1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <linux/highmem.h> 17 #include <linux/hrtimer.h> 18 #include <linux/kernel.h> 19 #include <linux/kvm_host.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mm.h> 24 #include <linux/objtool.h> 25 #include <linux/sched.h> 26 #include <linux/sched/smt.h> 27 #include <linux/slab.h> 28 #include <linux/tboot.h> 29 #include <linux/trace_events.h> 30 #include <linux/entry-kvm.h> 31 32 #include <asm/apic.h> 33 #include <asm/asm.h> 34 #include <asm/cpu.h> 35 #include <asm/cpu_device_id.h> 36 #include <asm/debugreg.h> 37 #include <asm/desc.h> 38 #include <asm/fpu/api.h> 39 #include <asm/fpu/xstate.h> 40 #include <asm/idtentry.h> 41 #include <asm/io.h> 42 #include <asm/irq_remapping.h> 43 #include <asm/kexec.h> 44 #include <asm/perf_event.h> 45 #include <asm/mmu_context.h> 46 #include <asm/mshyperv.h> 47 #include <asm/mwait.h> 48 #include <asm/spec-ctrl.h> 49 #include <asm/virtext.h> 50 #include <asm/vmx.h> 51 52 #include "capabilities.h" 53 #include "cpuid.h" 54 #include "evmcs.h" 55 #include "hyperv.h" 56 #include "kvm_onhyperv.h" 57 #include "irq.h" 58 #include "kvm_cache_regs.h" 59 #include "lapic.h" 60 #include "mmu.h" 61 #include "nested.h" 62 #include "pmu.h" 63 #include "sgx.h" 64 #include "trace.h" 65 #include "vmcs.h" 66 #include "vmcs12.h" 67 #include "vmx.h" 68 #include "x86.h" 69 70 MODULE_AUTHOR("Qumranet"); 71 MODULE_LICENSE("GPL"); 72 73 #ifdef MODULE 74 static const struct x86_cpu_id vmx_cpu_id[] = { 75 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 76 {} 77 }; 78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 79 #endif 80 81 bool __read_mostly enable_vpid = 1; 82 module_param_named(vpid, enable_vpid, bool, 0444); 83 84 static bool __read_mostly enable_vnmi = 1; 85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 86 87 bool __read_mostly flexpriority_enabled = 1; 88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 89 90 bool __read_mostly enable_ept = 1; 91 module_param_named(ept, enable_ept, bool, S_IRUGO); 92 93 bool __read_mostly enable_unrestricted_guest = 1; 94 module_param_named(unrestricted_guest, 95 enable_unrestricted_guest, bool, S_IRUGO); 96 97 bool __read_mostly enable_ept_ad_bits = 1; 98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 99 100 static bool __read_mostly emulate_invalid_guest_state = true; 101 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 102 103 static bool __read_mostly fasteoi = 1; 104 module_param(fasteoi, bool, S_IRUGO); 105 106 module_param(enable_apicv, bool, S_IRUGO); 107 108 bool __read_mostly enable_ipiv = true; 109 module_param(enable_ipiv, bool, 0444); 110 111 /* 112 * If nested=1, nested virtualization is supported, i.e., guests may use 113 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 114 * use VMX instructions. 115 */ 116 static bool __read_mostly nested = 1; 117 module_param(nested, bool, S_IRUGO); 118 119 bool __read_mostly enable_pml = 1; 120 module_param_named(pml, enable_pml, bool, S_IRUGO); 121 122 static bool __read_mostly error_on_inconsistent_vmcs_config = true; 123 module_param(error_on_inconsistent_vmcs_config, bool, 0444); 124 125 static bool __read_mostly dump_invalid_vmcs = 0; 126 module_param(dump_invalid_vmcs, bool, 0644); 127 128 #define MSR_BITMAP_MODE_X2APIC 1 129 #define MSR_BITMAP_MODE_X2APIC_APICV 2 130 131 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 132 133 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 134 static int __read_mostly cpu_preemption_timer_multi; 135 static bool __read_mostly enable_preemption_timer = 1; 136 #ifdef CONFIG_X86_64 137 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 138 #endif 139 140 extern bool __read_mostly allow_smaller_maxphyaddr; 141 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 142 143 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 144 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 145 #define KVM_VM_CR0_ALWAYS_ON \ 146 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 147 148 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 149 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 150 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 151 152 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 153 154 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 155 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 156 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 157 RTIT_STATUS_BYTECNT)) 158 159 /* 160 * List of MSRs that can be directly passed to the guest. 161 * In addition to these x2apic and PT MSRs are handled specially. 