 {
2913 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2914 
2915 	/*
2916 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2917 	 * the CPU is not required to invalidate guest-physical mappings on
2918 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2919 	 * associated with the root EPT structure and not any particular VPID
2920 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
2921 	 */
2922 	if (enable_ept) {
2923 		ept_sync_global();
2924 	} else if (enable_vpid) {
2925 		if (cpu_has_vmx_invvpid_global()) {
2926 			vpid_sync_vcpu_global();
2927 		} else {
2928 			vpid_sync_vcpu_single(vmx->vpid);
2929 			vpid_sync_vcpu_single(vmx->nested.vpid02);
2930 		}
2931 	}
2932 }
2933 
2934 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2935 {
2936 	u64 root_hpa = vcpu->arch.mmu->root_hpa;
2937 
2938 	/* No flush required if the current context is invalid. */
2939 	if (!VALID_PAGE(root_hpa))
2940 		return;
2941 
2942 	if (enable_ept)
2943 		ept_sync_context(construct_eptp(vcpu, root_hpa));
2944 	else if (!is_guest_mode(vcpu))
2945 		vpid_sync_context(to_vmx(vcpu)->vpid);
2946 	else
2947 		vpid_sync_context(nested_get_vpid02(vcpu));
2948 }
2949 
2950 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2951 {
2952 	/*
2953 	 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2954 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2955 	 */
2956 	vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2957 }
2958 
2959 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2960 {
2961 	/*
2962 	 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2963 	 * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
2964 	 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2965 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2966 	 * i.e. no explicit INVVPID is necessary.
2967 	 */
2968 	vpid_sync_context(to_vmx(vcpu)->vpid);
2969 }
2970 
2971 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2972 {
2973 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2974 
2975 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2976 		return;
2977 
2978 	if (is_pae_paging(vcpu)) {
2979 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2980 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2981 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2982 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2983 	}
2984 }
2985 
2986 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2987 {
2988 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2989 
2990 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2991 		return;
2992 
2993 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2994 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2995 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2996 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2997 
2998 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2999 }
3000 
3001 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3002 					unsigned long cr0,
3003 					struct kvm_vcpu *vcpu)
3004 {
3005 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3006 
3007 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3008 		vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3009 	if (!(cr0 & X86_CR0_PG)) {
3010 		/* From paging/starting to nonpaging */
3011 		exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3012 					  CPU_BASED_CR3_STORE_EXITING);
3013 		vcpu->arch.cr0 = cr0;
3014 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3015 	} else if (!is_paging(vcpu)) {
3016 		/* From nonpaging to paging */
3017 		exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3018 					    CPU_BASED_CR3_STORE_EXITING);
3019 		vcpu->arch.cr0 = cr0;
3020 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3021 	}
3022 
3023 	if (!(cr0 & X86_CR0_WP))
3024 		*hw_cr0 &= ~X86_CR0_WP;
3025 }
3026 
3027 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3028 {
3029 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3030 	unsigned long hw_cr0;
3031 
3032 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3033 	if (enable_unrestricted_guest)
3034 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3035 	else {
3036 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3037 
3038 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3039 			enter_pmode(vcpu);
3040 
3041 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3042 			enter_rmode(vcpu);
3043 	}
3044 
3045 #ifdef CONFIG_X86_64
3046 	if (vcpu->arch.efer & EFER_LME) {
3047 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3048 			enter_lmode(vcpu);
3049 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3050 			exit_lmode(vcpu);
3051 	}
3052 #endif
3053 
3054 	if (enable_ept && !enable_unrestricted_guest)
3055 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3056 
3057 	vmcs_writel(CR0_READ_SHADOW, cr0);
3058 	vmcs_writel(GUEST_CR0, hw_cr0);
3059 	vcpu->arch.cr0 = cr0;
3060 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3061 
3062 	/* depends on vcpu->arch.cr0 to be set to a new value */
3063 	vmx->emulation_required = emulation_required(vcpu);
3064 }
3065 
3066 static int vmx_get_tdp_level(struct kvm_vcpu *vcpu)
3067 {
3068 	if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
3069 		return 5;
3070 	return 4;
3071 }
3072 
3073 static int get_ept_level(struct kvm_vcpu *vcpu)
3074 {
3075 	if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu)))
3076 		return vmx_eptp_page_walk_level(nested_ept_get_eptp(vcpu));
3077 
3078 	return vmx_get_tdp_level(vcpu);
3079 }
3080 
3081 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
3082 {
3083 	u64 eptp = VMX_EPTP_MT_WB;
3084 
3085 	eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3086 
3087 	if (enable_ept_ad_bits &&
3088 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3089 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3090 	eptp |= (root_hpa & PAGE_MASK);
3091 
3092 	return eptp;
3093 }
3094 
3095 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd)
3096 {
3097 	struct kvm *kvm = vcpu->kvm;
3098 	bool update_guest_cr3 = true;
3099 	unsigned long guest_cr3;
3100 	u64 eptp;
3101 
3102 	if (enable_ept) {
3103 		eptp = construct_eptp(vcpu, pgd);
3104 		vmcs_write64(EPT_POINTER, eptp);
3105 
3106 		if (kvm_x86_ops.tlb_remote_flush) {
3107 			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3108 			to_vmx(vcpu)->ept_pointer = eptp;
3109 			to_kvm_vmx(kvm)->ept_pointers_match
3110 				= EPT_POINTERS_CHECK;
3111 			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3112 		}
3113 
3114 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3115 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3116 		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3117 			guest_cr3 = vcpu->arch.cr3;
3118 		else /* vmcs01.GUEST_CR3 is already up-to-date. */
3119 			update_guest_cr3 = false;
3120 		ept_load_pdptrs(vcpu);
3121 	} else {
3122 		guest_cr3 = pgd;
3123 	}
3124 
3125 	if (update_guest_cr3)
3126 		vmcs_writel(GUEST_CR3, guest_cr3);
3127 }
3128 
3129 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3130 {
3131 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3132 	/*
3133 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3134 	 * is in force while we are in guest mode.  Do not let guests control
3135 	 * this bit, even if host CR4.MCE == 0.
3136 	 */
3137 	unsigned long hw_cr4;
3138 
3139 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3140 	if (enable_unrestricted_guest)
3141 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3142 	else if (vmx->rmode.vm86_active)
3143 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3144 	else
3145 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3146 
3147 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3148 		if (cr4 & X86_CR4_UMIP) {
3149 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3150 			hw_cr4 &= ~X86_CR4_UMIP;
3151 		} else if (!is_guest_mode(vcpu) ||
3152 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3153 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3154 		}
3155 	}
3156 
3157 	if (cr4 & X86_CR4_VMXE) {
3158 		/*
3159 		 * To use VMXON (and later other VMX instructions), a guest
3160 		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3161 		 * So basically the check on whether to allow nested VMX
3162 		 * is here.  We operate under the default treatment of SMM,
3163 		 * so VMX cannot be enabled under SMM.
3164 		 */
3165 		if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3166 			return 1;
3167 	}
3168 
3169 	if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3170 		return 1;
3171 
3172 	vcpu->arch.cr4 = cr4;
3173 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3174 
3175 	if (!enable_unrestricted_guest) {
3176 		if (enable_ept) {
3177 			if (!is_paging(vcpu)) {
3178 				hw_cr4 &= ~X86_CR4_PAE;
3179 				hw_cr4 |= X86_CR4_PSE;
3180 			} else if (!(cr4 & X86_CR4_PAE)) {
3181 				hw_cr4 &= ~X86_CR4_PAE;
3182 			}
3183 		}
3184 
3185 		/*
3186 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3187 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3188 		 * to be manually disabled when guest switches to non-paging
3189 		 * mode.
3190 		 *
3191 		 * If !enable_unrestricted_guest, the CPU is always running
3192 		 * with CR0.PG=1 and CR4 needs to be modified.
3193 		 * If enable_unrestricted_guest, the CPU automatically
3194 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3195 		 */
3196 		if (!is_paging(vcpu))
3197 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3198 	}
3199 
3200 	vmcs_writel(CR4_READ_SHADOW, cr4);
3201 	vmcs_writel(GUEST_CR4, hw_cr4);
3202 	return 0;
3203 }
3204 
3205 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3206 {
3207 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3208 	u32 ar;
3209 
3210 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3211 		*var = vmx->rmode.segs[seg];
3212 		if (seg == VCPU_SREG_TR
3213 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3214 			return;
3215 		var->base = vmx_read_guest_seg_base(vmx, seg);
3216 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3217 		return;
3218 	}
3219 	var->base = vmx_read_guest_seg_base(vmx, seg);
3220 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3221 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3222 	ar = vmx_read_guest_seg_ar(vmx, seg);
3223 	var->unusable = (ar >> 16) & 1;
3224 	var->type = ar & 15;
3225 	var->s = (ar >> 4) & 1;
3226 	var->dpl = (ar >> 5) & 3;
3227 	/*
3228 	 * Some userspaces do not preserve unusable property. Since usable
3229 	 * segment has to be present according to VMX spec we can use present
3230 	 * property to amend userspace bug by making unusable segment always
3231 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3232 	 * segment as unusable.
3233 	 */
3234 	var->present = !var->unusable;
3235 	var->avl = (ar >> 12) & 1;
3236 	var->l = (ar >> 13) & 1;
3237 	var->db = (ar >> 14) & 1;
3238 	var->g = (ar >> 15) & 1;
3239 }
3240 
3241 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3242 {
3243 	struct kvm_segment s;
3244 
3245 	if (to_vmx(vcpu)->rmode.vm86_active) {
3246 		vmx_get_segment(vcpu, &s, seg);
3247 		return s.base;
3248 	}
3249 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3250 }
3251 
3252 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3253 {
3254 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3255 
3256 	if (unlikely(vmx->rmode.vm86_active))
3257 		return 0;
3258 	else {
3259 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3260 		return VMX_AR_DPL(ar);
3261 	}
3262 }
3263 
3264 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3265 {
3266 	u32 ar;
3267 
3268 	if (var->unusable || !var->present)
3269 		ar = 1 << 16;
3270 	else {
3271 		ar = var->type & 15;
3272 		ar |= (var->s & 1) << 4;
3273 		ar |= (var->dpl & 3) << 5;
3274 		ar |= (var->present & 1) << 7;
3275 		ar |= (var->avl & 1) << 12;
3276 		ar |= (var->l & 1) << 13;
3277 		ar |= (var->db & 1) << 14;
3278 		ar |= (var->g & 1) << 15;
3279 	}
3280 
3281 	return ar;
3282 }
3283 
3284 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3285 {
3286 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3287 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3288 
3289 	vmx_segment_cache_clear(vmx);
3290 
3291 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3292 		vmx->rmode.segs[seg] = *var;
3293 		if (seg == VCPU_SREG_TR)
3294 			vmcs_write16(sf->selector, var->selector);
3295 		else if (var->s)
3296 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3297 		goto out;
3298 	}
3299 
3300 	vmcs_writel(sf->base, var->base);
3301 	vmcs_write32(sf->limit, var->limit);
3302 	vmcs_write16(sf->selector, var->selector);
3303 
3304 	/*
3305 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3306 	 * qemu binaries.
3307 	 *   IA32 arch specifies that at the time of processor reset the
3308 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3309 	 * is setting it to 0 in the userland code. This causes invalid guest
3310 	 * state vmexit when "unrestricted guest" mode is turned on.
3311 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3312 	 * tree. Newer qemu binaries with that qemu fix would not need this
3313 	 * kvm hack.
3314 	 */
3315 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3316 		var->type |= 0x1; /* Accessed */
3317 
3318 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3319 
3320 out:
3321 	vmx->emulation_required = emulation_required(vcpu);
3322 }
3323 
3324 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3325 {
3326 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3327 
3328 	*db = (ar >> 14) & 1;
3329 	*l = (ar >> 13) & 1;
3330 }
3331 
3332 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3333 {
3334 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3335 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3336 }
3337 
3338 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3339 {
3340 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3341 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3342 }
3343 
3344 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3345 {
3346 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3347 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3348 }
3349 
3350 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3351 {
3352 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3353 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3354 }
3355 
3356 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3357 {
3358 	struct kvm_segment var;
3359 	u32 ar;
3360 
3361 	vmx_get_segment(vcpu, &var, seg);
3362 	var.dpl = 0x3;
3363 	if (seg == VCPU_SREG_CS)
3364 		var.type = 0x3;
3365 	ar = vmx_segment_access_rights(&var);
3366 
3367 	if (var.base != (var.selector << 4))
3368 		return false;
3369 	if (var.limit != 0xffff)
3370 		return false;
3371 	if (ar != 0xf3)
3372 		return false;
3373 
3374 	return true;
3375 }
3376 
3377 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3378 {
3379 	struct kvm_segment cs;
3380 	unsigned int cs_rpl;
3381 
3382 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3383 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3384 
3385 	if (cs.unusable)
3386 		return false;
3387 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3388 		return false;
3389 	if (!cs.s)
3390 		return false;
3391 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3392 		if (cs.dpl > cs_rpl)
3393 			return false;
3394 	} else {
3395 		if (cs.dpl != cs_rpl)
3396 			return false;
3397 	}
3398 	if (!cs.present)
3399 		return false;
3400 
3401 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3402 	return true;
3403 }
3404 
3405 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3406 {
3407 	struct kvm_segment ss;
3408 	unsigned int ss_rpl;
3409 
3410 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3411 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3412 
3413 	if (ss.unusable)
3414 		return true;
3415 	if (ss.type != 3 && ss.type != 7)
3416 		return false;
3417 	if (!ss.s)
3418 		return false;
3419 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3420 		return false;
3421 	if (!ss.present)
3422 		return false;
3423 
3424 	return true;
3425 }
3426 
3427 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3428 {
3429 	struct kvm_segment var;
3430 	unsigned int rpl;
3431 
3432 	vmx_get_segment(vcpu, &var, seg);
3433 	rpl = var.selector & SEGMENT_RPL_MASK;
3434 
3435 	if (var.unusable)
3436 		return true;
3437 	if (!var.s)
3438 		return false;
3439 	if (!var.present)
3440 		return false;
3441 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3442 		if (var.dpl < rpl) /* DPL < RPL */
3443 			return false;
3444 	}
3445 
3446 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3447 	 * rights flags
3448 	 */
3449 	return true;
3450 }
3451 
3452 static bool tr_valid(struct kvm_vcpu *vcpu)
3453 {
3454 	struct kvm_segment tr;
3455 
3456 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3457 
3458 	if (tr.unusable)
3459 		return false;
3460 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3461 		return false;
3462 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3463 		return false;
3464 	if (!tr.present)
3465 		return false;
3466 
3467 	return true;
3468 }
3469 
3470 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3471 {
3472 	struct kvm_segment ldtr;
3473 
3474 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3475 
3476 	if (ldtr.unusable)
3477 		return true;
3478 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3479 		return false;
3480 	if (ldtr.type != 2)
3481 		return false;
3482 	if (!ldtr.present)
3483 		return false;
3484 
3485 	return true;
3486 }
3487 
3488 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3489 {
3490 	struct kvm_segment cs, ss;
3491 
3492 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3493 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3494 
3495 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3496 		 (ss.selector & SEGMENT_RPL_MASK));
3497 }
3498 
3499 /*
3500  * Check if guest state is valid. Returns true if valid, false if
3501  * not.
3502  * We assume that registers are always usable
3503  */
3504 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3505 {
3506 	if (enable_unrestricted_guest)
3507 		return true;
3508 
3509 	/* real mode guest state checks */
3510 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3511 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3512 			return false;
3513 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3514 			return false;
3515 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3516 			return false;
3517 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3518 			return false;
3519 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3520 			return false;
3521 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3522 			return false;
3523 	} else {
3524 	/* protected mode guest state checks */
3525 		if (!cs_ss_rpl_check(vcpu))
3526 			return false;
3527 		if (!code_segment_valid(vcpu))
3528 			return false;
3529 		if (!stack_segment_valid(vcpu))
3530 			return false;
3531 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3532 			return false;
3533 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3534 			return false;
3535 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3536 			return false;
3537 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3538 			return false;
3539 		if (!tr_valid(vcpu))
3540 			return false;
3541 		if (!ldtr_valid(vcpu))
3542 			return false;
3543 	}
3544 	/* TODO:
3545 	 * - Add checks on RIP
3546 	 * - Add checks on RFLAGS
3547 	 */
3548 
3549 	return true;
3550 }
3551 
3552 static int init_rmode_tss(struct kvm *kvm)
3553 {
3554 	gfn_t fn;
3555 	u16 data = 0;
3556 	int idx, r;
3557 
3558 	idx = srcu_read_lock(&kvm->srcu);
3559 	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3560 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3561 	if (r < 0)
3562 		goto out;
3563 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3564 	r = kvm_write_guest_page(kvm, fn++, &data,
3565 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
3566 	if (r < 0)
3567 		goto out;
3568 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3569 	if (r < 0)
3570 		goto out;
3571 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3572 	if (r < 0)
3573 		goto out;
3574 	data = ~0;
3575 	r = kvm_write_guest_page(kvm, fn, &data,
3576 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3577 				 sizeof(u8));
3578 out:
3579 	srcu_read_unlock(&kvm->srcu, idx);
3580 	return r;
3581 }
3582 
3583 static int init_rmode_identity_map(struct kvm *kvm)
3584 {
3585 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3586 	int i, r = 0;
3587 	kvm_pfn_t identity_map_pfn;
3588 	u32 tmp;
3589 
3590 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3591 	mutex_lock(&kvm->slots_lock);
3592 
3593 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3594 		goto out;
3595 
3596 	if (!kvm_vmx->ept_identity_map_addr)
3597 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3598 	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3599 
3600 	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3601 				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3602 	if (r < 0)
3603 		goto out;
3604 
3605 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3606 	if (r < 0)
3607 		goto out;
3608 	/* Set up identity-mapping pagetable for EPT in real mode */
3609 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3610 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3611 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3612 		r = kvm_write_guest_page(kvm, identity_map_pfn,
3613 				&tmp, i * sizeof(tmp), sizeof(tmp));
3614 		if (r < 0)
3615 			goto out;
3616 	}
3617 	kvm_vmx->ept_identity_pagetable_done = true;
3618 
3619 out:
3620 	mutex_unlock(&kvm->slots_lock);
3621 	return r;
3622 }
3623 
3624 static void seg_setup(int seg)
3625 {
3626 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3627 	unsigned int ar;
3628 
3629 	vmcs_write16(sf->selector, 0);
3630 	vmcs_writel(sf->base, 0);
3631 	vmcs_write32(sf->limit, 0xffff);
3632 	ar = 0x93;
3633 	if (seg == VCPU_SREG_CS)
3634 		ar |= 0x08; /* code segment */
3635 
3636 	vmcs_write32(sf->ar_bytes, ar);
3637 }
3638 
3639 static int alloc_apic_access_page(struct kvm *kvm)
3640 {
3641 	struct page *page;
3642 	int r = 0;
3643 
3644 	mutex_lock(&kvm->slots_lock);
3645 	if (kvm->arch.apic_access_page_done)
3646 		goto out;
3647 	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3648 				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3649 	if (r)
3650 		goto out;
3651 
3652 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3653 	if (is_error_page(page)) {
3654 		r = -EFAULT;
3655 		goto out;
3656 	}
3657 
3658 	/*
3659 	 * Do not pin the page in memory, so that memory hot-unplug
3660 	 * is able to migrate it.
