1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <linux/highmem.h> 17 #include <linux/hrtimer.h> 18 #include <linux/kernel.h> 19 #include <linux/kvm_host.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mm.h> 24 #include <linux/objtool.h> 25 #include <linux/sched.h> 26 #include <linux/sched/smt.h> 27 #include <linux/slab.h> 28 #include <linux/tboot.h> 29 #include <linux/trace_events.h> 30 #include <linux/entry-kvm.h> 31 32 #include <asm/apic.h> 33 #include <asm/asm.h> 34 #include <asm/cpu.h> 35 #include <asm/cpu_device_id.h> 36 #include <asm/debugreg.h> 37 #include <asm/desc.h> 38 #include <asm/fpu/api.h> 39 #include <asm/idtentry.h> 40 #include <asm/io.h> 41 #include <asm/irq_remapping.h> 42 #include <asm/kexec.h> 43 #include <asm/perf_event.h> 44 #include <asm/mmu_context.h> 45 #include <asm/mshyperv.h> 46 #include <asm/mwait.h> 47 #include <asm/spec-ctrl.h> 48 #include <asm/virtext.h> 49 #include <asm/vmx.h> 50 51 #include "capabilities.h" 52 #include "cpuid.h" 53 #include "evmcs.h" 54 #include "hyperv.h" 55 #include "kvm_onhyperv.h" 56 #include "irq.h" 57 #include "kvm_cache_regs.h" 58 #include "lapic.h" 59 #include "mmu.h" 60 #include "nested.h" 61 #include "pmu.h" 62 #include "sgx.h" 63 #include "trace.h" 64 #include "vmcs.h" 65 #include "vmcs12.h" 66 #include "vmx.h" 67 #include "x86.h" 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 #ifdef MODULE 73 static const struct x86_cpu_id vmx_cpu_id[] = { 74 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 75 {} 76 }; 77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 78 #endif 79 80 bool __read_mostly enable_vpid = 1; 81 module_param_named(vpid, enable_vpid, bool, 0444); 82 83 static bool __read_mostly enable_vnmi = 1; 84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 85 86 bool __read_mostly flexpriority_enabled = 1; 87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 88 89 bool __read_mostly enable_ept = 1; 90 module_param_named(ept, enable_ept, bool, S_IRUGO); 91 92 bool __read_mostly enable_unrestricted_guest = 1; 93 module_param_named(unrestricted_guest, 94 enable_unrestricted_guest, bool, S_IRUGO); 95 96 bool __read_mostly enable_ept_ad_bits = 1; 97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 98 99 static bool __read_mostly emulate_invalid_guest_state = true; 100 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 101 102 static bool __read_mostly fasteoi = 1; 103 module_param(fasteoi, bool, S_IRUGO); 104 105 module_param(enable_apicv, bool, S_IRUGO); 106 107 /* 108 * If nested=1, nested virtualization is supported, i.e., guests may use 109 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 110 * use VMX instructions. 111 */ 112 static bool __read_mostly nested = 1; 113 module_param(nested, bool, S_IRUGO); 114 115 bool __read_mostly enable_pml = 1; 116 module_param_named(pml, enable_pml, bool, S_IRUGO); 117 118 static bool __read_mostly dump_invalid_vmcs = 0; 119 module_param(dump_invalid_vmcs, bool, 0644); 120 121 #define MSR_BITMAP_MODE_X2APIC 1 122 #define MSR_BITMAP_MODE_X2APIC_APICV 2 123 124 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 125 126 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 127 static int __read_mostly cpu_preemption_timer_multi; 128 static bool __read_mostly enable_preemption_timer = 1; 129 #ifdef CONFIG_X86_64 130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 131 #endif 132 133 extern bool __read_mostly allow_smaller_maxphyaddr; 134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 135 136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 138 #define KVM_VM_CR0_ALWAYS_ON \ 139 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 140 141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 144 145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 146 147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 148 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 149 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 150 RTIT_STATUS_BYTECNT)) 151 152 /* 153 * List of MSRs that can be directly passed to the guest. 154 * In addition to these x2apic and PT MSRs are handled specially. 155 */ 156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 157 MSR_IA32_SPEC_CTRL, 158 MSR_IA32_PRED_CMD, 159 MSR_IA32_TSC, 160 #ifdef CONFIG_X86_64 161 MSR_FS_BASE, 162 MSR_GS_BASE, 163 MSR_KERNEL_GS_BASE, 164 #endif 165 MSR_IA32_SYSENTER_CS, 166 MSR_IA32_SYSENTER_ESP, 167 MSR_IA32_SYSENTER_EIP, 168 MSR_CORE_C1_RES, 169 MSR_CORE_C3_RESIDENCY, 170 MSR_CORE_C6_RESIDENCY, 171 MSR_CORE_C7_RESIDENCY, 172 }; 173 174 /* 175 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 176 * ple_gap: upper bound on the amount of time between two successive 177 * executions of PAUSE in a loop. Also indicate if ple enabled. 178 * According to test, this time is usually smaller than 128 cycles. 179 * ple_window: upper bound on the amount of time a guest is allowed to execute 180 * in a PAUSE loop. Tests indicate that most spinlocks are held for 181 * less than 2^12 cycles 182 * Time is measured based on a counter that runs at the same rate as the TSC, 183 * refer SDM volume 3b section 21.6.13 & 22.1.3. 184 */ 185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 186 module_param(ple_gap, uint, 0444); 187 188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 189 module_param(ple_window, uint, 0444); 190 191 /* Default doubles per-vcpu window every exit. */ 192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 193 module_param(ple_window_grow, uint, 0444); 194 195 /* Default resets per-vcpu window every exit to ple_window. */ 196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 197 module_param(ple_window_shrink, uint, 0444); 198 199 /* Default is to compute the maximum so we can never overflow. */ 200 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 201 module_param(ple_window_max, uint, 0444); 202 203 /* Default is SYSTEM mode, 1 for host-guest mode */ 204 int __read_mostly pt_mode = PT_MODE_SYSTEM; 205 module_param(pt_mode, int, S_IRUGO); 206 207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 209 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 210 211 /* Storage for pre module init parameter parsing */ 212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 213 214 static const struct { 215 const char *option; 216 bool for_parse; 217 } vmentry_l1d_param[] = { 218 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 219 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 220 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 221 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 222 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 223 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 224 }; 225 226 #define L1D_CACHE_ORDER 4 227 static void *vmx_l1d_flush_pages; 228 229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 230 { 231 struct page *page; 232 unsigned int i; 233 234 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 235 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 236 return 0; 237 } 238 239 if (!enable_ept) { 240 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 241 return 0; 242 } 243 244 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 245 u64 msr; 246 247 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 248 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 249 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 250 return 0; 251 } 252 } 253 254 /* If set to auto use the default l1tf mitigation method */ 255 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 256 switch (l1tf_mitigation) { 257 case L1TF_MITIGATION_OFF: 258 l1tf = VMENTER_L1D_FLUSH_NEVER; 259 break; 260 case L1TF_MITIGATION_FLUSH_NOWARN: 261 case L1TF_MITIGATION_FLUSH: 262 case L1TF_MITIGATION_FLUSH_NOSMT: 263 l1tf = VMENTER_L1D_FLUSH_COND; 264 break; 265 case L1TF_MITIGATION_FULL: 266 case L1TF_MITIGATION_FULL_FORCE: 267 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 268 break; 269 } 270 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 271 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 272 } 273 274 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 275 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 276 /* 277 * This allocation for vmx_l1d_flush_pages is not tied to a VM 278 * lifetime and so should not be charged to a memcg. 279 */ 280 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 281 if (!page) 282 return -ENOMEM; 283 vmx_l1d_flush_pages = page_address(page); 284 285 /* 286 * Initialize each page with a different pattern in 287 * order to protect against KSM in the nested 288 * virtualization case. 289 */ 290 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 291 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 292 PAGE_SIZE); 293 } 294 } 295 296 l1tf_vmx_mitigation = l1tf; 297 298 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 299 static_branch_enable(&vmx_l1d_should_flush); 300 else 301 static_branch_disable(&vmx_l1d_should_flush); 302 303 if (l1tf == VMENTER_L1D_FLUSH_COND) 304 static_branch_enable(&vmx_l1d_flush_cond); 305 else 306 static_branch_disable(&vmx_l1d_flush_cond); 307 return 0; 308 } 309 310 static int vmentry_l1d_flush_parse(const char *s) 311 { 312 unsigned int i; 313 314 if (s) { 315 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 316 if (vmentry_l1d_param[i].for_parse && 317 sysfs_streq(s, vmentry_l1d_param[i].option)) 318 return i; 319 } 320 } 321 return -EINVAL; 322 } 323 324 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 325 { 326 int l1tf, ret; 327 328 l1tf = vmentry_l1d_flush_parse(s); 329 if (l1tf < 0) 330 return l1tf; 331 332 if (!boot_cpu_has(X86_BUG_L1TF)) 333 return 0; 334 335 /* 336 * Has vmx_init() run already? If not then this is the pre init 337 * parameter parsing. In that case just store the value and let 338 * vmx_init() do the proper setup after enable_ept has been 339 * established. 340 */ 341 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 342 vmentry_l1d_flush_param = l1tf; 343 return 0; 344 } 345 346 mutex_lock(&vmx_l1d_flush_mutex); 347 ret = vmx_setup_l1d_flush(l1tf); 348 mutex_unlock(&vmx_l1d_flush_mutex); 349 return ret; 350 } 351 352 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 353 { 354 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 355 return sprintf(s, "???\n"); 356 357 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 358 } 359 360 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 361 .set = vmentry_l1d_flush_set, 362 .get = vmentry_l1d_flush_get, 363 }; 364 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 365 366 static u32 vmx_segment_access_rights(struct kvm_segment *var); 367 368 void vmx_vmexit(void); 369 370 #define vmx_insn_failed(fmt...) \ 371 do { \ 372 WARN_ONCE(1, fmt); \ 373 pr_warn_ratelimited(fmt); \ 374 } while (0) 375 376 asmlinkage void vmread_error(unsigned long field, bool fault) 377 { 378 if (fault) 379 kvm_spurious_fault(); 380 else 381 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field); 382 } 383 384 noinline void vmwrite_error(unsigned long field, unsigned long value) 385 { 386 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n", 387 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 388 } 389 390 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 391 { 392 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr); 393 } 394 395 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 396 { 397 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr); 398 } 399 400 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 401 { 402 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 403 ext, vpid, gva); 404 } 405 406 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 407 { 408 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 409 ext, eptp, gpa); 410 } 411 412 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 413 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 414 /* 415 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 416 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 417 */ 418 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 419 420 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 421 static DEFINE_SPINLOCK(vmx_vpid_lock); 422 423 struct vmcs_config vmcs_config; 424 struct vmx_capability vmx_capability; 425 426 #define VMX_SEGMENT_FIELD(seg) \ 427 [VCPU_SREG_##seg] = { \ 428 .selector = GUEST_##seg##_SELECTOR, \ 429 .base = GUEST_##seg##_BASE, \ 430 .limit = GUEST_##seg##_LIMIT, \ 431 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 432 } 433 434 static const struct kvm_vmx_segment_field { 435 unsigned selector; 436 unsigned base; 437 unsigned limit; 438 unsigned ar_bytes; 439 } kvm_vmx_segment_fields[] = { 440 VMX_SEGMENT_FIELD(CS), 441 VMX_SEGMENT_FIELD(DS), 442 VMX_SEGMENT_FIELD(ES), 443 VMX_SEGMENT_FIELD(FS), 444 VMX_SEGMENT_FIELD(GS), 445 VMX_SEGMENT_FIELD(SS), 446 VMX_SEGMENT_FIELD(TR), 447 VMX_SEGMENT_FIELD(LDTR), 448 }; 449 450 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 451 { 452 vmx->segment_cache.bitmask = 0; 453 } 454 455 static unsigned long host_idt_base; 456 457 #if IS_ENABLED(CONFIG_HYPERV) 458 static bool __read_mostly enlightened_vmcs = true; 459 module_param(enlightened_vmcs, bool, 0444); 460 461 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu) 462 { 463 struct hv_enlightened_vmcs *evmcs; 464 struct hv_partition_assist_pg **p_hv_pa_pg = 465 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 466 /* 467 * Synthetic VM-Exit is not enabled in current code and so All 468 * evmcs in singe VM shares same assist page. 469 */ 470 if (!*p_hv_pa_pg) 471 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 472 473 if (!*p_hv_pa_pg) 474 return -ENOMEM; 475 476 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 477 478 evmcs->partition_assist_page = 479 __pa(*p_hv_pa_pg); 480 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 481 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 482 483 return 0; 484 } 485 486 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 487 488 /* 489 * Comment's format: document - errata name - stepping - processor name. 490 * Refer from 491 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 492 */ 493 static u32 vmx_preemption_cpu_tfms[] = { 494 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 495 0x000206E6, 496 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 497 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 498 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 499 0x00020652, 500 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 501 0x00020655, 502 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 503 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 504 /* 505 * 320767.pdf - AAP86 - B1 - 506 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 507 */ 508 0x000106E5, 509 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 510 0x000106A0, 511 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 512 0x000106A1, 513 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 514 0x000106A4, 515 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 516 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 517 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 518 0x000106A5, 519 /* Xeon E3-1220 V2 */ 520 0x000306A8, 521 }; 522 523 static inline bool cpu_has_broken_vmx_preemption_timer(void) 524 { 525 u32 eax = cpuid_eax(0x00000001), i; 526 527 /* Clear the reserved bits */ 528 eax &= ~(0x3U << 14 | 0xfU << 28); 529 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 530 if (eax == vmx_preemption_cpu_tfms[i]) 531 return true; 532 533 return false; 534 } 535 536 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 537 { 538 return flexpriority_enabled && lapic_in_kernel(vcpu); 539 } 540 541 static inline bool report_flexpriority(void) 542 { 543 return flexpriority_enabled; 544 } 545 546 static int possible_passthrough_msr_slot(u32 msr) 547 { 548 u32 i; 549 550 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 551 if (vmx_possible_passthrough_msrs[i] == msr) 552 return i; 553 554 return -ENOENT; 555 } 556 557 static bool is_valid_passthrough_msr(u32 msr) 558 { 559 bool r; 560 561 switch (msr) { 562 case 0x800 ... 0x8ff: 563 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 564 return true; 565 case MSR_IA32_RTIT_STATUS: 566 case MSR_IA32_RTIT_OUTPUT_BASE: 567 case MSR_IA32_RTIT_OUTPUT_MASK: 568 case MSR_IA32_RTIT_CR3_MATCH: 569 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 570 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 571 case MSR_LBR_SELECT: 572 case MSR_LBR_TOS: 573 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 574 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 575 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 576 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 577 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 578 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 579 return true; 580 } 581 582 r = possible_passthrough_msr_slot(msr) != -ENOENT; 583 584 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 585 586 return r; 587 } 588 589 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 590 { 591 int i; 592 593 i = kvm_find_user_return_msr(msr); 594 if (i >= 0) 595 return &vmx->guest_uret_msrs[i]; 596 return NULL; 597 } 598 599 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 600 struct vmx_uret_msr *msr, u64 data) 601 { 602 unsigned int slot = msr - vmx->guest_uret_msrs; 603 int ret = 0; 604 605 u64 old_msr_data = msr->data; 606 msr->data = data; 607 if (msr->load_into_hardware) { 608 preempt_disable(); 609 ret = kvm_set_user_return_msr(slot, msr->data, msr->mask); 610 preempt_enable(); 611 if (ret) 612 msr->data = old_msr_data; 613 } 614 return ret; 615 } 616 617 #ifdef CONFIG_KEXEC_CORE 618 static void crash_vmclear_local_loaded_vmcss(void) 619 { 620 int cpu = raw_smp_processor_id(); 621 struct loaded_vmcs *v; 622 623 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 624 loaded_vmcss_on_cpu_link) 625 vmcs_clear(v->vmcs); 626 } 627 #endif /* CONFIG_KEXEC_CORE */ 628 629 static void __loaded_vmcs_clear(void *arg) 630 { 631 struct loaded_vmcs *loaded_vmcs = arg; 632 int cpu = raw_smp_processor_id(); 633 634 if (loaded_vmcs->cpu != cpu) 635 return; /* vcpu migration can race with cpu offline */ 636 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 637 per_cpu(current_vmcs, cpu) = NULL; 638 639 vmcs_clear(loaded_vmcs->vmcs); 640 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 641 vmcs_clear(loaded_vmcs->shadow_vmcs); 642 643 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 644 645 /* 646 * Ensure all writes to loaded_vmcs, including deleting it from its 647 * current percpu list, complete before setting loaded_vmcs->vcpu to 648 * -1, otherwise a different cpu can see vcpu == -1 first and add 649 * loaded_vmcs to its percpu list before it's deleted from this cpu's 650 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 651 */ 652 smp_wmb(); 653 654 loaded_vmcs->cpu = -1; 655 loaded_vmcs->launched = 0; 656 } 657 658 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 659 { 660 int cpu = loaded_vmcs->cpu; 661 662 if (cpu != -1) 663 smp_call_function_single(cpu, 664 __loaded_vmcs_clear, loaded_vmcs, 1); 665 } 666 667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 668 unsigned field) 669 { 670 bool ret; 671 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 672 673 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 674 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 675 vmx->segment_cache.bitmask = 0; 676 } 677 ret = vmx->segment_cache.bitmask & mask; 678 vmx->segment_cache.bitmask |= mask; 679 return ret; 680 } 681 682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 683 { 684 u16 *p = &vmx->segment_cache.seg[seg].selector; 685 686 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 687 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 688 return *p; 689 } 690 691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 692 { 693 ulong *p = &vmx->segment_cache.seg[seg].base; 694 695 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 696 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 697 return *p; 698 } 699 700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 701 { 702 u32 *p = &vmx->segment_cache.seg[seg].limit; 703 704 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 705 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 706 return *p; 707 } 708 709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 710 { 711 u32 *p = &vmx->segment_cache.seg[seg].ar; 712 713 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 714 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 715 return *p; 716 } 717 718 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 719 { 720 u32 eb; 721 722 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 723 (1u << DB_VECTOR) | (1u << AC_VECTOR); 724 /* 725 * Guest access to VMware backdoor ports could legitimately 726 * trigger #GP because of TSS I/O permission bitmap. 727 * We intercept those #GP and allow access to them anyway 728 * as VMware does. 729 */ 730 if (enable_vmware_backdoor) 731 eb |= (1u << GP_VECTOR); 732 if ((vcpu->guest_debug & 733 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 734 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 735 eb |= 1u << BP_VECTOR; 736 if (to_vmx(vcpu)->rmode.vm86_active) 737 eb = ~0; 738 if (!vmx_need_pf_intercept(vcpu)) 739 eb &= ~(1u << PF_VECTOR); 740 741 /* When we are running a nested L2 guest and L1 specified for it a 742 * certain exception bitmap, we must trap the same exceptions and pass 743 * them to L1. When running L2, we will only handle the exceptions 744 * specified above if L1 did not want them. 745 */ 746 if (is_guest_mode(vcpu)) 747 eb |= get_vmcs12(vcpu)->exception_bitmap; 748 else { 749 int mask = 0, match = 0; 750 751 if (enable_ept && (eb & (1u << PF_VECTOR))) { 752 /* 753 * If EPT is enabled, #PF is currently only intercepted 754 * if MAXPHYADDR is smaller on the guest than on the 755 * host. In that case we only care about present, 756 * non-reserved faults. For vmcs02, however, PFEC_MASK 757 * and PFEC_MATCH are set in prepare_vmcs02_rare. 758 */ 759 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 760 match = PFERR_PRESENT_MASK; 761 } 762 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 763 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 764 } 765 766 vmcs_write32(EXCEPTION_BITMAP, eb); 767 } 768 769 /* 770 * Check if MSR is intercepted for currently loaded MSR bitmap. 771 */ 772 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 773 { 774 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 775 return true; 776 777 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, 778 MSR_IA32_SPEC_CTRL); 779 } 780 781 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 782 unsigned long entry, unsigned long exit) 783 { 784 vm_entry_controls_clearbit(vmx, entry); 785 vm_exit_controls_clearbit(vmx, exit); 786 } 787 788 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 789 { 790 unsigned int i; 791 792 for (i = 0; i < m->nr; ++i) { 793 if (m->val[i].index == msr) 794 return i; 795 } 796 return -ENOENT; 797 } 798 799 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 800 { 801 int i; 802 struct msr_autoload *m = &vmx->msr_autoload; 803 804 switch (msr) { 805 case MSR_EFER: 806 if (cpu_has_load_ia32_efer()) { 807 clear_atomic_switch_msr_special(vmx, 808 VM_ENTRY_LOAD_IA32_EFER, 809 VM_EXIT_LOAD_IA32_EFER); 810 return; 811 } 812 break; 813 case MSR_CORE_PERF_GLOBAL_CTRL: 814 if (cpu_has_load_perf_global_ctrl()) { 815 clear_atomic_switch_msr_special(vmx, 816 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 817 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 818 return; 819 } 820 break; 821 } 822 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 823 if (i < 0) 824 goto skip_guest; 825 --m->guest.nr; 826 m->guest.val[i] = m->guest.val[m->guest.nr]; 827 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 828 829 skip_guest: 830 i = vmx_find_loadstore_msr_slot(&m->host, msr); 831 if (i < 0) 832 return; 833 834 --m->host.nr; 835 m->host.val[i] = m->host.val[m->host.nr]; 836 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 837 } 838 839 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 840 unsigned long entry, unsigned long exit, 841 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 842 u64 guest_val, u64 host_val) 843 { 844 vmcs_write64(guest_val_vmcs, guest_val); 845 if (host_val_vmcs != HOST_IA32_EFER) 846 vmcs_write64(host_val_vmcs, host_val); 847 vm_entry_controls_setbit(vmx, entry); 848 vm_exit_controls_setbit(vmx, exit); 849 } 850 851 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 852 u64 guest_val, u64 host_val, bool entry_only) 853 { 854 int i, j = 0; 855 struct msr_autoload *m = &vmx->msr_autoload; 856 857 switch (msr) { 858 case MSR_EFER: 859 if (cpu_has_load_ia32_efer()) { 860 add_atomic_switch_msr_special(vmx, 861 VM_ENTRY_LOAD_IA32_EFER, 862 VM_EXIT_LOAD_IA32_EFER, 863 GUEST_IA32_EFER, 864 HOST_IA32_EFER, 865 guest_val, host_val); 866 return; 867 } 868 break; 869 case MSR_CORE_PERF_GLOBAL_CTRL: 870 if (cpu_has_load_perf_global_ctrl()) { 871 add_atomic_switch_msr_special(vmx, 872 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 873 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 874 GUEST_IA32_PERF_GLOBAL_CTRL, 875 HOST_IA32_PERF_GLOBAL_CTRL, 876 guest_val, host_val); 877 return; 878 } 879 break; 880 case MSR_IA32_PEBS_ENABLE: 881 /* PEBS needs a quiescent period after being disabled (to write 882 * a record). Disabling PEBS through VMX MSR swapping doesn't 883 * provide that period, so a CPU could write host's record into 884 * guest's memory. 885 */ 886 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 887 } 888 889 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 890 if (!entry_only) 891 j = vmx_find_loadstore_msr_slot(&m->host, msr); 892 893 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 894 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 895 printk_once(KERN_WARNING "Not enough msr switch entries. " 896 "Can't add msr %x\n", msr); 897 return; 898 } 899 if (i < 0) { 900 i = m->guest.nr++; 901 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 902 } 903 m->guest.val[i].index = msr; 904 m->guest.val[i].value = guest_val; 905 906 if (entry_only) 907 return; 908 909 if (j < 0) { 910 j = m->host.nr++; 911 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 912 } 913 m->host.val[j].index = msr; 914 m->host.val[j].value = host_val; 915 } 916 917 static bool update_transition_efer(struct vcpu_vmx *vmx) 918 { 919 u64 guest_efer = vmx->vcpu.arch.efer; 920 u64 ignore_bits = 0; 921 int i; 922 923 /* Shadow paging assumes NX to be available. */ 924 if (!enable_ept) 925 guest_efer |= EFER_NX; 926 927 /* 928 * LMA and LME handled by hardware; SCE meaningless outside long mode. 929 */ 930 ignore_bits |= EFER_SCE; 931 #ifdef CONFIG_X86_64 932 ignore_bits |= EFER_LMA | EFER_LME; 933 /* SCE is meaningful only in long mode on Intel */ 934 if (guest_efer & EFER_LMA) 935 ignore_bits &= ~(u64)EFER_SCE; 936 #endif 937 938 /* 939 * On EPT, we can't emulate NX, so we must switch EFER atomically. 940 * On CPUs that support "load IA32_EFER", always switch EFER 941 * atomically, since it's faster than switching it manually. 942 */ 943 if (cpu_has_load_ia32_efer() || 944 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 945 if (!(guest_efer & EFER_LMA)) 946 guest_efer &= ~EFER_LME; 947 if (guest_efer != host_efer) 948 add_atomic_switch_msr(vmx, MSR_EFER, 949 guest_efer, host_efer, false); 950 else 951 clear_atomic_switch_msr(vmx, MSR_EFER); 952 return false; 953 } 954 955 i = kvm_find_user_return_msr(MSR_EFER); 956 if (i < 0) 957 return false; 958 959 clear_atomic_switch_msr(vmx, MSR_EFER); 960 961 guest_efer &= ~ignore_bits; 962 guest_efer |= host_efer & ignore_bits; 963 964 vmx->guest_uret_msrs[i].data = guest_efer; 965 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 966 967 return true; 968 } 969 970 #ifdef CONFIG_X86_32 971 /* 972 * On 32-bit kernels, VM exits still load the FS and GS bases from the 973 * VMCS rather than the segment table. KVM uses this helper to figure 974 * out the current bases to poke them into the VMCS before entry. 975 */ 976 static unsigned long segment_base(u16 selector) 977 { 978 struct desc_struct *table; 979 unsigned long v; 980 981 if (!(selector & ~SEGMENT_RPL_MASK)) 982 return 0; 983 984 table = get_current_gdt_ro(); 985 986 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 987 u16 ldt_selector = kvm_read_ldt(); 988 989 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 990 return 0; 991 992 table = (struct desc_struct *)segment_base(ldt_selector); 993 } 994 v = get_desc_base(&table[selector >> 3]); 995 return v; 996 } 997 #endif 998 999 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1000 { 1001 return vmx_pt_mode_is_host_guest() && 1002 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1003 } 1004 1005 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1006 { 1007 /* The base must be 128-byte aligned and a legal physical address. */ 1008 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1009 } 1010 1011 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1012 { 1013 u32 i; 1014 1015 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1016 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1017 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1018 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1019 for (i = 0; i < addr_range; i++) { 1020 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1021 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1022 } 1023 } 1024 1025 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1026 { 1027 u32 i; 1028 1029 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1030 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1031 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1032 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1033 for (i = 0; i < addr_range; i++) { 1034 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1035 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1036 } 1037 } 1038 1039 static void pt_guest_enter(struct vcpu_vmx *vmx) 1040 { 1041 if (vmx_pt_mode_is_system()) 1042 return; 1043 1044 /* 1045 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1046 * Save host state before VM entry. 1047 */ 1048 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1049 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1050 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1051 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1052 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1053 } 1054 } 1055 1056 static void pt_guest_exit(struct vcpu_vmx *vmx) 1057 { 1058 if (vmx_pt_mode_is_system()) 1059 return; 1060 1061 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1062 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1063 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1064 } 1065 1066 /* 1067 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1068 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1069 */ 1070 if (vmx->pt_desc.host.ctl) 1071 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1072 } 1073 1074 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1075 unsigned long fs_base, unsigned long gs_base) 1076 { 1077 if (unlikely(fs_sel != host->fs_sel)) { 1078 if (!(fs_sel & 7)) 1079 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1080 else 1081 vmcs_write16(HOST_FS_SELECTOR, 0); 1082 host->fs_sel = fs_sel; 1083 } 1084 if (unlikely(gs_sel != host->gs_sel)) { 1085 if (!