xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision 8aaaf2f3af2ae212428f4db1af34214225f5cec3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50 
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68 
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71 
72 #ifdef MODULE
73 static const struct x86_cpu_id vmx_cpu_id[] = {
74 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
75 	{}
76 };
77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
78 #endif
79 
80 bool __read_mostly enable_vpid = 1;
81 module_param_named(vpid, enable_vpid, bool, 0444);
82 
83 static bool __read_mostly enable_vnmi = 1;
84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
85 
86 bool __read_mostly flexpriority_enabled = 1;
87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
88 
89 bool __read_mostly enable_ept = 1;
90 module_param_named(ept, enable_ept, bool, S_IRUGO);
91 
92 bool __read_mostly enable_unrestricted_guest = 1;
93 module_param_named(unrestricted_guest,
94 			enable_unrestricted_guest, bool, S_IRUGO);
95 
96 bool __read_mostly enable_ept_ad_bits = 1;
97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
98 
99 static bool __read_mostly emulate_invalid_guest_state = true;
100 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
101 
102 static bool __read_mostly fasteoi = 1;
103 module_param(fasteoi, bool, S_IRUGO);
104 
105 module_param(enable_apicv, bool, S_IRUGO);
106 
107 /*
108  * If nested=1, nested virtualization is supported, i.e., guests may use
109  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
110  * use VMX instructions.
111  */
112 static bool __read_mostly nested = 1;
113 module_param(nested, bool, S_IRUGO);
114 
115 bool __read_mostly enable_pml = 1;
116 module_param_named(pml, enable_pml, bool, S_IRUGO);
117 
118 static bool __read_mostly dump_invalid_vmcs = 0;
119 module_param(dump_invalid_vmcs, bool, 0644);
120 
121 #define MSR_BITMAP_MODE_X2APIC		1
122 #define MSR_BITMAP_MODE_X2APIC_APICV	2
123 
124 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
125 
126 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
127 static int __read_mostly cpu_preemption_timer_multi;
128 static bool __read_mostly enable_preemption_timer = 1;
129 #ifdef CONFIG_X86_64
130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
131 #endif
132 
133 extern bool __read_mostly allow_smaller_maxphyaddr;
134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
135 
136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
138 #define KVM_VM_CR0_ALWAYS_ON				\
139 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
140 
141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
144 
145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
146 
147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
148 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
149 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
150 	RTIT_STATUS_BYTECNT))
151 
152 /*
153  * List of MSRs that can be directly passed to the guest.
154  * In addition to these x2apic and PT MSRs are handled specially.
155  */
156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
157 	MSR_IA32_SPEC_CTRL,
158 	MSR_IA32_PRED_CMD,
159 	MSR_IA32_TSC,
160 #ifdef CONFIG_X86_64
161 	MSR_FS_BASE,
162 	MSR_GS_BASE,
163 	MSR_KERNEL_GS_BASE,
164 #endif
165 	MSR_IA32_SYSENTER_CS,
166 	MSR_IA32_SYSENTER_ESP,
167 	MSR_IA32_SYSENTER_EIP,
168 	MSR_CORE_C1_RES,
169 	MSR_CORE_C3_RESIDENCY,
170 	MSR_CORE_C6_RESIDENCY,
171 	MSR_CORE_C7_RESIDENCY,
172 };
173 
174 /*
175  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
176  * ple_gap:    upper bound on the amount of time between two successive
177  *             executions of PAUSE in a loop. Also indicate if ple enabled.
178  *             According to test, this time is usually smaller than 128 cycles.
179  * ple_window: upper bound on the amount of time a guest is allowed to execute
180  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
181  *             less than 2^12 cycles
182  * Time is measured based on a counter that runs at the same rate as the TSC,
183  * refer SDM volume 3b section 21.6.13 & 22.1.3.
184  */
185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
186 module_param(ple_gap, uint, 0444);
187 
188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
189 module_param(ple_window, uint, 0444);
190 
191 /* Default doubles per-vcpu window every exit. */
192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
193 module_param(ple_window_grow, uint, 0444);
194 
195 /* Default resets per-vcpu window every exit to ple_window. */
196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
197 module_param(ple_window_shrink, uint, 0444);
198 
199 /* Default is to compute the maximum so we can never overflow. */
200 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
201 module_param(ple_window_max, uint, 0444);
202 
203 /* Default is SYSTEM mode, 1 for host-guest mode */
204 int __read_mostly pt_mode = PT_MODE_SYSTEM;
205 module_param(pt_mode, int, S_IRUGO);
206 
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210 
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213 
214 static const struct {
215 	const char *option;
216 	bool for_parse;
217 } vmentry_l1d_param[] = {
218 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
219 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
220 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
221 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
222 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224 };
225 
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
228 
229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
230 {
231 	struct page *page;
232 	unsigned int i;
233 
234 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
235 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
236 		return 0;
237 	}
238 
239 	if (!enable_ept) {
240 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
241 		return 0;
242 	}
243 
244 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
245 		u64 msr;
246 
247 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
248 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
249 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
250 			return 0;
251 		}
252 	}
253 
254 	/* If set to auto use the default l1tf mitigation method */
255 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
256 		switch (l1tf_mitigation) {
257 		case L1TF_MITIGATION_OFF:
258 			l1tf = VMENTER_L1D_FLUSH_NEVER;
259 			break;
260 		case L1TF_MITIGATION_FLUSH_NOWARN:
261 		case L1TF_MITIGATION_FLUSH:
262 		case L1TF_MITIGATION_FLUSH_NOSMT:
263 			l1tf = VMENTER_L1D_FLUSH_COND;
264 			break;
265 		case L1TF_MITIGATION_FULL:
266 		case L1TF_MITIGATION_FULL_FORCE:
267 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
268 			break;
269 		}
270 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
271 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
272 	}
273 
274 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
275 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
276 		/*
277 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
278 		 * lifetime and so should not be charged to a memcg.
279 		 */
280 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
281 		if (!page)
282 			return -ENOMEM;
283 		vmx_l1d_flush_pages = page_address(page);
284 
285 		/*
286 		 * Initialize each page with a different pattern in
287 		 * order to protect against KSM in the nested
288 		 * virtualization case.
289 		 */
290 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
291 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
292 			       PAGE_SIZE);
293 		}
294 	}
295 
296 	l1tf_vmx_mitigation = l1tf;
297 
298 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
299 		static_branch_enable(&vmx_l1d_should_flush);
300 	else
301 		static_branch_disable(&vmx_l1d_should_flush);
302 
303 	if (l1tf == VMENTER_L1D_FLUSH_COND)
304 		static_branch_enable(&vmx_l1d_flush_cond);
305 	else
306 		static_branch_disable(&vmx_l1d_flush_cond);
307 	return 0;
308 }
309 
310 static int vmentry_l1d_flush_parse(const char *s)
311 {
312 	unsigned int i;
313 
314 	if (s) {
315 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
316 			if (vmentry_l1d_param[i].for_parse &&
317 			    sysfs_streq(s, vmentry_l1d_param[i].option))
318 				return i;
319 		}
320 	}
321 	return -EINVAL;
322 }
323 
324 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
325 {
326 	int l1tf, ret;
327 
328 	l1tf = vmentry_l1d_flush_parse(s);
329 	if (l1tf < 0)
330 		return l1tf;
331 
332 	if (!boot_cpu_has(X86_BUG_L1TF))
333 		return 0;
334 
335 	/*
336 	 * Has vmx_init() run already? If not then this is the pre init
337 	 * parameter parsing. In that case just store the value and let
338 	 * vmx_init() do the proper setup after enable_ept has been
339 	 * established.
340 	 */
341 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
342 		vmentry_l1d_flush_param = l1tf;
343 		return 0;
344 	}
345 
346 	mutex_lock(&vmx_l1d_flush_mutex);
347 	ret = vmx_setup_l1d_flush(l1tf);
348 	mutex_unlock(&vmx_l1d_flush_mutex);
349 	return ret;
350 }
351 
352 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
353 {
354 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
355 		return sprintf(s, "???\n");
356 
357 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
358 }
359 
360 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
361 	.set = vmentry_l1d_flush_set,
362 	.get = vmentry_l1d_flush_get,
363 };
364 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
365 
366 static u32 vmx_segment_access_rights(struct kvm_segment *var);
367 
368 void vmx_vmexit(void);
369 
370 #define vmx_insn_failed(fmt...)		\
371 do {					\
372 	WARN_ONCE(1, fmt);		\
373 	pr_warn_ratelimited(fmt);	\
374 } while (0)
375 
376 asmlinkage void vmread_error(unsigned long field, bool fault)
377 {
378 	if (fault)
379 		kvm_spurious_fault();
380 	else
381 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
382 }
383 
384 noinline void vmwrite_error(unsigned long field, unsigned long value)
385 {
386 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
387 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
388 }
389 
390 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
391 {
392 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
393 }
394 
395 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
396 {
397 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
398 }
399 
400 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
401 {
402 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
403 			ext, vpid, gva);
404 }
405 
406 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
407 {
408 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
409 			ext, eptp, gpa);
410 }
411 
412 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
413 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
414 /*
415  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
416  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
417  */
418 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
419 
420 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
421 static DEFINE_SPINLOCK(vmx_vpid_lock);
422 
423 struct vmcs_config vmcs_config;
424 struct vmx_capability vmx_capability;
425 
426 #define VMX_SEGMENT_FIELD(seg)					\
427 	[VCPU_SREG_##seg] = {                                   \
428 		.selector = GUEST_##seg##_SELECTOR,		\
429 		.base = GUEST_##seg##_BASE,		   	\
430 		.limit = GUEST_##seg##_LIMIT,		   	\
431 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
432 	}
433 
434 static const struct kvm_vmx_segment_field {
435 	unsigned selector;
436 	unsigned base;
437 	unsigned limit;
438 	unsigned ar_bytes;
439 } kvm_vmx_segment_fields[] = {
440 	VMX_SEGMENT_FIELD(CS),
441 	VMX_SEGMENT_FIELD(DS),
442 	VMX_SEGMENT_FIELD(ES),
443 	VMX_SEGMENT_FIELD(FS),
444 	VMX_SEGMENT_FIELD(GS),
445 	VMX_SEGMENT_FIELD(SS),
446 	VMX_SEGMENT_FIELD(TR),
447 	VMX_SEGMENT_FIELD(LDTR),
448 };
449 
450 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
451 {
452 	vmx->segment_cache.bitmask = 0;
453 }
454 
455 static unsigned long host_idt_base;
456 
457 #if IS_ENABLED(CONFIG_HYPERV)
458 static bool __read_mostly enlightened_vmcs = true;
459 module_param(enlightened_vmcs, bool, 0444);
460 
461 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
462 {
463 	struct hv_enlightened_vmcs *evmcs;
464 	struct hv_partition_assist_pg **p_hv_pa_pg =
465 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
466 	/*
467 	 * Synthetic VM-Exit is not enabled in current code and so All
468 	 * evmcs in singe VM shares same assist page.
469 	 */
470 	if (!*p_hv_pa_pg)
471 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
472 
473 	if (!*p_hv_pa_pg)
474 		return -ENOMEM;
475 
476 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
477 
478 	evmcs->partition_assist_page =
479 		__pa(*p_hv_pa_pg);
480 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
481 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
482 
483 	return 0;
484 }
485 
486 #endif /* IS_ENABLED(CONFIG_HYPERV) */
487 
488 /*
489  * Comment's format: document - errata name - stepping - processor name.
490  * Refer from
491  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
492  */
493 static u32 vmx_preemption_cpu_tfms[] = {
494 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
495 0x000206E6,
496 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
497 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
498 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
499 0x00020652,
500 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
501 0x00020655,
502 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
503 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
504 /*
505  * 320767.pdf - AAP86  - B1 -
506  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
507  */
508 0x000106E5,
509 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
510 0x000106A0,
511 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
512 0x000106A1,
513 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
514 0x000106A4,
515  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
516  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
517  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
518 0x000106A5,
519  /* Xeon E3-1220 V2 */
520 0x000306A8,
521 };
522 
523 static inline bool cpu_has_broken_vmx_preemption_timer(void)
524 {
525 	u32 eax = cpuid_eax(0x00000001), i;
526 
527 	/* Clear the reserved bits */
528 	eax &= ~(0x3U << 14 | 0xfU << 28);
529 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
530 		if (eax == vmx_preemption_cpu_tfms[i])
531 			return true;
532 
533 	return false;
534 }
535 
536 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
537 {
538 	return flexpriority_enabled && lapic_in_kernel(vcpu);
539 }
540 
541 static inline bool report_flexpriority(void)
542 {
543 	return flexpriority_enabled;
544 }
545 
546 static int possible_passthrough_msr_slot(u32 msr)
547 {
548 	u32 i;
549 
550 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
551 		if (vmx_possible_passthrough_msrs[i] == msr)
552 			return i;
553 
554 	return -ENOENT;
555 }
556 
557 static bool is_valid_passthrough_msr(u32 msr)
558 {
559 	bool r;
560 
561 	switch (msr) {
562 	case 0x800 ... 0x8ff:
563 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
564 		return true;
565 	case MSR_IA32_RTIT_STATUS:
566 	case MSR_IA32_RTIT_OUTPUT_BASE:
567 	case MSR_IA32_RTIT_OUTPUT_MASK:
568 	case MSR_IA32_RTIT_CR3_MATCH:
569 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
570 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
571 	case MSR_LBR_SELECT:
572 	case MSR_LBR_TOS:
573 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
574 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
575 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
576 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
577 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
578 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
579 		return true;
580 	}
581 
582 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
583 
584 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
585 
586 	return r;
587 }
588 
589 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
590 {
591 	int i;
592 
593 	i = kvm_find_user_return_msr(msr);
594 	if (i >= 0)
595 		return &vmx->guest_uret_msrs[i];
596 	return NULL;
597 }
598 
599 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
600 				  struct vmx_uret_msr *msr, u64 data)
601 {
602 	unsigned int slot = msr - vmx->guest_uret_msrs;
603 	int ret = 0;
604 
605 	u64 old_msr_data = msr->data;
606 	msr->data = data;
607 	if (msr->load_into_hardware) {
608 		preempt_disable();
609 		ret = kvm_set_user_return_msr(slot, msr->data, msr->mask);
610 		preempt_enable();
611 		if (ret)
612 			msr->data = old_msr_data;
613 	}
614 	return ret;
615 }
616 
617 #ifdef CONFIG_KEXEC_CORE
618 static void crash_vmclear_local_loaded_vmcss(void)
619 {
620 	int cpu = raw_smp_processor_id();
621 	struct loaded_vmcs *v;
622 
623 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
624 			    loaded_vmcss_on_cpu_link)
625 		vmcs_clear(v->vmcs);
626 }
627 #endif /* CONFIG_KEXEC_CORE */
628 
629 static void __loaded_vmcs_clear(void *arg)
630 {
631 	struct loaded_vmcs *loaded_vmcs = arg;
632 	int cpu = raw_smp_processor_id();
633 
634 	if (loaded_vmcs->cpu != cpu)
635 		return; /* vcpu migration can race with cpu offline */
636 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
637 		per_cpu(current_vmcs, cpu) = NULL;
638 
639 	vmcs_clear(loaded_vmcs->vmcs);
640 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
641 		vmcs_clear(loaded_vmcs->shadow_vmcs);
642 
643 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
644 
645 	/*
646 	 * Ensure all writes to loaded_vmcs, including deleting it from its
647 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
648 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
649 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
650 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
651 	 */
652 	smp_wmb();
653 
654 	loaded_vmcs->cpu = -1;
655 	loaded_vmcs->launched = 0;
656 }
657 
658 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
659 {
660 	int cpu = loaded_vmcs->cpu;
661 
662 	if (cpu != -1)
663 		smp_call_function_single(cpu,
664 			 __loaded_vmcs_clear, loaded_vmcs, 1);
665 }
666 
667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
668 				       unsigned field)
669 {
670 	bool ret;
671 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
672 
673 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
674 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
675 		vmx->segment_cache.bitmask = 0;
676 	}
677 	ret = vmx->segment_cache.bitmask & mask;
678 	vmx->segment_cache.bitmask |= mask;
679 	return ret;
680 }
681 
682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
683 {
684 	u16 *p = &vmx->segment_cache.seg[seg].selector;
685 
686 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
687 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
688 	return *p;
689 }
690 
691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
692 {
693 	ulong *p = &vmx->segment_cache.seg[seg].base;
694 
695 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
696 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
697 	return *p;
698 }
699 
700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
701 {
702 	u32 *p = &vmx->segment_cache.seg[seg].limit;
703 
704 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
705 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
706 	return *p;
707 }
708 
709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
710 {
711 	u32 *p = &vmx->segment_cache.seg[seg].ar;
712 
713 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
714 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
715 	return *p;
716 }
717 
718 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
719 {
720 	u32 eb;
721 
722 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
723 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
724 	/*
725 	 * Guest access to VMware backdoor ports could legitimately
726 	 * trigger #GP because of TSS I/O permission bitmap.
727 	 * We intercept those #GP and allow access to them anyway
728 	 * as VMware does.
729 	 */
730 	if (enable_vmware_backdoor)
731 		eb |= (1u << GP_VECTOR);
732 	if ((vcpu->guest_debug &
733 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
734 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
735 		eb |= 1u << BP_VECTOR;
736 	if (to_vmx(vcpu)->rmode.vm86_active)
737 		eb = ~0;
738 	if (!vmx_need_pf_intercept(vcpu))
739 		eb &= ~(1u << PF_VECTOR);
740 
741 	/* When we are running a nested L2 guest and L1 specified for it a
742 	 * certain exception bitmap, we must trap the same exceptions and pass
743 	 * them to L1. When running L2, we will only handle the exceptions
744 	 * specified above if L1 did not want them.
745 	 */
746 	if (is_guest_mode(vcpu))
747 		eb |= get_vmcs12(vcpu)->exception_bitmap;
748         else {
749 		int mask = 0, match = 0;
750 
751 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
752 			/*
753 			 * If EPT is enabled, #PF is currently only intercepted
754 			 * if MAXPHYADDR is smaller on the guest than on the
755 			 * host.  In that case we only care about present,
756 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
757 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
758 			 */
759 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
760 			match = PFERR_PRESENT_MASK;
761 		}
762 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
763 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
764 	}
765 
766 	vmcs_write32(EXCEPTION_BITMAP, eb);
767 }
768 
769 /*
770  * Check if MSR is intercepted for currently loaded MSR bitmap.
771  */
772 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
773 {
774 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
775 		return true;
776 
777 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap,
778 					 MSR_IA32_SPEC_CTRL);
779 }
780 
781 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
782 		unsigned long entry, unsigned long exit)
783 {
784 	vm_entry_controls_clearbit(vmx, entry);
785 	vm_exit_controls_clearbit(vmx, exit);
786 }
787 
788 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
789 {
790 	unsigned int i;
791 
792 	for (i = 0; i < m->nr; ++i) {
793 		if (m->val[i].index == msr)
794 			return i;
795 	}
796 	return -ENOENT;
797 }
798 
799 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
800 {
801 	int i;
802 	struct msr_autoload *m = &vmx->msr_autoload;
803 
804 	switch (msr) {
805 	case MSR_EFER:
806 		if (cpu_has_load_ia32_efer()) {
807 			clear_atomic_switch_msr_special(vmx,
808 					VM_ENTRY_LOAD_IA32_EFER,
809 					VM_EXIT_LOAD_IA32_EFER);
810 			return;
811 		}
812 		break;
813 	case MSR_CORE_PERF_GLOBAL_CTRL:
814 		if (cpu_has_load_perf_global_ctrl()) {
815 			clear_atomic_switch_msr_special(vmx,
816 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
817 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
818 			return;
819 		}
820 		break;
821 	}
822 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
823 	if (i < 0)
824 		goto skip_guest;
825 	--m->guest.nr;
826 	m->guest.val[i] = m->guest.val[m->guest.nr];
827 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
828 
829 skip_guest:
830 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
831 	if (i < 0)
832 		return;
833 
834 	--m->host.nr;
835 	m->host.val[i] = m->host.val[m->host.nr];
836 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
837 }
838 
839 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
840 		unsigned long entry, unsigned long exit,
841 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
842 		u64 guest_val, u64 host_val)
843 {
844 	vmcs_write64(guest_val_vmcs, guest_val);
845 	if (host_val_vmcs != HOST_IA32_EFER)
846 		vmcs_write64(host_val_vmcs, host_val);
847 	vm_entry_controls_setbit(vmx, entry);
848 	vm_exit_controls_setbit(vmx, exit);
849 }
850 
851 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
852 				  u64 guest_val, u64 host_val, bool entry_only)
853 {
854 	int i, j = 0;
855 	struct msr_autoload *m = &vmx->msr_autoload;
856 
857 	switch (msr) {
858 	case MSR_EFER:
859 		if (cpu_has_load_ia32_efer()) {
860 			add_atomic_switch_msr_special(vmx,
861 					VM_ENTRY_LOAD_IA32_EFER,
862 					VM_EXIT_LOAD_IA32_EFER,
863 					GUEST_IA32_EFER,
864 					HOST_IA32_EFER,
865 					guest_val, host_val);
866 			return;
867 		}
868 		break;
869 	case MSR_CORE_PERF_GLOBAL_CTRL:
870 		if (cpu_has_load_perf_global_ctrl()) {
871 			add_atomic_switch_msr_special(vmx,
872 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
873 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
874 					GUEST_IA32_PERF_GLOBAL_CTRL,
875 					HOST_IA32_PERF_GLOBAL_CTRL,
876 					guest_val, host_val);
877 			return;
878 		}
879 		break;
880 	case MSR_IA32_PEBS_ENABLE:
881 		/* PEBS needs a quiescent period after being disabled (to write
882 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
883 		 * provide that period, so a CPU could write host's record into
884 		 * guest's memory.
885 		 */
886 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
887 	}
888 
889 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
890 	if (!entry_only)
891 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
892 
893 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
894 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
895 		printk_once(KERN_WARNING "Not enough msr switch entries. "
896 				"Can't add msr %x\n", msr);
897 		return;
898 	}
899 	if (i < 0) {
900 		i = m->guest.nr++;
901 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
902 	}
903 	m->guest.val[i].index = msr;
904 	m->guest.val[i].value = guest_val;
905 
906 	if (entry_only)
907 		return;
908 
909 	if (j < 0) {
910 		j = m->host.nr++;
911 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
912 	}
913 	m->host.val[j].index = msr;
914 	m->host.val[j].value = host_val;
915 }
916 
917 static bool update_transition_efer(struct vcpu_vmx *vmx)
918 {
919 	u64 guest_efer = vmx->vcpu.arch.efer;
920 	u64 ignore_bits = 0;
921 	int i;
922 
923 	/* Shadow paging assumes NX to be available.  */
924 	if (!enable_ept)
925 		guest_efer |= EFER_NX;
926 
927 	/*
928 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
929 	 */
930 	ignore_bits |= EFER_SCE;
931 #ifdef CONFIG_X86_64
932 	ignore_bits |= EFER_LMA | EFER_LME;
933 	/* SCE is meaningful only in long mode on Intel */
934 	if (guest_efer & EFER_LMA)
935 		ignore_bits &= ~(u64)EFER_SCE;
936 #endif
937 
938 	/*
939 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
940 	 * On CPUs that support "load IA32_EFER", always switch EFER
941 	 * atomically, since it's faster than switching it manually.
942 	 */
943 	if (cpu_has_load_ia32_efer() ||
944 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
945 		if (!(guest_efer & EFER_LMA))
946 			guest_efer &= ~EFER_LME;
947 		if (guest_efer != host_efer)
948 			add_atomic_switch_msr(vmx, MSR_EFER,
949 					      guest_efer, host_efer, false);
950 		else
951 			clear_atomic_switch_msr(vmx, MSR_EFER);
952 		return false;
953 	}
954 
955 	i = kvm_find_user_return_msr(MSR_EFER);
956 	if (i < 0)
957 		return false;
958 
959 	clear_atomic_switch_msr(vmx, MSR_EFER);
960 
961 	guest_efer &= ~ignore_bits;
962 	guest_efer |= host_efer & ignore_bits;
963 
964 	vmx->guest_uret_msrs[i].data = guest_efer;
965 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
966 
967 	return true;
968 }
969 
970 #ifdef CONFIG_X86_32
971 /*
972  * On 32-bit kernels, VM exits still load the FS and GS bases from the
973  * VMCS rather than the segment table.  KVM uses this helper to figure
974  * out the current bases to poke them into the VMCS before entry.
975  */
976 static unsigned long segment_base(u16 selector)
977 {
978 	struct desc_struct *table;
979 	unsigned long v;
980 
981 	if (!(selector & ~SEGMENT_RPL_MASK))
982 		return 0;
983 
984 	table = get_current_gdt_ro();
985 
986 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
987 		u16 ldt_selector = kvm_read_ldt();
988 
989 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
990 			return 0;
991 
992 		table = (struct desc_struct *)segment_base(ldt_selector);
993 	}
994 	v = get_desc_base(&table[selector >> 3]);
995 	return v;
996 }
997 #endif
998 
999 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1000 {
1001 	return vmx_pt_mode_is_host_guest() &&
1002 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1003 }
1004 
1005 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1006 {
1007 	/* The base must be 128-byte aligned and a legal physical address. */
1008 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1009 }
1010 
1011 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1012 {
1013 	u32 i;
1014 
1015 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1016 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1017 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1018 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1019 	for (i = 0; i < addr_range; i++) {
1020 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1021 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1022 	}
1023 }
1024 
1025 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1026 {
1027 	u32 i;
1028 
1029 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1030 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1031 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1032 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1033 	for (i = 0; i < addr_range; i++) {
1034 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1035 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1036 	}
1037 }
1038 
1039 static void pt_guest_enter(struct vcpu_vmx *vmx)
1040 {
1041 	if (vmx_pt_mode_is_system())
1042 		return;
1043 
1044 	/*
1045 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1046 	 * Save host state before VM entry.
1047 	 */
1048 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1049 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1050 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1051 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1052 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1053 	}
1054 }
1055 
1056 static void pt_guest_exit(struct vcpu_vmx *vmx)
1057 {
1058 	if (vmx_pt_mode_is_system())
1059 		return;
1060 
1061 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1062 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1063 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1064 	}
1065 
1066 	/*
1067 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1068 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1069 	 */
1070 	if (vmx->pt_desc.host.ctl)
1071 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1072 }
1073 
1074 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1075 			unsigned long fs_base, unsigned long gs_base)
1076 {
1077 	if (unlikely(fs_sel != host->fs_sel)) {
1078 		if (!(fs_sel & 7))
1079 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1080 		else
1081 			vmcs_write16(HOST_FS_SELECTOR, 0);
1082 		host->fs_sel = fs_sel;
1083 	}
1084 	if (unlikely(gs_sel != host->gs_sel)) {
1085 		if (!(gs_sel & 7))
1086 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1087 		else
1088 			vmcs_write16(HOST_GS_SELECTOR, 0);
1089 		host->gs_sel = gs_sel;
1090 	}
1091 	if (unlikely(fs_base != host->fs_base)) {
1092 		vmcs_writel(HOST_FS_BASE, fs_base);
1093 		host->fs_base = fs_base;
1094 	}
1095 	if (unlikely(gs_base != host->gs_base)) {
1096 		vmcs_writel(HOST_GS_BASE, gs_base);
1097 		host->gs_base = gs_base;
1098 	}
1099 }
1100 
1101 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1102 {
1103 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1104 	struct vmcs_host_state *host_state;
1105 #ifdef CONFIG_X86_64
1106 	int cpu = raw_smp_processor_id();
1107 #endif
1108 	unsigned long fs_base, gs_base;
1109 	u16 fs_sel, gs_sel;
1110 	int i;
1111 
1112 	vmx->req_immediate_exit = false;
1113 
1114 	/*
1115 	 * Note that guest MSRs to be saved/restored can also be changed
1116 	 * when guest state is loaded. This happens when guest transitions
1117 	 * to/from long-mode by setting MSR_EFER.LMA.
