xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50 
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 #ifdef MODULE
73 static const struct x86_cpu_id vmx_cpu_id[] = {
74 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
75 	{}
76 };
77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
78 #endif
79 
80 bool __read_mostly enable_vpid = 1;
81 module_param_named(vpid, enable_vpid, bool, 0444);
82 
83 static bool __read_mostly enable_vnmi = 1;
84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
85 
86 bool __read_mostly flexpriority_enabled = 1;
87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
88 
89 bool __read_mostly enable_ept = 1;
90 module_param_named(ept, enable_ept, bool, S_IRUGO);
91 
92 bool __read_mostly enable_unrestricted_guest = 1;
93 module_param_named(unrestricted_guest,
94 			enable_unrestricted_guest, bool, S_IRUGO);
95 
96 bool __read_mostly enable_ept_ad_bits = 1;
97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
98 
99 static bool __read_mostly emulate_invalid_guest_state = true;
100 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
101 
102 static bool __read_mostly fasteoi = 1;
103 module_param(fasteoi, bool, S_IRUGO);
104 
105 module_param(enable_apicv, bool, S_IRUGO);
106 
107 /*
108  * If nested=1, nested virtualization is supported, i.e., guests may use
109  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
110  * use VMX instructions.
111  */
112 static bool __read_mostly nested = 1;
113 module_param(nested, bool, S_IRUGO);
114 
115 bool __read_mostly enable_pml = 1;
116 module_param_named(pml, enable_pml, bool, S_IRUGO);
117 
118 static bool __read_mostly dump_invalid_vmcs = 0;
119 module_param(dump_invalid_vmcs, bool, 0644);
120 
121 #define MSR_BITMAP_MODE_X2APIC		1
122 #define MSR_BITMAP_MODE_X2APIC_APICV	2
123 
124 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
125 
126 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
127 static int __read_mostly cpu_preemption_timer_multi;
128 static bool __read_mostly enable_preemption_timer = 1;
129 #ifdef CONFIG_X86_64
130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
131 #endif
132 
133 extern bool __read_mostly allow_smaller_maxphyaddr;
134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
135 
136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
138 #define KVM_VM_CR0_ALWAYS_ON				\
139 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
140 	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
141 
142 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
143 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
144 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
145 
146 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
147 
148 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
149 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
150 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
151 	RTIT_STATUS_BYTECNT))
152 
153 /*
154  * List of MSRs that can be directly passed to the guest.
155  * In addition to these x2apic and PT MSRs are handled specially.
156  */
157 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
158 	MSR_IA32_SPEC_CTRL,
159 	MSR_IA32_PRED_CMD,
160 	MSR_IA32_TSC,
161 #ifdef CONFIG_X86_64
162 	MSR_FS_BASE,
163 	MSR_GS_BASE,
164 	MSR_KERNEL_GS_BASE,
165 #endif
166 	MSR_IA32_SYSENTER_CS,
167 	MSR_IA32_SYSENTER_ESP,
168 	MSR_IA32_SYSENTER_EIP,
169 	MSR_CORE_C1_RES,
170 	MSR_CORE_C3_RESIDENCY,
171 	MSR_CORE_C6_RESIDENCY,
172 	MSR_CORE_C7_RESIDENCY,
173 };
174 
175 /*
176  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
177  * ple_gap:    upper bound on the amount of time between two successive
178  *             executions of PAUSE in a loop. Also indicate if ple enabled.
179  *             According to test, this time is usually smaller than 128 cycles.
180  * ple_window: upper bound on the amount of time a guest is allowed to execute
181  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
182  *             less than 2^12 cycles
183  * Time is measured based on a counter that runs at the same rate as the TSC,
184  * refer SDM volume 3b section 21.6.13 & 22.1.3.
185  */
186 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
187 module_param(ple_gap, uint, 0444);
188 
189 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
190 module_param(ple_window, uint, 0444);
191 
192 /* Default doubles per-vcpu window every exit. */
193 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
194 module_param(ple_window_grow, uint, 0444);
195 
196 /* Default resets per-vcpu window every exit to ple_window. */
197 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
198 module_param(ple_window_shrink, uint, 0444);
199 
200 /* Default is to compute the maximum so we can never overflow. */
201 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
202 module_param(ple_window_max, uint, 0444);
203 
204 /* Default is SYSTEM mode, 1 for host-guest mode */
205 int __read_mostly pt_mode = PT_MODE_SYSTEM;
206 module_param(pt_mode, int, S_IRUGO);
207 
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
209 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
210 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
211 
212 /* Storage for pre module init parameter parsing */
213 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
214 
215 static const struct {
216 	const char *option;
217 	bool for_parse;
218 } vmentry_l1d_param[] = {
219 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
220 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
221 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
222 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
223 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
224 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
225 };
226 
227 #define L1D_CACHE_ORDER 4
228 static void *vmx_l1d_flush_pages;
229 
230 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
231 {
232 	struct page *page;
233 	unsigned int i;
234 
235 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
236 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
237 		return 0;
238 	}
239 
240 	if (!enable_ept) {
241 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
242 		return 0;
243 	}
244 
245 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
246 		u64 msr;
247 
248 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
249 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
250 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
251 			return 0;
252 		}
253 	}
254 
255 	/* If set to auto use the default l1tf mitigation method */
256 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
257 		switch (l1tf_mitigation) {
258 		case L1TF_MITIGATION_OFF:
259 			l1tf = VMENTER_L1D_FLUSH_NEVER;
260 			break;
261 		case L1TF_MITIGATION_FLUSH_NOWARN:
262 		case L1TF_MITIGATION_FLUSH:
263 		case L1TF_MITIGATION_FLUSH_NOSMT:
264 			l1tf = VMENTER_L1D_FLUSH_COND;
265 			break;
266 		case L1TF_MITIGATION_FULL:
267 		case L1TF_MITIGATION_FULL_FORCE:
268 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
269 			break;
270 		}
271 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
272 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
273 	}
274 
275 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
276 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
277 		/*
278 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
279 		 * lifetime and so should not be charged to a memcg.
280 		 */
281 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
282 		if (!page)
283 			return -ENOMEM;
284 		vmx_l1d_flush_pages = page_address(page);
285 
286 		/*
287 		 * Initialize each page with a different pattern in
288 		 * order to protect against KSM in the nested
289 		 * virtualization case.
290 		 */
291 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
292 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
293 			       PAGE_SIZE);
294 		}
295 	}
296 
297 	l1tf_vmx_mitigation = l1tf;
298 
299 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
300 		static_branch_enable(&vmx_l1d_should_flush);
301 	else
302 		static_branch_disable(&vmx_l1d_should_flush);
303 
304 	if (l1tf == VMENTER_L1D_FLUSH_COND)
305 		static_branch_enable(&vmx_l1d_flush_cond);
306 	else
307 		static_branch_disable(&vmx_l1d_flush_cond);
308 	return 0;
309 }
310 
311 static int vmentry_l1d_flush_parse(const char *s)
312 {
313 	unsigned int i;
314 
315 	if (s) {
316 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
317 			if (vmentry_l1d_param[i].for_parse &&
318 			    sysfs_streq(s, vmentry_l1d_param[i].option))
319 				return i;
320 		}
321 	}
322 	return -EINVAL;
323 }
324 
325 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
326 {
327 	int l1tf, ret;
328 
329 	l1tf = vmentry_l1d_flush_parse(s);
330 	if (l1tf < 0)
331 		return l1tf;
332 
333 	if (!boot_cpu_has(X86_BUG_L1TF))
334 		return 0;
335 
336 	/*
337 	 * Has vmx_init() run already? If not then this is the pre init
338 	 * parameter parsing. In that case just store the value and let
339 	 * vmx_init() do the proper setup after enable_ept has been
340 	 * established.
341 	 */
342 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
343 		vmentry_l1d_flush_param = l1tf;
344 		return 0;
345 	}
346 
347 	mutex_lock(&vmx_l1d_flush_mutex);
348 	ret = vmx_setup_l1d_flush(l1tf);
349 	mutex_unlock(&vmx_l1d_flush_mutex);
350 	return ret;
351 }
352 
353 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
354 {
355 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
356 		return sprintf(s, "???\n");
357 
358 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
359 }
360 
361 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
362 	.set = vmentry_l1d_flush_set,
363 	.get = vmentry_l1d_flush_get,
364 };
365 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
366 
367 static u32 vmx_segment_access_rights(struct kvm_segment *var);
368 
369 void vmx_vmexit(void);
370 
371 #define vmx_insn_failed(fmt...)		\
372 do {					\
373 	WARN_ONCE(1, fmt);		\
374 	pr_warn_ratelimited(fmt);	\
375 } while (0)
376 
377 asmlinkage void vmread_error(unsigned long field, bool fault)
378 {
379 	if (fault)
380 		kvm_spurious_fault();
381 	else
382 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
383 }
384 
385 noinline void vmwrite_error(unsigned long field, unsigned long value)
386 {
387 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
388 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
389 }
390 
391 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
392 {
393 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
394 }
395 
396 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
397 {
398 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
399 }
400 
401 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
402 {
403 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
404 			ext, vpid, gva);
405 }
406 
407 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
408 {
409 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
410 			ext, eptp, gpa);
411 }
412 
413 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
414 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
415 /*
416  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
417  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
418  */
419 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
420 
421 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
422 static DEFINE_SPINLOCK(vmx_vpid_lock);
423 
424 struct vmcs_config vmcs_config;
425 struct vmx_capability vmx_capability;
426 
427 #define VMX_SEGMENT_FIELD(seg)					\
428 	[VCPU_SREG_##seg] = {                                   \
429 		.selector = GUEST_##seg##_SELECTOR,		\
430 		.base = GUEST_##seg##_BASE,		   	\
431 		.limit = GUEST_##seg##_LIMIT,		   	\
432 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
433 	}
434 
435 static const struct kvm_vmx_segment_field {
436 	unsigned selector;
437 	unsigned base;
438 	unsigned limit;
439 	unsigned ar_bytes;
440 } kvm_vmx_segment_fields[] = {
441 	VMX_SEGMENT_FIELD(CS),
442 	VMX_SEGMENT_FIELD(DS),
443 	VMX_SEGMENT_FIELD(ES),
444 	VMX_SEGMENT_FIELD(FS),
445 	VMX_SEGMENT_FIELD(GS),
446 	VMX_SEGMENT_FIELD(SS),
447 	VMX_SEGMENT_FIELD(TR),
448 	VMX_SEGMENT_FIELD(LDTR),
449 };
450 
451 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
452 {
453 	vmx->segment_cache.bitmask = 0;
454 }
455 
456 static unsigned long host_idt_base;
457 
458 #if IS_ENABLED(CONFIG_HYPERV)
459 static bool __read_mostly enlightened_vmcs = true;
460 module_param(enlightened_vmcs, bool, 0444);
461 
462 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
463 {
464 	struct hv_enlightened_vmcs *evmcs;
465 	struct hv_partition_assist_pg **p_hv_pa_pg =
466 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
467 	/*
468 	 * Synthetic VM-Exit is not enabled in current code and so All
469 	 * evmcs in singe VM shares same assist page.
470 	 */
471 	if (!*p_hv_pa_pg)
472 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
473 
474 	if (!*p_hv_pa_pg)
475 		return -ENOMEM;
476 
477 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
478 
479 	evmcs->partition_assist_page =
480 		__pa(*p_hv_pa_pg);
481 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
482 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
483 
484 	return 0;
485 }
486 
487 #endif /* IS_ENABLED(CONFIG_HYPERV) */
488 
489 /*
490  * Comment's format: document - errata name - stepping - processor name.
491  * Refer from
492  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
493  */
494 static u32 vmx_preemption_cpu_tfms[] = {
495 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
496 0x000206E6,
497 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
498 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
499 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
500 0x00020652,
501 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
502 0x00020655,
503 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
504 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
505 /*
506  * 320767.pdf - AAP86  - B1 -
507  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
508  */
509 0x000106E5,
510 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
511 0x000106A0,
512 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
513 0x000106A1,
514 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
515 0x000106A4,
516  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
517  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
518  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
519 0x000106A5,
520  /* Xeon E3-1220 V2 */
521 0x000306A8,
522 };
523 
524 static inline bool cpu_has_broken_vmx_preemption_timer(void)
525 {
526 	u32 eax = cpuid_eax(0x00000001), i;
527 
528 	/* Clear the reserved bits */
529 	eax &= ~(0x3U << 14 | 0xfU << 28);
530 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
531 		if (eax == vmx_preemption_cpu_tfms[i])
532 			return true;
533 
534 	return false;
535 }
536 
537 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
538 {
539 	return flexpriority_enabled && lapic_in_kernel(vcpu);
540 }
541 
542 static inline bool report_flexpriority(void)
543 {
544 	return flexpriority_enabled;
545 }
546 
547 static int possible_passthrough_msr_slot(u32 msr)
548 {
549 	u32 i;
550 
551 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
552 		if (vmx_possible_passthrough_msrs[i] == msr)
553 			return i;
554 
555 	return -ENOENT;
556 }
557 
558 static bool is_valid_passthrough_msr(u32 msr)
559 {
560 	bool r;
561 
562 	switch (msr) {
563 	case 0x800 ... 0x8ff:
564 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
565 		return true;
566 	case MSR_IA32_RTIT_STATUS:
567 	case MSR_IA32_RTIT_OUTPUT_BASE:
568 	case MSR_IA32_RTIT_OUTPUT_MASK:
569 	case MSR_IA32_RTIT_CR3_MATCH:
570 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
571 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
572 	case MSR_LBR_SELECT:
573 	case MSR_LBR_TOS:
574 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
575 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
576 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
577 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
578 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
579 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
580 		return true;
581 	}
582 
583 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
584 
585 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
586 
587 	return r;
588 }
589 
590 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
591 {
592 	int i;
593 
594 	i = kvm_find_user_return_msr(msr);
595 	if (i >= 0)
596 		return &vmx->guest_uret_msrs[i];
597 	return NULL;
598 }
599 
600 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
601 				  struct vmx_uret_msr *msr, u64 data)
602 {
603 	unsigned int slot = msr - vmx->guest_uret_msrs;
604 	int ret = 0;
605 
606 	u64 old_msr_data = msr->data;
607 	msr->data = data;
608 	if (msr->load_into_hardware) {
609 		preempt_disable();
610 		ret = kvm_set_user_return_msr(slot, msr->data, msr->mask);
611 		preempt_enable();
612 		if (ret)
613 			msr->data = old_msr_data;
614 	}
615 	return ret;
616 }
617 
618 #ifdef CONFIG_KEXEC_CORE
619 static void crash_vmclear_local_loaded_vmcss(void)
620 {
621 	int cpu = raw_smp_processor_id();
622 	struct loaded_vmcs *v;
623 
624 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
625 			    loaded_vmcss_on_cpu_link)
626 		vmcs_clear(v->vmcs);
627 }
628 #endif /* CONFIG_KEXEC_CORE */
629 
630 static void __loaded_vmcs_clear(void *arg)
631 {
632 	struct loaded_vmcs *loaded_vmcs = arg;
633 	int cpu = raw_smp_processor_id();
634 
635 	if (loaded_vmcs->cpu != cpu)
636 		return; /* vcpu migration can race with cpu offline */
637 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
638 		per_cpu(current_vmcs, cpu) = NULL;
639 
640 	vmcs_clear(loaded_vmcs->vmcs);
641 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
642 		vmcs_clear(loaded_vmcs->shadow_vmcs);
643 
644 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
645 
646 	/*
647 	 * Ensure all writes to loaded_vmcs, including deleting it from its
648 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
649 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
650 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
651 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
652 	 */
653 	smp_wmb();
654 
655 	loaded_vmcs->cpu = -1;
656 	loaded_vmcs->launched = 0;
657 }
658 
659 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
660 {
661 	int cpu = loaded_vmcs->cpu;
662 
663 	if (cpu != -1)
664 		smp_call_function_single(cpu,
665 			 __loaded_vmcs_clear, loaded_vmcs, 1);
666 }
667 
668 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
669 				       unsigned field)
670 {
671 	bool ret;
672 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
673 
674 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
675 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
676 		vmx->segment_cache.bitmask = 0;
677 	}
678 	ret = vmx->segment_cache.bitmask & mask;
679 	vmx->segment_cache.bitmask |= mask;
680 	return ret;
681 }
682 
683 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
684 {
685 	u16 *p = &vmx->segment_cache.seg[seg].selector;
686 
687 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
688 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
689 	return *p;
690 }
691 
692 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
693 {
694 	ulong *p = &vmx->segment_cache.seg[seg].base;
695 
696 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
697 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
698 	return *p;
699 }
700 
701 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
702 {
703 	u32 *p = &vmx->segment_cache.seg[seg].limit;
704 
705 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
706 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
707 	return *p;
708 }
709 
710 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
711 {
712 	u32 *p = &vmx->segment_cache.seg[seg].ar;
713 
714 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
715 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
716 	return *p;
717 }
718 
719 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
720 {
721 	u32 eb;
722 
723 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
724 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
725 	/*
726 	 * Guest access to VMware backdoor ports could legitimately
727 	 * trigger #GP because of TSS I/O permission bitmap.
728 	 * We intercept those #GP and allow access to them anyway
729 	 * as VMware does.
730 	 */
731 	if (enable_vmware_backdoor)
732 		eb |= (1u << GP_VECTOR);
733 	if ((vcpu->guest_debug &
734 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
735 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
736 		eb |= 1u << BP_VECTOR;
737 	if (to_vmx(vcpu)->rmode.vm86_active)
738 		eb = ~0;
739 	if (!vmx_need_pf_intercept(vcpu))
740 		eb &= ~(1u << PF_VECTOR);
741 
742 	/* When we are running a nested L2 guest and L1 specified for it a
743 	 * certain exception bitmap, we must trap the same exceptions and pass
744 	 * them to L1. When running L2, we will only handle the exceptions
745 	 * specified above if L1 did not want them.
746 	 */
747 	if (is_guest_mode(vcpu))
748 		eb |= get_vmcs12(vcpu)->exception_bitmap;
749         else {
750 		int mask = 0, match = 0;
751 
752 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
753 			/*
754 			 * If EPT is enabled, #PF is currently only intercepted
755 			 * if MAXPHYADDR is smaller on the guest than on the
756 			 * host.  In that case we only care about present,
757 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
758 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
759 			 */
760 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
761 			match = PFERR_PRESENT_MASK;
762 		}
763 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
764 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
765 	}
766 
767 	vmcs_write32(EXCEPTION_BITMAP, eb);
768 }
769 
770 /*
771  * Check if MSR is intercepted for currently loaded MSR bitmap.
772  */
773 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
774 {
775 	unsigned long *msr_bitmap;
776 	int f = sizeof(unsigned long);
777 
778 	if (!cpu_has_vmx_msr_bitmap())
779 		return true;
780 
781 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
782 
783 	if (msr <= 0x1fff) {
784 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
785 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
786 		msr &= 0x1fff;
787 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
788 	}
789 
790 	return true;
791 }
792 
793 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
794 		unsigned long entry, unsigned long exit)
795 {
796 	vm_entry_controls_clearbit(vmx, entry);
797 	vm_exit_controls_clearbit(vmx, exit);
798 }
799 
800 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
801 {
802 	unsigned int i;
803 
804 	for (i = 0; i < m->nr; ++i) {
805 		if (m->val[i].index == msr)
806 			return i;
807 	}
808 	return -ENOENT;
809 }
810 
811 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
812 {
813 	int i;
814 	struct msr_autoload *m = &vmx->msr_autoload;
815 
816 	switch (msr) {
817 	case MSR_EFER:
818 		if (cpu_has_load_ia32_efer()) {
819 			clear_atomic_switch_msr_special(vmx,
820 					VM_ENTRY_LOAD_IA32_EFER,
821 					VM_EXIT_LOAD_IA32_EFER);
822 			return;
823 		}
824 		break;
825 	case MSR_CORE_PERF_GLOBAL_CTRL:
826 		if (cpu_has_load_perf_global_ctrl()) {
827 			clear_atomic_switch_msr_special(vmx,
828 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
829 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
830 			return;
831 		}
832 		break;
833 	}
834 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
835 	if (i < 0)
836 		goto skip_guest;
837 	--m->guest.nr;
838 	m->guest.val[i] = m->guest.val[m->guest.nr];
839 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
840 
841 skip_guest:
842 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
843 	if (i < 0)
844 		return;
845 
846 	--m->host.nr;
847 	m->host.val[i] = m->host.val[m->host.nr];
848 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
849 }
850 
851 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
852 		unsigned long entry, unsigned long exit,
853 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
854 		u64 guest_val, u64 host_val)
855 {
856 	vmcs_write64(guest_val_vmcs, guest_val);
857 	if (host_val_vmcs != HOST_IA32_EFER)
858 		vmcs_write64(host_val_vmcs, host_val);
859 	vm_entry_controls_setbit(vmx, entry);
860 	vm_exit_controls_setbit(vmx, exit);
861 }
862 
863 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
864 				  u64 guest_val, u64 host_val, bool entry_only)
865 {
866 	int i, j = 0;
867 	struct msr_autoload *m = &vmx->msr_autoload;
868 
869 	switch (msr) {
870 	case MSR_EFER:
871 		if (cpu_has_load_ia32_efer()) {
872 			add_atomic_switch_msr_special(vmx,
873 					VM_ENTRY_LOAD_IA32_EFER,
874 					VM_EXIT_LOAD_IA32_EFER,
875 					GUEST_IA32_EFER,
876 					HOST_IA32_EFER,
877 					guest_val, host_val);
878 			return;
879 		}
880 		break;
881 	case MSR_CORE_PERF_GLOBAL_CTRL:
882 		if (cpu_has_load_perf_global_ctrl()) {
883 			add_atomic_switch_msr_special(vmx,
884 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
885 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
886 					GUEST_IA32_PERF_GLOBAL_CTRL,
887 					HOST_IA32_PERF_GLOBAL_CTRL,
888 					guest_val, host_val);
889 			return;
890 		}
891 		break;
892 	case MSR_IA32_PEBS_ENABLE:
893 		/* PEBS needs a quiescent period after being disabled (to write
894 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
895 		 * provide that period, so a CPU could write host's record into
896 		 * guest's memory.
897 		 */
898 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
899 	}
900 
901 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
902 	if (!entry_only)
903 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
904 
905 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
906 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
907 		printk_once(KERN_WARNING "Not enough msr switch entries. "
908 				"Can't add msr %x\n", msr);
909 		return;
910 	}
911 	if (i < 0) {
912 		i = m->guest.nr++;
913 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
914 	}
915 	m->guest.val[i].index = msr;
916 	m->guest.val[i].value = guest_val;
917 
918 	if (entry_only)
919 		return;
920 
921 	if (j < 0) {
922 		j = m->host.nr++;
923 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
924 	}
925 	m->host.val[j].index = msr;
926 	m->host.val[j].value = host_val;
927 }
928 
929 static bool update_transition_efer(struct vcpu_vmx *vmx)
930 {
931 	u64 guest_efer = vmx->vcpu.arch.efer;
932 	u64 ignore_bits = 0;
933 	int i;
934 
935 	/* Shadow paging assumes NX to be available.  */
936 	if (!enable_ept)
937 		guest_efer |= EFER_NX;
938 
939 	/*
940 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
941 	 */
942 	ignore_bits |= EFER_SCE;
943 #ifdef CONFIG_X86_64
944 	ignore_bits |= EFER_LMA | EFER_LME;
945 	/* SCE is meaningful only in long mode on Intel */
946 	if (guest_efer & EFER_LMA)
947 		ignore_bits &= ~(u64)EFER_SCE;
948 #endif
949 
950 	/*
951 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
952 	 * On CPUs that support "load IA32_EFER", always switch EFER
953 	 * atomically, since it's faster than switching it manually.
954 	 */
955 	if (cpu_has_load_ia32_efer() ||
956 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
957 		if (!(guest_efer & EFER_LMA))
958 			guest_efer &= ~EFER_LME;
959 		if (guest_efer != host_efer)
960 			add_atomic_switch_msr(vmx, MSR_EFER,
961 					      guest_efer, host_efer, false);
962 		else
963 			clear_atomic_switch_msr(vmx, MSR_EFER);
964 		return false;
965 	}
966 
967 	i = kvm_find_user_return_msr(MSR_EFER);
968 	if (i < 0)
969 		return false;
970 
971 	clear_atomic_switch_msr(vmx, MSR_EFER);
972 
973 	guest_efer &= ~ignore_bits;
974 	guest_efer |= host_efer & ignore_bits;
975 
976 	vmx->guest_uret_msrs[i].data = guest_efer;
977 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
978 
979 	return true;
980 }
981 
982 #ifdef CONFIG_X86_32
983 /*
984  * On 32-bit kernels, VM exits still load the FS and GS bases from the
985  * VMCS rather than the segment table.  KVM uses this helper to figure
986  * out the current bases to poke them into the VMCS before entry.
987  */
988 static unsigned long segment_base(u16 selector)
989 {
990 	struct desc_struct *table;
991 	unsigned long v;
992 
993 	if (!(selector & ~SEGMENT_RPL_MASK))
994 		return 0;
995 
996 	table = get_current_gdt_ro();
997 
998 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
999 		u16 ldt_selector = kvm_read_ldt();
1000 
1001 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1002 			return 0;
1003 
1004 		table = (struct desc_struct *)segment_base(ldt_selector);
1005 	}
1006 	v = get_desc_base(&table[selector >> 3]);
1007 	return v;
1008 }
1009 #endif
1010 
1011 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1012 {
1013 	return vmx_pt_mode_is_host_guest() &&
1014 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1015 }
1016 
1017 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1018 {
1019 	/* The base must be 128-byte aligned and a legal physical address. */
1020 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1021 }
1022 
1023 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1024 {
1025 	u32 i;
1026 
1027 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1028 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1029 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1030 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1031 	for (i = 0; i < addr_range; i++) {
1032 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1033 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1034 	}
1035 }
1036 
1037 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1038 {
1039 	u32 i;
1040 
1041 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1042 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1043 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1044 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1045 	for (i = 0; i < addr_range; i++) {
1046 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1047 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1048 	}
1049 }
1050 
1051 static void pt_guest_enter(struct vcpu_vmx *vmx)
1052 {
1053 	if (vmx_pt_mode_is_system())
1054 		return;
1055 
1056 	/*
1057 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1058 	 * Save host state before VM entry.
