1 /* 2 * Kernel-based Virtual Machine driver for Linux 3 * 4 * This module enables machines with Intel VT-x extensions to run virtual 5 * machines without emulation or binary translation. 6 * 7 * Copyright (C) 2006 Qumranet, Inc. 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 9 * 10 * Authors: 11 * Avi Kivity <avi@qumranet.com> 12 * Yaniv Kamay <yaniv@qumranet.com> 13 * 14 * This work is licensed under the terms of the GNU GPL, version 2. See 15 * the COPYING file in the top-level directory. 16 * 17 */ 18 19 #include <linux/frame.h> 20 #include <linux/highmem.h> 21 #include <linux/hrtimer.h> 22 #include <linux/kernel.h> 23 #include <linux/kvm_host.h> 24 #include <linux/module.h> 25 #include <linux/moduleparam.h> 26 #include <linux/mod_devicetable.h> 27 #include <linux/mm.h> 28 #include <linux/sched.h> 29 #include <linux/sched/smt.h> 30 #include <linux/slab.h> 31 #include <linux/tboot.h> 32 #include <linux/trace_events.h> 33 34 #include <asm/apic.h> 35 #include <asm/asm.h> 36 #include <asm/cpu.h> 37 #include <asm/debugreg.h> 38 #include <asm/desc.h> 39 #include <asm/fpu/internal.h> 40 #include <asm/io.h> 41 #include <asm/irq_remapping.h> 42 #include <asm/kexec.h> 43 #include <asm/perf_event.h> 44 #include <asm/mce.h> 45 #include <asm/mmu_context.h> 46 #include <asm/mshyperv.h> 47 #include <asm/spec-ctrl.h> 48 #include <asm/virtext.h> 49 #include <asm/vmx.h> 50 51 #include "capabilities.h" 52 #include "cpuid.h" 53 #include "evmcs.h" 54 #include "irq.h" 55 #include "kvm_cache_regs.h" 56 #include "lapic.h" 57 #include "mmu.h" 58 #include "nested.h" 59 #include "ops.h" 60 #include "pmu.h" 61 #include "trace.h" 62 #include "vmcs.h" 63 #include "vmcs12.h" 64 #include "vmx.h" 65 #include "x86.h" 66 67 MODULE_AUTHOR("Qumranet"); 68 MODULE_LICENSE("GPL"); 69 70 static const struct x86_cpu_id vmx_cpu_id[] = { 71 X86_FEATURE_MATCH(X86_FEATURE_VMX), 72 {} 73 }; 74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 75 76 bool __read_mostly enable_vpid = 1; 77 module_param_named(vpid, enable_vpid, bool, 0444); 78 79 static bool __read_mostly enable_vnmi = 1; 80 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 81 82 bool __read_mostly flexpriority_enabled = 1; 83 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 84 85 bool __read_mostly enable_ept = 1; 86 module_param_named(ept, enable_ept, bool, S_IRUGO); 87 88 bool __read_mostly enable_unrestricted_guest = 1; 89 module_param_named(unrestricted_guest, 90 enable_unrestricted_guest, bool, S_IRUGO); 91 92 bool __read_mostly enable_ept_ad_bits = 1; 93 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 94 95 static bool __read_mostly emulate_invalid_guest_state = true; 96 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 97 98 static bool __read_mostly fasteoi = 1; 99 module_param(fasteoi, bool, S_IRUGO); 100 101 static bool __read_mostly enable_apicv = 1; 102 module_param(enable_apicv, bool, S_IRUGO); 103 104 /* 105 * If nested=1, nested virtualization is supported, i.e., guests may use 106 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 107 * use VMX instructions. 108 */ 109 static bool __read_mostly nested = 1; 110 module_param(nested, bool, S_IRUGO); 111 112 static u64 __read_mostly host_xss; 113 114 bool __read_mostly enable_pml = 1; 115 module_param_named(pml, enable_pml, bool, S_IRUGO); 116 117 static bool __read_mostly dump_invalid_vmcs = 0; 118 module_param(dump_invalid_vmcs, bool, 0644); 119 120 #define MSR_BITMAP_MODE_X2APIC 1 121 #define MSR_BITMAP_MODE_X2APIC_APICV 2 122 123 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 124 125 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 126 static int __read_mostly cpu_preemption_timer_multi; 127 static bool __read_mostly enable_preemption_timer = 1; 128 #ifdef CONFIG_X86_64 129 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 130 #endif 131 132 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 133 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 134 #define KVM_VM_CR0_ALWAYS_ON \ 135 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \ 136 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE) 137 #define KVM_CR4_GUEST_OWNED_BITS \ 138 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \ 139 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD) 140 141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 144 145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 146 147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 148 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 149 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 150 RTIT_STATUS_BYTECNT)) 151 152 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \ 153 (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f) 154 155 /* 156 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 157 * ple_gap: upper bound on the amount of time between two successive 158 * executions of PAUSE in a loop. Also indicate if ple enabled. 159 * According to test, this time is usually smaller than 128 cycles. 160 * ple_window: upper bound on the amount of time a guest is allowed to execute 161 * in a PAUSE loop. Tests indicate that most spinlocks are held for 162 * less than 2^12 cycles 163 * Time is measured based on a counter that runs at the same rate as the TSC, 164 * refer SDM volume 3b section 21.6.13 & 22.1.3. 165 */ 166 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 167 module_param(ple_gap, uint, 0444); 168 169 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 170 module_param(ple_window, uint, 0444); 171 172 /* Default doubles per-vcpu window every exit. */ 173 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 174 module_param(ple_window_grow, uint, 0444); 175 176 /* Default resets per-vcpu window every exit to ple_window. */ 177 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 178 module_param(ple_window_shrink, uint, 0444); 179 180 /* Default is to compute the maximum so we can never overflow. */ 181 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 182 module_param(ple_window_max, uint, 0444); 183 184 /* Default is SYSTEM mode, 1 for host-guest mode */ 185 int __read_mostly pt_mode = PT_MODE_SYSTEM; 186 module_param(pt_mode, int, S_IRUGO); 187 188 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 189 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 190 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 191 192 /* Storage for pre module init parameter parsing */ 193 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 194 195 static const struct { 196 const char *option; 197 bool for_parse; 198 } vmentry_l1d_param[] = { 199 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 200 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 201 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 202 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 203 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 204 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 205 }; 206 207 #define L1D_CACHE_ORDER 4 208 static void *vmx_l1d_flush_pages; 209 210 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 211 { 212 struct page *page; 213 unsigned int i; 214 215 if (!enable_ept) { 216 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 217 return 0; 218 } 219 220 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 221 u64 msr; 222 223 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 224 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 225 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 226 return 0; 227 } 228 } 229 230 /* If set to auto use the default l1tf mitigation method */ 231 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 232 switch (l1tf_mitigation) { 233 case L1TF_MITIGATION_OFF: 234 l1tf = VMENTER_L1D_FLUSH_NEVER; 235 break; 236 case L1TF_MITIGATION_FLUSH_NOWARN: 237 case L1TF_MITIGATION_FLUSH: 238 case L1TF_MITIGATION_FLUSH_NOSMT: 239 l1tf = VMENTER_L1D_FLUSH_COND; 240 break; 241 case L1TF_MITIGATION_FULL: 242 case L1TF_MITIGATION_FULL_FORCE: 243 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 244 break; 245 } 246 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 247 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 248 } 249 250 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 251 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 252 /* 253 * This allocation for vmx_l1d_flush_pages is not tied to a VM 254 * lifetime and so should not be charged to a memcg. 255 */ 256 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 257 if (!page) 258 return -ENOMEM; 259 vmx_l1d_flush_pages = page_address(page); 260 261 /* 262 * Initialize each page with a different pattern in 263 * order to protect against KSM in the nested 264 * virtualization case. 265 */ 266 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 267 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 268 PAGE_SIZE); 269 } 270 } 271 272 l1tf_vmx_mitigation = l1tf; 273 274 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 275 static_branch_enable(&vmx_l1d_should_flush); 276 else 277 static_branch_disable(&vmx_l1d_should_flush); 278 279 if (l1tf == VMENTER_L1D_FLUSH_COND) 280 static_branch_enable(&vmx_l1d_flush_cond); 281 else 282 static_branch_disable(&vmx_l1d_flush_cond); 283 return 0; 284 } 285 286 static int vmentry_l1d_flush_parse(const char *s) 287 { 288 unsigned int i; 289 290 if (s) { 291 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 292 if (vmentry_l1d_param[i].for_parse && 293 sysfs_streq(s, vmentry_l1d_param[i].option)) 294 return i; 295 } 296 } 297 return -EINVAL; 298 } 299 300 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 301 { 302 int l1tf, ret; 303 304 l1tf = vmentry_l1d_flush_parse(s); 305 if (l1tf < 0) 306 return l1tf; 307 308 if (!boot_cpu_has(X86_BUG_L1TF)) 309 return 0; 310 311 /* 312 * Has vmx_init() run already? If not then this is the pre init 313 * parameter parsing. In that case just store the value and let 314 * vmx_init() do the proper setup after enable_ept has been 315 * established. 316 */ 317 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 318 vmentry_l1d_flush_param = l1tf; 319 return 0; 320 } 321 322 mutex_lock(&vmx_l1d_flush_mutex); 323 ret = vmx_setup_l1d_flush(l1tf); 324 mutex_unlock(&vmx_l1d_flush_mutex); 325 return ret; 326 } 327 328 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 329 { 330 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 331 return sprintf(s, "???\n"); 332 333 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 334 } 335 336 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 337 .set = vmentry_l1d_flush_set, 338 .get = vmentry_l1d_flush_get, 339 }; 340 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 341 342 static bool guest_state_valid(struct kvm_vcpu *vcpu); 343 static u32 vmx_segment_access_rights(struct kvm_segment *var); 344 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, 345 u32 msr, int type); 346 347 void vmx_vmexit(void); 348 349 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 350 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 351 /* 352 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 353 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 354 */ 355 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 356 357 /* 358 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we 359 * can find which vCPU should be waken up. 360 */ 361 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu); 362 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock); 363 364 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 365 static DEFINE_SPINLOCK(vmx_vpid_lock); 366 367 struct vmcs_config vmcs_config; 368 struct vmx_capability vmx_capability; 369 370 #define VMX_SEGMENT_FIELD(seg) \ 371 [VCPU_SREG_##seg] = { \ 372 .selector = GUEST_##seg##_SELECTOR, \ 373 .base = GUEST_##seg##_BASE, \ 374 .limit = GUEST_##seg##_LIMIT, \ 375 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 376 } 377 378 static const struct kvm_vmx_segment_field { 379 unsigned selector; 380 unsigned base; 381 unsigned limit; 382 unsigned ar_bytes; 383 } kvm_vmx_segment_fields[] = { 384 VMX_SEGMENT_FIELD(CS), 385 VMX_SEGMENT_FIELD(DS), 386 VMX_SEGMENT_FIELD(ES), 387 VMX_SEGMENT_FIELD(FS), 388 VMX_SEGMENT_FIELD(GS), 389 VMX_SEGMENT_FIELD(SS), 390 VMX_SEGMENT_FIELD(TR), 391 VMX_SEGMENT_FIELD(LDTR), 392 }; 393 394 u64 host_efer; 395 396 /* 397 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 398 * will emulate SYSCALL in legacy mode if the vendor string in guest 399 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 400 * support this emulation, IA32_STAR must always be included in 401 * vmx_msr_index[], even in i386 builds. 402 */ 403 const u32 vmx_msr_index[] = { 404 #ifdef CONFIG_X86_64 405 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 406 #endif 407 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 408 }; 409 410 #if IS_ENABLED(CONFIG_HYPERV) 411 static bool __read_mostly enlightened_vmcs = true; 412 module_param(enlightened_vmcs, bool, 0444); 413 414 /* check_ept_pointer() should be under protection of ept_pointer_lock. */ 415 static void check_ept_pointer_match(struct kvm *kvm) 416 { 417 struct kvm_vcpu *vcpu; 418 u64 tmp_eptp = INVALID_PAGE; 419 int i; 420 421 kvm_for_each_vcpu(i, vcpu, kvm) { 422 if (!VALID_PAGE(tmp_eptp)) { 423 tmp_eptp = to_vmx(vcpu)->ept_pointer; 424 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) { 425 to_kvm_vmx(kvm)->ept_pointers_match 426 = EPT_POINTERS_MISMATCH; 427 return; 428 } 429 } 430 431 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH; 432 } 433 434 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush, 435 void *data) 436 { 437 struct kvm_tlb_range *range = data; 438 439 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn, 440 range->pages); 441 } 442 443 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm, 444 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range) 445 { 446 u64 ept_pointer = to_vmx(vcpu)->ept_pointer; 447 448 /* 449 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address 450 * of the base of EPT PML4 table, strip off EPT configuration 451 * information. 452 */ 453 if (range) 454 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK, 455 kvm_fill_hv_flush_list_func, (void *)range); 456 else 457 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK); 458 } 459 460 static int hv_remote_flush_tlb_with_range(struct kvm *kvm, 461 struct kvm_tlb_range *range) 462 { 463 struct kvm_vcpu *vcpu; 464 int ret = 0, i; 465 466 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); 467 468 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK) 469 check_ept_pointer_match(kvm); 470 471 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) { 472 kvm_for_each_vcpu(i, vcpu, kvm) { 473 /* If ept_pointer is invalid pointer, bypass flush request. */ 474 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer)) 475 ret |= __hv_remote_flush_tlb_with_range( 476 kvm, vcpu, range); 477 } 478 } else { 479 ret = __hv_remote_flush_tlb_with_range(kvm, 480 kvm_get_vcpu(kvm, 0), range); 481 } 482 483 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); 484 return ret; 485 } 486 static int hv_remote_flush_tlb(struct kvm *kvm) 487 { 488 return hv_remote_flush_tlb_with_range(kvm, NULL); 489 } 490 491 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 492 493 /* 494 * Comment's format: document - errata name - stepping - processor name. 495 * Refer from 496 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 497 */ 498 static u32 vmx_preemption_cpu_tfms[] = { 499 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 500 0x000206E6, 501 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 502 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 503 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 504 0x00020652, 505 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 506 0x00020655, 507 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 508 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 509 /* 510 * 320767.pdf - AAP86 - B1 - 511 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 512 */ 513 0x000106E5, 514 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 515 0x000106A0, 516 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 517 0x000106A1, 518 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 519 0x000106A4, 520 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 521 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 522 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 523 0x000106A5, 524 /* Xeon E3-1220 V2 */ 525 0x000306A8, 526 }; 527 528 static inline bool cpu_has_broken_vmx_preemption_timer(void) 529 { 530 u32 eax = cpuid_eax(0x00000001), i; 531 532 /* Clear the reserved bits */ 533 eax &= ~(0x3U << 14 | 0xfU << 28); 534 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 535 if (eax == vmx_preemption_cpu_tfms[i]) 536 return true; 537 538 return false; 539 } 540 541 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 542 { 543 return flexpriority_enabled && lapic_in_kernel(vcpu); 544 } 545 546 static inline bool report_flexpriority(void) 547 { 548 return flexpriority_enabled; 549 } 550 551 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) 552 { 553 int i; 554 555 for (i = 0; i < vmx->nmsrs; ++i) 556 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr) 557 return i; 558 return -1; 559 } 560 561 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) 562 { 563 int i; 564 565 i = __find_msr_index(vmx, msr); 566 if (i >= 0) 567 return &vmx->guest_msrs[i]; 568 return NULL; 569 } 570 571 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs) 572 { 573 vmcs_clear(loaded_vmcs->vmcs); 574 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 575 vmcs_clear(loaded_vmcs->shadow_vmcs); 576 loaded_vmcs->cpu = -1; 577 loaded_vmcs->launched = 0; 578 } 579 580 #ifdef CONFIG_KEXEC_CORE 581 /* 582 * This bitmap is used to indicate whether the vmclear 583 * operation is enabled on all cpus. All disabled by 584 * default. 585 */ 586 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE; 587 588 static inline void crash_enable_local_vmclear(int cpu) 589 { 590 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap); 591 } 592 593 static inline void crash_disable_local_vmclear(int cpu) 594 { 595 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap); 596 } 597 598 static inline int crash_local_vmclear_enabled(int cpu) 599 { 600 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap); 601 } 602 603 static void crash_vmclear_local_loaded_vmcss(void) 604 { 605 int cpu = raw_smp_processor_id(); 606 struct loaded_vmcs *v; 607 608 if (!crash_local_vmclear_enabled(cpu)) 609 return; 610 611 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 612 loaded_vmcss_on_cpu_link) 613 vmcs_clear(v->vmcs); 614 } 615 #else 616 static inline void crash_enable_local_vmclear(int cpu) { } 617 static inline void crash_disable_local_vmclear(int cpu) { } 618 #endif /* CONFIG_KEXEC_CORE */ 619 620 static void __loaded_vmcs_clear(void *arg) 621 { 622 struct loaded_vmcs *loaded_vmcs = arg; 623 int cpu = raw_smp_processor_id(); 624 625 if (loaded_vmcs->cpu != cpu) 626 return; /* vcpu migration can race with cpu offline */ 627 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 628 per_cpu(current_vmcs, cpu) = NULL; 629 crash_disable_local_vmclear(cpu); 630 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 631 632 /* 633 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link 634 * is before setting loaded_vmcs->vcpu to -1 which is done in 635 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist 636 * then adds the vmcs into percpu list before it is deleted. 637 */ 638 smp_wmb(); 639 640 loaded_vmcs_init(loaded_vmcs); 641 crash_enable_local_vmclear(cpu); 642 } 643 644 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 645 { 646 int cpu = loaded_vmcs->cpu; 647 648 if (cpu != -1) 649 smp_call_function_single(cpu, 650 __loaded_vmcs_clear, loaded_vmcs, 1); 651 } 652 653 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 654 unsigned field) 655 { 656 bool ret; 657 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 658 659 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) { 660 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS); 661 vmx->segment_cache.bitmask = 0; 662 } 663 ret = vmx->segment_cache.bitmask & mask; 664 vmx->segment_cache.bitmask |= mask; 665 return ret; 666 } 667 668 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 669 { 670 u16 *p = &vmx->segment_cache.seg[seg].selector; 671 672 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 673 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 674 return *p; 675 } 676 677 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 678 { 679 ulong *p = &vmx->segment_cache.seg[seg].base; 680 681 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 682 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 683 return *p; 684 } 685 686 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 687 { 688 u32 *p = &vmx->segment_cache.seg[seg].limit; 689 690 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 691 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 692 return *p; 693 } 694 695 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 696 { 697 u32 *p = &vmx->segment_cache.seg[seg].ar; 698 699 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 700 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 701 return *p; 702 } 703 704 void update_exception_bitmap(struct kvm_vcpu *vcpu) 705 { 706 u32 eb; 707 708 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 709 (1u << DB_VECTOR) | (1u << AC_VECTOR); 710 /* 711 * Guest access to VMware backdoor ports could legitimately 712 * trigger #GP because of TSS I/O permission bitmap. 713 * We intercept those #GP and allow access to them anyway 714 * as VMware does. 715 */ 716 if (enable_vmware_backdoor) 717 eb |= (1u << GP_VECTOR); 718 if ((vcpu->guest_debug & 719 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 720 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 721 eb |= 1u << BP_VECTOR; 722 if (to_vmx(vcpu)->rmode.vm86_active) 723 eb = ~0; 724 if (enable_ept) 725 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ 726 727 /* When we are running a nested L2 guest and L1 specified for it a 728 * certain exception bitmap, we must trap the same exceptions and pass 729 * them to L1. When running L2, we will only handle the exceptions 730 * specified above if L1 did not want them. 731 */ 732 if (is_guest_mode(vcpu)) 733 eb |= get_vmcs12(vcpu)->exception_bitmap; 734 735 vmcs_write32(EXCEPTION_BITMAP, eb); 736 } 737 738 /* 739 * Check if MSR is intercepted for currently loaded MSR bitmap. 740 */ 741 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 742 { 743 unsigned long *msr_bitmap; 744 int f = sizeof(unsigned long); 745 746 if (!cpu_has_vmx_msr_bitmap()) 747 return true; 748 749 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; 750 751 if (msr <= 0x1fff) { 752 return !!test_bit(msr, msr_bitmap + 0x800 / f); 753 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 754 msr &= 0x1fff; 755 return !!test_bit(msr, msr_bitmap + 0xc00 / f); 756 } 757 758 return true; 759 } 760 761 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 762 unsigned long entry, unsigned long exit) 763 { 764 vm_entry_controls_clearbit(vmx, entry); 765 vm_exit_controls_clearbit(vmx, exit); 766 } 767 768 static int find_msr(struct vmx_msrs *m, unsigned int msr) 769 { 770 unsigned int i; 771 772 for (i = 0; i < m->nr; ++i) { 773 if (m->val[i].index == msr) 774 return i; 775 } 776 return -ENOENT; 777 } 778 779 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 780 { 781 int i; 782 struct msr_autoload *m = &vmx->msr_autoload; 783 784 switch (msr) { 785 case MSR_EFER: 786 if (cpu_has_load_ia32_efer()) { 787 clear_atomic_switch_msr_special(vmx, 788 VM_ENTRY_LOAD_IA32_EFER, 789 VM_EXIT_LOAD_IA32_EFER); 790 return; 791 } 792 break; 793 case MSR_CORE_PERF_GLOBAL_CTRL: 794 if (cpu_has_load_perf_global_ctrl()) { 795 clear_atomic_switch_msr_special(vmx, 796 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 797 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 798 return; 799 } 800 break; 801 } 802 i = find_msr(&m->guest, msr); 803 if (i < 0) 804 goto skip_guest; 805 --m->guest.nr; 806 m->guest.val[i] = m->guest.val[m->guest.nr]; 807 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 808 809 skip_guest: 810 i = find_msr(&m->host, msr); 811 if (i < 0) 812 return; 813 814 --m->host.nr; 815 m->host.val[i] = m->host.val[m->host.nr]; 816 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 817 } 818 819 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 820 unsigned long entry, unsigned long exit, 821 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 822 u64 guest_val, u64 host_val) 823 { 824 vmcs_write64(guest_val_vmcs, guest_val); 825 if (host_val_vmcs != HOST_IA32_EFER) 826 vmcs_write64(host_val_vmcs, host_val); 827 vm_entry_controls_setbit(vmx, entry); 828 vm_exit_controls_setbit(vmx, exit); 829 } 830 831 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 832 u64 guest_val, u64 host_val, bool entry_only) 833 { 834 int i, j = 0; 835 struct msr_autoload *m = &vmx->msr_autoload; 836 837 switch (msr) { 838 case MSR_EFER: 839 if (cpu_has_load_ia32_efer()) { 840 add_atomic_switch_msr_special(vmx, 841 VM_ENTRY_LOAD_IA32_EFER, 842 VM_EXIT_LOAD_IA32_EFER, 843 GUEST_IA32_EFER, 844 HOST_IA32_EFER, 845 guest_val, host_val); 846 return; 847 } 848 break; 849 case MSR_CORE_PERF_GLOBAL_CTRL: 850 if (cpu_has_load_perf_global_ctrl()) { 851 add_atomic_switch_msr_special(vmx, 852 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 853 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 854 GUEST_IA32_PERF_GLOBAL_CTRL, 855 HOST_IA32_PERF_GLOBAL_CTRL, 856 guest_val, host_val); 857 return; 858 } 859 break; 860 case MSR_IA32_PEBS_ENABLE: 861 /* PEBS needs a quiescent period after being disabled (to write 862 * a record). Disabling PEBS through VMX MSR swapping doesn't 863 * provide that period, so a CPU could write host's record into 864 * guest's memory. 865 */ 866 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 867 } 868 869 i = find_msr(&m->guest, msr); 870 if (!entry_only) 871 j = find_msr(&m->host, msr); 872 873 if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) || 874 (j < 0 && m->host.nr == NR_AUTOLOAD_MSRS)) { 875 printk_once(KERN_WARNING "Not enough msr switch entries. " 876 "Can't add msr %x\n", msr); 877 return; 878 } 879 if (i < 0) { 880 i = m->guest.nr++; 881 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 882 } 883 m->guest.val[i].index = msr; 884 m->guest.val[i].value = guest_val; 885 886 if (entry_only) 887 return; 888 889 if (j < 0) { 890 j = m->host.nr++; 891 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 892 } 893 m->host.val[j].index = msr; 894 m->host.val[j].value = host_val; 895 } 896 897 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) 898 { 899 u64 guest_efer = vmx->vcpu.arch.efer; 900 u64 ignore_bits = 0; 901 902 if (!enable_ept) { 903 /* 904 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing 905 * host CPUID is more efficient than testing guest CPUID 906 * or CR4. Host SMEP is anyway a requirement for guest SMEP. 907 */ 908 if (boot_cpu_has(X86_FEATURE_SMEP)) 909 guest_efer |= EFER_NX; 910 else if (!(guest_efer & EFER_NX)) 911 ignore_bits |= EFER_NX; 912 } 913 914 /* 915 * LMA and LME handled by hardware; SCE meaningless outside long mode. 916 */ 917 ignore_bits |= EFER_SCE; 918 #ifdef CONFIG_X86_64 919 ignore_bits |= EFER_LMA | EFER_LME; 920 /* SCE is meaningful only in long mode on Intel */ 921 if (guest_efer & EFER_LMA) 922 ignore_bits &= ~(u64)EFER_SCE; 923 #endif 924 925 /* 926 * On EPT, we can't emulate NX, so we must switch EFER atomically. 927 * On CPUs that support "load IA32_EFER", always switch EFER 928 * atomically, since it's faster than switching it manually. 929 */ 930 if (cpu_has_load_ia32_efer() || 931 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 932 if (!(guest_efer & EFER_LMA)) 933 guest_efer &= ~EFER_LME; 934 if (guest_efer != host_efer) 935 add_atomic_switch_msr(vmx, MSR_EFER, 936 guest_efer, host_efer, false); 937 else 938 clear_atomic_switch_msr(vmx, MSR_EFER); 939 return false; 940 } else { 941 clear_atomic_switch_msr(vmx, MSR_EFER); 942 943 guest_efer &= ~ignore_bits; 944 guest_efer |= host_efer & ignore_bits; 945 946 vmx->guest_msrs[efer_offset].data = guest_efer; 947 vmx->guest_msrs[efer_offset].mask = ~ignore_bits; 948 949 return true; 950 } 951 } 952 953 #ifdef CONFIG_X86_32 954 /* 955 * On 32-bit kernels, VM exits still load the FS and GS bases from the 956 * VMCS rather than the segment table. KVM uses this helper to figure 957 * out the current bases to poke them into the VMCS before entry. 958 */ 959 static unsigned long segment_base(u16 selector) 960 { 961 struct desc_struct *table; 962 unsigned long v; 963 964 if (!(selector & ~SEGMENT_RPL_MASK)) 965 return 0; 966 967 table = get_current_gdt_ro(); 968 969 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 970 u16 ldt_selector = kvm_read_ldt(); 971 972 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 973 return 0; 974 975 table = (struct desc_struct *)segment_base(ldt_selector); 976 } 977 v = get_desc_base(&table[selector >> 3]); 978 return v; 979 } 980 #endif 981 982 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 983 { 984 u32 i; 985 986 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 987 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 988 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 989 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 990 for (i = 0; i < addr_range; i++) { 991 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 992 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 993 } 994 } 995 996 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 997 { 998 u32 i; 999 1000 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1001 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1002 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1003 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1004 for (i = 0; i < addr_range; i++) { 1005 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1006 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1007 } 1008 } 1009 1010 static void pt_guest_enter(struct vcpu_vmx *vmx) 1011 { 1012 if (pt_mode == PT_MODE_SYSTEM) 1013 return; 1014 1015 /* 1016 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1017 * Save host state before VM entry. 