1118 	 */
1119 	if (!vmx->guest_uret_msrs_loaded) {
1120 		vmx->guest_uret_msrs_loaded = true;
1121 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1122 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1123 				continue;
1124 
1125 			kvm_set_user_return_msr(i,
1126 						vmx->guest_uret_msrs[i].data,
1127 						vmx->guest_uret_msrs[i].mask);
1128 		}
1129 	}
1130 
1131     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1132 		nested_sync_vmcs12_to_shadow(vcpu);
1133 
1134 	if (vmx->guest_state_loaded)
1135 		return;
1136 
1137 	host_state = &vmx->loaded_vmcs->host_state;
1138 
1139 	/*
1140 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1141 	 * allow segment selectors with cpl > 0 or ti == 1.
1142 	 */
1143 	host_state->ldt_sel = kvm_read_ldt();
1144 
1145 #ifdef CONFIG_X86_64
1146 	savesegment(ds, host_state->ds_sel);
1147 	savesegment(es, host_state->es_sel);
1148 
1149 	gs_base = cpu_kernelmode_gs_base(cpu);
1150 	if (likely(is_64bit_mm(current->mm))) {
1151 		current_save_fsgs();
1152 		fs_sel = current->thread.fsindex;
1153 		gs_sel = current->thread.gsindex;
1154 		fs_base = current->thread.fsbase;
1155 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1156 	} else {
1157 		savesegment(fs, fs_sel);
1158 		savesegment(gs, gs_sel);
1159 		fs_base = read_msr(MSR_FS_BASE);
1160 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1161 	}
1162 
1163 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1164 #else
1165 	savesegment(fs, fs_sel);
1166 	savesegment(gs, gs_sel);
1167 	fs_base = segment_base(fs_sel);
1168 	gs_base = segment_base(gs_sel);
1169 #endif
1170 
1171 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1172 	vmx->guest_state_loaded = true;
1173 }
1174 
1175 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1176 {
1177 	struct vmcs_host_state *host_state;
1178 
1179 	if (!vmx->guest_state_loaded)
1180 		return;
1181 
1182 	host_state = &vmx->loaded_vmcs->host_state;
1183 
1184 	++vmx->vcpu.stat.host_state_reload;
1185 
1186 #ifdef CONFIG_X86_64
1187 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1188 #endif
1189 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1190 		kvm_load_ldt(host_state->ldt_sel);
1191 #ifdef CONFIG_X86_64
1192 		load_gs_index(host_state->gs_sel);
1193 #else
1194 		loadsegment(gs, host_state->gs_sel);
1195 #endif
1196 	}
1197 	if (host_state->fs_sel & 7)
1198 		loadsegment(fs, host_state->fs_sel);
1199 #ifdef CONFIG_X86_64
1200 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1201 		loadsegment(ds, host_state->ds_sel);
1202 		loadsegment(es, host_state->es_sel);
1203 	}
1204 #endif
1205 	invalidate_tss_limit();
1206 #ifdef CONFIG_X86_64
1207 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1208 #endif
1209 	load_fixmap_gdt(raw_smp_processor_id());
1210 	vmx->guest_state_loaded = false;
1211 	vmx->guest_uret_msrs_loaded = false;
1212 }
1213 
1214 #ifdef CONFIG_X86_64
1215 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1216 {
1217 	preempt_disable();
1218 	if (vmx->guest_state_loaded)
1219 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1220 	preempt_enable();
1221 	return vmx->msr_guest_kernel_gs_base;
1222 }
1223 
1224 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1225 {
1226 	preempt_disable();
1227 	if (vmx->guest_state_loaded)
1228 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1229 	preempt_enable();
1230 	vmx->msr_guest_kernel_gs_base = data;
1231 }
1232 #endif
1233 
1234 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1235 			struct loaded_vmcs *buddy)
1236 {
1237 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1238 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1239 	struct vmcs *prev;
1240 
1241 	if (!already_loaded) {
1242 		loaded_vmcs_clear(vmx->loaded_vmcs);
1243 		local_irq_disable();
1244 
1245 		/*
1246 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1247 		 * this cpu's percpu list, otherwise it may not yet be deleted
1248 		 * from its previous cpu's percpu list.  Pairs with the
1249 		 * smb_wmb() in __loaded_vmcs_clear().
1250 		 */
1251 		smp_rmb();
1252 
1253 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1254 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1255 		local_irq_enable();
1256 	}
1257 
1258 	prev = per_cpu(current_vmcs, cpu);
1259 	if (prev != vmx->loaded_vmcs->vmcs) {
1260 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1261 		vmcs_load(vmx->loaded_vmcs->vmcs);
1262 
1263 		/*
1264 		 * No indirect branch prediction barrier needed when switching
1265 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1266 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1267 		 */
1268 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1269 			indirect_branch_prediction_barrier();
1270 	}
1271 
1272 	if (!already_loaded) {
1273 		void *gdt = get_current_gdt_ro();
1274 		unsigned long sysenter_esp;
1275 
1276 		/*
1277 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1278 		 * TLB entries from its previous association with the vCPU.
1279 		 */
1280 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1281 
1282 		/*
1283 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1284 		 * processors.  See 22.2.4.
1285 		 */
1286 		vmcs_writel(HOST_TR_BASE,
1287 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1288 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1289 
1290 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1291 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1292 
1293 		vmx->loaded_vmcs->cpu = cpu;
1294 	}
1295 }
1296 
1297 /*
1298  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1299  * vcpu mutex is already taken.
1300  */
1301 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1302 {
1303 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1304 
1305 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1306 
1307 	vmx_vcpu_pi_load(vcpu, cpu);
1308 
1309 	vmx->host_debugctlmsr = get_debugctlmsr();
1310 }
1311 
1312 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1313 {
1314 	vmx_vcpu_pi_put(vcpu);
1315 
1316 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1317 }
1318 
1319 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1320 {
1321 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1322 }
1323 
1324 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1325 {
1326 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1327 	unsigned long rflags, save_rflags;
1328 
1329 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1330 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1331 		rflags = vmcs_readl(GUEST_RFLAGS);
1332 		if (vmx->rmode.vm86_active) {
1333 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1334 			save_rflags = vmx->rmode.save_rflags;
1335 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1336 		}
1337 		vmx->rflags = rflags;
1338 	}
1339 	return vmx->rflags;
1340 }
1341 
1342 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1343 {
1344 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1345 	unsigned long old_rflags;
1346 
1347 	if (is_unrestricted_guest(vcpu)) {
1348 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1349 		vmx->rflags = rflags;
1350 		vmcs_writel(GUEST_RFLAGS, rflags);
1351 		return;
1352 	}
1353 
1354 	old_rflags = vmx_get_rflags(vcpu);
1355 	vmx->rflags = rflags;
1356 	if (vmx->rmode.vm86_active) {
1357 		vmx->rmode.save_rflags = rflags;
1358 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1359 	}
1360 	vmcs_writel(GUEST_RFLAGS, rflags);
1361 
1362 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1363 		vmx->emulation_required = vmx_emulation_required(vcpu);
1364 }
1365 
1366 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1367 {
1368 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1369 }
1370 
1371 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1372 {
1373 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1374 	int ret = 0;
1375 
1376 	if (interruptibility & GUEST_INTR_STATE_STI)
1377 		ret |= KVM_X86_SHADOW_INT_STI;
1378 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1379 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1380 
1381 	return ret;
1382 }
1383 
1384 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1385 {
1386 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1387 	u32 interruptibility = interruptibility_old;
1388 
1389 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1390 
1391 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1392 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1393 	else if (mask & KVM_X86_SHADOW_INT_STI)
1394 		interruptibility |= GUEST_INTR_STATE_STI;
1395 
1396 	if ((interruptibility != interruptibility_old))
1397 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1398 }
1399 
1400 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1401 {
1402 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1403 	unsigned long value;
1404 
1405 	/*
1406 	 * Any MSR write that attempts to change bits marked reserved will
1407 	 * case a #GP fault.
1408 	 */
1409 	if (data & vmx->pt_desc.ctl_bitmask)
1410 		return 1;
1411 
1412 	/*
1413 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1414 	 * result in a #GP unless the same write also clears TraceEn.
1415 	 */
1416 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1417 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1418 		return 1;
1419 
1420 	/*
1421 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1422 	 * and FabricEn would cause #GP, if
1423 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1424 	 */
1425 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1426 		!(data & RTIT_CTL_FABRIC_EN) &&
1427 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1428 					PT_CAP_single_range_output))
1429 		return 1;
1430 
1431 	/*
1432 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1433 	 * utilize encodings marked reserved will cause a #GP fault.
1434 	 */
1435 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1436 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1437 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1438 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1439 		return 1;
1440 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1441 						PT_CAP_cycle_thresholds);
1442 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1443 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1444 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1445 		return 1;
1446 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1447 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1448 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1449 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1450 		return 1;
1451 
1452 	/*
1453 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1454 	 * cause a #GP fault.
1455 	 */
1456 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1457 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1458 		return 1;
1459 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1460 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1461 		return 1;
1462 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1463 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1464 		return 1;
1465 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1466 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1467 		return 1;
1468 
1469 	return 0;
1470 }
1471 
1472 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1473 {
1474 	/*
1475 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1476 	 * not point  tthe failing instruction, and even if it did, the code
1477 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1478 	 * so that guest userspace can't DoS the guest simply by triggering
1479 	 * emulation (enclaves are CPL3 only).
1480 	 */
1481 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1482 		kvm_queue_exception(vcpu, UD_VECTOR);
1483 		return false;
1484 	}
1485 	return true;
1486 }
1487 
1488 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1489 {
1490 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1491 	unsigned long rip, orig_rip;
1492 	u32 instr_len;
1493 
1494 	/*
1495 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1496 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1497 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1498 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1499 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1500 	 * i.e. we end up advancing IP with some random value.
1501 	 */
1502 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1503 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1504 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1505 
1506 		/*
1507 		 * Emulating an enclave's instructions isn't supported as KVM
1508 		 * cannot access the enclave's memory or its true RIP, e.g. the
1509 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1510 		 * the RIP that actually triggered the VM-Exit.  But, because
1511 		 * most instructions that cause VM-Exit will #UD in an enclave,
1512 		 * most instruction-based VM-Exits simply do not occur.
1513 		 *
1514 		 * There are a few exceptions, notably the debug instructions
1515 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1516 		 * and generate #DB/#BP as expected, which KVM might intercept.
1517 		 * But again, the CPU does the dirty work and saves an instr
1518 		 * length of zero so VMMs don't shoot themselves in the foot.
1519 		 * WARN if KVM tries to skip a non-zero length instruction on
1520 		 * a VM-Exit from an enclave.
1521 		 */
1522 		if (!instr_len)
1523 			goto rip_updated;
1524 
1525 		WARN(exit_reason.enclave_mode,
1526 		     "KVM: skipping instruction after SGX enclave VM-Exit");
1527 
1528 		orig_rip = kvm_rip_read(vcpu);
1529 		rip = orig_rip + instr_len;
1530 #ifdef CONFIG_X86_64
1531 		/*
1532 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1533 		 * mode, but just finding out that we are in 64-bit mode is
1534 		 * quite expensive.  Only do it if there was a carry.
1535 		 */
1536 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1537 			rip = (u32)rip;
1538 #endif
1539 		kvm_rip_write(vcpu, rip);
1540 	} else {
1541 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1542 			return 0;
1543 	}
1544 
1545 rip_updated:
1546 	/* skipping an emulated instruction also counts */
1547 	vmx_set_interrupt_shadow(vcpu, 0);
1548 
1549 	return 1;
1550 }
1551 
1552 /*
1553  * Recognizes a pending MTF VM-exit and records the nested state for later
1554  * delivery.
1555  */
1556 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1557 {
1558 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1559 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1560 
1561 	if (!is_guest_mode(vcpu))
1562 		return;
1563 
1564 	/*
1565 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1566 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1567 	 * instruction boundary), any #DB exception pending delivery must be a
1568 	 * debug-trap. Record the pending MTF state to be delivered in
1569 	 * vmx_check_nested_events().
1570 	 */
1571 	if (nested_cpu_has_mtf(vmcs12) &&
1572 	    (!vcpu->arch.exception.pending ||
1573 	     vcpu->arch.exception.nr == DB_VECTOR))
1574 		vmx->nested.mtf_pending = true;
1575 	else
1576 		vmx->nested.mtf_pending = false;
1577 }
1578 
1579 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1580 {
1581 	vmx_update_emulated_instruction(vcpu);
1582 	return skip_emulated_instruction(vcpu);
1583 }
1584 
1585 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1586 {
1587 	/*
1588 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1589 	 * explicitly skip the instruction because if the HLT state is set,
1590 	 * then the instruction is already executing and RIP has already been
1591 	 * advanced.
1592 	 */
1593 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1594 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1595 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1596 }
1597 
1598 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1599 {
1600 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1601 	unsigned nr = vcpu->arch.exception.nr;
1602 	bool has_error_code = vcpu->arch.exception.has_error_code;
1603 	u32 error_code = vcpu->arch.exception.error_code;
1604 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1605 
1606 	kvm_deliver_exception_payload(vcpu);
1607 
1608 	if (has_error_code) {
1609 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1610 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1611 	}
1612 
1613 	if (vmx->rmode.vm86_active) {
1614 		int inc_eip = 0;
1615 		if (kvm_exception_is_soft(nr))
1616 			inc_eip = vcpu->arch.event_exit_inst_len;
1617 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1618 		return;
1619 	}
1620 
1621 	WARN_ON_ONCE(vmx->emulation_required);
1622 
1623 	if (kvm_exception_is_soft(nr)) {
1624 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1625 			     vmx->vcpu.arch.event_exit_inst_len);
1626 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1627 	} else
1628 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1629 
1630 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1631 
1632 	vmx_clear_hlt(vcpu);
1633 }
1634 
1635 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1636 			       bool load_into_hardware)
1637 {
1638 	struct vmx_uret_msr *uret_msr;
1639 
1640 	uret_msr = vmx_find_uret_msr(vmx, msr);
1641 	if (!uret_msr)
1642 		return;
1643 
1644 	uret_msr->load_into_hardware = load_into_hardware;
1645 }
1646 
1647 /*
1648  * Configuring user return MSRs to automatically save, load, and restore MSRs
1649  * that need to be shoved into hardware when running the guest.  Note, omitting
1650  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1651  * loaded into hardware when running the guest.
1652  */
1653 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1654 {
1655 #ifdef CONFIG_X86_64
1656 	bool load_syscall_msrs;
1657 
1658 	/*
1659 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1660 	 * when EFER.SCE is set.
1661 	 */
1662 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1663 			    (vmx->vcpu.arch.efer & EFER_SCE);
1664 
1665 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1666 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1667 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1668 #endif
1669 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1670 
1671 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1672 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1673 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1674 
1675 	/*
1676 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1677 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1678 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1679 	 * so that TSX remains always disabled.
1680 	 */
1681 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1682 
1683 	/*
1684 	 * The set of MSRs to load may have changed, reload MSRs before the
1685 	 * next VM-Enter.
1686 	 */
1687 	vmx->guest_uret_msrs_loaded = false;
1688 }
1689 
1690 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1691 {
1692 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1693 
1694 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1695 		return vmcs12->tsc_offset;
1696 
1697 	return 0;
1698 }
1699 
1700 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1701 {
1702 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1703 
1704 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1705 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1706 		return vmcs12->tsc_multiplier;
1707 
1708 	return kvm_default_tsc_scaling_ratio;
1709 }
1710 
1711 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1712 {
1713 	vmcs_write64(TSC_OFFSET, offset);
1714 }
1715 
1716 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1717 {
1718 	vmcs_write64(TSC_MULTIPLIER, multiplier);
1719 }
1720 
1721 /*
1722  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1723  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1724  * all guests if the "nested" module option is off, and can also be disabled
1725  * for a single guest by disabling its VMX cpuid bit.
1726  */
1727 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1728 {
1729 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1730 }
1731 
1732 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1733 						 uint64_t val)
1734 {
1735 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1736 
1737 	return !(val & ~valid_bits);
1738 }
1739 
1740 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1741 {
1742 	switch (msr->index) {
1743 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1744 		if (!nested)
1745 			return 1;
1746 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1747 	case MSR_IA32_PERF_CAPABILITIES:
1748 		msr->data = vmx_get_perf_capabilities();
1749 		return 0;
1750 	default:
1751 		return KVM_MSR_RET_INVALID;
1752 	}
1753 }
1754 
1755 /*
1756  * Reads an msr value (of 'msr_index') into 'pdata'.
1757  * Returns 0 on success, non-0 otherwise.
1758  * Assumes vcpu_load() was already called.
1759  */
1760 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1761 {
1762 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1763 	struct vmx_uret_msr *msr;
1764 	u32 index;
1765 
1766 	switch (msr_info->index) {
1767 #ifdef CONFIG_X86_64
1768 	case MSR_FS_BASE:
1769 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1770 		break;
1771 	case MSR_GS_BASE:
1772 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1773 		break;
1774 	case MSR_KERNEL_GS_BASE:
1775 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1776 		break;
1777 #endif
1778 	case MSR_EFER:
1779 		return kvm_get_msr_common(vcpu, msr_info);
1780 	case MSR_IA32_TSX_CTRL:
1781 		if (!msr_info->host_initiated &&
1782 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1783 			return 1;
1784 		goto find_uret_msr;
1785 	case MSR_IA32_UMWAIT_CONTROL:
1786 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1787 			return 1;
1788 
1789 		msr_info->data = vmx->msr_ia32_umwait_control;
1790 		break;
1791 	case MSR_IA32_SPEC_CTRL:
1792 		if (!msr_info->host_initiated &&
1793 		    !guest_has_spec_ctrl_msr(vcpu))
1794 			return 1;
1795 
1796 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1797 		break;
1798 	case MSR_IA32_SYSENTER_CS:
1799 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1800 		break;
1801 	case MSR_IA32_SYSENTER_EIP:
1802 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1803 		break;
1804 	case MSR_IA32_SYSENTER_ESP:
1805 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1806 		break;
1807 	case MSR_IA32_BNDCFGS:
1808 		if (!kvm_mpx_supported() ||
1809 		    (!msr_info->host_initiated &&
1810 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1811 			return 1;
1812 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1813 		break;
1814 	case MSR_IA32_MCG_EXT_CTL:
1815 		if (!msr_info->host_initiated &&
1816 		    !(vmx->msr_ia32_feature_control &
1817 		      FEAT_CTL_LMCE_ENABLED))
1818 			return 1;
1819 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1820 		break;
1821 	case MSR_IA32_FEAT_CTL:
1822 		msr_info->data = vmx->msr_ia32_feature_control;
1823 		break;
1824 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1825 		if (!msr_info->host_initiated &&
1826 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1827 			return 1;
1828 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1829 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1830 		break;
1831 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1832 		if (!nested_vmx_allowed(vcpu))
1833 			return 1;
1834 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1835 				    &msr_info->data))
1836 			return 1;
1837 		/*
1838 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1839 		 * instead of just ignoring the features, different Hyper-V
1840 		 * versions are either trying to use them and fail or do some
1841 		 * sanity checking and refuse to boot. Filter all unsupported
1842 		 * features out.
1843 		 */
1844 		if (!msr_info->host_initiated &&
1845 		    vmx->nested.enlightened_vmcs_enabled)
1846 			nested_evmcs_filter_control_msr(msr_info->index,
1847 							&msr_info->data);
1848 		break;
1849 	case MSR_IA32_RTIT_CTL:
1850 		if (!vmx_pt_mode_is_host_guest())
1851 			return 1;
1852 		msr_info->data = vmx->pt_desc.guest.ctl;
1853 		break;
1854 	case MSR_IA32_RTIT_STATUS:
1855 		if (!vmx_pt_mode_is_host_guest())
1856 			return 1;
1857 		msr_info->data = vmx->pt_desc.guest.status;
1858 		break;
1859 	case MSR_IA32_RTIT_CR3_MATCH:
1860 		if (!vmx_pt_mode_is_host_guest() ||
1861 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1862 						PT_CAP_cr3_filtering))
1863 			return 1;
1864 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1865 		break;
1866 	case MSR_IA32_RTIT_OUTPUT_BASE:
1867 		if (!vmx_pt_mode_is_host_guest() ||
1868 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1869 					PT_CAP_topa_output) &&
1870 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1871 					PT_CAP_single_range_output)))
1872 			return 1;
1873 		msr_info->data = vmx->pt_desc.guest.output_base;
1874 		break;
1875 	case MSR_IA32_RTIT_OUTPUT_MASK:
1876 		if (!vmx_pt_mode_is_host_guest() ||
1877 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1878 					PT_CAP_topa_output) &&
1879 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1880 					PT_CAP_single_range_output)))
1881 			return 1;
1882 		msr_info->data = vmx->pt_desc.guest.output_mask;
1883 		break;
1884 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1885 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1886 		if (!vmx_pt_mode_is_host_guest() ||
1887 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
1888 			return 1;
1889 		if (index % 2)
1890 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1891 		else
1892 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1893 		break;
1894 	case MSR_IA32_DEBUGCTLMSR:
1895 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1896 		break;
1897 	default:
1898 	find_uret_msr:
1899 		msr = vmx_find_uret_msr(vmx, msr_info->index);
1900 		if (msr) {
1901 			msr_info->data = msr->data;
1902 			break;
1903 		}
1904 		return kvm_get_msr_common(vcpu, msr_info);
1905 	}
1906 
1907 	return 0;
1908 }
1909 
1910 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1911 						    u64 data)
1912 {
1913 #ifdef CONFIG_X86_64
1914 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1915 		return (u32)data;
1916 #endif
1917 	return (unsigned long)data;
1918 }
1919 
1920 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1921 {
1922 	u64 debugctl = vmx_supported_debugctl();
1923 
1924 	if (!intel_pmu_lbr_is_enabled(vcpu))
1925 		debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1926 
1927 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1928 		debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1929 
1930 	return debugctl;
1931 }
1932 
1933 /*
1934  * Writes msr value into the appropriate "register".
1935  * Returns 0 on success, non-0 otherwise.
1936  * Assumes vcpu_load() was already called.
1937  */
1938 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1939 {
1940 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1941 	struct vmx_uret_msr *msr;
1942 	int ret = 0;
1943 	u32 msr_index = msr_info->index;
1944 	u64 data = msr_info->data;
1945 	u32 index;
1946 
1947 	switch (msr_index) {
1948 	case MSR_EFER:
1949 		ret = kvm_set_msr_common(vcpu, msr_info);
1950 		break;
1951 #ifdef CONFIG_X86_64
1952 	case MSR_FS_BASE:
1953 		vmx_segment_cache_clear(vmx);
1954 		vmcs_writel(GUEST_FS_BASE, data);
1955 		break;
1956 	case MSR_GS_BASE:
1957 		vmx_segment_cache_clear(vmx);
1958 		vmcs_writel(GUEST_GS_BASE, data);
1959 		break;
1960 	case MSR_KERNEL_GS_BASE:
1961 		vmx_write_guest_kernel_gs_base(vmx, data);
1962 		break;
1963 #endif
1964 	case MSR_IA32_SYSENTER_CS:
1965 		if (is_guest_mode(vcpu))
1966 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
1967 		vmcs_write32(GUEST_SYSENTER_CS, data);
1968 		break;
1969 	case MSR_IA32_SYSENTER_EIP:
1970 		if (is_guest_mode(vcpu)) {
1971 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1972 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
1973 		}
1974 		vmcs_writel(GUEST_SYSENTER_EIP, data);
1975 		break;
1976 	case MSR_IA32_SYSENTER_ESP:
1977 		if (is_guest_mode(vcpu)) {
1978 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1979 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
1980 		}
1981 		vmcs_writel(GUEST_SYSENTER_ESP, data);
1982 		break;
1983 	case MSR_IA32_DEBUGCTLMSR: {
1984 		u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
1985 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
1986 			if (report_ignored_msrs)
1987 				vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
1988 					    __func__, data);
1989 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1990 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1991 		}
1992 
1993 		if (invalid)
1994 			return 1;
1995 
1996 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1997 						VM_EXIT_SAVE_DEBUG_CONTROLS)
1998 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1999 
2000 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2001 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2002 		    (data & DEBUGCTLMSR_LBR))
2003 			intel_pmu_create_guest_lbr_event(vcpu);
2004 		return 0;
2005 	}
2006 	case MSR_IA32_BNDCFGS:
2007 		if (!kvm_mpx_supported() ||
2008 		    (!msr_info->host_initiated &&
2009 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2010 			return 1;
2011 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2012 		    (data & MSR_IA32_BNDCFGS_RSVD))
2013 			return 1;
2014 		vmcs_write64(GUEST_BNDCFGS, data);
2015 		break;
2016 	case MSR_IA32_UMWAIT_CONTROL:
2017 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2018 			return 1;
2019 
2020 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2021 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2022 			return 1;
2023 
2024 		vmx->msr_ia32_umwait_control = data;
2025 		break;
2026 	case MSR_IA32_SPEC_CTRL:
2027 		if (!msr_info->host_initiated &&
2028 		    !guest_has_spec_ctrl_msr(vcpu))
2029 			return 1;
2030 
2031 		if (kvm_spec_ctrl_test_value(data))
2032 			return 1;
2033 
2034 		vmx->spec_ctrl = data;
2035 		if (!data)
2036 			break;
2037 
2038 		/*
2039 		 * For non-nested:
2040 		 * When it's written (to non-zero) for the first time, pass
2041 		 * it through.
2042 		 *
2043 		 * For nested:
2044 		 * The handling of the MSR bitmap for L2 guests is done in
2045 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2046 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2047 		 * in the merging. We update the vmcs01 here for L1 as well
2048 		 * since it will end up touching the MSR anyway now.
