xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision 95777591)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <linux/frame.h>
20 #include <linux/highmem.h>
21 #include <linux/hrtimer.h>
22 #include <linux/kernel.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/mm.h>
28 #include <linux/sched.h>
29 #include <linux/sched/smt.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include <linux/trace_events.h>
33 
34 #include <asm/apic.h>
35 #include <asm/asm.h>
36 #include <asm/cpu.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/internal.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mce.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50 
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "irq.h"
55 #include "kvm_cache_regs.h"
56 #include "lapic.h"
57 #include "mmu.h"
58 #include "nested.h"
59 #include "ops.h"
60 #include "pmu.h"
61 #include "trace.h"
62 #include "vmcs.h"
63 #include "vmcs12.h"
64 #include "vmx.h"
65 #include "x86.h"
66 
67 MODULE_AUTHOR("Qumranet");
68 MODULE_LICENSE("GPL");
69 
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71 	X86_FEATURE_MATCH(X86_FEATURE_VMX),
72 	{}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 
76 bool __read_mostly enable_vpid = 1;
77 module_param_named(vpid, enable_vpid, bool, 0444);
78 
79 static bool __read_mostly enable_vnmi = 1;
80 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
81 
82 bool __read_mostly flexpriority_enabled = 1;
83 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
84 
85 bool __read_mostly enable_ept = 1;
86 module_param_named(ept, enable_ept, bool, S_IRUGO);
87 
88 bool __read_mostly enable_unrestricted_guest = 1;
89 module_param_named(unrestricted_guest,
90 			enable_unrestricted_guest, bool, S_IRUGO);
91 
92 bool __read_mostly enable_ept_ad_bits = 1;
93 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
94 
95 static bool __read_mostly emulate_invalid_guest_state = true;
96 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
97 
98 static bool __read_mostly fasteoi = 1;
99 module_param(fasteoi, bool, S_IRUGO);
100 
101 static bool __read_mostly enable_apicv = 1;
102 module_param(enable_apicv, bool, S_IRUGO);
103 
104 /*
105  * If nested=1, nested virtualization is supported, i.e., guests may use
106  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
107  * use VMX instructions.
108  */
109 static bool __read_mostly nested = 1;
110 module_param(nested, bool, S_IRUGO);
111 
112 static u64 __read_mostly host_xss;
113 
114 bool __read_mostly enable_pml = 1;
115 module_param_named(pml, enable_pml, bool, S_IRUGO);
116 
117 #define MSR_BITMAP_MODE_X2APIC		1
118 #define MSR_BITMAP_MODE_X2APIC_APICV	2
119 
120 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
121 
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
125 #ifdef CONFIG_X86_64
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
127 #endif
128 
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON				\
132 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
133 	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS				      \
135 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
136 	 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
137 
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141 
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143 
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147 	RTIT_STATUS_BYTECNT))
148 
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150 	(~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151 
152 /*
153  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154  * ple_gap:    upper bound on the amount of time between two successive
155  *             executions of PAUSE in a loop. Also indicate if ple enabled.
156  *             According to test, this time is usually smaller than 128 cycles.
157  * ple_window: upper bound on the amount of time a guest is allowed to execute
158  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
159  *             less than 2^12 cycles
160  * Time is measured based on a counter that runs at the same rate as the TSC,
161  * refer SDM volume 3b section 21.6.13 & 22.1.3.
162  */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165 
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168 
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172 
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176 
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180 
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184 
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188 
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191 
192 static const struct {
193 	const char *option;
194 	bool for_parse;
195 } vmentry_l1d_param[] = {
196 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
197 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
198 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
199 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
200 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203 
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206 
207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209 	struct page *page;
210 	unsigned int i;
211 
212 	if (!enable_ept) {
213 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
214 		return 0;
215 	}
216 
217 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
218 		u64 msr;
219 
220 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
221 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
222 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
223 			return 0;
224 		}
225 	}
226 
227 	/* If set to auto use the default l1tf mitigation method */
228 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
229 		switch (l1tf_mitigation) {
230 		case L1TF_MITIGATION_OFF:
231 			l1tf = VMENTER_L1D_FLUSH_NEVER;
232 			break;
233 		case L1TF_MITIGATION_FLUSH_NOWARN:
234 		case L1TF_MITIGATION_FLUSH:
235 		case L1TF_MITIGATION_FLUSH_NOSMT:
236 			l1tf = VMENTER_L1D_FLUSH_COND;
237 			break;
238 		case L1TF_MITIGATION_FULL:
239 		case L1TF_MITIGATION_FULL_FORCE:
240 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
241 			break;
242 		}
243 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
244 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
245 	}
246 
247 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
248 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
249 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
250 		if (!page)
251 			return -ENOMEM;
252 		vmx_l1d_flush_pages = page_address(page);
253 
254 		/*
255 		 * Initialize each page with a different pattern in
256 		 * order to protect against KSM in the nested
257 		 * virtualization case.
258 		 */
259 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
260 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
261 			       PAGE_SIZE);
262 		}
263 	}
264 
265 	l1tf_vmx_mitigation = l1tf;
266 
267 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
268 		static_branch_enable(&vmx_l1d_should_flush);
269 	else
270 		static_branch_disable(&vmx_l1d_should_flush);
271 
272 	if (l1tf == VMENTER_L1D_FLUSH_COND)
273 		static_branch_enable(&vmx_l1d_flush_cond);
274 	else
275 		static_branch_disable(&vmx_l1d_flush_cond);
276 	return 0;
277 }
278 
279 static int vmentry_l1d_flush_parse(const char *s)
280 {
281 	unsigned int i;
282 
283 	if (s) {
284 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
285 			if (vmentry_l1d_param[i].for_parse &&
286 			    sysfs_streq(s, vmentry_l1d_param[i].option))
287 				return i;
288 		}
289 	}
290 	return -EINVAL;
291 }
292 
293 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
294 {
295 	int l1tf, ret;
296 
297 	l1tf = vmentry_l1d_flush_parse(s);
298 	if (l1tf < 0)
299 		return l1tf;
300 
301 	if (!boot_cpu_has(X86_BUG_L1TF))
302 		return 0;
303 
304 	/*
305 	 * Has vmx_init() run already? If not then this is the pre init
306 	 * parameter parsing. In that case just store the value and let
307 	 * vmx_init() do the proper setup after enable_ept has been
308 	 * established.
309 	 */
310 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
311 		vmentry_l1d_flush_param = l1tf;
312 		return 0;
313 	}
314 
315 	mutex_lock(&vmx_l1d_flush_mutex);
316 	ret = vmx_setup_l1d_flush(l1tf);
317 	mutex_unlock(&vmx_l1d_flush_mutex);
318 	return ret;
319 }
320 
321 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
322 {
323 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
324 		return sprintf(s, "???\n");
325 
326 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
327 }
328 
329 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
330 	.set = vmentry_l1d_flush_set,
331 	.get = vmentry_l1d_flush_get,
332 };
333 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
334 
335 static bool guest_state_valid(struct kvm_vcpu *vcpu);
336 static u32 vmx_segment_access_rights(struct kvm_segment *var);
337 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
338 							  u32 msr, int type);
339 
340 void vmx_vmexit(void);
341 
342 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
343 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
344 /*
345  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
346  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
347  */
348 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
349 
350 /*
351  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
352  * can find which vCPU should be waken up.
353  */
354 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
355 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
356 
357 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
358 static DEFINE_SPINLOCK(vmx_vpid_lock);
359 
360 struct vmcs_config vmcs_config;
361 struct vmx_capability vmx_capability;
362 
363 #define VMX_SEGMENT_FIELD(seg)					\
364 	[VCPU_SREG_##seg] = {                                   \
365 		.selector = GUEST_##seg##_SELECTOR,		\
366 		.base = GUEST_##seg##_BASE,		   	\
367 		.limit = GUEST_##seg##_LIMIT,		   	\
368 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
369 	}
370 
371 static const struct kvm_vmx_segment_field {
372 	unsigned selector;
373 	unsigned base;
374 	unsigned limit;
375 	unsigned ar_bytes;
376 } kvm_vmx_segment_fields[] = {
377 	VMX_SEGMENT_FIELD(CS),
378 	VMX_SEGMENT_FIELD(DS),
379 	VMX_SEGMENT_FIELD(ES),
380 	VMX_SEGMENT_FIELD(FS),
381 	VMX_SEGMENT_FIELD(GS),
382 	VMX_SEGMENT_FIELD(SS),
383 	VMX_SEGMENT_FIELD(TR),
384 	VMX_SEGMENT_FIELD(LDTR),
385 };
386 
387 u64 host_efer;
388 
389 /*
390  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
391  * will emulate SYSCALL in legacy mode if the vendor string in guest
392  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
393  * support this emulation, IA32_STAR must always be included in
394  * vmx_msr_index[], even in i386 builds.
395  */
396 const u32 vmx_msr_index[] = {
397 #ifdef CONFIG_X86_64
398 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
399 #endif
400 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
401 };
402 
403 #if IS_ENABLED(CONFIG_HYPERV)
404 static bool __read_mostly enlightened_vmcs = true;
405 module_param(enlightened_vmcs, bool, 0444);
406 
407 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
408 static void check_ept_pointer_match(struct kvm *kvm)
409 {
410 	struct kvm_vcpu *vcpu;
411 	u64 tmp_eptp = INVALID_PAGE;
412 	int i;
413 
414 	kvm_for_each_vcpu(i, vcpu, kvm) {
415 		if (!VALID_PAGE(tmp_eptp)) {
416 			tmp_eptp = to_vmx(vcpu)->ept_pointer;
417 		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
418 			to_kvm_vmx(kvm)->ept_pointers_match
419 				= EPT_POINTERS_MISMATCH;
420 			return;
421 		}
422 	}
423 
424 	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
425 }
426 
427 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
428 		void *data)
429 {
430 	struct kvm_tlb_range *range = data;
431 
432 	return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
433 			range->pages);
434 }
435 
436 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
437 		struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
438 {
439 	u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
440 
441 	/*
442 	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
443 	 * of the base of EPT PML4 table, strip off EPT configuration
444 	 * information.
445 	 */
446 	if (range)
447 		return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
448 				kvm_fill_hv_flush_list_func, (void *)range);
449 	else
450 		return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
451 }
452 
453 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
454 		struct kvm_tlb_range *range)
455 {
456 	struct kvm_vcpu *vcpu;
457 	int ret = 0, i;
458 
459 	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
460 
461 	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
462 		check_ept_pointer_match(kvm);
463 
464 	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
465 		kvm_for_each_vcpu(i, vcpu, kvm) {
466 			/* If ept_pointer is invalid pointer, bypass flush request. */
467 			if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
468 				ret |= __hv_remote_flush_tlb_with_range(
469 					kvm, vcpu, range);
470 		}
471 	} else {
472 		ret = __hv_remote_flush_tlb_with_range(kvm,
473 				kvm_get_vcpu(kvm, 0), range);
474 	}
475 
476 	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
477 	return ret;
478 }
479 static int hv_remote_flush_tlb(struct kvm *kvm)
480 {
481 	return hv_remote_flush_tlb_with_range(kvm, NULL);
482 }
483 
484 #endif /* IS_ENABLED(CONFIG_HYPERV) */
485 
486 /*
487  * Comment's format: document - errata name - stepping - processor name.
488  * Refer from
489  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
490  */
491 static u32 vmx_preemption_cpu_tfms[] = {
492 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
493 0x000206E6,
494 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
495 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
496 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
497 0x00020652,
498 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
499 0x00020655,
500 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
501 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
502 /*
503  * 320767.pdf - AAP86  - B1 -
504  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
505  */
506 0x000106E5,
507 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
508 0x000106A0,
509 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
510 0x000106A1,
511 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
512 0x000106A4,
513  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
514  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
515  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
516 0x000106A5,
517  /* Xeon E3-1220 V2 */
518 0x000306A8,
519 };
520 
521 static inline bool cpu_has_broken_vmx_preemption_timer(void)
522 {
523 	u32 eax = cpuid_eax(0x00000001), i;
524 
525 	/* Clear the reserved bits */
526 	eax &= ~(0x3U << 14 | 0xfU << 28);
527 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
528 		if (eax == vmx_preemption_cpu_tfms[i])
529 			return true;
530 
531 	return false;
532 }
533 
534 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
535 {
536 	return flexpriority_enabled && lapic_in_kernel(vcpu);
537 }
538 
539 static inline bool report_flexpriority(void)
540 {
541 	return flexpriority_enabled;
542 }
543 
544 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
545 {
546 	int i;
547 
548 	for (i = 0; i < vmx->nmsrs; ++i)
549 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
550 			return i;
551 	return -1;
552 }
553 
554 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
555 {
556 	int i;
557 
558 	i = __find_msr_index(vmx, msr);
559 	if (i >= 0)
560 		return &vmx->guest_msrs[i];
561 	return NULL;
562 }
563 
564 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
565 {
566 	vmcs_clear(loaded_vmcs->vmcs);
567 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
568 		vmcs_clear(loaded_vmcs->shadow_vmcs);
569 	loaded_vmcs->cpu = -1;
570 	loaded_vmcs->launched = 0;
571 }
572 
573 #ifdef CONFIG_KEXEC_CORE
574 /*
575  * This bitmap is used to indicate whether the vmclear
576  * operation is enabled on all cpus. All disabled by
577  * default.
578  */
579 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
580 
581 static inline void crash_enable_local_vmclear(int cpu)
582 {
583 	cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
584 }
585 
586 static inline void crash_disable_local_vmclear(int cpu)
587 {
588 	cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
589 }
590 
591 static inline int crash_local_vmclear_enabled(int cpu)
592 {
593 	return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
594 }
595 
596 static void crash_vmclear_local_loaded_vmcss(void)
597 {
598 	int cpu = raw_smp_processor_id();
599 	struct loaded_vmcs *v;
600 
601 	if (!crash_local_vmclear_enabled(cpu))
602 		return;
603 
604 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
605 			    loaded_vmcss_on_cpu_link)
606 		vmcs_clear(v->vmcs);
607 }
608 #else
609 static inline void crash_enable_local_vmclear(int cpu) { }
610 static inline void crash_disable_local_vmclear(int cpu) { }
611 #endif /* CONFIG_KEXEC_CORE */
612 
613 static void __loaded_vmcs_clear(void *arg)
614 {
615 	struct loaded_vmcs *loaded_vmcs = arg;
616 	int cpu = raw_smp_processor_id();
617 
618 	if (loaded_vmcs->cpu != cpu)
619 		return; /* vcpu migration can race with cpu offline */
620 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
621 		per_cpu(current_vmcs, cpu) = NULL;
622 	crash_disable_local_vmclear(cpu);
623 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
624 
625 	/*
626 	 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
627 	 * is before setting loaded_vmcs->vcpu to -1 which is done in
628 	 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
629 	 * then adds the vmcs into percpu list before it is deleted.
630 	 */
631 	smp_wmb();
632 
633 	loaded_vmcs_init(loaded_vmcs);
634 	crash_enable_local_vmclear(cpu);
635 }
636 
637 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
638 {
639 	int cpu = loaded_vmcs->cpu;
640 
641 	if (cpu != -1)
642 		smp_call_function_single(cpu,
643 			 __loaded_vmcs_clear, loaded_vmcs, 1);
644 }
645 
646 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
647 				       unsigned field)
648 {
649 	bool ret;
650 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
651 
652 	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
653 		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
654 		vmx->segment_cache.bitmask = 0;
655 	}
656 	ret = vmx->segment_cache.bitmask & mask;
657 	vmx->segment_cache.bitmask |= mask;
658 	return ret;
659 }
660 
661 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
662 {
663 	u16 *p = &vmx->segment_cache.seg[seg].selector;
664 
665 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
666 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
667 	return *p;
668 }
669 
670 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
671 {
672 	ulong *p = &vmx->segment_cache.seg[seg].base;
673 
674 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
675 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
676 	return *p;
677 }
678 
679 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
680 {
681 	u32 *p = &vmx->segment_cache.seg[seg].limit;
682 
683 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
684 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
685 	return *p;
686 }
687 
688 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
689 {
690 	u32 *p = &vmx->segment_cache.seg[seg].ar;
691 
692 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
693 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
694 	return *p;
695 }
696 
697 void update_exception_bitmap(struct kvm_vcpu *vcpu)
698 {
699 	u32 eb;
700 
701 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
702 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
703 	/*
704 	 * Guest access to VMware backdoor ports could legitimately
705 	 * trigger #GP because of TSS I/O permission bitmap.
706 	 * We intercept those #GP and allow access to them anyway
707 	 * as VMware does.
708 	 */
709 	if (enable_vmware_backdoor)
710 		eb |= (1u << GP_VECTOR);
711 	if ((vcpu->guest_debug &
712 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
713 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
714 		eb |= 1u << BP_VECTOR;
715 	if (to_vmx(vcpu)->rmode.vm86_active)
716 		eb = ~0;
717 	if (enable_ept)
718 		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
719 
720 	/* When we are running a nested L2 guest and L1 specified for it a
721 	 * certain exception bitmap, we must trap the same exceptions and pass
722 	 * them to L1. When running L2, we will only handle the exceptions
723 	 * specified above if L1 did not want them.
724 	 */
725 	if (is_guest_mode(vcpu))
726 		eb |= get_vmcs12(vcpu)->exception_bitmap;
727 
728 	vmcs_write32(EXCEPTION_BITMAP, eb);
729 }
730 
731 /*
732  * Check if MSR is intercepted for currently loaded MSR bitmap.
733  */
734 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
735 {
736 	unsigned long *msr_bitmap;
737 	int f = sizeof(unsigned long);
738 
739 	if (!cpu_has_vmx_msr_bitmap())
740 		return true;
741 
742 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
743 
744 	if (msr <= 0x1fff) {
745 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
746 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
747 		msr &= 0x1fff;
748 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
749 	}
750 
751 	return true;
752 }
753 
754 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
755 		unsigned long entry, unsigned long exit)
756 {
757 	vm_entry_controls_clearbit(vmx, entry);
758 	vm_exit_controls_clearbit(vmx, exit);
759 }
760 
761 static int find_msr(struct vmx_msrs *m, unsigned int msr)
762 {
763 	unsigned int i;
764 
765 	for (i = 0; i < m->nr; ++i) {
766 		if (m->val[i].index == msr)
767 			return i;
768 	}
769 	return -ENOENT;
770 }
771 
772 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
773 {
774 	int i;
775 	struct msr_autoload *m = &vmx->msr_autoload;
776 
777 	switch (msr) {
778 	case MSR_EFER:
779 		if (cpu_has_load_ia32_efer()) {
780 			clear_atomic_switch_msr_special(vmx,
781 					VM_ENTRY_LOAD_IA32_EFER,
782 					VM_EXIT_LOAD_IA32_EFER);
783 			return;
784 		}
785 		break;
786 	case MSR_CORE_PERF_GLOBAL_CTRL:
787 		if (cpu_has_load_perf_global_ctrl()) {
788 			clear_atomic_switch_msr_special(vmx,
789 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
790 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
791 			return;
792 		}
793 		break;
794 	}
795 	i = find_msr(&m->guest, msr);
796 	if (i < 0)
797 		goto skip_guest;
798 	--m->guest.nr;
799 	m->guest.val[i] = m->guest.val[m->guest.nr];
800 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
801 
802 skip_guest:
803 	i = find_msr(&m->host, msr);
804 	if (i < 0)
805 		return;
806 
807 	--m->host.nr;
808 	m->host.val[i] = m->host.val[m->host.nr];
809 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
810 }
811 
812 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
813 		unsigned long entry, unsigned long exit,
814 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
815 		u64 guest_val, u64 host_val)
816 {
817 	vmcs_write64(guest_val_vmcs, guest_val);
818 	if (host_val_vmcs != HOST_IA32_EFER)
819 		vmcs_write64(host_val_vmcs, host_val);
820 	vm_entry_controls_setbit(vmx, entry);
821 	vm_exit_controls_setbit(vmx, exit);
822 }
823 
824 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
825 				  u64 guest_val, u64 host_val, bool entry_only)
826 {
827 	int i, j = 0;
828 	struct msr_autoload *m = &vmx->msr_autoload;
829 
830 	switch (msr) {
831 	case MSR_EFER:
832 		if (cpu_has_load_ia32_efer()) {
833 			add_atomic_switch_msr_special(vmx,
834 					VM_ENTRY_LOAD_IA32_EFER,
835 					VM_EXIT_LOAD_IA32_EFER,
836 					GUEST_IA32_EFER,
837 					HOST_IA32_EFER,
838 					guest_val, host_val);
839 			return;
840 		}
841 		break;
842 	case MSR_CORE_PERF_GLOBAL_CTRL:
843 		if (cpu_has_load_perf_global_ctrl()) {
844 			add_atomic_switch_msr_special(vmx,
845 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
846 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
847 					GUEST_IA32_PERF_GLOBAL_CTRL,
848 					HOST_IA32_PERF_GLOBAL_CTRL,
849 					guest_val, host_val);
850 			return;
851 		}
852 		break;
853 	case MSR_IA32_PEBS_ENABLE:
854 		/* PEBS needs a quiescent period after being disabled (to write
855 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
856 		 * provide that period, so a CPU could write host's record into
857 		 * guest's memory.
858 		 */
859 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
860 	}
861 
862 	i = find_msr(&m->guest, msr);
863 	if (!entry_only)
864 		j = find_msr(&m->host, msr);
865 
866 	if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
867 		(j < 0 &&  m->host.nr == NR_AUTOLOAD_MSRS)) {
868 		printk_once(KERN_WARNING "Not enough msr switch entries. "
869 				"Can't add msr %x\n", msr);
870 		return;
871 	}
872 	if (i < 0) {
873 		i = m->guest.nr++;
874 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
875 	}
876 	m->guest.val[i].index = msr;
877 	m->guest.val[i].value = guest_val;
878 
879 	if (entry_only)
880 		return;
881 
882 	if (j < 0) {
883 		j = m->host.nr++;
884 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
885 	}
886 	m->host.val[j].index = msr;
887 	m->host.val[j].value = host_val;
888 }
889 
890 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
891 {
892 	u64 guest_efer = vmx->vcpu.arch.efer;
893 	u64 ignore_bits = 0;
894 
895 	if (!enable_ept) {
896 		/*
897 		 * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
898 		 * host CPUID is more efficient than testing guest CPUID
899 		 * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
900 		 */
901 		if (boot_cpu_has(X86_FEATURE_SMEP))
902 			guest_efer |= EFER_NX;
903 		else if (!(guest_efer & EFER_NX))
904 			ignore_bits |= EFER_NX;
905 	}
906 
907 	/*
908 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
909 	 */
910 	ignore_bits |= EFER_SCE;
911 #ifdef CONFIG_X86_64
912 	ignore_bits |= EFER_LMA | EFER_LME;
913 	/* SCE is meaningful only in long mode on Intel */
914 	if (guest_efer & EFER_LMA)
915 		ignore_bits &= ~(u64)EFER_SCE;
916 #endif
917 
918 	/*
919 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
920 	 * On CPUs that support "load IA32_EFER", always switch EFER
921 	 * atomically, since it's faster than switching it manually.
922 	 */
923 	if (cpu_has_load_ia32_efer() ||
924 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
925 		if (!(guest_efer & EFER_LMA))
926 			guest_efer &= ~EFER_LME;
927 		if (guest_efer != host_efer)
928 			add_atomic_switch_msr(vmx, MSR_EFER,
929 					      guest_efer, host_efer, false);
930 		else
931 			clear_atomic_switch_msr(vmx, MSR_EFER);
932 		return false;
933 	} else {
934 		clear_atomic_switch_msr(vmx, MSR_EFER);
935 
936 		guest_efer &= ~ignore_bits;
937 		guest_efer |= host_efer & ignore_bits;
938 
939 		vmx->guest_msrs[efer_offset].data = guest_efer;
940 		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
941 
942 		return true;
943 	}
944 }
945 
946 #ifdef CONFIG_X86_32
947 /*
948  * On 32-bit kernels, VM exits still load the FS and GS bases from the
949  * VMCS rather than the segment table.  KVM uses this helper to figure
950  * out the current bases to poke them into the VMCS before entry.
951  */
952 static unsigned long segment_base(u16 selector)
953 {
954 	struct desc_struct *table;
955 	unsigned long v;
956 
957 	if (!(selector & ~SEGMENT_RPL_MASK))
958 		return 0;
959 
960 	table = get_current_gdt_ro();
961 
962 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
963 		u16 ldt_selector = kvm_read_ldt();
964 
965 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
966 			return 0;
967 
968 		table = (struct desc_struct *)segment_base(ldt_selector);
969 	}
970 	v = get_desc_base(&table[selector >> 3]);
971 	return v;
972 }
973 #endif
974 
975 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
976 {
977 	u32 i;
978 
979 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
980 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
981 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
982 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
983 	for (i = 0; i < addr_range; i++) {
984 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
985 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
986 	}
987 }
988 
989 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
990 {
991 	u32 i;
992 
993 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
994 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
995 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
996 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
997 	for (i = 0; i < addr_range; i++) {
998 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
999 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1000 	}
1001 }
1002 
1003 static void pt_guest_enter(struct vcpu_vmx *vmx)
1004 {
1005 	if (pt_mode == PT_MODE_SYSTEM)
1006 		return;
1007 
1008 	/*
1009 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1010 	 * Save host state before VM entry.
1011 	 */
1012 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1013 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1014 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1015 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1016 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1017 	}
1018 }
1019 
1020 static void pt_guest_exit(struct vcpu_vmx *vmx)
1021 {
1022 	if (pt_mode == PT_MODE_SYSTEM)
1023 		return;
1024 
1025 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1026 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1027 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1028 	}
1029 
1030 	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1031 	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1032 }
1033 
1034 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1035 {
1036 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1037 	struct vmcs_host_state *host_state;
1038 #ifdef CONFIG_X86_64
1039 	int cpu = raw_smp_processor_id();
1040 #endif
1041 	unsigned long fs_base, gs_base;
1042 	u16 fs_sel, gs_sel;
1043 	int i;
1044 
1045 	vmx->req_immediate_exit = false;
1046 
1047 	/*
1048 	 * Note that guest MSRs to be saved/restored can also be changed
1049 	 * when guest state is loaded. This happens when guest transitions
1050 	 * to/from long-mode by setting MSR_EFER.LMA.
1051 	 */
1052 	if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) {
1053 		vmx->guest_msrs_dirty = false;
1054 		for (i = 0; i < vmx->save_nmsrs; ++i)
1055 			kvm_set_shared_msr(vmx->guest_msrs[i].index,
1056 					   vmx->guest_msrs[i].data,
1057 					   vmx->guest_msrs[i].mask);
1058 
1059 	}
1060 
1061 	if (vmx->loaded_cpu_state)
1062 		return;
1063 
1064 	vmx->loaded_cpu_state = vmx->loaded_vmcs;
1065 	host_state = &vmx->loaded_cpu_state->host_state;
1066 
1067 	/*
1068 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1069 	 * allow segment selectors with cpl > 0 or ti == 1.