162 */ 163 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 164 MSR_IA32_SPEC_CTRL, 165 MSR_IA32_PRED_CMD, 166 MSR_IA32_TSC, 167 #ifdef CONFIG_X86_64 168 MSR_FS_BASE, 169 MSR_GS_BASE, 170 MSR_KERNEL_GS_BASE, 171 MSR_IA32_XFD, 172 MSR_IA32_XFD_ERR, 173 #endif 174 MSR_IA32_SYSENTER_CS, 175 MSR_IA32_SYSENTER_ESP, 176 MSR_IA32_SYSENTER_EIP, 177 MSR_CORE_C1_RES, 178 MSR_CORE_C3_RESIDENCY, 179 MSR_CORE_C6_RESIDENCY, 180 MSR_CORE_C7_RESIDENCY, 181 }; 182 183 /* 184 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 185 * ple_gap: upper bound on the amount of time between two successive 186 * executions of PAUSE in a loop. Also indicate if ple enabled. 187 * According to test, this time is usually smaller than 128 cycles. 188 * ple_window: upper bound on the amount of time a guest is allowed to execute 189 * in a PAUSE loop. Tests indicate that most spinlocks are held for 190 * less than 2^12 cycles 191 * Time is measured based on a counter that runs at the same rate as the TSC, 192 * refer SDM volume 3b section 21.6.13 & 22.1.3. 193 */ 194 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 195 module_param(ple_gap, uint, 0444); 196 197 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 198 module_param(ple_window, uint, 0444); 199 200 /* Default doubles per-vcpu window every exit. */ 201 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 202 module_param(ple_window_grow, uint, 0444); 203 204 /* Default resets per-vcpu window every exit to ple_window. */ 205 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 206 module_param(ple_window_shrink, uint, 0444); 207 208 /* Default is to compute the maximum so we can never overflow. */ 209 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 210 module_param(ple_window_max, uint, 0444); 211 212 /* Default is SYSTEM mode, 1 for host-guest mode */ 213 int __read_mostly pt_mode = PT_MODE_SYSTEM; 214 module_param(pt_mode, int, S_IRUGO); 215 216 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 217 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 218 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 219 220 /* Storage for pre module init parameter parsing */ 221 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 222 223 static const struct { 224 const char *option; 225 bool for_parse; 226 } vmentry_l1d_param[] = { 227 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 228 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 229 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 230 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 231 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 232 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 233 }; 234 235 #define L1D_CACHE_ORDER 4 236 static void *vmx_l1d_flush_pages; 237 238 /* Control for disabling CPU Fill buffer clear */ 239 static bool __read_mostly vmx_fb_clear_ctrl_available; 240 241 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 242 { 243 struct page *page; 244 unsigned int i; 245 246 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 247 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 248 return 0; 249 } 250 251 if (!enable_ept) { 252 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 253 return 0; 254 } 255 256 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 257 u64 msr; 258 259 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 260 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 261 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 262 return 0; 263 } 264 } 265 266 /* If set to auto use the default l1tf mitigation method */ 267 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 268 switch (l1tf_mitigation) { 269 case L1TF_MITIGATION_OFF: 270 l1tf = VMENTER_L1D_FLUSH_NEVER; 271 break; 272 case L1TF_MITIGATION_FLUSH_NOWARN: 273 case L1TF_MITIGATION_FLUSH: 274 case L1TF_MITIGATION_FLUSH_NOSMT: 275 l1tf = VMENTER_L1D_FLUSH_COND; 276 break; 277 case L1TF_MITIGATION_FULL: 278 case L1TF_MITIGATION_FULL_FORCE: 279 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 280 break; 281 } 282 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 283 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 284 } 285 286 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 287 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 288 /* 289 * This allocation for vmx_l1d_flush_pages is not tied to a VM 290 * lifetime and so should not be charged to a memcg. 291 */ 292 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 293 if (!page) 294 return -ENOMEM; 295 vmx_l1d_flush_pages = page_address(page); 296 297 /* 298 * Initialize each page with a different pattern in 299 * order to protect against KSM in the nested 300 * virtualization case. 301 */ 302 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 303 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 304 PAGE_SIZE); 305 } 306 } 307 308 l1tf_vmx_mitigation = l1tf; 309 310 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 311 static_branch_enable(&vmx_l1d_should_flush); 312 else 313 static_branch_disable(&vmx_l1d_should_flush); 314 315 if (l1tf == VMENTER_L1D_FLUSH_COND) 316 static_branch_enable(&vmx_l1d_flush_cond); 317 else 318 static_branch_disable(&vmx_l1d_flush_cond); 