2049 		 */
2050 		vmx_disable_intercept_for_msr(vcpu,
2051 					      MSR_IA32_SPEC_CTRL,
2052 					      MSR_TYPE_RW);
2053 		break;
2054 	case MSR_IA32_TSX_CTRL:
2055 		if (!msr_info->host_initiated &&
2056 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2057 			return 1;
2058 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2059 			return 1;
2060 		goto find_uret_msr;
2061 	case MSR_IA32_PRED_CMD:
2062 		if (!msr_info->host_initiated &&
2063 		    !guest_has_pred_cmd_msr(vcpu))
2064 			return 1;
2065 
2066 		if (data & ~PRED_CMD_IBPB)
2067 			return 1;
2068 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2069 			return 1;
2070 		if (!data)
2071 			break;
2072 
2073 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2074 
2075 		/*
2076 		 * For non-nested:
2077 		 * When it's written (to non-zero) for the first time, pass
2078 		 * it through.
2079 		 *
2080 		 * For nested:
2081 		 * The handling of the MSR bitmap for L2 guests is done in
2082 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2083 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2084 		 * in the merging.
2085 		 */
2086 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2087 		break;
2088 	case MSR_IA32_CR_PAT:
2089 		if (!kvm_pat_valid(data))
2090 			return 1;
2091 
2092 		if (is_guest_mode(vcpu) &&
2093 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2094 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2095 
2096 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2097 			vmcs_write64(GUEST_IA32_PAT, data);
2098 			vcpu->arch.pat = data;
2099 			break;
2100 		}
2101 		ret = kvm_set_msr_common(vcpu, msr_info);
2102 		break;
2103 	case MSR_IA32_TSC_ADJUST:
2104 		ret = kvm_set_msr_common(vcpu, msr_info);
2105 		break;
2106 	case MSR_IA32_MCG_EXT_CTL:
2107 		if ((!msr_info->host_initiated &&
2108 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2109 		       FEAT_CTL_LMCE_ENABLED)) ||
2110 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2111 			return 1;
2112 		vcpu->arch.mcg_ext_ctl = data;
2113 		break;
2114 	case MSR_IA32_FEAT_CTL:
2115 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2116 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2117 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2118 			return 1;
2119 		vmx->msr_ia32_feature_control = data;
2120 		if (msr_info->host_initiated && data == 0)
2121 			vmx_leave_nested(vcpu);
2122 
2123 		/* SGX may be enabled/disabled by guest's firmware */
2124 		vmx_write_encls_bitmap(vcpu, NULL);
2125 		break;
2126 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2127 		/*
2128 		 * On real hardware, the LE hash MSRs are writable before
2129 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2130 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2131 		 * become writable.
2132 		 *
2133 		 * KVM does not emulate SGX activation for simplicity, so
2134 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2135 		 * is unlocked.  This is technically not architectural
2136 		 * behavior, but it's close enough.
2137 		 */
2138 		if (!msr_info->host_initiated &&
2139 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2140 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2141 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2142 			return 1;
2143 		vmx->msr_ia32_sgxlepubkeyhash
2144 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2145 		break;
2146 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2147 		if (!msr_info->host_initiated)
2148 			return 1; /* they are read-only */
2149 		if (!nested_vmx_allowed(vcpu))
2150 			return 1;
2151 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2152 	case MSR_IA32_RTIT_CTL:
2153 		if (!vmx_pt_mode_is_host_guest() ||
2154 			vmx_rtit_ctl_check(vcpu, data) ||
2155 			vmx->nested.vmxon)
2156 			return 1;
2157 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2158 		vmx->pt_desc.guest.ctl = data;
2159 		pt_update_intercept_for_msr(vcpu);
2160 		break;
2161 	case MSR_IA32_RTIT_STATUS:
2162 		if (!pt_can_write_msr(vmx))
2163 			return 1;
2164 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2165 			return 1;
2166 		vmx->pt_desc.guest.status = data;
2167 		break;
2168 	case MSR_IA32_RTIT_CR3_MATCH:
2169 		if (!pt_can_write_msr(vmx))
2170 			return 1;
2171 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2172 					   PT_CAP_cr3_filtering))
2173 			return 1;
2174 		vmx->pt_desc.guest.cr3_match = data;
2175 		break;
2176 	case MSR_IA32_RTIT_OUTPUT_BASE:
2177 		if (!pt_can_write_msr(vmx))
2178 			return 1;
2179 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2180 					   PT_CAP_topa_output) &&
2181 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2182 					   PT_CAP_single_range_output))
2183 			return 1;
2184 		if (!pt_output_base_valid(vcpu, data))
2185 			return 1;
2186 		vmx->pt_desc.guest.output_base = data;
2187 		break;
2188 	case MSR_IA32_RTIT_OUTPUT_MASK:
2189 		if (!pt_can_write_msr(vmx))
2190 			return 1;
2191 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2192 					   PT_CAP_topa_output) &&
2193 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2194 					   PT_CAP_single_range_output))
2195 			return 1;
2196 		vmx->pt_desc.guest.output_mask = data;
2197 		break;
2198 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2199 		if (!pt_can_write_msr(vmx))
2200 			return 1;
2201 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2202 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2203 			return 1;
2204 		if (is_noncanonical_address(data, vcpu))
2205 			return 1;
2206 		if (index % 2)
2207 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2208 		else
2209 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2210 		break;
2211 	case MSR_IA32_PERF_CAPABILITIES:
2212 		if (data && !vcpu_to_pmu(vcpu)->version)
2213 			return 1;
2214 		if (data & PMU_CAP_LBR_FMT) {
2215 			if ((data & PMU_CAP_LBR_FMT) !=
2216 			    (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2217 				return 1;
2218 			if (!intel_pmu_lbr_is_compatible(vcpu))
2219 				return 1;
2220 		}
2221 		ret = kvm_set_msr_common(vcpu, msr_info);
2222 		break;
2223 
2224 	default:
2225 	find_uret_msr:
2226 		msr = vmx_find_uret_msr(vmx, msr_index);
2227 		if (msr)
2228 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2229 		else
2230 			ret = kvm_set_msr_common(vcpu, msr_info);
2231 	}
2232 
2233 	return ret;
2234 }
2235 
2236 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2237 {
2238 	unsigned long guest_owned_bits;
2239 
2240 	kvm_register_mark_available(vcpu, reg);
2241 
2242 	switch (reg) {
2243 	case VCPU_REGS_RSP:
2244 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2245 		break;
2246 	case VCPU_REGS_RIP:
2247 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2248 		break;
2249 	case VCPU_EXREG_PDPTR:
2250 		if (enable_ept)
2251 			ept_save_pdptrs(vcpu);
2252 		break;
2253 	case VCPU_EXREG_CR0:
2254 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2255 
2256 		vcpu->arch.cr0 &= ~guest_owned_bits;
2257 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2258 		break;
2259 	case VCPU_EXREG_CR3:
2260 		/*
2261 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2262 		 * CR3 is loaded into hardware, not the guest's CR3.
2263 		 */
2264 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2265 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2266 		break;
2267 	case VCPU_EXREG_CR4:
2268 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2269 
2270 		vcpu->arch.cr4 &= ~guest_owned_bits;
2271 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2272 		break;
2273 	default:
2274 		KVM_BUG_ON(1, vcpu->kvm);
2275 		break;
2276 	}
2277 }
2278 
2279 static __init int cpu_has_kvm_support(void)
2280 {
2281 	return cpu_has_vmx();
2282 }
2283 
2284 static __init int vmx_disabled_by_bios(void)
2285 {
2286 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2287 	       !boot_cpu_has(X86_FEATURE_VMX);
2288 }
2289 
2290 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2291 {
2292 	u64 msr;
2293 
2294 	cr4_set_bits(X86_CR4_VMXE);
2295 
2296 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2297 			  _ASM_EXTABLE(1b, %l[fault])
2298 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2299 			  : : fault);
2300 	return 0;
2301 
2302 fault:
2303 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2304 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2305 	cr4_clear_bits(X86_CR4_VMXE);
2306 
2307 	return -EFAULT;
2308 }
2309 
2310 static int hardware_enable(void)
2311 {
2312 	int cpu = raw_smp_processor_id();
2313 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2314 	int r;
2315 
2316 	if (cr4_read_shadow() & X86_CR4_VMXE)
2317 		return -EBUSY;
2318 
2319 	/*
2320 	 * This can happen if we hot-added a CPU but failed to allocate
2321 	 * VP assist page for it.
2322 	 */
2323 	if (static_branch_unlikely(&enable_evmcs) &&
2324 	    !hv_get_vp_assist_page(cpu))
2325 		return -EFAULT;
2326 
2327 	intel_pt_handle_vmx(1);
2328 
2329 	r = kvm_cpu_vmxon(phys_addr);
2330 	if (r) {
2331 		intel_pt_handle_vmx(0);
2332 		return r;
2333 	}
2334 
2335 	if (enable_ept)
2336 		ept_sync_global();
2337 
2338 	return 0;
2339 }
2340 
2341 static void vmclear_local_loaded_vmcss(void)
2342 {
2343 	int cpu = raw_smp_processor_id();
2344 	struct loaded_vmcs *v, *n;
2345 
2346 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2347 				 loaded_vmcss_on_cpu_link)
2348 		__loaded_vmcs_clear(v);
2349 }
2350 
2351 static void hardware_disable(void)
2352 {
2353 	vmclear_local_loaded_vmcss();
2354 
2355 	if (cpu_vmxoff())
2356 		kvm_spurious_fault();
2357 
2358 	intel_pt_handle_vmx(0);
2359 }
2360 
2361 /*
2362  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2363  * directly instead of going through cpu_has(), to ensure KVM is trapping
2364  * ENCLS whenever it's supported in hardware.  It does not matter whether
2365  * the host OS supports or has enabled SGX.
2366  */
2367 static bool cpu_has_sgx(void)
2368 {
2369 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2370 }
2371 
2372 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2373 				      u32 msr, u32 *result)
2374 {
2375 	u32 vmx_msr_low, vmx_msr_high;
2376 	u32 ctl = ctl_min | ctl_opt;
2377 
2378 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2379 
2380 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2381 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2382 
2383 	/* Ensure minimum (required) set of control bits are supported. */
2384 	if (ctl_min & ~ctl)
2385 		return -EIO;
2386 
2387 	*result = ctl;
2388 	return 0;
2389 }
2390 
2391 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2392 				    struct vmx_capability *vmx_cap)
2393 {
2394 	u32 vmx_msr_low, vmx_msr_high;
2395 	u32 min, opt, min2, opt2;
2396 	u32 _pin_based_exec_control = 0;
2397 	u32 _cpu_based_exec_control = 0;
2398 	u32 _cpu_based_2nd_exec_control = 0;
2399 	u32 _vmexit_control = 0;
2400 	u32 _vmentry_control = 0;
2401 
2402 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2403 	min = CPU_BASED_HLT_EXITING |
2404 #ifdef CONFIG_X86_64
2405 	      CPU_BASED_CR8_LOAD_EXITING |
2406 	      CPU_BASED_CR8_STORE_EXITING |
2407 #endif
2408 	      CPU_BASED_CR3_LOAD_EXITING |
2409 	      CPU_BASED_CR3_STORE_EXITING |
2410 	      CPU_BASED_UNCOND_IO_EXITING |
2411 	      CPU_BASED_MOV_DR_EXITING |
2412 	      CPU_BASED_USE_TSC_OFFSETTING |
2413 	      CPU_BASED_MWAIT_EXITING |
2414 	      CPU_BASED_MONITOR_EXITING |
2415 	      CPU_BASED_INVLPG_EXITING |
2416 	      CPU_BASED_RDPMC_EXITING;
2417 
2418 	opt = CPU_BASED_TPR_SHADOW |
2419 	      CPU_BASED_USE_MSR_BITMAPS |
2420 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2421 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2422 				&_cpu_based_exec_control) < 0)
2423 		return -EIO;
2424 #ifdef CONFIG_X86_64
2425 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2426 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2427 					   ~CPU_BASED_CR8_STORE_EXITING;
2428 #endif
2429 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2430 		min2 = 0;
2431 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2432 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2433 			SECONDARY_EXEC_WBINVD_EXITING |
2434 			SECONDARY_EXEC_ENABLE_VPID |
2435 			SECONDARY_EXEC_ENABLE_EPT |
2436 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2437 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2438 			SECONDARY_EXEC_DESC |
2439 			SECONDARY_EXEC_ENABLE_RDTSCP |
2440 			SECONDARY_EXEC_ENABLE_INVPCID |
2441 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2442 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2443 			SECONDARY_EXEC_SHADOW_VMCS |
2444 			SECONDARY_EXEC_XSAVES |
2445 			SECONDARY_EXEC_RDSEED_EXITING |
2446 			SECONDARY_EXEC_RDRAND_EXITING |
2447 			SECONDARY_EXEC_ENABLE_PML |
2448 			SECONDARY_EXEC_TSC_SCALING |
2449 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2450 			SECONDARY_EXEC_PT_USE_GPA |
2451 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2452 			SECONDARY_EXEC_ENABLE_VMFUNC |
2453 			SECONDARY_EXEC_BUS_LOCK_DETECTION;
2454 		if (cpu_has_sgx())
2455 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2456 		if (adjust_vmx_controls(min2, opt2,
2457 					MSR_IA32_VMX_PROCBASED_CTLS2,
2458 					&_cpu_based_2nd_exec_control) < 0)
2459 			return -EIO;
2460 	}
2461 #ifndef CONFIG_X86_64
2462 	if (!(_cpu_based_2nd_exec_control &
2463 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2464 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2465 #endif
2466 
2467 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2468 		_cpu_based_2nd_exec_control &= ~(
2469 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2470 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2471 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2472 
2473 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2474 		&vmx_cap->ept, &vmx_cap->vpid);
2475 
2476 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2477 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2478 		   enabled */
2479 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2480 					     CPU_BASED_CR3_STORE_EXITING |
2481 					     CPU_BASED_INVLPG_EXITING);
2482 	} else if (vmx_cap->ept) {
2483 		vmx_cap->ept = 0;
2484 		pr_warn_once("EPT CAP should not exist if not support "
2485 				"1-setting enable EPT VM-execution control\n");
2486 	}
2487 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2488 		vmx_cap->vpid) {
2489 		vmx_cap->vpid = 0;
2490 		pr_warn_once("VPID CAP should not exist if not support "
2491 				"1-setting enable VPID VM-execution control\n");
2492 	}
2493 
2494 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2495 #ifdef CONFIG_X86_64
2496 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2497 #endif
2498 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2499 	      VM_EXIT_LOAD_IA32_PAT |
2500 	      VM_EXIT_LOAD_IA32_EFER |
2501 	      VM_EXIT_CLEAR_BNDCFGS |
2502 	      VM_EXIT_PT_CONCEAL_PIP |
2503 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2504 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2505 				&_vmexit_control) < 0)
2506 		return -EIO;
2507 
2508 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2509 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2510 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2511 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2512 				&_pin_based_exec_control) < 0)
2513 		return -EIO;
2514 
2515 	if (cpu_has_broken_vmx_preemption_timer())
2516 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2517 	if (!(_cpu_based_2nd_exec_control &
2518 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2519 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2520 
2521 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2522 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2523 	      VM_ENTRY_LOAD_IA32_PAT |
2524 	      VM_ENTRY_LOAD_IA32_EFER |
2525 	      VM_ENTRY_LOAD_BNDCFGS |
2526 	      VM_ENTRY_PT_CONCEAL_PIP |
2527 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2528 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2529 				&_vmentry_control) < 0)
2530 		return -EIO;
2531 
2532 	/*
2533 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2534 	 * can't be used due to an errata where VM Exit may incorrectly clear
2535 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2536 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2537 	 */
2538 	if (boot_cpu_data.x86 == 0x6) {
2539 		switch (boot_cpu_data.x86_model) {
2540 		case 26: /* AAK155 */
2541 		case 30: /* AAP115 */
2542 		case 37: /* AAT100 */
2543 		case 44: /* BC86,AAY89,BD102 */
2544 		case 46: /* BA97 */
2545 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2546 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2547 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2548 					"does not work properly. Using workaround\n");
2549 			break;
2550 		default:
2551 			break;
2552 		}
2553 	}
2554 
2555 
2556 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2557 
2558 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2559 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2560 		return -EIO;
2561 
2562 #ifdef CONFIG_X86_64
2563 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2564 	if (vmx_msr_high & (1u<<16))
2565 		return -EIO;
2566 #endif
2567 
2568 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2569 	if (((vmx_msr_high >> 18) & 15) != 6)
2570 		return -EIO;
2571 
2572 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2573 	vmcs_conf->order = get_order(vmcs_conf->size);
2574 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2575 
2576 	vmcs_conf->revision_id = vmx_msr_low;
2577 
2578 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2579 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2580 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2581 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2582 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2583 
2584 #if IS_ENABLED(CONFIG_HYPERV)
2585 	if (enlightened_vmcs)
2586 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2587 #endif
2588 
2589 	return 0;
2590 }
2591 
2592 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2593 {
2594 	int node = cpu_to_node(cpu);
2595 	struct page *pages;
2596 	struct vmcs *vmcs;
2597 
2598 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2599 	if (!pages)
2600 		return NULL;
2601 	vmcs = page_address(pages);
2602 	memset(vmcs, 0, vmcs_config.size);
2603 
2604 	/* KVM supports Enlightened VMCS v1 only */
2605 	if (static_branch_unlikely(&enable_evmcs))
2606 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2607 	else
2608 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2609 
2610 	if (shadow)
2611 		vmcs->hdr.shadow_vmcs = 1;
2612 	return vmcs;
2613 }
2614 
2615 void free_vmcs(struct vmcs *vmcs)
2616 {
2617 	free_pages((unsigned long)vmcs, vmcs_config.order);
2618 }
2619 
2620 /*
2621  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2622  */
2623 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2624 {
2625 	if (!loaded_vmcs->vmcs)
2626 		return;
2627 	loaded_vmcs_clear(loaded_vmcs);
2628 	free_vmcs(loaded_vmcs->vmcs);
2629 	loaded_vmcs->vmcs = NULL;
2630 	if (loaded_vmcs->msr_bitmap)
2631 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2632 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2633 }
2634 
2635 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2636 {
2637 	loaded_vmcs->vmcs = alloc_vmcs(false);
2638 	if (!loaded_vmcs->vmcs)
2639 		return -ENOMEM;
2640 
2641 	vmcs_clear(loaded_vmcs->vmcs);
2642 
2643 	loaded_vmcs->shadow_vmcs = NULL;
2644 	loaded_vmcs->hv_timer_soft_disabled = false;
2645 	loaded_vmcs->cpu = -1;
2646 	loaded_vmcs->launched = 0;
2647 
2648 	if (cpu_has_vmx_msr_bitmap()) {
2649 		loaded_vmcs->msr_bitmap = (unsigned long *)
2650 				__get_free_page(GFP_KERNEL_ACCOUNT);
2651 		if (!loaded_vmcs->msr_bitmap)
2652 			goto out_vmcs;
2653 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2654 	}
2655 
2656 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2657 	memset(&loaded_vmcs->controls_shadow, 0,
2658 		sizeof(struct vmcs_controls_shadow));
2659 
2660 	return 0;
2661 
2662 out_vmcs:
2663 	free_loaded_vmcs(loaded_vmcs);
2664 	return -ENOMEM;
2665 }
2666 
2667 static void free_kvm_area(void)
2668 {
2669 	int cpu;
2670 
2671 	for_each_possible_cpu(cpu) {
2672 		free_vmcs(per_cpu(vmxarea, cpu));
2673 		per_cpu(vmxarea, cpu) = NULL;
2674 	}
2675 }
2676 
2677 static __init int alloc_kvm_area(void)
2678 {
2679 	int cpu;
2680 
2681 	for_each_possible_cpu(cpu) {
2682 		struct vmcs *vmcs;
2683 
2684 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2685 		if (!vmcs) {
2686 			free_kvm_area();
2687 			return -ENOMEM;
2688 		}
2689 
2690 		/*
2691 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2692 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2693 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2694 		 *
2695 		 * However, even though not explicitly documented by
2696 		 * TLFS, VMXArea passed as VMXON argument should
2697 		 * still be marked with revision_id reported by
2698 		 * physical CPU.
2699 		 */
2700 		if (static_branch_unlikely(&enable_evmcs))
2701 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2702 
2703 		per_cpu(vmxarea, cpu) = vmcs;
2704 	}
2705 	return 0;
2706 }
2707 
2708 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2709 		struct kvm_segment *save)
2710 {
2711 	if (!emulate_invalid_guest_state) {
2712 		/*
2713 		 * CS and SS RPL should be equal during guest entry according
2714 		 * to VMX spec, but in reality it is not always so. Since vcpu
2715 		 * is in the middle of the transition from real mode to
2716 		 * protected mode it is safe to assume that RPL 0 is a good
2717 		 * default value.
2718 		 */
2719 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2720 			save->selector &= ~SEGMENT_RPL_MASK;
2721 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2722 		save->s = 1;
2723 	}
2724 	__vmx_set_segment(vcpu, save, seg);
2725 }
2726 
2727 static void enter_pmode(struct kvm_vcpu *vcpu)
2728 {
2729 	unsigned long flags;
2730 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2731 
2732 	/*
2733 	 * Update real mode segment cache. It may be not up-to-date if segment
2734 	 * register was written while vcpu was in a guest mode.
2735 	 */
2736 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2737 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2738 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2739 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2740 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2741 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2742 
2743 	vmx->rmode.vm86_active = 0;
2744 
2745 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2746 
2747 	flags = vmcs_readl(GUEST_RFLAGS);
2748 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2749 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2750 	vmcs_writel(GUEST_RFLAGS, flags);
2751 
2752 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2753 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2754 
2755 	vmx_update_exception_bitmap(vcpu);
2756 
2757 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2758 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2759 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2760 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2761 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2762 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2763 }
2764 
2765 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2766 {
2767 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2768 	struct kvm_segment var = *save;
2769 
2770 	var.dpl = 0x3;
2771 	if (seg == VCPU_SREG_CS)
2772 		var.type = 0x3;
2773 
2774 	if (!emulate_invalid_guest_state) {
2775 		var.selector = var.base >> 4;
2776 		var.base = var.base & 0xffff0;
2777 		var.limit = 0xffff;
2778 		var.g = 0;
2779 		var.db = 0;
2780 		var.present = 1;
2781 		var.s = 1;
2782 		var.l = 0;
2783 		var.unusable = 0;
2784 		var.type = 0x3;
2785 		var.avl = 0;
2786 		if (save->base & 0xf)
2787 			printk_once(KERN_WARNING "kvm: segment base is not "
2788 					"paragraph aligned when entering "
2789 					"protected mode (seg=%d)", seg);
2790 	}
2791 
2792 	vmcs_write16(sf->selector, var.selector);
2793 	vmcs_writel(sf->base, var.base);
2794 	vmcs_write32(sf->limit, var.limit);
2795 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2796 }
2797 
2798 static void enter_rmode(struct kvm_vcpu *vcpu)
2799 {
2800 	unsigned long flags;
2801 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2802 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2803 
2804 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2805 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2806 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2807 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2808 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2809 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2810 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2811 
2812 	vmx->rmode.vm86_active = 1;
2813 
2814 	/*
2815 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2816 	 * vcpu. Warn the user that an update is overdue.
2817 	 */
2818 	if (!kvm_vmx->tss_addr)
2819 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2820 			     "called before entering vcpu\n");
2821 
2822 	vmx_segment_cache_clear(vmx);
2823 
2824 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2825 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2826 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2827 
2828 	flags = vmcs_readl(GUEST_RFLAGS);
2829 	vmx->rmode.save_rflags = flags;
2830 
2831 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2832 
2833 	vmcs_writel(GUEST_RFLAGS, flags);
2834 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2835 	vmx_update_exception_bitmap(vcpu);
2836 
2837 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2838 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2839 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2840 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2841 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2842 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2843 }
2844 
2845 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2846 {
2847 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2848 	struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2849 
2850 	/* Nothing to do if hardware doesn't support EFER. */
2851 	if (!msr)
2852 		return 0;
2853 
2854 	vcpu->arch.efer = efer;
2855 	if (efer & EFER_LMA) {
2856 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2857 		msr->data = efer;
2858 	} else {
2859 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2860 
2861 		msr->data = efer & ~EFER_LME;
2862 	}
2863 	vmx_setup_uret_msrs(vmx);
2864 	return 0;
2865 }
2866 
2867 #ifdef CONFIG_X86_64
2868 
2869 static void enter_lmode(struct kvm_vcpu *vcpu)
2870 {
2871 	u32 guest_tr_ar;
2872 
2873 	vmx_segment_cache_clear(to_vmx(vcpu));
2874 
2875 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2876 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2877 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2878 				     __func__);
2879 		vmcs_write32(GUEST_TR_AR_BYTES,
2880 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2881 			     | VMX_AR_TYPE_BUSY_64_TSS);
2882 	}
2883 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2884 }
2885 
2886 static void exit_lmode(struct kvm_vcpu *vcpu)
2887 {
2888 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2889 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2890 }
2891 
2892 #endif
2893 
2894 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2895 {
2896 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2897 
2898 	/*
2899 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2900 	 * the CPU is not required to invalidate guest-physical mappings on
2901 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2902 	 * associated with the root EPT structure and not any particular VPID
2903 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
2904 	 */
2905 	if (enable_ept) {
2906 		ept_sync_global();
2907 	} else if (enable_vpid) {
2908 		if (cpu_has_vmx_invvpid_global()) {
2909 			vpid_sync_vcpu_global();
2910 		} else {
2911 			vpid_sync_vcpu_single(vmx->vpid);
2912 			vpid_sync_vcpu_single(vmx->nested.vpid02);
2913 		}
2914 	}
2915 }
2916 
2917 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
2918 {
2919 	if (is_guest_mode(vcpu))
2920 		return nested_get_vpid02(vcpu);
2921 	return to_vmx(vcpu)->vpid;
2922 }
2923 
2924 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2925 {
2926 	struct kvm_mmu *mmu = vcpu->arch.mmu;
2927 	u64 root_hpa = mmu->root_hpa;
2928 
2929 	/* No flush required if the current context is invalid. */
2930 	if (!VALID_PAGE(root_hpa))
2931 		return;
2932 
2933 	if (enable_ept)
2934 		ept_sync_context(construct_eptp(vcpu, root_hpa,
2935 						mmu->shadow_root_level));
2936 	else
2937 		vpid_sync_context(vmx_get_current_vpid(vcpu));
2938 }
2939 
2940 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2941 {
2942 	/*
2943 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
2944 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2945 	 */
2946 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
2947 }
2948 
2949 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2950 {
2951 	/*
2952 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
2953 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
2954 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2955 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2956 	 * i.e. no explicit INVVPID is necessary.