1018 */ 1019 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1020 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1021 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1022 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1023 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1024 } 1025 } 1026 1027 static void pt_guest_exit(struct vcpu_vmx *vmx) 1028 { 1029 if (pt_mode == PT_MODE_SYSTEM) 1030 return; 1031 1032 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1033 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1034 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1035 } 1036 1037 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */ 1038 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1039 } 1040 1041 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1042 { 1043 struct vcpu_vmx *vmx = to_vmx(vcpu); 1044 struct vmcs_host_state *host_state; 1045 #ifdef CONFIG_X86_64 1046 int cpu = raw_smp_processor_id(); 1047 #endif 1048 unsigned long fs_base, gs_base; 1049 u16 fs_sel, gs_sel; 1050 int i; 1051 1052 vmx->req_immediate_exit = false; 1053 1054 /* 1055 * Note that guest MSRs to be saved/restored can also be changed 1056 * when guest state is loaded. This happens when guest transitions 1057 * to/from long-mode by setting MSR_EFER.LMA. 1058 */ 1059 if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) { 1060 vmx->guest_msrs_dirty = false; 1061 for (i = 0; i < vmx->save_nmsrs; ++i) 1062 kvm_set_shared_msr(vmx->guest_msrs[i].index, 1063 vmx->guest_msrs[i].data, 1064 vmx->guest_msrs[i].mask); 1065 1066 } 1067 1068 if (vmx->loaded_cpu_state) 1069 return; 1070 1071 vmx->loaded_cpu_state = vmx->loaded_vmcs; 1072 host_state = &vmx->loaded_cpu_state->host_state; 1073 1074 /* 1075 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1076 * allow segment selectors with cpl > 0 or ti == 1. 1077 */ 1078 host_state->ldt_sel = kvm_read_ldt(); 1079 1080 #ifdef CONFIG_X86_64 1081 savesegment(ds, host_state->ds_sel); 1082 savesegment(es, host_state->es_sel); 1083 1084 gs_base = cpu_kernelmode_gs_base(cpu); 1085 if (likely(is_64bit_mm(current->mm))) { 1086 save_fsgs_for_kvm(); 1087 fs_sel = current->thread.fsindex; 1088 gs_sel = current->thread.gsindex; 1089 fs_base = current->thread.fsbase; 1090 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1091 } else { 1092 savesegment(fs, fs_sel); 1093 savesegment(gs, gs_sel); 1094 fs_base = read_msr(MSR_FS_BASE); 1095 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1096 } 1097 1098 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1099 #else 1100 savesegment(fs, fs_sel); 1101 savesegment(gs, gs_sel); 1102 fs_base = segment_base(fs_sel); 1103 gs_base = segment_base(gs_sel); 1104 #endif 1105 1106 if (unlikely(fs_sel != host_state->fs_sel)) { 1107 if (!(fs_sel & 7)) 1108 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1109 else 1110 vmcs_write16(HOST_FS_SELECTOR, 0); 1111 host_state->fs_sel = fs_sel; 1112 } 1113 if (unlikely(gs_sel != host_state->gs_sel)) { 1114 if (!(gs_sel & 7)) 1115 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1116 else 1117 vmcs_write16(HOST_GS_SELECTOR, 0); 1118 host_state->gs_sel = gs_sel; 1119 } 1120 if (unlikely(fs_base != host_state->fs_base)) { 1121 vmcs_writel(HOST_FS_BASE, fs_base); 1122 host_state->fs_base = fs_base; 1123 } 1124 if (unlikely(gs_base != host_state->gs_base)) { 1125 vmcs_writel(HOST_GS_BASE, gs_base); 1126 host_state->gs_base = gs_base; 1127 } 1128 } 1129 1130 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1131 { 1132 struct vmcs_host_state *host_state; 1133 1134 if (!vmx->loaded_cpu_state) 1135 return; 1136 1137 WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs); 1138 host_state = &vmx->loaded_cpu_state->host_state; 1139 1140 ++vmx->vcpu.stat.host_state_reload; 1141 vmx->loaded_cpu_state = NULL; 1142 1143 #ifdef CONFIG_X86_64 1144 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1145 #endif 1146 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1147 kvm_load_ldt(host_state->ldt_sel); 1148 #ifdef CONFIG_X86_64 1149 load_gs_index(host_state->gs_sel); 1150 #else 1151 loadsegment(gs, host_state->gs_sel); 1152 #endif 1153 } 1154 if (host_state->fs_sel & 7) 1155 loadsegment(fs, host_state->fs_sel); 1156 #ifdef CONFIG_X86_64 1157 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1158 loadsegment(ds, host_state->ds_sel); 1159 loadsegment(es, host_state->es_sel); 1160 } 1161 #endif 1162 invalidate_tss_limit(); 1163 #ifdef CONFIG_X86_64 1164 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1165 #endif 1166 load_fixmap_gdt(raw_smp_processor_id()); 1167 } 1168 1169 #ifdef CONFIG_X86_64 1170 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1171 { 1172 preempt_disable(); 1173 if (vmx->loaded_cpu_state) 1174 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1175 preempt_enable(); 1176 return vmx->msr_guest_kernel_gs_base; 1177 } 1178 1179 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1180 { 1181 preempt_disable(); 1182 if (vmx->loaded_cpu_state) 1183 wrmsrl(MSR_KERNEL_GS_BASE, data); 1184 preempt_enable(); 1185 vmx->msr_guest_kernel_gs_base = data; 1186 } 1187 #endif 1188 1189 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu) 1190 { 1191 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 1192 struct pi_desc old, new; 1193 unsigned int dest; 1194 1195 /* 1196 * In case of hot-plug or hot-unplug, we may have to undo 1197 * vmx_vcpu_pi_put even if there is no assigned device. And we 1198 * always keep PI.NDST up to date for simplicity: it makes the 1199 * code easier, and CPU migration is not a fast path. 1200 */ 1201 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu) 1202 return; 1203 1204 /* The full case. */ 1205 do { 1206 old.control = new.control = pi_desc->control; 1207 1208 dest = cpu_physical_id(cpu); 1209 1210 if (x2apic_enabled()) 1211 new.ndst = dest; 1212 else 1213 new.ndst = (dest << 8) & 0xFF00; 1214 1215 new.sn = 0; 1216 } while (cmpxchg64(&pi_desc->control, old.control, 1217 new.control) != old.control); 1218 1219 /* 1220 * Clear SN before reading the bitmap. The VT-d firmware 1221 * writes the bitmap and reads SN atomically (5.2.3 in the 1222 * spec), so it doesn't really have a memory barrier that 1223 * pairs with this, but we cannot do that and we need one. 1224 */ 1225 smp_mb__after_atomic(); 1226 1227 if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS)) 1228 pi_set_on(pi_desc); 1229 } 1230 1231 /* 1232 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1233 * vcpu mutex is already taken. 1234 */ 1235 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1236 { 1237 struct vcpu_vmx *vmx = to_vmx(vcpu); 1238 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1239 1240 if (!already_loaded) { 1241 loaded_vmcs_clear(vmx->loaded_vmcs); 1242 local_irq_disable(); 1243 crash_disable_local_vmclear(cpu); 1244 1245 /* 1246 * Read loaded_vmcs->cpu should be before fetching 1247 * loaded_vmcs->loaded_vmcss_on_cpu_link. 1248 * See the comments in __loaded_vmcs_clear(). 1249 */ 1250 smp_rmb(); 1251 1252 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1253 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1254 crash_enable_local_vmclear(cpu); 1255 local_irq_enable(); 1256 } 1257 1258 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) { 1259 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1260 vmcs_load(vmx->loaded_vmcs->vmcs); 1261 indirect_branch_prediction_barrier(); 1262 } 1263 1264 if (!already_loaded) { 1265 void *gdt = get_current_gdt_ro(); 1266 unsigned long sysenter_esp; 1267 1268 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1269 1270 /* 1271 * Linux uses per-cpu TSS and GDT, so set these when switching 1272 * processors. See 22.2.4. 1273 */ 1274 vmcs_writel(HOST_TR_BASE, 1275 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1276 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1277 1278 /* 1279 * VM exits change the host TR limit to 0x67 after a VM 1280 * exit. This is okay, since 0x67 covers everything except 1281 * the IO bitmap and have have code to handle the IO bitmap 1282 * being lost after a VM exit. 1283 */ 1284 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67); 1285 1286 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); 1287 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ 1288 1289 vmx->loaded_vmcs->cpu = cpu; 1290 } 1291 1292 /* Setup TSC multiplier */ 1293 if (kvm_has_tsc_control && 1294 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) 1295 decache_tsc_multiplier(vmx); 1296 1297 vmx_vcpu_pi_load(vcpu, cpu); 1298 vmx->host_pkru = read_pkru(); 1299 vmx->host_debugctlmsr = get_debugctlmsr(); 1300 } 1301 1302 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu) 1303 { 1304 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 1305 1306 if (!kvm_arch_has_assigned_device(vcpu->kvm) || 1307 !irq_remapping_cap(IRQ_POSTING_CAP) || 1308 !kvm_vcpu_apicv_active(vcpu)) 1309 return; 1310 1311 /* Set SN when the vCPU is preempted */ 1312 if (vcpu->preempted) 1313 pi_set_sn(pi_desc); 1314 } 1315 1316 void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1317 { 1318 vmx_vcpu_pi_put(vcpu); 1319 1320 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1321 } 1322 1323 static bool emulation_required(struct kvm_vcpu *vcpu) 1324 { 1325 return emulate_invalid_guest_state && !guest_state_valid(vcpu); 1326 } 1327 1328 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu); 1329 1330 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1331 { 1332 unsigned long rflags, save_rflags; 1333 1334 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) { 1335 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); 1336 rflags = vmcs_readl(GUEST_RFLAGS); 1337 if (to_vmx(vcpu)->rmode.vm86_active) { 1338 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1339 save_rflags = to_vmx(vcpu)->rmode.save_rflags; 1340 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1341 } 1342 to_vmx(vcpu)->rflags = rflags; 1343 } 1344 return to_vmx(vcpu)->rflags; 1345 } 1346 1347 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1348 { 1349 unsigned long old_rflags = vmx_get_rflags(vcpu); 1350 1351 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); 1352 to_vmx(vcpu)->rflags = rflags; 1353 if (to_vmx(vcpu)->rmode.vm86_active) { 1354 to_vmx(vcpu)->rmode.save_rflags = rflags; 1355 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1356 } 1357 vmcs_writel(GUEST_RFLAGS, rflags); 1358 1359 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM) 1360 to_vmx(vcpu)->emulation_required = emulation_required(vcpu); 1361 } 1362 1363 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1364 { 1365 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1366 int ret = 0; 1367 1368 if (interruptibility & GUEST_INTR_STATE_STI) 1369 ret |= KVM_X86_SHADOW_INT_STI; 1370 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1371 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1372 1373 return ret; 1374 } 1375 1376 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1377 { 1378 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1379 u32 interruptibility = interruptibility_old; 1380 1381 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1382 1383 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1384 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1385 else if (mask & KVM_X86_SHADOW_INT_STI) 1386 interruptibility |= GUEST_INTR_STATE_STI; 1387 1388 if ((interruptibility != interruptibility_old)) 1389 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1390 } 1391 1392 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1393 { 1394 struct vcpu_vmx *vmx = to_vmx(vcpu); 1395 unsigned long value; 1396 1397 /* 1398 * Any MSR write that attempts to change bits marked reserved will 1399 * case a #GP fault. 1400 */ 1401 if (data & vmx->pt_desc.ctl_bitmask) 1402 return 1; 1403 1404 /* 1405 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1406 * result in a #GP unless the same write also clears TraceEn. 1407 */ 1408 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1409 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1410 return 1; 1411 1412 /* 1413 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1414 * and FabricEn would cause #GP, if 1415 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1416 */ 1417 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1418 !(data & RTIT_CTL_FABRIC_EN) && 1419 !intel_pt_validate_cap(vmx->pt_desc.caps, 1420 PT_CAP_single_range_output)) 1421 return 1; 1422 1423 /* 1424 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1425 * utilize encodings marked reserved will casue a #GP fault. 1426 */ 1427 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1428 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1429 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1430 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1431 return 1; 1432 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1433 PT_CAP_cycle_thresholds); 1434 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1435 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1436 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1437 return 1; 1438 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1439 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1440 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1441 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1442 return 1; 1443 1444 /* 1445 * If ADDRx_CFG is reserved or the encodings is >2 will 1446 * cause a #GP fault. 1447 */ 1448 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1449 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2)) 1450 return 1; 1451 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1452 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2)) 1453 return 1; 1454 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1455 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2)) 1456 return 1; 1457 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1458 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2)) 1459 return 1; 1460 1461 return 0; 1462 } 1463 1464 1465 static void skip_emulated_instruction(struct kvm_vcpu *vcpu) 1466 { 1467 unsigned long rip; 1468 1469 rip = kvm_rip_read(vcpu); 1470 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1471 kvm_rip_write(vcpu, rip); 1472 1473 /* skipping an emulated instruction also counts */ 1474 vmx_set_interrupt_shadow(vcpu, 0); 1475 } 1476 1477 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1478 { 1479 /* 1480 * Ensure that we clear the HLT state in the VMCS. We don't need to 1481 * explicitly skip the instruction because if the HLT state is set, 1482 * then the instruction is already executing and RIP has already been 1483 * advanced. 1484 */ 1485 if (kvm_hlt_in_guest(vcpu->kvm) && 1486 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1487 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1488 } 1489 1490 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1491 { 1492 struct vcpu_vmx *vmx = to_vmx(vcpu); 1493 unsigned nr = vcpu->arch.exception.nr; 1494 bool has_error_code = vcpu->arch.exception.has_error_code; 1495 u32 error_code = vcpu->arch.exception.error_code; 1496 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1497 1498 kvm_deliver_exception_payload(vcpu); 1499 1500 if (has_error_code) { 1501 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1502 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1503 } 1504 1505 if (vmx->rmode.vm86_active) { 1506 int inc_eip = 0; 1507 if (kvm_exception_is_soft(nr)) 1508 inc_eip = vcpu->arch.event_exit_inst_len; 1509 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE) 1510 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 1511 return; 1512 } 1513 1514 WARN_ON_ONCE(vmx->emulation_required); 1515 1516 if (kvm_exception_is_soft(nr)) { 1517 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1518 vmx->vcpu.arch.event_exit_inst_len); 1519 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1520 } else 1521 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1522 1523 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1524 1525 vmx_clear_hlt(vcpu); 1526 } 1527 1528 static bool vmx_rdtscp_supported(void) 1529 { 1530 return cpu_has_vmx_rdtscp(); 1531 } 1532 1533 static bool vmx_invpcid_supported(void) 1534 { 1535 return cpu_has_vmx_invpcid(); 1536 } 1537 1538 /* 1539 * Swap MSR entry in host/guest MSR entry array. 1540 */ 1541 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) 1542 { 1543 struct shared_msr_entry tmp; 1544 1545 tmp = vmx->guest_msrs[to]; 1546 vmx->guest_msrs[to] = vmx->guest_msrs[from]; 1547 vmx->guest_msrs[from] = tmp; 1548 } 1549 1550 /* 1551 * Set up the vmcs to automatically save and restore system 1552 * msrs. Don't touch the 64-bit msrs if the guest is in legacy 1553 * mode, as fiddling with msrs is very expensive. 1554 */ 1555 static void setup_msrs(struct vcpu_vmx *vmx) 1556 { 1557 int save_nmsrs, index; 1558 1559 save_nmsrs = 0; 1560 #ifdef CONFIG_X86_64 1561 /* 1562 * The SYSCALL MSRs are only needed on long mode guests, and only 1563 * when EFER.SCE is set. 1564 */ 1565 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) { 1566 index = __find_msr_index(vmx, MSR_STAR); 1567 if (index >= 0) 1568 move_msr_up(vmx, index, save_nmsrs++); 1569 index = __find_msr_index(vmx, MSR_LSTAR); 1570 if (index >= 0) 1571 move_msr_up(vmx, index, save_nmsrs++); 1572 index = __find_msr_index(vmx, MSR_SYSCALL_MASK); 1573 if (index >= 0) 1574 move_msr_up(vmx, index, save_nmsrs++); 1575 } 1576 #endif 1577 index = __find_msr_index(vmx, MSR_EFER); 1578 if (index >= 0 && update_transition_efer(vmx, index)) 1579 move_msr_up(vmx, index, save_nmsrs++); 1580 index = __find_msr_index(vmx, MSR_TSC_AUX); 1581 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP)) 1582 move_msr_up(vmx, index, save_nmsrs++); 1583 1584 vmx->save_nmsrs = save_nmsrs; 1585 vmx->guest_msrs_dirty = true; 1586 1587 if (cpu_has_vmx_msr_bitmap()) 1588 vmx_update_msr_bitmap(&vmx->vcpu); 1589 } 1590 1591 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu) 1592 { 1593 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1594 1595 if (is_guest_mode(vcpu) && 1596 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)) 1597 return vcpu->arch.tsc_offset - vmcs12->tsc_offset; 1598 1599 return vcpu->arch.tsc_offset; 1600 } 1601 1602 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1603 { 1604 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1605 u64 g_tsc_offset = 0; 1606 1607 /* 1608 * We're here if L1 chose not to trap WRMSR to TSC. According 1609 * to the spec, this should set L1's TSC; The offset that L1 1610 * set for L2 remains unchanged, and still needs to be added 1611 * to the newly set TSC to get L2's TSC. 1612 */ 1613 if (is_guest_mode(vcpu) && 1614 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)) 1615 g_tsc_offset = vmcs12->tsc_offset; 1616 1617 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 1618 vcpu->arch.tsc_offset - g_tsc_offset, 1619 offset); 1620 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset); 1621 return offset + g_tsc_offset; 1622 } 1623 1624 /* 1625 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1626 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1627 * all guests if the "nested" module option is off, and can also be disabled 1628 * for a single guest by disabling its VMX cpuid bit. 1629 */ 1630 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1631 { 1632 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1633 } 1634 1635 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1636 uint64_t val) 1637 { 1638 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1639 1640 return !(val & ~valid_bits); 1641 } 1642 1643 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1644 { 1645 switch (msr->index) { 1646 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1647 if (!nested) 1648 return 1; 1649 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1650 default: 1651 return 1; 1652 } 1653 1654 return 0; 1655 } 1656 1657 /* 1658 * Reads an msr value (of 'msr_index') into 'pdata'. 1659 * Returns 0 on success, non-0 otherwise. 1660 * Assumes vcpu_load() was already called. 1661 */ 1662 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1663 { 1664 struct vcpu_vmx *vmx = to_vmx(vcpu); 1665 struct shared_msr_entry *msr; 1666 u32 index; 1667 1668 switch (msr_info->index) { 1669 #ifdef CONFIG_X86_64 1670 case MSR_FS_BASE: 1671 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1672 break; 1673 case MSR_GS_BASE: 1674 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1675 break; 1676 case MSR_KERNEL_GS_BASE: 1677 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1678 break; 1679 #endif 1680 case MSR_EFER: 1681 return kvm_get_msr_common(vcpu, msr_info); 1682 case MSR_IA32_SPEC_CTRL: 1683 if (!msr_info->host_initiated && 1684 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) 1685 return 1; 1686 1687 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1688 break; 1689 case MSR_IA32_SYSENTER_CS: 1690 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1691 break; 1692 case MSR_IA32_SYSENTER_EIP: 1693 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1694 break; 1695 case MSR_IA32_SYSENTER_ESP: 1696 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1697 break; 1698 case MSR_IA32_POWER_CTL: 1699 msr_info->data = vmx->msr_ia32_power_ctl; 1700 break; 1701 case MSR_IA32_BNDCFGS: 1702 if (!kvm_mpx_supported() || 1703 (!msr_info->host_initiated && 1704 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1705 return 1; 1706 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1707 break; 1708 case MSR_IA32_MCG_EXT_CTL: 1709 if (!msr_info->host_initiated && 1710 !(vmx->msr_ia32_feature_control & 1711 FEATURE_CONTROL_LMCE)) 1712 return 1; 1713 msr_info->data = vcpu->arch.mcg_ext_ctl; 1714 break; 1715 case MSR_IA32_FEATURE_CONTROL: 1716 msr_info->data = vmx->msr_ia32_feature_control; 1717 break; 1718 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1719 if (!nested_vmx_allowed(vcpu)) 1720 return 1; 1721 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1722 &msr_info->data); 1723 case MSR_IA32_XSS: 1724 if (!vmx_xsaves_supported()) 1725 return 1; 1726 msr_info->data = vcpu->arch.ia32_xss; 1727 break; 1728 case MSR_IA32_RTIT_CTL: 1729 if (pt_mode != PT_MODE_HOST_GUEST) 1730 return 1; 1731 msr_info->data = vmx->pt_desc.guest.ctl; 1732 break; 1733 case MSR_IA32_RTIT_STATUS: 1734 if (pt_mode != PT_MODE_HOST_GUEST) 1735 return 1; 1736 msr_info->data = vmx->pt_desc.guest.status; 1737 break; 1738 case MSR_IA32_RTIT_CR3_MATCH: 1739 if ((pt_mode != PT_MODE_HOST_GUEST) || 1740 !intel_pt_validate_cap(vmx->pt_desc.caps, 1741 PT_CAP_cr3_filtering)) 1742 return 1; 1743 msr_info->data = vmx->pt_desc.guest.cr3_match; 1744 break; 1745 case MSR_IA32_RTIT_OUTPUT_BASE: 1746 if ((pt_mode != PT_MODE_HOST_GUEST) || 1747 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1748 PT_CAP_topa_output) && 1749 !intel_pt_validate_cap(vmx->pt_desc.caps, 1750 PT_CAP_single_range_output))) 1751 return 1; 1752 msr_info->data = vmx->pt_desc.guest.output_base; 1753 break; 1754 case MSR_IA32_RTIT_OUTPUT_MASK: 1755 if ((pt_mode != PT_MODE_HOST_GUEST) || 1756 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1757 PT_CAP_topa_output) && 1758 !intel_pt_validate_cap(vmx->pt_desc.caps, 1759 PT_CAP_single_range_output))) 1760 return 1; 1761 msr_info->data = vmx->pt_desc.guest.output_mask; 1762 break; 1763 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1764 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1765 if ((pt_mode != PT_MODE_HOST_GUEST) || 1766 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 1767 PT_CAP_num_address_ranges))) 1768 return 1; 1769 if (index % 2) 1770 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1771 else 1772 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1773 break; 1774 case MSR_TSC_AUX: 1775 if (!msr_info->host_initiated && 1776 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1777 return 1; 1778 /* Else, falls through */ 1779 default: 1780 msr = find_msr_entry(vmx, msr_info->index); 1781 if (msr) { 1782 msr_info->data = msr->data; 1783 break; 1784 } 1785 return kvm_get_msr_common(vcpu, msr_info); 1786 } 1787 1788 return 0; 1789 } 1790 1791 /* 1792 * Writes msr value into into the appropriate "register". 1793 * Returns 0 on success, non-0 otherwise. 1794 * Assumes vcpu_load() was already called. 1795 */ 1796 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1797 { 1798 struct vcpu_vmx *vmx = to_vmx(vcpu); 1799 struct shared_msr_entry *msr; 1800 int ret = 0; 1801 u32 msr_index = msr_info->index; 1802 u64 data = msr_info->data; 1803 u32 index; 1804 1805 switch (msr_index) { 1806 case MSR_EFER: 1807 ret = kvm_set_msr_common(vcpu, msr_info); 1808 break; 1809 #ifdef CONFIG_X86_64 1810 case MSR_FS_BASE: 1811 vmx_segment_cache_clear(vmx); 1812 vmcs_writel(GUEST_FS_BASE, data); 1813 break; 1814 case MSR_GS_BASE: 1815 vmx_segment_cache_clear(vmx); 1816 vmcs_writel(GUEST_GS_BASE, data); 1817 break; 1818 case MSR_KERNEL_GS_BASE: 1819 vmx_write_guest_kernel_gs_base(vmx, data); 1820 break; 1821 #endif 1822 case MSR_IA32_SYSENTER_CS: 1823 vmcs_write32(GUEST_SYSENTER_CS, data); 1824 break; 1825 case MSR_IA32_SYSENTER_EIP: 1826 vmcs_writel(GUEST_SYSENTER_EIP, data); 1827 break; 1828 case MSR_IA32_SYSENTER_ESP: 1829 vmcs_writel(GUEST_SYSENTER_ESP, data); 1830 break; 1831 case MSR_IA32_POWER_CTL: 1832 vmx->msr_ia32_power_ctl = data; 1833 break; 1834 case MSR_IA32_BNDCFGS: 1835 if (!kvm_mpx_supported() || 1836 (!msr_info->host_initiated && 1837 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1838 return 1; 1839 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 1840 (data & MSR_IA32_BNDCFGS_RSVD)) 1841 return 1; 1842 vmcs_write64(GUEST_BNDCFGS, data); 1843 break; 1844 case MSR_IA32_SPEC_CTRL: 1845 if (!msr_info->host_initiated && 1846 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) 1847 return 1; 1848 1849 /* The STIBP bit doesn't fault even if it's not advertised */ 1850 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD)) 1851 return 1; 1852 1853 vmx->spec_ctrl = data; 1854 1855 if (!data) 1856 break; 1857 1858 /* 1859 * For non-nested: 1860 * When it's written (to non-zero) for the first time, pass 1861 * it through. 1862 * 1863 * For nested: 1864 * The handling of the MSR bitmap for L2 guests is done in 1865 * nested_vmx_merge_msr_bitmap. We should not touch the 1866 * vmcs02.msr_bitmap here since it gets completely overwritten 1867 * in the merging. We update the vmcs01 here for L1 as well 1868 * since it will end up touching the MSR anyway now. 1869 */ 1870 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, 1871 MSR_IA32_SPEC_CTRL, 1872 MSR_TYPE_RW); 1873 break; 1874 case MSR_IA32_PRED_CMD: 1875 if (!msr_info->host_initiated && 1876 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL)) 1877 return 1; 1878 1879 if (data & ~PRED_CMD_IBPB) 1880 return 1; 1881 1882 if (!data) 1883 break; 1884 1885 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 1886 1887 /* 1888 * For non-nested: 1889 * When it's written (to non-zero) for the first time, pass 1890 * it through. 1891 * 1892 * For nested: 1893 * The handling of the MSR bitmap for L2 guests is done in 1894 * nested_vmx_merge_msr_bitmap. We should not touch the 1895 * vmcs02.msr_bitmap here since it gets completely overwritten 1896 * in the merging. 1897 */ 1898 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD, 1899 MSR_TYPE_W); 1900 break; 1901 case MSR_IA32_CR_PAT: 1902 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 1903 if (!kvm_pat_valid(data)) 1904 return 1; 1905 vmcs_write64(GUEST_IA32_PAT, data); 1906 vcpu->arch.pat = data; 1907 break; 1908 } 1909 ret = kvm_set_msr_common(vcpu, msr_info); 1910 break; 1911 case MSR_IA32_TSC_ADJUST: 1912 ret = kvm_set_msr_common(vcpu, msr_info); 1913 break; 1914 case MSR_IA32_MCG_EXT_CTL: 1915 if ((!msr_info->host_initiated && 1916 !