(gs_sel & 7)) 1086 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1087 else 1088 vmcs_write16(HOST_GS_SELECTOR, 0); 1089 host->gs_sel = gs_sel; 1090 } 1091 if (unlikely(fs_base != host->fs_base)) { 1092 vmcs_writel(HOST_FS_BASE, fs_base); 1093 host->fs_base = fs_base; 1094 } 1095 if (unlikely(gs_base != host->gs_base)) { 1096 vmcs_writel(HOST_GS_BASE, gs_base); 1097 host->gs_base = gs_base; 1098 } 1099 } 1100 1101 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1102 { 1103 struct vcpu_vmx *vmx = to_vmx(vcpu); 1104 struct vmcs_host_state *host_state; 1105 #ifdef CONFIG_X86_64 1106 int cpu = raw_smp_processor_id(); 1107 #endif 1108 unsigned long fs_base, gs_base; 1109 u16 fs_sel, gs_sel; 1110 int i; 1111 1112 vmx->req_immediate_exit = false; 1113 1114 /* 1115 * Note that guest MSRs to be saved/restored can also be changed 1116 * when guest state is loaded. This happens when guest transitions 1117 * to/from long-mode by setting MSR_EFER.LMA. 1118 */ 1119 if (!vmx->guest_uret_msrs_loaded) { 1120 vmx->guest_uret_msrs_loaded = true; 1121 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1122 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1123 continue; 1124 1125 kvm_set_user_return_msr(i, 1126 vmx->guest_uret_msrs[i].data, 1127 vmx->guest_uret_msrs[i].mask); 1128 } 1129 } 1130 1131 if (vmx->nested.need_vmcs12_to_shadow_sync) 1132 nested_sync_vmcs12_to_shadow(vcpu); 1133 1134 if (vmx->guest_state_loaded) 1135 return; 1136 1137 host_state = &vmx->loaded_vmcs->host_state; 1138 1139 /* 1140 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1141 * allow segment selectors with cpl > 0 or ti == 1. 1142 */ 1143 host_state->ldt_sel = kvm_read_ldt(); 1144 1145 #ifdef CONFIG_X86_64 1146 savesegment(ds, host_state->ds_sel); 1147 savesegment(es, host_state->es_sel); 1148 1149 gs_base = cpu_kernelmode_gs_base(cpu); 1150 if (likely(is_64bit_mm(current->mm))) { 1151 current_save_fsgs(); 1152 fs_sel = current->thread.fsindex; 1153 gs_sel = current->thread.gsindex; 1154 fs_base = current->thread.fsbase; 1155 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1156 } else { 1157 savesegment(fs, fs_sel); 1158 savesegment(gs, gs_sel); 1159 fs_base = read_msr(MSR_FS_BASE); 1160 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1161 } 1162 1163 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1164 #else 1165 savesegment(fs, fs_sel); 1166 savesegment(gs, gs_sel); 1167 fs_base = segment_base(fs_sel); 1168 gs_base = segment_base(gs_sel); 1169 #endif 1170 1171 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1172 vmx->guest_state_loaded = true; 1173 } 1174 1175 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1176 { 1177 struct vmcs_host_state *host_state; 1178 1179 if (!vmx->guest_state_loaded) 1180 return; 1181 1182 host_state = &vmx->loaded_vmcs->host_state; 1183 1184 ++vmx->vcpu.stat.host_state_reload; 1185 1186 #ifdef CONFIG_X86_64 1187 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1188 #endif 1189 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1190 kvm_load_ldt(host_state->ldt_sel); 1191 #ifdef CONFIG_X86_64 1192 load_gs_index(host_state->gs_sel); 1193 #else 1194 loadsegment(gs, host_state->gs_sel); 1195 #endif 1196 } 1197 if (host_state->fs_sel & 7) 1198 loadsegment(fs, host_state->fs_sel); 1199 #ifdef CONFIG_X86_64 1200 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1201 loadsegment(ds, host_state->ds_sel); 1202 loadsegment(es, host_state->es_sel); 1203 } 1204 #endif 1205 invalidate_tss_limit(); 1206 #ifdef CONFIG_X86_64 1207 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1208 #endif 1209 load_fixmap_gdt(raw_smp_processor_id()); 1210 vmx->guest_state_loaded = false; 1211 vmx->guest_uret_msrs_loaded = false; 1212 } 1213 1214 #ifdef CONFIG_X86_64 1215 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1216 { 1217 preempt_disable(); 1218 if (vmx->guest_state_loaded) 1219 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1220 preempt_enable(); 1221 return vmx->msr_guest_kernel_gs_base; 1222 } 1223 1224 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1225 { 1226 preempt_disable(); 1227 if (vmx->guest_state_loaded) 1228 wrmsrl(MSR_KERNEL_GS_BASE, data); 1229 preempt_enable(); 1230 vmx->msr_guest_kernel_gs_base = data; 1231 } 1232 #endif 1233 1234 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1235 struct loaded_vmcs *buddy) 1236 { 1237 struct vcpu_vmx *vmx = to_vmx(vcpu); 1238 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1239 struct vmcs *prev; 1240 1241 if (!already_loaded) { 1242 loaded_vmcs_clear(vmx->loaded_vmcs); 1243 local_irq_disable(); 1244 1245 /* 1246 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1247 * this cpu's percpu list, otherwise it may not yet be deleted 1248 * from its previous cpu's percpu list. Pairs with the 1249 * smb_wmb() in __loaded_vmcs_clear(). 1250 */ 1251 smp_rmb(); 1252 1253 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1254 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1255 local_irq_enable(); 1256 } 1257 1258 prev = per_cpu(current_vmcs, cpu); 1259 if (prev != vmx->loaded_vmcs->vmcs) { 1260 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1261 vmcs_load(vmx->loaded_vmcs->vmcs); 1262 1263 /* 1264 * No indirect branch prediction barrier needed when switching 1265 * the active VMCS within a guest, e.g. on nested VM-Enter. 1266 * The L1 VMM can protect itself with retpolines, IBPB or IBRS. 1267 */ 1268 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1269 indirect_branch_prediction_barrier(); 1270 } 1271 1272 if (!already_loaded) { 1273 void *gdt = get_current_gdt_ro(); 1274 unsigned long sysenter_esp; 1275 1276 /* 1277 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1278 * TLB entries from its previous association with the vCPU. 1279 */ 1280 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1281 1282 /* 1283 * Linux uses per-cpu TSS and GDT, so set these when switching 1284 * processors. See 22.2.4. 1285 */ 1286 vmcs_writel(HOST_TR_BASE, 1287 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1288 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1289 1290 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); 1291 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ 1292 1293 vmx->loaded_vmcs->cpu = cpu; 1294 } 1295 } 1296 1297 /* 1298 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1299 * vcpu mutex is already taken. 1300 */ 1301 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1302 { 1303 struct vcpu_vmx *vmx = to_vmx(vcpu); 1304 1305 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1306 1307 vmx_vcpu_pi_load(vcpu, cpu); 1308 1309 vmx->host_debugctlmsr = get_debugctlmsr(); 1310 } 1311 1312 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1313 { 1314 vmx_vcpu_pi_put(vcpu); 1315 1316 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1317 } 1318 1319 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1320 { 1321 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1322 } 1323 1324 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1325 { 1326 struct vcpu_vmx *vmx = to_vmx(vcpu); 1327 unsigned long rflags, save_rflags; 1328 1329 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1330 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1331 rflags = vmcs_readl(GUEST_RFLAGS); 1332 if (vmx->rmode.vm86_active) { 1333 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1334 save_rflags = vmx->rmode.save_rflags; 1335 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1336 } 1337 vmx->rflags = rflags; 1338 } 1339 return vmx->rflags; 1340 } 1341 1342 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1343 { 1344 struct vcpu_vmx *vmx = to_vmx(vcpu); 1345 unsigned long old_rflags; 1346 1347 if (is_unrestricted_guest(vcpu)) { 1348 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1349 vmx->rflags = rflags; 1350 vmcs_writel(GUEST_RFLAGS, rflags); 1351 return; 1352 } 1353 1354 old_rflags = vmx_get_rflags(vcpu); 1355 vmx->rflags = rflags; 1356 if (vmx->rmode.vm86_active) { 1357 vmx->rmode.save_rflags = rflags; 1358 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1359 } 1360 vmcs_writel(GUEST_RFLAGS, rflags); 1361 1362 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1363 vmx->emulation_required = vmx_emulation_required(vcpu); 1364 } 1365 1366 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1367 { 1368 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1369 } 1370 1371 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1372 { 1373 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1374 int ret = 0; 1375 1376 if (interruptibility & GUEST_INTR_STATE_STI) 1377 ret |= KVM_X86_SHADOW_INT_STI; 1378 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1379 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1380 1381 return ret; 1382 } 1383 1384 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1385 { 1386 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1387 u32 interruptibility = interruptibility_old; 1388 1389 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1390 1391 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1392 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1393 else if (mask & KVM_X86_SHADOW_INT_STI) 1394 interruptibility |= GUEST_INTR_STATE_STI; 1395 1396 if ((interruptibility != interruptibility_old)) 1397 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1398 } 1399 1400 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1401 { 1402 struct vcpu_vmx *vmx = to_vmx(vcpu); 1403 unsigned long value; 1404 1405 /* 1406 * Any MSR write that attempts to change bits marked reserved will 1407 * case a #GP fault. 1408 */ 1409 if (data & vmx->pt_desc.ctl_bitmask) 1410 return 1; 1411 1412 /* 1413 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1414 * result in a #GP unless the same write also clears TraceEn. 1415 */ 1416 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1417 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1418 return 1; 1419 1420 /* 1421 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1422 * and FabricEn would cause #GP, if 1423 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1424 */ 1425 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1426 !(data & RTIT_CTL_FABRIC_EN) && 1427 !intel_pt_validate_cap(vmx->pt_desc.caps, 1428 PT_CAP_single_range_output)) 1429 return 1; 1430 1431 /* 1432 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1433 * utilize encodings marked reserved will cause a #GP fault. 1434 */ 1435 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1436 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1437 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1438 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1439 return 1; 1440 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1441 PT_CAP_cycle_thresholds); 1442 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1443 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1444 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1445 return 1; 1446 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1447 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1448 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1449 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1450 return 1; 1451 1452 /* 1453 * If ADDRx_CFG is reserved or the encodings is >2 will 1454 * cause a #GP fault. 1455 */ 1456 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1457 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1458 return 1; 1459 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1460 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1461 return 1; 1462 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1463 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1464 return 1; 1465 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1466 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1467 return 1; 1468 1469 return 0; 1470 } 1471 1472 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 1473 { 1474 /* 1475 * Emulation of instructions in SGX enclaves is impossible as RIP does 1476 * not point tthe failing instruction, and even if it did, the code 1477 * stream is inaccessible. Inject #UD instead of exiting to userspace 1478 * so that guest userspace can't DoS the guest simply by triggering 1479 * emulation (enclaves are CPL3 only). 1480 */ 1481 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1482 kvm_queue_exception(vcpu, UD_VECTOR); 1483 return false; 1484 } 1485 return true; 1486 } 1487 1488 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1489 { 1490 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1491 unsigned long rip, orig_rip; 1492 u32 instr_len; 1493 1494 /* 1495 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1496 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1497 * set when EPT misconfig occurs. In practice, real hardware updates 1498 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1499 * (namely Hyper-V) don't set it due to it being undefined behavior, 1500 * i.e. we end up advancing IP with some random value. 1501 */ 1502 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1503 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1504 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1505 1506 /* 1507 * Emulating an enclave's instructions isn't supported as KVM 1508 * cannot access the enclave's memory or its true RIP, e.g. the 1509 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1510 * the RIP that actually triggered the VM-Exit. But, because 1511 * most instructions that cause VM-Exit will #UD in an enclave, 1512 * most instruction-based VM-Exits simply do not occur. 1513 * 1514 * There are a few exceptions, notably the debug instructions 1515 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1516 * and generate #DB/#BP as expected, which KVM might intercept. 1517 * But again, the CPU does the dirty work and saves an instr 1518 * length of zero so VMMs don't shoot themselves in the foot. 1519 * WARN if KVM tries to skip a non-zero length instruction on 1520 * a VM-Exit from an enclave. 1521 */ 1522 if (!instr_len) 1523 goto rip_updated; 1524 1525 WARN(exit_reason.enclave_mode, 1526 "KVM: skipping instruction after SGX enclave VM-Exit"); 1527 1528 orig_rip = kvm_rip_read(vcpu); 1529 rip = orig_rip + instr_len; 1530 #ifdef CONFIG_X86_64 1531 /* 1532 * We need to mask out the high 32 bits of RIP if not in 64-bit 1533 * mode, but just finding out that we are in 64-bit mode is 1534 * quite expensive. Only do it if there was a carry. 1535 */ 1536 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1537 rip = (u32)rip; 1538 #endif 1539 kvm_rip_write(vcpu, rip); 1540 } else { 1541 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1542 return 0; 1543 } 1544 1545 rip_updated: 1546 /* skipping an emulated instruction also counts */ 1547 vmx_set_interrupt_shadow(vcpu, 0); 1548 1549 return 1; 1550 } 1551 1552 /* 1553 * Recognizes a pending MTF VM-exit and records the nested state for later 1554 * delivery. 1555 */ 1556 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1557 { 1558 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1559 struct vcpu_vmx *vmx = to_vmx(vcpu); 1560 1561 if (!is_guest_mode(vcpu)) 1562 return; 1563 1564 /* 1565 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1566 * T-bit traps. As instruction emulation is completed (i.e. at the 1567 * instruction boundary), any #DB exception pending delivery must be a 1568 * debug-trap. Record the pending MTF state to be delivered in 1569 * vmx_check_nested_events(). 1570 */ 1571 if (nested_cpu_has_mtf(vmcs12) && 1572 (!vcpu->arch.exception.pending || 1573 vcpu->arch.exception.nr == DB_VECTOR)) 1574 vmx->nested.mtf_pending = true; 1575 else 1576 vmx->nested.mtf_pending = false; 1577 } 1578 1579 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1580 { 1581 vmx_update_emulated_instruction(vcpu); 1582 return skip_emulated_instruction(vcpu); 1583 } 1584 1585 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1586 { 1587 /* 1588 * Ensure that we clear the HLT state in the VMCS. We don't need to 1589 * explicitly skip the instruction because if the HLT state is set, 1590 * then the instruction is already executing and RIP has already been 1591 * advanced. 1592 */ 1593 if (kvm_hlt_in_guest(vcpu->kvm) && 1594 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1595 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1596 } 1597 1598 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1599 { 1600 struct vcpu_vmx *vmx = to_vmx(vcpu); 1601 unsigned nr = vcpu->arch.exception.nr; 1602 bool has_error_code = vcpu->arch.exception.has_error_code; 1603 u32 error_code = vcpu->arch.exception.error_code; 1604 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1605 1606 kvm_deliver_exception_payload(vcpu); 1607 1608 if (has_error_code) { 1609 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1610 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1611 } 1612 1613 if (vmx->rmode.vm86_active) { 1614 int inc_eip = 0; 1615 if (kvm_exception_is_soft(nr)) 1616 inc_eip = vcpu->arch.event_exit_inst_len; 1617 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip); 1618 return; 1619 } 1620 1621 WARN_ON_ONCE(vmx->emulation_required); 1622 1623 if (kvm_exception_is_soft(nr)) { 1624 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1625 vmx->vcpu.arch.event_exit_inst_len); 1626 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1627 } else 1628 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1629 1630 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1631 1632 vmx_clear_hlt(vcpu); 1633 } 1634 1635 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1636 bool load_into_hardware) 1637 { 1638 struct vmx_uret_msr *uret_msr; 1639 1640 uret_msr = vmx_find_uret_msr(vmx, msr); 1641 if (!uret_msr) 1642 return; 1643 1644 uret_msr->load_into_hardware = load_into_hardware; 1645 } 1646 1647 /* 1648 * Configuring user return MSRs to automatically save, load, and restore MSRs 1649 * that need to be shoved into hardware when running the guest. Note, omitting 1650 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1651 * loaded into hardware when running the guest. 1652 */ 1653 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1654 { 1655 #ifdef CONFIG_X86_64 1656 bool load_syscall_msrs; 1657 1658 /* 1659 * The SYSCALL MSRs are only needed on long mode guests, and only 1660 * when EFER.SCE is set. 1661 */ 1662 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1663 (vmx->vcpu.arch.efer & EFER_SCE); 1664 1665 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1666 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1667 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1668 #endif 1669 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1670 1671 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1672 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1673 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1674 1675 /* 1676 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1677 * kernel and old userspace. If those guests run on a tsx=off host, do 1678 * allow guests to use TSX_CTRL, but don't change the value in hardware 1679 * so that TSX remains always disabled. 1680 */ 1681 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1682 1683 /* 1684 * The set of MSRs to load may have changed, reload MSRs before the 1685 * next VM-Enter. 1686 */ 1687 vmx->guest_uret_msrs_loaded = false; 1688 } 1689 1690 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1691 { 1692 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1693 1694 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1695 return vmcs12->tsc_offset; 1696 1697 return 0; 1698 } 1699 1700 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1701 { 1702 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1703 1704 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1705 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1706 return vmcs12->tsc_multiplier; 1707 1708 return kvm_default_tsc_scaling_ratio; 1709 } 1710 1711 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1712 { 1713 vmcs_write64(TSC_OFFSET, offset); 1714 } 1715 1716 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1717 { 1718 vmcs_write64(TSC_MULTIPLIER, multiplier); 1719 } 1720 1721 /* 1722 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1723 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1724 * all guests if the "nested" module option is off, and can also be disabled 1725 * for a single guest by disabling its VMX cpuid bit. 1726 */ 1727 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1728 { 1729 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1730 } 1731 1732 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1733 uint64_t val) 1734 { 1735 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1736 1737 return !(val & ~valid_bits); 1738 } 1739 1740 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1741 { 1742 switch (msr->index) { 1743 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1744 if (!nested) 1745 return 1; 1746 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1747 case MSR_IA32_PERF_CAPABILITIES: 1748 msr->data = vmx_get_perf_capabilities(); 1749 return 0; 1750 default: 1751 return KVM_MSR_RET_INVALID; 1752 } 1753 } 1754 1755 /* 1756 * Reads an msr value (of 'msr_index') into 'pdata'. 1757 * Returns 0 on success, non-0 otherwise. 1758 * Assumes vcpu_load() was already called. 1759 */ 1760 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1761 { 1762 struct vcpu_vmx *vmx = to_vmx(vcpu); 1763 struct vmx_uret_msr *msr; 1764 u32 index; 1765 1766 switch (msr_info->index) { 1767 #ifdef CONFIG_X86_64 1768 case MSR_FS_BASE: 1769 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1770 break; 1771 case MSR_GS_BASE: 1772 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1773 break; 1774 case MSR_KERNEL_GS_BASE: 1775 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1776 break; 1777 #endif 1778 case MSR_EFER: 1779 return kvm_get_msr_common(vcpu, msr_info); 1780 case MSR_IA32_TSX_CTRL: 1781 if (!msr_info->host_initiated && 1782 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1783 return 1; 1784 goto find_uret_msr; 1785 case MSR_IA32_UMWAIT_CONTROL: 1786 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 1787 return 1; 1788 1789 msr_info->data = vmx->msr_ia32_umwait_control; 1790 break; 1791 case MSR_IA32_SPEC_CTRL: 1792 if (!msr_info->host_initiated && 1793 !guest_has_spec_ctrl_msr(vcpu)) 1794 return 1; 1795 1796 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1797 break; 1798 case MSR_IA32_SYSENTER_CS: 1799 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1800 break; 1801 case MSR_IA32_SYSENTER_EIP: 1802 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1803 break; 1804 case MSR_IA32_SYSENTER_ESP: 1805 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1806 break; 1807 case MSR_IA32_BNDCFGS: 1808 if (!kvm_mpx_supported() || 1809 (!msr_info->host_initiated && 1810 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1811 return 1; 1812 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1813 break; 1814 case MSR_IA32_MCG_EXT_CTL: 1815 if (!msr_info->host_initiated && 1816 !(vmx->msr_ia32_feature_control & 1817 FEAT_CTL_LMCE_ENABLED)) 1818 return 1; 1819 msr_info->data = vcpu->arch.mcg_ext_ctl; 1820 break; 1821 case MSR_IA32_FEAT_CTL: 1822 msr_info->data = vmx->msr_ia32_feature_control; 1823 break; 1824 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 1825 if (!msr_info->host_initiated && 1826 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 1827 return 1; 1828 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 1829 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 1830 break; 1831 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1832 if (!nested_vmx_allowed(vcpu)) 1833 return 1; 1834 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1835 &msr_info->data)) 1836 return 1; 1837 /* 1838 * Enlightened VMCS v1 doesn't have certain VMCS fields but 1839 * instead of just ignoring the features, different Hyper-V 1840 * versions are either trying to use them and fail or do some 1841 * sanity checking and refuse to boot. Filter all unsupported 1842 * features out. 1843 */ 1844 if (!msr_info->host_initiated && 1845 vmx->nested.enlightened_vmcs_enabled) 1846 nested_evmcs_filter_control_msr(msr_info->index, 1847 &msr_info->data); 1848 break; 1849 case MSR_IA32_RTIT_CTL: 1850 if (!vmx_pt_mode_is_host_guest()) 1851 return 1; 1852 msr_info->data = vmx->pt_desc.guest.ctl; 1853 break; 1854 case MSR_IA32_RTIT_STATUS: 1855 if (!vmx_pt_mode_is_host_guest()) 1856 return 1; 1857 msr_info->data = vmx->pt_desc.guest.status; 1858 break; 1859 case MSR_IA32_RTIT_CR3_MATCH: 1860 if (!vmx_pt_mode_is_host_guest() || 1861 !intel_pt_validate_cap(vmx->pt_desc.caps, 1862 PT_CAP_cr3_filtering)) 1863 return 1; 1864 msr_info->data = vmx->pt_desc.guest.cr3_match; 1865 break; 1866 case MSR_IA32_RTIT_OUTPUT_BASE: 1867 if (!vmx_pt_mode_is_host_guest() || 1868 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1869 PT_CAP_topa_output) && 1870 !intel_pt_validate_cap(vmx->pt_desc.caps, 1871 PT_CAP_single_range_output))) 1872 return 1; 1873 msr_info->data = vmx->pt_desc.guest.output_base; 1874 break; 1875 case MSR_IA32_RTIT_OUTPUT_MASK: 1876 if (!vmx_pt_mode_is_host_guest() || 1877 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1878 PT_CAP_topa_output) && 1879 !intel_pt_validate_cap(vmx->pt_desc.caps, 1880 PT_CAP_single_range_output))) 1881 return 1; 1882 msr_info->data = vmx->pt_desc.guest.output_mask; 1883 break; 1884 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1885 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1886 if (!vmx_pt_mode_is_host_guest() || 1887 (index >= 2 * vmx->pt_desc.num_address_ranges)) 1888 return 1; 1889 if (index % 2) 1890 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1891 else 1892 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1893 break; 1894 case MSR_IA32_DEBUGCTLMSR: 1895 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 1896 break; 1897 default: 1898 find_uret_msr: 1899 msr = vmx_find_uret_msr(vmx, msr_info->index); 1900 if (msr) { 1901 msr_info->data = msr->data; 1902 break; 1903 } 1904 return kvm_get_msr_common(vcpu, msr_info); 1905 } 1906 1907 return 0; 1908 } 1909 1910 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 1911 u64 data) 1912 { 1913 #ifdef CONFIG_X86_64 1914 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1915 return (u32)data; 1916 #endif 1917 return (unsigned long)data; 1918 } 1919 1920 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu) 1921 { 1922 u64 debugctl = vmx_supported_debugctl(); 1923 1924 if (!intel_pmu_lbr_is_enabled(vcpu)) 1925 debugctl &= ~DEBUGCTLMSR_LBR_MASK; 1926 1927 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1928 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT; 1929 1930 return debugctl; 1931 } 1932 1933 /* 1934 * Writes msr value into the appropriate "register". 1935 * Returns 0 on success, non-0 otherwise. 1936 * Assumes vcpu_load() was already called. 1937 */ 1938 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1939 { 1940 struct vcpu_vmx *vmx = to_vmx(vcpu); 1941 struct vmx_uret_msr *msr; 1942 int ret = 0; 1943 u32 msr_index = msr_info->index; 1944 u64 data = msr_info->data; 1945 u32 index; 1946 1947 switch (msr_index) { 1948 case MSR_EFER: 1949 ret = kvm_set_msr_common(vcpu, msr_info); 1950 break; 1951 #ifdef CONFIG_X86_64 1952 case MSR_FS_BASE: 1953 vmx_segment_cache_clear(vmx); 1954 vmcs_writel(GUEST_FS_BASE, data); 1955 break; 1956 case MSR_GS_BASE: 1957 vmx_segment_cache_clear(vmx); 1958 vmcs_writel(GUEST_GS_BASE, data); 1959 break; 1960 case MSR_KERNEL_GS_BASE: 1961 vmx_write_guest_kernel_gs_base(vmx, data); 1962 break; 1963 #endif 1964 case MSR_IA32_SYSENTER_CS: 1965 if (is_guest_mode(vcpu)) 1966 get_vmcs12(vcpu)->guest_sysenter_cs = data; 1967 vmcs_write32(GUEST_SYSENTER_CS, data); 1968 break; 1969 case MSR_IA32_SYSENTER_EIP: 1970 if (is_guest_mode(vcpu)) { 1971 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 1972 get_vmcs12(vcpu)->guest_sysenter_eip = data; 1973 } 1974 vmcs_writel(GUEST_SYSENTER_EIP, data); 1975 break; 1976 case MSR_IA32_SYSENTER_ESP: 1977 if (is_guest_mode(vcpu)) { 1978 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 1979 get_vmcs12(vcpu)->guest_sysenter_esp = data; 1980 } 1981 vmcs_writel(GUEST_SYSENTER_ESP, data); 1982 break; 1983 case MSR_IA32_DEBUGCTLMSR: { 1984 u64 invalid = data & ~vcpu_supported_debugctl(vcpu); 1985 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 1986 if (report_ignored_msrs) 1987 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n", 1988 __func__, data); 1989 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 1990 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 1991 } 1992 1993 if (invalid) 1994 return 1; 1995 1996 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 1997 VM_EXIT_SAVE_DEBUG_CONTROLS) 1998 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 1999 2000 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2001 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2002 (data & DEBUGCTLMSR_LBR)) 2003 intel_pmu_create_guest_lbr_event(vcpu); 2004 return 0; 2005 } 2006 case MSR_IA32_BNDCFGS: 2007 if (!kvm_mpx_supported() || 2008 (!msr_info->host_initiated && 2009 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2010 return 1; 2011 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2012 (data & MSR_IA32_BNDCFGS_RSVD)) 2013 return 1; 2014 vmcs_write64(GUEST_BNDCFGS, data); 2015 break; 2016 case MSR_IA32_UMWAIT_CONTROL: 2017 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2018 return 1; 2019 2020 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2021 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2022 return 1; 2023 2024 vmx->msr_ia32_umwait_control = data; 2025 break; 2026 case MSR_IA32_SPEC_CTRL: 2027 if (!msr_info->host_initiated && 2028 !guest_has_spec_ctrl_msr(vcpu)) 2029 return 1; 2030 2031 if (kvm_spec_ctrl_test_value(data)) 2032 return 1; 2033 2034 vmx->spec_ctrl = data; 2035 if (!data) 2036 break; 2037 2038 /* 2039 * For non-nested: 2040 * When it's written (to non-zero) for the first time, pass 2041 * it through. 2042 * 2043 * For nested: 2044 * The handling of the MSR bitmap for L2 guests is done in 2045 * nested_vmx_prepare_msr_bitmap. We should not touch the 2046 * vmcs02.msr_bitmap here since it gets completely overwritten 2047 * in the merging. We update the vmcs01 here for L1 as well 2048 * since it will end up touching the MSR anyway now. 2049 */ 2050 vmx_disable_intercept_for_msr(vcpu, 2051 MSR_IA32_SPEC_CTRL, 2052 MSR_TYPE_RW); 2053 break; 2054 case MSR_IA32_TSX_CTRL: 2055 if (!msr_info->host_initiated && 2056 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2057 return 1; 2058 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2059 return 1; 2060 goto find_uret_msr; 2061 case MSR_IA32_PRED_CMD: 2062 if (!msr_info->host_initiated && 2063 !guest_has_pred_cmd_msr(vcpu)) 2064 return 1; 2065 2066 if (data & ~PRED_CMD_IBPB) 2067 return 1; 2068 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2069 return 1; 2070 if (!data) 2071 break; 2072 2073 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2074 2075 /* 2076 * For non-nested: 2077 * When it's written (to non-zero) for the first time, pass 2078 * it through. 