1059 	 */
1060 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1061 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1062 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1063 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1064 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1065 	}
1066 }
1067 
1068 static void pt_guest_exit(struct vcpu_vmx *vmx)
1069 {
1070 	if (vmx_pt_mode_is_system())
1071 		return;
1072 
1073 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1074 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1075 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1076 	}
1077 
1078 	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1079 	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1080 }
1081 
1082 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1083 			unsigned long fs_base, unsigned long gs_base)
1084 {
1085 	if (unlikely(fs_sel != host->fs_sel)) {
1086 		if (!(fs_sel & 7))
1087 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1088 		else
1089 			vmcs_write16(HOST_FS_SELECTOR, 0);
1090 		host->fs_sel = fs_sel;
1091 	}
1092 	if (unlikely(gs_sel != host->gs_sel)) {
1093 		if (!(gs_sel & 7))
1094 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1095 		else
1096 			vmcs_write16(HOST_GS_SELECTOR, 0);
1097 		host->gs_sel = gs_sel;
1098 	}
1099 	if (unlikely(fs_base != host->fs_base)) {
1100 		vmcs_writel(HOST_FS_BASE, fs_base);
1101 		host->fs_base = fs_base;
1102 	}
1103 	if (unlikely(gs_base != host->gs_base)) {
1104 		vmcs_writel(HOST_GS_BASE, gs_base);
1105 		host->gs_base = gs_base;
1106 	}
1107 }
1108 
1109 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1110 {
1111 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1112 	struct vmcs_host_state *host_state;
1113 #ifdef CONFIG_X86_64
1114 	int cpu = raw_smp_processor_id();
1115 #endif
1116 	unsigned long fs_base, gs_base;
1117 	u16 fs_sel, gs_sel;
1118 	int i;
1119 
1120 	vmx->req_immediate_exit = false;
1121 
1122 	/*
1123 	 * Note that guest MSRs to be saved/restored can also be changed
1124 	 * when guest state is loaded. This happens when guest transitions
1125 	 * to/from long-mode by setting MSR_EFER.LMA.
1126 	 */
1127 	if (!vmx->guest_uret_msrs_loaded) {
1128 		vmx->guest_uret_msrs_loaded = true;
1129 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1130 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1131 				continue;
1132 
1133 			kvm_set_user_return_msr(i,
1134 						vmx->guest_uret_msrs[i].data,
1135 						vmx->guest_uret_msrs[i].mask);
1136 		}
1137 	}
1138 
1139     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1140 		nested_sync_vmcs12_to_shadow(vcpu);
1141 
1142 	if (vmx->guest_state_loaded)
1143 		return;
1144 
1145 	host_state = &vmx->loaded_vmcs->host_state;
1146 
1147 	/*
1148 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1149 	 * allow segment selectors with cpl > 0 or ti == 1.
1150 	 */
1151 	host_state->ldt_sel = kvm_read_ldt();
1152 
1153 #ifdef CONFIG_X86_64
1154 	savesegment(ds, host_state->ds_sel);
1155 	savesegment(es, host_state->es_sel);
1156 
1157 	gs_base = cpu_kernelmode_gs_base(cpu);
1158 	if (likely(is_64bit_mm(current->mm))) {
1159 		current_save_fsgs();
1160 		fs_sel = current->thread.fsindex;
1161 		gs_sel = current->thread.gsindex;
1162 		fs_base = current->thread.fsbase;
1163 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1164 	} else {
1165 		savesegment(fs, fs_sel);
1166 		savesegment(gs, gs_sel);
1167 		fs_base = read_msr(MSR_FS_BASE);
1168 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1169 	}
1170 
1171 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1172 #else
1173 	savesegment(fs, fs_sel);
1174 	savesegment(gs, gs_sel);
1175 	fs_base = segment_base(fs_sel);
1176 	gs_base = segment_base(gs_sel);
1177 #endif
1178 
1179 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1180 	vmx->guest_state_loaded = true;
1181 }
1182 
1183 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1184 {
1185 	struct vmcs_host_state *host_state;
1186 
1187 	if (!vmx->guest_state_loaded)
1188 		return;
1189 
1190 	host_state = &vmx->loaded_vmcs->host_state;
1191 
1192 	++vmx->vcpu.stat.host_state_reload;
1193 
1194 #ifdef CONFIG_X86_64
1195 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1196 #endif
1197 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1198 		kvm_load_ldt(host_state->ldt_sel);
1199 #ifdef CONFIG_X86_64
1200 		load_gs_index(host_state->gs_sel);
1201 #else
1202 		loadsegment(gs, host_state->gs_sel);
1203 #endif
1204 	}
1205 	if (host_state->fs_sel & 7)
1206 		loadsegment(fs, host_state->fs_sel);
1207 #ifdef CONFIG_X86_64
1208 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1209 		loadsegment(ds, host_state->ds_sel);
1210 		loadsegment(es, host_state->es_sel);
1211 	}
1212 #endif
1213 	invalidate_tss_limit();
1214 #ifdef CONFIG_X86_64
1215 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1216 #endif
1217 	load_fixmap_gdt(raw_smp_processor_id());
1218 	vmx->guest_state_loaded = false;
1219 	vmx->guest_uret_msrs_loaded = false;
1220 }
1221 
1222 #ifdef CONFIG_X86_64
1223 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1224 {
1225 	preempt_disable();
1226 	if (vmx->guest_state_loaded)
1227 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1228 	preempt_enable();
1229 	return vmx->msr_guest_kernel_gs_base;
1230 }
1231 
1232 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1233 {
1234 	preempt_disable();
1235 	if (vmx->guest_state_loaded)
1236 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1237 	preempt_enable();
1238 	vmx->msr_guest_kernel_gs_base = data;
1239 }
1240 #endif
1241 
1242 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1243 			struct loaded_vmcs *buddy)
1244 {
1245 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1246 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1247 	struct vmcs *prev;
1248 
1249 	if (!already_loaded) {
1250 		loaded_vmcs_clear(vmx->loaded_vmcs);
1251 		local_irq_disable();
1252 
1253 		/*
1254 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1255 		 * this cpu's percpu list, otherwise it may not yet be deleted
1256 		 * from its previous cpu's percpu list.  Pairs with the
1257 		 * smb_wmb() in __loaded_vmcs_clear().
1258 		 */
1259 		smp_rmb();
1260 
1261 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1262 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1263 		local_irq_enable();
1264 	}
1265 
1266 	prev = per_cpu(current_vmcs, cpu);
1267 	if (prev != vmx->loaded_vmcs->vmcs) {
1268 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1269 		vmcs_load(vmx->loaded_vmcs->vmcs);
1270 
1271 		/*
1272 		 * No indirect branch prediction barrier needed when switching
1273 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1274 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1275 		 */
1276 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1277 			indirect_branch_prediction_barrier();
1278 	}
1279 
1280 	if (!already_loaded) {
1281 		void *gdt = get_current_gdt_ro();
1282 		unsigned long sysenter_esp;
1283 
1284 		/*
1285 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1286 		 * TLB entries from its previous association with the vCPU.
1287 		 */
1288 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1289 
1290 		/*
1291 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1292 		 * processors.  See 22.2.4.
1293 		 */
1294 		vmcs_writel(HOST_TR_BASE,
1295 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1296 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1297 
1298 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1299 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1300 
1301 		vmx->loaded_vmcs->cpu = cpu;
1302 	}
1303 }
1304 
1305 /*
1306  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1307  * vcpu mutex is already taken.
1308  */
1309 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1310 {
1311 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1312 
1313 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1314 
1315 	vmx_vcpu_pi_load(vcpu, cpu);
1316 
1317 	vmx->host_debugctlmsr = get_debugctlmsr();
1318 }
1319 
1320 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1321 {
1322 	vmx_vcpu_pi_put(vcpu);
1323 
1324 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1325 }
1326 
1327 static bool emulation_required(struct kvm_vcpu *vcpu)
1328 {
1329 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1330 }
1331 
1332 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1333 {
1334 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1335 	unsigned long rflags, save_rflags;
1336 
1337 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1338 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1339 		rflags = vmcs_readl(GUEST_RFLAGS);
1340 		if (vmx->rmode.vm86_active) {
1341 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1342 			save_rflags = vmx->rmode.save_rflags;
1343 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1344 		}
1345 		vmx->rflags = rflags;
1346 	}
1347 	return vmx->rflags;
1348 }
1349 
1350 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1351 {
1352 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1353 	unsigned long old_rflags;
1354 
1355 	if (is_unrestricted_guest(vcpu)) {
1356 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1357 		vmx->rflags = rflags;
1358 		vmcs_writel(GUEST_RFLAGS, rflags);
1359 		return;
1360 	}
1361 
1362 	old_rflags = vmx_get_rflags(vcpu);
1363 	vmx->rflags = rflags;
1364 	if (vmx->rmode.vm86_active) {
1365 		vmx->rmode.save_rflags = rflags;
1366 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1367 	}
1368 	vmcs_writel(GUEST_RFLAGS, rflags);
1369 
1370 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1371 		vmx->emulation_required = emulation_required(vcpu);
1372 }
1373 
1374 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1375 {
1376 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1377 	int ret = 0;
1378 
1379 	if (interruptibility & GUEST_INTR_STATE_STI)
1380 		ret |= KVM_X86_SHADOW_INT_STI;
1381 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1382 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1383 
1384 	return ret;
1385 }
1386 
1387 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1388 {
1389 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1390 	u32 interruptibility = interruptibility_old;
1391 
1392 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1393 
1394 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1395 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1396 	else if (mask & KVM_X86_SHADOW_INT_STI)
1397 		interruptibility |= GUEST_INTR_STATE_STI;
1398 
1399 	if ((interruptibility != interruptibility_old))
1400 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1401 }
1402 
1403 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1404 {
1405 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1406 	unsigned long value;
1407 
1408 	/*
1409 	 * Any MSR write that attempts to change bits marked reserved will
1410 	 * case a #GP fault.
1411 	 */
1412 	if (data & vmx->pt_desc.ctl_bitmask)
1413 		return 1;
1414 
1415 	/*
1416 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1417 	 * result in a #GP unless the same write also clears TraceEn.
1418 	 */
1419 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1420 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1421 		return 1;
1422 
1423 	/*
1424 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1425 	 * and FabricEn would cause #GP, if
1426 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1427 	 */
1428 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1429 		!(data & RTIT_CTL_FABRIC_EN) &&
1430 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1431 					PT_CAP_single_range_output))
1432 		return 1;
1433 
1434 	/*
1435 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1436 	 * utilize encodings marked reserved will cause a #GP fault.
1437 	 */
1438 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1439 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1440 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1441 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1442 		return 1;
1443 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1444 						PT_CAP_cycle_thresholds);
1445 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1446 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1447 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1448 		return 1;
1449 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1450 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1451 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1452 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1453 		return 1;
1454 
1455 	/*
1456 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1457 	 * cause a #GP fault.
1458 	 */
1459 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1460 	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1461 		return 1;
1462 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1463 	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1464 		return 1;
1465 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1466 	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1467 		return 1;
1468 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1469 	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1470 		return 1;
1471 
1472 	return 0;
1473 }
1474 
1475 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1476 {
1477 	/*
1478 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1479 	 * not point  tthe failing instruction, and even if it did, the code
1480 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1481 	 * so that guest userspace can't DoS the guest simply by triggering
1482 	 * emulation (enclaves are CPL3 only).
1483 	 */
1484 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1485 		kvm_queue_exception(vcpu, UD_VECTOR);
1486 		return false;
1487 	}
1488 	return true;
1489 }
1490 
1491 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1492 {
1493 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1494 	unsigned long rip, orig_rip;
1495 	u32 instr_len;
1496 
1497 	/*
1498 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1499 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1500 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1501 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1502 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1503 	 * i.e. we end up advancing IP with some random value.
1504 	 */
1505 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1506 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1507 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1508 
1509 		/*
1510 		 * Emulating an enclave's instructions isn't supported as KVM
1511 		 * cannot access the enclave's memory or its true RIP, e.g. the
1512 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1513 		 * the RIP that actually triggered the VM-Exit.  But, because
1514 		 * most instructions that cause VM-Exit will #UD in an enclave,
1515 		 * most instruction-based VM-Exits simply do not occur.
1516 		 *
1517 		 * There are a few exceptions, notably the debug instructions
1518 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1519 		 * and generate #DB/#BP as expected, which KVM might intercept.
1520 		 * But again, the CPU does the dirty work and saves an instr
1521 		 * length of zero so VMMs don't shoot themselves in the foot.
1522 		 * WARN if KVM tries to skip a non-zero length instruction on
1523 		 * a VM-Exit from an enclave.
1524 		 */
1525 		if (!instr_len)
1526 			goto rip_updated;
1527 
1528 		WARN(exit_reason.enclave_mode,
1529 		     "KVM: skipping instruction after SGX enclave VM-Exit");
1530 
1531 		orig_rip = kvm_rip_read(vcpu);
1532 		rip = orig_rip + instr_len;
1533 #ifdef CONFIG_X86_64
1534 		/*
1535 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1536 		 * mode, but just finding out that we are in 64-bit mode is
1537 		 * quite expensive.  Only do it if there was a carry.
1538 		 */
1539 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1540 			rip = (u32)rip;
1541 #endif
1542 		kvm_rip_write(vcpu, rip);
1543 	} else {
1544 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1545 			return 0;
1546 	}
1547 
1548 rip_updated:
1549 	/* skipping an emulated instruction also counts */
1550 	vmx_set_interrupt_shadow(vcpu, 0);
1551 
1552 	return 1;
1553 }
1554 
1555 /*
1556  * Recognizes a pending MTF VM-exit and records the nested state for later
1557  * delivery.
1558  */
1559 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1560 {
1561 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1562 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1563 
1564 	if (!is_guest_mode(vcpu))
1565 		return;
1566 
1567 	/*
1568 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1569 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1570 	 * instruction boundary), any #DB exception pending delivery must be a
1571 	 * debug-trap. Record the pending MTF state to be delivered in
1572 	 * vmx_check_nested_events().
1573 	 */
1574 	if (nested_cpu_has_mtf(vmcs12) &&
1575 	    (!vcpu->arch.exception.pending ||
1576 	     vcpu->arch.exception.nr == DB_VECTOR))
1577 		vmx->nested.mtf_pending = true;
1578 	else
1579 		vmx->nested.mtf_pending = false;
1580 }
1581 
1582 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1583 {
1584 	vmx_update_emulated_instruction(vcpu);
1585 	return skip_emulated_instruction(vcpu);
1586 }
1587 
1588 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1589 {
1590 	/*
1591 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1592 	 * explicitly skip the instruction because if the HLT state is set,
1593 	 * then the instruction is already executing and RIP has already been
1594 	 * advanced.
1595 	 */
1596 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1597 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1598 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1599 }
1600 
1601 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1602 {
1603 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1604 	unsigned nr = vcpu->arch.exception.nr;
1605 	bool has_error_code = vcpu->arch.exception.has_error_code;
1606 	u32 error_code = vcpu->arch.exception.error_code;
1607 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1608 
1609 	kvm_deliver_exception_payload(vcpu);
1610 
1611 	if (has_error_code) {
1612 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1613 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1614 	}
1615 
1616 	if (vmx->rmode.vm86_active) {
1617 		int inc_eip = 0;
1618 		if (kvm_exception_is_soft(nr))
1619 			inc_eip = vcpu->arch.event_exit_inst_len;
1620 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1621 		return;
1622 	}
1623 
1624 	WARN_ON_ONCE(vmx->emulation_required);
1625 
1626 	if (kvm_exception_is_soft(nr)) {
1627 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1628 			     vmx->vcpu.arch.event_exit_inst_len);
1629 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1630 	} else
1631 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1632 
1633 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1634 
1635 	vmx_clear_hlt(vcpu);
1636 }
1637 
1638 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1639 			       bool load_into_hardware)
1640 {
1641 	struct vmx_uret_msr *uret_msr;
1642 
1643 	uret_msr = vmx_find_uret_msr(vmx, msr);
1644 	if (!uret_msr)
1645 		return;
1646 
1647 	uret_msr->load_into_hardware = load_into_hardware;
1648 }
1649 
1650 /*
1651  * Set up the vmcs to automatically save and restore system
1652  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1653  * mode, as fiddling with msrs is very expensive.
1654  */
1655 static void setup_msrs(struct vcpu_vmx *vmx)
1656 {
1657 #ifdef CONFIG_X86_64
1658 	bool load_syscall_msrs;
1659 
1660 	/*
1661 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1662 	 * when EFER.SCE is set.
1663 	 */
1664 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1665 			    (vmx->vcpu.arch.efer & EFER_SCE);
1666 
1667 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1668 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1669 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1670 #endif
1671 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1672 
1673 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1674 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1675 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1676 
1677 	/*
1678 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1679 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1680 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1681 	 * so that TSX remains always disabled.
1682 	 */
1683 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1684 
1685 	if (cpu_has_vmx_msr_bitmap())
1686 		vmx_update_msr_bitmap(&vmx->vcpu);
1687 
1688 	/*
1689 	 * The set of MSRs to load may have changed, reload MSRs before the
1690 	 * next VM-Enter.
1691 	 */
1692 	vmx->guest_uret_msrs_loaded = false;
1693 }
1694 
1695 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1696 {
1697 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1698 
1699 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1700 		return vmcs12->tsc_offset;
1701 
1702 	return 0;
1703 }
1704 
1705 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1706 {
1707 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1708 
1709 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1710 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1711 		return vmcs12->tsc_multiplier;
1712 
1713 	return kvm_default_tsc_scaling_ratio;
1714 }
1715 
1716 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1717 {
1718 	vmcs_write64(TSC_OFFSET, offset);
1719 }
1720 
1721 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1722 {
1723 	vmcs_write64(TSC_MULTIPLIER, multiplier);
1724 }
1725 
1726 /*
1727  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1728  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1729  * all guests if the "nested" module option is off, and can also be disabled
1730  * for a single guest by disabling its VMX cpuid bit.
1731  */
1732 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1733 {
1734 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1735 }
1736 
1737 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1738 						 uint64_t val)
1739 {
1740 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1741 
1742 	return !(val & ~valid_bits);
1743 }
1744 
1745 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1746 {
1747 	switch (msr->index) {
1748 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1749 		if (!nested)
1750 			return 1;
1751 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1752 	case MSR_IA32_PERF_CAPABILITIES:
1753 		msr->data = vmx_get_perf_capabilities();
1754 		return 0;
1755 	default:
1756 		return KVM_MSR_RET_INVALID;
1757 	}
1758 }
1759 
1760 /*
1761  * Reads an msr value (of 'msr_index') into 'pdata'.
1762  * Returns 0 on success, non-0 otherwise.
1763  * Assumes vcpu_load() was already called.
1764  */
1765 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1766 {
1767 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1768 	struct vmx_uret_msr *msr;
1769 	u32 index;
1770 
1771 	switch (msr_info->index) {
1772 #ifdef CONFIG_X86_64
1773 	case MSR_FS_BASE:
1774 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1775 		break;
1776 	case MSR_GS_BASE:
1777 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1778 		break;
1779 	case MSR_KERNEL_GS_BASE:
1780 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1781 		break;
1782 #endif
1783 	case MSR_EFER:
1784 		return kvm_get_msr_common(vcpu, msr_info);
1785 	case MSR_IA32_TSX_CTRL:
1786 		if (!msr_info->host_initiated &&
1787 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1788 			return 1;
1789 		goto find_uret_msr;
1790 	case MSR_IA32_UMWAIT_CONTROL:
1791 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1792 			return 1;
1793 
1794 		msr_info->data = vmx->msr_ia32_umwait_control;
1795 		break;
1796 	case MSR_IA32_SPEC_CTRL:
1797 		if (!msr_info->host_initiated &&
1798 		    !guest_has_spec_ctrl_msr(vcpu))
1799 			return 1;
1800 
1801 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1802 		break;
1803 	case MSR_IA32_SYSENTER_CS:
1804 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1805 		break;
1806 	case MSR_IA32_SYSENTER_EIP:
1807 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1808 		break;
1809 	case MSR_IA32_SYSENTER_ESP:
1810 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1811 		break;
1812 	case MSR_IA32_BNDCFGS:
1813 		if (!kvm_mpx_supported() ||
1814 		    (!msr_info->host_initiated &&
1815 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1816 			return 1;
1817 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1818 		break;
1819 	case MSR_IA32_MCG_EXT_CTL:
1820 		if (!msr_info->host_initiated &&
1821 		    !(vmx->msr_ia32_feature_control &
1822 		      FEAT_CTL_LMCE_ENABLED))
1823 			return 1;
1824 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1825 		break;
1826 	case MSR_IA32_FEAT_CTL:
1827 		msr_info->data = vmx->msr_ia32_feature_control;
1828 		break;
1829 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1830 		if (!msr_info->host_initiated &&
1831 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1832 			return 1;
1833 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1834 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1835 		break;
1836 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1837 		if (!nested_vmx_allowed(vcpu))
1838 			return 1;
1839 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1840 				    &msr_info->data))
1841 			return 1;
1842 		/*
1843 		 * Enlightened VMCS v1 doesn't have certain fields, but buggy
1844 		 * Hyper-V versions are still trying to use corresponding
1845 		 * features when they are exposed. Filter out the essential
1846 		 * minimum.
1847 		 */
1848 		if (!msr_info->host_initiated &&
1849 		    vmx->nested.enlightened_vmcs_enabled)
1850 			nested_evmcs_filter_control_msr(msr_info->index,
1851 							&msr_info->data);
1852 		break;
1853 	case MSR_IA32_RTIT_CTL:
1854 		if (!vmx_pt_mode_is_host_guest())
1855 			return 1;
1856 		msr_info->data = vmx->pt_desc.guest.ctl;
1857 		break;
1858 	case MSR_IA32_RTIT_STATUS:
1859 		if (!vmx_pt_mode_is_host_guest())
1860 			return 1;
1861 		msr_info->data = vmx->pt_desc.guest.status;
1862 		break;
1863 	case MSR_IA32_RTIT_CR3_MATCH:
1864 		if (!vmx_pt_mode_is_host_guest() ||
1865 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1866 						PT_CAP_cr3_filtering))
1867 			return 1;
1868 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1869 		break;
1870 	case MSR_IA32_RTIT_OUTPUT_BASE:
1871 		if (!vmx_pt_mode_is_host_guest() ||
1872 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1873 					PT_CAP_topa_output) &&
1874 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1875 					PT_CAP_single_range_output)))
1876 			return 1;
1877 		msr_info->data = vmx->pt_desc.guest.output_base;
1878 		break;
1879 	case MSR_IA32_RTIT_OUTPUT_MASK:
1880 		if (!vmx_pt_mode_is_host_guest() ||
1881 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1882 					PT_CAP_topa_output) &&
1883 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1884 					PT_CAP_single_range_output)))
1885 			return 1;
1886 		msr_info->data = vmx->pt_desc.guest.output_mask;
1887 		break;
1888 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1889 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1890 		if (!vmx_pt_mode_is_host_guest() ||
1891 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1892 					PT_CAP_num_address_ranges)))
1893 			return 1;
1894 		if (index % 2)
1895 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1896 		else
1897 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1898 		break;
1899 	case MSR_IA32_DEBUGCTLMSR:
1900 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1901 		break;
1902 	default:
1903 	find_uret_msr:
1904 		msr = vmx_find_uret_msr(vmx, msr_info->index);
1905 		if (msr) {
1906 			msr_info->data = msr->data;
1907 			break;
1908 		}
1909 		return kvm_get_msr_common(vcpu, msr_info);
1910 	}
1911 
1912 	return 0;
1913 }
1914 
1915 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1916 						    u64 data)
1917 {
1918 #ifdef CONFIG_X86_64
1919 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1920 		return (u32)data;
1921 #endif
1922 	return (unsigned long)data;
1923 }
1924 
1925 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1926 {
1927 	u64 debugctl = vmx_supported_debugctl();
1928 
1929 	if (!intel_pmu_lbr_is_enabled(vcpu))
1930 		debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1931 
1932 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1933 		debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1934 
1935 	return debugctl;
1936 }
1937 
1938 /*
1939  * Writes msr value into the appropriate "register".
1940  * Returns 0 on success, non-0 otherwise.
1941  * Assumes vcpu_load() was already called.
1942  */
1943 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1944 {
1945 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1946 	struct vmx_uret_msr *msr;
1947 	int ret = 0;
1948 	u32 msr_index = msr_info->index;
1949 	u64 data = msr_info->data;
1950 	u32 index;
1951 
1952 	switch (msr_index) {
1953 	case MSR_EFER:
1954 		ret = kvm_set_msr_common(vcpu, msr_info);
1955 		break;
1956 #ifdef CONFIG_X86_64
1957 	case MSR_FS_BASE:
1958 		vmx_segment_cache_clear(vmx);
1959 		vmcs_writel(GUEST_FS_BASE, data);
1960 		break;
1961 	case MSR_GS_BASE:
1962 		vmx_segment_cache_clear(vmx);
1963 		vmcs_writel(GUEST_GS_BASE, data);
1964 		break;
1965 	case MSR_KERNEL_GS_BASE:
1966 		vmx_write_guest_kernel_gs_base(vmx, data);
1967 		break;
1968 #endif
1969 	case MSR_IA32_SYSENTER_CS:
1970 		if (is_guest_mode(vcpu))
1971 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
1972 		vmcs_write32(GUEST_SYSENTER_CS, data);
1973 		break;
1974 	case MSR_IA32_SYSENTER_EIP:
1975 		if (is_guest_mode(vcpu)) {
1976 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1977 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
1978 		}
1979 		vmcs_writel(GUEST_SYSENTER_EIP, data);
1980 		break;
1981 	case MSR_IA32_SYSENTER_ESP:
1982 		if (is_guest_mode(vcpu)) {
1983 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1984 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
1985 		}
1986 		vmcs_writel(GUEST_SYSENTER_ESP, data);
1987 		break;
1988 	case MSR_IA32_DEBUGCTLMSR: {
1989 		u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
1990 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
1991 			if (report_ignored_msrs)
1992 				vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
1993 					    __func__, data);
1994 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1995 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1996 		}
1997 
1998 		if (invalid)
1999 			return 1;
2000 
2001 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2002 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2003 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2004 
2005 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2006 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2007 		    (data & DEBUGCTLMSR_LBR))
2008 			intel_pmu_create_guest_lbr_event(vcpu);
2009 		return 0;
2010 	}
2011 	case MSR_IA32_BNDCFGS:
2012 		if (!kvm_mpx_supported() ||
2013 		    (!msr_info->host_initiated &&
2014 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2015 			return 1;
2016 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2017 		    (data & MSR_IA32_BNDCFGS_RSVD))
2018 			return 1;
2019 		vmcs_write64(GUEST_BNDCFGS, data);
2020 		break;
2021 	case MSR_IA32_UMWAIT_CONTROL:
2022 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2023 			return 1;
2024 
2025 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2026 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2027 			return 1;
2028 
2029 		vmx->msr_ia32_umwait_control = data;
2030 		break;
2031 	case MSR_IA32_SPEC_CTRL:
2032 		if (!msr_info->host_initiated &&
2033 		    !guest_has_spec_ctrl_msr(vcpu))
2034 			return 1;
2035 
2036 		if (kvm_spec_ctrl_test_value(data))
2037 			return 1;
2038 
2039 		vmx->spec_ctrl = data;
2040 		if (!data)
2041 			break;
2042 
2043 		/*
2044 		 * For non-nested:
2045 		 * When it's written (to non-zero) for the first time, pass
2046 		 * it through.
2047 		 *
2048 		 * For nested:
2049 		 * The handling of the MSR bitmap for L2 guests is done in
2050 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2051 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2052 		 * in the merging. We update the vmcs01 here for L1 as well
2053 		 * since it will end up touching the MSR anyway now.