1070 	 */
1071 	host_state->ldt_sel = kvm_read_ldt();
1072 
1073 #ifdef CONFIG_X86_64
1074 	savesegment(ds, host_state->ds_sel);
1075 	savesegment(es, host_state->es_sel);
1076 
1077 	gs_base = cpu_kernelmode_gs_base(cpu);
1078 	if (likely(is_64bit_mm(current->mm))) {
1079 		save_fsgs_for_kvm();
1080 		fs_sel = current->thread.fsindex;
1081 		gs_sel = current->thread.gsindex;
1082 		fs_base = current->thread.fsbase;
1083 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1084 	} else {
1085 		savesegment(fs, fs_sel);
1086 		savesegment(gs, gs_sel);
1087 		fs_base = read_msr(MSR_FS_BASE);
1088 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1089 	}
1090 
1091 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1092 #else
1093 	savesegment(fs, fs_sel);
1094 	savesegment(gs, gs_sel);
1095 	fs_base = segment_base(fs_sel);
1096 	gs_base = segment_base(gs_sel);
1097 #endif
1098 
1099 	if (unlikely(fs_sel != host_state->fs_sel)) {
1100 		if (!(fs_sel & 7))
1101 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1102 		else
1103 			vmcs_write16(HOST_FS_SELECTOR, 0);
1104 		host_state->fs_sel = fs_sel;
1105 	}
1106 	if (unlikely(gs_sel != host_state->gs_sel)) {
1107 		if (!(gs_sel & 7))
1108 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1109 		else
1110 			vmcs_write16(HOST_GS_SELECTOR, 0);
1111 		host_state->gs_sel = gs_sel;
1112 	}
1113 	if (unlikely(fs_base != host_state->fs_base)) {
1114 		vmcs_writel(HOST_FS_BASE, fs_base);
1115 		host_state->fs_base = fs_base;
1116 	}
1117 	if (unlikely(gs_base != host_state->gs_base)) {
1118 		vmcs_writel(HOST_GS_BASE, gs_base);
1119 		host_state->gs_base = gs_base;
1120 	}
1121 }
1122 
1123 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1124 {
1125 	struct vmcs_host_state *host_state;
1126 
1127 	if (!vmx->loaded_cpu_state)
1128 		return;
1129 
1130 	WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
1131 	host_state = &vmx->loaded_cpu_state->host_state;
1132 
1133 	++vmx->vcpu.stat.host_state_reload;
1134 	vmx->loaded_cpu_state = NULL;
1135 
1136 #ifdef CONFIG_X86_64
1137 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1138 #endif
1139 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1140 		kvm_load_ldt(host_state->ldt_sel);
1141 #ifdef CONFIG_X86_64
1142 		load_gs_index(host_state->gs_sel);
1143 #else
1144 		loadsegment(gs, host_state->gs_sel);
1145 #endif
1146 	}
1147 	if (host_state->fs_sel & 7)
1148 		loadsegment(fs, host_state->fs_sel);
1149 #ifdef CONFIG_X86_64
1150 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1151 		loadsegment(ds, host_state->ds_sel);
1152 		loadsegment(es, host_state->es_sel);
1153 	}
1154 #endif
1155 	invalidate_tss_limit();
1156 #ifdef CONFIG_X86_64
1157 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1158 #endif
1159 	load_fixmap_gdt(raw_smp_processor_id());
1160 }
1161 
1162 #ifdef CONFIG_X86_64
1163 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1164 {
1165 	preempt_disable();
1166 	if (vmx->loaded_cpu_state)
1167 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1168 	preempt_enable();
1169 	return vmx->msr_guest_kernel_gs_base;
1170 }
1171 
1172 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1173 {
1174 	preempt_disable();
1175 	if (vmx->loaded_cpu_state)
1176 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1177 	preempt_enable();
1178 	vmx->msr_guest_kernel_gs_base = data;
1179 }
1180 #endif
1181 
1182 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1183 {
1184 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1185 	struct pi_desc old, new;
1186 	unsigned int dest;
1187 
1188 	/*
1189 	 * In case of hot-plug or hot-unplug, we may have to undo
1190 	 * vmx_vcpu_pi_put even if there is no assigned device.  And we
1191 	 * always keep PI.NDST up to date for simplicity: it makes the
1192 	 * code easier, and CPU migration is not a fast path.
1193 	 */
1194 	if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1195 		return;
1196 
1197 	/* The full case.  */
1198 	do {
1199 		old.control = new.control = pi_desc->control;
1200 
1201 		dest = cpu_physical_id(cpu);
1202 
1203 		if (x2apic_enabled())
1204 			new.ndst = dest;
1205 		else
1206 			new.ndst = (dest << 8) & 0xFF00;
1207 
1208 		new.sn = 0;
1209 	} while (cmpxchg64(&pi_desc->control, old.control,
1210 			   new.control) != old.control);
1211 
1212 	/*
1213 	 * Clear SN before reading the bitmap.  The VT-d firmware
1214 	 * writes the bitmap and reads SN atomically (5.2.3 in the
1215 	 * spec), so it doesn't really have a memory barrier that
1216 	 * pairs with this, but we cannot do that and we need one.
1217 	 */
1218 	smp_mb__after_atomic();
1219 
1220 	if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS))
1221 		pi_set_on(pi_desc);
1222 }
1223 
1224 /*
1225  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1226  * vcpu mutex is already taken.
1227  */
1228 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1229 {
1230 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1231 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1232 
1233 	if (!already_loaded) {
1234 		loaded_vmcs_clear(vmx->loaded_vmcs);
1235 		local_irq_disable();
1236 		crash_disable_local_vmclear(cpu);
1237 
1238 		/*
1239 		 * Read loaded_vmcs->cpu should be before fetching
1240 		 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1241 		 * See the comments in __loaded_vmcs_clear().
1242 		 */
1243 		smp_rmb();
1244 
1245 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1246 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1247 		crash_enable_local_vmclear(cpu);
1248 		local_irq_enable();
1249 	}
1250 
1251 	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1252 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1253 		vmcs_load(vmx->loaded_vmcs->vmcs);
1254 		indirect_branch_prediction_barrier();
1255 	}
1256 
1257 	if (!already_loaded) {
1258 		void *gdt = get_current_gdt_ro();
1259 		unsigned long sysenter_esp;
1260 
1261 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1262 
1263 		/*
1264 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1265 		 * processors.  See 22.2.4.
1266 		 */
1267 		vmcs_writel(HOST_TR_BASE,
1268 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1269 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1270 
1271 		/*
1272 		 * VM exits change the host TR limit to 0x67 after a VM
1273 		 * exit.  This is okay, since 0x67 covers everything except
1274 		 * the IO bitmap and have have code to handle the IO bitmap
1275 		 * being lost after a VM exit.
1276 		 */
1277 		BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1278 
1279 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1280 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1281 
1282 		vmx->loaded_vmcs->cpu = cpu;
1283 	}
1284 
1285 	/* Setup TSC multiplier */
1286 	if (kvm_has_tsc_control &&
1287 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1288 		decache_tsc_multiplier(vmx);
1289 
1290 	vmx_vcpu_pi_load(vcpu, cpu);
1291 	vmx->host_pkru = read_pkru();
1292 	vmx->host_debugctlmsr = get_debugctlmsr();
1293 }
1294 
1295 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1296 {
1297 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1298 
1299 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1300 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
1301 		!kvm_vcpu_apicv_active(vcpu))
1302 		return;
1303 
1304 	/* Set SN when the vCPU is preempted */
1305 	if (vcpu->preempted)
1306 		pi_set_sn(pi_desc);
1307 }
1308 
1309 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1310 {
1311 	vmx_vcpu_pi_put(vcpu);
1312 
1313 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1314 }
1315 
1316 static bool emulation_required(struct kvm_vcpu *vcpu)
1317 {
1318 	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1319 }
1320 
1321 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1322 
1323 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1324 {
1325 	unsigned long rflags, save_rflags;
1326 
1327 	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1328 		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1329 		rflags = vmcs_readl(GUEST_RFLAGS);
1330 		if (to_vmx(vcpu)->rmode.vm86_active) {
1331 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1332 			save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1333 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1334 		}
1335 		to_vmx(vcpu)->rflags = rflags;
1336 	}
1337 	return to_vmx(vcpu)->rflags;
1338 }
1339 
1340 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1341 {
1342 	unsigned long old_rflags = vmx_get_rflags(vcpu);
1343 
1344 	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1345 	to_vmx(vcpu)->rflags = rflags;
1346 	if (to_vmx(vcpu)->rmode.vm86_active) {
1347 		to_vmx(vcpu)->rmode.save_rflags = rflags;
1348 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1349 	}
1350 	vmcs_writel(GUEST_RFLAGS, rflags);
1351 
1352 	if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1353 		to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1354 }
1355 
1356 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1357 {
1358 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1359 	int ret = 0;
1360 
1361 	if (interruptibility & GUEST_INTR_STATE_STI)
1362 		ret |= KVM_X86_SHADOW_INT_STI;
1363 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1364 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1365 
1366 	return ret;
1367 }
1368 
1369 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1370 {
1371 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1372 	u32 interruptibility = interruptibility_old;
1373 
1374 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1375 
1376 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1377 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1378 	else if (mask & KVM_X86_SHADOW_INT_STI)
1379 		interruptibility |= GUEST_INTR_STATE_STI;
1380 
1381 	if ((interruptibility != interruptibility_old))
1382 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1383 }
1384 
1385 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1386 {
1387 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1388 	unsigned long value;
1389 
1390 	/*
1391 	 * Any MSR write that attempts to change bits marked reserved will
1392 	 * case a #GP fault.
1393 	 */
1394 	if (data & vmx->pt_desc.ctl_bitmask)
1395 		return 1;
1396 
1397 	/*
1398 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1399 	 * result in a #GP unless the same write also clears TraceEn.
1400 	 */
1401 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1402 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1403 		return 1;
1404 
1405 	/*
1406 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1407 	 * and FabricEn would cause #GP, if
1408 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1409 	 */
1410 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1411 		!(data & RTIT_CTL_FABRIC_EN) &&
1412 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1413 					PT_CAP_single_range_output))
1414 		return 1;
1415 
1416 	/*
1417 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1418 	 * utilize encodings marked reserved will casue a #GP fault.
1419 	 */
1420 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1421 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1422 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1423 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1424 		return 1;
1425 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1426 						PT_CAP_cycle_thresholds);
1427 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1428 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1429 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1430 		return 1;
1431 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1432 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1433 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1434 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1435 		return 1;
1436 
1437 	/*
1438 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1439 	 * cause a #GP fault.
1440 	 */
1441 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1442 	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1443 		return 1;
1444 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1445 	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1446 		return 1;
1447 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1448 	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1449 		return 1;
1450 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1451 	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1452 		return 1;
1453 
1454 	return 0;
1455 }
1456 
1457 
1458 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1459 {
1460 	unsigned long rip;
1461 
1462 	rip = kvm_rip_read(vcpu);
1463 	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1464 	kvm_rip_write(vcpu, rip);
1465 
1466 	/* skipping an emulated instruction also counts */
1467 	vmx_set_interrupt_shadow(vcpu, 0);
1468 }
1469 
1470 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1471 {
1472 	/*
1473 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1474 	 * explicitly skip the instruction because if the HLT state is set,
1475 	 * then the instruction is already executing and RIP has already been
1476 	 * advanced.
1477 	 */
1478 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1479 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1480 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1481 }
1482 
1483 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1484 {
1485 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1486 	unsigned nr = vcpu->arch.exception.nr;
1487 	bool has_error_code = vcpu->arch.exception.has_error_code;
1488 	u32 error_code = vcpu->arch.exception.error_code;
1489 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1490 
1491 	kvm_deliver_exception_payload(vcpu);
1492 
1493 	if (has_error_code) {
1494 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1495 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1496 	}
1497 
1498 	if (vmx->rmode.vm86_active) {
1499 		int inc_eip = 0;
1500 		if (kvm_exception_is_soft(nr))
1501 			inc_eip = vcpu->arch.event_exit_inst_len;
1502 		if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1503 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1504 		return;
1505 	}
1506 
1507 	WARN_ON_ONCE(vmx->emulation_required);
1508 
1509 	if (kvm_exception_is_soft(nr)) {
1510 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1511 			     vmx->vcpu.arch.event_exit_inst_len);
1512 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1513 	} else
1514 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1515 
1516 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1517 
1518 	vmx_clear_hlt(vcpu);
1519 }
1520 
1521 static bool vmx_rdtscp_supported(void)
1522 {
1523 	return cpu_has_vmx_rdtscp();
1524 }
1525 
1526 static bool vmx_invpcid_supported(void)
1527 {
1528 	return cpu_has_vmx_invpcid();
1529 }
1530 
1531 /*
1532  * Swap MSR entry in host/guest MSR entry array.
1533  */
1534 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1535 {
1536 	struct shared_msr_entry tmp;
1537 
1538 	tmp = vmx->guest_msrs[to];
1539 	vmx->guest_msrs[to] = vmx->guest_msrs[from];
1540 	vmx->guest_msrs[from] = tmp;
1541 }
1542 
1543 /*
1544  * Set up the vmcs to automatically save and restore system
1545  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1546  * mode, as fiddling with msrs is very expensive.
1547  */
1548 static void setup_msrs(struct vcpu_vmx *vmx)
1549 {
1550 	int save_nmsrs, index;
1551 
1552 	save_nmsrs = 0;
1553 #ifdef CONFIG_X86_64
1554 	/*
1555 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1556 	 * when EFER.SCE is set.
1557 	 */
1558 	if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1559 		index = __find_msr_index(vmx, MSR_STAR);
1560 		if (index >= 0)
1561 			move_msr_up(vmx, index, save_nmsrs++);
1562 		index = __find_msr_index(vmx, MSR_LSTAR);
1563 		if (index >= 0)
1564 			move_msr_up(vmx, index, save_nmsrs++);
1565 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1566 		if (index >= 0)
1567 			move_msr_up(vmx, index, save_nmsrs++);
1568 	}
1569 #endif
1570 	index = __find_msr_index(vmx, MSR_EFER);
1571 	if (index >= 0 && update_transition_efer(vmx, index))
1572 		move_msr_up(vmx, index, save_nmsrs++);
1573 	index = __find_msr_index(vmx, MSR_TSC_AUX);
1574 	if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1575 		move_msr_up(vmx, index, save_nmsrs++);
1576 
1577 	vmx->save_nmsrs = save_nmsrs;
1578 	vmx->guest_msrs_dirty = true;
1579 
1580 	if (cpu_has_vmx_msr_bitmap())
1581 		vmx_update_msr_bitmap(&vmx->vcpu);
1582 }
1583 
1584 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1585 {
1586 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1587 
1588 	if (is_guest_mode(vcpu) &&
1589 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1590 		return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1591 
1592 	return vcpu->arch.tsc_offset;
1593 }
1594 
1595 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1596 {
1597 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1598 	u64 g_tsc_offset = 0;
1599 
1600 	/*
1601 	 * We're here if L1 chose not to trap WRMSR to TSC. According
1602 	 * to the spec, this should set L1's TSC; The offset that L1
1603 	 * set for L2 remains unchanged, and still needs to be added
1604 	 * to the newly set TSC to get L2's TSC.
1605 	 */
1606 	if (is_guest_mode(vcpu) &&
1607 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1608 		g_tsc_offset = vmcs12->tsc_offset;
1609 
1610 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1611 				   vcpu->arch.tsc_offset - g_tsc_offset,
1612 				   offset);
1613 	vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1614 	return offset + g_tsc_offset;
1615 }
1616 
1617 /*
1618  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1619  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1620  * all guests if the "nested" module option is off, and can also be disabled
1621  * for a single guest by disabling its VMX cpuid bit.
1622  */
1623 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1624 {
1625 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1626 }
1627 
1628 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1629 						 uint64_t val)
1630 {
1631 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1632 
1633 	return !(val & ~valid_bits);
1634 }
1635 
1636 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1637 {
1638 	switch (msr->index) {
1639 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1640 		if (!nested)
1641 			return 1;
1642 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1643 	default:
1644 		return 1;
1645 	}
1646 
1647 	return 0;
1648 }
1649 
1650 /*
1651  * Reads an msr value (of 'msr_index') into 'pdata'.
1652  * Returns 0 on success, non-0 otherwise.
1653  * Assumes vcpu_load() was already called.
1654  */
1655 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1656 {
1657 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1658 	struct shared_msr_entry *msr;
1659 	u32 index;
1660 
1661 	switch (msr_info->index) {
1662 #ifdef CONFIG_X86_64
1663 	case MSR_FS_BASE:
1664 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1665 		break;
1666 	case MSR_GS_BASE:
1667 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1668 		break;
1669 	case MSR_KERNEL_GS_BASE:
1670 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1671 		break;
1672 #endif
1673 	case MSR_EFER:
1674 		return kvm_get_msr_common(vcpu, msr_info);
1675 	case MSR_IA32_SPEC_CTRL:
1676 		if (!msr_info->host_initiated &&
1677 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1678 			return 1;
1679 
1680 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1681 		break;
1682 	case MSR_IA32_ARCH_CAPABILITIES:
1683 		if (!msr_info->host_initiated &&
1684 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
1685 			return 1;
1686 		msr_info->data = to_vmx(vcpu)->arch_capabilities;
1687 		break;
1688 	case MSR_IA32_SYSENTER_CS:
1689 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1690 		break;
1691 	case MSR_IA32_SYSENTER_EIP:
1692 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1693 		break;
1694 	case MSR_IA32_SYSENTER_ESP:
1695 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1696 		break;
1697 	case MSR_IA32_BNDCFGS:
1698 		if (!kvm_mpx_supported() ||
1699 		    (!msr_info->host_initiated &&
1700 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1701 			return 1;
1702 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1703 		break;
1704 	case MSR_IA32_MCG_EXT_CTL:
1705 		if (!msr_info->host_initiated &&
1706 		    !(vmx->msr_ia32_feature_control &
1707 		      FEATURE_CONTROL_LMCE))
1708 			return 1;
1709 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1710 		break;
1711 	case MSR_IA32_FEATURE_CONTROL:
1712 		msr_info->data = vmx->msr_ia32_feature_control;
1713 		break;
1714 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1715 		if (!nested_vmx_allowed(vcpu))
1716 			return 1;
1717 		return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1718 				       &msr_info->data);
1719 	case MSR_IA32_XSS:
1720 		if (!vmx_xsaves_supported())
1721 			return 1;
1722 		msr_info->data = vcpu->arch.ia32_xss;
1723 		break;
1724 	case MSR_IA32_RTIT_CTL:
1725 		if (pt_mode != PT_MODE_HOST_GUEST)
1726 			return 1;
1727 		msr_info->data = vmx->pt_desc.guest.ctl;
1728 		break;
1729 	case MSR_IA32_RTIT_STATUS:
1730 		if (pt_mode != PT_MODE_HOST_GUEST)
1731 			return 1;
1732 		msr_info->data = vmx->pt_desc.guest.status;
1733 		break;
1734 	case MSR_IA32_RTIT_CR3_MATCH:
1735 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1736 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1737 						PT_CAP_cr3_filtering))
1738 			return 1;
1739 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1740 		break;
1741 	case MSR_IA32_RTIT_OUTPUT_BASE:
1742 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1743 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1744 					PT_CAP_topa_output) &&
1745 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1746 					PT_CAP_single_range_output)))
1747 			return 1;
1748 		msr_info->data = vmx->pt_desc.guest.output_base;
1749 		break;
1750 	case MSR_IA32_RTIT_OUTPUT_MASK:
1751 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1752 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1753 					PT_CAP_topa_output) &&
1754 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1755 					PT_CAP_single_range_output)))
1756 			return 1;
1757 		msr_info->data = vmx->pt_desc.guest.output_mask;
1758 		break;
1759 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1760 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1761 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1762 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1763 					PT_CAP_num_address_ranges)))
1764 			return 1;
1765 		if (index % 2)
1766 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1767 		else
1768 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1769 		break;
1770 	case MSR_TSC_AUX:
1771 		if (!msr_info->host_initiated &&
1772 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1773 			return 1;
1774 		/* Else, falls through */
1775 	default:
1776 		msr = find_msr_entry(vmx, msr_info->index);
1777 		if (msr) {
1778 			msr_info->data = msr->data;
1779 			break;
1780 		}
1781 		return kvm_get_msr_common(vcpu, msr_info);
1782 	}
1783 
1784 	return 0;
1785 }
1786 
1787 /*
1788  * Writes msr value into into the appropriate "register".
1789  * Returns 0 on success, non-0 otherwise.
1790  * Assumes vcpu_load() was already called.
1791  */
1792 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1793 {
1794 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1795 	struct shared_msr_entry *msr;
1796 	int ret = 0;
1797 	u32 msr_index = msr_info->index;
1798 	u64 data = msr_info->data;
1799 	u32 index;
1800 
1801 	switch (msr_index) {
1802 	case MSR_EFER:
1803 		ret = kvm_set_msr_common(vcpu, msr_info);
1804 		break;
1805 #ifdef CONFIG_X86_64
1806 	case MSR_FS_BASE:
1807 		vmx_segment_cache_clear(vmx);
1808 		vmcs_writel(GUEST_FS_BASE, data);
1809 		break;
1810 	case MSR_GS_BASE:
1811 		vmx_segment_cache_clear(vmx);
1812 		vmcs_writel(GUEST_GS_BASE, data);
1813 		break;
1814 	case MSR_KERNEL_GS_BASE:
1815 		vmx_write_guest_kernel_gs_base(vmx, data);
1816 		break;
1817 #endif
1818 	case MSR_IA32_SYSENTER_CS:
1819 		vmcs_write32(GUEST_SYSENTER_CS, data);
1820 		break;
1821 	case MSR_IA32_SYSENTER_EIP:
1822 		vmcs_writel(GUEST_SYSENTER_EIP, data);
1823 		break;
1824 	case MSR_IA32_SYSENTER_ESP:
1825 		vmcs_writel(GUEST_SYSENTER_ESP, data);
1826 		break;
1827 	case MSR_IA32_BNDCFGS:
1828 		if (!kvm_mpx_supported() ||
1829 		    (!msr_info->host_initiated &&
1830 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1831 			return 1;
1832 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1833 		    (data & MSR_IA32_BNDCFGS_RSVD))
1834 			return 1;
1835 		vmcs_write64(GUEST_BNDCFGS, data);
1836 		break;
1837 	case MSR_IA32_SPEC_CTRL:
1838 		if (!msr_info->host_initiated &&
1839 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1840 			return 1;
1841 
1842 		/* The STIBP bit doesn't fault even if it's not advertised */
1843 		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1844 			return 1;
1845 
1846 		vmx->spec_ctrl = data;
1847 
1848 		if (!data)
1849 			break;
1850 
1851 		/*
1852 		 * For non-nested:
1853 		 * When it's written (to non-zero) for the first time, pass
1854 		 * it through.
1855 		 *
1856 		 * For nested:
1857 		 * The handling of the MSR bitmap for L2 guests is done in
1858 		 * nested_vmx_merge_msr_bitmap. We should not touch the
1859 		 * vmcs02.msr_bitmap here since it gets completely overwritten
1860 		 * in the merging. We update the vmcs01 here for L1 as well
1861 		 * since it will end up touching the MSR anyway now.
1862 		 */
1863 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
1864 					      MSR_IA32_SPEC_CTRL,
1865 					      MSR_TYPE_RW);
1866 		break;
1867 	case MSR_IA32_PRED_CMD:
1868 		if (!msr_info->host_initiated &&
1869 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1870 			return 1;
1871 
1872 		if (data & ~PRED_CMD_IBPB)
1873 			return 1;
1874 
1875 		if (!data)
1876 			break;
1877 
1878 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
1879 
1880 		/*
1881 		 * For non-nested:
1882 		 * When it's written (to non-zero) for the first time, pass
1883 		 * it through.
1884 		 *
1885 		 * For nested:
1886 		 * The handling of the MSR bitmap for L2 guests is done in
1887 		 * nested_vmx_merge_msr_bitmap. We should not touch the
1888 		 * vmcs02.msr_bitmap here since it gets completely overwritten
1889 		 * in the merging.
1890 		 */
1891 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
1892 					      MSR_TYPE_W);
1893 		break;
1894 	case MSR_IA32_ARCH_CAPABILITIES:
1895 		if (!msr_info->host_initiated)
1896 			return 1;
1897 		vmx->arch_capabilities = data;
1898 		break;
1899 	case MSR_IA32_CR_PAT:
1900 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1901 			if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
1902 				return 1;
1903 			vmcs_write64(GUEST_IA32_PAT, data);
1904 			vcpu->arch.pat = data;
1905 			break;
1906 		}
1907 		ret = kvm_set_msr_common(vcpu, msr_info);
1908 		break;
1909 	case MSR_IA32_TSC_ADJUST:
1910 		ret = kvm_set_msr_common(vcpu, msr_info);
1911 		break;
1912 	case MSR_IA32_MCG_EXT_CTL:
1913 		if ((!msr_info->host_initiated &&
1914 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
1915 		       FEATURE_CONTROL_LMCE)) ||
1916 		    (data & ~MCG_EXT_CTL_LMCE_EN))
1917 			return 1;
1918 		vcpu->arch.mcg_ext_ctl = data;
1919 		break;
1920 	case MSR_IA32_FEATURE_CONTROL:
1921 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
1922 		    (to_vmx(vcpu)->msr_ia32_feature_control &
1923 		     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
1924 			return 1;
1925 		vmx->msr_ia32_feature_control = data;
1926 		if (msr_info->host_initiated && data == 0)
1927 			vmx_leave_nested(vcpu);
1928 		break;
1929 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1930 		if (!msr_info->host_initiated)
1931 			return 1; /* they are read-only */
1932 		if (!nested_vmx_allowed(vcpu))
1933 			return 1;
1934 		return vmx_set_vmx_msr(vcpu, msr_index, data);
1935 	case MSR_IA32_XSS:
1936 		if (!vmx_xsaves_supported())
1937 			return 1;
1938 		/*
1939 		 * The only supported bit as of Skylake is bit 8, but
1940 		 * it is not supported on KVM.
1941 		 */
1942 		if (data != 0)
1943 			return 1;
1944 		vcpu->arch.ia32_xss = data;
1945 		if (vcpu->arch.ia32_xss != host_xss)
1946 			add_atomic_switch_msr(vmx, MSR_IA32_XSS,
1947 				vcpu->arch.ia32_xss, host_xss, false);
1948 		else
1949 			clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
1950 		break;
1951 	case MSR_IA32_RTIT_CTL:
1952 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1953 			vmx_rtit_ctl_check(vcpu, data) ||
1954 			vmx->nested.vmxon)
1955 			return 1;
1956 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
1957 		vmx->pt_desc.guest.ctl = data;
1958 		pt_update_intercept_for_msr(vmx);
1959 		break;
1960 	case MSR_IA32_RTIT_STATUS:
1961 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1962 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1963 			(data & MSR_IA32_RTIT_STATUS_MASK))
1964 			return 1;
1965 		vmx->pt_desc.guest.status = data;
1966 		break;
1967 	case MSR_IA32_RTIT_CR3_MATCH:
1968 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1969 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1970 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1971 						PT_CAP_cr3_filtering))
1972 			return 1;
1973 		vmx->pt_desc.guest.cr3_match = data;
1974 		break;
1975 	case MSR_IA32_RTIT_OUTPUT_BASE:
1976 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1977 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1978 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1979 					PT_CAP_topa_output) &&
1980 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1981 					PT_CAP_single_range_output)) ||
1982 			(data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
1983 			return 1;
1984 		vmx->pt_desc.guest.output_base = data;
1985 		break;
1986 	case MSR_IA32_RTIT_OUTPUT_MASK:
1987 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1988 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1989 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1990 					PT_CAP_topa_output) &&
1991 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1992 					PT_CAP_single_range_output)))
1993 			return 1;
1994 		vmx->pt_desc.guest.output_mask = data;
1995 		break;
1996 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1997 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1998 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1999 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2000 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2001 					PT_CAP_num_address_ranges)))
2002 			return 1;
2003 		if (index % 2)
2004 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2005 		else
2006 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2007 		break;
2008 	case MSR_TSC_AUX:
2009 		if (!msr_info->host_initiated &&
2010 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2011 			return 1;
2012 		/* Check reserved bit, higher 32 bits should be zero */
2013 		if ((data >> 32) != 0)
2014 			return 1;
2015 		/* Else, falls through */
2016 	default:
2017 		msr = find_msr_entry(vmx, msr_index);
2018 		if (msr) {
2019 			u64 old_msr_data = msr->data;
2020 			msr->data = data;
2021 			if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2022 				preempt_disable();
2023 				ret = kvm_set_shared_msr(msr->index, msr->data,
2024 							 msr->mask);
2025 				preempt_enable();
2026 				if (ret)
2027 					msr->data = old_msr_data;
2028 			}
2029 			break;
2030 		}
2031 		ret = kvm_set_msr_common(vcpu, msr_info);
2032 	}
2033 
2034 	return ret;
2035 }
2036 
2037 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2038 {
2039 	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2040 	switch (reg) {
2041 	case VCPU_REGS_RSP:
2042 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2043 		break;
2044 	case VCPU_REGS_RIP:
2045 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2046 		break;
2047 	case VCPU_EXREG_PDPTR:
2048 		if (enable_ept)
2049 			ept_save_pdptrs(vcpu);
2050 		break;
2051 	default:
2052 		break;
2053 	}
2054 }
2055 
2056 static __init int cpu_has_kvm_support(void)
2057 {
2058 	return cpu_has_vmx();
2059 }
2060 
2061 static __init int vmx_disabled_by_bios(void)
2062 {
2063 	u64 msr;
2064 
2065 	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2066 	if (msr & FEATURE_CONTROL_LOCKED) {
2067 		/* launched w/ TXT and VMX disabled */
2068 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2069 			&& tboot_enabled())
2070 			return 1;
2071 		/* launched w/o TXT and VMX only enabled w/ TXT */
2072 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2073 			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2074 			&& !tboot_enabled()) {
2075 			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2076 				"activate TXT before enabling KVM\n");
2077 			return 1;
2078 		}
2079 		/* launched w/o TXT and VMX disabled */
2080 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2081 			&& !tboot_enabled())
2082 			return 1;
2083 	}
2084 
2085 	return 0;
2086 }
2087 
2088 static void kvm_cpu_vmxon(u64 addr)
2089 {
2090 	cr4_set_bits(X86_CR4_VMXE);
2091 	intel_pt_handle_vmx(1);
2092 
2093 	asm volatile ("vmxon %0" : : "m"(addr));
2094 }
2095 
2096 static int hardware_enable(void)
2097 {
2098 	int cpu = raw_smp_processor_id();
2099 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2100 	u64 old, test_bits;
2101 
2102 	if (cr4_read_shadow() & X86_CR4_VMXE)
2103 		return -EBUSY;
2104 
2105 	/*
2106 	 * This can happen if we hot-added a CPU but failed to allocate
2107 	 * VP assist page for it.