2079 * 2080 * For nested: 2081 * The handling of the MSR bitmap for L2 guests is done in 2082 * nested_vmx_prepare_msr_bitmap. We should not touch the 2083 * vmcs02.msr_bitmap here since it gets completely overwritten 2084 * in the merging. 2085 */ 2086 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W); 2087 break; 2088 case MSR_IA32_CR_PAT: 2089 if (!kvm_pat_valid(data)) 2090 return 1; 2091 2092 if (is_guest_mode(vcpu) && 2093 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2094 get_vmcs12(vcpu)->guest_ia32_pat = data; 2095 2096 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2097 vmcs_write64(GUEST_IA32_PAT, data); 2098 vcpu->arch.pat = data; 2099 break; 2100 } 2101 ret = kvm_set_msr_common(vcpu, msr_info); 2102 break; 2103 case MSR_IA32_TSC_ADJUST: 2104 ret = kvm_set_msr_common(vcpu, msr_info); 2105 break; 2106 case MSR_IA32_MCG_EXT_CTL: 2107 if ((!msr_info->host_initiated && 2108 !(to_vmx(vcpu)->msr_ia32_feature_control & 2109 FEAT_CTL_LMCE_ENABLED)) || 2110 (data & ~MCG_EXT_CTL_LMCE_EN)) 2111 return 1; 2112 vcpu->arch.mcg_ext_ctl = data; 2113 break; 2114 case MSR_IA32_FEAT_CTL: 2115 if (!vmx_feature_control_msr_valid(vcpu, data) || 2116 (to_vmx(vcpu)->msr_ia32_feature_control & 2117 FEAT_CTL_LOCKED && !msr_info->host_initiated)) 2118 return 1; 2119 vmx->msr_ia32_feature_control = data; 2120 if (msr_info->host_initiated && data == 0) 2121 vmx_leave_nested(vcpu); 2122 2123 /* SGX may be enabled/disabled by guest's firmware */ 2124 vmx_write_encls_bitmap(vcpu, NULL); 2125 break; 2126 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2127 /* 2128 * On real hardware, the LE hash MSRs are writable before 2129 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2130 * at which point SGX related bits in IA32_FEATURE_CONTROL 2131 * become writable. 2132 * 2133 * KVM does not emulate SGX activation for simplicity, so 2134 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2135 * is unlocked. This is technically not architectural 2136 * behavior, but it's close enough. 2137 */ 2138 if (!msr_info->host_initiated && 2139 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2140 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2141 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2142 return 1; 2143 vmx->msr_ia32_sgxlepubkeyhash 2144 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2145 break; 2146 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 2147 if (!msr_info->host_initiated) 2148 return 1; /* they are read-only */ 2149 if (!nested_vmx_allowed(vcpu)) 2150 return 1; 2151 return vmx_set_vmx_msr(vcpu, msr_index, data); 2152 case MSR_IA32_RTIT_CTL: 2153 if (!vmx_pt_mode_is_host_guest() || 2154 vmx_rtit_ctl_check(vcpu, data) || 2155 vmx->nested.vmxon) 2156 return 1; 2157 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2158 vmx->pt_desc.guest.ctl = data; 2159 pt_update_intercept_for_msr(vcpu); 2160 break; 2161 case MSR_IA32_RTIT_STATUS: 2162 if (!pt_can_write_msr(vmx)) 2163 return 1; 2164 if (data & MSR_IA32_RTIT_STATUS_MASK) 2165 return 1; 2166 vmx->pt_desc.guest.status = data; 2167 break; 2168 case MSR_IA32_RTIT_CR3_MATCH: 2169 if (!pt_can_write_msr(vmx)) 2170 return 1; 2171 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2172 PT_CAP_cr3_filtering)) 2173 return 1; 2174 vmx->pt_desc.guest.cr3_match = data; 2175 break; 2176 case MSR_IA32_RTIT_OUTPUT_BASE: 2177 if (!pt_can_write_msr(vmx)) 2178 return 1; 2179 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2180 PT_CAP_topa_output) && 2181 !intel_pt_validate_cap(vmx->pt_desc.caps, 2182 PT_CAP_single_range_output)) 2183 return 1; 2184 if (!pt_output_base_valid(vcpu, data)) 2185 return 1; 2186 vmx->pt_desc.guest.output_base = data; 2187 break; 2188 case MSR_IA32_RTIT_OUTPUT_MASK: 2189 if (!pt_can_write_msr(vmx)) 2190 return 1; 2191 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2192 PT_CAP_topa_output) && 2193 !intel_pt_validate_cap(vmx->pt_desc.caps, 2194 PT_CAP_single_range_output)) 2195 return 1; 2196 vmx->pt_desc.guest.output_mask = data; 2197 break; 2198 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2199 if (!pt_can_write_msr(vmx)) 2200 return 1; 2201 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2202 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2203 return 1; 2204 if (is_noncanonical_address(data, vcpu)) 2205 return 1; 2206 if (index % 2) 2207 vmx->pt_desc.guest.addr_b[index / 2] = data; 2208 else 2209 vmx->pt_desc.guest.addr_a[index / 2] = data; 2210 break; 2211 case MSR_IA32_PERF_CAPABILITIES: 2212 if (data && !vcpu_to_pmu(vcpu)->version) 2213 return 1; 2214 if (data & PMU_CAP_LBR_FMT) { 2215 if ((data & PMU_CAP_LBR_FMT) != 2216 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT)) 2217 return 1; 2218 if (!intel_pmu_lbr_is_compatible(vcpu)) 2219 return 1; 2220 } 2221 ret = kvm_set_msr_common(vcpu, msr_info); 2222 break; 2223 2224 default: 2225 find_uret_msr: 2226 msr = vmx_find_uret_msr(vmx, msr_index); 2227 if (msr) 2228 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2229 else 2230 ret = kvm_set_msr_common(vcpu, msr_info); 2231 } 2232 2233 return ret; 2234 } 2235 2236 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2237 { 2238 unsigned long guest_owned_bits; 2239 2240 kvm_register_mark_available(vcpu, reg); 2241 2242 switch (reg) { 2243 case VCPU_REGS_RSP: 2244 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2245 break; 2246 case VCPU_REGS_RIP: 2247 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2248 break; 2249 case VCPU_EXREG_PDPTR: 2250 if (enable_ept) 2251 ept_save_pdptrs(vcpu); 2252 break; 2253 case VCPU_EXREG_CR0: 2254 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2255 2256 vcpu->arch.cr0 &= ~guest_owned_bits; 2257 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2258 break; 2259 case VCPU_EXREG_CR3: 2260 /* 2261 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2262 * CR3 is loaded into hardware, not the guest's CR3. 2263 */ 2264 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2265 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2266 break; 2267 case VCPU_EXREG_CR4: 2268 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2269 2270 vcpu->arch.cr4 &= ~guest_owned_bits; 2271 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2272 break; 2273 default: 2274 KVM_BUG_ON(1, vcpu->kvm); 2275 break; 2276 } 2277 } 2278 2279 static __init int cpu_has_kvm_support(void) 2280 { 2281 return cpu_has_vmx(); 2282 } 2283 2284 static __init int vmx_disabled_by_bios(void) 2285 { 2286 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2287 !boot_cpu_has(X86_FEATURE_VMX); 2288 } 2289 2290 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2291 { 2292 u64 msr; 2293 2294 cr4_set_bits(X86_CR4_VMXE); 2295 2296 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2297 _ASM_EXTABLE(1b, %l[fault]) 2298 : : [vmxon_pointer] "m"(vmxon_pointer) 2299 : : fault); 2300 return 0; 2301 2302 fault: 2303 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2304 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2305 cr4_clear_bits(X86_CR4_VMXE); 2306 2307 return -EFAULT; 2308 } 2309 2310 static int hardware_enable(void) 2311 { 2312 int cpu = raw_smp_processor_id(); 2313 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2314 int r; 2315 2316 if (cr4_read_shadow() & X86_CR4_VMXE) 2317 return -EBUSY; 2318 2319 /* 2320 * This can happen if we hot-added a CPU but failed to allocate 2321 * VP assist page for it. 2322 */ 2323 if (static_branch_unlikely(&enable_evmcs) && 2324 !hv_get_vp_assist_page(cpu)) 2325 return -EFAULT; 2326 2327 intel_pt_handle_vmx(1); 2328 2329 r = kvm_cpu_vmxon(phys_addr); 2330 if (r) { 2331 intel_pt_handle_vmx(0); 2332 return r; 2333 } 2334 2335 if (enable_ept) 2336 ept_sync_global(); 2337 2338 return 0; 2339 } 2340 2341 static void vmclear_local_loaded_vmcss(void) 2342 { 2343 int cpu = raw_smp_processor_id(); 2344 struct loaded_vmcs *v, *n; 2345 2346 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2347 loaded_vmcss_on_cpu_link) 2348 __loaded_vmcs_clear(v); 2349 } 2350 2351 static void hardware_disable(void) 2352 { 2353 vmclear_local_loaded_vmcss(); 2354 2355 if (cpu_vmxoff()) 2356 kvm_spurious_fault(); 2357 2358 intel_pt_handle_vmx(0); 2359 } 2360 2361 /* 2362 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2363 * directly instead of going through cpu_has(), to ensure KVM is trapping 2364 * ENCLS whenever it's supported in hardware. It does not matter whether 2365 * the host OS supports or has enabled SGX. 2366 */ 2367 static bool cpu_has_sgx(void) 2368 { 2369 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2370 } 2371 2372 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2373 u32 msr, u32 *result) 2374 { 2375 u32 vmx_msr_low, vmx_msr_high; 2376 u32 ctl = ctl_min | ctl_opt; 2377 2378 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2379 2380 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2381 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2382 2383 /* Ensure minimum (required) set of control bits are supported. */ 2384 if (ctl_min & ~ctl) 2385 return -EIO; 2386 2387 *result = ctl; 2388 return 0; 2389 } 2390 2391 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2392 struct vmx_capability *vmx_cap) 2393 { 2394 u32 vmx_msr_low, vmx_msr_high; 2395 u32 min, opt, min2, opt2; 2396 u32 _pin_based_exec_control = 0; 2397 u32 _cpu_based_exec_control = 0; 2398 u32 _cpu_based_2nd_exec_control = 0; 2399 u32 _vmexit_control = 0; 2400 u32 _vmentry_control = 0; 2401 2402 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2403 min = CPU_BASED_HLT_EXITING | 2404 #ifdef CONFIG_X86_64 2405 CPU_BASED_CR8_LOAD_EXITING | 2406 CPU_BASED_CR8_STORE_EXITING | 2407 #endif 2408 CPU_BASED_CR3_LOAD_EXITING | 2409 CPU_BASED_CR3_STORE_EXITING | 2410 CPU_BASED_UNCOND_IO_EXITING | 2411 CPU_BASED_MOV_DR_EXITING | 2412 CPU_BASED_USE_TSC_OFFSETTING | 2413 CPU_BASED_MWAIT_EXITING | 2414 CPU_BASED_MONITOR_EXITING | 2415 CPU_BASED_INVLPG_EXITING | 2416 CPU_BASED_RDPMC_EXITING; 2417 2418 opt = CPU_BASED_TPR_SHADOW | 2419 CPU_BASED_USE_MSR_BITMAPS | 2420 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2421 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2422 &_cpu_based_exec_control) < 0) 2423 return -EIO; 2424 #ifdef CONFIG_X86_64 2425 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2426 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2427 ~CPU_BASED_CR8_STORE_EXITING; 2428 #endif 2429 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2430 min2 = 0; 2431 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2432 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2433 SECONDARY_EXEC_WBINVD_EXITING | 2434 SECONDARY_EXEC_ENABLE_VPID | 2435 SECONDARY_EXEC_ENABLE_EPT | 2436 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2437 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2438 SECONDARY_EXEC_DESC | 2439 SECONDARY_EXEC_ENABLE_RDTSCP | 2440 SECONDARY_EXEC_ENABLE_INVPCID | 2441 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2442 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2443 SECONDARY_EXEC_SHADOW_VMCS | 2444 SECONDARY_EXEC_XSAVES | 2445 SECONDARY_EXEC_RDSEED_EXITING | 2446 SECONDARY_EXEC_RDRAND_EXITING | 2447 SECONDARY_EXEC_ENABLE_PML | 2448 SECONDARY_EXEC_TSC_SCALING | 2449 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | 2450 SECONDARY_EXEC_PT_USE_GPA | 2451 SECONDARY_EXEC_PT_CONCEAL_VMX | 2452 SECONDARY_EXEC_ENABLE_VMFUNC | 2453 SECONDARY_EXEC_BUS_LOCK_DETECTION; 2454 if (cpu_has_sgx()) 2455 opt2 |= SECONDARY_EXEC_ENCLS_EXITING; 2456 if (adjust_vmx_controls(min2, opt2, 2457 MSR_IA32_VMX_PROCBASED_CTLS2, 2458 &_cpu_based_2nd_exec_control) < 0) 2459 return -EIO; 2460 } 2461 #ifndef CONFIG_X86_64 2462 if (!(_cpu_based_2nd_exec_control & 2463 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2464 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2465 #endif 2466 2467 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2468 _cpu_based_2nd_exec_control &= ~( 2469 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2470 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2471 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2472 2473 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2474 &vmx_cap->ept, &vmx_cap->vpid); 2475 2476 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2477 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2478 enabled */ 2479 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2480 CPU_BASED_CR3_STORE_EXITING | 2481 CPU_BASED_INVLPG_EXITING); 2482 } else if (vmx_cap->ept) { 2483 vmx_cap->ept = 0; 2484 pr_warn_once("EPT CAP should not exist if not support " 2485 "1-setting enable EPT VM-execution control\n"); 2486 } 2487 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2488 vmx_cap->vpid) { 2489 vmx_cap->vpid = 0; 2490 pr_warn_once("VPID CAP should not exist if not support " 2491 "1-setting enable VPID VM-execution control\n"); 2492 } 2493 2494 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2495 #ifdef CONFIG_X86_64 2496 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2497 #endif 2498 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2499 VM_EXIT_LOAD_IA32_PAT | 2500 VM_EXIT_LOAD_IA32_EFER | 2501 VM_EXIT_CLEAR_BNDCFGS | 2502 VM_EXIT_PT_CONCEAL_PIP | 2503 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2504 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2505 &_vmexit_control) < 0) 2506 return -EIO; 2507 2508 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2509 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2510 PIN_BASED_VMX_PREEMPTION_TIMER; 2511 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2512 &_pin_based_exec_control) < 0) 2513 return -EIO; 2514 2515 if (cpu_has_broken_vmx_preemption_timer()) 2516 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2517 if (!(_cpu_based_2nd_exec_control & 2518 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2519 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2520 2521 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2522 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2523 VM_ENTRY_LOAD_IA32_PAT | 2524 VM_ENTRY_LOAD_IA32_EFER | 2525 VM_ENTRY_LOAD_BNDCFGS | 2526 VM_ENTRY_PT_CONCEAL_PIP | 2527 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2528 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2529 &_vmentry_control) < 0) 2530 return -EIO; 2531 2532 /* 2533 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2534 * can't be used due to an errata where VM Exit may incorrectly clear 2535 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2536 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2537 */ 2538 if (boot_cpu_data.x86 == 0x6) { 2539 switch (boot_cpu_data.x86_model) { 2540 case 26: /* AAK155 */ 2541 case 30: /* AAP115 */ 2542 case 37: /* AAT100 */ 2543 case 44: /* BC86,AAY89,BD102 */ 2544 case 46: /* BA97 */ 2545 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2546 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2547 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2548 "does not work properly. Using workaround\n"); 2549 break; 2550 default: 2551 break; 2552 } 2553 } 2554 2555 2556 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2557 2558 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2559 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2560 return -EIO; 2561 2562 #ifdef CONFIG_X86_64 2563 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2564 if (vmx_msr_high & (1u<<16)) 2565 return -EIO; 2566 #endif 2567 2568 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2569 if (((vmx_msr_high >> 18) & 15) != 6) 2570 return -EIO; 2571 2572 vmcs_conf->size = vmx_msr_high & 0x1fff; 2573 vmcs_conf->order = get_order(vmcs_conf->size); 2574 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2575 2576 vmcs_conf->revision_id = vmx_msr_low; 2577 2578 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2579 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2580 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2581 vmcs_conf->vmexit_ctrl = _vmexit_control; 2582 vmcs_conf->vmentry_ctrl = _vmentry_control; 2583 2584 #if IS_ENABLED(CONFIG_HYPERV) 2585 if (enlightened_vmcs) 2586 evmcs_sanitize_exec_ctrls(vmcs_conf); 2587 #endif 2588 2589 return 0; 2590 } 2591 2592 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2593 { 2594 int node = cpu_to_node(cpu); 2595 struct page *pages; 2596 struct vmcs *vmcs; 2597 2598 pages = __alloc_pages_node(node, flags, vmcs_config.order); 2599 if (!pages) 2600 return NULL; 2601 vmcs = page_address(pages); 2602 memset(vmcs, 0, vmcs_config.size); 2603 2604 /* KVM supports Enlightened VMCS v1 only */ 2605 if (static_branch_unlikely(&enable_evmcs)) 2606 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2607 else 2608 vmcs->hdr.revision_id = vmcs_config.revision_id; 2609 2610 if (shadow) 2611 vmcs->hdr.shadow_vmcs = 1; 2612 return vmcs; 2613 } 2614 2615 void free_vmcs(struct vmcs *vmcs) 2616 { 2617 free_pages((unsigned long)vmcs, vmcs_config.order); 2618 } 2619 2620 /* 2621 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2622 */ 2623 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2624 { 2625 if (!loaded_vmcs->vmcs) 2626 return; 2627 loaded_vmcs_clear(loaded_vmcs); 2628 free_vmcs(loaded_vmcs->vmcs); 2629 loaded_vmcs->vmcs = NULL; 2630 if (loaded_vmcs->msr_bitmap) 2631 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2632 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2633 } 2634 2635 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2636 { 2637 loaded_vmcs->vmcs = alloc_vmcs(false); 2638 if (!loaded_vmcs->vmcs) 2639 return -ENOMEM; 2640 2641 vmcs_clear(loaded_vmcs->vmcs); 2642 2643 loaded_vmcs->shadow_vmcs = NULL; 2644 loaded_vmcs->hv_timer_soft_disabled = false; 2645 loaded_vmcs->cpu = -1; 2646 loaded_vmcs->launched = 0; 2647 2648 if (cpu_has_vmx_msr_bitmap()) { 2649 loaded_vmcs->msr_bitmap = (unsigned long *) 2650 __get_free_page(GFP_KERNEL_ACCOUNT); 2651 if (!loaded_vmcs->msr_bitmap) 2652 goto out_vmcs; 2653 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2654 } 2655 2656 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2657 memset(&loaded_vmcs->controls_shadow, 0, 2658 sizeof(struct vmcs_controls_shadow)); 2659 2660 return 0; 2661 2662 out_vmcs: 2663 free_loaded_vmcs(loaded_vmcs); 2664 return -ENOMEM; 2665 } 2666 2667 static void free_kvm_area(void) 2668 { 2669 int cpu; 2670 2671 for_each_possible_cpu(cpu) { 2672 free_vmcs(per_cpu(vmxarea, cpu)); 2673 per_cpu(vmxarea, cpu) = NULL; 2674 } 2675 } 2676 2677 static __init int alloc_kvm_area(void) 2678 { 2679 int cpu; 2680 2681 for_each_possible_cpu(cpu) { 2682 struct vmcs *vmcs; 2683 2684 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2685 if (!vmcs) { 2686 free_kvm_area(); 2687 return -ENOMEM; 2688 } 2689 2690 /* 2691 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2692 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2693 * revision_id reported by MSR_IA32_VMX_BASIC. 2694 * 2695 * However, even though not explicitly documented by 2696 * TLFS, VMXArea passed as VMXON argument should 2697 * still be marked with revision_id reported by 2698 * physical CPU. 2699 */ 2700 if (static_branch_unlikely(&enable_evmcs)) 2701 vmcs->hdr.revision_id = vmcs_config.revision_id; 2702 2703 per_cpu(vmxarea, cpu) = vmcs; 2704 } 2705 return 0; 2706 } 2707 2708 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2709 struct kvm_segment *save) 2710 { 2711 if (!emulate_invalid_guest_state) { 2712 /* 2713 * CS and SS RPL should be equal during guest entry according 2714 * to VMX spec, but in reality it is not always so. Since vcpu 2715 * is in the middle of the transition from real mode to 2716 * protected mode it is safe to assume that RPL 0 is a good 2717 * default value. 2718 */ 2719 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2720 save->selector &= ~SEGMENT_RPL_MASK; 2721 save->dpl = save->selector & SEGMENT_RPL_MASK; 2722 save->s = 1; 2723 } 2724 __vmx_set_segment(vcpu, save, seg); 2725 } 2726 2727 static void enter_pmode(struct kvm_vcpu *vcpu) 2728 { 2729 unsigned long flags; 2730 struct vcpu_vmx *vmx = to_vmx(vcpu); 2731 2732 /* 2733 * Update real mode segment cache. It may be not up-to-date if segment 2734 * register was written while vcpu was in a guest mode. 2735 */ 2736 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2737 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2738 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2739 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2740 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2741 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2742 2743 vmx->rmode.vm86_active = 0; 2744 2745 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2746 2747 flags = vmcs_readl(GUEST_RFLAGS); 2748 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2749 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2750 vmcs_writel(GUEST_RFLAGS, flags); 2751 2752 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2753 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2754 2755 vmx_update_exception_bitmap(vcpu); 2756 2757 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2758 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2759 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2760 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2761 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2762 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2763 } 2764 2765 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2766 { 2767 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2768 struct kvm_segment var = *save; 2769 2770 var.dpl = 0x3; 2771 if (seg == VCPU_SREG_CS) 2772 var.type = 0x3; 2773 2774 if (!emulate_invalid_guest_state) { 2775 var.selector = var.base >> 4; 2776 var.base = var.base & 0xffff0; 2777 var.limit = 0xffff; 2778 var.g = 0; 2779 var.db = 0; 2780 var.present = 1; 2781 var.s = 1; 2782 var.l = 0; 2783 var.unusable = 0; 2784 var.type = 0x3; 2785 var.avl = 0; 2786 if (save->base & 0xf) 2787 printk_once(KERN_WARNING "kvm: segment base is not " 2788 "paragraph aligned when entering " 2789 "protected mode (seg=%d)", seg); 2790 } 2791 2792 vmcs_write16(sf->selector, var.selector); 2793 vmcs_writel(sf->base, var.base); 2794 vmcs_write32(sf->limit, var.limit); 2795 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2796 } 2797 2798 static void enter_rmode(struct kvm_vcpu *vcpu) 2799 { 2800 unsigned long flags; 2801 struct vcpu_vmx *vmx = to_vmx(vcpu); 2802 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2803 2804 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2805 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2806 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2807 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2808 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2809 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2810 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2811 2812 vmx->rmode.vm86_active = 1; 2813 2814 /* 2815 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2816 * vcpu. Warn the user that an update is overdue. 2817 */ 2818 if (!kvm_vmx->tss_addr) 2819 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2820 "called before entering vcpu\n"); 2821 2822 vmx_segment_cache_clear(vmx); 2823 2824 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2825 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2826 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2827 2828 flags = vmcs_readl(GUEST_RFLAGS); 2829 vmx->rmode.save_rflags = flags; 2830 2831 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2832 2833 vmcs_writel(GUEST_RFLAGS, flags); 2834 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2835 vmx_update_exception_bitmap(vcpu); 2836 2837 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2838 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2839 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2840 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2841 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2842 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2843 } 2844 2845 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2846 { 2847 struct vcpu_vmx *vmx = to_vmx(vcpu); 2848 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER); 2849 2850 /* Nothing to do if hardware doesn't support EFER. */ 2851 if (!msr) 2852 return 0; 2853 2854 vcpu->arch.efer = efer; 2855 if (efer & EFER_LMA) { 2856 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2857 msr->data = efer; 2858 } else { 2859 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2860 2861 msr->data = efer & ~EFER_LME; 2862 } 2863 vmx_setup_uret_msrs(vmx); 2864 return 0; 2865 } 2866 2867 #ifdef CONFIG_X86_64 2868 2869 static void enter_lmode(struct kvm_vcpu *vcpu) 2870 { 2871 u32 guest_tr_ar; 2872 2873 vmx_segment_cache_clear(to_vmx(vcpu)); 2874 2875 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2876 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2877 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2878 __func__); 2879 vmcs_write32(GUEST_TR_AR_BYTES, 2880 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 2881 | VMX_AR_TYPE_BUSY_64_TSS); 2882 } 2883 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 2884 } 2885 2886 static void exit_lmode(struct kvm_vcpu *vcpu) 2887 { 2888 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2889 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 2890 } 2891 2892 #endif 2893 2894 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 2895 { 2896 struct vcpu_vmx *vmx = to_vmx(vcpu); 2897 2898 /* 2899 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 2900 * the CPU is not required to invalidate guest-physical mappings on 2901 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 2902 * associated with the root EPT structure and not any particular VPID 2903 * (INVVPID also isn't required to invalidate guest-physical mappings). 2904 */ 2905 if (enable_ept) { 2906 ept_sync_global(); 2907 } else if (enable_vpid) { 2908 if (cpu_has_vmx_invvpid_global()) { 2909 vpid_sync_vcpu_global(); 2910 } else { 2911 vpid_sync_vcpu_single(vmx->vpid); 2912 vpid_sync_vcpu_single(vmx->nested.vpid02); 2913 } 2914 } 2915 } 2916 2917 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 2918 { 2919 if (is_guest_mode(vcpu)) 2920 return nested_get_vpid02(vcpu); 2921 return to_vmx(vcpu)->vpid; 2922 } 2923 2924 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 2925 { 2926 struct kvm_mmu *mmu = vcpu->arch.mmu; 2927 u64 root_hpa = mmu->root_hpa; 2928 2929 /* No flush required if the current context is invalid. */ 2930 if (!VALID_PAGE(root_hpa)) 2931 return; 2932 2933 if (enable_ept) 2934 ept_sync_context(construct_eptp(vcpu, root_hpa, 2935 mmu->shadow_root_level)); 2936 else 2937 vpid_sync_context(vmx_get_current_vpid(vcpu)); 2938 } 2939 2940 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 2941 { 2942 /* 2943 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 2944 * vmx_flush_tlb_guest() for an explanation of why this is ok. 2945 */ 2946 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 2947 } 2948 2949 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 2950 { 2951 /* 2952 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 2953 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 2954 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 2955 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 2956 * i.e. no explicit INVVPID is necessary. 2957 */ 2958 vpid_sync_context(vmx_get_current_vpid(vcpu)); 2959 } 2960 2961 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 2962 { 2963 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2964 2965 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 2966 return; 2967 2968 if (is_pae_paging(vcpu)) { 2969 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 2970 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 2971 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 2972 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 2973 } 2974 } 2975 2976 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 2977 { 2978 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2979 2980 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 2981 return; 2982 2983 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 2984 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 2985 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 2986 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 2987 2988 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 2989 } 2990 2991 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 2992 CPU_BASED_CR3_STORE_EXITING) 2993 2994 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 2995 { 2996 struct vcpu_vmx *vmx = to_vmx(vcpu); 2997 unsigned long hw_cr0, old_cr0_pg; 2998 u32 tmp; 2999 3000 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3001 3002 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3003 if (is_unrestricted_guest(vcpu)) 3004 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3005 else { 3006 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3007 if (!enable_ept) 3008 hw_cr0 |= X86_CR0_WP; 3009 3010 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3011 enter_pmode(vcpu); 3012 3013 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3014 enter_rmode(vcpu); 3015 } 3016 3017 vmcs_writel(CR0_READ_SHADOW, cr0); 3018 vmcs_writel(GUEST_CR0, hw_cr0); 3019 vcpu->arch.cr0 = cr0; 3020 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3021 3022 #ifdef CONFIG_X86_64 3023 if (vcpu->arch.efer & EFER_LME) { 3024 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3025 enter_lmode(vcpu); 3026 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3027 exit_lmode(vcpu); 3028 } 3029 #endif 3030 3031 if (enable_ept && !is_unrestricted_guest(vcpu)) { 3032 /* 3033 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3034 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3035 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3036 * KVM's CR3 is installed. 3037 */ 3038 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3039 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3040 3041 /* 3042 * When running with EPT but not unrestricted guest, KVM must 3043 * intercept CR3 accesses when paging is _disabled_. This is 3044 * necessary because restricted guests can't actually run with 3045 * paging disabled, and so KVM stuffs its own CR3 in order to 3046 * run the guest when identity mapped page tables. 3047 * 3048 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3049 * update, it may be stale with respect to CR3 interception, 3050 * e.g. after nested VM-Enter. 3051 * 3052 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3053 * stores to forward them to L1, even if KVM does not need to 3054 * intercept them to preserve its identity mapped page tables. 3055 */ 3056 if (!