3661 	 */
3662 	put_page(page);
3663 	kvm->arch.apic_access_page_done = true;
3664 out:
3665 	mutex_unlock(&kvm->slots_lock);
3666 	return r;
3667 }
3668 
3669 int allocate_vpid(void)
3670 {
3671 	int vpid;
3672 
3673 	if (!enable_vpid)
3674 		return 0;
3675 	spin_lock(&vmx_vpid_lock);
3676 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3677 	if (vpid < VMX_NR_VPIDS)
3678 		__set_bit(vpid, vmx_vpid_bitmap);
3679 	else
3680 		vpid = 0;
3681 	spin_unlock(&vmx_vpid_lock);
3682 	return vpid;
3683 }
3684 
3685 void free_vpid(int vpid)
3686 {
3687 	if (!enable_vpid || vpid == 0)
3688 		return;
3689 	spin_lock(&vmx_vpid_lock);
3690 	__clear_bit(vpid, vmx_vpid_bitmap);
3691 	spin_unlock(&vmx_vpid_lock);
3692 }
3693 
3694 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3695 							  u32 msr, int type)
3696 {
3697 	int f = sizeof(unsigned long);
3698 
3699 	if (!cpu_has_vmx_msr_bitmap())
3700 		return;
3701 
3702 	if (static_branch_unlikely(&enable_evmcs))
3703 		evmcs_touch_msr_bitmap();
3704 
3705 	/*
3706 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3707 	 * have the write-low and read-high bitmap offsets the wrong way round.
3708 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3709 	 */
3710 	if (msr <= 0x1fff) {
3711 		if (type & MSR_TYPE_R)
3712 			/* read-low */
3713 			__clear_bit(msr, msr_bitmap + 0x000 / f);
3714 
3715 		if (type & MSR_TYPE_W)
3716 			/* write-low */
3717 			__clear_bit(msr, msr_bitmap + 0x800 / f);
3718 
3719 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3720 		msr &= 0x1fff;
3721 		if (type & MSR_TYPE_R)
3722 			/* read-high */
3723 			__clear_bit(msr, msr_bitmap + 0x400 / f);
3724 
3725 		if (type & MSR_TYPE_W)
3726 			/* write-high */
3727 			__clear_bit(msr, msr_bitmap + 0xc00 / f);
3728 
3729 	}
3730 }
3731 
3732 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3733 							 u32 msr, int type)
3734 {
3735 	int f = sizeof(unsigned long);
3736 
3737 	if (!cpu_has_vmx_msr_bitmap())
3738 		return;
3739 
3740 	if (static_branch_unlikely(&enable_evmcs))
3741 		evmcs_touch_msr_bitmap();
3742 
3743 	/*
3744 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3745 	 * have the write-low and read-high bitmap offsets the wrong way round.
3746 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3747 	 */
3748 	if (msr <= 0x1fff) {
3749 		if (type & MSR_TYPE_R)
3750 			/* read-low */
3751 			__set_bit(msr, msr_bitmap + 0x000 / f);
3752 
3753 		if (type & MSR_TYPE_W)
3754 			/* write-low */
3755 			__set_bit(msr, msr_bitmap + 0x800 / f);
3756 
3757 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3758 		msr &= 0x1fff;
3759 		if (type & MSR_TYPE_R)
3760 			/* read-high */
3761 			__set_bit(msr, msr_bitmap + 0x400 / f);
3762 
3763 		if (type & MSR_TYPE_W)
3764 			/* write-high */
3765 			__set_bit(msr, msr_bitmap + 0xc00 / f);
3766 
3767 	}
3768 }
3769 
3770 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3771 			     			      u32 msr, int type, bool value)
3772 {
3773 	if (value)
3774 		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3775 	else
3776 		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3777 }
3778 
3779 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3780 {
3781 	u8 mode = 0;
3782 
3783 	if (cpu_has_secondary_exec_ctrls() &&
3784 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
3785 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3786 		mode |= MSR_BITMAP_MODE_X2APIC;
3787 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3788 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3789 	}
3790 
3791 	return mode;
3792 }
3793 
3794 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3795 					 u8 mode)
3796 {
3797 	int msr;
3798 
3799 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3800 		unsigned word = msr / BITS_PER_LONG;
3801 		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3802 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3803 	}
3804 
3805 	if (mode & MSR_BITMAP_MODE_X2APIC) {
3806 		/*
3807 		 * TPR reads and writes can be virtualized even if virtual interrupt
3808 		 * delivery is not in use.
3809 		 */
3810 		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3811 		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3812 			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3813 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3814 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3815 		}
3816 	}
3817 }
3818 
3819 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3820 {
3821 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3822 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3823 	u8 mode = vmx_msr_bitmap_mode(vcpu);
3824 	u8 changed = mode ^ vmx->msr_bitmap_mode;
3825 
3826 	if (!changed)
3827 		return;
3828 
3829 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3830 		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3831 
3832 	vmx->msr_bitmap_mode = mode;
3833 }
3834 
3835 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3836 {
3837 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3838 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3839 	u32 i;
3840 
3841 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3842 							MSR_TYPE_RW, flag);
3843 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3844 							MSR_TYPE_RW, flag);
3845 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3846 							MSR_TYPE_RW, flag);
3847 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3848 							MSR_TYPE_RW, flag);
3849 	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3850 		vmx_set_intercept_for_msr(msr_bitmap,
3851 			MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3852 		vmx_set_intercept_for_msr(msr_bitmap,
3853 			MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3854 	}
3855 }
3856 
3857 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3858 {
3859 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3860 	void *vapic_page;
3861 	u32 vppr;
3862 	int rvi;
3863 
3864 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3865 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3866 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3867 		return false;
3868 
3869 	rvi = vmx_get_rvi();
3870 
3871 	vapic_page = vmx->nested.virtual_apic_map.hva;
3872 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3873 
3874 	return ((rvi & 0xf0) > (vppr & 0xf0));
3875 }
3876 
3877 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3878 						     bool nested)
3879 {
3880 #ifdef CONFIG_SMP
3881 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3882 
3883 	if (vcpu->mode == IN_GUEST_MODE) {
3884 		/*
3885 		 * The vector of interrupt to be delivered to vcpu had
3886 		 * been set in PIR before this function.
3887 		 *
3888 		 * Following cases will be reached in this block, and
3889 		 * we always send a notification event in all cases as
3890 		 * explained below.
3891 		 *
3892 		 * Case 1: vcpu keeps in non-root mode. Sending a
3893 		 * notification event posts the interrupt to vcpu.
3894 		 *
3895 		 * Case 2: vcpu exits to root mode and is still
3896 		 * runnable. PIR will be synced to vIRR before the
3897 		 * next vcpu entry. Sending a notification event in
3898 		 * this case has no effect, as vcpu is not in root
3899 		 * mode.
3900 		 *
3901 		 * Case 3: vcpu exits to root mode and is blocked.
3902 		 * vcpu_block() has already synced PIR to vIRR and
3903 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3904 		 * a blocked vcpu here does not wait for any requested
3905 		 * interrupts in PIR, and sending a notification event
3906 		 * which has no effect is safe here.
3907 		 */
3908 
3909 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3910 		return true;
3911 	}
3912 #endif
3913 	return false;
3914 }
3915 
3916 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3917 						int vector)
3918 {
3919 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3920 
3921 	if (is_guest_mode(vcpu) &&
3922 	    vector == vmx->nested.posted_intr_nv) {
3923 		/*
3924 		 * If a posted intr is not recognized by hardware,
3925 		 * we will accomplish it in the next vmentry.
3926 		 */
3927 		vmx->nested.pi_pending = true;
3928 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3929 		/* the PIR and ON have been set by L1. */
3930 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3931 			kvm_vcpu_kick(vcpu);
3932 		return 0;
3933 	}
3934 	return -1;
3935 }
3936 /*
3937  * Send interrupt to vcpu via posted interrupt way.
3938  * 1. If target vcpu is running(non-root mode), send posted interrupt
3939  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3940  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3941  * interrupt from PIR in next vmentry.
3942  */
3943 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3944 {
3945 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3946 	int r;
3947 
3948 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3949 	if (!r)
3950 		return 0;
3951 
3952 	if (!vcpu->arch.apicv_active)
3953 		return -1;
3954 
3955 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3956 		return 0;
3957 
3958 	/* If a previous notification has sent the IPI, nothing to do.  */
3959 	if (pi_test_and_set_on(&vmx->pi_desc))
3960 		return 0;
3961 
3962 	if (vcpu != kvm_get_running_vcpu() &&
3963 	    !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3964 		kvm_vcpu_kick(vcpu);
3965 
3966 	return 0;
3967 }
3968 
3969 /*
3970  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3971  * will not change in the lifetime of the guest.
3972  * Note that host-state that does change is set elsewhere. E.g., host-state
3973  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3974  */
3975 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3976 {
3977 	u32 low32, high32;
3978 	unsigned long tmpl;
3979 	unsigned long cr0, cr3, cr4;
3980 
3981 	cr0 = read_cr0();
3982 	WARN_ON(cr0 & X86_CR0_TS);
3983 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3984 
3985 	/*
3986 	 * Save the most likely value for this task's CR3 in the VMCS.
3987 	 * We can't use __get_current_cr3_fast() because we're not atomic.
3988 	 */
3989 	cr3 = __read_cr3();
3990 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
3991 	vmx->loaded_vmcs->host_state.cr3 = cr3;
3992 
3993 	/* Save the most likely value for this task's CR4 in the VMCS. */
3994 	cr4 = cr4_read_shadow();
3995 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
3996 	vmx->loaded_vmcs->host_state.cr4 = cr4;
3997 
3998 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3999 #ifdef CONFIG_X86_64
4000 	/*
4001 	 * Load null selectors, so we can avoid reloading them in
4002 	 * vmx_prepare_switch_to_host(), in case userspace uses
4003 	 * the null selectors too (the expected case).
4004 	 */
4005 	vmcs_write16(HOST_DS_SELECTOR, 0);
4006 	vmcs_write16(HOST_ES_SELECTOR, 0);
4007 #else
4008 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4009 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4010 #endif
4011 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4012 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4013 
4014 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4015 
4016 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4017 
4018 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4019 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4020 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4021 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4022 
4023 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4024 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4025 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4026 	}
4027 
4028 	if (cpu_has_load_ia32_efer())
4029 		vmcs_write64(HOST_IA32_EFER, host_efer);
4030 }
4031 
4032 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4033 {
4034 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS;
4035 	if (!enable_ept)
4036 		vmx->vcpu.arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4037 	if (is_guest_mode(&vmx->vcpu))
4038 		vmx->vcpu.arch.cr4_guest_owned_bits &=
4039 			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4040 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4041 }
4042 
4043 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4044 {
4045 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4046 
4047 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4048 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4049 
4050 	if (!enable_vnmi)
4051 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4052 
4053 	if (!enable_preemption_timer)
4054 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4055 
4056 	return pin_based_exec_ctrl;
4057 }
4058 
4059 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4060 {
4061 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4062 
4063 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4064 	if (cpu_has_secondary_exec_ctrls()) {
4065 		if (kvm_vcpu_apicv_active(vcpu))
4066 			secondary_exec_controls_setbit(vmx,
4067 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4068 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4069 		else
4070 			secondary_exec_controls_clearbit(vmx,
4071 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4072 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4073 	}
4074 
4075 	if (cpu_has_vmx_msr_bitmap())
4076 		vmx_update_msr_bitmap(vcpu);
4077 }
4078 
4079 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4080 {
4081 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4082 
4083 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4084 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4085 
4086 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4087 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4088 #ifdef CONFIG_X86_64
4089 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4090 				CPU_BASED_CR8_LOAD_EXITING;
4091 #endif
4092 	}
4093 	if (!enable_ept)
4094 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4095 				CPU_BASED_CR3_LOAD_EXITING  |
4096 				CPU_BASED_INVLPG_EXITING;
4097 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4098 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4099 				CPU_BASED_MONITOR_EXITING);
4100 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4101 		exec_control &= ~CPU_BASED_HLT_EXITING;
4102 	return exec_control;
4103 }
4104 
4105 
4106 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4107 {
4108 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4109 
4110 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4111 
4112 	if (vmx_pt_mode_is_system())
4113 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4114 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4115 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4116 	if (vmx->vpid == 0)
4117 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4118 	if (!enable_ept) {
4119 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4120 		enable_unrestricted_guest = 0;
4121 	}
4122 	if (!enable_unrestricted_guest)
4123 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4124 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4125 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4126 	if (!kvm_vcpu_apicv_active(vcpu))
4127 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4128 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4129 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4130 
4131 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4132 	 * in vmx_set_cr4.  */
4133 	exec_control &= ~SECONDARY_EXEC_DESC;
4134 
4135 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4136 	   (handle_vmptrld).
4137 	   We can NOT enable shadow_vmcs here because we don't have yet
4138 	   a current VMCS12
4139 	*/
4140 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4141 
4142 	if (!enable_pml)
4143 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4144 
4145 	if (vmx_xsaves_supported()) {
4146 		/* Exposing XSAVES only when XSAVE is exposed */
4147 		bool xsaves_enabled =
4148 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4149 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4150 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4151 
4152 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4153 
4154 		if (!xsaves_enabled)
4155 			exec_control &= ~SECONDARY_EXEC_XSAVES;
4156 
4157 		if (nested) {
4158 			if (xsaves_enabled)
4159 				vmx->nested.msrs.secondary_ctls_high |=
4160 					SECONDARY_EXEC_XSAVES;
4161 			else
4162 				vmx->nested.msrs.secondary_ctls_high &=
4163 					~SECONDARY_EXEC_XSAVES;
4164 		}
4165 	}
4166 
4167 	if (cpu_has_vmx_rdtscp()) {
4168 		bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4169 		if (!rdtscp_enabled)
4170 			exec_control &= ~SECONDARY_EXEC_RDTSCP;
4171 
4172 		if (nested) {
4173 			if (rdtscp_enabled)
4174 				vmx->nested.msrs.secondary_ctls_high |=
4175 					SECONDARY_EXEC_RDTSCP;
4176 			else
4177 				vmx->nested.msrs.secondary_ctls_high &=
4178 					~SECONDARY_EXEC_RDTSCP;
4179 		}
4180 	}
4181 
4182 	if (cpu_has_vmx_invpcid()) {
4183 		/* Exposing INVPCID only when PCID is exposed */
4184 		bool invpcid_enabled =
4185 			guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4186 			guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4187 
4188 		if (!invpcid_enabled) {
4189 			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4190 			guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4191 		}
4192 
4193 		if (nested) {
4194 			if (invpcid_enabled)
4195 				vmx->nested.msrs.secondary_ctls_high |=
4196 					SECONDARY_EXEC_ENABLE_INVPCID;
4197 			else
4198 				vmx->nested.msrs.secondary_ctls_high &=
4199 					~SECONDARY_EXEC_ENABLE_INVPCID;
4200 		}
4201 	}
4202 
4203 	if (vmx_rdrand_supported()) {
4204 		bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4205 		if (rdrand_enabled)
4206 			exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4207 
4208 		if (nested) {
4209 			if (rdrand_enabled)
4210 				vmx->nested.msrs.secondary_ctls_high |=
4211 					SECONDARY_EXEC_RDRAND_EXITING;
4212 			else
4213 				vmx->nested.msrs.secondary_ctls_high &=
4214 					~SECONDARY_EXEC_RDRAND_EXITING;
4215 		}
4216 	}
4217 
4218 	if (vmx_rdseed_supported()) {
4219 		bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4220 		if (rdseed_enabled)
4221 			exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4222 
4223 		if (nested) {
4224 			if (rdseed_enabled)
4225 				vmx->nested.msrs.secondary_ctls_high |=
4226 					SECONDARY_EXEC_RDSEED_EXITING;
4227 			else
4228 				vmx->nested.msrs.secondary_ctls_high &=
4229 					~SECONDARY_EXEC_RDSEED_EXITING;
4230 		}
4231 	}
4232 
4233 	if (vmx_waitpkg_supported()) {
4234 		bool waitpkg_enabled =
4235 			guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4236 
4237 		if (!waitpkg_enabled)
4238 			exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4239 
4240 		if (nested) {
4241 			if (waitpkg_enabled)
4242 				vmx->nested.msrs.secondary_ctls_high |=
4243 					SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4244 			else
4245 				vmx->nested.msrs.secondary_ctls_high &=
4246 					~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4247 		}
4248 	}
4249 
4250 	vmx->secondary_exec_control = exec_control;
4251 }
4252 
4253 static void ept_set_mmio_spte_mask(void)
4254 {
4255 	/*
4256 	 * EPT Misconfigurations can be generated if the value of bits 2:0
4257 	 * of an EPT paging-structure entry is 110b (write/execute).
4258 	 */
4259 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0);
4260 }
4261 
4262 #define VMX_XSS_EXIT_BITMAP 0
4263 
4264 /*
4265  * Noting that the initialization of Guest-state Area of VMCS is in
4266  * vmx_vcpu_reset().