2957 	 */
2958 	vpid_sync_context(vmx_get_current_vpid(vcpu));
2959 }
2960 
2961 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2962 {
2963 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2964 
2965 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2966 		return;
2967 
2968 	if (is_pae_paging(vcpu)) {
2969 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2970 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2971 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2972 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2973 	}
2974 }
2975 
2976 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2977 {
2978 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2979 
2980 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2981 		return;
2982 
2983 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2984 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2985 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2986 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2987 
2988 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2989 }
2990 
2991 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
2992 			  CPU_BASED_CR3_STORE_EXITING)
2993 
2994 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2995 {
2996 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2997 	unsigned long hw_cr0, old_cr0_pg;
2998 	u32 tmp;
2999 
3000 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3001 
3002 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3003 	if (is_unrestricted_guest(vcpu))
3004 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3005 	else {
3006 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3007 		if (!enable_ept)
3008 			hw_cr0 |= X86_CR0_WP;
3009 
3010 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3011 			enter_pmode(vcpu);
3012 
3013 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3014 			enter_rmode(vcpu);
3015 	}
3016 
3017 	vmcs_writel(CR0_READ_SHADOW, cr0);
3018 	vmcs_writel(GUEST_CR0, hw_cr0);
3019 	vcpu->arch.cr0 = cr0;
3020 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3021 
3022 #ifdef CONFIG_X86_64
3023 	if (vcpu->arch.efer & EFER_LME) {
3024 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3025 			enter_lmode(vcpu);
3026 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3027 			exit_lmode(vcpu);
3028 	}
3029 #endif
3030 
3031 	if (enable_ept && !is_unrestricted_guest(vcpu)) {
3032 		/*
3033 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3034 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3035 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3036 		 * KVM's CR3 is installed.
3037 		 */
3038 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3039 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3040 
3041 		/*
3042 		 * When running with EPT but not unrestricted guest, KVM must
3043 		 * intercept CR3 accesses when paging is _disabled_.  This is
3044 		 * necessary because restricted guests can't actually run with
3045 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3046 		 * run the guest when identity mapped page tables.
3047 		 *
3048 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3049 		 * update, it may be stale with respect to CR3 interception,
3050 		 * e.g. after nested VM-Enter.
3051 		 *
3052 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3053 		 * stores to forward them to L1, even if KVM does not need to
3054 		 * intercept them to preserve its identity mapped page tables.
3055 		 */
3056 		if (!(cr0 & X86_CR0_PG)) {
3057 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3058 		} else if (!is_guest_mode(vcpu)) {
3059 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3060 		} else {
3061 			tmp = exec_controls_get(vmx);
3062 			tmp &= ~CR3_EXITING_BITS;
3063 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3064 			exec_controls_set(vmx, tmp);
3065 		}
3066 
3067 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3068 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3069 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3070 	}
3071 
3072 	/* depends on vcpu->arch.cr0 to be set to a new value */
3073 	vmx->emulation_required = vmx_emulation_required(vcpu);
3074 }
3075 
3076 static int vmx_get_max_tdp_level(void)
3077 {
3078 	if (cpu_has_vmx_ept_5levels())
3079 		return 5;
3080 	return 4;
3081 }
3082 
3083 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3084 {
3085 	u64 eptp = VMX_EPTP_MT_WB;
3086 
3087 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3088 
3089 	if (enable_ept_ad_bits &&
3090 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3091 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3092 	eptp |= root_hpa;
3093 
3094 	return eptp;
3095 }
3096 
3097 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3098 			     int root_level)
3099 {
3100 	struct kvm *kvm = vcpu->kvm;
3101 	bool update_guest_cr3 = true;
3102 	unsigned long guest_cr3;
3103 	u64 eptp;
3104 
3105 	if (enable_ept) {
3106 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3107 		vmcs_write64(EPT_POINTER, eptp);
3108 
3109 		hv_track_root_tdp(vcpu, root_hpa);
3110 
3111 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3112 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3113 		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3114 			guest_cr3 = vcpu->arch.cr3;
3115 		else /* vmcs01.GUEST_CR3 is already up-to-date. */
3116 			update_guest_cr3 = false;
3117 		vmx_ept_load_pdptrs(vcpu);
3118 	} else {
3119 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3120 	}
3121 
3122 	if (update_guest_cr3)
3123 		vmcs_writel(GUEST_CR3, guest_cr3);
3124 }
3125 
3126 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3127 {
3128 	/*
3129 	 * We operate under the default treatment of SMM, so VMX cannot be
3130 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3131 	 * handled by kvm_is_valid_cr4().
3132 	 */
3133 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3134 		return false;
3135 
3136 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3137 		return false;
3138 
3139 	return true;
3140 }
3141 
3142 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3143 {
3144 	unsigned long old_cr4 = vcpu->arch.cr4;
3145 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3146 	/*
3147 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3148 	 * is in force while we are in guest mode.  Do not let guests control
3149 	 * this bit, even if host CR4.MCE == 0.
3150 	 */
3151 	unsigned long hw_cr4;
3152 
3153 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3154 	if (is_unrestricted_guest(vcpu))
3155 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3156 	else if (vmx->rmode.vm86_active)
3157 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3158 	else
3159 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3160 
3161 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3162 		if (cr4 & X86_CR4_UMIP) {
3163 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3164 			hw_cr4 &= ~X86_CR4_UMIP;
3165 		} else if (!is_guest_mode(vcpu) ||
3166 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3167 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3168 		}
3169 	}
3170 
3171 	vcpu->arch.cr4 = cr4;
3172 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3173 
3174 	if (!is_unrestricted_guest(vcpu)) {
3175 		if (enable_ept) {
3176 			if (!is_paging(vcpu)) {
3177 				hw_cr4 &= ~X86_CR4_PAE;
3178 				hw_cr4 |= X86_CR4_PSE;
3179 			} else if (!(cr4 & X86_CR4_PAE)) {
3180 				hw_cr4 &= ~X86_CR4_PAE;
3181 			}
3182 		}
3183 
3184 		/*
3185 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3186 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3187 		 * to be manually disabled when guest switches to non-paging
3188 		 * mode.
3189 		 *
3190 		 * If !enable_unrestricted_guest, the CPU is always running
3191 		 * with CR0.PG=1 and CR4 needs to be modified.
3192 		 * If enable_unrestricted_guest, the CPU automatically
3193 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3194 		 */
3195 		if (!is_paging(vcpu))
3196 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3197 	}
3198 
3199 	vmcs_writel(CR4_READ_SHADOW, cr4);
3200 	vmcs_writel(GUEST_CR4, hw_cr4);
3201 
3202 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3203 		kvm_update_cpuid_runtime(vcpu);
3204 }
3205 
3206 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3207 {
3208 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3209 	u32 ar;
3210 
3211 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3212 		*var = vmx->rmode.segs[seg];
3213 		if (seg == VCPU_SREG_TR
3214 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3215 			return;
3216 		var->base = vmx_read_guest_seg_base(vmx, seg);
3217 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3218 		return;
3219 	}
3220 	var->base = vmx_read_guest_seg_base(vmx, seg);
3221 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3222 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3223 	ar = vmx_read_guest_seg_ar(vmx, seg);
3224 	var->unusable = (ar >> 16) & 1;
3225 	var->type = ar & 15;
3226 	var->s = (ar >> 4) & 1;
3227 	var->dpl = (ar >> 5) & 3;
3228 	/*
3229 	 * Some userspaces do not preserve unusable property. Since usable
3230 	 * segment has to be present according to VMX spec we can use present
3231 	 * property to amend userspace bug by making unusable segment always
3232 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3233 	 * segment as unusable.
3234 	 */
3235 	var->present = !var->unusable;
3236 	var->avl = (ar >> 12) & 1;
3237 	var->l = (ar >> 13) & 1;
3238 	var->db = (ar >> 14) & 1;
3239 	var->g = (ar >> 15) & 1;
3240 }
3241 
3242 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3243 {
3244 	struct kvm_segment s;
3245 
3246 	if (to_vmx(vcpu)->rmode.vm86_active) {
3247 		vmx_get_segment(vcpu, &s, seg);
3248 		return s.base;
3249 	}
3250 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3251 }
3252 
3253 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3254 {
3255 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3256 
3257 	if (unlikely(vmx->rmode.vm86_active))
3258 		return 0;
3259 	else {
3260 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3261 		return VMX_AR_DPL(ar);
3262 	}
3263 }
3264 
3265 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3266 {
3267 	u32 ar;
3268 
3269 	if (var->unusable || !var->present)
3270 		ar = 1 << 16;
3271 	else {
3272 		ar = var->type & 15;
3273 		ar |= (var->s & 1) << 4;
3274 		ar |= (var->dpl & 3) << 5;
3275 		ar |= (var->present & 1) << 7;
3276 		ar |= (var->avl & 1) << 12;
3277 		ar |= (var->l & 1) << 13;
3278 		ar |= (var->db & 1) << 14;
3279 		ar |= (var->g & 1) << 15;
3280 	}
3281 
3282 	return ar;
3283 }
3284 
3285 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3286 {
3287 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3288 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3289 
3290 	vmx_segment_cache_clear(vmx);
3291 
3292 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3293 		vmx->rmode.segs[seg] = *var;
3294 		if (seg == VCPU_SREG_TR)
3295 			vmcs_write16(sf->selector, var->selector);
3296 		else if (var->s)
3297 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3298 		return;
3299 	}
3300 
3301 	vmcs_writel(sf->base, var->base);
3302 	vmcs_write32(sf->limit, var->limit);
3303 	vmcs_write16(sf->selector, var->selector);
3304 
3305 	/*
3306 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3307 	 * qemu binaries.
3308 	 *   IA32 arch specifies that at the time of processor reset the
3309 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3310 	 * is setting it to 0 in the userland code. This causes invalid guest
3311 	 * state vmexit when "unrestricted guest" mode is turned on.
3312 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3313 	 * tree. Newer qemu binaries with that qemu fix would not need this
3314 	 * kvm hack.
3315 	 */
3316 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3317 		var->type |= 0x1; /* Accessed */
3318 
3319 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3320 }
3321 
3322 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3323 {
3324 	__vmx_set_segment(vcpu, var, seg);
3325 
3326 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3327 }
3328 
3329 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3330 {
3331 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3332 
3333 	*db = (ar >> 14) & 1;
3334 	*l = (ar >> 13) & 1;
3335 }
3336 
3337 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3338 {
3339 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3340 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3341 }
3342 
3343 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3344 {
3345 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3346 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3347 }
3348 
3349 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3350 {
3351 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3352 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3353 }
3354 
3355 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3356 {
3357 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3358 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3359 }
3360 
3361 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3362 {
3363 	struct kvm_segment var;
3364 	u32 ar;
3365 
3366 	vmx_get_segment(vcpu, &var, seg);
3367 	var.dpl = 0x3;
3368 	if (seg == VCPU_SREG_CS)
3369 		var.type = 0x3;
3370 	ar = vmx_segment_access_rights(&var);
3371 
3372 	if (var.base != (var.selector << 4))
3373 		return false;
3374 	if (var.limit != 0xffff)
3375 		return false;
3376 	if (ar != 0xf3)
3377 		return false;
3378 
3379 	return true;
3380 }
3381 
3382 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3383 {
3384 	struct kvm_segment cs;
3385 	unsigned int cs_rpl;
3386 
3387 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3388 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3389 
3390 	if (cs.unusable)
3391 		return false;
3392 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3393 		return false;
3394 	if (!cs.s)
3395 		return false;
3396 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3397 		if (cs.dpl > cs_rpl)
3398 			return false;
3399 	} else {
3400 		if (cs.dpl != cs_rpl)
3401 			return false;
3402 	}
3403 	if (!cs.present)
3404 		return false;
3405 
3406 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3407 	return true;
3408 }
3409 
3410 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3411 {
3412 	struct kvm_segment ss;
3413 	unsigned int ss_rpl;
3414 
3415 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3416 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3417 
3418 	if (ss.unusable)
3419 		return true;
3420 	if (ss.type != 3 && ss.type != 7)
3421 		return false;
3422 	if (!ss.s)
3423 		return false;
3424 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3425 		return false;
3426 	if (!ss.present)
3427 		return false;
3428 
3429 	return true;
3430 }
3431 
3432 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3433 {
3434 	struct kvm_segment var;
3435 	unsigned int rpl;
3436 
3437 	vmx_get_segment(vcpu, &var, seg);
3438 	rpl = var.selector & SEGMENT_RPL_MASK;
3439 
3440 	if (var.unusable)
3441 		return true;
3442 	if (!var.s)
3443 		return false;
3444 	if (!var.present)
3445 		return false;
3446 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3447 		if (var.dpl < rpl) /* DPL < RPL */
3448 			return false;
3449 	}
3450 
3451 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3452 	 * rights flags
3453 	 */
3454 	return true;
3455 }
3456 
3457 static bool tr_valid(struct kvm_vcpu *vcpu)
3458 {
3459 	struct kvm_segment tr;
3460 
3461 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3462 
3463 	if (tr.unusable)
3464 		return false;
3465 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3466 		return false;
3467 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3468 		return false;
3469 	if (!tr.present)
3470 		return false;
3471 
3472 	return true;
3473 }
3474 
3475 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3476 {
3477 	struct kvm_segment ldtr;
3478 
3479 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3480 
3481 	if (ldtr.unusable)
3482 		return true;
3483 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3484 		return false;
3485 	if (ldtr.type != 2)
3486 		return false;
3487 	if (!ldtr.present)
3488 		return false;
3489 
3490 	return true;
3491 }
3492 
3493 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3494 {
3495 	struct kvm_segment cs, ss;
3496 
3497 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3498 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3499 
3500 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3501 		 (ss.selector & SEGMENT_RPL_MASK));
3502 }
3503 
3504 /*
3505  * Check if guest state is valid. Returns true if valid, false if
3506  * not.
3507  * We assume that registers are always usable
3508  */
3509 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3510 {
3511 	/* real mode guest state checks */
3512 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3513 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3514 			return false;
3515 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3516 			return false;
3517 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3518 			return false;
3519 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3520 			return false;
3521 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3522 			return false;
3523 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3524 			return false;
3525 	} else {
3526 	/* protected mode guest state checks */
3527 		if (!cs_ss_rpl_check(vcpu))
3528 			return false;
3529 		if (!code_segment_valid(vcpu))
3530 			return false;
3531 		if (!stack_segment_valid(vcpu))
3532 			return false;
3533 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3534 			return false;
3535 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3536 			return false;
3537 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3538 			return false;
3539 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3540 			return false;
3541 		if (!tr_valid(vcpu))
3542 			return false;
3543 		if (!ldtr_valid(vcpu))
3544 			return false;
3545 	}
3546 	/* TODO:
3547 	 * - Add checks on RIP
3548 	 * - Add checks on RFLAGS
3549 	 */
3550 
3551 	return true;
3552 }
3553 
3554 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3555 {
3556 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3557 	u16 data;
3558 	int i;
3559 
3560 	for (i = 0; i < 3; i++) {
3561 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3562 			return -EFAULT;
3563 	}
3564 
3565 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3566 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3567 		return -EFAULT;
3568 
3569 	data = ~0;
3570 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3571 		return -EFAULT;
3572 
3573 	return 0;
3574 }
3575 
3576 static int init_rmode_identity_map(struct kvm *kvm)
3577 {
3578 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3579 	int i, r = 0;
3580 	void __user *uaddr;
3581 	u32 tmp;
3582 
3583 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3584 	mutex_lock(&kvm->slots_lock);
3585 
3586 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3587 		goto out;
3588 
3589 	if (!kvm_vmx->ept_identity_map_addr)
3590 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3591 
3592 	uaddr = __x86_set_memory_region(kvm,
3593 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3594 					kvm_vmx->ept_identity_map_addr,
3595 					PAGE_SIZE);
3596 	if (IS_ERR(uaddr)) {
3597 		r = PTR_ERR(uaddr);
3598 		goto out;
3599 	}
3600 
3601 	/* Set up identity-mapping pagetable for EPT in real mode */
3602 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3603 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3604 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3605 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3606 			r = -EFAULT;
3607 			goto out;
3608 		}
3609 	}
3610 	kvm_vmx->ept_identity_pagetable_done = true;
3611 
3612 out:
3613 	mutex_unlock(&kvm->slots_lock);
3614 	return r;
3615 }
3616 
3617 static void seg_setup(int seg)
3618 {
3619 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3620 	unsigned int ar;
3621 
3622 	vmcs_write16(sf->selector, 0);
3623 	vmcs_writel(sf->base, 0);
3624 	vmcs_write32(sf->limit, 0xffff);
3625 	ar = 0x93;
3626 	if (seg == VCPU_SREG_CS)
3627 		ar |= 0x08; /* code segment */
3628 
3629 	vmcs_write32(sf->ar_bytes, ar);
3630 }
3631 
3632 static int alloc_apic_access_page(struct kvm *kvm)
3633 {
3634 	struct page *page;
3635 	void __user *hva;
3636 	int ret = 0;
3637 
3638 	mutex_lock(&kvm->slots_lock);
3639 	if (kvm->arch.apic_access_memslot_enabled)
3640 		goto out;
3641 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3642 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3643 	if (IS_ERR(hva)) {
3644 		ret = PTR_ERR(hva);
3645 		goto out;
3646 	}
3647 
3648 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3649 	if (is_error_page(page)) {
3650 		ret = -EFAULT;
3651 		goto out;
3652 	}
3653 
3654 	/*
3655 	 * Do not pin the page in memory, so that memory hot-unplug
3656 	 * is able to migrate it.
3657 	 */
3658 	put_page(page);
3659 	kvm->arch.apic_access_memslot_enabled = true;
3660 out:
3661 	mutex_unlock(&kvm->slots_lock);
3662 	return ret;
3663 }
3664 
3665 int allocate_vpid(void)
3666 {
3667 	int vpid;
3668 
3669 	if (!enable_vpid)
3670 		return 0;
3671 	spin_lock(&vmx_vpid_lock);
3672 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3673 	if (vpid < VMX_NR_VPIDS)
3674 		__set_bit(vpid, vmx_vpid_bitmap);
3675 	else
3676 		vpid = 0;
3677 	spin_unlock(&vmx_vpid_lock);
3678 	return vpid;
3679 }
3680 
3681 void free_vpid(int vpid)
3682 {
3683 	if (!enable_vpid || vpid == 0)
3684 		return;
3685 	spin_lock(&vmx_vpid_lock);
3686 	__clear_bit(vpid, vmx_vpid_bitmap);
3687 	spin_unlock(&vmx_vpid_lock);
3688 }
3689 
3690 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3691 {
3692 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3693 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3694 
3695 	if (!cpu_has_vmx_msr_bitmap())
3696 		return;
3697 
3698 	if (static_branch_unlikely(&enable_evmcs))
3699 		evmcs_touch_msr_bitmap();
3700 
3701 	/*
3702 	 * Mark the desired intercept state in shadow bitmap, this is needed
3703 	 * for resync when the MSR filters change.
3704 	*/
3705 	if (is_valid_passthrough_msr(msr)) {
3706 		int idx = possible_passthrough_msr_slot(msr);
3707 
3708 		if (idx != -ENOENT) {
3709 			if (type & MSR_TYPE_R)
3710 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3711 			if (type & MSR_TYPE_W)
3712 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3713 		}
3714 	}
3715 
3716 	if ((type & MSR_TYPE_R) &&
3717 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3718 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3719 		type &= ~MSR_TYPE_R;
3720 	}
3721 
3722 	if ((type & MSR_TYPE_W) &&
3723 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3724 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3725 		type &= ~MSR_TYPE_W;
3726 	}
3727 
3728 	if (type & MSR_TYPE_R)
3729 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3730 
3731 	if (type & MSR_TYPE_W)
3732 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3733 }
3734 
3735 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3736 {
3737 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3738 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3739 
3740 	if (!cpu_has_vmx_msr_bitmap())
3741 		return;
3742 
3743 	if (static_branch_unlikely(&enable_evmcs))
3744 		evmcs_touch_msr_bitmap();
3745 
3746 	/*
3747 	 * Mark the desired intercept state in shadow bitmap, this is needed
3748 	 * for resync when the MSR filter changes.
3749 	*/
3750 	if (is_valid_passthrough_msr(msr)) {
3751 		int idx = possible_passthrough_msr_slot(msr);
3752 
3753 		if (idx != -ENOENT) {
3754 			if (type & MSR_TYPE_R)
3755 				set_bit(idx, vmx->shadow_msr_intercept.read);
3756 			if (type & MSR_TYPE_W)
3757 				set_bit(idx, vmx->shadow_msr_intercept.write);
3758 		}
3759 	}
3760 
3761 	if (type & MSR_TYPE_R)
3762 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3763 
3764 	if (type & MSR_TYPE_W)
3765 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3766 }
3767 
3768 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3769 {
3770 	unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3771 	unsigned long read_intercept;
3772 	int msr;
3773 
3774 	read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3775 
3776 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3777 		unsigned int read_idx = msr / BITS_PER_LONG;
3778 		unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3779 
3780 		msr_bitmap[read_idx] = read_intercept;
3781 		msr_bitmap[write_idx] = ~0ul;
3782 	}
3783 }
3784 
3785 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3786 {
3787 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3788 	u8 mode;
3789 
3790 	if (!cpu_has_vmx_msr_bitmap())
3791 		return;
3792 
3793 	if (cpu_has_secondary_exec_ctrls() &&
3794 	    (secondary_exec_controls_get(vmx) &
3795 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3796 		mode = MSR_BITMAP_MODE_X2APIC;
3797 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3798 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3799 	} else {
3800 		mode = 0;
3801 	}
3802 
3803 	if (mode == vmx->x2apic_msr_bitmap_mode)
3804 		return;
3805 
3806 	vmx->x2apic_msr_bitmap_mode = mode;
3807 
3808 	vmx_reset_x2apic_msrs(vcpu, mode);
3809 
3810 	/*
3811 	 * TPR reads and writes can be virtualized even if virtual interrupt
3812 	 * delivery is not in use.
3813 	 */
3814 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3815 				  !(mode & MSR_BITMAP_MODE_X2APIC));
3816 
3817 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3818 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3819 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3820 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3821 	}
3822 }
3823 
3824 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3825 {
3826 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3827 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3828 	u32 i;
3829 
3830 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3831 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3832 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3833 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3834 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
3835 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3836 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3837 	}
3838 }
3839 
3840 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3841 {
3842 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3843 	void *vapic_page;
3844 	u32 vppr;
3845 	int rvi;
3846 
3847 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3848 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3849 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3850 		return false;
3851 
3852 	rvi = vmx_get_rvi();
3853 
3854 	vapic_page = vmx->nested.virtual_apic_map.hva;
3855 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3856 
3857 	return ((rvi & 0xf0) > (vppr & 0xf0));
3858 }
3859 
3860 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3861 {
3862 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3863 	u32 i;
3864 
3865 	/*
3866 	 * Set intercept permissions for all potentially passed through MSRs
3867 	 * again. They will automatically get filtered through the MSR filter,
3868 	 * so we are back in sync after this.
3869 	 */
3870 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3871 		u32 msr = vmx_possible_passthrough_msrs[i];
3872 		bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3873 		bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3874 
3875 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3876 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3877 	}
3878 
3879 	pt_update_intercept_for_msr(vcpu);
3880 }
3881 
3882 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3883 						     bool nested)
3884 {
3885 #ifdef CONFIG_SMP
3886 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3887 
3888 	if (vcpu->mode == IN_GUEST_MODE) {
3889 		/*
3890 		 * The vector of interrupt to be delivered to vcpu had
3891 		 * been set in PIR before this function.
3892 		 *
3893 		 * Following cases will be reached in this block, and
3894 		 * we always send a notification event in all cases as
3895 		 * explained below.
3896 		 *
3897 		 * Case 1: vcpu keeps in non-root mode. Sending a
3898 		 * notification event posts the interrupt to vcpu.
3899 		 *
3900 		 * Case 2: vcpu exits to root mode and is still
3901 		 * runnable. PIR will be synced to vIRR before the
3902 		 * next vcpu entry. Sending a notification event in
3903 		 * this case has no effect, as vcpu is not in root
3904 		 * mode.
3905 		 *
3906 		 * Case 3: vcpu exits to root mode and is blocked.
3907 		 * vcpu_block() has already synced PIR to vIRR and
3908 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3909 		 * a blocked vcpu here does not wait for any requested
3910 		 * interrupts in PIR, and sending a notification event
3911 		 * which has no effect is safe here.
3912 		 */
3913 
3914 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3915 		return true;
3916 	}
3917 #endif
3918 	return false;
3919 }
3920 
3921 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3922 						int vector)
3923 {
3924 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3925 
3926 	if (is_guest_mode(vcpu) &&
3927 	    vector == vmx->nested.posted_intr_nv) {
3928 		/*
3929 		 * If a posted intr is not recognized by hardware,
3930 		 * we will accomplish it in the next vmentry.
3931 		 */
3932 		vmx->nested.pi_pending = true;
3933 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3934 		/* the PIR and ON have been set by L1. */
3935 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3936 			kvm_vcpu_kick(vcpu);
3937 		return 0;
3938 	}
3939 	return -1;
3940 }
3941 /*
3942  * Send interrupt to vcpu via posted interrupt way.
3943  * 1. If target vcpu is running(non-root mode), send posted interrupt
3944  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3945  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3946  * interrupt from PIR in next vmentry.
3947  */
3948 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3949 {
3950 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3951 	int r;
3952 
3953 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3954 	if (!r)
3955 		return 0;
3956 
3957 	if (!vcpu->arch.apicv_active)
3958 		return -1;
3959 
3960 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3961 		return 0;
3962 
3963 	/* If a previous notification has sent the IPI, nothing to do.  */
3964 	if (pi_test_and_set_on(&vmx->pi_desc))
3965 		return 0;
3966 
3967 	if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3968 		kvm_vcpu_kick(vcpu);
3969 
3970 	return 0;
3971 }
3972 
3973 /*
3974  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3975  * will not change in the lifetime of the guest.
3976  * Note that host-state that does change is set elsewhere. E.g., host-state
3977  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3978  */
3979 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3980 {
3981 	u32 low32, high32;
3982 	unsigned long tmpl;
3983 	unsigned long cr0, cr3, cr4;
3984 
3985 	cr0 = read_cr0();
3986 	WARN_ON(cr0 & X86_CR0_TS);
3987 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3988 
3989 	/*
3990 	 * Save the most likely value for this task's CR3 in the VMCS.
3991 	 * We can't use __get_current_cr3_fast() because we're not atomic.
3992 	 */
3993 	cr3 = __read_cr3();
3994 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
3995 	vmx->loaded_vmcs->host_state.cr3 = cr3;
3996 
3997 	/* Save the most likely value for this task's CR4 in the VMCS. */
3998 	cr4 = cr4_read_shadow();
3999 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4000 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4001 
4002 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4003 #ifdef CONFIG_X86_64
4004 	/*
4005 	 * Load null selectors, so we can avoid reloading them in
4006 	 * vmx_prepare_switch_to_host(), in case userspace uses
4007 	 * the null selectors too (the expected case).