(cr0 & X86_CR0_PG)) { 3057 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3058 } else if (!is_guest_mode(vcpu)) { 3059 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3060 } else { 3061 tmp = exec_controls_get(vmx); 3062 tmp &= ~CR3_EXITING_BITS; 3063 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3064 exec_controls_set(vmx, tmp); 3065 } 3066 3067 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3068 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3069 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3070 } 3071 3072 /* depends on vcpu->arch.cr0 to be set to a new value */ 3073 vmx->emulation_required = vmx_emulation_required(vcpu); 3074 } 3075 3076 static int vmx_get_max_tdp_level(void) 3077 { 3078 if (cpu_has_vmx_ept_5levels()) 3079 return 5; 3080 return 4; 3081 } 3082 3083 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3084 { 3085 u64 eptp = VMX_EPTP_MT_WB; 3086 3087 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3088 3089 if (enable_ept_ad_bits && 3090 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3091 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3092 eptp |= root_hpa; 3093 3094 return eptp; 3095 } 3096 3097 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3098 int root_level) 3099 { 3100 struct kvm *kvm = vcpu->kvm; 3101 bool update_guest_cr3 = true; 3102 unsigned long guest_cr3; 3103 u64 eptp; 3104 3105 if (enable_ept) { 3106 eptp = construct_eptp(vcpu, root_hpa, root_level); 3107 vmcs_write64(EPT_POINTER, eptp); 3108 3109 hv_track_root_tdp(vcpu, root_hpa); 3110 3111 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3112 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3113 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3114 guest_cr3 = vcpu->arch.cr3; 3115 else /* vmcs01.GUEST_CR3 is already up-to-date. */ 3116 update_guest_cr3 = false; 3117 vmx_ept_load_pdptrs(vcpu); 3118 } else { 3119 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3120 } 3121 3122 if (update_guest_cr3) 3123 vmcs_writel(GUEST_CR3, guest_cr3); 3124 } 3125 3126 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3127 { 3128 /* 3129 * We operate under the default treatment of SMM, so VMX cannot be 3130 * enabled under SMM. Note, whether or not VMXE is allowed at all is 3131 * handled by kvm_is_valid_cr4(). 3132 */ 3133 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3134 return false; 3135 3136 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3137 return false; 3138 3139 return true; 3140 } 3141 3142 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3143 { 3144 unsigned long old_cr4 = vcpu->arch.cr4; 3145 struct vcpu_vmx *vmx = to_vmx(vcpu); 3146 /* 3147 * Pass through host's Machine Check Enable value to hw_cr4, which 3148 * is in force while we are in guest mode. Do not let guests control 3149 * this bit, even if host CR4.MCE == 0. 3150 */ 3151 unsigned long hw_cr4; 3152 3153 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3154 if (is_unrestricted_guest(vcpu)) 3155 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3156 else if (vmx->rmode.vm86_active) 3157 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3158 else 3159 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3160 3161 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 3162 if (cr4 & X86_CR4_UMIP) { 3163 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3164 hw_cr4 &= ~X86_CR4_UMIP; 3165 } else if (!is_guest_mode(vcpu) || 3166 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3167 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3168 } 3169 } 3170 3171 vcpu->arch.cr4 = cr4; 3172 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3173 3174 if (!is_unrestricted_guest(vcpu)) { 3175 if (enable_ept) { 3176 if (!is_paging(vcpu)) { 3177 hw_cr4 &= ~X86_CR4_PAE; 3178 hw_cr4 |= X86_CR4_PSE; 3179 } else if (!(cr4 & X86_CR4_PAE)) { 3180 hw_cr4 &= ~X86_CR4_PAE; 3181 } 3182 } 3183 3184 /* 3185 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3186 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3187 * to be manually disabled when guest switches to non-paging 3188 * mode. 3189 * 3190 * If !enable_unrestricted_guest, the CPU is always running 3191 * with CR0.PG=1 and CR4 needs to be modified. 3192 * If enable_unrestricted_guest, the CPU automatically 3193 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3194 */ 3195 if (!is_paging(vcpu)) 3196 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3197 } 3198 3199 vmcs_writel(CR4_READ_SHADOW, cr4); 3200 vmcs_writel(GUEST_CR4, hw_cr4); 3201 3202 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3203 kvm_update_cpuid_runtime(vcpu); 3204 } 3205 3206 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3207 { 3208 struct vcpu_vmx *vmx = to_vmx(vcpu); 3209 u32 ar; 3210 3211 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3212 *var = vmx->rmode.segs[seg]; 3213 if (seg == VCPU_SREG_TR 3214 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3215 return; 3216 var->base = vmx_read_guest_seg_base(vmx, seg); 3217 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3218 return; 3219 } 3220 var->base = vmx_read_guest_seg_base(vmx, seg); 3221 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3222 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3223 ar = vmx_read_guest_seg_ar(vmx, seg); 3224 var->unusable = (ar >> 16) & 1; 3225 var->type = ar & 15; 3226 var->s = (ar >> 4) & 1; 3227 var->dpl = (ar >> 5) & 3; 3228 /* 3229 * Some userspaces do not preserve unusable property. Since usable 3230 * segment has to be present according to VMX spec we can use present 3231 * property to amend userspace bug by making unusable segment always 3232 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3233 * segment as unusable. 3234 */ 3235 var->present = !var->unusable; 3236 var->avl = (ar >> 12) & 1; 3237 var->l = (ar >> 13) & 1; 3238 var->db = (ar >> 14) & 1; 3239 var->g = (ar >> 15) & 1; 3240 } 3241 3242 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3243 { 3244 struct kvm_segment s; 3245 3246 if (to_vmx(vcpu)->rmode.vm86_active) { 3247 vmx_get_segment(vcpu, &s, seg); 3248 return s.base; 3249 } 3250 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3251 } 3252 3253 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3254 { 3255 struct vcpu_vmx *vmx = to_vmx(vcpu); 3256 3257 if (unlikely(vmx->rmode.vm86_active)) 3258 return 0; 3259 else { 3260 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3261 return VMX_AR_DPL(ar); 3262 } 3263 } 3264 3265 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3266 { 3267 u32 ar; 3268 3269 if (var->unusable || !var->present) 3270 ar = 1 << 16; 3271 else { 3272 ar = var->type & 15; 3273 ar |= (var->s & 1) << 4; 3274 ar |= (var->dpl & 3) << 5; 3275 ar |= (var->present & 1) << 7; 3276 ar |= (var->avl & 1) << 12; 3277 ar |= (var->l & 1) << 13; 3278 ar |= (var->db & 1) << 14; 3279 ar |= (var->g & 1) << 15; 3280 } 3281 3282 return ar; 3283 } 3284 3285 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3286 { 3287 struct vcpu_vmx *vmx = to_vmx(vcpu); 3288 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3289 3290 vmx_segment_cache_clear(vmx); 3291 3292 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3293 vmx->rmode.segs[seg] = *var; 3294 if (seg == VCPU_SREG_TR) 3295 vmcs_write16(sf->selector, var->selector); 3296 else if (var->s) 3297 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3298 return; 3299 } 3300 3301 vmcs_writel(sf->base, var->base); 3302 vmcs_write32(sf->limit, var->limit); 3303 vmcs_write16(sf->selector, var->selector); 3304 3305 /* 3306 * Fix the "Accessed" bit in AR field of segment registers for older 3307 * qemu binaries. 3308 * IA32 arch specifies that at the time of processor reset the 3309 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3310 * is setting it to 0 in the userland code. This causes invalid guest 3311 * state vmexit when "unrestricted guest" mode is turned on. 3312 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3313 * tree. Newer qemu binaries with that qemu fix would not need this 3314 * kvm hack. 3315 */ 3316 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3317 var->type |= 0x1; /* Accessed */ 3318 3319 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3320 } 3321 3322 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3323 { 3324 __vmx_set_segment(vcpu, var, seg); 3325 3326 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3327 } 3328 3329 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3330 { 3331 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3332 3333 *db = (ar >> 14) & 1; 3334 *l = (ar >> 13) & 1; 3335 } 3336 3337 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3338 { 3339 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3340 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3341 } 3342 3343 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3344 { 3345 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3346 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3347 } 3348 3349 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3350 { 3351 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3352 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3353 } 3354 3355 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3356 { 3357 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3358 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3359 } 3360 3361 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3362 { 3363 struct kvm_segment var; 3364 u32 ar; 3365 3366 vmx_get_segment(vcpu, &var, seg); 3367 var.dpl = 0x3; 3368 if (seg == VCPU_SREG_CS) 3369 var.type = 0x3; 3370 ar = vmx_segment_access_rights(&var); 3371 3372 if (var.base != (var.selector << 4)) 3373 return false; 3374 if (var.limit != 0xffff) 3375 return false; 3376 if (ar != 0xf3) 3377 return false; 3378 3379 return true; 3380 } 3381 3382 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3383 { 3384 struct kvm_segment cs; 3385 unsigned int cs_rpl; 3386 3387 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3388 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3389 3390 if (cs.unusable) 3391 return false; 3392 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3393 return false; 3394 if (!cs.s) 3395 return false; 3396 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3397 if (cs.dpl > cs_rpl) 3398 return false; 3399 } else { 3400 if (cs.dpl != cs_rpl) 3401 return false; 3402 } 3403 if (!cs.present) 3404 return false; 3405 3406 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3407 return true; 3408 } 3409 3410 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3411 { 3412 struct kvm_segment ss; 3413 unsigned int ss_rpl; 3414 3415 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3416 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3417 3418 if (ss.unusable) 3419 return true; 3420 if (ss.type != 3 && ss.type != 7) 3421 return false; 3422 if (!ss.s) 3423 return false; 3424 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3425 return false; 3426 if (!ss.present) 3427 return false; 3428 3429 return true; 3430 } 3431 3432 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3433 { 3434 struct kvm_segment var; 3435 unsigned int rpl; 3436 3437 vmx_get_segment(vcpu, &var, seg); 3438 rpl = var.selector & SEGMENT_RPL_MASK; 3439 3440 if (var.unusable) 3441 return true; 3442 if (!var.s) 3443 return false; 3444 if (!var.present) 3445 return false; 3446 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3447 if (var.dpl < rpl) /* DPL < RPL */ 3448 return false; 3449 } 3450 3451 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3452 * rights flags 3453 */ 3454 return true; 3455 } 3456 3457 static bool tr_valid(struct kvm_vcpu *vcpu) 3458 { 3459 struct kvm_segment tr; 3460 3461 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3462 3463 if (tr.unusable) 3464 return false; 3465 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3466 return false; 3467 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3468 return false; 3469 if (!tr.present) 3470 return false; 3471 3472 return true; 3473 } 3474 3475 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3476 { 3477 struct kvm_segment ldtr; 3478 3479 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3480 3481 if (ldtr.unusable) 3482 return true; 3483 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3484 return false; 3485 if (ldtr.type != 2) 3486 return false; 3487 if (!ldtr.present) 3488 return false; 3489 3490 return true; 3491 } 3492 3493 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3494 { 3495 struct kvm_segment cs, ss; 3496 3497 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3498 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3499 3500 return ((cs.selector & SEGMENT_RPL_MASK) == 3501 (ss.selector & SEGMENT_RPL_MASK)); 3502 } 3503 3504 /* 3505 * Check if guest state is valid. Returns true if valid, false if 3506 * not. 3507 * We assume that registers are always usable 3508 */ 3509 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3510 { 3511 /* real mode guest state checks */ 3512 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3513 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3514 return false; 3515 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3516 return false; 3517 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3518 return false; 3519 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3520 return false; 3521 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3522 return false; 3523 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3524 return false; 3525 } else { 3526 /* protected mode guest state checks */ 3527 if (!cs_ss_rpl_check(vcpu)) 3528 return false; 3529 if (!code_segment_valid(vcpu)) 3530 return false; 3531 if (!stack_segment_valid(vcpu)) 3532 return false; 3533 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3534 return false; 3535 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3536 return false; 3537 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3538 return false; 3539 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3540 return false; 3541 if (!tr_valid(vcpu)) 3542 return false; 3543 if (!ldtr_valid(vcpu)) 3544 return false; 3545 } 3546 /* TODO: 3547 * - Add checks on RIP 3548 * - Add checks on RFLAGS 3549 */ 3550 3551 return true; 3552 } 3553 3554 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3555 { 3556 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3557 u16 data; 3558 int i; 3559 3560 for (i = 0; i < 3; i++) { 3561 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3562 return -EFAULT; 3563 } 3564 3565 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3566 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3567 return -EFAULT; 3568 3569 data = ~0; 3570 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3571 return -EFAULT; 3572 3573 return 0; 3574 } 3575 3576 static int init_rmode_identity_map(struct kvm *kvm) 3577 { 3578 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3579 int i, r = 0; 3580 void __user *uaddr; 3581 u32 tmp; 3582 3583 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3584 mutex_lock(&kvm->slots_lock); 3585 3586 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3587 goto out; 3588 3589 if (!kvm_vmx->ept_identity_map_addr) 3590 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3591 3592 uaddr = __x86_set_memory_region(kvm, 3593 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3594 kvm_vmx->ept_identity_map_addr, 3595 PAGE_SIZE); 3596 if (IS_ERR(uaddr)) { 3597 r = PTR_ERR(uaddr); 3598 goto out; 3599 } 3600 3601 /* Set up identity-mapping pagetable for EPT in real mode */ 3602 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3603 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3604 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3605 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3606 r = -EFAULT; 3607 goto out; 3608 } 3609 } 3610 kvm_vmx->ept_identity_pagetable_done = true; 3611 3612 out: 3613 mutex_unlock(&kvm->slots_lock); 3614 return r; 3615 } 3616 3617 static void seg_setup(int seg) 3618 { 3619 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3620 unsigned int ar; 3621 3622 vmcs_write16(sf->selector, 0); 3623 vmcs_writel(sf->base, 0); 3624 vmcs_write32(sf->limit, 0xffff); 3625 ar = 0x93; 3626 if (seg == VCPU_SREG_CS) 3627 ar |= 0x08; /* code segment */ 3628 3629 vmcs_write32(sf->ar_bytes, ar); 3630 } 3631 3632 static int alloc_apic_access_page(struct kvm *kvm) 3633 { 3634 struct page *page; 3635 void __user *hva; 3636 int ret = 0; 3637 3638 mutex_lock(&kvm->slots_lock); 3639 if (kvm->arch.apic_access_memslot_enabled) 3640 goto out; 3641 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3642 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3643 if (IS_ERR(hva)) { 3644 ret = PTR_ERR(hva); 3645 goto out; 3646 } 3647 3648 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3649 if (is_error_page(page)) { 3650 ret = -EFAULT; 3651 goto out; 3652 } 3653 3654 /* 3655 * Do not pin the page in memory, so that memory hot-unplug 3656 * is able to migrate it. 3657 */ 3658 put_page(page); 3659 kvm->arch.apic_access_memslot_enabled = true; 3660 out: 3661 mutex_unlock(&kvm->slots_lock); 3662 return ret; 3663 } 3664 3665 int allocate_vpid(void) 3666 { 3667 int vpid; 3668 3669 if (!enable_vpid) 3670 return 0; 3671 spin_lock(&vmx_vpid_lock); 3672 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3673 if (vpid < VMX_NR_VPIDS) 3674 __set_bit(vpid, vmx_vpid_bitmap); 3675 else 3676 vpid = 0; 3677 spin_unlock(&vmx_vpid_lock); 3678 return vpid; 3679 } 3680 3681 void free_vpid(int vpid) 3682 { 3683 if (!enable_vpid || vpid == 0) 3684 return; 3685 spin_lock(&vmx_vpid_lock); 3686 __clear_bit(vpid, vmx_vpid_bitmap); 3687 spin_unlock(&vmx_vpid_lock); 3688 } 3689 3690 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3691 { 3692 struct vcpu_vmx *vmx = to_vmx(vcpu); 3693 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3694 3695 if (!cpu_has_vmx_msr_bitmap()) 3696 return; 3697 3698 if (static_branch_unlikely(&enable_evmcs)) 3699 evmcs_touch_msr_bitmap(); 3700 3701 /* 3702 * Mark the desired intercept state in shadow bitmap, this is needed 3703 * for resync when the MSR filters change. 3704 */ 3705 if (is_valid_passthrough_msr(msr)) { 3706 int idx = possible_passthrough_msr_slot(msr); 3707 3708 if (idx != -ENOENT) { 3709 if (type & MSR_TYPE_R) 3710 clear_bit(idx, vmx->shadow_msr_intercept.read); 3711 if (type & MSR_TYPE_W) 3712 clear_bit(idx, vmx->shadow_msr_intercept.write); 3713 } 3714 } 3715 3716 if ((type & MSR_TYPE_R) && 3717 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3718 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3719 type &= ~MSR_TYPE_R; 3720 } 3721 3722 if ((type & MSR_TYPE_W) && 3723 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3724 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3725 type &= ~MSR_TYPE_W; 3726 } 3727 3728 if (type & MSR_TYPE_R) 3729 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3730 3731 if (type & MSR_TYPE_W) 3732 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3733 } 3734 3735 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3736 { 3737 struct vcpu_vmx *vmx = to_vmx(vcpu); 3738 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3739 3740 if (!cpu_has_vmx_msr_bitmap()) 3741 return; 3742 3743 if (static_branch_unlikely(&enable_evmcs)) 3744 evmcs_touch_msr_bitmap(); 3745 3746 /* 3747 * Mark the desired intercept state in shadow bitmap, this is needed 3748 * for resync when the MSR filter changes. 3749 */ 3750 if (is_valid_passthrough_msr(msr)) { 3751 int idx = possible_passthrough_msr_slot(msr); 3752 3753 if (idx != -ENOENT) { 3754 if (type & MSR_TYPE_R) 3755 set_bit(idx, vmx->shadow_msr_intercept.read); 3756 if (type & MSR_TYPE_W) 3757 set_bit(idx, vmx->shadow_msr_intercept.write); 3758 } 3759 } 3760 3761 if (type & MSR_TYPE_R) 3762 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3763 3764 if (type & MSR_TYPE_W) 3765 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3766 } 3767 3768 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode) 3769 { 3770 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; 3771 unsigned long read_intercept; 3772 int msr; 3773 3774 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3775 3776 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3777 unsigned int read_idx = msr / BITS_PER_LONG; 3778 unsigned int write_idx = read_idx + (0x800 / sizeof(long)); 3779 3780 msr_bitmap[read_idx] = read_intercept; 3781 msr_bitmap[write_idx] = ~0ul; 3782 } 3783 } 3784 3785 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 3786 { 3787 struct vcpu_vmx *vmx = to_vmx(vcpu); 3788 u8 mode; 3789 3790 if (!cpu_has_vmx_msr_bitmap()) 3791 return; 3792 3793 if (cpu_has_secondary_exec_ctrls() && 3794 (secondary_exec_controls_get(vmx) & 3795 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3796 mode = MSR_BITMAP_MODE_X2APIC; 3797 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3798 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3799 } else { 3800 mode = 0; 3801 } 3802 3803 if (mode == vmx->x2apic_msr_bitmap_mode) 3804 return; 3805 3806 vmx->x2apic_msr_bitmap_mode = mode; 3807 3808 vmx_reset_x2apic_msrs(vcpu, mode); 3809 3810 /* 3811 * TPR reads and writes can be virtualized even if virtual interrupt 3812 * delivery is not in use. 3813 */ 3814 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 3815 !(mode & MSR_BITMAP_MODE_X2APIC)); 3816 3817 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3818 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 3819 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3820 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3821 } 3822 } 3823 3824 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 3825 { 3826 struct vcpu_vmx *vmx = to_vmx(vcpu); 3827 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3828 u32 i; 3829 3830 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 3831 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 3832 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 3833 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 3834 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 3835 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3836 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3837 } 3838 } 3839 3840 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3841 { 3842 struct vcpu_vmx *vmx = to_vmx(vcpu); 3843 void *vapic_page; 3844 u32 vppr; 3845 int rvi; 3846 3847 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3848 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3849 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3850 return false; 3851 3852 rvi = vmx_get_rvi(); 3853 3854 vapic_page = vmx->nested.virtual_apic_map.hva; 3855 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 3856 3857 return ((rvi & 0xf0) > (vppr & 0xf0)); 3858 } 3859 3860 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 3861 { 3862 struct vcpu_vmx *vmx = to_vmx(vcpu); 3863 u32 i; 3864 3865 /* 3866 * Set intercept permissions for all potentially passed through MSRs 3867 * again. They will automatically get filtered through the MSR filter, 3868 * so we are back in sync after this. 3869 */ 3870 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 3871 u32 msr = vmx_possible_passthrough_msrs[i]; 3872 bool read = test_bit(i, vmx->shadow_msr_intercept.read); 3873 bool write = test_bit(i, vmx->shadow_msr_intercept.write); 3874 3875 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read); 3876 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write); 3877 } 3878 3879 pt_update_intercept_for_msr(vcpu); 3880 } 3881 3882 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 3883 bool nested) 3884 { 3885 #ifdef CONFIG_SMP 3886 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; 3887 3888 if (vcpu->mode == IN_GUEST_MODE) { 3889 /* 3890 * The vector of interrupt to be delivered to vcpu had 3891 * been set in PIR before this function. 3892 * 3893 * Following cases will be reached in this block, and 3894 * we always send a notification event in all cases as 3895 * explained below. 3896 * 3897 * Case 1: vcpu keeps in non-root mode. Sending a 3898 * notification event posts the interrupt to vcpu. 3899 * 3900 * Case 2: vcpu exits to root mode and is still 3901 * runnable. PIR will be synced to vIRR before the 3902 * next vcpu entry. Sending a notification event in 3903 * this case has no effect, as vcpu is not in root 3904 * mode. 3905 * 3906 * Case 3: vcpu exits to root mode and is blocked. 3907 * vcpu_block() has already synced PIR to vIRR and 3908 * never blocks vcpu if vIRR is not cleared. Therefore, 3909 * a blocked vcpu here does not wait for any requested 3910 * interrupts in PIR, and sending a notification event 3911 * which has no effect is safe here. 3912 */ 3913 3914 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 3915 return true; 3916 } 3917 #endif 3918 return false; 3919 } 3920 3921 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 3922 int vector) 3923 { 3924 struct vcpu_vmx *vmx = to_vmx(vcpu); 3925 3926 if (is_guest_mode(vcpu) && 3927 vector == vmx->nested.posted_intr_nv) { 3928 /* 3929 * If a posted intr is not recognized by hardware, 3930 * we will accomplish it in the next vmentry. 3931 */ 3932 vmx->nested.pi_pending = true; 3933 kvm_make_request(KVM_REQ_EVENT, vcpu); 3934 /* the PIR and ON have been set by L1. */ 3935 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) 3936 kvm_vcpu_kick(vcpu); 3937 return 0; 3938 } 3939 return -1; 3940 } 3941 /* 3942 * Send interrupt to vcpu via posted interrupt way. 3943 * 1. If target vcpu is running(non-root mode), send posted interrupt 3944 * notification to vcpu and hardware will sync PIR to vIRR atomically. 3945 * 2. If target vcpu isn't running(root mode), kick it to pick up the 3946 * interrupt from PIR in next vmentry. 3947 */ 3948 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 3949 { 3950 struct vcpu_vmx *vmx = to_vmx(vcpu); 3951 int r; 3952 3953 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 3954 if (!r) 3955 return 0; 3956 3957 if (!vcpu->arch.apicv_active) 3958 return -1; 3959 3960 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 3961 return 0; 3962 3963 /* If a previous notification has sent the IPI, nothing to do. */ 3964 if (pi_test_and_set_on(&vmx->pi_desc)) 3965 return 0; 3966 3967 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false)) 3968 kvm_vcpu_kick(vcpu); 3969 3970 return 0; 3971 } 3972 3973 /* 3974 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 3975 * will not change in the lifetime of the guest. 3976 * Note that host-state that does change is set elsewhere. E.g., host-state 3977 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 3978 */ 3979 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 3980 { 3981 u32 low32, high32; 3982 unsigned long tmpl; 3983 unsigned long cr0, cr3, cr4; 3984 3985 cr0 = read_cr0(); 3986 WARN_ON(cr0 & X86_CR0_TS); 3987 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 3988 3989 /* 3990 * Save the most likely value for this task's CR3 in the VMCS. 3991 * We can't use __get_current_cr3_fast() because we're not atomic. 3992 */ 3993 cr3 = __read_cr3(); 3994 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 3995 vmx->loaded_vmcs->host_state.cr3 = cr3; 3996 3997 /* Save the most likely value for this task's CR4 in the VMCS. */ 3998 cr4 = cr4_read_shadow(); 3999 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4000 vmx->loaded_vmcs->host_state.cr4 = cr4; 4001 4002 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4003 #ifdef CONFIG_X86_64 4004 /* 4005 * Load null selectors, so we can avoid reloading them in 4006 * vmx_prepare_switch_to_host(), in case userspace uses 4007 * the null selectors too (the expected case). 4008 */ 4009 vmcs_write16(HOST_DS_SELECTOR, 0); 4010 vmcs_write16(HOST_ES_SELECTOR, 0); 4011 #else 4012 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4013 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4014 #endif 4015 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4016 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4017 4018 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4019 4020 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4021 4022 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4023 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4024 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4025 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4026 4027 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4028 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4029 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4030 } 4031 4032 if (cpu_has_load_ia32_efer()) 4033 vmcs_write64(HOST_IA32_EFER, host_efer); 4034 } 4035 4036 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4037 { 4038 struct kvm_vcpu *vcpu = &vmx->vcpu; 4039 4040 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4041 ~vcpu->arch.cr4_guest_rsvd_bits; 4042 if (!enable_ept) 4043 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE; 4044 if (is_guest_mode(&vmx->vcpu)) 4045 vcpu->arch.cr4_guest_owned_bits &= 4046 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4047 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4048 } 4049 4050 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4051 { 4052 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4053 4054 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4055 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4056 4057 if (!enable_vnmi) 4058 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4059 4060 if (!enable_preemption_timer) 4061 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4062 4063 return pin_based_exec_ctrl; 4064 } 4065 4066 static u32 vmx_vmentry_ctrl(void) 4067 { 4068 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4069 4070 if (vmx_pt_mode_is_system()) 4071 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4072 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4073 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4074 return vmentry_ctrl & 4075 ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER); 4076 } 4077 4078 static u32 vmx_vmexit_ctrl(void) 4079 { 4080 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4081 4082 if (vmx_pt_mode_is_system()) 4083 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4084 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4085 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4086 return vmexit_ctrl & 4087 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4088 } 4089 4090 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4091 { 4092 struct vcpu_vmx *vmx = to_vmx(vcpu); 4093 4094 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4095 if (cpu_has_secondary_exec_ctrls()) { 4096 if (kvm_vcpu_apicv_active(vcpu)) 4097 secondary_exec_controls_setbit(vmx, 4098 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4099 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4100 else 4101 secondary_exec_controls_clearbit(vmx, 4102 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4103 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4104 } 4105 4106 vmx_update_msr_bitmap_x2apic(vcpu); 4107 } 4108 4109 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4110 { 4111 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4112 4113 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4114 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4115 4116 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 4117 exec_control &= ~CPU_BASED_TPR_SHADOW; 4118 #ifdef CONFIG_X86_64 4119 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4120 CPU_BASED_CR8_LOAD_EXITING; 4121 #endif 4122 } 4123 if (!enable_ept) 4124 exec_control |= CPU_BASED_CR3_STORE_EXITING | 4125 CPU_BASED_CR3_LOAD_EXITING | 4126 CPU_BASED_INVLPG_EXITING; 4127 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4128 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4129 CPU_BASED_MONITOR_EXITING); 4130 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4131 exec_control &= ~CPU_BASED_HLT_EXITING; 4132 return exec_control; 4133 } 4134 4135 /* 4136 * Adjust a single secondary execution control bit to intercept/allow an 4137 * instruction in the guest. This is usually done based on whether or not a 4138 * feature has been exposed to the guest in order to correctly emulate faults. 