(to_vmx(vcpu)->msr_ia32_feature_control & 1917 FEATURE_CONTROL_LMCE)) || 1918 (data & ~MCG_EXT_CTL_LMCE_EN)) 1919 return 1; 1920 vcpu->arch.mcg_ext_ctl = data; 1921 break; 1922 case MSR_IA32_FEATURE_CONTROL: 1923 if (!vmx_feature_control_msr_valid(vcpu, data) || 1924 (to_vmx(vcpu)->msr_ia32_feature_control & 1925 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated)) 1926 return 1; 1927 vmx->msr_ia32_feature_control = data; 1928 if (msr_info->host_initiated && data == 0) 1929 vmx_leave_nested(vcpu); 1930 break; 1931 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1932 if (!msr_info->host_initiated) 1933 return 1; /* they are read-only */ 1934 if (!nested_vmx_allowed(vcpu)) 1935 return 1; 1936 return vmx_set_vmx_msr(vcpu, msr_index, data); 1937 case MSR_IA32_XSS: 1938 if (!vmx_xsaves_supported()) 1939 return 1; 1940 /* 1941 * The only supported bit as of Skylake is bit 8, but 1942 * it is not supported on KVM. 1943 */ 1944 if (data != 0) 1945 return 1; 1946 vcpu->arch.ia32_xss = data; 1947 if (vcpu->arch.ia32_xss != host_xss) 1948 add_atomic_switch_msr(vmx, MSR_IA32_XSS, 1949 vcpu->arch.ia32_xss, host_xss, false); 1950 else 1951 clear_atomic_switch_msr(vmx, MSR_IA32_XSS); 1952 break; 1953 case MSR_IA32_RTIT_CTL: 1954 if ((pt_mode != PT_MODE_HOST_GUEST) || 1955 vmx_rtit_ctl_check(vcpu, data) || 1956 vmx->nested.vmxon) 1957 return 1; 1958 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 1959 vmx->pt_desc.guest.ctl = data; 1960 pt_update_intercept_for_msr(vmx); 1961 break; 1962 case MSR_IA32_RTIT_STATUS: 1963 if ((pt_mode != PT_MODE_HOST_GUEST) || 1964 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 1965 (data & MSR_IA32_RTIT_STATUS_MASK)) 1966 return 1; 1967 vmx->pt_desc.guest.status = data; 1968 break; 1969 case MSR_IA32_RTIT_CR3_MATCH: 1970 if ((pt_mode != PT_MODE_HOST_GUEST) || 1971 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 1972 !intel_pt_validate_cap(vmx->pt_desc.caps, 1973 PT_CAP_cr3_filtering)) 1974 return 1; 1975 vmx->pt_desc.guest.cr3_match = data; 1976 break; 1977 case MSR_IA32_RTIT_OUTPUT_BASE: 1978 if ((pt_mode != PT_MODE_HOST_GUEST) || 1979 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 1980 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1981 PT_CAP_topa_output) && 1982 !intel_pt_validate_cap(vmx->pt_desc.caps, 1983 PT_CAP_single_range_output)) || 1984 (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)) 1985 return 1; 1986 vmx->pt_desc.guest.output_base = data; 1987 break; 1988 case MSR_IA32_RTIT_OUTPUT_MASK: 1989 if ((pt_mode != PT_MODE_HOST_GUEST) || 1990 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 1991 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1992 PT_CAP_topa_output) && 1993 !intel_pt_validate_cap(vmx->pt_desc.caps, 1994 PT_CAP_single_range_output))) 1995 return 1; 1996 vmx->pt_desc.guest.output_mask = data; 1997 break; 1998 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1999 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2000 if ((pt_mode != PT_MODE_HOST_GUEST) || 2001 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) || 2002 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 2003 PT_CAP_num_address_ranges))) 2004 return 1; 2005 if (index % 2) 2006 vmx->pt_desc.guest.addr_b[index / 2] = data; 2007 else 2008 vmx->pt_desc.guest.addr_a[index / 2] = data; 2009 break; 2010 case MSR_TSC_AUX: 2011 if (!msr_info->host_initiated && 2012 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 2013 return 1; 2014 /* Check reserved bit, higher 32 bits should be zero */ 2015 if ((data >> 32) != 0) 2016 return 1; 2017 /* Else, falls through */ 2018 default: 2019 msr = find_msr_entry(vmx, msr_index); 2020 if (msr) { 2021 u64 old_msr_data = msr->data; 2022 msr->data = data; 2023 if (msr - vmx->guest_msrs < vmx->save_nmsrs) { 2024 preempt_disable(); 2025 ret = kvm_set_shared_msr(msr->index, msr->data, 2026 msr->mask); 2027 preempt_enable(); 2028 if (ret) 2029 msr->data = old_msr_data; 2030 } 2031 break; 2032 } 2033 ret = kvm_set_msr_common(vcpu, msr_info); 2034 } 2035 2036 return ret; 2037 } 2038 2039 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2040 { 2041 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); 2042 switch (reg) { 2043 case VCPU_REGS_RSP: 2044 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2045 break; 2046 case VCPU_REGS_RIP: 2047 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2048 break; 2049 case VCPU_EXREG_PDPTR: 2050 if (enable_ept) 2051 ept_save_pdptrs(vcpu); 2052 break; 2053 default: 2054 break; 2055 } 2056 } 2057 2058 static __init int cpu_has_kvm_support(void) 2059 { 2060 return cpu_has_vmx(); 2061 } 2062 2063 static __init int vmx_disabled_by_bios(void) 2064 { 2065 u64 msr; 2066 2067 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); 2068 if (msr & FEATURE_CONTROL_LOCKED) { 2069 /* launched w/ TXT and VMX disabled */ 2070 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) 2071 && tboot_enabled()) 2072 return 1; 2073 /* launched w/o TXT and VMX only enabled w/ TXT */ 2074 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) 2075 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) 2076 && !tboot_enabled()) { 2077 printk(KERN_WARNING "kvm: disable TXT in the BIOS or " 2078 "activate TXT before enabling KVM\n"); 2079 return 1; 2080 } 2081 /* launched w/o TXT and VMX disabled */ 2082 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) 2083 && !tboot_enabled()) 2084 return 1; 2085 } 2086 2087 return 0; 2088 } 2089 2090 static void kvm_cpu_vmxon(u64 addr) 2091 { 2092 cr4_set_bits(X86_CR4_VMXE); 2093 intel_pt_handle_vmx(1); 2094 2095 asm volatile ("vmxon %0" : : "m"(addr)); 2096 } 2097 2098 static int hardware_enable(void) 2099 { 2100 int cpu = raw_smp_processor_id(); 2101 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2102 u64 old, test_bits; 2103 2104 if (cr4_read_shadow() & X86_CR4_VMXE) 2105 return -EBUSY; 2106 2107 /* 2108 * This can happen if we hot-added a CPU but failed to allocate 2109 * VP assist page for it. 2110 */ 2111 if (static_branch_unlikely(&enable_evmcs) && 2112 !hv_get_vp_assist_page(cpu)) 2113 return -EFAULT; 2114 2115 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 2116 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu)); 2117 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); 2118 2119 /* 2120 * Now we can enable the vmclear operation in kdump 2121 * since the loaded_vmcss_on_cpu list on this cpu 2122 * has been initialized. 2123 * 2124 * Though the cpu is not in VMX operation now, there 2125 * is no problem to enable the vmclear operation 2126 * for the loaded_vmcss_on_cpu list is empty! 2127 */ 2128 crash_enable_local_vmclear(cpu); 2129 2130 rdmsrl(MSR_IA32_FEATURE_CONTROL, old); 2131 2132 test_bits = FEATURE_CONTROL_LOCKED; 2133 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 2134 if (tboot_enabled()) 2135 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX; 2136 2137 if ((old & test_bits) != test_bits) { 2138 /* enable and lock */ 2139 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits); 2140 } 2141 kvm_cpu_vmxon(phys_addr); 2142 if (enable_ept) 2143 ept_sync_global(); 2144 2145 return 0; 2146 } 2147 2148 static void vmclear_local_loaded_vmcss(void) 2149 { 2150 int cpu = raw_smp_processor_id(); 2151 struct loaded_vmcs *v, *n; 2152 2153 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2154 loaded_vmcss_on_cpu_link) 2155 __loaded_vmcs_clear(v); 2156 } 2157 2158 2159 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() 2160 * tricks. 2161 */ 2162 static void kvm_cpu_vmxoff(void) 2163 { 2164 asm volatile (__ex("vmxoff")); 2165 2166 intel_pt_handle_vmx(0); 2167 cr4_clear_bits(X86_CR4_VMXE); 2168 } 2169 2170 static void hardware_disable(void) 2171 { 2172 vmclear_local_loaded_vmcss(); 2173 kvm_cpu_vmxoff(); 2174 } 2175 2176 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2177 u32 msr, u32 *result) 2178 { 2179 u32 vmx_msr_low, vmx_msr_high; 2180 u32 ctl = ctl_min | ctl_opt; 2181 2182 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2183 2184 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2185 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2186 2187 /* Ensure minimum (required) set of control bits are supported. */ 2188 if (ctl_min & ~ctl) 2189 return -EIO; 2190 2191 *result = ctl; 2192 return 0; 2193 } 2194 2195 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2196 struct vmx_capability *vmx_cap) 2197 { 2198 u32 vmx_msr_low, vmx_msr_high; 2199 u32 min, opt, min2, opt2; 2200 u32 _pin_based_exec_control = 0; 2201 u32 _cpu_based_exec_control = 0; 2202 u32 _cpu_based_2nd_exec_control = 0; 2203 u32 _vmexit_control = 0; 2204 u32 _vmentry_control = 0; 2205 2206 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2207 min = CPU_BASED_HLT_EXITING | 2208 #ifdef CONFIG_X86_64 2209 CPU_BASED_CR8_LOAD_EXITING | 2210 CPU_BASED_CR8_STORE_EXITING | 2211 #endif 2212 CPU_BASED_CR3_LOAD_EXITING | 2213 CPU_BASED_CR3_STORE_EXITING | 2214 CPU_BASED_UNCOND_IO_EXITING | 2215 CPU_BASED_MOV_DR_EXITING | 2216 CPU_BASED_USE_TSC_OFFSETING | 2217 CPU_BASED_MWAIT_EXITING | 2218 CPU_BASED_MONITOR_EXITING | 2219 CPU_BASED_INVLPG_EXITING | 2220 CPU_BASED_RDPMC_EXITING; 2221 2222 opt = CPU_BASED_TPR_SHADOW | 2223 CPU_BASED_USE_MSR_BITMAPS | 2224 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2225 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2226 &_cpu_based_exec_control) < 0) 2227 return -EIO; 2228 #ifdef CONFIG_X86_64 2229 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2230 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2231 ~CPU_BASED_CR8_STORE_EXITING; 2232 #endif 2233 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2234 min2 = 0; 2235 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2236 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2237 SECONDARY_EXEC_WBINVD_EXITING | 2238 SECONDARY_EXEC_ENABLE_VPID | 2239 SECONDARY_EXEC_ENABLE_EPT | 2240 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2241 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2242 SECONDARY_EXEC_DESC | 2243 SECONDARY_EXEC_RDTSCP | 2244 SECONDARY_EXEC_ENABLE_INVPCID | 2245 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2246 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2247 SECONDARY_EXEC_SHADOW_VMCS | 2248 SECONDARY_EXEC_XSAVES | 2249 SECONDARY_EXEC_RDSEED_EXITING | 2250 SECONDARY_EXEC_RDRAND_EXITING | 2251 SECONDARY_EXEC_ENABLE_PML | 2252 SECONDARY_EXEC_TSC_SCALING | 2253 SECONDARY_EXEC_PT_USE_GPA | 2254 SECONDARY_EXEC_PT_CONCEAL_VMX | 2255 SECONDARY_EXEC_ENABLE_VMFUNC | 2256 SECONDARY_EXEC_ENCLS_EXITING; 2257 if (adjust_vmx_controls(min2, opt2, 2258 MSR_IA32_VMX_PROCBASED_CTLS2, 2259 &_cpu_based_2nd_exec_control) < 0) 2260 return -EIO; 2261 } 2262 #ifndef CONFIG_X86_64 2263 if (!(_cpu_based_2nd_exec_control & 2264 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2265 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2266 #endif 2267 2268 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2269 _cpu_based_2nd_exec_control &= ~( 2270 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2271 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2272 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2273 2274 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2275 &vmx_cap->ept, &vmx_cap->vpid); 2276 2277 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2278 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2279 enabled */ 2280 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2281 CPU_BASED_CR3_STORE_EXITING | 2282 CPU_BASED_INVLPG_EXITING); 2283 } else if (vmx_cap->ept) { 2284 vmx_cap->ept = 0; 2285 pr_warn_once("EPT CAP should not exist if not support " 2286 "1-setting enable EPT VM-execution control\n"); 2287 } 2288 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2289 vmx_cap->vpid) { 2290 vmx_cap->vpid = 0; 2291 pr_warn_once("VPID CAP should not exist if not support " 2292 "1-setting enable VPID VM-execution control\n"); 2293 } 2294 2295 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2296 #ifdef CONFIG_X86_64 2297 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2298 #endif 2299 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2300 VM_EXIT_LOAD_IA32_PAT | 2301 VM_EXIT_LOAD_IA32_EFER | 2302 VM_EXIT_CLEAR_BNDCFGS | 2303 VM_EXIT_PT_CONCEAL_PIP | 2304 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2305 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2306 &_vmexit_control) < 0) 2307 return -EIO; 2308 2309 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2310 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2311 PIN_BASED_VMX_PREEMPTION_TIMER; 2312 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2313 &_pin_based_exec_control) < 0) 2314 return -EIO; 2315 2316 if (cpu_has_broken_vmx_preemption_timer()) 2317 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2318 if (!(_cpu_based_2nd_exec_control & 2319 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2320 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2321 2322 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2323 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2324 VM_ENTRY_LOAD_IA32_PAT | 2325 VM_ENTRY_LOAD_IA32_EFER | 2326 VM_ENTRY_LOAD_BNDCFGS | 2327 VM_ENTRY_PT_CONCEAL_PIP | 2328 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2329 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2330 &_vmentry_control) < 0) 2331 return -EIO; 2332 2333 /* 2334 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2335 * can't be used due to an errata where VM Exit may incorrectly clear 2336 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2337 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2338 */ 2339 if (boot_cpu_data.x86 == 0x6) { 2340 switch (boot_cpu_data.x86_model) { 2341 case 26: /* AAK155 */ 2342 case 30: /* AAP115 */ 2343 case 37: /* AAT100 */ 2344 case 44: /* BC86,AAY89,BD102 */ 2345 case 46: /* BA97 */ 2346 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2347 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2348 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2349 "does not work properly. Using workaround\n"); 2350 break; 2351 default: 2352 break; 2353 } 2354 } 2355 2356 2357 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2358 2359 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2360 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2361 return -EIO; 2362 2363 #ifdef CONFIG_X86_64 2364 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2365 if (vmx_msr_high & (1u<<16)) 2366 return -EIO; 2367 #endif 2368 2369 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2370 if (((vmx_msr_high >> 18) & 15) != 6) 2371 return -EIO; 2372 2373 vmcs_conf->size = vmx_msr_high & 0x1fff; 2374 vmcs_conf->order = get_order(vmcs_conf->size); 2375 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2376 2377 vmcs_conf->revision_id = vmx_msr_low; 2378 2379 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2380 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2381 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2382 vmcs_conf->vmexit_ctrl = _vmexit_control; 2383 vmcs_conf->vmentry_ctrl = _vmentry_control; 2384 2385 if (static_branch_unlikely(&enable_evmcs)) 2386 evmcs_sanitize_exec_ctrls(vmcs_conf); 2387 2388 return 0; 2389 } 2390 2391 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2392 { 2393 int node = cpu_to_node(cpu); 2394 struct page *pages; 2395 struct vmcs *vmcs; 2396 2397 pages = __alloc_pages_node(node, flags, vmcs_config.order); 2398 if (!pages) 2399 return NULL; 2400 vmcs = page_address(pages); 2401 memset(vmcs, 0, vmcs_config.size); 2402 2403 /* KVM supports Enlightened VMCS v1 only */ 2404 if (static_branch_unlikely(&enable_evmcs)) 2405 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2406 else 2407 vmcs->hdr.revision_id = vmcs_config.revision_id; 2408 2409 if (shadow) 2410 vmcs->hdr.shadow_vmcs = 1; 2411 return vmcs; 2412 } 2413 2414 void free_vmcs(struct vmcs *vmcs) 2415 { 2416 free_pages((unsigned long)vmcs, vmcs_config.order); 2417 } 2418 2419 /* 2420 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2421 */ 2422 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2423 { 2424 if (!loaded_vmcs->vmcs) 2425 return; 2426 loaded_vmcs_clear(loaded_vmcs); 2427 free_vmcs(loaded_vmcs->vmcs); 2428 loaded_vmcs->vmcs = NULL; 2429 if (loaded_vmcs->msr_bitmap) 2430 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2431 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2432 } 2433 2434 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2435 { 2436 loaded_vmcs->vmcs = alloc_vmcs(false); 2437 if (!loaded_vmcs->vmcs) 2438 return -ENOMEM; 2439 2440 loaded_vmcs->shadow_vmcs = NULL; 2441 loaded_vmcs_init(loaded_vmcs); 2442 2443 if (cpu_has_vmx_msr_bitmap()) { 2444 loaded_vmcs->msr_bitmap = (unsigned long *) 2445 __get_free_page(GFP_KERNEL_ACCOUNT); 2446 if (!loaded_vmcs->msr_bitmap) 2447 goto out_vmcs; 2448 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2449 2450 if (IS_ENABLED(CONFIG_HYPERV) && 2451 static_branch_unlikely(&enable_evmcs) && 2452 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 2453 struct hv_enlightened_vmcs *evmcs = 2454 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; 2455 2456 evmcs->hv_enlightenments_control.msr_bitmap = 1; 2457 } 2458 } 2459 2460 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2461 2462 return 0; 2463 2464 out_vmcs: 2465 free_loaded_vmcs(loaded_vmcs); 2466 return -ENOMEM; 2467 } 2468 2469 static void free_kvm_area(void) 2470 { 2471 int cpu; 2472 2473 for_each_possible_cpu(cpu) { 2474 free_vmcs(per_cpu(vmxarea, cpu)); 2475 per_cpu(vmxarea, cpu) = NULL; 2476 } 2477 } 2478 2479 static __init int alloc_kvm_area(void) 2480 { 2481 int cpu; 2482 2483 for_each_possible_cpu(cpu) { 2484 struct vmcs *vmcs; 2485 2486 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2487 if (!vmcs) { 2488 free_kvm_area(); 2489 return -ENOMEM; 2490 } 2491 2492 /* 2493 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2494 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2495 * revision_id reported by MSR_IA32_VMX_BASIC. 2496 * 2497 * However, even though not explicitly documented by 2498 * TLFS, VMXArea passed as VMXON argument should 2499 * still be marked with revision_id reported by 2500 * physical CPU. 2501 */ 2502 if (static_branch_unlikely(&enable_evmcs)) 2503 vmcs->hdr.revision_id = vmcs_config.revision_id; 2504 2505 per_cpu(vmxarea, cpu) = vmcs; 2506 } 2507 return 0; 2508 } 2509 2510 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2511 struct kvm_segment *save) 2512 { 2513 if (!emulate_invalid_guest_state) { 2514 /* 2515 * CS and SS RPL should be equal during guest entry according 2516 * to VMX spec, but in reality it is not always so. Since vcpu 2517 * is in the middle of the transition from real mode to 2518 * protected mode it is safe to assume that RPL 0 is a good 2519 * default value. 2520 */ 2521 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2522 save->selector &= ~SEGMENT_RPL_MASK; 2523 save->dpl = save->selector & SEGMENT_RPL_MASK; 2524 save->s = 1; 2525 } 2526 vmx_set_segment(vcpu, save, seg); 2527 } 2528 2529 static void enter_pmode(struct kvm_vcpu *vcpu) 2530 { 2531 unsigned long flags; 2532 struct vcpu_vmx *vmx = to_vmx(vcpu); 2533 2534 /* 2535 * Update real mode segment cache. It may be not up-to-date if sement 2536 * register was written while vcpu was in a guest mode. 2537 */ 2538 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2539 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2540 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2541 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2542 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2543 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2544 2545 vmx->rmode.vm86_active = 0; 2546 2547 vmx_segment_cache_clear(vmx); 2548 2549 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2550 2551 flags = vmcs_readl(GUEST_RFLAGS); 2552 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2553 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2554 vmcs_writel(GUEST_RFLAGS, flags); 2555 2556 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2557 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2558 2559 update_exception_bitmap(vcpu); 2560 2561 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2562 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2563 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2564 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2565 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2566 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2567 } 2568 2569 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2570 { 2571 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2572 struct kvm_segment var = *save; 2573 2574 var.dpl = 0x3; 2575 if (seg == VCPU_SREG_CS) 2576 var.type = 0x3; 2577 2578 if (!emulate_invalid_guest_state) { 2579 var.selector = var.base >> 4; 2580 var.base = var.base & 0xffff0; 2581 var.limit = 0xffff; 2582 var.g = 0; 2583 var.db = 0; 2584 var.present = 1; 2585 var.s = 1; 2586 var.l = 0; 2587 var.unusable = 0; 2588 var.type = 0x3; 2589 var.avl = 0; 2590 if (save->base & 0xf) 2591 printk_once(KERN_WARNING "kvm: segment base is not " 2592 "paragraph aligned when entering " 2593 "protected mode (seg=%d)", seg); 2594 } 2595 2596 vmcs_write16(sf->selector, var.selector); 2597 vmcs_writel(sf->base, var.base); 2598 vmcs_write32(sf->limit, var.limit); 2599 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2600 } 2601 2602 static void enter_rmode(struct kvm_vcpu *vcpu) 2603 { 2604 unsigned long flags; 2605 struct vcpu_vmx *vmx = to_vmx(vcpu); 2606 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2607 2608 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2609 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2610 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2611 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2612 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2613 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2614 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2615 2616 vmx->rmode.vm86_active = 1; 2617 2618 /* 2619 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2620 * vcpu. Warn the user that an update is overdue. 2621 */ 2622 if (!kvm_vmx->tss_addr) 2623 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2624 "called before entering vcpu\n"); 2625 2626 vmx_segment_cache_clear(vmx); 2627 2628 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2629 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2630 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2631 2632 flags = vmcs_readl(GUEST_RFLAGS); 2633 vmx->rmode.save_rflags = flags; 2634 2635 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2636 2637 vmcs_writel(GUEST_RFLAGS, flags); 2638 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2639 update_exception_bitmap(vcpu); 2640 2641 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2642 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2643 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2644 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2645 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2646 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2647 2648 kvm_mmu_reset_context(vcpu); 2649 } 2650 2651 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2652 { 2653 struct vcpu_vmx *vmx = to_vmx(vcpu); 2654 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); 2655 2656 if (!msr) 2657 return; 2658 2659 vcpu->arch.efer = efer; 2660 if (efer & EFER_LMA) { 2661 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2662 msr->data = efer; 2663 } else { 2664 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2665 2666 msr->data = efer & ~EFER_LME; 2667 } 2668 setup_msrs(vmx); 2669 } 2670 2671 #ifdef CONFIG_X86_64 2672 2673 static void enter_lmode(struct kvm_vcpu *vcpu) 2674 { 2675 u32 guest_tr_ar; 2676 2677 vmx_segment_cache_clear(to_vmx(vcpu)); 2678 2679 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2680 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2681 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2682 __func__); 2683 vmcs_write32(GUEST_TR_AR_BYTES, 2684 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 2685 | VMX_AR_TYPE_BUSY_64_TSS); 2686 } 2687 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 2688 } 2689 2690 static void exit_lmode(struct kvm_vcpu *vcpu) 2691 { 2692 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2693 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 2694 } 2695 2696 #endif 2697 2698 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 2699 { 2700 int vpid = to_vmx(vcpu)->vpid; 2701 2702 if (!vpid_sync_vcpu_addr(vpid, addr)) 2703 vpid_sync_context(vpid); 2704 2705 /* 2706 * If VPIDs are not supported or enabled, then the above is a no-op. 2707 * But we don't really need a TLB flush in that case anyway, because 2708 * each VM entry/exit includes an implicit flush when VPID is 0. 2709 */ 2710 } 2711 2712 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) 2713 { 2714 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2715 2716 vcpu->arch.cr0 &= ~cr0_guest_owned_bits; 2717 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits; 2718 } 2719 2720 static void vmx_decache_cr3(struct kvm_vcpu *vcpu) 2721 { 2722 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu))) 2723 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2724 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); 2725 } 2726 2727 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) 2728 { 2729 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2730 2731 vcpu->arch.cr4 &= ~cr4_guest_owned_bits; 2732 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits; 2733 } 2734 2735 static void ept_load_pdptrs(struct kvm_vcpu *vcpu) 2736 { 2737 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2738 2739 if (!test_bit(VCPU_EXREG_PDPTR, 2740 (unsigned long *)&vcpu->arch.regs_dirty)) 2741 return; 2742 2743 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { 2744 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 2745 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 2746 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 2747 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 2748 } 2749 } 2750 2751 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 2752 { 2753 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2754 2755 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { 2756 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 2757 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 2758 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 2759 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 2760 } 2761 2762 __set_bit(VCPU_EXREG_PDPTR, 2763 (unsigned long *)&vcpu->arch.regs_avail); 2764 __set_bit(VCPU_EXREG_PDPTR, 2765 (unsigned long *)&vcpu->arch.regs_dirty); 2766 } 2767 2768 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, 2769 unsigned long cr0, 2770 struct kvm_vcpu *vcpu) 2771 { 2772 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 2773 vmx_decache_cr3(vcpu); 2774 if (!(cr0 & X86_CR0_PG)) { 2775 /* From paging/starting to nonpaging */ 2776 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, 2777 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) | 2778 (CPU_BASED_CR3_LOAD_EXITING | 2779 CPU_BASED_CR3_STORE_EXITING)); 2780 vcpu->arch.cr0 = cr0; 2781 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 2782 } else if (!is_paging(vcpu)) { 2783 /* From nonpaging to paging */ 2784 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, 2785 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & 2786 ~(CPU_BASED_CR3_LOAD_EXITING | 2787 CPU_BASED_CR3_STORE_EXITING)); 2788 vcpu->arch.cr0 = cr0; 2789 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 2790 } 2791 2792 if (!(cr0 & X86_CR0_WP)) 2793 *hw_cr0 &= ~X86_CR0_WP; 2794 } 2795 2796 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 2797 { 2798 struct vcpu_vmx *vmx = to_vmx(vcpu); 2799 unsigned long hw_cr0; 2800 2801 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 2802 if (enable_unrestricted_guest) 2803 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 2804 else { 2805 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 2806 2807 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 2808 enter_pmode(vcpu); 2809 2810 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 2811 enter_rmode(vcpu); 2812 } 2813 2814 #ifdef CONFIG_X86_64 2815 if (vcpu->arch.efer & EFER_LME) { 2816 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) 2817 enter_lmode(vcpu); 2818 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) 2819 exit_lmode(vcpu); 2820 } 2821 #endif 2822 2823 if (enable_ept && !enable_unrestricted_guest) 2824 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); 2825 2826 vmcs_writel(CR0_READ_SHADOW, cr0); 2827 vmcs_writel(GUEST_CR0, hw_cr0); 2828 vcpu->arch.cr0 = cr0; 2829 2830 /* depends on vcpu->arch.cr0 to be set to a new value */ 2831 vmx->emulation_required = emulation_required(vcpu); 2832 } 2833 2834 static int get_ept_level(struct kvm_vcpu *vcpu) 2835 { 2836 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48)) 2837 return 5; 2838 return 4; 2839 } 2840 2841 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa) 2842 { 2843 u64 eptp = VMX_EPTP_MT_WB; 2844 2845 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 2846 2847 if (enable_ept_ad_bits && 2848 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 2849 eptp |= VMX_EPTP_AD_ENABLE_BIT; 2850 eptp |= (root_hpa & PAGE_MASK); 2851 2852 return eptp; 2853 } 2854 2855 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) 2856 { 2857 struct kvm *kvm = vcpu->kvm; 2858 unsigned long guest_cr3; 2859 u64 eptp; 2860 2861 guest_cr3 = cr3; 2862 if (enable_ept) { 2863 eptp = construct_eptp(vcpu, cr3); 2864 vmcs_write64(EPT_POINTER, eptp); 2865 2866 if (kvm_x86_ops->tlb_remote_flush) { 2867 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); 2868 to_vmx(vcpu)->ept_pointer = eptp; 2869 to_kvm_vmx(kvm)->ept_pointers_match 2870 = EPT_POINTERS_CHECK; 2871 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); 2872 } 2873 2874 if (enable_unrestricted_guest || is_paging(vcpu) || 2875 is_guest_mode(vcpu)) 2876 guest_cr3 = kvm_read_cr3(vcpu); 2877 else 2878 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 2879 ept_load_pdptrs(vcpu); 2880 } 2881 2882 vmcs_writel(GUEST_CR3, guest_cr3); 2883 } 2884 2885 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 2886 { 2887 /* 2888 * Pass through host's Machine Check Enable value to hw_cr4, which 2889 * is in force while we are in guest mode. Do not let guests control 2890 * this bit, even if host CR4.MCE == 0. 2891 */ 2892 unsigned long hw_cr4; 2893 2894 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 2895 if (enable_unrestricted_guest) 2896 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 2897 else if (to_vmx(vcpu)->rmode.vm86_active) 2898 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 2899 else 2900 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 2901 2902 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 2903 if (cr4 & X86_CR4_UMIP) { 2904 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, 2905 SECONDARY_EXEC_DESC); 2906 hw_cr4 &= ~X86_CR4_UMIP; 2907 } else if (!is_guest_mode(vcpu) || 2908 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) 2909 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, 2910 SECONDARY_EXEC_DESC); 2911 } 2912 2913 if (cr4 & X86_CR4_VMXE) { 2914 /* 2915 * To use VMXON (and later other VMX instructions), a guest 2916 * must first be able to turn on cr4.VMXE (see handle_vmon()). 2917 * So basically the check on whether to allow nested VMX 2918 * is here. We operate under the default treatment of SMM, 2919 * so VMX cannot be enabled under SMM. 2920 */ 2921 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu)) 2922 return 1; 2923 } 2924 2925 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 2926 return 1; 2927 2928 vcpu->arch.cr4 = cr4; 2929 2930 if (!enable_unrestricted_guest) { 2931 if (enable_ept) { 2932 if (!is_paging(vcpu)) { 2933 hw_cr4 &= ~X86_CR4_PAE; 2934 hw_cr4 |= X86_CR4_PSE; 2935 } else if (!(cr4 & X86_CR4_PAE)) { 2936 hw_cr4 &= ~X86_CR4_PAE; 2937 } 2938 } 2939 2940 /* 2941 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 2942 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 2943 * to be manually disabled when guest switches to non-paging 2944 * mode. 2945 * 2946 * If !enable_unrestricted_guest, the CPU is always running 2947 * with CR0.PG=1 and CR4 needs to be modified. 