2108 	 */
2109 	if (static_branch_unlikely(&enable_evmcs) &&
2110 	    !hv_get_vp_assist_page(cpu))
2111 		return -EFAULT;
2112 
2113 	INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2114 	INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2115 	spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2116 
2117 	/*
2118 	 * Now we can enable the vmclear operation in kdump
2119 	 * since the loaded_vmcss_on_cpu list on this cpu
2120 	 * has been initialized.
2121 	 *
2122 	 * Though the cpu is not in VMX operation now, there
2123 	 * is no problem to enable the vmclear operation
2124 	 * for the loaded_vmcss_on_cpu list is empty!
2125 	 */
2126 	crash_enable_local_vmclear(cpu);
2127 
2128 	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2129 
2130 	test_bits = FEATURE_CONTROL_LOCKED;
2131 	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2132 	if (tboot_enabled())
2133 		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2134 
2135 	if ((old & test_bits) != test_bits) {
2136 		/* enable and lock */
2137 		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2138 	}
2139 	kvm_cpu_vmxon(phys_addr);
2140 	if (enable_ept)
2141 		ept_sync_global();
2142 
2143 	return 0;
2144 }
2145 
2146 static void vmclear_local_loaded_vmcss(void)
2147 {
2148 	int cpu = raw_smp_processor_id();
2149 	struct loaded_vmcs *v, *n;
2150 
2151 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2152 				 loaded_vmcss_on_cpu_link)
2153 		__loaded_vmcs_clear(v);
2154 }
2155 
2156 
2157 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2158  * tricks.
2159  */
2160 static void kvm_cpu_vmxoff(void)
2161 {
2162 	asm volatile (__ex("vmxoff"));
2163 
2164 	intel_pt_handle_vmx(0);
2165 	cr4_clear_bits(X86_CR4_VMXE);
2166 }
2167 
2168 static void hardware_disable(void)
2169 {
2170 	vmclear_local_loaded_vmcss();
2171 	kvm_cpu_vmxoff();
2172 }
2173 
2174 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2175 				      u32 msr, u32 *result)
2176 {
2177 	u32 vmx_msr_low, vmx_msr_high;
2178 	u32 ctl = ctl_min | ctl_opt;
2179 
2180 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2181 
2182 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2183 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2184 
2185 	/* Ensure minimum (required) set of control bits are supported. */
2186 	if (ctl_min & ~ctl)
2187 		return -EIO;
2188 
2189 	*result = ctl;
2190 	return 0;
2191 }
2192 
2193 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2194 				    struct vmx_capability *vmx_cap)
2195 {
2196 	u32 vmx_msr_low, vmx_msr_high;
2197 	u32 min, opt, min2, opt2;
2198 	u32 _pin_based_exec_control = 0;
2199 	u32 _cpu_based_exec_control = 0;
2200 	u32 _cpu_based_2nd_exec_control = 0;
2201 	u32 _vmexit_control = 0;
2202 	u32 _vmentry_control = 0;
2203 
2204 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2205 	min = CPU_BASED_HLT_EXITING |
2206 #ifdef CONFIG_X86_64
2207 	      CPU_BASED_CR8_LOAD_EXITING |
2208 	      CPU_BASED_CR8_STORE_EXITING |
2209 #endif
2210 	      CPU_BASED_CR3_LOAD_EXITING |
2211 	      CPU_BASED_CR3_STORE_EXITING |
2212 	      CPU_BASED_UNCOND_IO_EXITING |
2213 	      CPU_BASED_MOV_DR_EXITING |
2214 	      CPU_BASED_USE_TSC_OFFSETING |
2215 	      CPU_BASED_MWAIT_EXITING |
2216 	      CPU_BASED_MONITOR_EXITING |
2217 	      CPU_BASED_INVLPG_EXITING |
2218 	      CPU_BASED_RDPMC_EXITING;
2219 
2220 	opt = CPU_BASED_TPR_SHADOW |
2221 	      CPU_BASED_USE_MSR_BITMAPS |
2222 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2223 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2224 				&_cpu_based_exec_control) < 0)
2225 		return -EIO;
2226 #ifdef CONFIG_X86_64
2227 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2228 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2229 					   ~CPU_BASED_CR8_STORE_EXITING;
2230 #endif
2231 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2232 		min2 = 0;
2233 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2234 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2235 			SECONDARY_EXEC_WBINVD_EXITING |
2236 			SECONDARY_EXEC_ENABLE_VPID |
2237 			SECONDARY_EXEC_ENABLE_EPT |
2238 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2239 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2240 			SECONDARY_EXEC_DESC |
2241 			SECONDARY_EXEC_RDTSCP |
2242 			SECONDARY_EXEC_ENABLE_INVPCID |
2243 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2244 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2245 			SECONDARY_EXEC_SHADOW_VMCS |
2246 			SECONDARY_EXEC_XSAVES |
2247 			SECONDARY_EXEC_RDSEED_EXITING |
2248 			SECONDARY_EXEC_RDRAND_EXITING |
2249 			SECONDARY_EXEC_ENABLE_PML |
2250 			SECONDARY_EXEC_TSC_SCALING |
2251 			SECONDARY_EXEC_PT_USE_GPA |
2252 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2253 			SECONDARY_EXEC_ENABLE_VMFUNC |
2254 			SECONDARY_EXEC_ENCLS_EXITING;
2255 		if (adjust_vmx_controls(min2, opt2,
2256 					MSR_IA32_VMX_PROCBASED_CTLS2,
2257 					&_cpu_based_2nd_exec_control) < 0)
2258 			return -EIO;
2259 	}
2260 #ifndef CONFIG_X86_64
2261 	if (!(_cpu_based_2nd_exec_control &
2262 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2263 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2264 #endif
2265 
2266 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2267 		_cpu_based_2nd_exec_control &= ~(
2268 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2269 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2270 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2271 
2272 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2273 		&vmx_cap->ept, &vmx_cap->vpid);
2274 
2275 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2276 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2277 		   enabled */
2278 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2279 					     CPU_BASED_CR3_STORE_EXITING |
2280 					     CPU_BASED_INVLPG_EXITING);
2281 	} else if (vmx_cap->ept) {
2282 		vmx_cap->ept = 0;
2283 		pr_warn_once("EPT CAP should not exist if not support "
2284 				"1-setting enable EPT VM-execution control\n");
2285 	}
2286 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2287 		vmx_cap->vpid) {
2288 		vmx_cap->vpid = 0;
2289 		pr_warn_once("VPID CAP should not exist if not support "
2290 				"1-setting enable VPID VM-execution control\n");
2291 	}
2292 
2293 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2294 #ifdef CONFIG_X86_64
2295 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2296 #endif
2297 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2298 	      VM_EXIT_SAVE_IA32_PAT |
2299 	      VM_EXIT_LOAD_IA32_PAT |
2300 	      VM_EXIT_LOAD_IA32_EFER |
2301 	      VM_EXIT_CLEAR_BNDCFGS |
2302 	      VM_EXIT_PT_CONCEAL_PIP |
2303 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2304 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2305 				&_vmexit_control) < 0)
2306 		return -EIO;
2307 
2308 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2309 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2310 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2311 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2312 				&_pin_based_exec_control) < 0)
2313 		return -EIO;
2314 
2315 	if (cpu_has_broken_vmx_preemption_timer())
2316 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2317 	if (!(_cpu_based_2nd_exec_control &
2318 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2319 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2320 
2321 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2322 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2323 	      VM_ENTRY_LOAD_IA32_PAT |
2324 	      VM_ENTRY_LOAD_IA32_EFER |
2325 	      VM_ENTRY_LOAD_BNDCFGS |
2326 	      VM_ENTRY_PT_CONCEAL_PIP |
2327 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2328 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2329 				&_vmentry_control) < 0)
2330 		return -EIO;
2331 
2332 	/*
2333 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2334 	 * can't be used due to an errata where VM Exit may incorrectly clear
2335 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2336 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2337 	 */
2338 	if (boot_cpu_data.x86 == 0x6) {
2339 		switch (boot_cpu_data.x86_model) {
2340 		case 26: /* AAK155 */
2341 		case 30: /* AAP115 */
2342 		case 37: /* AAT100 */
2343 		case 44: /* BC86,AAY89,BD102 */
2344 		case 46: /* BA97 */
2345 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2346 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2347 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2348 					"does not work properly. Using workaround\n");
2349 			break;
2350 		default:
2351 			break;
2352 		}
2353 	}
2354 
2355 
2356 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2357 
2358 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2359 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2360 		return -EIO;
2361 
2362 #ifdef CONFIG_X86_64
2363 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2364 	if (vmx_msr_high & (1u<<16))
2365 		return -EIO;
2366 #endif
2367 
2368 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2369 	if (((vmx_msr_high >> 18) & 15) != 6)
2370 		return -EIO;
2371 
2372 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2373 	vmcs_conf->order = get_order(vmcs_conf->size);
2374 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2375 
2376 	vmcs_conf->revision_id = vmx_msr_low;
2377 
2378 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2379 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2380 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2381 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2382 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2383 
2384 	if (static_branch_unlikely(&enable_evmcs))
2385 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2386 
2387 	return 0;
2388 }
2389 
2390 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu)
2391 {
2392 	int node = cpu_to_node(cpu);
2393 	struct page *pages;
2394 	struct vmcs *vmcs;
2395 
2396 	pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
2397 	if (!pages)
2398 		return NULL;
2399 	vmcs = page_address(pages);
2400 	memset(vmcs, 0, vmcs_config.size);
2401 
2402 	/* KVM supports Enlightened VMCS v1 only */
2403 	if (static_branch_unlikely(&enable_evmcs))
2404 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2405 	else
2406 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2407 
2408 	if (shadow)
2409 		vmcs->hdr.shadow_vmcs = 1;
2410 	return vmcs;
2411 }
2412 
2413 void free_vmcs(struct vmcs *vmcs)
2414 {
2415 	free_pages((unsigned long)vmcs, vmcs_config.order);
2416 }
2417 
2418 /*
2419  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2420  */
2421 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2422 {
2423 	if (!loaded_vmcs->vmcs)
2424 		return;
2425 	loaded_vmcs_clear(loaded_vmcs);
2426 	free_vmcs(loaded_vmcs->vmcs);
2427 	loaded_vmcs->vmcs = NULL;
2428 	if (loaded_vmcs->msr_bitmap)
2429 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2430 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2431 }
2432 
2433 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2434 {
2435 	loaded_vmcs->vmcs = alloc_vmcs(false);
2436 	if (!loaded_vmcs->vmcs)
2437 		return -ENOMEM;
2438 
2439 	loaded_vmcs->shadow_vmcs = NULL;
2440 	loaded_vmcs_init(loaded_vmcs);
2441 
2442 	if (cpu_has_vmx_msr_bitmap()) {
2443 		loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
2444 		if (!loaded_vmcs->msr_bitmap)
2445 			goto out_vmcs;
2446 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2447 
2448 		if (IS_ENABLED(CONFIG_HYPERV) &&
2449 		    static_branch_unlikely(&enable_evmcs) &&
2450 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2451 			struct hv_enlightened_vmcs *evmcs =
2452 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2453 
2454 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2455 		}
2456 	}
2457 
2458 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2459 
2460 	return 0;
2461 
2462 out_vmcs:
2463 	free_loaded_vmcs(loaded_vmcs);
2464 	return -ENOMEM;
2465 }
2466 
2467 static void free_kvm_area(void)
2468 {
2469 	int cpu;
2470 
2471 	for_each_possible_cpu(cpu) {
2472 		free_vmcs(per_cpu(vmxarea, cpu));
2473 		per_cpu(vmxarea, cpu) = NULL;
2474 	}
2475 }
2476 
2477 static __init int alloc_kvm_area(void)
2478 {
2479 	int cpu;
2480 
2481 	for_each_possible_cpu(cpu) {
2482 		struct vmcs *vmcs;
2483 
2484 		vmcs = alloc_vmcs_cpu(false, cpu);
2485 		if (!vmcs) {
2486 			free_kvm_area();
2487 			return -ENOMEM;
2488 		}
2489 
2490 		/*
2491 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2492 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2493 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2494 		 *
2495 		 * However, even though not explicitly documented by
2496 		 * TLFS, VMXArea passed as VMXON argument should
2497 		 * still be marked with revision_id reported by
2498 		 * physical CPU.
2499 		 */
2500 		if (static_branch_unlikely(&enable_evmcs))
2501 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2502 
2503 		per_cpu(vmxarea, cpu) = vmcs;
2504 	}
2505 	return 0;
2506 }
2507 
2508 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2509 		struct kvm_segment *save)
2510 {
2511 	if (!emulate_invalid_guest_state) {
2512 		/*
2513 		 * CS and SS RPL should be equal during guest entry according
2514 		 * to VMX spec, but in reality it is not always so. Since vcpu
2515 		 * is in the middle of the transition from real mode to
2516 		 * protected mode it is safe to assume that RPL 0 is a good
2517 		 * default value.
2518 		 */
2519 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2520 			save->selector &= ~SEGMENT_RPL_MASK;
2521 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2522 		save->s = 1;
2523 	}
2524 	vmx_set_segment(vcpu, save, seg);
2525 }
2526 
2527 static void enter_pmode(struct kvm_vcpu *vcpu)
2528 {
2529 	unsigned long flags;
2530 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2531 
2532 	/*
2533 	 * Update real mode segment cache. It may be not up-to-date if sement
2534 	 * register was written while vcpu was in a guest mode.
2535 	 */
2536 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2537 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2538 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2539 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2540 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2541 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2542 
2543 	vmx->rmode.vm86_active = 0;
2544 
2545 	vmx_segment_cache_clear(vmx);
2546 
2547 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2548 
2549 	flags = vmcs_readl(GUEST_RFLAGS);
2550 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2551 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2552 	vmcs_writel(GUEST_RFLAGS, flags);
2553 
2554 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2555 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2556 
2557 	update_exception_bitmap(vcpu);
2558 
2559 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2560 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2561 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2562 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2563 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2564 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2565 }
2566 
2567 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2568 {
2569 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2570 	struct kvm_segment var = *save;
2571 
2572 	var.dpl = 0x3;
2573 	if (seg == VCPU_SREG_CS)
2574 		var.type = 0x3;
2575 
2576 	if (!emulate_invalid_guest_state) {
2577 		var.selector = var.base >> 4;
2578 		var.base = var.base & 0xffff0;
2579 		var.limit = 0xffff;
2580 		var.g = 0;
2581 		var.db = 0;
2582 		var.present = 1;
2583 		var.s = 1;
2584 		var.l = 0;
2585 		var.unusable = 0;
2586 		var.type = 0x3;
2587 		var.avl = 0;
2588 		if (save->base & 0xf)
2589 			printk_once(KERN_WARNING "kvm: segment base is not "
2590 					"paragraph aligned when entering "
2591 					"protected mode (seg=%d)", seg);
2592 	}
2593 
2594 	vmcs_write16(sf->selector, var.selector);
2595 	vmcs_writel(sf->base, var.base);
2596 	vmcs_write32(sf->limit, var.limit);
2597 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2598 }
2599 
2600 static void enter_rmode(struct kvm_vcpu *vcpu)
2601 {
2602 	unsigned long flags;
2603 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2604 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2605 
2606 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2607 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2608 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2609 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2610 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2611 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2612 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2613 
2614 	vmx->rmode.vm86_active = 1;
2615 
2616 	/*
2617 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2618 	 * vcpu. Warn the user that an update is overdue.
2619 	 */
2620 	if (!kvm_vmx->tss_addr)
2621 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2622 			     "called before entering vcpu\n");
2623 
2624 	vmx_segment_cache_clear(vmx);
2625 
2626 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2627 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2628 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2629 
2630 	flags = vmcs_readl(GUEST_RFLAGS);
2631 	vmx->rmode.save_rflags = flags;
2632 
2633 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2634 
2635 	vmcs_writel(GUEST_RFLAGS, flags);
2636 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2637 	update_exception_bitmap(vcpu);
2638 
2639 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2640 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2641 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2642 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2643 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2644 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2645 
2646 	kvm_mmu_reset_context(vcpu);
2647 }
2648 
2649 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2650 {
2651 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2652 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2653 
2654 	if (!msr)
2655 		return;
2656 
2657 	vcpu->arch.efer = efer;
2658 	if (efer & EFER_LMA) {
2659 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2660 		msr->data = efer;
2661 	} else {
2662 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2663 
2664 		msr->data = efer & ~EFER_LME;
2665 	}
2666 	setup_msrs(vmx);
2667 }
2668 
2669 #ifdef CONFIG_X86_64
2670 
2671 static void enter_lmode(struct kvm_vcpu *vcpu)
2672 {
2673 	u32 guest_tr_ar;
2674 
2675 	vmx_segment_cache_clear(to_vmx(vcpu));
2676 
2677 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2678 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2679 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2680 				     __func__);
2681 		vmcs_write32(GUEST_TR_AR_BYTES,
2682 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2683 			     | VMX_AR_TYPE_BUSY_64_TSS);
2684 	}
2685 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2686 }
2687 
2688 static void exit_lmode(struct kvm_vcpu *vcpu)
2689 {
2690 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2691 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2692 }
2693 
2694 #endif
2695 
2696 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2697 {
2698 	int vpid = to_vmx(vcpu)->vpid;
2699 
2700 	if (!vpid_sync_vcpu_addr(vpid, addr))
2701 		vpid_sync_context(vpid);
2702 
2703 	/*
2704 	 * If VPIDs are not supported or enabled, then the above is a no-op.
2705 	 * But we don't really need a TLB flush in that case anyway, because
2706 	 * each VM entry/exit includes an implicit flush when VPID is 0.
2707 	 */
2708 }
2709 
2710 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2711 {
2712 	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2713 
2714 	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2715 	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2716 }
2717 
2718 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2719 {
2720 	if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2721 		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2722 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2723 }
2724 
2725 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2726 {
2727 	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2728 
2729 	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2730 	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2731 }
2732 
2733 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2734 {
2735 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2736 
2737 	if (!test_bit(VCPU_EXREG_PDPTR,
2738 		      (unsigned long *)&vcpu->arch.regs_dirty))
2739 		return;
2740 
2741 	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2742 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2743 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2744 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2745 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2746 	}
2747 }
2748 
2749 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2750 {
2751 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2752 
2753 	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2754 		mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2755 		mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2756 		mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2757 		mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2758 	}
2759 
2760 	__set_bit(VCPU_EXREG_PDPTR,
2761 		  (unsigned long *)&vcpu->arch.regs_avail);
2762 	__set_bit(VCPU_EXREG_PDPTR,
2763 		  (unsigned long *)&vcpu->arch.regs_dirty);
2764 }
2765 
2766 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2767 					unsigned long cr0,
2768 					struct kvm_vcpu *vcpu)
2769 {
2770 	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2771 		vmx_decache_cr3(vcpu);
2772 	if (!(cr0 & X86_CR0_PG)) {
2773 		/* From paging/starting to nonpaging */
2774 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2775 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2776 			     (CPU_BASED_CR3_LOAD_EXITING |
2777 			      CPU_BASED_CR3_STORE_EXITING));
2778 		vcpu->arch.cr0 = cr0;
2779 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2780 	} else if (!is_paging(vcpu)) {
2781 		/* From nonpaging to paging */
2782 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2783 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2784 			     ~(CPU_BASED_CR3_LOAD_EXITING |
2785 			       CPU_BASED_CR3_STORE_EXITING));
2786 		vcpu->arch.cr0 = cr0;
2787 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2788 	}
2789 
2790 	if (!(cr0 & X86_CR0_WP))
2791 		*hw_cr0 &= ~X86_CR0_WP;
2792 }
2793 
2794 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2795 {
2796 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2797 	unsigned long hw_cr0;
2798 
2799 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2800 	if (enable_unrestricted_guest)
2801 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2802 	else {
2803 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2804 
2805 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2806 			enter_pmode(vcpu);
2807 
2808 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2809 			enter_rmode(vcpu);
2810 	}
2811 
2812 #ifdef CONFIG_X86_64
2813 	if (vcpu->arch.efer & EFER_LME) {
2814 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2815 			enter_lmode(vcpu);
2816 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2817 			exit_lmode(vcpu);
2818 	}
2819 #endif
2820 
2821 	if (enable_ept && !enable_unrestricted_guest)
2822 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2823 
2824 	vmcs_writel(CR0_READ_SHADOW, cr0);
2825 	vmcs_writel(GUEST_CR0, hw_cr0);
2826 	vcpu->arch.cr0 = cr0;
2827 
2828 	/* depends on vcpu->arch.cr0 to be set to a new value */
2829 	vmx->emulation_required = emulation_required(vcpu);
2830 }
2831 
2832 static int get_ept_level(struct kvm_vcpu *vcpu)
2833 {
2834 	if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2835 		return 5;
2836 	return 4;
2837 }
2838 
2839 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2840 {
2841 	u64 eptp = VMX_EPTP_MT_WB;
2842 
2843 	eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2844 
2845 	if (enable_ept_ad_bits &&
2846 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2847 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
2848 	eptp |= (root_hpa & PAGE_MASK);
2849 
2850 	return eptp;
2851 }
2852 
2853 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2854 {
2855 	struct kvm *kvm = vcpu->kvm;
2856 	unsigned long guest_cr3;
2857 	u64 eptp;
2858 
2859 	guest_cr3 = cr3;
2860 	if (enable_ept) {
2861 		eptp = construct_eptp(vcpu, cr3);
2862 		vmcs_write64(EPT_POINTER, eptp);
2863 
2864 		if (kvm_x86_ops->tlb_remote_flush) {
2865 			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2866 			to_vmx(vcpu)->ept_pointer = eptp;
2867 			to_kvm_vmx(kvm)->ept_pointers_match
2868 				= EPT_POINTERS_CHECK;
2869 			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2870 		}
2871 
2872 		if (enable_unrestricted_guest || is_paging(vcpu) ||
2873 		    is_guest_mode(vcpu))
2874 			guest_cr3 = kvm_read_cr3(vcpu);
2875 		else
2876 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
2877 		ept_load_pdptrs(vcpu);
2878 	}
2879 
2880 	vmcs_writel(GUEST_CR3, guest_cr3);
2881 }
2882 
2883 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2884 {
2885 	/*
2886 	 * Pass through host's Machine Check Enable value to hw_cr4, which
2887 	 * is in force while we are in guest mode.  Do not let guests control
2888 	 * this bit, even if host CR4.MCE == 0.
2889 	 */
2890 	unsigned long hw_cr4;
2891 
2892 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
2893 	if (enable_unrestricted_guest)
2894 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
2895 	else if (to_vmx(vcpu)->rmode.vm86_active)
2896 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
2897 	else
2898 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
2899 
2900 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
2901 		if (cr4 & X86_CR4_UMIP) {
2902 			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
2903 				SECONDARY_EXEC_DESC);
2904 			hw_cr4 &= ~X86_CR4_UMIP;
2905 		} else if (!is_guest_mode(vcpu) ||
2906 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
2907 			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2908 					SECONDARY_EXEC_DESC);
2909 	}
2910 
2911 	if (cr4 & X86_CR4_VMXE) {
2912 		/*
2913 		 * To use VMXON (and later other VMX instructions), a guest
2914 		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
2915 		 * So basically the check on whether to allow nested VMX
2916 		 * is here.  We operate under the default treatment of SMM,
2917 		 * so VMX cannot be enabled under SMM.
2918 		 */
2919 		if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
2920 			return 1;
2921 	}
2922 
2923 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
2924 		return 1;
2925 
2926 	vcpu->arch.cr4 = cr4;
2927 
2928 	if (!enable_unrestricted_guest) {
2929 		if (enable_ept) {
2930 			if (!is_paging(vcpu)) {
2931 				hw_cr4 &= ~X86_CR4_PAE;
2932 				hw_cr4 |= X86_CR4_PSE;
2933 			} else if (!(cr4 & X86_CR4_PAE)) {
2934 				hw_cr4 &= ~X86_CR4_PAE;
2935 			}
2936 		}
2937 
2938 		/*
2939 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
2940 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
2941 		 * to be manually disabled when guest switches to non-paging
2942 		 * mode.
2943 		 *
2944 		 * If !enable_unrestricted_guest, the CPU is always running
2945 		 * with CR0.PG=1 and CR4 needs to be modified.
2946 		 * If enable_unrestricted_guest, the CPU automatically
2947 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
2948 		 */
2949 		if (!is_paging(vcpu))
2950 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
2951 	}
2952 
2953 	vmcs_writel(CR4_READ_SHADOW, cr4);
2954 	vmcs_writel(GUEST_CR4, hw_cr4);
2955 	return 0;
2956 }
2957 
2958 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
2959 {
2960 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2961 	u32 ar;
2962 
2963 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
2964 		*var = vmx->rmode.segs[seg];
2965 		if (seg == VCPU_SREG_TR
2966 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
2967 			return;
2968 		var->base = vmx_read_guest_seg_base(vmx, seg);
2969 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
2970 		return;
2971 	}
2972 	var->base = vmx_read_guest_seg_base(vmx, seg);
2973 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
2974 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
2975 	ar = vmx_read_guest_seg_ar(vmx, seg);
2976 	var->unusable = (ar >> 16) & 1;
2977 	var->type = ar & 15;
2978 	var->s = (ar >> 4) & 1;
2979 	var->dpl = (ar >> 5) & 3;
2980 	/*
2981 	 * Some userspaces do not preserve unusable property. Since usable
2982 	 * segment has to be present according to VMX spec we can use present
2983 	 * property to amend userspace bug by making unusable segment always
2984 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
2985 	 * segment as unusable.
2986 	 */
2987 	var->present = !var->unusable;
2988 	var->avl = (ar >> 12) & 1;
2989 	var->l = (ar >> 13) & 1;
2990 	var->db = (ar >> 14) & 1;
2991 	var->g = (ar >> 15) & 1;
2992 }
2993 
2994 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2995 {
2996 	struct kvm_segment s;
2997 
2998 	if (to_vmx(vcpu)->rmode.vm86_active) {
2999 		vmx_get_segment(vcpu, &s, seg);
3000 		return s.base;
3001 	}
3002 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3003 }
3004 
3005 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3006 {
3007 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3008 
3009 	if (unlikely(vmx->rmode.vm86_active))
3010 		return 0;
3011 	else {
3012 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3013 		return VMX_AR_DPL(ar);
3014 	}
3015 }
3016 
3017 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3018 {
3019 	u32 ar;
3020 
3021 	if (var->unusable || !var->present)
3022 		ar = 1 << 16;
3023 	else {
3024 		ar = var->type & 15;
3025 		ar |= (var->s & 1) << 4;
3026 		ar |= (var->dpl & 3) << 5;
3027 		ar |= (var->present & 1) << 7;
3028 		ar |= (var->avl & 1) << 12;
3029 		ar |= (var->l & 1) << 13;
3030 		ar |= (var->db & 1) << 14;
3031 		ar |= (var->g & 1) << 15;
3032 	}
3033 
3034 	return ar;
3035 }
3036 
3037 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3038 {
3039 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3040 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3041 
3042 	vmx_segment_cache_clear(vmx);
3043 
3044 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3045 		vmx->rmode.segs[seg] = *var;
3046 		if (seg == VCPU_SREG_TR)
3047 			vmcs_write16(sf->selector, var->selector);
3048 		else if (var->s)
3049 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3050 		goto out;
3051 	}
3052 
3053 	vmcs_writel(sf->base, var->base);
3054 	vmcs_write32(sf->limit, var->limit);
3055 	vmcs_write16(sf->selector, var->selector);
3056 
3057 	/*
3058 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3059 	 * qemu binaries.
3060 	 *   IA32 arch specifies that at the time of processor reset the
3061 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3062 	 * is setting it to 0 in the userland code. This causes invalid guest
3063 	 * state vmexit when "unrestricted guest" mode is turned on.