2054 		 */
2055 		vmx_disable_intercept_for_msr(vcpu,
2056 					      MSR_IA32_SPEC_CTRL,
2057 					      MSR_TYPE_RW);
2058 		break;
2059 	case MSR_IA32_TSX_CTRL:
2060 		if (!msr_info->host_initiated &&
2061 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2062 			return 1;
2063 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2064 			return 1;
2065 		goto find_uret_msr;
2066 	case MSR_IA32_PRED_CMD:
2067 		if (!msr_info->host_initiated &&
2068 		    !guest_has_pred_cmd_msr(vcpu))
2069 			return 1;
2070 
2071 		if (data & ~PRED_CMD_IBPB)
2072 			return 1;
2073 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2074 			return 1;
2075 		if (!data)
2076 			break;
2077 
2078 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2079 
2080 		/*
2081 		 * For non-nested:
2082 		 * When it's written (to non-zero) for the first time, pass
2083 		 * it through.
2084 		 *
2085 		 * For nested:
2086 		 * The handling of the MSR bitmap for L2 guests is done in
2087 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2088 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2089 		 * in the merging.
2090 		 */
2091 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2092 		break;
2093 	case MSR_IA32_CR_PAT:
2094 		if (!kvm_pat_valid(data))
2095 			return 1;
2096 
2097 		if (is_guest_mode(vcpu) &&
2098 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2099 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2100 
2101 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2102 			vmcs_write64(GUEST_IA32_PAT, data);
2103 			vcpu->arch.pat = data;
2104 			break;
2105 		}
2106 		ret = kvm_set_msr_common(vcpu, msr_info);
2107 		break;
2108 	case MSR_IA32_TSC_ADJUST:
2109 		ret = kvm_set_msr_common(vcpu, msr_info);
2110 		break;
2111 	case MSR_IA32_MCG_EXT_CTL:
2112 		if ((!msr_info->host_initiated &&
2113 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2114 		       FEAT_CTL_LMCE_ENABLED)) ||
2115 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2116 			return 1;
2117 		vcpu->arch.mcg_ext_ctl = data;
2118 		break;
2119 	case MSR_IA32_FEAT_CTL:
2120 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2121 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2122 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2123 			return 1;
2124 		vmx->msr_ia32_feature_control = data;
2125 		if (msr_info->host_initiated && data == 0)
2126 			vmx_leave_nested(vcpu);
2127 
2128 		/* SGX may be enabled/disabled by guest's firmware */
2129 		vmx_write_encls_bitmap(vcpu, NULL);
2130 		break;
2131 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2132 		/*
2133 		 * On real hardware, the LE hash MSRs are writable before
2134 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2135 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2136 		 * become writable.
2137 		 *
2138 		 * KVM does not emulate SGX activation for simplicity, so
2139 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2140 		 * is unlocked.  This is technically not architectural
2141 		 * behavior, but it's close enough.
2142 		 */
2143 		if (!msr_info->host_initiated &&
2144 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2145 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2146 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2147 			return 1;
2148 		vmx->msr_ia32_sgxlepubkeyhash
2149 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2150 		break;
2151 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2152 		if (!msr_info->host_initiated)
2153 			return 1; /* they are read-only */
2154 		if (!nested_vmx_allowed(vcpu))
2155 			return 1;
2156 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2157 	case MSR_IA32_RTIT_CTL:
2158 		if (!vmx_pt_mode_is_host_guest() ||
2159 			vmx_rtit_ctl_check(vcpu, data) ||
2160 			vmx->nested.vmxon)
2161 			return 1;
2162 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2163 		vmx->pt_desc.guest.ctl = data;
2164 		pt_update_intercept_for_msr(vcpu);
2165 		break;
2166 	case MSR_IA32_RTIT_STATUS:
2167 		if (!pt_can_write_msr(vmx))
2168 			return 1;
2169 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2170 			return 1;
2171 		vmx->pt_desc.guest.status = data;
2172 		break;
2173 	case MSR_IA32_RTIT_CR3_MATCH:
2174 		if (!pt_can_write_msr(vmx))
2175 			return 1;
2176 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2177 					   PT_CAP_cr3_filtering))
2178 			return 1;
2179 		vmx->pt_desc.guest.cr3_match = data;
2180 		break;
2181 	case MSR_IA32_RTIT_OUTPUT_BASE:
2182 		if (!pt_can_write_msr(vmx))
2183 			return 1;
2184 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2185 					   PT_CAP_topa_output) &&
2186 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2187 					   PT_CAP_single_range_output))
2188 			return 1;
2189 		if (!pt_output_base_valid(vcpu, data))
2190 			return 1;
2191 		vmx->pt_desc.guest.output_base = data;
2192 		break;
2193 	case MSR_IA32_RTIT_OUTPUT_MASK:
2194 		if (!pt_can_write_msr(vmx))
2195 			return 1;
2196 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2197 					   PT_CAP_topa_output) &&
2198 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2199 					   PT_CAP_single_range_output))
2200 			return 1;
2201 		vmx->pt_desc.guest.output_mask = data;
2202 		break;
2203 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2204 		if (!pt_can_write_msr(vmx))
2205 			return 1;
2206 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2207 		if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2208 						       PT_CAP_num_address_ranges))
2209 			return 1;
2210 		if (is_noncanonical_address(data, vcpu))
2211 			return 1;
2212 		if (index % 2)
2213 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2214 		else
2215 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2216 		break;
2217 	case MSR_IA32_PERF_CAPABILITIES:
2218 		if (data && !vcpu_to_pmu(vcpu)->version)
2219 			return 1;
2220 		if (data & PMU_CAP_LBR_FMT) {
2221 			if ((data & PMU_CAP_LBR_FMT) !=
2222 			    (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2223 				return 1;
2224 			if (!intel_pmu_lbr_is_compatible(vcpu))
2225 				return 1;
2226 		}
2227 		ret = kvm_set_msr_common(vcpu, msr_info);
2228 		break;
2229 
2230 	default:
2231 	find_uret_msr:
2232 		msr = vmx_find_uret_msr(vmx, msr_index);
2233 		if (msr)
2234 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2235 		else
2236 			ret = kvm_set_msr_common(vcpu, msr_info);
2237 	}
2238 
2239 	return ret;
2240 }
2241 
2242 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2243 {
2244 	unsigned long guest_owned_bits;
2245 
2246 	kvm_register_mark_available(vcpu, reg);
2247 
2248 	switch (reg) {
2249 	case VCPU_REGS_RSP:
2250 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2251 		break;
2252 	case VCPU_REGS_RIP:
2253 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2254 		break;
2255 	case VCPU_EXREG_PDPTR:
2256 		if (enable_ept)
2257 			ept_save_pdptrs(vcpu);
2258 		break;
2259 	case VCPU_EXREG_CR0:
2260 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2261 
2262 		vcpu->arch.cr0 &= ~guest_owned_bits;
2263 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2264 		break;
2265 	case VCPU_EXREG_CR3:
2266 		if (is_unrestricted_guest(vcpu) ||
2267 		    (enable_ept && is_paging(vcpu)))
2268 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2269 		break;
2270 	case VCPU_EXREG_CR4:
2271 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2272 
2273 		vcpu->arch.cr4 &= ~guest_owned_bits;
2274 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2275 		break;
2276 	default:
2277 		WARN_ON_ONCE(1);
2278 		break;
2279 	}
2280 }
2281 
2282 static __init int cpu_has_kvm_support(void)
2283 {
2284 	return cpu_has_vmx();
2285 }
2286 
2287 static __init int vmx_disabled_by_bios(void)
2288 {
2289 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2290 	       !boot_cpu_has(X86_FEATURE_VMX);
2291 }
2292 
2293 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2294 {
2295 	u64 msr;
2296 
2297 	cr4_set_bits(X86_CR4_VMXE);
2298 
2299 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2300 			  _ASM_EXTABLE(1b, %l[fault])
2301 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2302 			  : : fault);
2303 	return 0;
2304 
2305 fault:
2306 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2307 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2308 	cr4_clear_bits(X86_CR4_VMXE);
2309 
2310 	return -EFAULT;
2311 }
2312 
2313 static int hardware_enable(void)
2314 {
2315 	int cpu = raw_smp_processor_id();
2316 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2317 	int r;
2318 
2319 	if (cr4_read_shadow() & X86_CR4_VMXE)
2320 		return -EBUSY;
2321 
2322 	/*
2323 	 * This can happen if we hot-added a CPU but failed to allocate
2324 	 * VP assist page for it.
2325 	 */
2326 	if (static_branch_unlikely(&enable_evmcs) &&
2327 	    !hv_get_vp_assist_page(cpu))
2328 		return -EFAULT;
2329 
2330 	intel_pt_handle_vmx(1);
2331 
2332 	r = kvm_cpu_vmxon(phys_addr);
2333 	if (r) {
2334 		intel_pt_handle_vmx(0);
2335 		return r;
2336 	}
2337 
2338 	if (enable_ept)
2339 		ept_sync_global();
2340 
2341 	return 0;
2342 }
2343 
2344 static void vmclear_local_loaded_vmcss(void)
2345 {
2346 	int cpu = raw_smp_processor_id();
2347 	struct loaded_vmcs *v, *n;
2348 
2349 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2350 				 loaded_vmcss_on_cpu_link)
2351 		__loaded_vmcs_clear(v);
2352 }
2353 
2354 static void hardware_disable(void)
2355 {
2356 	vmclear_local_loaded_vmcss();
2357 
2358 	if (cpu_vmxoff())
2359 		kvm_spurious_fault();
2360 
2361 	intel_pt_handle_vmx(0);
2362 }
2363 
2364 /*
2365  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2366  * directly instead of going through cpu_has(), to ensure KVM is trapping
2367  * ENCLS whenever it's supported in hardware.  It does not matter whether
2368  * the host OS supports or has enabled SGX.
2369  */
2370 static bool cpu_has_sgx(void)
2371 {
2372 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2373 }
2374 
2375 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2376 				      u32 msr, u32 *result)
2377 {
2378 	u32 vmx_msr_low, vmx_msr_high;
2379 	u32 ctl = ctl_min | ctl_opt;
2380 
2381 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2382 
2383 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2384 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2385 
2386 	/* Ensure minimum (required) set of control bits are supported. */
2387 	if (ctl_min & ~ctl)
2388 		return -EIO;
2389 
2390 	*result = ctl;
2391 	return 0;
2392 }
2393 
2394 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2395 				    struct vmx_capability *vmx_cap)
2396 {
2397 	u32 vmx_msr_low, vmx_msr_high;
2398 	u32 min, opt, min2, opt2;
2399 	u32 _pin_based_exec_control = 0;
2400 	u32 _cpu_based_exec_control = 0;
2401 	u32 _cpu_based_2nd_exec_control = 0;
2402 	u32 _vmexit_control = 0;
2403 	u32 _vmentry_control = 0;
2404 
2405 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2406 	min = CPU_BASED_HLT_EXITING |
2407 #ifdef CONFIG_X86_64
2408 	      CPU_BASED_CR8_LOAD_EXITING |
2409 	      CPU_BASED_CR8_STORE_EXITING |
2410 #endif
2411 	      CPU_BASED_CR3_LOAD_EXITING |
2412 	      CPU_BASED_CR3_STORE_EXITING |
2413 	      CPU_BASED_UNCOND_IO_EXITING |
2414 	      CPU_BASED_MOV_DR_EXITING |
2415 	      CPU_BASED_USE_TSC_OFFSETTING |
2416 	      CPU_BASED_MWAIT_EXITING |
2417 	      CPU_BASED_MONITOR_EXITING |
2418 	      CPU_BASED_INVLPG_EXITING |
2419 	      CPU_BASED_RDPMC_EXITING;
2420 
2421 	opt = CPU_BASED_TPR_SHADOW |
2422 	      CPU_BASED_USE_MSR_BITMAPS |
2423 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2424 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2425 				&_cpu_based_exec_control) < 0)
2426 		return -EIO;
2427 #ifdef CONFIG_X86_64
2428 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2429 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2430 					   ~CPU_BASED_CR8_STORE_EXITING;
2431 #endif
2432 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2433 		min2 = 0;
2434 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2435 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2436 			SECONDARY_EXEC_WBINVD_EXITING |
2437 			SECONDARY_EXEC_ENABLE_VPID |
2438 			SECONDARY_EXEC_ENABLE_EPT |
2439 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2440 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2441 			SECONDARY_EXEC_DESC |
2442 			SECONDARY_EXEC_ENABLE_RDTSCP |
2443 			SECONDARY_EXEC_ENABLE_INVPCID |
2444 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2445 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2446 			SECONDARY_EXEC_SHADOW_VMCS |
2447 			SECONDARY_EXEC_XSAVES |
2448 			SECONDARY_EXEC_RDSEED_EXITING |
2449 			SECONDARY_EXEC_RDRAND_EXITING |
2450 			SECONDARY_EXEC_ENABLE_PML |
2451 			SECONDARY_EXEC_TSC_SCALING |
2452 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2453 			SECONDARY_EXEC_PT_USE_GPA |
2454 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2455 			SECONDARY_EXEC_ENABLE_VMFUNC |
2456 			SECONDARY_EXEC_BUS_LOCK_DETECTION;
2457 		if (cpu_has_sgx())
2458 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2459 		if (adjust_vmx_controls(min2, opt2,
2460 					MSR_IA32_VMX_PROCBASED_CTLS2,
2461 					&_cpu_based_2nd_exec_control) < 0)
2462 			return -EIO;
2463 	}
2464 #ifndef CONFIG_X86_64
2465 	if (!(_cpu_based_2nd_exec_control &
2466 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2467 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2468 #endif
2469 
2470 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2471 		_cpu_based_2nd_exec_control &= ~(
2472 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2473 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2474 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2475 
2476 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2477 		&vmx_cap->ept, &vmx_cap->vpid);
2478 
2479 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2480 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2481 		   enabled */
2482 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2483 					     CPU_BASED_CR3_STORE_EXITING |
2484 					     CPU_BASED_INVLPG_EXITING);
2485 	} else if (vmx_cap->ept) {
2486 		vmx_cap->ept = 0;
2487 		pr_warn_once("EPT CAP should not exist if not support "
2488 				"1-setting enable EPT VM-execution control\n");
2489 	}
2490 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2491 		vmx_cap->vpid) {
2492 		vmx_cap->vpid = 0;
2493 		pr_warn_once("VPID CAP should not exist if not support "
2494 				"1-setting enable VPID VM-execution control\n");
2495 	}
2496 
2497 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2498 #ifdef CONFIG_X86_64
2499 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2500 #endif
2501 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2502 	      VM_EXIT_LOAD_IA32_PAT |
2503 	      VM_EXIT_LOAD_IA32_EFER |
2504 	      VM_EXIT_CLEAR_BNDCFGS |
2505 	      VM_EXIT_PT_CONCEAL_PIP |
2506 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2507 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2508 				&_vmexit_control) < 0)
2509 		return -EIO;
2510 
2511 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2512 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2513 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2514 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2515 				&_pin_based_exec_control) < 0)
2516 		return -EIO;
2517 
2518 	if (cpu_has_broken_vmx_preemption_timer())
2519 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2520 	if (!(_cpu_based_2nd_exec_control &
2521 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2522 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2523 
2524 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2525 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2526 	      VM_ENTRY_LOAD_IA32_PAT |
2527 	      VM_ENTRY_LOAD_IA32_EFER |
2528 	      VM_ENTRY_LOAD_BNDCFGS |
2529 	      VM_ENTRY_PT_CONCEAL_PIP |
2530 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2531 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2532 				&_vmentry_control) < 0)
2533 		return -EIO;
2534 
2535 	/*
2536 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2537 	 * can't be used due to an errata where VM Exit may incorrectly clear
2538 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2539 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2540 	 */
2541 	if (boot_cpu_data.x86 == 0x6) {
2542 		switch (boot_cpu_data.x86_model) {
2543 		case 26: /* AAK155 */
2544 		case 30: /* AAP115 */
2545 		case 37: /* AAT100 */
2546 		case 44: /* BC86,AAY89,BD102 */
2547 		case 46: /* BA97 */
2548 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2549 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2550 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2551 					"does not work properly. Using workaround\n");
2552 			break;
2553 		default:
2554 			break;
2555 		}
2556 	}
2557 
2558 
2559 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2560 
2561 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2562 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2563 		return -EIO;
2564 
2565 #ifdef CONFIG_X86_64
2566 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2567 	if (vmx_msr_high & (1u<<16))
2568 		return -EIO;
2569 #endif
2570 
2571 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2572 	if (((vmx_msr_high >> 18) & 15) != 6)
2573 		return -EIO;
2574 
2575 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2576 	vmcs_conf->order = get_order(vmcs_conf->size);
2577 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2578 
2579 	vmcs_conf->revision_id = vmx_msr_low;
2580 
2581 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2582 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2583 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2584 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2585 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2586 
2587 #if IS_ENABLED(CONFIG_HYPERV)
2588 	if (enlightened_vmcs)
2589 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2590 #endif
2591 
2592 	return 0;
2593 }
2594 
2595 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2596 {
2597 	int node = cpu_to_node(cpu);
2598 	struct page *pages;
2599 	struct vmcs *vmcs;
2600 
2601 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2602 	if (!pages)
2603 		return NULL;
2604 	vmcs = page_address(pages);
2605 	memset(vmcs, 0, vmcs_config.size);
2606 
2607 	/* KVM supports Enlightened VMCS v1 only */
2608 	if (static_branch_unlikely(&enable_evmcs))
2609 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2610 	else
2611 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2612 
2613 	if (shadow)
2614 		vmcs->hdr.shadow_vmcs = 1;
2615 	return vmcs;
2616 }
2617 
2618 void free_vmcs(struct vmcs *vmcs)
2619 {
2620 	free_pages((unsigned long)vmcs, vmcs_config.order);
2621 }
2622 
2623 /*
2624  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2625  */
2626 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2627 {
2628 	if (!loaded_vmcs->vmcs)
2629 		return;
2630 	loaded_vmcs_clear(loaded_vmcs);
2631 	free_vmcs(loaded_vmcs->vmcs);
2632 	loaded_vmcs->vmcs = NULL;
2633 	if (loaded_vmcs->msr_bitmap)
2634 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2635 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2636 }
2637 
2638 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2639 {
2640 	loaded_vmcs->vmcs = alloc_vmcs(false);
2641 	if (!loaded_vmcs->vmcs)
2642 		return -ENOMEM;
2643 
2644 	vmcs_clear(loaded_vmcs->vmcs);
2645 
2646 	loaded_vmcs->shadow_vmcs = NULL;
2647 	loaded_vmcs->hv_timer_soft_disabled = false;
2648 	loaded_vmcs->cpu = -1;
2649 	loaded_vmcs->launched = 0;
2650 
2651 	if (cpu_has_vmx_msr_bitmap()) {
2652 		loaded_vmcs->msr_bitmap = (unsigned long *)
2653 				__get_free_page(GFP_KERNEL_ACCOUNT);
2654 		if (!loaded_vmcs->msr_bitmap)
2655 			goto out_vmcs;
2656 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2657 
2658 		if (IS_ENABLED(CONFIG_HYPERV) &&
2659 		    static_branch_unlikely(&enable_evmcs) &&
2660 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2661 			struct hv_enlightened_vmcs *evmcs =
2662 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2663 
2664 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2665 		}
2666 	}
2667 
2668 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2669 	memset(&loaded_vmcs->controls_shadow, 0,
2670 		sizeof(struct vmcs_controls_shadow));
2671 
2672 	return 0;
2673 
2674 out_vmcs:
2675 	free_loaded_vmcs(loaded_vmcs);
2676 	return -ENOMEM;
2677 }
2678 
2679 static void free_kvm_area(void)
2680 {
2681 	int cpu;
2682 
2683 	for_each_possible_cpu(cpu) {
2684 		free_vmcs(per_cpu(vmxarea, cpu));
2685 		per_cpu(vmxarea, cpu) = NULL;
2686 	}
2687 }
2688 
2689 static __init int alloc_kvm_area(void)
2690 {
2691 	int cpu;
2692 
2693 	for_each_possible_cpu(cpu) {
2694 		struct vmcs *vmcs;
2695 
2696 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2697 		if (!vmcs) {
2698 			free_kvm_area();
2699 			return -ENOMEM;
2700 		}
2701 
2702 		/*
2703 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2704 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2705 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2706 		 *
2707 		 * However, even though not explicitly documented by
2708 		 * TLFS, VMXArea passed as VMXON argument should
2709 		 * still be marked with revision_id reported by
2710 		 * physical CPU.
2711 		 */
2712 		if (static_branch_unlikely(&enable_evmcs))
2713 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2714 
2715 		per_cpu(vmxarea, cpu) = vmcs;
2716 	}
2717 	return 0;
2718 }
2719 
2720 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2721 		struct kvm_segment *save)
2722 {
2723 	if (!emulate_invalid_guest_state) {
2724 		/*
2725 		 * CS and SS RPL should be equal during guest entry according
2726 		 * to VMX spec, but in reality it is not always so. Since vcpu
2727 		 * is in the middle of the transition from real mode to
2728 		 * protected mode it is safe to assume that RPL 0 is a good
2729 		 * default value.
2730 		 */
2731 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2732 			save->selector &= ~SEGMENT_RPL_MASK;
2733 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2734 		save->s = 1;
2735 	}
2736 	vmx_set_segment(vcpu, save, seg);
2737 }
2738 
2739 static void enter_pmode(struct kvm_vcpu *vcpu)
2740 {
2741 	unsigned long flags;
2742 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2743 
2744 	/*
2745 	 * Update real mode segment cache. It may be not up-to-date if segment
2746 	 * register was written while vcpu was in a guest mode.
2747 	 */
2748 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2749 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2750 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2751 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2752 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2753 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2754 
2755 	vmx->rmode.vm86_active = 0;
2756 
2757 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2758 
2759 	flags = vmcs_readl(GUEST_RFLAGS);
2760 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2761 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2762 	vmcs_writel(GUEST_RFLAGS, flags);
2763 
2764 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2765 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2766 
2767 	vmx_update_exception_bitmap(vcpu);
2768 
2769 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2770 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2771 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2772 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2773 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2774 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2775 }
2776 
2777 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2778 {
2779 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2780 	struct kvm_segment var = *save;
2781 
2782 	var.dpl = 0x3;
2783 	if (seg == VCPU_SREG_CS)
2784 		var.type = 0x3;
2785 
2786 	if (!emulate_invalid_guest_state) {
2787 		var.selector = var.base >> 4;
2788 		var.base = var.base & 0xffff0;
2789 		var.limit = 0xffff;
2790 		var.g = 0;
2791 		var.db = 0;
2792 		var.present = 1;
2793 		var.s = 1;
2794 		var.l = 0;
2795 		var.unusable = 0;
2796 		var.type = 0x3;
2797 		var.avl = 0;
2798 		if (save->base & 0xf)
2799 			printk_once(KERN_WARNING "kvm: segment base is not "
2800 					"paragraph aligned when entering "
2801 					"protected mode (seg=%d)", seg);
2802 	}
2803 
2804 	vmcs_write16(sf->selector, var.selector);
2805 	vmcs_writel(sf->base, var.base);
2806 	vmcs_write32(sf->limit, var.limit);
2807 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2808 }
2809 
2810 static void enter_rmode(struct kvm_vcpu *vcpu)
2811 {
2812 	unsigned long flags;
2813 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2814 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2815 
2816 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2817 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2818 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2819 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2820 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2821 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2822 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2823 
2824 	vmx->rmode.vm86_active = 1;
2825 
2826 	/*
2827 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2828 	 * vcpu. Warn the user that an update is overdue.
2829 	 */
2830 	if (!kvm_vmx->tss_addr)
2831 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2832 			     "called before entering vcpu\n");
2833 
2834 	vmx_segment_cache_clear(vmx);
2835 
2836 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2837 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2838 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2839 
2840 	flags = vmcs_readl(GUEST_RFLAGS);
2841 	vmx->rmode.save_rflags = flags;
2842 
2843 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2844 
2845 	vmcs_writel(GUEST_RFLAGS, flags);
2846 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2847 	vmx_update_exception_bitmap(vcpu);
2848 
2849 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2850 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2851 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2852 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2853 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2854 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2855 
2856 	kvm_mmu_reset_context(vcpu);
2857 }
2858 
2859 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2860 {
2861 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2862 	struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2863 
2864 	/* Nothing to do if hardware doesn't support EFER. */
2865 	if (!msr)
2866 		return 0;
2867 
2868 	vcpu->arch.efer = efer;
2869 	if (efer & EFER_LMA) {
2870 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2871 		msr->data = efer;
2872 	} else {
2873 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2874 
2875 		msr->data = efer & ~EFER_LME;
2876 	}
2877 	setup_msrs(vmx);
2878 	return 0;
2879 }
2880 
2881 #ifdef CONFIG_X86_64
2882 
2883 static void enter_lmode(struct kvm_vcpu *vcpu)
2884 {
2885 	u32 guest_tr_ar;
2886 
2887 	vmx_segment_cache_clear(to_vmx(vcpu));
2888 
2889 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2890 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2891 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2892 				     __func__);
2893 		vmcs_write32(GUEST_TR_AR_BYTES,
2894 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2895 			     | VMX_AR_TYPE_BUSY_64_TSS);
2896 	}
2897 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2898 }
2899 
2900 static void exit_lmode(struct kvm_vcpu *vcpu)
2901 {
2902 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2903 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2904 }
2905 
2906 #endif
2907 
2908 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2909 {
2910 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2911 
2912 	/*
2913 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2914 	 * the CPU is not required to invalidate guest-physical mappings on
2915 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2916 	 * associated with the root EPT structure and not any particular VPID
2917 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
2918 	 */
2919 	if (enable_ept) {
2920 		ept_sync_global();
2921 	} else if (enable_vpid) {
2922 		if (cpu_has_vmx_invvpid_global()) {
2923 			vpid_sync_vcpu_global();
2924 		} else {
2925 			vpid_sync_vcpu_single(vmx->vpid);
2926 			vpid_sync_vcpu_single(vmx->nested.vpid02);
2927 		}
2928 	}
2929 }
2930 
2931 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2932 {
2933 	struct kvm_mmu *mmu = vcpu->arch.mmu;
2934 	u64 root_hpa = mmu->root_hpa;
2935 
2936 	/* No flush required if the current context is invalid. */
2937 	if (!VALID_PAGE(root_hpa))
2938 		return;
2939 
2940 	if (enable_ept)
2941 		ept_sync_context(construct_eptp(vcpu, root_hpa,
2942 						mmu->shadow_root_level));
2943 	else if (!is_guest_mode(vcpu))
2944 		vpid_sync_context(to_vmx(vcpu)->vpid);
2945 	else
2946 		vpid_sync_context(nested_get_vpid02(vcpu));
2947 }
2948 
2949 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2950 {
2951 	/*
2952 	 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2953 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2954 	 */
2955 	vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2956 }
2957 
2958 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2959 {
2960 	/*
2961 	 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2962 	 * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
2963 	 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2964 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2965 	 * i.e. no explicit INVVPID is necessary.