4267  */
4268 static void init_vmcs(struct vcpu_vmx *vmx)
4269 {
4270 	if (nested)
4271 		nested_vmx_set_vmcs_shadowing_bitmap();
4272 
4273 	if (cpu_has_vmx_msr_bitmap())
4274 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4275 
4276 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4277 
4278 	/* Control */
4279 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4280 
4281 	exec_controls_set(vmx, vmx_exec_control(vmx));
4282 
4283 	if (cpu_has_secondary_exec_ctrls()) {
4284 		vmx_compute_secondary_exec_control(vmx);
4285 		secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4286 	}
4287 
4288 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4289 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4290 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4291 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4292 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4293 
4294 		vmcs_write16(GUEST_INTR_STATUS, 0);
4295 
4296 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4297 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4298 	}
4299 
4300 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4301 		vmcs_write32(PLE_GAP, ple_gap);
4302 		vmx->ple_window = ple_window;
4303 		vmx->ple_window_dirty = true;
4304 	}
4305 
4306 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4307 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4308 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4309 
4310 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4311 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4312 	vmx_set_constant_host_state(vmx);
4313 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4314 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4315 
4316 	if (cpu_has_vmx_vmfunc())
4317 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4318 
4319 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4320 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4321 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4322 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4323 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4324 
4325 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4326 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4327 
4328 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4329 
4330 	/* 22.2.1, 20.8.1 */
4331 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4332 
4333 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4334 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4335 
4336 	set_cr4_guest_host_mask(vmx);
4337 
4338 	if (vmx->vpid != 0)
4339 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4340 
4341 	if (vmx_xsaves_supported())
4342 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4343 
4344 	if (enable_pml) {
4345 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4346 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4347 	}
4348 
4349 	if (cpu_has_vmx_encls_vmexit())
4350 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4351 
4352 	if (vmx_pt_mode_is_host_guest()) {
4353 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4354 		/* Bit[6~0] are forced to 1, writes are ignored. */
4355 		vmx->pt_desc.guest.output_mask = 0x7F;
4356 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4357 	}
4358 }
4359 
4360 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4361 {
4362 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4363 	struct msr_data apic_base_msr;
4364 	u64 cr0;
4365 
4366 	vmx->rmode.vm86_active = 0;
4367 	vmx->spec_ctrl = 0;
4368 
4369 	vmx->msr_ia32_umwait_control = 0;
4370 
4371 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4372 	vmx->hv_deadline_tsc = -1;
4373 	kvm_set_cr8(vcpu, 0);
4374 
4375 	if (!init_event) {
4376 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4377 				     MSR_IA32_APICBASE_ENABLE;
4378 		if (kvm_vcpu_is_reset_bsp(vcpu))
4379 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4380 		apic_base_msr.host_initiated = true;
4381 		kvm_set_apic_base(vcpu, &apic_base_msr);
4382 	}
4383 
4384 	vmx_segment_cache_clear(vmx);
4385 
4386 	seg_setup(VCPU_SREG_CS);
4387 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4388 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4389 
4390 	seg_setup(VCPU_SREG_DS);
4391 	seg_setup(VCPU_SREG_ES);
4392 	seg_setup(VCPU_SREG_FS);
4393 	seg_setup(VCPU_SREG_GS);
4394 	seg_setup(VCPU_SREG_SS);
4395 
4396 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4397 	vmcs_writel(GUEST_TR_BASE, 0);
4398 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4399 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4400 
4401 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4402 	vmcs_writel(GUEST_LDTR_BASE, 0);
4403 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4404 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4405 
4406 	if (!init_event) {
4407 		vmcs_write32(GUEST_SYSENTER_CS, 0);
4408 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
4409 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
4410 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4411 	}
4412 
4413 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4414 	kvm_rip_write(vcpu, 0xfff0);
4415 
4416 	vmcs_writel(GUEST_GDTR_BASE, 0);
4417 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4418 
4419 	vmcs_writel(GUEST_IDTR_BASE, 0);
4420 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4421 
4422 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4423 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4424 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4425 	if (kvm_mpx_supported())
4426 		vmcs_write64(GUEST_BNDCFGS, 0);
4427 
4428 	setup_msrs(vmx);
4429 
4430 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4431 
4432 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
4433 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4434 		if (cpu_need_tpr_shadow(vcpu))
4435 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4436 				     __pa(vcpu->arch.apic->regs));
4437 		vmcs_write32(TPR_THRESHOLD, 0);
4438 	}
4439 
4440 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4441 
4442 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4443 	vmx->vcpu.arch.cr0 = cr0;
4444 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
4445 	vmx_set_cr4(vcpu, 0);
4446 	vmx_set_efer(vcpu, 0);
4447 
4448 	update_exception_bitmap(vcpu);
4449 
4450 	vpid_sync_context(vmx->vpid);
4451 	if (init_event)
4452 		vmx_clear_hlt(vcpu);
4453 }
4454 
4455 static void enable_irq_window(struct kvm_vcpu *vcpu)
4456 {
4457 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4458 }
4459 
4460 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4461 {
4462 	if (!enable_vnmi ||
4463 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4464 		enable_irq_window(vcpu);
4465 		return;
4466 	}
4467 
4468 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4469 }
4470 
4471 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4472 {
4473 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4474 	uint32_t intr;
4475 	int irq = vcpu->arch.interrupt.nr;
4476 
4477 	trace_kvm_inj_virq(irq);
4478 
4479 	++vcpu->stat.irq_injections;
4480 	if (vmx->rmode.vm86_active) {
4481 		int inc_eip = 0;
4482 		if (vcpu->arch.interrupt.soft)
4483 			inc_eip = vcpu->arch.event_exit_inst_len;
4484 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4485 		return;
4486 	}
4487 	intr = irq | INTR_INFO_VALID_MASK;
4488 	if (vcpu->arch.interrupt.soft) {
4489 		intr |= INTR_TYPE_SOFT_INTR;
4490 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4491 			     vmx->vcpu.arch.event_exit_inst_len);
4492 	} else
4493 		intr |= INTR_TYPE_EXT_INTR;
4494 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4495 
4496 	vmx_clear_hlt(vcpu);
4497 }
4498 
4499 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4500 {
4501 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4502 
4503 	if (!enable_vnmi) {
4504 		/*
4505 		 * Tracking the NMI-blocked state in software is built upon
4506 		 * finding the next open IRQ window. This, in turn, depends on
4507 		 * well-behaving guests: They have to keep IRQs disabled at
4508 		 * least as long as the NMI handler runs. Otherwise we may
4509 		 * cause NMI nesting, maybe breaking the guest. But as this is
4510 		 * highly unlikely, we can live with the residual risk.
4511 		 */
4512 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4513 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4514 	}
4515 
4516 	++vcpu->stat.nmi_injections;
4517 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4518 
4519 	if (vmx->rmode.vm86_active) {
4520 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4521 		return;
4522 	}
4523 
4524 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4525 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4526 
4527 	vmx_clear_hlt(vcpu);
4528 }
4529 
4530 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4531 {
4532 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4533 	bool masked;
4534 
4535 	if (!enable_vnmi)
4536 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4537 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4538 		return false;
4539 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4540 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4541 	return masked;
4542 }
4543 
4544 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4545 {
4546 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4547 
4548 	if (!enable_vnmi) {
4549 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4550 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4551 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4552 		}
4553 	} else {
4554 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4555 		if (masked)
4556 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4557 				      GUEST_INTR_STATE_NMI);
4558 		else
4559 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4560 					GUEST_INTR_STATE_NMI);
4561 	}
4562 }
4563 
4564 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4565 {
4566 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4567 		return false;
4568 
4569 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4570 		return true;
4571 
4572 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4573 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4574 		 GUEST_INTR_STATE_NMI));
4575 }
4576 
4577 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4578 {
4579 	if (to_vmx(vcpu)->nested.nested_run_pending)
4580 		return -EBUSY;
4581 
4582 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4583 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4584 		return -EBUSY;
4585 
4586 	return !vmx_nmi_blocked(vcpu);
4587 }
4588 
4589 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4590 {
4591 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4592 		return false;
4593 
4594 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4595 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4596 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4597 }
4598 
4599 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4600 {
4601 	if (to_vmx(vcpu)->nested.nested_run_pending)
4602 		return -EBUSY;
4603 
4604        /*
4605         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4606         * e.g. if the IRQ arrived asynchronously after checking nested events.
4607         */
4608 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4609 		return -EBUSY;
4610 
4611 	return !vmx_interrupt_blocked(vcpu);
4612 }
4613 
4614 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4615 {
4616 	int ret;
4617 
4618 	if (enable_unrestricted_guest)
4619 		return 0;
4620 
4621 	mutex_lock(&kvm->slots_lock);
4622 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4623 				      PAGE_SIZE * 3);
4624 	mutex_unlock(&kvm->slots_lock);
4625 
4626 	if (ret)
4627 		return ret;
4628 	to_kvm_vmx(kvm)->tss_addr = addr;
4629 	return init_rmode_tss(kvm);
4630 }
4631 
4632 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4633 {
4634 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4635 	return 0;
4636 }
4637 
4638 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4639 {
4640 	switch (vec) {
4641 	case BP_VECTOR:
4642 		/*
4643 		 * Update instruction length as we may reinject the exception
4644 		 * from user space while in guest debugging mode.
4645 		 */
4646 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4647 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4648 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4649 			return false;
4650 		/* fall through */
4651 	case DB_VECTOR:
4652 		return !(vcpu->guest_debug &
4653 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4654 	case DE_VECTOR:
4655 	case OF_VECTOR:
4656 	case BR_VECTOR:
4657 	case UD_VECTOR:
4658 	case DF_VECTOR:
4659 	case SS_VECTOR:
4660 	case GP_VECTOR:
4661 	case MF_VECTOR:
4662 		return true;
4663 	}
4664 	return false;
4665 }
4666 
4667 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4668 				  int vec, u32 err_code)
4669 {
4670 	/*
4671 	 * Instruction with address size override prefix opcode 0x67
4672 	 * Cause the #SS fault with 0 error code in VM86 mode.
4673 	 */
4674 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4675 		if (kvm_emulate_instruction(vcpu, 0)) {
4676 			if (vcpu->arch.halt_request) {
4677 				vcpu->arch.halt_request = 0;
4678 				return kvm_vcpu_halt(vcpu);
4679 			}
4680 			return 1;
4681 		}
4682 		return 0;
4683 	}
4684 
4685 	/*
4686 	 * Forward all other exceptions that are valid in real mode.
4687 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4688 	 *        the required debugging infrastructure rework.
4689 	 */
4690 	kvm_queue_exception(vcpu, vec);
4691 	return 1;
4692 }
4693 
4694 /*
4695  * Trigger machine check on the host. We assume all the MSRs are already set up
4696  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4697  * We pass a fake environment to the machine check handler because we want
4698  * the guest to be always treated like user space, no matter what context
4699  * it used internally.
4700  */
4701 static void kvm_machine_check(void)
4702 {
4703 #if defined(CONFIG_X86_MCE)
4704 	struct pt_regs regs = {
4705 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
4706 		.flags = X86_EFLAGS_IF,
4707 	};
4708 
4709 	do_machine_check(&regs);
4710 #endif
4711 }
4712 
4713 static int handle_machine_check(struct kvm_vcpu *vcpu)
4714 {
4715 	/* handled by vmx_vcpu_run() */
4716 	return 1;
4717 }
4718 
4719 /*
4720  * If the host has split lock detection disabled, then #AC is
4721  * unconditionally injected into the guest, which is the pre split lock
4722  * detection behaviour.
4723  *
4724  * If the host has split lock detection enabled then #AC is
4725  * only injected into the guest when:
4726  *  - Guest CPL == 3 (user mode)
4727  *  - Guest has #AC detection enabled in CR0
4728  *  - Guest EFLAGS has AC bit set
4729  */
4730 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4731 {
4732 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4733 		return true;
4734 
4735 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4736 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4737 }
4738 
4739 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4740 {
4741 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4742 	struct kvm_run *kvm_run = vcpu->run;
4743 	u32 intr_info, ex_no, error_code;
4744 	unsigned long cr2, rip, dr6;
4745 	u32 vect_info;
4746 
4747 	vect_info = vmx->idt_vectoring_info;
4748 	intr_info = vmx_get_intr_info(vcpu);
4749 
4750 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4751 		return 1; /* handled by handle_exception_nmi_irqoff() */
4752 
4753 	if (is_invalid_opcode(intr_info))
4754 		return handle_ud(vcpu);
4755 
4756 	error_code = 0;
4757 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4758 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4759 
4760 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4761 		WARN_ON_ONCE(!enable_vmware_backdoor);
4762 
4763 		/*
4764 		 * VMware backdoor emulation on #GP interception only handles
4765 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4766 		 * error code on #GP.
4767 		 */
4768 		if (error_code) {
4769 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4770 			return 1;
4771 		}
4772 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4773 	}
4774 
4775 	/*
4776 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4777 	 * MMIO, it is better to report an internal error.
4778 	 * See the comments in vmx_handle_exit.
4779 	 */
4780 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4781 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4782 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4783 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4784 		vcpu->run->internal.ndata = 3;
4785 		vcpu->run->internal.data[0] = vect_info;
4786 		vcpu->run->internal.data[1] = intr_info;
4787 		vcpu->run->internal.data[2] = error_code;
4788 		return 0;
4789 	}
4790 
4791 	if (is_page_fault(intr_info)) {
4792 		cr2 = vmx_get_exit_qual(vcpu);
4793 		/* EPT won't cause page fault directly */
4794 		WARN_ON_ONCE(!vcpu->arch.apf.host_apf_flags && enable_ept);
4795 		return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4796 	}
4797 
4798 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4799 
4800 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4801 		return handle_rmode_exception(vcpu, ex_no, error_code);
4802 
4803 	switch (ex_no) {
4804 	case DB_VECTOR:
4805 		dr6 = vmx_get_exit_qual(vcpu);
4806 		if (!(vcpu->guest_debug &
4807 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4808 			if (is_icebp(intr_info))
4809 				WARN_ON(!skip_emulated_instruction(vcpu));
4810 
4811 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4812 			return 1;
4813 		}
4814 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4815 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4816 		/* fall through */
4817 	case BP_VECTOR:
4818 		/*
4819 		 * Update instruction length as we may reinject #BP from
4820 		 * user space while in guest debugging mode. Reading it for
4821 		 * #DB as well causes no harm, it is not used in that case.
4822 		 */
4823 		vmx->vcpu.arch.event_exit_inst_len =
4824 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4825 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4826 		rip = kvm_rip_read(vcpu);
4827 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4828 		kvm_run->debug.arch.exception = ex_no;
4829 		break;
4830 	case AC_VECTOR:
4831 		if (guest_inject_ac(vcpu)) {
4832 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4833 			return 1;
4834 		}
4835 
4836 		/*
4837 		 * Handle split lock. Depending on detection mode this will
4838 		 * either warn and disable split lock detection for this
4839 		 * task or force SIGBUS on it.
4840 		 */
4841 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4842 			return 1;
4843 		fallthrough;
4844 	default:
4845 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4846 		kvm_run->ex.exception = ex_no;
4847 		kvm_run->ex.error_code = error_code;
4848 		break;
4849 	}
4850 	return 0;
4851 }
4852 
4853 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4854 {
4855 	++vcpu->stat.irq_exits;
4856 	return 1;
4857 }
4858 
4859 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4860 {
4861 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4862 	vcpu->mmio_needed = 0;
4863 	return 0;
4864 }
4865 
4866 static int handle_io(struct kvm_vcpu *vcpu)
4867 {
4868 	unsigned long exit_qualification;
4869 	int size, in, string;
4870 	unsigned port;
4871 
4872 	exit_qualification = vmx_get_exit_qual(vcpu);
4873 	string = (exit_qualification & 16) != 0;
4874 
4875 	++vcpu->stat.io_exits;
4876 
4877 	if (string)
4878 		return kvm_emulate_instruction(vcpu, 0);
4879 
4880 	port = exit_qualification >> 16;
4881 	size = (exit_qualification & 7) + 1;
4882 	in = (exit_qualification & 8) != 0;
4883 
4884 	return kvm_fast_pio(vcpu, size, port, in);
4885 }
4886 
4887 static void
4888 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4889 {
4890 	/*
4891 	 * Patch in the VMCALL instruction:
4892 	 */
4893 	hypercall[0] = 0x0f;
4894 	hypercall[1] = 0x01;
4895 	hypercall[2] = 0xc1;
4896 }
4897 
4898 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4899 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4900 {
4901 	if (is_guest_mode(vcpu)) {
4902 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4903 		unsigned long orig_val = val;
4904 
4905 		/*
4906 		 * We get here when L2 changed cr0 in a way that did not change
4907 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4908 		 * but did change L0 shadowed bits. So we first calculate the
4909 		 * effective cr0 value that L1 would like to write into the
4910 		 * hardware. It consists of the L2-owned bits from the new
4911 		 * value combined with the L1-owned bits from L1's guest_cr0.
4912 		 */
4913 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4914 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4915 
4916 		if (!nested_guest_cr0_valid(vcpu, val))
4917 			return 1;
4918 
4919 		if (kvm_set_cr0(vcpu, val))
4920 			return 1;
4921 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4922 		return 0;
4923 	} else {
4924 		if (to_vmx(vcpu)->nested.vmxon &&
4925 		    !nested_host_cr0_valid(vcpu, val))
4926 			return 1;
4927 
4928 		return kvm_set_cr0(vcpu, val);
4929 	}
4930 }
4931 
4932 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4933 {
4934 	if (is_guest_mode(vcpu)) {
4935 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4936 		unsigned long orig_val = val;
4937 
4938 		/* analogously to handle_set_cr0 */
4939 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4940 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4941 		if (kvm_set_cr4(vcpu, val))
4942 			return 1;
4943 		vmcs_writel(CR4_READ_SHADOW, orig_val);
4944 		return 0;
4945 	} else
4946 		return kvm_set_cr4(vcpu, val);
4947 }
4948 
4949 static int handle_desc(struct kvm_vcpu *vcpu)
4950 {
4951 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4952 	return kvm_emulate_instruction(vcpu, 0);
4953 }
4954 
4955 static int handle_cr(struct kvm_vcpu *vcpu)
4956 {
4957 	unsigned long exit_qualification, val;
4958 	int cr;
4959 	int reg;
4960 	int err;
4961 	int ret;
4962 
4963 	exit_qualification = vmx_get_exit_qual(vcpu);
4964 	cr = exit_qualification & 15;
4965 	reg = (exit_qualification >> 8) & 15;
4966 	switch ((exit_qualification >> 4) & 3) {
4967 	case 0: /* mov to cr */
4968 		val = kvm_register_readl(vcpu, reg);
4969 		trace_kvm_cr_write(cr, val);
4970 		switch (cr) {
4971 		case 0:
4972 			err = handle_set_cr0(vcpu, val);
4973 			return kvm_complete_insn_gp(vcpu, err);
4974 		case 3:
4975 			WARN_ON_ONCE(enable_unrestricted_guest);
4976 			err = kvm_set_cr3(vcpu, val);
4977 			return kvm_complete_insn_gp(vcpu, err);
4978 		case 4:
4979 			err = handle_set_cr4(vcpu, val);
4980 			return kvm_complete_insn_gp(vcpu, err);
4981 		case 8: {
4982 				u8 cr8_prev = kvm_get_cr8(vcpu);
4983 				u8 cr8 = (u8)val;
4984 				err = kvm_set_cr8(vcpu, cr8);
4985 				ret = kvm_complete_insn_gp(vcpu, err);
4986 				if (lapic_in_kernel(vcpu))
4987 					return ret;
4988 				if (cr8_prev <= cr8)
4989 					return ret;
4990 				/*
4991 				 * TODO: we might be squashing a
4992 				 * KVM_GUESTDBG_SINGLESTEP-triggered
4993 				 * KVM_EXIT_DEBUG here.