3064 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3065 	 * tree. Newer qemu binaries with that qemu fix would not need this
3066 	 * kvm hack.
3067 	 */
3068 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3069 		var->type |= 0x1; /* Accessed */
3070 
3071 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3072 
3073 out:
3074 	vmx->emulation_required = emulation_required(vcpu);
3075 }
3076 
3077 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3078 {
3079 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3080 
3081 	*db = (ar >> 14) & 1;
3082 	*l = (ar >> 13) & 1;
3083 }
3084 
3085 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3086 {
3087 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3088 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3089 }
3090 
3091 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3092 {
3093 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3094 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3095 }
3096 
3097 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3098 {
3099 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3100 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3101 }
3102 
3103 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3104 {
3105 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3106 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3107 }
3108 
3109 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3110 {
3111 	struct kvm_segment var;
3112 	u32 ar;
3113 
3114 	vmx_get_segment(vcpu, &var, seg);
3115 	var.dpl = 0x3;
3116 	if (seg == VCPU_SREG_CS)
3117 		var.type = 0x3;
3118 	ar = vmx_segment_access_rights(&var);
3119 
3120 	if (var.base != (var.selector << 4))
3121 		return false;
3122 	if (var.limit != 0xffff)
3123 		return false;
3124 	if (ar != 0xf3)
3125 		return false;
3126 
3127 	return true;
3128 }
3129 
3130 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3131 {
3132 	struct kvm_segment cs;
3133 	unsigned int cs_rpl;
3134 
3135 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3136 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3137 
3138 	if (cs.unusable)
3139 		return false;
3140 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3141 		return false;
3142 	if (!cs.s)
3143 		return false;
3144 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3145 		if (cs.dpl > cs_rpl)
3146 			return false;
3147 	} else {
3148 		if (cs.dpl != cs_rpl)
3149 			return false;
3150 	}
3151 	if (!cs.present)
3152 		return false;
3153 
3154 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3155 	return true;
3156 }
3157 
3158 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3159 {
3160 	struct kvm_segment ss;
3161 	unsigned int ss_rpl;
3162 
3163 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3164 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3165 
3166 	if (ss.unusable)
3167 		return true;
3168 	if (ss.type != 3 && ss.type != 7)
3169 		return false;
3170 	if (!ss.s)
3171 		return false;
3172 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3173 		return false;
3174 	if (!ss.present)
3175 		return false;
3176 
3177 	return true;
3178 }
3179 
3180 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3181 {
3182 	struct kvm_segment var;
3183 	unsigned int rpl;
3184 
3185 	vmx_get_segment(vcpu, &var, seg);
3186 	rpl = var.selector & SEGMENT_RPL_MASK;
3187 
3188 	if (var.unusable)
3189 		return true;
3190 	if (!var.s)
3191 		return false;
3192 	if (!var.present)
3193 		return false;
3194 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3195 		if (var.dpl < rpl) /* DPL < RPL */
3196 			return false;
3197 	}
3198 
3199 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3200 	 * rights flags
3201 	 */
3202 	return true;
3203 }
3204 
3205 static bool tr_valid(struct kvm_vcpu *vcpu)
3206 {
3207 	struct kvm_segment tr;
3208 
3209 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3210 
3211 	if (tr.unusable)
3212 		return false;
3213 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3214 		return false;
3215 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3216 		return false;
3217 	if (!tr.present)
3218 		return false;
3219 
3220 	return true;
3221 }
3222 
3223 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3224 {
3225 	struct kvm_segment ldtr;
3226 
3227 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3228 
3229 	if (ldtr.unusable)
3230 		return true;
3231 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3232 		return false;
3233 	if (ldtr.type != 2)
3234 		return false;
3235 	if (!ldtr.present)
3236 		return false;
3237 
3238 	return true;
3239 }
3240 
3241 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3242 {
3243 	struct kvm_segment cs, ss;
3244 
3245 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3246 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3247 
3248 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3249 		 (ss.selector & SEGMENT_RPL_MASK));
3250 }
3251 
3252 /*
3253  * Check if guest state is valid. Returns true if valid, false if
3254  * not.
3255  * We assume that registers are always usable
3256  */
3257 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3258 {
3259 	if (enable_unrestricted_guest)
3260 		return true;
3261 
3262 	/* real mode guest state checks */
3263 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3264 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3265 			return false;
3266 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3267 			return false;
3268 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3269 			return false;
3270 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3271 			return false;
3272 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3273 			return false;
3274 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3275 			return false;
3276 	} else {
3277 	/* protected mode guest state checks */
3278 		if (!cs_ss_rpl_check(vcpu))
3279 			return false;
3280 		if (!code_segment_valid(vcpu))
3281 			return false;
3282 		if (!stack_segment_valid(vcpu))
3283 			return false;
3284 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3285 			return false;
3286 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3287 			return false;
3288 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3289 			return false;
3290 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3291 			return false;
3292 		if (!tr_valid(vcpu))
3293 			return false;
3294 		if (!ldtr_valid(vcpu))
3295 			return false;
3296 	}
3297 	/* TODO:
3298 	 * - Add checks on RIP
3299 	 * - Add checks on RFLAGS
3300 	 */
3301 
3302 	return true;
3303 }
3304 
3305 static int init_rmode_tss(struct kvm *kvm)
3306 {
3307 	gfn_t fn;
3308 	u16 data = 0;
3309 	int idx, r;
3310 
3311 	idx = srcu_read_lock(&kvm->srcu);
3312 	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3313 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3314 	if (r < 0)
3315 		goto out;
3316 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3317 	r = kvm_write_guest_page(kvm, fn++, &data,
3318 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
3319 	if (r < 0)
3320 		goto out;
3321 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3322 	if (r < 0)
3323 		goto out;
3324 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3325 	if (r < 0)
3326 		goto out;
3327 	data = ~0;
3328 	r = kvm_write_guest_page(kvm, fn, &data,
3329 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3330 				 sizeof(u8));
3331 out:
3332 	srcu_read_unlock(&kvm->srcu, idx);
3333 	return r;
3334 }
3335 
3336 static int init_rmode_identity_map(struct kvm *kvm)
3337 {
3338 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3339 	int i, idx, r = 0;
3340 	kvm_pfn_t identity_map_pfn;
3341 	u32 tmp;
3342 
3343 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3344 	mutex_lock(&kvm->slots_lock);
3345 
3346 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3347 		goto out2;
3348 
3349 	if (!kvm_vmx->ept_identity_map_addr)
3350 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3351 	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3352 
3353 	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3354 				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3355 	if (r < 0)
3356 		goto out2;
3357 
3358 	idx = srcu_read_lock(&kvm->srcu);
3359 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3360 	if (r < 0)
3361 		goto out;
3362 	/* Set up identity-mapping pagetable for EPT in real mode */
3363 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3364 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3365 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3366 		r = kvm_write_guest_page(kvm, identity_map_pfn,
3367 				&tmp, i * sizeof(tmp), sizeof(tmp));
3368 		if (r < 0)
3369 			goto out;
3370 	}
3371 	kvm_vmx->ept_identity_pagetable_done = true;
3372 
3373 out:
3374 	srcu_read_unlock(&kvm->srcu, idx);
3375 
3376 out2:
3377 	mutex_unlock(&kvm->slots_lock);
3378 	return r;
3379 }
3380 
3381 static void seg_setup(int seg)
3382 {
3383 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3384 	unsigned int ar;
3385 
3386 	vmcs_write16(sf->selector, 0);
3387 	vmcs_writel(sf->base, 0);
3388 	vmcs_write32(sf->limit, 0xffff);
3389 	ar = 0x93;
3390 	if (seg == VCPU_SREG_CS)
3391 		ar |= 0x08; /* code segment */
3392 
3393 	vmcs_write32(sf->ar_bytes, ar);
3394 }
3395 
3396 static int alloc_apic_access_page(struct kvm *kvm)
3397 {
3398 	struct page *page;
3399 	int r = 0;
3400 
3401 	mutex_lock(&kvm->slots_lock);
3402 	if (kvm->arch.apic_access_page_done)
3403 		goto out;
3404 	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3405 				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3406 	if (r)
3407 		goto out;
3408 
3409 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3410 	if (is_error_page(page)) {
3411 		r = -EFAULT;
3412 		goto out;
3413 	}
3414 
3415 	/*
3416 	 * Do not pin the page in memory, so that memory hot-unplug
3417 	 * is able to migrate it.
3418 	 */
3419 	put_page(page);
3420 	kvm->arch.apic_access_page_done = true;
3421 out:
3422 	mutex_unlock(&kvm->slots_lock);
3423 	return r;
3424 }
3425 
3426 int allocate_vpid(void)
3427 {
3428 	int vpid;
3429 
3430 	if (!enable_vpid)
3431 		return 0;
3432 	spin_lock(&vmx_vpid_lock);
3433 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3434 	if (vpid < VMX_NR_VPIDS)
3435 		__set_bit(vpid, vmx_vpid_bitmap);
3436 	else
3437 		vpid = 0;
3438 	spin_unlock(&vmx_vpid_lock);
3439 	return vpid;
3440 }
3441 
3442 void free_vpid(int vpid)
3443 {
3444 	if (!enable_vpid || vpid == 0)
3445 		return;
3446 	spin_lock(&vmx_vpid_lock);
3447 	__clear_bit(vpid, vmx_vpid_bitmap);
3448 	spin_unlock(&vmx_vpid_lock);
3449 }
3450 
3451 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3452 							  u32 msr, int type)
3453 {
3454 	int f = sizeof(unsigned long);
3455 
3456 	if (!cpu_has_vmx_msr_bitmap())
3457 		return;
3458 
3459 	if (static_branch_unlikely(&enable_evmcs))
3460 		evmcs_touch_msr_bitmap();
3461 
3462 	/*
3463 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3464 	 * have the write-low and read-high bitmap offsets the wrong way round.
3465 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3466 	 */
3467 	if (msr <= 0x1fff) {
3468 		if (type & MSR_TYPE_R)
3469 			/* read-low */
3470 			__clear_bit(msr, msr_bitmap + 0x000 / f);
3471 
3472 		if (type & MSR_TYPE_W)
3473 			/* write-low */
3474 			__clear_bit(msr, msr_bitmap + 0x800 / f);
3475 
3476 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3477 		msr &= 0x1fff;
3478 		if (type & MSR_TYPE_R)
3479 			/* read-high */
3480 			__clear_bit(msr, msr_bitmap + 0x400 / f);
3481 
3482 		if (type & MSR_TYPE_W)
3483 			/* write-high */
3484 			__clear_bit(msr, msr_bitmap + 0xc00 / f);
3485 
3486 	}
3487 }
3488 
3489 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3490 							 u32 msr, int type)
3491 {
3492 	int f = sizeof(unsigned long);
3493 
3494 	if (!cpu_has_vmx_msr_bitmap())
3495 		return;
3496 
3497 	if (static_branch_unlikely(&enable_evmcs))
3498 		evmcs_touch_msr_bitmap();
3499 
3500 	/*
3501 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3502 	 * have the write-low and read-high bitmap offsets the wrong way round.
3503 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3504 	 */
3505 	if (msr <= 0x1fff) {
3506 		if (type & MSR_TYPE_R)
3507 			/* read-low */
3508 			__set_bit(msr, msr_bitmap + 0x000 / f);
3509 
3510 		if (type & MSR_TYPE_W)
3511 			/* write-low */
3512 			__set_bit(msr, msr_bitmap + 0x800 / f);
3513 
3514 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3515 		msr &= 0x1fff;
3516 		if (type & MSR_TYPE_R)
3517 			/* read-high */
3518 			__set_bit(msr, msr_bitmap + 0x400 / f);
3519 
3520 		if (type & MSR_TYPE_W)
3521 			/* write-high */
3522 			__set_bit(msr, msr_bitmap + 0xc00 / f);
3523 
3524 	}
3525 }
3526 
3527 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3528 			     			      u32 msr, int type, bool value)
3529 {
3530 	if (value)
3531 		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3532 	else
3533 		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3534 }
3535 
3536 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3537 {
3538 	u8 mode = 0;
3539 
3540 	if (cpu_has_secondary_exec_ctrls() &&
3541 	    (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
3542 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3543 		mode |= MSR_BITMAP_MODE_X2APIC;
3544 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3545 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3546 	}
3547 
3548 	return mode;
3549 }
3550 
3551 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3552 					 u8 mode)
3553 {
3554 	int msr;
3555 
3556 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3557 		unsigned word = msr / BITS_PER_LONG;
3558 		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3559 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3560 	}
3561 
3562 	if (mode & MSR_BITMAP_MODE_X2APIC) {
3563 		/*
3564 		 * TPR reads and writes can be virtualized even if virtual interrupt
3565 		 * delivery is not in use.
3566 		 */
3567 		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3568 		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3569 			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3570 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3571 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3572 		}
3573 	}
3574 }
3575 
3576 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3577 {
3578 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3579 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3580 	u8 mode = vmx_msr_bitmap_mode(vcpu);
3581 	u8 changed = mode ^ vmx->msr_bitmap_mode;
3582 
3583 	if (!changed)
3584 		return;
3585 
3586 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3587 		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3588 
3589 	vmx->msr_bitmap_mode = mode;
3590 }
3591 
3592 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3593 {
3594 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3595 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3596 	u32 i;
3597 
3598 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3599 							MSR_TYPE_RW, flag);
3600 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3601 							MSR_TYPE_RW, flag);
3602 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3603 							MSR_TYPE_RW, flag);
3604 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3605 							MSR_TYPE_RW, flag);
3606 	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3607 		vmx_set_intercept_for_msr(msr_bitmap,
3608 			MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3609 		vmx_set_intercept_for_msr(msr_bitmap,
3610 			MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3611 	}
3612 }
3613 
3614 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3615 {
3616 	return enable_apicv;
3617 }
3618 
3619 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3620 {
3621 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3622 	void *vapic_page;
3623 	u32 vppr;
3624 	int rvi;
3625 
3626 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3627 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3628 		WARN_ON_ONCE(!vmx->nested.virtual_apic_page))
3629 		return false;
3630 
3631 	rvi = vmx_get_rvi();
3632 
3633 	vapic_page = kmap(vmx->nested.virtual_apic_page);
3634 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3635 	kunmap(vmx->nested.virtual_apic_page);
3636 
3637 	return ((rvi & 0xf0) > (vppr & 0xf0));
3638 }
3639 
3640 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3641 						     bool nested)
3642 {
3643 #ifdef CONFIG_SMP
3644 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3645 
3646 	if (vcpu->mode == IN_GUEST_MODE) {
3647 		/*
3648 		 * The vector of interrupt to be delivered to vcpu had
3649 		 * been set in PIR before this function.
3650 		 *
3651 		 * Following cases will be reached in this block, and
3652 		 * we always send a notification event in all cases as
3653 		 * explained below.
3654 		 *
3655 		 * Case 1: vcpu keeps in non-root mode. Sending a
3656 		 * notification event posts the interrupt to vcpu.
3657 		 *
3658 		 * Case 2: vcpu exits to root mode and is still
3659 		 * runnable. PIR will be synced to vIRR before the
3660 		 * next vcpu entry. Sending a notification event in
3661 		 * this case has no effect, as vcpu is not in root
3662 		 * mode.
3663 		 *
3664 		 * Case 3: vcpu exits to root mode and is blocked.
3665 		 * vcpu_block() has already synced PIR to vIRR and
3666 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3667 		 * a blocked vcpu here does not wait for any requested
3668 		 * interrupts in PIR, and sending a notification event
3669 		 * which has no effect is safe here.
3670 		 */
3671 
3672 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3673 		return true;
3674 	}
3675 #endif
3676 	return false;
3677 }
3678 
3679 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3680 						int vector)
3681 {
3682 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3683 
3684 	if (is_guest_mode(vcpu) &&
3685 	    vector == vmx->nested.posted_intr_nv) {
3686 		/*
3687 		 * If a posted intr is not recognized by hardware,
3688 		 * we will accomplish it in the next vmentry.
3689 		 */
3690 		vmx->nested.pi_pending = true;
3691 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3692 		/* the PIR and ON have been set by L1. */
3693 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3694 			kvm_vcpu_kick(vcpu);
3695 		return 0;
3696 	}
3697 	return -1;
3698 }
3699 /*
3700  * Send interrupt to vcpu via posted interrupt way.
3701  * 1. If target vcpu is running(non-root mode), send posted interrupt
3702  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3703  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3704  * interrupt from PIR in next vmentry.
3705  */
3706 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3707 {
3708 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3709 	int r;
3710 
3711 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3712 	if (!r)
3713 		return;
3714 
3715 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3716 		return;
3717 
3718 	/* If a previous notification has sent the IPI, nothing to do.  */
3719 	if (pi_test_and_set_on(&vmx->pi_desc))
3720 		return;
3721 
3722 	if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3723 		kvm_vcpu_kick(vcpu);
3724 }
3725 
3726 /*
3727  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3728  * will not change in the lifetime of the guest.
3729  * Note that host-state that does change is set elsewhere. E.g., host-state
3730  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3731  */
3732 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3733 {
3734 	u32 low32, high32;
3735 	unsigned long tmpl;
3736 	struct desc_ptr dt;
3737 	unsigned long cr0, cr3, cr4;
3738 
3739 	cr0 = read_cr0();
3740 	WARN_ON(cr0 & X86_CR0_TS);
3741 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3742 
3743 	/*
3744 	 * Save the most likely value for this task's CR3 in the VMCS.
3745 	 * We can't use __get_current_cr3_fast() because we're not atomic.
3746 	 */
3747 	cr3 = __read_cr3();
3748 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
3749 	vmx->loaded_vmcs->host_state.cr3 = cr3;
3750 
3751 	/* Save the most likely value for this task's CR4 in the VMCS. */
3752 	cr4 = cr4_read_shadow();
3753 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
3754 	vmx->loaded_vmcs->host_state.cr4 = cr4;
3755 
3756 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3757 #ifdef CONFIG_X86_64
3758 	/*
3759 	 * Load null selectors, so we can avoid reloading them in
3760 	 * vmx_prepare_switch_to_host(), in case userspace uses
3761 	 * the null selectors too (the expected case).
3762 	 */
3763 	vmcs_write16(HOST_DS_SELECTOR, 0);
3764 	vmcs_write16(HOST_ES_SELECTOR, 0);
3765 #else
3766 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3767 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3768 #endif
3769 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3770 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3771 
3772 	store_idt(&dt);
3773 	vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
3774 	vmx->host_idt_base = dt.address;
3775 
3776 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3777 
3778 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3779 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3780 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3781 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3782 
3783 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3784 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
3785 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3786 	}
3787 
3788 	if (cpu_has_load_ia32_efer())
3789 		vmcs_write64(HOST_IA32_EFER, host_efer);
3790 }
3791 
3792 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3793 {
3794 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3795 	if (enable_ept)
3796 		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3797 	if (is_guest_mode(&vmx->vcpu))
3798 		vmx->vcpu.arch.cr4_guest_owned_bits &=
3799 			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3800 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3801 }
3802 
3803 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3804 {
3805 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3806 
3807 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3808 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3809 
3810 	if (!enable_vnmi)
3811 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3812 
3813 	/* Enable the preemption timer dynamically */
3814 	pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3815 	return pin_based_exec_ctrl;
3816 }
3817 
3818 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3819 {
3820 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3821 
3822 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3823 	if (cpu_has_secondary_exec_ctrls()) {
3824 		if (kvm_vcpu_apicv_active(vcpu))
3825 			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
3826 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
3827 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3828 		else
3829 			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
3830 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
3831 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3832 	}
3833 
3834 	if (cpu_has_vmx_msr_bitmap())
3835 		vmx_update_msr_bitmap(vcpu);
3836 }
3837 
3838 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3839 {
3840 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3841 
3842 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3843 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3844 
3845 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3846 		exec_control &= ~CPU_BASED_TPR_SHADOW;
3847 #ifdef CONFIG_X86_64
3848 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
3849 				CPU_BASED_CR8_LOAD_EXITING;
3850 #endif
3851 	}
3852 	if (!enable_ept)
3853 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
3854 				CPU_BASED_CR3_LOAD_EXITING  |
3855 				CPU_BASED_INVLPG_EXITING;
3856 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3857 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3858 				CPU_BASED_MONITOR_EXITING);
3859 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3860 		exec_control &= ~CPU_BASED_HLT_EXITING;
3861 	return exec_control;
3862 }
3863 
3864 
3865 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
3866 {
3867 	struct kvm_vcpu *vcpu = &vmx->vcpu;
3868 
3869 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3870 
3871 	if (pt_mode == PT_MODE_SYSTEM)
3872 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
3873 	if (!cpu_need_virtualize_apic_accesses(vcpu))
3874 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3875 	if (vmx->vpid == 0)
3876 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3877 	if (!enable_ept) {
3878 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3879 		enable_unrestricted_guest = 0;
3880 	}
3881 	if (!enable_unrestricted_guest)
3882 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3883 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
3884 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3885 	if (!kvm_vcpu_apicv_active(vcpu))
3886 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
3887 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3888 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
3889 
3890 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
3891 	 * in vmx_set_cr4.  */
3892 	exec_control &= ~SECONDARY_EXEC_DESC;
3893 
3894 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
3895 	   (handle_vmptrld).
3896 	   We can NOT enable shadow_vmcs here because we don't have yet
3897 	   a current VMCS12
3898 	*/
3899 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
3900 
3901 	if (!enable_pml)
3902 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
3903 
3904 	if (vmx_xsaves_supported()) {
3905 		/* Exposing XSAVES only when XSAVE is exposed */
3906 		bool xsaves_enabled =
3907 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3908 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
3909 
3910 		if (!xsaves_enabled)
3911 			exec_control &= ~SECONDARY_EXEC_XSAVES;
3912 
3913 		if (nested) {
3914 			if (xsaves_enabled)
3915 				vmx->nested.msrs.secondary_ctls_high |=
3916 					SECONDARY_EXEC_XSAVES;
3917 			else
3918 				vmx->nested.msrs.secondary_ctls_high &=
3919 					~SECONDARY_EXEC_XSAVES;
3920 		}
3921 	}
3922 
3923 	if (vmx_rdtscp_supported()) {
3924 		bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
3925 		if (!rdtscp_enabled)
3926 			exec_control &= ~SECONDARY_EXEC_RDTSCP;
3927 
3928 		if (nested) {
3929 			if (rdtscp_enabled)
3930 				vmx->nested.msrs.secondary_ctls_high |=
3931 					SECONDARY_EXEC_RDTSCP;
3932 			else
3933 				vmx->nested.msrs.secondary_ctls_high &=
3934 					~SECONDARY_EXEC_RDTSCP;
3935 		}
3936 	}
3937 
3938 	if (vmx_invpcid_supported()) {
3939 		/* Exposing INVPCID only when PCID is exposed */
3940 		bool invpcid_enabled =
3941 			guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
3942 			guest_cpuid_has(vcpu, X86_FEATURE_PCID);
3943 
3944 		if (!invpcid_enabled) {
3945 			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
3946 			guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
3947 		}
3948 
3949 		if (nested) {
3950 			if (invpcid_enabled)
3951 				vmx->nested.msrs.secondary_ctls_high |=
3952 					SECONDARY_EXEC_ENABLE_INVPCID;
3953 			else
3954 				vmx->nested.msrs.secondary_ctls_high &=
3955 					~SECONDARY_EXEC_ENABLE_INVPCID;
3956 		}
3957 	}
3958 
3959 	if (vmx_rdrand_supported()) {
3960 		bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
3961 		if (rdrand_enabled)
3962 			exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
3963 
3964 		if (nested) {
3965 			if (rdrand_enabled)
3966 				vmx->nested.msrs.secondary_ctls_high |=
3967 					SECONDARY_EXEC_RDRAND_EXITING;
3968 			else
3969 				vmx->nested.msrs.secondary_ctls_high &=
3970 					~SECONDARY_EXEC_RDRAND_EXITING;
3971 		}
3972 	}
3973 
3974 	if (vmx_rdseed_supported()) {
3975 		bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
3976 		if (rdseed_enabled)
3977 			exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
3978 
3979 		if (nested) {
3980 			if (rdseed_enabled)
3981 				vmx->nested.msrs.secondary_ctls_high |=
3982 					SECONDARY_EXEC_RDSEED_EXITING;
3983 			else
3984 				vmx->nested.msrs.secondary_ctls_high &=
3985 					~SECONDARY_EXEC_RDSEED_EXITING;
3986 		}
3987 	}
3988 
3989 	vmx->secondary_exec_control = exec_control;
3990 }
3991 
3992 static void ept_set_mmio_spte_mask(void)
3993 {
3994 	/*
3995 	 * EPT Misconfigurations can be generated if the value of bits 2:0
3996 	 * of an EPT paging-structure entry is 110b (write/execute).
3997 	 */
3998 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
3999 				   VMX_EPT_MISCONFIG_WX_VALUE);
4000 }
4001 
4002 #define VMX_XSS_EXIT_BITMAP 0
4003 
4004 /*
4005  * Sets up the vmcs for emulated real mode.