2966 	 */
2967 	vpid_sync_context(to_vmx(vcpu)->vpid);
2968 }
2969 
2970 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2971 {
2972 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2973 
2974 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2975 		return;
2976 
2977 	if (is_pae_paging(vcpu)) {
2978 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2979 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2980 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2981 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2982 	}
2983 }
2984 
2985 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2986 {
2987 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2988 
2989 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2990 		return;
2991 
2992 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2993 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2994 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2995 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2996 
2997 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2998 }
2999 
3000 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3001 					unsigned long cr0,
3002 					struct kvm_vcpu *vcpu)
3003 {
3004 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3005 
3006 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3007 		vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3008 	if (!(cr0 & X86_CR0_PG)) {
3009 		/* From paging/starting to nonpaging */
3010 		exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3011 					  CPU_BASED_CR3_STORE_EXITING);
3012 		vcpu->arch.cr0 = cr0;
3013 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3014 	} else if (!is_paging(vcpu)) {
3015 		/* From nonpaging to paging */
3016 		exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3017 					    CPU_BASED_CR3_STORE_EXITING);
3018 		vcpu->arch.cr0 = cr0;
3019 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3020 	}
3021 
3022 	if (!(cr0 & X86_CR0_WP))
3023 		*hw_cr0 &= ~X86_CR0_WP;
3024 }
3025 
3026 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3027 {
3028 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3029 	unsigned long hw_cr0;
3030 
3031 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3032 	if (is_unrestricted_guest(vcpu))
3033 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3034 	else {
3035 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3036 
3037 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3038 			enter_pmode(vcpu);
3039 
3040 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3041 			enter_rmode(vcpu);
3042 	}
3043 
3044 #ifdef CONFIG_X86_64
3045 	if (vcpu->arch.efer & EFER_LME) {
3046 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3047 			enter_lmode(vcpu);
3048 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3049 			exit_lmode(vcpu);
3050 	}
3051 #endif
3052 
3053 	if (enable_ept && !is_unrestricted_guest(vcpu))
3054 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3055 
3056 	vmcs_writel(CR0_READ_SHADOW, cr0);
3057 	vmcs_writel(GUEST_CR0, hw_cr0);
3058 	vcpu->arch.cr0 = cr0;
3059 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3060 
3061 	/* depends on vcpu->arch.cr0 to be set to a new value */
3062 	vmx->emulation_required = emulation_required(vcpu);
3063 }
3064 
3065 static int vmx_get_max_tdp_level(void)
3066 {
3067 	if (cpu_has_vmx_ept_5levels())
3068 		return 5;
3069 	return 4;
3070 }
3071 
3072 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3073 {
3074 	u64 eptp = VMX_EPTP_MT_WB;
3075 
3076 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3077 
3078 	if (enable_ept_ad_bits &&
3079 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3080 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3081 	eptp |= root_hpa;
3082 
3083 	return eptp;
3084 }
3085 
3086 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3087 			     int root_level)
3088 {
3089 	struct kvm *kvm = vcpu->kvm;
3090 	bool update_guest_cr3 = true;
3091 	unsigned long guest_cr3;
3092 	u64 eptp;
3093 
3094 	if (enable_ept) {
3095 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3096 		vmcs_write64(EPT_POINTER, eptp);
3097 
3098 		hv_track_root_tdp(vcpu, root_hpa);
3099 
3100 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3101 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3102 		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3103 			guest_cr3 = vcpu->arch.cr3;
3104 		else /* vmcs01.GUEST_CR3 is already up-to-date. */
3105 			update_guest_cr3 = false;
3106 		vmx_ept_load_pdptrs(vcpu);
3107 	} else {
3108 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3109 	}
3110 
3111 	if (update_guest_cr3)
3112 		vmcs_writel(GUEST_CR3, guest_cr3);
3113 }
3114 
3115 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3116 {
3117 	/*
3118 	 * We operate under the default treatment of SMM, so VMX cannot be
3119 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3120 	 * handled by kvm_is_valid_cr4().
3121 	 */
3122 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3123 		return false;
3124 
3125 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3126 		return false;
3127 
3128 	return true;
3129 }
3130 
3131 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3132 {
3133 	unsigned long old_cr4 = vcpu->arch.cr4;
3134 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3135 	/*
3136 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3137 	 * is in force while we are in guest mode.  Do not let guests control
3138 	 * this bit, even if host CR4.MCE == 0.
3139 	 */
3140 	unsigned long hw_cr4;
3141 
3142 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3143 	if (is_unrestricted_guest(vcpu))
3144 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3145 	else if (vmx->rmode.vm86_active)
3146 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3147 	else
3148 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3149 
3150 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3151 		if (cr4 & X86_CR4_UMIP) {
3152 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3153 			hw_cr4 &= ~X86_CR4_UMIP;
3154 		} else if (!is_guest_mode(vcpu) ||
3155 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3156 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3157 		}
3158 	}
3159 
3160 	vcpu->arch.cr4 = cr4;
3161 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3162 
3163 	if (!is_unrestricted_guest(vcpu)) {
3164 		if (enable_ept) {
3165 			if (!is_paging(vcpu)) {
3166 				hw_cr4 &= ~X86_CR4_PAE;
3167 				hw_cr4 |= X86_CR4_PSE;
3168 			} else if (!(cr4 & X86_CR4_PAE)) {
3169 				hw_cr4 &= ~X86_CR4_PAE;
3170 			}
3171 		}
3172 
3173 		/*
3174 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3175 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3176 		 * to be manually disabled when guest switches to non-paging
3177 		 * mode.
3178 		 *
3179 		 * If !enable_unrestricted_guest, the CPU is always running
3180 		 * with CR0.PG=1 and CR4 needs to be modified.
3181 		 * If enable_unrestricted_guest, the CPU automatically
3182 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3183 		 */
3184 		if (!is_paging(vcpu))
3185 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3186 	}
3187 
3188 	vmcs_writel(CR4_READ_SHADOW, cr4);
3189 	vmcs_writel(GUEST_CR4, hw_cr4);
3190 
3191 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3192 		kvm_update_cpuid_runtime(vcpu);
3193 }
3194 
3195 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3196 {
3197 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3198 	u32 ar;
3199 
3200 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3201 		*var = vmx->rmode.segs[seg];
3202 		if (seg == VCPU_SREG_TR
3203 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3204 			return;
3205 		var->base = vmx_read_guest_seg_base(vmx, seg);
3206 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3207 		return;
3208 	}
3209 	var->base = vmx_read_guest_seg_base(vmx, seg);
3210 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3211 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3212 	ar = vmx_read_guest_seg_ar(vmx, seg);
3213 	var->unusable = (ar >> 16) & 1;
3214 	var->type = ar & 15;
3215 	var->s = (ar >> 4) & 1;
3216 	var->dpl = (ar >> 5) & 3;
3217 	/*
3218 	 * Some userspaces do not preserve unusable property. Since usable
3219 	 * segment has to be present according to VMX spec we can use present
3220 	 * property to amend userspace bug by making unusable segment always
3221 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3222 	 * segment as unusable.
3223 	 */
3224 	var->present = !var->unusable;
3225 	var->avl = (ar >> 12) & 1;
3226 	var->l = (ar >> 13) & 1;
3227 	var->db = (ar >> 14) & 1;
3228 	var->g = (ar >> 15) & 1;
3229 }
3230 
3231 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3232 {
3233 	struct kvm_segment s;
3234 
3235 	if (to_vmx(vcpu)->rmode.vm86_active) {
3236 		vmx_get_segment(vcpu, &s, seg);
3237 		return s.base;
3238 	}
3239 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3240 }
3241 
3242 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3243 {
3244 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3245 
3246 	if (unlikely(vmx->rmode.vm86_active))
3247 		return 0;
3248 	else {
3249 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3250 		return VMX_AR_DPL(ar);
3251 	}
3252 }
3253 
3254 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3255 {
3256 	u32 ar;
3257 
3258 	if (var->unusable || !var->present)
3259 		ar = 1 << 16;
3260 	else {
3261 		ar = var->type & 15;
3262 		ar |= (var->s & 1) << 4;
3263 		ar |= (var->dpl & 3) << 5;
3264 		ar |= (var->present & 1) << 7;
3265 		ar |= (var->avl & 1) << 12;
3266 		ar |= (var->l & 1) << 13;
3267 		ar |= (var->db & 1) << 14;
3268 		ar |= (var->g & 1) << 15;
3269 	}
3270 
3271 	return ar;
3272 }
3273 
3274 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3275 {
3276 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3277 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3278 
3279 	vmx_segment_cache_clear(vmx);
3280 
3281 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3282 		vmx->rmode.segs[seg] = *var;
3283 		if (seg == VCPU_SREG_TR)
3284 			vmcs_write16(sf->selector, var->selector);
3285 		else if (var->s)
3286 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3287 		goto out;
3288 	}
3289 
3290 	vmcs_writel(sf->base, var->base);
3291 	vmcs_write32(sf->limit, var->limit);
3292 	vmcs_write16(sf->selector, var->selector);
3293 
3294 	/*
3295 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3296 	 * qemu binaries.
3297 	 *   IA32 arch specifies that at the time of processor reset the
3298 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3299 	 * is setting it to 0 in the userland code. This causes invalid guest
3300 	 * state vmexit when "unrestricted guest" mode is turned on.
3301 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3302 	 * tree. Newer qemu binaries with that qemu fix would not need this
3303 	 * kvm hack.
3304 	 */
3305 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3306 		var->type |= 0x1; /* Accessed */
3307 
3308 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3309 
3310 out:
3311 	vmx->emulation_required = emulation_required(vcpu);
3312 }
3313 
3314 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3315 {
3316 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3317 
3318 	*db = (ar >> 14) & 1;
3319 	*l = (ar >> 13) & 1;
3320 }
3321 
3322 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3323 {
3324 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3325 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3326 }
3327 
3328 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3329 {
3330 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3331 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3332 }
3333 
3334 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3335 {
3336 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3337 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3338 }
3339 
3340 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3341 {
3342 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3343 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3344 }
3345 
3346 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3347 {
3348 	struct kvm_segment var;
3349 	u32 ar;
3350 
3351 	vmx_get_segment(vcpu, &var, seg);
3352 	var.dpl = 0x3;
3353 	if (seg == VCPU_SREG_CS)
3354 		var.type = 0x3;
3355 	ar = vmx_segment_access_rights(&var);
3356 
3357 	if (var.base != (var.selector << 4))
3358 		return false;
3359 	if (var.limit != 0xffff)
3360 		return false;
3361 	if (ar != 0xf3)
3362 		return false;
3363 
3364 	return true;
3365 }
3366 
3367 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3368 {
3369 	struct kvm_segment cs;
3370 	unsigned int cs_rpl;
3371 
3372 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3373 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3374 
3375 	if (cs.unusable)
3376 		return false;
3377 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3378 		return false;
3379 	if (!cs.s)
3380 		return false;
3381 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3382 		if (cs.dpl > cs_rpl)
3383 			return false;
3384 	} else {
3385 		if (cs.dpl != cs_rpl)
3386 			return false;
3387 	}
3388 	if (!cs.present)
3389 		return false;
3390 
3391 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3392 	return true;
3393 }
3394 
3395 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3396 {
3397 	struct kvm_segment ss;
3398 	unsigned int ss_rpl;
3399 
3400 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3401 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3402 
3403 	if (ss.unusable)
3404 		return true;
3405 	if (ss.type != 3 && ss.type != 7)
3406 		return false;
3407 	if (!ss.s)
3408 		return false;
3409 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3410 		return false;
3411 	if (!ss.present)
3412 		return false;
3413 
3414 	return true;
3415 }
3416 
3417 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3418 {
3419 	struct kvm_segment var;
3420 	unsigned int rpl;
3421 
3422 	vmx_get_segment(vcpu, &var, seg);
3423 	rpl = var.selector & SEGMENT_RPL_MASK;
3424 
3425 	if (var.unusable)
3426 		return true;
3427 	if (!var.s)
3428 		return false;
3429 	if (!var.present)
3430 		return false;
3431 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3432 		if (var.dpl < rpl) /* DPL < RPL */
3433 			return false;
3434 	}
3435 
3436 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3437 	 * rights flags
3438 	 */
3439 	return true;
3440 }
3441 
3442 static bool tr_valid(struct kvm_vcpu *vcpu)
3443 {
3444 	struct kvm_segment tr;
3445 
3446 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3447 
3448 	if (tr.unusable)
3449 		return false;
3450 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3451 		return false;
3452 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3453 		return false;
3454 	if (!tr.present)
3455 		return false;
3456 
3457 	return true;
3458 }
3459 
3460 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3461 {
3462 	struct kvm_segment ldtr;
3463 
3464 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3465 
3466 	if (ldtr.unusable)
3467 		return true;
3468 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3469 		return false;
3470 	if (ldtr.type != 2)
3471 		return false;
3472 	if (!ldtr.present)
3473 		return false;
3474 
3475 	return true;
3476 }
3477 
3478 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3479 {
3480 	struct kvm_segment cs, ss;
3481 
3482 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3483 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3484 
3485 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3486 		 (ss.selector & SEGMENT_RPL_MASK));
3487 }
3488 
3489 /*
3490  * Check if guest state is valid. Returns true if valid, false if
3491  * not.
3492  * We assume that registers are always usable
3493  */
3494 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3495 {
3496 	/* real mode guest state checks */
3497 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3498 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3499 			return false;
3500 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3501 			return false;
3502 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3503 			return false;
3504 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3505 			return false;
3506 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3507 			return false;
3508 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3509 			return false;
3510 	} else {
3511 	/* protected mode guest state checks */
3512 		if (!cs_ss_rpl_check(vcpu))
3513 			return false;
3514 		if (!code_segment_valid(vcpu))
3515 			return false;
3516 		if (!stack_segment_valid(vcpu))
3517 			return false;
3518 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3519 			return false;
3520 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3521 			return false;
3522 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3523 			return false;
3524 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3525 			return false;
3526 		if (!tr_valid(vcpu))
3527 			return false;
3528 		if (!ldtr_valid(vcpu))
3529 			return false;
3530 	}
3531 	/* TODO:
3532 	 * - Add checks on RIP
3533 	 * - Add checks on RFLAGS
3534 	 */
3535 
3536 	return true;
3537 }
3538 
3539 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3540 {
3541 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3542 	u16 data;
3543 	int i;
3544 
3545 	for (i = 0; i < 3; i++) {
3546 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3547 			return -EFAULT;
3548 	}
3549 
3550 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3551 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3552 		return -EFAULT;
3553 
3554 	data = ~0;
3555 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3556 		return -EFAULT;
3557 
3558 	return 0;
3559 }
3560 
3561 static int init_rmode_identity_map(struct kvm *kvm)
3562 {
3563 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3564 	int i, r = 0;
3565 	void __user *uaddr;
3566 	u32 tmp;
3567 
3568 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3569 	mutex_lock(&kvm->slots_lock);
3570 
3571 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3572 		goto out;
3573 
3574 	if (!kvm_vmx->ept_identity_map_addr)
3575 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3576 
3577 	uaddr = __x86_set_memory_region(kvm,
3578 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3579 					kvm_vmx->ept_identity_map_addr,
3580 					PAGE_SIZE);
3581 	if (IS_ERR(uaddr)) {
3582 		r = PTR_ERR(uaddr);
3583 		goto out;
3584 	}
3585 
3586 	/* Set up identity-mapping pagetable for EPT in real mode */
3587 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3588 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3589 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3590 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3591 			r = -EFAULT;
3592 			goto out;
3593 		}
3594 	}
3595 	kvm_vmx->ept_identity_pagetable_done = true;
3596 
3597 out:
3598 	mutex_unlock(&kvm->slots_lock);
3599 	return r;
3600 }
3601 
3602 static void seg_setup(int seg)
3603 {
3604 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3605 	unsigned int ar;
3606 
3607 	vmcs_write16(sf->selector, 0);
3608 	vmcs_writel(sf->base, 0);
3609 	vmcs_write32(sf->limit, 0xffff);
3610 	ar = 0x93;
3611 	if (seg == VCPU_SREG_CS)
3612 		ar |= 0x08; /* code segment */
3613 
3614 	vmcs_write32(sf->ar_bytes, ar);
3615 }
3616 
3617 static int alloc_apic_access_page(struct kvm *kvm)
3618 {
3619 	struct page *page;
3620 	void __user *hva;
3621 	int ret = 0;
3622 
3623 	mutex_lock(&kvm->slots_lock);
3624 	if (kvm->arch.apic_access_memslot_enabled)
3625 		goto out;
3626 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3627 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3628 	if (IS_ERR(hva)) {
3629 		ret = PTR_ERR(hva);
3630 		goto out;
3631 	}
3632 
3633 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3634 	if (is_error_page(page)) {
3635 		ret = -EFAULT;
3636 		goto out;
3637 	}
3638 
3639 	/*
3640 	 * Do not pin the page in memory, so that memory hot-unplug
3641 	 * is able to migrate it.
3642 	 */
3643 	put_page(page);
3644 	kvm->arch.apic_access_memslot_enabled = true;
3645 out:
3646 	mutex_unlock(&kvm->slots_lock);
3647 	return ret;
3648 }
3649 
3650 int allocate_vpid(void)
3651 {
3652 	int vpid;
3653 
3654 	if (!enable_vpid)
3655 		return 0;
3656 	spin_lock(&vmx_vpid_lock);
3657 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3658 	if (vpid < VMX_NR_VPIDS)
3659 		__set_bit(vpid, vmx_vpid_bitmap);
3660 	else
3661 		vpid = 0;
3662 	spin_unlock(&vmx_vpid_lock);
3663 	return vpid;
3664 }
3665 
3666 void free_vpid(int vpid)
3667 {
3668 	if (!enable_vpid || vpid == 0)
3669 		return;
3670 	spin_lock(&vmx_vpid_lock);
3671 	__clear_bit(vpid, vmx_vpid_bitmap);
3672 	spin_unlock(&vmx_vpid_lock);
3673 }
3674 
3675 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3676 {
3677 	int f = sizeof(unsigned long);
3678 
3679 	if (msr <= 0x1fff)
3680 		__clear_bit(msr, msr_bitmap + 0x000 / f);
3681 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3682 		__clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3683 }
3684 
3685 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3686 {
3687 	int f = sizeof(unsigned long);
3688 
3689 	if (msr <= 0x1fff)
3690 		__clear_bit(msr, msr_bitmap + 0x800 / f);
3691 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3692 		__clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3693 }
3694 
3695 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3696 {
3697 	int f = sizeof(unsigned long);
3698 
3699 	if (msr <= 0x1fff)
3700 		__set_bit(msr, msr_bitmap + 0x000 / f);
3701 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3702 		__set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3703 }
3704 
3705 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3706 {
3707 	int f = sizeof(unsigned long);
3708 
3709 	if (msr <= 0x1fff)
3710 		__set_bit(msr, msr_bitmap + 0x800 / f);
3711 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3712 		__set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3713 }
3714 
3715 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3716 {
3717 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3718 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3719 
3720 	if (!cpu_has_vmx_msr_bitmap())
3721 		return;
3722 
3723 	if (static_branch_unlikely(&enable_evmcs))
3724 		evmcs_touch_msr_bitmap();
3725 
3726 	/*
3727 	 * Mark the desired intercept state in shadow bitmap, this is needed
3728 	 * for resync when the MSR filters change.
3729 	*/
3730 	if (is_valid_passthrough_msr(msr)) {
3731 		int idx = possible_passthrough_msr_slot(msr);
3732 
3733 		if (idx != -ENOENT) {
3734 			if (type & MSR_TYPE_R)
3735 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3736 			if (type & MSR_TYPE_W)
3737 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3738 		}
3739 	}
3740 
3741 	if ((type & MSR_TYPE_R) &&
3742 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3743 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3744 		type &= ~MSR_TYPE_R;
3745 	}
3746 
3747 	if ((type & MSR_TYPE_W) &&
3748 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3749 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3750 		type &= ~MSR_TYPE_W;
3751 	}
3752 
3753 	if (type & MSR_TYPE_R)
3754 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3755 
3756 	if (type & MSR_TYPE_W)
3757 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3758 }
3759 
3760 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3761 {
3762 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3763 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3764 
3765 	if (!cpu_has_vmx_msr_bitmap())
3766 		return;
3767 
3768 	if (static_branch_unlikely(&enable_evmcs))
3769 		evmcs_touch_msr_bitmap();
3770 
3771 	/*
3772 	 * Mark the desired intercept state in shadow bitmap, this is needed
3773 	 * for resync when the MSR filter changes.
3774 	*/
3775 	if (is_valid_passthrough_msr(msr)) {
3776 		int idx = possible_passthrough_msr_slot(msr);
3777 
3778 		if (idx != -ENOENT) {
3779 			if (type & MSR_TYPE_R)
3780 				set_bit(idx, vmx->shadow_msr_intercept.read);
3781 			if (type & MSR_TYPE_W)
3782 				set_bit(idx, vmx->shadow_msr_intercept.write);
3783 		}
3784 	}
3785 
3786 	if (type & MSR_TYPE_R)
3787 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3788 
3789 	if (type & MSR_TYPE_W)
3790 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3791 }
3792 
3793 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3794 {
3795 	u8 mode = 0;
3796 
3797 	if (cpu_has_secondary_exec_ctrls() &&
3798 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
3799 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3800 		mode |= MSR_BITMAP_MODE_X2APIC;
3801 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3802 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3803 	}
3804 
3805 	return mode;
3806 }
3807 
3808 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3809 {
3810 	unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3811 	unsigned long read_intercept;
3812 	int msr;
3813 
3814 	read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3815 
3816 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3817 		unsigned int read_idx = msr / BITS_PER_LONG;
3818 		unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3819 
3820 		msr_bitmap[read_idx] = read_intercept;
3821 		msr_bitmap[write_idx] = ~0ul;
3822 	}
3823 }
3824 
3825 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3826 {
3827 	if (!cpu_has_vmx_msr_bitmap())
3828 		return;
3829 
3830 	vmx_reset_x2apic_msrs(vcpu, mode);
3831 
3832 	/*
3833 	 * TPR reads and writes can be virtualized even if virtual interrupt
3834 	 * delivery is not in use.
3835 	 */
3836 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3837 				  !(mode & MSR_BITMAP_MODE_X2APIC));
3838 
3839 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3840 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3841 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3842 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3843 	}
3844 }
3845 
3846 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3847 {
3848 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3849 	u8 mode = vmx_msr_bitmap_mode(vcpu);
3850 	u8 changed = mode ^ vmx->msr_bitmap_mode;
3851 
3852 	if (!changed)
3853 		return;
3854 
3855 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3856 		vmx_update_msr_bitmap_x2apic(vcpu, mode);
3857 
3858 	vmx->msr_bitmap_mode = mode;
3859 }
3860 
3861 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3862 {
3863 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3864 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3865 	u32 i;
3866 
3867 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3868 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3869 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3870 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3871 	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3872 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3873 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3874 	}
3875 }
3876 
3877 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3878 {
3879 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3880 	void *vapic_page;
3881 	u32 vppr;
3882 	int rvi;
3883 
3884 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3885 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3886 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3887 		return false;
3888 
3889 	rvi = vmx_get_rvi();
3890 
3891 	vapic_page = vmx->nested.virtual_apic_map.hva;
3892 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3893 
3894 	return ((rvi & 0xf0) > (vppr & 0xf0));
3895 }
3896 
3897 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3898 {
3899 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3900 	u32 i;
3901 
3902 	/*
3903 	 * Set intercept permissions for all potentially passed through MSRs
3904 	 * again. They will automatically get filtered through the MSR filter,
3905 	 * so we are back in sync after this.
3906 	 */
3907 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3908 		u32 msr = vmx_possible_passthrough_msrs[i];
3909 		bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3910 		bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3911 
3912 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3913 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3914 	}
3915 
3916 	pt_update_intercept_for_msr(vcpu);
3917 	vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
3918 }
3919 
3920 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3921 						     bool nested)
3922 {
3923 #ifdef CONFIG_SMP
3924 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3925 
3926 	if (vcpu->mode == IN_GUEST_MODE) {
3927 		/*
3928 		 * The vector of interrupt to be delivered to vcpu had
3929 		 * been set in PIR before this function.
3930 		 *
3931 		 * Following cases will be reached in this block, and
3932 		 * we always send a notification event in all cases as
3933 		 * explained below.
3934 		 *
3935 		 * Case 1: vcpu keeps in non-root mode. Sending a
3936 		 * notification event posts the interrupt to vcpu.
3937 		 *
3938 		 * Case 2: vcpu exits to root mode and is still
3939 		 * runnable. PIR will be synced to vIRR before the
3940 		 * next vcpu entry. Sending a notification event in
3941 		 * this case has no effect, as vcpu is not in root
3942 		 * mode.
3943 		 *
3944 		 * Case 3: vcpu exits to root mode and is blocked.
3945 		 * vcpu_block() has already synced PIR to vIRR and
3946 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3947 		 * a blocked vcpu here does not wait for any requested
3948 		 * interrupts in PIR, and sending a notification event
3949 		 * which has no effect is safe here.
3950 		 */
3951 
3952 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3953 		return true;
3954 	}
3955 #endif
3956 	return false;
3957 }
3958 
3959 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3960 						int vector)
3961 {
3962 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3963 
3964 	if (is_guest_mode(vcpu) &&
3965 	    vector == vmx->nested.posted_intr_nv) {
3966 		/*
3967 		 * If a posted intr is not recognized by hardware,
3968 		 * we will accomplish it in the next vmentry.
3969 		 */
3970 		vmx->nested.pi_pending = true;
3971 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3972 		/* the PIR and ON have been set by L1. */
3973 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3974 			kvm_vcpu_kick(vcpu);
3975 		return 0;
3976 	}
3977 	return -1;
3978 }
3979 /*
3980  * Send interrupt to vcpu via posted interrupt way.
3981  * 1. If target vcpu is running(non-root mode), send posted interrupt
3982  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3983  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3984  * interrupt from PIR in next vmentry.
3985  */
3986 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3987 {
3988 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3989 	int r;
3990 
3991 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3992 	if (!r)
3993 		return 0;
3994 
3995 	if (!vcpu->arch.apicv_active)
3996 		return -1;
3997 
3998 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3999 		return 0;
4000 
4001 	/* If a previous notification has sent the IPI, nothing to do.  */
4002 	if (pi_test_and_set_on(&vmx->pi_desc))
4003 		return 0;
4004 
4005 	if (vcpu != kvm_get_running_vcpu() &&
4006 	    !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4007 		kvm_vcpu_kick(vcpu);
4008 
4009 	return 0;
4010 }
4011 
4012 /*
4013  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4014  * will not change in the lifetime of the guest.
4015  * Note that host-state that does change is set elsewhere. E.g., host-state
4016  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4017  */
4018 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4019 {
4020 	u32 low32, high32;
4021 	unsigned long tmpl;
4022 	unsigned long cr0, cr3, cr4;
4023 
4024 	cr0 = read_cr0();
4025 	WARN_ON(cr0 & X86_CR0_TS);
4026 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4027 
4028 	/*
4029 	 * Save the most likely value for this task's CR3 in the VMCS.