4994 				 */
4995 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4996 				return 0;
4997 			}
4998 		}
4999 		break;
5000 	case 2: /* clts */
5001 		WARN_ONCE(1, "Guest should always own CR0.TS");
5002 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5003 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5004 		return kvm_skip_emulated_instruction(vcpu);
5005 	case 1: /*mov from cr*/
5006 		switch (cr) {
5007 		case 3:
5008 			WARN_ON_ONCE(enable_unrestricted_guest);
5009 			val = kvm_read_cr3(vcpu);
5010 			kvm_register_write(vcpu, reg, val);
5011 			trace_kvm_cr_read(cr, val);
5012 			return kvm_skip_emulated_instruction(vcpu);
5013 		case 8:
5014 			val = kvm_get_cr8(vcpu);
5015 			kvm_register_write(vcpu, reg, val);
5016 			trace_kvm_cr_read(cr, val);
5017 			return kvm_skip_emulated_instruction(vcpu);
5018 		}
5019 		break;
5020 	case 3: /* lmsw */
5021 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5022 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5023 		kvm_lmsw(vcpu, val);
5024 
5025 		return kvm_skip_emulated_instruction(vcpu);
5026 	default:
5027 		break;
5028 	}
5029 	vcpu->run->exit_reason = 0;
5030 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5031 	       (int)(exit_qualification >> 4) & 3, cr);
5032 	return 0;
5033 }
5034 
5035 static int handle_dr(struct kvm_vcpu *vcpu)
5036 {
5037 	unsigned long exit_qualification;
5038 	int dr, dr7, reg;
5039 
5040 	exit_qualification = vmx_get_exit_qual(vcpu);
5041 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5042 
5043 	/* First, if DR does not exist, trigger UD */
5044 	if (!kvm_require_dr(vcpu, dr))
5045 		return 1;
5046 
5047 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
5048 	if (!kvm_require_cpl(vcpu, 0))
5049 		return 1;
5050 	dr7 = vmcs_readl(GUEST_DR7);
5051 	if (dr7 & DR7_GD) {
5052 		/*
5053 		 * As the vm-exit takes precedence over the debug trap, we
5054 		 * need to emulate the latter, either for the host or the
5055 		 * guest debugging itself.
5056 		 */
5057 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5058 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
5059 			vcpu->run->debug.arch.dr7 = dr7;
5060 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5061 			vcpu->run->debug.arch.exception = DB_VECTOR;
5062 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5063 			return 0;
5064 		} else {
5065 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5066 			return 1;
5067 		}
5068 	}
5069 
5070 	if (vcpu->guest_debug == 0) {
5071 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5072 
5073 		/*
5074 		 * No more DR vmexits; force a reload of the debug registers
5075 		 * and reenter on this instruction.  The next vmexit will
5076 		 * retrieve the full state of the debug registers.
5077 		 */
5078 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5079 		return 1;
5080 	}
5081 
5082 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5083 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5084 		unsigned long val;
5085 
5086 		if (kvm_get_dr(vcpu, dr, &val))
5087 			return 1;
5088 		kvm_register_write(vcpu, reg, val);
5089 	} else
5090 		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5091 			return 1;
5092 
5093 	return kvm_skip_emulated_instruction(vcpu);
5094 }
5095 
5096 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5097 {
5098 	get_debugreg(vcpu->arch.db[0], 0);
5099 	get_debugreg(vcpu->arch.db[1], 1);
5100 	get_debugreg(vcpu->arch.db[2], 2);
5101 	get_debugreg(vcpu->arch.db[3], 3);
5102 	get_debugreg(vcpu->arch.dr6, 6);
5103 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5104 
5105 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5106 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5107 }
5108 
5109 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5110 {
5111 	vmcs_writel(GUEST_DR7, val);
5112 }
5113 
5114 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5115 {
5116 	kvm_apic_update_ppr(vcpu);
5117 	return 1;
5118 }
5119 
5120 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5121 {
5122 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5123 
5124 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5125 
5126 	++vcpu->stat.irq_window_exits;
5127 	return 1;
5128 }
5129 
5130 static int handle_vmcall(struct kvm_vcpu *vcpu)
5131 {
5132 	return kvm_emulate_hypercall(vcpu);
5133 }
5134 
5135 static int handle_invd(struct kvm_vcpu *vcpu)
5136 {
5137 	return kvm_emulate_instruction(vcpu, 0);
5138 }
5139 
5140 static int handle_invlpg(struct kvm_vcpu *vcpu)
5141 {
5142 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5143 
5144 	kvm_mmu_invlpg(vcpu, exit_qualification);
5145 	return kvm_skip_emulated_instruction(vcpu);
5146 }
5147 
5148 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5149 {
5150 	int err;
5151 
5152 	err = kvm_rdpmc(vcpu);
5153 	return kvm_complete_insn_gp(vcpu, err);
5154 }
5155 
5156 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5157 {
5158 	return kvm_emulate_wbinvd(vcpu);
5159 }
5160 
5161 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5162 {
5163 	u64 new_bv = kvm_read_edx_eax(vcpu);
5164 	u32 index = kvm_rcx_read(vcpu);
5165 
5166 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5167 		return kvm_skip_emulated_instruction(vcpu);
5168 	return 1;
5169 }
5170 
5171 static int handle_apic_access(struct kvm_vcpu *vcpu)
5172 {
5173 	if (likely(fasteoi)) {
5174 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5175 		int access_type, offset;
5176 
5177 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5178 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5179 		/*
5180 		 * Sane guest uses MOV to write EOI, with written value
5181 		 * not cared. So make a short-circuit here by avoiding
5182 		 * heavy instruction emulation.
5183 		 */
5184 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5185 		    (offset == APIC_EOI)) {
5186 			kvm_lapic_set_eoi(vcpu);
5187 			return kvm_skip_emulated_instruction(vcpu);
5188 		}
5189 	}
5190 	return kvm_emulate_instruction(vcpu, 0);
5191 }
5192 
5193 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5194 {
5195 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5196 	int vector = exit_qualification & 0xff;
5197 
5198 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5199 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5200 	return 1;
5201 }
5202 
5203 static int handle_apic_write(struct kvm_vcpu *vcpu)
5204 {
5205 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5206 	u32 offset = exit_qualification & 0xfff;
5207 
5208 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5209 	kvm_apic_write_nodecode(vcpu, offset);
5210 	return 1;
5211 }
5212 
5213 static int handle_task_switch(struct kvm_vcpu *vcpu)
5214 {
5215 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5216 	unsigned long exit_qualification;
5217 	bool has_error_code = false;
5218 	u32 error_code = 0;
5219 	u16 tss_selector;
5220 	int reason, type, idt_v, idt_index;
5221 
5222 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5223 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5224 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5225 
5226 	exit_qualification = vmx_get_exit_qual(vcpu);
5227 
5228 	reason = (u32)exit_qualification >> 30;
5229 	if (reason == TASK_SWITCH_GATE && idt_v) {
5230 		switch (type) {
5231 		case INTR_TYPE_NMI_INTR:
5232 			vcpu->arch.nmi_injected = false;
5233 			vmx_set_nmi_mask(vcpu, true);
5234 			break;
5235 		case INTR_TYPE_EXT_INTR:
5236 		case INTR_TYPE_SOFT_INTR:
5237 			kvm_clear_interrupt_queue(vcpu);
5238 			break;
5239 		case INTR_TYPE_HARD_EXCEPTION:
5240 			if (vmx->idt_vectoring_info &
5241 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5242 				has_error_code = true;
5243 				error_code =
5244 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5245 			}
5246 			/* fall through */
5247 		case INTR_TYPE_SOFT_EXCEPTION:
5248 			kvm_clear_exception_queue(vcpu);
5249 			break;
5250 		default:
5251 			break;
5252 		}
5253 	}
5254 	tss_selector = exit_qualification;
5255 
5256 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5257 		       type != INTR_TYPE_EXT_INTR &&
5258 		       type != INTR_TYPE_NMI_INTR))
5259 		WARN_ON(!skip_emulated_instruction(vcpu));
5260 
5261 	/*
5262 	 * TODO: What about debug traps on tss switch?
5263 	 *       Are we supposed to inject them and update dr6?
5264 	 */
5265 	return kvm_task_switch(vcpu, tss_selector,
5266 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5267 			       reason, has_error_code, error_code);
5268 }
5269 
5270 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5271 {
5272 	unsigned long exit_qualification;
5273 	gpa_t gpa;
5274 	u64 error_code;
5275 
5276 	exit_qualification = vmx_get_exit_qual(vcpu);
5277 
5278 	/*
5279 	 * EPT violation happened while executing iret from NMI,
5280 	 * "blocked by NMI" bit has to be set before next VM entry.
5281 	 * There are errata that may cause this bit to not be set:
5282 	 * AAK134, BY25.
5283 	 */
5284 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5285 			enable_vnmi &&
5286 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5287 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5288 
5289 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5290 	trace_kvm_page_fault(gpa, exit_qualification);
5291 
5292 	/* Is it a read fault? */
5293 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5294 		     ? PFERR_USER_MASK : 0;
5295 	/* Is it a write fault? */
5296 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5297 		      ? PFERR_WRITE_MASK : 0;
5298 	/* Is it a fetch fault? */
5299 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5300 		      ? PFERR_FETCH_MASK : 0;
5301 	/* ept page table entry is present? */
5302 	error_code |= (exit_qualification &
5303 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5304 			EPT_VIOLATION_EXECUTABLE))
5305 		      ? PFERR_PRESENT_MASK : 0;
5306 
5307 	error_code |= (exit_qualification & 0x100) != 0 ?
5308 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5309 
5310 	vcpu->arch.exit_qualification = exit_qualification;
5311 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5312 }
5313 
5314 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5315 {
5316 	gpa_t gpa;
5317 
5318 	/*
5319 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5320 	 * nGPA here instead of the required GPA.
5321 	 */
5322 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5323 	if (!is_guest_mode(vcpu) &&
5324 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5325 		trace_kvm_fast_mmio(gpa);
5326 		return kvm_skip_emulated_instruction(vcpu);
5327 	}
5328 
5329 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5330 }
5331 
5332 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5333 {
5334 	WARN_ON_ONCE(!enable_vnmi);
5335 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5336 	++vcpu->stat.nmi_window_exits;
5337 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5338 
5339 	return 1;
5340 }
5341 
5342 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5343 {
5344 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5345 	bool intr_window_requested;
5346 	unsigned count = 130;
5347 
5348 	intr_window_requested = exec_controls_get(vmx) &
5349 				CPU_BASED_INTR_WINDOW_EXITING;
5350 
5351 	while (vmx->emulation_required && count-- != 0) {
5352 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5353 			return handle_interrupt_window(&vmx->vcpu);
5354 
5355 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5356 			return 1;
5357 
5358 		if (!kvm_emulate_instruction(vcpu, 0))
5359 			return 0;
5360 
5361 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5362 		    vcpu->arch.exception.pending) {
5363 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5364 			vcpu->run->internal.suberror =
5365 						KVM_INTERNAL_ERROR_EMULATION;
5366 			vcpu->run->internal.ndata = 0;
5367 			return 0;
5368 		}
5369 
5370 		if (vcpu->arch.halt_request) {
5371 			vcpu->arch.halt_request = 0;
5372 			return kvm_vcpu_halt(vcpu);
5373 		}
5374 
5375 		/*
5376 		 * Note, return 1 and not 0, vcpu_run() is responsible for
5377 		 * morphing the pending signal into the proper return code.
5378 		 */
5379 		if (signal_pending(current))
5380 			return 1;
5381 
5382 		if (need_resched())
5383 			schedule();
5384 	}
5385 
5386 	return 1;
5387 }
5388 
5389 static void grow_ple_window(struct kvm_vcpu *vcpu)
5390 {
5391 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5392 	unsigned int old = vmx->ple_window;
5393 
5394 	vmx->ple_window = __grow_ple_window(old, ple_window,
5395 					    ple_window_grow,
5396 					    ple_window_max);
5397 
5398 	if (vmx->ple_window != old) {
5399 		vmx->ple_window_dirty = true;
5400 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5401 					    vmx->ple_window, old);
5402 	}
5403 }
5404 
5405 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5406 {
5407 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5408 	unsigned int old = vmx->ple_window;
5409 
5410 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5411 					      ple_window_shrink,
5412 					      ple_window);
5413 
5414 	if (vmx->ple_window != old) {
5415 		vmx->ple_window_dirty = true;
5416 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5417 					    vmx->ple_window, old);
5418 	}
5419 }
5420 
5421 /*
5422  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5423  */
5424 static void wakeup_handler(void)
5425 {
5426 	struct kvm_vcpu *vcpu;
5427 	int cpu = smp_processor_id();
5428 
5429 	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5430 	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5431 			blocked_vcpu_list) {
5432 		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5433 
5434 		if (pi_test_on(pi_desc) == 1)
5435 			kvm_vcpu_kick(vcpu);
5436 	}
5437 	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5438 }
5439 
5440 static void vmx_enable_tdp(void)
5441 {
5442 	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5443 		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5444 		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5445 		0ull, VMX_EPT_EXECUTABLE_MASK,
5446 		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5447 		VMX_EPT_RWX_MASK, 0ull);
5448 
5449 	ept_set_mmio_spte_mask();
5450 }
5451 
5452 /*
5453  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5454  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5455  */
5456 static int handle_pause(struct kvm_vcpu *vcpu)
5457 {
5458 	if (!kvm_pause_in_guest(vcpu->kvm))
5459 		grow_ple_window(vcpu);
5460 
5461 	/*
5462 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5463 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5464 	 * never set PAUSE_EXITING and just set PLE if supported,
5465 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5466 	 */
5467 	kvm_vcpu_on_spin(vcpu, true);
5468 	return kvm_skip_emulated_instruction(vcpu);
5469 }
5470 
5471 static int handle_nop(struct kvm_vcpu *vcpu)
5472 {
5473 	return kvm_skip_emulated_instruction(vcpu);
5474 }
5475 
5476 static int handle_mwait(struct kvm_vcpu *vcpu)
5477 {
5478 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5479 	return handle_nop(vcpu);
5480 }
5481 
5482 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5483 {
5484 	kvm_queue_exception(vcpu, UD_VECTOR);
5485 	return 1;
5486 }
5487 
5488 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5489 {
5490 	return 1;
5491 }
5492 
5493 static int handle_monitor(struct kvm_vcpu *vcpu)
5494 {
5495 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5496 	return handle_nop(vcpu);
5497 }
5498 
5499 static int handle_invpcid(struct kvm_vcpu *vcpu)
5500 {
5501 	u32 vmx_instruction_info;
5502 	unsigned long type;
5503 	bool pcid_enabled;
5504 	gva_t gva;
5505 	struct x86_exception e;
5506 	unsigned i;
5507 	unsigned long roots_to_free = 0;
5508 	struct {
5509 		u64 pcid;
5510 		u64 gla;
5511 	} operand;
5512 	int r;
5513 
5514 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5515 		kvm_queue_exception(vcpu, UD_VECTOR);
5516 		return 1;
5517 	}
5518 
5519 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5520 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5521 
5522 	if (type > 3) {
5523 		kvm_inject_gp(vcpu, 0);
5524 		return 1;
5525 	}
5526 
5527 	/* According to the Intel instruction reference, the memory operand
5528 	 * is read even if it isn't needed (e.g., for type==all)
5529 	 */
5530 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5531 				vmx_instruction_info, false,
5532 				sizeof(operand), &gva))
5533 		return 1;
5534 
5535 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5536 	if (r != X86EMUL_CONTINUE)
5537 		return vmx_handle_memory_failure(vcpu, r, &e);
5538 
5539 	if (operand.pcid >> 12 != 0) {
5540 		kvm_inject_gp(vcpu, 0);
5541 		return 1;
5542 	}
5543 
5544 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5545 
5546 	switch (type) {
5547 	case INVPCID_TYPE_INDIV_ADDR:
5548 		if ((!pcid_enabled && (operand.pcid != 0)) ||
5549 		    is_noncanonical_address(operand.gla, vcpu)) {
5550 			kvm_inject_gp(vcpu, 0);
5551 			return 1;
5552 		}
5553 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5554 		return kvm_skip_emulated_instruction(vcpu);
5555 
5556 	case INVPCID_TYPE_SINGLE_CTXT:
5557 		if (!pcid_enabled && (operand.pcid != 0)) {
5558 			kvm_inject_gp(vcpu, 0);
5559 			return 1;
5560 		}
5561 
5562 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5563 			kvm_mmu_sync_roots(vcpu);
5564 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
5565 		}
5566 
5567 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5568 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
5569 			    == operand.pcid)
5570 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5571 
5572 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5573 		/*
5574 		 * If neither the current cr3 nor any of the prev_roots use the
5575 		 * given PCID, then nothing needs to be done here because a
5576 		 * resync will happen anyway before switching to any other CR3.
5577 		 */
5578 
5579 		return kvm_skip_emulated_instruction(vcpu);
5580 
5581 	case INVPCID_TYPE_ALL_NON_GLOBAL:
5582 		/*
5583 		 * Currently, KVM doesn't mark global entries in the shadow
5584 		 * page tables, so a non-global flush just degenerates to a
5585 		 * global flush. If needed, we could optimize this later by
5586 		 * keeping track of global entries in shadow page tables.
5587 		 */
5588 
5589 		/* fall-through */
5590 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
5591 		kvm_mmu_unload(vcpu);
5592 		return kvm_skip_emulated_instruction(vcpu);
5593 
5594 	default:
5595 		BUG(); /* We have already checked above that type <= 3 */
5596 	}
5597 }
5598 
5599 static int handle_pml_full(struct kvm_vcpu *vcpu)
5600 {
5601 	unsigned long exit_qualification;
5602 
5603 	trace_kvm_pml_full(vcpu->vcpu_id);
5604 
5605 	exit_qualification = vmx_get_exit_qual(vcpu);
5606 
5607 	/*
5608 	 * PML buffer FULL happened while executing iret from NMI,
5609 	 * "blocked by NMI" bit has to be set before next VM entry.
5610 	 */
5611 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5612 			enable_vnmi &&
5613 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5614 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5615 				GUEST_INTR_STATE_NMI);
5616 
5617 	/*
5618 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5619 	 * here.., and there's no userspace involvement needed for PML.
5620 	 */
5621 	return 1;
5622 }
5623 
5624 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5625 {
5626 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5627 
5628 	if (!vmx->req_immediate_exit &&
5629 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5630 		kvm_lapic_expired_hv_timer(vcpu);
5631 		return EXIT_FASTPATH_REENTER_GUEST;
5632 	}
5633 
5634 	return EXIT_FASTPATH_NONE;
5635 }
5636 
5637 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5638 {
5639 	handle_fastpath_preemption_timer(vcpu);
5640 	return 1;
5641 }
5642 
5643 /*
5644  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5645  * are overwritten by nested_vmx_setup() when nested=1.
5646  */
5647 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5648 {
5649 	kvm_queue_exception(vcpu, UD_VECTOR);
5650 	return 1;
5651 }
5652 
5653 static int handle_encls(struct kvm_vcpu *vcpu)
5654 {
5655 	/*
5656 	 * SGX virtualization is not yet supported.  There is no software
5657 	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5658 	 * to prevent the guest from executing ENCLS.