2948 * If enable_unrestricted_guest, the CPU automatically 2949 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 2950 */ 2951 if (!is_paging(vcpu)) 2952 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 2953 } 2954 2955 vmcs_writel(CR4_READ_SHADOW, cr4); 2956 vmcs_writel(GUEST_CR4, hw_cr4); 2957 return 0; 2958 } 2959 2960 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 2961 { 2962 struct vcpu_vmx *vmx = to_vmx(vcpu); 2963 u32 ar; 2964 2965 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 2966 *var = vmx->rmode.segs[seg]; 2967 if (seg == VCPU_SREG_TR 2968 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 2969 return; 2970 var->base = vmx_read_guest_seg_base(vmx, seg); 2971 var->selector = vmx_read_guest_seg_selector(vmx, seg); 2972 return; 2973 } 2974 var->base = vmx_read_guest_seg_base(vmx, seg); 2975 var->limit = vmx_read_guest_seg_limit(vmx, seg); 2976 var->selector = vmx_read_guest_seg_selector(vmx, seg); 2977 ar = vmx_read_guest_seg_ar(vmx, seg); 2978 var->unusable = (ar >> 16) & 1; 2979 var->type = ar & 15; 2980 var->s = (ar >> 4) & 1; 2981 var->dpl = (ar >> 5) & 3; 2982 /* 2983 * Some userspaces do not preserve unusable property. Since usable 2984 * segment has to be present according to VMX spec we can use present 2985 * property to amend userspace bug by making unusable segment always 2986 * nonpresent. vmx_segment_access_rights() already marks nonpresent 2987 * segment as unusable. 2988 */ 2989 var->present = !var->unusable; 2990 var->avl = (ar >> 12) & 1; 2991 var->l = (ar >> 13) & 1; 2992 var->db = (ar >> 14) & 1; 2993 var->g = (ar >> 15) & 1; 2994 } 2995 2996 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 2997 { 2998 struct kvm_segment s; 2999 3000 if (to_vmx(vcpu)->rmode.vm86_active) { 3001 vmx_get_segment(vcpu, &s, seg); 3002 return s.base; 3003 } 3004 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3005 } 3006 3007 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3008 { 3009 struct vcpu_vmx *vmx = to_vmx(vcpu); 3010 3011 if (unlikely(vmx->rmode.vm86_active)) 3012 return 0; 3013 else { 3014 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3015 return VMX_AR_DPL(ar); 3016 } 3017 } 3018 3019 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3020 { 3021 u32 ar; 3022 3023 if (var->unusable || !var->present) 3024 ar = 1 << 16; 3025 else { 3026 ar = var->type & 15; 3027 ar |= (var->s & 1) << 4; 3028 ar |= (var->dpl & 3) << 5; 3029 ar |= (var->present & 1) << 7; 3030 ar |= (var->avl & 1) << 12; 3031 ar |= (var->l & 1) << 13; 3032 ar |= (var->db & 1) << 14; 3033 ar |= (var->g & 1) << 15; 3034 } 3035 3036 return ar; 3037 } 3038 3039 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3040 { 3041 struct vcpu_vmx *vmx = to_vmx(vcpu); 3042 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3043 3044 vmx_segment_cache_clear(vmx); 3045 3046 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3047 vmx->rmode.segs[seg] = *var; 3048 if (seg == VCPU_SREG_TR) 3049 vmcs_write16(sf->selector, var->selector); 3050 else if (var->s) 3051 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3052 goto out; 3053 } 3054 3055 vmcs_writel(sf->base, var->base); 3056 vmcs_write32(sf->limit, var->limit); 3057 vmcs_write16(sf->selector, var->selector); 3058 3059 /* 3060 * Fix the "Accessed" bit in AR field of segment registers for older 3061 * qemu binaries. 3062 * IA32 arch specifies that at the time of processor reset the 3063 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3064 * is setting it to 0 in the userland code. This causes invalid guest 3065 * state vmexit when "unrestricted guest" mode is turned on. 3066 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3067 * tree. Newer qemu binaries with that qemu fix would not need this 3068 * kvm hack. 3069 */ 3070 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR)) 3071 var->type |= 0x1; /* Accessed */ 3072 3073 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3074 3075 out: 3076 vmx->emulation_required = emulation_required(vcpu); 3077 } 3078 3079 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3080 { 3081 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3082 3083 *db = (ar >> 14) & 1; 3084 *l = (ar >> 13) & 1; 3085 } 3086 3087 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3088 { 3089 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3090 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3091 } 3092 3093 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3094 { 3095 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3096 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3097 } 3098 3099 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3100 { 3101 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3102 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3103 } 3104 3105 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3106 { 3107 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3108 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3109 } 3110 3111 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3112 { 3113 struct kvm_segment var; 3114 u32 ar; 3115 3116 vmx_get_segment(vcpu, &var, seg); 3117 var.dpl = 0x3; 3118 if (seg == VCPU_SREG_CS) 3119 var.type = 0x3; 3120 ar = vmx_segment_access_rights(&var); 3121 3122 if (var.base != (var.selector << 4)) 3123 return false; 3124 if (var.limit != 0xffff) 3125 return false; 3126 if (ar != 0xf3) 3127 return false; 3128 3129 return true; 3130 } 3131 3132 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3133 { 3134 struct kvm_segment cs; 3135 unsigned int cs_rpl; 3136 3137 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3138 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3139 3140 if (cs.unusable) 3141 return false; 3142 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3143 return false; 3144 if (!cs.s) 3145 return false; 3146 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3147 if (cs.dpl > cs_rpl) 3148 return false; 3149 } else { 3150 if (cs.dpl != cs_rpl) 3151 return false; 3152 } 3153 if (!cs.present) 3154 return false; 3155 3156 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3157 return true; 3158 } 3159 3160 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3161 { 3162 struct kvm_segment ss; 3163 unsigned int ss_rpl; 3164 3165 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3166 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3167 3168 if (ss.unusable) 3169 return true; 3170 if (ss.type != 3 && ss.type != 7) 3171 return false; 3172 if (!ss.s) 3173 return false; 3174 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3175 return false; 3176 if (!ss.present) 3177 return false; 3178 3179 return true; 3180 } 3181 3182 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3183 { 3184 struct kvm_segment var; 3185 unsigned int rpl; 3186 3187 vmx_get_segment(vcpu, &var, seg); 3188 rpl = var.selector & SEGMENT_RPL_MASK; 3189 3190 if (var.unusable) 3191 return true; 3192 if (!var.s) 3193 return false; 3194 if (!var.present) 3195 return false; 3196 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3197 if (var.dpl < rpl) /* DPL < RPL */ 3198 return false; 3199 } 3200 3201 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3202 * rights flags 3203 */ 3204 return true; 3205 } 3206 3207 static bool tr_valid(struct kvm_vcpu *vcpu) 3208 { 3209 struct kvm_segment tr; 3210 3211 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3212 3213 if (tr.unusable) 3214 return false; 3215 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3216 return false; 3217 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3218 return false; 3219 if (!tr.present) 3220 return false; 3221 3222 return true; 3223 } 3224 3225 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3226 { 3227 struct kvm_segment ldtr; 3228 3229 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3230 3231 if (ldtr.unusable) 3232 return true; 3233 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3234 return false; 3235 if (ldtr.type != 2) 3236 return false; 3237 if (!ldtr.present) 3238 return false; 3239 3240 return true; 3241 } 3242 3243 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3244 { 3245 struct kvm_segment cs, ss; 3246 3247 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3248 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3249 3250 return ((cs.selector & SEGMENT_RPL_MASK) == 3251 (ss.selector & SEGMENT_RPL_MASK)); 3252 } 3253 3254 /* 3255 * Check if guest state is valid. Returns true if valid, false if 3256 * not. 3257 * We assume that registers are always usable 3258 */ 3259 static bool guest_state_valid(struct kvm_vcpu *vcpu) 3260 { 3261 if (enable_unrestricted_guest) 3262 return true; 3263 3264 /* real mode guest state checks */ 3265 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3266 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3267 return false; 3268 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3269 return false; 3270 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3271 return false; 3272 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3273 return false; 3274 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3275 return false; 3276 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3277 return false; 3278 } else { 3279 /* protected mode guest state checks */ 3280 if (!cs_ss_rpl_check(vcpu)) 3281 return false; 3282 if (!code_segment_valid(vcpu)) 3283 return false; 3284 if (!stack_segment_valid(vcpu)) 3285 return false; 3286 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3287 return false; 3288 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3289 return false; 3290 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3291 return false; 3292 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3293 return false; 3294 if (!tr_valid(vcpu)) 3295 return false; 3296 if (!ldtr_valid(vcpu)) 3297 return false; 3298 } 3299 /* TODO: 3300 * - Add checks on RIP 3301 * - Add checks on RFLAGS 3302 */ 3303 3304 return true; 3305 } 3306 3307 static int init_rmode_tss(struct kvm *kvm) 3308 { 3309 gfn_t fn; 3310 u16 data = 0; 3311 int idx, r; 3312 3313 idx = srcu_read_lock(&kvm->srcu); 3314 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT; 3315 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); 3316 if (r < 0) 3317 goto out; 3318 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3319 r = kvm_write_guest_page(kvm, fn++, &data, 3320 TSS_IOPB_BASE_OFFSET, sizeof(u16)); 3321 if (r < 0) 3322 goto out; 3323 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); 3324 if (r < 0) 3325 goto out; 3326 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); 3327 if (r < 0) 3328 goto out; 3329 data = ~0; 3330 r = kvm_write_guest_page(kvm, fn, &data, 3331 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, 3332 sizeof(u8)); 3333 out: 3334 srcu_read_unlock(&kvm->srcu, idx); 3335 return r; 3336 } 3337 3338 static int init_rmode_identity_map(struct kvm *kvm) 3339 { 3340 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3341 int i, idx, r = 0; 3342 kvm_pfn_t identity_map_pfn; 3343 u32 tmp; 3344 3345 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3346 mutex_lock(&kvm->slots_lock); 3347 3348 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3349 goto out2; 3350 3351 if (!kvm_vmx->ept_identity_map_addr) 3352 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3353 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT; 3354 3355 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3356 kvm_vmx->ept_identity_map_addr, PAGE_SIZE); 3357 if (r < 0) 3358 goto out2; 3359 3360 idx = srcu_read_lock(&kvm->srcu); 3361 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE); 3362 if (r < 0) 3363 goto out; 3364 /* Set up identity-mapping pagetable for EPT in real mode */ 3365 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3366 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3367 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3368 r = kvm_write_guest_page(kvm, identity_map_pfn, 3369 &tmp, i * sizeof(tmp), sizeof(tmp)); 3370 if (r < 0) 3371 goto out; 3372 } 3373 kvm_vmx->ept_identity_pagetable_done = true; 3374 3375 out: 3376 srcu_read_unlock(&kvm->srcu, idx); 3377 3378 out2: 3379 mutex_unlock(&kvm->slots_lock); 3380 return r; 3381 } 3382 3383 static void seg_setup(int seg) 3384 { 3385 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3386 unsigned int ar; 3387 3388 vmcs_write16(sf->selector, 0); 3389 vmcs_writel(sf->base, 0); 3390 vmcs_write32(sf->limit, 0xffff); 3391 ar = 0x93; 3392 if (seg == VCPU_SREG_CS) 3393 ar |= 0x08; /* code segment */ 3394 3395 vmcs_write32(sf->ar_bytes, ar); 3396 } 3397 3398 static int alloc_apic_access_page(struct kvm *kvm) 3399 { 3400 struct page *page; 3401 int r = 0; 3402 3403 mutex_lock(&kvm->slots_lock); 3404 if (kvm->arch.apic_access_page_done) 3405 goto out; 3406 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3407 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3408 if (r) 3409 goto out; 3410 3411 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3412 if (is_error_page(page)) { 3413 r = -EFAULT; 3414 goto out; 3415 } 3416 3417 /* 3418 * Do not pin the page in memory, so that memory hot-unplug 3419 * is able to migrate it. 3420 */ 3421 put_page(page); 3422 kvm->arch.apic_access_page_done = true; 3423 out: 3424 mutex_unlock(&kvm->slots_lock); 3425 return r; 3426 } 3427 3428 int allocate_vpid(void) 3429 { 3430 int vpid; 3431 3432 if (!enable_vpid) 3433 return 0; 3434 spin_lock(&vmx_vpid_lock); 3435 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3436 if (vpid < VMX_NR_VPIDS) 3437 __set_bit(vpid, vmx_vpid_bitmap); 3438 else 3439 vpid = 0; 3440 spin_unlock(&vmx_vpid_lock); 3441 return vpid; 3442 } 3443 3444 void free_vpid(int vpid) 3445 { 3446 if (!enable_vpid || vpid == 0) 3447 return; 3448 spin_lock(&vmx_vpid_lock); 3449 __clear_bit(vpid, vmx_vpid_bitmap); 3450 spin_unlock(&vmx_vpid_lock); 3451 } 3452 3453 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, 3454 u32 msr, int type) 3455 { 3456 int f = sizeof(unsigned long); 3457 3458 if (!cpu_has_vmx_msr_bitmap()) 3459 return; 3460 3461 if (static_branch_unlikely(&enable_evmcs)) 3462 evmcs_touch_msr_bitmap(); 3463 3464 /* 3465 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals 3466 * have the write-low and read-high bitmap offsets the wrong way round. 3467 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. 3468 */ 3469 if (msr <= 0x1fff) { 3470 if (type & MSR_TYPE_R) 3471 /* read-low */ 3472 __clear_bit(msr, msr_bitmap + 0x000 / f); 3473 3474 if (type & MSR_TYPE_W) 3475 /* write-low */ 3476 __clear_bit(msr, msr_bitmap + 0x800 / f); 3477 3478 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 3479 msr &= 0x1fff; 3480 if (type & MSR_TYPE_R) 3481 /* read-high */ 3482 __clear_bit(msr, msr_bitmap + 0x400 / f); 3483 3484 if (type & MSR_TYPE_W) 3485 /* write-high */ 3486 __clear_bit(msr, msr_bitmap + 0xc00 / f); 3487 3488 } 3489 } 3490 3491 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap, 3492 u32 msr, int type) 3493 { 3494 int f = sizeof(unsigned long); 3495 3496 if (!cpu_has_vmx_msr_bitmap()) 3497 return; 3498 3499 if (static_branch_unlikely(&enable_evmcs)) 3500 evmcs_touch_msr_bitmap(); 3501 3502 /* 3503 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals 3504 * have the write-low and read-high bitmap offsets the wrong way round. 3505 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. 3506 */ 3507 if (msr <= 0x1fff) { 3508 if (type & MSR_TYPE_R) 3509 /* read-low */ 3510 __set_bit(msr, msr_bitmap + 0x000 / f); 3511 3512 if (type & MSR_TYPE_W) 3513 /* write-low */ 3514 __set_bit(msr, msr_bitmap + 0x800 / f); 3515 3516 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 3517 msr &= 0x1fff; 3518 if (type & MSR_TYPE_R) 3519 /* read-high */ 3520 __set_bit(msr, msr_bitmap + 0x400 / f); 3521 3522 if (type & MSR_TYPE_W) 3523 /* write-high */ 3524 __set_bit(msr, msr_bitmap + 0xc00 / f); 3525 3526 } 3527 } 3528 3529 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap, 3530 u32 msr, int type, bool value) 3531 { 3532 if (value) 3533 vmx_enable_intercept_for_msr(msr_bitmap, msr, type); 3534 else 3535 vmx_disable_intercept_for_msr(msr_bitmap, msr, type); 3536 } 3537 3538 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu) 3539 { 3540 u8 mode = 0; 3541 3542 if (cpu_has_secondary_exec_ctrls() && 3543 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) & 3544 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3545 mode |= MSR_BITMAP_MODE_X2APIC; 3546 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3547 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3548 } 3549 3550 return mode; 3551 } 3552 3553 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap, 3554 u8 mode) 3555 { 3556 int msr; 3557 3558 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3559 unsigned word = msr / BITS_PER_LONG; 3560 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3561 msr_bitmap[word + (0x800 / sizeof(long))] = ~0; 3562 } 3563 3564 if (mode & MSR_BITMAP_MODE_X2APIC) { 3565 /* 3566 * TPR reads and writes can be virtualized even if virtual interrupt 3567 * delivery is not in use. 3568 */ 3569 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW); 3570 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3571 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R); 3572 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3573 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3574 } 3575 } 3576 } 3577 3578 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu) 3579 { 3580 struct vcpu_vmx *vmx = to_vmx(vcpu); 3581 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3582 u8 mode = vmx_msr_bitmap_mode(vcpu); 3583 u8 changed = mode ^ vmx->msr_bitmap_mode; 3584 3585 if (!changed) 3586 return; 3587 3588 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV)) 3589 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode); 3590 3591 vmx->msr_bitmap_mode = mode; 3592 } 3593 3594 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx) 3595 { 3596 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3597 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3598 u32 i; 3599 3600 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS, 3601 MSR_TYPE_RW, flag); 3602 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE, 3603 MSR_TYPE_RW, flag); 3604 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK, 3605 MSR_TYPE_RW, flag); 3606 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH, 3607 MSR_TYPE_RW, flag); 3608 for (i = 0; i < vmx->pt_desc.addr_range; i++) { 3609 vmx_set_intercept_for_msr(msr_bitmap, 3610 MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3611 vmx_set_intercept_for_msr(msr_bitmap, 3612 MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3613 } 3614 } 3615 3616 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu) 3617 { 3618 return enable_apicv; 3619 } 3620 3621 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3622 { 3623 struct vcpu_vmx *vmx = to_vmx(vcpu); 3624 void *vapic_page; 3625 u32 vppr; 3626 int rvi; 3627 3628 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3629 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3630 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3631 return false; 3632 3633 rvi = vmx_get_rvi(); 3634 3635 vapic_page = vmx->nested.virtual_apic_map.hva; 3636 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 3637 3638 return ((rvi & 0xf0) > (vppr & 0xf0)); 3639 } 3640 3641 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 3642 bool nested) 3643 { 3644 #ifdef CONFIG_SMP 3645 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; 3646 3647 if (vcpu->mode == IN_GUEST_MODE) { 3648 /* 3649 * The vector of interrupt to be delivered to vcpu had 3650 * been set in PIR before this function. 3651 * 3652 * Following cases will be reached in this block, and 3653 * we always send a notification event in all cases as 3654 * explained below. 3655 * 3656 * Case 1: vcpu keeps in non-root mode. Sending a 3657 * notification event posts the interrupt to vcpu. 3658 * 3659 * Case 2: vcpu exits to root mode and is still 3660 * runnable. PIR will be synced to vIRR before the 3661 * next vcpu entry. Sending a notification event in 3662 * this case has no effect, as vcpu is not in root 3663 * mode. 3664 * 3665 * Case 3: vcpu exits to root mode and is blocked. 3666 * vcpu_block() has already synced PIR to vIRR and 3667 * never blocks vcpu if vIRR is not cleared. Therefore, 3668 * a blocked vcpu here does not wait for any requested 3669 * interrupts in PIR, and sending a notification event 3670 * which has no effect is safe here. 3671 */ 3672 3673 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 3674 return true; 3675 } 3676 #endif 3677 return false; 3678 } 3679 3680 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 3681 int vector) 3682 { 3683 struct vcpu_vmx *vmx = to_vmx(vcpu); 3684 3685 if (is_guest_mode(vcpu) && 3686 vector == vmx->nested.posted_intr_nv) { 3687 /* 3688 * If a posted intr is not recognized by hardware, 3689 * we will accomplish it in the next vmentry. 3690 */ 3691 vmx->nested.pi_pending = true; 3692 kvm_make_request(KVM_REQ_EVENT, vcpu); 3693 /* the PIR and ON have been set by L1. */ 3694 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) 3695 kvm_vcpu_kick(vcpu); 3696 return 0; 3697 } 3698 return -1; 3699 } 3700 /* 3701 * Send interrupt to vcpu via posted interrupt way. 3702 * 1. If target vcpu is running(non-root mode), send posted interrupt 3703 * notification to vcpu and hardware will sync PIR to vIRR atomically. 3704 * 2. If target vcpu isn't running(root mode), kick it to pick up the 3705 * interrupt from PIR in next vmentry. 3706 */ 3707 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 3708 { 3709 struct vcpu_vmx *vmx = to_vmx(vcpu); 3710 int r; 3711 3712 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 3713 if (!r) 3714 return; 3715 3716 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 3717 return; 3718 3719 /* If a previous notification has sent the IPI, nothing to do. */ 3720 if (pi_test_and_set_on(&vmx->pi_desc)) 3721 return; 3722 3723 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false)) 3724 kvm_vcpu_kick(vcpu); 3725 } 3726 3727 /* 3728 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 3729 * will not change in the lifetime of the guest. 3730 * Note that host-state that does change is set elsewhere. E.g., host-state 3731 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 3732 */ 3733 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 3734 { 3735 u32 low32, high32; 3736 unsigned long tmpl; 3737 struct desc_ptr dt; 3738 unsigned long cr0, cr3, cr4; 3739 3740 cr0 = read_cr0(); 3741 WARN_ON(cr0 & X86_CR0_TS); 3742 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 3743 3744 /* 3745 * Save the most likely value for this task's CR3 in the VMCS. 3746 * We can't use __get_current_cr3_fast() because we're not atomic. 3747 */ 3748 cr3 = __read_cr3(); 3749 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 3750 vmx->loaded_vmcs->host_state.cr3 = cr3; 3751 3752 /* Save the most likely value for this task's CR4 in the VMCS. */ 3753 cr4 = cr4_read_shadow(); 3754 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 3755 vmx->loaded_vmcs->host_state.cr4 = cr4; 3756 3757 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 3758 #ifdef CONFIG_X86_64 3759 /* 3760 * Load null selectors, so we can avoid reloading them in 3761 * vmx_prepare_switch_to_host(), in case userspace uses 3762 * the null selectors too (the expected case). 3763 */ 3764 vmcs_write16(HOST_DS_SELECTOR, 0); 3765 vmcs_write16(HOST_ES_SELECTOR, 0); 3766 #else 3767 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 3768 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 3769 #endif 3770 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 3771 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 3772 3773 store_idt(&dt); 3774 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */ 3775 vmx->host_idt_base = dt.address; 3776 3777 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 3778 3779 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 3780 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 3781 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 3782 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 3783 3784 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 3785 rdmsr(MSR_IA32_CR_PAT, low32, high32); 3786 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 3787 } 3788 3789 if (cpu_has_load_ia32_efer()) 3790 vmcs_write64(HOST_IA32_EFER, host_efer); 3791 } 3792 3793 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 3794 { 3795 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS; 3796 if (enable_ept) 3797 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; 3798 if (is_guest_mode(&vmx->vcpu)) 3799 vmx->vcpu.arch.cr4_guest_owned_bits &= 3800 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask; 3801 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); 3802 } 3803 3804 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 3805 { 3806 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 3807 3808 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 3809 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 3810 3811 if (!enable_vnmi) 3812 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 3813 3814 /* Enable the preemption timer dynamically */ 3815 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 3816 return pin_based_exec_ctrl; 3817 } 3818 3819 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 3820 { 3821 struct vcpu_vmx *vmx = to_vmx(vcpu); 3822 3823 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); 3824 if (cpu_has_secondary_exec_ctrls()) { 3825 if (kvm_vcpu_apicv_active(vcpu)) 3826 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL, 3827 SECONDARY_EXEC_APIC_REGISTER_VIRT | 3828 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 3829 else 3830 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, 3831 SECONDARY_EXEC_APIC_REGISTER_VIRT | 3832 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 3833 } 3834 3835 if (cpu_has_vmx_msr_bitmap()) 3836 vmx_update_msr_bitmap(vcpu); 3837 } 3838 3839 u32 vmx_exec_control(struct vcpu_vmx *vmx) 3840 { 3841 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 3842 3843 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 3844 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 3845 3846 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 3847 exec_control &= ~CPU_BASED_TPR_SHADOW; 3848 #ifdef CONFIG_X86_64 3849 exec_control |= CPU_BASED_CR8_STORE_EXITING | 3850 CPU_BASED_CR8_LOAD_EXITING; 3851 #endif 3852 } 3853 if (!enable_ept) 3854 exec_control |= CPU_BASED_CR3_STORE_EXITING | 3855 CPU_BASED_CR3_LOAD_EXITING | 3856 CPU_BASED_INVLPG_EXITING; 3857 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 3858 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 3859 CPU_BASED_MONITOR_EXITING); 3860 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 3861 exec_control &= ~CPU_BASED_HLT_EXITING; 3862 return exec_control; 3863 } 3864 3865 3866 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx) 3867 { 3868 struct kvm_vcpu *vcpu = &vmx->vcpu; 3869 3870 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 3871 3872 if (pt_mode == PT_MODE_SYSTEM) 3873 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 3874 if (!cpu_need_virtualize_apic_accesses(vcpu)) 3875 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 3876 if (vmx->vpid == 0) 3877 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 3878 if (!enable_ept) { 3879 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 3880 enable_unrestricted_guest = 0; 3881 } 3882 if (!enable_unrestricted_guest) 3883 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 3884 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 3885 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 3886 if (!kvm_vcpu_apicv_active(vcpu)) 3887 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 3888 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 3889 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 3890 3891 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 3892 * in vmx_set_cr4. */ 3893 exec_control &= ~SECONDARY_EXEC_DESC; 3894 3895 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 3896 (handle_vmptrld). 3897 We can NOT enable shadow_vmcs here because we don't have yet 3898 a current VMCS12 3899 */ 3900 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 3901 3902 if (!enable_pml) 3903 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 3904 3905 if (vmx_xsaves_supported()) { 3906 /* Exposing XSAVES only when XSAVE is exposed */ 3907 bool xsaves_enabled = 3908 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 3909 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 3910 3911 if (!xsaves_enabled) 3912 exec_control &= ~SECONDARY_EXEC_XSAVES; 3913 3914 if (nested) { 3915 if (xsaves_enabled) 3916 vmx->nested.msrs.secondary_ctls_high |= 3917 SECONDARY_EXEC_XSAVES; 3918 else 3919 vmx->nested.msrs.secondary_ctls_high &= 3920 ~SECONDARY_EXEC_XSAVES; 3921 } 3922 } 3923 3924 if (vmx_rdtscp_supported()) { 3925 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP); 3926 if (!rdtscp_enabled) 3927 exec_control &= ~SECONDARY_EXEC_RDTSCP; 3928 3929 if (nested) { 3930 if (rdtscp_enabled) 3931 vmx->nested.msrs.secondary_ctls_high |= 3932 SECONDARY_EXEC_RDTSCP; 3933 else 3934 vmx->nested.msrs.secondary_ctls_high &= 3935 ~SECONDARY_EXEC_RDTSCP; 3936 } 3937 } 3938 3939 if (vmx_invpcid_supported()) { 3940 /* Exposing INVPCID only when PCID is exposed */ 3941 bool invpcid_enabled = 3942 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) && 3943 guest_cpuid_has(vcpu, X86_FEATURE_PCID); 3944 3945 if (!invpcid_enabled) { 3946 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID; 3947 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID); 3948 } 3949 3950 if (nested) { 3951 if (invpcid_enabled) 3952 vmx->nested.msrs.secondary_ctls_high |= 3953 SECONDARY_EXEC_ENABLE_INVPCID; 3954 else 3955 vmx->nested.msrs.secondary_ctls_high &= 3956 ~SECONDARY_EXEC_ENABLE_INVPCID; 3957 } 3958 } 3959 3960 if (vmx_rdrand_supported()) { 3961 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND); 3962 if (rdrand_enabled) 3963 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING; 3964 3965 if (nested) { 3966 if (rdrand_enabled) 3967 vmx->nested.msrs.secondary_ctls_high |= 3968 SECONDARY_EXEC_RDRAND_EXITING; 3969 else 3970 vmx->nested.msrs.secondary_ctls_high &= 3971 ~SECONDARY_EXEC_RDRAND_EXITING; 3972 } 3973 } 3974 3975 if (vmx_rdseed_supported()) { 3976 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED); 3977 if (rdseed_enabled) 3978 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING; 3979 3980 if (nested) { 3981 if (rdseed_enabled) 3982 vmx->nested.msrs.secondary_ctls_high |= 3983 SECONDARY_EXEC_RDSEED_EXITING; 3984 else 3985 vmx->nested.msrs.secondary_ctls_high &= 3986 ~SECONDARY_EXEC_RDSEED_EXITING; 3987 } 3988 } 3989 3990 vmx->secondary_exec_control = exec_control; 3991 } 3992 3993 static void ept_set_mmio_spte_mask(void) 3994 { 3995 /* 3996 * EPT Misconfigurations can be generated if the value of bits 2:0 3997 * of an EPT paging-structure entry is 110b (write/execute). 