4030 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4031 	 */
4032 	cr3 = __read_cr3();
4033 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4034 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4035 
4036 	/* Save the most likely value for this task's CR4 in the VMCS. */
4037 	cr4 = cr4_read_shadow();
4038 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4039 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4040 
4041 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4042 #ifdef CONFIG_X86_64
4043 	/*
4044 	 * Load null selectors, so we can avoid reloading them in
4045 	 * vmx_prepare_switch_to_host(), in case userspace uses
4046 	 * the null selectors too (the expected case).
4047 	 */
4048 	vmcs_write16(HOST_DS_SELECTOR, 0);
4049 	vmcs_write16(HOST_ES_SELECTOR, 0);
4050 #else
4051 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4052 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4053 #endif
4054 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4055 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4056 
4057 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4058 
4059 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4060 
4061 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4062 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4063 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4064 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4065 
4066 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4067 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4068 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4069 	}
4070 
4071 	if (cpu_has_load_ia32_efer())
4072 		vmcs_write64(HOST_IA32_EFER, host_efer);
4073 }
4074 
4075 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4076 {
4077 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4078 
4079 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4080 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4081 	if (!enable_ept)
4082 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4083 	if (is_guest_mode(&vmx->vcpu))
4084 		vcpu->arch.cr4_guest_owned_bits &=
4085 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4086 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4087 }
4088 
4089 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4090 {
4091 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4092 
4093 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4094 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4095 
4096 	if (!enable_vnmi)
4097 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4098 
4099 	if (!enable_preemption_timer)
4100 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4101 
4102 	return pin_based_exec_ctrl;
4103 }
4104 
4105 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4106 {
4107 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4108 
4109 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4110 	if (cpu_has_secondary_exec_ctrls()) {
4111 		if (kvm_vcpu_apicv_active(vcpu))
4112 			secondary_exec_controls_setbit(vmx,
4113 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4114 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4115 		else
4116 			secondary_exec_controls_clearbit(vmx,
4117 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4118 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4119 	}
4120 
4121 	if (cpu_has_vmx_msr_bitmap())
4122 		vmx_update_msr_bitmap(vcpu);
4123 }
4124 
4125 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4126 {
4127 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4128 
4129 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4130 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4131 
4132 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4133 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4134 #ifdef CONFIG_X86_64
4135 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4136 				CPU_BASED_CR8_LOAD_EXITING;
4137 #endif
4138 	}
4139 	if (!enable_ept)
4140 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4141 				CPU_BASED_CR3_LOAD_EXITING  |
4142 				CPU_BASED_INVLPG_EXITING;
4143 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4144 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4145 				CPU_BASED_MONITOR_EXITING);
4146 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4147 		exec_control &= ~CPU_BASED_HLT_EXITING;
4148 	return exec_control;
4149 }
4150 
4151 /*
4152  * Adjust a single secondary execution control bit to intercept/allow an
4153  * instruction in the guest.  This is usually done based on whether or not a
4154  * feature has been exposed to the guest in order to correctly emulate faults.
4155  */
4156 static inline void
4157 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4158 				  u32 control, bool enabled, bool exiting)
4159 {
4160 	/*
4161 	 * If the control is for an opt-in feature, clear the control if the
4162 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4163 	 * control is opt-out, i.e. an exiting control, clear the control if
4164 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4165 	 * disabled for the associated instruction.  Note, the caller is
4166 	 * responsible presetting exec_control to set all supported bits.
4167 	 */
4168 	if (enabled == exiting)
4169 		*exec_control &= ~control;
4170 
4171 	/*
4172 	 * Update the nested MSR settings so that a nested VMM can/can't set
4173 	 * controls for features that are/aren't exposed to the guest.
4174 	 */
4175 	if (nested) {
4176 		if (enabled)
4177 			vmx->nested.msrs.secondary_ctls_high |= control;
4178 		else
4179 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4180 	}
4181 }
4182 
4183 /*
4184  * Wrapper macro for the common case of adjusting a secondary execution control
4185  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4186  * verifies that the control is actually supported by KVM and hardware.
4187  */
4188 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4189 ({									 \
4190 	bool __enabled;							 \
4191 									 \
4192 	if (cpu_has_vmx_##name()) {					 \
4193 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4194 					    X86_FEATURE_##feat_name);	 \
4195 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4196 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4197 	}								 \
4198 })
4199 
4200 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4201 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4202 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4203 
4204 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4205 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4206 
4207 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4208 {
4209 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4210 
4211 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4212 
4213 	if (vmx_pt_mode_is_system())
4214 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4215 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4216 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4217 	if (vmx->vpid == 0)
4218 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4219 	if (!enable_ept) {
4220 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4221 		enable_unrestricted_guest = 0;
4222 	}
4223 	if (!enable_unrestricted_guest)
4224 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4225 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4226 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4227 	if (!kvm_vcpu_apicv_active(vcpu))
4228 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4229 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4230 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4231 
4232 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4233 	 * in vmx_set_cr4.  */
4234 	exec_control &= ~SECONDARY_EXEC_DESC;
4235 
4236 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4237 	   (handle_vmptrld).
4238 	   We can NOT enable shadow_vmcs here because we don't have yet
4239 	   a current VMCS12
4240 	*/
4241 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4242 
4243 	/*
4244 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4245 	 * it needs to be set here when dirty logging is already active, e.g.
4246 	 * if this vCPU was created after dirty logging was enabled.
4247 	 */
4248 	if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4249 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4250 
4251 	if (cpu_has_vmx_xsaves()) {
4252 		/* Exposing XSAVES only when XSAVE is exposed */
4253 		bool xsaves_enabled =
4254 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4255 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4256 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4257 
4258 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4259 
4260 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4261 						  SECONDARY_EXEC_XSAVES,
4262 						  xsaves_enabled, false);
4263 	}
4264 
4265 	/*
4266 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4267 	 * feature is exposed to the guest.  This creates a virtualization hole
4268 	 * if both are supported in hardware but only one is exposed to the
4269 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4270 	 * is advertised is preferable to emulating the advertised instruction
4271 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4272 	 */
4273 	if (cpu_has_vmx_rdtscp()) {
4274 		bool rdpid_or_rdtscp_enabled =
4275 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4276 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4277 
4278 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4279 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4280 						  rdpid_or_rdtscp_enabled, false);
4281 	}
4282 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4283 
4284 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4285 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4286 
4287 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4288 				    ENABLE_USR_WAIT_PAUSE, false);
4289 
4290 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4291 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4292 
4293 	vmx->secondary_exec_control = exec_control;
4294 }
4295 
4296 #define VMX_XSS_EXIT_BITMAP 0
4297 
4298 /*
4299  * Noting that the initialization of Guest-state Area of VMCS is in
4300  * vmx_vcpu_reset().
4301  */
4302 static void init_vmcs(struct vcpu_vmx *vmx)
4303 {
4304 	if (nested)
4305 		nested_vmx_set_vmcs_shadowing_bitmap();
4306 
4307 	if (cpu_has_vmx_msr_bitmap())
4308 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4309 
4310 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4311 
4312 	/* Control */
4313 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4314 
4315 	exec_controls_set(vmx, vmx_exec_control(vmx));
4316 
4317 	if (cpu_has_secondary_exec_ctrls()) {
4318 		vmx_compute_secondary_exec_control(vmx);
4319 		secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4320 	}
4321 
4322 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4323 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4324 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4325 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4326 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4327 
4328 		vmcs_write16(GUEST_INTR_STATUS, 0);
4329 
4330 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4331 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4332 	}
4333 
4334 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4335 		vmcs_write32(PLE_GAP, ple_gap);
4336 		vmx->ple_window = ple_window;
4337 		vmx->ple_window_dirty = true;
4338 	}
4339 
4340 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4341 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4342 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4343 
4344 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4345 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4346 	vmx_set_constant_host_state(vmx);
4347 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4348 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4349 
4350 	if (cpu_has_vmx_vmfunc())
4351 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4352 
4353 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4354 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4355 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4356 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4357 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4358 
4359 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4360 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4361 
4362 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4363 
4364 	/* 22.2.1, 20.8.1 */
4365 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4366 
4367 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4368 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4369 
4370 	set_cr4_guest_host_mask(vmx);
4371 
4372 	if (vmx->vpid != 0)
4373 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4374 
4375 	if (cpu_has_vmx_xsaves())
4376 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4377 
4378 	if (enable_pml) {
4379 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4380 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4381 	}
4382 
4383 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4384 
4385 	if (vmx_pt_mode_is_host_guest()) {
4386 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4387 		/* Bit[6~0] are forced to 1, writes are ignored. */
4388 		vmx->pt_desc.guest.output_mask = 0x7F;
4389 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4390 	}
4391 }
4392 
4393 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4394 {
4395 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4396 	struct msr_data apic_base_msr;
4397 	u64 cr0;
4398 
4399 	vmx->rmode.vm86_active = 0;
4400 	vmx->spec_ctrl = 0;
4401 
4402 	vmx->msr_ia32_umwait_control = 0;
4403 
4404 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4405 	vmx->hv_deadline_tsc = -1;
4406 	kvm_set_cr8(vcpu, 0);
4407 
4408 	if (!init_event) {
4409 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4410 				     MSR_IA32_APICBASE_ENABLE;
4411 		if (kvm_vcpu_is_reset_bsp(vcpu))
4412 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4413 		apic_base_msr.host_initiated = true;
4414 		kvm_set_apic_base(vcpu, &apic_base_msr);
4415 	}
4416 
4417 	vmx_segment_cache_clear(vmx);
4418 
4419 	seg_setup(VCPU_SREG_CS);
4420 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4421 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4422 
4423 	seg_setup(VCPU_SREG_DS);
4424 	seg_setup(VCPU_SREG_ES);
4425 	seg_setup(VCPU_SREG_FS);
4426 	seg_setup(VCPU_SREG_GS);
4427 	seg_setup(VCPU_SREG_SS);
4428 
4429 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4430 	vmcs_writel(GUEST_TR_BASE, 0);
4431 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4432 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4433 
4434 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4435 	vmcs_writel(GUEST_LDTR_BASE, 0);
4436 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4437 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4438 
4439 	if (!init_event) {
4440 		vmcs_write32(GUEST_SYSENTER_CS, 0);
4441 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
4442 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
4443 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4444 	}
4445 
4446 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4447 	kvm_rip_write(vcpu, 0xfff0);
4448 
4449 	vmcs_writel(GUEST_GDTR_BASE, 0);
4450 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4451 
4452 	vmcs_writel(GUEST_IDTR_BASE, 0);
4453 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4454 
4455 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4456 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4457 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4458 	if (kvm_mpx_supported())
4459 		vmcs_write64(GUEST_BNDCFGS, 0);
4460 
4461 	setup_msrs(vmx);
4462 
4463 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4464 
4465 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
4466 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4467 		if (cpu_need_tpr_shadow(vcpu))
4468 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4469 				     __pa(vcpu->arch.apic->regs));
4470 		vmcs_write32(TPR_THRESHOLD, 0);
4471 	}
4472 
4473 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4474 
4475 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4476 	vmx->vcpu.arch.cr0 = cr0;
4477 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
4478 	vmx_set_cr4(vcpu, 0);
4479 	vmx_set_efer(vcpu, 0);
4480 
4481 	vmx_update_exception_bitmap(vcpu);
4482 
4483 	vpid_sync_context(vmx->vpid);
4484 	if (init_event)
4485 		vmx_clear_hlt(vcpu);
4486 }
4487 
4488 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4489 {
4490 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4491 }
4492 
4493 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4494 {
4495 	if (!enable_vnmi ||
4496 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4497 		vmx_enable_irq_window(vcpu);
4498 		return;
4499 	}
4500 
4501 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4502 }
4503 
4504 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4505 {
4506 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4507 	uint32_t intr;
4508 	int irq = vcpu->arch.interrupt.nr;
4509 
4510 	trace_kvm_inj_virq(irq);
4511 
4512 	++vcpu->stat.irq_injections;
4513 	if (vmx->rmode.vm86_active) {
4514 		int inc_eip = 0;
4515 		if (vcpu->arch.interrupt.soft)
4516 			inc_eip = vcpu->arch.event_exit_inst_len;
4517 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4518 		return;
4519 	}
4520 	intr = irq | INTR_INFO_VALID_MASK;
4521 	if (vcpu->arch.interrupt.soft) {
4522 		intr |= INTR_TYPE_SOFT_INTR;
4523 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4524 			     vmx->vcpu.arch.event_exit_inst_len);
4525 	} else
4526 		intr |= INTR_TYPE_EXT_INTR;
4527 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4528 
4529 	vmx_clear_hlt(vcpu);
4530 }
4531 
4532 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4533 {
4534 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4535 
4536 	if (!enable_vnmi) {
4537 		/*
4538 		 * Tracking the NMI-blocked state in software is built upon
4539 		 * finding the next open IRQ window. This, in turn, depends on
4540 		 * well-behaving guests: They have to keep IRQs disabled at
4541 		 * least as long as the NMI handler runs. Otherwise we may
4542 		 * cause NMI nesting, maybe breaking the guest. But as this is
4543 		 * highly unlikely, we can live with the residual risk.
4544 		 */
4545 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4546 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4547 	}
4548 
4549 	++vcpu->stat.nmi_injections;
4550 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4551 
4552 	if (vmx->rmode.vm86_active) {
4553 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4554 		return;
4555 	}
4556 
4557 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4558 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4559 
4560 	vmx_clear_hlt(vcpu);
4561 }
4562 
4563 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4564 {
4565 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4566 	bool masked;
4567 
4568 	if (!enable_vnmi)
4569 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4570 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4571 		return false;
4572 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4573 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4574 	return masked;
4575 }
4576 
4577 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4578 {
4579 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4580 
4581 	if (!enable_vnmi) {
4582 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4583 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4584 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4585 		}
4586 	} else {
4587 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4588 		if (masked)
4589 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4590 				      GUEST_INTR_STATE_NMI);
4591 		else
4592 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4593 					GUEST_INTR_STATE_NMI);
4594 	}
4595 }
4596 
4597 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4598 {
4599 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4600 		return false;
4601 
4602 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4603 		return true;
4604 
4605 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4606 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4607 		 GUEST_INTR_STATE_NMI));
4608 }
4609 
4610 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4611 {
4612 	if (to_vmx(vcpu)->nested.nested_run_pending)
4613 		return -EBUSY;
4614 
4615 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4616 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4617 		return -EBUSY;
4618 
4619 	return !vmx_nmi_blocked(vcpu);
4620 }
4621 
4622 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4623 {
4624 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4625 		return false;
4626 
4627 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4628 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4629 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4630 }
4631 
4632 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4633 {
4634 	if (to_vmx(vcpu)->nested.nested_run_pending)
4635 		return -EBUSY;
4636 
4637        /*
4638         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4639         * e.g. if the IRQ arrived asynchronously after checking nested events.
4640         */
4641 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4642 		return -EBUSY;
4643 
4644 	return !vmx_interrupt_blocked(vcpu);
4645 }
4646 
4647 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4648 {
4649 	void __user *ret;
4650 
4651 	if (enable_unrestricted_guest)
4652 		return 0;
4653 
4654 	mutex_lock(&kvm->slots_lock);
4655 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4656 				      PAGE_SIZE * 3);
4657 	mutex_unlock(&kvm->slots_lock);
4658 
4659 	if (IS_ERR(ret))
4660 		return PTR_ERR(ret);
4661 
4662 	to_kvm_vmx(kvm)->tss_addr = addr;
4663 
4664 	return init_rmode_tss(kvm, ret);
4665 }
4666 
4667 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4668 {
4669 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4670 	return 0;
4671 }
4672 
4673 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4674 {
4675 	switch (vec) {
4676 	case BP_VECTOR:
4677 		/*
4678 		 * Update instruction length as we may reinject the exception
4679 		 * from user space while in guest debugging mode.
4680 		 */
4681 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4682 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4683 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4684 			return false;
4685 		fallthrough;
4686 	case DB_VECTOR:
4687 		return !(vcpu->guest_debug &
4688 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4689 	case DE_VECTOR:
4690 	case OF_VECTOR:
4691 	case BR_VECTOR:
4692 	case UD_VECTOR:
4693 	case DF_VECTOR:
4694 	case SS_VECTOR:
4695 	case GP_VECTOR:
4696 	case MF_VECTOR:
4697 		return true;
4698 	}
4699 	return false;
4700 }
4701 
4702 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4703 				  int vec, u32 err_code)
4704 {
4705 	/*
4706 	 * Instruction with address size override prefix opcode 0x67
4707 	 * Cause the #SS fault with 0 error code in VM86 mode.
4708 	 */
4709 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4710 		if (kvm_emulate_instruction(vcpu, 0)) {
4711 			if (vcpu->arch.halt_request) {
4712 				vcpu->arch.halt_request = 0;
4713 				return kvm_vcpu_halt(vcpu);
4714 			}
4715 			return 1;
4716 		}
4717 		return 0;
4718 	}
4719 
4720 	/*
4721 	 * Forward all other exceptions that are valid in real mode.
4722 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4723 	 *        the required debugging infrastructure rework.
4724 	 */
4725 	kvm_queue_exception(vcpu, vec);
4726 	return 1;
4727 }
4728 
4729 static int handle_machine_check(struct kvm_vcpu *vcpu)
4730 {
4731 	/* handled by vmx_vcpu_run() */
4732 	return 1;
4733 }
4734 
4735 /*
4736  * If the host has split lock detection disabled, then #AC is
4737  * unconditionally injected into the guest, which is the pre split lock
4738  * detection behaviour.
4739  *
4740  * If the host has split lock detection enabled then #AC is
4741  * only injected into the guest when:
4742  *  - Guest CPL == 3 (user mode)
4743  *  - Guest has #AC detection enabled in CR0
4744  *  - Guest EFLAGS has AC bit set
4745  */
4746 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4747 {
4748 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4749 		return true;
4750 
4751 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4752 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4753 }
4754 
4755 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4756 {
4757 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4758 	struct kvm_run *kvm_run = vcpu->run;
4759 	u32 intr_info, ex_no, error_code;
4760 	unsigned long cr2, dr6;
4761 	u32 vect_info;
4762 
4763 	vect_info = vmx->idt_vectoring_info;
4764 	intr_info = vmx_get_intr_info(vcpu);
4765 
4766 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4767 		return 1; /* handled by handle_exception_nmi_irqoff() */
4768 
4769 	if (is_invalid_opcode(intr_info))
4770 		return handle_ud(vcpu);
4771 
4772 	error_code = 0;
4773 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4774 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4775 
4776 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4777 		WARN_ON_ONCE(!enable_vmware_backdoor);
4778 
4779 		/*
4780 		 * VMware backdoor emulation on #GP interception only handles
4781 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4782 		 * error code on #GP.
4783 		 */
4784 		if (error_code) {
4785 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4786 			return 1;
4787 		}
4788 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4789 	}
4790 
4791 	/*
4792 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4793 	 * MMIO, it is better to report an internal error.
4794 	 * See the comments in vmx_handle_exit.
4795 	 */
4796 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4797 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4798 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4799 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4800 		vcpu->run->internal.ndata = 4;
4801 		vcpu->run->internal.data[0] = vect_info;
4802 		vcpu->run->internal.data[1] = intr_info;
4803 		vcpu->run->internal.data[2] = error_code;
4804 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4805 		return 0;
4806 	}
4807 
4808 	if (is_page_fault(intr_info)) {
4809 		cr2 = vmx_get_exit_qual(vcpu);
4810 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4811 			/*
4812 			 * EPT will cause page fault only if we need to
4813 			 * detect illegal GPAs.
4814 			 */
4815 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4816 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4817 			return 1;
4818 		} else
4819 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4820 	}
4821 
4822 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4823 
4824 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4825 		return handle_rmode_exception(vcpu, ex_no, error_code);
4826 
4827 	switch (ex_no) {
4828 	case DB_VECTOR:
4829 		dr6 = vmx_get_exit_qual(vcpu);
4830 		if (!(vcpu->guest_debug &
4831 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4832 			if (is_icebp(intr_info))
4833 				WARN_ON(!skip_emulated_instruction(vcpu));
4834 
4835 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4836 			return 1;
4837 		}
4838 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4839 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4840 		fallthrough;
4841 	case BP_VECTOR:
4842 		/*
4843 		 * Update instruction length as we may reinject #BP from
4844 		 * user space while in guest debugging mode. Reading it for
4845 		 * #DB as well causes no harm, it is not used in that case.
4846 		 */
4847 		vmx->vcpu.arch.event_exit_inst_len =
4848 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4849 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4850 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4851 		kvm_run->debug.arch.exception = ex_no;
4852 		break;
4853 	case AC_VECTOR:
4854 		if (vmx_guest_inject_ac(vcpu)) {
4855 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4856 			return 1;
4857 		}
4858 
4859 		/*
4860 		 * Handle split lock. Depending on detection mode this will
4861 		 * either warn and disable split lock detection for this
4862 		 * task or force SIGBUS on it.
4863 		 */
4864 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4865 			return 1;
4866 		fallthrough;
4867 	default:
4868 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4869 		kvm_run->ex.exception = ex_no;
4870 		kvm_run->ex.error_code = error_code;
4871 		break;
4872 	}
4873 	return 0;
4874 }
4875 
4876 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4877 {
4878 	++vcpu->stat.irq_exits;
4879 	return 1;
4880 }
4881 
4882 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4883 {
4884 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4885 	vcpu->mmio_needed = 0;
4886 	return 0;
4887 }
4888 
4889 static int handle_io(struct kvm_vcpu *vcpu)
4890 {
4891 	unsigned long exit_qualification;
4892 	int size, in, string;
4893 	unsigned port;
4894 
4895 	exit_qualification = vmx_get_exit_qual(vcpu);
4896 	string = (exit_qualification & 16) != 0;
4897 
4898 	++vcpu->stat.io_exits;
4899 
4900 	if (string)
4901 		return kvm_emulate_instruction(vcpu, 0);
4902 
4903 	port = exit_qualification >> 16;
4904 	size = (exit_qualification & 7) + 1;
4905 	in = (exit_qualification & 8) != 0;
4906 
4907 	return kvm_fast_pio(vcpu, size, port, in);
4908 }
4909 
4910 static void
4911 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4912 {
4913 	/*
4914 	 * Patch in the VMCALL instruction:
4915 	 */
4916 	hypercall[0] = 0x0f;
4917 	hypercall[1] = 0x01;
4918 	hypercall[2] = 0xc1;
4919 }
4920 
4921 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4922 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4923 {
4924 	if (is_guest_mode(vcpu)) {
4925 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4926 		unsigned long orig_val = val;
4927 
4928 		/*
4929 		 * We get here when L2 changed cr0 in a way that did not change
4930 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4931 		 * but did change L0 shadowed bits. So we first calculate the
4932 		 * effective cr0 value that L1 would like to write into the
4933 		 * hardware. It consists of the L2-owned bits from the new
4934 		 * value combined with the L1-owned bits from L1's guest_cr0.
4935 		 */
4936 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4937 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4938 
4939 		if (!nested_guest_cr0_valid(vcpu, val))
4940 			return 1;
4941 
4942 		if (kvm_set_cr0(vcpu, val))
4943 			return 1;
4944 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4945 		return 0;
4946 	} else {
4947 		if (to_vmx(vcpu)->nested.vmxon &&
4948 		    !nested_host_cr0_valid(vcpu, val))
4949 			return 1;
4950 
4951 		return kvm_set_cr0(vcpu, val);
4952 	}
4953 }
4954 
4955 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4956 {
4957 	if (is_guest_mode(vcpu)) {
4958 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4959 		unsigned long orig_val = val;
4960 
4961 		/* analogously to handle_set_cr0 */
4962 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4963 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4964 		if (kvm_set_cr4(vcpu, val))
4965 			return 1;
4966 		vmcs_writel(CR4_READ_SHADOW, orig_val);
4967 		return 0;
4968 	} else
4969 		return kvm_set_cr4(vcpu, val);
4970 }
4971 
4972 static int handle_desc(struct kvm_vcpu *vcpu)
4973 {
4974 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4975 	return kvm_emulate_instruction(vcpu, 0);
4976 }
4977 
4978 static int handle_cr(struct kvm_vcpu *vcpu)
4979 {
4980 	unsigned long exit_qualification, val;
4981 	int cr;
4982 	int reg;
4983 	int err;
4984 	int ret;
4985 
4986 	exit_qualification = vmx_get_exit_qual(vcpu);
4987 	cr = exit_qualification & 15;
4988 	reg = (exit_qualification >> 8) & 15;
4989 	switch ((exit_qualification >> 4) & 3) {
4990 	case 0: /* mov to cr */
4991 		val = kvm_register_read(vcpu, reg);
4992 		trace_kvm_cr_write(cr, val);
4993 		switch (cr) {
4994 		case 0:
4995 			err = handle_set_cr0(vcpu, val);
4996 			return kvm_complete_insn_gp(vcpu, err);
4997 		case 3:
4998 			WARN_ON_ONCE(enable_unrestricted_guest);
4999 			err = kvm_set_cr3(vcpu, val);
5000 			return kvm_complete_insn_gp(vcpu, err);
5001 		case 4:
5002 			err = handle_set_cr4(vcpu, val);
5003 			return kvm_complete_insn_gp(vcpu, err);
5004 		case 8: {
5005 				u8 cr8_prev = kvm_get_cr8(vcpu);
5006 				u8 cr8 = (u8)val;
5007 				err = kvm_set_cr8(vcpu, cr8);
5008 				ret = kvm_complete_insn_gp(vcpu, err);
5009 				if (lapic_in_kernel(vcpu))
5010 					return ret;
5011 				if (cr8_prev <= cr8)
5012 					return ret;
5013 				/*
5014 				 * TODO: we might be squashing a
5015 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5016 				 * KVM_EXIT_DEBUG here.
5017 				 */
5018 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5019 				return 0;
5020 			}
5021 		}
5022 		break;
5023 	case 2: /* clts */
5024 		WARN_ONCE(1, "Guest should always own CR0.TS");
5025 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5026 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5027 		return kvm_skip_emulated_instruction(vcpu);
5028 	case 1: /*mov from cr*/
5029 		switch (cr) {
5030 		case 3:
5031 			WARN_ON_ONCE(enable_unrestricted_guest);
5032 			val = kvm_read_cr3(vcpu);
5033 			kvm_register_write(vcpu, reg, val);
5034 			trace_kvm_cr_read(cr, val);
5035 			return kvm_skip_emulated_instruction(vcpu);
5036 		case 8:
5037 			val = kvm_get_cr8(vcpu);
5038 			kvm_register_write(vcpu, reg, val);
5039 			trace_kvm_cr_read(cr, val);
5040 			return kvm_skip_emulated_instruction(vcpu);
5041 		}
5042 		break;
5043 	case 3: /* lmsw */
5044 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5045 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5046 		kvm_lmsw(vcpu, val);
5047 
5048 		return kvm_skip_emulated_instruction(vcpu);
5049 	default:
5050 		break;
5051 	}
5052 	vcpu->run->exit_reason = 0;
5053 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5054 	       (int)(exit_qualification >> 4) & 3, cr);
5055 	return 0;
5056 }
5057 
5058 static int handle_dr(struct kvm_vcpu *vcpu)
5059 {
5060 	unsigned long exit_qualification;
5061 	int dr, dr7, reg;
5062 	int err = 1;
5063 
5064 	exit_qualification = vmx_get_exit_qual(vcpu);
5065 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5066 
5067 	/* First, if DR does not exist, trigger UD */
5068 	if (!kvm_require_dr(vcpu, dr))
5069 		return 1;
5070 
5071 	if (kvm_x86_ops.get_cpl(vcpu) > 0)
5072 		goto out;
5073 
5074 	dr7 = vmcs_readl(GUEST_DR7);
5075 	if (dr7 & DR7_GD) {
5076 		/*
5077 		 * As the vm-exit takes precedence over the debug trap, we
5078 		 * need to emulate the latter, either for the host or the
5079 		 * guest debugging itself.