4008 	 */
4009 	vmcs_write16(HOST_DS_SELECTOR, 0);
4010 	vmcs_write16(HOST_ES_SELECTOR, 0);
4011 #else
4012 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4013 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4014 #endif
4015 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4016 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4017 
4018 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4019 
4020 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4021 
4022 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4023 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4024 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4025 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4026 
4027 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4028 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4029 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4030 	}
4031 
4032 	if (cpu_has_load_ia32_efer())
4033 		vmcs_write64(HOST_IA32_EFER, host_efer);
4034 }
4035 
4036 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4037 {
4038 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4039 
4040 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4041 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4042 	if (!enable_ept)
4043 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4044 	if (is_guest_mode(&vmx->vcpu))
4045 		vcpu->arch.cr4_guest_owned_bits &=
4046 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4047 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4048 }
4049 
4050 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4051 {
4052 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4053 
4054 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4055 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4056 
4057 	if (!enable_vnmi)
4058 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4059 
4060 	if (!enable_preemption_timer)
4061 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4062 
4063 	return pin_based_exec_ctrl;
4064 }
4065 
4066 static u32 vmx_vmentry_ctrl(void)
4067 {
4068 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4069 
4070 	if (vmx_pt_mode_is_system())
4071 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4072 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4073 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4074 	return vmentry_ctrl &
4075 		~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
4076 }
4077 
4078 static u32 vmx_vmexit_ctrl(void)
4079 {
4080 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4081 
4082 	if (vmx_pt_mode_is_system())
4083 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4084 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4085 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4086 	return vmexit_ctrl &
4087 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4088 }
4089 
4090 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4091 {
4092 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4093 
4094 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4095 	if (cpu_has_secondary_exec_ctrls()) {
4096 		if (kvm_vcpu_apicv_active(vcpu))
4097 			secondary_exec_controls_setbit(vmx,
4098 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4099 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4100 		else
4101 			secondary_exec_controls_clearbit(vmx,
4102 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4103 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4104 	}
4105 
4106 	vmx_update_msr_bitmap_x2apic(vcpu);
4107 }
4108 
4109 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4110 {
4111 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4112 
4113 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4114 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4115 
4116 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4117 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4118 #ifdef CONFIG_X86_64
4119 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4120 				CPU_BASED_CR8_LOAD_EXITING;
4121 #endif
4122 	}
4123 	if (!enable_ept)
4124 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4125 				CPU_BASED_CR3_LOAD_EXITING  |
4126 				CPU_BASED_INVLPG_EXITING;
4127 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4128 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4129 				CPU_BASED_MONITOR_EXITING);
4130 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4131 		exec_control &= ~CPU_BASED_HLT_EXITING;
4132 	return exec_control;
4133 }
4134 
4135 /*
4136  * Adjust a single secondary execution control bit to intercept/allow an
4137  * instruction in the guest.  This is usually done based on whether or not a
4138  * feature has been exposed to the guest in order to correctly emulate faults.
4139  */
4140 static inline void
4141 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4142 				  u32 control, bool enabled, bool exiting)
4143 {
4144 	/*
4145 	 * If the control is for an opt-in feature, clear the control if the
4146 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4147 	 * control is opt-out, i.e. an exiting control, clear the control if
4148 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4149 	 * disabled for the associated instruction.  Note, the caller is
4150 	 * responsible presetting exec_control to set all supported bits.
4151 	 */
4152 	if (enabled == exiting)
4153 		*exec_control &= ~control;
4154 
4155 	/*
4156 	 * Update the nested MSR settings so that a nested VMM can/can't set
4157 	 * controls for features that are/aren't exposed to the guest.
4158 	 */
4159 	if (nested) {
4160 		if (enabled)
4161 			vmx->nested.msrs.secondary_ctls_high |= control;
4162 		else
4163 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4164 	}
4165 }
4166 
4167 /*
4168  * Wrapper macro for the common case of adjusting a secondary execution control
4169  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4170  * verifies that the control is actually supported by KVM and hardware.
4171  */
4172 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4173 ({									 \
4174 	bool __enabled;							 \
4175 									 \
4176 	if (cpu_has_vmx_##name()) {					 \
4177 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4178 					    X86_FEATURE_##feat_name);	 \
4179 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4180 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4181 	}								 \
4182 })
4183 
4184 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4185 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4186 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4187 
4188 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4189 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4190 
4191 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4192 {
4193 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4194 
4195 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4196 
4197 	if (vmx_pt_mode_is_system())
4198 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4199 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4200 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4201 	if (vmx->vpid == 0)
4202 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4203 	if (!enable_ept) {
4204 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4205 		enable_unrestricted_guest = 0;
4206 	}
4207 	if (!enable_unrestricted_guest)
4208 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4209 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4210 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4211 	if (!kvm_vcpu_apicv_active(vcpu))
4212 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4213 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4214 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4215 
4216 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4217 	 * in vmx_set_cr4.  */
4218 	exec_control &= ~SECONDARY_EXEC_DESC;
4219 
4220 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4221 	   (handle_vmptrld).
4222 	   We can NOT enable shadow_vmcs here because we don't have yet
4223 	   a current VMCS12
4224 	*/
4225 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4226 
4227 	/*
4228 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4229 	 * it needs to be set here when dirty logging is already active, e.g.
4230 	 * if this vCPU was created after dirty logging was enabled.
4231 	 */
4232 	if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4233 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4234 
4235 	if (cpu_has_vmx_xsaves()) {
4236 		/* Exposing XSAVES only when XSAVE is exposed */
4237 		bool xsaves_enabled =
4238 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4239 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4240 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4241 
4242 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4243 
4244 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4245 						  SECONDARY_EXEC_XSAVES,
4246 						  xsaves_enabled, false);
4247 	}
4248 
4249 	/*
4250 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4251 	 * feature is exposed to the guest.  This creates a virtualization hole
4252 	 * if both are supported in hardware but only one is exposed to the
4253 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4254 	 * is advertised is preferable to emulating the advertised instruction
4255 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4256 	 */
4257 	if (cpu_has_vmx_rdtscp()) {
4258 		bool rdpid_or_rdtscp_enabled =
4259 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4260 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4261 
4262 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4263 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4264 						  rdpid_or_rdtscp_enabled, false);
4265 	}
4266 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4267 
4268 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4269 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4270 
4271 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4272 				    ENABLE_USR_WAIT_PAUSE, false);
4273 
4274 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4275 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4276 
4277 	return exec_control;
4278 }
4279 
4280 #define VMX_XSS_EXIT_BITMAP 0
4281 
4282 static void init_vmcs(struct vcpu_vmx *vmx)
4283 {
4284 	if (nested)
4285 		nested_vmx_set_vmcs_shadowing_bitmap();
4286 
4287 	if (cpu_has_vmx_msr_bitmap())
4288 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4289 
4290 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4291 
4292 	/* Control */
4293 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4294 
4295 	exec_controls_set(vmx, vmx_exec_control(vmx));
4296 
4297 	if (cpu_has_secondary_exec_ctrls())
4298 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4299 
4300 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4301 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4302 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4303 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4304 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4305 
4306 		vmcs_write16(GUEST_INTR_STATUS, 0);
4307 
4308 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4309 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4310 	}
4311 
4312 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4313 		vmcs_write32(PLE_GAP, ple_gap);
4314 		vmx->ple_window = ple_window;
4315 		vmx->ple_window_dirty = true;
4316 	}
4317 
4318 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4319 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4320 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4321 
4322 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4323 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4324 	vmx_set_constant_host_state(vmx);
4325 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4326 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4327 
4328 	if (cpu_has_vmx_vmfunc())
4329 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4330 
4331 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4332 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4333 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4334 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4335 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4336 
4337 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4338 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4339 
4340 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4341 
4342 	/* 22.2.1, 20.8.1 */
4343 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4344 
4345 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4346 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4347 
4348 	set_cr4_guest_host_mask(vmx);
4349 
4350 	if (vmx->vpid != 0)
4351 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4352 
4353 	if (cpu_has_vmx_xsaves())
4354 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4355 
4356 	if (enable_pml) {
4357 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4358 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4359 	}
4360 
4361 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4362 
4363 	if (vmx_pt_mode_is_host_guest()) {
4364 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4365 		/* Bit[6~0] are forced to 1, writes are ignored. */
4366 		vmx->pt_desc.guest.output_mask = 0x7F;
4367 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4368 	}
4369 
4370 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4371 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4372 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4373 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4374 
4375 	if (cpu_has_vmx_tpr_shadow()) {
4376 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4377 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4378 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4379 				     __pa(vmx->vcpu.arch.apic->regs));
4380 		vmcs_write32(TPR_THRESHOLD, 0);
4381 	}
4382 
4383 	vmx_setup_uret_msrs(vmx);
4384 }
4385 
4386 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4387 {
4388 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4389 
4390 	init_vmcs(vmx);
4391 
4392 	if (nested)
4393 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4394 
4395 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4396 
4397 	vmx->nested.posted_intr_nv = -1;
4398 	vmx->nested.vmxon_ptr = INVALID_GPA;
4399 	vmx->nested.current_vmptr = INVALID_GPA;
4400 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4401 
4402 	vcpu->arch.microcode_version = 0x100000000ULL;
4403 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4404 
4405 	/*
4406 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4407 	 * or POSTED_INTR_WAKEUP_VECTOR.
4408 	 */
4409 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4410 	vmx->pi_desc.sn = 1;
4411 }
4412 
4413 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4414 {
4415 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4416 
4417 	if (!init_event)
4418 		__vmx_vcpu_reset(vcpu);
4419 
4420 	vmx->rmode.vm86_active = 0;
4421 	vmx->spec_ctrl = 0;
4422 
4423 	vmx->msr_ia32_umwait_control = 0;
4424 
4425 	vmx->hv_deadline_tsc = -1;
4426 	kvm_set_cr8(vcpu, 0);
4427 
4428 	vmx_segment_cache_clear(vmx);
4429 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4430 
4431 	seg_setup(VCPU_SREG_CS);
4432 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4433 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4434 
4435 	seg_setup(VCPU_SREG_DS);
4436 	seg_setup(VCPU_SREG_ES);
4437 	seg_setup(VCPU_SREG_FS);
4438 	seg_setup(VCPU_SREG_GS);
4439 	seg_setup(VCPU_SREG_SS);
4440 
4441 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4442 	vmcs_writel(GUEST_TR_BASE, 0);
4443 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4444 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4445 
4446 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4447 	vmcs_writel(GUEST_LDTR_BASE, 0);
4448 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4449 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4450 
4451 	vmcs_writel(GUEST_GDTR_BASE, 0);
4452 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4453 
4454 	vmcs_writel(GUEST_IDTR_BASE, 0);
4455 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4456 
4457 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4458 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4459 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4460 	if (kvm_mpx_supported())
4461 		vmcs_write64(GUEST_BNDCFGS, 0);
4462 
4463 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4464 
4465 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4466 
4467 	vpid_sync_context(vmx->vpid);
4468 }
4469 
4470 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4471 {
4472 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4473 }
4474 
4475 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4476 {
4477 	if (!enable_vnmi ||
4478 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4479 		vmx_enable_irq_window(vcpu);
4480 		return;
4481 	}
4482 
4483 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4484 }
4485 
4486 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4487 {
4488 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4489 	uint32_t intr;
4490 	int irq = vcpu->arch.interrupt.nr;
4491 
4492 	trace_kvm_inj_virq(irq);
4493 
4494 	++vcpu->stat.irq_injections;
4495 	if (vmx->rmode.vm86_active) {
4496 		int inc_eip = 0;
4497 		if (vcpu->arch.interrupt.soft)
4498 			inc_eip = vcpu->arch.event_exit_inst_len;
4499 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4500 		return;
4501 	}
4502 	intr = irq | INTR_INFO_VALID_MASK;
4503 	if (vcpu->arch.interrupt.soft) {
4504 		intr |= INTR_TYPE_SOFT_INTR;
4505 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4506 			     vmx->vcpu.arch.event_exit_inst_len);
4507 	} else
4508 		intr |= INTR_TYPE_EXT_INTR;
4509 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4510 
4511 	vmx_clear_hlt(vcpu);
4512 }
4513 
4514 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4515 {
4516 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4517 
4518 	if (!enable_vnmi) {
4519 		/*
4520 		 * Tracking the NMI-blocked state in software is built upon
4521 		 * finding the next open IRQ window. This, in turn, depends on
4522 		 * well-behaving guests: They have to keep IRQs disabled at
4523 		 * least as long as the NMI handler runs. Otherwise we may
4524 		 * cause NMI nesting, maybe breaking the guest. But as this is
4525 		 * highly unlikely, we can live with the residual risk.
4526 		 */
4527 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4528 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4529 	}
4530 
4531 	++vcpu->stat.nmi_injections;
4532 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4533 
4534 	if (vmx->rmode.vm86_active) {
4535 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4536 		return;
4537 	}
4538 
4539 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4540 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4541 
4542 	vmx_clear_hlt(vcpu);
4543 }
4544 
4545 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4546 {
4547 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4548 	bool masked;
4549 
4550 	if (!enable_vnmi)
4551 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4552 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4553 		return false;
4554 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4555 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4556 	return masked;
4557 }
4558 
4559 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4560 {
4561 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4562 
4563 	if (!enable_vnmi) {
4564 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4565 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4566 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4567 		}
4568 	} else {
4569 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4570 		if (masked)
4571 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4572 				      GUEST_INTR_STATE_NMI);
4573 		else
4574 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4575 					GUEST_INTR_STATE_NMI);
4576 	}
4577 }
4578 
4579 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4580 {
4581 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4582 		return false;
4583 
4584 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4585 		return true;
4586 
4587 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4588 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4589 		 GUEST_INTR_STATE_NMI));
4590 }
4591 
4592 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4593 {
4594 	if (to_vmx(vcpu)->nested.nested_run_pending)
4595 		return -EBUSY;
4596 
4597 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4598 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4599 		return -EBUSY;
4600 
4601 	return !vmx_nmi_blocked(vcpu);
4602 }
4603 
4604 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4605 {
4606 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4607 		return false;
4608 
4609 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4610 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4611 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4612 }
4613 
4614 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4615 {
4616 	if (to_vmx(vcpu)->nested.nested_run_pending)
4617 		return -EBUSY;
4618 
4619        /*
4620         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4621         * e.g. if the IRQ arrived asynchronously after checking nested events.
4622         */
4623 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4624 		return -EBUSY;
4625 
4626 	return !vmx_interrupt_blocked(vcpu);
4627 }
4628 
4629 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4630 {
4631 	void __user *ret;
4632 
4633 	if (enable_unrestricted_guest)
4634 		return 0;
4635 
4636 	mutex_lock(&kvm->slots_lock);
4637 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4638 				      PAGE_SIZE * 3);
4639 	mutex_unlock(&kvm->slots_lock);
4640 
4641 	if (IS_ERR(ret))
4642 		return PTR_ERR(ret);
4643 
4644 	to_kvm_vmx(kvm)->tss_addr = addr;
4645 
4646 	return init_rmode_tss(kvm, ret);
4647 }
4648 
4649 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4650 {
4651 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4652 	return 0;
4653 }
4654 
4655 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4656 {
4657 	switch (vec) {
4658 	case BP_VECTOR:
4659 		/*
4660 		 * Update instruction length as we may reinject the exception
4661 		 * from user space while in guest debugging mode.
4662 		 */
4663 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4664 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4665 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4666 			return false;
4667 		fallthrough;
4668 	case DB_VECTOR:
4669 		return !(vcpu->guest_debug &
4670 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4671 	case DE_VECTOR:
4672 	case OF_VECTOR:
4673 	case BR_VECTOR:
4674 	case UD_VECTOR:
4675 	case DF_VECTOR:
4676 	case SS_VECTOR:
4677 	case GP_VECTOR:
4678 	case MF_VECTOR:
4679 		return true;
4680 	}
4681 	return false;
4682 }
4683 
4684 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4685 				  int vec, u32 err_code)
4686 {
4687 	/*
4688 	 * Instruction with address size override prefix opcode 0x67
4689 	 * Cause the #SS fault with 0 error code in VM86 mode.
4690 	 */
4691 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4692 		if (kvm_emulate_instruction(vcpu, 0)) {
4693 			if (vcpu->arch.halt_request) {
4694 				vcpu->arch.halt_request = 0;
4695 				return kvm_vcpu_halt(vcpu);
4696 			}
4697 			return 1;
4698 		}
4699 		return 0;
4700 	}
4701 
4702 	/*
4703 	 * Forward all other exceptions that are valid in real mode.
4704 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4705 	 *        the required debugging infrastructure rework.
4706 	 */
4707 	kvm_queue_exception(vcpu, vec);
4708 	return 1;
4709 }
4710 
4711 static int handle_machine_check(struct kvm_vcpu *vcpu)
4712 {
4713 	/* handled by vmx_vcpu_run() */
4714 	return 1;
4715 }
4716 
4717 /*
4718  * If the host has split lock detection disabled, then #AC is
4719  * unconditionally injected into the guest, which is the pre split lock
4720  * detection behaviour.
4721  *
4722  * If the host has split lock detection enabled then #AC is
4723  * only injected into the guest when:
4724  *  - Guest CPL == 3 (user mode)
4725  *  - Guest has #AC detection enabled in CR0
4726  *  - Guest EFLAGS has AC bit set
4727  */
4728 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4729 {
4730 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4731 		return true;
4732 
4733 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4734 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4735 }
4736 
4737 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4738 {
4739 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4740 	struct kvm_run *kvm_run = vcpu->run;
4741 	u32 intr_info, ex_no, error_code;
4742 	unsigned long cr2, dr6;
4743 	u32 vect_info;
4744 
4745 	vect_info = vmx->idt_vectoring_info;
4746 	intr_info = vmx_get_intr_info(vcpu);
4747 
4748 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4749 		return 1; /* handled by handle_exception_nmi_irqoff() */
4750 
4751 	if (is_invalid_opcode(intr_info))
4752 		return handle_ud(vcpu);
4753 
4754 	error_code = 0;
4755 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4756 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4757 
4758 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4759 		WARN_ON_ONCE(!enable_vmware_backdoor);
4760 
4761 		/*
4762 		 * VMware backdoor emulation on #GP interception only handles
4763 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4764 		 * error code on #GP.
4765 		 */
4766 		if (error_code) {
4767 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4768 			return 1;
4769 		}
4770 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4771 	}
4772 
4773 	/*
4774 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4775 	 * MMIO, it is better to report an internal error.
4776 	 * See the comments in vmx_handle_exit.
4777 	 */
4778 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4779 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4780 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4781 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4782 		vcpu->run->internal.ndata = 4;
4783 		vcpu->run->internal.data[0] = vect_info;
4784 		vcpu->run->internal.data[1] = intr_info;
4785 		vcpu->run->internal.data[2] = error_code;
4786 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4787 		return 0;
4788 	}
4789 
4790 	if (is_page_fault(intr_info)) {
4791 		cr2 = vmx_get_exit_qual(vcpu);
4792 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4793 			/*
4794 			 * EPT will cause page fault only if we need to
4795 			 * detect illegal GPAs.
4796 			 */
4797 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4798 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4799 			return 1;
4800 		} else
4801 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4802 	}
4803 
4804 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4805 
4806 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4807 		return handle_rmode_exception(vcpu, ex_no, error_code);
4808 
4809 	switch (ex_no) {
4810 	case DB_VECTOR:
4811 		dr6 = vmx_get_exit_qual(vcpu);
4812 		if (!(vcpu->guest_debug &
4813 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4814 			if (is_icebp(intr_info))
4815 				WARN_ON(!skip_emulated_instruction(vcpu));
4816 
4817 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4818 			return 1;
4819 		}
4820 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4821 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4822 		fallthrough;
4823 	case BP_VECTOR:
4824 		/*
4825 		 * Update instruction length as we may reinject #BP from
4826 		 * user space while in guest debugging mode. Reading it for
4827 		 * #DB as well causes no harm, it is not used in that case.
4828 		 */
4829 		vmx->vcpu.arch.event_exit_inst_len =
4830 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4831 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4832 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4833 		kvm_run->debug.arch.exception = ex_no;
4834 		break;
4835 	case AC_VECTOR:
4836 		if (vmx_guest_inject_ac(vcpu)) {
4837 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4838 			return 1;
4839 		}
4840 
4841 		/*
4842 		 * Handle split lock. Depending on detection mode this will
4843 		 * either warn and disable split lock detection for this
4844 		 * task or force SIGBUS on it.
4845 		 */
4846 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4847 			return 1;
4848 		fallthrough;
4849 	default:
4850 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4851 		kvm_run->ex.exception = ex_no;
4852 		kvm_run->ex.error_code = error_code;
4853 		break;
4854 	}
4855 	return 0;
4856 }
4857 
4858 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4859 {
4860 	++vcpu->stat.irq_exits;
4861 	return 1;
4862 }
4863 
4864 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4865 {
4866 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4867 	vcpu->mmio_needed = 0;
4868 	return 0;
4869 }
4870 
4871 static int handle_io(struct kvm_vcpu *vcpu)
4872 {
4873 	unsigned long exit_qualification;
4874 	int size, in, string;
4875 	unsigned port;
4876 
4877 	exit_qualification = vmx_get_exit_qual(vcpu);
4878 	string = (exit_qualification & 16) != 0;
4879 
4880 	++vcpu->stat.io_exits;
4881 
4882 	if (string)
4883 		return kvm_emulate_instruction(vcpu, 0);
4884 
4885 	port = exit_qualification >> 16;
4886 	size = (exit_qualification & 7) + 1;
4887 	in = (exit_qualification & 8) != 0;
4888 
4889 	return kvm_fast_pio(vcpu, size, port, in);
4890 }
4891 
4892 static void
4893 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4894 {
4895 	/*
4896 	 * Patch in the VMCALL instruction:
4897 	 */
4898 	hypercall[0] = 0x0f;
4899 	hypercall[1] = 0x01;
4900 	hypercall[2] = 0xc1;
4901 }
4902 
4903 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4904 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4905 {
4906 	if (is_guest_mode(vcpu)) {
4907 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4908 		unsigned long orig_val = val;
4909 
4910 		/*
4911 		 * We get here when L2 changed cr0 in a way that did not change
4912 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4913 		 * but did change L0 shadowed bits. So we first calculate the
4914 		 * effective cr0 value that L1 would like to write into the
4915 		 * hardware. It consists of the L2-owned bits from the new
4916 		 * value combined with the L1-owned bits from L1's guest_cr0.
4917 		 */
4918 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4919 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4920 
4921 		if (!nested_guest_cr0_valid(vcpu, val))
4922 			return 1;
4923 
4924 		if (kvm_set_cr0(vcpu, val))
4925 			return 1;
4926 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4927 		return 0;
4928 	} else {
4929 		if (to_vmx(vcpu)->nested.vmxon &&
4930 		    !nested_host_cr0_valid(vcpu, val))
4931 			return 1;
4932 
4933 		return kvm_set_cr0(vcpu, val);
4934 	}
4935 }
4936 
4937 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4938 {
4939 	if (is_guest_mode(vcpu)) {
4940 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4941 		unsigned long orig_val = val;
4942 
4943 		/* analogously to handle_set_cr0 */
4944 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4945 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4946 		if (kvm_set_cr4(vcpu, val))
4947 			return 1;
4948 		vmcs_writel(CR4_READ_SHADOW, orig_val);
4949 		return 0;
4950 	} else
4951 		return kvm_set_cr4(vcpu, val);
4952 }
4953 
4954 static int handle_desc(struct kvm_vcpu *vcpu)
4955 {
4956 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4957 	return kvm_emulate_instruction(vcpu, 0);
4958 }
4959 
4960 static int handle_cr(struct kvm_vcpu *vcpu)
4961 {
4962 	unsigned long exit_qualification, val;
4963 	int cr;
4964 	int reg;
4965 	int err;
4966 	int ret;
4967 
4968 	exit_qualification = vmx_get_exit_qual(vcpu);
4969 	cr = exit_qualification & 15;
4970 	reg = (exit_qualification >> 8) & 15;
4971 	switch ((exit_qualification >> 4) & 3) {
4972 	case 0: /* mov to cr */
4973 		val = kvm_register_read(vcpu, reg);
4974 		trace_kvm_cr_write(cr, val);
4975 		switch (cr) {
4976 		case 0:
4977 			err = handle_set_cr0(vcpu, val);
4978 			return kvm_complete_insn_gp(vcpu, err);
4979 		case 3:
4980 			WARN_ON_ONCE(enable_unrestricted_guest);
4981 
4982 			err = kvm_set_cr3(vcpu, val);
4983 			return kvm_complete_insn_gp(vcpu, err);
4984 		case 4:
4985 			err = handle_set_cr4(vcpu, val);
4986 			return kvm_complete_insn_gp(vcpu, err);
4987 		case 8: {
4988 				u8 cr8_prev = kvm_get_cr8(vcpu);
4989 				u8 cr8 = (u8)val;
4990 				err = kvm_set_cr8(vcpu, cr8);
4991 				ret = kvm_complete_insn_gp(vcpu, err);
4992 				if (lapic_in_kernel(vcpu))
4993 					return ret;
4994 				if (cr8_prev <= cr8)
4995 					return ret;
4996 				/*
4997 				 * TODO: we might be squashing a
4998 				 * KVM_GUESTDBG_SINGLESTEP-triggered
4999 				 * KVM_EXIT_DEBUG here.
5000 				 */
5001 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5002 				return 0;
5003 			}
5004 		}
5005 		break;
5006 	case 2: /* clts */
5007 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5008 		return -EIO;
5009 	case 1: /*mov from cr*/
5010 		switch (cr) {
5011 		case 3:
5012 			WARN_ON_ONCE(enable_unrestricted_guest);
5013 
5014 			val = kvm_read_cr3(vcpu);
5015 			kvm_register_write(vcpu, reg, val);
5016 			trace_kvm_cr_read(cr, val);
5017 			return kvm_skip_emulated_instruction(vcpu);
5018 		case 8:
5019 			val = kvm_get_cr8(vcpu);
5020 			kvm_register_write(vcpu, reg, val);
5021 			trace_kvm_cr_read(cr, val);
5022 			return kvm_skip_emulated_instruction(vcpu);
5023 		}
5024 		break;
5025 	case 3: /* lmsw */
5026 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5027 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5028 		kvm_lmsw(vcpu, val);
5029 
5030 		return kvm_skip_emulated_instruction(vcpu);
5031 	default:
5032 		break;
5033 	}
5034 	vcpu->run->exit_reason = 0;
5035 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5036 	       (int)(exit_qualification >> 4) & 3, cr);
5037 	return 0;
5038 }
5039 
5040 static int handle_dr(struct kvm_vcpu *vcpu)
5041 {
5042 	unsigned long exit_qualification;
5043 	int dr, dr7, reg;
5044 	int err = 1;
5045 
5046 	exit_qualification = vmx_get_exit_qual(vcpu);
5047 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5048 
5049 	/* First, if DR does not exist, trigger UD */
5050 	if (!kvm_require_dr(vcpu, dr))
5051 		return 1;
5052 
5053 	if (kvm_x86_ops.get_cpl(vcpu) > 0)
5054 		goto out;
5055 
5056 	dr7 = vmcs_readl(GUEST_DR7);
5057 	if (dr7 & DR7_GD) {
5058 		/*
5059 		 * As the vm-exit takes precedence over the debug trap, we
5060 		 * need to emulate the latter, either for the host or the
5061 		 * guest debugging itself.