4139 */ 4140 static inline void 4141 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4142 u32 control, bool enabled, bool exiting) 4143 { 4144 /* 4145 * If the control is for an opt-in feature, clear the control if the 4146 * feature is not exposed to the guest, i.e. not enabled. If the 4147 * control is opt-out, i.e. an exiting control, clear the control if 4148 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4149 * disabled for the associated instruction. Note, the caller is 4150 * responsible presetting exec_control to set all supported bits. 4151 */ 4152 if (enabled == exiting) 4153 *exec_control &= ~control; 4154 4155 /* 4156 * Update the nested MSR settings so that a nested VMM can/can't set 4157 * controls for features that are/aren't exposed to the guest. 4158 */ 4159 if (nested) { 4160 if (enabled) 4161 vmx->nested.msrs.secondary_ctls_high |= control; 4162 else 4163 vmx->nested.msrs.secondary_ctls_high &= ~control; 4164 } 4165 } 4166 4167 /* 4168 * Wrapper macro for the common case of adjusting a secondary execution control 4169 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4170 * verifies that the control is actually supported by KVM and hardware. 4171 */ 4172 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4173 ({ \ 4174 bool __enabled; \ 4175 \ 4176 if (cpu_has_vmx_##name()) { \ 4177 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4178 X86_FEATURE_##feat_name); \ 4179 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4180 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4181 } \ 4182 }) 4183 4184 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4185 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4186 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4187 4188 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4189 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4190 4191 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4192 { 4193 struct kvm_vcpu *vcpu = &vmx->vcpu; 4194 4195 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4196 4197 if (vmx_pt_mode_is_system()) 4198 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4199 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4200 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4201 if (vmx->vpid == 0) 4202 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4203 if (!enable_ept) { 4204 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4205 enable_unrestricted_guest = 0; 4206 } 4207 if (!enable_unrestricted_guest) 4208 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4209 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4210 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4211 if (!kvm_vcpu_apicv_active(vcpu)) 4212 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4213 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4214 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4215 4216 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4217 * in vmx_set_cr4. */ 4218 exec_control &= ~SECONDARY_EXEC_DESC; 4219 4220 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4221 (handle_vmptrld). 4222 We can NOT enable shadow_vmcs here because we don't have yet 4223 a current VMCS12 4224 */ 4225 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4226 4227 /* 4228 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4229 * it needs to be set here when dirty logging is already active, e.g. 4230 * if this vCPU was created after dirty logging was enabled. 4231 */ 4232 if (!vcpu->kvm->arch.cpu_dirty_logging_count) 4233 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4234 4235 if (cpu_has_vmx_xsaves()) { 4236 /* Exposing XSAVES only when XSAVE is exposed */ 4237 bool xsaves_enabled = 4238 boot_cpu_has(X86_FEATURE_XSAVE) && 4239 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4240 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4241 4242 vcpu->arch.xsaves_enabled = xsaves_enabled; 4243 4244 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4245 SECONDARY_EXEC_XSAVES, 4246 xsaves_enabled, false); 4247 } 4248 4249 /* 4250 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4251 * feature is exposed to the guest. This creates a virtualization hole 4252 * if both are supported in hardware but only one is exposed to the 4253 * guest, but letting the guest execute RDTSCP or RDPID when either one 4254 * is advertised is preferable to emulating the advertised instruction 4255 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4256 */ 4257 if (cpu_has_vmx_rdtscp()) { 4258 bool rdpid_or_rdtscp_enabled = 4259 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4260 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4261 4262 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4263 SECONDARY_EXEC_ENABLE_RDTSCP, 4264 rdpid_or_rdtscp_enabled, false); 4265 } 4266 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4267 4268 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4269 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4270 4271 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4272 ENABLE_USR_WAIT_PAUSE, false); 4273 4274 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4275 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4276 4277 return exec_control; 4278 } 4279 4280 #define VMX_XSS_EXIT_BITMAP 0 4281 4282 static void init_vmcs(struct vcpu_vmx *vmx) 4283 { 4284 if (nested) 4285 nested_vmx_set_vmcs_shadowing_bitmap(); 4286 4287 if (cpu_has_vmx_msr_bitmap()) 4288 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4289 4290 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4291 4292 /* Control */ 4293 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4294 4295 exec_controls_set(vmx, vmx_exec_control(vmx)); 4296 4297 if (cpu_has_secondary_exec_ctrls()) 4298 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4299 4300 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4301 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4302 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4303 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4304 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4305 4306 vmcs_write16(GUEST_INTR_STATUS, 0); 4307 4308 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4309 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4310 } 4311 4312 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4313 vmcs_write32(PLE_GAP, ple_gap); 4314 vmx->ple_window = ple_window; 4315 vmx->ple_window_dirty = true; 4316 } 4317 4318 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4319 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4320 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4321 4322 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4323 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4324 vmx_set_constant_host_state(vmx); 4325 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4326 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4327 4328 if (cpu_has_vmx_vmfunc()) 4329 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4330 4331 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4332 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4333 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4334 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4335 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4336 4337 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4338 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4339 4340 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4341 4342 /* 22.2.1, 20.8.1 */ 4343 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4344 4345 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS; 4346 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4347 4348 set_cr4_guest_host_mask(vmx); 4349 4350 if (vmx->vpid != 0) 4351 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4352 4353 if (cpu_has_vmx_xsaves()) 4354 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4355 4356 if (enable_pml) { 4357 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4358 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4359 } 4360 4361 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4362 4363 if (vmx_pt_mode_is_host_guest()) { 4364 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4365 /* Bit[6~0] are forced to 1, writes are ignored. */ 4366 vmx->pt_desc.guest.output_mask = 0x7F; 4367 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4368 } 4369 4370 vmcs_write32(GUEST_SYSENTER_CS, 0); 4371 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4372 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4373 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4374 4375 if (cpu_has_vmx_tpr_shadow()) { 4376 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4377 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4378 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4379 __pa(vmx->vcpu.arch.apic->regs)); 4380 vmcs_write32(TPR_THRESHOLD, 0); 4381 } 4382 4383 vmx_setup_uret_msrs(vmx); 4384 } 4385 4386 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4387 { 4388 struct vcpu_vmx *vmx = to_vmx(vcpu); 4389 4390 init_vmcs(vmx); 4391 4392 if (nested) 4393 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4394 4395 vcpu_setup_sgx_lepubkeyhash(vcpu); 4396 4397 vmx->nested.posted_intr_nv = -1; 4398 vmx->nested.vmxon_ptr = INVALID_GPA; 4399 vmx->nested.current_vmptr = INVALID_GPA; 4400 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4401 4402 vcpu->arch.microcode_version = 0x100000000ULL; 4403 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4404 4405 /* 4406 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4407 * or POSTED_INTR_WAKEUP_VECTOR. 4408 */ 4409 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4410 vmx->pi_desc.sn = 1; 4411 } 4412 4413 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4414 { 4415 struct vcpu_vmx *vmx = to_vmx(vcpu); 4416 4417 if (!init_event) 4418 __vmx_vcpu_reset(vcpu); 4419 4420 vmx->rmode.vm86_active = 0; 4421 vmx->spec_ctrl = 0; 4422 4423 vmx->msr_ia32_umwait_control = 0; 4424 4425 vmx->hv_deadline_tsc = -1; 4426 kvm_set_cr8(vcpu, 0); 4427 4428 vmx_segment_cache_clear(vmx); 4429 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4430 4431 seg_setup(VCPU_SREG_CS); 4432 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4433 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4434 4435 seg_setup(VCPU_SREG_DS); 4436 seg_setup(VCPU_SREG_ES); 4437 seg_setup(VCPU_SREG_FS); 4438 seg_setup(VCPU_SREG_GS); 4439 seg_setup(VCPU_SREG_SS); 4440 4441 vmcs_write16(GUEST_TR_SELECTOR, 0); 4442 vmcs_writel(GUEST_TR_BASE, 0); 4443 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4444 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4445 4446 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4447 vmcs_writel(GUEST_LDTR_BASE, 0); 4448 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4449 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4450 4451 vmcs_writel(GUEST_GDTR_BASE, 0); 4452 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4453 4454 vmcs_writel(GUEST_IDTR_BASE, 0); 4455 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4456 4457 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4458 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4459 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4460 if (kvm_mpx_supported()) 4461 vmcs_write64(GUEST_BNDCFGS, 0); 4462 4463 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4464 4465 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4466 4467 vpid_sync_context(vmx->vpid); 4468 } 4469 4470 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4471 { 4472 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4473 } 4474 4475 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4476 { 4477 if (!enable_vnmi || 4478 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4479 vmx_enable_irq_window(vcpu); 4480 return; 4481 } 4482 4483 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4484 } 4485 4486 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4487 { 4488 struct vcpu_vmx *vmx = to_vmx(vcpu); 4489 uint32_t intr; 4490 int irq = vcpu->arch.interrupt.nr; 4491 4492 trace_kvm_inj_virq(irq); 4493 4494 ++vcpu->stat.irq_injections; 4495 if (vmx->rmode.vm86_active) { 4496 int inc_eip = 0; 4497 if (vcpu->arch.interrupt.soft) 4498 inc_eip = vcpu->arch.event_exit_inst_len; 4499 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4500 return; 4501 } 4502 intr = irq | INTR_INFO_VALID_MASK; 4503 if (vcpu->arch.interrupt.soft) { 4504 intr |= INTR_TYPE_SOFT_INTR; 4505 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4506 vmx->vcpu.arch.event_exit_inst_len); 4507 } else 4508 intr |= INTR_TYPE_EXT_INTR; 4509 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4510 4511 vmx_clear_hlt(vcpu); 4512 } 4513 4514 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4515 { 4516 struct vcpu_vmx *vmx = to_vmx(vcpu); 4517 4518 if (!enable_vnmi) { 4519 /* 4520 * Tracking the NMI-blocked state in software is built upon 4521 * finding the next open IRQ window. This, in turn, depends on 4522 * well-behaving guests: They have to keep IRQs disabled at 4523 * least as long as the NMI handler runs. Otherwise we may 4524 * cause NMI nesting, maybe breaking the guest. But as this is 4525 * highly unlikely, we can live with the residual risk. 4526 */ 4527 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4528 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4529 } 4530 4531 ++vcpu->stat.nmi_injections; 4532 vmx->loaded_vmcs->nmi_known_unmasked = false; 4533 4534 if (vmx->rmode.vm86_active) { 4535 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4536 return; 4537 } 4538 4539 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4540 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4541 4542 vmx_clear_hlt(vcpu); 4543 } 4544 4545 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4546 { 4547 struct vcpu_vmx *vmx = to_vmx(vcpu); 4548 bool masked; 4549 4550 if (!enable_vnmi) 4551 return vmx->loaded_vmcs->soft_vnmi_blocked; 4552 if (vmx->loaded_vmcs->nmi_known_unmasked) 4553 return false; 4554 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4555 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4556 return masked; 4557 } 4558 4559 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4560 { 4561 struct vcpu_vmx *vmx = to_vmx(vcpu); 4562 4563 if (!enable_vnmi) { 4564 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4565 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4566 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4567 } 4568 } else { 4569 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4570 if (masked) 4571 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4572 GUEST_INTR_STATE_NMI); 4573 else 4574 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4575 GUEST_INTR_STATE_NMI); 4576 } 4577 } 4578 4579 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 4580 { 4581 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4582 return false; 4583 4584 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4585 return true; 4586 4587 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4588 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 4589 GUEST_INTR_STATE_NMI)); 4590 } 4591 4592 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4593 { 4594 if (to_vmx(vcpu)->nested.nested_run_pending) 4595 return -EBUSY; 4596 4597 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 4598 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4599 return -EBUSY; 4600 4601 return !vmx_nmi_blocked(vcpu); 4602 } 4603 4604 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 4605 { 4606 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4607 return false; 4608 4609 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 4610 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4611 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4612 } 4613 4614 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4615 { 4616 if (to_vmx(vcpu)->nested.nested_run_pending) 4617 return -EBUSY; 4618 4619 /* 4620 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 4621 * e.g. if the IRQ arrived asynchronously after checking nested events. 4622 */ 4623 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4624 return -EBUSY; 4625 4626 return !vmx_interrupt_blocked(vcpu); 4627 } 4628 4629 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4630 { 4631 void __user *ret; 4632 4633 if (enable_unrestricted_guest) 4634 return 0; 4635 4636 mutex_lock(&kvm->slots_lock); 4637 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4638 PAGE_SIZE * 3); 4639 mutex_unlock(&kvm->slots_lock); 4640 4641 if (IS_ERR(ret)) 4642 return PTR_ERR(ret); 4643 4644 to_kvm_vmx(kvm)->tss_addr = addr; 4645 4646 return init_rmode_tss(kvm, ret); 4647 } 4648 4649 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4650 { 4651 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4652 return 0; 4653 } 4654 4655 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4656 { 4657 switch (vec) { 4658 case BP_VECTOR: 4659 /* 4660 * Update instruction length as we may reinject the exception 4661 * from user space while in guest debugging mode. 4662 */ 4663 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4664 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4665 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4666 return false; 4667 fallthrough; 4668 case DB_VECTOR: 4669 return !(vcpu->guest_debug & 4670 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 4671 case DE_VECTOR: 4672 case OF_VECTOR: 4673 case BR_VECTOR: 4674 case UD_VECTOR: 4675 case DF_VECTOR: 4676 case SS_VECTOR: 4677 case GP_VECTOR: 4678 case MF_VECTOR: 4679 return true; 4680 } 4681 return false; 4682 } 4683 4684 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4685 int vec, u32 err_code) 4686 { 4687 /* 4688 * Instruction with address size override prefix opcode 0x67 4689 * Cause the #SS fault with 0 error code in VM86 mode. 4690 */ 4691 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4692 if (kvm_emulate_instruction(vcpu, 0)) { 4693 if (vcpu->arch.halt_request) { 4694 vcpu->arch.halt_request = 0; 4695 return kvm_vcpu_halt(vcpu); 4696 } 4697 return 1; 4698 } 4699 return 0; 4700 } 4701 4702 /* 4703 * Forward all other exceptions that are valid in real mode. 4704 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4705 * the required debugging infrastructure rework. 4706 */ 4707 kvm_queue_exception(vcpu, vec); 4708 return 1; 4709 } 4710 4711 static int handle_machine_check(struct kvm_vcpu *vcpu) 4712 { 4713 /* handled by vmx_vcpu_run() */ 4714 return 1; 4715 } 4716 4717 /* 4718 * If the host has split lock detection disabled, then #AC is 4719 * unconditionally injected into the guest, which is the pre split lock 4720 * detection behaviour. 4721 * 4722 * If the host has split lock detection enabled then #AC is 4723 * only injected into the guest when: 4724 * - Guest CPL == 3 (user mode) 4725 * - Guest has #AC detection enabled in CR0 4726 * - Guest EFLAGS has AC bit set 4727 */ 4728 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 4729 { 4730 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 4731 return true; 4732 4733 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) && 4734 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 4735 } 4736 4737 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 4738 { 4739 struct vcpu_vmx *vmx = to_vmx(vcpu); 4740 struct kvm_run *kvm_run = vcpu->run; 4741 u32 intr_info, ex_no, error_code; 4742 unsigned long cr2, dr6; 4743 u32 vect_info; 4744 4745 vect_info = vmx->idt_vectoring_info; 4746 intr_info = vmx_get_intr_info(vcpu); 4747 4748 if (is_machine_check(intr_info) || is_nmi(intr_info)) 4749 return 1; /* handled by handle_exception_nmi_irqoff() */ 4750 4751 if (is_invalid_opcode(intr_info)) 4752 return handle_ud(vcpu); 4753 4754 error_code = 0; 4755 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4756 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4757 4758 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4759 WARN_ON_ONCE(!enable_vmware_backdoor); 4760 4761 /* 4762 * VMware backdoor emulation on #GP interception only handles 4763 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 4764 * error code on #GP. 4765 */ 4766 if (error_code) { 4767 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4768 return 1; 4769 } 4770 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 4771 } 4772 4773 /* 4774 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4775 * MMIO, it is better to report an internal error. 4776 * See the comments in vmx_handle_exit. 4777 */ 4778 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4779 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4780 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4781 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4782 vcpu->run->internal.ndata = 4; 4783 vcpu->run->internal.data[0] = vect_info; 4784 vcpu->run->internal.data[1] = intr_info; 4785 vcpu->run->internal.data[2] = error_code; 4786 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 4787 return 0; 4788 } 4789 4790 if (is_page_fault(intr_info)) { 4791 cr2 = vmx_get_exit_qual(vcpu); 4792 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 4793 /* 4794 * EPT will cause page fault only if we need to 4795 * detect illegal GPAs. 4796 */ 4797 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 4798 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 4799 return 1; 4800 } else 4801 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4802 } 4803 4804 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4805 4806 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4807 return handle_rmode_exception(vcpu, ex_no, error_code); 4808 4809 switch (ex_no) { 4810 case DB_VECTOR: 4811 dr6 = vmx_get_exit_qual(vcpu); 4812 if (!(vcpu->guest_debug & 4813 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4814 if (is_icebp(intr_info)) 4815 WARN_ON(!skip_emulated_instruction(vcpu)); 4816 4817 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 4818 return 1; 4819 } 4820 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 4821 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4822 fallthrough; 4823 case BP_VECTOR: 4824 /* 4825 * Update instruction length as we may reinject #BP from 4826 * user space while in guest debugging mode. Reading it for 4827 * #DB as well causes no harm, it is not used in that case. 4828 */ 4829 vmx->vcpu.arch.event_exit_inst_len = 4830 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4831 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4832 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 4833 kvm_run->debug.arch.exception = ex_no; 4834 break; 4835 case AC_VECTOR: 4836 if (vmx_guest_inject_ac(vcpu)) { 4837 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4838 return 1; 4839 } 4840 4841 /* 4842 * Handle split lock. Depending on detection mode this will 4843 * either warn and disable split lock detection for this 4844 * task or force SIGBUS on it. 4845 */ 4846 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 4847 return 1; 4848 fallthrough; 4849 default: 4850 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4851 kvm_run->ex.exception = ex_no; 4852 kvm_run->ex.error_code = error_code; 4853 break; 4854 } 4855 return 0; 4856 } 4857 4858 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 4859 { 4860 ++vcpu->stat.irq_exits; 4861 return 1; 4862 } 4863 4864 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4865 { 4866 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 4867 vcpu->mmio_needed = 0; 4868 return 0; 4869 } 4870 4871 static int handle_io(struct kvm_vcpu *vcpu) 4872 { 4873 unsigned long exit_qualification; 4874 int size, in, string; 4875 unsigned port; 4876 4877 exit_qualification = vmx_get_exit_qual(vcpu); 4878 string = (exit_qualification & 16) != 0; 4879 4880 ++vcpu->stat.io_exits; 4881 4882 if (string) 4883 return kvm_emulate_instruction(vcpu, 0); 4884 4885 port = exit_qualification >> 16; 4886 size = (exit_qualification & 7) + 1; 4887 in = (exit_qualification & 8) != 0; 4888 4889 return kvm_fast_pio(vcpu, size, port, in); 4890 } 4891 4892 static void 4893 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4894 { 4895 /* 4896 * Patch in the VMCALL instruction: 4897 */ 4898 hypercall[0] = 0x0f; 4899 hypercall[1] = 0x01; 4900 hypercall[2] = 0xc1; 4901 } 4902 4903 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 4904 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 4905 { 4906 if (is_guest_mode(vcpu)) { 4907 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4908 unsigned long orig_val = val; 4909 4910 /* 4911 * We get here when L2 changed cr0 in a way that did not change 4912 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 4913 * but did change L0 shadowed bits. So we first calculate the 4914 * effective cr0 value that L1 would like to write into the 4915 * hardware. It consists of the L2-owned bits from the new 4916 * value combined with the L1-owned bits from L1's guest_cr0. 4917 */ 4918 val = (val & ~vmcs12->cr0_guest_host_mask) | 4919 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 4920 4921 if (!nested_guest_cr0_valid(vcpu, val)) 4922 return 1; 4923 4924 if (kvm_set_cr0(vcpu, val)) 4925 return 1; 4926 vmcs_writel(CR0_READ_SHADOW, orig_val); 4927 return 0; 4928 } else { 4929 if (to_vmx(vcpu)->nested.vmxon && 4930 !nested_host_cr0_valid(vcpu, val)) 4931 return 1; 4932 4933 return kvm_set_cr0(vcpu, val); 4934 } 4935 } 4936 4937 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 4938 { 4939 if (is_guest_mode(vcpu)) { 4940 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4941 unsigned long orig_val = val; 4942 4943 /* analogously to handle_set_cr0 */ 4944 val = (val & ~vmcs12->cr4_guest_host_mask) | 4945 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 4946 if (kvm_set_cr4(vcpu, val)) 4947 return 1; 4948 vmcs_writel(CR4_READ_SHADOW, orig_val); 4949 return 0; 4950 } else 4951 return kvm_set_cr4(vcpu, val); 4952 } 4953 4954 static int handle_desc(struct kvm_vcpu *vcpu) 4955 { 4956 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 4957 return kvm_emulate_instruction(vcpu, 0); 4958 } 4959 4960 static int handle_cr(struct kvm_vcpu *vcpu) 4961 { 4962 unsigned long exit_qualification, val; 4963 int cr; 4964 int reg; 4965 int err; 4966 int ret; 4967 4968 exit_qualification = vmx_get_exit_qual(vcpu); 4969 cr = exit_qualification & 15; 4970 reg = (exit_qualification >> 8) & 15; 4971 switch ((exit_qualification >> 4) & 3) { 4972 case 0: /* mov to cr */ 4973 val = kvm_register_read(vcpu, reg); 4974 trace_kvm_cr_write(cr, val); 4975 switch (cr) { 4976 case 0: 4977 err = handle_set_cr0(vcpu, val); 4978 return kvm_complete_insn_gp(vcpu, err); 4979 case 3: 4980 WARN_ON_ONCE(enable_unrestricted_guest); 4981 4982 err = kvm_set_cr3(vcpu, val); 4983 return kvm_complete_insn_gp(vcpu, err); 4984 case 4: 4985 err = handle_set_cr4(vcpu, val); 4986 return kvm_complete_insn_gp(vcpu, err); 4987 case 8: { 4988 u8 cr8_prev = kvm_get_cr8(vcpu); 4989 u8 cr8 = (u8)val; 4990 err = kvm_set_cr8(vcpu, cr8); 4991 ret = kvm_complete_insn_gp(vcpu, err); 4992 if (lapic_in_kernel(vcpu)) 4993 return ret; 4994 if (cr8_prev <= cr8) 4995 return ret; 4996 /* 4997 * TODO: we might be squashing a 4998 * KVM_GUESTDBG_SINGLESTEP-triggered 4999 * KVM_EXIT_DEBUG here. 5000 */ 5001 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5002 return 0; 5003 } 5004 } 5005 break; 5006 case 2: /* clts */ 5007 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5008 return -EIO; 5009 case 1: /*mov from cr*/ 5010 switch (cr) { 5011 case 3: 5012 WARN_ON_ONCE(enable_unrestricted_guest); 5013 5014 val = kvm_read_cr3(vcpu); 5015 kvm_register_write(vcpu, reg, val); 5016 trace_kvm_cr_read(cr, val); 5017 return kvm_skip_emulated_instruction(vcpu); 5018 case 8: 5019 val = kvm_get_cr8(vcpu); 5020 kvm_register_write(vcpu, reg, val); 5021 trace_kvm_cr_read(cr, val); 5022 return kvm_skip_emulated_instruction(vcpu); 5023 } 5024 break; 5025 case 3: /* lmsw */ 5026 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5027 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 5028 kvm_lmsw(vcpu, val); 5029 5030 return kvm_skip_emulated_instruction(vcpu); 5031 default: 5032 break; 5033 } 5034 vcpu->run->exit_reason = 0; 5035 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5036 (int)(exit_qualification >> 4) & 3, cr); 5037 return 0; 5038 } 5039 5040 static int handle_dr(struct kvm_vcpu *vcpu) 5041 { 5042 unsigned long exit_qualification; 5043 int dr, dr7, reg; 5044 int err = 1; 5045 5046 exit_qualification = vmx_get_exit_qual(vcpu); 5047 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5048 5049 /* First, if DR does not exist, trigger UD */ 5050 if (!kvm_require_dr(vcpu, dr)) 5051 return 1; 5052 5053 if (kvm_x86_ops.get_cpl(vcpu) > 0) 5054 goto out; 5055 5056 dr7 = vmcs_readl(GUEST_DR7); 5057 if (dr7 & DR7_GD) { 5058 /* 5059 * As the vm-exit takes precedence over the debug trap, we 5060 * need to emulate the latter, either for the host or the 5061 * guest debugging itself. 5062 */ 5063 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5064 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5065 vcpu->run->debug.arch.dr7 = dr7; 5066 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5067 vcpu->run->debug.arch.exception = DB_VECTOR; 5068 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5069 return 0; 5070 } else { 5071 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5072 return 1; 5073 } 5074 } 5075 5076 if (vcpu->guest_debug == 0) { 5077 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5078 5079 /* 5080 * No more DR vmexits; force a reload of the debug registers 5081 * and reenter on this instruction. The next vmexit will 5082 * retrieve the full state of the debug registers. 5083 */ 5084 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5085 return 1; 5086 } 5087 5088 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5089 if (exit_qualification & TYPE_MOV_FROM_DR) { 5090 unsigned long val; 5091 5092 kvm_get_dr(vcpu, dr, &val); 5093 kvm_register_write(vcpu, reg, val); 5094 err = 0; 5095 } else { 5096 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5097 } 5098 5099 out: 5100 return kvm_complete_insn_gp(vcpu, err); 5101 } 5102 5103 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5104 { 5105 get_debugreg(vcpu->arch.db[0], 0); 5106 get_debugreg(vcpu->arch.db[1], 1); 5107 get_debugreg(vcpu->arch.db[2], 2); 5108 get_debugreg(vcpu->arch.db[3], 3); 5109 get_debugreg(vcpu->arch.dr6, 6); 5110 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5111 5112 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5113 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5114 5115 /* 5116 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5117 * a stale dr6 from the guest. 5118 */ 5119 set_debugreg(DR6_RESERVED, 6); 5120 } 5121 5122 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5123 { 5124 vmcs_writel(GUEST_DR7, val); 5125 } 5126 5127 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5128 { 5129 kvm_apic_update_ppr(vcpu); 5130 return 1; 5131 } 5132 5133 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5134 { 5135 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5136 5137 kvm_make_request(KVM_REQ_EVENT, vcpu); 5138 5139 ++vcpu->stat.irq_window_exits; 5140 return 1; 5141 } 5142 5143 static int handle_invlpg(struct kvm_vcpu *vcpu) 5144 { 5145 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5146 5147 kvm_mmu_invlpg(vcpu, exit_qualification); 5148 return kvm_skip_emulated_instruction(vcpu); 5149 } 5150 5151 static int handle_apic_access(struct kvm_vcpu *vcpu) 5152 { 5153 if (likely(fasteoi)) { 5154 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5155 int access_type, offset; 5156 5157 access_type = exit_qualification & APIC_ACCESS_TYPE; 5158 offset = exit_qualification & APIC_ACCESS_OFFSET; 5159 /* 5160 * Sane guest uses MOV to write EOI, with written value 5161 * not cared. So make a short-circuit here by avoiding 5162 * heavy instruction emulation. 