5080 		 */
5081 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5082 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5083 			vcpu->run->debug.arch.dr7 = dr7;
5084 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5085 			vcpu->run->debug.arch.exception = DB_VECTOR;
5086 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5087 			return 0;
5088 		} else {
5089 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5090 			return 1;
5091 		}
5092 	}
5093 
5094 	if (vcpu->guest_debug == 0) {
5095 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5096 
5097 		/*
5098 		 * No more DR vmexits; force a reload of the debug registers
5099 		 * and reenter on this instruction.  The next vmexit will
5100 		 * retrieve the full state of the debug registers.
5101 		 */
5102 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5103 		return 1;
5104 	}
5105 
5106 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5107 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5108 		unsigned long val;
5109 
5110 		kvm_get_dr(vcpu, dr, &val);
5111 		kvm_register_write(vcpu, reg, val);
5112 		err = 0;
5113 	} else {
5114 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5115 	}
5116 
5117 out:
5118 	return kvm_complete_insn_gp(vcpu, err);
5119 }
5120 
5121 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5122 {
5123 	get_debugreg(vcpu->arch.db[0], 0);
5124 	get_debugreg(vcpu->arch.db[1], 1);
5125 	get_debugreg(vcpu->arch.db[2], 2);
5126 	get_debugreg(vcpu->arch.db[3], 3);
5127 	get_debugreg(vcpu->arch.dr6, 6);
5128 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5129 
5130 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5131 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5132 }
5133 
5134 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5135 {
5136 	vmcs_writel(GUEST_DR7, val);
5137 }
5138 
5139 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5140 {
5141 	kvm_apic_update_ppr(vcpu);
5142 	return 1;
5143 }
5144 
5145 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5146 {
5147 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5148 
5149 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5150 
5151 	++vcpu->stat.irq_window_exits;
5152 	return 1;
5153 }
5154 
5155 static int handle_invlpg(struct kvm_vcpu *vcpu)
5156 {
5157 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5158 
5159 	kvm_mmu_invlpg(vcpu, exit_qualification);
5160 	return kvm_skip_emulated_instruction(vcpu);
5161 }
5162 
5163 static int handle_apic_access(struct kvm_vcpu *vcpu)
5164 {
5165 	if (likely(fasteoi)) {
5166 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5167 		int access_type, offset;
5168 
5169 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5170 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5171 		/*
5172 		 * Sane guest uses MOV to write EOI, with written value
5173 		 * not cared. So make a short-circuit here by avoiding
5174 		 * heavy instruction emulation.
5175 		 */
5176 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5177 		    (offset == APIC_EOI)) {
5178 			kvm_lapic_set_eoi(vcpu);
5179 			return kvm_skip_emulated_instruction(vcpu);
5180 		}
5181 	}
5182 	return kvm_emulate_instruction(vcpu, 0);
5183 }
5184 
5185 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5186 {
5187 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5188 	int vector = exit_qualification & 0xff;
5189 
5190 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5191 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5192 	return 1;
5193 }
5194 
5195 static int handle_apic_write(struct kvm_vcpu *vcpu)
5196 {
5197 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5198 	u32 offset = exit_qualification & 0xfff;
5199 
5200 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5201 	kvm_apic_write_nodecode(vcpu, offset);
5202 	return 1;
5203 }
5204 
5205 static int handle_task_switch(struct kvm_vcpu *vcpu)
5206 {
5207 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5208 	unsigned long exit_qualification;
5209 	bool has_error_code = false;
5210 	u32 error_code = 0;
5211 	u16 tss_selector;
5212 	int reason, type, idt_v, idt_index;
5213 
5214 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5215 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5216 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5217 
5218 	exit_qualification = vmx_get_exit_qual(vcpu);
5219 
5220 	reason = (u32)exit_qualification >> 30;
5221 	if (reason == TASK_SWITCH_GATE && idt_v) {
5222 		switch (type) {
5223 		case INTR_TYPE_NMI_INTR:
5224 			vcpu->arch.nmi_injected = false;
5225 			vmx_set_nmi_mask(vcpu, true);
5226 			break;
5227 		case INTR_TYPE_EXT_INTR:
5228 		case INTR_TYPE_SOFT_INTR:
5229 			kvm_clear_interrupt_queue(vcpu);
5230 			break;
5231 		case INTR_TYPE_HARD_EXCEPTION:
5232 			if (vmx->idt_vectoring_info &
5233 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5234 				has_error_code = true;
5235 				error_code =
5236 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5237 			}
5238 			fallthrough;
5239 		case INTR_TYPE_SOFT_EXCEPTION:
5240 			kvm_clear_exception_queue(vcpu);
5241 			break;
5242 		default:
5243 			break;
5244 		}
5245 	}
5246 	tss_selector = exit_qualification;
5247 
5248 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5249 		       type != INTR_TYPE_EXT_INTR &&
5250 		       type != INTR_TYPE_NMI_INTR))
5251 		WARN_ON(!skip_emulated_instruction(vcpu));
5252 
5253 	/*
5254 	 * TODO: What about debug traps on tss switch?
5255 	 *       Are we supposed to inject them and update dr6?
5256 	 */
5257 	return kvm_task_switch(vcpu, tss_selector,
5258 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5259 			       reason, has_error_code, error_code);
5260 }
5261 
5262 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5263 {
5264 	unsigned long exit_qualification;
5265 	gpa_t gpa;
5266 	u64 error_code;
5267 
5268 	exit_qualification = vmx_get_exit_qual(vcpu);
5269 
5270 	/*
5271 	 * EPT violation happened while executing iret from NMI,
5272 	 * "blocked by NMI" bit has to be set before next VM entry.
5273 	 * There are errata that may cause this bit to not be set:
5274 	 * AAK134, BY25.
5275 	 */
5276 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5277 			enable_vnmi &&
5278 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5279 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5280 
5281 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5282 	trace_kvm_page_fault(gpa, exit_qualification);
5283 
5284 	/* Is it a read fault? */
5285 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5286 		     ? PFERR_USER_MASK : 0;
5287 	/* Is it a write fault? */
5288 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5289 		      ? PFERR_WRITE_MASK : 0;
5290 	/* Is it a fetch fault? */
5291 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5292 		      ? PFERR_FETCH_MASK : 0;
5293 	/* ept page table entry is present? */
5294 	error_code |= (exit_qualification &
5295 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5296 			EPT_VIOLATION_EXECUTABLE))
5297 		      ? PFERR_PRESENT_MASK : 0;
5298 
5299 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5300 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5301 
5302 	vcpu->arch.exit_qualification = exit_qualification;
5303 
5304 	/*
5305 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5306 	 * a guest page fault.  We have to emulate the instruction here, because
5307 	 * if the illegal address is that of a paging structure, then
5308 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5309 	 * would also use advanced VM-exit information for EPT violations to
5310 	 * reconstruct the page fault error code.
5311 	 */
5312 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5313 		return kvm_emulate_instruction(vcpu, 0);
5314 
5315 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5316 }
5317 
5318 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5319 {
5320 	gpa_t gpa;
5321 
5322 	if (!vmx_can_emulate_instruction(vcpu, NULL, 0))
5323 		return 1;
5324 
5325 	/*
5326 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5327 	 * nGPA here instead of the required GPA.
5328 	 */
5329 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5330 	if (!is_guest_mode(vcpu) &&
5331 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5332 		trace_kvm_fast_mmio(gpa);
5333 		return kvm_skip_emulated_instruction(vcpu);
5334 	}
5335 
5336 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5337 }
5338 
5339 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5340 {
5341 	WARN_ON_ONCE(!enable_vnmi);
5342 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5343 	++vcpu->stat.nmi_window_exits;
5344 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5345 
5346 	return 1;
5347 }
5348 
5349 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5350 {
5351 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5352 	bool intr_window_requested;
5353 	unsigned count = 130;
5354 
5355 	intr_window_requested = exec_controls_get(vmx) &
5356 				CPU_BASED_INTR_WINDOW_EXITING;
5357 
5358 	while (vmx->emulation_required && count-- != 0) {
5359 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5360 			return handle_interrupt_window(&vmx->vcpu);
5361 
5362 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5363 			return 1;
5364 
5365 		if (!kvm_emulate_instruction(vcpu, 0))
5366 			return 0;
5367 
5368 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5369 		    vcpu->arch.exception.pending) {
5370 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5371 			vcpu->run->internal.suberror =
5372 						KVM_INTERNAL_ERROR_EMULATION;
5373 			vcpu->run->internal.ndata = 0;
5374 			return 0;
5375 		}
5376 
5377 		if (vcpu->arch.halt_request) {
5378 			vcpu->arch.halt_request = 0;
5379 			return kvm_vcpu_halt(vcpu);
5380 		}
5381 
5382 		/*
5383 		 * Note, return 1 and not 0, vcpu_run() will invoke
5384 		 * xfer_to_guest_mode() which will create a proper return
5385 		 * code.
5386 		 */
5387 		if (__xfer_to_guest_mode_work_pending())
5388 			return 1;
5389 	}
5390 
5391 	return 1;
5392 }
5393 
5394 static void grow_ple_window(struct kvm_vcpu *vcpu)
5395 {
5396 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5397 	unsigned int old = vmx->ple_window;
5398 
5399 	vmx->ple_window = __grow_ple_window(old, ple_window,
5400 					    ple_window_grow,
5401 					    ple_window_max);
5402 
5403 	if (vmx->ple_window != old) {
5404 		vmx->ple_window_dirty = true;
5405 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5406 					    vmx->ple_window, old);
5407 	}
5408 }
5409 
5410 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5411 {
5412 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5413 	unsigned int old = vmx->ple_window;
5414 
5415 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5416 					      ple_window_shrink,
5417 					      ple_window);
5418 
5419 	if (vmx->ple_window != old) {
5420 		vmx->ple_window_dirty = true;
5421 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5422 					    vmx->ple_window, old);
5423 	}
5424 }
5425 
5426 /*
5427  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5428  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5429  */
5430 static int handle_pause(struct kvm_vcpu *vcpu)
5431 {
5432 	if (!kvm_pause_in_guest(vcpu->kvm))
5433 		grow_ple_window(vcpu);
5434 
5435 	/*
5436 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5437 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5438 	 * never set PAUSE_EXITING and just set PLE if supported,
5439 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5440 	 */
5441 	kvm_vcpu_on_spin(vcpu, true);
5442 	return kvm_skip_emulated_instruction(vcpu);
5443 }
5444 
5445 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5446 {
5447 	return 1;
5448 }
5449 
5450 static int handle_invpcid(struct kvm_vcpu *vcpu)
5451 {
5452 	u32 vmx_instruction_info;
5453 	unsigned long type;
5454 	gva_t gva;
5455 	struct {
5456 		u64 pcid;
5457 		u64 gla;
5458 	} operand;
5459 
5460 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5461 		kvm_queue_exception(vcpu, UD_VECTOR);
5462 		return 1;
5463 	}
5464 
5465 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5466 	type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5467 
5468 	if (type > 3) {
5469 		kvm_inject_gp(vcpu, 0);
5470 		return 1;
5471 	}
5472 
5473 	/* According to the Intel instruction reference, the memory operand
5474 	 * is read even if it isn't needed (e.g., for type==all)
5475 	 */
5476 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5477 				vmx_instruction_info, false,
5478 				sizeof(operand), &gva))
5479 		return 1;
5480 
5481 	return kvm_handle_invpcid(vcpu, type, gva);
5482 }
5483 
5484 static int handle_pml_full(struct kvm_vcpu *vcpu)
5485 {
5486 	unsigned long exit_qualification;
5487 
5488 	trace_kvm_pml_full(vcpu->vcpu_id);
5489 
5490 	exit_qualification = vmx_get_exit_qual(vcpu);
5491 
5492 	/*
5493 	 * PML buffer FULL happened while executing iret from NMI,
5494 	 * "blocked by NMI" bit has to be set before next VM entry.
5495 	 */
5496 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5497 			enable_vnmi &&
5498 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5499 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5500 				GUEST_INTR_STATE_NMI);
5501 
5502 	/*
5503 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5504 	 * here.., and there's no userspace involvement needed for PML.
5505 	 */
5506 	return 1;
5507 }
5508 
5509 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5510 {
5511 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5512 
5513 	if (!vmx->req_immediate_exit &&
5514 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5515 		kvm_lapic_expired_hv_timer(vcpu);
5516 		return EXIT_FASTPATH_REENTER_GUEST;
5517 	}
5518 
5519 	return EXIT_FASTPATH_NONE;
5520 }
5521 
5522 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5523 {
5524 	handle_fastpath_preemption_timer(vcpu);
5525 	return 1;
5526 }
5527 
5528 /*
5529  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5530  * are overwritten by nested_vmx_setup() when nested=1.
5531  */
5532 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5533 {
5534 	kvm_queue_exception(vcpu, UD_VECTOR);
5535 	return 1;
5536 }
5537 
5538 #ifndef CONFIG_X86_SGX_KVM
5539 static int handle_encls(struct kvm_vcpu *vcpu)
5540 {
5541 	/*
5542 	 * SGX virtualization is disabled.  There is no software enable bit for
5543 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5544 	 * the guest from executing ENCLS (when SGX is supported by hardware).
5545 	 */
5546 	kvm_queue_exception(vcpu, UD_VECTOR);
5547 	return 1;
5548 }
5549 #endif /* CONFIG_X86_SGX_KVM */
5550 
5551 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5552 {
5553 	vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
5554 	vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
5555 	return 0;
5556 }
5557 
5558 /*
5559  * The exit handlers return 1 if the exit was handled fully and guest execution
5560  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5561  * to be done to userspace and return 0.
5562  */
5563 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5564 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5565 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5566 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5567 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5568 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5569 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5570 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5571 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5572 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5573 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5574 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5575 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5576 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
5577 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5578 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5579 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5580 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5581 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5582 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5583 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5584 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5585 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5586 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5587 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5588 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5589 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5590 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5591 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5592 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5593 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5594 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5595 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5596 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5597 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5598 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5599 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5600 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5601 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5602 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
5603 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5604 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
5605 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5606 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5607 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
5608 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
5609 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5610 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5611 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5612 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5613 	[EXIT_REASON_ENCLS]		      = handle_encls,
5614 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5615 };
5616 
5617 static const int kvm_vmx_max_exit_handlers =
5618 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5619 
5620 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5621 			      u32 *intr_info, u32 *error_code)
5622 {
5623 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5624 
5625 	*info1 = vmx_get_exit_qual(vcpu);
5626 	if (!(vmx->exit_reason.failed_vmentry)) {
5627 		*info2 = vmx->idt_vectoring_info;
5628 		*intr_info = vmx_get_intr_info(vcpu);
5629 		if (is_exception_with_error_code(*intr_info))
5630 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5631 		else
5632 			*error_code = 0;
5633 	} else {
5634 		*info2 = 0;
5635 		*intr_info = 0;
5636 		*error_code = 0;
5637 	}
5638 }
5639 
5640 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5641 {
5642 	if (vmx->pml_pg) {
5643 		__free_page(vmx->pml_pg);
5644 		vmx->pml_pg = NULL;
5645 	}
5646 }
5647 
5648 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5649 {
5650 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5651 	u64 *pml_buf;
5652 	u16 pml_idx;
5653 
5654 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5655 
5656 	/* Do nothing if PML buffer is empty */
5657 	if (pml_idx == (PML_ENTITY_NUM - 1))
5658 		return;
5659 
5660 	/* PML index always points to next available PML buffer entity */
5661 	if (pml_idx >= PML_ENTITY_NUM)
5662 		pml_idx = 0;
5663 	else
5664 		pml_idx++;
5665 
5666 	pml_buf = page_address(vmx->pml_pg);
5667 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5668 		u64 gpa;
5669 
5670 		gpa = pml_buf[pml_idx];
5671 		WARN_ON(gpa & (PAGE_SIZE - 1));
5672 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5673 	}
5674 
5675 	/* reset PML index */
5676 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5677 }
5678 
5679 static void vmx_dump_sel(char *name, uint32_t sel)
5680 {
5681 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5682 	       name, vmcs_read16(sel),
5683 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5684 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5685 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5686 }
5687 
5688 static void vmx_dump_dtsel(char *name, uint32_t limit)
5689 {
5690 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5691 	       name, vmcs_read32(limit),
5692 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5693 }
5694 
5695 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5696 {
5697 	unsigned int i;
5698 	struct vmx_msr_entry *e;
5699 
5700 	pr_err("MSR %s:\n", name);
5701 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5702 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5703 }
5704 
5705 void dump_vmcs(struct kvm_vcpu *vcpu)
5706 {
5707 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5708 	u32 vmentry_ctl, vmexit_ctl;
5709 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5710 	unsigned long cr4;
5711 	int efer_slot;
5712 
5713 	if (!dump_invalid_vmcs) {
5714 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5715 		return;
5716 	}
5717 
5718 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5719 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5720 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5721 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5722 	cr4 = vmcs_readl(GUEST_CR4);
5723 	secondary_exec_control = 0;
5724 	if (cpu_has_secondary_exec_ctrls())
5725 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5726 
5727 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
5728 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
5729 	pr_err("*** Guest State ***\n");
5730 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5731 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5732 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5733 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5734 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5735 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5736 	if (cpu_has_vmx_ept()) {
5737 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5738 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5739 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5740 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5741 	}
5742 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5743 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5744 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5745 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5746 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5747 	       vmcs_readl(GUEST_SYSENTER_ESP),
5748 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5749 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5750 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5751 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5752 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5753 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5754 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5755 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5756 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5757 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5758 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5759 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5760 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5761 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5762 	else if (efer_slot >= 0)
5763 		pr_err("EFER= 0x%016llx (autoload)\n",
5764 		       vmx->msr_autoload.guest.val[efer_slot].value);
5765 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5766 		pr_err("EFER= 0x%016llx (effective)\n",
5767 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
5768 	else
5769 		pr_err("EFER= 0x%016llx (effective)\n",
5770 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5771 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5772 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5773 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5774 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5775 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5776 	if (cpu_has_load_perf_global_ctrl() &&
5777 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5778 		pr_err("PerfGlobCtl = 0x%016llx\n",
5779 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5780 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5781 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5782 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5783 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5784 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5785 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5786 		pr_err("InterruptStatus = %04x\n",
5787 		       vmcs_read16(GUEST_INTR_STATUS));
5788 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5789 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5790 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5791 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5792 
5793 	pr_err("*** Host State ***\n");
5794 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5795 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5796 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5797 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5798 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5799 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5800 	       vmcs_read16(HOST_TR_SELECTOR));
5801 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5802 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5803 	       vmcs_readl(HOST_TR_BASE));
5804 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5805 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5806 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5807 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5808 	       vmcs_readl(HOST_CR4));
5809 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5810 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5811 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5812 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5813 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
5814 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
5815 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
5816 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
5817 	if (cpu_has_load_perf_global_ctrl() &&
5818 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5819 		pr_err("PerfGlobCtl = 0x%016llx\n",
5820 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5821 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
5822 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
5823 
5824 	pr_err("*** Control State ***\n");
5825 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5826 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5827 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5828 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5829 	       vmcs_read32(EXCEPTION_BITMAP),
5830 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5831 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5832 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5833 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5834 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5835 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5836 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5837 	       vmcs_read32(VM_EXIT_INTR_INFO),
5838 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5839 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5840 	pr_err("        reason=%08x qualification=%016lx\n",
5841 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5842 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5843 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5844 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5845 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5846 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5847 		pr_err("TSC Multiplier = 0x%016llx\n",
5848 		       vmcs_read64(TSC_MULTIPLIER));
5849 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5850 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5851 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5852 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5853 		}
5854 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5855 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5856 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5857 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5858 	}
5859 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5860 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5861 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5862 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5863 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5864 		pr_err("PLE Gap=%08x Window=%08x\n",
5865 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5866 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5867 		pr_err("Virtual processor ID = 0x%04x\n",
5868 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5869 }
5870 
5871 /*
5872  * The guest has exited.  See if we can fix it or if we need userspace
5873  * assistance.
5874  */
5875 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5876 {
5877 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5878 	union vmx_exit_reason exit_reason = vmx->exit_reason;
5879 	u32 vectoring_info = vmx->idt_vectoring_info;
5880 	u16 exit_handler_index;
5881 
5882 	/*
5883 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5884 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5885 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5886 	 * mode as if vcpus is in root mode, the PML buffer must has been
5887 	 * flushed already.  Note, PML is never enabled in hardware while
5888 	 * running L2.
5889 	 */
5890 	if (enable_pml && !is_guest_mode(vcpu))
5891 		vmx_flush_pml_buffer(vcpu);
5892 
5893 	/*
5894 	 * We should never reach this point with a pending nested VM-Enter, and
5895 	 * more specifically emulation of L2 due to invalid guest state (see
5896 	 * below) should never happen as that means we incorrectly allowed a
5897 	 * nested VM-Enter with an invalid vmcs12.
5898 	 */
5899 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
5900 
5901 	/* If guest state is invalid, start emulating */
5902 	if (vmx->emulation_required)
5903 		return handle_invalid_guest_state(vcpu);
5904 
5905 	if (is_guest_mode(vcpu)) {
5906 		/*
5907 		 * PML is never enabled when running L2, bail immediately if a
5908 		 * PML full exit occurs as something is horribly wrong.
5909 		 */
5910 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
5911 			goto unexpected_vmexit;
5912 
5913 		/*
5914 		 * The host physical addresses of some pages of guest memory
5915 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5916 		 * Page). The CPU may write to these pages via their host
5917 		 * physical address while L2 is running, bypassing any
5918 		 * address-translation-based dirty tracking (e.g. EPT write
5919 		 * protection).
5920 		 *
5921 		 * Mark them dirty on every exit from L2 to prevent them from
5922 		 * getting out of sync with dirty tracking.
5923 		 */
5924 		nested_mark_vmcs12_pages_dirty(vcpu);
5925 
5926 		if (nested_vmx_reflect_vmexit(vcpu))
5927 			return 1;
5928 	}
5929 
5930 	if (exit_reason.failed_vmentry) {
5931 		dump_vmcs(vcpu);
5932 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5933 		vcpu->run->fail_entry.hardware_entry_failure_reason
5934 			= exit_reason.full;
5935 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5936 		return 0;
5937 	}
5938 
5939 	if (unlikely(vmx->fail)) {
5940 		dump_vmcs(vcpu);
5941 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5942 		vcpu->run->fail_entry.hardware_entry_failure_reason
5943 			= vmcs_read32(VM_INSTRUCTION_ERROR);
5944 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5945 		return 0;
5946 	}
5947 
5948 	/*
5949 	 * Note:
5950 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5951 	 * delivery event since it indicates guest is accessing MMIO.
5952 	 * The vm-exit can be triggered again after return to guest that
5953 	 * will cause infinite loop.
5954 	 */
5955 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5956 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
5957 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
5958 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
5959 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
5960 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
5961 		int ndata = 3;
5962 
5963 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5964 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5965 		vcpu->run->internal.data[0] = vectoring_info;
5966 		vcpu->run->internal.data[1] = exit_reason.full;
5967 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5968 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
5969 			vcpu->run->internal.data[ndata++] =
5970 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5971 		}
5972 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
5973 		vcpu->run->internal.ndata = ndata;
5974 		return 0;
5975 	}
5976 
5977 	if (unlikely(!enable_vnmi &&
5978 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
5979 		if (!vmx_interrupt_blocked(vcpu)) {
5980 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5981 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5982 			   vcpu->arch.nmi_pending) {
5983 			/*
5984 			 * This CPU don't support us in finding the end of an
5985 			 * NMI-blocked window if the guest runs with IRQs
5986 			 * disabled. So we pull the trigger after 1 s of
5987 			 * futile waiting, but inform the user about this.
5988 			 */
5989 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5990 			       "state on VCPU %d after 1 s timeout\n",
5991 			       __func__, vcpu->vcpu_id);
5992 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5993 		}
5994 	}
5995 
5996 	if (exit_fastpath != EXIT_FASTPATH_NONE)
5997 		return 1;
5998 
5999 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6000 		goto unexpected_vmexit;
6001 #ifdef CONFIG_RETPOLINE
6002 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6003 		return kvm_emulate_wrmsr(vcpu);
6004 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6005 		return handle_preemption_timer(vcpu);
6006 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6007 		return handle_interrupt_window(vcpu);
6008 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6009 		return handle_external_interrupt(vcpu);
6010 	else if (exit_reason.basic == EXIT_REASON_HLT)
6011 		return kvm_emulate_halt(vcpu);
6012 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6013 		return handle_ept_misconfig(vcpu);
6014 #endif
6015 
6016 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6017 						kvm_vmx_max_exit_handlers);
6018 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6019 		goto unexpected_vmexit;
6020 
6021 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6022 
6023 unexpected_vmexit:
6024 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6025 		    exit_reason.full);
6026 	dump_vmcs(vcpu);
6027 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6028 	vcpu->run->internal.suberror =
6029 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6030 	vcpu->run->internal.ndata = 2;
6031 	vcpu->run->internal.data[0] = exit_reason.full;
6032 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6033 	return 0;
6034 }
6035 
6036 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6037 {
6038 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6039 
6040 	/*
6041 	 * Even when current exit reason is handled by KVM internally, we
6042 	 * still need to exit to user space when bus lock detected to inform
6043 	 * that there is a bus lock in guest.
6044 	 */
6045 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6046 		if (ret > 0)
6047 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6048 
6049 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6050 		return 0;
6051 	}
6052 	return ret;
6053 }
6054 
6055 /*
6056  * Software based L1D cache flush which is used when microcode providing
6057  * the cache control MSR is not loaded.
6058  *
6059  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6060  * flush it is required to read in 64 KiB because the replacement algorithm
6061  * is not exactly LRU. This could be sized at runtime via topology
6062  * information but as all relevant affected CPUs have 32KiB L1D cache size
6063  * there is no point in doing so.
6064  */
6065 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6066 {
6067 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6068 
6069 	/*
6070 	 * This code is only executed when the the flush mode is 'cond' or
6071 	 * 'always'
6072 	 */
6073 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6074 		bool flush_l1d;
6075 
6076 		/*
6077 		 * Clear the per-vcpu flush bit, it gets set again
6078 		 * either from vcpu_run() or from one of the unsafe
6079 		 * VMEXIT handlers.
6080 		 */
6081 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6082 		vcpu->arch.l1tf_flush_l1d = false;
6083 
6084 		/*
6085 		 * Clear the per-cpu flush bit, it gets set again from
6086 		 * the interrupt handlers.
