1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <linux/highmem.h> 17 #include <linux/hrtimer.h> 18 #include <linux/kernel.h> 19 #include <linux/kvm_host.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mm.h> 24 #include <linux/objtool.h> 25 #include <linux/sched.h> 26 #include <linux/sched/smt.h> 27 #include <linux/slab.h> 28 #include <linux/tboot.h> 29 #include <linux/trace_events.h> 30 #include <linux/entry-kvm.h> 31 32 #include <asm/apic.h> 33 #include <asm/asm.h> 34 #include <asm/cpu.h> 35 #include <asm/cpu_device_id.h> 36 #include <asm/debugreg.h> 37 #include <asm/desc.h> 38 #include <asm/fpu/internal.h> 39 #include <asm/idtentry.h> 40 #include <asm/io.h> 41 #include <asm/irq_remapping.h> 42 #include <asm/kexec.h> 43 #include <asm/perf_event.h> 44 #include <asm/mmu_context.h> 45 #include <asm/mshyperv.h> 46 #include <asm/mwait.h> 47 #include <asm/spec-ctrl.h> 48 #include <asm/virtext.h> 49 #include <asm/vmx.h> 50 51 #include "capabilities.h" 52 #include "cpuid.h" 53 #include "evmcs.h" 54 #include "hyperv.h" 55 #include "kvm_onhyperv.h" 56 #include "irq.h" 57 #include "kvm_cache_regs.h" 58 #include "lapic.h" 59 #include "mmu.h" 60 #include "nested.h" 61 #include "pmu.h" 62 #include "sgx.h" 63 #include "trace.h" 64 #include "vmcs.h" 65 #include "vmcs12.h" 66 #include "vmx.h" 67 #include "x86.h" 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 #ifdef MODULE 73 static const struct x86_cpu_id vmx_cpu_id[] = { 74 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 75 {} 76 }; 77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 78 #endif 79 80 bool __read_mostly enable_vpid = 1; 81 module_param_named(vpid, enable_vpid, bool, 0444); 82 83 static bool __read_mostly enable_vnmi = 1; 84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 85 86 bool __read_mostly flexpriority_enabled = 1; 87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 88 89 bool __read_mostly enable_ept = 1; 90 module_param_named(ept, enable_ept, bool, S_IRUGO); 91 92 bool __read_mostly enable_unrestricted_guest = 1; 93 module_param_named(unrestricted_guest, 94 enable_unrestricted_guest, bool, S_IRUGO); 95 96 bool __read_mostly enable_ept_ad_bits = 1; 97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 98 99 static bool __read_mostly emulate_invalid_guest_state = true; 100 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 101 102 static bool __read_mostly fasteoi = 1; 103 module_param(fasteoi, bool, S_IRUGO); 104 105 module_param(enable_apicv, bool, S_IRUGO); 106 107 /* 108 * If nested=1, nested virtualization is supported, i.e., guests may use 109 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 110 * use VMX instructions. 111 */ 112 static bool __read_mostly nested = 1; 113 module_param(nested, bool, S_IRUGO); 114 115 bool __read_mostly enable_pml = 1; 116 module_param_named(pml, enable_pml, bool, S_IRUGO); 117 118 static bool __read_mostly dump_invalid_vmcs = 0; 119 module_param(dump_invalid_vmcs, bool, 0644); 120 121 #define MSR_BITMAP_MODE_X2APIC 1 122 #define MSR_BITMAP_MODE_X2APIC_APICV 2 123 124 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 125 126 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 127 static int __read_mostly cpu_preemption_timer_multi; 128 static bool __read_mostly enable_preemption_timer = 1; 129 #ifdef CONFIG_X86_64 130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 131 #endif 132 133 extern bool __read_mostly allow_smaller_maxphyaddr; 134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 135 136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 138 #define KVM_VM_CR0_ALWAYS_ON \ 139 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \ 140 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE) 141 142 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 143 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 144 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 145 146 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 147 148 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 149 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 150 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 151 RTIT_STATUS_BYTECNT)) 152 153 /* 154 * List of MSRs that can be directly passed to the guest. 155 * In addition to these x2apic and PT MSRs are handled specially. 156 */ 157 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 158 MSR_IA32_SPEC_CTRL, 159 MSR_IA32_PRED_CMD, 160 MSR_IA32_TSC, 161 #ifdef CONFIG_X86_64 162 MSR_FS_BASE, 163 MSR_GS_BASE, 164 MSR_KERNEL_GS_BASE, 165 #endif 166 MSR_IA32_SYSENTER_CS, 167 MSR_IA32_SYSENTER_ESP, 168 MSR_IA32_SYSENTER_EIP, 169 MSR_CORE_C1_RES, 170 MSR_CORE_C3_RESIDENCY, 171 MSR_CORE_C6_RESIDENCY, 172 MSR_CORE_C7_RESIDENCY, 173 }; 174 175 /* 176 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 177 * ple_gap: upper bound on the amount of time between two successive 178 * executions of PAUSE in a loop. Also indicate if ple enabled. 179 * According to test, this time is usually smaller than 128 cycles. 180 * ple_window: upper bound on the amount of time a guest is allowed to execute 181 * in a PAUSE loop. Tests indicate that most spinlocks are held for 182 * less than 2^12 cycles 183 * Time is measured based on a counter that runs at the same rate as the TSC, 184 * refer SDM volume 3b section 21.6.13 & 22.1.3. 185 */ 186 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 187 module_param(ple_gap, uint, 0444); 188 189 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 190 module_param(ple_window, uint, 0444); 191 192 /* Default doubles per-vcpu window every exit. */ 193 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 194 module_param(ple_window_grow, uint, 0444); 195 196 /* Default resets per-vcpu window every exit to ple_window. */ 197 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 198 module_param(ple_window_shrink, uint, 0444); 199 200 /* Default is to compute the maximum so we can never overflow. */ 201 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 202 module_param(ple_window_max, uint, 0444); 203 204 /* Default is SYSTEM mode, 1 for host-guest mode */ 205 int __read_mostly pt_mode = PT_MODE_SYSTEM; 206 module_param(pt_mode, int, S_IRUGO); 207 208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 209 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 210 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 211 212 /* Storage for pre module init parameter parsing */ 213 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 214 215 static const struct { 216 const char *option; 217 bool for_parse; 218 } vmentry_l1d_param[] = { 219 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 220 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 221 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 222 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 223 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 224 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 225 }; 226 227 #define L1D_CACHE_ORDER 4 228 static void *vmx_l1d_flush_pages; 229 230 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 231 { 232 struct page *page; 233 unsigned int i; 234 235 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 236 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 237 return 0; 238 } 239 240 if (!enable_ept) { 241 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 242 return 0; 243 } 244 245 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 246 u64 msr; 247 248 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 249 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 250 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 251 return 0; 252 } 253 } 254 255 /* If set to auto use the default l1tf mitigation method */ 256 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 257 switch (l1tf_mitigation) { 258 case L1TF_MITIGATION_OFF: 259 l1tf = VMENTER_L1D_FLUSH_NEVER; 260 break; 261 case L1TF_MITIGATION_FLUSH_NOWARN: 262 case L1TF_MITIGATION_FLUSH: 263 case L1TF_MITIGATION_FLUSH_NOSMT: 264 l1tf = VMENTER_L1D_FLUSH_COND; 265 break; 266 case L1TF_MITIGATION_FULL: 267 case L1TF_MITIGATION_FULL_FORCE: 268 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 269 break; 270 } 271 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 272 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 273 } 274 275 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 276 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 277 /* 278 * This allocation for vmx_l1d_flush_pages is not tied to a VM 279 * lifetime and so should not be charged to a memcg. 280 */ 281 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 282 if (!page) 283 return -ENOMEM; 284 vmx_l1d_flush_pages = page_address(page); 285 286 /* 287 * Initialize each page with a different pattern in 288 * order to protect against KSM in the nested 289 * virtualization case. 290 */ 291 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 292 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 293 PAGE_SIZE); 294 } 295 } 296 297 l1tf_vmx_mitigation = l1tf; 298 299 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 300 static_branch_enable(&vmx_l1d_should_flush); 301 else 302 static_branch_disable(&vmx_l1d_should_flush); 303 304 if (l1tf == VMENTER_L1D_FLUSH_COND) 305 static_branch_enable(&vmx_l1d_flush_cond); 306 else 307 static_branch_disable(&vmx_l1d_flush_cond); 308 return 0; 309 } 310 311 static int vmentry_l1d_flush_parse(const char *s) 312 { 313 unsigned int i; 314 315 if (s) { 316 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 317 if (vmentry_l1d_param[i].for_parse && 318 sysfs_streq(s, vmentry_l1d_param[i].option)) 319 return i; 320 } 321 } 322 return -EINVAL; 323 } 324 325 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 326 { 327 int l1tf, ret; 328 329 l1tf = vmentry_l1d_flush_parse(s); 330 if (l1tf < 0) 331 return l1tf; 332 333 if (!boot_cpu_has(X86_BUG_L1TF)) 334 return 0; 335 336 /* 337 * Has vmx_init() run already? If not then this is the pre init 338 * parameter parsing. In that case just store the value and let 339 * vmx_init() do the proper setup after enable_ept has been 340 * established. 341 */ 342 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 343 vmentry_l1d_flush_param = l1tf; 344 return 0; 345 } 346 347 mutex_lock(&vmx_l1d_flush_mutex); 348 ret = vmx_setup_l1d_flush(l1tf); 349 mutex_unlock(&vmx_l1d_flush_mutex); 350 return ret; 351 } 352 353 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 354 { 355 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 356 return sprintf(s, "???\n"); 357 358 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 359 } 360 361 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 362 .set = vmentry_l1d_flush_set, 363 .get = vmentry_l1d_flush_get, 364 }; 365 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 366 367 static u32 vmx_segment_access_rights(struct kvm_segment *var); 368 369 void vmx_vmexit(void); 370 371 #define vmx_insn_failed(fmt...) \ 372 do { \ 373 WARN_ONCE(1, fmt); \ 374 pr_warn_ratelimited(fmt); \ 375 } while (0) 376 377 asmlinkage void vmread_error(unsigned long field, bool fault) 378 { 379 if (fault) 380 kvm_spurious_fault(); 381 else 382 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field); 383 } 384 385 noinline void vmwrite_error(unsigned long field, unsigned long value) 386 { 387 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n", 388 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 389 } 390 391 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 392 { 393 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr); 394 } 395 396 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 397 { 398 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr); 399 } 400 401 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 402 { 403 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 404 ext, vpid, gva); 405 } 406 407 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 408 { 409 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 410 ext, eptp, gpa); 411 } 412 413 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 414 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 415 /* 416 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 417 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 418 */ 419 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 420 421 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 422 static DEFINE_SPINLOCK(vmx_vpid_lock); 423 424 struct vmcs_config vmcs_config; 425 struct vmx_capability vmx_capability; 426 427 #define VMX_SEGMENT_FIELD(seg) \ 428 [VCPU_SREG_##seg] = { \ 429 .selector = GUEST_##seg##_SELECTOR, \ 430 .base = GUEST_##seg##_BASE, \ 431 .limit = GUEST_##seg##_LIMIT, \ 432 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 433 } 434 435 static const struct kvm_vmx_segment_field { 436 unsigned selector; 437 unsigned base; 438 unsigned limit; 439 unsigned ar_bytes; 440 } kvm_vmx_segment_fields[] = { 441 VMX_SEGMENT_FIELD(CS), 442 VMX_SEGMENT_FIELD(DS), 443 VMX_SEGMENT_FIELD(ES), 444 VMX_SEGMENT_FIELD(FS), 445 VMX_SEGMENT_FIELD(GS), 446 VMX_SEGMENT_FIELD(SS), 447 VMX_SEGMENT_FIELD(TR), 448 VMX_SEGMENT_FIELD(LDTR), 449 }; 450 451 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 452 { 453 vmx->segment_cache.bitmask = 0; 454 } 455 456 static unsigned long host_idt_base; 457 458 #if IS_ENABLED(CONFIG_HYPERV) 459 static bool __read_mostly enlightened_vmcs = true; 460 module_param(enlightened_vmcs, bool, 0444); 461 462 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu) 463 { 464 struct hv_enlightened_vmcs *evmcs; 465 struct hv_partition_assist_pg **p_hv_pa_pg = 466 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 467 /* 468 * Synthetic VM-Exit is not enabled in current code and so All 469 * evmcs in singe VM shares same assist page. 470 */ 471 if (!*p_hv_pa_pg) 472 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 473 474 if (!*p_hv_pa_pg) 475 return -ENOMEM; 476 477 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 478 479 evmcs->partition_assist_page = 480 __pa(*p_hv_pa_pg); 481 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 482 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 483 484 return 0; 485 } 486 487 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 488 489 /* 490 * Comment's format: document - errata name - stepping - processor name. 491 * Refer from 492 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 493 */ 494 static u32 vmx_preemption_cpu_tfms[] = { 495 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 496 0x000206E6, 497 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 498 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 499 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 500 0x00020652, 501 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 502 0x00020655, 503 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 504 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 505 /* 506 * 320767.pdf - AAP86 - B1 - 507 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 508 */ 509 0x000106E5, 510 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 511 0x000106A0, 512 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 513 0x000106A1, 514 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 515 0x000106A4, 516 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 517 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 518 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 519 0x000106A5, 520 /* Xeon E3-1220 V2 */ 521 0x000306A8, 522 }; 523 524 static inline bool cpu_has_broken_vmx_preemption_timer(void) 525 { 526 u32 eax = cpuid_eax(0x00000001), i; 527 528 /* Clear the reserved bits */ 529 eax &= ~(0x3U << 14 | 0xfU << 28); 530 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 531 if (eax == vmx_preemption_cpu_tfms[i]) 532 return true; 533 534 return false; 535 } 536 537 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 538 { 539 return flexpriority_enabled && lapic_in_kernel(vcpu); 540 } 541 542 static inline bool report_flexpriority(void) 543 { 544 return flexpriority_enabled; 545 } 546 547 static int possible_passthrough_msr_slot(u32 msr) 548 { 549 u32 i; 550 551 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 552 if (vmx_possible_passthrough_msrs[i] == msr) 553 return i; 554 555 return -ENOENT; 556 } 557 558 static bool is_valid_passthrough_msr(u32 msr) 559 { 560 bool r; 561 562 switch (msr) { 563 case 0x800 ... 0x8ff: 564 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 565 return true; 566 case MSR_IA32_RTIT_STATUS: 567 case MSR_IA32_RTIT_OUTPUT_BASE: 568 case MSR_IA32_RTIT_OUTPUT_MASK: 569 case MSR_IA32_RTIT_CR3_MATCH: 570 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 571 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 572 case MSR_LBR_SELECT: 573 case MSR_LBR_TOS: 574 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 575 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 576 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 577 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 578 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 579 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 580 return true; 581 } 582 583 r = possible_passthrough_msr_slot(msr) != -ENOENT; 584 585 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 586 587 return r; 588 } 589 590 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 591 { 592 int i; 593 594 i = kvm_find_user_return_msr(msr); 595 if (i >= 0) 596 return &vmx->guest_uret_msrs[i]; 597 return NULL; 598 } 599 600 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 601 struct vmx_uret_msr *msr, u64 data) 602 { 603 unsigned int slot = msr - vmx->guest_uret_msrs; 604 int ret = 0; 605 606 u64 old_msr_data = msr->data; 607 msr->data = data; 608 if (msr->load_into_hardware) { 609 preempt_disable(); 610 ret = kvm_set_user_return_msr(slot, msr->data, msr->mask); 611 preempt_enable(); 612 if (ret) 613 msr->data = old_msr_data; 614 } 615 return ret; 616 } 617 618 #ifdef CONFIG_KEXEC_CORE 619 static void crash_vmclear_local_loaded_vmcss(void) 620 { 621 int cpu = raw_smp_processor_id(); 622 struct loaded_vmcs *v; 623 624 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 625 loaded_vmcss_on_cpu_link) 626 vmcs_clear(v->vmcs); 627 } 628 #endif /* CONFIG_KEXEC_CORE */ 629 630 static void __loaded_vmcs_clear(void *arg) 631 { 632 struct loaded_vmcs *loaded_vmcs = arg; 633 int cpu = raw_smp_processor_id(); 634 635 if (loaded_vmcs->cpu != cpu) 636 return; /* vcpu migration can race with cpu offline */ 637 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 638 per_cpu(current_vmcs, cpu) = NULL; 639 640 vmcs_clear(loaded_vmcs->vmcs); 641 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 642 vmcs_clear(loaded_vmcs->shadow_vmcs); 643 644 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 645 646 /* 647 * Ensure all writes to loaded_vmcs, including deleting it from its 648 * current percpu list, complete before setting loaded_vmcs->vcpu to 649 * -1, otherwise a different cpu can see vcpu == -1 first and add 650 * loaded_vmcs to its percpu list before it's deleted from this cpu's 651 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 652 */ 653 smp_wmb(); 654 655 loaded_vmcs->cpu = -1; 656 loaded_vmcs->launched = 0; 657 } 658 659 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 660 { 661 int cpu = loaded_vmcs->cpu; 662 663 if (cpu != -1) 664 smp_call_function_single(cpu, 665 __loaded_vmcs_clear, loaded_vmcs, 1); 666 } 667 668 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 669 unsigned field) 670 { 671 bool ret; 672 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 673 674 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 675 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 676 vmx->segment_cache.bitmask = 0; 677 } 678 ret = vmx->segment_cache.bitmask & mask; 679 vmx->segment_cache.bitmask |= mask; 680 return ret; 681 } 682 683 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 684 { 685 u16 *p = &vmx->segment_cache.seg[seg].selector; 686 687 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 688 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 689 return *p; 690 } 691 692 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 693 { 694 ulong *p = &vmx->segment_cache.seg[seg].base; 695 696 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 697 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 698 return *p; 699 } 700 701 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 702 { 703 u32 *p = &vmx->segment_cache.seg[seg].limit; 704 705 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 706 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 707 return *p; 708 } 709 710 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 711 { 712 u32 *p = &vmx->segment_cache.seg[seg].ar; 713 714 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 715 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 716 return *p; 717 } 718 719 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 720 { 721 u32 eb; 722 723 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 724 (1u << DB_VECTOR) | (1u << AC_VECTOR); 725 /* 726 * Guest access to VMware backdoor ports could legitimately 727 * trigger #GP because of TSS I/O permission bitmap. 728 * We intercept those #GP and allow access to them anyway 729 * as VMware does. 730 */ 731 if (enable_vmware_backdoor) 732 eb |= (1u << GP_VECTOR); 733 if ((vcpu->guest_debug & 734 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 735 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 736 eb |= 1u << BP_VECTOR; 737 if (to_vmx(vcpu)->rmode.vm86_active) 738 eb = ~0; 739 if (!vmx_need_pf_intercept(vcpu)) 740 eb &= ~(1u << PF_VECTOR); 741 742 /* When we are running a nested L2 guest and L1 specified for it a 743 * certain exception bitmap, we must trap the same exceptions and pass 744 * them to L1. When running L2, we will only handle the exceptions 745 * specified above if L1 did not want them. 746 */ 747 if (is_guest_mode(vcpu)) 748 eb |= get_vmcs12(vcpu)->exception_bitmap; 749 else { 750 int mask = 0, match = 0; 751 752 if (enable_ept && (eb & (1u << PF_VECTOR))) { 753 /* 754 * If EPT is enabled, #PF is currently only intercepted 755 * if MAXPHYADDR is smaller on the guest than on the 756 * host. In that case we only care about present, 757 * non-reserved faults. For vmcs02, however, PFEC_MASK 758 * and PFEC_MATCH are set in prepare_vmcs02_rare. 759 */ 760 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 761 match = PFERR_PRESENT_MASK; 762 } 763 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 764 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 765 } 766 767 vmcs_write32(EXCEPTION_BITMAP, eb); 768 } 769 770 /* 771 * Check if MSR is intercepted for currently loaded MSR bitmap. 772 */ 773 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 774 { 775 unsigned long *msr_bitmap; 776 int f = sizeof(unsigned long); 777 778 if (!cpu_has_vmx_msr_bitmap()) 779 return true; 780 781 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; 782 783 if (msr <= 0x1fff) { 784 return !!test_bit(msr, msr_bitmap + 0x800 / f); 785 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 786 msr &= 0x1fff; 787 return !!test_bit(msr, msr_bitmap + 0xc00 / f); 788 } 789 790 return true; 791 } 792 793 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 794 unsigned long entry, unsigned long exit) 795 { 796 vm_entry_controls_clearbit(vmx, entry); 797 vm_exit_controls_clearbit(vmx, exit); 798 } 799 800 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 801 { 802 unsigned int i; 803 804 for (i = 0; i < m->nr; ++i) { 805 if (m->val[i].index == msr) 806 return i; 807 } 808 return -ENOENT; 809 } 810 811 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 812 { 813 int i; 814 struct msr_autoload *m = &vmx->msr_autoload; 815 816 switch (msr) { 817 case MSR_EFER: 818 if (cpu_has_load_ia32_efer()) { 819 clear_atomic_switch_msr_special(vmx, 820 VM_ENTRY_LOAD_IA32_EFER, 821 VM_EXIT_LOAD_IA32_EFER); 822 return; 823 } 824 break; 825 case MSR_CORE_PERF_GLOBAL_CTRL: 826 if (cpu_has_load_perf_global_ctrl()) { 827 clear_atomic_switch_msr_special(vmx, 828 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 829 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 830 return; 831 } 832 break; 833 } 834 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 835 if (i < 0) 836 goto skip_guest; 837 --m->guest.nr; 838 m->guest.val[i] = m->guest.val[m->guest.nr]; 839 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 840 841 skip_guest: 842 i = vmx_find_loadstore_msr_slot(&m->host, msr); 843 if (i < 0) 844 return; 845 846 --m->host.nr; 847 m->host.val[i] = m->host.val[m->host.nr]; 848 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 849 } 850 851 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 852 unsigned long entry, unsigned long exit, 853 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 854 u64 guest_val, u64 host_val) 855 { 856 vmcs_write64(guest_val_vmcs, guest_val); 857 if (host_val_vmcs != HOST_IA32_EFER) 858 vmcs_write64(host_val_vmcs, host_val); 859 vm_entry_controls_setbit(vmx, entry); 860 vm_exit_controls_setbit(vmx, exit); 861 } 862 863 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 864 u64 guest_val, u64 host_val, bool entry_only) 865 { 866 int i, j = 0; 867 struct msr_autoload *m = &vmx->msr_autoload; 868 869 switch (msr) { 870 case MSR_EFER: 871 if (cpu_has_load_ia32_efer()) { 872 add_atomic_switch_msr_special(vmx, 873 VM_ENTRY_LOAD_IA32_EFER, 874 VM_EXIT_LOAD_IA32_EFER, 875 GUEST_IA32_EFER, 876 HOST_IA32_EFER, 877 guest_val, host_val); 878 return; 879 } 880 break; 881 case MSR_CORE_PERF_GLOBAL_CTRL: 882 if (cpu_has_load_perf_global_ctrl()) { 883 add_atomic_switch_msr_special(vmx, 884 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 885 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 886 GUEST_IA32_PERF_GLOBAL_CTRL, 887 HOST_IA32_PERF_GLOBAL_CTRL, 888 guest_val, host_val); 889 return; 890 } 891 break; 892 case MSR_IA32_PEBS_ENABLE: 893 /* PEBS needs a quiescent period after being disabled (to write 894 * a record). Disabling PEBS through VMX MSR swapping doesn't 895 * provide that period, so a CPU could write host's record into 896 * guest's memory. 897 */ 898 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 899 } 900 901 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 902 if (!entry_only) 903 j = vmx_find_loadstore_msr_slot(&m->host, msr); 904 905 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 906 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 907 printk_once(KERN_WARNING "Not enough msr switch entries. " 908 "Can't add msr %x\n", msr); 909 return; 910 } 911 if (i < 0) { 912 i = m->guest.nr++; 913 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 914 } 915 m->guest.val[i].index = msr; 916 m->guest.val[i].value = guest_val; 917 918 if (entry_only) 919 return; 920 921 if (j < 0) { 922 j = m->host.nr++; 923 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 924 } 925 m->host.val[j].index = msr; 926 m->host.val[j].value = host_val; 927 } 928 929 static bool update_transition_efer(struct vcpu_vmx *vmx) 930 { 931 u64 guest_efer = vmx->vcpu.arch.efer; 932 u64 ignore_bits = 0; 933 int i; 934 935 /* Shadow paging assumes NX to be available. */ 936 if (!enable_ept) 937 guest_efer |= EFER_NX; 938 939 /* 940 * LMA and LME handled by hardware; SCE meaningless outside long mode. 941 */ 942 ignore_bits |= EFER_SCE; 943 #ifdef CONFIG_X86_64 944 ignore_bits |= EFER_LMA | EFER_LME; 945 /* SCE is meaningful only in long mode on Intel */ 946 if (guest_efer & EFER_LMA) 947 ignore_bits &= ~(u64)EFER_SCE; 948 #endif 949 950 /* 951 * On EPT, we can't emulate NX, so we must switch EFER atomically. 952 * On CPUs that support "load IA32_EFER", always switch EFER 953 * atomically, since it's faster than switching it manually. 954 */ 955 if (cpu_has_load_ia32_efer() || 956 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 957 if (!(guest_efer & EFER_LMA)) 958 guest_efer &= ~EFER_LME; 959 if (guest_efer != host_efer) 960 add_atomic_switch_msr(vmx, MSR_EFER, 961 guest_efer, host_efer, false); 962 else 963 clear_atomic_switch_msr(vmx, MSR_EFER); 964 return false; 965 } 966 967 i = kvm_find_user_return_msr(MSR_EFER); 968 if (i < 0) 969 return false; 970 971 clear_atomic_switch_msr(vmx, MSR_EFER); 972 973 guest_efer &= ~ignore_bits; 974 guest_efer |= host_efer & ignore_bits; 975 976 vmx->guest_uret_msrs[i].data = guest_efer; 977 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 978 979 return true; 980 } 981 982 #ifdef CONFIG_X86_32 983 /* 984 * On 32-bit kernels, VM exits still load the FS and GS bases from the 985 * VMCS rather than the segment table. KVM uses this helper to figure 986 * out the current bases to poke them into the VMCS before entry. 987 */ 988 static unsigned long segment_base(u16 selector) 989 { 990 struct desc_struct *table; 991 unsigned long v; 992 993 if (!(selector & ~SEGMENT_RPL_MASK)) 994 return 0; 995 996 table = get_current_gdt_ro(); 997 998 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 999 u16 ldt_selector = kvm_read_ldt(); 1000 1001 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1002 return 0; 1003 1004 table = (struct desc_struct *)segment_base(ldt_selector); 1005 } 1006 v = get_desc_base(&table[selector >> 3]); 1007 return v; 1008 } 1009 #endif 1010 1011 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1012 { 1013 return vmx_pt_mode_is_host_guest() && 1014 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1015 } 1016 1017 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1018 { 1019 /* The base must be 128-byte aligned and a legal physical address. */ 1020 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1021 } 1022 1023 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1024 { 1025 u32 i; 1026 1027 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1028 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1029 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1030 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1031 for (i = 0; i < addr_range; i++) { 1032 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1033 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1034 } 1035 } 1036 1037 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1038 { 1039 u32 i; 1040 1041 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1042 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1043 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1044 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1045 for (i = 0; i < addr_range; i++) { 1046 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1047 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1048 } 1049 } 1050 1051 static void pt_guest_enter(struct vcpu_vmx *vmx) 1052 { 1053 if (vmx_pt_mode_is_system()) 1054 return; 1055 1056 /* 1057 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1058 * Save host state before VM entry. 