5163 */ 5164 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5165 (offset == APIC_EOI)) { 5166 kvm_lapic_set_eoi(vcpu); 5167 return kvm_skip_emulated_instruction(vcpu); 5168 } 5169 } 5170 return kvm_emulate_instruction(vcpu, 0); 5171 } 5172 5173 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5174 { 5175 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5176 int vector = exit_qualification & 0xff; 5177 5178 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5179 kvm_apic_set_eoi_accelerated(vcpu, vector); 5180 return 1; 5181 } 5182 5183 static int handle_apic_write(struct kvm_vcpu *vcpu) 5184 { 5185 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5186 u32 offset = exit_qualification & 0xfff; 5187 5188 /* APIC-write VM exit is trap-like and thus no need to adjust IP */ 5189 kvm_apic_write_nodecode(vcpu, offset); 5190 return 1; 5191 } 5192 5193 static int handle_task_switch(struct kvm_vcpu *vcpu) 5194 { 5195 struct vcpu_vmx *vmx = to_vmx(vcpu); 5196 unsigned long exit_qualification; 5197 bool has_error_code = false; 5198 u32 error_code = 0; 5199 u16 tss_selector; 5200 int reason, type, idt_v, idt_index; 5201 5202 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5203 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5204 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5205 5206 exit_qualification = vmx_get_exit_qual(vcpu); 5207 5208 reason = (u32)exit_qualification >> 30; 5209 if (reason == TASK_SWITCH_GATE && idt_v) { 5210 switch (type) { 5211 case INTR_TYPE_NMI_INTR: 5212 vcpu->arch.nmi_injected = false; 5213 vmx_set_nmi_mask(vcpu, true); 5214 break; 5215 case INTR_TYPE_EXT_INTR: 5216 case INTR_TYPE_SOFT_INTR: 5217 kvm_clear_interrupt_queue(vcpu); 5218 break; 5219 case INTR_TYPE_HARD_EXCEPTION: 5220 if (vmx->idt_vectoring_info & 5221 VECTORING_INFO_DELIVER_CODE_MASK) { 5222 has_error_code = true; 5223 error_code = 5224 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5225 } 5226 fallthrough; 5227 case INTR_TYPE_SOFT_EXCEPTION: 5228 kvm_clear_exception_queue(vcpu); 5229 break; 5230 default: 5231 break; 5232 } 5233 } 5234 tss_selector = exit_qualification; 5235 5236 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5237 type != INTR_TYPE_EXT_INTR && 5238 type != INTR_TYPE_NMI_INTR)) 5239 WARN_ON(!skip_emulated_instruction(vcpu)); 5240 5241 /* 5242 * TODO: What about debug traps on tss switch? 5243 * Are we supposed to inject them and update dr6? 5244 */ 5245 return kvm_task_switch(vcpu, tss_selector, 5246 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5247 reason, has_error_code, error_code); 5248 } 5249 5250 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5251 { 5252 unsigned long exit_qualification; 5253 gpa_t gpa; 5254 u64 error_code; 5255 5256 exit_qualification = vmx_get_exit_qual(vcpu); 5257 5258 /* 5259 * EPT violation happened while executing iret from NMI, 5260 * "blocked by NMI" bit has to be set before next VM entry. 5261 * There are errata that may cause this bit to not be set: 5262 * AAK134, BY25. 5263 */ 5264 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5265 enable_vnmi && 5266 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5267 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5268 5269 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5270 trace_kvm_page_fault(gpa, exit_qualification); 5271 5272 /* Is it a read fault? */ 5273 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5274 ? PFERR_USER_MASK : 0; 5275 /* Is it a write fault? */ 5276 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5277 ? PFERR_WRITE_MASK : 0; 5278 /* Is it a fetch fault? */ 5279 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5280 ? PFERR_FETCH_MASK : 0; 5281 /* ept page table entry is present? */ 5282 error_code |= (exit_qualification & 5283 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5284 EPT_VIOLATION_EXECUTABLE)) 5285 ? PFERR_PRESENT_MASK : 0; 5286 5287 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5288 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5289 5290 vcpu->arch.exit_qualification = exit_qualification; 5291 5292 /* 5293 * Check that the GPA doesn't exceed physical memory limits, as that is 5294 * a guest page fault. We have to emulate the instruction here, because 5295 * if the illegal address is that of a paging structure, then 5296 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5297 * would also use advanced VM-exit information for EPT violations to 5298 * reconstruct the page fault error code. 5299 */ 5300 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5301 return kvm_emulate_instruction(vcpu, 0); 5302 5303 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5304 } 5305 5306 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5307 { 5308 gpa_t gpa; 5309 5310 if (!vmx_can_emulate_instruction(vcpu, NULL, 0)) 5311 return 1; 5312 5313 /* 5314 * A nested guest cannot optimize MMIO vmexits, because we have an 5315 * nGPA here instead of the required GPA. 5316 */ 5317 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5318 if (!is_guest_mode(vcpu) && 5319 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5320 trace_kvm_fast_mmio(gpa); 5321 return kvm_skip_emulated_instruction(vcpu); 5322 } 5323 5324 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5325 } 5326 5327 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5328 { 5329 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5330 return -EIO; 5331 5332 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5333 ++vcpu->stat.nmi_window_exits; 5334 kvm_make_request(KVM_REQ_EVENT, vcpu); 5335 5336 return 1; 5337 } 5338 5339 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5340 { 5341 struct vcpu_vmx *vmx = to_vmx(vcpu); 5342 bool intr_window_requested; 5343 unsigned count = 130; 5344 5345 intr_window_requested = exec_controls_get(vmx) & 5346 CPU_BASED_INTR_WINDOW_EXITING; 5347 5348 while (vmx->emulation_required && count-- != 0) { 5349 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5350 return handle_interrupt_window(&vmx->vcpu); 5351 5352 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5353 return 1; 5354 5355 if (!kvm_emulate_instruction(vcpu, 0)) 5356 return 0; 5357 5358 if (vmx->emulation_required && !vmx->rmode.vm86_active && 5359 vcpu->arch.exception.pending) { 5360 kvm_prepare_emulation_failure_exit(vcpu); 5361 return 0; 5362 } 5363 5364 if (vcpu->arch.halt_request) { 5365 vcpu->arch.halt_request = 0; 5366 return kvm_vcpu_halt(vcpu); 5367 } 5368 5369 /* 5370 * Note, return 1 and not 0, vcpu_run() will invoke 5371 * xfer_to_guest_mode() which will create a proper return 5372 * code. 5373 */ 5374 if (__xfer_to_guest_mode_work_pending()) 5375 return 1; 5376 } 5377 5378 return 1; 5379 } 5380 5381 static void grow_ple_window(struct kvm_vcpu *vcpu) 5382 { 5383 struct vcpu_vmx *vmx = to_vmx(vcpu); 5384 unsigned int old = vmx->ple_window; 5385 5386 vmx->ple_window = __grow_ple_window(old, ple_window, 5387 ple_window_grow, 5388 ple_window_max); 5389 5390 if (vmx->ple_window != old) { 5391 vmx->ple_window_dirty = true; 5392 trace_kvm_ple_window_update(vcpu->vcpu_id, 5393 vmx->ple_window, old); 5394 } 5395 } 5396 5397 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5398 { 5399 struct vcpu_vmx *vmx = to_vmx(vcpu); 5400 unsigned int old = vmx->ple_window; 5401 5402 vmx->ple_window = __shrink_ple_window(old, ple_window, 5403 ple_window_shrink, 5404 ple_window); 5405 5406 if (vmx->ple_window != old) { 5407 vmx->ple_window_dirty = true; 5408 trace_kvm_ple_window_update(vcpu->vcpu_id, 5409 vmx->ple_window, old); 5410 } 5411 } 5412 5413 /* 5414 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5415 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5416 */ 5417 static int handle_pause(struct kvm_vcpu *vcpu) 5418 { 5419 if (!kvm_pause_in_guest(vcpu->kvm)) 5420 grow_ple_window(vcpu); 5421 5422 /* 5423 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5424 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5425 * never set PAUSE_EXITING and just set PLE if supported, 5426 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5427 */ 5428 kvm_vcpu_on_spin(vcpu, true); 5429 return kvm_skip_emulated_instruction(vcpu); 5430 } 5431 5432 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5433 { 5434 return 1; 5435 } 5436 5437 static int handle_invpcid(struct kvm_vcpu *vcpu) 5438 { 5439 u32 vmx_instruction_info; 5440 unsigned long type; 5441 gva_t gva; 5442 struct { 5443 u64 pcid; 5444 u64 gla; 5445 } operand; 5446 int gpr_index; 5447 5448 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5449 kvm_queue_exception(vcpu, UD_VECTOR); 5450 return 1; 5451 } 5452 5453 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5454 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5455 type = kvm_register_read(vcpu, gpr_index); 5456 5457 /* According to the Intel instruction reference, the memory operand 5458 * is read even if it isn't needed (e.g., for type==all) 5459 */ 5460 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5461 vmx_instruction_info, false, 5462 sizeof(operand), &gva)) 5463 return 1; 5464 5465 return kvm_handle_invpcid(vcpu, type, gva); 5466 } 5467 5468 static int handle_pml_full(struct kvm_vcpu *vcpu) 5469 { 5470 unsigned long exit_qualification; 5471 5472 trace_kvm_pml_full(vcpu->vcpu_id); 5473 5474 exit_qualification = vmx_get_exit_qual(vcpu); 5475 5476 /* 5477 * PML buffer FULL happened while executing iret from NMI, 5478 * "blocked by NMI" bit has to be set before next VM entry. 5479 */ 5480 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5481 enable_vnmi && 5482 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5483 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5484 GUEST_INTR_STATE_NMI); 5485 5486 /* 5487 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5488 * here.., and there's no userspace involvement needed for PML. 5489 */ 5490 return 1; 5491 } 5492 5493 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5494 { 5495 struct vcpu_vmx *vmx = to_vmx(vcpu); 5496 5497 if (!vmx->req_immediate_exit && 5498 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 5499 kvm_lapic_expired_hv_timer(vcpu); 5500 return EXIT_FASTPATH_REENTER_GUEST; 5501 } 5502 5503 return EXIT_FASTPATH_NONE; 5504 } 5505 5506 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5507 { 5508 handle_fastpath_preemption_timer(vcpu); 5509 return 1; 5510 } 5511 5512 /* 5513 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5514 * are overwritten by nested_vmx_setup() when nested=1. 5515 */ 5516 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5517 { 5518 kvm_queue_exception(vcpu, UD_VECTOR); 5519 return 1; 5520 } 5521 5522 #ifndef CONFIG_X86_SGX_KVM 5523 static int handle_encls(struct kvm_vcpu *vcpu) 5524 { 5525 /* 5526 * SGX virtualization is disabled. There is no software enable bit for 5527 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 5528 * the guest from executing ENCLS (when SGX is supported by hardware). 5529 */ 5530 kvm_queue_exception(vcpu, UD_VECTOR); 5531 return 1; 5532 } 5533 #endif /* CONFIG_X86_SGX_KVM */ 5534 5535 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 5536 { 5537 /* 5538 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 5539 * VM-Exits. Unconditionally set the flag here and leave the handling to 5540 * vmx_handle_exit(). 5541 */ 5542 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 5543 return 1; 5544 } 5545 5546 /* 5547 * The exit handlers return 1 if the exit was handled fully and guest execution 5548 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5549 * to be done to userspace and return 0. 5550 */ 5551 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5552 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 5553 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5554 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5555 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5556 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5557 [EXIT_REASON_CR_ACCESS] = handle_cr, 5558 [EXIT_REASON_DR_ACCESS] = handle_dr, 5559 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 5560 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 5561 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 5562 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 5563 [EXIT_REASON_HLT] = kvm_emulate_halt, 5564 [EXIT_REASON_INVD] = kvm_emulate_invd, 5565 [EXIT_REASON_INVLPG] = handle_invlpg, 5566 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 5567 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 5568 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5569 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5570 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5571 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5572 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5573 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5574 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5575 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5576 [EXIT_REASON_VMON] = handle_vmx_instruction, 5577 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5578 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5579 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5580 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5581 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 5582 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 5583 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5584 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5585 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5586 [EXIT_REASON_LDTR_TR] = handle_desc, 5587 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5588 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5589 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5590 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 5591 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5592 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 5593 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5594 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5595 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 5596 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 5597 [EXIT_REASON_PML_FULL] = handle_pml_full, 5598 [EXIT_REASON_INVPCID] = handle_invpcid, 5599 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5600 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5601 [EXIT_REASON_ENCLS] = handle_encls, 5602 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 5603 }; 5604 5605 static const int kvm_vmx_max_exit_handlers = 5606 ARRAY_SIZE(kvm_vmx_exit_handlers); 5607 5608 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 5609 u64 *info1, u64 *info2, 5610 u32 *intr_info, u32 *error_code) 5611 { 5612 struct vcpu_vmx *vmx = to_vmx(vcpu); 5613 5614 *reason = vmx->exit_reason.full; 5615 *info1 = vmx_get_exit_qual(vcpu); 5616 if (!(vmx->exit_reason.failed_vmentry)) { 5617 *info2 = vmx->idt_vectoring_info; 5618 *intr_info = vmx_get_intr_info(vcpu); 5619 if (is_exception_with_error_code(*intr_info)) 5620 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5621 else 5622 *error_code = 0; 5623 } else { 5624 *info2 = 0; 5625 *intr_info = 0; 5626 *error_code = 0; 5627 } 5628 } 5629 5630 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5631 { 5632 if (vmx->pml_pg) { 5633 __free_page(vmx->pml_pg); 5634 vmx->pml_pg = NULL; 5635 } 5636 } 5637 5638 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5639 { 5640 struct vcpu_vmx *vmx = to_vmx(vcpu); 5641 u64 *pml_buf; 5642 u16 pml_idx; 5643 5644 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5645 5646 /* Do nothing if PML buffer is empty */ 5647 if (pml_idx == (PML_ENTITY_NUM - 1)) 5648 return; 5649 5650 /* PML index always points to next available PML buffer entity */ 5651 if (pml_idx >= PML_ENTITY_NUM) 5652 pml_idx = 0; 5653 else 5654 pml_idx++; 5655 5656 pml_buf = page_address(vmx->pml_pg); 5657 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5658 u64 gpa; 5659 5660 gpa = pml_buf[pml_idx]; 5661 WARN_ON(gpa & (PAGE_SIZE - 1)); 5662 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5663 } 5664 5665 /* reset PML index */ 5666 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5667 } 5668 5669 static void vmx_dump_sel(char *name, uint32_t sel) 5670 { 5671 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5672 name, vmcs_read16(sel), 5673 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5674 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5675 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5676 } 5677 5678 static void vmx_dump_dtsel(char *name, uint32_t limit) 5679 { 5680 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5681 name, vmcs_read32(limit), 5682 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5683 } 5684 5685 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 5686 { 5687 unsigned int i; 5688 struct vmx_msr_entry *e; 5689 5690 pr_err("MSR %s:\n", name); 5691 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 5692 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 5693 } 5694 5695 void dump_vmcs(struct kvm_vcpu *vcpu) 5696 { 5697 struct vcpu_vmx *vmx = to_vmx(vcpu); 5698 u32 vmentry_ctl, vmexit_ctl; 5699 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 5700 unsigned long cr4; 5701 int efer_slot; 5702 5703 if (!dump_invalid_vmcs) { 5704 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 5705 return; 5706 } 5707 5708 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5709 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5710 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5711 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5712 cr4 = vmcs_readl(GUEST_CR4); 5713 secondary_exec_control = 0; 5714 if (cpu_has_secondary_exec_ctrls()) 5715 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5716 5717 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 5718 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 5719 pr_err("*** Guest State ***\n"); 5720 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5721 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5722 vmcs_readl(CR0_GUEST_HOST_MASK)); 5723 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5724 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5725 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5726 if (cpu_has_vmx_ept()) { 5727 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5728 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5729 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5730 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5731 } 5732 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5733 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5734 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5735 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5736 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5737 vmcs_readl(GUEST_SYSENTER_ESP), 5738 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5739 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5740 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5741 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5742 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5743 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5744 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5745 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5746 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5747 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5748 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5749 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 5750 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 5751 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 5752 else if (efer_slot >= 0) 5753 pr_err("EFER= 0x%016llx (autoload)\n", 5754 vmx->msr_autoload.guest.val[efer_slot].value); 5755 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 5756 pr_err("EFER= 0x%016llx (effective)\n", 5757 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 5758 else 5759 pr_err("EFER= 0x%016llx (effective)\n", 5760 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 5761 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 5762 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 5763 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5764 vmcs_read64(GUEST_IA32_DEBUGCTL), 5765 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5766 if (cpu_has_load_perf_global_ctrl() && 5767 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5768 pr_err("PerfGlobCtl = 0x%016llx\n", 5769 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5770 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5771 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5772 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5773 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5774 vmcs_read32(GUEST_ACTIVITY_STATE)); 5775 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5776 pr_err("InterruptStatus = %04x\n", 5777 vmcs_read16(GUEST_INTR_STATUS)); 5778 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 5779 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 5780 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 5781 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 5782 5783 pr_err("*** Host State ***\n"); 5784 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5785 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5786 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5787 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5788 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5789 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5790 vmcs_read16(HOST_TR_SELECTOR)); 5791 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5792 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5793 vmcs_readl(HOST_TR_BASE)); 5794 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5795 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5796 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5797 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5798 vmcs_readl(HOST_CR4)); 5799 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5800 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5801 vmcs_read32(HOST_IA32_SYSENTER_CS), 5802 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5803 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 5804 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 5805 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 5806 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 5807 if (cpu_has_load_perf_global_ctrl() && 5808 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5809 pr_err("PerfGlobCtl = 0x%016llx\n", 5810 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5811 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 5812 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 5813 5814 pr_err("*** Control State ***\n"); 5815 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5816 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5817 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5818 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5819 vmcs_read32(EXCEPTION_BITMAP), 5820 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5821 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5822 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5823 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5824 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5825 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5826 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5827 vmcs_read32(VM_EXIT_INTR_INFO), 5828 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5829 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5830 pr_err(" reason=%08x qualification=%016lx\n", 5831 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5832 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5833 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5834 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5835 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5836 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5837 pr_err("TSC Multiplier = 0x%016llx\n", 5838 vmcs_read64(TSC_MULTIPLIER)); 5839 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5840 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5841 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5842 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5843 } 5844 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5845 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5846 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5847 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5848 } 5849 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 5850 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 5851 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 5852 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 5853 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 5854 pr_err("PLE Gap=%08x Window=%08x\n", 5855 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 5856 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 5857 pr_err("Virtual processor ID = 0x%04x\n", 5858 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 5859 } 5860 5861 /* 5862 * The guest has exited. See if we can fix it or if we need userspace 5863 * assistance. 5864 */ 5865 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 5866 { 5867 struct vcpu_vmx *vmx = to_vmx(vcpu); 5868 union vmx_exit_reason exit_reason = vmx->exit_reason; 5869 u32 vectoring_info = vmx->idt_vectoring_info; 5870 u16 exit_handler_index; 5871 5872 /* 5873 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 5874 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 5875 * querying dirty_bitmap, we only need to kick all vcpus out of guest 5876 * mode as if vcpus is in root mode, the PML buffer must has been 5877 * flushed already. Note, PML is never enabled in hardware while 5878 * running L2. 5879 */ 5880 if (enable_pml && !is_guest_mode(vcpu)) 5881 vmx_flush_pml_buffer(vcpu); 5882 5883 /* 5884 * KVM should never reach this point with a pending nested VM-Enter. 5885 * More specifically, short-circuiting VM-Entry to emulate L2 due to 5886 * invalid guest state should never happen as that means KVM knowingly 5887 * allowed a nested VM-Enter with an invalid vmcs12. More below. 5888 */ 5889 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 5890 return -EIO; 5891 5892 if (is_guest_mode(vcpu)) { 5893 /* 5894 * PML is never enabled when running L2, bail immediately if a 5895 * PML full exit occurs as something is horribly wrong. 5896 */ 5897 if (exit_reason.basic == EXIT_REASON_PML_FULL) 5898 goto unexpected_vmexit; 5899 5900 /* 5901 * The host physical addresses of some pages of guest memory 5902 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 5903 * Page). The CPU may write to these pages via their host 5904 * physical address while L2 is running, bypassing any 5905 * address-translation-based dirty tracking (e.g. EPT write 5906 * protection). 5907 * 5908 * Mark them dirty on every exit from L2 to prevent them from 5909 * getting out of sync with dirty tracking. 5910 */ 5911 nested_mark_vmcs12_pages_dirty(vcpu); 5912 5913 /* 5914 * Synthesize a triple fault if L2 state is invalid. In normal 5915 * operation, nested VM-Enter rejects any attempt to enter L2 5916 * with invalid state. However, those checks are skipped if 5917 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 5918 * L2 state is invalid, it means either L1 modified SMRAM state 5919 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 5920 * doing so is architecturally allowed in the RSM case, and is 5921 * the least awful solution for the userspace case without 5922 * risking false positives. 5923 */ 5924 if (vmx->emulation_required) { 5925 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 5926 return 1; 5927 } 5928 5929 if (nested_vmx_reflect_vmexit(vcpu)) 5930 return 1; 5931 } 5932 5933 /* If guest state is invalid, start emulating. L2 is handled above. */ 5934 if (vmx->emulation_required) 5935 return handle_invalid_guest_state(vcpu); 5936 5937 if (exit_reason.failed_vmentry) { 5938 dump_vmcs(vcpu); 5939 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5940 vcpu->run->fail_entry.hardware_entry_failure_reason 5941 = exit_reason.full; 5942 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 5943 return 0; 5944 } 5945 5946 if (unlikely(vmx->fail)) { 5947 dump_vmcs(vcpu); 5948 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5949 vcpu->run->fail_entry.hardware_entry_failure_reason 5950 = vmcs_read32(VM_INSTRUCTION_ERROR); 5951 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 5952 return 0; 5953 } 5954 5955 /* 5956 * Note: 5957 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 5958 * delivery event since it indicates guest is accessing MMIO. 5959 * The vm-exit can be triggered again after return to guest that 5960 * will cause infinite loop. 5961 */ 5962 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 5963 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 5964 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 5965 exit_reason.basic != EXIT_REASON_PML_FULL && 5966 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 5967 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) { 5968 int ndata = 3; 5969 5970 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5971 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 5972 vcpu->run->internal.data[0] = vectoring_info; 5973 vcpu->run->internal.data[1] = exit_reason.full; 5974 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 5975 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 5976 vcpu->run->internal.data[ndata++] = 5977 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5978 } 5979 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 5980 vcpu->run->internal.ndata = ndata; 5981 return 0; 5982 } 5983 5984 if (unlikely(!enable_vnmi && 5985 vmx->loaded_vmcs->soft_vnmi_blocked)) { 5986 if (!vmx_interrupt_blocked(vcpu)) { 5987 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5988 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 5989 vcpu->arch.nmi_pending) { 5990 /* 5991 * This CPU don't support us in finding the end of an 5992 * NMI-blocked window if the guest runs with IRQs 5993 * disabled. So we pull the trigger after 1 s of 5994 * futile waiting, but inform the user about this. 5995 */ 5996 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 5997 "state on VCPU %d after 1 s timeout\n", 5998 __func__, vcpu->vcpu_id); 5999 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6000 } 6001 } 6002 6003 if (exit_fastpath != EXIT_FASTPATH_NONE) 6004 return 1; 6005 6006 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6007 goto unexpected_vmexit; 6008 #ifdef CONFIG_RETPOLINE 6009 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6010 return kvm_emulate_wrmsr(vcpu); 6011 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6012 return handle_preemption_timer(vcpu); 6013 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6014 return handle_interrupt_window(vcpu); 6015 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6016 return handle_external_interrupt(vcpu); 6017 else if (exit_reason.basic == EXIT_REASON_HLT) 6018 return kvm_emulate_halt(vcpu); 6019 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6020 return handle_ept_misconfig(vcpu); 6021 #endif 6022 6023 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6024 kvm_vmx_max_exit_handlers); 6025 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6026 goto unexpected_vmexit; 6027 6028 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6029 6030 unexpected_vmexit: 6031 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6032 exit_reason.full); 6033 dump_vmcs(vcpu); 6034 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6035 vcpu->run->internal.suberror = 6036 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6037 vcpu->run->internal.ndata = 2; 6038 vcpu->run->internal.data[0] = exit_reason.full; 6039 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6040 return 0; 6041 } 6042 6043 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6044 { 6045 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6046 6047 /* 6048 * Exit to user space when bus lock detected to inform that there is 6049 * a bus lock in guest. 