3998 */ 3999 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK, 4000 VMX_EPT_MISCONFIG_WX_VALUE); 4001 } 4002 4003 #define VMX_XSS_EXIT_BITMAP 0 4004 4005 /* 4006 * Sets up the vmcs for emulated real mode. 4007 */ 4008 static void vmx_vcpu_setup(struct vcpu_vmx *vmx) 4009 { 4010 int i; 4011 4012 if (nested) 4013 nested_vmx_vcpu_setup(); 4014 4015 if (cpu_has_vmx_msr_bitmap()) 4016 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4017 4018 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ 4019 4020 /* Control */ 4021 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); 4022 vmx->hv_deadline_tsc = -1; 4023 4024 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx)); 4025 4026 if (cpu_has_secondary_exec_ctrls()) { 4027 vmx_compute_secondary_exec_control(vmx); 4028 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, 4029 vmx->secondary_exec_control); 4030 } 4031 4032 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4033 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4034 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4035 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4036 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4037 4038 vmcs_write16(GUEST_INTR_STATUS, 0); 4039 4040 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4041 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4042 } 4043 4044 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4045 vmcs_write32(PLE_GAP, ple_gap); 4046 vmx->ple_window = ple_window; 4047 vmx->ple_window_dirty = true; 4048 } 4049 4050 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4051 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4052 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4053 4054 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4055 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4056 vmx_set_constant_host_state(vmx); 4057 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4058 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4059 4060 if (cpu_has_vmx_vmfunc()) 4061 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4062 4063 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4064 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4065 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4066 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4067 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4068 4069 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4070 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4071 4072 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) { 4073 u32 index = vmx_msr_index[i]; 4074 u32 data_low, data_high; 4075 int j = vmx->nmsrs; 4076 4077 if (rdmsr_safe(index, &data_low, &data_high) < 0) 4078 continue; 4079 if (wrmsr_safe(index, data_low, data_high) < 0) 4080 continue; 4081 vmx->guest_msrs[j].index = i; 4082 vmx->guest_msrs[j].data = 0; 4083 vmx->guest_msrs[j].mask = -1ull; 4084 ++vmx->nmsrs; 4085 } 4086 4087 vm_exit_controls_init(vmx, vmx_vmexit_ctrl()); 4088 4089 /* 22.2.1, 20.8.1 */ 4090 vm_entry_controls_init(vmx, vmx_vmentry_ctrl()); 4091 4092 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS; 4093 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS); 4094 4095 set_cr4_guest_host_mask(vmx); 4096 4097 if (vmx_xsaves_supported()) 4098 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4099 4100 if (enable_pml) { 4101 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4102 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4103 } 4104 4105 if (cpu_has_vmx_encls_vmexit()) 4106 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); 4107 4108 if (pt_mode == PT_MODE_HOST_GUEST) { 4109 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4110 /* Bit[6~0] are forced to 1, writes are ignored. */ 4111 vmx->pt_desc.guest.output_mask = 0x7F; 4112 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4113 } 4114 } 4115 4116 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4117 { 4118 struct vcpu_vmx *vmx = to_vmx(vcpu); 4119 struct msr_data apic_base_msr; 4120 u64 cr0; 4121 4122 vmx->rmode.vm86_active = 0; 4123 vmx->spec_ctrl = 0; 4124 4125 vcpu->arch.microcode_version = 0x100000000ULL; 4126 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); 4127 kvm_set_cr8(vcpu, 0); 4128 4129 if (!init_event) { 4130 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | 4131 MSR_IA32_APICBASE_ENABLE; 4132 if (kvm_vcpu_is_reset_bsp(vcpu)) 4133 apic_base_msr.data |= MSR_IA32_APICBASE_BSP; 4134 apic_base_msr.host_initiated = true; 4135 kvm_set_apic_base(vcpu, &apic_base_msr); 4136 } 4137 4138 vmx_segment_cache_clear(vmx); 4139 4140 seg_setup(VCPU_SREG_CS); 4141 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4142 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4143 4144 seg_setup(VCPU_SREG_DS); 4145 seg_setup(VCPU_SREG_ES); 4146 seg_setup(VCPU_SREG_FS); 4147 seg_setup(VCPU_SREG_GS); 4148 seg_setup(VCPU_SREG_SS); 4149 4150 vmcs_write16(GUEST_TR_SELECTOR, 0); 4151 vmcs_writel(GUEST_TR_BASE, 0); 4152 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4153 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4154 4155 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4156 vmcs_writel(GUEST_LDTR_BASE, 0); 4157 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4158 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4159 4160 if (!init_event) { 4161 vmcs_write32(GUEST_SYSENTER_CS, 0); 4162 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4163 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4164 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4165 } 4166 4167 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 4168 kvm_rip_write(vcpu, 0xfff0); 4169 4170 vmcs_writel(GUEST_GDTR_BASE, 0); 4171 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4172 4173 vmcs_writel(GUEST_IDTR_BASE, 0); 4174 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4175 4176 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4177 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4178 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4179 if (kvm_mpx_supported()) 4180 vmcs_write64(GUEST_BNDCFGS, 0); 4181 4182 setup_msrs(vmx); 4183 4184 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4185 4186 if (cpu_has_vmx_tpr_shadow() && !init_event) { 4187 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4188 if (cpu_need_tpr_shadow(vcpu)) 4189 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4190 __pa(vcpu->arch.apic->regs)); 4191 vmcs_write32(TPR_THRESHOLD, 0); 4192 } 4193 4194 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4195 4196 if (vmx->vpid != 0) 4197 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4198 4199 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; 4200 vmx->vcpu.arch.cr0 = cr0; 4201 vmx_set_cr0(vcpu, cr0); /* enter rmode */ 4202 vmx_set_cr4(vcpu, 0); 4203 vmx_set_efer(vcpu, 0); 4204 4205 update_exception_bitmap(vcpu); 4206 4207 vpid_sync_context(vmx->vpid); 4208 if (init_event) 4209 vmx_clear_hlt(vcpu); 4210 } 4211 4212 static void enable_irq_window(struct kvm_vcpu *vcpu) 4213 { 4214 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, 4215 CPU_BASED_VIRTUAL_INTR_PENDING); 4216 } 4217 4218 static void enable_nmi_window(struct kvm_vcpu *vcpu) 4219 { 4220 if (!enable_vnmi || 4221 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4222 enable_irq_window(vcpu); 4223 return; 4224 } 4225 4226 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, 4227 CPU_BASED_VIRTUAL_NMI_PENDING); 4228 } 4229 4230 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4231 { 4232 struct vcpu_vmx *vmx = to_vmx(vcpu); 4233 uint32_t intr; 4234 int irq = vcpu->arch.interrupt.nr; 4235 4236 trace_kvm_inj_virq(irq); 4237 4238 ++vcpu->stat.irq_injections; 4239 if (vmx->rmode.vm86_active) { 4240 int inc_eip = 0; 4241 if (vcpu->arch.interrupt.soft) 4242 inc_eip = vcpu->arch.event_exit_inst_len; 4243 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE) 4244 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4245 return; 4246 } 4247 intr = irq | INTR_INFO_VALID_MASK; 4248 if (vcpu->arch.interrupt.soft) { 4249 intr |= INTR_TYPE_SOFT_INTR; 4250 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4251 vmx->vcpu.arch.event_exit_inst_len); 4252 } else 4253 intr |= INTR_TYPE_EXT_INTR; 4254 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4255 4256 vmx_clear_hlt(vcpu); 4257 } 4258 4259 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4260 { 4261 struct vcpu_vmx *vmx = to_vmx(vcpu); 4262 4263 if (!enable_vnmi) { 4264 /* 4265 * Tracking the NMI-blocked state in software is built upon 4266 * finding the next open IRQ window. This, in turn, depends on 4267 * well-behaving guests: They have to keep IRQs disabled at 4268 * least as long as the NMI handler runs. Otherwise we may 4269 * cause NMI nesting, maybe breaking the guest. But as this is 4270 * highly unlikely, we can live with the residual risk. 4271 */ 4272 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4273 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4274 } 4275 4276 ++vcpu->stat.nmi_injections; 4277 vmx->loaded_vmcs->nmi_known_unmasked = false; 4278 4279 if (vmx->rmode.vm86_active) { 4280 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE) 4281 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); 4282 return; 4283 } 4284 4285 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4286 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4287 4288 vmx_clear_hlt(vcpu); 4289 } 4290 4291 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4292 { 4293 struct vcpu_vmx *vmx = to_vmx(vcpu); 4294 bool masked; 4295 4296 if (!enable_vnmi) 4297 return vmx->loaded_vmcs->soft_vnmi_blocked; 4298 if (vmx->loaded_vmcs->nmi_known_unmasked) 4299 return false; 4300 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4301 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4302 return masked; 4303 } 4304 4305 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4306 { 4307 struct vcpu_vmx *vmx = to_vmx(vcpu); 4308 4309 if (!enable_vnmi) { 4310 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4311 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4312 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4313 } 4314 } else { 4315 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4316 if (masked) 4317 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4318 GUEST_INTR_STATE_NMI); 4319 else 4320 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4321 GUEST_INTR_STATE_NMI); 4322 } 4323 } 4324 4325 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu) 4326 { 4327 if (to_vmx(vcpu)->nested.nested_run_pending) 4328 return 0; 4329 4330 if (!enable_vnmi && 4331 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4332 return 0; 4333 4334 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4335 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI 4336 | GUEST_INTR_STATE_NMI)); 4337 } 4338 4339 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu) 4340 { 4341 return (!to_vmx(vcpu)->nested.nested_run_pending && 4342 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && 4343 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4344 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4345 } 4346 4347 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4348 { 4349 int ret; 4350 4351 if (enable_unrestricted_guest) 4352 return 0; 4353 4354 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4355 PAGE_SIZE * 3); 4356 if (ret) 4357 return ret; 4358 to_kvm_vmx(kvm)->tss_addr = addr; 4359 return init_rmode_tss(kvm); 4360 } 4361 4362 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4363 { 4364 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4365 return 0; 4366 } 4367 4368 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4369 { 4370 switch (vec) { 4371 case BP_VECTOR: 4372 /* 4373 * Update instruction length as we may reinject the exception 4374 * from user space while in guest debugging mode. 4375 */ 4376 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4377 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4378 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4379 return false; 4380 /* fall through */ 4381 case DB_VECTOR: 4382 if (vcpu->guest_debug & 4383 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) 4384 return false; 4385 /* fall through */ 4386 case DE_VECTOR: 4387 case OF_VECTOR: 4388 case BR_VECTOR: 4389 case UD_VECTOR: 4390 case DF_VECTOR: 4391 case SS_VECTOR: 4392 case GP_VECTOR: 4393 case MF_VECTOR: 4394 return true; 4395 break; 4396 } 4397 return false; 4398 } 4399 4400 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4401 int vec, u32 err_code) 4402 { 4403 /* 4404 * Instruction with address size override prefix opcode 0x67 4405 * Cause the #SS fault with 0 error code in VM86 mode. 4406 */ 4407 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4408 if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) { 4409 if (vcpu->arch.halt_request) { 4410 vcpu->arch.halt_request = 0; 4411 return kvm_vcpu_halt(vcpu); 4412 } 4413 return 1; 4414 } 4415 return 0; 4416 } 4417 4418 /* 4419 * Forward all other exceptions that are valid in real mode. 4420 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4421 * the required debugging infrastructure rework. 4422 */ 4423 kvm_queue_exception(vcpu, vec); 4424 return 1; 4425 } 4426 4427 /* 4428 * Trigger machine check on the host. We assume all the MSRs are already set up 4429 * by the CPU and that we still run on the same CPU as the MCE occurred on. 4430 * We pass a fake environment to the machine check handler because we want 4431 * the guest to be always treated like user space, no matter what context 4432 * it used internally. 4433 */ 4434 static void kvm_machine_check(void) 4435 { 4436 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64) 4437 struct pt_regs regs = { 4438 .cs = 3, /* Fake ring 3 no matter what the guest ran on */ 4439 .flags = X86_EFLAGS_IF, 4440 }; 4441 4442 do_machine_check(®s, 0); 4443 #endif 4444 } 4445 4446 static int handle_machine_check(struct kvm_vcpu *vcpu) 4447 { 4448 /* already handled by vcpu_run */ 4449 return 1; 4450 } 4451 4452 static int handle_exception(struct kvm_vcpu *vcpu) 4453 { 4454 struct vcpu_vmx *vmx = to_vmx(vcpu); 4455 struct kvm_run *kvm_run = vcpu->run; 4456 u32 intr_info, ex_no, error_code; 4457 unsigned long cr2, rip, dr6; 4458 u32 vect_info; 4459 enum emulation_result er; 4460 4461 vect_info = vmx->idt_vectoring_info; 4462 intr_info = vmx->exit_intr_info; 4463 4464 if (is_machine_check(intr_info)) 4465 return handle_machine_check(vcpu); 4466 4467 if (is_nmi(intr_info)) 4468 return 1; /* already handled by vmx_vcpu_run() */ 4469 4470 if (is_invalid_opcode(intr_info)) 4471 return handle_ud(vcpu); 4472 4473 error_code = 0; 4474 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4475 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4476 4477 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4478 WARN_ON_ONCE(!enable_vmware_backdoor); 4479 er = kvm_emulate_instruction(vcpu, 4480 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL); 4481 if (er == EMULATE_USER_EXIT) 4482 return 0; 4483 else if (er != EMULATE_DONE) 4484 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4485 return 1; 4486 } 4487 4488 /* 4489 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4490 * MMIO, it is better to report an internal error. 4491 * See the comments in vmx_handle_exit. 4492 */ 4493 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4494 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4495 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4496 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4497 vcpu->run->internal.ndata = 3; 4498 vcpu->run->internal.data[0] = vect_info; 4499 vcpu->run->internal.data[1] = intr_info; 4500 vcpu->run->internal.data[2] = error_code; 4501 return 0; 4502 } 4503 4504 if (is_page_fault(intr_info)) { 4505 cr2 = vmcs_readl(EXIT_QUALIFICATION); 4506 /* EPT won't cause page fault directly */ 4507 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept); 4508 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4509 } 4510 4511 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4512 4513 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4514 return handle_rmode_exception(vcpu, ex_no, error_code); 4515 4516 switch (ex_no) { 4517 case AC_VECTOR: 4518 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4519 return 1; 4520 case DB_VECTOR: 4521 dr6 = vmcs_readl(EXIT_QUALIFICATION); 4522 if (!(vcpu->guest_debug & 4523 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4524 vcpu->arch.dr6 &= ~15; 4525 vcpu->arch.dr6 |= dr6 | DR6_RTM; 4526 if (is_icebp(intr_info)) 4527 skip_emulated_instruction(vcpu); 4528 4529 kvm_queue_exception(vcpu, DB_VECTOR); 4530 return 1; 4531 } 4532 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; 4533 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4534 /* fall through */ 4535 case BP_VECTOR: 4536 /* 4537 * Update instruction length as we may reinject #BP from 4538 * user space while in guest debugging mode. Reading it for 4539 * #DB as well causes no harm, it is not used in that case. 4540 */ 4541 vmx->vcpu.arch.event_exit_inst_len = 4542 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4543 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4544 rip = kvm_rip_read(vcpu); 4545 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; 4546 kvm_run->debug.arch.exception = ex_no; 4547 break; 4548 default: 4549 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4550 kvm_run->ex.exception = ex_no; 4551 kvm_run->ex.error_code = error_code; 4552 break; 4553 } 4554 return 0; 4555 } 4556 4557 static int handle_external_interrupt(struct kvm_vcpu *vcpu) 4558 { 4559 ++vcpu->stat.irq_exits; 4560 return 1; 4561 } 4562 4563 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4564 { 4565 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 4566 vcpu->mmio_needed = 0; 4567 return 0; 4568 } 4569 4570 static int handle_io(struct kvm_vcpu *vcpu) 4571 { 4572 unsigned long exit_qualification; 4573 int size, in, string; 4574 unsigned port; 4575 4576 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4577 string = (exit_qualification & 16) != 0; 4578 4579 ++vcpu->stat.io_exits; 4580 4581 if (string) 4582 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; 4583 4584 port = exit_qualification >> 16; 4585 size = (exit_qualification & 7) + 1; 4586 in = (exit_qualification & 8) != 0; 4587 4588 return kvm_fast_pio(vcpu, size, port, in); 4589 } 4590 4591 static void 4592 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4593 { 4594 /* 4595 * Patch in the VMCALL instruction: 4596 */ 4597 hypercall[0] = 0x0f; 4598 hypercall[1] = 0x01; 4599 hypercall[2] = 0xc1; 4600 } 4601 4602 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 4603 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 4604 { 4605 if (is_guest_mode(vcpu)) { 4606 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4607 unsigned long orig_val = val; 4608 4609 /* 4610 * We get here when L2 changed cr0 in a way that did not change 4611 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 4612 * but did change L0 shadowed bits. So we first calculate the 4613 * effective cr0 value that L1 would like to write into the 4614 * hardware. It consists of the L2-owned bits from the new 4615 * value combined with the L1-owned bits from L1's guest_cr0. 4616 */ 4617 val = (val & ~vmcs12->cr0_guest_host_mask) | 4618 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 4619 4620 if (!nested_guest_cr0_valid(vcpu, val)) 4621 return 1; 4622 4623 if (kvm_set_cr0(vcpu, val)) 4624 return 1; 4625 vmcs_writel(CR0_READ_SHADOW, orig_val); 4626 return 0; 4627 } else { 4628 if (to_vmx(vcpu)->nested.vmxon && 4629 !nested_host_cr0_valid(vcpu, val)) 4630 return 1; 4631 4632 return kvm_set_cr0(vcpu, val); 4633 } 4634 } 4635 4636 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 4637 { 4638 if (is_guest_mode(vcpu)) { 4639 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4640 unsigned long orig_val = val; 4641 4642 /* analogously to handle_set_cr0 */ 4643 val = (val & ~vmcs12->cr4_guest_host_mask) | 4644 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 4645 if (kvm_set_cr4(vcpu, val)) 4646 return 1; 4647 vmcs_writel(CR4_READ_SHADOW, orig_val); 4648 return 0; 4649 } else 4650 return kvm_set_cr4(vcpu, val); 4651 } 4652 4653 static int handle_desc(struct kvm_vcpu *vcpu) 4654 { 4655 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 4656 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; 4657 } 4658 4659 static int handle_cr(struct kvm_vcpu *vcpu) 4660 { 4661 unsigned long exit_qualification, val; 4662 int cr; 4663 int reg; 4664 int err; 4665 int ret; 4666 4667 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4668 cr = exit_qualification & 15; 4669 reg = (exit_qualification >> 8) & 15; 4670 switch ((exit_qualification >> 4) & 3) { 4671 case 0: /* mov to cr */ 4672 val = kvm_register_readl(vcpu, reg); 4673 trace_kvm_cr_write(cr, val); 4674 switch (cr) { 4675 case 0: 4676 err = handle_set_cr0(vcpu, val); 4677 return kvm_complete_insn_gp(vcpu, err); 4678 case 3: 4679 WARN_ON_ONCE(enable_unrestricted_guest); 4680 err = kvm_set_cr3(vcpu, val); 4681 return kvm_complete_insn_gp(vcpu, err); 4682 case 4: 4683 err = handle_set_cr4(vcpu, val); 4684 return kvm_complete_insn_gp(vcpu, err); 4685 case 8: { 4686 u8 cr8_prev = kvm_get_cr8(vcpu); 4687 u8 cr8 = (u8)val; 4688 err = kvm_set_cr8(vcpu, cr8); 4689 ret = kvm_complete_insn_gp(vcpu, err); 4690 if (lapic_in_kernel(vcpu)) 4691 return ret; 4692 if (cr8_prev <= cr8) 4693 return ret; 4694 /* 4695 * TODO: we might be squashing a 4696 * KVM_GUESTDBG_SINGLESTEP-triggered 4697 * KVM_EXIT_DEBUG here. 4698 */ 4699 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 4700 return 0; 4701 } 4702 } 4703 break; 4704 case 2: /* clts */ 4705 WARN_ONCE(1, "Guest should always own CR0.TS"); 4706 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); 4707 trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); 4708 return kvm_skip_emulated_instruction(vcpu); 4709 case 1: /*mov from cr*/ 4710 switch (cr) { 4711 case 3: 4712 WARN_ON_ONCE(enable_unrestricted_guest); 4713 val = kvm_read_cr3(vcpu); 4714 kvm_register_write(vcpu, reg, val); 4715 trace_kvm_cr_read(cr, val); 4716 return kvm_skip_emulated_instruction(vcpu); 4717 case 8: 4718 val = kvm_get_cr8(vcpu); 4719 kvm_register_write(vcpu, reg, val); 4720 trace_kvm_cr_read(cr, val); 4721 return kvm_skip_emulated_instruction(vcpu); 4722 } 4723 break; 4724 case 3: /* lmsw */ 4725 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 4726 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 4727 kvm_lmsw(vcpu, val); 4728 4729 return kvm_skip_emulated_instruction(vcpu); 4730 default: 4731 break; 4732 } 4733 vcpu->run->exit_reason = 0; 4734 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 4735 (int)(exit_qualification >> 4) & 3, cr); 4736 return 0; 4737 } 4738 4739 static int handle_dr(struct kvm_vcpu *vcpu) 4740 { 4741 unsigned long exit_qualification; 4742 int dr, dr7, reg; 4743 4744 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4745 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 4746 4747 /* First, if DR does not exist, trigger UD */ 4748 if (!kvm_require_dr(vcpu, dr)) 4749 return 1; 4750 4751 /* Do not handle if the CPL > 0, will trigger GP on re-entry */ 4752 if (!kvm_require_cpl(vcpu, 0)) 4753 return 1; 4754 dr7 = vmcs_readl(GUEST_DR7); 4755 if (dr7 & DR7_GD) { 4756 /* 4757 * As the vm-exit takes precedence over the debug trap, we 4758 * need to emulate the latter, either for the host or the 4759 * guest debugging itself. 4760 */ 4761 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 4762 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6; 4763 vcpu->run->debug.arch.dr7 = dr7; 4764 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 4765 vcpu->run->debug.arch.exception = DB_VECTOR; 4766 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 4767 return 0; 4768 } else { 4769 vcpu->arch.dr6 &= ~15; 4770 vcpu->arch.dr6 |= DR6_BD | DR6_RTM; 4771 kvm_queue_exception(vcpu, DB_VECTOR); 4772 return 1; 4773 } 4774 } 4775 4776 if (vcpu->guest_debug == 0) { 4777 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, 4778 CPU_BASED_MOV_DR_EXITING); 4779 4780 /* 4781 * No more DR vmexits; force a reload of the debug registers 4782 * and reenter on this instruction. The next vmexit will 4783 * retrieve the full state of the debug registers. 4784 */ 4785 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 4786 return 1; 4787 } 4788 4789 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 4790 if (exit_qualification & TYPE_MOV_FROM_DR) { 4791 unsigned long val; 4792 4793 if (kvm_get_dr(vcpu, dr, &val)) 4794 return 1; 4795 kvm_register_write(vcpu, reg, val); 4796 } else 4797 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg))) 4798 return 1; 4799 4800 return kvm_skip_emulated_instruction(vcpu); 4801 } 4802 4803 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu) 4804 { 4805 return vcpu->arch.dr6; 4806 } 4807 4808 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val) 4809 { 4810 } 4811 4812 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 4813 { 4814 get_debugreg(vcpu->arch.db[0], 0); 4815 get_debugreg(vcpu->arch.db[1], 1); 4816 get_debugreg(vcpu->arch.db[2], 2); 4817 get_debugreg(vcpu->arch.db[3], 3); 4818 get_debugreg(vcpu->arch.dr6, 6); 4819 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 4820 4821 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 4822 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING); 4823 } 4824 4825 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 4826 { 4827 vmcs_writel(GUEST_DR7, val); 4828 } 4829 4830 static int handle_cpuid(struct kvm_vcpu *vcpu) 4831 { 4832 return kvm_emulate_cpuid(vcpu); 4833 } 4834 4835 static int handle_rdmsr(struct kvm_vcpu *vcpu) 4836 { 4837 u32 ecx = kvm_rcx_read(vcpu); 4838 struct msr_data msr_info; 4839 4840 msr_info.index = ecx; 4841 msr_info.host_initiated = false; 4842 if (vmx_get_msr(vcpu, &msr_info)) { 4843 trace_kvm_msr_read_ex(ecx); 4844 kvm_inject_gp(vcpu, 0); 4845 return 1; 4846 } 4847 4848 trace_kvm_msr_read(ecx, msr_info.data); 4849 4850 kvm_rax_write(vcpu, msr_info.data & -1u); 4851 kvm_rdx_write(vcpu, (msr_info.data >> 32) & -1u); 4852 return kvm_skip_emulated_instruction(vcpu); 4853 } 4854 4855 static int handle_wrmsr(struct kvm_vcpu *vcpu) 4856 { 4857 struct msr_data msr; 4858 u32 ecx = kvm_rcx_read(vcpu); 4859 u64 data = kvm_read_edx_eax(vcpu); 4860 4861 msr.data = data; 4862 msr.index = ecx; 4863 msr.host_initiated = false; 4864 if (kvm_set_msr(vcpu, &msr) != 0) { 4865 trace_kvm_msr_write_ex(ecx, data); 4866 kvm_inject_gp(vcpu, 0); 4867 return 1; 4868 } 4869 4870 trace_kvm_msr_write(ecx, data); 4871 return kvm_skip_emulated_instruction(vcpu); 4872 } 4873 4874 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 4875 { 4876 kvm_apic_update_ppr(vcpu); 4877 return 1; 4878 } 4879 4880 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 4881 { 4882 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, 4883 CPU_BASED_VIRTUAL_INTR_PENDING); 4884 4885 kvm_make_request(KVM_REQ_EVENT, vcpu); 4886 4887 ++vcpu->stat.irq_window_exits; 4888 return 1; 4889 } 4890 4891 static int handle_halt(struct kvm_vcpu *vcpu) 4892 { 4893 return kvm_emulate_halt(vcpu); 4894 } 4895 4896 static int handle_vmcall(struct kvm_vcpu *vcpu) 4897 { 4898 return kvm_emulate_hypercall(vcpu); 4899 } 4900 4901 static int handle_invd(struct kvm_vcpu *vcpu) 4902 { 4903 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; 4904 } 4905 4906 static int handle_invlpg(struct kvm_vcpu *vcpu) 4907 { 4908 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4909 4910 kvm_mmu_invlpg(vcpu, exit_qualification); 4911 return kvm_skip_emulated_instruction(vcpu); 4912 } 4913 4914 static int handle_rdpmc(struct kvm_vcpu *vcpu) 4915 { 4916 int err; 4917 4918 err = kvm_rdpmc(vcpu); 4919 return kvm_complete_insn_gp(vcpu, err); 4920 } 4921 4922 static int handle_wbinvd(struct kvm_vcpu *vcpu) 4923 { 4924 return kvm_emulate_wbinvd(vcpu); 4925 } 4926 4927 static int handle_xsetbv(struct kvm_vcpu *vcpu) 4928 { 4929 u64 new_bv = kvm_read_edx_eax(vcpu); 4930 u32 index = kvm_rcx_read(vcpu); 4931 4932 if (kvm_set_xcr(vcpu, index, new_bv) == 0) 4933 return kvm_skip_emulated_instruction(vcpu); 4934 return 1; 4935 } 4936 4937 static int handle_xsaves(struct kvm_vcpu *vcpu) 4938 { 4939 kvm_skip_emulated_instruction(vcpu); 4940 WARN(1, "this should never happen\n"); 4941 return 1; 4942 } 4943 4944 static int handle_xrstors(struct kvm_vcpu *vcpu) 4945 { 4946 kvm_skip_emulated_instruction(vcpu); 4947 WARN(1, "this should never happen\n"); 4948 return 1; 4949 } 4950 4951 static int handle_apic_access(struct kvm_vcpu *vcpu) 4952 { 4953 if (likely(fasteoi)) { 4954 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4955 int access_type, offset; 4956 4957 access_type = exit_qualification & APIC_ACCESS_TYPE; 4958 offset = exit_qualification & APIC_ACCESS_OFFSET; 4959 /* 4960 * Sane guest uses MOV to write EOI, with written value 4961 * not cared. So make a short-circuit here by avoiding 4962 * heavy instruction emulation. 