6087 		 */
6088 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6089 		kvm_clear_cpu_l1tf_flush_l1d();
6090 
6091 		if (!flush_l1d)
6092 			return;
6093 	}
6094 
6095 	vcpu->stat.l1d_flush++;
6096 
6097 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6098 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6099 		return;
6100 	}
6101 
6102 	asm volatile(
6103 		/* First ensure the pages are in the TLB */
6104 		"xorl	%%eax, %%eax\n"
6105 		".Lpopulate_tlb:\n\t"
6106 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6107 		"addl	$4096, %%eax\n\t"
6108 		"cmpl	%%eax, %[size]\n\t"
6109 		"jne	.Lpopulate_tlb\n\t"
6110 		"xorl	%%eax, %%eax\n\t"
6111 		"cpuid\n\t"
6112 		/* Now fill the cache */
6113 		"xorl	%%eax, %%eax\n"
6114 		".Lfill_cache:\n"
6115 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6116 		"addl	$64, %%eax\n\t"
6117 		"cmpl	%%eax, %[size]\n\t"
6118 		"jne	.Lfill_cache\n\t"
6119 		"lfence\n"
6120 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6121 		    [size] "r" (size)
6122 		: "eax", "ebx", "ecx", "edx");
6123 }
6124 
6125 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6126 {
6127 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6128 	int tpr_threshold;
6129 
6130 	if (is_guest_mode(vcpu) &&
6131 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6132 		return;
6133 
6134 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6135 	if (is_guest_mode(vcpu))
6136 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6137 	else
6138 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6139 }
6140 
6141 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6142 {
6143 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6144 	u32 sec_exec_control;
6145 
6146 	if (!lapic_in_kernel(vcpu))
6147 		return;
6148 
6149 	if (!flexpriority_enabled &&
6150 	    !cpu_has_vmx_virtualize_x2apic_mode())
6151 		return;
6152 
6153 	/* Postpone execution until vmcs01 is the current VMCS. */
6154 	if (is_guest_mode(vcpu)) {
6155 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6156 		return;
6157 	}
6158 
6159 	sec_exec_control = secondary_exec_controls_get(vmx);
6160 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6161 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6162 
6163 	switch (kvm_get_apic_mode(vcpu)) {
6164 	case LAPIC_MODE_INVALID:
6165 		WARN_ONCE(true, "Invalid local APIC state");
6166 		break;
6167 	case LAPIC_MODE_DISABLED:
6168 		break;
6169 	case LAPIC_MODE_XAPIC:
6170 		if (flexpriority_enabled) {
6171 			sec_exec_control |=
6172 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6173 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6174 
6175 			/*
6176 			 * Flush the TLB, reloading the APIC access page will
6177 			 * only do so if its physical address has changed, but
6178 			 * the guest may have inserted a non-APIC mapping into
6179 			 * the TLB while the APIC access page was disabled.
6180 			 */
6181 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6182 		}
6183 		break;
6184 	case LAPIC_MODE_X2APIC:
6185 		if (cpu_has_vmx_virtualize_x2apic_mode())
6186 			sec_exec_control |=
6187 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6188 		break;
6189 	}
6190 	secondary_exec_controls_set(vmx, sec_exec_control);
6191 
6192 	vmx_update_msr_bitmap(vcpu);
6193 }
6194 
6195 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6196 {
6197 	struct page *page;
6198 
6199 	/* Defer reload until vmcs01 is the current VMCS. */
6200 	if (is_guest_mode(vcpu)) {
6201 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6202 		return;
6203 	}
6204 
6205 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6206 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6207 		return;
6208 
6209 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6210 	if (is_error_page(page))
6211 		return;
6212 
6213 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6214 	vmx_flush_tlb_current(vcpu);
6215 
6216 	/*
6217 	 * Do not pin apic access page in memory, the MMU notifier
6218 	 * will call us again if it is migrated or swapped out.
6219 	 */
6220 	put_page(page);
6221 }
6222 
6223 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6224 {
6225 	u16 status;
6226 	u8 old;
6227 
6228 	if (max_isr == -1)
6229 		max_isr = 0;
6230 
6231 	status = vmcs_read16(GUEST_INTR_STATUS);
6232 	old = status >> 8;
6233 	if (max_isr != old) {
6234 		status &= 0xff;
6235 		status |= max_isr << 8;
6236 		vmcs_write16(GUEST_INTR_STATUS, status);
6237 	}
6238 }
6239 
6240 static void vmx_set_rvi(int vector)
6241 {
6242 	u16 status;
6243 	u8 old;
6244 
6245 	if (vector == -1)
6246 		vector = 0;
6247 
6248 	status = vmcs_read16(GUEST_INTR_STATUS);
6249 	old = (u8)status & 0xff;
6250 	if ((u8)vector != old) {
6251 		status &= ~0xff;
6252 		status |= (u8)vector;
6253 		vmcs_write16(GUEST_INTR_STATUS, status);
6254 	}
6255 }
6256 
6257 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6258 {
6259 	/*
6260 	 * When running L2, updating RVI is only relevant when
6261 	 * vmcs12 virtual-interrupt-delivery enabled.
6262 	 * However, it can be enabled only when L1 also
6263 	 * intercepts external-interrupts and in that case
6264 	 * we should not update vmcs02 RVI but instead intercept
6265 	 * interrupt. Therefore, do nothing when running L2.
6266 	 */
6267 	if (!is_guest_mode(vcpu))
6268 		vmx_set_rvi(max_irr);
6269 }
6270 
6271 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6272 {
6273 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6274 	int max_irr;
6275 	bool max_irr_updated;
6276 
6277 	WARN_ON(!vcpu->arch.apicv_active);
6278 	if (pi_test_on(&vmx->pi_desc)) {
6279 		pi_clear_on(&vmx->pi_desc);
6280 		/*
6281 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6282 		 * But on x86 this is just a compiler barrier anyway.
6283 		 */
6284 		smp_mb__after_atomic();
6285 		max_irr_updated =
6286 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6287 
6288 		/*
6289 		 * If we are running L2 and L1 has a new pending interrupt
6290 		 * which can be injected, we should re-evaluate
6291 		 * what should be done with this new L1 interrupt.
6292 		 * If L1 intercepts external-interrupts, we should
6293 		 * exit from L2 to L1. Otherwise, interrupt should be
6294 		 * delivered directly to L2.
6295 		 */
6296 		if (is_guest_mode(vcpu) && max_irr_updated) {
6297 			if (nested_exit_on_intr(vcpu))
6298 				kvm_vcpu_exiting_guest_mode(vcpu);
6299 			else
6300 				kvm_make_request(KVM_REQ_EVENT, vcpu);
6301 		}
6302 	} else {
6303 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6304 	}
6305 	vmx_hwapic_irr_update(vcpu, max_irr);
6306 	return max_irr;
6307 }
6308 
6309 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6310 {
6311 	if (!kvm_vcpu_apicv_active(vcpu))
6312 		return;
6313 
6314 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6315 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6316 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6317 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6318 }
6319 
6320 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6321 {
6322 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6323 
6324 	pi_clear_on(&vmx->pi_desc);
6325 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6326 }
6327 
6328 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6329 
6330 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6331 					unsigned long entry)
6332 {
6333 	kvm_before_interrupt(vcpu);
6334 	vmx_do_interrupt_nmi_irqoff(entry);
6335 	kvm_after_interrupt(vcpu);
6336 }
6337 
6338 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6339 {
6340 	const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6341 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6342 
6343 	/* if exit due to PF check for async PF */
6344 	if (is_page_fault(intr_info))
6345 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6346 	/* Handle machine checks before interrupts are enabled */
6347 	else if (is_machine_check(intr_info))
6348 		kvm_machine_check();
6349 	/* We need to handle NMIs before interrupts are enabled */
6350 	else if (is_nmi(intr_info))
6351 		handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6352 }
6353 
6354 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6355 {
6356 	u32 intr_info = vmx_get_intr_info(vcpu);
6357 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6358 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6359 
6360 	if (WARN_ONCE(!is_external_intr(intr_info),
6361 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6362 		return;
6363 
6364 	handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6365 }
6366 
6367 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6368 {
6369 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6370 
6371 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6372 		handle_external_interrupt_irqoff(vcpu);
6373 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6374 		handle_exception_nmi_irqoff(vmx);
6375 }
6376 
6377 /*
6378  * The kvm parameter can be NULL (module initialization, or invocation before
6379  * VM creation). Be sure to check the kvm parameter before using it.
6380  */
6381 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6382 {
6383 	switch (index) {
6384 	case MSR_IA32_SMBASE:
6385 		/*
6386 		 * We cannot do SMM unless we can run the guest in big
6387 		 * real mode.
6388 		 */
6389 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6390 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6391 		return nested;
6392 	case MSR_AMD64_VIRT_SPEC_CTRL:
6393 		/* This is AMD only.  */
6394 		return false;
6395 	default:
6396 		return true;
6397 	}
6398 }
6399 
6400 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6401 {
6402 	u32 exit_intr_info;
6403 	bool unblock_nmi;
6404 	u8 vector;
6405 	bool idtv_info_valid;
6406 
6407 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6408 
6409 	if (enable_vnmi) {
6410 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6411 			return;
6412 
6413 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6414 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6415 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6416 		/*
6417 		 * SDM 3: 27.7.1.2 (September 2008)
6418 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6419 		 * a guest IRET fault.
6420 		 * SDM 3: 23.2.2 (September 2008)
6421 		 * Bit 12 is undefined in any of the following cases:
6422 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6423 		 *   information field.
6424 		 *  If the VM exit is due to a double fault.
6425 		 */
6426 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6427 		    vector != DF_VECTOR && !idtv_info_valid)
6428 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6429 				      GUEST_INTR_STATE_NMI);
6430 		else
6431 			vmx->loaded_vmcs->nmi_known_unmasked =
6432 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6433 				  & GUEST_INTR_STATE_NMI);
6434 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6435 		vmx->loaded_vmcs->vnmi_blocked_time +=
6436 			ktime_to_ns(ktime_sub(ktime_get(),
6437 					      vmx->loaded_vmcs->entry_time));
6438 }
6439 
6440 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6441 				      u32 idt_vectoring_info,
6442 				      int instr_len_field,
6443 				      int error_code_field)
6444 {
6445 	u8 vector;
6446 	int type;
6447 	bool idtv_info_valid;
6448 
6449 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6450 
6451 	vcpu->arch.nmi_injected = false;
6452 	kvm_clear_exception_queue(vcpu);
6453 	kvm_clear_interrupt_queue(vcpu);
6454 
6455 	if (!idtv_info_valid)
6456 		return;
6457 
6458 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6459 
6460 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6461 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6462 
6463 	switch (type) {
6464 	case INTR_TYPE_NMI_INTR:
6465 		vcpu->arch.nmi_injected = true;
6466 		/*
6467 		 * SDM 3: 27.7.1.2 (September 2008)
6468 		 * Clear bit "block by NMI" before VM entry if a NMI
6469 		 * delivery faulted.
6470 		 */
6471 		vmx_set_nmi_mask(vcpu, false);
6472 		break;
6473 	case INTR_TYPE_SOFT_EXCEPTION:
6474 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6475 		fallthrough;
6476 	case INTR_TYPE_HARD_EXCEPTION:
6477 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6478 			u32 err = vmcs_read32(error_code_field);
6479 			kvm_requeue_exception_e(vcpu, vector, err);
6480 		} else
6481 			kvm_requeue_exception(vcpu, vector);
6482 		break;
6483 	case INTR_TYPE_SOFT_INTR:
6484 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6485 		fallthrough;
6486 	case INTR_TYPE_EXT_INTR:
6487 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6488 		break;
6489 	default:
6490 		break;
6491 	}
6492 }
6493 
6494 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6495 {
6496 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6497 				  VM_EXIT_INSTRUCTION_LEN,
6498 				  IDT_VECTORING_ERROR_CODE);
6499 }
6500 
6501 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6502 {
6503 	__vmx_complete_interrupts(vcpu,
6504 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6505 				  VM_ENTRY_INSTRUCTION_LEN,
6506 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6507 
6508 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6509 }
6510 
6511 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6512 {
6513 	int i, nr_msrs;
6514 	struct perf_guest_switch_msr *msrs;
6515 
6516 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6517 	msrs = perf_guest_get_msrs(&nr_msrs);
6518 	if (!msrs)
6519 		return;
6520 
6521 	for (i = 0; i < nr_msrs; i++)
6522 		if (msrs[i].host == msrs[i].guest)
6523 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6524 		else
6525 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6526 					msrs[i].host, false);
6527 }
6528 
6529 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6530 {
6531 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6532 	u64 tscl;
6533 	u32 delta_tsc;
6534 
6535 	if (vmx->req_immediate_exit) {
6536 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6537 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6538 	} else if (vmx->hv_deadline_tsc != -1) {
6539 		tscl = rdtsc();
6540 		if (vmx->hv_deadline_tsc > tscl)
6541 			/* set_hv_timer ensures the delta fits in 32-bits */
6542 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6543 				cpu_preemption_timer_multi);
6544 		else
6545 			delta_tsc = 0;
6546 
6547 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6548 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6549 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6550 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6551 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6552 	}
6553 }
6554 
6555 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6556 {
6557 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6558 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6559 		vmcs_writel(HOST_RSP, host_rsp);
6560 	}
6561 }
6562 
6563 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6564 {
6565 	switch (to_vmx(vcpu)->exit_reason.basic) {
6566 	case EXIT_REASON_MSR_WRITE:
6567 		return handle_fastpath_set_msr_irqoff(vcpu);
6568 	case EXIT_REASON_PREEMPTION_TIMER:
6569 		return handle_fastpath_preemption_timer(vcpu);
6570 	default:
6571 		return EXIT_FASTPATH_NONE;
6572 	}
6573 }
6574 
6575 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6576 					struct vcpu_vmx *vmx)
6577 {
6578 	kvm_guest_enter_irqoff();
6579 
6580 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6581 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6582 		vmx_l1d_flush(vcpu);
6583 	else if (static_branch_unlikely(&mds_user_clear))
6584 		mds_clear_cpu_buffers();
6585 
6586 	if (vcpu->arch.cr2 != native_read_cr2())
6587 		native_write_cr2(vcpu->arch.cr2);
6588 
6589 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6590 				   vmx->loaded_vmcs->launched);
6591 
6592 	vcpu->arch.cr2 = native_read_cr2();
6593 
6594 	kvm_guest_exit_irqoff();
6595 }
6596 
6597 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6598 {
6599 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6600 	unsigned long cr3, cr4;
6601 
6602 	/* Record the guest's net vcpu time for enforced NMI injections. */
6603 	if (unlikely(!enable_vnmi &&
6604 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6605 		vmx->loaded_vmcs->entry_time = ktime_get();
6606 
6607 	/* Don't enter VMX if guest state is invalid, let the exit handler
6608 	   start emulation until we arrive back to a valid state */
6609 	if (vmx->emulation_required)
6610 		return EXIT_FASTPATH_NONE;
6611 
6612 	trace_kvm_entry(vcpu);
6613 
6614 	if (vmx->ple_window_dirty) {
6615 		vmx->ple_window_dirty = false;
6616 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6617 	}
6618 
6619 	/*
6620 	 * We did this in prepare_switch_to_guest, because it needs to
6621 	 * be within srcu_read_lock.
6622 	 */
6623 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6624 
6625 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6626 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6627 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6628 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6629 
6630 	cr3 = __get_current_cr3_fast();
6631 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6632 		vmcs_writel(HOST_CR3, cr3);
6633 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6634 	}
6635 
6636 	cr4 = cr4_read_shadow();
6637 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6638 		vmcs_writel(HOST_CR4, cr4);
6639 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6640 	}
6641 
6642 	/* When single-stepping over STI and MOV SS, we must clear the
6643 	 * corresponding interruptibility bits in the guest state. Otherwise
6644 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6645 	 * exceptions being set, but that's not correct for the guest debugging
6646 	 * case. */
6647 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6648 		vmx_set_interrupt_shadow(vcpu, 0);
6649 
6650 	kvm_load_guest_xsave_state(vcpu);
6651 
6652 	pt_guest_enter(vmx);
6653 
6654 	atomic_switch_perf_msrs(vmx);
6655 	if (intel_pmu_lbr_is_enabled(vcpu))
6656 		vmx_passthrough_lbr_msrs(vcpu);
6657 
6658 	if (enable_preemption_timer)
6659 		vmx_update_hv_timer(vcpu);
6660 
6661 	kvm_wait_lapic_expire(vcpu);
6662 
6663 	/*
6664 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6665 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6666 	 * is no need to worry about the conditional branch over the wrmsr
6667 	 * being speculatively taken.
6668 	 */
6669 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6670 
6671 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
6672 	vmx_vcpu_enter_exit(vcpu, vmx);
6673 
6674 	/*
6675 	 * We do not use IBRS in the kernel. If this vCPU has used the
6676 	 * SPEC_CTRL MSR it may have left it on; save the value and
6677 	 * turn it off. This is much more efficient than blindly adding
6678 	 * it to the atomic save/restore list. Especially as the former
6679 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6680 	 *
6681 	 * For non-nested case:
6682 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6683 	 * save it.
6684 	 *
6685 	 * For nested case:
6686 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6687 	 * save it.
6688 	 */
6689 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6690 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6691 
6692 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6693 
6694 	/* All fields are clean at this point */
6695 	if (static_branch_unlikely(&enable_evmcs)) {
6696 		current_evmcs->hv_clean_fields |=
6697 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6698 
6699 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6700 	}
6701 
6702 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6703 	if (vmx->host_debugctlmsr)
6704 		update_debugctlmsr(vmx->host_debugctlmsr);
6705 
6706 #ifndef CONFIG_X86_64
6707 	/*
6708 	 * The sysexit path does not restore ds/es, so we must set them to
6709 	 * a reasonable value ourselves.
6710 	 *
6711 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6712 	 * function may be executed in interrupt context, which saves and
6713 	 * restore segments around it, nullifying its effect.
6714 	 */
6715 	loadsegment(ds, __USER_DS);
6716 	loadsegment(es, __USER_DS);
6717 #endif
6718 
6719 	vmx_register_cache_reset(vcpu);
6720 
6721 	pt_guest_exit(vmx);
6722 
6723 	kvm_load_host_xsave_state(vcpu);
6724 
6725 	if (is_guest_mode(vcpu)) {
6726 		/*
6727 		 * Track VMLAUNCH/VMRESUME that have made past guest state
6728 		 * checking.
6729 		 */
6730 		if (vmx->nested.nested_run_pending &&
6731 		    !vmx->exit_reason.failed_vmentry)
6732 			++vcpu->stat.nested_run;
6733 
6734 		vmx->nested.nested_run_pending = 0;
6735 	}
6736 
6737 	vmx->idt_vectoring_info = 0;
6738 
6739 	if (unlikely(vmx->fail)) {
6740 		vmx->exit_reason.full = 0xdead;
6741 		return EXIT_FASTPATH_NONE;
6742 	}
6743 
6744 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6745 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6746 		kvm_machine_check();
6747 
6748 	if (likely(!vmx->exit_reason.failed_vmentry))
6749 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6750 
6751 	trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6752 
6753 	if (unlikely(vmx->exit_reason.failed_vmentry))
6754 		return EXIT_FASTPATH_NONE;
6755 
6756 	vmx->loaded_vmcs->launched = 1;
6757 
6758 	vmx_recover_nmi_blocking(vmx);
6759 	vmx_complete_interrupts(vmx);
6760 
6761 	if (is_guest_mode(vcpu))
6762 		return EXIT_FASTPATH_NONE;
6763 
6764 	return vmx_exit_handlers_fastpath(vcpu);
6765 }
6766 
6767 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6768 {
6769 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6770 
6771 	if (enable_pml)
6772 		vmx_destroy_pml_buffer(vmx);
6773 	free_vpid(vmx->vpid);
6774 	nested_vmx_free_vcpu(vcpu);
6775 	free_loaded_vmcs(vmx->loaded_vmcs);
6776 }
6777 
6778 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6779 {
6780 	struct vmx_uret_msr *tsx_ctrl;
6781 	struct vcpu_vmx *vmx;
6782 	int i, cpu, err;
6783 
6784 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6785 	vmx = to_vmx(vcpu);
6786 
6787 	err = -ENOMEM;
6788 
6789 	vmx->vpid = allocate_vpid();
6790 
6791 	/*
6792 	 * If PML is turned on, failure on enabling PML just results in failure
6793 	 * of creating the vcpu, therefore we can simplify PML logic (by
6794 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6795 	 * for the guest), etc.
6796 	 */
6797 	if (enable_pml) {
6798 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6799 		if (!vmx->pml_pg)
6800 			goto free_vpid;
6801 	}
6802 
6803 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
6804 		vmx->guest_uret_msrs[i].data = 0;
6805 		vmx->guest_uret_msrs[i].mask = -1ull;
6806 	}
6807 	if (boot_cpu_has(X86_FEATURE_RTM)) {
6808 		/*
6809 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
6810 		 * Keep the host value unchanged to avoid changing CPUID bits
6811 		 * under the host kernel's feet.
6812 		 */
6813 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
6814 		if (tsx_ctrl)
6815 			vmx->guest_uret_msrs[i].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6816 	}
6817 
6818 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6819 	if (err < 0)
6820 		goto free_pml;
6821 
6822 	/* The MSR bitmap starts with all ones */
6823 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6824 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6825 
6826 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6827 #ifdef CONFIG_X86_64
6828 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6829 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6830 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6831 #endif
6832 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6833 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6834 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6835 	if (kvm_cstate_in_guest(vcpu->kvm)) {
6836 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6837 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6838 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6839 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6840 	}
6841 	vmx->msr_bitmap_mode = 0;
6842 
6843 	vmx->loaded_vmcs = &vmx->vmcs01;
6844 	cpu = get_cpu();
6845 	vmx_vcpu_load(vcpu, cpu);
6846 	vcpu->cpu = cpu;
6847 	init_vmcs(vmx);
6848 	vmx_vcpu_put(vcpu);
6849 	put_cpu();
6850 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
6851 		err = alloc_apic_access_page(vcpu->kvm);
6852 		if (err)
6853 			goto free_vmcs;
6854 	}
6855 
6856 	if (enable_ept && !enable_unrestricted_guest) {
6857 		err = init_rmode_identity_map(vcpu->kvm);
6858 		if (err)
6859 			goto free_vmcs;
6860 	}
6861 
6862 	if (nested)
6863 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
6864 	else
6865 		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6866 
6867 	vcpu_setup_sgx_lepubkeyhash(vcpu);
6868 
6869 	vmx->nested.posted_intr_nv = -1;
6870 	vmx->nested.current_vmptr = -1ull;
6871 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
6872 
6873 	vcpu->arch.microcode_version = 0x100000000ULL;
6874 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6875 
6876 	/*
6877 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6878 	 * or POSTED_INTR_WAKEUP_VECTOR.
6879 	 */
6880 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6881 	vmx->pi_desc.sn = 1;
6882 
6883 	return 0;
6884 
6885 free_vmcs:
6886 	free_loaded_vmcs(vmx->loaded_vmcs);
6887 free_pml:
6888 	vmx_destroy_pml_buffer(vmx);
6889 free_vpid:
6890 	free_vpid(vmx->vpid);
6891 	return err;
6892 }
6893 
6894 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6895 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6896 
6897 static int vmx_vm_init(struct kvm *kvm)
6898 {
6899 	if (!ple_gap)
6900 		kvm->arch.pause_in_guest = true;
6901 
6902 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6903 		switch (l1tf_mitigation) {
6904 		case L1TF_MITIGATION_OFF:
6905 		case L1TF_MITIGATION_FLUSH_NOWARN:
6906 			/* 'I explicitly don't care' is set */
6907 			break;
6908 		case L1TF_MITIGATION_FLUSH:
6909 		case L1TF_MITIGATION_FLUSH_NOSMT:
6910 		case L1TF_MITIGATION_FULL:
6911 			/*
6912 			 * Warn upon starting the first VM in a potentially
6913 			 * insecure environment.
6914 			 */
6915 			if (sched_smt_active())
6916 				pr_warn_once(L1TF_MSG_SMT);
6917 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6918 				pr_warn_once(L1TF_MSG_L1D);
6919 			break;
6920 		case L1TF_MITIGATION_FULL_FORCE:
6921 			/* Flush is enforced */
6922 			break;
6923 		}
6924 	}
6925 	return 0;
6926 }
6927 
6928 static int __init vmx_check_processor_compat(void)
6929 {
6930 	struct vmcs_config vmcs_conf;
6931 	struct vmx_capability vmx_cap;
6932 
6933 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6934 	    !this_cpu_has(X86_FEATURE_VMX)) {
6935 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6936 		return -EIO;
6937 	}
6938 
6939 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6940 		return -EIO;
6941 	if (nested)
6942 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6943 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6944 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6945 				smp_processor_id());
6946 		return -EIO;
6947 	}
6948 	return 0;
6949 }
6950 
6951 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6952 {
6953 	u8 cache;
6954 	u64 ipat = 0;
6955 
6956 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
6957 	 * memory aliases with conflicting memory types and sometimes MCEs.
6958 	 * We have to be careful as to what are honored and when.
6959 	 *
6960 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
6961 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
6962 	 * This was historically the source of MCEs and we want to be
6963 	 * conservative.
6964 	 *
6965 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
6966 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
6967 	 * EPT memory type is set to WB.  The effective memory type is forced
6968 	 * WB.
6969 	 *
6970 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
6971 	 * EPT memory type is used to emulate guest CD/MTRR.
6972 	 */
6973 
6974 	if (is_mmio) {
6975 		cache = MTRR_TYPE_UNCACHABLE;
6976 		goto exit;
6977 	}
6978 
6979 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6980 		ipat = VMX_EPT_IPAT_BIT;
6981 		cache = MTRR_TYPE_WRBACK;
6982 		goto exit;
6983 	}
6984 
6985 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6986 		ipat = VMX_EPT_IPAT_BIT;
6987 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6988 			cache = MTRR_TYPE_WRBACK;
6989 		else
6990 			cache = MTRR_TYPE_UNCACHABLE;
6991 		goto exit;
6992 	}
6993 
6994 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6995 
6996 exit:
6997 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6998 }
6999 
7000 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7001 {
7002 	/*
7003 	 * These bits in the secondary execution controls field
7004 	 * are dynamic, the others are mostly based on the hypervisor
7005 	 * architecture and the guest's CPUID.  Do not touch the
7006 	 * dynamic bits.