6050 */ 6051 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6052 if (ret > 0) 6053 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6054 6055 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6056 return 0; 6057 } 6058 return ret; 6059 } 6060 6061 /* 6062 * Software based L1D cache flush which is used when microcode providing 6063 * the cache control MSR is not loaded. 6064 * 6065 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6066 * flush it is required to read in 64 KiB because the replacement algorithm 6067 * is not exactly LRU. This could be sized at runtime via topology 6068 * information but as all relevant affected CPUs have 32KiB L1D cache size 6069 * there is no point in doing so. 6070 */ 6071 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6072 { 6073 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6074 6075 /* 6076 * This code is only executed when the the flush mode is 'cond' or 6077 * 'always' 6078 */ 6079 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6080 bool flush_l1d; 6081 6082 /* 6083 * Clear the per-vcpu flush bit, it gets set again 6084 * either from vcpu_run() or from one of the unsafe 6085 * VMEXIT handlers. 6086 */ 6087 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6088 vcpu->arch.l1tf_flush_l1d = false; 6089 6090 /* 6091 * Clear the per-cpu flush bit, it gets set again from 6092 * the interrupt handlers. 6093 */ 6094 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6095 kvm_clear_cpu_l1tf_flush_l1d(); 6096 6097 if (!flush_l1d) 6098 return; 6099 } 6100 6101 vcpu->stat.l1d_flush++; 6102 6103 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6104 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6105 return; 6106 } 6107 6108 asm volatile( 6109 /* First ensure the pages are in the TLB */ 6110 "xorl %%eax, %%eax\n" 6111 ".Lpopulate_tlb:\n\t" 6112 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6113 "addl $4096, %%eax\n\t" 6114 "cmpl %%eax, %[size]\n\t" 6115 "jne .Lpopulate_tlb\n\t" 6116 "xorl %%eax, %%eax\n\t" 6117 "cpuid\n\t" 6118 /* Now fill the cache */ 6119 "xorl %%eax, %%eax\n" 6120 ".Lfill_cache:\n" 6121 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6122 "addl $64, %%eax\n\t" 6123 "cmpl %%eax, %[size]\n\t" 6124 "jne .Lfill_cache\n\t" 6125 "lfence\n" 6126 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6127 [size] "r" (size) 6128 : "eax", "ebx", "ecx", "edx"); 6129 } 6130 6131 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6132 { 6133 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6134 int tpr_threshold; 6135 6136 if (is_guest_mode(vcpu) && 6137 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6138 return; 6139 6140 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6141 if (is_guest_mode(vcpu)) 6142 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6143 else 6144 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6145 } 6146 6147 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6148 { 6149 struct vcpu_vmx *vmx = to_vmx(vcpu); 6150 u32 sec_exec_control; 6151 6152 if (!lapic_in_kernel(vcpu)) 6153 return; 6154 6155 if (!flexpriority_enabled && 6156 !cpu_has_vmx_virtualize_x2apic_mode()) 6157 return; 6158 6159 /* Postpone execution until vmcs01 is the current VMCS. */ 6160 if (is_guest_mode(vcpu)) { 6161 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6162 return; 6163 } 6164 6165 sec_exec_control = secondary_exec_controls_get(vmx); 6166 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6167 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6168 6169 switch (kvm_get_apic_mode(vcpu)) { 6170 case LAPIC_MODE_INVALID: 6171 WARN_ONCE(true, "Invalid local APIC state"); 6172 break; 6173 case LAPIC_MODE_DISABLED: 6174 break; 6175 case LAPIC_MODE_XAPIC: 6176 if (flexpriority_enabled) { 6177 sec_exec_control |= 6178 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6179 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6180 6181 /* 6182 * Flush the TLB, reloading the APIC access page will 6183 * only do so if its physical address has changed, but 6184 * the guest may have inserted a non-APIC mapping into 6185 * the TLB while the APIC access page was disabled. 6186 */ 6187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6188 } 6189 break; 6190 case LAPIC_MODE_X2APIC: 6191 if (cpu_has_vmx_virtualize_x2apic_mode()) 6192 sec_exec_control |= 6193 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6194 break; 6195 } 6196 secondary_exec_controls_set(vmx, sec_exec_control); 6197 6198 vmx_update_msr_bitmap_x2apic(vcpu); 6199 } 6200 6201 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6202 { 6203 struct page *page; 6204 6205 /* Defer reload until vmcs01 is the current VMCS. */ 6206 if (is_guest_mode(vcpu)) { 6207 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6208 return; 6209 } 6210 6211 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6212 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6213 return; 6214 6215 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6216 if (is_error_page(page)) 6217 return; 6218 6219 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page)); 6220 vmx_flush_tlb_current(vcpu); 6221 6222 /* 6223 * Do not pin apic access page in memory, the MMU notifier 6224 * will call us again if it is migrated or swapped out. 6225 */ 6226 put_page(page); 6227 } 6228 6229 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6230 { 6231 u16 status; 6232 u8 old; 6233 6234 if (max_isr == -1) 6235 max_isr = 0; 6236 6237 status = vmcs_read16(GUEST_INTR_STATUS); 6238 old = status >> 8; 6239 if (max_isr != old) { 6240 status &= 0xff; 6241 status |= max_isr << 8; 6242 vmcs_write16(GUEST_INTR_STATUS, status); 6243 } 6244 } 6245 6246 static void vmx_set_rvi(int vector) 6247 { 6248 u16 status; 6249 u8 old; 6250 6251 if (vector == -1) 6252 vector = 0; 6253 6254 status = vmcs_read16(GUEST_INTR_STATUS); 6255 old = (u8)status & 0xff; 6256 if ((u8)vector != old) { 6257 status &= ~0xff; 6258 status |= (u8)vector; 6259 vmcs_write16(GUEST_INTR_STATUS, status); 6260 } 6261 } 6262 6263 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6264 { 6265 /* 6266 * When running L2, updating RVI is only relevant when 6267 * vmcs12 virtual-interrupt-delivery enabled. 6268 * However, it can be enabled only when L1 also 6269 * intercepts external-interrupts and in that case 6270 * we should not update vmcs02 RVI but instead intercept 6271 * interrupt. Therefore, do nothing when running L2. 6272 */ 6273 if (!is_guest_mode(vcpu)) 6274 vmx_set_rvi(max_irr); 6275 } 6276 6277 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6278 { 6279 struct vcpu_vmx *vmx = to_vmx(vcpu); 6280 int max_irr; 6281 bool got_posted_interrupt; 6282 6283 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6284 return -EIO; 6285 6286 if (pi_test_on(&vmx->pi_desc)) { 6287 pi_clear_on(&vmx->pi_desc); 6288 /* 6289 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6290 * But on x86 this is just a compiler barrier anyway. 6291 */ 6292 smp_mb__after_atomic(); 6293 got_posted_interrupt = 6294 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6295 } else { 6296 max_irr = kvm_lapic_find_highest_irr(vcpu); 6297 got_posted_interrupt = false; 6298 } 6299 6300 /* 6301 * Newly recognized interrupts are injected via either virtual interrupt 6302 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6303 * disabled in two cases: 6304 * 6305 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6306 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6307 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6308 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6309 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6310 * 6311 * 2) If APICv is disabled for this vCPU, assigned devices may still 6312 * attempt to post interrupts. The posted interrupt vector will cause 6313 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6314 */ 6315 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6316 vmx_set_rvi(max_irr); 6317 else if (got_posted_interrupt) 6318 kvm_make_request(KVM_REQ_EVENT, vcpu); 6319 6320 return max_irr; 6321 } 6322 6323 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6324 { 6325 if (!kvm_vcpu_apicv_active(vcpu)) 6326 return; 6327 6328 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6329 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6330 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6331 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6332 } 6333 6334 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6335 { 6336 struct vcpu_vmx *vmx = to_vmx(vcpu); 6337 6338 pi_clear_on(&vmx->pi_desc); 6339 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6340 } 6341 6342 void vmx_do_interrupt_nmi_irqoff(unsigned long entry); 6343 6344 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, 6345 unsigned long entry) 6346 { 6347 kvm_before_interrupt(vcpu); 6348 vmx_do_interrupt_nmi_irqoff(entry); 6349 kvm_after_interrupt(vcpu); 6350 } 6351 6352 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) 6353 { 6354 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist; 6355 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6356 6357 /* if exit due to PF check for async PF */ 6358 if (is_page_fault(intr_info)) 6359 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6360 /* Handle machine checks before interrupts are enabled */ 6361 else if (is_machine_check(intr_info)) 6362 kvm_machine_check(); 6363 /* We need to handle NMIs before interrupts are enabled */ 6364 else if (is_nmi(intr_info)) 6365 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry); 6366 } 6367 6368 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6369 { 6370 u32 intr_info = vmx_get_intr_info(vcpu); 6371 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6372 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6373 6374 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6375 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6376 return; 6377 6378 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc)); 6379 } 6380 6381 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6382 { 6383 struct vcpu_vmx *vmx = to_vmx(vcpu); 6384 6385 if (vmx->emulation_required) 6386 return; 6387 6388 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6389 handle_external_interrupt_irqoff(vcpu); 6390 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6391 handle_exception_nmi_irqoff(vmx); 6392 } 6393 6394 /* 6395 * The kvm parameter can be NULL (module initialization, or invocation before 6396 * VM creation). Be sure to check the kvm parameter before using it. 6397 */ 6398 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6399 { 6400 switch (index) { 6401 case MSR_IA32_SMBASE: 6402 /* 6403 * We cannot do SMM unless we can run the guest in big 6404 * real mode. 6405 */ 6406 return enable_unrestricted_guest || emulate_invalid_guest_state; 6407 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 6408 return nested; 6409 case MSR_AMD64_VIRT_SPEC_CTRL: 6410 case MSR_AMD64_TSC_RATIO: 6411 /* This is AMD only. */ 6412 return false; 6413 default: 6414 return true; 6415 } 6416 } 6417 6418 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6419 { 6420 u32 exit_intr_info; 6421 bool unblock_nmi; 6422 u8 vector; 6423 bool idtv_info_valid; 6424 6425 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6426 6427 if (enable_vnmi) { 6428 if (vmx->loaded_vmcs->nmi_known_unmasked) 6429 return; 6430 6431 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 6432 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6433 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6434 /* 6435 * SDM 3: 27.7.1.2 (September 2008) 6436 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6437 * a guest IRET fault. 6438 * SDM 3: 23.2.2 (September 2008) 6439 * Bit 12 is undefined in any of the following cases: 6440 * If the VM exit sets the valid bit in the IDT-vectoring 6441 * information field. 6442 * If the VM exit is due to a double fault. 6443 */ 6444 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6445 vector != DF_VECTOR && !idtv_info_valid) 6446 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6447 GUEST_INTR_STATE_NMI); 6448 else 6449 vmx->loaded_vmcs->nmi_known_unmasked = 6450 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6451 & GUEST_INTR_STATE_NMI); 6452 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6453 vmx->loaded_vmcs->vnmi_blocked_time += 6454 ktime_to_ns(ktime_sub(ktime_get(), 6455 vmx->loaded_vmcs->entry_time)); 6456 } 6457 6458 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6459 u32 idt_vectoring_info, 6460 int instr_len_field, 6461 int error_code_field) 6462 { 6463 u8 vector; 6464 int type; 6465 bool idtv_info_valid; 6466 6467 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6468 6469 vcpu->arch.nmi_injected = false; 6470 kvm_clear_exception_queue(vcpu); 6471 kvm_clear_interrupt_queue(vcpu); 6472 6473 if (!idtv_info_valid) 6474 return; 6475 6476 kvm_make_request(KVM_REQ_EVENT, vcpu); 6477 6478 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6479 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6480 6481 switch (type) { 6482 case INTR_TYPE_NMI_INTR: 6483 vcpu->arch.nmi_injected = true; 6484 /* 6485 * SDM 3: 27.7.1.2 (September 2008) 6486 * Clear bit "block by NMI" before VM entry if a NMI 6487 * delivery faulted. 6488 */ 6489 vmx_set_nmi_mask(vcpu, false); 6490 break; 6491 case INTR_TYPE_SOFT_EXCEPTION: 6492 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6493 fallthrough; 6494 case INTR_TYPE_HARD_EXCEPTION: 6495 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6496 u32 err = vmcs_read32(error_code_field); 6497 kvm_requeue_exception_e(vcpu, vector, err); 6498 } else 6499 kvm_requeue_exception(vcpu, vector); 6500 break; 6501 case INTR_TYPE_SOFT_INTR: 6502 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6503 fallthrough; 6504 case INTR_TYPE_EXT_INTR: 6505 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6506 break; 6507 default: 6508 break; 6509 } 6510 } 6511 6512 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6513 { 6514 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6515 VM_EXIT_INSTRUCTION_LEN, 6516 IDT_VECTORING_ERROR_CODE); 6517 } 6518 6519 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6520 { 6521 __vmx_complete_interrupts(vcpu, 6522 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6523 VM_ENTRY_INSTRUCTION_LEN, 6524 VM_ENTRY_EXCEPTION_ERROR_CODE); 6525 6526 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6527 } 6528 6529 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6530 { 6531 int i, nr_msrs; 6532 struct perf_guest_switch_msr *msrs; 6533 6534 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 6535 msrs = perf_guest_get_msrs(&nr_msrs); 6536 if (!msrs) 6537 return; 6538 6539 for (i = 0; i < nr_msrs; i++) 6540 if (msrs[i].host == msrs[i].guest) 6541 clear_atomic_switch_msr(vmx, msrs[i].msr); 6542 else 6543 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6544 msrs[i].host, false); 6545 } 6546 6547 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6548 { 6549 struct vcpu_vmx *vmx = to_vmx(vcpu); 6550 u64 tscl; 6551 u32 delta_tsc; 6552 6553 if (vmx->req_immediate_exit) { 6554 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 6555 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6556 } else if (vmx->hv_deadline_tsc != -1) { 6557 tscl = rdtsc(); 6558 if (vmx->hv_deadline_tsc > tscl) 6559 /* set_hv_timer ensures the delta fits in 32-bits */ 6560 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6561 cpu_preemption_timer_multi); 6562 else 6563 delta_tsc = 0; 6564 6565 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 6566 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6567 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 6568 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 6569 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 6570 } 6571 } 6572 6573 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6574 { 6575 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6576 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6577 vmcs_writel(HOST_RSP, host_rsp); 6578 } 6579 } 6580 6581 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 6582 { 6583 switch (to_vmx(vcpu)->exit_reason.basic) { 6584 case EXIT_REASON_MSR_WRITE: 6585 return handle_fastpath_set_msr_irqoff(vcpu); 6586 case EXIT_REASON_PREEMPTION_TIMER: 6587 return handle_fastpath_preemption_timer(vcpu); 6588 default: 6589 return EXIT_FASTPATH_NONE; 6590 } 6591 } 6592 6593 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 6594 struct vcpu_vmx *vmx) 6595 { 6596 kvm_guest_enter_irqoff(); 6597 6598 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6599 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6600 vmx_l1d_flush(vcpu); 6601 else if (static_branch_unlikely(&mds_user_clear)) 6602 mds_clear_cpu_buffers(); 6603 6604 if (vcpu->arch.cr2 != native_read_cr2()) 6605 native_write_cr2(vcpu->arch.cr2); 6606 6607 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6608 vmx->loaded_vmcs->launched); 6609 6610 vcpu->arch.cr2 = native_read_cr2(); 6611 6612 kvm_guest_exit_irqoff(); 6613 } 6614 6615 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 6616 { 6617 struct vcpu_vmx *vmx = to_vmx(vcpu); 6618 unsigned long cr3, cr4; 6619 6620 /* Record the guest's net vcpu time for enforced NMI injections. */ 6621 if (unlikely(!enable_vnmi && 6622 vmx->loaded_vmcs->soft_vnmi_blocked)) 6623 vmx->loaded_vmcs->entry_time = ktime_get(); 6624 6625 /* 6626 * Don't enter VMX if guest state is invalid, let the exit handler 6627 * start emulation until we arrive back to a valid state. Synthesize a 6628 * consistency check VM-Exit due to invalid guest state and bail. 6629 */ 6630 if (unlikely(vmx->emulation_required)) { 6631 vmx->fail = 0; 6632 6633 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 6634 vmx->exit_reason.failed_vmentry = 1; 6635 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 6636 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 6637 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 6638 vmx->exit_intr_info = 0; 6639 return EXIT_FASTPATH_NONE; 6640 } 6641 6642 trace_kvm_entry(vcpu); 6643 6644 if (vmx->ple_window_dirty) { 6645 vmx->ple_window_dirty = false; 6646 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6647 } 6648 6649 /* 6650 * We did this in prepare_switch_to_guest, because it needs to 6651 * be within srcu_read_lock. 6652 */ 6653 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 6654 6655 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 6656 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6657 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 6658 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6659 6660 cr3 = __get_current_cr3_fast(); 6661 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 6662 vmcs_writel(HOST_CR3, cr3); 6663 vmx->loaded_vmcs->host_state.cr3 = cr3; 6664 } 6665 6666 cr4 = cr4_read_shadow(); 6667 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6668 vmcs_writel(HOST_CR4, cr4); 6669 vmx->loaded_vmcs->host_state.cr4 = cr4; 6670 } 6671 6672 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 6673 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 6674 set_debugreg(vcpu->arch.dr6, 6); 6675 6676 /* When single-stepping over STI and MOV SS, we must clear the 6677 * corresponding interruptibility bits in the guest state. Otherwise 6678 * vmentry fails as it then expects bit 14 (BS) in pending debug 6679 * exceptions being set, but that's not correct for the guest debugging 6680 * case. */ 6681 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6682 vmx_set_interrupt_shadow(vcpu, 0); 6683 6684 kvm_load_guest_xsave_state(vcpu); 6685 6686 pt_guest_enter(vmx); 6687 6688 atomic_switch_perf_msrs(vmx); 6689 if (intel_pmu_lbr_is_enabled(vcpu)) 6690 vmx_passthrough_lbr_msrs(vcpu); 6691 6692 if (enable_preemption_timer) 6693 vmx_update_hv_timer(vcpu); 6694 6695 kvm_wait_lapic_expire(vcpu); 6696 6697 /* 6698 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6699 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6700 * is no need to worry about the conditional branch over the wrmsr 6701 * being speculatively taken. 6702 */ 6703 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6704 6705 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 6706 vmx_vcpu_enter_exit(vcpu, vmx); 6707 6708 /* 6709 * We do not use IBRS in the kernel. If this vCPU has used the 6710 * SPEC_CTRL MSR it may have left it on; save the value and 6711 * turn it off. This is much more efficient than blindly adding 6712 * it to the atomic save/restore list. Especially as the former 6713 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6714 * 6715 * For non-nested case: 6716 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6717 * save it. 6718 * 6719 * For nested case: 6720 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6721 * save it. 6722 */ 6723 if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))) 6724 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6725 6726 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6727 6728 /* All fields are clean at this point */ 6729 if (static_branch_unlikely(&enable_evmcs)) { 6730 current_evmcs->hv_clean_fields |= 6731 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6732 6733 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 6734 } 6735 6736 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6737 if (vmx->host_debugctlmsr) 6738 update_debugctlmsr(vmx->host_debugctlmsr); 6739 6740 #ifndef CONFIG_X86_64 6741 /* 6742 * The sysexit path does not restore ds/es, so we must set them to 6743 * a reasonable value ourselves. 6744 * 6745 * We can't defer this to vmx_prepare_switch_to_host() since that 6746 * function may be executed in interrupt context, which saves and 6747 * restore segments around it, nullifying its effect. 6748 */ 6749 loadsegment(ds, __USER_DS); 6750 loadsegment(es, __USER_DS); 6751 #endif 6752 6753 vmx_register_cache_reset(vcpu); 6754 6755 pt_guest_exit(vmx); 6756 6757 kvm_load_host_xsave_state(vcpu); 6758 6759 if (is_guest_mode(vcpu)) { 6760 /* 6761 * Track VMLAUNCH/VMRESUME that have made past guest state 6762 * checking. 6763 */ 6764 if (vmx->nested.nested_run_pending && 6765 !vmx->exit_reason.failed_vmentry) 6766 ++vcpu->stat.nested_run; 6767 6768 vmx->nested.nested_run_pending = 0; 6769 } 6770 6771 vmx->idt_vectoring_info = 0; 6772 6773 if (unlikely(vmx->fail)) { 6774 vmx->exit_reason.full = 0xdead; 6775 return EXIT_FASTPATH_NONE; 6776 } 6777 6778 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 6779 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 6780 kvm_machine_check(); 6781 6782 if (likely(!vmx->exit_reason.failed_vmentry)) 6783 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6784 6785 trace_kvm_exit(vcpu, KVM_ISA_VMX); 6786 6787 if (unlikely(vmx->exit_reason.failed_vmentry)) 6788 return EXIT_FASTPATH_NONE; 6789 6790 vmx->loaded_vmcs->launched = 1; 6791 6792 vmx_recover_nmi_blocking(vmx); 6793 vmx_complete_interrupts(vmx); 6794 6795 if (is_guest_mode(vcpu)) 6796 return EXIT_FASTPATH_NONE; 6797 6798 return vmx_exit_handlers_fastpath(vcpu); 6799 } 6800 6801 static void vmx_free_vcpu(struct kvm_vcpu *vcpu) 6802 { 6803 struct vcpu_vmx *vmx = to_vmx(vcpu); 6804 6805 if (enable_pml) 6806 vmx_destroy_pml_buffer(vmx); 6807 free_vpid(vmx->vpid); 6808 nested_vmx_free_vcpu(vcpu); 6809 free_loaded_vmcs(vmx->loaded_vmcs); 6810 } 6811 6812 static int vmx_create_vcpu(struct kvm_vcpu *vcpu) 6813 { 6814 struct vmx_uret_msr *tsx_ctrl; 6815 struct vcpu_vmx *vmx; 6816 int i, err; 6817 6818 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 6819 vmx = to_vmx(vcpu); 6820 6821 err = -ENOMEM; 6822 6823 vmx->vpid = allocate_vpid(); 6824 6825 /* 6826 * If PML is turned on, failure on enabling PML just results in failure 6827 * of creating the vcpu, therefore we can simplify PML logic (by 6828 * avoiding dealing with cases, such as enabling PML partially on vcpus 6829 * for the guest), etc. 6830 */ 6831 if (enable_pml) { 6832 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 6833 if (!vmx->pml_pg) 6834 goto free_vpid; 6835 } 6836 6837 for (i = 0; i < kvm_nr_uret_msrs; ++i) 6838 vmx->guest_uret_msrs[i].mask = -1ull; 6839 if (boot_cpu_has(X86_FEATURE_RTM)) { 6840 /* 6841 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 6842 * Keep the host value unchanged to avoid changing CPUID bits 6843 * under the host kernel's feet. 6844 */ 6845 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 6846 if (tsx_ctrl) 6847 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 6848 } 6849 6850 err = alloc_loaded_vmcs(&vmx->vmcs01); 6851 if (err < 0) 6852 goto free_pml; 6853 6854 /* 6855 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 6856 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 6857 * feature only for vmcs01, KVM currently isn't equipped to realize any 6858 * performance benefits from enabling it for vmcs02. 6859 */ 6860 if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) && 6861 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 6862 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 6863 6864 evmcs->hv_enlightenments_control.msr_bitmap = 1; 6865 } 6866 6867 /* The MSR bitmap starts with all ones */ 6868 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6869 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6870 6871 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 6872 #ifdef CONFIG_X86_64 6873 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 6874 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 6875 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 6876 #endif 6877 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 6878 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 6879 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 6880 if (kvm_cstate_in_guest(vcpu->kvm)) { 6881 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 6882 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 6883 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 6884 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 6885 } 6886 6887 vmx->loaded_vmcs = &vmx->vmcs01; 6888 6889 if (cpu_need_virtualize_apic_accesses(vcpu)) { 6890 err = alloc_apic_access_page(vcpu->kvm); 6891 if (err) 6892 goto free_vmcs; 6893 } 6894 6895 if (enable_ept && !enable_unrestricted_guest) { 6896 err = init_rmode_identity_map(vcpu->kvm); 6897 if (err) 6898 goto free_vmcs; 6899 } 6900 6901 return 0; 6902 6903 free_vmcs: 6904 free_loaded_vmcs(vmx->loaded_vmcs); 6905 free_pml: 6906 vmx_destroy_pml_buffer(vmx); 6907 free_vpid: 6908 free_vpid(vmx->vpid); 6909 return err; 6910 } 6911 6912 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6913 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6914 6915 static int vmx_vm_init(struct kvm *kvm) 6916 { 6917 if (!ple_gap) 6918 kvm->arch.pause_in_guest = true; 6919 6920 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 6921 switch (l1tf_mitigation) { 6922 case L1TF_MITIGATION_OFF: 6923 case L1TF_MITIGATION_FLUSH_NOWARN: 6924 /* 'I explicitly don't care' is set */ 6925 break; 6926 case L1TF_MITIGATION_FLUSH: 6927 case L1TF_MITIGATION_FLUSH_NOSMT: 6928 case L1TF_MITIGATION_FULL: 6929 /* 6930 * Warn upon starting the first VM in a potentially 6931 * insecure environment. 6932 */ 6933 if (sched_smt_active()) 6934 pr_warn_once(L1TF_MSG_SMT); 6935 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 6936 pr_warn_once(L1TF_MSG_L1D); 6937 break; 6938 case L1TF_MITIGATION_FULL_FORCE: 6939 /* Flush is enforced */ 6940 break; 6941 } 6942 } 6943 return 0; 6944 } 6945 6946 static int __init vmx_check_processor_compat(void) 6947 { 6948 struct vmcs_config vmcs_conf; 6949 struct vmx_capability vmx_cap; 6950 6951 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 6952 !this_cpu_has(X86_FEATURE_VMX)) { 6953 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id()); 6954 return -EIO; 6955 } 6956 6957 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 6958 return -EIO; 6959 if (nested) 6960 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept); 6961 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 6962 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 6963 smp_processor_id()); 6964 return -EIO; 6965 } 6966 return 0; 6967 } 6968 6969 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 6970 { 6971 u8 cache; 6972 u64 ipat = 0; 6973 6974 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 6975 * memory aliases with conflicting memory types and sometimes MCEs. 6976 * We have to be careful as to what are honored and when. 6977 * 6978 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 6979 * UC. The effective memory type is UC or WC depending on guest PAT. 6980 * This was historically the source of MCEs and we want to be 6981 * conservative. 