1059 */ 1060 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1061 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1062 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1063 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1064 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1065 } 1066 } 1067 1068 static void pt_guest_exit(struct vcpu_vmx *vmx) 1069 { 1070 if (vmx_pt_mode_is_system()) 1071 return; 1072 1073 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1074 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1075 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1076 } 1077 1078 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */ 1079 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1080 } 1081 1082 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1083 unsigned long fs_base, unsigned long gs_base) 1084 { 1085 if (unlikely(fs_sel != host->fs_sel)) { 1086 if (!(fs_sel & 7)) 1087 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1088 else 1089 vmcs_write16(HOST_FS_SELECTOR, 0); 1090 host->fs_sel = fs_sel; 1091 } 1092 if (unlikely(gs_sel != host->gs_sel)) { 1093 if (!(gs_sel & 7)) 1094 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1095 else 1096 vmcs_write16(HOST_GS_SELECTOR, 0); 1097 host->gs_sel = gs_sel; 1098 } 1099 if (unlikely(fs_base != host->fs_base)) { 1100 vmcs_writel(HOST_FS_BASE, fs_base); 1101 host->fs_base = fs_base; 1102 } 1103 if (unlikely(gs_base != host->gs_base)) { 1104 vmcs_writel(HOST_GS_BASE, gs_base); 1105 host->gs_base = gs_base; 1106 } 1107 } 1108 1109 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1110 { 1111 struct vcpu_vmx *vmx = to_vmx(vcpu); 1112 struct vmcs_host_state *host_state; 1113 #ifdef CONFIG_X86_64 1114 int cpu = raw_smp_processor_id(); 1115 #endif 1116 unsigned long fs_base, gs_base; 1117 u16 fs_sel, gs_sel; 1118 int i; 1119 1120 vmx->req_immediate_exit = false; 1121 1122 /* 1123 * Note that guest MSRs to be saved/restored can also be changed 1124 * when guest state is loaded. This happens when guest transitions 1125 * to/from long-mode by setting MSR_EFER.LMA. 1126 */ 1127 if (!vmx->guest_uret_msrs_loaded) { 1128 vmx->guest_uret_msrs_loaded = true; 1129 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1130 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1131 continue; 1132 1133 kvm_set_user_return_msr(i, 1134 vmx->guest_uret_msrs[i].data, 1135 vmx->guest_uret_msrs[i].mask); 1136 } 1137 } 1138 1139 if (vmx->nested.need_vmcs12_to_shadow_sync) 1140 nested_sync_vmcs12_to_shadow(vcpu); 1141 1142 if (vmx->guest_state_loaded) 1143 return; 1144 1145 host_state = &vmx->loaded_vmcs->host_state; 1146 1147 /* 1148 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1149 * allow segment selectors with cpl > 0 or ti == 1. 1150 */ 1151 host_state->ldt_sel = kvm_read_ldt(); 1152 1153 #ifdef CONFIG_X86_64 1154 savesegment(ds, host_state->ds_sel); 1155 savesegment(es, host_state->es_sel); 1156 1157 gs_base = cpu_kernelmode_gs_base(cpu); 1158 if (likely(is_64bit_mm(current->mm))) { 1159 current_save_fsgs(); 1160 fs_sel = current->thread.fsindex; 1161 gs_sel = current->thread.gsindex; 1162 fs_base = current->thread.fsbase; 1163 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1164 } else { 1165 savesegment(fs, fs_sel); 1166 savesegment(gs, gs_sel); 1167 fs_base = read_msr(MSR_FS_BASE); 1168 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1169 } 1170 1171 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1172 #else 1173 savesegment(fs, fs_sel); 1174 savesegment(gs, gs_sel); 1175 fs_base = segment_base(fs_sel); 1176 gs_base = segment_base(gs_sel); 1177 #endif 1178 1179 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1180 vmx->guest_state_loaded = true; 1181 } 1182 1183 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1184 { 1185 struct vmcs_host_state *host_state; 1186 1187 if (!vmx->guest_state_loaded) 1188 return; 1189 1190 host_state = &vmx->loaded_vmcs->host_state; 1191 1192 ++vmx->vcpu.stat.host_state_reload; 1193 1194 #ifdef CONFIG_X86_64 1195 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1196 #endif 1197 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1198 kvm_load_ldt(host_state->ldt_sel); 1199 #ifdef CONFIG_X86_64 1200 load_gs_index(host_state->gs_sel); 1201 #else 1202 loadsegment(gs, host_state->gs_sel); 1203 #endif 1204 } 1205 if (host_state->fs_sel & 7) 1206 loadsegment(fs, host_state->fs_sel); 1207 #ifdef CONFIG_X86_64 1208 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1209 loadsegment(ds, host_state->ds_sel); 1210 loadsegment(es, host_state->es_sel); 1211 } 1212 #endif 1213 invalidate_tss_limit(); 1214 #ifdef CONFIG_X86_64 1215 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1216 #endif 1217 load_fixmap_gdt(raw_smp_processor_id()); 1218 vmx->guest_state_loaded = false; 1219 vmx->guest_uret_msrs_loaded = false; 1220 } 1221 1222 #ifdef CONFIG_X86_64 1223 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1224 { 1225 preempt_disable(); 1226 if (vmx->guest_state_loaded) 1227 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1228 preempt_enable(); 1229 return vmx->msr_guest_kernel_gs_base; 1230 } 1231 1232 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1233 { 1234 preempt_disable(); 1235 if (vmx->guest_state_loaded) 1236 wrmsrl(MSR_KERNEL_GS_BASE, data); 1237 preempt_enable(); 1238 vmx->msr_guest_kernel_gs_base = data; 1239 } 1240 #endif 1241 1242 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1243 struct loaded_vmcs *buddy) 1244 { 1245 struct vcpu_vmx *vmx = to_vmx(vcpu); 1246 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1247 struct vmcs *prev; 1248 1249 if (!already_loaded) { 1250 loaded_vmcs_clear(vmx->loaded_vmcs); 1251 local_irq_disable(); 1252 1253 /* 1254 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1255 * this cpu's percpu list, otherwise it may not yet be deleted 1256 * from its previous cpu's percpu list. Pairs with the 1257 * smb_wmb() in __loaded_vmcs_clear(). 1258 */ 1259 smp_rmb(); 1260 1261 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1262 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1263 local_irq_enable(); 1264 } 1265 1266 prev = per_cpu(current_vmcs, cpu); 1267 if (prev != vmx->loaded_vmcs->vmcs) { 1268 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1269 vmcs_load(vmx->loaded_vmcs->vmcs); 1270 1271 /* 1272 * No indirect branch prediction barrier needed when switching 1273 * the active VMCS within a guest, e.g. on nested VM-Enter. 1274 * The L1 VMM can protect itself with retpolines, IBPB or IBRS. 1275 */ 1276 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1277 indirect_branch_prediction_barrier(); 1278 } 1279 1280 if (!already_loaded) { 1281 void *gdt = get_current_gdt_ro(); 1282 unsigned long sysenter_esp; 1283 1284 /* 1285 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1286 * TLB entries from its previous association with the vCPU. 1287 */ 1288 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1289 1290 /* 1291 * Linux uses per-cpu TSS and GDT, so set these when switching 1292 * processors. See 22.2.4. 1293 */ 1294 vmcs_writel(HOST_TR_BASE, 1295 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1296 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1297 1298 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); 1299 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ 1300 1301 vmx->loaded_vmcs->cpu = cpu; 1302 } 1303 } 1304 1305 /* 1306 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1307 * vcpu mutex is already taken. 1308 */ 1309 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1310 { 1311 struct vcpu_vmx *vmx = to_vmx(vcpu); 1312 1313 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1314 1315 vmx_vcpu_pi_load(vcpu, cpu); 1316 1317 vmx->host_debugctlmsr = get_debugctlmsr(); 1318 } 1319 1320 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1321 { 1322 vmx_vcpu_pi_put(vcpu); 1323 1324 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1325 } 1326 1327 static bool emulation_required(struct kvm_vcpu *vcpu) 1328 { 1329 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1330 } 1331 1332 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1333 { 1334 struct vcpu_vmx *vmx = to_vmx(vcpu); 1335 unsigned long rflags, save_rflags; 1336 1337 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1338 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1339 rflags = vmcs_readl(GUEST_RFLAGS); 1340 if (vmx->rmode.vm86_active) { 1341 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1342 save_rflags = vmx->rmode.save_rflags; 1343 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1344 } 1345 vmx->rflags = rflags; 1346 } 1347 return vmx->rflags; 1348 } 1349 1350 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1351 { 1352 struct vcpu_vmx *vmx = to_vmx(vcpu); 1353 unsigned long old_rflags; 1354 1355 if (is_unrestricted_guest(vcpu)) { 1356 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1357 vmx->rflags = rflags; 1358 vmcs_writel(GUEST_RFLAGS, rflags); 1359 return; 1360 } 1361 1362 old_rflags = vmx_get_rflags(vcpu); 1363 vmx->rflags = rflags; 1364 if (vmx->rmode.vm86_active) { 1365 vmx->rmode.save_rflags = rflags; 1366 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1367 } 1368 vmcs_writel(GUEST_RFLAGS, rflags); 1369 1370 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1371 vmx->emulation_required = emulation_required(vcpu); 1372 } 1373 1374 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1375 { 1376 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1377 int ret = 0; 1378 1379 if (interruptibility & GUEST_INTR_STATE_STI) 1380 ret |= KVM_X86_SHADOW_INT_STI; 1381 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1382 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1383 1384 return ret; 1385 } 1386 1387 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1388 { 1389 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1390 u32 interruptibility = interruptibility_old; 1391 1392 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1393 1394 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1395 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1396 else if (mask & KVM_X86_SHADOW_INT_STI) 1397 interruptibility |= GUEST_INTR_STATE_STI; 1398 1399 if ((interruptibility != interruptibility_old)) 1400 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1401 } 1402 1403 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1404 { 1405 struct vcpu_vmx *vmx = to_vmx(vcpu); 1406 unsigned long value; 1407 1408 /* 1409 * Any MSR write that attempts to change bits marked reserved will 1410 * case a #GP fault. 1411 */ 1412 if (data & vmx->pt_desc.ctl_bitmask) 1413 return 1; 1414 1415 /* 1416 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1417 * result in a #GP unless the same write also clears TraceEn. 1418 */ 1419 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1420 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1421 return 1; 1422 1423 /* 1424 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1425 * and FabricEn would cause #GP, if 1426 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1427 */ 1428 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1429 !(data & RTIT_CTL_FABRIC_EN) && 1430 !intel_pt_validate_cap(vmx->pt_desc.caps, 1431 PT_CAP_single_range_output)) 1432 return 1; 1433 1434 /* 1435 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1436 * utilize encodings marked reserved will cause a #GP fault. 1437 */ 1438 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1439 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1440 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1441 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1442 return 1; 1443 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1444 PT_CAP_cycle_thresholds); 1445 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1446 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1447 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1448 return 1; 1449 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1450 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1451 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1452 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1453 return 1; 1454 1455 /* 1456 * If ADDRx_CFG is reserved or the encodings is >2 will 1457 * cause a #GP fault. 1458 */ 1459 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1460 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2)) 1461 return 1; 1462 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1463 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2)) 1464 return 1; 1465 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1466 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2)) 1467 return 1; 1468 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1469 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2)) 1470 return 1; 1471 1472 return 0; 1473 } 1474 1475 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 1476 { 1477 /* 1478 * Emulation of instructions in SGX enclaves is impossible as RIP does 1479 * not point tthe failing instruction, and even if it did, the code 1480 * stream is inaccessible. Inject #UD instead of exiting to userspace 1481 * so that guest userspace can't DoS the guest simply by triggering 1482 * emulation (enclaves are CPL3 only). 1483 */ 1484 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1485 kvm_queue_exception(vcpu, UD_VECTOR); 1486 return false; 1487 } 1488 return true; 1489 } 1490 1491 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1492 { 1493 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1494 unsigned long rip, orig_rip; 1495 u32 instr_len; 1496 1497 /* 1498 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1499 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1500 * set when EPT misconfig occurs. In practice, real hardware updates 1501 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1502 * (namely Hyper-V) don't set it due to it being undefined behavior, 1503 * i.e. we end up advancing IP with some random value. 1504 */ 1505 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1506 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1507 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1508 1509 /* 1510 * Emulating an enclave's instructions isn't supported as KVM 1511 * cannot access the enclave's memory or its true RIP, e.g. the 1512 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1513 * the RIP that actually triggered the VM-Exit. But, because 1514 * most instructions that cause VM-Exit will #UD in an enclave, 1515 * most instruction-based VM-Exits simply do not occur. 1516 * 1517 * There are a few exceptions, notably the debug instructions 1518 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1519 * and generate #DB/#BP as expected, which KVM might intercept. 1520 * But again, the CPU does the dirty work and saves an instr 1521 * length of zero so VMMs don't shoot themselves in the foot. 1522 * WARN if KVM tries to skip a non-zero length instruction on 1523 * a VM-Exit from an enclave. 1524 */ 1525 if (!instr_len) 1526 goto rip_updated; 1527 1528 WARN(exit_reason.enclave_mode, 1529 "KVM: skipping instruction after SGX enclave VM-Exit"); 1530 1531 orig_rip = kvm_rip_read(vcpu); 1532 rip = orig_rip + instr_len; 1533 #ifdef CONFIG_X86_64 1534 /* 1535 * We need to mask out the high 32 bits of RIP if not in 64-bit 1536 * mode, but just finding out that we are in 64-bit mode is 1537 * quite expensive. Only do it if there was a carry. 1538 */ 1539 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1540 rip = (u32)rip; 1541 #endif 1542 kvm_rip_write(vcpu, rip); 1543 } else { 1544 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1545 return 0; 1546 } 1547 1548 rip_updated: 1549 /* skipping an emulated instruction also counts */ 1550 vmx_set_interrupt_shadow(vcpu, 0); 1551 1552 return 1; 1553 } 1554 1555 /* 1556 * Recognizes a pending MTF VM-exit and records the nested state for later 1557 * delivery. 1558 */ 1559 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1560 { 1561 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1562 struct vcpu_vmx *vmx = to_vmx(vcpu); 1563 1564 if (!is_guest_mode(vcpu)) 1565 return; 1566 1567 /* 1568 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1569 * T-bit traps. As instruction emulation is completed (i.e. at the 1570 * instruction boundary), any #DB exception pending delivery must be a 1571 * debug-trap. Record the pending MTF state to be delivered in 1572 * vmx_check_nested_events(). 1573 */ 1574 if (nested_cpu_has_mtf(vmcs12) && 1575 (!vcpu->arch.exception.pending || 1576 vcpu->arch.exception.nr == DB_VECTOR)) 1577 vmx->nested.mtf_pending = true; 1578 else 1579 vmx->nested.mtf_pending = false; 1580 } 1581 1582 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1583 { 1584 vmx_update_emulated_instruction(vcpu); 1585 return skip_emulated_instruction(vcpu); 1586 } 1587 1588 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1589 { 1590 /* 1591 * Ensure that we clear the HLT state in the VMCS. We don't need to 1592 * explicitly skip the instruction because if the HLT state is set, 1593 * then the instruction is already executing and RIP has already been 1594 * advanced. 1595 */ 1596 if (kvm_hlt_in_guest(vcpu->kvm) && 1597 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1598 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1599 } 1600 1601 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1602 { 1603 struct vcpu_vmx *vmx = to_vmx(vcpu); 1604 unsigned nr = vcpu->arch.exception.nr; 1605 bool has_error_code = vcpu->arch.exception.has_error_code; 1606 u32 error_code = vcpu->arch.exception.error_code; 1607 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1608 1609 kvm_deliver_exception_payload(vcpu); 1610 1611 if (has_error_code) { 1612 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1613 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1614 } 1615 1616 if (vmx->rmode.vm86_active) { 1617 int inc_eip = 0; 1618 if (kvm_exception_is_soft(nr)) 1619 inc_eip = vcpu->arch.event_exit_inst_len; 1620 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip); 1621 return; 1622 } 1623 1624 WARN_ON_ONCE(vmx->emulation_required); 1625 1626 if (kvm_exception_is_soft(nr)) { 1627 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1628 vmx->vcpu.arch.event_exit_inst_len); 1629 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1630 } else 1631 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1632 1633 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1634 1635 vmx_clear_hlt(vcpu); 1636 } 1637 1638 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1639 bool load_into_hardware) 1640 { 1641 struct vmx_uret_msr *uret_msr; 1642 1643 uret_msr = vmx_find_uret_msr(vmx, msr); 1644 if (!uret_msr) 1645 return; 1646 1647 uret_msr->load_into_hardware = load_into_hardware; 1648 } 1649 1650 /* 1651 * Set up the vmcs to automatically save and restore system 1652 * msrs. Don't touch the 64-bit msrs if the guest is in legacy 1653 * mode, as fiddling with msrs is very expensive. 1654 */ 1655 static void setup_msrs(struct vcpu_vmx *vmx) 1656 { 1657 #ifdef CONFIG_X86_64 1658 bool load_syscall_msrs; 1659 1660 /* 1661 * The SYSCALL MSRs are only needed on long mode guests, and only 1662 * when EFER.SCE is set. 1663 */ 1664 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1665 (vmx->vcpu.arch.efer & EFER_SCE); 1666 1667 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1668 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1669 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1670 #endif 1671 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1672 1673 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1674 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1675 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1676 1677 /* 1678 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1679 * kernel and old userspace. If those guests run on a tsx=off host, do 1680 * allow guests to use TSX_CTRL, but don't change the value in hardware 1681 * so that TSX remains always disabled. 1682 */ 1683 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1684 1685 if (cpu_has_vmx_msr_bitmap()) 1686 vmx_update_msr_bitmap(&vmx->vcpu); 1687 1688 /* 1689 * The set of MSRs to load may have changed, reload MSRs before the 1690 * next VM-Enter. 1691 */ 1692 vmx->guest_uret_msrs_loaded = false; 1693 } 1694 1695 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1696 { 1697 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1698 1699 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1700 return vmcs12->tsc_offset; 1701 1702 return 0; 1703 } 1704 1705 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1706 { 1707 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1708 1709 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1710 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1711 return vmcs12->tsc_multiplier; 1712 1713 return kvm_default_tsc_scaling_ratio; 1714 } 1715 1716 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1717 { 1718 vmcs_write64(TSC_OFFSET, offset); 1719 } 1720 1721 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1722 { 1723 vmcs_write64(TSC_MULTIPLIER, multiplier); 1724 } 1725 1726 /* 1727 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1728 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1729 * all guests if the "nested" module option is off, and can also be disabled 1730 * for a single guest by disabling its VMX cpuid bit. 1731 */ 1732 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1733 { 1734 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1735 } 1736 1737 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1738 uint64_t val) 1739 { 1740 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1741 1742 return !(val & ~valid_bits); 1743 } 1744 1745 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1746 { 1747 switch (msr->index) { 1748 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1749 if (!nested) 1750 return 1; 1751 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1752 case MSR_IA32_PERF_CAPABILITIES: 1753 msr->data = vmx_get_perf_capabilities(); 1754 return 0; 1755 default: 1756 return KVM_MSR_RET_INVALID; 1757 } 1758 } 1759 1760 /* 1761 * Reads an msr value (of 'msr_index') into 'pdata'. 1762 * Returns 0 on success, non-0 otherwise. 1763 * Assumes vcpu_load() was already called. 1764 */ 1765 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1766 { 1767 struct vcpu_vmx *vmx = to_vmx(vcpu); 1768 struct vmx_uret_msr *msr; 1769 u32 index; 1770 1771 switch (msr_info->index) { 1772 #ifdef CONFIG_X86_64 1773 case MSR_FS_BASE: 1774 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1775 break; 1776 case MSR_GS_BASE: 1777 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1778 break; 1779 case MSR_KERNEL_GS_BASE: 1780 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1781 break; 1782 #endif 1783 case MSR_EFER: 1784 return kvm_get_msr_common(vcpu, msr_info); 1785 case MSR_IA32_TSX_CTRL: 1786 if (!msr_info->host_initiated && 1787 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1788 return 1; 1789 goto find_uret_msr; 1790 case MSR_IA32_UMWAIT_CONTROL: 1791 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 1792 return 1; 1793 1794 msr_info->data = vmx->msr_ia32_umwait_control; 1795 break; 1796 case MSR_IA32_SPEC_CTRL: 1797 if (!msr_info->host_initiated && 1798 !guest_has_spec_ctrl_msr(vcpu)) 1799 return 1; 1800 1801 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1802 break; 1803 case MSR_IA32_SYSENTER_CS: 1804 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1805 break; 1806 case MSR_IA32_SYSENTER_EIP: 1807 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1808 break; 1809 case MSR_IA32_SYSENTER_ESP: 1810 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1811 break; 1812 case MSR_IA32_BNDCFGS: 1813 if (!kvm_mpx_supported() || 1814 (!msr_info->host_initiated && 1815 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1816 return 1; 1817 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1818 break; 1819 case MSR_IA32_MCG_EXT_CTL: 1820 if (!msr_info->host_initiated && 1821 !(vmx->msr_ia32_feature_control & 1822 FEAT_CTL_LMCE_ENABLED)) 1823 return 1; 1824 msr_info->data = vcpu->arch.mcg_ext_ctl; 1825 break; 1826 case MSR_IA32_FEAT_CTL: 1827 msr_info->data = vmx->msr_ia32_feature_control; 1828 break; 1829 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 1830 if (!msr_info->host_initiated && 1831 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 1832 return 1; 1833 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 1834 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 1835 break; 1836 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1837 if (!nested_vmx_allowed(vcpu)) 1838 return 1; 1839 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1840 &msr_info->data)) 1841 return 1; 1842 /* 1843 * Enlightened VMCS v1 doesn't have certain fields, but buggy 1844 * Hyper-V versions are still trying to use corresponding 1845 * features when they are exposed. Filter out the essential 1846 * minimum. 1847 */ 1848 if (!msr_info->host_initiated && 1849 vmx->nested.enlightened_vmcs_enabled) 1850 nested_evmcs_filter_control_msr(msr_info->index, 1851 &msr_info->data); 1852 break; 1853 case MSR_IA32_RTIT_CTL: 1854 if (!vmx_pt_mode_is_host_guest()) 1855 return 1; 1856 msr_info->data = vmx->pt_desc.guest.ctl; 1857 break; 1858 case MSR_IA32_RTIT_STATUS: 1859 if (!vmx_pt_mode_is_host_guest()) 1860 return 1; 1861 msr_info->data = vmx->pt_desc.guest.status; 1862 break; 1863 case MSR_IA32_RTIT_CR3_MATCH: 1864 if (!vmx_pt_mode_is_host_guest() || 1865 !intel_pt_validate_cap(vmx->pt_desc.caps, 1866 PT_CAP_cr3_filtering)) 1867 return 1; 1868 msr_info->data = vmx->pt_desc.guest.cr3_match; 1869 break; 1870 case MSR_IA32_RTIT_OUTPUT_BASE: 1871 if (!vmx_pt_mode_is_host_guest() || 1872 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1873 PT_CAP_topa_output) && 1874 !intel_pt_validate_cap(vmx->pt_desc.caps, 1875 PT_CAP_single_range_output))) 1876 return 1; 1877 msr_info->data = vmx->pt_desc.guest.output_base; 1878 break; 1879 case MSR_IA32_RTIT_OUTPUT_MASK: 1880 if (!vmx_pt_mode_is_host_guest() || 1881 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1882 PT_CAP_topa_output) && 1883 !intel_pt_validate_cap(vmx->pt_desc.caps, 1884 PT_CAP_single_range_output))) 1885 return 1; 1886 msr_info->data = vmx->pt_desc.guest.output_mask; 1887 break; 1888 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1889 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1890 if (!vmx_pt_mode_is_host_guest() || 1891 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 1892 PT_CAP_num_address_ranges))) 1893 return 1; 1894 if (index % 2) 1895 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1896 else 1897 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1898 break; 1899 case MSR_IA32_DEBUGCTLMSR: 1900 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 1901 break; 1902 default: 1903 find_uret_msr: 1904 msr = vmx_find_uret_msr(vmx, msr_info->index); 1905 if (msr) { 1906 msr_info->data = msr->data; 1907 break; 1908 } 1909 return kvm_get_msr_common(vcpu, msr_info); 1910 } 1911 1912 return 0; 1913 } 1914 1915 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 1916 u64 data) 1917 { 1918 #ifdef CONFIG_X86_64 1919 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1920 return (u32)data; 1921 #endif 1922 return (unsigned long)data; 1923 } 1924 1925 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu) 1926 { 1927 u64 debugctl = vmx_supported_debugctl(); 1928 1929 if (!intel_pmu_lbr_is_enabled(vcpu)) 1930 debugctl &= ~DEBUGCTLMSR_LBR_MASK; 1931 1932 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1933 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT; 1934 1935 return debugctl; 1936 } 1937 1938 /* 1939 * Writes msr value into the appropriate "register". 1940 * Returns 0 on success, non-0 otherwise. 1941 * Assumes vcpu_load() was already called. 1942 */ 1943 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1944 { 1945 struct vcpu_vmx *vmx = to_vmx(vcpu); 1946 struct vmx_uret_msr *msr; 1947 int ret = 0; 1948 u32 msr_index = msr_info->index; 1949 u64 data = msr_info->data; 1950 u32 index; 1951 1952 switch (msr_index) { 1953 case MSR_EFER: 1954 ret = kvm_set_msr_common(vcpu, msr_info); 1955 break; 1956 #ifdef CONFIG_X86_64 1957 case MSR_FS_BASE: 1958 vmx_segment_cache_clear(vmx); 1959 vmcs_writel(GUEST_FS_BASE, data); 1960 break; 1961 case MSR_GS_BASE: 1962 vmx_segment_cache_clear(vmx); 1963 vmcs_writel(GUEST_GS_BASE, data); 1964 break; 1965 case MSR_KERNEL_GS_BASE: 1966 vmx_write_guest_kernel_gs_base(vmx, data); 1967 break; 1968 #endif 1969 case MSR_IA32_SYSENTER_CS: 1970 if (is_guest_mode(vcpu)) 1971 get_vmcs12(vcpu)->guest_sysenter_cs = data; 1972 vmcs_write32(GUEST_SYSENTER_CS, data); 1973 break; 1974 case MSR_IA32_SYSENTER_EIP: 1975 if (is_guest_mode(vcpu)) { 1976 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 1977 get_vmcs12(vcpu)->guest_sysenter_eip = data; 1978 } 1979 vmcs_writel(GUEST_SYSENTER_EIP, data); 1980 break; 1981 case MSR_IA32_SYSENTER_ESP: 1982 if (is_guest_mode(vcpu)) { 1983 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 1984 get_vmcs12(vcpu)->guest_sysenter_esp = data; 1985 } 1986 vmcs_writel(GUEST_SYSENTER_ESP, data); 1987 break; 1988 case MSR_IA32_DEBUGCTLMSR: { 1989 u64 invalid = data & ~vcpu_supported_debugctl(vcpu); 1990 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 1991 if (report_ignored_msrs) 1992 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n", 1993 __func__, data); 1994 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 1995 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 1996 } 1997 1998 if (invalid) 1999 return 1; 2000 2001 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2002 VM_EXIT_SAVE_DEBUG_CONTROLS) 2003 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2004 2005 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2006 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2007 (data & DEBUGCTLMSR_LBR)) 2008 intel_pmu_create_guest_lbr_event(vcpu); 2009 return 0; 2010 } 2011 case MSR_IA32_BNDCFGS: 2012 if (!kvm_mpx_supported() || 2013 (!msr_info->host_initiated && 2014 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2015 return 1; 2016 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2017 (data & MSR_IA32_BNDCFGS_RSVD)) 2018 return 1; 2019 vmcs_write64(GUEST_BNDCFGS, data); 2020 break; 2021 case MSR_IA32_UMWAIT_CONTROL: 2022 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2023 return 1; 2024 2025 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2026 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2027 return 1; 2028 2029 vmx->msr_ia32_umwait_control = data; 2030 break; 2031 case MSR_IA32_SPEC_CTRL: 2032 if (!msr_info->host_initiated && 2033 !guest_has_spec_ctrl_msr(vcpu)) 2034 return 1; 2035 2036 if (kvm_spec_ctrl_test_value(data)) 2037 return 1; 2038 2039 vmx->spec_ctrl = data; 2040 if (!data) 2041 break; 2042 2043 /* 2044 * For non-nested: 2045 * When it's written (to non-zero) for the first time, pass 2046 * it through. 2047 * 2048 * For nested: 2049 * The handling of the MSR bitmap for L2 guests is done in 2050 * nested_vmx_prepare_msr_bitmap. We should not touch the 2051 * vmcs02.msr_bitmap here since it gets completely overwritten 2052 * in the merging. We update the vmcs01 here for L1 as well 2053 * since it will end up touching the MSR anyway now. 2054 */ 2055 vmx_disable_intercept_for_msr(vcpu, 2056 MSR_IA32_SPEC_CTRL, 2057 MSR_TYPE_RW); 2058 break; 2059 case MSR_IA32_TSX_CTRL: 2060 if (!msr_info->host_initiated && 2061 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2062 return 1; 2063 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2064 return 1; 2065 goto find_uret_msr; 2066 case MSR_IA32_PRED_CMD: 2067 if (!msr_info->host_initiated && 2068 !guest_has_pred_cmd_msr(vcpu)) 2069 return 1; 2070 2071 if (data & ~PRED_CMD_IBPB) 2072 return 1; 2073 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2074 return 1; 2075 if (!data) 2076 break; 2077 2078 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2079 2080 /* 2081 * For non-nested: 2082 * When it's written (to non-zero) for the first time, pass 2083 * it through. 