7007 	 */
7008 	u32 mask =
7009 		SECONDARY_EXEC_SHADOW_VMCS |
7010 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7011 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7012 		SECONDARY_EXEC_DESC;
7013 
7014 	u32 new_ctl = vmx->secondary_exec_control;
7015 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7016 
7017 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7018 }
7019 
7020 /*
7021  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7022  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7023  */
7024 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7025 {
7026 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7027 	struct kvm_cpuid_entry2 *entry;
7028 
7029 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7030 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7031 
7032 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7033 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7034 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7035 } while (0)
7036 
7037 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7038 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7039 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7040 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7041 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7042 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7043 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7044 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7045 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7046 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7047 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7048 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7049 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7050 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7051 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7052 
7053 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7054 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7055 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7056 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7057 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7058 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7059 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7060 
7061 #undef cr4_fixed1_update
7062 }
7063 
7064 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7065 {
7066 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7067 
7068 	if (kvm_mpx_supported()) {
7069 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7070 
7071 		if (mpx_enabled) {
7072 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7073 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7074 		} else {
7075 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7076 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7077 		}
7078 	}
7079 }
7080 
7081 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7082 {
7083 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7084 	struct kvm_cpuid_entry2 *best = NULL;
7085 	int i;
7086 
7087 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7088 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7089 		if (!best)
7090 			return;
7091 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7092 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7093 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7094 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7095 	}
7096 
7097 	/* Get the number of configurable Address Ranges for filtering */
7098 	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7099 						PT_CAP_num_address_ranges);
7100 
7101 	/* Initialize and clear the no dependency bits */
7102 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7103 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7104 
7105 	/*
7106 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7107 	 * will inject an #GP
7108 	 */
7109 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7110 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7111 
7112 	/*
7113 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7114 	 * PSBFreq can be set
7115 	 */
7116 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7117 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7118 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7119 
7120 	/*
7121 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7122 	 * MTCFreq can be set
7123 	 */
7124 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7125 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7126 				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7127 
7128 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7129 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7130 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7131 							RTIT_CTL_PTW_EN);
7132 
7133 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7134 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7135 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7136 
7137 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7138 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7139 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7140 
7141 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7142 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7143 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7144 
7145 	/* unmask address range configure area */
7146 	for (i = 0; i < vmx->pt_desc.addr_range; i++)
7147 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7148 }
7149 
7150 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7151 {
7152 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7153 
7154 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7155 	vcpu->arch.xsaves_enabled = false;
7156 
7157 	if (cpu_has_secondary_exec_ctrls()) {
7158 		vmx_compute_secondary_exec_control(vmx);
7159 		vmcs_set_secondary_exec_control(vmx);
7160 	}
7161 
7162 	if (nested_vmx_allowed(vcpu))
7163 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7164 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7165 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7166 	else
7167 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7168 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7169 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7170 
7171 	if (nested_vmx_allowed(vcpu)) {
7172 		nested_vmx_cr_fixed1_bits_update(vcpu);
7173 		nested_vmx_entry_exit_ctls_update(vcpu);
7174 	}
7175 
7176 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7177 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7178 		update_intel_pt_cfg(vcpu);
7179 
7180 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7181 		struct vmx_uret_msr *msr;
7182 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7183 		if (msr) {
7184 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7185 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7186 		}
7187 	}
7188 
7189 	set_cr4_guest_host_mask(vmx);
7190 
7191 	vmx_write_encls_bitmap(vcpu, NULL);
7192 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7193 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7194 	else
7195 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7196 
7197 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7198 		vmx->msr_ia32_feature_control_valid_bits |=
7199 			FEAT_CTL_SGX_LC_ENABLED;
7200 	else
7201 		vmx->msr_ia32_feature_control_valid_bits &=
7202 			~FEAT_CTL_SGX_LC_ENABLED;
7203 
7204 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7205 	vmx_update_exception_bitmap(vcpu);
7206 }
7207 
7208 static __init void vmx_set_cpu_caps(void)
7209 {
7210 	kvm_set_cpu_caps();
7211 
7212 	/* CPUID 0x1 */
7213 	if (nested)
7214 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7215 
7216 	/* CPUID 0x7 */
7217 	if (kvm_mpx_supported())
7218 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7219 	if (!cpu_has_vmx_invpcid())
7220 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7221 	if (vmx_pt_mode_is_host_guest())
7222 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7223 
7224 	if (!enable_sgx) {
7225 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7226 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7227 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7228 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7229 	}
7230 
7231 	if (vmx_umip_emulated())
7232 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7233 
7234 	/* CPUID 0xD.1 */
7235 	supported_xss = 0;
7236 	if (!cpu_has_vmx_xsaves())
7237 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7238 
7239 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7240 	if (!cpu_has_vmx_rdtscp()) {
7241 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7242 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7243 	}
7244 
7245 	if (cpu_has_vmx_waitpkg())
7246 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7247 }
7248 
7249 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7250 {
7251 	to_vmx(vcpu)->req_immediate_exit = true;
7252 }
7253 
7254 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7255 				  struct x86_instruction_info *info)
7256 {
7257 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7258 	unsigned short port;
7259 	bool intercept;
7260 	int size;
7261 
7262 	if (info->intercept == x86_intercept_in ||
7263 	    info->intercept == x86_intercept_ins) {
7264 		port = info->src_val;
7265 		size = info->dst_bytes;
7266 	} else {
7267 		port = info->dst_val;
7268 		size = info->src_bytes;
7269 	}
7270 
7271 	/*
7272 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7273 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7274 	 * control.
7275 	 *
7276 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7277 	 */
7278 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7279 		intercept = nested_cpu_has(vmcs12,
7280 					   CPU_BASED_UNCOND_IO_EXITING);
7281 	else
7282 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7283 
7284 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7285 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7286 }
7287 
7288 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7289 			       struct x86_instruction_info *info,
7290 			       enum x86_intercept_stage stage,
7291 			       struct x86_exception *exception)
7292 {
7293 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7294 
7295 	switch (info->intercept) {
7296 	/*
7297 	 * RDPID causes #UD if disabled through secondary execution controls.
7298 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7299 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7300 	 */
7301 	case x86_intercept_rdpid:
7302 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7303 			exception->vector = UD_VECTOR;
7304 			exception->error_code_valid = false;
7305 			return X86EMUL_PROPAGATE_FAULT;
7306 		}
7307 		break;
7308 
7309 	case x86_intercept_in:
7310 	case x86_intercept_ins:
7311 	case x86_intercept_out:
7312 	case x86_intercept_outs:
7313 		return vmx_check_intercept_io(vcpu, info);
7314 
7315 	case x86_intercept_lgdt:
7316 	case x86_intercept_lidt:
7317 	case x86_intercept_lldt:
7318 	case x86_intercept_ltr:
7319 	case x86_intercept_sgdt:
7320 	case x86_intercept_sidt:
7321 	case x86_intercept_sldt:
7322 	case x86_intercept_str:
7323 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7324 			return X86EMUL_CONTINUE;
7325 
7326 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7327 		break;
7328 
7329 	/* TODO: check more intercepts... */
7330 	default:
7331 		break;
7332 	}
7333 
7334 	return X86EMUL_UNHANDLEABLE;
7335 }
7336 
7337 #ifdef CONFIG_X86_64
7338 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7339 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7340 				  u64 divisor, u64 *result)
7341 {
7342 	u64 low = a << shift, high = a >> (64 - shift);
7343 
7344 	/* To avoid the overflow on divq */
7345 	if (high >= divisor)
7346 		return 1;
7347 
7348 	/* Low hold the result, high hold rem which is discarded */
7349 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7350 	    "rm" (divisor), "0" (low), "1" (high));
7351 	*result = low;
7352 
7353 	return 0;
7354 }
7355 
7356 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7357 			    bool *expired)
7358 {
7359 	struct vcpu_vmx *vmx;
7360 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7361 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7362 
7363 	vmx = to_vmx(vcpu);
7364 	tscl = rdtsc();
7365 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7366 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7367 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7368 						    ktimer->timer_advance_ns);
7369 
7370 	if (delta_tsc > lapic_timer_advance_cycles)
7371 		delta_tsc -= lapic_timer_advance_cycles;
7372 	else
7373 		delta_tsc = 0;
7374 
7375 	/* Convert to host delta tsc if tsc scaling is enabled */
7376 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7377 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7378 				kvm_tsc_scaling_ratio_frac_bits,
7379 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7380 		return -ERANGE;
7381 
7382 	/*
7383 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7384 	 * we can't use the preemption timer.
7385 	 * It's possible that it fits on later vmentries, but checking
7386 	 * on every vmentry is costly so we just use an hrtimer.
7387 	 */
7388 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7389 		return -ERANGE;
7390 
7391 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7392 	*expired = !delta_tsc;
7393 	return 0;
7394 }
7395 
7396 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7397 {
7398 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7399 }
7400 #endif
7401 
7402 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7403 {
7404 	if (!kvm_pause_in_guest(vcpu->kvm))
7405 		shrink_ple_window(vcpu);
7406 }
7407 
7408 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7409 {
7410 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7411 
7412 	if (is_guest_mode(vcpu)) {
7413 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7414 		return;
7415 	}
7416 
7417 	/*
7418 	 * Note, cpu_dirty_logging_count can be changed concurrent with this
7419 	 * code, but in that case another update request will be made and so
7420 	 * the guest will never run with a stale PML value.
7421 	 */
7422 	if (vcpu->kvm->arch.cpu_dirty_logging_count)
7423 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7424 	else
7425 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7426 }
7427 
7428 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7429 {
7430 	if (pi_pre_block(vcpu))
7431 		return 1;
7432 
7433 	if (kvm_lapic_hv_timer_in_use(vcpu))
7434 		kvm_lapic_switch_to_sw_timer(vcpu);
7435 
7436 	return 0;
7437 }
7438 
7439 static void vmx_post_block(struct kvm_vcpu *vcpu)
7440 {
7441 	if (kvm_x86_ops.set_hv_timer)
7442 		kvm_lapic_switch_to_hv_timer(vcpu);
7443 
7444 	pi_post_block(vcpu);
7445 }
7446 
7447 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7448 {
7449 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7450 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7451 			FEAT_CTL_LMCE_ENABLED;
7452 	else
7453 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7454 			~FEAT_CTL_LMCE_ENABLED;
7455 }
7456 
7457 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7458 {
7459 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7460 	if (to_vmx(vcpu)->nested.nested_run_pending)
7461 		return -EBUSY;
7462 	return !is_smm(vcpu);
7463 }
7464 
7465 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7466 {
7467 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7468 
7469 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7470 	if (vmx->nested.smm.guest_mode)
7471 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7472 
7473 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7474 	vmx->nested.vmxon = false;
7475 	vmx_clear_hlt(vcpu);
7476 	return 0;
7477 }
7478 
7479 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7480 {
7481 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7482 	int ret;
7483 
7484 	if (vmx->nested.smm.vmxon) {
7485 		vmx->nested.vmxon = true;
7486 		vmx->nested.smm.vmxon = false;
7487 	}
7488 
7489 	if (vmx->nested.smm.guest_mode) {
7490 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7491 		if (ret)
7492 			return ret;
7493 
7494 		vmx->nested.smm.guest_mode = false;
7495 	}
7496 	return 0;
7497 }
7498 
7499 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7500 {
7501 	/* RSM will cause a vmexit anyway.  */
7502 }
7503 
7504 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7505 {
7506 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7507 }
7508 
7509 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7510 {
7511 	if (is_guest_mode(vcpu)) {
7512 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7513 
7514 		if (hrtimer_try_to_cancel(timer) == 1)
7515 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7516 	}
7517 }
7518 
7519 static void hardware_unsetup(void)
7520 {
7521 	if (nested)
7522 		nested_vmx_hardware_unsetup();
7523 
7524 	free_kvm_area();
7525 }
7526 
7527 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7528 {
7529 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7530 			  BIT(APICV_INHIBIT_REASON_HYPERV);
7531 
7532 	return supported & BIT(bit);
7533 }
7534 
7535 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7536 	.hardware_unsetup = hardware_unsetup,
7537 
7538 	.hardware_enable = hardware_enable,
7539 	.hardware_disable = hardware_disable,
7540 	.cpu_has_accelerated_tpr = report_flexpriority,
7541 	.has_emulated_msr = vmx_has_emulated_msr,
7542 
7543 	.vm_size = sizeof(struct kvm_vmx),
7544 	.vm_init = vmx_vm_init,
7545 
7546 	.vcpu_create = vmx_create_vcpu,
7547 	.vcpu_free = vmx_free_vcpu,
7548 	.vcpu_reset = vmx_vcpu_reset,
7549 
7550 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7551 	.vcpu_load = vmx_vcpu_load,
7552 	.vcpu_put = vmx_vcpu_put,
7553 
7554 	.update_exception_bitmap = vmx_update_exception_bitmap,
7555 	.get_msr_feature = vmx_get_msr_feature,
7556 	.get_msr = vmx_get_msr,
7557 	.set_msr = vmx_set_msr,
7558 	.get_segment_base = vmx_get_segment_base,
7559 	.get_segment = vmx_get_segment,
7560 	.set_segment = vmx_set_segment,
7561 	.get_cpl = vmx_get_cpl,
7562 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7563 	.set_cr0 = vmx_set_cr0,
7564 	.is_valid_cr4 = vmx_is_valid_cr4,
7565 	.set_cr4 = vmx_set_cr4,
7566 	.set_efer = vmx_set_efer,
7567 	.get_idt = vmx_get_idt,
7568 	.set_idt = vmx_set_idt,
7569 	.get_gdt = vmx_get_gdt,
7570 	.set_gdt = vmx_set_gdt,
7571 	.set_dr7 = vmx_set_dr7,
7572 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7573 	.cache_reg = vmx_cache_reg,
7574 	.get_rflags = vmx_get_rflags,
7575 	.set_rflags = vmx_set_rflags,
7576 
7577 	.tlb_flush_all = vmx_flush_tlb_all,
7578 	.tlb_flush_current = vmx_flush_tlb_current,
7579 	.tlb_flush_gva = vmx_flush_tlb_gva,
7580 	.tlb_flush_guest = vmx_flush_tlb_guest,
7581 
7582 	.run = vmx_vcpu_run,
7583 	.handle_exit = vmx_handle_exit,
7584 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7585 	.update_emulated_instruction = vmx_update_emulated_instruction,
7586 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7587 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7588 	.patch_hypercall = vmx_patch_hypercall,
7589 	.set_irq = vmx_inject_irq,
7590 	.set_nmi = vmx_inject_nmi,
7591 	.queue_exception = vmx_queue_exception,
7592 	.cancel_injection = vmx_cancel_injection,
7593 	.interrupt_allowed = vmx_interrupt_allowed,
7594 	.nmi_allowed = vmx_nmi_allowed,
7595 	.get_nmi_mask = vmx_get_nmi_mask,
7596 	.set_nmi_mask = vmx_set_nmi_mask,
7597 	.enable_nmi_window = vmx_enable_nmi_window,
7598 	.enable_irq_window = vmx_enable_irq_window,
7599 	.update_cr8_intercept = vmx_update_cr8_intercept,
7600 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7601 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7602 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7603 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7604 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7605 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7606 	.hwapic_irr_update = vmx_hwapic_irr_update,
7607 	.hwapic_isr_update = vmx_hwapic_isr_update,
7608 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7609 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7610 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7611 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7612 
7613 	.set_tss_addr = vmx_set_tss_addr,
7614 	.set_identity_map_addr = vmx_set_identity_map_addr,
7615 	.get_mt_mask = vmx_get_mt_mask,
7616 
7617 	.get_exit_info = vmx_get_exit_info,
7618 
7619 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7620 
7621 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7622 
7623 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
7624 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
7625 	.write_tsc_offset = vmx_write_tsc_offset,
7626 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
7627 
7628 	.load_mmu_pgd = vmx_load_mmu_pgd,
7629 
7630 	.check_intercept = vmx_check_intercept,
7631 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7632 
7633 	.request_immediate_exit = vmx_request_immediate_exit,
7634 
7635 	.sched_in = vmx_sched_in,
7636 
7637 	.cpu_dirty_log_size = PML_ENTITY_NUM,
7638 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7639 
7640 	.pre_block = vmx_pre_block,
7641 	.post_block = vmx_post_block,
7642 
7643 	.pmu_ops = &intel_pmu_ops,
7644 	.nested_ops = &vmx_nested_ops,
7645 
7646 	.update_pi_irte = pi_update_irte,
7647 	.start_assignment = vmx_pi_start_assignment,
7648 
7649 #ifdef CONFIG_X86_64
7650 	.set_hv_timer = vmx_set_hv_timer,
7651 	.cancel_hv_timer = vmx_cancel_hv_timer,
7652 #endif
7653 
7654 	.setup_mce = vmx_setup_mce,
7655 
7656 	.smi_allowed = vmx_smi_allowed,
7657 	.enter_smm = vmx_enter_smm,
7658 	.leave_smm = vmx_leave_smm,
7659 	.enable_smi_window = vmx_enable_smi_window,
7660 
7661 	.can_emulate_instruction = vmx_can_emulate_instruction,
7662 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7663 	.migrate_timers = vmx_migrate_timers,
7664 
7665 	.msr_filter_changed = vmx_msr_filter_changed,
7666 	.complete_emulated_msr = kvm_complete_insn_gp,
7667 
7668 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7669 };
7670 
7671 static __init void vmx_setup_user_return_msrs(void)
7672 {
7673 
7674 	/*
7675 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7676 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
7677 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7678 	 * support this emulation, MSR_STAR is included in the list for i386,
7679 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
7680 	 * into hardware and is here purely for emulation purposes.
7681 	 */
7682 	const u32 vmx_uret_msrs_list[] = {
7683 	#ifdef CONFIG_X86_64
7684 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7685 	#endif
7686 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7687 		MSR_IA32_TSX_CTRL,
7688 	};
7689 	int i;
7690 
7691 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7692 
7693 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7694 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7695 }
7696 
7697 static __init int hardware_setup(void)
7698 {
7699 	unsigned long host_bndcfgs;
7700 	struct desc_ptr dt;
7701 	int r, ept_lpage_level;
7702 
7703 	store_idt(&dt);
7704 	host_idt_base = dt.address;
7705 
7706 	vmx_setup_user_return_msrs();
7707 
7708 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7709 		return -EIO;
7710 
7711 	if (boot_cpu_has(X86_FEATURE_NX))
7712 		kvm_enable_efer_bits(EFER_NX);
7713 
7714 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7715 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7716 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7717 	}
7718 
7719 	if (!cpu_has_vmx_mpx())
7720 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7721 				    XFEATURE_MASK_BNDCSR);
7722 
7723 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7724 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7725 		enable_vpid = 0;
7726 
7727 	if (!cpu_has_vmx_ept() ||
7728 	    !cpu_has_vmx_ept_4levels() ||
7729 	    !cpu_has_vmx_ept_mt_wb() ||
7730 	    !cpu_has_vmx_invept_global())
7731 		enable_ept = 0;
7732 
7733 	/* NX support is required for shadow paging. */
7734 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
7735 		pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
7736 		return -EOPNOTSUPP;
7737 	}
7738 
7739 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7740 		enable_ept_ad_bits = 0;
7741 
7742 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7743 		enable_unrestricted_guest = 0;
7744 
7745 	if (!cpu_has_vmx_flexpriority())
7746 		flexpriority_enabled = 0;
7747 
7748 	if (!cpu_has_virtual_nmis())
7749 		enable_vnmi = 0;
7750 
7751 	/*
7752 	 * set_apic_access_page_addr() is used to reload apic access
7753 	 * page upon invalidation.  No need to do anything if not
7754 	 * using the APIC_ACCESS_ADDR VMCS field.
7755 	 */
7756 	if (!flexpriority_enabled)
7757 		vmx_x86_ops.set_apic_access_page_addr = NULL;
7758 
7759 	if (!cpu_has_vmx_tpr_shadow())
7760 		vmx_x86_ops.update_cr8_intercept = NULL;
7761 
7762 #if IS_ENABLED(CONFIG_HYPERV)
7763 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7764 	    && enable_ept) {
7765 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7766 		vmx_x86_ops.tlb_remote_flush_with_range =
7767 				hv_remote_flush_tlb_with_range;
7768 	}
7769 #endif
7770 
7771 	if (!cpu_has_vmx_ple()) {
7772 		ple_gap = 0;
7773 		ple_window = 0;
7774 		ple_window_grow = 0;
7775 		ple_window_max = 0;
7776 		ple_window_shrink = 0;
7777 	}
7778 
7779 	if (!cpu_has_vmx_apicv()) {
7780 		enable_apicv = 0;
7781 		vmx_x86_ops.sync_pir_to_irr = NULL;
7782 	}
7783 
7784 	if (cpu_has_vmx_tsc_scaling()) {
7785 		kvm_has_tsc_control = true;
7786 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7787 		kvm_tsc_scaling_ratio_frac_bits = 48;
7788 	}
7789 
7790 	kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7791 
7792 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7793 
7794 	if (enable_ept)
7795 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
7796 				      cpu_has_vmx_ept_execute_only());
7797 
7798 	if (!enable_ept)
7799 		ept_lpage_level = 0;
7800 	else if (cpu_has_vmx_ept_1g_page())
7801 		ept_lpage_level = PG_LEVEL_1G;
7802 	else if (cpu_has_vmx_ept_2m_page())
7803 		ept_lpage_level = PG_LEVEL_2M;
7804 	else
7805 		ept_lpage_level = PG_LEVEL_4K;
7806 	kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
7807 
7808 	/*
7809 	 * Only enable PML when hardware supports PML feature, and both EPT
7810 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7811 	 */
7812 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7813 		enable_pml = 0;
7814 
7815 	if (!enable_pml)
7816 		vmx_x86_ops.cpu_dirty_log_size = 0;
7817 
7818 	if (!cpu_has_vmx_preemption_timer())
7819 		enable_preemption_timer = false;
7820 
7821 	if (enable_preemption_timer) {
7822 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
7823 		u64 vmx_msr;
7824 
7825 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7826 		cpu_preemption_timer_multi =
7827 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7828 
7829 		if (tsc_khz)
7830 			use_timer_freq = (u64)tsc_khz * 1000;
7831 		use_timer_freq >>= cpu_preemption_timer_multi;
7832 
7833 		/*
7834 		 * KVM "disables" the preemption timer by setting it to its max
7835 		 * value.  Don't use the timer if it might cause spurious exits
7836 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7837 		 */
7838 		if (use_timer_freq > 0xffffffffu / 10)
7839 			enable_preemption_timer = false;
7840 	}
7841 
7842 	if (!enable_preemption_timer) {
7843 		vmx_x86_ops.set_hv_timer = NULL;
7844 		vmx_x86_ops.cancel_hv_timer = NULL;
7845 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7846 	}
7847 
7848 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7849 
7850 	kvm_mce_cap_supported |= MCG_LMCE_P;
7851 
7852 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7853 		return -EINVAL;
7854 	if (!enable_ept || !cpu_has_vmx_intel_pt())
7855 		pt_mode = PT_MODE_SYSTEM;
7856 
7857 	setup_default_sgx_lepubkeyhash();
7858 
7859 	if (nested) {
7860 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7861 					   vmx_capability.ept);
7862 
7863 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7864 		if (r)
7865 			return r;
7866 	}
7867 
7868 	vmx_set_cpu_caps();
7869 
7870 	r = alloc_kvm_area();
7871 	if (r)
7872 		nested_vmx_hardware_unsetup();
7873 	return r;
7874 }
7875 
7876 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7877 	.cpu_has_kvm_support = cpu_has_kvm_support,
7878 	.disabled_by_bios = vmx_disabled_by_bios,
7879 	.check_processor_compatibility = vmx_check_processor_compat,
7880 	.hardware_setup = hardware_setup,
7881 
7882 	.runtime_ops = &vmx_x86_ops,
7883 };
7884 
7885 static void vmx_cleanup_l1d_flush(void)
7886 {
7887 	if (vmx_l1d_flush_pages) {
7888 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7889 		vmx_l1d_flush_pages = NULL;
7890 	}
7891 	/* Restore state so sysfs ignores VMX */
7892 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7893 }
7894 
7895 static void vmx_exit(void)
7896 {
7897 #ifdef CONFIG_KEXEC_CORE
7898 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7899 	synchronize_rcu();
7900 #endif
7901 
7902 	kvm_exit();
7903 
7904 #if IS_ENABLED(CONFIG_HYPERV)
7905 	if (static_branch_unlikely(&enable_evmcs)) {
7906 		int cpu;
7907 		struct hv_vp_assist_page *vp_ap;
7908 		/*
7909 		 * Reset everything to support using non-enlightened VMCS
7910 		 * access later (e.g. when we reload the module with
7911 		 * enlightened_vmcs=0)
7912 		 */
7913 		for_each_online_cpu(cpu) {
7914 			vp_ap =	hv_get_vp_assist_page(cpu);
7915 
7916 			if (!vp_ap)
7917 				continue;
7918 
7919 			vp_ap->nested_control.features.directhypercall = 0;
7920 			vp_ap->current_nested_vmcs = 0;
7921 			vp_ap->enlighten_vmentry = 0;
7922 		}
7923 
7924 		static_branch_disable(&enable_evmcs);
7925 	}
7926 #endif
7927 	vmx_cleanup_l1d_flush();
7928 
7929 	allow_smaller_maxphyaddr = false;
7930 }
7931 module_exit(vmx_exit);
7932 
7933 static int __init vmx_init(void)
7934 {
7935 	int r, cpu;
7936 
7937 #if IS_ENABLED(CONFIG_HYPERV)
7938 	/*
7939 	 * Enlightened VMCS usage should be recommended and the host needs
7940 	 * to support eVMCS v1 or above. We can also disable eVMCS support
7941 	 * with module parameter.
7942 	 */
7943 	if (enlightened_vmcs &&
7944 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7945 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7946 	    KVM_EVMCS_VERSION) {
7947 		int cpu;
7948 
7949 		/* Check that we have assist pages on all online CPUs */
7950 		for_each_online_cpu(cpu) {
7951 			if (!hv_get_vp_assist_page(cpu)) {
7952 				enlightened_vmcs = false;
7953 				break;
7954 			}
7955 		}
7956 
7957 		if (enlightened_vmcs) {
7958 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7959 			static_branch_enable(&enable_evmcs);
7960 		}
7961 
7962 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7963 			vmx_x86_ops.enable_direct_tlbflush
7964 				= hv_enable_direct_tlbflush;
7965 
7966 	} else {
7967 		enlightened_vmcs = false;
7968 	}
7969 #endif
7970 
7971 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
7972 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
7973 	if (r)
7974 		return r;
7975 
7976 	/*
7977 	 * Must be called after kvm_init() so enable_ept is properly set
7978 	 * up. Hand the parameter mitigation value in which was stored in
7979 	 * the pre module init parser. If no parameter was given, it will
7980 	 * contain 'auto' which will be turned into the default 'cond'
7981 	 * mitigation mode.
7982 	 */
7983 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7984 	if (r) {
7985 		vmx_exit();
7986 		return r;
7987 	}
7988 
7989 	for_each_possible_cpu(cpu) {
7990 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
7991 
7992 		pi_init_cpu(cpu);
7993 	}
7994 
7995 #ifdef CONFIG_KEXEC_CORE
7996 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7997 			   crash_vmclear_local_loaded_vmcss);
7998 #endif
7999 	vmx_check_vmcs12_offsets();
8000 
8001 	/*
8002 	 * Shadow paging doesn't have a (further) performance penalty
8003 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8004 	 * by default
8005 	 */
8006 	if (!enable_ept)
8007 		allow_smaller_maxphyaddr = true;
8008 
8009 	return 0;
8010 }
8011 module_init(vmx_init);
8012