5659 	 */
5660 	kvm_queue_exception(vcpu, UD_VECTOR);
5661 	return 1;
5662 }
5663 
5664 /*
5665  * The exit handlers return 1 if the exit was handled fully and guest execution
5666  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5667  * to be done to userspace and return 0.
5668  */
5669 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5670 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5671 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5672 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5673 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5674 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5675 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5676 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5677 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5678 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5679 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5680 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5681 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5682 	[EXIT_REASON_INVD]		      = handle_invd,
5683 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5684 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
5685 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
5686 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5687 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5688 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5689 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5690 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5691 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5692 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5693 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5694 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5695 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5696 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5697 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5698 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5699 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
5700 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
5701 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5702 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5703 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5704 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5705 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5706 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5707 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5708 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
5709 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5710 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5711 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5712 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5713 	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
5714 	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
5715 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5716 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5717 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5718 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5719 	[EXIT_REASON_ENCLS]		      = handle_encls,
5720 };
5721 
5722 static const int kvm_vmx_max_exit_handlers =
5723 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5724 
5725 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5726 {
5727 	*info1 = vmx_get_exit_qual(vcpu);
5728 	*info2 = vmx_get_intr_info(vcpu);
5729 }
5730 
5731 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5732 {
5733 	if (vmx->pml_pg) {
5734 		__free_page(vmx->pml_pg);
5735 		vmx->pml_pg = NULL;
5736 	}
5737 }
5738 
5739 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5740 {
5741 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5742 	u64 *pml_buf;
5743 	u16 pml_idx;
5744 
5745 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5746 
5747 	/* Do nothing if PML buffer is empty */
5748 	if (pml_idx == (PML_ENTITY_NUM - 1))
5749 		return;
5750 
5751 	/* PML index always points to next available PML buffer entity */
5752 	if (pml_idx >= PML_ENTITY_NUM)
5753 		pml_idx = 0;
5754 	else
5755 		pml_idx++;
5756 
5757 	pml_buf = page_address(vmx->pml_pg);
5758 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5759 		u64 gpa;
5760 
5761 		gpa = pml_buf[pml_idx];
5762 		WARN_ON(gpa & (PAGE_SIZE - 1));
5763 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5764 	}
5765 
5766 	/* reset PML index */
5767 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5768 }
5769 
5770 /*
5771  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5772  * Called before reporting dirty_bitmap to userspace.
5773  */
5774 static void kvm_flush_pml_buffers(struct kvm *kvm)
5775 {
5776 	int i;
5777 	struct kvm_vcpu *vcpu;
5778 	/*
5779 	 * We only need to kick vcpu out of guest mode here, as PML buffer
5780 	 * is flushed at beginning of all VMEXITs, and it's obvious that only
5781 	 * vcpus running in guest are possible to have unflushed GPAs in PML
5782 	 * buffer.
5783 	 */
5784 	kvm_for_each_vcpu(i, vcpu, kvm)
5785 		kvm_vcpu_kick(vcpu);
5786 }
5787 
5788 static void vmx_dump_sel(char *name, uint32_t sel)
5789 {
5790 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5791 	       name, vmcs_read16(sel),
5792 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5793 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5794 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5795 }
5796 
5797 static void vmx_dump_dtsel(char *name, uint32_t limit)
5798 {
5799 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5800 	       name, vmcs_read32(limit),
5801 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5802 }
5803 
5804 void dump_vmcs(void)
5805 {
5806 	u32 vmentry_ctl, vmexit_ctl;
5807 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5808 	unsigned long cr4;
5809 	u64 efer;
5810 
5811 	if (!dump_invalid_vmcs) {
5812 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5813 		return;
5814 	}
5815 
5816 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5817 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5818 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5819 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5820 	cr4 = vmcs_readl(GUEST_CR4);
5821 	efer = vmcs_read64(GUEST_IA32_EFER);
5822 	secondary_exec_control = 0;
5823 	if (cpu_has_secondary_exec_ctrls())
5824 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5825 
5826 	pr_err("*** Guest State ***\n");
5827 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5828 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5829 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5830 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5831 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5832 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5833 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5834 	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5835 	{
5836 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5837 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5838 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5839 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5840 	}
5841 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5842 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5843 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5844 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5845 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5846 	       vmcs_readl(GUEST_SYSENTER_ESP),
5847 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5848 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5849 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5850 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5851 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5852 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5853 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5854 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5855 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5856 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5857 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5858 	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5859 	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5860 		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5861 		       efer, vmcs_read64(GUEST_IA32_PAT));
5862 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5863 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5864 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5865 	if (cpu_has_load_perf_global_ctrl() &&
5866 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5867 		pr_err("PerfGlobCtl = 0x%016llx\n",
5868 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5869 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5870 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5871 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5872 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5873 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5874 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5875 		pr_err("InterruptStatus = %04x\n",
5876 		       vmcs_read16(GUEST_INTR_STATUS));
5877 
5878 	pr_err("*** Host State ***\n");
5879 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5880 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5881 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5882 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5883 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5884 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5885 	       vmcs_read16(HOST_TR_SELECTOR));
5886 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5887 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5888 	       vmcs_readl(HOST_TR_BASE));
5889 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5890 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5891 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5892 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5893 	       vmcs_readl(HOST_CR4));
5894 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5895 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5896 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5897 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5898 	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5899 		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5900 		       vmcs_read64(HOST_IA32_EFER),
5901 		       vmcs_read64(HOST_IA32_PAT));
5902 	if (cpu_has_load_perf_global_ctrl() &&
5903 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5904 		pr_err("PerfGlobCtl = 0x%016llx\n",
5905 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5906 
5907 	pr_err("*** Control State ***\n");
5908 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5909 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5910 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5911 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5912 	       vmcs_read32(EXCEPTION_BITMAP),
5913 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5914 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5915 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5916 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5917 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5918 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5919 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5920 	       vmcs_read32(VM_EXIT_INTR_INFO),
5921 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5922 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5923 	pr_err("        reason=%08x qualification=%016lx\n",
5924 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5925 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5926 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5927 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5928 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5929 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5930 		pr_err("TSC Multiplier = 0x%016llx\n",
5931 		       vmcs_read64(TSC_MULTIPLIER));
5932 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5933 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5934 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5935 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5936 		}
5937 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5938 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5939 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5940 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5941 	}
5942 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5943 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5944 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5945 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5946 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5947 		pr_err("PLE Gap=%08x Window=%08x\n",
5948 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5949 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5950 		pr_err("Virtual processor ID = 0x%04x\n",
5951 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5952 }
5953 
5954 /*
5955  * The guest has exited.  See if we can fix it or if we need userspace
5956  * assistance.
5957  */
5958 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5959 {
5960 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5961 	u32 exit_reason = vmx->exit_reason;
5962 	u32 vectoring_info = vmx->idt_vectoring_info;
5963 
5964 	/*
5965 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5966 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5967 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5968 	 * mode as if vcpus is in root mode, the PML buffer must has been
5969 	 * flushed already.
5970 	 */
5971 	if (enable_pml)
5972 		vmx_flush_pml_buffer(vcpu);
5973 
5974 	/*
5975 	 * We should never reach this point with a pending nested VM-Enter, and
5976 	 * more specifically emulation of L2 due to invalid guest state (see
5977 	 * below) should never happen as that means we incorrectly allowed a
5978 	 * nested VM-Enter with an invalid vmcs12.
5979 	 */
5980 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
5981 
5982 	/* If guest state is invalid, start emulating */
5983 	if (vmx->emulation_required)
5984 		return handle_invalid_guest_state(vcpu);
5985 
5986 	if (is_guest_mode(vcpu)) {
5987 		/*
5988 		 * The host physical addresses of some pages of guest memory
5989 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5990 		 * Page). The CPU may write to these pages via their host
5991 		 * physical address while L2 is running, bypassing any
5992 		 * address-translation-based dirty tracking (e.g. EPT write
5993 		 * protection).
5994 		 *
5995 		 * Mark them dirty on every exit from L2 to prevent them from
5996 		 * getting out of sync with dirty tracking.
5997 		 */
5998 		nested_mark_vmcs12_pages_dirty(vcpu);
5999 
6000 		if (nested_vmx_reflect_vmexit(vcpu))
6001 			return 1;
6002 	}
6003 
6004 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6005 		dump_vmcs();
6006 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6007 		vcpu->run->fail_entry.hardware_entry_failure_reason
6008 			= exit_reason;
6009 		return 0;
6010 	}
6011 
6012 	if (unlikely(vmx->fail)) {
6013 		dump_vmcs();
6014 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6015 		vcpu->run->fail_entry.hardware_entry_failure_reason
6016 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6017 		return 0;
6018 	}
6019 
6020 	/*
6021 	 * Note:
6022 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6023 	 * delivery event since it indicates guest is accessing MMIO.
6024 	 * The vm-exit can be triggered again after return to guest that
6025 	 * will cause infinite loop.
6026 	 */
6027 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6028 			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6029 			exit_reason != EXIT_REASON_EPT_VIOLATION &&
6030 			exit_reason != EXIT_REASON_PML_FULL &&
6031 			exit_reason != EXIT_REASON_TASK_SWITCH)) {
6032 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6033 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6034 		vcpu->run->internal.ndata = 3;
6035 		vcpu->run->internal.data[0] = vectoring_info;
6036 		vcpu->run->internal.data[1] = exit_reason;
6037 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6038 		if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
6039 			vcpu->run->internal.ndata++;
6040 			vcpu->run->internal.data[3] =
6041 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6042 		}
6043 		return 0;
6044 	}
6045 
6046 	if (unlikely(!enable_vnmi &&
6047 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6048 		if (!vmx_interrupt_blocked(vcpu)) {
6049 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6050 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6051 			   vcpu->arch.nmi_pending) {
6052 			/*
6053 			 * This CPU don't support us in finding the end of an
6054 			 * NMI-blocked window if the guest runs with IRQs
6055 			 * disabled. So we pull the trigger after 1 s of
6056 			 * futile waiting, but inform the user about this.
6057 			 */
6058 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6059 			       "state on VCPU %d after 1 s timeout\n",
6060 			       __func__, vcpu->vcpu_id);
6061 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6062 		}
6063 	}
6064 
6065 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6066 		return 1;
6067 
6068 	if (exit_reason >= kvm_vmx_max_exit_handlers)
6069 		goto unexpected_vmexit;
6070 #ifdef CONFIG_RETPOLINE
6071 	if (exit_reason == EXIT_REASON_MSR_WRITE)
6072 		return kvm_emulate_wrmsr(vcpu);
6073 	else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
6074 		return handle_preemption_timer(vcpu);
6075 	else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
6076 		return handle_interrupt_window(vcpu);
6077 	else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6078 		return handle_external_interrupt(vcpu);
6079 	else if (exit_reason == EXIT_REASON_HLT)
6080 		return kvm_emulate_halt(vcpu);
6081 	else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
6082 		return handle_ept_misconfig(vcpu);
6083 #endif
6084 
6085 	exit_reason = array_index_nospec(exit_reason,
6086 					 kvm_vmx_max_exit_handlers);
6087 	if (!kvm_vmx_exit_handlers[exit_reason])
6088 		goto unexpected_vmexit;
6089 
6090 	return kvm_vmx_exit_handlers[exit_reason](vcpu);
6091 
6092 unexpected_vmexit:
6093 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason);
6094 	dump_vmcs();
6095 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6096 	vcpu->run->internal.suberror =
6097 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6098 	vcpu->run->internal.ndata = 1;
6099 	vcpu->run->internal.data[0] = exit_reason;
6100 	return 0;
6101 }
6102 
6103 /*
6104  * Software based L1D cache flush which is used when microcode providing
6105  * the cache control MSR is not loaded.
6106  *
6107  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6108  * flush it is required to read in 64 KiB because the replacement algorithm
6109  * is not exactly LRU. This could be sized at runtime via topology
6110  * information but as all relevant affected CPUs have 32KiB L1D cache size
6111  * there is no point in doing so.
6112  */
6113 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6114 {
6115 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6116 
6117 	/*
6118 	 * This code is only executed when the the flush mode is 'cond' or
6119 	 * 'always'
6120 	 */
6121 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6122 		bool flush_l1d;
6123 
6124 		/*
6125 		 * Clear the per-vcpu flush bit, it gets set again
6126 		 * either from vcpu_run() or from one of the unsafe
6127 		 * VMEXIT handlers.
6128 		 */
6129 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6130 		vcpu->arch.l1tf_flush_l1d = false;
6131 
6132 		/*
6133 		 * Clear the per-cpu flush bit, it gets set again from
6134 		 * the interrupt handlers.
6135 		 */
6136 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6137 		kvm_clear_cpu_l1tf_flush_l1d();
6138 
6139 		if (!flush_l1d)
6140 			return;
6141 	}
6142 
6143 	vcpu->stat.l1d_flush++;
6144 
6145 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6146 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6147 		return;
6148 	}
6149 
6150 	asm volatile(
6151 		/* First ensure the pages are in the TLB */
6152 		"xorl	%%eax, %%eax\n"
6153 		".Lpopulate_tlb:\n\t"
6154 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6155 		"addl	$4096, %%eax\n\t"
6156 		"cmpl	%%eax, %[size]\n\t"
6157 		"jne	.Lpopulate_tlb\n\t"
6158 		"xorl	%%eax, %%eax\n\t"
6159 		"cpuid\n\t"
6160 		/* Now fill the cache */
6161 		"xorl	%%eax, %%eax\n"
6162 		".Lfill_cache:\n"
6163 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6164 		"addl	$64, %%eax\n\t"
6165 		"cmpl	%%eax, %[size]\n\t"
6166 		"jne	.Lfill_cache\n\t"
6167 		"lfence\n"
6168 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6169 		    [size] "r" (size)
6170 		: "eax", "ebx", "ecx", "edx");
6171 }
6172 
6173 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6174 {
6175 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6176 	int tpr_threshold;
6177 
6178 	if (is_guest_mode(vcpu) &&
6179 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6180 		return;
6181 
6182 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6183 	if (is_guest_mode(vcpu))
6184 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6185 	else
6186 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6187 }
6188 
6189 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6190 {
6191 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6192 	u32 sec_exec_control;
6193 
6194 	if (!lapic_in_kernel(vcpu))
6195 		return;
6196 
6197 	if (!flexpriority_enabled &&
6198 	    !cpu_has_vmx_virtualize_x2apic_mode())
6199 		return;
6200 
6201 	/* Postpone execution until vmcs01 is the current VMCS. */
6202 	if (is_guest_mode(vcpu)) {
6203 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6204 		return;
6205 	}
6206 
6207 	sec_exec_control = secondary_exec_controls_get(vmx);
6208 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6209 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6210 
6211 	switch (kvm_get_apic_mode(vcpu)) {
6212 	case LAPIC_MODE_INVALID:
6213 		WARN_ONCE(true, "Invalid local APIC state");
6214 	case LAPIC_MODE_DISABLED:
6215 		break;
6216 	case LAPIC_MODE_XAPIC:
6217 		if (flexpriority_enabled) {
6218 			sec_exec_control |=
6219 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6220 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6221 
6222 			/*
6223 			 * Flush the TLB, reloading the APIC access page will
6224 			 * only do so if its physical address has changed, but
6225 			 * the guest may have inserted a non-APIC mapping into
6226 			 * the TLB while the APIC access page was disabled.
6227 			 */
6228 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6229 		}
6230 		break;
6231 	case LAPIC_MODE_X2APIC:
6232 		if (cpu_has_vmx_virtualize_x2apic_mode())
6233 			sec_exec_control |=
6234 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6235 		break;
6236 	}
6237 	secondary_exec_controls_set(vmx, sec_exec_control);
6238 
6239 	vmx_update_msr_bitmap(vcpu);
6240 }
6241 
6242 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6243 {
6244 	struct page *page;
6245 
6246 	/* Defer reload until vmcs01 is the current VMCS. */
6247 	if (is_guest_mode(vcpu)) {
6248 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6249 		return;
6250 	}
6251 
6252 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6253 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6254 		return;
6255 
6256 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6257 	if (is_error_page(page))
6258 		return;
6259 
6260 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6261 	vmx_flush_tlb_current(vcpu);
6262 
6263 	/*
6264 	 * Do not pin apic access page in memory, the MMU notifier
6265 	 * will call us again if it is migrated or swapped out.
6266 	 */
6267 	put_page(page);
6268 }
6269 
6270 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6271 {
6272 	u16 status;
6273 	u8 old;
6274 
6275 	if (max_isr == -1)
6276 		max_isr = 0;
6277 
6278 	status = vmcs_read16(GUEST_INTR_STATUS);
6279 	old = status >> 8;
6280 	if (max_isr != old) {
6281 		status &= 0xff;
6282 		status |= max_isr << 8;
6283 		vmcs_write16(GUEST_INTR_STATUS, status);
6284 	}
6285 }
6286 
6287 static void vmx_set_rvi(int vector)
6288 {
6289 	u16 status;
6290 	u8 old;
6291 
6292 	if (vector == -1)
6293 		vector = 0;
6294 
6295 	status = vmcs_read16(GUEST_INTR_STATUS);
6296 	old = (u8)status & 0xff;
6297 	if ((u8)vector != old) {
6298 		status &= ~0xff;
6299 		status |= (u8)vector;
6300 		vmcs_write16(GUEST_INTR_STATUS, status);
6301 	}
6302 }
6303 
6304 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6305 {
6306 	/*
6307 	 * When running L2, updating RVI is only relevant when
6308 	 * vmcs12 virtual-interrupt-delivery enabled.
6309 	 * However, it can be enabled only when L1 also
6310 	 * intercepts external-interrupts and in that case
6311 	 * we should not update vmcs02 RVI but instead intercept
6312 	 * interrupt. Therefore, do nothing when running L2.
6313 	 */
6314 	if (!is_guest_mode(vcpu))
6315 		vmx_set_rvi(max_irr);
6316 }
6317 
6318 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6319 {
6320 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6321 	int max_irr;
6322 	bool max_irr_updated;
6323 
6324 	WARN_ON(!vcpu->arch.apicv_active);
6325 	if (pi_test_on(&vmx->pi_desc)) {
6326 		pi_clear_on(&vmx->pi_desc);
6327 		/*
6328 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6329 		 * But on x86 this is just a compiler barrier anyway.
6330 		 */
6331 		smp_mb__after_atomic();
6332 		max_irr_updated =
6333 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6334 
6335 		/*
6336 		 * If we are running L2 and L1 has a new pending interrupt
6337 		 * which can be injected, we should re-evaluate
6338 		 * what should be done with this new L1 interrupt.
6339 		 * If L1 intercepts external-interrupts, we should
6340 		 * exit from L2 to L1. Otherwise, interrupt should be
6341 		 * delivered directly to L2.