5062 		 */
5063 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5064 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5065 			vcpu->run->debug.arch.dr7 = dr7;
5066 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5067 			vcpu->run->debug.arch.exception = DB_VECTOR;
5068 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5069 			return 0;
5070 		} else {
5071 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5072 			return 1;
5073 		}
5074 	}
5075 
5076 	if (vcpu->guest_debug == 0) {
5077 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5078 
5079 		/*
5080 		 * No more DR vmexits; force a reload of the debug registers
5081 		 * and reenter on this instruction.  The next vmexit will
5082 		 * retrieve the full state of the debug registers.
5083 		 */
5084 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5085 		return 1;
5086 	}
5087 
5088 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5089 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5090 		unsigned long val;
5091 
5092 		kvm_get_dr(vcpu, dr, &val);
5093 		kvm_register_write(vcpu, reg, val);
5094 		err = 0;
5095 	} else {
5096 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5097 	}
5098 
5099 out:
5100 	return kvm_complete_insn_gp(vcpu, err);
5101 }
5102 
5103 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5104 {
5105 	get_debugreg(vcpu->arch.db[0], 0);
5106 	get_debugreg(vcpu->arch.db[1], 1);
5107 	get_debugreg(vcpu->arch.db[2], 2);
5108 	get_debugreg(vcpu->arch.db[3], 3);
5109 	get_debugreg(vcpu->arch.dr6, 6);
5110 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5111 
5112 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5113 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5114 
5115 	/*
5116 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5117 	 * a stale dr6 from the guest.
5118 	 */
5119 	set_debugreg(DR6_RESERVED, 6);
5120 }
5121 
5122 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5123 {
5124 	vmcs_writel(GUEST_DR7, val);
5125 }
5126 
5127 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5128 {
5129 	kvm_apic_update_ppr(vcpu);
5130 	return 1;
5131 }
5132 
5133 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5134 {
5135 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5136 
5137 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5138 
5139 	++vcpu->stat.irq_window_exits;
5140 	return 1;
5141 }
5142 
5143 static int handle_invlpg(struct kvm_vcpu *vcpu)
5144 {
5145 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5146 
5147 	kvm_mmu_invlpg(vcpu, exit_qualification);
5148 	return kvm_skip_emulated_instruction(vcpu);
5149 }
5150 
5151 static int handle_apic_access(struct kvm_vcpu *vcpu)
5152 {
5153 	if (likely(fasteoi)) {
5154 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5155 		int access_type, offset;
5156 
5157 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5158 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5159 		/*
5160 		 * Sane guest uses MOV to write EOI, with written value
5161 		 * not cared. So make a short-circuit here by avoiding
5162 		 * heavy instruction emulation.
5163 		 */
5164 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5165 		    (offset == APIC_EOI)) {
5166 			kvm_lapic_set_eoi(vcpu);
5167 			return kvm_skip_emulated_instruction(vcpu);
5168 		}
5169 	}
5170 	return kvm_emulate_instruction(vcpu, 0);
5171 }
5172 
5173 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5174 {
5175 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5176 	int vector = exit_qualification & 0xff;
5177 
5178 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5179 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5180 	return 1;
5181 }
5182 
5183 static int handle_apic_write(struct kvm_vcpu *vcpu)
5184 {
5185 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5186 	u32 offset = exit_qualification & 0xfff;
5187 
5188 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5189 	kvm_apic_write_nodecode(vcpu, offset);
5190 	return 1;
5191 }
5192 
5193 static int handle_task_switch(struct kvm_vcpu *vcpu)
5194 {
5195 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5196 	unsigned long exit_qualification;
5197 	bool has_error_code = false;
5198 	u32 error_code = 0;
5199 	u16 tss_selector;
5200 	int reason, type, idt_v, idt_index;
5201 
5202 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5203 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5204 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5205 
5206 	exit_qualification = vmx_get_exit_qual(vcpu);
5207 
5208 	reason = (u32)exit_qualification >> 30;
5209 	if (reason == TASK_SWITCH_GATE && idt_v) {
5210 		switch (type) {
5211 		case INTR_TYPE_NMI_INTR:
5212 			vcpu->arch.nmi_injected = false;
5213 			vmx_set_nmi_mask(vcpu, true);
5214 			break;
5215 		case INTR_TYPE_EXT_INTR:
5216 		case INTR_TYPE_SOFT_INTR:
5217 			kvm_clear_interrupt_queue(vcpu);
5218 			break;
5219 		case INTR_TYPE_HARD_EXCEPTION:
5220 			if (vmx->idt_vectoring_info &
5221 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5222 				has_error_code = true;
5223 				error_code =
5224 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5225 			}
5226 			fallthrough;
5227 		case INTR_TYPE_SOFT_EXCEPTION:
5228 			kvm_clear_exception_queue(vcpu);
5229 			break;
5230 		default:
5231 			break;
5232 		}
5233 	}
5234 	tss_selector = exit_qualification;
5235 
5236 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5237 		       type != INTR_TYPE_EXT_INTR &&
5238 		       type != INTR_TYPE_NMI_INTR))
5239 		WARN_ON(!skip_emulated_instruction(vcpu));
5240 
5241 	/*
5242 	 * TODO: What about debug traps on tss switch?
5243 	 *       Are we supposed to inject them and update dr6?
5244 	 */
5245 	return kvm_task_switch(vcpu, tss_selector,
5246 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5247 			       reason, has_error_code, error_code);
5248 }
5249 
5250 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5251 {
5252 	unsigned long exit_qualification;
5253 	gpa_t gpa;
5254 	u64 error_code;
5255 
5256 	exit_qualification = vmx_get_exit_qual(vcpu);
5257 
5258 	/*
5259 	 * EPT violation happened while executing iret from NMI,
5260 	 * "blocked by NMI" bit has to be set before next VM entry.
5261 	 * There are errata that may cause this bit to not be set:
5262 	 * AAK134, BY25.
5263 	 */
5264 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5265 			enable_vnmi &&
5266 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5267 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5268 
5269 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5270 	trace_kvm_page_fault(gpa, exit_qualification);
5271 
5272 	/* Is it a read fault? */
5273 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5274 		     ? PFERR_USER_MASK : 0;
5275 	/* Is it a write fault? */
5276 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5277 		      ? PFERR_WRITE_MASK : 0;
5278 	/* Is it a fetch fault? */
5279 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5280 		      ? PFERR_FETCH_MASK : 0;
5281 	/* ept page table entry is present? */
5282 	error_code |= (exit_qualification &
5283 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5284 			EPT_VIOLATION_EXECUTABLE))
5285 		      ? PFERR_PRESENT_MASK : 0;
5286 
5287 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5288 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5289 
5290 	vcpu->arch.exit_qualification = exit_qualification;
5291 
5292 	/*
5293 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5294 	 * a guest page fault.  We have to emulate the instruction here, because
5295 	 * if the illegal address is that of a paging structure, then
5296 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5297 	 * would also use advanced VM-exit information for EPT violations to
5298 	 * reconstruct the page fault error code.
5299 	 */
5300 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5301 		return kvm_emulate_instruction(vcpu, 0);
5302 
5303 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5304 }
5305 
5306 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5307 {
5308 	gpa_t gpa;
5309 
5310 	if (!vmx_can_emulate_instruction(vcpu, NULL, 0))
5311 		return 1;
5312 
5313 	/*
5314 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5315 	 * nGPA here instead of the required GPA.
5316 	 */
5317 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5318 	if (!is_guest_mode(vcpu) &&
5319 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5320 		trace_kvm_fast_mmio(gpa);
5321 		return kvm_skip_emulated_instruction(vcpu);
5322 	}
5323 
5324 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5325 }
5326 
5327 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5328 {
5329 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5330 		return -EIO;
5331 
5332 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5333 	++vcpu->stat.nmi_window_exits;
5334 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5335 
5336 	return 1;
5337 }
5338 
5339 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5340 {
5341 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5342 	bool intr_window_requested;
5343 	unsigned count = 130;
5344 
5345 	intr_window_requested = exec_controls_get(vmx) &
5346 				CPU_BASED_INTR_WINDOW_EXITING;
5347 
5348 	while (vmx->emulation_required && count-- != 0) {
5349 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5350 			return handle_interrupt_window(&vmx->vcpu);
5351 
5352 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5353 			return 1;
5354 
5355 		if (!kvm_emulate_instruction(vcpu, 0))
5356 			return 0;
5357 
5358 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5359 		    vcpu->arch.exception.pending) {
5360 			kvm_prepare_emulation_failure_exit(vcpu);
5361 			return 0;
5362 		}
5363 
5364 		if (vcpu->arch.halt_request) {
5365 			vcpu->arch.halt_request = 0;
5366 			return kvm_vcpu_halt(vcpu);
5367 		}
5368 
5369 		/*
5370 		 * Note, return 1 and not 0, vcpu_run() will invoke
5371 		 * xfer_to_guest_mode() which will create a proper return
5372 		 * code.
5373 		 */
5374 		if (__xfer_to_guest_mode_work_pending())
5375 			return 1;
5376 	}
5377 
5378 	return 1;
5379 }
5380 
5381 static void grow_ple_window(struct kvm_vcpu *vcpu)
5382 {
5383 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5384 	unsigned int old = vmx->ple_window;
5385 
5386 	vmx->ple_window = __grow_ple_window(old, ple_window,
5387 					    ple_window_grow,
5388 					    ple_window_max);
5389 
5390 	if (vmx->ple_window != old) {
5391 		vmx->ple_window_dirty = true;
5392 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5393 					    vmx->ple_window, old);
5394 	}
5395 }
5396 
5397 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5398 {
5399 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5400 	unsigned int old = vmx->ple_window;
5401 
5402 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5403 					      ple_window_shrink,
5404 					      ple_window);
5405 
5406 	if (vmx->ple_window != old) {
5407 		vmx->ple_window_dirty = true;
5408 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5409 					    vmx->ple_window, old);
5410 	}
5411 }
5412 
5413 /*
5414  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5415  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5416  */
5417 static int handle_pause(struct kvm_vcpu *vcpu)
5418 {
5419 	if (!kvm_pause_in_guest(vcpu->kvm))
5420 		grow_ple_window(vcpu);
5421 
5422 	/*
5423 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5424 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5425 	 * never set PAUSE_EXITING and just set PLE if supported,
5426 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5427 	 */
5428 	kvm_vcpu_on_spin(vcpu, true);
5429 	return kvm_skip_emulated_instruction(vcpu);
5430 }
5431 
5432 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5433 {
5434 	return 1;
5435 }
5436 
5437 static int handle_invpcid(struct kvm_vcpu *vcpu)
5438 {
5439 	u32 vmx_instruction_info;
5440 	unsigned long type;
5441 	gva_t gva;
5442 	struct {
5443 		u64 pcid;
5444 		u64 gla;
5445 	} operand;
5446 	int gpr_index;
5447 
5448 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5449 		kvm_queue_exception(vcpu, UD_VECTOR);
5450 		return 1;
5451 	}
5452 
5453 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5454 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5455 	type = kvm_register_read(vcpu, gpr_index);
5456 
5457 	/* According to the Intel instruction reference, the memory operand
5458 	 * is read even if it isn't needed (e.g., for type==all)
5459 	 */
5460 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5461 				vmx_instruction_info, false,
5462 				sizeof(operand), &gva))
5463 		return 1;
5464 
5465 	return kvm_handle_invpcid(vcpu, type, gva);
5466 }
5467 
5468 static int handle_pml_full(struct kvm_vcpu *vcpu)
5469 {
5470 	unsigned long exit_qualification;
5471 
5472 	trace_kvm_pml_full(vcpu->vcpu_id);
5473 
5474 	exit_qualification = vmx_get_exit_qual(vcpu);
5475 
5476 	/*
5477 	 * PML buffer FULL happened while executing iret from NMI,
5478 	 * "blocked by NMI" bit has to be set before next VM entry.
5479 	 */
5480 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5481 			enable_vnmi &&
5482 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5483 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5484 				GUEST_INTR_STATE_NMI);
5485 
5486 	/*
5487 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5488 	 * here.., and there's no userspace involvement needed for PML.
5489 	 */
5490 	return 1;
5491 }
5492 
5493 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5494 {
5495 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5496 
5497 	if (!vmx->req_immediate_exit &&
5498 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5499 		kvm_lapic_expired_hv_timer(vcpu);
5500 		return EXIT_FASTPATH_REENTER_GUEST;
5501 	}
5502 
5503 	return EXIT_FASTPATH_NONE;
5504 }
5505 
5506 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5507 {
5508 	handle_fastpath_preemption_timer(vcpu);
5509 	return 1;
5510 }
5511 
5512 /*
5513  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5514  * are overwritten by nested_vmx_setup() when nested=1.
5515  */
5516 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5517 {
5518 	kvm_queue_exception(vcpu, UD_VECTOR);
5519 	return 1;
5520 }
5521 
5522 #ifndef CONFIG_X86_SGX_KVM
5523 static int handle_encls(struct kvm_vcpu *vcpu)
5524 {
5525 	/*
5526 	 * SGX virtualization is disabled.  There is no software enable bit for
5527 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5528 	 * the guest from executing ENCLS (when SGX is supported by hardware).
5529 	 */
5530 	kvm_queue_exception(vcpu, UD_VECTOR);
5531 	return 1;
5532 }
5533 #endif /* CONFIG_X86_SGX_KVM */
5534 
5535 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5536 {
5537 	/*
5538 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5539 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
5540 	 * vmx_handle_exit().
5541 	 */
5542 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
5543 	return 1;
5544 }
5545 
5546 /*
5547  * The exit handlers return 1 if the exit was handled fully and guest execution
5548  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5549  * to be done to userspace and return 0.
5550  */
5551 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5552 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5553 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5554 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5555 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5556 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5557 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5558 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5559 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5560 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5561 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5562 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5563 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5564 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
5565 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5566 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5567 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5568 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5569 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5570 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5571 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5572 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5573 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5574 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5575 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5576 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5577 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5578 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5579 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5580 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5581 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5582 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5583 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5584 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5585 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5586 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5587 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5588 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5589 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5590 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
5591 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5592 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
5593 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5594 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5595 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
5596 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
5597 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5598 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5599 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5600 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5601 	[EXIT_REASON_ENCLS]		      = handle_encls,
5602 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5603 };
5604 
5605 static const int kvm_vmx_max_exit_handlers =
5606 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5607 
5608 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
5609 			      u64 *info1, u64 *info2,
5610 			      u32 *intr_info, u32 *error_code)
5611 {
5612 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5613 
5614 	*reason = vmx->exit_reason.full;
5615 	*info1 = vmx_get_exit_qual(vcpu);
5616 	if (!(vmx->exit_reason.failed_vmentry)) {
5617 		*info2 = vmx->idt_vectoring_info;
5618 		*intr_info = vmx_get_intr_info(vcpu);
5619 		if (is_exception_with_error_code(*intr_info))
5620 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5621 		else
5622 			*error_code = 0;
5623 	} else {
5624 		*info2 = 0;
5625 		*intr_info = 0;
5626 		*error_code = 0;
5627 	}
5628 }
5629 
5630 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5631 {
5632 	if (vmx->pml_pg) {
5633 		__free_page(vmx->pml_pg);
5634 		vmx->pml_pg = NULL;
5635 	}
5636 }
5637 
5638 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5639 {
5640 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5641 	u64 *pml_buf;
5642 	u16 pml_idx;
5643 
5644 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5645 
5646 	/* Do nothing if PML buffer is empty */
5647 	if (pml_idx == (PML_ENTITY_NUM - 1))
5648 		return;
5649 
5650 	/* PML index always points to next available PML buffer entity */
5651 	if (pml_idx >= PML_ENTITY_NUM)
5652 		pml_idx = 0;
5653 	else
5654 		pml_idx++;
5655 
5656 	pml_buf = page_address(vmx->pml_pg);
5657 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5658 		u64 gpa;
5659 
5660 		gpa = pml_buf[pml_idx];
5661 		WARN_ON(gpa & (PAGE_SIZE - 1));
5662 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5663 	}
5664 
5665 	/* reset PML index */
5666 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5667 }
5668 
5669 static void vmx_dump_sel(char *name, uint32_t sel)
5670 {
5671 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5672 	       name, vmcs_read16(sel),
5673 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5674 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5675 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5676 }
5677 
5678 static void vmx_dump_dtsel(char *name, uint32_t limit)
5679 {
5680 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5681 	       name, vmcs_read32(limit),
5682 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5683 }
5684 
5685 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5686 {
5687 	unsigned int i;
5688 	struct vmx_msr_entry *e;
5689 
5690 	pr_err("MSR %s:\n", name);
5691 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5692 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5693 }
5694 
5695 void dump_vmcs(struct kvm_vcpu *vcpu)
5696 {
5697 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5698 	u32 vmentry_ctl, vmexit_ctl;
5699 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5700 	unsigned long cr4;
5701 	int efer_slot;
5702 
5703 	if (!dump_invalid_vmcs) {
5704 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5705 		return;
5706 	}
5707 
5708 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5709 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5710 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5711 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5712 	cr4 = vmcs_readl(GUEST_CR4);
5713 	secondary_exec_control = 0;
5714 	if (cpu_has_secondary_exec_ctrls())
5715 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5716 
5717 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
5718 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
5719 	pr_err("*** Guest State ***\n");
5720 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5721 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5722 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5723 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5724 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5725 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5726 	if (cpu_has_vmx_ept()) {
5727 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5728 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5729 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5730 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5731 	}
5732 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5733 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5734 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5735 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5736 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5737 	       vmcs_readl(GUEST_SYSENTER_ESP),
5738 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5739 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5740 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5741 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5742 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5743 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5744 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5745 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5746 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5747 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5748 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5749 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5750 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5751 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5752 	else if (efer_slot >= 0)
5753 		pr_err("EFER= 0x%016llx (autoload)\n",
5754 		       vmx->msr_autoload.guest.val[efer_slot].value);
5755 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5756 		pr_err("EFER= 0x%016llx (effective)\n",
5757 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
5758 	else
5759 		pr_err("EFER= 0x%016llx (effective)\n",
5760 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5761 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5762 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5763 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5764 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5765 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5766 	if (cpu_has_load_perf_global_ctrl() &&
5767 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5768 		pr_err("PerfGlobCtl = 0x%016llx\n",
5769 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5770 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5771 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5772 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5773 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5774 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5775 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5776 		pr_err("InterruptStatus = %04x\n",
5777 		       vmcs_read16(GUEST_INTR_STATUS));
5778 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5779 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5780 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5781 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5782 
5783 	pr_err("*** Host State ***\n");
5784 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5785 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5786 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5787 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5788 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5789 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5790 	       vmcs_read16(HOST_TR_SELECTOR));
5791 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5792 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5793 	       vmcs_readl(HOST_TR_BASE));
5794 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5795 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5796 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5797 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5798 	       vmcs_readl(HOST_CR4));
5799 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5800 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5801 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5802 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5803 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
5804 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
5805 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
5806 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
5807 	if (cpu_has_load_perf_global_ctrl() &&
5808 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5809 		pr_err("PerfGlobCtl = 0x%016llx\n",
5810 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5811 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
5812 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
5813 
5814 	pr_err("*** Control State ***\n");
5815 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5816 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5817 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5818 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5819 	       vmcs_read32(EXCEPTION_BITMAP),
5820 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5821 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5822 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5823 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5824 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5825 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5826 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5827 	       vmcs_read32(VM_EXIT_INTR_INFO),
5828 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5829 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5830 	pr_err("        reason=%08x qualification=%016lx\n",
5831 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5832 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5833 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5834 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5835 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5836 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5837 		pr_err("TSC Multiplier = 0x%016llx\n",
5838 		       vmcs_read64(TSC_MULTIPLIER));
5839 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5840 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5841 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5842 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5843 		}
5844 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5845 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5846 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5847 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5848 	}
5849 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5850 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5851 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5852 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5853 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5854 		pr_err("PLE Gap=%08x Window=%08x\n",
5855 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5856 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5857 		pr_err("Virtual processor ID = 0x%04x\n",
5858 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5859 }
5860 
5861 /*
5862  * The guest has exited.  See if we can fix it or if we need userspace
5863  * assistance.
5864  */
5865 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5866 {
5867 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5868 	union vmx_exit_reason exit_reason = vmx->exit_reason;
5869 	u32 vectoring_info = vmx->idt_vectoring_info;
5870 	u16 exit_handler_index;
5871 
5872 	/*
5873 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5874 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5875 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5876 	 * mode as if vcpus is in root mode, the PML buffer must has been
5877 	 * flushed already.  Note, PML is never enabled in hardware while
5878 	 * running L2.
5879 	 */
5880 	if (enable_pml && !is_guest_mode(vcpu))
5881 		vmx_flush_pml_buffer(vcpu);
5882 
5883 	/*
5884 	 * KVM should never reach this point with a pending nested VM-Enter.
5885 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
5886 	 * invalid guest state should never happen as that means KVM knowingly
5887 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
5888 	 */
5889 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
5890 		return -EIO;
5891 
5892 	if (is_guest_mode(vcpu)) {
5893 		/*
5894 		 * PML is never enabled when running L2, bail immediately if a
5895 		 * PML full exit occurs as something is horribly wrong.
5896 		 */
5897 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
5898 			goto unexpected_vmexit;
5899 
5900 		/*
5901 		 * The host physical addresses of some pages of guest memory
5902 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5903 		 * Page). The CPU may write to these pages via their host
5904 		 * physical address while L2 is running, bypassing any
5905 		 * address-translation-based dirty tracking (e.g. EPT write
5906 		 * protection).
5907 		 *
5908 		 * Mark them dirty on every exit from L2 to prevent them from
5909 		 * getting out of sync with dirty tracking.
5910 		 */
5911 		nested_mark_vmcs12_pages_dirty(vcpu);
5912 
5913 		/*
5914 		 * Synthesize a triple fault if L2 state is invalid.  In normal
5915 		 * operation, nested VM-Enter rejects any attempt to enter L2
5916 		 * with invalid state.  However, those checks are skipped if
5917 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
5918 		 * L2 state is invalid, it means either L1 modified SMRAM state
5919 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
5920 		 * doing so is architecturally allowed in the RSM case, and is
5921 		 * the least awful solution for the userspace case without
5922 		 * risking false positives.
5923 		 */
5924 		if (vmx->emulation_required) {
5925 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
5926 			return 1;
5927 		}
5928 
5929 		if (nested_vmx_reflect_vmexit(vcpu))
5930 			return 1;
5931 	}
5932 
5933 	/* If guest state is invalid, start emulating.  L2 is handled above. */
5934 	if (vmx->emulation_required)
5935 		return handle_invalid_guest_state(vcpu);
5936 
5937 	if (exit_reason.failed_vmentry) {
5938 		dump_vmcs(vcpu);
5939 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5940 		vcpu->run->fail_entry.hardware_entry_failure_reason
5941 			= exit_reason.full;
5942 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5943 		return 0;
5944 	}
5945 
5946 	if (unlikely(vmx->fail)) {
5947 		dump_vmcs(vcpu);
5948 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5949 		vcpu->run->fail_entry.hardware_entry_failure_reason
5950 			= vmcs_read32(VM_INSTRUCTION_ERROR);
5951 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5952 		return 0;
5953 	}
5954 
5955 	/*
5956 	 * Note:
5957 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5958 	 * delivery event since it indicates guest is accessing MMIO.
5959 	 * The vm-exit can be triggered again after return to guest that
5960 	 * will cause infinite loop.
5961 	 */
5962 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5963 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
5964 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
5965 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
5966 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
5967 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
5968 		int ndata = 3;
5969 
5970 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5971 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5972 		vcpu->run->internal.data[0] = vectoring_info;
5973 		vcpu->run->internal.data[1] = exit_reason.full;
5974 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5975 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
5976 			vcpu->run->internal.data[ndata++] =
5977 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5978 		}
5979 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
5980 		vcpu->run->internal.ndata = ndata;
5981 		return 0;
5982 	}
5983 
5984 	if (unlikely(!enable_vnmi &&
5985 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
5986 		if (!vmx_interrupt_blocked(vcpu)) {
5987 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5988 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5989 			   vcpu->arch.nmi_pending) {
5990 			/*
5991 			 * This CPU don't support us in finding the end of an
5992 			 * NMI-blocked window if the guest runs with IRQs
5993 			 * disabled. So we pull the trigger after 1 s of
5994 			 * futile waiting, but inform the user about this.
5995 			 */
5996 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5997 			       "state on VCPU %d after 1 s timeout\n",
5998 			       __func__, vcpu->vcpu_id);
5999 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6000 		}
6001 	}
6002 
6003 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6004 		return 1;
6005 
6006 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6007 		goto unexpected_vmexit;
6008 #ifdef CONFIG_RETPOLINE
6009 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6010 		return kvm_emulate_wrmsr(vcpu);
6011 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6012 		return handle_preemption_timer(vcpu);
6013 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6014 		return handle_interrupt_window(vcpu);
6015 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6016 		return handle_external_interrupt(vcpu);
6017 	else if (exit_reason.basic == EXIT_REASON_HLT)
6018 		return kvm_emulate_halt(vcpu);
6019 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6020 		return handle_ept_misconfig(vcpu);
6021 #endif
6022 
6023 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6024 						kvm_vmx_max_exit_handlers);
6025 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6026 		goto unexpected_vmexit;
6027 
6028 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6029 
6030 unexpected_vmexit:
6031 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6032 		    exit_reason.full);
6033 	dump_vmcs(vcpu);
6034 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6035 	vcpu->run->internal.suberror =
6036 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6037 	vcpu->run->internal.ndata = 2;
6038 	vcpu->run->internal.data[0] = exit_reason.full;
6039 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6040 	return 0;
6041 }
6042 
6043 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6044 {
6045 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6046 
6047 	/*
6048 	 * Exit to user space when bus lock detected to inform that there is
6049 	 * a bus lock in guest.
6050 	 */
6051 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6052 		if (ret > 0)
6053 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6054 
6055 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6056 		return 0;
6057 	}
6058 	return ret;
6059 }
6060 
6061 /*
6062  * Software based L1D cache flush which is used when microcode providing
6063  * the cache control MSR is not loaded.
6064  *
6065  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6066  * flush it is required to read in 64 KiB because the replacement algorithm
6067  * is not exactly LRU. This could be sized at runtime via topology
6068  * information but as all relevant affected CPUs have 32KiB L1D cache size
6069  * there is no point in doing so.
6070  */
6071 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6072 {
6073 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6074 
6075 	/*
6076 	 * This code is only executed when the the flush mode is 'cond' or
6077 	 * 'always'
6078 	 */
6079 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6080 		bool flush_l1d;
6081 
6082 		/*
6083 		 * Clear the per-vcpu flush bit, it gets set again
6084 		 * either from vcpu_run() or from one of the unsafe
6085 		 * VMEXIT handlers.
6086 		 */
6087 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6088 		vcpu->arch.l1tf_flush_l1d = false;
6089 
6090 		/*
6091 		 * Clear the per-cpu flush bit, it gets set again from
6092 		 * the interrupt handlers.