6982 * 6983 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 6984 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 6985 * EPT memory type is set to WB. The effective memory type is forced 6986 * WB. 6987 * 6988 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 6989 * EPT memory type is used to emulate guest CD/MTRR. 6990 */ 6991 6992 if (is_mmio) { 6993 cache = MTRR_TYPE_UNCACHABLE; 6994 goto exit; 6995 } 6996 6997 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 6998 ipat = VMX_EPT_IPAT_BIT; 6999 cache = MTRR_TYPE_WRBACK; 7000 goto exit; 7001 } 7002 7003 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 7004 ipat = VMX_EPT_IPAT_BIT; 7005 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7006 cache = MTRR_TYPE_WRBACK; 7007 else 7008 cache = MTRR_TYPE_UNCACHABLE; 7009 goto exit; 7010 } 7011 7012 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); 7013 7014 exit: 7015 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; 7016 } 7017 7018 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7019 { 7020 /* 7021 * These bits in the secondary execution controls field 7022 * are dynamic, the others are mostly based on the hypervisor 7023 * architecture and the guest's CPUID. Do not touch the 7024 * dynamic bits. 7025 */ 7026 u32 mask = 7027 SECONDARY_EXEC_SHADOW_VMCS | 7028 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7029 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7030 SECONDARY_EXEC_DESC; 7031 7032 u32 cur_ctl = secondary_exec_controls_get(vmx); 7033 7034 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7035 } 7036 7037 /* 7038 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7039 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7040 */ 7041 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7042 { 7043 struct vcpu_vmx *vmx = to_vmx(vcpu); 7044 struct kvm_cpuid_entry2 *entry; 7045 7046 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7047 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7048 7049 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7050 if (entry && (entry->_reg & (_cpuid_mask))) \ 7051 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7052 } while (0) 7053 7054 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 7055 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7056 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7057 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7058 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7059 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7060 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7061 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7062 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7063 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7064 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7065 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7066 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7067 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7068 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7069 7070 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 7071 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7072 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7073 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7074 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7075 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7076 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7077 7078 #undef cr4_fixed1_update 7079 } 7080 7081 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 7082 { 7083 struct vcpu_vmx *vmx = to_vmx(vcpu); 7084 7085 if (kvm_mpx_supported()) { 7086 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 7087 7088 if (mpx_enabled) { 7089 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 7090 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 7091 } else { 7092 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 7093 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 7094 } 7095 } 7096 } 7097 7098 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7099 { 7100 struct vcpu_vmx *vmx = to_vmx(vcpu); 7101 struct kvm_cpuid_entry2 *best = NULL; 7102 int i; 7103 7104 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7105 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 7106 if (!best) 7107 return; 7108 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7109 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7110 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7111 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7112 } 7113 7114 /* Get the number of configurable Address Ranges for filtering */ 7115 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7116 PT_CAP_num_address_ranges); 7117 7118 /* Initialize and clear the no dependency bits */ 7119 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7120 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7121 RTIT_CTL_BRANCH_EN); 7122 7123 /* 7124 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7125 * will inject an #GP 7126 */ 7127 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7128 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7129 7130 /* 7131 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7132 * PSBFreq can be set 7133 */ 7134 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7135 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7136 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7137 7138 /* 7139 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7140 */ 7141 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7142 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7143 RTIT_CTL_MTC_RANGE); 7144 7145 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7146 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7147 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7148 RTIT_CTL_PTW_EN); 7149 7150 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7151 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7152 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7153 7154 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7155 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7156 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7157 7158 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7159 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7160 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7161 7162 /* unmask address range configure area */ 7163 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7164 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7165 } 7166 7167 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7168 { 7169 struct vcpu_vmx *vmx = to_vmx(vcpu); 7170 7171 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7172 vcpu->arch.xsaves_enabled = false; 7173 7174 vmx_setup_uret_msrs(vmx); 7175 7176 if (cpu_has_secondary_exec_ctrls()) 7177 vmcs_set_secondary_exec_control(vmx, 7178 vmx_secondary_exec_control(vmx)); 7179 7180 if (nested_vmx_allowed(vcpu)) 7181 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7182 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7183 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7184 else 7185 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7186 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7187 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7188 7189 if (nested_vmx_allowed(vcpu)) { 7190 nested_vmx_cr_fixed1_bits_update(vcpu); 7191 nested_vmx_entry_exit_ctls_update(vcpu); 7192 } 7193 7194 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7195 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7196 update_intel_pt_cfg(vcpu); 7197 7198 if (boot_cpu_has(X86_FEATURE_RTM)) { 7199 struct vmx_uret_msr *msr; 7200 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7201 if (msr) { 7202 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7203 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7204 } 7205 } 7206 7207 set_cr4_guest_host_mask(vmx); 7208 7209 vmx_write_encls_bitmap(vcpu, NULL); 7210 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7211 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7212 else 7213 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7214 7215 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7216 vmx->msr_ia32_feature_control_valid_bits |= 7217 FEAT_CTL_SGX_LC_ENABLED; 7218 else 7219 vmx->msr_ia32_feature_control_valid_bits &= 7220 ~FEAT_CTL_SGX_LC_ENABLED; 7221 7222 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7223 vmx_update_exception_bitmap(vcpu); 7224 } 7225 7226 static __init void vmx_set_cpu_caps(void) 7227 { 7228 kvm_set_cpu_caps(); 7229 7230 /* CPUID 0x1 */ 7231 if (nested) 7232 kvm_cpu_cap_set(X86_FEATURE_VMX); 7233 7234 /* CPUID 0x7 */ 7235 if (kvm_mpx_supported()) 7236 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7237 if (!cpu_has_vmx_invpcid()) 7238 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7239 if (vmx_pt_mode_is_host_guest()) 7240 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7241 7242 if (!enable_sgx) { 7243 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7244 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7245 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7246 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7247 } 7248 7249 if (vmx_umip_emulated()) 7250 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7251 7252 /* CPUID 0xD.1 */ 7253 supported_xss = 0; 7254 if (!cpu_has_vmx_xsaves()) 7255 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7256 7257 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7258 if (!cpu_has_vmx_rdtscp()) { 7259 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7260 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7261 } 7262 7263 if (cpu_has_vmx_waitpkg()) 7264 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7265 } 7266 7267 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7268 { 7269 to_vmx(vcpu)->req_immediate_exit = true; 7270 } 7271 7272 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7273 struct x86_instruction_info *info) 7274 { 7275 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7276 unsigned short port; 7277 bool intercept; 7278 int size; 7279 7280 if (info->intercept == x86_intercept_in || 7281 info->intercept == x86_intercept_ins) { 7282 port = info->src_val; 7283 size = info->dst_bytes; 7284 } else { 7285 port = info->dst_val; 7286 size = info->src_bytes; 7287 } 7288 7289 /* 7290 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7291 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7292 * control. 7293 * 7294 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7295 */ 7296 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7297 intercept = nested_cpu_has(vmcs12, 7298 CPU_BASED_UNCOND_IO_EXITING); 7299 else 7300 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7301 7302 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7303 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7304 } 7305 7306 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7307 struct x86_instruction_info *info, 7308 enum x86_intercept_stage stage, 7309 struct x86_exception *exception) 7310 { 7311 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7312 7313 switch (info->intercept) { 7314 /* 7315 * RDPID causes #UD if disabled through secondary execution controls. 7316 * Because it is marked as EmulateOnUD, we need to intercept it here. 7317 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7318 */ 7319 case x86_intercept_rdpid: 7320 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7321 exception->vector = UD_VECTOR; 7322 exception->error_code_valid = false; 7323 return X86EMUL_PROPAGATE_FAULT; 7324 } 7325 break; 7326 7327 case x86_intercept_in: 7328 case x86_intercept_ins: 7329 case x86_intercept_out: 7330 case x86_intercept_outs: 7331 return vmx_check_intercept_io(vcpu, info); 7332 7333 case x86_intercept_lgdt: 7334 case x86_intercept_lidt: 7335 case x86_intercept_lldt: 7336 case x86_intercept_ltr: 7337 case x86_intercept_sgdt: 7338 case x86_intercept_sidt: 7339 case x86_intercept_sldt: 7340 case x86_intercept_str: 7341 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7342 return X86EMUL_CONTINUE; 7343 7344 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7345 break; 7346 7347 /* TODO: check more intercepts... */ 7348 default: 7349 break; 7350 } 7351 7352 return X86EMUL_UNHANDLEABLE; 7353 } 7354 7355 #ifdef CONFIG_X86_64 7356 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7357 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7358 u64 divisor, u64 *result) 7359 { 7360 u64 low = a << shift, high = a >> (64 - shift); 7361 7362 /* To avoid the overflow on divq */ 7363 if (high >= divisor) 7364 return 1; 7365 7366 /* Low hold the result, high hold rem which is discarded */ 7367 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7368 "rm" (divisor), "0" (low), "1" (high)); 7369 *result = low; 7370 7371 return 0; 7372 } 7373 7374 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7375 bool *expired) 7376 { 7377 struct vcpu_vmx *vmx; 7378 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7379 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7380 7381 vmx = to_vmx(vcpu); 7382 tscl = rdtsc(); 7383 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7384 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7385 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7386 ktimer->timer_advance_ns); 7387 7388 if (delta_tsc > lapic_timer_advance_cycles) 7389 delta_tsc -= lapic_timer_advance_cycles; 7390 else 7391 delta_tsc = 0; 7392 7393 /* Convert to host delta tsc if tsc scaling is enabled */ 7394 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7395 delta_tsc && u64_shl_div_u64(delta_tsc, 7396 kvm_tsc_scaling_ratio_frac_bits, 7397 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 7398 return -ERANGE; 7399 7400 /* 7401 * If the delta tsc can't fit in the 32 bit after the multi shift, 7402 * we can't use the preemption timer. 7403 * It's possible that it fits on later vmentries, but checking 7404 * on every vmentry is costly so we just use an hrtimer. 7405 */ 7406 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7407 return -ERANGE; 7408 7409 vmx->hv_deadline_tsc = tscl + delta_tsc; 7410 *expired = !delta_tsc; 7411 return 0; 7412 } 7413 7414 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7415 { 7416 to_vmx(vcpu)->hv_deadline_tsc = -1; 7417 } 7418 #endif 7419 7420 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7421 { 7422 if (!kvm_pause_in_guest(vcpu->kvm)) 7423 shrink_ple_window(vcpu); 7424 } 7425 7426 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 7427 { 7428 struct vcpu_vmx *vmx = to_vmx(vcpu); 7429 7430 if (is_guest_mode(vcpu)) { 7431 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 7432 return; 7433 } 7434 7435 /* 7436 * Note, cpu_dirty_logging_count can be changed concurrent with this 7437 * code, but in that case another update request will be made and so 7438 * the guest will never run with a stale PML value. 7439 */ 7440 if (vcpu->kvm->arch.cpu_dirty_logging_count) 7441 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7442 else 7443 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7444 } 7445 7446 static int vmx_pre_block(struct kvm_vcpu *vcpu) 7447 { 7448 if (pi_pre_block(vcpu)) 7449 return 1; 7450 7451 if (kvm_lapic_hv_timer_in_use(vcpu)) 7452 kvm_lapic_switch_to_sw_timer(vcpu); 7453 7454 return 0; 7455 } 7456 7457 static void vmx_post_block(struct kvm_vcpu *vcpu) 7458 { 7459 if (kvm_x86_ops.set_hv_timer) 7460 kvm_lapic_switch_to_hv_timer(vcpu); 7461 7462 pi_post_block(vcpu); 7463 } 7464 7465 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7466 { 7467 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7468 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7469 FEAT_CTL_LMCE_ENABLED; 7470 else 7471 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7472 ~FEAT_CTL_LMCE_ENABLED; 7473 } 7474 7475 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 7476 { 7477 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7478 if (to_vmx(vcpu)->nested.nested_run_pending) 7479 return -EBUSY; 7480 return !is_smm(vcpu); 7481 } 7482 7483 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7484 { 7485 struct vcpu_vmx *vmx = to_vmx(vcpu); 7486 7487 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7488 if (vmx->nested.smm.guest_mode) 7489 nested_vmx_vmexit(vcpu, -1, 0, 0); 7490 7491 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7492 vmx->nested.vmxon = false; 7493 vmx_clear_hlt(vcpu); 7494 return 0; 7495 } 7496 7497 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7498 { 7499 struct vcpu_vmx *vmx = to_vmx(vcpu); 7500 int ret; 7501 7502 if (vmx->nested.smm.vmxon) { 7503 vmx->nested.vmxon = true; 7504 vmx->nested.smm.vmxon = false; 7505 } 7506 7507 if (vmx->nested.smm.guest_mode) { 7508 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7509 if (ret) 7510 return ret; 7511 7512 vmx->nested.smm.guest_mode = false; 7513 } 7514 return 0; 7515 } 7516 7517 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 7518 { 7519 /* RSM will cause a vmexit anyway. */ 7520 } 7521 7522 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 7523 { 7524 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 7525 } 7526 7527 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 7528 { 7529 if (is_guest_mode(vcpu)) { 7530 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 7531 7532 if (hrtimer_try_to_cancel(timer) == 1) 7533 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 7534 } 7535 } 7536 7537 static void hardware_unsetup(void) 7538 { 7539 kvm_set_posted_intr_wakeup_handler(NULL); 7540 7541 if (nested) 7542 nested_vmx_hardware_unsetup(); 7543 7544 free_kvm_area(); 7545 } 7546 7547 static bool vmx_check_apicv_inhibit_reasons(ulong bit) 7548 { 7549 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 7550 BIT(APICV_INHIBIT_REASON_ABSENT) | 7551 BIT(APICV_INHIBIT_REASON_HYPERV) | 7552 BIT(APICV_INHIBIT_REASON_BLOCKIRQ); 7553 7554 return supported & BIT(bit); 7555 } 7556 7557 static struct kvm_x86_ops vmx_x86_ops __initdata = { 7558 .name = "kvm_intel", 7559 7560 .hardware_unsetup = hardware_unsetup, 7561 7562 .hardware_enable = hardware_enable, 7563 .hardware_disable = hardware_disable, 7564 .cpu_has_accelerated_tpr = report_flexpriority, 7565 .has_emulated_msr = vmx_has_emulated_msr, 7566 7567 .vm_size = sizeof(struct kvm_vmx), 7568 .vm_init = vmx_vm_init, 7569 7570 .vcpu_create = vmx_create_vcpu, 7571 .vcpu_free = vmx_free_vcpu, 7572 .vcpu_reset = vmx_vcpu_reset, 7573 7574 .prepare_guest_switch = vmx_prepare_switch_to_guest, 7575 .vcpu_load = vmx_vcpu_load, 7576 .vcpu_put = vmx_vcpu_put, 7577 7578 .update_exception_bitmap = vmx_update_exception_bitmap, 7579 .get_msr_feature = vmx_get_msr_feature, 7580 .get_msr = vmx_get_msr, 7581 .set_msr = vmx_set_msr, 7582 .get_segment_base = vmx_get_segment_base, 7583 .get_segment = vmx_get_segment, 7584 .set_segment = vmx_set_segment, 7585 .get_cpl = vmx_get_cpl, 7586 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7587 .set_cr0 = vmx_set_cr0, 7588 .is_valid_cr4 = vmx_is_valid_cr4, 7589 .set_cr4 = vmx_set_cr4, 7590 .set_efer = vmx_set_efer, 7591 .get_idt = vmx_get_idt, 7592 .set_idt = vmx_set_idt, 7593 .get_gdt = vmx_get_gdt, 7594 .set_gdt = vmx_set_gdt, 7595 .set_dr7 = vmx_set_dr7, 7596 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7597 .cache_reg = vmx_cache_reg, 7598 .get_rflags = vmx_get_rflags, 7599 .set_rflags = vmx_set_rflags, 7600 .get_if_flag = vmx_get_if_flag, 7601 7602 .tlb_flush_all = vmx_flush_tlb_all, 7603 .tlb_flush_current = vmx_flush_tlb_current, 7604 .tlb_flush_gva = vmx_flush_tlb_gva, 7605 .tlb_flush_guest = vmx_flush_tlb_guest, 7606 7607 .run = vmx_vcpu_run, 7608 .handle_exit = vmx_handle_exit, 7609 .skip_emulated_instruction = vmx_skip_emulated_instruction, 7610 .update_emulated_instruction = vmx_update_emulated_instruction, 7611 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7612 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7613 .patch_hypercall = vmx_patch_hypercall, 7614 .set_irq = vmx_inject_irq, 7615 .set_nmi = vmx_inject_nmi, 7616 .queue_exception = vmx_queue_exception, 7617 .cancel_injection = vmx_cancel_injection, 7618 .interrupt_allowed = vmx_interrupt_allowed, 7619 .nmi_allowed = vmx_nmi_allowed, 7620 .get_nmi_mask = vmx_get_nmi_mask, 7621 .set_nmi_mask = vmx_set_nmi_mask, 7622 .enable_nmi_window = vmx_enable_nmi_window, 7623 .enable_irq_window = vmx_enable_irq_window, 7624 .update_cr8_intercept = vmx_update_cr8_intercept, 7625 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7626 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7627 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7628 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7629 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7630 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons, 7631 .hwapic_irr_update = vmx_hwapic_irr_update, 7632 .hwapic_isr_update = vmx_hwapic_isr_update, 7633 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7634 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7635 .deliver_posted_interrupt = vmx_deliver_posted_interrupt, 7636 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 7637 7638 .set_tss_addr = vmx_set_tss_addr, 7639 .set_identity_map_addr = vmx_set_identity_map_addr, 7640 .get_mt_mask = vmx_get_mt_mask, 7641 7642 .get_exit_info = vmx_get_exit_info, 7643 7644 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 7645 7646 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7647 7648 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 7649 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 7650 .write_tsc_offset = vmx_write_tsc_offset, 7651 .write_tsc_multiplier = vmx_write_tsc_multiplier, 7652 7653 .load_mmu_pgd = vmx_load_mmu_pgd, 7654 7655 .check_intercept = vmx_check_intercept, 7656 .handle_exit_irqoff = vmx_handle_exit_irqoff, 7657 7658 .request_immediate_exit = vmx_request_immediate_exit, 7659 7660 .sched_in = vmx_sched_in, 7661 7662 .cpu_dirty_log_size = PML_ENTITY_NUM, 7663 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 7664 7665 .pre_block = vmx_pre_block, 7666 .post_block = vmx_post_block, 7667 7668 .pmu_ops = &intel_pmu_ops, 7669 .nested_ops = &vmx_nested_ops, 7670 7671 .update_pi_irte = pi_update_irte, 7672 .start_assignment = vmx_pi_start_assignment, 7673 7674 #ifdef CONFIG_X86_64 7675 .set_hv_timer = vmx_set_hv_timer, 7676 .cancel_hv_timer = vmx_cancel_hv_timer, 7677 #endif 7678 7679 .setup_mce = vmx_setup_mce, 7680 7681 .smi_allowed = vmx_smi_allowed, 7682 .enter_smm = vmx_enter_smm, 7683 .leave_smm = vmx_leave_smm, 7684 .enable_smi_window = vmx_enable_smi_window, 7685 7686 .can_emulate_instruction = vmx_can_emulate_instruction, 7687 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 7688 .migrate_timers = vmx_migrate_timers, 7689 7690 .msr_filter_changed = vmx_msr_filter_changed, 7691 .complete_emulated_msr = kvm_complete_insn_gp, 7692 7693 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 7694 }; 7695 7696 static __init void vmx_setup_user_return_msrs(void) 7697 { 7698 7699 /* 7700 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 7701 * will emulate SYSCALL in legacy mode if the vendor string in guest 7702 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 7703 * support this emulation, MSR_STAR is included in the list for i386, 7704 * but is never loaded into hardware. MSR_CSTAR is also never loaded 7705 * into hardware and is here purely for emulation purposes. 7706 */ 7707 const u32 vmx_uret_msrs_list[] = { 7708 #ifdef CONFIG_X86_64 7709 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 7710 #endif 7711 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 7712 MSR_IA32_TSX_CTRL, 7713 }; 7714 int i; 7715 7716 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 7717 7718 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 7719 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 7720 } 7721 7722 static __init int hardware_setup(void) 7723 { 7724 unsigned long host_bndcfgs; 7725 struct desc_ptr dt; 7726 int r, ept_lpage_level; 7727 7728 store_idt(&dt); 7729 host_idt_base = dt.address; 7730 7731 vmx_setup_user_return_msrs(); 7732 7733 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7734 return -EIO; 7735 7736 if (boot_cpu_has(X86_FEATURE_NX)) 7737 kvm_enable_efer_bits(EFER_NX); 7738 7739 if (boot_cpu_has(X86_FEATURE_MPX)) { 7740 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7741 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7742 } 7743 7744 if (!cpu_has_vmx_mpx()) 7745 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 7746 XFEATURE_MASK_BNDCSR); 7747 7748 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7749 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7750 enable_vpid = 0; 7751 7752 if (!cpu_has_vmx_ept() || 7753 !cpu_has_vmx_ept_4levels() || 7754 !cpu_has_vmx_ept_mt_wb() || 7755 !cpu_has_vmx_invept_global()) 7756 enable_ept = 0; 7757 7758 /* NX support is required for shadow paging. */ 7759 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 7760 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n"); 7761 return -EOPNOTSUPP; 7762 } 7763 7764 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7765 enable_ept_ad_bits = 0; 7766 7767 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7768 enable_unrestricted_guest = 0; 7769 7770 if (!cpu_has_vmx_flexpriority()) 7771 flexpriority_enabled = 0; 7772 7773 if (!cpu_has_virtual_nmis()) 7774 enable_vnmi = 0; 7775 7776 /* 7777 * set_apic_access_page_addr() is used to reload apic access 7778 * page upon invalidation. No need to do anything if not 7779 * using the APIC_ACCESS_ADDR VMCS field. 7780 */ 7781 if (!flexpriority_enabled) 7782 vmx_x86_ops.set_apic_access_page_addr = NULL; 7783 7784 if (!cpu_has_vmx_tpr_shadow()) 7785 vmx_x86_ops.update_cr8_intercept = NULL; 7786 7787 #if IS_ENABLED(CONFIG_HYPERV) 7788 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7789 && enable_ept) { 7790 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb; 7791 vmx_x86_ops.tlb_remote_flush_with_range = 7792 hv_remote_flush_tlb_with_range; 7793 } 7794 #endif 7795 7796 if (!cpu_has_vmx_ple()) { 7797 ple_gap = 0; 7798 ple_window = 0; 7799 ple_window_grow = 0; 7800 ple_window_max = 0; 7801 ple_window_shrink = 0; 7802 } 7803 7804 if (!cpu_has_vmx_apicv()) 7805 enable_apicv = 0; 7806 if (!enable_apicv) 7807 vmx_x86_ops.sync_pir_to_irr = NULL; 7808 7809 if (cpu_has_vmx_tsc_scaling()) { 7810 kvm_has_tsc_control = true; 7811 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7812 kvm_tsc_scaling_ratio_frac_bits = 48; 7813 } 7814 7815 kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 7816 7817 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7818 7819 if (enable_ept) 7820 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 7821 cpu_has_vmx_ept_execute_only()); 7822 7823 if (!enable_ept) 7824 ept_lpage_level = 0; 7825 else if (cpu_has_vmx_ept_1g_page()) 7826 ept_lpage_level = PG_LEVEL_1G; 7827 else if (cpu_has_vmx_ept_2m_page()) 7828 ept_lpage_level = PG_LEVEL_2M; 7829 else 7830 ept_lpage_level = PG_LEVEL_4K; 7831 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(), 7832 ept_lpage_level); 7833 7834 /* 7835 * Only enable PML when hardware supports PML feature, and both EPT 7836 * and EPT A/D bit features are enabled -- PML depends on them to work. 7837 */ 7838 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 7839 enable_pml = 0; 7840 7841 if (!enable_pml) 7842 vmx_x86_ops.cpu_dirty_log_size = 0; 7843 7844 if (!cpu_has_vmx_preemption_timer()) 7845 enable_preemption_timer = false; 7846 7847 if (enable_preemption_timer) { 7848 u64 use_timer_freq = 5000ULL * 1000 * 1000; 7849 u64 vmx_msr; 7850 7851 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 7852 cpu_preemption_timer_multi = 7853 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 7854 7855 if (tsc_khz) 7856 use_timer_freq = (u64)tsc_khz * 1000; 7857 use_timer_freq >>= cpu_preemption_timer_multi; 7858 7859 /* 7860 * KVM "disables" the preemption timer by setting it to its max 7861 * value. Don't use the timer if it might cause spurious exits 7862 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 7863 */ 7864 if (use_timer_freq > 0xffffffffu / 10) 7865 enable_preemption_timer = false; 7866 } 7867 7868 if (!enable_preemption_timer) { 7869 vmx_x86_ops.set_hv_timer = NULL; 7870 vmx_x86_ops.cancel_hv_timer = NULL; 7871 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 7872 } 7873 7874 kvm_mce_cap_supported |= MCG_LMCE_P; 7875 7876 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 7877 return -EINVAL; 7878 if (!enable_ept || !cpu_has_vmx_intel_pt()) 7879 pt_mode = PT_MODE_SYSTEM; 7880 7881 setup_default_sgx_lepubkeyhash(); 7882 7883 if (nested) { 7884 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 7885 vmx_capability.ept); 7886 7887 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 7888 if (r) 7889 return r; 7890 } 7891 7892 vmx_set_cpu_caps(); 7893 7894 r = alloc_kvm_area(); 7895 if (r) 7896 nested_vmx_hardware_unsetup(); 7897 7898 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 7899 7900 return r; 7901 } 7902 7903 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 7904 .cpu_has_kvm_support = cpu_has_kvm_support, 7905 .disabled_by_bios = vmx_disabled_by_bios, 7906 .check_processor_compatibility = vmx_check_processor_compat, 7907 .hardware_setup = hardware_setup, 7908 7909 .runtime_ops = &vmx_x86_ops, 7910 }; 7911 7912 static void vmx_cleanup_l1d_flush(void) 7913 { 7914 if (vmx_l1d_flush_pages) { 7915 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 7916 vmx_l1d_flush_pages = NULL; 7917 } 7918 /* Restore state so sysfs ignores VMX */ 7919 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 7920 } 7921 7922 static void vmx_exit(void) 7923 { 7924 #ifdef CONFIG_KEXEC_CORE 7925 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 7926 synchronize_rcu(); 7927 #endif 7928 7929 kvm_exit(); 7930 7931 #if IS_ENABLED(CONFIG_HYPERV) 7932 if (static_branch_unlikely(&enable_evmcs)) { 7933 int cpu; 7934 struct hv_vp_assist_page *vp_ap; 7935 /* 7936 * Reset everything to support using non-enlightened VMCS 7937 * access later (e.g. when we reload the module with 7938 * enlightened_vmcs=0) 7939 */ 7940 for_each_online_cpu(cpu) { 7941 vp_ap = hv_get_vp_assist_page(cpu); 7942 7943 if (!vp_ap) 7944 continue; 7945 7946 vp_ap->nested_control.features.directhypercall = 0; 7947 vp_ap->current_nested_vmcs = 0; 7948 vp_ap->enlighten_vmentry = 0; 7949 } 7950 7951 static_branch_disable(&enable_evmcs); 7952 } 7953 #endif 7954 vmx_cleanup_l1d_flush(); 7955 7956 allow_smaller_maxphyaddr = false; 7957 } 7958 module_exit(vmx_exit); 7959 7960 static int __init vmx_init(void) 7961 { 7962 int r, cpu; 7963 7964 #if IS_ENABLED(CONFIG_HYPERV) 7965 /* 7966 * Enlightened VMCS usage should be recommended and the host needs 7967 * to support eVMCS v1 or above. We can also disable eVMCS support 7968 * with module parameter. 7969 */ 7970 if (enlightened_vmcs && 7971 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 7972 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 7973 KVM_EVMCS_VERSION) { 7974 int cpu; 7975 7976 /* Check that we have assist pages on all online CPUs */ 7977 for_each_online_cpu(cpu) { 7978 if (!hv_get_vp_assist_page(cpu)) { 7979 enlightened_vmcs = false; 7980 break; 7981 } 7982 } 7983 7984 if (enlightened_vmcs) { 7985 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 7986 static_branch_enable(&enable_evmcs); 7987 } 7988 7989 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 7990 vmx_x86_ops.enable_direct_tlbflush 7991 = hv_enable_direct_tlbflush; 7992 7993 } else { 7994 enlightened_vmcs = false; 7995 } 7996 #endif 7997 7998 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx), 7999 __alignof__(struct vcpu_vmx), THIS_MODULE); 8000 if (r) 8001 return r; 8002 8003 /* 8004 * Must be called after kvm_init() so enable_ept is properly set 8005 * up. Hand the parameter mitigation value in which was stored in 8006 * the pre module init parser. If no parameter was given, it will 8007 * contain 'auto' which will be turned into the default 'cond' 8008 * mitigation mode. 8009 */ 8010 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8011 if (r) { 8012 vmx_exit(); 8013 return r; 8014 } 8015 8016 for_each_possible_cpu(cpu) { 8017 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8018 8019 pi_init_cpu(cpu); 8020 } 8021 8022 #ifdef CONFIG_KEXEC_CORE 8023 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 8024 crash_vmclear_local_loaded_vmcss); 8025 #endif 8026 vmx_check_vmcs12_offsets(); 8027 8028 /* 8029 * Shadow paging doesn't have a (further) performance penalty 8030 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8031 * by default 8032 */ 8033 if (!enable_ept) 8034 allow_smaller_maxphyaddr = true; 8035 8036 return 0; 8037 } 8038 module_init(vmx_init); 8039