4006  */
4007 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4008 {
4009 	int i;
4010 
4011 	if (nested)
4012 		nested_vmx_vcpu_setup();
4013 
4014 	if (cpu_has_vmx_msr_bitmap())
4015 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4016 
4017 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4018 
4019 	/* Control */
4020 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4021 	vmx->hv_deadline_tsc = -1;
4022 
4023 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4024 
4025 	if (cpu_has_secondary_exec_ctrls()) {
4026 		vmx_compute_secondary_exec_control(vmx);
4027 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4028 			     vmx->secondary_exec_control);
4029 	}
4030 
4031 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4032 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4033 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4034 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4035 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4036 
4037 		vmcs_write16(GUEST_INTR_STATUS, 0);
4038 
4039 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4040 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4041 	}
4042 
4043 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4044 		vmcs_write32(PLE_GAP, ple_gap);
4045 		vmx->ple_window = ple_window;
4046 		vmx->ple_window_dirty = true;
4047 	}
4048 
4049 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4050 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4051 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4052 
4053 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4054 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4055 	vmx_set_constant_host_state(vmx);
4056 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4057 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4058 
4059 	if (cpu_has_vmx_vmfunc())
4060 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4061 
4062 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4063 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4064 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4065 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4066 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4067 
4068 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4069 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4070 
4071 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4072 		u32 index = vmx_msr_index[i];
4073 		u32 data_low, data_high;
4074 		int j = vmx->nmsrs;
4075 
4076 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
4077 			continue;
4078 		if (wrmsr_safe(index, data_low, data_high) < 0)
4079 			continue;
4080 		vmx->guest_msrs[j].index = i;
4081 		vmx->guest_msrs[j].data = 0;
4082 		vmx->guest_msrs[j].mask = -1ull;
4083 		++vmx->nmsrs;
4084 	}
4085 
4086 	vmx->arch_capabilities = kvm_get_arch_capabilities();
4087 
4088 	vm_exit_controls_init(vmx, vmx_vmexit_ctrl());
4089 
4090 	/* 22.2.1, 20.8.1 */
4091 	vm_entry_controls_init(vmx, vmx_vmentry_ctrl());
4092 
4093 	vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4094 	vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4095 
4096 	set_cr4_guest_host_mask(vmx);
4097 
4098 	if (vmx_xsaves_supported())
4099 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4100 
4101 	if (enable_pml) {
4102 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4103 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4104 	}
4105 
4106 	if (cpu_has_vmx_encls_vmexit())
4107 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4108 
4109 	if (pt_mode == PT_MODE_HOST_GUEST) {
4110 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4111 		/* Bit[6~0] are forced to 1, writes are ignored. */
4112 		vmx->pt_desc.guest.output_mask = 0x7F;
4113 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4114 	}
4115 }
4116 
4117 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4118 {
4119 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4120 	struct msr_data apic_base_msr;
4121 	u64 cr0;
4122 
4123 	vmx->rmode.vm86_active = 0;
4124 	vmx->spec_ctrl = 0;
4125 
4126 	vcpu->arch.microcode_version = 0x100000000ULL;
4127 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4128 	kvm_set_cr8(vcpu, 0);
4129 
4130 	if (!init_event) {
4131 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4132 				     MSR_IA32_APICBASE_ENABLE;
4133 		if (kvm_vcpu_is_reset_bsp(vcpu))
4134 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4135 		apic_base_msr.host_initiated = true;
4136 		kvm_set_apic_base(vcpu, &apic_base_msr);
4137 	}
4138 
4139 	vmx_segment_cache_clear(vmx);
4140 
4141 	seg_setup(VCPU_SREG_CS);
4142 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4143 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4144 
4145 	seg_setup(VCPU_SREG_DS);
4146 	seg_setup(VCPU_SREG_ES);
4147 	seg_setup(VCPU_SREG_FS);
4148 	seg_setup(VCPU_SREG_GS);
4149 	seg_setup(VCPU_SREG_SS);
4150 
4151 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4152 	vmcs_writel(GUEST_TR_BASE, 0);
4153 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4154 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4155 
4156 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4157 	vmcs_writel(GUEST_LDTR_BASE, 0);
4158 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4159 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4160 
4161 	if (!init_event) {
4162 		vmcs_write32(GUEST_SYSENTER_CS, 0);
4163 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
4164 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
4165 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4166 	}
4167 
4168 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4169 	kvm_rip_write(vcpu, 0xfff0);
4170 
4171 	vmcs_writel(GUEST_GDTR_BASE, 0);
4172 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4173 
4174 	vmcs_writel(GUEST_IDTR_BASE, 0);
4175 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4176 
4177 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4178 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4179 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4180 	if (kvm_mpx_supported())
4181 		vmcs_write64(GUEST_BNDCFGS, 0);
4182 
4183 	setup_msrs(vmx);
4184 
4185 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4186 
4187 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
4188 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4189 		if (cpu_need_tpr_shadow(vcpu))
4190 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4191 				     __pa(vcpu->arch.apic->regs));
4192 		vmcs_write32(TPR_THRESHOLD, 0);
4193 	}
4194 
4195 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4196 
4197 	if (vmx->vpid != 0)
4198 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4199 
4200 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4201 	vmx->vcpu.arch.cr0 = cr0;
4202 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
4203 	vmx_set_cr4(vcpu, 0);
4204 	vmx_set_efer(vcpu, 0);
4205 
4206 	update_exception_bitmap(vcpu);
4207 
4208 	vpid_sync_context(vmx->vpid);
4209 	if (init_event)
4210 		vmx_clear_hlt(vcpu);
4211 }
4212 
4213 static void enable_irq_window(struct kvm_vcpu *vcpu)
4214 {
4215 	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
4216 		      CPU_BASED_VIRTUAL_INTR_PENDING);
4217 }
4218 
4219 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4220 {
4221 	if (!enable_vnmi ||
4222 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4223 		enable_irq_window(vcpu);
4224 		return;
4225 	}
4226 
4227 	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
4228 		      CPU_BASED_VIRTUAL_NMI_PENDING);
4229 }
4230 
4231 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4232 {
4233 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4234 	uint32_t intr;
4235 	int irq = vcpu->arch.interrupt.nr;
4236 
4237 	trace_kvm_inj_virq(irq);
4238 
4239 	++vcpu->stat.irq_injections;
4240 	if (vmx->rmode.vm86_active) {
4241 		int inc_eip = 0;
4242 		if (vcpu->arch.interrupt.soft)
4243 			inc_eip = vcpu->arch.event_exit_inst_len;
4244 		if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4245 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4246 		return;
4247 	}
4248 	intr = irq | INTR_INFO_VALID_MASK;
4249 	if (vcpu->arch.interrupt.soft) {
4250 		intr |= INTR_TYPE_SOFT_INTR;
4251 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4252 			     vmx->vcpu.arch.event_exit_inst_len);
4253 	} else
4254 		intr |= INTR_TYPE_EXT_INTR;
4255 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4256 
4257 	vmx_clear_hlt(vcpu);
4258 }
4259 
4260 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4261 {
4262 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4263 
4264 	if (!enable_vnmi) {
4265 		/*
4266 		 * Tracking the NMI-blocked state in software is built upon
4267 		 * finding the next open IRQ window. This, in turn, depends on
4268 		 * well-behaving guests: They have to keep IRQs disabled at
4269 		 * least as long as the NMI handler runs. Otherwise we may
4270 		 * cause NMI nesting, maybe breaking the guest. But as this is
4271 		 * highly unlikely, we can live with the residual risk.
4272 		 */
4273 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4274 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4275 	}
4276 
4277 	++vcpu->stat.nmi_injections;
4278 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4279 
4280 	if (vmx->rmode.vm86_active) {
4281 		if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4282 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4283 		return;
4284 	}
4285 
4286 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4287 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4288 
4289 	vmx_clear_hlt(vcpu);
4290 }
4291 
4292 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4293 {
4294 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4295 	bool masked;
4296 
4297 	if (!enable_vnmi)
4298 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4299 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4300 		return false;
4301 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4302 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4303 	return masked;
4304 }
4305 
4306 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4307 {
4308 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4309 
4310 	if (!enable_vnmi) {
4311 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4312 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4313 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4314 		}
4315 	} else {
4316 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4317 		if (masked)
4318 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4319 				      GUEST_INTR_STATE_NMI);
4320 		else
4321 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4322 					GUEST_INTR_STATE_NMI);
4323 	}
4324 }
4325 
4326 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4327 {
4328 	if (to_vmx(vcpu)->nested.nested_run_pending)
4329 		return 0;
4330 
4331 	if (!enable_vnmi &&
4332 	    to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4333 		return 0;
4334 
4335 	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4336 		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4337 		   | GUEST_INTR_STATE_NMI));
4338 }
4339 
4340 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4341 {
4342 	return (!to_vmx(vcpu)->nested.nested_run_pending &&
4343 		vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4344 		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4345 			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4346 }
4347 
4348 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4349 {
4350 	int ret;
4351 
4352 	if (enable_unrestricted_guest)
4353 		return 0;
4354 
4355 	ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4356 				    PAGE_SIZE * 3);
4357 	if (ret)
4358 		return ret;
4359 	to_kvm_vmx(kvm)->tss_addr = addr;
4360 	return init_rmode_tss(kvm);
4361 }
4362 
4363 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4364 {
4365 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4366 	return 0;
4367 }
4368 
4369 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4370 {
4371 	switch (vec) {
4372 	case BP_VECTOR:
4373 		/*
4374 		 * Update instruction length as we may reinject the exception
4375 		 * from user space while in guest debugging mode.
4376 		 */
4377 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4378 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4379 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4380 			return false;
4381 		/* fall through */
4382 	case DB_VECTOR:
4383 		if (vcpu->guest_debug &
4384 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4385 			return false;
4386 		/* fall through */
4387 	case DE_VECTOR:
4388 	case OF_VECTOR:
4389 	case BR_VECTOR:
4390 	case UD_VECTOR:
4391 	case DF_VECTOR:
4392 	case SS_VECTOR:
4393 	case GP_VECTOR:
4394 	case MF_VECTOR:
4395 		return true;
4396 	break;
4397 	}
4398 	return false;
4399 }
4400 
4401 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4402 				  int vec, u32 err_code)
4403 {
4404 	/*
4405 	 * Instruction with address size override prefix opcode 0x67
4406 	 * Cause the #SS fault with 0 error code in VM86 mode.
4407 	 */
4408 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4409 		if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4410 			if (vcpu->arch.halt_request) {
4411 				vcpu->arch.halt_request = 0;
4412 				return kvm_vcpu_halt(vcpu);
4413 			}
4414 			return 1;
4415 		}
4416 		return 0;
4417 	}
4418 
4419 	/*
4420 	 * Forward all other exceptions that are valid in real mode.
4421 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4422 	 *        the required debugging infrastructure rework.
4423 	 */
4424 	kvm_queue_exception(vcpu, vec);
4425 	return 1;
4426 }
4427 
4428 /*
4429  * Trigger machine check on the host. We assume all the MSRs are already set up
4430  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4431  * We pass a fake environment to the machine check handler because we want
4432  * the guest to be always treated like user space, no matter what context
4433  * it used internally.
4434  */
4435 static void kvm_machine_check(void)
4436 {
4437 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4438 	struct pt_regs regs = {
4439 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
4440 		.flags = X86_EFLAGS_IF,
4441 	};
4442 
4443 	do_machine_check(&regs, 0);
4444 #endif
4445 }
4446 
4447 static int handle_machine_check(struct kvm_vcpu *vcpu)
4448 {
4449 	/* already handled by vcpu_run */
4450 	return 1;
4451 }
4452 
4453 static int handle_exception(struct kvm_vcpu *vcpu)
4454 {
4455 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4456 	struct kvm_run *kvm_run = vcpu->run;
4457 	u32 intr_info, ex_no, error_code;
4458 	unsigned long cr2, rip, dr6;
4459 	u32 vect_info;
4460 	enum emulation_result er;
4461 
4462 	vect_info = vmx->idt_vectoring_info;
4463 	intr_info = vmx->exit_intr_info;
4464 
4465 	if (is_machine_check(intr_info))
4466 		return handle_machine_check(vcpu);
4467 
4468 	if (is_nmi(intr_info))
4469 		return 1;  /* already handled by vmx_vcpu_run() */
4470 
4471 	if (is_invalid_opcode(intr_info))
4472 		return handle_ud(vcpu);
4473 
4474 	error_code = 0;
4475 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4476 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4477 
4478 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4479 		WARN_ON_ONCE(!enable_vmware_backdoor);
4480 		er = kvm_emulate_instruction(vcpu,
4481 			EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
4482 		if (er == EMULATE_USER_EXIT)
4483 			return 0;
4484 		else if (er != EMULATE_DONE)
4485 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4486 		return 1;
4487 	}
4488 
4489 	/*
4490 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4491 	 * MMIO, it is better to report an internal error.
4492 	 * See the comments in vmx_handle_exit.
4493 	 */
4494 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4495 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4496 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4497 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4498 		vcpu->run->internal.ndata = 3;
4499 		vcpu->run->internal.data[0] = vect_info;
4500 		vcpu->run->internal.data[1] = intr_info;
4501 		vcpu->run->internal.data[2] = error_code;
4502 		return 0;
4503 	}
4504 
4505 	if (is_page_fault(intr_info)) {
4506 		cr2 = vmcs_readl(EXIT_QUALIFICATION);
4507 		/* EPT won't cause page fault directly */
4508 		WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4509 		return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4510 	}
4511 
4512 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4513 
4514 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4515 		return handle_rmode_exception(vcpu, ex_no, error_code);
4516 
4517 	switch (ex_no) {
4518 	case AC_VECTOR:
4519 		kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4520 		return 1;
4521 	case DB_VECTOR:
4522 		dr6 = vmcs_readl(EXIT_QUALIFICATION);
4523 		if (!(vcpu->guest_debug &
4524 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4525 			vcpu->arch.dr6 &= ~15;
4526 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
4527 			if (is_icebp(intr_info))
4528 				skip_emulated_instruction(vcpu);
4529 
4530 			kvm_queue_exception(vcpu, DB_VECTOR);
4531 			return 1;
4532 		}
4533 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4534 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4535 		/* fall through */
4536 	case BP_VECTOR:
4537 		/*
4538 		 * Update instruction length as we may reinject #BP from
4539 		 * user space while in guest debugging mode. Reading it for
4540 		 * #DB as well causes no harm, it is not used in that case.
4541 		 */
4542 		vmx->vcpu.arch.event_exit_inst_len =
4543 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4544 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4545 		rip = kvm_rip_read(vcpu);
4546 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4547 		kvm_run->debug.arch.exception = ex_no;
4548 		break;
4549 	default:
4550 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4551 		kvm_run->ex.exception = ex_no;
4552 		kvm_run->ex.error_code = error_code;
4553 		break;
4554 	}
4555 	return 0;
4556 }
4557 
4558 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4559 {
4560 	++vcpu->stat.irq_exits;
4561 	return 1;
4562 }
4563 
4564 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4565 {
4566 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4567 	vcpu->mmio_needed = 0;
4568 	return 0;
4569 }
4570 
4571 static int handle_io(struct kvm_vcpu *vcpu)
4572 {
4573 	unsigned long exit_qualification;
4574 	int size, in, string;
4575 	unsigned port;
4576 
4577 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4578 	string = (exit_qualification & 16) != 0;
4579 
4580 	++vcpu->stat.io_exits;
4581 
4582 	if (string)
4583 		return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4584 
4585 	port = exit_qualification >> 16;
4586 	size = (exit_qualification & 7) + 1;
4587 	in = (exit_qualification & 8) != 0;
4588 
4589 	return kvm_fast_pio(vcpu, size, port, in);
4590 }
4591 
4592 static void
4593 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4594 {
4595 	/*
4596 	 * Patch in the VMCALL instruction:
4597 	 */
4598 	hypercall[0] = 0x0f;
4599 	hypercall[1] = 0x01;
4600 	hypercall[2] = 0xc1;
4601 }
4602 
4603 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4604 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4605 {
4606 	if (is_guest_mode(vcpu)) {
4607 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4608 		unsigned long orig_val = val;
4609 
4610 		/*
4611 		 * We get here when L2 changed cr0 in a way that did not change
4612 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4613 		 * but did change L0 shadowed bits. So we first calculate the
4614 		 * effective cr0 value that L1 would like to write into the
4615 		 * hardware. It consists of the L2-owned bits from the new
4616 		 * value combined with the L1-owned bits from L1's guest_cr0.
4617 		 */
4618 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4619 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4620 
4621 		if (!nested_guest_cr0_valid(vcpu, val))
4622 			return 1;
4623 
4624 		if (kvm_set_cr0(vcpu, val))
4625 			return 1;
4626 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4627 		return 0;
4628 	} else {
4629 		if (to_vmx(vcpu)->nested.vmxon &&
4630 		    !nested_host_cr0_valid(vcpu, val))
4631 			return 1;
4632 
4633 		return kvm_set_cr0(vcpu, val);
4634 	}
4635 }
4636 
4637 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4638 {
4639 	if (is_guest_mode(vcpu)) {
4640 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4641 		unsigned long orig_val = val;
4642 
4643 		/* analogously to handle_set_cr0 */
4644 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4645 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4646 		if (kvm_set_cr4(vcpu, val))
4647 			return 1;
4648 		vmcs_writel(CR4_READ_SHADOW, orig_val);
4649 		return 0;
4650 	} else
4651 		return kvm_set_cr4(vcpu, val);
4652 }
4653 
4654 static int handle_desc(struct kvm_vcpu *vcpu)
4655 {
4656 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4657 	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4658 }
4659 
4660 static int handle_cr(struct kvm_vcpu *vcpu)
4661 {
4662 	unsigned long exit_qualification, val;
4663 	int cr;
4664 	int reg;
4665 	int err;
4666 	int ret;
4667 
4668 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4669 	cr = exit_qualification & 15;
4670 	reg = (exit_qualification >> 8) & 15;
4671 	switch ((exit_qualification >> 4) & 3) {
4672 	case 0: /* mov to cr */
4673 		val = kvm_register_readl(vcpu, reg);
4674 		trace_kvm_cr_write(cr, val);
4675 		switch (cr) {
4676 		case 0:
4677 			err = handle_set_cr0(vcpu, val);
4678 			return kvm_complete_insn_gp(vcpu, err);
4679 		case 3:
4680 			WARN_ON_ONCE(enable_unrestricted_guest);
4681 			err = kvm_set_cr3(vcpu, val);
4682 			return kvm_complete_insn_gp(vcpu, err);
4683 		case 4:
4684 			err = handle_set_cr4(vcpu, val);
4685 			return kvm_complete_insn_gp(vcpu, err);
4686 		case 8: {
4687 				u8 cr8_prev = kvm_get_cr8(vcpu);
4688 				u8 cr8 = (u8)val;
4689 				err = kvm_set_cr8(vcpu, cr8);
4690 				ret = kvm_complete_insn_gp(vcpu, err);
4691 				if (lapic_in_kernel(vcpu))
4692 					return ret;
4693 				if (cr8_prev <= cr8)
4694 					return ret;
4695 				/*
4696 				 * TODO: we might be squashing a
4697 				 * KVM_GUESTDBG_SINGLESTEP-triggered
4698 				 * KVM_EXIT_DEBUG here.
4699 				 */
4700 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4701 				return 0;
4702 			}
4703 		}
4704 		break;
4705 	case 2: /* clts */
4706 		WARN_ONCE(1, "Guest should always own CR0.TS");
4707 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4708 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4709 		return kvm_skip_emulated_instruction(vcpu);
4710 	case 1: /*mov from cr*/
4711 		switch (cr) {
4712 		case 3:
4713 			WARN_ON_ONCE(enable_unrestricted_guest);
4714 			val = kvm_read_cr3(vcpu);
4715 			kvm_register_write(vcpu, reg, val);
4716 			trace_kvm_cr_read(cr, val);
4717 			return kvm_skip_emulated_instruction(vcpu);
4718 		case 8:
4719 			val = kvm_get_cr8(vcpu);
4720 			kvm_register_write(vcpu, reg, val);
4721 			trace_kvm_cr_read(cr, val);
4722 			return kvm_skip_emulated_instruction(vcpu);
4723 		}
4724 		break;
4725 	case 3: /* lmsw */
4726 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4727 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4728 		kvm_lmsw(vcpu, val);
4729 
4730 		return kvm_skip_emulated_instruction(vcpu);
4731 	default:
4732 		break;
4733 	}
4734 	vcpu->run->exit_reason = 0;
4735 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4736 	       (int)(exit_qualification >> 4) & 3, cr);
4737 	return 0;
4738 }
4739 
4740 static int handle_dr(struct kvm_vcpu *vcpu)
4741 {
4742 	unsigned long exit_qualification;
4743 	int dr, dr7, reg;
4744 
4745 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4746 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4747 
4748 	/* First, if DR does not exist, trigger UD */
4749 	if (!kvm_require_dr(vcpu, dr))
4750 		return 1;
4751 
4752 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
4753 	if (!kvm_require_cpl(vcpu, 0))
4754 		return 1;
4755 	dr7 = vmcs_readl(GUEST_DR7);
4756 	if (dr7 & DR7_GD) {
4757 		/*
4758 		 * As the vm-exit takes precedence over the debug trap, we
4759 		 * need to emulate the latter, either for the host or the
4760 		 * guest debugging itself.
4761 		 */
4762 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4763 			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4764 			vcpu->run->debug.arch.dr7 = dr7;
4765 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4766 			vcpu->run->debug.arch.exception = DB_VECTOR;
4767 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4768 			return 0;
4769 		} else {
4770 			vcpu->arch.dr6 &= ~15;
4771 			vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4772 			kvm_queue_exception(vcpu, DB_VECTOR);
4773 			return 1;
4774 		}
4775 	}
4776 
4777 	if (vcpu->guest_debug == 0) {
4778 		vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
4779 				CPU_BASED_MOV_DR_EXITING);
4780 
4781 		/*
4782 		 * No more DR vmexits; force a reload of the debug registers
4783 		 * and reenter on this instruction.  The next vmexit will
4784 		 * retrieve the full state of the debug registers.
4785 		 */
4786 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4787 		return 1;
4788 	}
4789 
4790 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4791 	if (exit_qualification & TYPE_MOV_FROM_DR) {
4792 		unsigned long val;
4793 
4794 		if (kvm_get_dr(vcpu, dr, &val))
4795 			return 1;
4796 		kvm_register_write(vcpu, reg, val);
4797 	} else
4798 		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4799 			return 1;
4800 
4801 	return kvm_skip_emulated_instruction(vcpu);
4802 }
4803 
4804 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4805 {
4806 	return vcpu->arch.dr6;
4807 }
4808 
4809 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4810 {
4811 }
4812 
4813 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4814 {
4815 	get_debugreg(vcpu->arch.db[0], 0);
4816 	get_debugreg(vcpu->arch.db[1], 1);
4817 	get_debugreg(vcpu->arch.db[2], 2);
4818 	get_debugreg(vcpu->arch.db[3], 3);
4819 	get_debugreg(vcpu->arch.dr6, 6);
4820 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4821 
4822 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4823 	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
4824 }
4825 
4826 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4827 {
4828 	vmcs_writel(GUEST_DR7, val);
4829 }
4830 
4831 static int handle_cpuid(struct kvm_vcpu *vcpu)
4832 {
4833 	return kvm_emulate_cpuid(vcpu);
4834 }
4835 
4836 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4837 {
4838 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4839 	struct msr_data msr_info;
4840 
4841 	msr_info.index = ecx;
4842 	msr_info.host_initiated = false;
4843 	if (vmx_get_msr(vcpu, &msr_info)) {
4844 		trace_kvm_msr_read_ex(ecx);
4845 		kvm_inject_gp(vcpu, 0);
4846 		return 1;
4847 	}
4848 
4849 	trace_kvm_msr_read(ecx, msr_info.data);
4850 
4851 	/* FIXME: handling of bits 32:63 of rax, rdx */
4852 	vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
4853 	vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
4854 	return kvm_skip_emulated_instruction(vcpu);
4855 }
4856 
4857 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4858 {
4859 	struct msr_data msr;
4860 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4861 	u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4862 		| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4863 
4864 	msr.data = data;
4865 	msr.index = ecx;
4866 	msr.host_initiated = false;
4867 	if (kvm_set_msr(vcpu, &msr) != 0) {
4868 		trace_kvm_msr_write_ex(ecx, data);
4869 		kvm_inject_gp(vcpu, 0);
4870 		return 1;
4871 	}
4872 
4873 	trace_kvm_msr_write(ecx, data);
4874 	return kvm_skip_emulated_instruction(vcpu);
4875 }
4876 
4877 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4878 {
4879 	kvm_apic_update_ppr(vcpu);
4880 	return 1;
4881 }
4882 
4883 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4884 {
4885 	vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
4886 			CPU_BASED_VIRTUAL_INTR_PENDING);
4887 
4888 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4889 
4890 	++vcpu->stat.irq_window_exits;
4891 	return 1;
4892 }
4893 
4894 static int handle_halt(struct kvm_vcpu *vcpu)
4895 {
4896 	return kvm_emulate_halt(vcpu);
4897 }
4898 
4899 static int handle_vmcall(struct kvm_vcpu *vcpu)
4900 {
4901 	return kvm_emulate_hypercall(vcpu);
4902 }
4903 
4904 static int handle_invd(struct kvm_vcpu *vcpu)
4905 {
4906 	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4907 }
4908 
4909 static int handle_invlpg(struct kvm_vcpu *vcpu)
4910 {
4911 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4912 
4913 	kvm_mmu_invlpg(vcpu, exit_qualification);
4914 	return kvm_skip_emulated_instruction(vcpu);
4915 }
4916 
4917 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4918 {
4919 	int err;
4920 
4921 	err = kvm_rdpmc(vcpu);
4922 	return kvm_complete_insn_gp(vcpu, err);
4923 }
4924 
4925 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4926 {
4927 	return kvm_emulate_wbinvd(vcpu);
4928 }
4929 
4930 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4931 {
4932 	u64 new_bv = kvm_read_edx_eax(vcpu);
4933 	u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4934 
4935 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4936 		return kvm_skip_emulated_instruction(vcpu);
4937 	return 1;
4938 }
4939 
4940 static int handle_xsaves(struct kvm_vcpu *vcpu)
4941 {
4942 	kvm_skip_emulated_instruction(vcpu);
4943 	WARN(1, "this should never happen\n");
4944 	return 1;
4945 }
4946 
4947 static int handle_xrstors(struct kvm_vcpu *vcpu)
4948 {
4949 	kvm_skip_emulated_instruction(vcpu);
4950 	WARN(1, "this should never happen\n");
4951 	return 1;
4952 }
4953 
4954 static int handle_apic_access(struct kvm_vcpu *vcpu)
4955 {
4956 	if (likely(fasteoi)) {
4957 		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4958 		int access_type, offset;
4959 
4960 		access_type = exit_qualification & APIC_ACCESS_TYPE;
4961 		offset = exit_qualification & APIC_ACCESS_OFFSET;
4962 		/*
4963 		 * Sane guest uses MOV to write EOI, with written value
4964 		 * not cared. So make a short-circuit here by avoiding
4965 		 * heavy instruction emulation.
4966 		 */
4967 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4968 		    (offset == APIC_EOI)) {
4969 			kvm_lapic_set_eoi(vcpu);
4970 			return kvm_skip_emulated_instruction(vcpu);
4971 		}
4972 	}
4973 	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4974 }
4975 
4976 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
4977 {
4978 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4979 	int vector = exit_qualification & 0xff;
4980 
4981 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
4982 	kvm_apic_set_eoi_accelerated(vcpu, vector);
4983 	return 1;
4984 }
4985 
4986 static int handle_apic_write(struct kvm_vcpu *vcpu)
4987 {
4988 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4989 	u32 offset = exit_qualification & 0xfff;
4990 
4991 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
4992 	kvm_apic_write_nodecode(vcpu, offset);
4993 	return 1;
4994 }
4995 
4996 static int handle_task_switch(struct kvm_vcpu *vcpu)
4997 {
4998 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4999 	unsigned long exit_qualification;
5000 	bool has_error_code = false;
5001 	u32 error_code = 0;
5002 	u16 tss_selector;
5003 	int reason, type, idt_v, idt_index;
5004 
5005 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5006 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5007 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5008 
5009 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5010 
5011 	reason = (u32)exit_qualification >> 30;
5012 	if (reason == TASK_SWITCH_GATE && idt_v) {
5013 		switch (type) {
5014 		case INTR_TYPE_NMI_INTR:
5015 			vcpu->arch.nmi_injected = false;
5016 			vmx_set_nmi_mask(vcpu, true);
5017 			break;
5018 		case INTR_TYPE_EXT_INTR:
5019 		case INTR_TYPE_SOFT_INTR:
5020 			kvm_clear_interrupt_queue(vcpu);
5021 			break;
5022 		case INTR_TYPE_HARD_EXCEPTION:
5023 			if (vmx->idt_vectoring_info &
5024 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5025 				has_error_code = true;
5026 				error_code =
5027 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5028 			}
5029 			/* fall through */
5030 		case INTR_TYPE_SOFT_EXCEPTION:
5031 			kvm_clear_exception_queue(vcpu);
5032 			break;
5033 		default:
5034 			break;
5035 		}
5036 	}
5037 	tss_selector = exit_qualification;
5038 
5039 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5040 		       type != INTR_TYPE_EXT_INTR &&
5041 		       type != INTR_TYPE_NMI_INTR))
5042 		skip_emulated_instruction(vcpu);
5043 
5044 	if (kvm_task_switch(vcpu, tss_selector,
5045 			    type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5046 			    has_error_code, error_code) == EMULATE_FAIL) {
5047 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5048 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5049 		vcpu->run->internal.ndata = 0;
5050 		return 0;
5051 	}
5052 
5053 	/*
5054 	 * TODO: What about debug traps on tss switch?
5055 	 *       Are we supposed to inject them and update dr6?
5056 	 */
5057 
5058 	return 1;
5059 }
5060 
5061 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5062 {
5063 	unsigned long exit_qualification;
5064 	gpa_t gpa;
5065 	u64 error_code;
5066 
5067 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5068 
5069 	/*
5070 	 * EPT violation happened while executing iret from NMI,
5071 	 * "blocked by NMI" bit has to be set before next VM entry.
5072 	 * There are errata that may cause this bit to not be set:
5073 	 * AAK134, BY25.
5074 	 */
5075 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5076 			enable_vnmi &&
5077 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5078 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5079 
5080 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5081 	trace_kvm_page_fault(gpa, exit_qualification);
5082 
5083 	/* Is it a read fault? */
5084 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5085 		     ? PFERR_USER_MASK : 0;
5086 	/* Is it a write fault? */
5087 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5088 		      ? PFERR_WRITE_MASK : 0;
5089 	/* Is it a fetch fault? */
5090 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5091 		      ? PFERR_FETCH_MASK : 0;
5092 	/* ept page table entry is present? */
5093 	error_code |= (exit_qualification &
5094 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5095 			EPT_VIOLATION_EXECUTABLE))
5096 		      ? PFERR_PRESENT_MASK : 0;
5097 
5098 	error_code |= (exit_qualification & 0x100) != 0 ?
5099 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5100 
5101 	vcpu->arch.exit_qualification = exit_qualification;
5102 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5103 }
5104 
5105 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5106 {
5107 	gpa_t gpa;
5108 
5109 	/*
5110 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5111 	 * nGPA here instead of the required GPA.