2084 * 2085 * For nested: 2086 * The handling of the MSR bitmap for L2 guests is done in 2087 * nested_vmx_prepare_msr_bitmap. We should not touch the 2088 * vmcs02.msr_bitmap here since it gets completely overwritten 2089 * in the merging. 2090 */ 2091 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W); 2092 break; 2093 case MSR_IA32_CR_PAT: 2094 if (!kvm_pat_valid(data)) 2095 return 1; 2096 2097 if (is_guest_mode(vcpu) && 2098 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2099 get_vmcs12(vcpu)->guest_ia32_pat = data; 2100 2101 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2102 vmcs_write64(GUEST_IA32_PAT, data); 2103 vcpu->arch.pat = data; 2104 break; 2105 } 2106 ret = kvm_set_msr_common(vcpu, msr_info); 2107 break; 2108 case MSR_IA32_TSC_ADJUST: 2109 ret = kvm_set_msr_common(vcpu, msr_info); 2110 break; 2111 case MSR_IA32_MCG_EXT_CTL: 2112 if ((!msr_info->host_initiated && 2113 !(to_vmx(vcpu)->msr_ia32_feature_control & 2114 FEAT_CTL_LMCE_ENABLED)) || 2115 (data & ~MCG_EXT_CTL_LMCE_EN)) 2116 return 1; 2117 vcpu->arch.mcg_ext_ctl = data; 2118 break; 2119 case MSR_IA32_FEAT_CTL: 2120 if (!vmx_feature_control_msr_valid(vcpu, data) || 2121 (to_vmx(vcpu)->msr_ia32_feature_control & 2122 FEAT_CTL_LOCKED && !msr_info->host_initiated)) 2123 return 1; 2124 vmx->msr_ia32_feature_control = data; 2125 if (msr_info->host_initiated && data == 0) 2126 vmx_leave_nested(vcpu); 2127 2128 /* SGX may be enabled/disabled by guest's firmware */ 2129 vmx_write_encls_bitmap(vcpu, NULL); 2130 break; 2131 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2132 /* 2133 * On real hardware, the LE hash MSRs are writable before 2134 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2135 * at which point SGX related bits in IA32_FEATURE_CONTROL 2136 * become writable. 2137 * 2138 * KVM does not emulate SGX activation for simplicity, so 2139 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2140 * is unlocked. This is technically not architectural 2141 * behavior, but it's close enough. 2142 */ 2143 if (!msr_info->host_initiated && 2144 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2145 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2146 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2147 return 1; 2148 vmx->msr_ia32_sgxlepubkeyhash 2149 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2150 break; 2151 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 2152 if (!msr_info->host_initiated) 2153 return 1; /* they are read-only */ 2154 if (!nested_vmx_allowed(vcpu)) 2155 return 1; 2156 return vmx_set_vmx_msr(vcpu, msr_index, data); 2157 case MSR_IA32_RTIT_CTL: 2158 if (!vmx_pt_mode_is_host_guest() || 2159 vmx_rtit_ctl_check(vcpu, data) || 2160 vmx->nested.vmxon) 2161 return 1; 2162 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2163 vmx->pt_desc.guest.ctl = data; 2164 pt_update_intercept_for_msr(vcpu); 2165 break; 2166 case MSR_IA32_RTIT_STATUS: 2167 if (!pt_can_write_msr(vmx)) 2168 return 1; 2169 if (data & MSR_IA32_RTIT_STATUS_MASK) 2170 return 1; 2171 vmx->pt_desc.guest.status = data; 2172 break; 2173 case MSR_IA32_RTIT_CR3_MATCH: 2174 if (!pt_can_write_msr(vmx)) 2175 return 1; 2176 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2177 PT_CAP_cr3_filtering)) 2178 return 1; 2179 vmx->pt_desc.guest.cr3_match = data; 2180 break; 2181 case MSR_IA32_RTIT_OUTPUT_BASE: 2182 if (!pt_can_write_msr(vmx)) 2183 return 1; 2184 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2185 PT_CAP_topa_output) && 2186 !intel_pt_validate_cap(vmx->pt_desc.caps, 2187 PT_CAP_single_range_output)) 2188 return 1; 2189 if (!pt_output_base_valid(vcpu, data)) 2190 return 1; 2191 vmx->pt_desc.guest.output_base = data; 2192 break; 2193 case MSR_IA32_RTIT_OUTPUT_MASK: 2194 if (!pt_can_write_msr(vmx)) 2195 return 1; 2196 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2197 PT_CAP_topa_output) && 2198 !intel_pt_validate_cap(vmx->pt_desc.caps, 2199 PT_CAP_single_range_output)) 2200 return 1; 2201 vmx->pt_desc.guest.output_mask = data; 2202 break; 2203 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2204 if (!pt_can_write_msr(vmx)) 2205 return 1; 2206 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2207 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 2208 PT_CAP_num_address_ranges)) 2209 return 1; 2210 if (is_noncanonical_address(data, vcpu)) 2211 return 1; 2212 if (index % 2) 2213 vmx->pt_desc.guest.addr_b[index / 2] = data; 2214 else 2215 vmx->pt_desc.guest.addr_a[index / 2] = data; 2216 break; 2217 case MSR_IA32_PERF_CAPABILITIES: 2218 if (data && !vcpu_to_pmu(vcpu)->version) 2219 return 1; 2220 if (data & PMU_CAP_LBR_FMT) { 2221 if ((data & PMU_CAP_LBR_FMT) != 2222 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT)) 2223 return 1; 2224 if (!intel_pmu_lbr_is_compatible(vcpu)) 2225 return 1; 2226 } 2227 ret = kvm_set_msr_common(vcpu, msr_info); 2228 break; 2229 2230 default: 2231 find_uret_msr: 2232 msr = vmx_find_uret_msr(vmx, msr_index); 2233 if (msr) 2234 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2235 else 2236 ret = kvm_set_msr_common(vcpu, msr_info); 2237 } 2238 2239 return ret; 2240 } 2241 2242 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2243 { 2244 unsigned long guest_owned_bits; 2245 2246 kvm_register_mark_available(vcpu, reg); 2247 2248 switch (reg) { 2249 case VCPU_REGS_RSP: 2250 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2251 break; 2252 case VCPU_REGS_RIP: 2253 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2254 break; 2255 case VCPU_EXREG_PDPTR: 2256 if (enable_ept) 2257 ept_save_pdptrs(vcpu); 2258 break; 2259 case VCPU_EXREG_CR0: 2260 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2261 2262 vcpu->arch.cr0 &= ~guest_owned_bits; 2263 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2264 break; 2265 case VCPU_EXREG_CR3: 2266 if (is_unrestricted_guest(vcpu) || 2267 (enable_ept && is_paging(vcpu))) 2268 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2269 break; 2270 case VCPU_EXREG_CR4: 2271 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2272 2273 vcpu->arch.cr4 &= ~guest_owned_bits; 2274 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2275 break; 2276 default: 2277 WARN_ON_ONCE(1); 2278 break; 2279 } 2280 } 2281 2282 static __init int cpu_has_kvm_support(void) 2283 { 2284 return cpu_has_vmx(); 2285 } 2286 2287 static __init int vmx_disabled_by_bios(void) 2288 { 2289 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2290 !boot_cpu_has(X86_FEATURE_VMX); 2291 } 2292 2293 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2294 { 2295 u64 msr; 2296 2297 cr4_set_bits(X86_CR4_VMXE); 2298 2299 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2300 _ASM_EXTABLE(1b, %l[fault]) 2301 : : [vmxon_pointer] "m"(vmxon_pointer) 2302 : : fault); 2303 return 0; 2304 2305 fault: 2306 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2307 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2308 cr4_clear_bits(X86_CR4_VMXE); 2309 2310 return -EFAULT; 2311 } 2312 2313 static int hardware_enable(void) 2314 { 2315 int cpu = raw_smp_processor_id(); 2316 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2317 int r; 2318 2319 if (cr4_read_shadow() & X86_CR4_VMXE) 2320 return -EBUSY; 2321 2322 /* 2323 * This can happen if we hot-added a CPU but failed to allocate 2324 * VP assist page for it. 2325 */ 2326 if (static_branch_unlikely(&enable_evmcs) && 2327 !hv_get_vp_assist_page(cpu)) 2328 return -EFAULT; 2329 2330 intel_pt_handle_vmx(1); 2331 2332 r = kvm_cpu_vmxon(phys_addr); 2333 if (r) { 2334 intel_pt_handle_vmx(0); 2335 return r; 2336 } 2337 2338 if (enable_ept) 2339 ept_sync_global(); 2340 2341 return 0; 2342 } 2343 2344 static void vmclear_local_loaded_vmcss(void) 2345 { 2346 int cpu = raw_smp_processor_id(); 2347 struct loaded_vmcs *v, *n; 2348 2349 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2350 loaded_vmcss_on_cpu_link) 2351 __loaded_vmcs_clear(v); 2352 } 2353 2354 static void hardware_disable(void) 2355 { 2356 vmclear_local_loaded_vmcss(); 2357 2358 if (cpu_vmxoff()) 2359 kvm_spurious_fault(); 2360 2361 intel_pt_handle_vmx(0); 2362 } 2363 2364 /* 2365 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2366 * directly instead of going through cpu_has(), to ensure KVM is trapping 2367 * ENCLS whenever it's supported in hardware. It does not matter whether 2368 * the host OS supports or has enabled SGX. 2369 */ 2370 static bool cpu_has_sgx(void) 2371 { 2372 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2373 } 2374 2375 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2376 u32 msr, u32 *result) 2377 { 2378 u32 vmx_msr_low, vmx_msr_high; 2379 u32 ctl = ctl_min | ctl_opt; 2380 2381 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2382 2383 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2384 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2385 2386 /* Ensure minimum (required) set of control bits are supported. */ 2387 if (ctl_min & ~ctl) 2388 return -EIO; 2389 2390 *result = ctl; 2391 return 0; 2392 } 2393 2394 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2395 struct vmx_capability *vmx_cap) 2396 { 2397 u32 vmx_msr_low, vmx_msr_high; 2398 u32 min, opt, min2, opt2; 2399 u32 _pin_based_exec_control = 0; 2400 u32 _cpu_based_exec_control = 0; 2401 u32 _cpu_based_2nd_exec_control = 0; 2402 u32 _vmexit_control = 0; 2403 u32 _vmentry_control = 0; 2404 2405 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2406 min = CPU_BASED_HLT_EXITING | 2407 #ifdef CONFIG_X86_64 2408 CPU_BASED_CR8_LOAD_EXITING | 2409 CPU_BASED_CR8_STORE_EXITING | 2410 #endif 2411 CPU_BASED_CR3_LOAD_EXITING | 2412 CPU_BASED_CR3_STORE_EXITING | 2413 CPU_BASED_UNCOND_IO_EXITING | 2414 CPU_BASED_MOV_DR_EXITING | 2415 CPU_BASED_USE_TSC_OFFSETTING | 2416 CPU_BASED_MWAIT_EXITING | 2417 CPU_BASED_MONITOR_EXITING | 2418 CPU_BASED_INVLPG_EXITING | 2419 CPU_BASED_RDPMC_EXITING; 2420 2421 opt = CPU_BASED_TPR_SHADOW | 2422 CPU_BASED_USE_MSR_BITMAPS | 2423 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2424 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2425 &_cpu_based_exec_control) < 0) 2426 return -EIO; 2427 #ifdef CONFIG_X86_64 2428 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2429 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2430 ~CPU_BASED_CR8_STORE_EXITING; 2431 #endif 2432 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2433 min2 = 0; 2434 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2435 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2436 SECONDARY_EXEC_WBINVD_EXITING | 2437 SECONDARY_EXEC_ENABLE_VPID | 2438 SECONDARY_EXEC_ENABLE_EPT | 2439 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2440 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2441 SECONDARY_EXEC_DESC | 2442 SECONDARY_EXEC_ENABLE_RDTSCP | 2443 SECONDARY_EXEC_ENABLE_INVPCID | 2444 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2445 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2446 SECONDARY_EXEC_SHADOW_VMCS | 2447 SECONDARY_EXEC_XSAVES | 2448 SECONDARY_EXEC_RDSEED_EXITING | 2449 SECONDARY_EXEC_RDRAND_EXITING | 2450 SECONDARY_EXEC_ENABLE_PML | 2451 SECONDARY_EXEC_TSC_SCALING | 2452 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | 2453 SECONDARY_EXEC_PT_USE_GPA | 2454 SECONDARY_EXEC_PT_CONCEAL_VMX | 2455 SECONDARY_EXEC_ENABLE_VMFUNC | 2456 SECONDARY_EXEC_BUS_LOCK_DETECTION; 2457 if (cpu_has_sgx()) 2458 opt2 |= SECONDARY_EXEC_ENCLS_EXITING; 2459 if (adjust_vmx_controls(min2, opt2, 2460 MSR_IA32_VMX_PROCBASED_CTLS2, 2461 &_cpu_based_2nd_exec_control) < 0) 2462 return -EIO; 2463 } 2464 #ifndef CONFIG_X86_64 2465 if (!(_cpu_based_2nd_exec_control & 2466 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2467 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2468 #endif 2469 2470 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2471 _cpu_based_2nd_exec_control &= ~( 2472 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2473 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2474 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2475 2476 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2477 &vmx_cap->ept, &vmx_cap->vpid); 2478 2479 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2480 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2481 enabled */ 2482 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2483 CPU_BASED_CR3_STORE_EXITING | 2484 CPU_BASED_INVLPG_EXITING); 2485 } else if (vmx_cap->ept) { 2486 vmx_cap->ept = 0; 2487 pr_warn_once("EPT CAP should not exist if not support " 2488 "1-setting enable EPT VM-execution control\n"); 2489 } 2490 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2491 vmx_cap->vpid) { 2492 vmx_cap->vpid = 0; 2493 pr_warn_once("VPID CAP should not exist if not support " 2494 "1-setting enable VPID VM-execution control\n"); 2495 } 2496 2497 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2498 #ifdef CONFIG_X86_64 2499 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2500 #endif 2501 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2502 VM_EXIT_LOAD_IA32_PAT | 2503 VM_EXIT_LOAD_IA32_EFER | 2504 VM_EXIT_CLEAR_BNDCFGS | 2505 VM_EXIT_PT_CONCEAL_PIP | 2506 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2507 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2508 &_vmexit_control) < 0) 2509 return -EIO; 2510 2511 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2512 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2513 PIN_BASED_VMX_PREEMPTION_TIMER; 2514 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2515 &_pin_based_exec_control) < 0) 2516 return -EIO; 2517 2518 if (cpu_has_broken_vmx_preemption_timer()) 2519 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2520 if (!(_cpu_based_2nd_exec_control & 2521 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2522 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2523 2524 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2525 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2526 VM_ENTRY_LOAD_IA32_PAT | 2527 VM_ENTRY_LOAD_IA32_EFER | 2528 VM_ENTRY_LOAD_BNDCFGS | 2529 VM_ENTRY_PT_CONCEAL_PIP | 2530 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2531 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2532 &_vmentry_control) < 0) 2533 return -EIO; 2534 2535 /* 2536 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2537 * can't be used due to an errata where VM Exit may incorrectly clear 2538 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2539 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2540 */ 2541 if (boot_cpu_data.x86 == 0x6) { 2542 switch (boot_cpu_data.x86_model) { 2543 case 26: /* AAK155 */ 2544 case 30: /* AAP115 */ 2545 case 37: /* AAT100 */ 2546 case 44: /* BC86,AAY89,BD102 */ 2547 case 46: /* BA97 */ 2548 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2549 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2550 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2551 "does not work properly. Using workaround\n"); 2552 break; 2553 default: 2554 break; 2555 } 2556 } 2557 2558 2559 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2560 2561 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2562 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2563 return -EIO; 2564 2565 #ifdef CONFIG_X86_64 2566 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2567 if (vmx_msr_high & (1u<<16)) 2568 return -EIO; 2569 #endif 2570 2571 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2572 if (((vmx_msr_high >> 18) & 15) != 6) 2573 return -EIO; 2574 2575 vmcs_conf->size = vmx_msr_high & 0x1fff; 2576 vmcs_conf->order = get_order(vmcs_conf->size); 2577 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2578 2579 vmcs_conf->revision_id = vmx_msr_low; 2580 2581 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2582 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2583 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2584 vmcs_conf->vmexit_ctrl = _vmexit_control; 2585 vmcs_conf->vmentry_ctrl = _vmentry_control; 2586 2587 #if IS_ENABLED(CONFIG_HYPERV) 2588 if (enlightened_vmcs) 2589 evmcs_sanitize_exec_ctrls(vmcs_conf); 2590 #endif 2591 2592 return 0; 2593 } 2594 2595 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2596 { 2597 int node = cpu_to_node(cpu); 2598 struct page *pages; 2599 struct vmcs *vmcs; 2600 2601 pages = __alloc_pages_node(node, flags, vmcs_config.order); 2602 if (!pages) 2603 return NULL; 2604 vmcs = page_address(pages); 2605 memset(vmcs, 0, vmcs_config.size); 2606 2607 /* KVM supports Enlightened VMCS v1 only */ 2608 if (static_branch_unlikely(&enable_evmcs)) 2609 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2610 else 2611 vmcs->hdr.revision_id = vmcs_config.revision_id; 2612 2613 if (shadow) 2614 vmcs->hdr.shadow_vmcs = 1; 2615 return vmcs; 2616 } 2617 2618 void free_vmcs(struct vmcs *vmcs) 2619 { 2620 free_pages((unsigned long)vmcs, vmcs_config.order); 2621 } 2622 2623 /* 2624 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2625 */ 2626 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2627 { 2628 if (!loaded_vmcs->vmcs) 2629 return; 2630 loaded_vmcs_clear(loaded_vmcs); 2631 free_vmcs(loaded_vmcs->vmcs); 2632 loaded_vmcs->vmcs = NULL; 2633 if (loaded_vmcs->msr_bitmap) 2634 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2635 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2636 } 2637 2638 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2639 { 2640 loaded_vmcs->vmcs = alloc_vmcs(false); 2641 if (!loaded_vmcs->vmcs) 2642 return -ENOMEM; 2643 2644 vmcs_clear(loaded_vmcs->vmcs); 2645 2646 loaded_vmcs->shadow_vmcs = NULL; 2647 loaded_vmcs->hv_timer_soft_disabled = false; 2648 loaded_vmcs->cpu = -1; 2649 loaded_vmcs->launched = 0; 2650 2651 if (cpu_has_vmx_msr_bitmap()) { 2652 loaded_vmcs->msr_bitmap = (unsigned long *) 2653 __get_free_page(GFP_KERNEL_ACCOUNT); 2654 if (!loaded_vmcs->msr_bitmap) 2655 goto out_vmcs; 2656 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2657 2658 if (IS_ENABLED(CONFIG_HYPERV) && 2659 static_branch_unlikely(&enable_evmcs) && 2660 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 2661 struct hv_enlightened_vmcs *evmcs = 2662 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; 2663 2664 evmcs->hv_enlightenments_control.msr_bitmap = 1; 2665 } 2666 } 2667 2668 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2669 memset(&loaded_vmcs->controls_shadow, 0, 2670 sizeof(struct vmcs_controls_shadow)); 2671 2672 return 0; 2673 2674 out_vmcs: 2675 free_loaded_vmcs(loaded_vmcs); 2676 return -ENOMEM; 2677 } 2678 2679 static void free_kvm_area(void) 2680 { 2681 int cpu; 2682 2683 for_each_possible_cpu(cpu) { 2684 free_vmcs(per_cpu(vmxarea, cpu)); 2685 per_cpu(vmxarea, cpu) = NULL; 2686 } 2687 } 2688 2689 static __init int alloc_kvm_area(void) 2690 { 2691 int cpu; 2692 2693 for_each_possible_cpu(cpu) { 2694 struct vmcs *vmcs; 2695 2696 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2697 if (!vmcs) { 2698 free_kvm_area(); 2699 return -ENOMEM; 2700 } 2701 2702 /* 2703 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2704 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2705 * revision_id reported by MSR_IA32_VMX_BASIC. 2706 * 2707 * However, even though not explicitly documented by 2708 * TLFS, VMXArea passed as VMXON argument should 2709 * still be marked with revision_id reported by 2710 * physical CPU. 2711 */ 2712 if (static_branch_unlikely(&enable_evmcs)) 2713 vmcs->hdr.revision_id = vmcs_config.revision_id; 2714 2715 per_cpu(vmxarea, cpu) = vmcs; 2716 } 2717 return 0; 2718 } 2719 2720 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2721 struct kvm_segment *save) 2722 { 2723 if (!emulate_invalid_guest_state) { 2724 /* 2725 * CS and SS RPL should be equal during guest entry according 2726 * to VMX spec, but in reality it is not always so. Since vcpu 2727 * is in the middle of the transition from real mode to 2728 * protected mode it is safe to assume that RPL 0 is a good 2729 * default value. 2730 */ 2731 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2732 save->selector &= ~SEGMENT_RPL_MASK; 2733 save->dpl = save->selector & SEGMENT_RPL_MASK; 2734 save->s = 1; 2735 } 2736 vmx_set_segment(vcpu, save, seg); 2737 } 2738 2739 static void enter_pmode(struct kvm_vcpu *vcpu) 2740 { 2741 unsigned long flags; 2742 struct vcpu_vmx *vmx = to_vmx(vcpu); 2743 2744 /* 2745 * Update real mode segment cache. It may be not up-to-date if segment 2746 * register was written while vcpu was in a guest mode. 2747 */ 2748 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2749 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2750 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2751 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2752 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2753 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2754 2755 vmx->rmode.vm86_active = 0; 2756 2757 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2758 2759 flags = vmcs_readl(GUEST_RFLAGS); 2760 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2761 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2762 vmcs_writel(GUEST_RFLAGS, flags); 2763 2764 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2765 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2766 2767 vmx_update_exception_bitmap(vcpu); 2768 2769 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2770 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2771 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2772 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2773 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2774 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2775 } 2776 2777 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2778 { 2779 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2780 struct kvm_segment var = *save; 2781 2782 var.dpl = 0x3; 2783 if (seg == VCPU_SREG_CS) 2784 var.type = 0x3; 2785 2786 if (!emulate_invalid_guest_state) { 2787 var.selector = var.base >> 4; 2788 var.base = var.base & 0xffff0; 2789 var.limit = 0xffff; 2790 var.g = 0; 2791 var.db = 0; 2792 var.present = 1; 2793 var.s = 1; 2794 var.l = 0; 2795 var.unusable = 0; 2796 var.type = 0x3; 2797 var.avl = 0; 2798 if (save->base & 0xf) 2799 printk_once(KERN_WARNING "kvm: segment base is not " 2800 "paragraph aligned when entering " 2801 "protected mode (seg=%d)", seg); 2802 } 2803 2804 vmcs_write16(sf->selector, var.selector); 2805 vmcs_writel(sf->base, var.base); 2806 vmcs_write32(sf->limit, var.limit); 2807 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2808 } 2809 2810 static void enter_rmode(struct kvm_vcpu *vcpu) 2811 { 2812 unsigned long flags; 2813 struct vcpu_vmx *vmx = to_vmx(vcpu); 2814 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2815 2816 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2817 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2818 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2819 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2820 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2821 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2822 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2823 2824 vmx->rmode.vm86_active = 1; 2825 2826 /* 2827 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2828 * vcpu. Warn the user that an update is overdue. 2829 */ 2830 if (!kvm_vmx->tss_addr) 2831 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2832 "called before entering vcpu\n"); 2833 2834 vmx_segment_cache_clear(vmx); 2835 2836 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2837 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2838 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2839 2840 flags = vmcs_readl(GUEST_RFLAGS); 2841 vmx->rmode.save_rflags = flags; 2842 2843 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2844 2845 vmcs_writel(GUEST_RFLAGS, flags); 2846 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2847 vmx_update_exception_bitmap(vcpu); 2848 2849 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2850 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2851 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2852 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2853 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2854 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2855 2856 kvm_mmu_reset_context(vcpu); 2857 } 2858 2859 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2860 { 2861 struct vcpu_vmx *vmx = to_vmx(vcpu); 2862 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER); 2863 2864 /* Nothing to do if hardware doesn't support EFER. */ 2865 if (!msr) 2866 return 0; 2867 2868 vcpu->arch.efer = efer; 2869 if (efer & EFER_LMA) { 2870 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2871 msr->data = efer; 2872 } else { 2873 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2874 2875 msr->data = efer & ~EFER_LME; 2876 } 2877 setup_msrs(vmx); 2878 return 0; 2879 } 2880 2881 #ifdef CONFIG_X86_64 2882 2883 static void enter_lmode(struct kvm_vcpu *vcpu) 2884 { 2885 u32 guest_tr_ar; 2886 2887 vmx_segment_cache_clear(to_vmx(vcpu)); 2888 2889 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2890 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2891 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2892 __func__); 2893 vmcs_write32(GUEST_TR_AR_BYTES, 2894 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 2895 | VMX_AR_TYPE_BUSY_64_TSS); 2896 } 2897 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 2898 } 2899 2900 static void exit_lmode(struct kvm_vcpu *vcpu) 2901 { 2902 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2903 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 2904 } 2905 2906 #endif 2907 2908 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 2909 { 2910 struct vcpu_vmx *vmx = to_vmx(vcpu); 2911 2912 /* 2913 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 2914 * the CPU is not required to invalidate guest-physical mappings on 2915 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 2916 * associated with the root EPT structure and not any particular VPID 2917 * (INVVPID also isn't required to invalidate guest-physical mappings). 2918 */ 2919 if (enable_ept) { 2920 ept_sync_global(); 2921 } else if (enable_vpid) { 2922 if (cpu_has_vmx_invvpid_global()) { 2923 vpid_sync_vcpu_global(); 2924 } else { 2925 vpid_sync_vcpu_single(vmx->vpid); 2926 vpid_sync_vcpu_single(vmx->nested.vpid02); 2927 } 2928 } 2929 } 2930 2931 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 2932 { 2933 struct kvm_mmu *mmu = vcpu->arch.mmu; 2934 u64 root_hpa = mmu->root_hpa; 2935 2936 /* No flush required if the current context is invalid. */ 2937 if (!VALID_PAGE(root_hpa)) 2938 return; 2939 2940 if (enable_ept) 2941 ept_sync_context(construct_eptp(vcpu, root_hpa, 2942 mmu->shadow_root_level)); 2943 else if (!is_guest_mode(vcpu)) 2944 vpid_sync_context(to_vmx(vcpu)->vpid); 2945 else 2946 vpid_sync_context(nested_get_vpid02(vcpu)); 2947 } 2948 2949 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 2950 { 2951 /* 2952 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in 2953 * vmx_flush_tlb_guest() for an explanation of why this is ok. 2954 */ 2955 vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr); 2956 } 2957 2958 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 2959 { 2960 /* 2961 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0 2962 * or a vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit 2963 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is 2964 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 2965 * i.e. no explicit INVVPID is necessary. 2966 */ 2967 vpid_sync_context(to_vmx(vcpu)->vpid); 2968 } 2969 2970 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 2971 { 2972 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2973 2974 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 2975 return; 2976 2977 if (is_pae_paging(vcpu)) { 2978 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 2979 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 2980 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 2981 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 2982 } 2983 } 2984 2985 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 2986 { 2987 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2988 2989 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 2990 return; 2991 2992 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 2993 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 2994 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 2995 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 2996 2997 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 2998 } 2999 3000 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, 3001 unsigned long cr0, 3002 struct kvm_vcpu *vcpu) 3003 { 3004 struct vcpu_vmx *vmx = to_vmx(vcpu); 3005 3006 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3007 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3008 if (!(cr0 & X86_CR0_PG)) { 3009 /* From paging/starting to nonpaging */ 3010 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING | 3011 CPU_BASED_CR3_STORE_EXITING); 3012 vcpu->arch.cr0 = cr0; 3013 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3014 } else if (!is_paging(vcpu)) { 3015 /* From nonpaging to paging */ 3016 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING | 3017 CPU_BASED_CR3_STORE_EXITING); 3018 vcpu->arch.cr0 = cr0; 3019 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3020 } 3021 3022 if (!