6342 		 */
6343 		if (is_guest_mode(vcpu) && max_irr_updated) {
6344 			if (nested_exit_on_intr(vcpu))
6345 				kvm_vcpu_exiting_guest_mode(vcpu);
6346 			else
6347 				kvm_make_request(KVM_REQ_EVENT, vcpu);
6348 		}
6349 	} else {
6350 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6351 	}
6352 	vmx_hwapic_irr_update(vcpu, max_irr);
6353 	return max_irr;
6354 }
6355 
6356 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6357 {
6358 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6359 
6360 	return pi_test_on(pi_desc) ||
6361 		(pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6362 }
6363 
6364 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6365 {
6366 	if (!kvm_vcpu_apicv_active(vcpu))
6367 		return;
6368 
6369 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6370 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6371 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6372 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6373 }
6374 
6375 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6376 {
6377 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6378 
6379 	pi_clear_on(&vmx->pi_desc);
6380 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6381 }
6382 
6383 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6384 {
6385 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6386 
6387 	/* if exit due to PF check for async PF */
6388 	if (is_page_fault(intr_info)) {
6389 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6390 	/* Handle machine checks before interrupts are enabled */
6391 	} else if (is_machine_check(intr_info)) {
6392 		kvm_machine_check();
6393 	/* We need to handle NMIs before interrupts are enabled */
6394 	} else if (is_nmi(intr_info)) {
6395 		kvm_before_interrupt(&vmx->vcpu);
6396 		asm("int $2");
6397 		kvm_after_interrupt(&vmx->vcpu);
6398 	}
6399 }
6400 
6401 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6402 {
6403 	unsigned int vector;
6404 	unsigned long entry;
6405 #ifdef CONFIG_X86_64
6406 	unsigned long tmp;
6407 #endif
6408 	gate_desc *desc;
6409 	u32 intr_info = vmx_get_intr_info(vcpu);
6410 
6411 	if (WARN_ONCE(!is_external_intr(intr_info),
6412 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6413 		return;
6414 
6415 	vector = intr_info & INTR_INFO_VECTOR_MASK;
6416 	desc = (gate_desc *)host_idt_base + vector;
6417 	entry = gate_offset(desc);
6418 
6419 	kvm_before_interrupt(vcpu);
6420 
6421 	asm volatile(
6422 #ifdef CONFIG_X86_64
6423 		"mov %%rsp, %[sp]\n\t"
6424 		"and $-16, %%rsp\n\t"
6425 		"push %[ss]\n\t"
6426 		"push %[sp]\n\t"
6427 #endif
6428 		"pushf\n\t"
6429 		"push %[cs]\n\t"
6430 		CALL_NOSPEC
6431 		:
6432 #ifdef CONFIG_X86_64
6433 		[sp]"=&r"(tmp),
6434 #endif
6435 		ASM_CALL_CONSTRAINT
6436 		:
6437 		[thunk_target]"r"(entry),
6438 #ifdef CONFIG_X86_64
6439 		[ss]"i"(__KERNEL_DS),
6440 #endif
6441 		[cs]"i"(__KERNEL_CS)
6442 	);
6443 
6444 	kvm_after_interrupt(vcpu);
6445 }
6446 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6447 
6448 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6449 {
6450 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6451 
6452 	if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6453 		handle_external_interrupt_irqoff(vcpu);
6454 	else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6455 		handle_exception_nmi_irqoff(vmx);
6456 }
6457 
6458 static bool vmx_has_emulated_msr(u32 index)
6459 {
6460 	switch (index) {
6461 	case MSR_IA32_SMBASE:
6462 		/*
6463 		 * We cannot do SMM unless we can run the guest in big
6464 		 * real mode.
6465 		 */
6466 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6467 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6468 		return nested;
6469 	case MSR_AMD64_VIRT_SPEC_CTRL:
6470 		/* This is AMD only.  */
6471 		return false;
6472 	default:
6473 		return true;
6474 	}
6475 }
6476 
6477 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6478 {
6479 	u32 exit_intr_info;
6480 	bool unblock_nmi;
6481 	u8 vector;
6482 	bool idtv_info_valid;
6483 
6484 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6485 
6486 	if (enable_vnmi) {
6487 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6488 			return;
6489 
6490 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6491 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6492 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6493 		/*
6494 		 * SDM 3: 27.7.1.2 (September 2008)
6495 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6496 		 * a guest IRET fault.
6497 		 * SDM 3: 23.2.2 (September 2008)
6498 		 * Bit 12 is undefined in any of the following cases:
6499 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6500 		 *   information field.
6501 		 *  If the VM exit is due to a double fault.
6502 		 */
6503 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6504 		    vector != DF_VECTOR && !idtv_info_valid)
6505 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6506 				      GUEST_INTR_STATE_NMI);
6507 		else
6508 			vmx->loaded_vmcs->nmi_known_unmasked =
6509 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6510 				  & GUEST_INTR_STATE_NMI);
6511 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6512 		vmx->loaded_vmcs->vnmi_blocked_time +=
6513 			ktime_to_ns(ktime_sub(ktime_get(),
6514 					      vmx->loaded_vmcs->entry_time));
6515 }
6516 
6517 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6518 				      u32 idt_vectoring_info,
6519 				      int instr_len_field,
6520 				      int error_code_field)
6521 {
6522 	u8 vector;
6523 	int type;
6524 	bool idtv_info_valid;
6525 
6526 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6527 
6528 	vcpu->arch.nmi_injected = false;
6529 	kvm_clear_exception_queue(vcpu);
6530 	kvm_clear_interrupt_queue(vcpu);
6531 
6532 	if (!idtv_info_valid)
6533 		return;
6534 
6535 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6536 
6537 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6538 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6539 
6540 	switch (type) {
6541 	case INTR_TYPE_NMI_INTR:
6542 		vcpu->arch.nmi_injected = true;
6543 		/*
6544 		 * SDM 3: 27.7.1.2 (September 2008)
6545 		 * Clear bit "block by NMI" before VM entry if a NMI
6546 		 * delivery faulted.
6547 		 */
6548 		vmx_set_nmi_mask(vcpu, false);
6549 		break;
6550 	case INTR_TYPE_SOFT_EXCEPTION:
6551 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6552 		/* fall through */
6553 	case INTR_TYPE_HARD_EXCEPTION:
6554 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6555 			u32 err = vmcs_read32(error_code_field);
6556 			kvm_requeue_exception_e(vcpu, vector, err);
6557 		} else
6558 			kvm_requeue_exception(vcpu, vector);
6559 		break;
6560 	case INTR_TYPE_SOFT_INTR:
6561 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6562 		/* fall through */
6563 	case INTR_TYPE_EXT_INTR:
6564 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6565 		break;
6566 	default:
6567 		break;
6568 	}
6569 }
6570 
6571 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6572 {
6573 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6574 				  VM_EXIT_INSTRUCTION_LEN,
6575 				  IDT_VECTORING_ERROR_CODE);
6576 }
6577 
6578 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6579 {
6580 	__vmx_complete_interrupts(vcpu,
6581 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6582 				  VM_ENTRY_INSTRUCTION_LEN,
6583 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6584 
6585 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6586 }
6587 
6588 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6589 {
6590 	int i, nr_msrs;
6591 	struct perf_guest_switch_msr *msrs;
6592 
6593 	msrs = perf_guest_get_msrs(&nr_msrs);
6594 
6595 	if (!msrs)
6596 		return;
6597 
6598 	for (i = 0; i < nr_msrs; i++)
6599 		if (msrs[i].host == msrs[i].guest)
6600 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6601 		else
6602 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6603 					msrs[i].host, false);
6604 }
6605 
6606 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6607 {
6608 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6609 	u64 tscl;
6610 	u32 delta_tsc;
6611 
6612 	if (vmx->req_immediate_exit) {
6613 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6614 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6615 	} else if (vmx->hv_deadline_tsc != -1) {
6616 		tscl = rdtsc();
6617 		if (vmx->hv_deadline_tsc > tscl)
6618 			/* set_hv_timer ensures the delta fits in 32-bits */
6619 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6620 				cpu_preemption_timer_multi);
6621 		else
6622 			delta_tsc = 0;
6623 
6624 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6625 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6626 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6627 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6628 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6629 	}
6630 }
6631 
6632 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6633 {
6634 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6635 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6636 		vmcs_writel(HOST_RSP, host_rsp);
6637 	}
6638 }
6639 
6640 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6641 {
6642 	switch (to_vmx(vcpu)->exit_reason) {
6643 	case EXIT_REASON_MSR_WRITE:
6644 		return handle_fastpath_set_msr_irqoff(vcpu);
6645 	case EXIT_REASON_PREEMPTION_TIMER:
6646 		return handle_fastpath_preemption_timer(vcpu);
6647 	default:
6648 		return EXIT_FASTPATH_NONE;
6649 	}
6650 }
6651 
6652 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6653 
6654 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6655 {
6656 	fastpath_t exit_fastpath;
6657 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6658 	unsigned long cr3, cr4;
6659 
6660 reenter_guest:
6661 	/* Record the guest's net vcpu time for enforced NMI injections. */
6662 	if (unlikely(!enable_vnmi &&
6663 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6664 		vmx->loaded_vmcs->entry_time = ktime_get();
6665 
6666 	/* Don't enter VMX if guest state is invalid, let the exit handler
6667 	   start emulation until we arrive back to a valid state */
6668 	if (vmx->emulation_required)
6669 		return EXIT_FASTPATH_NONE;
6670 
6671 	if (vmx->ple_window_dirty) {
6672 		vmx->ple_window_dirty = false;
6673 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6674 	}
6675 
6676 	/*
6677 	 * We did this in prepare_switch_to_guest, because it needs to
6678 	 * be within srcu_read_lock.
6679 	 */
6680 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6681 
6682 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6683 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6684 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6685 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6686 
6687 	cr3 = __get_current_cr3_fast();
6688 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6689 		vmcs_writel(HOST_CR3, cr3);
6690 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6691 	}
6692 
6693 	cr4 = cr4_read_shadow();
6694 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6695 		vmcs_writel(HOST_CR4, cr4);
6696 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6697 	}
6698 
6699 	/* When single-stepping over STI and MOV SS, we must clear the
6700 	 * corresponding interruptibility bits in the guest state. Otherwise
6701 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6702 	 * exceptions being set, but that's not correct for the guest debugging
6703 	 * case. */
6704 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6705 		vmx_set_interrupt_shadow(vcpu, 0);
6706 
6707 	kvm_load_guest_xsave_state(vcpu);
6708 
6709 	pt_guest_enter(vmx);
6710 
6711 	atomic_switch_perf_msrs(vmx);
6712 
6713 	if (enable_preemption_timer)
6714 		vmx_update_hv_timer(vcpu);
6715 
6716 	if (lapic_in_kernel(vcpu) &&
6717 		vcpu->arch.apic->lapic_timer.timer_advance_ns)
6718 		kvm_wait_lapic_expire(vcpu);
6719 
6720 	/*
6721 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6722 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6723 	 * is no need to worry about the conditional branch over the wrmsr
6724 	 * being speculatively taken.
6725 	 */
6726 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6727 
6728 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6729 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6730 		vmx_l1d_flush(vcpu);
6731 	else if (static_branch_unlikely(&mds_user_clear))
6732 		mds_clear_cpu_buffers();
6733 
6734 	if (vcpu->arch.cr2 != read_cr2())
6735 		write_cr2(vcpu->arch.cr2);
6736 
6737 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6738 				   vmx->loaded_vmcs->launched);
6739 
6740 	vcpu->arch.cr2 = read_cr2();
6741 
6742 	/*
6743 	 * We do not use IBRS in the kernel. If this vCPU has used the
6744 	 * SPEC_CTRL MSR it may have left it on; save the value and
6745 	 * turn it off. This is much more efficient than blindly adding
6746 	 * it to the atomic save/restore list. Especially as the former
6747 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6748 	 *
6749 	 * For non-nested case:
6750 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6751 	 * save it.
6752 	 *
6753 	 * For nested case:
6754 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6755 	 * save it.
6756 	 */
6757 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6758 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6759 
6760 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6761 
6762 	/* All fields are clean at this point */
6763 	if (static_branch_unlikely(&enable_evmcs))
6764 		current_evmcs->hv_clean_fields |=
6765 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6766 
6767 	if (static_branch_unlikely(&enable_evmcs))
6768 		current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6769 
6770 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6771 	if (vmx->host_debugctlmsr)
6772 		update_debugctlmsr(vmx->host_debugctlmsr);
6773 
6774 #ifndef CONFIG_X86_64
6775 	/*
6776 	 * The sysexit path does not restore ds/es, so we must set them to
6777 	 * a reasonable value ourselves.
6778 	 *
6779 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6780 	 * function may be executed in interrupt context, which saves and
6781 	 * restore segments around it, nullifying its effect.
6782 	 */
6783 	loadsegment(ds, __USER_DS);
6784 	loadsegment(es, __USER_DS);
6785 #endif
6786 
6787 	vmx_register_cache_reset(vcpu);
6788 
6789 	pt_guest_exit(vmx);
6790 
6791 	kvm_load_host_xsave_state(vcpu);
6792 
6793 	vmx->nested.nested_run_pending = 0;
6794 	vmx->idt_vectoring_info = 0;
6795 
6796 	if (unlikely(vmx->fail)) {
6797 		vmx->exit_reason = 0xdead;
6798 		return EXIT_FASTPATH_NONE;
6799 	}
6800 
6801 	vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6802 	if (unlikely((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY))
6803 		kvm_machine_check();
6804 
6805 	trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6806 
6807 	if (unlikely(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6808 		return EXIT_FASTPATH_NONE;
6809 
6810 	vmx->loaded_vmcs->launched = 1;
6811 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6812 
6813 	vmx_recover_nmi_blocking(vmx);
6814 	vmx_complete_interrupts(vmx);
6815 
6816 	if (is_guest_mode(vcpu))
6817 		return EXIT_FASTPATH_NONE;
6818 
6819 	exit_fastpath = vmx_exit_handlers_fastpath(vcpu);
6820 	if (exit_fastpath == EXIT_FASTPATH_REENTER_GUEST) {
6821 		if (!kvm_vcpu_exit_request(vcpu)) {
6822 			/*
6823 			 * FIXME: this goto should be a loop in vcpu_enter_guest,
6824 			 * but it would incur the cost of a retpoline for now.
6825 			 * Revisit once static calls are available.
6826 			 */
6827 			if (vcpu->arch.apicv_active)
6828 				vmx_sync_pir_to_irr(vcpu);
6829 			goto reenter_guest;
6830 		}
6831 		exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
6832 	}
6833 
6834 	return exit_fastpath;
6835 }
6836 
6837 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6838 {
6839 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6840 
6841 	if (enable_pml)
6842 		vmx_destroy_pml_buffer(vmx);
6843 	free_vpid(vmx->vpid);
6844 	nested_vmx_free_vcpu(vcpu);
6845 	free_loaded_vmcs(vmx->loaded_vmcs);
6846 }
6847 
6848 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6849 {
6850 	struct vcpu_vmx *vmx;
6851 	unsigned long *msr_bitmap;
6852 	int i, cpu, err;
6853 
6854 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6855 	vmx = to_vmx(vcpu);
6856 
6857 	err = -ENOMEM;
6858 
6859 	vmx->vpid = allocate_vpid();
6860 
6861 	/*
6862 	 * If PML is turned on, failure on enabling PML just results in failure
6863 	 * of creating the vcpu, therefore we can simplify PML logic (by
6864 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6865 	 * for the guest), etc.
6866 	 */
6867 	if (enable_pml) {
6868 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6869 		if (!vmx->pml_pg)
6870 			goto free_vpid;
6871 	}
6872 
6873 	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) != NR_SHARED_MSRS);
6874 
6875 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6876 		u32 index = vmx_msr_index[i];
6877 		u32 data_low, data_high;
6878 		int j = vmx->nmsrs;
6879 
6880 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
6881 			continue;
6882 		if (wrmsr_safe(index, data_low, data_high) < 0)
6883 			continue;
6884 
6885 		vmx->guest_msrs[j].index = i;
6886 		vmx->guest_msrs[j].data = 0;
6887 		switch (index) {
6888 		case MSR_IA32_TSX_CTRL:
6889 			/*
6890 			 * No need to pass TSX_CTRL_CPUID_CLEAR through, so
6891 			 * let's avoid changing CPUID bits under the host
6892 			 * kernel's feet.
6893 			 */
6894 			vmx->guest_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6895 			break;
6896 		default:
6897 			vmx->guest_msrs[j].mask = -1ull;
6898 			break;
6899 		}
6900 		++vmx->nmsrs;
6901 	}
6902 
6903 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6904 	if (err < 0)
6905 		goto free_pml;
6906 
6907 	msr_bitmap = vmx->vmcs01.msr_bitmap;
6908 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6909 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6910 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6911 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6912 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6913 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6914 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6915 	if (kvm_cstate_in_guest(vcpu->kvm)) {
6916 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6917 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6918 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6919 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6920 	}
6921 	vmx->msr_bitmap_mode = 0;
6922 
6923 	vmx->loaded_vmcs = &vmx->vmcs01;
6924 	cpu = get_cpu();
6925 	vmx_vcpu_load(vcpu, cpu);
6926 	vcpu->cpu = cpu;
6927 	init_vmcs(vmx);
6928 	vmx_vcpu_put(vcpu);
6929 	put_cpu();
6930 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
6931 		err = alloc_apic_access_page(vcpu->kvm);
6932 		if (err)
6933 			goto free_vmcs;
6934 	}
6935 
6936 	if (enable_ept && !enable_unrestricted_guest) {
6937 		err = init_rmode_identity_map(vcpu->kvm);
6938 		if (err)
6939 			goto free_vmcs;
6940 	}
6941 
6942 	if (nested)
6943 		nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6944 					   vmx_capability.ept);
6945 	else
6946 		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6947 
6948 	vmx->nested.posted_intr_nv = -1;
6949 	vmx->nested.current_vmptr = -1ull;
6950 
6951 	vcpu->arch.microcode_version = 0x100000000ULL;
6952 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6953 
6954 	/*
6955 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6956 	 * or POSTED_INTR_WAKEUP_VECTOR.
6957 	 */
6958 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6959 	vmx->pi_desc.sn = 1;
6960 
6961 	vmx->ept_pointer = INVALID_PAGE;
6962 
6963 	return 0;
6964 
6965 free_vmcs:
6966 	free_loaded_vmcs(vmx->loaded_vmcs);
6967 free_pml:
6968 	vmx_destroy_pml_buffer(vmx);
6969 free_vpid:
6970 	free_vpid(vmx->vpid);
6971 	return err;
6972 }
6973 
6974 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6975 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6976 
6977 static int vmx_vm_init(struct kvm *kvm)
6978 {
6979 	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6980 
6981 	if (!ple_gap)
6982 		kvm->arch.pause_in_guest = true;
6983 
6984 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6985 		switch (l1tf_mitigation) {
6986 		case L1TF_MITIGATION_OFF:
6987 		case L1TF_MITIGATION_FLUSH_NOWARN:
6988 			/* 'I explicitly don't care' is set */
6989 			break;
6990 		case L1TF_MITIGATION_FLUSH:
6991 		case L1TF_MITIGATION_FLUSH_NOSMT:
6992 		case L1TF_MITIGATION_FULL:
6993 			/*
6994 			 * Warn upon starting the first VM in a potentially
6995 			 * insecure environment.