5112 	 */
5113 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5114 	if (!is_guest_mode(vcpu) &&
5115 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5116 		trace_kvm_fast_mmio(gpa);
5117 		/*
5118 		 * Doing kvm_skip_emulated_instruction() depends on undefined
5119 		 * behavior: Intel's manual doesn't mandate
5120 		 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
5121 		 * occurs and while on real hardware it was observed to be set,
5122 		 * other hypervisors (namely Hyper-V) don't set it, we end up
5123 		 * advancing IP with some random value. Disable fast mmio when
5124 		 * running nested and keep it for real hardware in hope that
5125 		 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
5126 		 */
5127 		if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
5128 			return kvm_skip_emulated_instruction(vcpu);
5129 		else
5130 			return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
5131 								EMULATE_DONE;
5132 	}
5133 
5134 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5135 }
5136 
5137 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5138 {
5139 	WARN_ON_ONCE(!enable_vnmi);
5140 	vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5141 			CPU_BASED_VIRTUAL_NMI_PENDING);
5142 	++vcpu->stat.nmi_window_exits;
5143 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5144 
5145 	return 1;
5146 }
5147 
5148 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5149 {
5150 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5151 	enum emulation_result err = EMULATE_DONE;
5152 	int ret = 1;
5153 	u32 cpu_exec_ctrl;
5154 	bool intr_window_requested;
5155 	unsigned count = 130;
5156 
5157 	/*
5158 	 * We should never reach the point where we are emulating L2
5159 	 * due to invalid guest state as that means we incorrectly
5160 	 * allowed a nested VMEntry with an invalid vmcs12.
5161 	 */
5162 	WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5163 
5164 	cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5165 	intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5166 
5167 	while (vmx->emulation_required && count-- != 0) {
5168 		if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5169 			return handle_interrupt_window(&vmx->vcpu);
5170 
5171 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5172 			return 1;
5173 
5174 		err = kvm_emulate_instruction(vcpu, 0);
5175 
5176 		if (err == EMULATE_USER_EXIT) {
5177 			++vcpu->stat.mmio_exits;
5178 			ret = 0;
5179 			goto out;
5180 		}
5181 
5182 		if (err != EMULATE_DONE)
5183 			goto emulation_error;
5184 
5185 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5186 		    vcpu->arch.exception.pending)
5187 			goto emulation_error;
5188 
5189 		if (vcpu->arch.halt_request) {
5190 			vcpu->arch.halt_request = 0;
5191 			ret = kvm_vcpu_halt(vcpu);
5192 			goto out;
5193 		}
5194 
5195 		if (signal_pending(current))
5196 			goto out;
5197 		if (need_resched())
5198 			schedule();
5199 	}
5200 
5201 out:
5202 	return ret;
5203 
5204 emulation_error:
5205 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5206 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5207 	vcpu->run->internal.ndata = 0;
5208 	return 0;
5209 }
5210 
5211 static void grow_ple_window(struct kvm_vcpu *vcpu)
5212 {
5213 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5214 	int old = vmx->ple_window;
5215 
5216 	vmx->ple_window = __grow_ple_window(old, ple_window,
5217 					    ple_window_grow,
5218 					    ple_window_max);
5219 
5220 	if (vmx->ple_window != old)
5221 		vmx->ple_window_dirty = true;
5222 
5223 	trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5224 }
5225 
5226 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5227 {
5228 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5229 	int old = vmx->ple_window;
5230 
5231 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5232 					      ple_window_shrink,
5233 					      ple_window);
5234 
5235 	if (vmx->ple_window != old)
5236 		vmx->ple_window_dirty = true;
5237 
5238 	trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5239 }
5240 
5241 /*
5242  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5243  */
5244 static void wakeup_handler(void)
5245 {
5246 	struct kvm_vcpu *vcpu;
5247 	int cpu = smp_processor_id();
5248 
5249 	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5250 	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5251 			blocked_vcpu_list) {
5252 		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5253 
5254 		if (pi_test_on(pi_desc) == 1)
5255 			kvm_vcpu_kick(vcpu);
5256 	}
5257 	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5258 }
5259 
5260 static void vmx_enable_tdp(void)
5261 {
5262 	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5263 		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5264 		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5265 		0ull, VMX_EPT_EXECUTABLE_MASK,
5266 		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5267 		VMX_EPT_RWX_MASK, 0ull);
5268 
5269 	ept_set_mmio_spte_mask();
5270 	kvm_enable_tdp();
5271 }
5272 
5273 /*
5274  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5275  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5276  */
5277 static int handle_pause(struct kvm_vcpu *vcpu)
5278 {
5279 	if (!kvm_pause_in_guest(vcpu->kvm))
5280 		grow_ple_window(vcpu);
5281 
5282 	/*
5283 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5284 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5285 	 * never set PAUSE_EXITING and just set PLE if supported,
5286 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5287 	 */
5288 	kvm_vcpu_on_spin(vcpu, true);
5289 	return kvm_skip_emulated_instruction(vcpu);
5290 }
5291 
5292 static int handle_nop(struct kvm_vcpu *vcpu)
5293 {
5294 	return kvm_skip_emulated_instruction(vcpu);
5295 }
5296 
5297 static int handle_mwait(struct kvm_vcpu *vcpu)
5298 {
5299 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5300 	return handle_nop(vcpu);
5301 }
5302 
5303 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5304 {
5305 	kvm_queue_exception(vcpu, UD_VECTOR);
5306 	return 1;
5307 }
5308 
5309 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5310 {
5311 	return 1;
5312 }
5313 
5314 static int handle_monitor(struct kvm_vcpu *vcpu)
5315 {
5316 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5317 	return handle_nop(vcpu);
5318 }
5319 
5320 static int handle_invpcid(struct kvm_vcpu *vcpu)
5321 {
5322 	u32 vmx_instruction_info;
5323 	unsigned long type;
5324 	bool pcid_enabled;
5325 	gva_t gva;
5326 	struct x86_exception e;
5327 	unsigned i;
5328 	unsigned long roots_to_free = 0;
5329 	struct {
5330 		u64 pcid;
5331 		u64 gla;
5332 	} operand;
5333 
5334 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5335 		kvm_queue_exception(vcpu, UD_VECTOR);
5336 		return 1;
5337 	}
5338 
5339 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5340 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5341 
5342 	if (type > 3) {
5343 		kvm_inject_gp(vcpu, 0);
5344 		return 1;
5345 	}
5346 
5347 	/* According to the Intel instruction reference, the memory operand
5348 	 * is read even if it isn't needed (e.g., for type==all)
5349 	 */
5350 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5351 				vmx_instruction_info, false, &gva))
5352 		return 1;
5353 
5354 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5355 		kvm_inject_page_fault(vcpu, &e);
5356 		return 1;
5357 	}
5358 
5359 	if (operand.pcid >> 12 != 0) {
5360 		kvm_inject_gp(vcpu, 0);
5361 		return 1;
5362 	}
5363 
5364 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5365 
5366 	switch (type) {
5367 	case INVPCID_TYPE_INDIV_ADDR:
5368 		if ((!pcid_enabled && (operand.pcid != 0)) ||
5369 		    is_noncanonical_address(operand.gla, vcpu)) {
5370 			kvm_inject_gp(vcpu, 0);
5371 			return 1;
5372 		}
5373 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5374 		return kvm_skip_emulated_instruction(vcpu);
5375 
5376 	case INVPCID_TYPE_SINGLE_CTXT:
5377 		if (!pcid_enabled && (operand.pcid != 0)) {
5378 			kvm_inject_gp(vcpu, 0);
5379 			return 1;
5380 		}
5381 
5382 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5383 			kvm_mmu_sync_roots(vcpu);
5384 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5385 		}
5386 
5387 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5388 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5389 			    == operand.pcid)
5390 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5391 
5392 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5393 		/*
5394 		 * If neither the current cr3 nor any of the prev_roots use the
5395 		 * given PCID, then nothing needs to be done here because a
5396 		 * resync will happen anyway before switching to any other CR3.
5397 		 */
5398 
5399 		return kvm_skip_emulated_instruction(vcpu);
5400 
5401 	case INVPCID_TYPE_ALL_NON_GLOBAL:
5402 		/*
5403 		 * Currently, KVM doesn't mark global entries in the shadow
5404 		 * page tables, so a non-global flush just degenerates to a
5405 		 * global flush. If needed, we could optimize this later by
5406 		 * keeping track of global entries in shadow page tables.
5407 		 */
5408 
5409 		/* fall-through */
5410 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
5411 		kvm_mmu_unload(vcpu);
5412 		return kvm_skip_emulated_instruction(vcpu);
5413 
5414 	default:
5415 		BUG(); /* We have already checked above that type <= 3 */
5416 	}
5417 }
5418 
5419 static int handle_pml_full(struct kvm_vcpu *vcpu)
5420 {
5421 	unsigned long exit_qualification;
5422 
5423 	trace_kvm_pml_full(vcpu->vcpu_id);
5424 
5425 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5426 
5427 	/*
5428 	 * PML buffer FULL happened while executing iret from NMI,
5429 	 * "blocked by NMI" bit has to be set before next VM entry.
5430 	 */
5431 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5432 			enable_vnmi &&
5433 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5434 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5435 				GUEST_INTR_STATE_NMI);
5436 
5437 	/*
5438 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5439 	 * here.., and there's no userspace involvement needed for PML.
5440 	 */
5441 	return 1;
5442 }
5443 
5444 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5445 {
5446 	if (!to_vmx(vcpu)->req_immediate_exit)
5447 		kvm_lapic_expired_hv_timer(vcpu);
5448 	return 1;
5449 }
5450 
5451 /*
5452  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5453  * are overwritten by nested_vmx_setup() when nested=1.
5454  */
5455 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5456 {
5457 	kvm_queue_exception(vcpu, UD_VECTOR);
5458 	return 1;
5459 }
5460 
5461 static int handle_encls(struct kvm_vcpu *vcpu)
5462 {
5463 	/*
5464 	 * SGX virtualization is not yet supported.  There is no software
5465 	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5466 	 * to prevent the guest from executing ENCLS.
5467 	 */
5468 	kvm_queue_exception(vcpu, UD_VECTOR);
5469 	return 1;
5470 }
5471 
5472 /*
5473  * The exit handlers return 1 if the exit was handled fully and guest execution
5474  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5475  * to be done to userspace and return 0.
5476  */
5477 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5478 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
5479 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5480 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5481 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5482 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5483 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5484 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5485 	[EXIT_REASON_CPUID]                   = handle_cpuid,
5486 	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
5487 	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5488 	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5489 	[EXIT_REASON_HLT]                     = handle_halt,
5490 	[EXIT_REASON_INVD]		      = handle_invd,
5491 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5492 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
5493 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
5494 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5495 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5496 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5497 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5498 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5499 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5500 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5501 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5502 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5503 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5504 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5505 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5506 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5507 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
5508 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
5509 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5510 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5511 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5512 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5513 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5514 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5515 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5516 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
5517 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5518 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5519 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5520 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5521 	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
5522 	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
5523 	[EXIT_REASON_XSAVES]                  = handle_xsaves,
5524 	[EXIT_REASON_XRSTORS]                 = handle_xrstors,
5525 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5526 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5527 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5528 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5529 	[EXIT_REASON_ENCLS]		      = handle_encls,
5530 };
5531 
5532 static const int kvm_vmx_max_exit_handlers =
5533 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5534 
5535 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5536 {
5537 	*info1 = vmcs_readl(EXIT_QUALIFICATION);
5538 	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5539 }
5540 
5541 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5542 {
5543 	if (vmx->pml_pg) {
5544 		__free_page(vmx->pml_pg);
5545 		vmx->pml_pg = NULL;
5546 	}
5547 }
5548 
5549 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5550 {
5551 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5552 	u64 *pml_buf;
5553 	u16 pml_idx;
5554 
5555 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5556 
5557 	/* Do nothing if PML buffer is empty */
5558 	if (pml_idx == (PML_ENTITY_NUM - 1))
5559 		return;
5560 
5561 	/* PML index always points to next available PML buffer entity */
5562 	if (pml_idx >= PML_ENTITY_NUM)
5563 		pml_idx = 0;
5564 	else
5565 		pml_idx++;
5566 
5567 	pml_buf = page_address(vmx->pml_pg);
5568 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5569 		u64 gpa;
5570 
5571 		gpa = pml_buf[pml_idx];
5572 		WARN_ON(gpa & (PAGE_SIZE - 1));
5573 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5574 	}
5575 
5576 	/* reset PML index */
5577 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5578 }
5579 
5580 /*
5581  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5582  * Called before reporting dirty_bitmap to userspace.
5583  */
5584 static void kvm_flush_pml_buffers(struct kvm *kvm)
5585 {
5586 	int i;
5587 	struct kvm_vcpu *vcpu;
5588 	/*
5589 	 * We only need to kick vcpu out of guest mode here, as PML buffer
5590 	 * is flushed at beginning of all VMEXITs, and it's obvious that only
5591 	 * vcpus running in guest are possible to have unflushed GPAs in PML
5592 	 * buffer.
5593 	 */
5594 	kvm_for_each_vcpu(i, vcpu, kvm)
5595 		kvm_vcpu_kick(vcpu);
5596 }
5597 
5598 static void vmx_dump_sel(char *name, uint32_t sel)
5599 {
5600 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5601 	       name, vmcs_read16(sel),
5602 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5603 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5604 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5605 }
5606 
5607 static void vmx_dump_dtsel(char *name, uint32_t limit)
5608 {
5609 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5610 	       name, vmcs_read32(limit),
5611 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5612 }
5613 
5614 static void dump_vmcs(void)
5615 {
5616 	u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5617 	u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5618 	u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5619 	u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5620 	u32 secondary_exec_control = 0;
5621 	unsigned long cr4 = vmcs_readl(GUEST_CR4);
5622 	u64 efer = vmcs_read64(GUEST_IA32_EFER);
5623 	int i, n;
5624 
5625 	if (cpu_has_secondary_exec_ctrls())
5626 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5627 
5628 	pr_err("*** Guest State ***\n");
5629 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5630 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5631 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5632 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5633 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5634 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5635 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5636 	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5637 	{
5638 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5639 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5640 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5641 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5642 	}
5643 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5644 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5645 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5646 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5647 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5648 	       vmcs_readl(GUEST_SYSENTER_ESP),
5649 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5650 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5651 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5652 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5653 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5654 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5655 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5656 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5657 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5658 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5659 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5660 	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5661 	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5662 		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5663 		       efer, vmcs_read64(GUEST_IA32_PAT));
5664 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5665 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5666 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5667 	if (cpu_has_load_perf_global_ctrl() &&
5668 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5669 		pr_err("PerfGlobCtl = 0x%016llx\n",
5670 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5671 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5672 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5673 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5674 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5675 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5676 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5677 		pr_err("InterruptStatus = %04x\n",
5678 		       vmcs_read16(GUEST_INTR_STATUS));
5679 
5680 	pr_err("*** Host State ***\n");
5681 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5682 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5683 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5684 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5685 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5686 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5687 	       vmcs_read16(HOST_TR_SELECTOR));
5688 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5689 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5690 	       vmcs_readl(HOST_TR_BASE));
5691 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5692 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5693 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5694 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5695 	       vmcs_readl(HOST_CR4));
5696 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5697 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5698 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5699 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5700 	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5701 		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5702 		       vmcs_read64(HOST_IA32_EFER),
5703 		       vmcs_read64(HOST_IA32_PAT));
5704 	if (cpu_has_load_perf_global_ctrl() &&
5705 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5706 		pr_err("PerfGlobCtl = 0x%016llx\n",
5707 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5708 
5709 	pr_err("*** Control State ***\n");
5710 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5711 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5712 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5713 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5714 	       vmcs_read32(EXCEPTION_BITMAP),
5715 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5716 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5717 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5718 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5719 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5720 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5721 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5722 	       vmcs_read32(VM_EXIT_INTR_INFO),
5723 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5724 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5725 	pr_err("        reason=%08x qualification=%016lx\n",
5726 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5727 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5728 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5729 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5730 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5731 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5732 		pr_err("TSC Multiplier = 0x%016llx\n",
5733 		       vmcs_read64(TSC_MULTIPLIER));
5734 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
5735 		pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5736 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5737 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5738 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5739 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5740 	n = vmcs_read32(CR3_TARGET_COUNT);
5741 	for (i = 0; i + 1 < n; i += 4)
5742 		pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5743 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5744 		       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5745 	if (i < n)
5746 		pr_err("CR3 target%u=%016lx\n",
5747 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5748 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5749 		pr_err("PLE Gap=%08x Window=%08x\n",
5750 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5751 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5752 		pr_err("Virtual processor ID = 0x%04x\n",
5753 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5754 }
5755 
5756 /*
5757  * The guest has exited.  See if we can fix it or if we need userspace
5758  * assistance.
5759  */
5760 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5761 {
5762 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5763 	u32 exit_reason = vmx->exit_reason;
5764 	u32 vectoring_info = vmx->idt_vectoring_info;
5765 
5766 	trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5767 
5768 	/*
5769 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5770 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5771 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5772 	 * mode as if vcpus is in root mode, the PML buffer must has been
5773 	 * flushed already.
5774 	 */
5775 	if (enable_pml)
5776 		vmx_flush_pml_buffer(vcpu);
5777 
5778 	/* If guest state is invalid, start emulating */
5779 	if (vmx->emulation_required)
5780 		return handle_invalid_guest_state(vcpu);
5781 
5782 	if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5783 		return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5784 
5785 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5786 		dump_vmcs();
5787 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5788 		vcpu->run->fail_entry.hardware_entry_failure_reason
5789 			= exit_reason;
5790 		return 0;
5791 	}
5792 
5793 	if (unlikely(vmx->fail)) {
5794 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5795 		vcpu->run->fail_entry.hardware_entry_failure_reason
5796 			= vmcs_read32(VM_INSTRUCTION_ERROR);
5797 		return 0;
5798 	}
5799 
5800 	/*
5801 	 * Note:
5802 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5803 	 * delivery event since it indicates guest is accessing MMIO.
5804 	 * The vm-exit can be triggered again after return to guest that
5805 	 * will cause infinite loop.
5806 	 */
5807 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5808 			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5809 			exit_reason != EXIT_REASON_EPT_VIOLATION &&
5810 			exit_reason != EXIT_REASON_PML_FULL &&
5811 			exit_reason != EXIT_REASON_TASK_SWITCH)) {
5812 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5813 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5814 		vcpu->run->internal.ndata = 3;
5815 		vcpu->run->internal.data[0] = vectoring_info;
5816 		vcpu->run->internal.data[1] = exit_reason;
5817 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5818 		if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5819 			vcpu->run->internal.ndata++;
5820 			vcpu->run->internal.data[3] =
5821 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5822 		}
5823 		return 0;
5824 	}
5825 
5826 	if (unlikely(!enable_vnmi &&
5827 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
5828 		if (vmx_interrupt_allowed(vcpu)) {
5829 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5830 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5831 			   vcpu->arch.nmi_pending) {
5832 			/*
5833 			 * This CPU don't support us in finding the end of an
5834 			 * NMI-blocked window if the guest runs with IRQs
5835 			 * disabled. So we pull the trigger after 1 s of
5836 			 * futile waiting, but inform the user about this.
5837 			 */
5838 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5839 			       "state on VCPU %d after 1 s timeout\n",
5840 			       __func__, vcpu->vcpu_id);
5841 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5842 		}
5843 	}
5844 
5845 	if (exit_reason < kvm_vmx_max_exit_handlers
5846 	    && kvm_vmx_exit_handlers[exit_reason])
5847 		return kvm_vmx_exit_handlers[exit_reason](vcpu);
5848 	else {
5849 		vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5850 				exit_reason);
5851 		kvm_queue_exception(vcpu, UD_VECTOR);
5852 		return 1;
5853 	}
5854 }
5855 
5856 /*
5857  * Software based L1D cache flush which is used when microcode providing
5858  * the cache control MSR is not loaded.
5859  *
5860  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5861  * flush it is required to read in 64 KiB because the replacement algorithm
5862  * is not exactly LRU. This could be sized at runtime via topology
5863  * information but as all relevant affected CPUs have 32KiB L1D cache size
5864  * there is no point in doing so.
5865  */
5866 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5867 {
5868 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
5869 
5870 	/*
5871 	 * This code is only executed when the the flush mode is 'cond' or
5872 	 * 'always'
5873 	 */
5874 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
5875 		bool flush_l1d;
5876 
5877 		/*
5878 		 * Clear the per-vcpu flush bit, it gets set again
5879 		 * either from vcpu_run() or from one of the unsafe
5880 		 * VMEXIT handlers.
5881 		 */
5882 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
5883 		vcpu->arch.l1tf_flush_l1d = false;
5884 
5885 		/*
5886 		 * Clear the per-cpu flush bit, it gets set again from
5887 		 * the interrupt handlers.
5888 		 */
5889 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5890 		kvm_clear_cpu_l1tf_flush_l1d();
5891 
5892 		if (!flush_l1d)
5893 			return;
5894 	}
5895 
5896 	vcpu->stat.l1d_flush++;
5897 
5898 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
5899 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
5900 		return;
5901 	}
5902 
5903 	asm volatile(
5904 		/* First ensure the pages are in the TLB */
5905 		"xorl	%%eax, %%eax\n"
5906 		".Lpopulate_tlb:\n\t"
5907 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5908 		"addl	$4096, %%eax\n\t"
5909 		"cmpl	%%eax, %[size]\n\t"
5910 		"jne	.Lpopulate_tlb\n\t"
5911 		"xorl	%%eax, %%eax\n\t"
5912 		"cpuid\n\t"
5913 		/* Now fill the cache */
5914 		"xorl	%%eax, %%eax\n"
5915 		".Lfill_cache:\n"
5916 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5917 		"addl	$64, %%eax\n\t"
5918 		"cmpl	%%eax, %[size]\n\t"
5919 		"jne	.Lfill_cache\n\t"
5920 		"lfence\n"
5921 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
5922 		    [size] "r" (size)
5923 		: "eax", "ebx", "ecx", "edx");
5924 }
5925 
5926 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5927 {
5928 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5929 
5930 	if (is_guest_mode(vcpu) &&
5931 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
5932 		return;
5933 
5934 	if (irr == -1 || tpr < irr) {
5935 		vmcs_write32(TPR_THRESHOLD, 0);
5936 		return;
5937 	}
5938 
5939 	vmcs_write32(TPR_THRESHOLD, irr);
5940 }
5941 
5942 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5943 {
5944 	u32 sec_exec_control;
5945 
5946 	if (!lapic_in_kernel(vcpu))
5947 		return;
5948 
5949 	if (!flexpriority_enabled &&
5950 	    !cpu_has_vmx_virtualize_x2apic_mode())
5951 		return;
5952 
5953 	/* Postpone execution until vmcs01 is the current VMCS. */
5954 	if (is_guest_mode(vcpu)) {
5955 		to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
5956 		return;
5957 	}
5958 
5959 	sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5960 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
5961 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
5962 
5963 	switch (kvm_get_apic_mode(vcpu)) {
5964 	case LAPIC_MODE_INVALID:
5965 		WARN_ONCE(true, "Invalid local APIC state");
5966 	case LAPIC_MODE_DISABLED:
5967 		break;
5968 	case LAPIC_MODE_XAPIC:
5969 		if (flexpriority_enabled) {
5970 			sec_exec_control |=
5971 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5972 			vmx_flush_tlb(vcpu, true);
5973 		}
5974 		break;
5975 	case LAPIC_MODE_X2APIC:
5976 		if (cpu_has_vmx_virtualize_x2apic_mode())
5977 			sec_exec_control |=
5978 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5979 		break;
5980 	}
5981 	vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
5982 
5983 	vmx_update_msr_bitmap(vcpu);
5984 }
5985 
5986 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
5987 {
5988 	if (!is_guest_mode(vcpu)) {
5989 		vmcs_write64(APIC_ACCESS_ADDR, hpa);
5990 		vmx_flush_tlb(vcpu, true);
5991 	}
5992 }
5993 
5994 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5995 {
5996 	u16 status;
5997 	u8 old;
5998 
5999 	if (max_isr == -1)
6000 		max_isr = 0;
6001 
6002 	status = vmcs_read16(GUEST_INTR_STATUS);
6003 	old = status >> 8;
6004 	if (max_isr != old) {
6005 		status &= 0xff;
6006 		status |= max_isr << 8;
6007 		vmcs_write16(GUEST_INTR_STATUS, status);
6008 	}
6009 }
6010 
6011 static void vmx_set_rvi(int vector)
6012 {
6013 	u16 status;
6014 	u8 old;
6015 
6016 	if (vector == -1)
6017 		vector = 0;
6018 
6019 	status = vmcs_read16(GUEST_INTR_STATUS);
6020 	old = (u8)status & 0xff;
6021 	if ((u8)vector != old) {
6022 		status &= ~0xff;
6023 		status |= (u8)vector;
6024 		vmcs_write16(GUEST_INTR_STATUS, status);
6025 	}
6026 }
6027 
6028 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6029 {
6030 	/*
6031 	 * When running L2, updating RVI is only relevant when
6032 	 * vmcs12 virtual-interrupt-delivery enabled.
6033 	 * However, it can be enabled only when L1 also
6034 	 * intercepts external-interrupts and in that case
6035 	 * we should not update vmcs02 RVI but instead intercept
6036 	 * interrupt. Therefore, do nothing when running L2.
6037 	 */
6038 	if (!is_guest_mode(vcpu))
6039 		vmx_set_rvi(max_irr);
6040 }
6041 
6042 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6043 {
6044 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6045 	int max_irr;
6046 	bool max_irr_updated;
6047 
6048 	WARN_ON(!vcpu->arch.apicv_active);
6049 	if (pi_test_on(&vmx->pi_desc)) {
6050 		pi_clear_on(&vmx->pi_desc);
6051 		/*
6052 		 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
6053 		 * But on x86 this is just a compiler barrier anyway.
6054 		 */
6055 		smp_mb__after_atomic();
6056 		max_irr_updated =
6057 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6058 
6059 		/*
6060 		 * If we are running L2 and L1 has a new pending interrupt
6061 		 * which can be injected, we should re-evaluate
6062 		 * what should be done with this new L1 interrupt.
6063 		 * If L1 intercepts external-interrupts, we should
6064 		 * exit from L2 to L1. Otherwise, interrupt should be
6065 		 * delivered directly to L2.
6066 		 */
6067 		if (is_guest_mode(vcpu) && max_irr_updated) {
6068 			if (nested_exit_on_intr(vcpu))
6069 				kvm_vcpu_exiting_guest_mode(vcpu);
6070 			else
6071 				kvm_make_request(KVM_REQ_EVENT, vcpu);
6072 		}
6073 	} else {
6074 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6075 	}
6076 	vmx_hwapic_irr_update(vcpu, max_irr);
6077 	return max_irr;
6078 }
6079 
6080 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6081 {
6082 	if (!kvm_vcpu_apicv_active(vcpu))
6083 		return;
6084 
6085 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6086 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6087 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6088 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6089 }
6090 
6091 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6092 {
6093 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6094 
6095 	pi_clear_on(&vmx->pi_desc);
6096 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6097 }
6098 
6099 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6100 {
6101 	u32 exit_intr_info = 0;
6102 	u16 basic_exit_reason = (u16)vmx->exit_reason;
6103 
6104 	if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6105 	      || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
6106 		return;
6107 
6108 	if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6109 		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6110 	vmx->exit_intr_info = exit_intr_info;
6111 
6112 	/* if exit due to PF check for async PF */
6113 	if (is_page_fault(exit_intr_info))
6114 		vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6115 
6116 	/* Handle machine checks before interrupts are enabled */
6117 	if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
6118 	    is_machine_check(exit_intr_info))
6119 		kvm_machine_check();
6120 
6121 	/* We need to handle NMIs before interrupts are enabled */
6122 	if (is_nmi(exit_intr_info)) {
6123 		kvm_before_interrupt(&vmx->vcpu);
6124 		asm("int $2");
6125 		kvm_after_interrupt(&vmx->vcpu);
6126 	}
6127 }
6128 
6129 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6130 {
6131 	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6132 
6133 	if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6134 			== (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6135 		unsigned int vector;
6136 		unsigned long entry;
6137 		gate_desc *desc;
6138 		struct vcpu_vmx *vmx = to_vmx(vcpu);
6139 #ifdef CONFIG_X86_64
6140 		unsigned long tmp;
6141 #endif
6142 
6143 		vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
6144 		desc = (gate_desc *)vmx->host_idt_base + vector;
6145 		entry = gate_offset(desc);
6146 		asm volatile(
6147 #ifdef CONFIG_X86_64
6148 			"mov %%" _ASM_SP ", %[sp]\n\t"
6149 			"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6150 			"push $%c[ss]\n\t"
6151 			"push %[sp]\n\t"
6152 #endif
6153 			"pushf\n\t"
6154 			__ASM_SIZE(push) " $%c[cs]\n\t"
6155 			CALL_NOSPEC
6156 			:
6157 #ifdef CONFIG_X86_64
6158 			[sp]"=&r"(tmp),
6159 #endif
6160 			ASM_CALL_CONSTRAINT
6161 			:
6162 			THUNK_TARGET(entry),
6163 			[ss]"i"(__KERNEL_DS),
6164 			[cs]"i"(__KERNEL_CS)
6165 			);
6166 	}
6167 }
6168 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
6169 
6170 static bool vmx_has_emulated_msr(int index)
6171 {
6172 	switch (index) {
6173 	case MSR_IA32_SMBASE:
6174 		/*
6175 		 * We cannot do SMM unless we can run the guest in big
6176 		 * real mode.