(cr0 & X86_CR0_WP)) 3023 *hw_cr0 &= ~X86_CR0_WP; 3024 } 3025 3026 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3027 { 3028 struct vcpu_vmx *vmx = to_vmx(vcpu); 3029 unsigned long hw_cr0; 3030 3031 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3032 if (is_unrestricted_guest(vcpu)) 3033 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3034 else { 3035 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3036 3037 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3038 enter_pmode(vcpu); 3039 3040 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3041 enter_rmode(vcpu); 3042 } 3043 3044 #ifdef CONFIG_X86_64 3045 if (vcpu->arch.efer & EFER_LME) { 3046 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) 3047 enter_lmode(vcpu); 3048 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) 3049 exit_lmode(vcpu); 3050 } 3051 #endif 3052 3053 if (enable_ept && !is_unrestricted_guest(vcpu)) 3054 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); 3055 3056 vmcs_writel(CR0_READ_SHADOW, cr0); 3057 vmcs_writel(GUEST_CR0, hw_cr0); 3058 vcpu->arch.cr0 = cr0; 3059 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3060 3061 /* depends on vcpu->arch.cr0 to be set to a new value */ 3062 vmx->emulation_required = emulation_required(vcpu); 3063 } 3064 3065 static int vmx_get_max_tdp_level(void) 3066 { 3067 if (cpu_has_vmx_ept_5levels()) 3068 return 5; 3069 return 4; 3070 } 3071 3072 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3073 { 3074 u64 eptp = VMX_EPTP_MT_WB; 3075 3076 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3077 3078 if (enable_ept_ad_bits && 3079 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3080 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3081 eptp |= root_hpa; 3082 3083 return eptp; 3084 } 3085 3086 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3087 int root_level) 3088 { 3089 struct kvm *kvm = vcpu->kvm; 3090 bool update_guest_cr3 = true; 3091 unsigned long guest_cr3; 3092 u64 eptp; 3093 3094 if (enable_ept) { 3095 eptp = construct_eptp(vcpu, root_hpa, root_level); 3096 vmcs_write64(EPT_POINTER, eptp); 3097 3098 hv_track_root_tdp(vcpu, root_hpa); 3099 3100 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3101 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3102 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3103 guest_cr3 = vcpu->arch.cr3; 3104 else /* vmcs01.GUEST_CR3 is already up-to-date. */ 3105 update_guest_cr3 = false; 3106 vmx_ept_load_pdptrs(vcpu); 3107 } else { 3108 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3109 } 3110 3111 if (update_guest_cr3) 3112 vmcs_writel(GUEST_CR3, guest_cr3); 3113 } 3114 3115 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3116 { 3117 /* 3118 * We operate under the default treatment of SMM, so VMX cannot be 3119 * enabled under SMM. Note, whether or not VMXE is allowed at all is 3120 * handled by kvm_is_valid_cr4(). 3121 */ 3122 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3123 return false; 3124 3125 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3126 return false; 3127 3128 return true; 3129 } 3130 3131 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3132 { 3133 unsigned long old_cr4 = vcpu->arch.cr4; 3134 struct vcpu_vmx *vmx = to_vmx(vcpu); 3135 /* 3136 * Pass through host's Machine Check Enable value to hw_cr4, which 3137 * is in force while we are in guest mode. Do not let guests control 3138 * this bit, even if host CR4.MCE == 0. 3139 */ 3140 unsigned long hw_cr4; 3141 3142 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3143 if (is_unrestricted_guest(vcpu)) 3144 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3145 else if (vmx->rmode.vm86_active) 3146 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3147 else 3148 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3149 3150 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 3151 if (cr4 & X86_CR4_UMIP) { 3152 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3153 hw_cr4 &= ~X86_CR4_UMIP; 3154 } else if (!is_guest_mode(vcpu) || 3155 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3156 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3157 } 3158 } 3159 3160 vcpu->arch.cr4 = cr4; 3161 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3162 3163 if (!is_unrestricted_guest(vcpu)) { 3164 if (enable_ept) { 3165 if (!is_paging(vcpu)) { 3166 hw_cr4 &= ~X86_CR4_PAE; 3167 hw_cr4 |= X86_CR4_PSE; 3168 } else if (!(cr4 & X86_CR4_PAE)) { 3169 hw_cr4 &= ~X86_CR4_PAE; 3170 } 3171 } 3172 3173 /* 3174 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3175 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3176 * to be manually disabled when guest switches to non-paging 3177 * mode. 3178 * 3179 * If !enable_unrestricted_guest, the CPU is always running 3180 * with CR0.PG=1 and CR4 needs to be modified. 3181 * If enable_unrestricted_guest, the CPU automatically 3182 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3183 */ 3184 if (!is_paging(vcpu)) 3185 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3186 } 3187 3188 vmcs_writel(CR4_READ_SHADOW, cr4); 3189 vmcs_writel(GUEST_CR4, hw_cr4); 3190 3191 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3192 kvm_update_cpuid_runtime(vcpu); 3193 } 3194 3195 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3196 { 3197 struct vcpu_vmx *vmx = to_vmx(vcpu); 3198 u32 ar; 3199 3200 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3201 *var = vmx->rmode.segs[seg]; 3202 if (seg == VCPU_SREG_TR 3203 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3204 return; 3205 var->base = vmx_read_guest_seg_base(vmx, seg); 3206 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3207 return; 3208 } 3209 var->base = vmx_read_guest_seg_base(vmx, seg); 3210 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3211 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3212 ar = vmx_read_guest_seg_ar(vmx, seg); 3213 var->unusable = (ar >> 16) & 1; 3214 var->type = ar & 15; 3215 var->s = (ar >> 4) & 1; 3216 var->dpl = (ar >> 5) & 3; 3217 /* 3218 * Some userspaces do not preserve unusable property. Since usable 3219 * segment has to be present according to VMX spec we can use present 3220 * property to amend userspace bug by making unusable segment always 3221 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3222 * segment as unusable. 3223 */ 3224 var->present = !var->unusable; 3225 var->avl = (ar >> 12) & 1; 3226 var->l = (ar >> 13) & 1; 3227 var->db = (ar >> 14) & 1; 3228 var->g = (ar >> 15) & 1; 3229 } 3230 3231 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3232 { 3233 struct kvm_segment s; 3234 3235 if (to_vmx(vcpu)->rmode.vm86_active) { 3236 vmx_get_segment(vcpu, &s, seg); 3237 return s.base; 3238 } 3239 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3240 } 3241 3242 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3243 { 3244 struct vcpu_vmx *vmx = to_vmx(vcpu); 3245 3246 if (unlikely(vmx->rmode.vm86_active)) 3247 return 0; 3248 else { 3249 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3250 return VMX_AR_DPL(ar); 3251 } 3252 } 3253 3254 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3255 { 3256 u32 ar; 3257 3258 if (var->unusable || !var->present) 3259 ar = 1 << 16; 3260 else { 3261 ar = var->type & 15; 3262 ar |= (var->s & 1) << 4; 3263 ar |= (var->dpl & 3) << 5; 3264 ar |= (var->present & 1) << 7; 3265 ar |= (var->avl & 1) << 12; 3266 ar |= (var->l & 1) << 13; 3267 ar |= (var->db & 1) << 14; 3268 ar |= (var->g & 1) << 15; 3269 } 3270 3271 return ar; 3272 } 3273 3274 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3275 { 3276 struct vcpu_vmx *vmx = to_vmx(vcpu); 3277 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3278 3279 vmx_segment_cache_clear(vmx); 3280 3281 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3282 vmx->rmode.segs[seg] = *var; 3283 if (seg == VCPU_SREG_TR) 3284 vmcs_write16(sf->selector, var->selector); 3285 else if (var->s) 3286 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3287 goto out; 3288 } 3289 3290 vmcs_writel(sf->base, var->base); 3291 vmcs_write32(sf->limit, var->limit); 3292 vmcs_write16(sf->selector, var->selector); 3293 3294 /* 3295 * Fix the "Accessed" bit in AR field of segment registers for older 3296 * qemu binaries. 3297 * IA32 arch specifies that at the time of processor reset the 3298 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3299 * is setting it to 0 in the userland code. This causes invalid guest 3300 * state vmexit when "unrestricted guest" mode is turned on. 3301 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3302 * tree. Newer qemu binaries with that qemu fix would not need this 3303 * kvm hack. 3304 */ 3305 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3306 var->type |= 0x1; /* Accessed */ 3307 3308 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3309 3310 out: 3311 vmx->emulation_required = emulation_required(vcpu); 3312 } 3313 3314 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3315 { 3316 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3317 3318 *db = (ar >> 14) & 1; 3319 *l = (ar >> 13) & 1; 3320 } 3321 3322 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3323 { 3324 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3325 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3326 } 3327 3328 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3329 { 3330 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3331 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3332 } 3333 3334 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3335 { 3336 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3337 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3338 } 3339 3340 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3341 { 3342 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3343 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3344 } 3345 3346 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3347 { 3348 struct kvm_segment var; 3349 u32 ar; 3350 3351 vmx_get_segment(vcpu, &var, seg); 3352 var.dpl = 0x3; 3353 if (seg == VCPU_SREG_CS) 3354 var.type = 0x3; 3355 ar = vmx_segment_access_rights(&var); 3356 3357 if (var.base != (var.selector << 4)) 3358 return false; 3359 if (var.limit != 0xffff) 3360 return false; 3361 if (ar != 0xf3) 3362 return false; 3363 3364 return true; 3365 } 3366 3367 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3368 { 3369 struct kvm_segment cs; 3370 unsigned int cs_rpl; 3371 3372 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3373 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3374 3375 if (cs.unusable) 3376 return false; 3377 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3378 return false; 3379 if (!cs.s) 3380 return false; 3381 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3382 if (cs.dpl > cs_rpl) 3383 return false; 3384 } else { 3385 if (cs.dpl != cs_rpl) 3386 return false; 3387 } 3388 if (!cs.present) 3389 return false; 3390 3391 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3392 return true; 3393 } 3394 3395 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3396 { 3397 struct kvm_segment ss; 3398 unsigned int ss_rpl; 3399 3400 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3401 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3402 3403 if (ss.unusable) 3404 return true; 3405 if (ss.type != 3 && ss.type != 7) 3406 return false; 3407 if (!ss.s) 3408 return false; 3409 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3410 return false; 3411 if (!ss.present) 3412 return false; 3413 3414 return true; 3415 } 3416 3417 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3418 { 3419 struct kvm_segment var; 3420 unsigned int rpl; 3421 3422 vmx_get_segment(vcpu, &var, seg); 3423 rpl = var.selector & SEGMENT_RPL_MASK; 3424 3425 if (var.unusable) 3426 return true; 3427 if (!var.s) 3428 return false; 3429 if (!var.present) 3430 return false; 3431 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3432 if (var.dpl < rpl) /* DPL < RPL */ 3433 return false; 3434 } 3435 3436 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3437 * rights flags 3438 */ 3439 return true; 3440 } 3441 3442 static bool tr_valid(struct kvm_vcpu *vcpu) 3443 { 3444 struct kvm_segment tr; 3445 3446 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3447 3448 if (tr.unusable) 3449 return false; 3450 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3451 return false; 3452 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3453 return false; 3454 if (!tr.present) 3455 return false; 3456 3457 return true; 3458 } 3459 3460 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3461 { 3462 struct kvm_segment ldtr; 3463 3464 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3465 3466 if (ldtr.unusable) 3467 return true; 3468 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3469 return false; 3470 if (ldtr.type != 2) 3471 return false; 3472 if (!ldtr.present) 3473 return false; 3474 3475 return true; 3476 } 3477 3478 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3479 { 3480 struct kvm_segment cs, ss; 3481 3482 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3483 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3484 3485 return ((cs.selector & SEGMENT_RPL_MASK) == 3486 (ss.selector & SEGMENT_RPL_MASK)); 3487 } 3488 3489 /* 3490 * Check if guest state is valid. Returns true if valid, false if 3491 * not. 3492 * We assume that registers are always usable 3493 */ 3494 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3495 { 3496 /* real mode guest state checks */ 3497 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3498 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3499 return false; 3500 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3501 return false; 3502 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3503 return false; 3504 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3505 return false; 3506 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3507 return false; 3508 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3509 return false; 3510 } else { 3511 /* protected mode guest state checks */ 3512 if (!cs_ss_rpl_check(vcpu)) 3513 return false; 3514 if (!code_segment_valid(vcpu)) 3515 return false; 3516 if (!stack_segment_valid(vcpu)) 3517 return false; 3518 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3519 return false; 3520 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3521 return false; 3522 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3523 return false; 3524 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3525 return false; 3526 if (!tr_valid(vcpu)) 3527 return false; 3528 if (!ldtr_valid(vcpu)) 3529 return false; 3530 } 3531 /* TODO: 3532 * - Add checks on RIP 3533 * - Add checks on RFLAGS 3534 */ 3535 3536 return true; 3537 } 3538 3539 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3540 { 3541 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3542 u16 data; 3543 int i; 3544 3545 for (i = 0; i < 3; i++) { 3546 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3547 return -EFAULT; 3548 } 3549 3550 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3551 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3552 return -EFAULT; 3553 3554 data = ~0; 3555 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3556 return -EFAULT; 3557 3558 return 0; 3559 } 3560 3561 static int init_rmode_identity_map(struct kvm *kvm) 3562 { 3563 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3564 int i, r = 0; 3565 void __user *uaddr; 3566 u32 tmp; 3567 3568 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3569 mutex_lock(&kvm->slots_lock); 3570 3571 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3572 goto out; 3573 3574 if (!kvm_vmx->ept_identity_map_addr) 3575 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3576 3577 uaddr = __x86_set_memory_region(kvm, 3578 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3579 kvm_vmx->ept_identity_map_addr, 3580 PAGE_SIZE); 3581 if (IS_ERR(uaddr)) { 3582 r = PTR_ERR(uaddr); 3583 goto out; 3584 } 3585 3586 /* Set up identity-mapping pagetable for EPT in real mode */ 3587 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3588 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3589 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3590 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3591 r = -EFAULT; 3592 goto out; 3593 } 3594 } 3595 kvm_vmx->ept_identity_pagetable_done = true; 3596 3597 out: 3598 mutex_unlock(&kvm->slots_lock); 3599 return r; 3600 } 3601 3602 static void seg_setup(int seg) 3603 { 3604 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3605 unsigned int ar; 3606 3607 vmcs_write16(sf->selector, 0); 3608 vmcs_writel(sf->base, 0); 3609 vmcs_write32(sf->limit, 0xffff); 3610 ar = 0x93; 3611 if (seg == VCPU_SREG_CS) 3612 ar |= 0x08; /* code segment */ 3613 3614 vmcs_write32(sf->ar_bytes, ar); 3615 } 3616 3617 static int alloc_apic_access_page(struct kvm *kvm) 3618 { 3619 struct page *page; 3620 void __user *hva; 3621 int ret = 0; 3622 3623 mutex_lock(&kvm->slots_lock); 3624 if (kvm->arch.apic_access_memslot_enabled) 3625 goto out; 3626 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3627 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3628 if (IS_ERR(hva)) { 3629 ret = PTR_ERR(hva); 3630 goto out; 3631 } 3632 3633 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3634 if (is_error_page(page)) { 3635 ret = -EFAULT; 3636 goto out; 3637 } 3638 3639 /* 3640 * Do not pin the page in memory, so that memory hot-unplug 3641 * is able to migrate it. 3642 */ 3643 put_page(page); 3644 kvm->arch.apic_access_memslot_enabled = true; 3645 out: 3646 mutex_unlock(&kvm->slots_lock); 3647 return ret; 3648 } 3649 3650 int allocate_vpid(void) 3651 { 3652 int vpid; 3653 3654 if (!enable_vpid) 3655 return 0; 3656 spin_lock(&vmx_vpid_lock); 3657 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3658 if (vpid < VMX_NR_VPIDS) 3659 __set_bit(vpid, vmx_vpid_bitmap); 3660 else 3661 vpid = 0; 3662 spin_unlock(&vmx_vpid_lock); 3663 return vpid; 3664 } 3665 3666 void free_vpid(int vpid) 3667 { 3668 if (!enable_vpid || vpid == 0) 3669 return; 3670 spin_lock(&vmx_vpid_lock); 3671 __clear_bit(vpid, vmx_vpid_bitmap); 3672 spin_unlock(&vmx_vpid_lock); 3673 } 3674 3675 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr) 3676 { 3677 int f = sizeof(unsigned long); 3678 3679 if (msr <= 0x1fff) 3680 __clear_bit(msr, msr_bitmap + 0x000 / f); 3681 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3682 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f); 3683 } 3684 3685 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr) 3686 { 3687 int f = sizeof(unsigned long); 3688 3689 if (msr <= 0x1fff) 3690 __clear_bit(msr, msr_bitmap + 0x800 / f); 3691 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3692 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f); 3693 } 3694 3695 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr) 3696 { 3697 int f = sizeof(unsigned long); 3698 3699 if (msr <= 0x1fff) 3700 __set_bit(msr, msr_bitmap + 0x000 / f); 3701 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3702 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f); 3703 } 3704 3705 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr) 3706 { 3707 int f = sizeof(unsigned long); 3708 3709 if (msr <= 0x1fff) 3710 __set_bit(msr, msr_bitmap + 0x800 / f); 3711 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3712 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f); 3713 } 3714 3715 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3716 { 3717 struct vcpu_vmx *vmx = to_vmx(vcpu); 3718 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3719 3720 if (!cpu_has_vmx_msr_bitmap()) 3721 return; 3722 3723 if (static_branch_unlikely(&enable_evmcs)) 3724 evmcs_touch_msr_bitmap(); 3725 3726 /* 3727 * Mark the desired intercept state in shadow bitmap, this is needed 3728 * for resync when the MSR filters change. 3729 */ 3730 if (is_valid_passthrough_msr(msr)) { 3731 int idx = possible_passthrough_msr_slot(msr); 3732 3733 if (idx != -ENOENT) { 3734 if (type & MSR_TYPE_R) 3735 clear_bit(idx, vmx->shadow_msr_intercept.read); 3736 if (type & MSR_TYPE_W) 3737 clear_bit(idx, vmx->shadow_msr_intercept.write); 3738 } 3739 } 3740 3741 if ((type & MSR_TYPE_R) && 3742 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3743 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3744 type &= ~MSR_TYPE_R; 3745 } 3746 3747 if ((type & MSR_TYPE_W) && 3748 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3749 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3750 type &= ~MSR_TYPE_W; 3751 } 3752 3753 if (type & MSR_TYPE_R) 3754 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3755 3756 if (type & MSR_TYPE_W) 3757 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3758 } 3759 3760 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3761 { 3762 struct vcpu_vmx *vmx = to_vmx(vcpu); 3763 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3764 3765 if (!cpu_has_vmx_msr_bitmap()) 3766 return; 3767 3768 if (static_branch_unlikely(&enable_evmcs)) 3769 evmcs_touch_msr_bitmap(); 3770 3771 /* 3772 * Mark the desired intercept state in shadow bitmap, this is needed 3773 * for resync when the MSR filter changes. 3774 */ 3775 if (is_valid_passthrough_msr(msr)) { 3776 int idx = possible_passthrough_msr_slot(msr); 3777 3778 if (idx != -ENOENT) { 3779 if (type & MSR_TYPE_R) 3780 set_bit(idx, vmx->shadow_msr_intercept.read); 3781 if (type & MSR_TYPE_W) 3782 set_bit(idx, vmx->shadow_msr_intercept.write); 3783 } 3784 } 3785 3786 if (type & MSR_TYPE_R) 3787 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3788 3789 if (type & MSR_TYPE_W) 3790 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3791 } 3792 3793 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu) 3794 { 3795 u8 mode = 0; 3796 3797 if (cpu_has_secondary_exec_ctrls() && 3798 (secondary_exec_controls_get(to_vmx(vcpu)) & 3799 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3800 mode |= MSR_BITMAP_MODE_X2APIC; 3801 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3802 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3803 } 3804 3805 return mode; 3806 } 3807 3808 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode) 3809 { 3810 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; 3811 unsigned long read_intercept; 3812 int msr; 3813 3814 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3815 3816 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3817 unsigned int read_idx = msr / BITS_PER_LONG; 3818 unsigned int write_idx = read_idx + (0x800 / sizeof(long)); 3819 3820 msr_bitmap[read_idx] = read_intercept; 3821 msr_bitmap[write_idx] = ~0ul; 3822 } 3823 } 3824 3825 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode) 3826 { 3827 if (!cpu_has_vmx_msr_bitmap()) 3828 return; 3829 3830 vmx_reset_x2apic_msrs(vcpu, mode); 3831 3832 /* 3833 * TPR reads and writes can be virtualized even if virtual interrupt 3834 * delivery is not in use. 3835 */ 3836 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 3837 !(mode & MSR_BITMAP_MODE_X2APIC)); 3838 3839 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3840 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 3841 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3842 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3843 } 3844 } 3845 3846 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu) 3847 { 3848 struct vcpu_vmx *vmx = to_vmx(vcpu); 3849 u8 mode = vmx_msr_bitmap_mode(vcpu); 3850 u8 changed = mode ^ vmx->msr_bitmap_mode; 3851 3852 if (!changed) 3853 return; 3854 3855 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV)) 3856 vmx_update_msr_bitmap_x2apic(vcpu, mode); 3857 3858 vmx->msr_bitmap_mode = mode; 3859 } 3860 3861 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 3862 { 3863 struct vcpu_vmx *vmx = to_vmx(vcpu); 3864 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3865 u32 i; 3866 3867 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 3868 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 3869 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 3870 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 3871 for (i = 0; i < vmx->pt_desc.addr_range; i++) { 3872 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3873 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3874 } 3875 } 3876 3877 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3878 { 3879 struct vcpu_vmx *vmx = to_vmx(vcpu); 3880 void *vapic_page; 3881 u32 vppr; 3882 int rvi; 3883 3884 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3885 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3886 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3887 return false; 3888 3889 rvi = vmx_get_rvi(); 3890 3891 vapic_page = vmx->nested.virtual_apic_map.hva; 3892 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 3893 3894 return ((rvi & 0xf0) > (vppr & 0xf0)); 3895 } 3896 3897 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 3898 { 3899 struct vcpu_vmx *vmx = to_vmx(vcpu); 3900 u32 i; 3901 3902 /* 3903 * Set intercept permissions for all potentially passed through MSRs 3904 * again. They will automatically get filtered through the MSR filter, 3905 * so we are back in sync after this. 3906 */ 3907 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 3908 u32 msr = vmx_possible_passthrough_msrs[i]; 3909 bool read = test_bit(i, vmx->shadow_msr_intercept.read); 3910 bool write = test_bit(i, vmx->shadow_msr_intercept.write); 3911 3912 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read); 3913 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write); 3914 } 3915 3916 pt_update_intercept_for_msr(vcpu); 3917 vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu)); 3918 } 3919 3920 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 3921 bool nested) 3922 { 3923 #ifdef CONFIG_SMP 3924 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; 3925 3926 if (vcpu->mode == IN_GUEST_MODE) { 3927 /* 3928 * The vector of interrupt to be delivered to vcpu had 3929 * been set in PIR before this function. 3930 * 3931 * Following cases will be reached in this block, and 3932 * we always send a notification event in all cases as 3933 * explained below. 3934 * 3935 * Case 1: vcpu keeps in non-root mode. Sending a 3936 * notification event posts the interrupt to vcpu. 3937 * 3938 * Case 2: vcpu exits to root mode and is still 3939 * runnable. PIR will be synced to vIRR before the 3940 * next vcpu entry. Sending a notification event in 3941 * this case has no effect, as vcpu is not in root 3942 * mode. 3943 * 3944 * Case 3: vcpu exits to root mode and is blocked. 3945 * vcpu_block() has already synced PIR to vIRR and 3946 * never blocks vcpu if vIRR is not cleared. Therefore, 3947 * a blocked vcpu here does not wait for any requested 3948 * interrupts in PIR, and sending a notification event 3949 * which has no effect is safe here. 3950 */ 3951 3952 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 3953 return true; 3954 } 3955 #endif 3956 return false; 3957 } 3958 3959 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 3960 int vector) 3961 { 3962 struct vcpu_vmx *vmx = to_vmx(vcpu); 3963 3964 if (is_guest_mode(vcpu) && 3965 vector == vmx->nested.posted_intr_nv) { 3966 /* 3967 * If a posted intr is not recognized by hardware, 3968 * we will accomplish it in the next vmentry. 3969 */ 3970 vmx->nested.pi_pending = true; 3971 kvm_make_request(KVM_REQ_EVENT, vcpu); 3972 /* the PIR and ON have been set by L1. */ 3973 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) 3974 kvm_vcpu_kick(vcpu); 3975 return 0; 3976 } 3977 return -1; 3978 } 3979 /* 3980 * Send interrupt to vcpu via posted interrupt way. 3981 * 1. If target vcpu is running(non-root mode), send posted interrupt 3982 * notification to vcpu and hardware will sync PIR to vIRR atomically. 3983 * 2. If target vcpu isn't running(root mode), kick it to pick up the 3984 * interrupt from PIR in next vmentry. 3985 */ 3986 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 3987 { 3988 struct vcpu_vmx *vmx = to_vmx(vcpu); 3989 int r; 3990 3991 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 3992 if (!r) 3993 return 0; 3994 3995 if (!vcpu->arch.apicv_active) 3996 return -1; 3997 3998 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 3999 return 0; 4000 4001 /* If a previous notification has sent the IPI, nothing to do. */ 4002 if (pi_test_and_set_on(&vmx->pi_desc)) 4003 return 0; 4004 4005 if (vcpu != kvm_get_running_vcpu() && 4006 !kvm_vcpu_trigger_posted_interrupt(vcpu, false)) 4007 kvm_vcpu_kick(vcpu); 4008 4009 return 0; 4010 } 4011 4012 /* 4013 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4014 * will not change in the lifetime of the guest. 4015 * Note that host-state that does change is set elsewhere. E.g., host-state 4016 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4017 */ 4018 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4019 { 4020 u32 low32, high32; 4021 unsigned long tmpl; 4022 unsigned long cr0, cr3, cr4; 4023 4024 cr0 = read_cr0(); 4025 WARN_ON(cr0 & X86_CR0_TS); 4026 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4027 4028 /* 4029 * Save the most likely value for this task's CR3 in the VMCS. 4030 * We can't use __get_current_cr3_fast() because we're not atomic. 4031 */ 4032 cr3 = __read_cr3(); 4033 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4034 vmx->loaded_vmcs->host_state.cr3 = cr3; 4035 4036 /* Save the most likely value for this task's CR4 in the VMCS. */ 4037 cr4 = cr4_read_shadow(); 4038 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4039 vmx->loaded_vmcs->host_state.cr4 = cr4; 4040 4041 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4042 #ifdef CONFIG_X86_64 4043 /* 4044 * Load null selectors, so we can avoid reloading them in 4045 * vmx_prepare_switch_to_host(), in case userspace uses 4046 * the null selectors too (the expected case). 4047 */ 4048 vmcs_write16(HOST_DS_SELECTOR, 0); 4049 vmcs_write16(HOST_ES_SELECTOR, 0); 4050 #else 4051 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4052 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4053 #endif 4054 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4055 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4056 4057 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4058 4059 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4060 4061 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4062 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4063 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4064 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4065 4066 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4067 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4068 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4069 } 4070 4071 if (cpu_has_load_ia32_efer()) 4072 vmcs_write64(HOST_IA32_EFER, host_efer); 4073 } 4074 4075 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4076 { 4077 struct kvm_vcpu *vcpu = &vmx->vcpu; 4078 4079 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4080 ~vcpu->arch.cr4_guest_rsvd_bits; 4081 if (!enable_ept) 4082 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE; 4083 if (is_guest_mode(&vmx->vcpu)) 4084 vcpu->arch.cr4_guest_owned_bits &= 4085 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4086 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4087 } 4088 4089 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4090 { 4091 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4092 4093 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4094 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4095 4096 if (!enable_vnmi) 4097 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4098 4099 if (!enable_preemption_timer) 4100 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4101 4102 return pin_based_exec_ctrl; 4103 } 4104 4105 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4106 { 4107 struct vcpu_vmx *vmx = to_vmx(vcpu); 4108 4109 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4110 if (cpu_has_secondary_exec_ctrls()) { 4111 if (kvm_vcpu_apicv_active(vcpu)) 4112 secondary_exec_controls_setbit(vmx, 4113 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4114 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4115 else 4116 secondary_exec_controls_clearbit(vmx, 4117 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4118 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4119 } 4120 4121 if (cpu_has_vmx_msr_bitmap()) 4122 vmx_update_msr_bitmap(vcpu); 4123 } 4124 4125 u32 vmx_exec_control(struct vcpu_vmx *vmx) 4126 { 4127 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4128 4129 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4130 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4131 4132 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 4133 exec_control &= ~CPU_BASED_TPR_SHADOW; 4134 #ifdef CONFIG_X86_64 4135 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4136 CPU_BASED_CR8_LOAD_EXITING; 4137 #endif 4138 } 4139 if (!enable_ept) 4140 exec_control |= CPU_BASED_CR3_STORE_EXITING | 4141 CPU_BASED_CR3_LOAD_EXITING | 4142 CPU_BASED_INVLPG_EXITING; 4143 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4144 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4145 CPU_BASED_MONITOR_EXITING); 4146 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4147 exec_control &= ~CPU_BASED_HLT_EXITING; 4148 return exec_control; 4149 } 4150 4151 /* 4152 * Adjust a single secondary execution control bit to intercept/allow an 4153 * instruction in the guest. This is usually done based on whether or not a 4154 * feature has been exposed to the guest in order to correctly emulate faults. 