6996 			 */
6997 			if (sched_smt_active())
6998 				pr_warn_once(L1TF_MSG_SMT);
6999 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7000 				pr_warn_once(L1TF_MSG_L1D);
7001 			break;
7002 		case L1TF_MITIGATION_FULL_FORCE:
7003 			/* Flush is enforced */
7004 			break;
7005 		}
7006 	}
7007 	kvm_apicv_init(kvm, enable_apicv);
7008 	return 0;
7009 }
7010 
7011 static int __init vmx_check_processor_compat(void)
7012 {
7013 	struct vmcs_config vmcs_conf;
7014 	struct vmx_capability vmx_cap;
7015 
7016 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7017 	    !this_cpu_has(X86_FEATURE_VMX)) {
7018 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7019 		return -EIO;
7020 	}
7021 
7022 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7023 		return -EIO;
7024 	if (nested)
7025 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7026 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7027 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7028 				smp_processor_id());
7029 		return -EIO;
7030 	}
7031 	return 0;
7032 }
7033 
7034 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7035 {
7036 	u8 cache;
7037 	u64 ipat = 0;
7038 
7039 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7040 	 * memory aliases with conflicting memory types and sometimes MCEs.
7041 	 * We have to be careful as to what are honored and when.
7042 	 *
7043 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7044 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7045 	 * This was historically the source of MCEs and we want to be
7046 	 * conservative.
7047 	 *
7048 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7049 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7050 	 * EPT memory type is set to WB.  The effective memory type is forced
7051 	 * WB.
7052 	 *
7053 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7054 	 * EPT memory type is used to emulate guest CD/MTRR.
7055 	 */
7056 
7057 	if (is_mmio) {
7058 		cache = MTRR_TYPE_UNCACHABLE;
7059 		goto exit;
7060 	}
7061 
7062 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7063 		ipat = VMX_EPT_IPAT_BIT;
7064 		cache = MTRR_TYPE_WRBACK;
7065 		goto exit;
7066 	}
7067 
7068 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7069 		ipat = VMX_EPT_IPAT_BIT;
7070 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7071 			cache = MTRR_TYPE_WRBACK;
7072 		else
7073 			cache = MTRR_TYPE_UNCACHABLE;
7074 		goto exit;
7075 	}
7076 
7077 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7078 
7079 exit:
7080 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7081 }
7082 
7083 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7084 {
7085 	/*
7086 	 * These bits in the secondary execution controls field
7087 	 * are dynamic, the others are mostly based on the hypervisor
7088 	 * architecture and the guest's CPUID.  Do not touch the
7089 	 * dynamic bits.
7090 	 */
7091 	u32 mask =
7092 		SECONDARY_EXEC_SHADOW_VMCS |
7093 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7094 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7095 		SECONDARY_EXEC_DESC;
7096 
7097 	u32 new_ctl = vmx->secondary_exec_control;
7098 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7099 
7100 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7101 }
7102 
7103 /*
7104  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7105  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7106  */
7107 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7108 {
7109 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7110 	struct kvm_cpuid_entry2 *entry;
7111 
7112 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7113 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7114 
7115 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7116 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7117 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7118 } while (0)
7119 
7120 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7121 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7122 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7123 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7124 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7125 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7126 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7127 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7128 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7129 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7130 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7131 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7132 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7133 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7134 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7135 
7136 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7137 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7138 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7139 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7140 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7141 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7142 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7143 
7144 #undef cr4_fixed1_update
7145 }
7146 
7147 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7148 {
7149 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7150 
7151 	if (kvm_mpx_supported()) {
7152 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7153 
7154 		if (mpx_enabled) {
7155 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7156 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7157 		} else {
7158 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7159 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7160 		}
7161 	}
7162 }
7163 
7164 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7165 {
7166 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7167 	struct kvm_cpuid_entry2 *best = NULL;
7168 	int i;
7169 
7170 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7171 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7172 		if (!best)
7173 			return;
7174 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7175 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7176 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7177 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7178 	}
7179 
7180 	/* Get the number of configurable Address Ranges for filtering */
7181 	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7182 						PT_CAP_num_address_ranges);
7183 
7184 	/* Initialize and clear the no dependency bits */
7185 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7186 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7187 
7188 	/*
7189 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7190 	 * will inject an #GP
7191 	 */
7192 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7193 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7194 
7195 	/*
7196 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7197 	 * PSBFreq can be set
7198 	 */
7199 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7200 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7201 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7202 
7203 	/*
7204 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7205 	 * MTCFreq can be set
7206 	 */
7207 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7208 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7209 				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7210 
7211 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7212 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7213 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7214 							RTIT_CTL_PTW_EN);
7215 
7216 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7217 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7218 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7219 
7220 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7221 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7222 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7223 
7224 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7225 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7226 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7227 
7228 	/* unmask address range configure area */
7229 	for (i = 0; i < vmx->pt_desc.addr_range; i++)
7230 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7231 }
7232 
7233 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7234 {
7235 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7236 
7237 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7238 	vcpu->arch.xsaves_enabled = false;
7239 
7240 	if (cpu_has_secondary_exec_ctrls()) {
7241 		vmx_compute_secondary_exec_control(vmx);
7242 		vmcs_set_secondary_exec_control(vmx);
7243 	}
7244 
7245 	if (nested_vmx_allowed(vcpu))
7246 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7247 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7248 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7249 	else
7250 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7251 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7252 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7253 
7254 	if (nested_vmx_allowed(vcpu)) {
7255 		nested_vmx_cr_fixed1_bits_update(vcpu);
7256 		nested_vmx_entry_exit_ctls_update(vcpu);
7257 	}
7258 
7259 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7260 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7261 		update_intel_pt_cfg(vcpu);
7262 
7263 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7264 		struct shared_msr_entry *msr;
7265 		msr = find_msr_entry(vmx, MSR_IA32_TSX_CTRL);
7266 		if (msr) {
7267 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7268 			vmx_set_guest_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7269 		}
7270 	}
7271 }
7272 
7273 static __init void vmx_set_cpu_caps(void)
7274 {
7275 	kvm_set_cpu_caps();
7276 
7277 	/* CPUID 0x1 */
7278 	if (nested)
7279 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7280 
7281 	/* CPUID 0x7 */
7282 	if (kvm_mpx_supported())
7283 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7284 	if (cpu_has_vmx_invpcid())
7285 		kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7286 	if (vmx_pt_mode_is_host_guest())
7287 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7288 
7289 	if (vmx_umip_emulated())
7290 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7291 
7292 	/* CPUID 0xD.1 */
7293 	supported_xss = 0;
7294 	if (!vmx_xsaves_supported())
7295 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7296 
7297 	/* CPUID 0x80000001 */
7298 	if (!cpu_has_vmx_rdtscp())
7299 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7300 
7301 	if (vmx_waitpkg_supported())
7302 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7303 }
7304 
7305 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7306 {
7307 	to_vmx(vcpu)->req_immediate_exit = true;
7308 }
7309 
7310 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7311 				  struct x86_instruction_info *info)
7312 {
7313 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7314 	unsigned short port;
7315 	bool intercept;
7316 	int size;
7317 
7318 	if (info->intercept == x86_intercept_in ||
7319 	    info->intercept == x86_intercept_ins) {
7320 		port = info->src_val;
7321 		size = info->dst_bytes;
7322 	} else {
7323 		port = info->dst_val;
7324 		size = info->src_bytes;
7325 	}
7326 
7327 	/*
7328 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7329 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7330 	 * control.
7331 	 *
7332 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7333 	 */
7334 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7335 		intercept = nested_cpu_has(vmcs12,
7336 					   CPU_BASED_UNCOND_IO_EXITING);
7337 	else
7338 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7339 
7340 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7341 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7342 }
7343 
7344 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7345 			       struct x86_instruction_info *info,
7346 			       enum x86_intercept_stage stage,
7347 			       struct x86_exception *exception)
7348 {
7349 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7350 
7351 	switch (info->intercept) {
7352 	/*
7353 	 * RDPID causes #UD if disabled through secondary execution controls.
7354 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7355 	 */
7356 	case x86_intercept_rdtscp:
7357 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7358 			exception->vector = UD_VECTOR;
7359 			exception->error_code_valid = false;
7360 			return X86EMUL_PROPAGATE_FAULT;
7361 		}
7362 		break;
7363 
7364 	case x86_intercept_in:
7365 	case x86_intercept_ins:
7366 	case x86_intercept_out:
7367 	case x86_intercept_outs:
7368 		return vmx_check_intercept_io(vcpu, info);
7369 
7370 	case x86_intercept_lgdt:
7371 	case x86_intercept_lidt:
7372 	case x86_intercept_lldt:
7373 	case x86_intercept_ltr:
7374 	case x86_intercept_sgdt:
7375 	case x86_intercept_sidt:
7376 	case x86_intercept_sldt:
7377 	case x86_intercept_str:
7378 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7379 			return X86EMUL_CONTINUE;
7380 
7381 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7382 		break;
7383 
7384 	/* TODO: check more intercepts... */
7385 	default:
7386 		break;
7387 	}
7388 
7389 	return X86EMUL_UNHANDLEABLE;
7390 }
7391 
7392 #ifdef CONFIG_X86_64
7393 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7394 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7395 				  u64 divisor, u64 *result)
7396 {
7397 	u64 low = a << shift, high = a >> (64 - shift);
7398 
7399 	/* To avoid the overflow on divq */
7400 	if (high >= divisor)
7401 		return 1;
7402 
7403 	/* Low hold the result, high hold rem which is discarded */
7404 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7405 	    "rm" (divisor), "0" (low), "1" (high));
7406 	*result = low;
7407 
7408 	return 0;
7409 }
7410 
7411 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7412 			    bool *expired)
7413 {
7414 	struct vcpu_vmx *vmx;
7415 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7416 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7417 
7418 	vmx = to_vmx(vcpu);
7419 	tscl = rdtsc();
7420 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7421 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7422 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7423 						    ktimer->timer_advance_ns);
7424 
7425 	if (delta_tsc > lapic_timer_advance_cycles)
7426 		delta_tsc -= lapic_timer_advance_cycles;
7427 	else
7428 		delta_tsc = 0;
7429 
7430 	/* Convert to host delta tsc if tsc scaling is enabled */
7431 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7432 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7433 				kvm_tsc_scaling_ratio_frac_bits,
7434 				vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7435 		return -ERANGE;
7436 
7437 	/*
7438 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7439 	 * we can't use the preemption timer.
7440 	 * It's possible that it fits on later vmentries, but checking
7441 	 * on every vmentry is costly so we just use an hrtimer.
7442 	 */
7443 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7444 		return -ERANGE;
7445 
7446 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7447 	*expired = !delta_tsc;
7448 	return 0;
7449 }
7450 
7451 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7452 {
7453 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7454 }
7455 #endif
7456 
7457 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7458 {
7459 	if (!kvm_pause_in_guest(vcpu->kvm))
7460 		shrink_ple_window(vcpu);
7461 }
7462 
7463 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7464 				     struct kvm_memory_slot *slot)
7465 {
7466 	if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7467 		kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7468 	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7469 }
7470 
7471 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7472 				       struct kvm_memory_slot *slot)
7473 {
7474 	kvm_mmu_slot_set_dirty(kvm, slot);
7475 }
7476 
7477 static void vmx_flush_log_dirty(struct kvm *kvm)
7478 {
7479 	kvm_flush_pml_buffers(kvm);
7480 }
7481 
7482 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
7483 {
7484 	struct vmcs12 *vmcs12;
7485 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7486 	gpa_t dst;
7487 
7488 	if (is_guest_mode(vcpu)) {
7489 		WARN_ON_ONCE(vmx->nested.pml_full);
7490 
7491 		/*
7492 		 * Check if PML is enabled for the nested guest.
7493 		 * Whether eptp bit 6 is set is already checked
7494 		 * as part of A/D emulation.
7495 		 */
7496 		vmcs12 = get_vmcs12(vcpu);
7497 		if (!nested_cpu_has_pml(vmcs12))
7498 			return 0;
7499 
7500 		if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7501 			vmx->nested.pml_full = true;
7502 			return 1;
7503 		}
7504 
7505 		gpa &= ~0xFFFull;
7506 		dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7507 
7508 		if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7509 					 offset_in_page(dst), sizeof(gpa)))
7510 			return 0;
7511 
7512 		vmcs12->guest_pml_index--;
7513 	}
7514 
7515 	return 0;
7516 }
7517 
7518 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7519 					   struct kvm_memory_slot *memslot,
7520 					   gfn_t offset, unsigned long mask)
7521 {
7522 	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7523 }
7524 
7525 static void __pi_post_block(struct kvm_vcpu *vcpu)
7526 {
7527 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7528 	struct pi_desc old, new;
7529 	unsigned int dest;
7530 
7531 	do {
7532 		old.control = new.control = pi_desc->control;
7533 		WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7534 		     "Wakeup handler not enabled while the VCPU is blocked\n");
7535 
7536 		dest = cpu_physical_id(vcpu->cpu);
7537 
7538 		if (x2apic_enabled())
7539 			new.ndst = dest;
7540 		else
7541 			new.ndst = (dest << 8) & 0xFF00;
7542 
7543 		/* set 'NV' to 'notification vector' */
7544 		new.nv = POSTED_INTR_VECTOR;
7545 	} while (cmpxchg64(&pi_desc->control, old.control,
7546 			   new.control) != old.control);
7547 
7548 	if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7549 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7550 		list_del(&vcpu->blocked_vcpu_list);
7551 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7552 		vcpu->pre_pcpu = -1;
7553 	}
7554 }
7555 
7556 /*
7557  * This routine does the following things for vCPU which is going
7558  * to be blocked if VT-d PI is enabled.
7559  * - Store the vCPU to the wakeup list, so when interrupts happen
7560  *   we can find the right vCPU to wake up.
7561  * - Change the Posted-interrupt descriptor as below:
7562  *      'NDST' <-- vcpu->pre_pcpu
7563  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7564  * - If 'ON' is set during this process, which means at least one
7565  *   interrupt is posted for this vCPU, we cannot block it, in
7566  *   this case, return 1, otherwise, return 0.
7567  *
7568  */
7569 static int pi_pre_block(struct kvm_vcpu *vcpu)
7570 {
7571 	unsigned int dest;
7572 	struct pi_desc old, new;
7573 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7574 
7575 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7576 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
7577 		!kvm_vcpu_apicv_active(vcpu))
7578 		return 0;
7579 
7580 	WARN_ON(irqs_disabled());
7581 	local_irq_disable();
7582 	if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7583 		vcpu->pre_pcpu = vcpu->cpu;
7584 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7585 		list_add_tail(&vcpu->blocked_vcpu_list,
7586 			      &per_cpu(blocked_vcpu_on_cpu,
7587 				       vcpu->pre_pcpu));
7588 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7589 	}
7590 
7591 	do {
7592 		old.control = new.control = pi_desc->control;
7593 
7594 		WARN((pi_desc->sn == 1),
7595 		     "Warning: SN field of posted-interrupts "
7596 		     "is set before blocking\n");
7597 
7598 		/*
7599 		 * Since vCPU can be preempted during this process,
7600 		 * vcpu->cpu could be different with pre_pcpu, we
7601 		 * need to set pre_pcpu as the destination of wakeup
7602 		 * notification event, then we can find the right vCPU
7603 		 * to wakeup in wakeup handler if interrupts happen
7604 		 * when the vCPU is in blocked state.
7605 		 */
7606 		dest = cpu_physical_id(vcpu->pre_pcpu);
7607 
7608 		if (x2apic_enabled())
7609 			new.ndst = dest;
7610 		else
7611 			new.ndst = (dest << 8) & 0xFF00;
7612 
7613 		/* set 'NV' to 'wakeup vector' */
7614 		new.nv = POSTED_INTR_WAKEUP_VECTOR;
7615 	} while (cmpxchg64(&pi_desc->control, old.control,
7616 			   new.control) != old.control);
7617 
7618 	/* We should not block the vCPU if an interrupt is posted for it.  */
7619 	if (pi_test_on(pi_desc) == 1)
7620 		__pi_post_block(vcpu);
7621 
7622 	local_irq_enable();
7623 	return (vcpu->pre_pcpu == -1);
7624 }
7625 
7626 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7627 {
7628 	if (pi_pre_block(vcpu))
7629 		return 1;
7630 
7631 	if (kvm_lapic_hv_timer_in_use(vcpu))
7632 		kvm_lapic_switch_to_sw_timer(vcpu);
7633 
7634 	return 0;
7635 }
7636 
7637 static void pi_post_block(struct kvm_vcpu *vcpu)
7638 {
7639 	if (vcpu->pre_pcpu == -1)
7640 		return;
7641 
7642 	WARN_ON(irqs_disabled());
7643 	local_irq_disable();
7644 	__pi_post_block(vcpu);
7645 	local_irq_enable();
7646 }
7647 
7648 static void vmx_post_block(struct kvm_vcpu *vcpu)
7649 {
7650 	if (kvm_x86_ops.set_hv_timer)
7651 		kvm_lapic_switch_to_hv_timer(vcpu);
7652 
7653 	pi_post_block(vcpu);
7654 }
7655 
7656 /*
7657  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7658  *
7659  * @kvm: kvm
7660  * @host_irq: host irq of the interrupt
7661  * @guest_irq: gsi of the interrupt
7662  * @set: set or unset PI
7663  * returns 0 on success, < 0 on failure
7664  */
7665 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7666 			      uint32_t guest_irq, bool set)
7667 {
7668 	struct kvm_kernel_irq_routing_entry *e;
7669 	struct kvm_irq_routing_table *irq_rt;
7670 	struct kvm_lapic_irq irq;
7671 	struct kvm_vcpu *vcpu;
7672 	struct vcpu_data vcpu_info;
7673 	int idx, ret = 0;
7674 
7675 	if (!kvm_arch_has_assigned_device(kvm) ||
7676 		!irq_remapping_cap(IRQ_POSTING_CAP) ||
7677 		!kvm_vcpu_apicv_active(kvm->vcpus[0]))
7678 		return 0;
7679 
7680 	idx = srcu_read_lock(&kvm->irq_srcu);
7681 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7682 	if (guest_irq >= irq_rt->nr_rt_entries ||
7683 	    hlist_empty(&irq_rt->map[guest_irq])) {
7684 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7685 			     guest_irq, irq_rt->nr_rt_entries);
7686 		goto out;
7687 	}
7688 
7689 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7690 		if (e->type != KVM_IRQ_ROUTING_MSI)
7691 			continue;
7692 		/*
7693 		 * VT-d PI cannot support posting multicast/broadcast
7694 		 * interrupts to a vCPU, we still use interrupt remapping
7695 		 * for these kind of interrupts.