6177 		 */
6178 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6179 	case MSR_AMD64_VIRT_SPEC_CTRL:
6180 		/* This is AMD only.  */
6181 		return false;
6182 	default:
6183 		return true;
6184 	}
6185 }
6186 
6187 static bool vmx_pt_supported(void)
6188 {
6189 	return pt_mode == PT_MODE_HOST_GUEST;
6190 }
6191 
6192 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6193 {
6194 	u32 exit_intr_info;
6195 	bool unblock_nmi;
6196 	u8 vector;
6197 	bool idtv_info_valid;
6198 
6199 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6200 
6201 	if (enable_vnmi) {
6202 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6203 			return;
6204 		/*
6205 		 * Can't use vmx->exit_intr_info since we're not sure what
6206 		 * the exit reason is.
6207 		 */
6208 		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6209 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6210 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6211 		/*
6212 		 * SDM 3: 27.7.1.2 (September 2008)
6213 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6214 		 * a guest IRET fault.
6215 		 * SDM 3: 23.2.2 (September 2008)
6216 		 * Bit 12 is undefined in any of the following cases:
6217 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6218 		 *   information field.
6219 		 *  If the VM exit is due to a double fault.
6220 		 */
6221 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6222 		    vector != DF_VECTOR && !idtv_info_valid)
6223 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6224 				      GUEST_INTR_STATE_NMI);
6225 		else
6226 			vmx->loaded_vmcs->nmi_known_unmasked =
6227 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6228 				  & GUEST_INTR_STATE_NMI);
6229 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6230 		vmx->loaded_vmcs->vnmi_blocked_time +=
6231 			ktime_to_ns(ktime_sub(ktime_get(),
6232 					      vmx->loaded_vmcs->entry_time));
6233 }
6234 
6235 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6236 				      u32 idt_vectoring_info,
6237 				      int instr_len_field,
6238 				      int error_code_field)
6239 {
6240 	u8 vector;
6241 	int type;
6242 	bool idtv_info_valid;
6243 
6244 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6245 
6246 	vcpu->arch.nmi_injected = false;
6247 	kvm_clear_exception_queue(vcpu);
6248 	kvm_clear_interrupt_queue(vcpu);
6249 
6250 	if (!idtv_info_valid)
6251 		return;
6252 
6253 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6254 
6255 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6256 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6257 
6258 	switch (type) {
6259 	case INTR_TYPE_NMI_INTR:
6260 		vcpu->arch.nmi_injected = true;
6261 		/*
6262 		 * SDM 3: 27.7.1.2 (September 2008)
6263 		 * Clear bit "block by NMI" before VM entry if a NMI
6264 		 * delivery faulted.
6265 		 */
6266 		vmx_set_nmi_mask(vcpu, false);
6267 		break;
6268 	case INTR_TYPE_SOFT_EXCEPTION:
6269 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6270 		/* fall through */
6271 	case INTR_TYPE_HARD_EXCEPTION:
6272 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6273 			u32 err = vmcs_read32(error_code_field);
6274 			kvm_requeue_exception_e(vcpu, vector, err);
6275 		} else
6276 			kvm_requeue_exception(vcpu, vector);
6277 		break;
6278 	case INTR_TYPE_SOFT_INTR:
6279 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6280 		/* fall through */
6281 	case INTR_TYPE_EXT_INTR:
6282 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6283 		break;
6284 	default:
6285 		break;
6286 	}
6287 }
6288 
6289 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6290 {
6291 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6292 				  VM_EXIT_INSTRUCTION_LEN,
6293 				  IDT_VECTORING_ERROR_CODE);
6294 }
6295 
6296 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6297 {
6298 	__vmx_complete_interrupts(vcpu,
6299 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6300 				  VM_ENTRY_INSTRUCTION_LEN,
6301 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6302 
6303 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6304 }
6305 
6306 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6307 {
6308 	int i, nr_msrs;
6309 	struct perf_guest_switch_msr *msrs;
6310 
6311 	msrs = perf_guest_get_msrs(&nr_msrs);
6312 
6313 	if (!msrs)
6314 		return;
6315 
6316 	for (i = 0; i < nr_msrs; i++)
6317 		if (msrs[i].host == msrs[i].guest)
6318 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6319 		else
6320 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6321 					msrs[i].host, false);
6322 }
6323 
6324 static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val)
6325 {
6326 	vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val);
6327 	if (!vmx->loaded_vmcs->hv_timer_armed)
6328 		vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
6329 			      PIN_BASED_VMX_PREEMPTION_TIMER);
6330 	vmx->loaded_vmcs->hv_timer_armed = true;
6331 }
6332 
6333 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6334 {
6335 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6336 	u64 tscl;
6337 	u32 delta_tsc;
6338 
6339 	if (vmx->req_immediate_exit) {
6340 		vmx_arm_hv_timer(vmx, 0);
6341 		return;
6342 	}
6343 
6344 	if (vmx->hv_deadline_tsc != -1) {
6345 		tscl = rdtsc();
6346 		if (vmx->hv_deadline_tsc > tscl)
6347 			/* set_hv_timer ensures the delta fits in 32-bits */
6348 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6349 				cpu_preemption_timer_multi);
6350 		else
6351 			delta_tsc = 0;
6352 
6353 		vmx_arm_hv_timer(vmx, delta_tsc);
6354 		return;
6355 	}
6356 
6357 	if (vmx->loaded_vmcs->hv_timer_armed)
6358 		vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
6359 				PIN_BASED_VMX_PREEMPTION_TIMER);
6360 	vmx->loaded_vmcs->hv_timer_armed = false;
6361 }
6362 
6363 static void __vmx_vcpu_run(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
6364 {
6365 	unsigned long evmcs_rsp;
6366 
6367 	vmx->__launched = vmx->loaded_vmcs->launched;
6368 
6369 	evmcs_rsp = static_branch_unlikely(&enable_evmcs) ?
6370 		(unsigned long)&current_evmcs->host_rsp : 0;
6371 
6372 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6373 		vmx_l1d_flush(vcpu);
6374 
6375 	asm(
6376 		/* Store host registers */
6377 		"push %%" _ASM_DX "; push %%" _ASM_BP ";"
6378 		"push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
6379 		"push %%" _ASM_CX " \n\t"
6380 		"sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
6381 		"cmp %%" _ASM_SP ", %c[host_rsp](%%" _ASM_CX ") \n\t"
6382 		"je 1f \n\t"
6383 		"mov %%" _ASM_SP ", %c[host_rsp](%%" _ASM_CX ") \n\t"
6384 		/* Avoid VMWRITE when Enlightened VMCS is in use */
6385 		"test %%" _ASM_SI ", %%" _ASM_SI " \n\t"
6386 		"jz 2f \n\t"
6387 		"mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t"
6388 		"jmp 1f \n\t"
6389 		"2: \n\t"
6390 		__ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
6391 		"1: \n\t"
6392 		"add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
6393 
6394 		/* Reload cr2 if changed */
6395 		"mov %c[cr2](%%" _ASM_CX "), %%" _ASM_AX " \n\t"
6396 		"mov %%cr2, %%" _ASM_DX " \n\t"
6397 		"cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
6398 		"je 3f \n\t"
6399 		"mov %%" _ASM_AX", %%cr2 \n\t"
6400 		"3: \n\t"
6401 		/* Check if vmlaunch or vmresume is needed */
6402 		"cmpl $0, %c[launched](%%" _ASM_CX ") \n\t"
6403 		/* Load guest registers.  Don't clobber flags. */
6404 		"mov %c[rax](%%" _ASM_CX "), %%" _ASM_AX " \n\t"
6405 		"mov %c[rbx](%%" _ASM_CX "), %%" _ASM_BX " \n\t"
6406 		"mov %c[rdx](%%" _ASM_CX "), %%" _ASM_DX " \n\t"
6407 		"mov %c[rsi](%%" _ASM_CX "), %%" _ASM_SI " \n\t"
6408 		"mov %c[rdi](%%" _ASM_CX "), %%" _ASM_DI " \n\t"
6409 		"mov %c[rbp](%%" _ASM_CX "), %%" _ASM_BP " \n\t"
6410 #ifdef CONFIG_X86_64
6411 		"mov %c[r8](%%" _ASM_CX "),  %%r8  \n\t"
6412 		"mov %c[r9](%%" _ASM_CX "),  %%r9  \n\t"
6413 		"mov %c[r10](%%" _ASM_CX "), %%r10 \n\t"
6414 		"mov %c[r11](%%" _ASM_CX "), %%r11 \n\t"
6415 		"mov %c[r12](%%" _ASM_CX "), %%r12 \n\t"
6416 		"mov %c[r13](%%" _ASM_CX "), %%r13 \n\t"
6417 		"mov %c[r14](%%" _ASM_CX "), %%r14 \n\t"
6418 		"mov %c[r15](%%" _ASM_CX "), %%r15 \n\t"
6419 #endif
6420 		/* Load guest RCX.  This kills the vmx_vcpu pointer! */
6421 		"mov %c[rcx](%%" _ASM_CX "), %%" _ASM_CX " \n\t"
6422 
6423 		/* Enter guest mode */
6424 		"call vmx_vmenter\n\t"
6425 
6426 		/* Save guest's RCX to the stack placeholder (see above) */
6427 		"mov %%" _ASM_CX ", %c[wordsize](%%" _ASM_SP ") \n\t"
6428 
6429 		/* Load host's RCX, i.e. the vmx_vcpu pointer */
6430 		"pop %%" _ASM_CX " \n\t"
6431 
6432 		/* Set vmx->fail based on EFLAGS.{CF,ZF} */
6433 		"setbe %c[fail](%%" _ASM_CX ")\n\t"
6434 
6435 		/* Save all guest registers, including RCX from the stack */
6436 		"mov %%" _ASM_AX ", %c[rax](%%" _ASM_CX ") \n\t"
6437 		"mov %%" _ASM_BX ", %c[rbx](%%" _ASM_CX ") \n\t"
6438 		__ASM_SIZE(pop) " %c[rcx](%%" _ASM_CX ") \n\t"
6439 		"mov %%" _ASM_DX ", %c[rdx](%%" _ASM_CX ") \n\t"
6440 		"mov %%" _ASM_SI ", %c[rsi](%%" _ASM_CX ") \n\t"
6441 		"mov %%" _ASM_DI ", %c[rdi](%%" _ASM_CX ") \n\t"
6442 		"mov %%" _ASM_BP ", %c[rbp](%%" _ASM_CX ") \n\t"
6443 #ifdef CONFIG_X86_64
6444 		"mov %%r8,  %c[r8](%%" _ASM_CX ") \n\t"
6445 		"mov %%r9,  %c[r9](%%" _ASM_CX ") \n\t"
6446 		"mov %%r10, %c[r10](%%" _ASM_CX ") \n\t"
6447 		"mov %%r11, %c[r11](%%" _ASM_CX ") \n\t"
6448 		"mov %%r12, %c[r12](%%" _ASM_CX ") \n\t"
6449 		"mov %%r13, %c[r13](%%" _ASM_CX ") \n\t"
6450 		"mov %%r14, %c[r14](%%" _ASM_CX ") \n\t"
6451 		"mov %%r15, %c[r15](%%" _ASM_CX ") \n\t"
6452 		/*
6453 		* Clear host registers marked as clobbered to prevent
6454 		* speculative use.
6455 		*/
6456 		"xor %%r8d,  %%r8d \n\t"
6457 		"xor %%r9d,  %%r9d \n\t"
6458 		"xor %%r10d, %%r10d \n\t"
6459 		"xor %%r11d, %%r11d \n\t"
6460 		"xor %%r12d, %%r12d \n\t"
6461 		"xor %%r13d, %%r13d \n\t"
6462 		"xor %%r14d, %%r14d \n\t"
6463 		"xor %%r15d, %%r15d \n\t"
6464 #endif
6465 		"mov %%cr2, %%" _ASM_AX "   \n\t"
6466 		"mov %%" _ASM_AX ", %c[cr2](%%" _ASM_CX ") \n\t"
6467 
6468 		"xor %%eax, %%eax \n\t"
6469 		"xor %%ebx, %%ebx \n\t"
6470 		"xor %%esi, %%esi \n\t"
6471 		"xor %%edi, %%edi \n\t"
6472 		"pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
6473 	      : ASM_CALL_CONSTRAINT
6474 	      : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp),
6475 		[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6476 		[fail]"i"(offsetof(struct vcpu_vmx, fail)),
6477 		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6478 		[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6479 		[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6480 		[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6481 		[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6482 		[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6483 		[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6484 		[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6485 #ifdef CONFIG_X86_64
6486 		[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6487 		[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6488 		[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6489 		[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6490 		[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6491 		[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6492 		[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6493 		[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6494 #endif
6495 		[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6496 		[wordsize]"i"(sizeof(ulong))
6497 	      : "cc", "memory"
6498 #ifdef CONFIG_X86_64
6499 		, "rax", "rbx", "rdi"
6500 		, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6501 #else
6502 		, "eax", "ebx", "edi"
6503 #endif
6504 	      );
6505 }
6506 STACK_FRAME_NON_STANDARD(__vmx_vcpu_run);
6507 
6508 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6509 {
6510 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6511 	unsigned long cr3, cr4;
6512 
6513 	/* Record the guest's net vcpu time for enforced NMI injections. */
6514 	if (unlikely(!enable_vnmi &&
6515 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6516 		vmx->loaded_vmcs->entry_time = ktime_get();
6517 
6518 	/* Don't enter VMX if guest state is invalid, let the exit handler
6519 	   start emulation until we arrive back to a valid state */
6520 	if (vmx->emulation_required)
6521 		return;
6522 
6523 	if (vmx->ple_window_dirty) {
6524 		vmx->ple_window_dirty = false;
6525 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6526 	}
6527 
6528 	if (vmx->nested.need_vmcs12_sync)
6529 		nested_sync_from_vmcs12(vcpu);
6530 
6531 	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6532 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6533 	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6534 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6535 
6536 	cr3 = __get_current_cr3_fast();
6537 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6538 		vmcs_writel(HOST_CR3, cr3);
6539 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6540 	}
6541 
6542 	cr4 = cr4_read_shadow();
6543 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6544 		vmcs_writel(HOST_CR4, cr4);
6545 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6546 	}
6547 
6548 	/* When single-stepping over STI and MOV SS, we must clear the
6549 	 * corresponding interruptibility bits in the guest state. Otherwise
6550 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6551 	 * exceptions being set, but that's not correct for the guest debugging
6552 	 * case. */
6553 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6554 		vmx_set_interrupt_shadow(vcpu, 0);
6555 
6556 	if (static_cpu_has(X86_FEATURE_PKU) &&
6557 	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6558 	    vcpu->arch.pkru != vmx->host_pkru)
6559 		__write_pkru(vcpu->arch.pkru);
6560 
6561 	pt_guest_enter(vmx);
6562 
6563 	atomic_switch_perf_msrs(vmx);
6564 
6565 	vmx_update_hv_timer(vcpu);
6566 
6567 	/*
6568 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6569 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6570 	 * is no need to worry about the conditional branch over the wrmsr
6571 	 * being speculatively taken.
6572 	 */
6573 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6574 
6575 	__vmx_vcpu_run(vcpu, vmx);
6576 
6577 	/*
6578 	 * We do not use IBRS in the kernel. If this vCPU has used the
6579 	 * SPEC_CTRL MSR it may have left it on; save the value and
6580 	 * turn it off. This is much more efficient than blindly adding
6581 	 * it to the atomic save/restore list. Especially as the former
6582 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6583 	 *
6584 	 * For non-nested case:
6585 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6586 	 * save it.
6587 	 *
6588 	 * For nested case:
6589 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6590 	 * save it.
6591 	 */
6592 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6593 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6594 
6595 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6596 
6597 	/* Eliminate branch target predictions from guest mode */
6598 	vmexit_fill_RSB();
6599 
6600 	/* All fields are clean at this point */
6601 	if (static_branch_unlikely(&enable_evmcs))
6602 		current_evmcs->hv_clean_fields |=
6603 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6604 
6605 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6606 	if (vmx->host_debugctlmsr)
6607 		update_debugctlmsr(vmx->host_debugctlmsr);
6608 
6609 #ifndef CONFIG_X86_64
6610 	/*
6611 	 * The sysexit path does not restore ds/es, so we must set them to
6612 	 * a reasonable value ourselves.
6613 	 *
6614 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6615 	 * function may be executed in interrupt context, which saves and
6616 	 * restore segments around it, nullifying its effect.
6617 	 */
6618 	loadsegment(ds, __USER_DS);
6619 	loadsegment(es, __USER_DS);
6620 #endif
6621 
6622 	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6623 				  | (1 << VCPU_EXREG_RFLAGS)
6624 				  | (1 << VCPU_EXREG_PDPTR)
6625 				  | (1 << VCPU_EXREG_SEGMENTS)
6626 				  | (1 << VCPU_EXREG_CR3));
6627 	vcpu->arch.regs_dirty = 0;
6628 
6629 	pt_guest_exit(vmx);
6630 
6631 	/*
6632 	 * eager fpu is enabled if PKEY is supported and CR4 is switched
6633 	 * back on host, so it is safe to read guest PKRU from current
6634 	 * XSAVE.
6635 	 */
6636 	if (static_cpu_has(X86_FEATURE_PKU) &&
6637 	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6638 		vcpu->arch.pkru = __read_pkru();
6639 		if (vcpu->arch.pkru != vmx->host_pkru)
6640 			__write_pkru(vmx->host_pkru);
6641 	}
6642 
6643 	vmx->nested.nested_run_pending = 0;
6644 	vmx->idt_vectoring_info = 0;
6645 
6646 	vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6647 	if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6648 		return;
6649 
6650 	vmx->loaded_vmcs->launched = 1;
6651 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6652 
6653 	vmx_complete_atomic_exit(vmx);
6654 	vmx_recover_nmi_blocking(vmx);
6655 	vmx_complete_interrupts(vmx);
6656 }
6657 
6658 static struct kvm *vmx_vm_alloc(void)
6659 {
6660 	struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx));
6661 	return &kvm_vmx->kvm;
6662 }
6663 
6664 static void vmx_vm_free(struct kvm *kvm)
6665 {
6666 	vfree(to_kvm_vmx(kvm));
6667 }
6668 
6669 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6670 {
6671 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6672 
6673 	if (enable_pml)
6674 		vmx_destroy_pml_buffer(vmx);
6675 	free_vpid(vmx->vpid);
6676 	leave_guest_mode(vcpu);
6677 	nested_vmx_free_vcpu(vcpu);
6678 	free_loaded_vmcs(vmx->loaded_vmcs);
6679 	kfree(vmx->guest_msrs);
6680 	kvm_vcpu_uninit(vcpu);
6681 	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6682 	kmem_cache_free(kvm_vcpu_cache, vmx);
6683 }
6684 
6685 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6686 {
6687 	int err;
6688 	struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6689 	unsigned long *msr_bitmap;
6690 	int cpu;
6691 
6692 	if (!vmx)
6693 		return ERR_PTR(-ENOMEM);
6694 
6695 	vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, GFP_KERNEL);
6696 	if (!vmx->vcpu.arch.guest_fpu) {
6697 		printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6698 		err = -ENOMEM;
6699 		goto free_partial_vcpu;
6700 	}
6701 
6702 	vmx->vpid = allocate_vpid();
6703 
6704 	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6705 	if (err)
6706 		goto free_vcpu;
6707 
6708 	err = -ENOMEM;
6709 
6710 	/*
6711 	 * If PML is turned on, failure on enabling PML just results in failure
6712 	 * of creating the vcpu, therefore we can simplify PML logic (by
6713 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6714 	 * for the guest, etc.
6715 	 */
6716 	if (enable_pml) {
6717 		vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
6718 		if (!vmx->pml_pg)
6719 			goto uninit_vcpu;
6720 	}
6721 
6722 	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6723 	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6724 		     > PAGE_SIZE);
6725 
6726 	if (!vmx->guest_msrs)
6727 		goto free_pml;
6728 
6729 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6730 	if (err < 0)
6731 		goto free_msrs;
6732 
6733 	msr_bitmap = vmx->vmcs01.msr_bitmap;
6734 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6735 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6736 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6737 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6738 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6739 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6740 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6741 	vmx->msr_bitmap_mode = 0;
6742 
6743 	vmx->loaded_vmcs = &vmx->vmcs01;
6744 	cpu = get_cpu();
6745 	vmx_vcpu_load(&vmx->vcpu, cpu);
6746 	vmx->vcpu.cpu = cpu;
6747 	vmx_vcpu_setup(vmx);
6748 	vmx_vcpu_put(&vmx->vcpu);
6749 	put_cpu();
6750 	if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6751 		err = alloc_apic_access_page(kvm);
6752 		if (err)
6753 			goto free_vmcs;
6754 	}
6755 
6756 	if (enable_ept && !enable_unrestricted_guest) {
6757 		err = init_rmode_identity_map(kvm);
6758 		if (err)
6759 			goto free_vmcs;
6760 	}
6761 
6762 	if (nested)
6763 		nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6764 					   vmx_capability.ept,
6765 					   kvm_vcpu_apicv_active(&vmx->vcpu));
6766 	else
6767 		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6768 
6769 	vmx->nested.posted_intr_nv = -1;
6770 	vmx->nested.current_vmptr = -1ull;
6771 
6772 	vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6773 
6774 	/*
6775 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6776 	 * or POSTED_INTR_WAKEUP_VECTOR.
6777 	 */
6778 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6779 	vmx->pi_desc.sn = 1;
6780 
6781 	vmx->ept_pointer = INVALID_PAGE;
6782 
6783 	return &vmx->vcpu;
6784 
6785 free_vmcs:
6786 	free_loaded_vmcs(vmx->loaded_vmcs);
6787 free_msrs:
6788 	kfree(vmx->guest_msrs);
6789 free_pml:
6790 	vmx_destroy_pml_buffer(vmx);
6791 uninit_vcpu:
6792 	kvm_vcpu_uninit(&vmx->vcpu);
6793 free_vcpu:
6794 	free_vpid(vmx->vpid);
6795 	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6796 free_partial_vcpu:
6797 	kmem_cache_free(kvm_vcpu_cache, vmx);
6798 	return ERR_PTR(err);
6799 }
6800 
6801 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
6802 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
6803 
6804 static int vmx_vm_init(struct kvm *kvm)
6805 {
6806 	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6807 
6808 	if (!ple_gap)
6809 		kvm->arch.pause_in_guest = true;
6810 
6811 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6812 		switch (l1tf_mitigation) {
6813 		case L1TF_MITIGATION_OFF:
6814 		case L1TF_MITIGATION_FLUSH_NOWARN:
6815 			/* 'I explicitly don't care' is set */
6816 			break;
6817 		case L1TF_MITIGATION_FLUSH:
6818 		case L1TF_MITIGATION_FLUSH_NOSMT:
6819 		case L1TF_MITIGATION_FULL:
6820 			/*
6821 			 * Warn upon starting the first VM in a potentially
6822 			 * insecure environment.
6823 			 */
6824 			if (sched_smt_active())
6825 				pr_warn_once(L1TF_MSG_SMT);
6826 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6827 				pr_warn_once(L1TF_MSG_L1D);
6828 			break;
6829 		case L1TF_MITIGATION_FULL_FORCE:
6830 			/* Flush is enforced */
6831 			break;
6832 		}
6833 	}
6834 	return 0;
6835 }
6836 
6837 static void __init vmx_check_processor_compat(void *rtn)
6838 {
6839 	struct vmcs_config vmcs_conf;
6840 	struct vmx_capability vmx_cap;
6841 
6842 	*(int *)rtn = 0;
6843 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6844 		*(int *)rtn = -EIO;
6845 	if (nested)
6846 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6847 					   enable_apicv);
6848 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6849 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6850 				smp_processor_id());
6851 		*(int *)rtn = -EIO;
6852 	}
6853 }
6854 
6855 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6856 {
6857 	u8 cache;
6858 	u64 ipat = 0;
6859 
6860 	/* For VT-d and EPT combination
6861 	 * 1. MMIO: always map as UC
6862 	 * 2. EPT with VT-d:
6863 	 *   a. VT-d without snooping control feature: can't guarantee the
6864 	 *	result, try to trust guest.
6865 	 *   b. VT-d with snooping control feature: snooping control feature of
6866 	 *	VT-d engine can guarantee the cache correctness. Just set it
6867 	 *	to WB to keep consistent with host. So the same as item 3.
6868 	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6869 	 *    consistent with host MTRR
6870 	 */
6871 	if (is_mmio) {
6872 		cache = MTRR_TYPE_UNCACHABLE;
6873 		goto exit;
6874 	}
6875 
6876 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6877 		ipat = VMX_EPT_IPAT_BIT;
6878 		cache = MTRR_TYPE_WRBACK;
6879 		goto exit;
6880 	}
6881 
6882 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6883 		ipat = VMX_EPT_IPAT_BIT;
6884 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6885 			cache = MTRR_TYPE_WRBACK;
6886 		else
6887 			cache = MTRR_TYPE_UNCACHABLE;
6888 		goto exit;
6889 	}
6890 
6891 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6892 
6893 exit:
6894 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6895 }
6896 
6897 static int vmx_get_lpage_level(void)
6898 {
6899 	if (enable_ept && !cpu_has_vmx_ept_1g_page())
6900 		return PT_DIRECTORY_LEVEL;
6901 	else
6902 		/* For shadow and EPT supported 1GB page */
6903 		return PT_PDPE_LEVEL;
6904 }
6905 
6906 static void vmcs_set_secondary_exec_control(u32 new_ctl)
6907 {
6908 	/*
6909 	 * These bits in the secondary execution controls field
6910 	 * are dynamic, the others are mostly based on the hypervisor
6911 	 * architecture and the guest's CPUID.  Do not touch the
6912 	 * dynamic bits.
6913 	 */
6914 	u32 mask =
6915 		SECONDARY_EXEC_SHADOW_VMCS |
6916 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6917 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6918 		SECONDARY_EXEC_DESC;
6919 
6920 	u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6921 
6922 	vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6923 		     (new_ctl & ~mask) | (cur_ctl & mask));
6924 }
6925 
6926 /*
6927  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6928  * (indicating "allowed-1") if they are supported in the guest's CPUID.
6929  */
6930 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6931 {
6932 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6933 	struct kvm_cpuid_entry2 *entry;
6934 
6935 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6936 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6937 
6938 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
6939 	if (entry && (entry->_reg & (_cpuid_mask)))			\
6940 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
6941 } while (0)
6942 
6943 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6944 	cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
6945 	cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
6946 	cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
6947 	cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
6948 	cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
6949 	cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
6950 	cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
6951 	cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
6952 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
6953 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6954 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
6955 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
6956 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
6957 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
6958 
6959 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6960 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
6961 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
6962 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
6963 	cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
6964 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
6965 
6966 #undef cr4_fixed1_update
6967 }
6968 
6969 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
6970 {
6971 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6972 
6973 	if (kvm_mpx_supported()) {
6974 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
6975 
6976 		if (mpx_enabled) {
6977 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
6978 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
6979 		} else {
6980 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
6981 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
6982 		}
6983 	}
6984 }
6985 
6986 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
6987 {
6988 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6989 	struct kvm_cpuid_entry2 *best = NULL;
6990 	int i;
6991 
6992 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
6993 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
6994 		if (!best)
6995 			return;
6996 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
6997 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
6998 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
6999 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7000 	}
7001 
7002 	/* Get the number of configurable Address Ranges for filtering */
7003 	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7004 						PT_CAP_num_address_ranges);
7005 
7006 	/* Initialize and clear the no dependency bits */
7007 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7008 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7009 
7010 	/*
7011 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7012 	 * will inject an #GP
7013 	 */
7014 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7015 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7016 
7017 	/*
7018 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7019 	 * PSBFreq can be set
7020 	 */
7021 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7022 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7023 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7024 
7025 	/*
7026 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7027 	 * MTCFreq can be set
7028 	 */
7029 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7030 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7031 				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7032 
7033 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7034 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7035 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7036 							RTIT_CTL_PTW_EN);
7037 
7038 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7039 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7040 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7041 
7042 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7043 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7044 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7045 
7046 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7047 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7048 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7049 
7050 	/* unmask address range configure area */
7051 	for (i = 0; i < vmx->pt_desc.addr_range; i++)
7052 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7053 }
7054 
7055 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7056 {
7057 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7058 
7059 	if (cpu_has_secondary_exec_ctrls()) {
7060 		vmx_compute_secondary_exec_control(vmx);
7061 		vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
7062 	}
7063 
7064 	if (nested_vmx_allowed(vcpu))
7065 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7066 			FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7067 	else
7068 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7069 			~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7070 
7071 	if (nested_vmx_allowed(vcpu)) {
7072 		nested_vmx_cr_fixed1_bits_update(vcpu);
7073 		nested_vmx_entry_exit_ctls_update(vcpu);
7074 	}
7075 
7076 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7077 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7078 		update_intel_pt_cfg(vcpu);
7079 }
7080 
7081 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7082 {
7083 	if (func == 1 && nested)
7084 		entry->ecx |= bit(X86_FEATURE_VMX);
7085 }
7086 
7087 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7088 {
7089 	to_vmx(vcpu)->req_immediate_exit = true;
7090 }
7091 
7092 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7093 			       struct x86_instruction_info *info,
7094 			       enum x86_intercept_stage stage)
7095 {
7096 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7097 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7098 
7099 	/*
7100 	 * RDPID causes #UD if disabled through secondary execution controls.