4155 */ 4156 static inline void 4157 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4158 u32 control, bool enabled, bool exiting) 4159 { 4160 /* 4161 * If the control is for an opt-in feature, clear the control if the 4162 * feature is not exposed to the guest, i.e. not enabled. If the 4163 * control is opt-out, i.e. an exiting control, clear the control if 4164 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4165 * disabled for the associated instruction. Note, the caller is 4166 * responsible presetting exec_control to set all supported bits. 4167 */ 4168 if (enabled == exiting) 4169 *exec_control &= ~control; 4170 4171 /* 4172 * Update the nested MSR settings so that a nested VMM can/can't set 4173 * controls for features that are/aren't exposed to the guest. 4174 */ 4175 if (nested) { 4176 if (enabled) 4177 vmx->nested.msrs.secondary_ctls_high |= control; 4178 else 4179 vmx->nested.msrs.secondary_ctls_high &= ~control; 4180 } 4181 } 4182 4183 /* 4184 * Wrapper macro for the common case of adjusting a secondary execution control 4185 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4186 * verifies that the control is actually supported by KVM and hardware. 4187 */ 4188 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4189 ({ \ 4190 bool __enabled; \ 4191 \ 4192 if (cpu_has_vmx_##name()) { \ 4193 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4194 X86_FEATURE_##feat_name); \ 4195 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4196 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4197 } \ 4198 }) 4199 4200 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4201 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4202 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4203 4204 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4205 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4206 4207 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx) 4208 { 4209 struct kvm_vcpu *vcpu = &vmx->vcpu; 4210 4211 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4212 4213 if (vmx_pt_mode_is_system()) 4214 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4215 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4216 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4217 if (vmx->vpid == 0) 4218 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4219 if (!enable_ept) { 4220 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4221 enable_unrestricted_guest = 0; 4222 } 4223 if (!enable_unrestricted_guest) 4224 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4225 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4226 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4227 if (!kvm_vcpu_apicv_active(vcpu)) 4228 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4229 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4230 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4231 4232 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4233 * in vmx_set_cr4. */ 4234 exec_control &= ~SECONDARY_EXEC_DESC; 4235 4236 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4237 (handle_vmptrld). 4238 We can NOT enable shadow_vmcs here because we don't have yet 4239 a current VMCS12 4240 */ 4241 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4242 4243 /* 4244 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4245 * it needs to be set here when dirty logging is already active, e.g. 4246 * if this vCPU was created after dirty logging was enabled. 4247 */ 4248 if (!vcpu->kvm->arch.cpu_dirty_logging_count) 4249 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4250 4251 if (cpu_has_vmx_xsaves()) { 4252 /* Exposing XSAVES only when XSAVE is exposed */ 4253 bool xsaves_enabled = 4254 boot_cpu_has(X86_FEATURE_XSAVE) && 4255 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4256 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4257 4258 vcpu->arch.xsaves_enabled = xsaves_enabled; 4259 4260 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4261 SECONDARY_EXEC_XSAVES, 4262 xsaves_enabled, false); 4263 } 4264 4265 /* 4266 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4267 * feature is exposed to the guest. This creates a virtualization hole 4268 * if both are supported in hardware but only one is exposed to the 4269 * guest, but letting the guest execute RDTSCP or RDPID when either one 4270 * is advertised is preferable to emulating the advertised instruction 4271 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4272 */ 4273 if (cpu_has_vmx_rdtscp()) { 4274 bool rdpid_or_rdtscp_enabled = 4275 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4276 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4277 4278 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4279 SECONDARY_EXEC_ENABLE_RDTSCP, 4280 rdpid_or_rdtscp_enabled, false); 4281 } 4282 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4283 4284 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4285 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4286 4287 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4288 ENABLE_USR_WAIT_PAUSE, false); 4289 4290 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4291 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4292 4293 vmx->secondary_exec_control = exec_control; 4294 } 4295 4296 #define VMX_XSS_EXIT_BITMAP 0 4297 4298 /* 4299 * Noting that the initialization of Guest-state Area of VMCS is in 4300 * vmx_vcpu_reset(). 4301 */ 4302 static void init_vmcs(struct vcpu_vmx *vmx) 4303 { 4304 if (nested) 4305 nested_vmx_set_vmcs_shadowing_bitmap(); 4306 4307 if (cpu_has_vmx_msr_bitmap()) 4308 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4309 4310 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ 4311 4312 /* Control */ 4313 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4314 4315 exec_controls_set(vmx, vmx_exec_control(vmx)); 4316 4317 if (cpu_has_secondary_exec_ctrls()) { 4318 vmx_compute_secondary_exec_control(vmx); 4319 secondary_exec_controls_set(vmx, vmx->secondary_exec_control); 4320 } 4321 4322 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4323 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4324 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4325 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4326 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4327 4328 vmcs_write16(GUEST_INTR_STATUS, 0); 4329 4330 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4331 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4332 } 4333 4334 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4335 vmcs_write32(PLE_GAP, ple_gap); 4336 vmx->ple_window = ple_window; 4337 vmx->ple_window_dirty = true; 4338 } 4339 4340 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4341 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4342 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4343 4344 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4345 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4346 vmx_set_constant_host_state(vmx); 4347 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4348 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4349 4350 if (cpu_has_vmx_vmfunc()) 4351 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4352 4353 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4354 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4355 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4356 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4357 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4358 4359 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4360 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4361 4362 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4363 4364 /* 22.2.1, 20.8.1 */ 4365 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4366 4367 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS; 4368 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4369 4370 set_cr4_guest_host_mask(vmx); 4371 4372 if (vmx->vpid != 0) 4373 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4374 4375 if (cpu_has_vmx_xsaves()) 4376 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4377 4378 if (enable_pml) { 4379 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4380 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4381 } 4382 4383 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4384 4385 if (vmx_pt_mode_is_host_guest()) { 4386 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4387 /* Bit[6~0] are forced to 1, writes are ignored. */ 4388 vmx->pt_desc.guest.output_mask = 0x7F; 4389 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4390 } 4391 } 4392 4393 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4394 { 4395 struct vcpu_vmx *vmx = to_vmx(vcpu); 4396 struct msr_data apic_base_msr; 4397 u64 cr0; 4398 4399 vmx->rmode.vm86_active = 0; 4400 vmx->spec_ctrl = 0; 4401 4402 vmx->msr_ia32_umwait_control = 0; 4403 4404 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); 4405 vmx->hv_deadline_tsc = -1; 4406 kvm_set_cr8(vcpu, 0); 4407 4408 if (!init_event) { 4409 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | 4410 MSR_IA32_APICBASE_ENABLE; 4411 if (kvm_vcpu_is_reset_bsp(vcpu)) 4412 apic_base_msr.data |= MSR_IA32_APICBASE_BSP; 4413 apic_base_msr.host_initiated = true; 4414 kvm_set_apic_base(vcpu, &apic_base_msr); 4415 } 4416 4417 vmx_segment_cache_clear(vmx); 4418 4419 seg_setup(VCPU_SREG_CS); 4420 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4421 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4422 4423 seg_setup(VCPU_SREG_DS); 4424 seg_setup(VCPU_SREG_ES); 4425 seg_setup(VCPU_SREG_FS); 4426 seg_setup(VCPU_SREG_GS); 4427 seg_setup(VCPU_SREG_SS); 4428 4429 vmcs_write16(GUEST_TR_SELECTOR, 0); 4430 vmcs_writel(GUEST_TR_BASE, 0); 4431 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4432 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4433 4434 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4435 vmcs_writel(GUEST_LDTR_BASE, 0); 4436 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4437 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4438 4439 if (!init_event) { 4440 vmcs_write32(GUEST_SYSENTER_CS, 0); 4441 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4442 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4443 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4444 } 4445 4446 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 4447 kvm_rip_write(vcpu, 0xfff0); 4448 4449 vmcs_writel(GUEST_GDTR_BASE, 0); 4450 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4451 4452 vmcs_writel(GUEST_IDTR_BASE, 0); 4453 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4454 4455 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4456 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4457 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4458 if (kvm_mpx_supported()) 4459 vmcs_write64(GUEST_BNDCFGS, 0); 4460 4461 setup_msrs(vmx); 4462 4463 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4464 4465 if (cpu_has_vmx_tpr_shadow() && !init_event) { 4466 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4467 if (cpu_need_tpr_shadow(vcpu)) 4468 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4469 __pa(vcpu->arch.apic->regs)); 4470 vmcs_write32(TPR_THRESHOLD, 0); 4471 } 4472 4473 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4474 4475 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; 4476 vmx->vcpu.arch.cr0 = cr0; 4477 vmx_set_cr0(vcpu, cr0); /* enter rmode */ 4478 vmx_set_cr4(vcpu, 0); 4479 vmx_set_efer(vcpu, 0); 4480 4481 vmx_update_exception_bitmap(vcpu); 4482 4483 vpid_sync_context(vmx->vpid); 4484 if (init_event) 4485 vmx_clear_hlt(vcpu); 4486 } 4487 4488 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4489 { 4490 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4491 } 4492 4493 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4494 { 4495 if (!enable_vnmi || 4496 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4497 vmx_enable_irq_window(vcpu); 4498 return; 4499 } 4500 4501 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4502 } 4503 4504 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4505 { 4506 struct vcpu_vmx *vmx = to_vmx(vcpu); 4507 uint32_t intr; 4508 int irq = vcpu->arch.interrupt.nr; 4509 4510 trace_kvm_inj_virq(irq); 4511 4512 ++vcpu->stat.irq_injections; 4513 if (vmx->rmode.vm86_active) { 4514 int inc_eip = 0; 4515 if (vcpu->arch.interrupt.soft) 4516 inc_eip = vcpu->arch.event_exit_inst_len; 4517 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4518 return; 4519 } 4520 intr = irq | INTR_INFO_VALID_MASK; 4521 if (vcpu->arch.interrupt.soft) { 4522 intr |= INTR_TYPE_SOFT_INTR; 4523 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4524 vmx->vcpu.arch.event_exit_inst_len); 4525 } else 4526 intr |= INTR_TYPE_EXT_INTR; 4527 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4528 4529 vmx_clear_hlt(vcpu); 4530 } 4531 4532 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4533 { 4534 struct vcpu_vmx *vmx = to_vmx(vcpu); 4535 4536 if (!enable_vnmi) { 4537 /* 4538 * Tracking the NMI-blocked state in software is built upon 4539 * finding the next open IRQ window. This, in turn, depends on 4540 * well-behaving guests: They have to keep IRQs disabled at 4541 * least as long as the NMI handler runs. Otherwise we may 4542 * cause NMI nesting, maybe breaking the guest. But as this is 4543 * highly unlikely, we can live with the residual risk. 4544 */ 4545 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4546 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4547 } 4548 4549 ++vcpu->stat.nmi_injections; 4550 vmx->loaded_vmcs->nmi_known_unmasked = false; 4551 4552 if (vmx->rmode.vm86_active) { 4553 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4554 return; 4555 } 4556 4557 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4558 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4559 4560 vmx_clear_hlt(vcpu); 4561 } 4562 4563 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4564 { 4565 struct vcpu_vmx *vmx = to_vmx(vcpu); 4566 bool masked; 4567 4568 if (!enable_vnmi) 4569 return vmx->loaded_vmcs->soft_vnmi_blocked; 4570 if (vmx->loaded_vmcs->nmi_known_unmasked) 4571 return false; 4572 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4573 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4574 return masked; 4575 } 4576 4577 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4578 { 4579 struct vcpu_vmx *vmx = to_vmx(vcpu); 4580 4581 if (!enable_vnmi) { 4582 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4583 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4584 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4585 } 4586 } else { 4587 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4588 if (masked) 4589 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4590 GUEST_INTR_STATE_NMI); 4591 else 4592 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4593 GUEST_INTR_STATE_NMI); 4594 } 4595 } 4596 4597 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 4598 { 4599 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4600 return false; 4601 4602 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4603 return true; 4604 4605 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4606 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 4607 GUEST_INTR_STATE_NMI)); 4608 } 4609 4610 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4611 { 4612 if (to_vmx(vcpu)->nested.nested_run_pending) 4613 return -EBUSY; 4614 4615 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 4616 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4617 return -EBUSY; 4618 4619 return !vmx_nmi_blocked(vcpu); 4620 } 4621 4622 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 4623 { 4624 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4625 return false; 4626 4627 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 4628 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4629 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4630 } 4631 4632 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4633 { 4634 if (to_vmx(vcpu)->nested.nested_run_pending) 4635 return -EBUSY; 4636 4637 /* 4638 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 4639 * e.g. if the IRQ arrived asynchronously after checking nested events. 4640 */ 4641 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4642 return -EBUSY; 4643 4644 return !vmx_interrupt_blocked(vcpu); 4645 } 4646 4647 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4648 { 4649 void __user *ret; 4650 4651 if (enable_unrestricted_guest) 4652 return 0; 4653 4654 mutex_lock(&kvm->slots_lock); 4655 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4656 PAGE_SIZE * 3); 4657 mutex_unlock(&kvm->slots_lock); 4658 4659 if (IS_ERR(ret)) 4660 return PTR_ERR(ret); 4661 4662 to_kvm_vmx(kvm)->tss_addr = addr; 4663 4664 return init_rmode_tss(kvm, ret); 4665 } 4666 4667 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4668 { 4669 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4670 return 0; 4671 } 4672 4673 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4674 { 4675 switch (vec) { 4676 case BP_VECTOR: 4677 /* 4678 * Update instruction length as we may reinject the exception 4679 * from user space while in guest debugging mode. 4680 */ 4681 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4682 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4683 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4684 return false; 4685 fallthrough; 4686 case DB_VECTOR: 4687 return !(vcpu->guest_debug & 4688 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 4689 case DE_VECTOR: 4690 case OF_VECTOR: 4691 case BR_VECTOR: 4692 case UD_VECTOR: 4693 case DF_VECTOR: 4694 case SS_VECTOR: 4695 case GP_VECTOR: 4696 case MF_VECTOR: 4697 return true; 4698 } 4699 return false; 4700 } 4701 4702 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4703 int vec, u32 err_code) 4704 { 4705 /* 4706 * Instruction with address size override prefix opcode 0x67 4707 * Cause the #SS fault with 0 error code in VM86 mode. 4708 */ 4709 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4710 if (kvm_emulate_instruction(vcpu, 0)) { 4711 if (vcpu->arch.halt_request) { 4712 vcpu->arch.halt_request = 0; 4713 return kvm_vcpu_halt(vcpu); 4714 } 4715 return 1; 4716 } 4717 return 0; 4718 } 4719 4720 /* 4721 * Forward all other exceptions that are valid in real mode. 4722 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4723 * the required debugging infrastructure rework. 4724 */ 4725 kvm_queue_exception(vcpu, vec); 4726 return 1; 4727 } 4728 4729 static int handle_machine_check(struct kvm_vcpu *vcpu) 4730 { 4731 /* handled by vmx_vcpu_run() */ 4732 return 1; 4733 } 4734 4735 /* 4736 * If the host has split lock detection disabled, then #AC is 4737 * unconditionally injected into the guest, which is the pre split lock 4738 * detection behaviour. 4739 * 4740 * If the host has split lock detection enabled then #AC is 4741 * only injected into the guest when: 4742 * - Guest CPL == 3 (user mode) 4743 * - Guest has #AC detection enabled in CR0 4744 * - Guest EFLAGS has AC bit set 4745 */ 4746 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 4747 { 4748 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 4749 return true; 4750 4751 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) && 4752 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 4753 } 4754 4755 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 4756 { 4757 struct vcpu_vmx *vmx = to_vmx(vcpu); 4758 struct kvm_run *kvm_run = vcpu->run; 4759 u32 intr_info, ex_no, error_code; 4760 unsigned long cr2, dr6; 4761 u32 vect_info; 4762 4763 vect_info = vmx->idt_vectoring_info; 4764 intr_info = vmx_get_intr_info(vcpu); 4765 4766 if (is_machine_check(intr_info) || is_nmi(intr_info)) 4767 return 1; /* handled by handle_exception_nmi_irqoff() */ 4768 4769 if (is_invalid_opcode(intr_info)) 4770 return handle_ud(vcpu); 4771 4772 error_code = 0; 4773 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4774 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4775 4776 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4777 WARN_ON_ONCE(!enable_vmware_backdoor); 4778 4779 /* 4780 * VMware backdoor emulation on #GP interception only handles 4781 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 4782 * error code on #GP. 4783 */ 4784 if (error_code) { 4785 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4786 return 1; 4787 } 4788 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 4789 } 4790 4791 /* 4792 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4793 * MMIO, it is better to report an internal error. 4794 * See the comments in vmx_handle_exit. 4795 */ 4796 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4797 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4798 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4799 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4800 vcpu->run->internal.ndata = 4; 4801 vcpu->run->internal.data[0] = vect_info; 4802 vcpu->run->internal.data[1] = intr_info; 4803 vcpu->run->internal.data[2] = error_code; 4804 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 4805 return 0; 4806 } 4807 4808 if (is_page_fault(intr_info)) { 4809 cr2 = vmx_get_exit_qual(vcpu); 4810 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 4811 /* 4812 * EPT will cause page fault only if we need to 4813 * detect illegal GPAs. 4814 */ 4815 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 4816 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 4817 return 1; 4818 } else 4819 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4820 } 4821 4822 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4823 4824 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4825 return handle_rmode_exception(vcpu, ex_no, error_code); 4826 4827 switch (ex_no) { 4828 case DB_VECTOR: 4829 dr6 = vmx_get_exit_qual(vcpu); 4830 if (!(vcpu->guest_debug & 4831 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4832 if (is_icebp(intr_info)) 4833 WARN_ON(!skip_emulated_instruction(vcpu)); 4834 4835 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 4836 return 1; 4837 } 4838 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 4839 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4840 fallthrough; 4841 case BP_VECTOR: 4842 /* 4843 * Update instruction length as we may reinject #BP from 4844 * user space while in guest debugging mode. Reading it for 4845 * #DB as well causes no harm, it is not used in that case. 4846 */ 4847 vmx->vcpu.arch.event_exit_inst_len = 4848 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4849 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4850 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 4851 kvm_run->debug.arch.exception = ex_no; 4852 break; 4853 case AC_VECTOR: 4854 if (vmx_guest_inject_ac(vcpu)) { 4855 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4856 return 1; 4857 } 4858 4859 /* 4860 * Handle split lock. Depending on detection mode this will 4861 * either warn and disable split lock detection for this 4862 * task or force SIGBUS on it. 4863 */ 4864 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 4865 return 1; 4866 fallthrough; 4867 default: 4868 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4869 kvm_run->ex.exception = ex_no; 4870 kvm_run->ex.error_code = error_code; 4871 break; 4872 } 4873 return 0; 4874 } 4875 4876 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 4877 { 4878 ++vcpu->stat.irq_exits; 4879 return 1; 4880 } 4881 4882 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4883 { 4884 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 4885 vcpu->mmio_needed = 0; 4886 return 0; 4887 } 4888 4889 static int handle_io(struct kvm_vcpu *vcpu) 4890 { 4891 unsigned long exit_qualification; 4892 int size, in, string; 4893 unsigned port; 4894 4895 exit_qualification = vmx_get_exit_qual(vcpu); 4896 string = (exit_qualification & 16) != 0; 4897 4898 ++vcpu->stat.io_exits; 4899 4900 if (string) 4901 return kvm_emulate_instruction(vcpu, 0); 4902 4903 port = exit_qualification >> 16; 4904 size = (exit_qualification & 7) + 1; 4905 in = (exit_qualification & 8) != 0; 4906 4907 return kvm_fast_pio(vcpu, size, port, in); 4908 } 4909 4910 static void 4911 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4912 { 4913 /* 4914 * Patch in the VMCALL instruction: 4915 */ 4916 hypercall[0] = 0x0f; 4917 hypercall[1] = 0x01; 4918 hypercall[2] = 0xc1; 4919 } 4920 4921 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 4922 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 4923 { 4924 if (is_guest_mode(vcpu)) { 4925 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4926 unsigned long orig_val = val; 4927 4928 /* 4929 * We get here when L2 changed cr0 in a way that did not change 4930 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 4931 * but did change L0 shadowed bits. So we first calculate the 4932 * effective cr0 value that L1 would like to write into the 4933 * hardware. It consists of the L2-owned bits from the new 4934 * value combined with the L1-owned bits from L1's guest_cr0. 4935 */ 4936 val = (val & ~vmcs12->cr0_guest_host_mask) | 4937 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 4938 4939 if (!nested_guest_cr0_valid(vcpu, val)) 4940 return 1; 4941 4942 if (kvm_set_cr0(vcpu, val)) 4943 return 1; 4944 vmcs_writel(CR0_READ_SHADOW, orig_val); 4945 return 0; 4946 } else { 4947 if (to_vmx(vcpu)->nested.vmxon && 4948 !nested_host_cr0_valid(vcpu, val)) 4949 return 1; 4950 4951 return kvm_set_cr0(vcpu, val); 4952 } 4953 } 4954 4955 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 4956 { 4957 if (is_guest_mode(vcpu)) { 4958 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4959 unsigned long orig_val = val; 4960 4961 /* analogously to handle_set_cr0 */ 4962 val = (val & ~vmcs12->cr4_guest_host_mask) | 4963 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 4964 if (kvm_set_cr4(vcpu, val)) 4965 return 1; 4966 vmcs_writel(CR4_READ_SHADOW, orig_val); 4967 return 0; 4968 } else 4969 return kvm_set_cr4(vcpu, val); 4970 } 4971 4972 static int handle_desc(struct kvm_vcpu *vcpu) 4973 { 4974 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 4975 return kvm_emulate_instruction(vcpu, 0); 4976 } 4977 4978 static int handle_cr(struct kvm_vcpu *vcpu) 4979 { 4980 unsigned long exit_qualification, val; 4981 int cr; 4982 int reg; 4983 int err; 4984 int ret; 4985 4986 exit_qualification = vmx_get_exit_qual(vcpu); 4987 cr = exit_qualification & 15; 4988 reg = (exit_qualification >> 8) & 15; 4989 switch ((exit_qualification >> 4) & 3) { 4990 case 0: /* mov to cr */ 4991 val = kvm_register_read(vcpu, reg); 4992 trace_kvm_cr_write(cr, val); 4993 switch (cr) { 4994 case 0: 4995 err = handle_set_cr0(vcpu, val); 4996 return kvm_complete_insn_gp(vcpu, err); 4997 case 3: 4998 WARN_ON_ONCE(enable_unrestricted_guest); 4999 err = kvm_set_cr3(vcpu, val); 5000 return kvm_complete_insn_gp(vcpu, err); 5001 case 4: 5002 err = handle_set_cr4(vcpu, val); 5003 return kvm_complete_insn_gp(vcpu, err); 5004 case 8: { 5005 u8 cr8_prev = kvm_get_cr8(vcpu); 5006 u8 cr8 = (u8)val; 5007 err = kvm_set_cr8(vcpu, cr8); 5008 ret = kvm_complete_insn_gp(vcpu, err); 5009 if (lapic_in_kernel(vcpu)) 5010 return ret; 5011 if (cr8_prev <= cr8) 5012 return ret; 5013 /* 5014 * TODO: we might be squashing a 5015 * KVM_GUESTDBG_SINGLESTEP-triggered 5016 * KVM_EXIT_DEBUG here. 5017 */ 5018 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5019 return 0; 5020 } 5021 } 5022 break; 5023 case 2: /* clts */ 5024 WARN_ONCE(1, "Guest should always own CR0.TS"); 5025 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); 5026 trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); 5027 return kvm_skip_emulated_instruction(vcpu); 5028 case 1: /*mov from cr*/ 5029 switch (cr) { 5030 case 3: 5031 WARN_ON_ONCE(enable_unrestricted_guest); 5032 val = kvm_read_cr3(vcpu); 5033 kvm_register_write(vcpu, reg, val); 5034 trace_kvm_cr_read(cr, val); 5035 return kvm_skip_emulated_instruction(vcpu); 5036 case 8: 5037 val = kvm_get_cr8(vcpu); 5038 kvm_register_write(vcpu, reg, val); 5039 trace_kvm_cr_read(cr, val); 5040 return kvm_skip_emulated_instruction(vcpu); 5041 } 5042 break; 5043 case 3: /* lmsw */ 5044 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5045 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 5046 kvm_lmsw(vcpu, val); 5047 5048 return kvm_skip_emulated_instruction(vcpu); 5049 default: 5050 break; 5051 } 5052 vcpu->run->exit_reason = 0; 5053 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5054 (int)(exit_qualification >> 4) & 3, cr); 5055 return 0; 5056 } 5057 5058 static int handle_dr(struct kvm_vcpu *vcpu) 5059 { 5060 unsigned long exit_qualification; 5061 int dr, dr7, reg; 5062 int err = 1; 5063 5064 exit_qualification = vmx_get_exit_qual(vcpu); 5065 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5066 5067 /* First, if DR does not exist, trigger UD */ 5068 if (!kvm_require_dr(vcpu, dr)) 5069 return 1; 5070 5071 if (kvm_x86_ops.get_cpl(vcpu) > 0) 5072 goto out; 5073 5074 dr7 = vmcs_readl(GUEST_DR7); 5075 if (dr7 & DR7_GD) { 5076 /* 5077 * As the vm-exit takes precedence over the debug trap, we 5078 * need to emulate the latter, either for the host or the 5079 * guest debugging itself. 5080 */ 5081 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5082 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5083 vcpu->run->debug.arch.dr7 = dr7; 5084 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5085 vcpu->run->debug.arch.exception = DB_VECTOR; 5086 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5087 return 0; 5088 } else { 5089 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5090 return 1; 5091 } 5092 } 5093 5094 if (vcpu->guest_debug == 0) { 5095 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5096 5097 /* 5098 * No more DR vmexits; force a reload of the debug registers 5099 * and reenter on this instruction. The next vmexit will 5100 * retrieve the full state of the debug registers. 