4963 */ 4964 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 4965 (offset == APIC_EOI)) { 4966 kvm_lapic_set_eoi(vcpu); 4967 return kvm_skip_emulated_instruction(vcpu); 4968 } 4969 } 4970 return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; 4971 } 4972 4973 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 4974 { 4975 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4976 int vector = exit_qualification & 0xff; 4977 4978 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 4979 kvm_apic_set_eoi_accelerated(vcpu, vector); 4980 return 1; 4981 } 4982 4983 static int handle_apic_write(struct kvm_vcpu *vcpu) 4984 { 4985 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 4986 u32 offset = exit_qualification & 0xfff; 4987 4988 /* APIC-write VM exit is trap-like and thus no need to adjust IP */ 4989 kvm_apic_write_nodecode(vcpu, offset); 4990 return 1; 4991 } 4992 4993 static int handle_task_switch(struct kvm_vcpu *vcpu) 4994 { 4995 struct vcpu_vmx *vmx = to_vmx(vcpu); 4996 unsigned long exit_qualification; 4997 bool has_error_code = false; 4998 u32 error_code = 0; 4999 u16 tss_selector; 5000 int reason, type, idt_v, idt_index; 5001 5002 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5003 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5004 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5005 5006 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 5007 5008 reason = (u32)exit_qualification >> 30; 5009 if (reason == TASK_SWITCH_GATE && idt_v) { 5010 switch (type) { 5011 case INTR_TYPE_NMI_INTR: 5012 vcpu->arch.nmi_injected = false; 5013 vmx_set_nmi_mask(vcpu, true); 5014 break; 5015 case INTR_TYPE_EXT_INTR: 5016 case INTR_TYPE_SOFT_INTR: 5017 kvm_clear_interrupt_queue(vcpu); 5018 break; 5019 case INTR_TYPE_HARD_EXCEPTION: 5020 if (vmx->idt_vectoring_info & 5021 VECTORING_INFO_DELIVER_CODE_MASK) { 5022 has_error_code = true; 5023 error_code = 5024 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5025 } 5026 /* fall through */ 5027 case INTR_TYPE_SOFT_EXCEPTION: 5028 kvm_clear_exception_queue(vcpu); 5029 break; 5030 default: 5031 break; 5032 } 5033 } 5034 tss_selector = exit_qualification; 5035 5036 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5037 type != INTR_TYPE_EXT_INTR && 5038 type != INTR_TYPE_NMI_INTR)) 5039 skip_emulated_instruction(vcpu); 5040 5041 if (kvm_task_switch(vcpu, tss_selector, 5042 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason, 5043 has_error_code, error_code) == EMULATE_FAIL) { 5044 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5045 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 5046 vcpu->run->internal.ndata = 0; 5047 return 0; 5048 } 5049 5050 /* 5051 * TODO: What about debug traps on tss switch? 5052 * Are we supposed to inject them and update dr6? 5053 */ 5054 5055 return 1; 5056 } 5057 5058 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5059 { 5060 unsigned long exit_qualification; 5061 gpa_t gpa; 5062 u64 error_code; 5063 5064 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 5065 5066 /* 5067 * EPT violation happened while executing iret from NMI, 5068 * "blocked by NMI" bit has to be set before next VM entry. 5069 * There are errata that may cause this bit to not be set: 5070 * AAK134, BY25. 5071 */ 5072 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5073 enable_vnmi && 5074 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5075 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5076 5077 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5078 trace_kvm_page_fault(gpa, exit_qualification); 5079 5080 /* Is it a read fault? */ 5081 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5082 ? PFERR_USER_MASK : 0; 5083 /* Is it a write fault? */ 5084 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5085 ? PFERR_WRITE_MASK : 0; 5086 /* Is it a fetch fault? */ 5087 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5088 ? PFERR_FETCH_MASK : 0; 5089 /* ept page table entry is present? */ 5090 error_code |= (exit_qualification & 5091 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5092 EPT_VIOLATION_EXECUTABLE)) 5093 ? PFERR_PRESENT_MASK : 0; 5094 5095 error_code |= (exit_qualification & 0x100) != 0 ? 5096 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5097 5098 vcpu->arch.exit_qualification = exit_qualification; 5099 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5100 } 5101 5102 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5103 { 5104 gpa_t gpa; 5105 5106 /* 5107 * A nested guest cannot optimize MMIO vmexits, because we have an 5108 * nGPA here instead of the required GPA. 5109 */ 5110 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5111 if (!is_guest_mode(vcpu) && 5112 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5113 trace_kvm_fast_mmio(gpa); 5114 /* 5115 * Doing kvm_skip_emulated_instruction() depends on undefined 5116 * behavior: Intel's manual doesn't mandate 5117 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG 5118 * occurs and while on real hardware it was observed to be set, 5119 * other hypervisors (namely Hyper-V) don't set it, we end up 5120 * advancing IP with some random value. Disable fast mmio when 5121 * running nested and keep it for real hardware in hope that 5122 * VM_EXIT_INSTRUCTION_LEN will always be set correctly. 5123 */ 5124 if (!static_cpu_has(X86_FEATURE_HYPERVISOR)) 5125 return kvm_skip_emulated_instruction(vcpu); 5126 else 5127 return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) == 5128 EMULATE_DONE; 5129 } 5130 5131 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5132 } 5133 5134 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5135 { 5136 WARN_ON_ONCE(!enable_vnmi); 5137 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL, 5138 CPU_BASED_VIRTUAL_NMI_PENDING); 5139 ++vcpu->stat.nmi_window_exits; 5140 kvm_make_request(KVM_REQ_EVENT, vcpu); 5141 5142 return 1; 5143 } 5144 5145 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5146 { 5147 struct vcpu_vmx *vmx = to_vmx(vcpu); 5148 enum emulation_result err = EMULATE_DONE; 5149 int ret = 1; 5150 u32 cpu_exec_ctrl; 5151 bool intr_window_requested; 5152 unsigned count = 130; 5153 5154 /* 5155 * We should never reach the point where we are emulating L2 5156 * due to invalid guest state as that means we incorrectly 5157 * allowed a nested VMEntry with an invalid vmcs12. 5158 */ 5159 WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending); 5160 5161 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5162 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING; 5163 5164 while (vmx->emulation_required && count-- != 0) { 5165 if (intr_window_requested && vmx_interrupt_allowed(vcpu)) 5166 return handle_interrupt_window(&vmx->vcpu); 5167 5168 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5169 return 1; 5170 5171 err = kvm_emulate_instruction(vcpu, 0); 5172 5173 if (err == EMULATE_USER_EXIT) { 5174 ++vcpu->stat.mmio_exits; 5175 ret = 0; 5176 goto out; 5177 } 5178 5179 if (err != EMULATE_DONE) 5180 goto emulation_error; 5181 5182 if (vmx->emulation_required && !vmx->rmode.vm86_active && 5183 vcpu->arch.exception.pending) 5184 goto emulation_error; 5185 5186 if (vcpu->arch.halt_request) { 5187 vcpu->arch.halt_request = 0; 5188 ret = kvm_vcpu_halt(vcpu); 5189 goto out; 5190 } 5191 5192 if (signal_pending(current)) 5193 goto out; 5194 if (need_resched()) 5195 schedule(); 5196 } 5197 5198 out: 5199 return ret; 5200 5201 emulation_error: 5202 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5203 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; 5204 vcpu->run->internal.ndata = 0; 5205 return 0; 5206 } 5207 5208 static void grow_ple_window(struct kvm_vcpu *vcpu) 5209 { 5210 struct vcpu_vmx *vmx = to_vmx(vcpu); 5211 int old = vmx->ple_window; 5212 5213 vmx->ple_window = __grow_ple_window(old, ple_window, 5214 ple_window_grow, 5215 ple_window_max); 5216 5217 if (vmx->ple_window != old) 5218 vmx->ple_window_dirty = true; 5219 5220 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old); 5221 } 5222 5223 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5224 { 5225 struct vcpu_vmx *vmx = to_vmx(vcpu); 5226 int old = vmx->ple_window; 5227 5228 vmx->ple_window = __shrink_ple_window(old, ple_window, 5229 ple_window_shrink, 5230 ple_window); 5231 5232 if (vmx->ple_window != old) 5233 vmx->ple_window_dirty = true; 5234 5235 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old); 5236 } 5237 5238 /* 5239 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR. 5240 */ 5241 static void wakeup_handler(void) 5242 { 5243 struct kvm_vcpu *vcpu; 5244 int cpu = smp_processor_id(); 5245 5246 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); 5247 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu), 5248 blocked_vcpu_list) { 5249 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 5250 5251 if (pi_test_on(pi_desc) == 1) 5252 kvm_vcpu_kick(vcpu); 5253 } 5254 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu)); 5255 } 5256 5257 static void vmx_enable_tdp(void) 5258 { 5259 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK, 5260 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull, 5261 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull, 5262 0ull, VMX_EPT_EXECUTABLE_MASK, 5263 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK, 5264 VMX_EPT_RWX_MASK, 0ull); 5265 5266 ept_set_mmio_spte_mask(); 5267 kvm_enable_tdp(); 5268 } 5269 5270 /* 5271 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5272 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5273 */ 5274 static int handle_pause(struct kvm_vcpu *vcpu) 5275 { 5276 if (!kvm_pause_in_guest(vcpu->kvm)) 5277 grow_ple_window(vcpu); 5278 5279 /* 5280 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5281 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5282 * never set PAUSE_EXITING and just set PLE if supported, 5283 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5284 */ 5285 kvm_vcpu_on_spin(vcpu, true); 5286 return kvm_skip_emulated_instruction(vcpu); 5287 } 5288 5289 static int handle_nop(struct kvm_vcpu *vcpu) 5290 { 5291 return kvm_skip_emulated_instruction(vcpu); 5292 } 5293 5294 static int handle_mwait(struct kvm_vcpu *vcpu) 5295 { 5296 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); 5297 return handle_nop(vcpu); 5298 } 5299 5300 static int handle_invalid_op(struct kvm_vcpu *vcpu) 5301 { 5302 kvm_queue_exception(vcpu, UD_VECTOR); 5303 return 1; 5304 } 5305 5306 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5307 { 5308 return 1; 5309 } 5310 5311 static int handle_monitor(struct kvm_vcpu *vcpu) 5312 { 5313 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); 5314 return handle_nop(vcpu); 5315 } 5316 5317 static int handle_invpcid(struct kvm_vcpu *vcpu) 5318 { 5319 u32 vmx_instruction_info; 5320 unsigned long type; 5321 bool pcid_enabled; 5322 gva_t gva; 5323 struct x86_exception e; 5324 unsigned i; 5325 unsigned long roots_to_free = 0; 5326 struct { 5327 u64 pcid; 5328 u64 gla; 5329 } operand; 5330 5331 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5332 kvm_queue_exception(vcpu, UD_VECTOR); 5333 return 1; 5334 } 5335 5336 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5337 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); 5338 5339 if (type > 3) { 5340 kvm_inject_gp(vcpu, 0); 5341 return 1; 5342 } 5343 5344 /* According to the Intel instruction reference, the memory operand 5345 * is read even if it isn't needed (e.g., for type==all) 5346 */ 5347 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), 5348 vmx_instruction_info, false, &gva)) 5349 return 1; 5350 5351 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) { 5352 kvm_inject_page_fault(vcpu, &e); 5353 return 1; 5354 } 5355 5356 if (operand.pcid >> 12 != 0) { 5357 kvm_inject_gp(vcpu, 0); 5358 return 1; 5359 } 5360 5361 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE); 5362 5363 switch (type) { 5364 case INVPCID_TYPE_INDIV_ADDR: 5365 if ((!pcid_enabled && (operand.pcid != 0)) || 5366 is_noncanonical_address(operand.gla, vcpu)) { 5367 kvm_inject_gp(vcpu, 0); 5368 return 1; 5369 } 5370 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); 5371 return kvm_skip_emulated_instruction(vcpu); 5372 5373 case INVPCID_TYPE_SINGLE_CTXT: 5374 if (!pcid_enabled && (operand.pcid != 0)) { 5375 kvm_inject_gp(vcpu, 0); 5376 return 1; 5377 } 5378 5379 if (kvm_get_active_pcid(vcpu) == operand.pcid) { 5380 kvm_mmu_sync_roots(vcpu); 5381 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 5382 } 5383 5384 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) 5385 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3) 5386 == operand.pcid) 5387 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); 5388 5389 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free); 5390 /* 5391 * If neither the current cr3 nor any of the prev_roots use the 5392 * given PCID, then nothing needs to be done here because a 5393 * resync will happen anyway before switching to any other CR3. 5394 */ 5395 5396 return kvm_skip_emulated_instruction(vcpu); 5397 5398 case INVPCID_TYPE_ALL_NON_GLOBAL: 5399 /* 5400 * Currently, KVM doesn't mark global entries in the shadow 5401 * page tables, so a non-global flush just degenerates to a 5402 * global flush. If needed, we could optimize this later by 5403 * keeping track of global entries in shadow page tables. 5404 */ 5405 5406 /* fall-through */ 5407 case INVPCID_TYPE_ALL_INCL_GLOBAL: 5408 kvm_mmu_unload(vcpu); 5409 return kvm_skip_emulated_instruction(vcpu); 5410 5411 default: 5412 BUG(); /* We have already checked above that type <= 3 */ 5413 } 5414 } 5415 5416 static int handle_pml_full(struct kvm_vcpu *vcpu) 5417 { 5418 unsigned long exit_qualification; 5419 5420 trace_kvm_pml_full(vcpu->vcpu_id); 5421 5422 exit_qualification = vmcs_readl(EXIT_QUALIFICATION); 5423 5424 /* 5425 * PML buffer FULL happened while executing iret from NMI, 5426 * "blocked by NMI" bit has to be set before next VM entry. 5427 */ 5428 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5429 enable_vnmi && 5430 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5431 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5432 GUEST_INTR_STATE_NMI); 5433 5434 /* 5435 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5436 * here.., and there's no userspace involvement needed for PML. 5437 */ 5438 return 1; 5439 } 5440 5441 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5442 { 5443 if (!to_vmx(vcpu)->req_immediate_exit) 5444 kvm_lapic_expired_hv_timer(vcpu); 5445 return 1; 5446 } 5447 5448 /* 5449 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5450 * are overwritten by nested_vmx_setup() when nested=1. 5451 */ 5452 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5453 { 5454 kvm_queue_exception(vcpu, UD_VECTOR); 5455 return 1; 5456 } 5457 5458 static int handle_encls(struct kvm_vcpu *vcpu) 5459 { 5460 /* 5461 * SGX virtualization is not yet supported. There is no software 5462 * enable bit for SGX, so we have to trap ENCLS and inject a #UD 5463 * to prevent the guest from executing ENCLS. 5464 */ 5465 kvm_queue_exception(vcpu, UD_VECTOR); 5466 return 1; 5467 } 5468 5469 /* 5470 * The exit handlers return 1 if the exit was handled fully and guest execution 5471 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5472 * to be done to userspace and return 0. 5473 */ 5474 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5475 [EXIT_REASON_EXCEPTION_NMI] = handle_exception, 5476 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5477 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5478 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5479 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5480 [EXIT_REASON_CR_ACCESS] = handle_cr, 5481 [EXIT_REASON_DR_ACCESS] = handle_dr, 5482 [EXIT_REASON_CPUID] = handle_cpuid, 5483 [EXIT_REASON_MSR_READ] = handle_rdmsr, 5484 [EXIT_REASON_MSR_WRITE] = handle_wrmsr, 5485 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window, 5486 [EXIT_REASON_HLT] = handle_halt, 5487 [EXIT_REASON_INVD] = handle_invd, 5488 [EXIT_REASON_INVLPG] = handle_invlpg, 5489 [EXIT_REASON_RDPMC] = handle_rdpmc, 5490 [EXIT_REASON_VMCALL] = handle_vmcall, 5491 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5492 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5493 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5494 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5495 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5496 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5497 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5498 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5499 [EXIT_REASON_VMON] = handle_vmx_instruction, 5500 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5501 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5502 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5503 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5504 [EXIT_REASON_WBINVD] = handle_wbinvd, 5505 [EXIT_REASON_XSETBV] = handle_xsetbv, 5506 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5507 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5508 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5509 [EXIT_REASON_LDTR_TR] = handle_desc, 5510 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5511 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5512 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5513 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait, 5514 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5515 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor, 5516 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5517 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5518 [EXIT_REASON_RDRAND] = handle_invalid_op, 5519 [EXIT_REASON_RDSEED] = handle_invalid_op, 5520 [EXIT_REASON_XSAVES] = handle_xsaves, 5521 [EXIT_REASON_XRSTORS] = handle_xrstors, 5522 [EXIT_REASON_PML_FULL] = handle_pml_full, 5523 [EXIT_REASON_INVPCID] = handle_invpcid, 5524 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5525 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5526 [EXIT_REASON_ENCLS] = handle_encls, 5527 }; 5528 5529 static const int kvm_vmx_max_exit_handlers = 5530 ARRAY_SIZE(kvm_vmx_exit_handlers); 5531 5532 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) 5533 { 5534 *info1 = vmcs_readl(EXIT_QUALIFICATION); 5535 *info2 = vmcs_read32(VM_EXIT_INTR_INFO); 5536 } 5537 5538 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5539 { 5540 if (vmx->pml_pg) { 5541 __free_page(vmx->pml_pg); 5542 vmx->pml_pg = NULL; 5543 } 5544 } 5545 5546 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5547 { 5548 struct vcpu_vmx *vmx = to_vmx(vcpu); 5549 u64 *pml_buf; 5550 u16 pml_idx; 5551 5552 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5553 5554 /* Do nothing if PML buffer is empty */ 5555 if (pml_idx == (PML_ENTITY_NUM - 1)) 5556 return; 5557 5558 /* PML index always points to next available PML buffer entity */ 5559 if (pml_idx >= PML_ENTITY_NUM) 5560 pml_idx = 0; 5561 else 5562 pml_idx++; 5563 5564 pml_buf = page_address(vmx->pml_pg); 5565 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5566 u64 gpa; 5567 5568 gpa = pml_buf[pml_idx]; 5569 WARN_ON(gpa & (PAGE_SIZE - 1)); 5570 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5571 } 5572 5573 /* reset PML index */ 5574 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5575 } 5576 5577 /* 5578 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap. 5579 * Called before reporting dirty_bitmap to userspace. 5580 */ 5581 static void kvm_flush_pml_buffers(struct kvm *kvm) 5582 { 5583 int i; 5584 struct kvm_vcpu *vcpu; 5585 /* 5586 * We only need to kick vcpu out of guest mode here, as PML buffer 5587 * is flushed at beginning of all VMEXITs, and it's obvious that only 5588 * vcpus running in guest are possible to have unflushed GPAs in PML 5589 * buffer. 5590 */ 5591 kvm_for_each_vcpu(i, vcpu, kvm) 5592 kvm_vcpu_kick(vcpu); 5593 } 5594 5595 static void vmx_dump_sel(char *name, uint32_t sel) 5596 { 5597 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5598 name, vmcs_read16(sel), 5599 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5600 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5601 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5602 } 5603 5604 static void vmx_dump_dtsel(char *name, uint32_t limit) 5605 { 5606 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5607 name, vmcs_read32(limit), 5608 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5609 } 5610 5611 void dump_vmcs(void) 5612 { 5613 u32 vmentry_ctl, vmexit_ctl; 5614 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 5615 unsigned long cr4; 5616 u64 efer; 5617 int i, n; 5618 5619 if (!dump_invalid_vmcs) { 5620 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 5621 return; 5622 } 5623 5624 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5625 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5626 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5627 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5628 cr4 = vmcs_readl(GUEST_CR4); 5629 efer = vmcs_read64(GUEST_IA32_EFER); 5630 secondary_exec_control = 0; 5631 if (cpu_has_secondary_exec_ctrls()) 5632 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5633 5634 pr_err("*** Guest State ***\n"); 5635 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5636 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5637 vmcs_readl(CR0_GUEST_HOST_MASK)); 5638 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5639 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5640 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5641 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 5642 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA)) 5643 { 5644 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5645 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5646 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5647 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5648 } 5649 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5650 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5651 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5652 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5653 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5654 vmcs_readl(GUEST_SYSENTER_ESP), 5655 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5656 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5657 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5658 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5659 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5660 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5661 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5662 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5663 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5664 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5665 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5666 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) || 5667 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER))) 5668 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", 5669 efer, vmcs_read64(GUEST_IA32_PAT)); 5670 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5671 vmcs_read64(GUEST_IA32_DEBUGCTL), 5672 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5673 if (cpu_has_load_perf_global_ctrl() && 5674 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5675 pr_err("PerfGlobCtl = 0x%016llx\n", 5676 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5677 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5678 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5679 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5680 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5681 vmcs_read32(GUEST_ACTIVITY_STATE)); 5682 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5683 pr_err("InterruptStatus = %04x\n", 5684 vmcs_read16(GUEST_INTR_STATUS)); 5685 5686 pr_err("*** Host State ***\n"); 5687 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5688 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5689 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5690 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5691 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5692 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5693 vmcs_read16(HOST_TR_SELECTOR)); 5694 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5695 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5696 vmcs_readl(HOST_TR_BASE)); 5697 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5698 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5699 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5700 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5701 vmcs_readl(HOST_CR4)); 5702 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5703 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5704 vmcs_read32(HOST_IA32_SYSENTER_CS), 5705 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5706 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER)) 5707 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", 5708 vmcs_read64(HOST_IA32_EFER), 5709 vmcs_read64(HOST_IA32_PAT)); 5710 if (cpu_has_load_perf_global_ctrl() && 5711 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5712 pr_err("PerfGlobCtl = 0x%016llx\n", 5713 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5714 5715 pr_err("*** Control State ***\n"); 5716 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5717 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5718 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5719 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5720 vmcs_read32(EXCEPTION_BITMAP), 5721 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5722 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5723 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5724 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5725 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5726 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5727 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5728 vmcs_read32(VM_EXIT_INTR_INFO), 5729 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5730 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5731 pr_err(" reason=%08x qualification=%016lx\n", 5732 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5733 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5734 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5735 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5736 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5737 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5738 pr_err("TSC Multiplier = 0x%016llx\n", 5739 vmcs_read64(TSC_MULTIPLIER)); 5740 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5741 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5742 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5743 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5744 } 5745 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5746 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5747 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5748 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5749 } 5750 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 5751 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 5752 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 5753 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 5754 n = vmcs_read32(CR3_TARGET_COUNT); 5755 for (i = 0; i + 1 < n; i += 4) 5756 pr_err("CR3 target%u=%016lx target%u=%016lx\n", 5757 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2), 5758 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2)); 5759 if (i < n) 5760 pr_err("CR3 target%u=%016lx\n", 5761 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2)); 5762 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 5763 pr_err("PLE Gap=%08x Window=%08x\n", 5764 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 5765 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 5766 pr_err("Virtual processor ID = 0x%04x\n", 5767 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 5768 } 5769 5770 /* 5771 * The guest has exited. See if we can fix it or if we need userspace 5772 * assistance. 5773 */ 5774 static int vmx_handle_exit(struct kvm_vcpu *vcpu) 5775 { 5776 struct vcpu_vmx *vmx = to_vmx(vcpu); 5777 u32 exit_reason = vmx->exit_reason; 5778 u32 vectoring_info = vmx->idt_vectoring_info; 5779 5780 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX); 5781 5782 /* 5783 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 5784 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 5785 * querying dirty_bitmap, we only need to kick all vcpus out of guest 5786 * mode as if vcpus is in root mode, the PML buffer must has been 5787 * flushed already. 5788 */ 5789 if (enable_pml) 5790 vmx_flush_pml_buffer(vcpu); 5791 5792 /* If guest state is invalid, start emulating */ 5793 if (vmx->emulation_required) 5794 return handle_invalid_guest_state(vcpu); 5795 5796 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason)) 5797 return nested_vmx_reflect_vmexit(vcpu, exit_reason); 5798 5799 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) { 5800 dump_vmcs(); 5801 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5802 vcpu->run->fail_entry.hardware_entry_failure_reason 5803 = exit_reason; 5804 return 0; 5805 } 5806 5807 if (unlikely(vmx->fail)) { 5808 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5809 vcpu->run->fail_entry.hardware_entry_failure_reason 5810 = vmcs_read32(VM_INSTRUCTION_ERROR); 5811 return 0; 5812 } 5813 5814 /* 5815 * Note: 5816 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 5817 * delivery event since it indicates guest is accessing MMIO. 5818 * The vm-exit can be triggered again after return to guest that 5819 * will cause infinite loop. 5820 */ 5821 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 5822 (exit_reason != EXIT_REASON_EXCEPTION_NMI && 5823 exit_reason != EXIT_REASON_EPT_VIOLATION && 5824 exit_reason != EXIT_REASON_PML_FULL && 5825 exit_reason != EXIT_REASON_TASK_SWITCH)) { 5826 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5827 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 5828 vcpu->run->internal.ndata = 3; 5829 vcpu->run->internal.data[0] = vectoring_info; 5830 vcpu->run->internal.data[1] = exit_reason; 5831 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 5832 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) { 5833 vcpu->run->internal.ndata++; 5834 vcpu->run->internal.data[3] = 5835 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5836 } 5837 return 0; 5838 } 5839 5840 if (unlikely(!enable_vnmi && 5841 vmx->loaded_vmcs->soft_vnmi_blocked)) { 5842 if (vmx_interrupt_allowed(vcpu)) { 5843 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5844 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 5845 vcpu->arch.nmi_pending) { 5846 /* 5847 * This CPU don't support us in finding the end of an 5848 * NMI-blocked window if the guest runs with IRQs 5849 * disabled. So we pull the trigger after 1 s of 5850 * futile waiting, but inform the user about this. 5851 */ 5852 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 5853 "state on VCPU %d after 1 s timeout\n", 5854 __func__, vcpu->vcpu_id); 5855 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5856 } 5857 } 5858 5859 if (exit_reason < kvm_vmx_max_exit_handlers 5860 && kvm_vmx_exit_handlers[exit_reason]) 5861 return kvm_vmx_exit_handlers[exit_reason](vcpu); 5862 else { 5863 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 5864 exit_reason); 5865 kvm_queue_exception(vcpu, UD_VECTOR); 5866 return 1; 5867 } 5868 } 5869 5870 /* 5871 * Software based L1D cache flush which is used when microcode providing 5872 * the cache control MSR is not loaded. 