319 return 0; 320 } 321 322 static int vmentry_l1d_flush_parse(const char *s) 323 { 324 unsigned int i; 325 326 if (s) { 327 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 328 if (vmentry_l1d_param[i].for_parse && 329 sysfs_streq(s, vmentry_l1d_param[i].option)) 330 return i; 331 } 332 } 333 return -EINVAL; 334 } 335 336 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 337 { 338 int l1tf, ret; 339 340 l1tf = vmentry_l1d_flush_parse(s); 341 if (l1tf < 0) 342 return l1tf; 343 344 if (!boot_cpu_has(X86_BUG_L1TF)) 345 return 0; 346 347 /* 348 * Has vmx_init() run already? If not then this is the pre init 349 * parameter parsing. In that case just store the value and let 350 * vmx_init() do the proper setup after enable_ept has been 351 * established. 352 */ 353 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 354 vmentry_l1d_flush_param = l1tf; 355 return 0; 356 } 357 358 mutex_lock(&vmx_l1d_flush_mutex); 359 ret = vmx_setup_l1d_flush(l1tf); 360 mutex_unlock(&vmx_l1d_flush_mutex); 361 return ret; 362 } 363 364 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 365 { 366 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 367 return sprintf(s, "???\n"); 368 369 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 370 } 371 372 static void vmx_setup_fb_clear_ctrl(void) 373 { 374 u64 msr; 375 376 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) && 377 !boot_cpu_has_bug(X86_BUG_MDS) && 378 !boot_cpu_has_bug(X86_BUG_TAA)) { 379 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 380 if (msr & ARCH_CAP_FB_CLEAR_CTRL) 381 vmx_fb_clear_ctrl_available = true; 382 } 383 } 384 385 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) 386 { 387 u64 msr; 388 389 if (!vmx->disable_fb_clear) 390 return; 391 392 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL); 393 msr |= FB_CLEAR_DIS; 394 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr); 395 /* Cache the MSR value to avoid reading it later */ 396 vmx->msr_ia32_mcu_opt_ctrl = msr; 397 } 398 399 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) 400 { 401 if (!vmx->disable_fb_clear) 402 return; 403 404 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; 405 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); 406 } 407 408 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) 409 { 410 vmx->disable_fb_clear = vmx_fb_clear_ctrl_available; 411 412 /* 413 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS 414 * at VMEntry. Skip the MSR read/write when a guest has no use case to 415 * execute VERW. 416 */ 417 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || 418 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && 419 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && 420 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && 421 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && 422 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) 423 vmx->disable_fb_clear = false; 424 } 425 426 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 427 .set = vmentry_l1d_flush_set, 428 .get = vmentry_l1d_flush_get, 429 }; 430 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 431 432 static u32 vmx_segment_access_rights(struct kvm_segment *var); 433 434 void vmx_vmexit(void); 435 436 #define vmx_insn_failed(fmt...) \ 437 do { \ 438 WARN_ONCE(1, fmt); \ 439 pr_warn_ratelimited(fmt); \ 440 } while (0) 441 442 void vmread_error(unsigned long field, bool fault) 443 { 444 if (fault) 445 kvm_spurious_fault(); 446 else 447 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field); 448 } 449 450 noinline void vmwrite_error(unsigned long field, unsigned long value) 451 { 452 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%u\n", 453 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 454 } 455 456 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 457 { 458 vmx_insn_failed("kvm: vmclear failed: %p/%llx err=%u\n", 459 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 460 } 461 462 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 463 { 464 vmx_insn_failed("kvm: vmptrld failed: %p/%llx err=%u\n", 465 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 466 } 467 468 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 469 { 470 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 471 ext, vpid, gva); 472 } 473 474 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 475 { 476 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 477 ext, eptp, gpa); 478 } 479 480 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 481 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 482 /* 483 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 484 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 485 */ 486 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 487 488 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 489 static DEFINE_SPINLOCK(vmx_vpid_lock); 490 