5101 */ 5102 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5103 return 1; 5104 } 5105 5106 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5107 if (exit_qualification & TYPE_MOV_FROM_DR) { 5108 unsigned long val; 5109 5110 kvm_get_dr(vcpu, dr, &val); 5111 kvm_register_write(vcpu, reg, val); 5112 err = 0; 5113 } else { 5114 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5115 } 5116 5117 out: 5118 return kvm_complete_insn_gp(vcpu, err); 5119 } 5120 5121 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5122 { 5123 get_debugreg(vcpu->arch.db[0], 0); 5124 get_debugreg(vcpu->arch.db[1], 1); 5125 get_debugreg(vcpu->arch.db[2], 2); 5126 get_debugreg(vcpu->arch.db[3], 3); 5127 get_debugreg(vcpu->arch.dr6, 6); 5128 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5129 5130 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5131 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5132 } 5133 5134 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5135 { 5136 vmcs_writel(GUEST_DR7, val); 5137 } 5138 5139 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5140 { 5141 kvm_apic_update_ppr(vcpu); 5142 return 1; 5143 } 5144 5145 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5146 { 5147 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5148 5149 kvm_make_request(KVM_REQ_EVENT, vcpu); 5150 5151 ++vcpu->stat.irq_window_exits; 5152 return 1; 5153 } 5154 5155 static int handle_invlpg(struct kvm_vcpu *vcpu) 5156 { 5157 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5158 5159 kvm_mmu_invlpg(vcpu, exit_qualification); 5160 return kvm_skip_emulated_instruction(vcpu); 5161 } 5162 5163 static int handle_apic_access(struct kvm_vcpu *vcpu) 5164 { 5165 if (likely(fasteoi)) { 5166 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5167 int access_type, offset; 5168 5169 access_type = exit_qualification & APIC_ACCESS_TYPE; 5170 offset = exit_qualification & APIC_ACCESS_OFFSET; 5171 /* 5172 * Sane guest uses MOV to write EOI, with written value 5173 * not cared. So make a short-circuit here by avoiding 5174 * heavy instruction emulation. 5175 */ 5176 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5177 (offset == APIC_EOI)) { 5178 kvm_lapic_set_eoi(vcpu); 5179 return kvm_skip_emulated_instruction(vcpu); 5180 } 5181 } 5182 return kvm_emulate_instruction(vcpu, 0); 5183 } 5184 5185 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5186 { 5187 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5188 int vector = exit_qualification & 0xff; 5189 5190 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5191 kvm_apic_set_eoi_accelerated(vcpu, vector); 5192 return 1; 5193 } 5194 5195 static int handle_apic_write(struct kvm_vcpu *vcpu) 5196 { 5197 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5198 u32 offset = exit_qualification & 0xfff; 5199 5200 /* APIC-write VM exit is trap-like and thus no need to adjust IP */ 5201 kvm_apic_write_nodecode(vcpu, offset); 5202 return 1; 5203 } 5204 5205 static int handle_task_switch(struct kvm_vcpu *vcpu) 5206 { 5207 struct vcpu_vmx *vmx = to_vmx(vcpu); 5208 unsigned long exit_qualification; 5209 bool has_error_code = false; 5210 u32 error_code = 0; 5211 u16 tss_selector; 5212 int reason, type, idt_v, idt_index; 5213 5214 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5215 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5216 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5217 5218 exit_qualification = vmx_get_exit_qual(vcpu); 5219 5220 reason = (u32)exit_qualification >> 30; 5221 if (reason == TASK_SWITCH_GATE && idt_v) { 5222 switch (type) { 5223 case INTR_TYPE_NMI_INTR: 5224 vcpu->arch.nmi_injected = false; 5225 vmx_set_nmi_mask(vcpu, true); 5226 break; 5227 case INTR_TYPE_EXT_INTR: 5228 case INTR_TYPE_SOFT_INTR: 5229 kvm_clear_interrupt_queue(vcpu); 5230 break; 5231 case INTR_TYPE_HARD_EXCEPTION: 5232 if (vmx->idt_vectoring_info & 5233 VECTORING_INFO_DELIVER_CODE_MASK) { 5234 has_error_code = true; 5235 error_code = 5236 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5237 } 5238 fallthrough; 5239 case INTR_TYPE_SOFT_EXCEPTION: 5240 kvm_clear_exception_queue(vcpu); 5241 break; 5242 default: 5243 break; 5244 } 5245 } 5246 tss_selector = exit_qualification; 5247 5248 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5249 type != INTR_TYPE_EXT_INTR && 5250 type != INTR_TYPE_NMI_INTR)) 5251 WARN_ON(!skip_emulated_instruction(vcpu)); 5252 5253 /* 5254 * TODO: What about debug traps on tss switch? 5255 * Are we supposed to inject them and update dr6? 5256 */ 5257 return kvm_task_switch(vcpu, tss_selector, 5258 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5259 reason, has_error_code, error_code); 5260 } 5261 5262 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5263 { 5264 unsigned long exit_qualification; 5265 gpa_t gpa; 5266 u64 error_code; 5267 5268 exit_qualification = vmx_get_exit_qual(vcpu); 5269 5270 /* 5271 * EPT violation happened while executing iret from NMI, 5272 * "blocked by NMI" bit has to be set before next VM entry. 5273 * There are errata that may cause this bit to not be set: 5274 * AAK134, BY25. 5275 */ 5276 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5277 enable_vnmi && 5278 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5279 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5280 5281 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5282 trace_kvm_page_fault(gpa, exit_qualification); 5283 5284 /* Is it a read fault? */ 5285 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5286 ? PFERR_USER_MASK : 0; 5287 /* Is it a write fault? */ 5288 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5289 ? PFERR_WRITE_MASK : 0; 5290 /* Is it a fetch fault? */ 5291 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5292 ? PFERR_FETCH_MASK : 0; 5293 /* ept page table entry is present? */ 5294 error_code |= (exit_qualification & 5295 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5296 EPT_VIOLATION_EXECUTABLE)) 5297 ? PFERR_PRESENT_MASK : 0; 5298 5299 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5300 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5301 5302 vcpu->arch.exit_qualification = exit_qualification; 5303 5304 /* 5305 * Check that the GPA doesn't exceed physical memory limits, as that is 5306 * a guest page fault. We have to emulate the instruction here, because 5307 * if the illegal address is that of a paging structure, then 5308 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5309 * would also use advanced VM-exit information for EPT violations to 5310 * reconstruct the page fault error code. 5311 */ 5312 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5313 return kvm_emulate_instruction(vcpu, 0); 5314 5315 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5316 } 5317 5318 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5319 { 5320 gpa_t gpa; 5321 5322 if (!vmx_can_emulate_instruction(vcpu, NULL, 0)) 5323 return 1; 5324 5325 /* 5326 * A nested guest cannot optimize MMIO vmexits, because we have an 5327 * nGPA here instead of the required GPA. 5328 */ 5329 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5330 if (!is_guest_mode(vcpu) && 5331 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5332 trace_kvm_fast_mmio(gpa); 5333 return kvm_skip_emulated_instruction(vcpu); 5334 } 5335 5336 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5337 } 5338 5339 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5340 { 5341 WARN_ON_ONCE(!enable_vnmi); 5342 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5343 ++vcpu->stat.nmi_window_exits; 5344 kvm_make_request(KVM_REQ_EVENT, vcpu); 5345 5346 return 1; 5347 } 5348 5349 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5350 { 5351 struct vcpu_vmx *vmx = to_vmx(vcpu); 5352 bool intr_window_requested; 5353 unsigned count = 130; 5354 5355 intr_window_requested = exec_controls_get(vmx) & 5356 CPU_BASED_INTR_WINDOW_EXITING; 5357 5358 while (vmx->emulation_required && count-- != 0) { 5359 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5360 return handle_interrupt_window(&vmx->vcpu); 5361 5362 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5363 return 1; 5364 5365 if (!kvm_emulate_instruction(vcpu, 0)) 5366 return 0; 5367 5368 if (vmx->emulation_required && !vmx->rmode.vm86_active && 5369 vcpu->arch.exception.pending) { 5370 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5371 vcpu->run->internal.suberror = 5372 KVM_INTERNAL_ERROR_EMULATION; 5373 vcpu->run->internal.ndata = 0; 5374 return 0; 5375 } 5376 5377 if (vcpu->arch.halt_request) { 5378 vcpu->arch.halt_request = 0; 5379 return kvm_vcpu_halt(vcpu); 5380 } 5381 5382 /* 5383 * Note, return 1 and not 0, vcpu_run() will invoke 5384 * xfer_to_guest_mode() which will create a proper return 5385 * code. 5386 */ 5387 if (__xfer_to_guest_mode_work_pending()) 5388 return 1; 5389 } 5390 5391 return 1; 5392 } 5393 5394 static void grow_ple_window(struct kvm_vcpu *vcpu) 5395 { 5396 struct vcpu_vmx *vmx = to_vmx(vcpu); 5397 unsigned int old = vmx->ple_window; 5398 5399 vmx->ple_window = __grow_ple_window(old, ple_window, 5400 ple_window_grow, 5401 ple_window_max); 5402 5403 if (vmx->ple_window != old) { 5404 vmx->ple_window_dirty = true; 5405 trace_kvm_ple_window_update(vcpu->vcpu_id, 5406 vmx->ple_window, old); 5407 } 5408 } 5409 5410 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5411 { 5412 struct vcpu_vmx *vmx = to_vmx(vcpu); 5413 unsigned int old = vmx->ple_window; 5414 5415 vmx->ple_window = __shrink_ple_window(old, ple_window, 5416 ple_window_shrink, 5417 ple_window); 5418 5419 if (vmx->ple_window != old) { 5420 vmx->ple_window_dirty = true; 5421 trace_kvm_ple_window_update(vcpu->vcpu_id, 5422 vmx->ple_window, old); 5423 } 5424 } 5425 5426 /* 5427 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5428 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5429 */ 5430 static int handle_pause(struct kvm_vcpu *vcpu) 5431 { 5432 if (!kvm_pause_in_guest(vcpu->kvm)) 5433 grow_ple_window(vcpu); 5434 5435 /* 5436 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5437 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5438 * never set PAUSE_EXITING and just set PLE if supported, 5439 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5440 */ 5441 kvm_vcpu_on_spin(vcpu, true); 5442 return kvm_skip_emulated_instruction(vcpu); 5443 } 5444 5445 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5446 { 5447 return 1; 5448 } 5449 5450 static int handle_invpcid(struct kvm_vcpu *vcpu) 5451 { 5452 u32 vmx_instruction_info; 5453 unsigned long type; 5454 gva_t gva; 5455 struct { 5456 u64 pcid; 5457 u64 gla; 5458 } operand; 5459 5460 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5461 kvm_queue_exception(vcpu, UD_VECTOR); 5462 return 1; 5463 } 5464 5465 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5466 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf); 5467 5468 if (type > 3) { 5469 kvm_inject_gp(vcpu, 0); 5470 return 1; 5471 } 5472 5473 /* According to the Intel instruction reference, the memory operand 5474 * is read even if it isn't needed (e.g., for type==all) 5475 */ 5476 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5477 vmx_instruction_info, false, 5478 sizeof(operand), &gva)) 5479 return 1; 5480 5481 return kvm_handle_invpcid(vcpu, type, gva); 5482 } 5483 5484 static int handle_pml_full(struct kvm_vcpu *vcpu) 5485 { 5486 unsigned long exit_qualification; 5487 5488 trace_kvm_pml_full(vcpu->vcpu_id); 5489 5490 exit_qualification = vmx_get_exit_qual(vcpu); 5491 5492 /* 5493 * PML buffer FULL happened while executing iret from NMI, 5494 * "blocked by NMI" bit has to be set before next VM entry. 5495 */ 5496 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5497 enable_vnmi && 5498 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5499 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5500 GUEST_INTR_STATE_NMI); 5501 5502 /* 5503 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5504 * here.., and there's no userspace involvement needed for PML. 5505 */ 5506 return 1; 5507 } 5508 5509 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5510 { 5511 struct vcpu_vmx *vmx = to_vmx(vcpu); 5512 5513 if (!vmx->req_immediate_exit && 5514 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 5515 kvm_lapic_expired_hv_timer(vcpu); 5516 return EXIT_FASTPATH_REENTER_GUEST; 5517 } 5518 5519 return EXIT_FASTPATH_NONE; 5520 } 5521 5522 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5523 { 5524 handle_fastpath_preemption_timer(vcpu); 5525 return 1; 5526 } 5527 5528 /* 5529 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5530 * are overwritten by nested_vmx_setup() when nested=1. 5531 */ 5532 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5533 { 5534 kvm_queue_exception(vcpu, UD_VECTOR); 5535 return 1; 5536 } 5537 5538 #ifndef CONFIG_X86_SGX_KVM 5539 static int handle_encls(struct kvm_vcpu *vcpu) 5540 { 5541 /* 5542 * SGX virtualization is disabled. There is no software enable bit for 5543 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 5544 * the guest from executing ENCLS (when SGX is supported by hardware). 5545 */ 5546 kvm_queue_exception(vcpu, UD_VECTOR); 5547 return 1; 5548 } 5549 #endif /* CONFIG_X86_SGX_KVM */ 5550 5551 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 5552 { 5553 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 5554 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 5555 return 0; 5556 } 5557 5558 /* 5559 * The exit handlers return 1 if the exit was handled fully and guest execution 5560 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5561 * to be done to userspace and return 0. 5562 */ 5563 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5564 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 5565 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5566 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5567 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5568 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5569 [EXIT_REASON_CR_ACCESS] = handle_cr, 5570 [EXIT_REASON_DR_ACCESS] = handle_dr, 5571 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 5572 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 5573 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 5574 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 5575 [EXIT_REASON_HLT] = kvm_emulate_halt, 5576 [EXIT_REASON_INVD] = kvm_emulate_invd, 5577 [EXIT_REASON_INVLPG] = handle_invlpg, 5578 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 5579 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 5580 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5581 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5582 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5583 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5584 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5585 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5586 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5587 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5588 [EXIT_REASON_VMON] = handle_vmx_instruction, 5589 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5590 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5591 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5592 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5593 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 5594 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 5595 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5596 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5597 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5598 [EXIT_REASON_LDTR_TR] = handle_desc, 5599 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5600 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5601 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5602 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 5603 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5604 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 5605 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5606 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5607 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 5608 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 5609 [EXIT_REASON_PML_FULL] = handle_pml_full, 5610 [EXIT_REASON_INVPCID] = handle_invpcid, 5611 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5612 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5613 [EXIT_REASON_ENCLS] = handle_encls, 5614 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 5615 }; 5616 5617 static const int kvm_vmx_max_exit_handlers = 5618 ARRAY_SIZE(kvm_vmx_exit_handlers); 5619 5620 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, 5621 u32 *intr_info, u32 *error_code) 5622 { 5623 struct vcpu_vmx *vmx = to_vmx(vcpu); 5624 5625 *info1 = vmx_get_exit_qual(vcpu); 5626 if (!(vmx->exit_reason.failed_vmentry)) { 5627 *info2 = vmx->idt_vectoring_info; 5628 *intr_info = vmx_get_intr_info(vcpu); 5629 if (is_exception_with_error_code(*intr_info)) 5630 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5631 else 5632 *error_code = 0; 5633 } else { 5634 *info2 = 0; 5635 *intr_info = 0; 5636 *error_code = 0; 5637 } 5638 } 5639 5640 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5641 { 5642 if (vmx->pml_pg) { 5643 __free_page(vmx->pml_pg); 5644 vmx->pml_pg = NULL; 5645 } 5646 } 5647 5648 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5649 { 5650 struct vcpu_vmx *vmx = to_vmx(vcpu); 5651 u64 *pml_buf; 5652 u16 pml_idx; 5653 5654 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5655 5656 /* Do nothing if PML buffer is empty */ 5657 if (pml_idx == (PML_ENTITY_NUM - 1)) 5658 return; 5659 5660 /* PML index always points to next available PML buffer entity */ 5661 if (pml_idx >= PML_ENTITY_NUM) 5662 pml_idx = 0; 5663 else 5664 pml_idx++; 5665 5666 pml_buf = page_address(vmx->pml_pg); 5667 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5668 u64 gpa; 5669 5670 gpa = pml_buf[pml_idx]; 5671 WARN_ON(gpa & (PAGE_SIZE - 1)); 5672 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5673 } 5674 5675 /* reset PML index */ 5676 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5677 } 5678 5679 static void vmx_dump_sel(char *name, uint32_t sel) 5680 { 5681 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5682 name, vmcs_read16(sel), 5683 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5684 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5685 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5686 } 5687 5688 static void vmx_dump_dtsel(char *name, uint32_t limit) 5689 { 5690 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5691 name, vmcs_read32(limit), 5692 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5693 } 5694 5695 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 5696 { 5697 unsigned int i; 5698 struct vmx_msr_entry *e; 5699 5700 pr_err("MSR %s:\n", name); 5701 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 5702 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 5703 } 5704 5705 void dump_vmcs(struct kvm_vcpu *vcpu) 5706 { 5707 struct vcpu_vmx *vmx = to_vmx(vcpu); 5708 u32 vmentry_ctl, vmexit_ctl; 5709 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 5710 unsigned long cr4; 5711 int efer_slot; 5712 5713 if (!dump_invalid_vmcs) { 5714 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 5715 return; 5716 } 5717 5718 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5719 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5720 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5721 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5722 cr4 = vmcs_readl(GUEST_CR4); 5723 secondary_exec_control = 0; 5724 if (cpu_has_secondary_exec_ctrls()) 5725 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5726 5727 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 5728 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 5729 pr_err("*** Guest State ***\n"); 5730 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5731 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5732 vmcs_readl(CR0_GUEST_HOST_MASK)); 5733 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5734 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5735 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5736 if (cpu_has_vmx_ept()) { 5737 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5738 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5739 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5740 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5741 } 5742 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5743 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5744 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5745 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5746 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5747 vmcs_readl(GUEST_SYSENTER_ESP), 5748 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5749 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5750 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5751 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5752 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5753 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5754 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5755 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5756 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5757 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5758 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5759 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 5760 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 5761 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 5762 else if (efer_slot >= 0) 5763 pr_err("EFER= 0x%016llx (autoload)\n", 5764 vmx->msr_autoload.guest.val[efer_slot].value); 5765 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 5766 pr_err("EFER= 0x%016llx (effective)\n", 5767 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 5768 else 5769 pr_err("EFER= 0x%016llx (effective)\n", 5770 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 5771 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 5772 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 5773 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5774 vmcs_read64(GUEST_IA32_DEBUGCTL), 5775 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5776 if (cpu_has_load_perf_global_ctrl() && 5777 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5778 pr_err("PerfGlobCtl = 0x%016llx\n", 5779 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5780 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5781 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5782 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5783 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5784 vmcs_read32(GUEST_ACTIVITY_STATE)); 5785 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5786 pr_err("InterruptStatus = %04x\n", 5787 vmcs_read16(GUEST_INTR_STATUS)); 5788 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 5789 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 5790 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 5791 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 5792 5793 pr_err("*** Host State ***\n"); 5794 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5795 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5796 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5797 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5798 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5799 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5800 vmcs_read16(HOST_TR_SELECTOR)); 5801 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5802 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5803 vmcs_readl(HOST_TR_BASE)); 5804 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5805 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5806 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5807 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5808 vmcs_readl(HOST_CR4)); 5809 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5810 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5811 vmcs_read32(HOST_IA32_SYSENTER_CS), 5812 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5813 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 5814 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 5815 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 5816 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 5817 if (cpu_has_load_perf_global_ctrl() && 5818 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5819 pr_err("PerfGlobCtl = 0x%016llx\n", 5820 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5821 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 5822 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 5823 5824 pr_err("*** Control State ***\n"); 5825 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5826 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5827 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5828 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5829 vmcs_read32(EXCEPTION_BITMAP), 5830 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5831 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5832 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5833 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5834 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5835 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5836 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5837 vmcs_read32(VM_EXIT_INTR_INFO), 5838 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5839 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5840 pr_err(" reason=%08x qualification=%016lx\n", 5841 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5842 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5843 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5844 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5845 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5846 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5847 pr_err("TSC Multiplier = 0x%016llx\n", 5848 vmcs_read64(TSC_MULTIPLIER)); 5849 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5850 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5851 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5852 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5853 } 5854 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5855 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5856 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5857 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5858 } 5859 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 5860 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 5861 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 5862 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 5863 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 5864 pr_err("PLE Gap=%08x Window=%08x\n", 5865 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 5866 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 5867 pr_err("Virtual processor ID = 0x%04x\n", 5868 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 5869 } 5870 5871 /* 5872 * The guest has exited. See if we can fix it or if we need userspace 5873 * assistance. 5874 */ 5875 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 5876 { 5877 struct vcpu_vmx *vmx = to_vmx(vcpu); 5878 union vmx_exit_reason exit_reason = vmx->exit_reason; 5879 u32 vectoring_info = vmx->idt_vectoring_info; 5880 u16 exit_handler_index; 5881 5882 /* 5883 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 5884 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 5885 * querying dirty_bitmap, we only need to kick all vcpus out of guest 5886 * mode as if vcpus is in root mode, the PML buffer must has been 5887 * flushed already. Note, PML is never enabled in hardware while 5888 * running L2. 5889 */ 5890 if (enable_pml && !is_guest_mode(vcpu)) 5891 vmx_flush_pml_buffer(vcpu); 5892 5893 /* 5894 * We should never reach this point with a pending nested VM-Enter, and 5895 * more specifically emulation of L2 due to invalid guest state (see 5896 * below) should never happen as that means we incorrectly allowed a 5897 * nested VM-Enter with an invalid vmcs12. 5898 */ 5899 WARN_ON_ONCE(vmx->nested.nested_run_pending); 5900 5901 /* If guest state is invalid, start emulating */ 5902 if (vmx->emulation_required) 5903 return handle_invalid_guest_state(vcpu); 5904 5905 if (is_guest_mode(vcpu)) { 5906 /* 5907 * PML is never enabled when running L2, bail immediately if a 5908 * PML full exit occurs as something is horribly wrong. 5909 */ 5910 if (exit_reason.basic == EXIT_REASON_PML_FULL) 5911 goto unexpected_vmexit; 5912 5913 /* 5914 * The host physical addresses of some pages of guest memory 5915 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 5916 * Page). The CPU may write to these pages via their host 5917 * physical address while L2 is running, bypassing any 5918 * address-translation-based dirty tracking (e.g. EPT write 5919 * protection). 5920 * 5921 * Mark them dirty on every exit from L2 to prevent them from 5922 * getting out of sync with dirty tracking. 5923 */ 5924 nested_mark_vmcs12_pages_dirty(vcpu); 5925 5926 if (nested_vmx_reflect_vmexit(vcpu)) 5927 return 1; 5928 } 5929 5930 if (exit_reason.failed_vmentry) { 5931 dump_vmcs(vcpu); 5932 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5933 vcpu->run->fail_entry.hardware_entry_failure_reason 5934 = exit_reason.full; 5935 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 5936 return 0; 5937 } 5938 5939 if (unlikely(vmx->fail)) { 5940 dump_vmcs(vcpu); 5941 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5942 vcpu->run->fail_entry.hardware_entry_failure_reason 5943 = vmcs_read32(VM_INSTRUCTION_ERROR); 5944 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 5945 return 0; 5946 } 5947 5948 /* 5949 * Note: 5950 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 5951 * delivery event since it indicates guest is accessing MMIO. 5952 * The vm-exit can be triggered again after return to guest that 5953 * will cause infinite loop. 5954 */ 5955 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 5956 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 5957 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 5958 exit_reason.basic != EXIT_REASON_PML_FULL && 5959 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 5960 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) { 5961 int ndata = 3; 5962 5963 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5964 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 5965 vcpu->run->internal.data[0] = vectoring_info; 5966 vcpu->run->internal.data[1] = exit_reason.full; 5967 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 5968 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 5969 vcpu->run->internal.data[ndata++] = 5970 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5971 } 5972 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 5973 vcpu->run->internal.ndata = ndata; 5974 return 0; 5975 } 5976 5977 if (unlikely(!enable_vnmi && 5978 vmx->loaded_vmcs->soft_vnmi_blocked)) { 5979 if (!vmx_interrupt_blocked(vcpu)) { 5980 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5981 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 5982 vcpu->arch.nmi_pending) { 5983 /* 5984 * This CPU don't support us in finding the end of an 5985 * NMI-blocked window if the guest runs with IRQs 5986 * disabled. So we pull the trigger after 1 s of 5987 * futile waiting, but inform the user about this. 5988 */ 5989 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 5990 "state on VCPU %d after 1 s timeout\n", 5991 __func__, vcpu->vcpu_id); 5992 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5993 } 5994 } 5995 5996 if (exit_fastpath != EXIT_FASTPATH_NONE) 5997 return 1; 5998 5999 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6000 goto unexpected_vmexit; 6001 #ifdef CONFIG_RETPOLINE 6002 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6003 return kvm_emulate_wrmsr(vcpu); 6004 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6005 return handle_preemption_timer(vcpu); 6006 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6007 return handle_interrupt_window(vcpu); 6008 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6009 return handle_external_interrupt(vcpu); 6010 else if (exit_reason.basic == EXIT_REASON_HLT) 6011 return kvm_emulate_halt(vcpu); 6012 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6013 return handle_ept_misconfig(vcpu); 6014 #endif 6015 6016 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6017 kvm_vmx_max_exit_handlers); 6018 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6019 goto unexpected_vmexit; 6020 6021 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6022 6023 unexpected_vmexit: 6024 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6025 exit_reason.full); 6026 dump_vmcs(vcpu); 6027 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6028 vcpu->run->internal.suberror = 6029 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6030 vcpu->run->internal.ndata = 2; 6031 vcpu->run->internal.data[0] = exit_reason.full; 6032 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6033 return 0; 6034 } 6035 6036 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6037 { 6038 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6039 6040 /* 6041 * Even when current exit reason is handled by KVM internally, we 6042 * still need to exit to user space when bus lock detected to inform 6043 * that there is a bus lock in guest. 