5873 * 5874 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 5875 * flush it is required to read in 64 KiB because the replacement algorithm 5876 * is not exactly LRU. This could be sized at runtime via topology 5877 * information but as all relevant affected CPUs have 32KiB L1D cache size 5878 * there is no point in doing so. 5879 */ 5880 static void vmx_l1d_flush(struct kvm_vcpu *vcpu) 5881 { 5882 int size = PAGE_SIZE << L1D_CACHE_ORDER; 5883 5884 /* 5885 * This code is only executed when the the flush mode is 'cond' or 5886 * 'always' 5887 */ 5888 if (static_branch_likely(&vmx_l1d_flush_cond)) { 5889 bool flush_l1d; 5890 5891 /* 5892 * Clear the per-vcpu flush bit, it gets set again 5893 * either from vcpu_run() or from one of the unsafe 5894 * VMEXIT handlers. 5895 */ 5896 flush_l1d = vcpu->arch.l1tf_flush_l1d; 5897 vcpu->arch.l1tf_flush_l1d = false; 5898 5899 /* 5900 * Clear the per-cpu flush bit, it gets set again from 5901 * the interrupt handlers. 5902 */ 5903 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 5904 kvm_clear_cpu_l1tf_flush_l1d(); 5905 5906 if (!flush_l1d) 5907 return; 5908 } 5909 5910 vcpu->stat.l1d_flush++; 5911 5912 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 5913 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 5914 return; 5915 } 5916 5917 asm volatile( 5918 /* First ensure the pages are in the TLB */ 5919 "xorl %%eax, %%eax\n" 5920 ".Lpopulate_tlb:\n\t" 5921 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 5922 "addl $4096, %%eax\n\t" 5923 "cmpl %%eax, %[size]\n\t" 5924 "jne .Lpopulate_tlb\n\t" 5925 "xorl %%eax, %%eax\n\t" 5926 "cpuid\n\t" 5927 /* Now fill the cache */ 5928 "xorl %%eax, %%eax\n" 5929 ".Lfill_cache:\n" 5930 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 5931 "addl $64, %%eax\n\t" 5932 "cmpl %%eax, %[size]\n\t" 5933 "jne .Lfill_cache\n\t" 5934 "lfence\n" 5935 :: [flush_pages] "r" (vmx_l1d_flush_pages), 5936 [size] "r" (size) 5937 : "eax", "ebx", "ecx", "edx"); 5938 } 5939 5940 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 5941 { 5942 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5943 5944 if (is_guest_mode(vcpu) && 5945 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 5946 return; 5947 5948 if (irr == -1 || tpr < irr) { 5949 vmcs_write32(TPR_THRESHOLD, 0); 5950 return; 5951 } 5952 5953 vmcs_write32(TPR_THRESHOLD, irr); 5954 } 5955 5956 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 5957 { 5958 u32 sec_exec_control; 5959 5960 if (!lapic_in_kernel(vcpu)) 5961 return; 5962 5963 if (!flexpriority_enabled && 5964 !cpu_has_vmx_virtualize_x2apic_mode()) 5965 return; 5966 5967 /* Postpone execution until vmcs01 is the current VMCS. */ 5968 if (is_guest_mode(vcpu)) { 5969 to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true; 5970 return; 5971 } 5972 5973 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5974 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 5975 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 5976 5977 switch (kvm_get_apic_mode(vcpu)) { 5978 case LAPIC_MODE_INVALID: 5979 WARN_ONCE(true, "Invalid local APIC state"); 5980 case LAPIC_MODE_DISABLED: 5981 break; 5982 case LAPIC_MODE_XAPIC: 5983 if (flexpriority_enabled) { 5984 sec_exec_control |= 5985 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 5986 vmx_flush_tlb(vcpu, true); 5987 } 5988 break; 5989 case LAPIC_MODE_X2APIC: 5990 if (cpu_has_vmx_virtualize_x2apic_mode()) 5991 sec_exec_control |= 5992 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 5993 break; 5994 } 5995 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control); 5996 5997 vmx_update_msr_bitmap(vcpu); 5998 } 5999 6000 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa) 6001 { 6002 if (!is_guest_mode(vcpu)) { 6003 vmcs_write64(APIC_ACCESS_ADDR, hpa); 6004 vmx_flush_tlb(vcpu, true); 6005 } 6006 } 6007 6008 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6009 { 6010 u16 status; 6011 u8 old; 6012 6013 if (max_isr == -1) 6014 max_isr = 0; 6015 6016 status = vmcs_read16(GUEST_INTR_STATUS); 6017 old = status >> 8; 6018 if (max_isr != old) { 6019 status &= 0xff; 6020 status |= max_isr << 8; 6021 vmcs_write16(GUEST_INTR_STATUS, status); 6022 } 6023 } 6024 6025 static void vmx_set_rvi(int vector) 6026 { 6027 u16 status; 6028 u8 old; 6029 6030 if (vector == -1) 6031 vector = 0; 6032 6033 status = vmcs_read16(GUEST_INTR_STATUS); 6034 old = (u8)status & 0xff; 6035 if ((u8)vector != old) { 6036 status &= ~0xff; 6037 status |= (u8)vector; 6038 vmcs_write16(GUEST_INTR_STATUS, status); 6039 } 6040 } 6041 6042 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6043 { 6044 /* 6045 * When running L2, updating RVI is only relevant when 6046 * vmcs12 virtual-interrupt-delivery enabled. 6047 * However, it can be enabled only when L1 also 6048 * intercepts external-interrupts and in that case 6049 * we should not update vmcs02 RVI but instead intercept 6050 * interrupt. Therefore, do nothing when running L2. 6051 */ 6052 if (!is_guest_mode(vcpu)) 6053 vmx_set_rvi(max_irr); 6054 } 6055 6056 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6057 { 6058 struct vcpu_vmx *vmx = to_vmx(vcpu); 6059 int max_irr; 6060 bool max_irr_updated; 6061 6062 WARN_ON(!vcpu->arch.apicv_active); 6063 if (pi_test_on(&vmx->pi_desc)) { 6064 pi_clear_on(&vmx->pi_desc); 6065 /* 6066 * IOMMU can write to PIR.ON, so the barrier matters even on UP. 6067 * But on x86 this is just a compiler barrier anyway. 6068 */ 6069 smp_mb__after_atomic(); 6070 max_irr_updated = 6071 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6072 6073 /* 6074 * If we are running L2 and L1 has a new pending interrupt 6075 * which can be injected, we should re-evaluate 6076 * what should be done with this new L1 interrupt. 6077 * If L1 intercepts external-interrupts, we should 6078 * exit from L2 to L1. Otherwise, interrupt should be 6079 * delivered directly to L2. 6080 */ 6081 if (is_guest_mode(vcpu) && max_irr_updated) { 6082 if (nested_exit_on_intr(vcpu)) 6083 kvm_vcpu_exiting_guest_mode(vcpu); 6084 else 6085 kvm_make_request(KVM_REQ_EVENT, vcpu); 6086 } 6087 } else { 6088 max_irr = kvm_lapic_find_highest_irr(vcpu); 6089 } 6090 vmx_hwapic_irr_update(vcpu, max_irr); 6091 return max_irr; 6092 } 6093 6094 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6095 { 6096 if (!kvm_vcpu_apicv_active(vcpu)) 6097 return; 6098 6099 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6100 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6101 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6102 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6103 } 6104 6105 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6106 { 6107 struct vcpu_vmx *vmx = to_vmx(vcpu); 6108 6109 pi_clear_on(&vmx->pi_desc); 6110 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6111 } 6112 6113 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx) 6114 { 6115 u32 exit_intr_info = 0; 6116 u16 basic_exit_reason = (u16)vmx->exit_reason; 6117 6118 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY 6119 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI)) 6120 return; 6121 6122 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) 6123 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); 6124 vmx->exit_intr_info = exit_intr_info; 6125 6126 /* if exit due to PF check for async PF */ 6127 if (is_page_fault(exit_intr_info)) 6128 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason(); 6129 6130 /* Handle machine checks before interrupts are enabled */ 6131 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY || 6132 is_machine_check(exit_intr_info)) 6133 kvm_machine_check(); 6134 6135 /* We need to handle NMIs before interrupts are enabled */ 6136 if (is_nmi(exit_intr_info)) { 6137 kvm_before_interrupt(&vmx->vcpu); 6138 asm("int $2"); 6139 kvm_after_interrupt(&vmx->vcpu); 6140 } 6141 } 6142 6143 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu) 6144 { 6145 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); 6146 6147 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK)) 6148 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) { 6149 unsigned int vector; 6150 unsigned long entry; 6151 gate_desc *desc; 6152 struct vcpu_vmx *vmx = to_vmx(vcpu); 6153 #ifdef CONFIG_X86_64 6154 unsigned long tmp; 6155 #endif 6156 6157 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6158 desc = (gate_desc *)vmx->host_idt_base + vector; 6159 entry = gate_offset(desc); 6160 asm volatile( 6161 #ifdef CONFIG_X86_64 6162 "mov %%" _ASM_SP ", %[sp]\n\t" 6163 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t" 6164 "push $%c[ss]\n\t" 6165 "push %[sp]\n\t" 6166 #endif 6167 "pushf\n\t" 6168 __ASM_SIZE(push) " $%c[cs]\n\t" 6169 CALL_NOSPEC 6170 : 6171 #ifdef CONFIG_X86_64 6172 [sp]"=&r"(tmp), 6173 #endif 6174 ASM_CALL_CONSTRAINT 6175 : 6176 THUNK_TARGET(entry), 6177 [ss]"i"(__KERNEL_DS), 6178 [cs]"i"(__KERNEL_CS) 6179 ); 6180 } 6181 } 6182 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr); 6183 6184 static bool vmx_has_emulated_msr(int index) 6185 { 6186 switch (index) { 6187 case MSR_IA32_SMBASE: 6188 /* 6189 * We cannot do SMM unless we can run the guest in big 6190 * real mode. 6191 */ 6192 return enable_unrestricted_guest || emulate_invalid_guest_state; 6193 case MSR_AMD64_VIRT_SPEC_CTRL: 6194 /* This is AMD only. */ 6195 return false; 6196 default: 6197 return true; 6198 } 6199 } 6200 6201 static bool vmx_pt_supported(void) 6202 { 6203 return pt_mode == PT_MODE_HOST_GUEST; 6204 } 6205 6206 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6207 { 6208 u32 exit_intr_info; 6209 bool unblock_nmi; 6210 u8 vector; 6211 bool idtv_info_valid; 6212 6213 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6214 6215 if (enable_vnmi) { 6216 if (vmx->loaded_vmcs->nmi_known_unmasked) 6217 return; 6218 /* 6219 * Can't use vmx->exit_intr_info since we're not sure what 6220 * the exit reason is. 6221 */ 6222 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); 6223 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6224 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6225 /* 6226 * SDM 3: 27.7.1.2 (September 2008) 6227 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6228 * a guest IRET fault. 6229 * SDM 3: 23.2.2 (September 2008) 6230 * Bit 12 is undefined in any of the following cases: 6231 * If the VM exit sets the valid bit in the IDT-vectoring 6232 * information field. 6233 * If the VM exit is due to a double fault. 6234 */ 6235 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6236 vector != DF_VECTOR && !idtv_info_valid) 6237 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6238 GUEST_INTR_STATE_NMI); 6239 else 6240 vmx->loaded_vmcs->nmi_known_unmasked = 6241 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6242 & GUEST_INTR_STATE_NMI); 6243 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6244 vmx->loaded_vmcs->vnmi_blocked_time += 6245 ktime_to_ns(ktime_sub(ktime_get(), 6246 vmx->loaded_vmcs->entry_time)); 6247 } 6248 6249 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6250 u32 idt_vectoring_info, 6251 int instr_len_field, 6252 int error_code_field) 6253 { 6254 u8 vector; 6255 int type; 6256 bool idtv_info_valid; 6257 6258 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6259 6260 vcpu->arch.nmi_injected = false; 6261 kvm_clear_exception_queue(vcpu); 6262 kvm_clear_interrupt_queue(vcpu); 6263 6264 if (!idtv_info_valid) 6265 return; 6266 6267 kvm_make_request(KVM_REQ_EVENT, vcpu); 6268 6269 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6270 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6271 6272 switch (type) { 6273 case INTR_TYPE_NMI_INTR: 6274 vcpu->arch.nmi_injected = true; 6275 /* 6276 * SDM 3: 27.7.1.2 (September 2008) 6277 * Clear bit "block by NMI" before VM entry if a NMI 6278 * delivery faulted. 6279 */ 6280 vmx_set_nmi_mask(vcpu, false); 6281 break; 6282 case INTR_TYPE_SOFT_EXCEPTION: 6283 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6284 /* fall through */ 6285 case INTR_TYPE_HARD_EXCEPTION: 6286 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6287 u32 err = vmcs_read32(error_code_field); 6288 kvm_requeue_exception_e(vcpu, vector, err); 6289 } else 6290 kvm_requeue_exception(vcpu, vector); 6291 break; 6292 case INTR_TYPE_SOFT_INTR: 6293 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6294 /* fall through */ 6295 case INTR_TYPE_EXT_INTR: 6296 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6297 break; 6298 default: 6299 break; 6300 } 6301 } 6302 6303 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6304 { 6305 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6306 VM_EXIT_INSTRUCTION_LEN, 6307 IDT_VECTORING_ERROR_CODE); 6308 } 6309 6310 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6311 { 6312 __vmx_complete_interrupts(vcpu, 6313 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6314 VM_ENTRY_INSTRUCTION_LEN, 6315 VM_ENTRY_EXCEPTION_ERROR_CODE); 6316 6317 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6318 } 6319 6320 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6321 { 6322 int i, nr_msrs; 6323 struct perf_guest_switch_msr *msrs; 6324 6325 msrs = perf_guest_get_msrs(&nr_msrs); 6326 6327 if (!msrs) 6328 return; 6329 6330 for (i = 0; i < nr_msrs; i++) 6331 if (msrs[i].host == msrs[i].guest) 6332 clear_atomic_switch_msr(vmx, msrs[i].msr); 6333 else 6334 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6335 msrs[i].host, false); 6336 } 6337 6338 static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val) 6339 { 6340 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val); 6341 if (!vmx->loaded_vmcs->hv_timer_armed) 6342 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL, 6343 PIN_BASED_VMX_PREEMPTION_TIMER); 6344 vmx->loaded_vmcs->hv_timer_armed = true; 6345 } 6346 6347 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6348 { 6349 struct vcpu_vmx *vmx = to_vmx(vcpu); 6350 u64 tscl; 6351 u32 delta_tsc; 6352 6353 if (vmx->req_immediate_exit) { 6354 vmx_arm_hv_timer(vmx, 0); 6355 return; 6356 } 6357 6358 if (vmx->hv_deadline_tsc != -1) { 6359 tscl = rdtsc(); 6360 if (vmx->hv_deadline_tsc > tscl) 6361 /* set_hv_timer ensures the delta fits in 32-bits */ 6362 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6363 cpu_preemption_timer_multi); 6364 else 6365 delta_tsc = 0; 6366 6367 vmx_arm_hv_timer(vmx, delta_tsc); 6368 return; 6369 } 6370 6371 if (vmx->loaded_vmcs->hv_timer_armed) 6372 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL, 6373 PIN_BASED_VMX_PREEMPTION_TIMER); 6374 vmx->loaded_vmcs->hv_timer_armed = false; 6375 } 6376 6377 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6378 { 6379 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6380 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6381 vmcs_writel(HOST_RSP, host_rsp); 6382 } 6383 } 6384 6385 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched); 6386 6387 static void vmx_vcpu_run(struct kvm_vcpu *vcpu) 6388 { 6389 struct vcpu_vmx *vmx = to_vmx(vcpu); 6390 unsigned long cr3, cr4; 6391 6392 /* Record the guest's net vcpu time for enforced NMI injections. */ 6393 if (unlikely(!enable_vnmi && 6394 vmx->loaded_vmcs->soft_vnmi_blocked)) 6395 vmx->loaded_vmcs->entry_time = ktime_get(); 6396 6397 /* Don't enter VMX if guest state is invalid, let the exit handler 6398 start emulation until we arrive back to a valid state */ 6399 if (vmx->emulation_required) 6400 return; 6401 6402 if (vmx->ple_window_dirty) { 6403 vmx->ple_window_dirty = false; 6404 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6405 } 6406 6407 if (vmx->nested.need_vmcs12_sync) 6408 nested_sync_from_vmcs12(vcpu); 6409 6410 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty)) 6411 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6412 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty)) 6413 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6414 6415 cr3 = __get_current_cr3_fast(); 6416 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 6417 vmcs_writel(HOST_CR3, cr3); 6418 vmx->loaded_vmcs->host_state.cr3 = cr3; 6419 } 6420 6421 cr4 = cr4_read_shadow(); 6422 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6423 vmcs_writel(HOST_CR4, cr4); 6424 vmx->loaded_vmcs->host_state.cr4 = cr4; 6425 } 6426 6427 /* When single-stepping over STI and MOV SS, we must clear the 6428 * corresponding interruptibility bits in the guest state. Otherwise 6429 * vmentry fails as it then expects bit 14 (BS) in pending debug 6430 * exceptions being set, but that's not correct for the guest debugging 6431 * case. */ 6432 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6433 vmx_set_interrupt_shadow(vcpu, 0); 6434 6435 kvm_load_guest_xcr0(vcpu); 6436 6437 if (static_cpu_has(X86_FEATURE_PKU) && 6438 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) && 6439 vcpu->arch.pkru != vmx->host_pkru) 6440 __write_pkru(vcpu->arch.pkru); 6441 6442 pt_guest_enter(vmx); 6443 6444 atomic_switch_perf_msrs(vmx); 6445 6446 vmx_update_hv_timer(vcpu); 6447 6448 /* 6449 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6450 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6451 * is no need to worry about the conditional branch over the wrmsr 6452 * being speculatively taken. 6453 */ 6454 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6455 6456 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6457 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6458 vmx_l1d_flush(vcpu); 6459 else if (static_branch_unlikely(&mds_user_clear)) 6460 mds_clear_cpu_buffers(); 6461 6462 if (vcpu->arch.cr2 != read_cr2()) 6463 write_cr2(vcpu->arch.cr2); 6464 6465 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6466 vmx->loaded_vmcs->launched); 6467 6468 vcpu->arch.cr2 = read_cr2(); 6469 6470 /* 6471 * We do not use IBRS in the kernel. If this vCPU has used the 6472 * SPEC_CTRL MSR it may have left it on; save the value and 6473 * turn it off. This is much more efficient than blindly adding 6474 * it to the atomic save/restore list. Especially as the former 6475 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6476 * 6477 * For non-nested case: 6478 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6479 * save it. 6480 * 6481 * For nested case: 6482 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6483 * save it. 6484 */ 6485 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 6486 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6487 6488 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6489 6490 /* All fields are clean at this point */ 6491 if (static_branch_unlikely(&enable_evmcs)) 6492 current_evmcs->hv_clean_fields |= 6493 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6494 6495 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6496 if (vmx->host_debugctlmsr) 6497 update_debugctlmsr(vmx->host_debugctlmsr); 6498 6499 #ifndef CONFIG_X86_64 6500 /* 6501 * The sysexit path does not restore ds/es, so we must set them to 6502 * a reasonable value ourselves. 6503 * 6504 * We can't defer this to vmx_prepare_switch_to_host() since that 6505 * function may be executed in interrupt context, which saves and 6506 * restore segments around it, nullifying its effect. 6507 */ 6508 loadsegment(ds, __USER_DS); 6509 loadsegment(es, __USER_DS); 6510 #endif 6511 6512 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) 6513 | (1 << VCPU_EXREG_RFLAGS) 6514 | (1 << VCPU_EXREG_PDPTR) 6515 | (1 << VCPU_EXREG_SEGMENTS) 6516 | (1 << VCPU_EXREG_CR3)); 6517 vcpu->arch.regs_dirty = 0; 6518 6519 pt_guest_exit(vmx); 6520 6521 /* 6522 * eager fpu is enabled if PKEY is supported and CR4 is switched 6523 * back on host, so it is safe to read guest PKRU from current 6524 * XSAVE. 6525 */ 6526 if (static_cpu_has(X86_FEATURE_PKU) && 6527 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) { 6528 vcpu->arch.pkru = rdpkru(); 6529 if (vcpu->arch.pkru != vmx->host_pkru) 6530 __write_pkru(vmx->host_pkru); 6531 } 6532 6533 kvm_put_guest_xcr0(vcpu); 6534 6535 vmx->nested.nested_run_pending = 0; 6536 vmx->idt_vectoring_info = 0; 6537 6538 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON); 6539 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) 6540 return; 6541 6542 vmx->loaded_vmcs->launched = 1; 6543 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6544 6545 vmx_complete_atomic_exit(vmx); 6546 vmx_recover_nmi_blocking(vmx); 6547 vmx_complete_interrupts(vmx); 6548 } 6549 6550 static struct kvm *vmx_vm_alloc(void) 6551 { 6552 struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx), 6553 GFP_KERNEL_ACCOUNT | __GFP_ZERO, 6554 PAGE_KERNEL); 6555 return &kvm_vmx->kvm; 6556 } 6557 6558 static void vmx_vm_free(struct kvm *kvm) 6559 { 6560 vfree(to_kvm_vmx(kvm)); 6561 } 6562 6563 static void vmx_free_vcpu(struct kvm_vcpu *vcpu) 6564 { 6565 struct vcpu_vmx *vmx = to_vmx(vcpu); 6566 6567 if (enable_pml) 6568 vmx_destroy_pml_buffer(vmx); 6569 free_vpid(vmx->vpid); 6570 nested_vmx_free_vcpu(vcpu); 6571 free_loaded_vmcs(vmx->loaded_vmcs); 6572 kfree(vmx->guest_msrs); 6573 kvm_vcpu_uninit(vcpu); 6574 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu); 6575 kmem_cache_free(kvm_vcpu_cache, vmx); 6576 } 6577 6578 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) 6579 { 6580 int err; 6581 struct vcpu_vmx *vmx; 6582 unsigned long *msr_bitmap; 6583 int cpu; 6584 6585 vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT); 6586 if (!vmx) 6587 return ERR_PTR(-ENOMEM); 6588 6589 vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, 6590 GFP_KERNEL_ACCOUNT); 6591 if (!vmx->vcpu.arch.guest_fpu) { 6592 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n"); 6593 err = -ENOMEM; 6594 goto free_partial_vcpu; 6595 } 6596 6597 vmx->vpid = allocate_vpid(); 6598 6599 err = kvm_vcpu_init(&vmx->vcpu, kvm, id); 6600 if (err) 6601 goto free_vcpu; 6602 6603 err = -ENOMEM; 6604 6605 /* 6606 * If PML is turned on, failure on enabling PML just results in failure 6607 * of creating the vcpu, therefore we can simplify PML logic (by 6608 * avoiding dealing with cases, such as enabling PML partially on vcpus 6609 * for the guest, etc. 6610 */ 6611 if (enable_pml) { 6612 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 6613 if (!vmx->pml_pg) 6614 goto uninit_vcpu; 6615 } 6616 6617 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 6618 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0]) 6619 > PAGE_SIZE); 6620 6621 if (!vmx->guest_msrs) 6622 goto free_pml; 6623 6624 err = alloc_loaded_vmcs(&vmx->vmcs01); 6625 if (err < 0) 6626 goto free_msrs; 6627 6628 msr_bitmap = vmx->vmcs01.msr_bitmap; 6629 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R); 6630 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW); 6631 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW); 6632 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 6633 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 6634 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 6635 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 6636 vmx->msr_bitmap_mode = 0; 6637 6638 vmx->loaded_vmcs = &vmx->vmcs01; 6639 cpu = get_cpu(); 6640 vmx_vcpu_load(&vmx->vcpu, cpu); 6641 vmx->vcpu.cpu = cpu; 6642 vmx_vcpu_setup(vmx); 6643 vmx_vcpu_put(&vmx->vcpu); 6644 put_cpu(); 6645 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) { 6646 err = alloc_apic_access_page(kvm); 6647 if (err) 6648 goto free_vmcs; 6649 } 6650 6651 if (enable_ept && !enable_unrestricted_guest) { 6652 err = init_rmode_identity_map(kvm); 6653 if (err) 6654 goto free_vmcs; 6655 } 6656 6657 if (nested) 6658 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs, 6659 vmx_capability.ept, 6660 kvm_vcpu_apicv_active(&vmx->vcpu)); 6661 else 6662 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs)); 6663 6664 vmx->nested.posted_intr_nv = -1; 6665 vmx->nested.current_vmptr = -1ull; 6666 6667 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED; 6668 6669 /* 6670 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 6671 * or POSTED_INTR_WAKEUP_VECTOR. 6672 */ 6673 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 6674 vmx->pi_desc.sn = 1; 6675 6676 vmx->ept_pointer = INVALID_PAGE; 6677 6678 return &vmx->vcpu; 6679 6680 free_vmcs: 6681 free_loaded_vmcs(vmx->loaded_vmcs); 6682 free_msrs: 6683 kfree(vmx->guest_msrs); 6684 free_pml: 6685 vmx_destroy_pml_buffer(vmx); 6686 uninit_vcpu: 6687 kvm_vcpu_uninit(&vmx->vcpu); 6688 free_vcpu: 6689 free_vpid(vmx->vpid); 6690 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu); 6691 free_partial_vcpu: 6692 kmem_cache_free(kvm_vcpu_cache, vmx); 6693 return ERR_PTR(err); 6694 } 6695 6696 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6697 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6698 6699 static int vmx_vm_init(struct kvm *kvm) 6700 { 6701 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock); 6702 6703 if (!ple_gap) 6704 kvm->arch.pause_in_guest = true; 6705 6706 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 6707 switch (l1tf_mitigation) { 6708 case L1TF_MITIGATION_OFF: 6709 case L1TF_MITIGATION_FLUSH_NOWARN: 6710 /* 'I explicitly don't care' is set */ 6711 break; 6712 case L1TF_MITIGATION_FLUSH: 6713 case L1TF_MITIGATION_FLUSH_NOSMT: 6714 case L1TF_MITIGATION_FULL: 6715 /* 6716 * Warn upon starting the first VM in a potentially 6717 * insecure environment. 6718 */ 6719 if (sched_smt_active()) 6720 pr_warn_once(L1TF_MSG_SMT); 6721 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 6722 pr_warn_once(L1TF_MSG_L1D); 6723 break; 6724 case L1TF_MITIGATION_FULL_FORCE: 6725 /* Flush is enforced */ 6726 break; 6727 } 6728 } 6729 return 0; 6730 } 6731 6732 static void __init vmx_check_processor_compat(void *rtn) 6733 { 6734 struct vmcs_config vmcs_conf; 6735 struct vmx_capability vmx_cap; 6736 6737 *(int *)rtn = 0; 6738 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 6739 *(int *)rtn = -EIO; 6740 if (nested) 6741 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept, 6742 enable_apicv); 6743 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 6744 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 6745 smp_processor_id()); 6746 *(int *)rtn = -EIO; 6747 } 6748 } 6749 6750 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 6751 { 6752 u8 cache; 6753 u64 ipat = 0; 6754 6755 /* For VT-d and EPT combination 6756 * 1. MMIO: always map as UC 6757 * 2. EPT with VT-d: 6758 * a. VT-d without snooping control feature: can't guarantee the 6759 * result, try to trust guest. 6760 * b. VT-d with snooping control feature: snooping control feature of 6761 * VT-d engine can guarantee the cache correctness. Just set it 6762 * to WB to keep consistent with host. So the same as item 3. 6763 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep 6764 * consistent with host MTRR 6765 */ 6766 if (is_mmio) { 6767 cache = MTRR_TYPE_UNCACHABLE; 6768 goto exit; 6769 } 6770 6771 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 6772 ipat = VMX_EPT_IPAT_BIT; 6773 cache = MTRR_TYPE_WRBACK; 6774 goto exit; 6775 } 6776 6777 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 6778 ipat = VMX_EPT_IPAT_BIT; 6779 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 6780 cache = MTRR_TYPE_WRBACK; 6781 else 6782 cache = MTRR_TYPE_UNCACHABLE; 6783 goto exit; 6784 } 6785 6786 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); 6787 6788 exit: 6789 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; 6790 } 6791 6792 static int vmx_get_lpage_level(void) 6793 { 6794 if (enable_ept && !cpu_has_vmx_ept_1g_page()) 6795 return PT_DIRECTORY_LEVEL; 6796 else 6797 /* For shadow and EPT supported 1GB page */ 6798 return PT_PDPE_LEVEL; 6799 } 6800 6801 static void vmcs_set_secondary_exec_control(u32 new_ctl) 6802 { 6803 /* 6804 * These bits in the secondary execution controls field 6805 * are dynamic, the others are mostly based on the hypervisor 6806 * architecture and the guest's CPUID. Do not touch the 6807 * dynamic bits. 6808 */ 6809 u32 mask = 6810 SECONDARY_EXEC_SHADOW_VMCS | 6811 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 6812 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6813 SECONDARY_EXEC_DESC; 6814 6815 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 6816 6817 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, 6818 (new_ctl & ~mask) | (cur_ctl & mask)); 6819 } 6820 6821 /* 6822 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 6823 * (indicating "allowed-1") if they are supported in the guest's CPUID. 