6093 		 */
6094 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6095 		kvm_clear_cpu_l1tf_flush_l1d();
6096 
6097 		if (!flush_l1d)
6098 			return;
6099 	}
6100 
6101 	vcpu->stat.l1d_flush++;
6102 
6103 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6104 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6105 		return;
6106 	}
6107 
6108 	asm volatile(
6109 		/* First ensure the pages are in the TLB */
6110 		"xorl	%%eax, %%eax\n"
6111 		".Lpopulate_tlb:\n\t"
6112 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6113 		"addl	$4096, %%eax\n\t"
6114 		"cmpl	%%eax, %[size]\n\t"
6115 		"jne	.Lpopulate_tlb\n\t"
6116 		"xorl	%%eax, %%eax\n\t"
6117 		"cpuid\n\t"
6118 		/* Now fill the cache */
6119 		"xorl	%%eax, %%eax\n"
6120 		".Lfill_cache:\n"
6121 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6122 		"addl	$64, %%eax\n\t"
6123 		"cmpl	%%eax, %[size]\n\t"
6124 		"jne	.Lfill_cache\n\t"
6125 		"lfence\n"
6126 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6127 		    [size] "r" (size)
6128 		: "eax", "ebx", "ecx", "edx");
6129 }
6130 
6131 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6132 {
6133 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6134 	int tpr_threshold;
6135 
6136 	if (is_guest_mode(vcpu) &&
6137 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6138 		return;
6139 
6140 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6141 	if (is_guest_mode(vcpu))
6142 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6143 	else
6144 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6145 }
6146 
6147 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6148 {
6149 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6150 	u32 sec_exec_control;
6151 
6152 	if (!lapic_in_kernel(vcpu))
6153 		return;
6154 
6155 	if (!flexpriority_enabled &&
6156 	    !cpu_has_vmx_virtualize_x2apic_mode())
6157 		return;
6158 
6159 	/* Postpone execution until vmcs01 is the current VMCS. */
6160 	if (is_guest_mode(vcpu)) {
6161 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6162 		return;
6163 	}
6164 
6165 	sec_exec_control = secondary_exec_controls_get(vmx);
6166 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6167 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6168 
6169 	switch (kvm_get_apic_mode(vcpu)) {
6170 	case LAPIC_MODE_INVALID:
6171 		WARN_ONCE(true, "Invalid local APIC state");
6172 		break;
6173 	case LAPIC_MODE_DISABLED:
6174 		break;
6175 	case LAPIC_MODE_XAPIC:
6176 		if (flexpriority_enabled) {
6177 			sec_exec_control |=
6178 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6179 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6180 
6181 			/*
6182 			 * Flush the TLB, reloading the APIC access page will
6183 			 * only do so if its physical address has changed, but
6184 			 * the guest may have inserted a non-APIC mapping into
6185 			 * the TLB while the APIC access page was disabled.
6186 			 */
6187 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6188 		}
6189 		break;
6190 	case LAPIC_MODE_X2APIC:
6191 		if (cpu_has_vmx_virtualize_x2apic_mode())
6192 			sec_exec_control |=
6193 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6194 		break;
6195 	}
6196 	secondary_exec_controls_set(vmx, sec_exec_control);
6197 
6198 	vmx_update_msr_bitmap_x2apic(vcpu);
6199 }
6200 
6201 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6202 {
6203 	struct page *page;
6204 
6205 	/* Defer reload until vmcs01 is the current VMCS. */
6206 	if (is_guest_mode(vcpu)) {
6207 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6208 		return;
6209 	}
6210 
6211 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6212 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6213 		return;
6214 
6215 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6216 	if (is_error_page(page))
6217 		return;
6218 
6219 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6220 	vmx_flush_tlb_current(vcpu);
6221 
6222 	/*
6223 	 * Do not pin apic access page in memory, the MMU notifier
6224 	 * will call us again if it is migrated or swapped out.
6225 	 */
6226 	put_page(page);
6227 }
6228 
6229 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6230 {
6231 	u16 status;
6232 	u8 old;
6233 
6234 	if (max_isr == -1)
6235 		max_isr = 0;
6236 
6237 	status = vmcs_read16(GUEST_INTR_STATUS);
6238 	old = status >> 8;
6239 	if (max_isr != old) {
6240 		status &= 0xff;
6241 		status |= max_isr << 8;
6242 		vmcs_write16(GUEST_INTR_STATUS, status);
6243 	}
6244 }
6245 
6246 static void vmx_set_rvi(int vector)
6247 {
6248 	u16 status;
6249 	u8 old;
6250 
6251 	if (vector == -1)
6252 		vector = 0;
6253 
6254 	status = vmcs_read16(GUEST_INTR_STATUS);
6255 	old = (u8)status & 0xff;
6256 	if ((u8)vector != old) {
6257 		status &= ~0xff;
6258 		status |= (u8)vector;
6259 		vmcs_write16(GUEST_INTR_STATUS, status);
6260 	}
6261 }
6262 
6263 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6264 {
6265 	/*
6266 	 * When running L2, updating RVI is only relevant when
6267 	 * vmcs12 virtual-interrupt-delivery enabled.
6268 	 * However, it can be enabled only when L1 also
6269 	 * intercepts external-interrupts and in that case
6270 	 * we should not update vmcs02 RVI but instead intercept
6271 	 * interrupt. Therefore, do nothing when running L2.
6272 	 */
6273 	if (!is_guest_mode(vcpu))
6274 		vmx_set_rvi(max_irr);
6275 }
6276 
6277 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6278 {
6279 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6280 	int max_irr;
6281 	bool got_posted_interrupt;
6282 
6283 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6284 		return -EIO;
6285 
6286 	if (pi_test_on(&vmx->pi_desc)) {
6287 		pi_clear_on(&vmx->pi_desc);
6288 		/*
6289 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6290 		 * But on x86 this is just a compiler barrier anyway.
6291 		 */
6292 		smp_mb__after_atomic();
6293 		got_posted_interrupt =
6294 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6295 	} else {
6296 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6297 		got_posted_interrupt = false;
6298 	}
6299 
6300 	/*
6301 	 * Newly recognized interrupts are injected via either virtual interrupt
6302 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6303 	 * disabled in two cases:
6304 	 *
6305 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6306 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6307 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6308 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6309 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6310 	 *
6311 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6312 	 * attempt to post interrupts.  The posted interrupt vector will cause
6313 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6314 	 */
6315 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6316 		vmx_set_rvi(max_irr);
6317 	else if (got_posted_interrupt)
6318 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6319 
6320 	return max_irr;
6321 }
6322 
6323 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6324 {
6325 	if (!kvm_vcpu_apicv_active(vcpu))
6326 		return;
6327 
6328 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6329 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6330 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6331 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6332 }
6333 
6334 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6335 {
6336 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6337 
6338 	pi_clear_on(&vmx->pi_desc);
6339 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6340 }
6341 
6342 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6343 
6344 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6345 					unsigned long entry)
6346 {
6347 	kvm_before_interrupt(vcpu);
6348 	vmx_do_interrupt_nmi_irqoff(entry);
6349 	kvm_after_interrupt(vcpu);
6350 }
6351 
6352 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6353 {
6354 	const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6355 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6356 
6357 	/* if exit due to PF check for async PF */
6358 	if (is_page_fault(intr_info))
6359 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6360 	/* Handle machine checks before interrupts are enabled */
6361 	else if (is_machine_check(intr_info))
6362 		kvm_machine_check();
6363 	/* We need to handle NMIs before interrupts are enabled */
6364 	else if (is_nmi(intr_info))
6365 		handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6366 }
6367 
6368 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6369 {
6370 	u32 intr_info = vmx_get_intr_info(vcpu);
6371 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6372 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6373 
6374 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6375 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6376 		return;
6377 
6378 	handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6379 }
6380 
6381 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6382 {
6383 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6384 
6385 	if (vmx->emulation_required)
6386 		return;
6387 
6388 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6389 		handle_external_interrupt_irqoff(vcpu);
6390 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6391 		handle_exception_nmi_irqoff(vmx);
6392 }
6393 
6394 /*
6395  * The kvm parameter can be NULL (module initialization, or invocation before
6396  * VM creation). Be sure to check the kvm parameter before using it.
6397  */
6398 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6399 {
6400 	switch (index) {
6401 	case MSR_IA32_SMBASE:
6402 		/*
6403 		 * We cannot do SMM unless we can run the guest in big
6404 		 * real mode.
6405 		 */
6406 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6407 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6408 		return nested;
6409 	case MSR_AMD64_VIRT_SPEC_CTRL:
6410 	case MSR_AMD64_TSC_RATIO:
6411 		/* This is AMD only.  */
6412 		return false;
6413 	default:
6414 		return true;
6415 	}
6416 }
6417 
6418 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6419 {
6420 	u32 exit_intr_info;
6421 	bool unblock_nmi;
6422 	u8 vector;
6423 	bool idtv_info_valid;
6424 
6425 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6426 
6427 	if (enable_vnmi) {
6428 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6429 			return;
6430 
6431 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6432 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6433 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6434 		/*
6435 		 * SDM 3: 27.7.1.2 (September 2008)
6436 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6437 		 * a guest IRET fault.
6438 		 * SDM 3: 23.2.2 (September 2008)
6439 		 * Bit 12 is undefined in any of the following cases:
6440 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6441 		 *   information field.
6442 		 *  If the VM exit is due to a double fault.
6443 		 */
6444 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6445 		    vector != DF_VECTOR && !idtv_info_valid)
6446 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6447 				      GUEST_INTR_STATE_NMI);
6448 		else
6449 			vmx->loaded_vmcs->nmi_known_unmasked =
6450 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6451 				  & GUEST_INTR_STATE_NMI);
6452 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6453 		vmx->loaded_vmcs->vnmi_blocked_time +=
6454 			ktime_to_ns(ktime_sub(ktime_get(),
6455 					      vmx->loaded_vmcs->entry_time));
6456 }
6457 
6458 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6459 				      u32 idt_vectoring_info,
6460 				      int instr_len_field,
6461 				      int error_code_field)
6462 {
6463 	u8 vector;
6464 	int type;
6465 	bool idtv_info_valid;
6466 
6467 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6468 
6469 	vcpu->arch.nmi_injected = false;
6470 	kvm_clear_exception_queue(vcpu);
6471 	kvm_clear_interrupt_queue(vcpu);
6472 
6473 	if (!idtv_info_valid)
6474 		return;
6475 
6476 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6477 
6478 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6479 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6480 
6481 	switch (type) {
6482 	case INTR_TYPE_NMI_INTR:
6483 		vcpu->arch.nmi_injected = true;
6484 		/*
6485 		 * SDM 3: 27.7.1.2 (September 2008)
6486 		 * Clear bit "block by NMI" before VM entry if a NMI
6487 		 * delivery faulted.
6488 		 */
6489 		vmx_set_nmi_mask(vcpu, false);
6490 		break;
6491 	case INTR_TYPE_SOFT_EXCEPTION:
6492 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6493 		fallthrough;
6494 	case INTR_TYPE_HARD_EXCEPTION:
6495 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6496 			u32 err = vmcs_read32(error_code_field);
6497 			kvm_requeue_exception_e(vcpu, vector, err);
6498 		} else
6499 			kvm_requeue_exception(vcpu, vector);
6500 		break;
6501 	case INTR_TYPE_SOFT_INTR:
6502 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6503 		fallthrough;
6504 	case INTR_TYPE_EXT_INTR:
6505 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6506 		break;
6507 	default:
6508 		break;
6509 	}
6510 }
6511 
6512 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6513 {
6514 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6515 				  VM_EXIT_INSTRUCTION_LEN,
6516 				  IDT_VECTORING_ERROR_CODE);
6517 }
6518 
6519 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6520 {
6521 	__vmx_complete_interrupts(vcpu,
6522 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6523 				  VM_ENTRY_INSTRUCTION_LEN,
6524 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6525 
6526 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6527 }
6528 
6529 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6530 {
6531 	int i, nr_msrs;
6532 	struct perf_guest_switch_msr *msrs;
6533 
6534 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6535 	msrs = perf_guest_get_msrs(&nr_msrs);
6536 	if (!msrs)
6537 		return;
6538 
6539 	for (i = 0; i < nr_msrs; i++)
6540 		if (msrs[i].host == msrs[i].guest)
6541 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6542 		else
6543 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6544 					msrs[i].host, false);
6545 }
6546 
6547 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6548 {
6549 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6550 	u64 tscl;
6551 	u32 delta_tsc;
6552 
6553 	if (vmx->req_immediate_exit) {
6554 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6555 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6556 	} else if (vmx->hv_deadline_tsc != -1) {
6557 		tscl = rdtsc();
6558 		if (vmx->hv_deadline_tsc > tscl)
6559 			/* set_hv_timer ensures the delta fits in 32-bits */
6560 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6561 				cpu_preemption_timer_multi);
6562 		else
6563 			delta_tsc = 0;
6564 
6565 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6566 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6567 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6568 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6569 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6570 	}
6571 }
6572 
6573 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6574 {
6575 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6576 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6577 		vmcs_writel(HOST_RSP, host_rsp);
6578 	}
6579 }
6580 
6581 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6582 {
6583 	switch (to_vmx(vcpu)->exit_reason.basic) {
6584 	case EXIT_REASON_MSR_WRITE:
6585 		return handle_fastpath_set_msr_irqoff(vcpu);
6586 	case EXIT_REASON_PREEMPTION_TIMER:
6587 		return handle_fastpath_preemption_timer(vcpu);
6588 	default:
6589 		return EXIT_FASTPATH_NONE;
6590 	}
6591 }
6592 
6593 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6594 					struct vcpu_vmx *vmx)
6595 {
6596 	kvm_guest_enter_irqoff();
6597 
6598 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6599 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6600 		vmx_l1d_flush(vcpu);
6601 	else if (static_branch_unlikely(&mds_user_clear))
6602 		mds_clear_cpu_buffers();
6603 
6604 	if (vcpu->arch.cr2 != native_read_cr2())
6605 		native_write_cr2(vcpu->arch.cr2);
6606 
6607 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6608 				   vmx->loaded_vmcs->launched);
6609 
6610 	vcpu->arch.cr2 = native_read_cr2();
6611 
6612 	kvm_guest_exit_irqoff();
6613 }
6614 
6615 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6616 {
6617 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6618 	unsigned long cr3, cr4;
6619 
6620 	/* Record the guest's net vcpu time for enforced NMI injections. */
6621 	if (unlikely(!enable_vnmi &&
6622 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6623 		vmx->loaded_vmcs->entry_time = ktime_get();
6624 
6625 	/*
6626 	 * Don't enter VMX if guest state is invalid, let the exit handler
6627 	 * start emulation until we arrive back to a valid state.  Synthesize a
6628 	 * consistency check VM-Exit due to invalid guest state and bail.
6629 	 */
6630 	if (unlikely(vmx->emulation_required)) {
6631 		vmx->fail = 0;
6632 
6633 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
6634 		vmx->exit_reason.failed_vmentry = 1;
6635 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
6636 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
6637 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
6638 		vmx->exit_intr_info = 0;
6639 		return EXIT_FASTPATH_NONE;
6640 	}
6641 
6642 	trace_kvm_entry(vcpu);
6643 
6644 	if (vmx->ple_window_dirty) {
6645 		vmx->ple_window_dirty = false;
6646 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6647 	}
6648 
6649 	/*
6650 	 * We did this in prepare_switch_to_guest, because it needs to
6651 	 * be within srcu_read_lock.
6652 	 */
6653 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6654 
6655 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6656 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6657 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6658 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6659 
6660 	cr3 = __get_current_cr3_fast();
6661 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6662 		vmcs_writel(HOST_CR3, cr3);
6663 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6664 	}
6665 
6666 	cr4 = cr4_read_shadow();
6667 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6668 		vmcs_writel(HOST_CR4, cr4);
6669 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6670 	}
6671 
6672 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
6673 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
6674 		set_debugreg(vcpu->arch.dr6, 6);
6675 
6676 	/* When single-stepping over STI and MOV SS, we must clear the
6677 	 * corresponding interruptibility bits in the guest state. Otherwise
6678 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6679 	 * exceptions being set, but that's not correct for the guest debugging
6680 	 * case. */
6681 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6682 		vmx_set_interrupt_shadow(vcpu, 0);
6683 
6684 	kvm_load_guest_xsave_state(vcpu);
6685 
6686 	pt_guest_enter(vmx);
6687 
6688 	atomic_switch_perf_msrs(vmx);
6689 	if (intel_pmu_lbr_is_enabled(vcpu))
6690 		vmx_passthrough_lbr_msrs(vcpu);
6691 
6692 	if (enable_preemption_timer)
6693 		vmx_update_hv_timer(vcpu);
6694 
6695 	kvm_wait_lapic_expire(vcpu);
6696 
6697 	/*
6698 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6699 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6700 	 * is no need to worry about the conditional branch over the wrmsr
6701 	 * being speculatively taken.
6702 	 */
6703 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6704 
6705 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
6706 	vmx_vcpu_enter_exit(vcpu, vmx);
6707 
6708 	/*
6709 	 * We do not use IBRS in the kernel. If this vCPU has used the
6710 	 * SPEC_CTRL MSR it may have left it on; save the value and
6711 	 * turn it off. This is much more efficient than blindly adding
6712 	 * it to the atomic save/restore list. Especially as the former
6713 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6714 	 *
6715 	 * For non-nested case:
6716 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6717 	 * save it.
6718 	 *
6719 	 * For nested case:
6720 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6721 	 * save it.
6722 	 */
6723 	if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
6724 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6725 
6726 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6727 
6728 	/* All fields are clean at this point */
6729 	if (static_branch_unlikely(&enable_evmcs)) {
6730 		current_evmcs->hv_clean_fields |=
6731 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6732 
6733 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6734 	}
6735 
6736 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6737 	if (vmx->host_debugctlmsr)
6738 		update_debugctlmsr(vmx->host_debugctlmsr);
6739 
6740 #ifndef CONFIG_X86_64
6741 	/*
6742 	 * The sysexit path does not restore ds/es, so we must set them to
6743 	 * a reasonable value ourselves.
6744 	 *
6745 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6746 	 * function may be executed in interrupt context, which saves and
6747 	 * restore segments around it, nullifying its effect.
6748 	 */
6749 	loadsegment(ds, __USER_DS);
6750 	loadsegment(es, __USER_DS);
6751 #endif
6752 
6753 	vmx_register_cache_reset(vcpu);
6754 
6755 	pt_guest_exit(vmx);
6756 
6757 	kvm_load_host_xsave_state(vcpu);
6758 
6759 	if (is_guest_mode(vcpu)) {
6760 		/*
6761 		 * Track VMLAUNCH/VMRESUME that have made past guest state
6762 		 * checking.
6763 		 */
6764 		if (vmx->nested.nested_run_pending &&
6765 		    !vmx->exit_reason.failed_vmentry)
6766 			++vcpu->stat.nested_run;
6767 
6768 		vmx->nested.nested_run_pending = 0;
6769 	}
6770 
6771 	vmx->idt_vectoring_info = 0;
6772 
6773 	if (unlikely(vmx->fail)) {
6774 		vmx->exit_reason.full = 0xdead;
6775 		return EXIT_FASTPATH_NONE;
6776 	}
6777 
6778 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6779 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6780 		kvm_machine_check();
6781 
6782 	if (likely(!vmx->exit_reason.failed_vmentry))
6783 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6784 
6785 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
6786 
6787 	if (unlikely(vmx->exit_reason.failed_vmentry))
6788 		return EXIT_FASTPATH_NONE;
6789 
6790 	vmx->loaded_vmcs->launched = 1;
6791 
6792 	vmx_recover_nmi_blocking(vmx);
6793 	vmx_complete_interrupts(vmx);
6794 
6795 	if (is_guest_mode(vcpu))
6796 		return EXIT_FASTPATH_NONE;
6797 
6798 	return vmx_exit_handlers_fastpath(vcpu);
6799 }
6800 
6801 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6802 {
6803 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6804 
6805 	if (enable_pml)
6806 		vmx_destroy_pml_buffer(vmx);
6807 	free_vpid(vmx->vpid);
6808 	nested_vmx_free_vcpu(vcpu);
6809 	free_loaded_vmcs(vmx->loaded_vmcs);
6810 }
6811 
6812 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6813 {
6814 	struct vmx_uret_msr *tsx_ctrl;
6815 	struct vcpu_vmx *vmx;
6816 	int i, err;
6817 
6818 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6819 	vmx = to_vmx(vcpu);
6820 
6821 	err = -ENOMEM;
6822 
6823 	vmx->vpid = allocate_vpid();
6824 
6825 	/*
6826 	 * If PML is turned on, failure on enabling PML just results in failure
6827 	 * of creating the vcpu, therefore we can simplify PML logic (by
6828 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6829 	 * for the guest), etc.
6830 	 */
6831 	if (enable_pml) {
6832 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6833 		if (!vmx->pml_pg)
6834 			goto free_vpid;
6835 	}
6836 
6837 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
6838 		vmx->guest_uret_msrs[i].mask = -1ull;
6839 	if (boot_cpu_has(X86_FEATURE_RTM)) {
6840 		/*
6841 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
6842 		 * Keep the host value unchanged to avoid changing CPUID bits
6843 		 * under the host kernel's feet.
6844 		 */
6845 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
6846 		if (tsx_ctrl)
6847 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6848 	}
6849 
6850 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6851 	if (err < 0)
6852 		goto free_pml;
6853 
6854 	/*
6855 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
6856 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
6857 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
6858 	 * performance benefits from enabling it for vmcs02.
6859 	 */
6860 	if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) &&
6861 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
6862 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
6863 
6864 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
6865 	}
6866 
6867 	/* The MSR bitmap starts with all ones */
6868 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6869 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6870 
6871 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6872 #ifdef CONFIG_X86_64
6873 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6874 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6875 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6876 #endif
6877 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6878 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6879 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6880 	if (kvm_cstate_in_guest(vcpu->kvm)) {
6881 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6882 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6883 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6884 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6885 	}
6886 
6887 	vmx->loaded_vmcs = &vmx->vmcs01;
6888 
6889 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
6890 		err = alloc_apic_access_page(vcpu->kvm);
6891 		if (err)
6892 			goto free_vmcs;
6893 	}
6894 
6895 	if (enable_ept && !enable_unrestricted_guest) {
6896 		err = init_rmode_identity_map(vcpu->kvm);
6897 		if (err)
6898 			goto free_vmcs;
6899 	}
6900 
6901 	return 0;
6902 
6903 free_vmcs:
6904 	free_loaded_vmcs(vmx->loaded_vmcs);
6905 free_pml:
6906 	vmx_destroy_pml_buffer(vmx);
6907 free_vpid:
6908 	free_vpid(vmx->vpid);
6909 	return err;
6910 }
6911 
6912 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6913 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6914 
6915 static int vmx_vm_init(struct kvm *kvm)
6916 {
6917 	if (!ple_gap)
6918 		kvm->arch.pause_in_guest = true;
6919 
6920 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6921 		switch (l1tf_mitigation) {
6922 		case L1TF_MITIGATION_OFF:
6923 		case L1TF_MITIGATION_FLUSH_NOWARN:
6924 			/* 'I explicitly don't care' is set */
6925 			break;
6926 		case L1TF_MITIGATION_FLUSH:
6927 		case L1TF_MITIGATION_FLUSH_NOSMT:
6928 		case L1TF_MITIGATION_FULL:
6929 			/*
6930 			 * Warn upon starting the first VM in a potentially
6931 			 * insecure environment.
6932 			 */
6933 			if (sched_smt_active())
6934 				pr_warn_once(L1TF_MSG_SMT);
6935 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6936 				pr_warn_once(L1TF_MSG_L1D);
6937 			break;
6938 		case L1TF_MITIGATION_FULL_FORCE:
6939 			/* Flush is enforced */
6940 			break;
6941 		}
6942 	}
6943 	return 0;
6944 }
6945 
6946 static int __init vmx_check_processor_compat(void)
6947 {
6948 	struct vmcs_config vmcs_conf;
6949 	struct vmx_capability vmx_cap;
6950 
6951 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6952 	    !this_cpu_has(X86_FEATURE_VMX)) {
6953 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6954 		return -EIO;
6955 	}
6956 
6957 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6958 		return -EIO;
6959 	if (nested)
6960 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6961 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6962 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6963 				smp_processor_id());
6964 		return -EIO;
6965 	}
6966 	return 0;
6967 }
6968 
6969 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6970 {
6971 	u8 cache;
6972 	u64 ipat = 0;
6973 
6974 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
6975 	 * memory aliases with conflicting memory types and sometimes MCEs.
6976 	 * We have to be careful as to what are honored and when.
6977 	 *
6978 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
6979 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
6980 	 * This was historically the source of MCEs and we want to be
6981 	 * conservative.
6982 	 *
6983 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
6984 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
6985 	 * EPT memory type is set to WB.  The effective memory type is forced
6986 	 * WB.
6987 	 *
6988 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
6989 	 * EPT memory type is used to emulate guest CD/MTRR.
6990 	 */
6991 
6992 	if (is_mmio) {
6993 		cache = MTRR_TYPE_UNCACHABLE;
6994 		goto exit;
6995 	}
6996 
6997 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6998 		ipat = VMX_EPT_IPAT_BIT;
6999 		cache = MTRR_TYPE_WRBACK;
7000 		goto exit;
7001 	}
7002 
7003 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7004 		ipat = VMX_EPT_IPAT_BIT;
7005 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7006 			cache = MTRR_TYPE_WRBACK;
7007 		else
7008 			cache = MTRR_TYPE_UNCACHABLE;
7009 		goto exit;
7010 	}
7011 
7012 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7013 
7014 exit:
7015 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7016 }
7017 
7018 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7019 {
7020 	/*
7021 	 * These bits in the secondary execution controls field
7022 	 * are dynamic, the others are mostly based on the hypervisor
7023 	 * architecture and the guest's CPUID.  Do not touch the
7024 	 * dynamic bits.