6044 */ 6045 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6046 if (ret > 0) 6047 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6048 6049 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6050 return 0; 6051 } 6052 return ret; 6053 } 6054 6055 /* 6056 * Software based L1D cache flush which is used when microcode providing 6057 * the cache control MSR is not loaded. 6058 * 6059 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6060 * flush it is required to read in 64 KiB because the replacement algorithm 6061 * is not exactly LRU. This could be sized at runtime via topology 6062 * information but as all relevant affected CPUs have 32KiB L1D cache size 6063 * there is no point in doing so. 6064 */ 6065 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6066 { 6067 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6068 6069 /* 6070 * This code is only executed when the the flush mode is 'cond' or 6071 * 'always' 6072 */ 6073 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6074 bool flush_l1d; 6075 6076 /* 6077 * Clear the per-vcpu flush bit, it gets set again 6078 * either from vcpu_run() or from one of the unsafe 6079 * VMEXIT handlers. 6080 */ 6081 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6082 vcpu->arch.l1tf_flush_l1d = false; 6083 6084 /* 6085 * Clear the per-cpu flush bit, it gets set again from 6086 * the interrupt handlers. 6087 */ 6088 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6089 kvm_clear_cpu_l1tf_flush_l1d(); 6090 6091 if (!flush_l1d) 6092 return; 6093 } 6094 6095 vcpu->stat.l1d_flush++; 6096 6097 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6098 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6099 return; 6100 } 6101 6102 asm volatile( 6103 /* First ensure the pages are in the TLB */ 6104 "xorl %%eax, %%eax\n" 6105 ".Lpopulate_tlb:\n\t" 6106 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6107 "addl $4096, %%eax\n\t" 6108 "cmpl %%eax, %[size]\n\t" 6109 "jne .Lpopulate_tlb\n\t" 6110 "xorl %%eax, %%eax\n\t" 6111 "cpuid\n\t" 6112 /* Now fill the cache */ 6113 "xorl %%eax, %%eax\n" 6114 ".Lfill_cache:\n" 6115 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6116 "addl $64, %%eax\n\t" 6117 "cmpl %%eax, %[size]\n\t" 6118 "jne .Lfill_cache\n\t" 6119 "lfence\n" 6120 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6121 [size] "r" (size) 6122 : "eax", "ebx", "ecx", "edx"); 6123 } 6124 6125 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6126 { 6127 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6128 int tpr_threshold; 6129 6130 if (is_guest_mode(vcpu) && 6131 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6132 return; 6133 6134 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6135 if (is_guest_mode(vcpu)) 6136 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6137 else 6138 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6139 } 6140 6141 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6142 { 6143 struct vcpu_vmx *vmx = to_vmx(vcpu); 6144 u32 sec_exec_control; 6145 6146 if (!lapic_in_kernel(vcpu)) 6147 return; 6148 6149 if (!flexpriority_enabled && 6150 !cpu_has_vmx_virtualize_x2apic_mode()) 6151 return; 6152 6153 /* Postpone execution until vmcs01 is the current VMCS. */ 6154 if (is_guest_mode(vcpu)) { 6155 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6156 return; 6157 } 6158 6159 sec_exec_control = secondary_exec_controls_get(vmx); 6160 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6161 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6162 6163 switch (kvm_get_apic_mode(vcpu)) { 6164 case LAPIC_MODE_INVALID: 6165 WARN_ONCE(true, "Invalid local APIC state"); 6166 break; 6167 case LAPIC_MODE_DISABLED: 6168 break; 6169 case LAPIC_MODE_XAPIC: 6170 if (flexpriority_enabled) { 6171 sec_exec_control |= 6172 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6173 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6174 6175 /* 6176 * Flush the TLB, reloading the APIC access page will 6177 * only do so if its physical address has changed, but 6178 * the guest may have inserted a non-APIC mapping into 6179 * the TLB while the APIC access page was disabled. 6180 */ 6181 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6182 } 6183 break; 6184 case LAPIC_MODE_X2APIC: 6185 if (cpu_has_vmx_virtualize_x2apic_mode()) 6186 sec_exec_control |= 6187 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6188 break; 6189 } 6190 secondary_exec_controls_set(vmx, sec_exec_control); 6191 6192 vmx_update_msr_bitmap(vcpu); 6193 } 6194 6195 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6196 { 6197 struct page *page; 6198 6199 /* Defer reload until vmcs01 is the current VMCS. */ 6200 if (is_guest_mode(vcpu)) { 6201 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6202 return; 6203 } 6204 6205 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6206 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6207 return; 6208 6209 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6210 if (is_error_page(page)) 6211 return; 6212 6213 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page)); 6214 vmx_flush_tlb_current(vcpu); 6215 6216 /* 6217 * Do not pin apic access page in memory, the MMU notifier 6218 * will call us again if it is migrated or swapped out. 6219 */ 6220 put_page(page); 6221 } 6222 6223 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6224 { 6225 u16 status; 6226 u8 old; 6227 6228 if (max_isr == -1) 6229 max_isr = 0; 6230 6231 status = vmcs_read16(GUEST_INTR_STATUS); 6232 old = status >> 8; 6233 if (max_isr != old) { 6234 status &= 0xff; 6235 status |= max_isr << 8; 6236 vmcs_write16(GUEST_INTR_STATUS, status); 6237 } 6238 } 6239 6240 static void vmx_set_rvi(int vector) 6241 { 6242 u16 status; 6243 u8 old; 6244 6245 if (vector == -1) 6246 vector = 0; 6247 6248 status = vmcs_read16(GUEST_INTR_STATUS); 6249 old = (u8)status & 0xff; 6250 if ((u8)vector != old) { 6251 status &= ~0xff; 6252 status |= (u8)vector; 6253 vmcs_write16(GUEST_INTR_STATUS, status); 6254 } 6255 } 6256 6257 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6258 { 6259 /* 6260 * When running L2, updating RVI is only relevant when 6261 * vmcs12 virtual-interrupt-delivery enabled. 6262 * However, it can be enabled only when L1 also 6263 * intercepts external-interrupts and in that case 6264 * we should not update vmcs02 RVI but instead intercept 6265 * interrupt. Therefore, do nothing when running L2. 6266 */ 6267 if (!is_guest_mode(vcpu)) 6268 vmx_set_rvi(max_irr); 6269 } 6270 6271 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6272 { 6273 struct vcpu_vmx *vmx = to_vmx(vcpu); 6274 int max_irr; 6275 bool max_irr_updated; 6276 6277 WARN_ON(!vcpu->arch.apicv_active); 6278 if (pi_test_on(&vmx->pi_desc)) { 6279 pi_clear_on(&vmx->pi_desc); 6280 /* 6281 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6282 * But on x86 this is just a compiler barrier anyway. 6283 */ 6284 smp_mb__after_atomic(); 6285 max_irr_updated = 6286 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6287 6288 /* 6289 * If we are running L2 and L1 has a new pending interrupt 6290 * which can be injected, we should re-evaluate 6291 * what should be done with this new L1 interrupt. 6292 * If L1 intercepts external-interrupts, we should 6293 * exit from L2 to L1. Otherwise, interrupt should be 6294 * delivered directly to L2. 6295 */ 6296 if (is_guest_mode(vcpu) && max_irr_updated) { 6297 if (nested_exit_on_intr(vcpu)) 6298 kvm_vcpu_exiting_guest_mode(vcpu); 6299 else 6300 kvm_make_request(KVM_REQ_EVENT, vcpu); 6301 } 6302 } else { 6303 max_irr = kvm_lapic_find_highest_irr(vcpu); 6304 } 6305 vmx_hwapic_irr_update(vcpu, max_irr); 6306 return max_irr; 6307 } 6308 6309 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6310 { 6311 if (!kvm_vcpu_apicv_active(vcpu)) 6312 return; 6313 6314 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6315 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6316 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6317 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6318 } 6319 6320 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6321 { 6322 struct vcpu_vmx *vmx = to_vmx(vcpu); 6323 6324 pi_clear_on(&vmx->pi_desc); 6325 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6326 } 6327 6328 void vmx_do_interrupt_nmi_irqoff(unsigned long entry); 6329 6330 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, 6331 unsigned long entry) 6332 { 6333 kvm_before_interrupt(vcpu); 6334 vmx_do_interrupt_nmi_irqoff(entry); 6335 kvm_after_interrupt(vcpu); 6336 } 6337 6338 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) 6339 { 6340 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist; 6341 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6342 6343 /* if exit due to PF check for async PF */ 6344 if (is_page_fault(intr_info)) 6345 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6346 /* Handle machine checks before interrupts are enabled */ 6347 else if (is_machine_check(intr_info)) 6348 kvm_machine_check(); 6349 /* We need to handle NMIs before interrupts are enabled */ 6350 else if (is_nmi(intr_info)) 6351 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry); 6352 } 6353 6354 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6355 { 6356 u32 intr_info = vmx_get_intr_info(vcpu); 6357 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6358 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6359 6360 if (WARN_ONCE(!is_external_intr(intr_info), 6361 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6362 return; 6363 6364 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc)); 6365 } 6366 6367 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6368 { 6369 struct vcpu_vmx *vmx = to_vmx(vcpu); 6370 6371 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6372 handle_external_interrupt_irqoff(vcpu); 6373 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6374 handle_exception_nmi_irqoff(vmx); 6375 } 6376 6377 /* 6378 * The kvm parameter can be NULL (module initialization, or invocation before 6379 * VM creation). Be sure to check the kvm parameter before using it. 6380 */ 6381 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6382 { 6383 switch (index) { 6384 case MSR_IA32_SMBASE: 6385 /* 6386 * We cannot do SMM unless we can run the guest in big 6387 * real mode. 6388 */ 6389 return enable_unrestricted_guest || emulate_invalid_guest_state; 6390 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 6391 return nested; 6392 case MSR_AMD64_VIRT_SPEC_CTRL: 6393 /* This is AMD only. */ 6394 return false; 6395 default: 6396 return true; 6397 } 6398 } 6399 6400 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6401 { 6402 u32 exit_intr_info; 6403 bool unblock_nmi; 6404 u8 vector; 6405 bool idtv_info_valid; 6406 6407 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6408 6409 if (enable_vnmi) { 6410 if (vmx->loaded_vmcs->nmi_known_unmasked) 6411 return; 6412 6413 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 6414 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6415 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6416 /* 6417 * SDM 3: 27.7.1.2 (September 2008) 6418 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6419 * a guest IRET fault. 6420 * SDM 3: 23.2.2 (September 2008) 6421 * Bit 12 is undefined in any of the following cases: 6422 * If the VM exit sets the valid bit in the IDT-vectoring 6423 * information field. 6424 * If the VM exit is due to a double fault. 6425 */ 6426 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6427 vector != DF_VECTOR && !idtv_info_valid) 6428 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6429 GUEST_INTR_STATE_NMI); 6430 else 6431 vmx->loaded_vmcs->nmi_known_unmasked = 6432 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6433 & GUEST_INTR_STATE_NMI); 6434 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6435 vmx->loaded_vmcs->vnmi_blocked_time += 6436 ktime_to_ns(ktime_sub(ktime_get(), 6437 vmx->loaded_vmcs->entry_time)); 6438 } 6439 6440 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6441 u32 idt_vectoring_info, 6442 int instr_len_field, 6443 int error_code_field) 6444 { 6445 u8 vector; 6446 int type; 6447 bool idtv_info_valid; 6448 6449 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6450 6451 vcpu->arch.nmi_injected = false; 6452 kvm_clear_exception_queue(vcpu); 6453 kvm_clear_interrupt_queue(vcpu); 6454 6455 if (!idtv_info_valid) 6456 return; 6457 6458 kvm_make_request(KVM_REQ_EVENT, vcpu); 6459 6460 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6461 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6462 6463 switch (type) { 6464 case INTR_TYPE_NMI_INTR: 6465 vcpu->arch.nmi_injected = true; 6466 /* 6467 * SDM 3: 27.7.1.2 (September 2008) 6468 * Clear bit "block by NMI" before VM entry if a NMI 6469 * delivery faulted. 6470 */ 6471 vmx_set_nmi_mask(vcpu, false); 6472 break; 6473 case INTR_TYPE_SOFT_EXCEPTION: 6474 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6475 fallthrough; 6476 case INTR_TYPE_HARD_EXCEPTION: 6477 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6478 u32 err = vmcs_read32(error_code_field); 6479 kvm_requeue_exception_e(vcpu, vector, err); 6480 } else 6481 kvm_requeue_exception(vcpu, vector); 6482 break; 6483 case INTR_TYPE_SOFT_INTR: 6484 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6485 fallthrough; 6486 case INTR_TYPE_EXT_INTR: 6487 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6488 break; 6489 default: 6490 break; 6491 } 6492 } 6493 6494 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6495 { 6496 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6497 VM_EXIT_INSTRUCTION_LEN, 6498 IDT_VECTORING_ERROR_CODE); 6499 } 6500 6501 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6502 { 6503 __vmx_complete_interrupts(vcpu, 6504 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6505 VM_ENTRY_INSTRUCTION_LEN, 6506 VM_ENTRY_EXCEPTION_ERROR_CODE); 6507 6508 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6509 } 6510 6511 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6512 { 6513 int i, nr_msrs; 6514 struct perf_guest_switch_msr *msrs; 6515 6516 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 6517 msrs = perf_guest_get_msrs(&nr_msrs); 6518 if (!msrs) 6519 return; 6520 6521 for (i = 0; i < nr_msrs; i++) 6522 if (msrs[i].host == msrs[i].guest) 6523 clear_atomic_switch_msr(vmx, msrs[i].msr); 6524 else 6525 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6526 msrs[i].host, false); 6527 } 6528 6529 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6530 { 6531 struct vcpu_vmx *vmx = to_vmx(vcpu); 6532 u64 tscl; 6533 u32 delta_tsc; 6534 6535 if (vmx->req_immediate_exit) { 6536 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 6537 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6538 } else if (vmx->hv_deadline_tsc != -1) { 6539 tscl = rdtsc(); 6540 if (vmx->hv_deadline_tsc > tscl) 6541 /* set_hv_timer ensures the delta fits in 32-bits */ 6542 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6543 cpu_preemption_timer_multi); 6544 else 6545 delta_tsc = 0; 6546 6547 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 6548 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6549 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 6550 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 6551 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 6552 } 6553 } 6554 6555 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6556 { 6557 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6558 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6559 vmcs_writel(HOST_RSP, host_rsp); 6560 } 6561 } 6562 6563 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 6564 { 6565 switch (to_vmx(vcpu)->exit_reason.basic) { 6566 case EXIT_REASON_MSR_WRITE: 6567 return handle_fastpath_set_msr_irqoff(vcpu); 6568 case EXIT_REASON_PREEMPTION_TIMER: 6569 return handle_fastpath_preemption_timer(vcpu); 6570 default: 6571 return EXIT_FASTPATH_NONE; 6572 } 6573 } 6574 6575 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 6576 struct vcpu_vmx *vmx) 6577 { 6578 kvm_guest_enter_irqoff(); 6579 6580 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6581 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6582 vmx_l1d_flush(vcpu); 6583 else if (static_branch_unlikely(&mds_user_clear)) 6584 mds_clear_cpu_buffers(); 6585 6586 if (vcpu->arch.cr2 != native_read_cr2()) 6587 native_write_cr2(vcpu->arch.cr2); 6588 6589 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6590 vmx->loaded_vmcs->launched); 6591 6592 vcpu->arch.cr2 = native_read_cr2(); 6593 6594 kvm_guest_exit_irqoff(); 6595 } 6596 6597 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 6598 { 6599 struct vcpu_vmx *vmx = to_vmx(vcpu); 6600 unsigned long cr3, cr4; 6601 6602 /* Record the guest's net vcpu time for enforced NMI injections. */ 6603 if (unlikely(!enable_vnmi && 6604 vmx->loaded_vmcs->soft_vnmi_blocked)) 6605 vmx->loaded_vmcs->entry_time = ktime_get(); 6606 6607 /* Don't enter VMX if guest state is invalid, let the exit handler 6608 start emulation until we arrive back to a valid state */ 6609 if (vmx->emulation_required) 6610 return EXIT_FASTPATH_NONE; 6611 6612 trace_kvm_entry(vcpu); 6613 6614 if (vmx->ple_window_dirty) { 6615 vmx->ple_window_dirty = false; 6616 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6617 } 6618 6619 /* 6620 * We did this in prepare_switch_to_guest, because it needs to 6621 * be within srcu_read_lock. 6622 */ 6623 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 6624 6625 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 6626 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6627 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 6628 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6629 6630 cr3 = __get_current_cr3_fast(); 6631 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 6632 vmcs_writel(HOST_CR3, cr3); 6633 vmx->loaded_vmcs->host_state.cr3 = cr3; 6634 } 6635 6636 cr4 = cr4_read_shadow(); 6637 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6638 vmcs_writel(HOST_CR4, cr4); 6639 vmx->loaded_vmcs->host_state.cr4 = cr4; 6640 } 6641 6642 /* When single-stepping over STI and MOV SS, we must clear the 6643 * corresponding interruptibility bits in the guest state. Otherwise 6644 * vmentry fails as it then expects bit 14 (BS) in pending debug 6645 * exceptions being set, but that's not correct for the guest debugging 6646 * case. */ 6647 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6648 vmx_set_interrupt_shadow(vcpu, 0); 6649 6650 kvm_load_guest_xsave_state(vcpu); 6651 6652 pt_guest_enter(vmx); 6653 6654 atomic_switch_perf_msrs(vmx); 6655 if (intel_pmu_lbr_is_enabled(vcpu)) 6656 vmx_passthrough_lbr_msrs(vcpu); 6657 6658 if (enable_preemption_timer) 6659 vmx_update_hv_timer(vcpu); 6660 6661 kvm_wait_lapic_expire(vcpu); 6662 6663 /* 6664 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6665 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6666 * is no need to worry about the conditional branch over the wrmsr 6667 * being speculatively taken. 6668 */ 6669 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6670 6671 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 6672 vmx_vcpu_enter_exit(vcpu, vmx); 6673 6674 /* 6675 * We do not use IBRS in the kernel. If this vCPU has used the 6676 * SPEC_CTRL MSR it may have left it on; save the value and 6677 * turn it off. This is much more efficient than blindly adding 6678 * it to the atomic save/restore list. Especially as the former 6679 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6680 * 6681 * For non-nested case: 6682 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6683 * save it. 6684 * 6685 * For nested case: 6686 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6687 * save it. 6688 */ 6689 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 6690 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6691 6692 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6693 6694 /* All fields are clean at this point */ 6695 if (static_branch_unlikely(&enable_evmcs)) { 6696 current_evmcs->hv_clean_fields |= 6697 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6698 6699 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 6700 } 6701 6702 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6703 if (vmx->host_debugctlmsr) 6704 update_debugctlmsr(vmx->host_debugctlmsr); 6705 6706 #ifndef CONFIG_X86_64 6707 /* 6708 * The sysexit path does not restore ds/es, so we must set them to 6709 * a reasonable value ourselves. 6710 * 6711 * We can't defer this to vmx_prepare_switch_to_host() since that 6712 * function may be executed in interrupt context, which saves and 6713 * restore segments around it, nullifying its effect. 6714 */ 6715 loadsegment(ds, __USER_DS); 6716 loadsegment(es, __USER_DS); 6717 #endif 6718 6719 vmx_register_cache_reset(vcpu); 6720 6721 pt_guest_exit(vmx); 6722 6723 kvm_load_host_xsave_state(vcpu); 6724 6725 if (is_guest_mode(vcpu)) { 6726 /* 6727 * Track VMLAUNCH/VMRESUME that have made past guest state 6728 * checking. 6729 */ 6730 if (vmx->nested.nested_run_pending && 6731 !vmx->exit_reason.failed_vmentry) 6732 ++vcpu->stat.nested_run; 6733 6734 vmx->nested.nested_run_pending = 0; 6735 } 6736 6737 vmx->idt_vectoring_info = 0; 6738 6739 if (unlikely(vmx->fail)) { 6740 vmx->exit_reason.full = 0xdead; 6741 return EXIT_FASTPATH_NONE; 6742 } 6743 6744 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 6745 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 6746 kvm_machine_check(); 6747 6748 if (likely(!vmx->exit_reason.failed_vmentry)) 6749 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6750 6751 trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX); 6752 6753 if (unlikely(vmx->exit_reason.failed_vmentry)) 6754 return EXIT_FASTPATH_NONE; 6755 6756 vmx->loaded_vmcs->launched = 1; 6757 6758 vmx_recover_nmi_blocking(vmx); 6759 vmx_complete_interrupts(vmx); 6760 6761 if (is_guest_mode(vcpu)) 6762 return EXIT_FASTPATH_NONE; 6763 6764 return vmx_exit_handlers_fastpath(vcpu); 6765 } 6766 6767 static void vmx_free_vcpu(struct kvm_vcpu *vcpu) 6768 { 6769 struct vcpu_vmx *vmx = to_vmx(vcpu); 6770 6771 if (enable_pml) 6772 vmx_destroy_pml_buffer(vmx); 6773 free_vpid(vmx->vpid); 6774 nested_vmx_free_vcpu(vcpu); 6775 free_loaded_vmcs(vmx->loaded_vmcs); 6776 } 6777 6778 static int vmx_create_vcpu(struct kvm_vcpu *vcpu) 6779 { 6780 struct vmx_uret_msr *tsx_ctrl; 6781 struct vcpu_vmx *vmx; 6782 int i, cpu, err; 6783 6784 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 6785 vmx = to_vmx(vcpu); 6786 6787 err = -ENOMEM; 6788 6789 vmx->vpid = allocate_vpid(); 6790 6791 /* 6792 * If PML is turned on, failure on enabling PML just results in failure 6793 * of creating the vcpu, therefore we can simplify PML logic (by 6794 * avoiding dealing with cases, such as enabling PML partially on vcpus 6795 * for the guest), etc. 6796 */ 6797 if (enable_pml) { 6798 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 6799 if (!vmx->pml_pg) 6800 goto free_vpid; 6801 } 6802 6803 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 6804 vmx->guest_uret_msrs[i].data = 0; 6805 vmx->guest_uret_msrs[i].mask = -1ull; 6806 } 6807 if (boot_cpu_has(X86_FEATURE_RTM)) { 6808 /* 6809 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 6810 * Keep the host value unchanged to avoid changing CPUID bits 6811 * under the host kernel's feet. 6812 */ 6813 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 6814 if (tsx_ctrl) 6815 vmx->guest_uret_msrs[i].mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 6816 } 6817 6818 err = alloc_loaded_vmcs(&vmx->vmcs01); 6819 if (err < 0) 6820 goto free_pml; 6821 6822 /* The MSR bitmap starts with all ones */ 6823 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6824 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6825 6826 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 6827 #ifdef CONFIG_X86_64 6828 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 6829 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 6830 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 6831 #endif 6832 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 6833 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 6834 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 6835 if (kvm_cstate_in_guest(vcpu->kvm)) { 6836 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 6837 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 6838 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 6839 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 6840 } 6841 vmx->msr_bitmap_mode = 0; 6842 6843 vmx->loaded_vmcs = &vmx->vmcs01; 6844 cpu = get_cpu(); 6845 vmx_vcpu_load(vcpu, cpu); 6846 vcpu->cpu = cpu; 6847 init_vmcs(vmx); 6848 vmx_vcpu_put(vcpu); 6849 put_cpu(); 6850 if (cpu_need_virtualize_apic_accesses(vcpu)) { 6851 err = alloc_apic_access_page(vcpu->kvm); 6852 if (err) 6853 goto free_vmcs; 6854 } 6855 6856 if (enable_ept && !enable_unrestricted_guest) { 6857 err = init_rmode_identity_map(vcpu->kvm); 6858 if (err) 6859 goto free_vmcs; 6860 } 6861 6862 if (nested) 6863 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 6864 else 6865 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs)); 6866 6867 vcpu_setup_sgx_lepubkeyhash(vcpu); 6868 6869 vmx->nested.posted_intr_nv = -1; 6870 vmx->nested.current_vmptr = -1ull; 6871 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 6872 6873 vcpu->arch.microcode_version = 0x100000000ULL; 6874 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 6875 6876 /* 6877 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 6878 * or POSTED_INTR_WAKEUP_VECTOR. 6879 */ 6880 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 6881 vmx->pi_desc.sn = 1; 6882 6883 return 0; 6884 6885 free_vmcs: 6886 free_loaded_vmcs(vmx->loaded_vmcs); 6887 free_pml: 6888 vmx_destroy_pml_buffer(vmx); 6889 free_vpid: 6890 free_vpid(vmx->vpid); 6891 return err; 6892 } 6893 6894 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6895 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6896 6897 static int vmx_vm_init(struct kvm *kvm) 6898 { 6899 if (!ple_gap) 6900 kvm->arch.pause_in_guest = true; 6901 6902 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 6903 switch (l1tf_mitigation) { 6904 case L1TF_MITIGATION_OFF: 6905 case L1TF_MITIGATION_FLUSH_NOWARN: 6906 /* 'I explicitly don't care' is set */ 6907 break; 6908 case L1TF_MITIGATION_FLUSH: 6909 case L1TF_MITIGATION_FLUSH_NOSMT: 6910 case L1TF_MITIGATION_FULL: 6911 /* 6912 * Warn upon starting the first VM in a potentially 6913 * insecure environment. 6914 */ 6915 if (sched_smt_active()) 6916 pr_warn_once(L1TF_MSG_SMT); 6917 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 6918 pr_warn_once(L1TF_MSG_L1D); 6919 break; 6920 case L1TF_MITIGATION_FULL_FORCE: 6921 /* Flush is enforced */ 6922 break; 6923 } 6924 } 6925 return 0; 6926 } 6927 6928 static int __init vmx_check_processor_compat(void) 6929 { 6930 struct vmcs_config vmcs_conf; 6931 struct vmx_capability vmx_cap; 6932 6933 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 6934 !this_cpu_has(X86_FEATURE_VMX)) { 6935 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id()); 6936 return -EIO; 6937 } 6938 6939 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 6940 return -EIO; 6941 if (nested) 6942 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept); 6943 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 6944 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 6945 smp_processor_id()); 6946 return -EIO; 6947 } 6948 return 0; 6949 } 6950 6951 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 6952 { 6953 u8 cache; 6954 u64 ipat = 0; 6955 6956 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 6957 * memory aliases with conflicting memory types and sometimes MCEs. 6958 * We have to be careful as to what are honored and when. 6959 * 6960 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 6961 * UC. The effective memory type is UC or WC depending on guest PAT. 6962 * This was historically the source of MCEs and we want to be 6963 * conservative. 