6824 */ 6825 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 6826 { 6827 struct vcpu_vmx *vmx = to_vmx(vcpu); 6828 struct kvm_cpuid_entry2 *entry; 6829 6830 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 6831 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 6832 6833 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 6834 if (entry && (entry->_reg & (_cpuid_mask))) \ 6835 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 6836 } while (0) 6837 6838 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 6839 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME)); 6840 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME)); 6841 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC)); 6842 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE)); 6843 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE)); 6844 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE)); 6845 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE)); 6846 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE)); 6847 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR)); 6848 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM)); 6849 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX)); 6850 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX)); 6851 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID)); 6852 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE)); 6853 6854 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 6855 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE)); 6856 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP)); 6857 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP)); 6858 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU)); 6859 cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP)); 6860 6861 #undef cr4_fixed1_update 6862 } 6863 6864 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 6865 { 6866 struct vcpu_vmx *vmx = to_vmx(vcpu); 6867 6868 if (kvm_mpx_supported()) { 6869 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 6870 6871 if (mpx_enabled) { 6872 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 6873 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 6874 } else { 6875 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 6876 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 6877 } 6878 } 6879 } 6880 6881 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 6882 { 6883 struct vcpu_vmx *vmx = to_vmx(vcpu); 6884 struct kvm_cpuid_entry2 *best = NULL; 6885 int i; 6886 6887 for (i = 0; i < PT_CPUID_LEAVES; i++) { 6888 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 6889 if (!best) 6890 return; 6891 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 6892 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 6893 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 6894 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 6895 } 6896 6897 /* Get the number of configurable Address Ranges for filtering */ 6898 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps, 6899 PT_CAP_num_address_ranges); 6900 6901 /* Initialize and clear the no dependency bits */ 6902 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 6903 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC); 6904 6905 /* 6906 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 6907 * will inject an #GP 6908 */ 6909 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 6910 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 6911 6912 /* 6913 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 6914 * PSBFreq can be set 6915 */ 6916 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 6917 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 6918 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 6919 6920 /* 6921 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and 6922 * MTCFreq can be set 6923 */ 6924 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 6925 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 6926 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE); 6927 6928 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 6929 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 6930 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 6931 RTIT_CTL_PTW_EN); 6932 6933 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 6934 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 6935 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 6936 6937 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 6938 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 6939 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 6940 6941 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */ 6942 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 6943 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 6944 6945 /* unmask address range configure area */ 6946 for (i = 0; i < vmx->pt_desc.addr_range; i++) 6947 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 6948 } 6949 6950 static void vmx_cpuid_update(struct kvm_vcpu *vcpu) 6951 { 6952 struct vcpu_vmx *vmx = to_vmx(vcpu); 6953 6954 if (cpu_has_secondary_exec_ctrls()) { 6955 vmx_compute_secondary_exec_control(vmx); 6956 vmcs_set_secondary_exec_control(vmx->secondary_exec_control); 6957 } 6958 6959 if (nested_vmx_allowed(vcpu)) 6960 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 6961 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 6962 else 6963 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 6964 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 6965 6966 if (nested_vmx_allowed(vcpu)) { 6967 nested_vmx_cr_fixed1_bits_update(vcpu); 6968 nested_vmx_entry_exit_ctls_update(vcpu); 6969 } 6970 6971 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 6972 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 6973 update_intel_pt_cfg(vcpu); 6974 } 6975 6976 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) 6977 { 6978 if (func == 1 && nested) 6979 entry->ecx |= bit(X86_FEATURE_VMX); 6980 } 6981 6982 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 6983 { 6984 to_vmx(vcpu)->req_immediate_exit = true; 6985 } 6986 6987 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 6988 struct x86_instruction_info *info, 6989 enum x86_intercept_stage stage) 6990 { 6991 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6992 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; 6993 6994 /* 6995 * RDPID causes #UD if disabled through secondary execution controls. 6996 * Because it is marked as EmulateOnUD, we need to intercept it here. 6997 */ 6998 if (info->intercept == x86_intercept_rdtscp && 6999 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) { 7000 ctxt->exception.vector = UD_VECTOR; 7001 ctxt->exception.error_code_valid = false; 7002 return X86EMUL_PROPAGATE_FAULT; 7003 } 7004 7005 /* TODO: check more intercepts... */ 7006 return X86EMUL_CONTINUE; 7007 } 7008 7009 #ifdef CONFIG_X86_64 7010 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7011 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7012 u64 divisor, u64 *result) 7013 { 7014 u64 low = a << shift, high = a >> (64 - shift); 7015 7016 /* To avoid the overflow on divq */ 7017 if (high >= divisor) 7018 return 1; 7019 7020 /* Low hold the result, high hold rem which is discarded */ 7021 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7022 "rm" (divisor), "0" (low), "1" (high)); 7023 *result = low; 7024 7025 return 0; 7026 } 7027 7028 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7029 bool *expired) 7030 { 7031 struct vcpu_vmx *vmx; 7032 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7033 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7034 7035 if (kvm_mwait_in_guest(vcpu->kvm)) 7036 return -EOPNOTSUPP; 7037 7038 vmx = to_vmx(vcpu); 7039 tscl = rdtsc(); 7040 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7041 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7042 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7043 ktimer->timer_advance_ns); 7044 7045 if (delta_tsc > lapic_timer_advance_cycles) 7046 delta_tsc -= lapic_timer_advance_cycles; 7047 else 7048 delta_tsc = 0; 7049 7050 /* Convert to host delta tsc if tsc scaling is enabled */ 7051 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7052 delta_tsc && u64_shl_div_u64(delta_tsc, 7053 kvm_tsc_scaling_ratio_frac_bits, 7054 vcpu->arch.tsc_scaling_ratio, &delta_tsc)) 7055 return -ERANGE; 7056 7057 /* 7058 * If the delta tsc can't fit in the 32 bit after the multi shift, 7059 * we can't use the preemption timer. 7060 * It's possible that it fits on later vmentries, but checking 7061 * on every vmentry is costly so we just use an hrtimer. 7062 */ 7063 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7064 return -ERANGE; 7065 7066 vmx->hv_deadline_tsc = tscl + delta_tsc; 7067 *expired = !delta_tsc; 7068 return 0; 7069 } 7070 7071 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7072 { 7073 to_vmx(vcpu)->hv_deadline_tsc = -1; 7074 } 7075 #endif 7076 7077 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7078 { 7079 if (!kvm_pause_in_guest(vcpu->kvm)) 7080 shrink_ple_window(vcpu); 7081 } 7082 7083 static void vmx_slot_enable_log_dirty(struct kvm *kvm, 7084 struct kvm_memory_slot *slot) 7085 { 7086 kvm_mmu_slot_leaf_clear_dirty(kvm, slot); 7087 kvm_mmu_slot_largepage_remove_write_access(kvm, slot); 7088 } 7089 7090 static void vmx_slot_disable_log_dirty(struct kvm *kvm, 7091 struct kvm_memory_slot *slot) 7092 { 7093 kvm_mmu_slot_set_dirty(kvm, slot); 7094 } 7095 7096 static void vmx_flush_log_dirty(struct kvm *kvm) 7097 { 7098 kvm_flush_pml_buffers(kvm); 7099 } 7100 7101 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu) 7102 { 7103 struct vmcs12 *vmcs12; 7104 struct vcpu_vmx *vmx = to_vmx(vcpu); 7105 gpa_t gpa, dst; 7106 7107 if (is_guest_mode(vcpu)) { 7108 WARN_ON_ONCE(vmx->nested.pml_full); 7109 7110 /* 7111 * Check if PML is enabled for the nested guest. 7112 * Whether eptp bit 6 is set is already checked 7113 * as part of A/D emulation. 7114 */ 7115 vmcs12 = get_vmcs12(vcpu); 7116 if (!nested_cpu_has_pml(vmcs12)) 7117 return 0; 7118 7119 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) { 7120 vmx->nested.pml_full = true; 7121 return 1; 7122 } 7123 7124 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull; 7125 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index; 7126 7127 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa, 7128 offset_in_page(dst), sizeof(gpa))) 7129 return 0; 7130 7131 vmcs12->guest_pml_index--; 7132 } 7133 7134 return 0; 7135 } 7136 7137 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm, 7138 struct kvm_memory_slot *memslot, 7139 gfn_t offset, unsigned long mask) 7140 { 7141 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask); 7142 } 7143 7144 static void __pi_post_block(struct kvm_vcpu *vcpu) 7145 { 7146 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 7147 struct pi_desc old, new; 7148 unsigned int dest; 7149 7150 do { 7151 old.control = new.control = pi_desc->control; 7152 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR, 7153 "Wakeup handler not enabled while the VCPU is blocked\n"); 7154 7155 dest = cpu_physical_id(vcpu->cpu); 7156 7157 if (x2apic_enabled()) 7158 new.ndst = dest; 7159 else 7160 new.ndst = (dest << 8) & 0xFF00; 7161 7162 /* set 'NV' to 'notification vector' */ 7163 new.nv = POSTED_INTR_VECTOR; 7164 } while (cmpxchg64(&pi_desc->control, old.control, 7165 new.control) != old.control); 7166 7167 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) { 7168 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); 7169 list_del(&vcpu->blocked_vcpu_list); 7170 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); 7171 vcpu->pre_pcpu = -1; 7172 } 7173 } 7174 7175 /* 7176 * This routine does the following things for vCPU which is going 7177 * to be blocked if VT-d PI is enabled. 7178 * - Store the vCPU to the wakeup list, so when interrupts happen 7179 * we can find the right vCPU to wake up. 7180 * - Change the Posted-interrupt descriptor as below: 7181 * 'NDST' <-- vcpu->pre_pcpu 7182 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR 7183 * - If 'ON' is set during this process, which means at least one 7184 * interrupt is posted for this vCPU, we cannot block it, in 7185 * this case, return 1, otherwise, return 0. 7186 * 7187 */ 7188 static int pi_pre_block(struct kvm_vcpu *vcpu) 7189 { 7190 unsigned int dest; 7191 struct pi_desc old, new; 7192 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu); 7193 7194 if (!kvm_arch_has_assigned_device(vcpu->kvm) || 7195 !irq_remapping_cap(IRQ_POSTING_CAP) || 7196 !kvm_vcpu_apicv_active(vcpu)) 7197 return 0; 7198 7199 WARN_ON(irqs_disabled()); 7200 local_irq_disable(); 7201 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) { 7202 vcpu->pre_pcpu = vcpu->cpu; 7203 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); 7204 list_add_tail(&vcpu->blocked_vcpu_list, 7205 &per_cpu(blocked_vcpu_on_cpu, 7206 vcpu->pre_pcpu)); 7207 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu)); 7208 } 7209 7210 do { 7211 old.control = new.control = pi_desc->control; 7212 7213 WARN((pi_desc->sn == 1), 7214 "Warning: SN field of posted-interrupts " 7215 "is set before blocking\n"); 7216 7217 /* 7218 * Since vCPU can be preempted during this process, 7219 * vcpu->cpu could be different with pre_pcpu, we 7220 * need to set pre_pcpu as the destination of wakeup 7221 * notification event, then we can find the right vCPU 7222 * to wakeup in wakeup handler if interrupts happen 7223 * when the vCPU is in blocked state. 7224 */ 7225 dest = cpu_physical_id(vcpu->pre_pcpu); 7226 7227 if (x2apic_enabled()) 7228 new.ndst = dest; 7229 else 7230 new.ndst = (dest << 8) & 0xFF00; 7231 7232 /* set 'NV' to 'wakeup vector' */ 7233 new.nv = POSTED_INTR_WAKEUP_VECTOR; 7234 } while (cmpxchg64(&pi_desc->control, old.control, 7235 new.control) != old.control); 7236 7237 /* We should not block the vCPU if an interrupt is posted for it. */ 7238 if (pi_test_on(pi_desc) == 1) 7239 __pi_post_block(vcpu); 7240 7241 local_irq_enable(); 7242 return (vcpu->pre_pcpu == -1); 7243 } 7244 7245 static int vmx_pre_block(struct kvm_vcpu *vcpu) 7246 { 7247 if (pi_pre_block(vcpu)) 7248 return 1; 7249 7250 if (kvm_lapic_hv_timer_in_use(vcpu)) 7251 kvm_lapic_switch_to_sw_timer(vcpu); 7252 7253 return 0; 7254 } 7255 7256 static void pi_post_block(struct kvm_vcpu *vcpu) 7257 { 7258 if (vcpu->pre_pcpu == -1) 7259 return; 7260 7261 WARN_ON(irqs_disabled()); 7262 local_irq_disable(); 7263 __pi_post_block(vcpu); 7264 local_irq_enable(); 7265 } 7266 7267 static void vmx_post_block(struct kvm_vcpu *vcpu) 7268 { 7269 if (kvm_x86_ops->set_hv_timer) 7270 kvm_lapic_switch_to_hv_timer(vcpu); 7271 7272 pi_post_block(vcpu); 7273 } 7274 7275 /* 7276 * vmx_update_pi_irte - set IRTE for Posted-Interrupts 7277 * 7278 * @kvm: kvm 7279 * @host_irq: host irq of the interrupt 7280 * @guest_irq: gsi of the interrupt 7281 * @set: set or unset PI 7282 * returns 0 on success, < 0 on failure 7283 */ 7284 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq, 7285 uint32_t guest_irq, bool set) 7286 { 7287 struct kvm_kernel_irq_routing_entry *e; 7288 struct kvm_irq_routing_table *irq_rt; 7289 struct kvm_lapic_irq irq; 7290 struct kvm_vcpu *vcpu; 7291 struct vcpu_data vcpu_info; 7292 int idx, ret = 0; 7293 7294 if (!kvm_arch_has_assigned_device(kvm) || 7295 !irq_remapping_cap(IRQ_POSTING_CAP) || 7296 !kvm_vcpu_apicv_active(kvm->vcpus[0])) 7297 return 0; 7298 7299 idx = srcu_read_lock(&kvm->irq_srcu); 7300 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); 7301 if (guest_irq >= irq_rt->nr_rt_entries || 7302 hlist_empty(&irq_rt->map[guest_irq])) { 7303 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n", 7304 guest_irq, irq_rt->nr_rt_entries); 7305 goto out; 7306 } 7307 7308 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { 7309 if (e->type != KVM_IRQ_ROUTING_MSI) 7310 continue; 7311 /* 7312 * VT-d PI cannot support posting multicast/broadcast 7313 * interrupts to a vCPU, we still use interrupt remapping 7314 * for these kind of interrupts. 7315 * 7316 * For lowest-priority interrupts, we only support 7317 * those with single CPU as the destination, e.g. user 7318 * configures the interrupts via /proc/irq or uses 7319 * irqbalance to make the interrupts single-CPU. 7320 * 7321 * We will support full lowest-priority interrupt later. 7322 */ 7323 7324 kvm_set_msi_irq(kvm, e, &irq); 7325 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) { 7326 /* 7327 * Make sure the IRTE is in remapped mode if 7328 * we don't handle it in posted mode. 7329 */ 7330 ret = irq_set_vcpu_affinity(host_irq, NULL); 7331 if (ret < 0) { 7332 printk(KERN_INFO 7333 "failed to back to remapped mode, irq: %u\n", 7334 host_irq); 7335 goto out; 7336 } 7337 7338 continue; 7339 } 7340 7341 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu)); 7342 vcpu_info.vector = irq.vector; 7343 7344 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi, 7345 vcpu_info.vector, vcpu_info.pi_desc_addr, set); 7346 7347 if (set) 7348 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info); 7349 else 7350 ret = irq_set_vcpu_affinity(host_irq, NULL); 7351 7352 if (ret < 0) { 7353 printk(KERN_INFO "%s: failed to update PI IRTE\n", 7354 __func__); 7355 goto out; 7356 } 7357 } 7358 7359 ret = 0; 7360 out: 7361 srcu_read_unlock(&kvm->irq_srcu, idx); 7362 return ret; 7363 } 7364 7365 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7366 { 7367 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7368 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7369 FEATURE_CONTROL_LMCE; 7370 else 7371 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7372 ~FEATURE_CONTROL_LMCE; 7373 } 7374 7375 static int vmx_smi_allowed(struct kvm_vcpu *vcpu) 7376 { 7377 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7378 if (to_vmx(vcpu)->nested.nested_run_pending) 7379 return 0; 7380 return 1; 7381 } 7382 7383 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7384 { 7385 struct vcpu_vmx *vmx = to_vmx(vcpu); 7386 7387 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7388 if (vmx->nested.smm.guest_mode) 7389 nested_vmx_vmexit(vcpu, -1, 0, 0); 7390 7391 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7392 vmx->nested.vmxon = false; 7393 vmx_clear_hlt(vcpu); 7394 return 0; 7395 } 7396 7397 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7398 { 7399 struct vcpu_vmx *vmx = to_vmx(vcpu); 7400 int ret; 7401 7402 if (vmx->nested.smm.vmxon) { 7403 vmx->nested.vmxon = true; 7404 vmx->nested.smm.vmxon = false; 7405 } 7406 7407 if (vmx->nested.smm.guest_mode) { 7408 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7409 if (ret) 7410 return ret; 7411 7412 vmx->nested.smm.guest_mode = false; 7413 } 7414 return 0; 7415 } 7416 7417 static int enable_smi_window(struct kvm_vcpu *vcpu) 7418 { 7419 return 0; 7420 } 7421 7422 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu) 7423 { 7424 return 0; 7425 } 7426 7427 static __init int hardware_setup(void) 7428 { 7429 unsigned long host_bndcfgs; 7430 int r, i; 7431 7432 rdmsrl_safe(MSR_EFER, &host_efer); 7433 7434 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) 7435 kvm_define_shared_msr(i, vmx_msr_index[i]); 7436 7437 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7438 return -EIO; 7439 7440 if (boot_cpu_has(X86_FEATURE_NX)) 7441 kvm_enable_efer_bits(EFER_NX); 7442 7443 if (boot_cpu_has(X86_FEATURE_MPX)) { 7444 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7445 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7446 } 7447 7448 if (boot_cpu_has(X86_FEATURE_XSAVES)) 7449 rdmsrl(MSR_IA32_XSS, host_xss); 7450 7451 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7452 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7453 enable_vpid = 0; 7454 7455 if (!cpu_has_vmx_ept() || 7456 !cpu_has_vmx_ept_4levels() || 7457 !cpu_has_vmx_ept_mt_wb() || 7458 !cpu_has_vmx_invept_global()) 7459 enable_ept = 0; 7460 7461 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7462 enable_ept_ad_bits = 0; 7463 7464 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7465 enable_unrestricted_guest = 0; 7466 7467 if (!cpu_has_vmx_flexpriority()) 7468 flexpriority_enabled = 0; 7469 7470 if (!cpu_has_virtual_nmis()) 7471 enable_vnmi = 0; 7472 7473 /* 7474 * set_apic_access_page_addr() is used to reload apic access 7475 * page upon invalidation. No need to do anything if not 7476 * using the APIC_ACCESS_ADDR VMCS field. 7477 */ 7478 if (!flexpriority_enabled) 7479 kvm_x86_ops->set_apic_access_page_addr = NULL; 7480 7481 if (!cpu_has_vmx_tpr_shadow()) 7482 kvm_x86_ops->update_cr8_intercept = NULL; 7483 7484 if (enable_ept && !cpu_has_vmx_ept_2m_page()) 7485 kvm_disable_largepages(); 7486 7487 #if IS_ENABLED(CONFIG_HYPERV) 7488 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7489 && enable_ept) { 7490 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb; 7491 kvm_x86_ops->tlb_remote_flush_with_range = 7492 hv_remote_flush_tlb_with_range; 7493 } 7494 #endif 7495 7496 if (!cpu_has_vmx_ple()) { 7497 ple_gap = 0; 7498 ple_window = 0; 7499 ple_window_grow = 0; 7500 ple_window_max = 0; 7501 ple_window_shrink = 0; 7502 } 7503 7504 if (!cpu_has_vmx_apicv()) { 7505 enable_apicv = 0; 7506 kvm_x86_ops->sync_pir_to_irr = NULL; 7507 } 7508 7509 if (cpu_has_vmx_tsc_scaling()) { 7510 kvm_has_tsc_control = true; 7511 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7512 kvm_tsc_scaling_ratio_frac_bits = 48; 7513 } 7514 7515 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7516 7517 if (enable_ept) 7518 vmx_enable_tdp(); 7519 else 7520 kvm_disable_tdp(); 7521 7522 /* 7523 * Only enable PML when hardware supports PML feature, and both EPT 7524 * and EPT A/D bit features are enabled -- PML depends on them to work. 7525 */ 7526 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 7527 enable_pml = 0; 7528 7529 if (!enable_pml) { 7530 kvm_x86_ops->slot_enable_log_dirty = NULL; 7531 kvm_x86_ops->slot_disable_log_dirty = NULL; 7532 kvm_x86_ops->flush_log_dirty = NULL; 7533 kvm_x86_ops->enable_log_dirty_pt_masked = NULL; 7534 } 7535 7536 if (!cpu_has_vmx_preemption_timer()) 7537 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit; 7538 7539 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) { 7540 u64 vmx_msr; 7541 7542 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 7543 cpu_preemption_timer_multi = 7544 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 7545 } else { 7546 kvm_x86_ops->set_hv_timer = NULL; 7547 kvm_x86_ops->cancel_hv_timer = NULL; 7548 } 7549 7550 kvm_set_posted_intr_wakeup_handler(wakeup_handler); 7551 7552 kvm_mce_cap_supported |= MCG_LMCE_P; 7553 7554 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 7555 return -EINVAL; 7556 if (!enable_ept || !cpu_has_vmx_intel_pt()) 7557 pt_mode = PT_MODE_SYSTEM; 7558 7559 if (nested) { 7560 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 7561 vmx_capability.ept, enable_apicv); 7562 7563 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 7564 if (r) 7565 return r; 7566 } 7567 7568 r = alloc_kvm_area(); 7569 if (r) 7570 nested_vmx_hardware_unsetup(); 7571 return r; 7572 } 7573 7574 static __exit void hardware_unsetup(void) 7575 { 7576 if (nested) 7577 nested_vmx_hardware_unsetup(); 7578 7579 free_kvm_area(); 7580 } 7581 7582 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = { 7583 .cpu_has_kvm_support = cpu_has_kvm_support, 7584 .disabled_by_bios = vmx_disabled_by_bios, 7585 .hardware_setup = hardware_setup, 7586 .hardware_unsetup = hardware_unsetup, 7587 .check_processor_compatibility = vmx_check_processor_compat, 7588 .hardware_enable = hardware_enable, 7589 .hardware_disable = hardware_disable, 7590 .cpu_has_accelerated_tpr = report_flexpriority, 7591 .has_emulated_msr = vmx_has_emulated_msr, 7592 7593 .vm_init = vmx_vm_init, 7594 .vm_alloc = vmx_vm_alloc, 7595 .vm_free = vmx_vm_free, 7596 7597 .vcpu_create = vmx_create_vcpu, 7598 .vcpu_free = vmx_free_vcpu, 7599 .vcpu_reset = vmx_vcpu_reset, 7600 7601 .prepare_guest_switch = vmx_prepare_switch_to_guest, 7602 .vcpu_load = vmx_vcpu_load, 7603 .vcpu_put = vmx_vcpu_put, 7604 7605 .update_bp_intercept = update_exception_bitmap, 7606 .get_msr_feature = vmx_get_msr_feature, 7607 .get_msr = vmx_get_msr, 7608 .set_msr = vmx_set_msr, 7609 .get_segment_base = vmx_get_segment_base, 7610 .get_segment = vmx_get_segment, 7611 .set_segment = vmx_set_segment, 7612 .get_cpl = vmx_get_cpl, 7613 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7614 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits, 7615 .decache_cr3 = vmx_decache_cr3, 7616 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, 7617 .set_cr0 = vmx_set_cr0, 7618 .set_cr3 = vmx_set_cr3, 7619 .set_cr4 = vmx_set_cr4, 7620 .set_efer = vmx_set_efer, 7621 .get_idt = vmx_get_idt, 7622 .set_idt = vmx_set_idt, 7623 .get_gdt = vmx_get_gdt, 7624 .set_gdt = vmx_set_gdt, 7625 .get_dr6 = vmx_get_dr6, 7626 .set_dr6 = vmx_set_dr6, 7627 .set_dr7 = vmx_set_dr7, 7628 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7629 .cache_reg = vmx_cache_reg, 7630 .get_rflags = vmx_get_rflags, 7631 .set_rflags = vmx_set_rflags, 7632 7633 .tlb_flush = vmx_flush_tlb, 7634 .tlb_flush_gva = vmx_flush_tlb_gva, 7635 7636 .run = vmx_vcpu_run, 7637 .handle_exit = vmx_handle_exit, 7638 .skip_emulated_instruction = skip_emulated_instruction, 7639 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7640 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7641 .patch_hypercall = vmx_patch_hypercall, 7642 .set_irq = vmx_inject_irq, 7643 .set_nmi = vmx_inject_nmi, 7644 .queue_exception = vmx_queue_exception, 7645 .cancel_injection = vmx_cancel_injection, 7646 .interrupt_allowed = vmx_interrupt_allowed, 7647 .nmi_allowed = vmx_nmi_allowed, 7648 .get_nmi_mask = vmx_get_nmi_mask, 7649 .set_nmi_mask = vmx_set_nmi_mask, 7650 .enable_nmi_window = enable_nmi_window, 7651 .enable_irq_window = enable_irq_window, 7652 .update_cr8_intercept = update_cr8_intercept, 7653 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7654 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7655 .get_enable_apicv = vmx_get_enable_apicv, 7656 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7657 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7658 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7659 .hwapic_irr_update = vmx_hwapic_irr_update, 7660 .hwapic_isr_update = vmx_hwapic_isr_update, 7661 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7662 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7663 .deliver_posted_interrupt = vmx_deliver_posted_interrupt, 7664 7665 .set_tss_addr = vmx_set_tss_addr, 7666 .set_identity_map_addr = vmx_set_identity_map_addr, 7667 .get_tdp_level = get_ept_level, 7668 .get_mt_mask = vmx_get_mt_mask, 7669 7670 .get_exit_info = vmx_get_exit_info, 7671 7672 .get_lpage_level = vmx_get_lpage_level, 7673 7674 .cpuid_update = vmx_cpuid_update, 7675 7676 .rdtscp_supported = vmx_rdtscp_supported, 7677 .invpcid_supported = vmx_invpcid_supported, 7678 7679 .set_supported_cpuid = vmx_set_supported_cpuid, 7680 7681 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7682 7683 .read_l1_tsc_offset = vmx_read_l1_tsc_offset, 7684 .write_l1_tsc_offset = vmx_write_l1_tsc_offset, 7685 7686 .set_tdp_cr3 = vmx_set_cr3, 7687 7688 .check_intercept = vmx_check_intercept, 7689 .handle_external_intr = vmx_handle_external_intr, 7690 .mpx_supported = vmx_mpx_supported, 7691 .xsaves_supported = vmx_xsaves_supported, 7692 .umip_emulated = vmx_umip_emulated, 7693 .pt_supported = vmx_pt_supported, 7694 7695 .request_immediate_exit = vmx_request_immediate_exit, 7696 7697 .sched_in = vmx_sched_in, 7698 7699 .slot_enable_log_dirty = vmx_slot_enable_log_dirty, 7700 .slot_disable_log_dirty = vmx_slot_disable_log_dirty, 7701 .flush_log_dirty = vmx_flush_log_dirty, 7702 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked, 7703 .write_log_dirty = vmx_write_pml_buffer, 7704 7705 .pre_block = vmx_pre_block, 7706 .post_block = vmx_post_block, 7707 7708 .pmu_ops = &intel_pmu_ops, 7709 7710 .update_pi_irte = vmx_update_pi_irte, 7711 7712 #ifdef CONFIG_X86_64 7713 .set_hv_timer = vmx_set_hv_timer, 7714 .cancel_hv_timer = vmx_cancel_hv_timer, 7715 #endif 7716 7717 .setup_mce = vmx_setup_mce, 7718 7719 .smi_allowed = vmx_smi_allowed, 7720 .pre_enter_smm = vmx_pre_enter_smm, 7721 .pre_leave_smm = vmx_pre_leave_smm, 7722 .enable_smi_window = enable_smi_window, 7723 7724 .check_nested_events = NULL, 7725 .get_nested_state = NULL, 7726 .set_nested_state = NULL, 7727 .get_vmcs12_pages = NULL, 7728 .nested_enable_evmcs = NULL, 7729 .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault, 7730 }; 7731 7732 static void vmx_cleanup_l1d_flush(void) 7733 { 7734 if (vmx_l1d_flush_pages) { 7735 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 7736 vmx_l1d_flush_pages = NULL; 7737 } 7738 /* Restore state so sysfs ignores VMX */ 7739 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 7740 } 7741 7742 static void vmx_exit(void) 7743 { 7744 #ifdef CONFIG_KEXEC_CORE 7745 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 7746 synchronize_rcu(); 7747 #endif 7748 7749 kvm_exit(); 7750 7751 #if IS_ENABLED(CONFIG_HYPERV) 7752 if (static_branch_unlikely(&enable_evmcs)) { 7753 int cpu; 7754 struct hv_vp_assist_page *vp_ap; 7755 /* 7756 * Reset everything to support using non-enlightened VMCS 7757 * access later (e.g. when we reload the module with 7758 * enlightened_vmcs=0) 7759 */ 7760 for_each_online_cpu(cpu) { 7761 vp_ap = hv_get_vp_assist_page(cpu); 7762 7763 if (!vp_ap) 7764 continue; 7765 7766 vp_ap->current_nested_vmcs = 0; 7767 vp_ap->enlighten_vmentry = 0; 7768 } 7769 7770 static_branch_disable(&enable_evmcs); 7771 } 7772 #endif 7773 vmx_cleanup_l1d_flush(); 7774 } 7775 module_exit(vmx_exit); 7776 7777 static int __init vmx_init(void) 7778 { 7779 int r; 7780 7781 #if IS_ENABLED(CONFIG_HYPERV) 7782 /* 7783 * Enlightened VMCS usage should be recommended and the host needs 7784 * to support eVMCS v1 or above. We can also disable eVMCS support 7785 * with module parameter. 7786 */ 7787 if (enlightened_vmcs && 7788 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 7789 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 7790 KVM_EVMCS_VERSION) { 7791 int cpu; 7792 7793 /* Check that we have assist pages on all online CPUs */ 7794 for_each_online_cpu(cpu) { 7795 if (!hv_get_vp_assist_page(cpu)) { 7796 enlightened_vmcs = false; 7797 break; 7798 } 7799 } 7800 7801 if (enlightened_vmcs) { 7802 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 7803 static_branch_enable(&enable_evmcs); 7804 } 7805 } else { 7806 enlightened_vmcs = false; 7807 } 7808 #endif 7809 7810 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), 7811 __alignof__(struct vcpu_vmx), THIS_MODULE); 7812 if (r) 7813 return r; 7814 7815 /* 7816 * Must be called after kvm_init() so enable_ept is properly set 7817 * up. Hand the parameter mitigation value in which was stored in 7818 * the pre module init parser. If no parameter was given, it will 7819 * contain 'auto' which will be turned into the default 'cond' 7820 * mitigation mode. 7821 */ 7822 if (boot_cpu_has(X86_BUG_L1TF)) { 7823 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 7824 if (r) { 7825 vmx_exit(); 7826 return r; 7827 } 7828 } 7829 7830 #ifdef CONFIG_KEXEC_CORE 7831 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 7832 crash_vmclear_local_loaded_vmcss); 7833 #endif 7834 vmx_check_vmcs12_offsets(); 7835 7836 return 0; 7837 } 7838 module_init(vmx_init); 7839