7696 		 *
7697 		 * For lowest-priority interrupts, we only support
7698 		 * those with single CPU as the destination, e.g. user
7699 		 * configures the interrupts via /proc/irq or uses
7700 		 * irqbalance to make the interrupts single-CPU.
7701 		 *
7702 		 * We will support full lowest-priority interrupt later.
7703 		 *
7704 		 * In addition, we can only inject generic interrupts using
7705 		 * the PI mechanism, refuse to route others through it.
7706 		 */
7707 
7708 		kvm_set_msi_irq(kvm, e, &irq);
7709 		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7710 		    !kvm_irq_is_postable(&irq)) {
7711 			/*
7712 			 * Make sure the IRTE is in remapped mode if
7713 			 * we don't handle it in posted mode.
7714 			 */
7715 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7716 			if (ret < 0) {
7717 				printk(KERN_INFO
7718 				   "failed to back to remapped mode, irq: %u\n",
7719 				   host_irq);
7720 				goto out;
7721 			}
7722 
7723 			continue;
7724 		}
7725 
7726 		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7727 		vcpu_info.vector = irq.vector;
7728 
7729 		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7730 				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7731 
7732 		if (set)
7733 			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7734 		else
7735 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7736 
7737 		if (ret < 0) {
7738 			printk(KERN_INFO "%s: failed to update PI IRTE\n",
7739 					__func__);
7740 			goto out;
7741 		}
7742 	}
7743 
7744 	ret = 0;
7745 out:
7746 	srcu_read_unlock(&kvm->irq_srcu, idx);
7747 	return ret;
7748 }
7749 
7750 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7751 {
7752 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7753 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7754 			FEAT_CTL_LMCE_ENABLED;
7755 	else
7756 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7757 			~FEAT_CTL_LMCE_ENABLED;
7758 }
7759 
7760 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7761 {
7762 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7763 	if (to_vmx(vcpu)->nested.nested_run_pending)
7764 		return -EBUSY;
7765 	return !is_smm(vcpu);
7766 }
7767 
7768 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7769 {
7770 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7771 
7772 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7773 	if (vmx->nested.smm.guest_mode)
7774 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7775 
7776 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7777 	vmx->nested.vmxon = false;
7778 	vmx_clear_hlt(vcpu);
7779 	return 0;
7780 }
7781 
7782 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7783 {
7784 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7785 	int ret;
7786 
7787 	if (vmx->nested.smm.vmxon) {
7788 		vmx->nested.vmxon = true;
7789 		vmx->nested.smm.vmxon = false;
7790 	}
7791 
7792 	if (vmx->nested.smm.guest_mode) {
7793 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7794 		if (ret)
7795 			return ret;
7796 
7797 		vmx->nested.smm.guest_mode = false;
7798 	}
7799 	return 0;
7800 }
7801 
7802 static void enable_smi_window(struct kvm_vcpu *vcpu)
7803 {
7804 	/* RSM will cause a vmexit anyway.  */
7805 }
7806 
7807 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7808 {
7809 	return false;
7810 }
7811 
7812 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7813 {
7814 	return to_vmx(vcpu)->nested.vmxon;
7815 }
7816 
7817 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7818 {
7819 	if (is_guest_mode(vcpu)) {
7820 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7821 
7822 		if (hrtimer_try_to_cancel(timer) == 1)
7823 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7824 	}
7825 }
7826 
7827 static void hardware_unsetup(void)
7828 {
7829 	if (nested)
7830 		nested_vmx_hardware_unsetup();
7831 
7832 	free_kvm_area();
7833 }
7834 
7835 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7836 {
7837 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7838 			  BIT(APICV_INHIBIT_REASON_HYPERV);
7839 
7840 	return supported & BIT(bit);
7841 }
7842 
7843 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7844 	.hardware_unsetup = hardware_unsetup,
7845 
7846 	.hardware_enable = hardware_enable,
7847 	.hardware_disable = hardware_disable,
7848 	.cpu_has_accelerated_tpr = report_flexpriority,
7849 	.has_emulated_msr = vmx_has_emulated_msr,
7850 
7851 	.vm_size = sizeof(struct kvm_vmx),
7852 	.vm_init = vmx_vm_init,
7853 
7854 	.vcpu_create = vmx_create_vcpu,
7855 	.vcpu_free = vmx_free_vcpu,
7856 	.vcpu_reset = vmx_vcpu_reset,
7857 
7858 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7859 	.vcpu_load = vmx_vcpu_load,
7860 	.vcpu_put = vmx_vcpu_put,
7861 
7862 	.update_bp_intercept = update_exception_bitmap,
7863 	.get_msr_feature = vmx_get_msr_feature,
7864 	.get_msr = vmx_get_msr,
7865 	.set_msr = vmx_set_msr,
7866 	.get_segment_base = vmx_get_segment_base,
7867 	.get_segment = vmx_get_segment,
7868 	.set_segment = vmx_set_segment,
7869 	.get_cpl = vmx_get_cpl,
7870 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7871 	.set_cr0 = vmx_set_cr0,
7872 	.set_cr4 = vmx_set_cr4,
7873 	.set_efer = vmx_set_efer,
7874 	.get_idt = vmx_get_idt,
7875 	.set_idt = vmx_set_idt,
7876 	.get_gdt = vmx_get_gdt,
7877 	.set_gdt = vmx_set_gdt,
7878 	.set_dr7 = vmx_set_dr7,
7879 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7880 	.cache_reg = vmx_cache_reg,
7881 	.get_rflags = vmx_get_rflags,
7882 	.set_rflags = vmx_set_rflags,
7883 
7884 	.tlb_flush_all = vmx_flush_tlb_all,
7885 	.tlb_flush_current = vmx_flush_tlb_current,
7886 	.tlb_flush_gva = vmx_flush_tlb_gva,
7887 	.tlb_flush_guest = vmx_flush_tlb_guest,
7888 
7889 	.run = vmx_vcpu_run,
7890 	.handle_exit = vmx_handle_exit,
7891 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7892 	.update_emulated_instruction = vmx_update_emulated_instruction,
7893 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7894 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7895 	.patch_hypercall = vmx_patch_hypercall,
7896 	.set_irq = vmx_inject_irq,
7897 	.set_nmi = vmx_inject_nmi,
7898 	.queue_exception = vmx_queue_exception,
7899 	.cancel_injection = vmx_cancel_injection,
7900 	.interrupt_allowed = vmx_interrupt_allowed,
7901 	.nmi_allowed = vmx_nmi_allowed,
7902 	.get_nmi_mask = vmx_get_nmi_mask,
7903 	.set_nmi_mask = vmx_set_nmi_mask,
7904 	.enable_nmi_window = enable_nmi_window,
7905 	.enable_irq_window = enable_irq_window,
7906 	.update_cr8_intercept = update_cr8_intercept,
7907 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7908 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7909 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7910 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7911 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7912 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7913 	.hwapic_irr_update = vmx_hwapic_irr_update,
7914 	.hwapic_isr_update = vmx_hwapic_isr_update,
7915 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7916 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7917 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7918 	.dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7919 
7920 	.set_tss_addr = vmx_set_tss_addr,
7921 	.set_identity_map_addr = vmx_set_identity_map_addr,
7922 	.get_tdp_level = vmx_get_tdp_level,
7923 	.get_mt_mask = vmx_get_mt_mask,
7924 
7925 	.get_exit_info = vmx_get_exit_info,
7926 
7927 	.cpuid_update = vmx_cpuid_update,
7928 
7929 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7930 
7931 	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7932 
7933 	.load_mmu_pgd = vmx_load_mmu_pgd,
7934 
7935 	.check_intercept = vmx_check_intercept,
7936 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7937 
7938 	.request_immediate_exit = vmx_request_immediate_exit,
7939 
7940 	.sched_in = vmx_sched_in,
7941 
7942 	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7943 	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7944 	.flush_log_dirty = vmx_flush_log_dirty,
7945 	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7946 	.write_log_dirty = vmx_write_pml_buffer,
7947 
7948 	.pre_block = vmx_pre_block,
7949 	.post_block = vmx_post_block,
7950 
7951 	.pmu_ops = &intel_pmu_ops,
7952 	.nested_ops = &vmx_nested_ops,
7953 
7954 	.update_pi_irte = vmx_update_pi_irte,
7955 
7956 #ifdef CONFIG_X86_64
7957 	.set_hv_timer = vmx_set_hv_timer,
7958 	.cancel_hv_timer = vmx_cancel_hv_timer,
7959 #endif
7960 
7961 	.setup_mce = vmx_setup_mce,
7962 
7963 	.smi_allowed = vmx_smi_allowed,
7964 	.pre_enter_smm = vmx_pre_enter_smm,
7965 	.pre_leave_smm = vmx_pre_leave_smm,
7966 	.enable_smi_window = enable_smi_window,
7967 
7968 	.need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7969 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7970 	.migrate_timers = vmx_migrate_timers,
7971 };
7972 
7973 static __init int hardware_setup(void)
7974 {
7975 	unsigned long host_bndcfgs;
7976 	struct desc_ptr dt;
7977 	int r, i, ept_lpage_level;
7978 
7979 	store_idt(&dt);
7980 	host_idt_base = dt.address;
7981 
7982 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7983 		kvm_define_shared_msr(i, vmx_msr_index[i]);
7984 
7985 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7986 		return -EIO;
7987 
7988 	if (boot_cpu_has(X86_FEATURE_NX))
7989 		kvm_enable_efer_bits(EFER_NX);
7990 
7991 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7992 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7993 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7994 	}
7995 
7996 	if (!cpu_has_vmx_mpx())
7997 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7998 				    XFEATURE_MASK_BNDCSR);
7999 
8000 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8001 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8002 		enable_vpid = 0;
8003 
8004 	if (!cpu_has_vmx_ept() ||
8005 	    !cpu_has_vmx_ept_4levels() ||
8006 	    !cpu_has_vmx_ept_mt_wb() ||
8007 	    !cpu_has_vmx_invept_global())
8008 		enable_ept = 0;
8009 
8010 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8011 		enable_ept_ad_bits = 0;
8012 
8013 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8014 		enable_unrestricted_guest = 0;
8015 
8016 	if (!cpu_has_vmx_flexpriority())
8017 		flexpriority_enabled = 0;
8018 
8019 	if (!cpu_has_virtual_nmis())
8020 		enable_vnmi = 0;
8021 
8022 	/*
8023 	 * set_apic_access_page_addr() is used to reload apic access
8024 	 * page upon invalidation.  No need to do anything if not
8025 	 * using the APIC_ACCESS_ADDR VMCS field.
8026 	 */
8027 	if (!flexpriority_enabled)
8028 		vmx_x86_ops.set_apic_access_page_addr = NULL;
8029 
8030 	if (!cpu_has_vmx_tpr_shadow())
8031 		vmx_x86_ops.update_cr8_intercept = NULL;
8032 
8033 #if IS_ENABLED(CONFIG_HYPERV)
8034 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8035 	    && enable_ept) {
8036 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
8037 		vmx_x86_ops.tlb_remote_flush_with_range =
8038 				hv_remote_flush_tlb_with_range;
8039 	}
8040 #endif
8041 
8042 	if (!cpu_has_vmx_ple()) {
8043 		ple_gap = 0;
8044 		ple_window = 0;
8045 		ple_window_grow = 0;
8046 		ple_window_max = 0;
8047 		ple_window_shrink = 0;
8048 	}
8049 
8050 	if (!cpu_has_vmx_apicv()) {
8051 		enable_apicv = 0;
8052 		vmx_x86_ops.sync_pir_to_irr = NULL;
8053 	}
8054 
8055 	if (cpu_has_vmx_tsc_scaling()) {
8056 		kvm_has_tsc_control = true;
8057 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8058 		kvm_tsc_scaling_ratio_frac_bits = 48;
8059 	}
8060 
8061 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8062 
8063 	if (enable_ept)
8064 		vmx_enable_tdp();
8065 
8066 	if (!enable_ept)
8067 		ept_lpage_level = 0;
8068 	else if (cpu_has_vmx_ept_1g_page())
8069 		ept_lpage_level = PG_LEVEL_1G;
8070 	else if (cpu_has_vmx_ept_2m_page())
8071 		ept_lpage_level = PG_LEVEL_2M;
8072 	else
8073 		ept_lpage_level = PG_LEVEL_4K;
8074 	kvm_configure_mmu(enable_ept, ept_lpage_level);
8075 
8076 	/*
8077 	 * Only enable PML when hardware supports PML feature, and both EPT
8078 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8079 	 */
8080 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8081 		enable_pml = 0;
8082 
8083 	if (!enable_pml) {
8084 		vmx_x86_ops.slot_enable_log_dirty = NULL;
8085 		vmx_x86_ops.slot_disable_log_dirty = NULL;
8086 		vmx_x86_ops.flush_log_dirty = NULL;
8087 		vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
8088 	}
8089 
8090 	if (!cpu_has_vmx_preemption_timer())
8091 		enable_preemption_timer = false;
8092 
8093 	if (enable_preemption_timer) {
8094 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8095 		u64 vmx_msr;
8096 
8097 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
8098 		cpu_preemption_timer_multi =
8099 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8100 
8101 		if (tsc_khz)
8102 			use_timer_freq = (u64)tsc_khz * 1000;
8103 		use_timer_freq >>= cpu_preemption_timer_multi;
8104 
8105 		/*
8106 		 * KVM "disables" the preemption timer by setting it to its max
8107 		 * value.  Don't use the timer if it might cause spurious exits
8108 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8109 		 */
8110 		if (use_timer_freq > 0xffffffffu / 10)
8111 			enable_preemption_timer = false;
8112 	}
8113 
8114 	if (!enable_preemption_timer) {
8115 		vmx_x86_ops.set_hv_timer = NULL;
8116 		vmx_x86_ops.cancel_hv_timer = NULL;
8117 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8118 	}
8119 
8120 	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
8121 
8122 	kvm_mce_cap_supported |= MCG_LMCE_P;
8123 
8124 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8125 		return -EINVAL;
8126 	if (!enable_ept || !cpu_has_vmx_intel_pt())
8127 		pt_mode = PT_MODE_SYSTEM;
8128 
8129 	if (nested) {
8130 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8131 					   vmx_capability.ept);
8132 
8133 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8134 		if (r)
8135 			return r;
8136 	}
8137 
8138 	vmx_set_cpu_caps();
8139 
8140 	r = alloc_kvm_area();
8141 	if (r)
8142 		nested_vmx_hardware_unsetup();
8143 	return r;
8144 }
8145 
8146 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8147 	.cpu_has_kvm_support = cpu_has_kvm_support,
8148 	.disabled_by_bios = vmx_disabled_by_bios,
8149 	.check_processor_compatibility = vmx_check_processor_compat,
8150 	.hardware_setup = hardware_setup,
8151 
8152 	.runtime_ops = &vmx_x86_ops,
8153 };
8154 
8155 static void vmx_cleanup_l1d_flush(void)
8156 {
8157 	if (vmx_l1d_flush_pages) {
8158 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8159 		vmx_l1d_flush_pages = NULL;
8160 	}
8161 	/* Restore state so sysfs ignores VMX */
8162 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8163 }
8164 
8165 static void vmx_exit(void)
8166 {
8167 #ifdef CONFIG_KEXEC_CORE
8168 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8169 	synchronize_rcu();
8170 #endif
8171 
8172 	kvm_exit();
8173 
8174 #if IS_ENABLED(CONFIG_HYPERV)
8175 	if (static_branch_unlikely(&enable_evmcs)) {
8176 		int cpu;
8177 		struct hv_vp_assist_page *vp_ap;
8178 		/*
8179 		 * Reset everything to support using non-enlightened VMCS
8180 		 * access later (e.g. when we reload the module with
8181 		 * enlightened_vmcs=0)
8182 		 */
8183 		for_each_online_cpu(cpu) {
8184 			vp_ap =	hv_get_vp_assist_page(cpu);
8185 
8186 			if (!vp_ap)
8187 				continue;
8188 
8189 			vp_ap->nested_control.features.directhypercall = 0;
8190 			vp_ap->current_nested_vmcs = 0;
8191 			vp_ap->enlighten_vmentry = 0;
8192 		}
8193 
8194 		static_branch_disable(&enable_evmcs);
8195 	}
8196 #endif
8197 	vmx_cleanup_l1d_flush();
8198 }
8199 module_exit(vmx_exit);
8200 
8201 static int __init vmx_init(void)
8202 {
8203 	int r, cpu;
8204 
8205 #if IS_ENABLED(CONFIG_HYPERV)
8206 	/*
8207 	 * Enlightened VMCS usage should be recommended and the host needs
8208 	 * to support eVMCS v1 or above. We can also disable eVMCS support
8209 	 * with module parameter.
8210 	 */
8211 	if (enlightened_vmcs &&
8212 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8213 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8214 	    KVM_EVMCS_VERSION) {
8215 		int cpu;
8216 
8217 		/* Check that we have assist pages on all online CPUs */
8218 		for_each_online_cpu(cpu) {
8219 			if (!hv_get_vp_assist_page(cpu)) {
8220 				enlightened_vmcs = false;
8221 				break;
8222 			}
8223 		}
8224 
8225 		if (enlightened_vmcs) {
8226 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8227 			static_branch_enable(&enable_evmcs);
8228 		}
8229 
8230 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8231 			vmx_x86_ops.enable_direct_tlbflush
8232 				= hv_enable_direct_tlbflush;
8233 
8234 	} else {
8235 		enlightened_vmcs = false;
8236 	}
8237 #endif
8238 
8239 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8240 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8241 	if (r)
8242 		return r;
8243 
8244 	/*
8245 	 * Must be called after kvm_init() so enable_ept is properly set
8246 	 * up. Hand the parameter mitigation value in which was stored in
8247 	 * the pre module init parser. If no parameter was given, it will
8248 	 * contain 'auto' which will be turned into the default 'cond'
8249 	 * mitigation mode.
8250 	 */
8251 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8252 	if (r) {
8253 		vmx_exit();
8254 		return r;
8255 	}
8256 
8257 	for_each_possible_cpu(cpu) {
8258 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8259 		INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
8260 		spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8261 	}
8262 
8263 #ifdef CONFIG_KEXEC_CORE
8264 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8265 			   crash_vmclear_local_loaded_vmcss);
8266 #endif
8267 	vmx_check_vmcs12_offsets();
8268 
8269 	return 0;
8270 }
8271 module_init(vmx_init);
8272