7025 	 */
7026 	u32 mask =
7027 		SECONDARY_EXEC_SHADOW_VMCS |
7028 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7029 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7030 		SECONDARY_EXEC_DESC;
7031 
7032 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7033 
7034 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7035 }
7036 
7037 /*
7038  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7039  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7040  */
7041 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7042 {
7043 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7044 	struct kvm_cpuid_entry2 *entry;
7045 
7046 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7047 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7048 
7049 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7050 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7051 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7052 } while (0)
7053 
7054 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7055 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7056 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7057 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7058 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7059 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7060 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7061 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7062 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7063 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7064 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7065 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7066 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7067 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7068 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7069 
7070 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7071 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7072 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7073 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7074 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7075 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7076 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7077 
7078 #undef cr4_fixed1_update
7079 }
7080 
7081 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7082 {
7083 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7084 
7085 	if (kvm_mpx_supported()) {
7086 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7087 
7088 		if (mpx_enabled) {
7089 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7090 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7091 		} else {
7092 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7093 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7094 		}
7095 	}
7096 }
7097 
7098 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7099 {
7100 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7101 	struct kvm_cpuid_entry2 *best = NULL;
7102 	int i;
7103 
7104 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7105 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7106 		if (!best)
7107 			return;
7108 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7109 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7110 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7111 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7112 	}
7113 
7114 	/* Get the number of configurable Address Ranges for filtering */
7115 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7116 						PT_CAP_num_address_ranges);
7117 
7118 	/* Initialize and clear the no dependency bits */
7119 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7120 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7121 			RTIT_CTL_BRANCH_EN);
7122 
7123 	/*
7124 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7125 	 * will inject an #GP
7126 	 */
7127 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7128 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7129 
7130 	/*
7131 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7132 	 * PSBFreq can be set
7133 	 */
7134 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7135 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7136 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7137 
7138 	/*
7139 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7140 	 */
7141 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7142 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7143 					      RTIT_CTL_MTC_RANGE);
7144 
7145 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7146 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7147 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7148 							RTIT_CTL_PTW_EN);
7149 
7150 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7151 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7152 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7153 
7154 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7155 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7156 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7157 
7158 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7159 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7160 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7161 
7162 	/* unmask address range configure area */
7163 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7164 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7165 }
7166 
7167 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7168 {
7169 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7170 
7171 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7172 	vcpu->arch.xsaves_enabled = false;
7173 
7174 	vmx_setup_uret_msrs(vmx);
7175 
7176 	if (cpu_has_secondary_exec_ctrls())
7177 		vmcs_set_secondary_exec_control(vmx,
7178 						vmx_secondary_exec_control(vmx));
7179 
7180 	if (nested_vmx_allowed(vcpu))
7181 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7182 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7183 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7184 	else
7185 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7186 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7187 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7188 
7189 	if (nested_vmx_allowed(vcpu)) {
7190 		nested_vmx_cr_fixed1_bits_update(vcpu);
7191 		nested_vmx_entry_exit_ctls_update(vcpu);
7192 	}
7193 
7194 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7195 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7196 		update_intel_pt_cfg(vcpu);
7197 
7198 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7199 		struct vmx_uret_msr *msr;
7200 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7201 		if (msr) {
7202 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7203 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7204 		}
7205 	}
7206 
7207 	set_cr4_guest_host_mask(vmx);
7208 
7209 	vmx_write_encls_bitmap(vcpu, NULL);
7210 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7211 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7212 	else
7213 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7214 
7215 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7216 		vmx->msr_ia32_feature_control_valid_bits |=
7217 			FEAT_CTL_SGX_LC_ENABLED;
7218 	else
7219 		vmx->msr_ia32_feature_control_valid_bits &=
7220 			~FEAT_CTL_SGX_LC_ENABLED;
7221 
7222 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7223 	vmx_update_exception_bitmap(vcpu);
7224 }
7225 
7226 static __init void vmx_set_cpu_caps(void)
7227 {
7228 	kvm_set_cpu_caps();
7229 
7230 	/* CPUID 0x1 */
7231 	if (nested)
7232 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7233 
7234 	/* CPUID 0x7 */
7235 	if (kvm_mpx_supported())
7236 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7237 	if (!cpu_has_vmx_invpcid())
7238 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7239 	if (vmx_pt_mode_is_host_guest())
7240 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7241 
7242 	if (!enable_sgx) {
7243 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7244 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7245 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7246 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7247 	}
7248 
7249 	if (vmx_umip_emulated())
7250 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7251 
7252 	/* CPUID 0xD.1 */
7253 	supported_xss = 0;
7254 	if (!cpu_has_vmx_xsaves())
7255 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7256 
7257 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7258 	if (!cpu_has_vmx_rdtscp()) {
7259 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7260 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7261 	}
7262 
7263 	if (cpu_has_vmx_waitpkg())
7264 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7265 }
7266 
7267 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7268 {
7269 	to_vmx(vcpu)->req_immediate_exit = true;
7270 }
7271 
7272 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7273 				  struct x86_instruction_info *info)
7274 {
7275 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7276 	unsigned short port;
7277 	bool intercept;
7278 	int size;
7279 
7280 	if (info->intercept == x86_intercept_in ||
7281 	    info->intercept == x86_intercept_ins) {
7282 		port = info->src_val;
7283 		size = info->dst_bytes;
7284 	} else {
7285 		port = info->dst_val;
7286 		size = info->src_bytes;
7287 	}
7288 
7289 	/*
7290 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7291 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7292 	 * control.
7293 	 *
7294 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7295 	 */
7296 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7297 		intercept = nested_cpu_has(vmcs12,
7298 					   CPU_BASED_UNCOND_IO_EXITING);
7299 	else
7300 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7301 
7302 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7303 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7304 }
7305 
7306 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7307 			       struct x86_instruction_info *info,
7308 			       enum x86_intercept_stage stage,
7309 			       struct x86_exception *exception)
7310 {
7311 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7312 
7313 	switch (info->intercept) {
7314 	/*
7315 	 * RDPID causes #UD if disabled through secondary execution controls.
7316 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7317 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7318 	 */
7319 	case x86_intercept_rdpid:
7320 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7321 			exception->vector = UD_VECTOR;
7322 			exception->error_code_valid = false;
7323 			return X86EMUL_PROPAGATE_FAULT;
7324 		}
7325 		break;
7326 
7327 	case x86_intercept_in:
7328 	case x86_intercept_ins:
7329 	case x86_intercept_out:
7330 	case x86_intercept_outs:
7331 		return vmx_check_intercept_io(vcpu, info);
7332 
7333 	case x86_intercept_lgdt:
7334 	case x86_intercept_lidt:
7335 	case x86_intercept_lldt:
7336 	case x86_intercept_ltr:
7337 	case x86_intercept_sgdt:
7338 	case x86_intercept_sidt:
7339 	case x86_intercept_sldt:
7340 	case x86_intercept_str:
7341 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7342 			return X86EMUL_CONTINUE;
7343 
7344 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7345 		break;
7346 
7347 	/* TODO: check more intercepts... */
7348 	default:
7349 		break;
7350 	}
7351 
7352 	return X86EMUL_UNHANDLEABLE;
7353 }
7354 
7355 #ifdef CONFIG_X86_64
7356 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7357 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7358 				  u64 divisor, u64 *result)
7359 {
7360 	u64 low = a << shift, high = a >> (64 - shift);
7361 
7362 	/* To avoid the overflow on divq */
7363 	if (high >= divisor)
7364 		return 1;
7365 
7366 	/* Low hold the result, high hold rem which is discarded */
7367 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7368 	    "rm" (divisor), "0" (low), "1" (high));
7369 	*result = low;
7370 
7371 	return 0;
7372 }
7373 
7374 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7375 			    bool *expired)
7376 {
7377 	struct vcpu_vmx *vmx;
7378 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7379 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7380 
7381 	vmx = to_vmx(vcpu);
7382 	tscl = rdtsc();
7383 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7384 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7385 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7386 						    ktimer->timer_advance_ns);
7387 
7388 	if (delta_tsc > lapic_timer_advance_cycles)
7389 		delta_tsc -= lapic_timer_advance_cycles;
7390 	else
7391 		delta_tsc = 0;
7392 
7393 	/* Convert to host delta tsc if tsc scaling is enabled */
7394 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7395 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7396 				kvm_tsc_scaling_ratio_frac_bits,
7397 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7398 		return -ERANGE;
7399 
7400 	/*
7401 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7402 	 * we can't use the preemption timer.
7403 	 * It's possible that it fits on later vmentries, but checking
7404 	 * on every vmentry is costly so we just use an hrtimer.
7405 	 */
7406 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7407 		return -ERANGE;
7408 
7409 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7410 	*expired = !delta_tsc;
7411 	return 0;
7412 }
7413 
7414 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7415 {
7416 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7417 }
7418 #endif
7419 
7420 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7421 {
7422 	if (!kvm_pause_in_guest(vcpu->kvm))
7423 		shrink_ple_window(vcpu);
7424 }
7425 
7426 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7427 {
7428 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7429 
7430 	if (is_guest_mode(vcpu)) {
7431 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7432 		return;
7433 	}
7434 
7435 	/*
7436 	 * Note, cpu_dirty_logging_count can be changed concurrent with this
7437 	 * code, but in that case another update request will be made and so
7438 	 * the guest will never run with a stale PML value.
7439 	 */
7440 	if (vcpu->kvm->arch.cpu_dirty_logging_count)
7441 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7442 	else
7443 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7444 }
7445 
7446 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7447 {
7448 	if (pi_pre_block(vcpu))
7449 		return 1;
7450 
7451 	if (kvm_lapic_hv_timer_in_use(vcpu))
7452 		kvm_lapic_switch_to_sw_timer(vcpu);
7453 
7454 	return 0;
7455 }
7456 
7457 static void vmx_post_block(struct kvm_vcpu *vcpu)
7458 {
7459 	if (kvm_x86_ops.set_hv_timer)
7460 		kvm_lapic_switch_to_hv_timer(vcpu);
7461 
7462 	pi_post_block(vcpu);
7463 }
7464 
7465 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7466 {
7467 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7468 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7469 			FEAT_CTL_LMCE_ENABLED;
7470 	else
7471 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7472 			~FEAT_CTL_LMCE_ENABLED;
7473 }
7474 
7475 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7476 {
7477 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7478 	if (to_vmx(vcpu)->nested.nested_run_pending)
7479 		return -EBUSY;
7480 	return !is_smm(vcpu);
7481 }
7482 
7483 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7484 {
7485 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7486 
7487 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7488 	if (vmx->nested.smm.guest_mode)
7489 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7490 
7491 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7492 	vmx->nested.vmxon = false;
7493 	vmx_clear_hlt(vcpu);
7494 	return 0;
7495 }
7496 
7497 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7498 {
7499 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7500 	int ret;
7501 
7502 	if (vmx->nested.smm.vmxon) {
7503 		vmx->nested.vmxon = true;
7504 		vmx->nested.smm.vmxon = false;
7505 	}
7506 
7507 	if (vmx->nested.smm.guest_mode) {
7508 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7509 		if (ret)
7510 			return ret;
7511 
7512 		vmx->nested.smm.guest_mode = false;
7513 	}
7514 	return 0;
7515 }
7516 
7517 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7518 {
7519 	/* RSM will cause a vmexit anyway.  */
7520 }
7521 
7522 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7523 {
7524 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7525 }
7526 
7527 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7528 {
7529 	if (is_guest_mode(vcpu)) {
7530 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7531 
7532 		if (hrtimer_try_to_cancel(timer) == 1)
7533 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7534 	}
7535 }
7536 
7537 static void hardware_unsetup(void)
7538 {
7539 	kvm_set_posted_intr_wakeup_handler(NULL);
7540 
7541 	if (nested)
7542 		nested_vmx_hardware_unsetup();
7543 
7544 	free_kvm_area();
7545 }
7546 
7547 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7548 {
7549 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7550 			  BIT(APICV_INHIBIT_REASON_ABSENT) |
7551 			  BIT(APICV_INHIBIT_REASON_HYPERV) |
7552 			  BIT(APICV_INHIBIT_REASON_BLOCKIRQ);
7553 
7554 	return supported & BIT(bit);
7555 }
7556 
7557 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7558 	.name = "kvm_intel",
7559 
7560 	.hardware_unsetup = hardware_unsetup,
7561 
7562 	.hardware_enable = hardware_enable,
7563 	.hardware_disable = hardware_disable,
7564 	.cpu_has_accelerated_tpr = report_flexpriority,
7565 	.has_emulated_msr = vmx_has_emulated_msr,
7566 
7567 	.vm_size = sizeof(struct kvm_vmx),
7568 	.vm_init = vmx_vm_init,
7569 
7570 	.vcpu_create = vmx_create_vcpu,
7571 	.vcpu_free = vmx_free_vcpu,
7572 	.vcpu_reset = vmx_vcpu_reset,
7573 
7574 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7575 	.vcpu_load = vmx_vcpu_load,
7576 	.vcpu_put = vmx_vcpu_put,
7577 
7578 	.update_exception_bitmap = vmx_update_exception_bitmap,
7579 	.get_msr_feature = vmx_get_msr_feature,
7580 	.get_msr = vmx_get_msr,
7581 	.set_msr = vmx_set_msr,
7582 	.get_segment_base = vmx_get_segment_base,
7583 	.get_segment = vmx_get_segment,
7584 	.set_segment = vmx_set_segment,
7585 	.get_cpl = vmx_get_cpl,
7586 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7587 	.set_cr0 = vmx_set_cr0,
7588 	.is_valid_cr4 = vmx_is_valid_cr4,
7589 	.set_cr4 = vmx_set_cr4,
7590 	.set_efer = vmx_set_efer,
7591 	.get_idt = vmx_get_idt,
7592 	.set_idt = vmx_set_idt,
7593 	.get_gdt = vmx_get_gdt,
7594 	.set_gdt = vmx_set_gdt,
7595 	.set_dr7 = vmx_set_dr7,
7596 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7597 	.cache_reg = vmx_cache_reg,
7598 	.get_rflags = vmx_get_rflags,
7599 	.set_rflags = vmx_set_rflags,
7600 	.get_if_flag = vmx_get_if_flag,
7601 
7602 	.tlb_flush_all = vmx_flush_tlb_all,
7603 	.tlb_flush_current = vmx_flush_tlb_current,
7604 	.tlb_flush_gva = vmx_flush_tlb_gva,
7605 	.tlb_flush_guest = vmx_flush_tlb_guest,
7606 
7607 	.run = vmx_vcpu_run,
7608 	.handle_exit = vmx_handle_exit,
7609 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7610 	.update_emulated_instruction = vmx_update_emulated_instruction,
7611 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7612 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7613 	.patch_hypercall = vmx_patch_hypercall,
7614 	.set_irq = vmx_inject_irq,
7615 	.set_nmi = vmx_inject_nmi,
7616 	.queue_exception = vmx_queue_exception,
7617 	.cancel_injection = vmx_cancel_injection,
7618 	.interrupt_allowed = vmx_interrupt_allowed,
7619 	.nmi_allowed = vmx_nmi_allowed,
7620 	.get_nmi_mask = vmx_get_nmi_mask,
7621 	.set_nmi_mask = vmx_set_nmi_mask,
7622 	.enable_nmi_window = vmx_enable_nmi_window,
7623 	.enable_irq_window = vmx_enable_irq_window,
7624 	.update_cr8_intercept = vmx_update_cr8_intercept,
7625 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7626 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7627 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7628 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7629 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7630 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7631 	.hwapic_irr_update = vmx_hwapic_irr_update,
7632 	.hwapic_isr_update = vmx_hwapic_isr_update,
7633 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7634 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7635 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7636 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7637 
7638 	.set_tss_addr = vmx_set_tss_addr,
7639 	.set_identity_map_addr = vmx_set_identity_map_addr,
7640 	.get_mt_mask = vmx_get_mt_mask,
7641 
7642 	.get_exit_info = vmx_get_exit_info,
7643 
7644 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7645 
7646 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7647 
7648 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
7649 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
7650 	.write_tsc_offset = vmx_write_tsc_offset,
7651 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
7652 
7653 	.load_mmu_pgd = vmx_load_mmu_pgd,
7654 
7655 	.check_intercept = vmx_check_intercept,
7656 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7657 
7658 	.request_immediate_exit = vmx_request_immediate_exit,
7659 
7660 	.sched_in = vmx_sched_in,
7661 
7662 	.cpu_dirty_log_size = PML_ENTITY_NUM,
7663 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7664 
7665 	.pre_block = vmx_pre_block,
7666 	.post_block = vmx_post_block,
7667 
7668 	.pmu_ops = &intel_pmu_ops,
7669 	.nested_ops = &vmx_nested_ops,
7670 
7671 	.update_pi_irte = pi_update_irte,
7672 	.start_assignment = vmx_pi_start_assignment,
7673 
7674 #ifdef CONFIG_X86_64
7675 	.set_hv_timer = vmx_set_hv_timer,
7676 	.cancel_hv_timer = vmx_cancel_hv_timer,
7677 #endif
7678 
7679 	.setup_mce = vmx_setup_mce,
7680 
7681 	.smi_allowed = vmx_smi_allowed,
7682 	.enter_smm = vmx_enter_smm,
7683 	.leave_smm = vmx_leave_smm,
7684 	.enable_smi_window = vmx_enable_smi_window,
7685 
7686 	.can_emulate_instruction = vmx_can_emulate_instruction,
7687 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7688 	.migrate_timers = vmx_migrate_timers,
7689 
7690 	.msr_filter_changed = vmx_msr_filter_changed,
7691 	.complete_emulated_msr = kvm_complete_insn_gp,
7692 
7693 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7694 };
7695 
7696 static __init void vmx_setup_user_return_msrs(void)
7697 {
7698 
7699 	/*
7700 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7701 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
7702 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7703 	 * support this emulation, MSR_STAR is included in the list for i386,
7704 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
7705 	 * into hardware and is here purely for emulation purposes.
7706 	 */
7707 	const u32 vmx_uret_msrs_list[] = {
7708 	#ifdef CONFIG_X86_64
7709 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7710 	#endif
7711 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7712 		MSR_IA32_TSX_CTRL,
7713 	};
7714 	int i;
7715 
7716 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7717 
7718 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7719 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7720 }
7721 
7722 static __init int hardware_setup(void)
7723 {
7724 	unsigned long host_bndcfgs;
7725 	struct desc_ptr dt;
7726 	int r, ept_lpage_level;
7727 
7728 	store_idt(&dt);
7729 	host_idt_base = dt.address;
7730 
7731 	vmx_setup_user_return_msrs();
7732 
7733 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7734 		return -EIO;
7735 
7736 	if (boot_cpu_has(X86_FEATURE_NX))
7737 		kvm_enable_efer_bits(EFER_NX);
7738 
7739 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7740 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7741 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7742 	}
7743 
7744 	if (!cpu_has_vmx_mpx())
7745 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7746 				    XFEATURE_MASK_BNDCSR);
7747 
7748 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7749 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7750 		enable_vpid = 0;
7751 
7752 	if (!cpu_has_vmx_ept() ||
7753 	    !cpu_has_vmx_ept_4levels() ||
7754 	    !cpu_has_vmx_ept_mt_wb() ||
7755 	    !cpu_has_vmx_invept_global())
7756 		enable_ept = 0;
7757 
7758 	/* NX support is required for shadow paging. */
7759 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
7760 		pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
7761 		return -EOPNOTSUPP;
7762 	}
7763 
7764 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7765 		enable_ept_ad_bits = 0;
7766 
7767 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7768 		enable_unrestricted_guest = 0;
7769 
7770 	if (!cpu_has_vmx_flexpriority())
7771 		flexpriority_enabled = 0;
7772 
7773 	if (!cpu_has_virtual_nmis())
7774 		enable_vnmi = 0;
7775 
7776 	/*
7777 	 * set_apic_access_page_addr() is used to reload apic access
7778 	 * page upon invalidation.  No need to do anything if not
7779 	 * using the APIC_ACCESS_ADDR VMCS field.
7780 	 */
7781 	if (!flexpriority_enabled)
7782 		vmx_x86_ops.set_apic_access_page_addr = NULL;
7783 
7784 	if (!cpu_has_vmx_tpr_shadow())
7785 		vmx_x86_ops.update_cr8_intercept = NULL;
7786 
7787 #if IS_ENABLED(CONFIG_HYPERV)
7788 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7789 	    && enable_ept) {
7790 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7791 		vmx_x86_ops.tlb_remote_flush_with_range =
7792 				hv_remote_flush_tlb_with_range;
7793 	}
7794 #endif
7795 
7796 	if (!cpu_has_vmx_ple()) {
7797 		ple_gap = 0;
7798 		ple_window = 0;
7799 		ple_window_grow = 0;
7800 		ple_window_max = 0;
7801 		ple_window_shrink = 0;
7802 	}
7803 
7804 	if (!cpu_has_vmx_apicv())
7805 		enable_apicv = 0;
7806 	if (!enable_apicv)
7807 		vmx_x86_ops.sync_pir_to_irr = NULL;
7808 
7809 	if (cpu_has_vmx_tsc_scaling()) {
7810 		kvm_has_tsc_control = true;
7811 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7812 		kvm_tsc_scaling_ratio_frac_bits = 48;
7813 	}
7814 
7815 	kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7816 
7817 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7818 
7819 	if (enable_ept)
7820 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
7821 				      cpu_has_vmx_ept_execute_only());
7822 
7823 	if (!enable_ept)
7824 		ept_lpage_level = 0;
7825 	else if (cpu_has_vmx_ept_1g_page())
7826 		ept_lpage_level = PG_LEVEL_1G;
7827 	else if (cpu_has_vmx_ept_2m_page())
7828 		ept_lpage_level = PG_LEVEL_2M;
7829 	else
7830 		ept_lpage_level = PG_LEVEL_4K;
7831 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
7832 			  ept_lpage_level);
7833 
7834 	/*
7835 	 * Only enable PML when hardware supports PML feature, and both EPT
7836 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7837 	 */
7838 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7839 		enable_pml = 0;
7840 
7841 	if (!enable_pml)
7842 		vmx_x86_ops.cpu_dirty_log_size = 0;
7843 
7844 	if (!cpu_has_vmx_preemption_timer())
7845 		enable_preemption_timer = false;
7846 
7847 	if (enable_preemption_timer) {
7848 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
7849 		u64 vmx_msr;
7850 
7851 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7852 		cpu_preemption_timer_multi =
7853 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7854 
7855 		if (tsc_khz)
7856 			use_timer_freq = (u64)tsc_khz * 1000;
7857 		use_timer_freq >>= cpu_preemption_timer_multi;
7858 
7859 		/*
7860 		 * KVM "disables" the preemption timer by setting it to its max
7861 		 * value.  Don't use the timer if it might cause spurious exits
7862 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7863 		 */
7864 		if (use_timer_freq > 0xffffffffu / 10)
7865 			enable_preemption_timer = false;
7866 	}
7867 
7868 	if (!enable_preemption_timer) {
7869 		vmx_x86_ops.set_hv_timer = NULL;
7870 		vmx_x86_ops.cancel_hv_timer = NULL;
7871 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7872 	}
7873 
7874 	kvm_mce_cap_supported |= MCG_LMCE_P;
7875 
7876 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7877 		return -EINVAL;
7878 	if (!enable_ept || !cpu_has_vmx_intel_pt())
7879 		pt_mode = PT_MODE_SYSTEM;
7880 
7881 	setup_default_sgx_lepubkeyhash();
7882 
7883 	if (nested) {
7884 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7885 					   vmx_capability.ept);
7886 
7887 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7888 		if (r)
7889 			return r;
7890 	}
7891 
7892 	vmx_set_cpu_caps();
7893 
7894 	r = alloc_kvm_area();
7895 	if (r)
7896 		nested_vmx_hardware_unsetup();
7897 
7898 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7899 
7900 	return r;
7901 }
7902 
7903 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7904 	.cpu_has_kvm_support = cpu_has_kvm_support,
7905 	.disabled_by_bios = vmx_disabled_by_bios,
7906 	.check_processor_compatibility = vmx_check_processor_compat,
7907 	.hardware_setup = hardware_setup,
7908 
7909 	.runtime_ops = &vmx_x86_ops,
7910 };
7911 
7912 static void vmx_cleanup_l1d_flush(void)
7913 {
7914 	if (vmx_l1d_flush_pages) {
7915 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7916 		vmx_l1d_flush_pages = NULL;
7917 	}
7918 	/* Restore state so sysfs ignores VMX */
7919 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7920 }
7921 
7922 static void vmx_exit(void)
7923 {
7924 #ifdef CONFIG_KEXEC_CORE
7925 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7926 	synchronize_rcu();
7927 #endif
7928 
7929 	kvm_exit();
7930 
7931 #if IS_ENABLED(CONFIG_HYPERV)
7932 	if (static_branch_unlikely(&enable_evmcs)) {
7933 		int cpu;
7934 		struct hv_vp_assist_page *vp_ap;
7935 		/*
7936 		 * Reset everything to support using non-enlightened VMCS
7937 		 * access later (e.g. when we reload the module with
7938 		 * enlightened_vmcs=0)
7939 		 */
7940 		for_each_online_cpu(cpu) {
7941 			vp_ap =	hv_get_vp_assist_page(cpu);
7942 
7943 			if (!vp_ap)
7944 				continue;
7945 
7946 			vp_ap->nested_control.features.directhypercall = 0;
7947 			vp_ap->current_nested_vmcs = 0;
7948 			vp_ap->enlighten_vmentry = 0;
7949 		}
7950 
7951 		static_branch_disable(&enable_evmcs);
7952 	}
7953 #endif
7954 	vmx_cleanup_l1d_flush();
7955 
7956 	allow_smaller_maxphyaddr = false;
7957 }
7958 module_exit(vmx_exit);
7959 
7960 static int __init vmx_init(void)
7961 {
7962 	int r, cpu;
7963 
7964 #if IS_ENABLED(CONFIG_HYPERV)
7965 	/*
7966 	 * Enlightened VMCS usage should be recommended and the host needs
7967 	 * to support eVMCS v1 or above. We can also disable eVMCS support
7968 	 * with module parameter.
7969 	 */
7970 	if (enlightened_vmcs &&
7971 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7972 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7973 	    KVM_EVMCS_VERSION) {
7974 		int cpu;
7975 
7976 		/* Check that we have assist pages on all online CPUs */
7977 		for_each_online_cpu(cpu) {
7978 			if (!hv_get_vp_assist_page(cpu)) {
7979 				enlightened_vmcs = false;
7980 				break;
7981 			}
7982 		}
7983 
7984 		if (enlightened_vmcs) {
7985 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7986 			static_branch_enable(&enable_evmcs);
7987 		}
7988 
7989 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7990 			vmx_x86_ops.enable_direct_tlbflush
7991 				= hv_enable_direct_tlbflush;
7992 
7993 	} else {
7994 		enlightened_vmcs = false;
7995 	}
7996 #endif
7997 
7998 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
7999 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8000 	if (r)
8001 		return r;
8002 
8003 	/*
8004 	 * Must be called after kvm_init() so enable_ept is properly set
8005 	 * up. Hand the parameter mitigation value in which was stored in
8006 	 * the pre module init parser. If no parameter was given, it will
8007 	 * contain 'auto' which will be turned into the default 'cond'
8008 	 * mitigation mode.
8009 	 */
8010 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8011 	if (r) {
8012 		vmx_exit();
8013 		return r;
8014 	}
8015 
8016 	for_each_possible_cpu(cpu) {
8017 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8018 
8019 		pi_init_cpu(cpu);
8020 	}
8021 
8022 #ifdef CONFIG_KEXEC_CORE
8023 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8024 			   crash_vmclear_local_loaded_vmcss);
8025 #endif
8026 	vmx_check_vmcs12_offsets();
8027 
8028 	/*
8029 	 * Shadow paging doesn't have a (further) performance penalty
8030 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8031 	 * by default
8032 	 */
8033 	if (!enable_ept)
8034 		allow_smaller_maxphyaddr = true;
8035 
8036 	return 0;
8037 }
8038 module_init(vmx_init);
8039