7101 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7102 	 */
7103 	if (info->intercept == x86_intercept_rdtscp &&
7104 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7105 		ctxt->exception.vector = UD_VECTOR;
7106 		ctxt->exception.error_code_valid = false;
7107 		return X86EMUL_PROPAGATE_FAULT;
7108 	}
7109 
7110 	/* TODO: check more intercepts... */
7111 	return X86EMUL_CONTINUE;
7112 }
7113 
7114 #ifdef CONFIG_X86_64
7115 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7116 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7117 				  u64 divisor, u64 *result)
7118 {
7119 	u64 low = a << shift, high = a >> (64 - shift);
7120 
7121 	/* To avoid the overflow on divq */
7122 	if (high >= divisor)
7123 		return 1;
7124 
7125 	/* Low hold the result, high hold rem which is discarded */
7126 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7127 	    "rm" (divisor), "0" (low), "1" (high));
7128 	*result = low;
7129 
7130 	return 0;
7131 }
7132 
7133 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
7134 {
7135 	struct vcpu_vmx *vmx;
7136 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7137 
7138 	if (kvm_mwait_in_guest(vcpu->kvm))
7139 		return -EOPNOTSUPP;
7140 
7141 	vmx = to_vmx(vcpu);
7142 	tscl = rdtsc();
7143 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7144 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7145 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns);
7146 
7147 	if (delta_tsc > lapic_timer_advance_cycles)
7148 		delta_tsc -= lapic_timer_advance_cycles;
7149 	else
7150 		delta_tsc = 0;
7151 
7152 	/* Convert to host delta tsc if tsc scaling is enabled */
7153 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7154 			u64_shl_div_u64(delta_tsc,
7155 				kvm_tsc_scaling_ratio_frac_bits,
7156 				vcpu->arch.tsc_scaling_ratio,
7157 				&delta_tsc))
7158 		return -ERANGE;
7159 
7160 	/*
7161 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7162 	 * we can't use the preemption timer.
7163 	 * It's possible that it fits on later vmentries, but checking
7164 	 * on every vmentry is costly so we just use an hrtimer.
7165 	 */
7166 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7167 		return -ERANGE;
7168 
7169 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7170 	return delta_tsc == 0;
7171 }
7172 
7173 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7174 {
7175 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7176 }
7177 #endif
7178 
7179 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7180 {
7181 	if (!kvm_pause_in_guest(vcpu->kvm))
7182 		shrink_ple_window(vcpu);
7183 }
7184 
7185 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7186 				     struct kvm_memory_slot *slot)
7187 {
7188 	kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7189 	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7190 }
7191 
7192 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7193 				       struct kvm_memory_slot *slot)
7194 {
7195 	kvm_mmu_slot_set_dirty(kvm, slot);
7196 }
7197 
7198 static void vmx_flush_log_dirty(struct kvm *kvm)
7199 {
7200 	kvm_flush_pml_buffers(kvm);
7201 }
7202 
7203 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7204 {
7205 	struct vmcs12 *vmcs12;
7206 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7207 	gpa_t gpa;
7208 	struct page *page = NULL;
7209 	u64 *pml_address;
7210 
7211 	if (is_guest_mode(vcpu)) {
7212 		WARN_ON_ONCE(vmx->nested.pml_full);
7213 
7214 		/*
7215 		 * Check if PML is enabled for the nested guest.
7216 		 * Whether eptp bit 6 is set is already checked
7217 		 * as part of A/D emulation.
7218 		 */
7219 		vmcs12 = get_vmcs12(vcpu);
7220 		if (!nested_cpu_has_pml(vmcs12))
7221 			return 0;
7222 
7223 		if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7224 			vmx->nested.pml_full = true;
7225 			return 1;
7226 		}
7227 
7228 		gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7229 
7230 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
7231 		if (is_error_page(page))
7232 			return 0;
7233 
7234 		pml_address = kmap(page);
7235 		pml_address[vmcs12->guest_pml_index--] = gpa;
7236 		kunmap(page);
7237 		kvm_release_page_clean(page);
7238 	}
7239 
7240 	return 0;
7241 }
7242 
7243 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7244 					   struct kvm_memory_slot *memslot,
7245 					   gfn_t offset, unsigned long mask)
7246 {
7247 	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7248 }
7249 
7250 static void __pi_post_block(struct kvm_vcpu *vcpu)
7251 {
7252 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7253 	struct pi_desc old, new;
7254 	unsigned int dest;
7255 
7256 	do {
7257 		old.control = new.control = pi_desc->control;
7258 		WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7259 		     "Wakeup handler not enabled while the VCPU is blocked\n");
7260 
7261 		dest = cpu_physical_id(vcpu->cpu);
7262 
7263 		if (x2apic_enabled())
7264 			new.ndst = dest;
7265 		else
7266 			new.ndst = (dest << 8) & 0xFF00;
7267 
7268 		/* set 'NV' to 'notification vector' */
7269 		new.nv = POSTED_INTR_VECTOR;
7270 	} while (cmpxchg64(&pi_desc->control, old.control,
7271 			   new.control) != old.control);
7272 
7273 	if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7274 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7275 		list_del(&vcpu->blocked_vcpu_list);
7276 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7277 		vcpu->pre_pcpu = -1;
7278 	}
7279 }
7280 
7281 /*
7282  * This routine does the following things for vCPU which is going
7283  * to be blocked if VT-d PI is enabled.
7284  * - Store the vCPU to the wakeup list, so when interrupts happen
7285  *   we can find the right vCPU to wake up.
7286  * - Change the Posted-interrupt descriptor as below:
7287  *      'NDST' <-- vcpu->pre_pcpu
7288  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7289  * - If 'ON' is set during this process, which means at least one
7290  *   interrupt is posted for this vCPU, we cannot block it, in
7291  *   this case, return 1, otherwise, return 0.
7292  *
7293  */
7294 static int pi_pre_block(struct kvm_vcpu *vcpu)
7295 {
7296 	unsigned int dest;
7297 	struct pi_desc old, new;
7298 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7299 
7300 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7301 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
7302 		!kvm_vcpu_apicv_active(vcpu))
7303 		return 0;
7304 
7305 	WARN_ON(irqs_disabled());
7306 	local_irq_disable();
7307 	if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7308 		vcpu->pre_pcpu = vcpu->cpu;
7309 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7310 		list_add_tail(&vcpu->blocked_vcpu_list,
7311 			      &per_cpu(blocked_vcpu_on_cpu,
7312 				       vcpu->pre_pcpu));
7313 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7314 	}
7315 
7316 	do {
7317 		old.control = new.control = pi_desc->control;
7318 
7319 		WARN((pi_desc->sn == 1),
7320 		     "Warning: SN field of posted-interrupts "
7321 		     "is set before blocking\n");
7322 
7323 		/*
7324 		 * Since vCPU can be preempted during this process,
7325 		 * vcpu->cpu could be different with pre_pcpu, we
7326 		 * need to set pre_pcpu as the destination of wakeup
7327 		 * notification event, then we can find the right vCPU
7328 		 * to wakeup in wakeup handler if interrupts happen
7329 		 * when the vCPU is in blocked state.
7330 		 */
7331 		dest = cpu_physical_id(vcpu->pre_pcpu);
7332 
7333 		if (x2apic_enabled())
7334 			new.ndst = dest;
7335 		else
7336 			new.ndst = (dest << 8) & 0xFF00;
7337 
7338 		/* set 'NV' to 'wakeup vector' */
7339 		new.nv = POSTED_INTR_WAKEUP_VECTOR;
7340 	} while (cmpxchg64(&pi_desc->control, old.control,
7341 			   new.control) != old.control);
7342 
7343 	/* We should not block the vCPU if an interrupt is posted for it.  */
7344 	if (pi_test_on(pi_desc) == 1)
7345 		__pi_post_block(vcpu);
7346 
7347 	local_irq_enable();
7348 	return (vcpu->pre_pcpu == -1);
7349 }
7350 
7351 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7352 {
7353 	if (pi_pre_block(vcpu))
7354 		return 1;
7355 
7356 	if (kvm_lapic_hv_timer_in_use(vcpu))
7357 		kvm_lapic_switch_to_sw_timer(vcpu);
7358 
7359 	return 0;
7360 }
7361 
7362 static void pi_post_block(struct kvm_vcpu *vcpu)
7363 {
7364 	if (vcpu->pre_pcpu == -1)
7365 		return;
7366 
7367 	WARN_ON(irqs_disabled());
7368 	local_irq_disable();
7369 	__pi_post_block(vcpu);
7370 	local_irq_enable();
7371 }
7372 
7373 static void vmx_post_block(struct kvm_vcpu *vcpu)
7374 {
7375 	if (kvm_x86_ops->set_hv_timer)
7376 		kvm_lapic_switch_to_hv_timer(vcpu);
7377 
7378 	pi_post_block(vcpu);
7379 }
7380 
7381 /*
7382  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7383  *
7384  * @kvm: kvm
7385  * @host_irq: host irq of the interrupt
7386  * @guest_irq: gsi of the interrupt
7387  * @set: set or unset PI
7388  * returns 0 on success, < 0 on failure
7389  */
7390 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7391 			      uint32_t guest_irq, bool set)
7392 {
7393 	struct kvm_kernel_irq_routing_entry *e;
7394 	struct kvm_irq_routing_table *irq_rt;
7395 	struct kvm_lapic_irq irq;
7396 	struct kvm_vcpu *vcpu;
7397 	struct vcpu_data vcpu_info;
7398 	int idx, ret = 0;
7399 
7400 	if (!kvm_arch_has_assigned_device(kvm) ||
7401 		!irq_remapping_cap(IRQ_POSTING_CAP) ||
7402 		!kvm_vcpu_apicv_active(kvm->vcpus[0]))
7403 		return 0;
7404 
7405 	idx = srcu_read_lock(&kvm->irq_srcu);
7406 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7407 	if (guest_irq >= irq_rt->nr_rt_entries ||
7408 	    hlist_empty(&irq_rt->map[guest_irq])) {
7409 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7410 			     guest_irq, irq_rt->nr_rt_entries);
7411 		goto out;
7412 	}
7413 
7414 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7415 		if (e->type != KVM_IRQ_ROUTING_MSI)
7416 			continue;
7417 		/*
7418 		 * VT-d PI cannot support posting multicast/broadcast
7419 		 * interrupts to a vCPU, we still use interrupt remapping
7420 		 * for these kind of interrupts.
7421 		 *
7422 		 * For lowest-priority interrupts, we only support
7423 		 * those with single CPU as the destination, e.g. user
7424 		 * configures the interrupts via /proc/irq or uses
7425 		 * irqbalance to make the interrupts single-CPU.
7426 		 *
7427 		 * We will support full lowest-priority interrupt later.
7428 		 */
7429 
7430 		kvm_set_msi_irq(kvm, e, &irq);
7431 		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
7432 			/*
7433 			 * Make sure the IRTE is in remapped mode if
7434 			 * we don't handle it in posted mode.
7435 			 */
7436 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7437 			if (ret < 0) {
7438 				printk(KERN_INFO
7439 				   "failed to back to remapped mode, irq: %u\n",
7440 				   host_irq);
7441 				goto out;
7442 			}
7443 
7444 			continue;
7445 		}
7446 
7447 		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7448 		vcpu_info.vector = irq.vector;
7449 
7450 		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7451 				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7452 
7453 		if (set)
7454 			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7455 		else
7456 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7457 
7458 		if (ret < 0) {
7459 			printk(KERN_INFO "%s: failed to update PI IRTE\n",
7460 					__func__);
7461 			goto out;
7462 		}
7463 	}
7464 
7465 	ret = 0;
7466 out:
7467 	srcu_read_unlock(&kvm->irq_srcu, idx);
7468 	return ret;
7469 }
7470 
7471 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7472 {
7473 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7474 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7475 			FEATURE_CONTROL_LMCE;
7476 	else
7477 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7478 			~FEATURE_CONTROL_LMCE;
7479 }
7480 
7481 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7482 {
7483 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7484 	if (to_vmx(vcpu)->nested.nested_run_pending)
7485 		return 0;
7486 	return 1;
7487 }
7488 
7489 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7490 {
7491 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7492 
7493 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7494 	if (vmx->nested.smm.guest_mode)
7495 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7496 
7497 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7498 	vmx->nested.vmxon = false;
7499 	vmx_clear_hlt(vcpu);
7500 	return 0;
7501 }
7502 
7503 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
7504 {
7505 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7506 	int ret;
7507 
7508 	if (vmx->nested.smm.vmxon) {
7509 		vmx->nested.vmxon = true;
7510 		vmx->nested.smm.vmxon = false;
7511 	}
7512 
7513 	if (vmx->nested.smm.guest_mode) {
7514 		vcpu->arch.hflags &= ~HF_SMM_MASK;
7515 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7516 		vcpu->arch.hflags |= HF_SMM_MASK;
7517 		if (ret)
7518 			return ret;
7519 
7520 		vmx->nested.smm.guest_mode = false;
7521 	}
7522 	return 0;
7523 }
7524 
7525 static int enable_smi_window(struct kvm_vcpu *vcpu)
7526 {
7527 	return 0;
7528 }
7529 
7530 static __init int hardware_setup(void)
7531 {
7532 	unsigned long host_bndcfgs;
7533 	int r, i;
7534 
7535 	rdmsrl_safe(MSR_EFER, &host_efer);
7536 
7537 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7538 		kvm_define_shared_msr(i, vmx_msr_index[i]);
7539 
7540 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7541 		return -EIO;
7542 
7543 	if (boot_cpu_has(X86_FEATURE_NX))
7544 		kvm_enable_efer_bits(EFER_NX);
7545 
7546 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7547 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7548 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7549 	}
7550 
7551 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7552 		rdmsrl(MSR_IA32_XSS, host_xss);
7553 
7554 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7555 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7556 		enable_vpid = 0;
7557 
7558 	if (!cpu_has_vmx_ept() ||
7559 	    !cpu_has_vmx_ept_4levels() ||
7560 	    !cpu_has_vmx_ept_mt_wb() ||
7561 	    !cpu_has_vmx_invept_global())
7562 		enable_ept = 0;
7563 
7564 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7565 		enable_ept_ad_bits = 0;
7566 
7567 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7568 		enable_unrestricted_guest = 0;
7569 
7570 	if (!cpu_has_vmx_flexpriority())
7571 		flexpriority_enabled = 0;
7572 
7573 	if (!cpu_has_virtual_nmis())
7574 		enable_vnmi = 0;
7575 
7576 	/*
7577 	 * set_apic_access_page_addr() is used to reload apic access
7578 	 * page upon invalidation.  No need to do anything if not
7579 	 * using the APIC_ACCESS_ADDR VMCS field.
7580 	 */
7581 	if (!flexpriority_enabled)
7582 		kvm_x86_ops->set_apic_access_page_addr = NULL;
7583 
7584 	if (!cpu_has_vmx_tpr_shadow())
7585 		kvm_x86_ops->update_cr8_intercept = NULL;
7586 
7587 	if (enable_ept && !cpu_has_vmx_ept_2m_page())
7588 		kvm_disable_largepages();
7589 
7590 #if IS_ENABLED(CONFIG_HYPERV)
7591 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7592 	    && enable_ept) {
7593 		kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7594 		kvm_x86_ops->tlb_remote_flush_with_range =
7595 				hv_remote_flush_tlb_with_range;
7596 	}
7597 #endif
7598 
7599 	if (!cpu_has_vmx_ple()) {
7600 		ple_gap = 0;
7601 		ple_window = 0;
7602 		ple_window_grow = 0;
7603 		ple_window_max = 0;
7604 		ple_window_shrink = 0;
7605 	}
7606 
7607 	if (!cpu_has_vmx_apicv()) {
7608 		enable_apicv = 0;
7609 		kvm_x86_ops->sync_pir_to_irr = NULL;
7610 	}
7611 
7612 	if (cpu_has_vmx_tsc_scaling()) {
7613 		kvm_has_tsc_control = true;
7614 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7615 		kvm_tsc_scaling_ratio_frac_bits = 48;
7616 	}
7617 
7618 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7619 
7620 	if (enable_ept)
7621 		vmx_enable_tdp();
7622 	else
7623 		kvm_disable_tdp();
7624 
7625 	/*
7626 	 * Only enable PML when hardware supports PML feature, and both EPT
7627 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7628 	 */
7629 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7630 		enable_pml = 0;
7631 
7632 	if (!enable_pml) {
7633 		kvm_x86_ops->slot_enable_log_dirty = NULL;
7634 		kvm_x86_ops->slot_disable_log_dirty = NULL;
7635 		kvm_x86_ops->flush_log_dirty = NULL;
7636 		kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7637 	}
7638 
7639 	if (!cpu_has_vmx_preemption_timer())
7640 		kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7641 
7642 	if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
7643 		u64 vmx_msr;
7644 
7645 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7646 		cpu_preemption_timer_multi =
7647 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7648 	} else {
7649 		kvm_x86_ops->set_hv_timer = NULL;
7650 		kvm_x86_ops->cancel_hv_timer = NULL;
7651 	}
7652 
7653 	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7654 
7655 	kvm_mce_cap_supported |= MCG_LMCE_P;
7656 
7657 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7658 		return -EINVAL;
7659 	if (!enable_ept || !cpu_has_vmx_intel_pt())
7660 		pt_mode = PT_MODE_SYSTEM;
7661 
7662 	if (nested) {
7663 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7664 					   vmx_capability.ept, enable_apicv);
7665 
7666 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7667 		if (r)
7668 			return r;
7669 	}
7670 
7671 	r = alloc_kvm_area();
7672 	if (r)
7673 		nested_vmx_hardware_unsetup();
7674 	return r;
7675 }
7676 
7677 static __exit void hardware_unsetup(void)
7678 {
7679 	if (nested)
7680 		nested_vmx_hardware_unsetup();
7681 
7682 	free_kvm_area();
7683 }
7684 
7685 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7686 	.cpu_has_kvm_support = cpu_has_kvm_support,
7687 	.disabled_by_bios = vmx_disabled_by_bios,
7688 	.hardware_setup = hardware_setup,
7689 	.hardware_unsetup = hardware_unsetup,
7690 	.check_processor_compatibility = vmx_check_processor_compat,
7691 	.hardware_enable = hardware_enable,
7692 	.hardware_disable = hardware_disable,
7693 	.cpu_has_accelerated_tpr = report_flexpriority,
7694 	.has_emulated_msr = vmx_has_emulated_msr,
7695 
7696 	.vm_init = vmx_vm_init,
7697 	.vm_alloc = vmx_vm_alloc,
7698 	.vm_free = vmx_vm_free,
7699 
7700 	.vcpu_create = vmx_create_vcpu,
7701 	.vcpu_free = vmx_free_vcpu,
7702 	.vcpu_reset = vmx_vcpu_reset,
7703 
7704 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7705 	.vcpu_load = vmx_vcpu_load,
7706 	.vcpu_put = vmx_vcpu_put,
7707 
7708 	.update_bp_intercept = update_exception_bitmap,
7709 	.get_msr_feature = vmx_get_msr_feature,
7710 	.get_msr = vmx_get_msr,
7711 	.set_msr = vmx_set_msr,
7712 	.get_segment_base = vmx_get_segment_base,
7713 	.get_segment = vmx_get_segment,
7714 	.set_segment = vmx_set_segment,
7715 	.get_cpl = vmx_get_cpl,
7716 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7717 	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7718 	.decache_cr3 = vmx_decache_cr3,
7719 	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7720 	.set_cr0 = vmx_set_cr0,
7721 	.set_cr3 = vmx_set_cr3,
7722 	.set_cr4 = vmx_set_cr4,
7723 	.set_efer = vmx_set_efer,
7724 	.get_idt = vmx_get_idt,
7725 	.set_idt = vmx_set_idt,
7726 	.get_gdt = vmx_get_gdt,
7727 	.set_gdt = vmx_set_gdt,
7728 	.get_dr6 = vmx_get_dr6,
7729 	.set_dr6 = vmx_set_dr6,
7730 	.set_dr7 = vmx_set_dr7,
7731 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7732 	.cache_reg = vmx_cache_reg,
7733 	.get_rflags = vmx_get_rflags,
7734 	.set_rflags = vmx_set_rflags,
7735 
7736 	.tlb_flush = vmx_flush_tlb,
7737 	.tlb_flush_gva = vmx_flush_tlb_gva,
7738 
7739 	.run = vmx_vcpu_run,
7740 	.handle_exit = vmx_handle_exit,
7741 	.skip_emulated_instruction = skip_emulated_instruction,
7742 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7743 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7744 	.patch_hypercall = vmx_patch_hypercall,
7745 	.set_irq = vmx_inject_irq,
7746 	.set_nmi = vmx_inject_nmi,
7747 	.queue_exception = vmx_queue_exception,
7748 	.cancel_injection = vmx_cancel_injection,
7749 	.interrupt_allowed = vmx_interrupt_allowed,
7750 	.nmi_allowed = vmx_nmi_allowed,
7751 	.get_nmi_mask = vmx_get_nmi_mask,
7752 	.set_nmi_mask = vmx_set_nmi_mask,
7753 	.enable_nmi_window = enable_nmi_window,
7754 	.enable_irq_window = enable_irq_window,
7755 	.update_cr8_intercept = update_cr8_intercept,
7756 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7757 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7758 	.get_enable_apicv = vmx_get_enable_apicv,
7759 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7760 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7761 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7762 	.hwapic_irr_update = vmx_hwapic_irr_update,
7763 	.hwapic_isr_update = vmx_hwapic_isr_update,
7764 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7765 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7766 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7767 
7768 	.set_tss_addr = vmx_set_tss_addr,
7769 	.set_identity_map_addr = vmx_set_identity_map_addr,
7770 	.get_tdp_level = get_ept_level,
7771 	.get_mt_mask = vmx_get_mt_mask,
7772 
7773 	.get_exit_info = vmx_get_exit_info,
7774 
7775 	.get_lpage_level = vmx_get_lpage_level,
7776 
7777 	.cpuid_update = vmx_cpuid_update,
7778 
7779 	.rdtscp_supported = vmx_rdtscp_supported,
7780 	.invpcid_supported = vmx_invpcid_supported,
7781 
7782 	.set_supported_cpuid = vmx_set_supported_cpuid,
7783 
7784 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7785 
7786 	.read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7787 	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7788 
7789 	.set_tdp_cr3 = vmx_set_cr3,
7790 
7791 	.check_intercept = vmx_check_intercept,
7792 	.handle_external_intr = vmx_handle_external_intr,
7793 	.mpx_supported = vmx_mpx_supported,
7794 	.xsaves_supported = vmx_xsaves_supported,
7795 	.umip_emulated = vmx_umip_emulated,
7796 	.pt_supported = vmx_pt_supported,
7797 
7798 	.request_immediate_exit = vmx_request_immediate_exit,
7799 
7800 	.sched_in = vmx_sched_in,
7801 
7802 	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7803 	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7804 	.flush_log_dirty = vmx_flush_log_dirty,
7805 	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7806 	.write_log_dirty = vmx_write_pml_buffer,
7807 
7808 	.pre_block = vmx_pre_block,
7809 	.post_block = vmx_post_block,
7810 
7811 	.pmu_ops = &intel_pmu_ops,
7812 
7813 	.update_pi_irte = vmx_update_pi_irte,
7814 
7815 #ifdef CONFIG_X86_64
7816 	.set_hv_timer = vmx_set_hv_timer,
7817 	.cancel_hv_timer = vmx_cancel_hv_timer,
7818 #endif
7819 
7820 	.setup_mce = vmx_setup_mce,
7821 
7822 	.smi_allowed = vmx_smi_allowed,
7823 	.pre_enter_smm = vmx_pre_enter_smm,
7824 	.pre_leave_smm = vmx_pre_leave_smm,
7825 	.enable_smi_window = enable_smi_window,
7826 
7827 	.check_nested_events = NULL,
7828 	.get_nested_state = NULL,
7829 	.set_nested_state = NULL,
7830 	.get_vmcs12_pages = NULL,
7831 	.nested_enable_evmcs = NULL,
7832 };
7833 
7834 static void vmx_cleanup_l1d_flush(void)
7835 {
7836 	if (vmx_l1d_flush_pages) {
7837 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7838 		vmx_l1d_flush_pages = NULL;
7839 	}
7840 	/* Restore state so sysfs ignores VMX */
7841 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7842 }
7843 
7844 static void vmx_exit(void)
7845 {
7846 #ifdef CONFIG_KEXEC_CORE
7847 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7848 	synchronize_rcu();
7849 #endif
7850 
7851 	kvm_exit();
7852 
7853 #if IS_ENABLED(CONFIG_HYPERV)
7854 	if (static_branch_unlikely(&enable_evmcs)) {
7855 		int cpu;
7856 		struct hv_vp_assist_page *vp_ap;
7857 		/*
7858 		 * Reset everything to support using non-enlightened VMCS
7859 		 * access later (e.g. when we reload the module with
7860 		 * enlightened_vmcs=0)
7861 		 */
7862 		for_each_online_cpu(cpu) {
7863 			vp_ap =	hv_get_vp_assist_page(cpu);
7864 
7865 			if (!vp_ap)
7866 				continue;
7867 
7868 			vp_ap->current_nested_vmcs = 0;
7869 			vp_ap->enlighten_vmentry = 0;
7870 		}
7871 
7872 		static_branch_disable(&enable_evmcs);
7873 	}
7874 #endif
7875 	vmx_cleanup_l1d_flush();
7876 }
7877 module_exit(vmx_exit);
7878 
7879 static int __init vmx_init(void)
7880 {
7881 	int r;
7882 
7883 #if IS_ENABLED(CONFIG_HYPERV)
7884 	/*
7885 	 * Enlightened VMCS usage should be recommended and the host needs
7886 	 * to support eVMCS v1 or above. We can also disable eVMCS support
7887 	 * with module parameter.
7888 	 */
7889 	if (enlightened_vmcs &&
7890 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7891 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7892 	    KVM_EVMCS_VERSION) {
7893 		int cpu;
7894 
7895 		/* Check that we have assist pages on all online CPUs */
7896 		for_each_online_cpu(cpu) {
7897 			if (!hv_get_vp_assist_page(cpu)) {
7898 				enlightened_vmcs = false;
7899 				break;
7900 			}
7901 		}
7902 
7903 		if (enlightened_vmcs) {
7904 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7905 			static_branch_enable(&enable_evmcs);
7906 		}
7907 	} else {
7908 		enlightened_vmcs = false;
7909 	}
7910 #endif
7911 
7912 	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7913 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
7914 	if (r)
7915 		return r;
7916 
7917 	/*
7918 	 * Must be called after kvm_init() so enable_ept is properly set
7919 	 * up. Hand the parameter mitigation value in which was stored in
7920 	 * the pre module init parser. If no parameter was given, it will
7921 	 * contain 'auto' which will be turned into the default 'cond'
7922 	 * mitigation mode.
7923 	 */
7924 	if (boot_cpu_has(X86_BUG_L1TF)) {
7925 		r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7926 		if (r) {
7927 			vmx_exit();
7928 			return r;
7929 		}
7930 	}
7931 
7932 #ifdef CONFIG_KEXEC_CORE
7933 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7934 			   crash_vmclear_local_loaded_vmcss);
7935 #endif
7936 	vmx_check_vmcs12_offsets();
7937 
7938 	return 0;
7939 }
7940 module_init(vmx_init);
7941