6964 * 6965 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 6966 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 6967 * EPT memory type is set to WB. The effective memory type is forced 6968 * WB. 6969 * 6970 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 6971 * EPT memory type is used to emulate guest CD/MTRR. 6972 */ 6973 6974 if (is_mmio) { 6975 cache = MTRR_TYPE_UNCACHABLE; 6976 goto exit; 6977 } 6978 6979 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 6980 ipat = VMX_EPT_IPAT_BIT; 6981 cache = MTRR_TYPE_WRBACK; 6982 goto exit; 6983 } 6984 6985 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 6986 ipat = VMX_EPT_IPAT_BIT; 6987 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 6988 cache = MTRR_TYPE_WRBACK; 6989 else 6990 cache = MTRR_TYPE_UNCACHABLE; 6991 goto exit; 6992 } 6993 6994 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); 6995 6996 exit: 6997 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; 6998 } 6999 7000 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx) 7001 { 7002 /* 7003 * These bits in the secondary execution controls field 7004 * are dynamic, the others are mostly based on the hypervisor 7005 * architecture and the guest's CPUID. Do not touch the 7006 * dynamic bits. 7007 */ 7008 u32 mask = 7009 SECONDARY_EXEC_SHADOW_VMCS | 7010 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7011 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7012 SECONDARY_EXEC_DESC; 7013 7014 u32 new_ctl = vmx->secondary_exec_control; 7015 u32 cur_ctl = secondary_exec_controls_get(vmx); 7016 7017 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7018 } 7019 7020 /* 7021 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7022 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7023 */ 7024 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7025 { 7026 struct vcpu_vmx *vmx = to_vmx(vcpu); 7027 struct kvm_cpuid_entry2 *entry; 7028 7029 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7030 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7031 7032 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7033 if (entry && (entry->_reg & (_cpuid_mask))) \ 7034 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7035 } while (0) 7036 7037 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 7038 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7039 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7040 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7041 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7042 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7043 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7044 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7045 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7046 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7047 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7048 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7049 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7050 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7051 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7052 7053 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 7054 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7055 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7056 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7057 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7058 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7059 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7060 7061 #undef cr4_fixed1_update 7062 } 7063 7064 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 7065 { 7066 struct vcpu_vmx *vmx = to_vmx(vcpu); 7067 7068 if (kvm_mpx_supported()) { 7069 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 7070 7071 if (mpx_enabled) { 7072 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 7073 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 7074 } else { 7075 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 7076 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 7077 } 7078 } 7079 } 7080 7081 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7082 { 7083 struct vcpu_vmx *vmx = to_vmx(vcpu); 7084 struct kvm_cpuid_entry2 *best = NULL; 7085 int i; 7086 7087 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7088 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 7089 if (!best) 7090 return; 7091 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7092 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7093 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7094 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7095 } 7096 7097 /* Get the number of configurable Address Ranges for filtering */ 7098 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps, 7099 PT_CAP_num_address_ranges); 7100 7101 /* Initialize and clear the no dependency bits */ 7102 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7103 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC); 7104 7105 /* 7106 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7107 * will inject an #GP 7108 */ 7109 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7110 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7111 7112 /* 7113 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7114 * PSBFreq can be set 7115 */ 7116 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7117 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7118 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7119 7120 /* 7121 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and 7122 * MTCFreq can be set 7123 */ 7124 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7125 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7126 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE); 7127 7128 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7129 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7130 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7131 RTIT_CTL_PTW_EN); 7132 7133 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7134 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7135 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7136 7137 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7138 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7139 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7140 7141 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7142 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7143 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7144 7145 /* unmask address range configure area */ 7146 for (i = 0; i < vmx->pt_desc.addr_range; i++) 7147 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7148 } 7149 7150 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7151 { 7152 struct vcpu_vmx *vmx = to_vmx(vcpu); 7153 7154 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7155 vcpu->arch.xsaves_enabled = false; 7156 7157 if (cpu_has_secondary_exec_ctrls()) { 7158 vmx_compute_secondary_exec_control(vmx); 7159 vmcs_set_secondary_exec_control(vmx); 7160 } 7161 7162 if (nested_vmx_allowed(vcpu)) 7163 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7164 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7165 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7166 else 7167 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7168 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7169 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7170 7171 if (nested_vmx_allowed(vcpu)) { 7172 nested_vmx_cr_fixed1_bits_update(vcpu); 7173 nested_vmx_entry_exit_ctls_update(vcpu); 7174 } 7175 7176 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7177 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7178 update_intel_pt_cfg(vcpu); 7179 7180 if (boot_cpu_has(X86_FEATURE_RTM)) { 7181 struct vmx_uret_msr *msr; 7182 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7183 if (msr) { 7184 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7185 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7186 } 7187 } 7188 7189 set_cr4_guest_host_mask(vmx); 7190 7191 vmx_write_encls_bitmap(vcpu, NULL); 7192 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7193 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7194 else 7195 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7196 7197 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7198 vmx->msr_ia32_feature_control_valid_bits |= 7199 FEAT_CTL_SGX_LC_ENABLED; 7200 else 7201 vmx->msr_ia32_feature_control_valid_bits &= 7202 ~FEAT_CTL_SGX_LC_ENABLED; 7203 7204 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7205 vmx_update_exception_bitmap(vcpu); 7206 } 7207 7208 static __init void vmx_set_cpu_caps(void) 7209 { 7210 kvm_set_cpu_caps(); 7211 7212 /* CPUID 0x1 */ 7213 if (nested) 7214 kvm_cpu_cap_set(X86_FEATURE_VMX); 7215 7216 /* CPUID 0x7 */ 7217 if (kvm_mpx_supported()) 7218 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7219 if (!cpu_has_vmx_invpcid()) 7220 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7221 if (vmx_pt_mode_is_host_guest()) 7222 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7223 7224 if (!enable_sgx) { 7225 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7226 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7227 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7228 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7229 } 7230 7231 if (vmx_umip_emulated()) 7232 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7233 7234 /* CPUID 0xD.1 */ 7235 supported_xss = 0; 7236 if (!cpu_has_vmx_xsaves()) 7237 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7238 7239 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7240 if (!cpu_has_vmx_rdtscp()) { 7241 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7242 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7243 } 7244 7245 if (cpu_has_vmx_waitpkg()) 7246 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7247 } 7248 7249 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7250 { 7251 to_vmx(vcpu)->req_immediate_exit = true; 7252 } 7253 7254 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7255 struct x86_instruction_info *info) 7256 { 7257 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7258 unsigned short port; 7259 bool intercept; 7260 int size; 7261 7262 if (info->intercept == x86_intercept_in || 7263 info->intercept == x86_intercept_ins) { 7264 port = info->src_val; 7265 size = info->dst_bytes; 7266 } else { 7267 port = info->dst_val; 7268 size = info->src_bytes; 7269 } 7270 7271 /* 7272 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7273 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7274 * control. 7275 * 7276 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7277 */ 7278 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7279 intercept = nested_cpu_has(vmcs12, 7280 CPU_BASED_UNCOND_IO_EXITING); 7281 else 7282 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7283 7284 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7285 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7286 } 7287 7288 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7289 struct x86_instruction_info *info, 7290 enum x86_intercept_stage stage, 7291 struct x86_exception *exception) 7292 { 7293 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7294 7295 switch (info->intercept) { 7296 /* 7297 * RDPID causes #UD if disabled through secondary execution controls. 7298 * Because it is marked as EmulateOnUD, we need to intercept it here. 7299 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7300 */ 7301 case x86_intercept_rdpid: 7302 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7303 exception->vector = UD_VECTOR; 7304 exception->error_code_valid = false; 7305 return X86EMUL_PROPAGATE_FAULT; 7306 } 7307 break; 7308 7309 case x86_intercept_in: 7310 case x86_intercept_ins: 7311 case x86_intercept_out: 7312 case x86_intercept_outs: 7313 return vmx_check_intercept_io(vcpu, info); 7314 7315 case x86_intercept_lgdt: 7316 case x86_intercept_lidt: 7317 case x86_intercept_lldt: 7318 case x86_intercept_ltr: 7319 case x86_intercept_sgdt: 7320 case x86_intercept_sidt: 7321 case x86_intercept_sldt: 7322 case x86_intercept_str: 7323 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7324 return X86EMUL_CONTINUE; 7325 7326 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7327 break; 7328 7329 /* TODO: check more intercepts... */ 7330 default: 7331 break; 7332 } 7333 7334 return X86EMUL_UNHANDLEABLE; 7335 } 7336 7337 #ifdef CONFIG_X86_64 7338 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7339 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7340 u64 divisor, u64 *result) 7341 { 7342 u64 low = a << shift, high = a >> (64 - shift); 7343 7344 /* To avoid the overflow on divq */ 7345 if (high >= divisor) 7346 return 1; 7347 7348 /* Low hold the result, high hold rem which is discarded */ 7349 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7350 "rm" (divisor), "0" (low), "1" (high)); 7351 *result = low; 7352 7353 return 0; 7354 } 7355 7356 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7357 bool *expired) 7358 { 7359 struct vcpu_vmx *vmx; 7360 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7361 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7362 7363 vmx = to_vmx(vcpu); 7364 tscl = rdtsc(); 7365 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7366 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7367 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7368 ktimer->timer_advance_ns); 7369 7370 if (delta_tsc > lapic_timer_advance_cycles) 7371 delta_tsc -= lapic_timer_advance_cycles; 7372 else 7373 delta_tsc = 0; 7374 7375 /* Convert to host delta tsc if tsc scaling is enabled */ 7376 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7377 delta_tsc && u64_shl_div_u64(delta_tsc, 7378 kvm_tsc_scaling_ratio_frac_bits, 7379 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 7380 return -ERANGE; 7381 7382 /* 7383 * If the delta tsc can't fit in the 32 bit after the multi shift, 7384 * we can't use the preemption timer. 7385 * It's possible that it fits on later vmentries, but checking 7386 * on every vmentry is costly so we just use an hrtimer. 7387 */ 7388 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7389 return -ERANGE; 7390 7391 vmx->hv_deadline_tsc = tscl + delta_tsc; 7392 *expired = !delta_tsc; 7393 return 0; 7394 } 7395 7396 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7397 { 7398 to_vmx(vcpu)->hv_deadline_tsc = -1; 7399 } 7400 #endif 7401 7402 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7403 { 7404 if (!kvm_pause_in_guest(vcpu->kvm)) 7405 shrink_ple_window(vcpu); 7406 } 7407 7408 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 7409 { 7410 struct vcpu_vmx *vmx = to_vmx(vcpu); 7411 7412 if (is_guest_mode(vcpu)) { 7413 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 7414 return; 7415 } 7416 7417 /* 7418 * Note, cpu_dirty_logging_count can be changed concurrent with this 7419 * code, but in that case another update request will be made and so 7420 * the guest will never run with a stale PML value. 7421 */ 7422 if (vcpu->kvm->arch.cpu_dirty_logging_count) 7423 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7424 else 7425 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7426 } 7427 7428 static int vmx_pre_block(struct kvm_vcpu *vcpu) 7429 { 7430 if (pi_pre_block(vcpu)) 7431 return 1; 7432 7433 if (kvm_lapic_hv_timer_in_use(vcpu)) 7434 kvm_lapic_switch_to_sw_timer(vcpu); 7435 7436 return 0; 7437 } 7438 7439 static void vmx_post_block(struct kvm_vcpu *vcpu) 7440 { 7441 if (kvm_x86_ops.set_hv_timer) 7442 kvm_lapic_switch_to_hv_timer(vcpu); 7443 7444 pi_post_block(vcpu); 7445 } 7446 7447 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7448 { 7449 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7450 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7451 FEAT_CTL_LMCE_ENABLED; 7452 else 7453 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7454 ~FEAT_CTL_LMCE_ENABLED; 7455 } 7456 7457 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 7458 { 7459 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7460 if (to_vmx(vcpu)->nested.nested_run_pending) 7461 return -EBUSY; 7462 return !is_smm(vcpu); 7463 } 7464 7465 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7466 { 7467 struct vcpu_vmx *vmx = to_vmx(vcpu); 7468 7469 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7470 if (vmx->nested.smm.guest_mode) 7471 nested_vmx_vmexit(vcpu, -1, 0, 0); 7472 7473 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7474 vmx->nested.vmxon = false; 7475 vmx_clear_hlt(vcpu); 7476 return 0; 7477 } 7478 7479 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7480 { 7481 struct vcpu_vmx *vmx = to_vmx(vcpu); 7482 int ret; 7483 7484 if (vmx->nested.smm.vmxon) { 7485 vmx->nested.vmxon = true; 7486 vmx->nested.smm.vmxon = false; 7487 } 7488 7489 if (vmx->nested.smm.guest_mode) { 7490 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7491 if (ret) 7492 return ret; 7493 7494 vmx->nested.smm.guest_mode = false; 7495 } 7496 return 0; 7497 } 7498 7499 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 7500 { 7501 /* RSM will cause a vmexit anyway. */ 7502 } 7503 7504 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 7505 { 7506 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 7507 } 7508 7509 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 7510 { 7511 if (is_guest_mode(vcpu)) { 7512 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 7513 7514 if (hrtimer_try_to_cancel(timer) == 1) 7515 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 7516 } 7517 } 7518 7519 static void hardware_unsetup(void) 7520 { 7521 if (nested) 7522 nested_vmx_hardware_unsetup(); 7523 7524 free_kvm_area(); 7525 } 7526 7527 static bool vmx_check_apicv_inhibit_reasons(ulong bit) 7528 { 7529 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 7530 BIT(APICV_INHIBIT_REASON_HYPERV); 7531 7532 return supported & BIT(bit); 7533 } 7534 7535 static struct kvm_x86_ops vmx_x86_ops __initdata = { 7536 .hardware_unsetup = hardware_unsetup, 7537 7538 .hardware_enable = hardware_enable, 7539 .hardware_disable = hardware_disable, 7540 .cpu_has_accelerated_tpr = report_flexpriority, 7541 .has_emulated_msr = vmx_has_emulated_msr, 7542 7543 .vm_size = sizeof(struct kvm_vmx), 7544 .vm_init = vmx_vm_init, 7545 7546 .vcpu_create = vmx_create_vcpu, 7547 .vcpu_free = vmx_free_vcpu, 7548 .vcpu_reset = vmx_vcpu_reset, 7549 7550 .prepare_guest_switch = vmx_prepare_switch_to_guest, 7551 .vcpu_load = vmx_vcpu_load, 7552 .vcpu_put = vmx_vcpu_put, 7553 7554 .update_exception_bitmap = vmx_update_exception_bitmap, 7555 .get_msr_feature = vmx_get_msr_feature, 7556 .get_msr = vmx_get_msr, 7557 .set_msr = vmx_set_msr, 7558 .get_segment_base = vmx_get_segment_base, 7559 .get_segment = vmx_get_segment, 7560 .set_segment = vmx_set_segment, 7561 .get_cpl = vmx_get_cpl, 7562 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7563 .set_cr0 = vmx_set_cr0, 7564 .is_valid_cr4 = vmx_is_valid_cr4, 7565 .set_cr4 = vmx_set_cr4, 7566 .set_efer = vmx_set_efer, 7567 .get_idt = vmx_get_idt, 7568 .set_idt = vmx_set_idt, 7569 .get_gdt = vmx_get_gdt, 7570 .set_gdt = vmx_set_gdt, 7571 .set_dr7 = vmx_set_dr7, 7572 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7573 .cache_reg = vmx_cache_reg, 7574 .get_rflags = vmx_get_rflags, 7575 .set_rflags = vmx_set_rflags, 7576 7577 .tlb_flush_all = vmx_flush_tlb_all, 7578 .tlb_flush_current = vmx_flush_tlb_current, 7579 .tlb_flush_gva = vmx_flush_tlb_gva, 7580 .tlb_flush_guest = vmx_flush_tlb_guest, 7581 7582 .run = vmx_vcpu_run, 7583 .handle_exit = vmx_handle_exit, 7584 .skip_emulated_instruction = vmx_skip_emulated_instruction, 7585 .update_emulated_instruction = vmx_update_emulated_instruction, 7586 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7587 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7588 .patch_hypercall = vmx_patch_hypercall, 7589 .set_irq = vmx_inject_irq, 7590 .set_nmi = vmx_inject_nmi, 7591 .queue_exception = vmx_queue_exception, 7592 .cancel_injection = vmx_cancel_injection, 7593 .interrupt_allowed = vmx_interrupt_allowed, 7594 .nmi_allowed = vmx_nmi_allowed, 7595 .get_nmi_mask = vmx_get_nmi_mask, 7596 .set_nmi_mask = vmx_set_nmi_mask, 7597 .enable_nmi_window = vmx_enable_nmi_window, 7598 .enable_irq_window = vmx_enable_irq_window, 7599 .update_cr8_intercept = vmx_update_cr8_intercept, 7600 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7601 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7602 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7603 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7604 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7605 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons, 7606 .hwapic_irr_update = vmx_hwapic_irr_update, 7607 .hwapic_isr_update = vmx_hwapic_isr_update, 7608 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7609 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7610 .deliver_posted_interrupt = vmx_deliver_posted_interrupt, 7611 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 7612 7613 .set_tss_addr = vmx_set_tss_addr, 7614 .set_identity_map_addr = vmx_set_identity_map_addr, 7615 .get_mt_mask = vmx_get_mt_mask, 7616 7617 .get_exit_info = vmx_get_exit_info, 7618 7619 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 7620 7621 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7622 7623 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 7624 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 7625 .write_tsc_offset = vmx_write_tsc_offset, 7626 .write_tsc_multiplier = vmx_write_tsc_multiplier, 7627 7628 .load_mmu_pgd = vmx_load_mmu_pgd, 7629 7630 .check_intercept = vmx_check_intercept, 7631 .handle_exit_irqoff = vmx_handle_exit_irqoff, 7632 7633 .request_immediate_exit = vmx_request_immediate_exit, 7634 7635 .sched_in = vmx_sched_in, 7636 7637 .cpu_dirty_log_size = PML_ENTITY_NUM, 7638 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 7639 7640 .pre_block = vmx_pre_block, 7641 .post_block = vmx_post_block, 7642 7643 .pmu_ops = &intel_pmu_ops, 7644 .nested_ops = &vmx_nested_ops, 7645 7646 .update_pi_irte = pi_update_irte, 7647 .start_assignment = vmx_pi_start_assignment, 7648 7649 #ifdef CONFIG_X86_64 7650 .set_hv_timer = vmx_set_hv_timer, 7651 .cancel_hv_timer = vmx_cancel_hv_timer, 7652 #endif 7653 7654 .setup_mce = vmx_setup_mce, 7655 7656 .smi_allowed = vmx_smi_allowed, 7657 .enter_smm = vmx_enter_smm, 7658 .leave_smm = vmx_leave_smm, 7659 .enable_smi_window = vmx_enable_smi_window, 7660 7661 .can_emulate_instruction = vmx_can_emulate_instruction, 7662 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 7663 .migrate_timers = vmx_migrate_timers, 7664 7665 .msr_filter_changed = vmx_msr_filter_changed, 7666 .complete_emulated_msr = kvm_complete_insn_gp, 7667 7668 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 7669 }; 7670 7671 static __init void vmx_setup_user_return_msrs(void) 7672 { 7673 7674 /* 7675 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 7676 * will emulate SYSCALL in legacy mode if the vendor string in guest 7677 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 7678 * support this emulation, MSR_STAR is included in the list for i386, 7679 * but is never loaded into hardware. MSR_CSTAR is also never loaded 7680 * into hardware and is here purely for emulation purposes. 7681 */ 7682 const u32 vmx_uret_msrs_list[] = { 7683 #ifdef CONFIG_X86_64 7684 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 7685 #endif 7686 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 7687 MSR_IA32_TSX_CTRL, 7688 }; 7689 int i; 7690 7691 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 7692 7693 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 7694 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 7695 } 7696 7697 static __init int hardware_setup(void) 7698 { 7699 unsigned long host_bndcfgs; 7700 struct desc_ptr dt; 7701 int r, ept_lpage_level; 7702 7703 store_idt(&dt); 7704 host_idt_base = dt.address; 7705 7706 vmx_setup_user_return_msrs(); 7707 7708 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7709 return -EIO; 7710 7711 if (boot_cpu_has(X86_FEATURE_NX)) 7712 kvm_enable_efer_bits(EFER_NX); 7713 7714 if (boot_cpu_has(X86_FEATURE_MPX)) { 7715 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7716 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7717 } 7718 7719 if (!cpu_has_vmx_mpx()) 7720 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 7721 XFEATURE_MASK_BNDCSR); 7722 7723 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7724 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7725 enable_vpid = 0; 7726 7727 if (!cpu_has_vmx_ept() || 7728 !cpu_has_vmx_ept_4levels() || 7729 !cpu_has_vmx_ept_mt_wb() || 7730 !cpu_has_vmx_invept_global()) 7731 enable_ept = 0; 7732 7733 /* NX support is required for shadow paging. */ 7734 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 7735 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n"); 7736 return -EOPNOTSUPP; 7737 } 7738 7739 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7740 enable_ept_ad_bits = 0; 7741 7742 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7743 enable_unrestricted_guest = 0; 7744 7745 if (!cpu_has_vmx_flexpriority()) 7746 flexpriority_enabled = 0; 7747 7748 if (!cpu_has_virtual_nmis()) 7749 enable_vnmi = 0; 7750 7751 /* 7752 * set_apic_access_page_addr() is used to reload apic access 7753 * page upon invalidation. No need to do anything if not 7754 * using the APIC_ACCESS_ADDR VMCS field. 7755 */ 7756 if (!flexpriority_enabled) 7757 vmx_x86_ops.set_apic_access_page_addr = NULL; 7758 7759 if (!cpu_has_vmx_tpr_shadow()) 7760 vmx_x86_ops.update_cr8_intercept = NULL; 7761 7762 #if IS_ENABLED(CONFIG_HYPERV) 7763 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7764 && enable_ept) { 7765 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb; 7766 vmx_x86_ops.tlb_remote_flush_with_range = 7767 hv_remote_flush_tlb_with_range; 7768 } 7769 #endif 7770 7771 if (!cpu_has_vmx_ple()) { 7772 ple_gap = 0; 7773 ple_window = 0; 7774 ple_window_grow = 0; 7775 ple_window_max = 0; 7776 ple_window_shrink = 0; 7777 } 7778 7779 if (!cpu_has_vmx_apicv()) { 7780 enable_apicv = 0; 7781 vmx_x86_ops.sync_pir_to_irr = NULL; 7782 } 7783 7784 if (cpu_has_vmx_tsc_scaling()) { 7785 kvm_has_tsc_control = true; 7786 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7787 kvm_tsc_scaling_ratio_frac_bits = 48; 7788 } 7789 7790 kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 7791 7792 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7793 7794 if (enable_ept) 7795 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 7796 cpu_has_vmx_ept_execute_only()); 7797 7798 if (!enable_ept) 7799 ept_lpage_level = 0; 7800 else if (cpu_has_vmx_ept_1g_page()) 7801 ept_lpage_level = PG_LEVEL_1G; 7802 else if (cpu_has_vmx_ept_2m_page()) 7803 ept_lpage_level = PG_LEVEL_2M; 7804 else 7805 ept_lpage_level = PG_LEVEL_4K; 7806 kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level); 7807 7808 /* 7809 * Only enable PML when hardware supports PML feature, and both EPT 7810 * and EPT A/D bit features are enabled -- PML depends on them to work. 7811 */ 7812 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 7813 enable_pml = 0; 7814 7815 if (!enable_pml) 7816 vmx_x86_ops.cpu_dirty_log_size = 0; 7817 7818 if (!cpu_has_vmx_preemption_timer()) 7819 enable_preemption_timer = false; 7820 7821 if (enable_preemption_timer) { 7822 u64 use_timer_freq = 5000ULL * 1000 * 1000; 7823 u64 vmx_msr; 7824 7825 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 7826 cpu_preemption_timer_multi = 7827 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 7828 7829 if (tsc_khz) 7830 use_timer_freq = (u64)tsc_khz * 1000; 7831 use_timer_freq >>= cpu_preemption_timer_multi; 7832 7833 /* 7834 * KVM "disables" the preemption timer by setting it to its max 7835 * value. Don't use the timer if it might cause spurious exits 7836 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 7837 */ 7838 if (use_timer_freq > 0xffffffffu / 10) 7839 enable_preemption_timer = false; 7840 } 7841 7842 if (!enable_preemption_timer) { 7843 vmx_x86_ops.set_hv_timer = NULL; 7844 vmx_x86_ops.cancel_hv_timer = NULL; 7845 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 7846 } 7847 7848 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 7849 7850 kvm_mce_cap_supported |= MCG_LMCE_P; 7851 7852 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 7853 return -EINVAL; 7854 if (!enable_ept || !cpu_has_vmx_intel_pt()) 7855 pt_mode = PT_MODE_SYSTEM; 7856 7857 setup_default_sgx_lepubkeyhash(); 7858 7859 if (nested) { 7860 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 7861 vmx_capability.ept); 7862 7863 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 7864 if (r) 7865 return r; 7866 } 7867 7868 vmx_set_cpu_caps(); 7869 7870 r = alloc_kvm_area(); 7871 if (r) 7872 nested_vmx_hardware_unsetup(); 7873 return r; 7874 } 7875 7876 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 7877 .cpu_has_kvm_support = cpu_has_kvm_support, 7878 .disabled_by_bios = vmx_disabled_by_bios, 7879 .check_processor_compatibility = vmx_check_processor_compat, 7880 .hardware_setup = hardware_setup, 7881 7882 .runtime_ops = &vmx_x86_ops, 7883 }; 7884 7885 static void vmx_cleanup_l1d_flush(void) 7886 { 7887 if (vmx_l1d_flush_pages) { 7888 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 7889 vmx_l1d_flush_pages = NULL; 7890 } 7891 /* Restore state so sysfs ignores VMX */ 7892 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 7893 } 7894 7895 static void vmx_exit(void) 7896 { 7897 #ifdef CONFIG_KEXEC_CORE 7898 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 7899 synchronize_rcu(); 7900 #endif 7901 7902 kvm_exit(); 7903 7904 #if IS_ENABLED(CONFIG_HYPERV) 7905 if (static_branch_unlikely(&enable_evmcs)) { 7906 int cpu; 7907 struct hv_vp_assist_page *vp_ap; 7908 /* 7909 * Reset everything to support using non-enlightened VMCS 7910 * access later (e.g. when we reload the module with 7911 * enlightened_vmcs=0) 7912 */ 7913 for_each_online_cpu(cpu) { 7914 vp_ap = hv_get_vp_assist_page(cpu); 7915 7916 if (!vp_ap) 7917 continue; 7918 7919 vp_ap->nested_control.features.directhypercall = 0; 7920 vp_ap->current_nested_vmcs = 0; 7921 vp_ap->enlighten_vmentry = 0; 7922 } 7923 7924 static_branch_disable(&enable_evmcs); 7925 } 7926 #endif 7927 vmx_cleanup_l1d_flush(); 7928 7929 allow_smaller_maxphyaddr = false; 7930 } 7931 module_exit(vmx_exit); 7932 7933 static int __init vmx_init(void) 7934 { 7935 int r, cpu; 7936 7937 #if IS_ENABLED(CONFIG_HYPERV) 7938 /* 7939 * Enlightened VMCS usage should be recommended and the host needs 7940 * to support eVMCS v1 or above. We can also disable eVMCS support 7941 * with module parameter. 7942 */ 7943 if (enlightened_vmcs && 7944 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 7945 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 7946 KVM_EVMCS_VERSION) { 7947 int cpu; 7948 7949 /* Check that we have assist pages on all online CPUs */ 7950 for_each_online_cpu(cpu) { 7951 if (!hv_get_vp_assist_page(cpu)) { 7952 enlightened_vmcs = false; 7953 break; 7954 } 7955 } 7956 7957 if (enlightened_vmcs) { 7958 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 7959 static_branch_enable(&enable_evmcs); 7960 } 7961 7962 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 7963 vmx_x86_ops.enable_direct_tlbflush 7964 = hv_enable_direct_tlbflush; 7965 7966 } else { 7967 enlightened_vmcs = false; 7968 } 7969 #endif 7970 7971 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx), 7972 __alignof__(struct vcpu_vmx), THIS_MODULE); 7973 if (r) 7974 return r; 7975 7976 /* 7977 * Must be called after kvm_init() so enable_ept is properly set 7978 * up. Hand the parameter mitigation value in which was stored in 7979 * the pre module init parser. If no parameter was given, it will 7980 * contain 'auto' which will be turned into the default 'cond' 7981 * mitigation mode. 7982 */ 7983 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 7984 if (r) { 7985 vmx_exit(); 7986 return r; 7987 } 7988 7989 for_each_possible_cpu(cpu) { 7990 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 7991 7992 pi_init_cpu(cpu); 7993 } 7994 7995 #ifdef CONFIG_KEXEC_CORE 7996 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 7997 crash_vmclear_local_loaded_vmcss); 7998 #endif 7999 vmx_check_vmcs12_offsets(); 8000 8001 /* 8002 * Shadow paging doesn't have a (further) performance penalty 8003 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8004 * by default 8005 */ 8006 if (!enable_ept) 8007 allow_smaller_maxphyaddr = true; 8008 8009 return 0; 8010 } 8011 module_init(vmx_init); 8012