491 struct vmcs_config vmcs_config; 492 struct vmx_capability vmx_capability; 493 494 #define VMX_SEGMENT_FIELD(seg) \ 495 [VCPU_SREG_##seg] = { \ 496 .selector = GUEST_##seg##_SELECTOR, \ 497 .base = GUEST_##seg##_BASE, \ 498 .limit = GUEST_##seg##_LIMIT, \ 499 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 500 } 501 502 static const struct kvm_vmx_segment_field { 503 unsigned selector; 504 unsigned base; 505 unsigned limit; 506 unsigned ar_bytes; 507 } kvm_vmx_segment_fields[] = { 508 VMX_SEGMENT_FIELD(CS), 509 VMX_SEGMENT_FIELD(DS), 510 VMX_SEGMENT_FIELD(ES), 511 VMX_SEGMENT_FIELD(FS), 512 VMX_SEGMENT_FIELD(GS), 513 VMX_SEGMENT_FIELD(SS), 514 VMX_SEGMENT_FIELD(TR), 515 VMX_SEGMENT_FIELD(LDTR), 516 }; 517 518 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 519 { 520 vmx->segment_cache.bitmask = 0; 521 } 522 523 static unsigned long host_idt_base; 524 525 #if IS_ENABLED(CONFIG_HYPERV) 526 static bool __read_mostly enlightened_vmcs = true; 527 module_param(enlightened_vmcs, bool, 0444); 528 529 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu) 530 { 531 struct hv_enlightened_vmcs *evmcs; 532 struct hv_partition_assist_pg **p_hv_pa_pg = 533 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 534 /* 535 * Synthetic VM-Exit is not enabled in current code and so All 536 * evmcs in singe VM shares same assist page. 537 */ 538 if (!*p_hv_pa_pg) 539 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 540 541 if (!*p_hv_pa_pg) 542 return -ENOMEM; 543 544 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 545 546 evmcs->partition_assist_page = 547 __pa(*p_hv_pa_pg); 548 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 549 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 550 551 return 0; 552 } 553 554 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 555 556 /* 557 * Comment's format: document - errata name - stepping - processor name. 558 * Refer from 559 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 560 */ 561 static u32 vmx_preemption_cpu_tfms[] = { 562 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 563 0x000206E6, 564 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 565 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 566 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 567 0x00020652, 568 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 569 0x00020655, 570 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 571 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 572 /* 573 * 320767.pdf - AAP86 - B1 - 574 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 575 */ 576 0x000106E5, 577 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 578 0x000106A0, 579 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 580 0x000106A1, 581 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 582 0x000106A4, 583 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 584 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 585 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 586 0x000106A5, 587 /* Xeon E3-1220 V2 */ 588 0x000306A8, 589 }; 590 591 static inline bool cpu_has_broken_vmx_preemption_timer(void) 592 { 593 u32 eax = cpuid_eax(0x00000001), i; 594 595 /* Clear the reserved bits */ 596 eax &= ~(0x3U << 14 | 0xfU << 28); 597 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 598 if (eax == vmx_preemption_cpu_tfms[i]) 599 return true; 600 601 return false; 602 } 603 604 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 605 { 606 return flexpriority_enabled && lapic_in_kernel(vcpu); 607 } 608 609 static int possible_passthrough_msr_slot(u32 msr) 610 { 611 u32 i; 612 613 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 614 if (vmx_possible_passthrough_msrs[i] == msr) 615 return i; 616 617 return -ENOENT; 618 } 619 620 static bool is_valid_passthrough_msr(u32 msr) 621 { 622 bool r; 623 624 switch (msr) { 625 case 0x800 ... 0x8ff: 626 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 627 return true; 628 case MSR_IA32_RTIT_STATUS: 629 case MSR_IA32_RTIT_OUTPUT_BASE: 630 case MSR_IA32_RTIT_OUTPUT_MASK: 631 case MSR_IA32_RTIT_CR3_MATCH: 632 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 633 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 634 case MSR_LBR_SELECT: 635 case MSR_LBR_TOS: 636 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 637 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 638 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 639 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 640 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 641 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 642 return true; 643 } 644 645 r = possible_passthrough_msr_slot(msr) != -ENOENT; 646 647 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 648 649 return r; 650 } 651 652 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 653 { 654 int i; 655 656 i = kvm_find_user_return_msr(msr); 657 if (i >= 0) 658 return &vmx->guest_uret_msrs[i]; 659 return NULL; 660 } 661 662 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 663 struct vmx_uret_msr *msr, u64 data) 664 { 665 unsigned int slot = msr - vmx->guest_uret_msrs; 666 int ret = 0; 667 668 if (msr->load_into_hardware) { 669 preempt_disable(); 670 ret = kvm_set_user_return_msr(slot, data, msr->mask); 671 preempt_enable(); 672 } 673 if (!ret) 674 msr->data = data; 675 return ret; 676 } 677 678 #ifdef CONFIG_KEXEC_CORE 679 static void crash_vmclear_local_loaded_vmcss(void) 680 { 681 int cpu = raw_smp_processor_id(); 682 struct loaded_vmcs *v; 683 684 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 685 loaded_vmcss_on_cpu_link) 686 vmcs_clear(v->vmcs); 687 } 688 #endif /* CONFIG_KEXEC_CORE */ 689 690 static void __loaded_vmcs_clear(void *arg) 691 { 692 struct loaded_vmcs *loaded_vmcs = arg; 693 int cpu = raw_smp_processor_id(); 694 695 if (loaded_vmcs->cpu != cpu) 696 return; /* vcpu migration can race with cpu offline */ 697 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 698 per_cpu(current_vmcs, cpu) = NULL; 699 700 vmcs_clear(loaded_vmcs->vmcs); 701 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 702 vmcs_clear(loaded_vmcs->shadow_vmcs); 703 704 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 705 706 /* 707 * Ensure all writes to loaded_vmcs, including deleting it from its 708 * current percpu list, complete before setting loaded_vmcs->cpu to 709 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first 710 * and add loaded_vmcs to its percpu list before it's deleted from this 711 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 712 */ 713 smp_wmb(); 714 715 loaded_vmcs->cpu = -1; 716 loaded_vmcs->launched = 0; 717 } 718 719 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 720 { 721 int cpu = loaded_vmcs->cpu; 722 723 if (cpu != -1) 724 smp_call_function_single(cpu, 725 __loaded_vmcs_clear, loaded_vmcs, 1); 726 } 727 728 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 729 unsigned field) 730 { 731 bool ret; 732 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 733 734 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 735 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 736 vmx->segment_cache.bitmask = 0; 737 } 738 ret = vmx->segment_cache.bitmask & mask; 739 vmx->segment_cache.bitmask |= mask; 740 return ret; 741 } 742 743 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 744 { 745 u16 *p = &vmx->segment_cache.seg[seg].selector; 746 747 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 748 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 749 return *p; 750 } 751 752 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 753 { 754 ulong *p = &vmx->segment_cache.seg[seg].base; 755 756 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 757 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 758 return *p; 759 } 760 761 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 762 { 763 u32 *p = &vmx->segment_cache.seg[seg].limit; 764 765 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 766 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 767 return *p; 768 } 769 770 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 771 { 772 u32 *p = &vmx->segment_cache.seg[seg].ar; 773 774 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 775 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 776 return *p; 777 } 778 779 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 780 { 781 u32 eb; 782 783 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 784 (1u << DB_VECTOR) | (1u << AC_VECTOR); 785 /* 786 * Guest access to VMware backdoor ports could legitimately 787 * trigger #GP because of TSS I/O permission bitmap. 788 * We intercept those #GP and allow access to them anyway 789 * as VMware does. 790 */ 791 if (enable_vmware_backdoor) 792 eb |= (1u << GP_VECTOR); 793 if ((vcpu->guest_debug & 794 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 795 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 796 eb |= 1u << BP_VECTOR; 797 if (to_vmx(vcpu)->rmode.vm86_active) 798 eb = ~0; 799 if (!vmx_need_pf_intercept(vcpu)) 800 eb &= ~(1u << PF_VECTOR); 801 802 /* When we are running a nested L2 guest and L1 specified for it a 803 * certain exception bitmap, we must trap the same exceptions and pass 804 * them to L1. When running L2, we will only handle the exceptions 805 * specified above if L1 did not want them. 806 */ 807 if (is_guest_mode(vcpu)) 808 eb |= get_vmcs12(vcpu)->exception_bitmap; 809 else { 810 int mask = 0, match = 0; 811 812 if (enable_ept && (eb & (1u << PF_VECTOR))) { 813 /* 814 * If EPT is enabled, #PF is currently only intercepted 815 * if MAXPHYADDR is smaller on the guest than on the 816 * host. In that case we only care about present, 817 * non-reserved faults. For vmcs02, however, PFEC_MASK 818 * and PFEC_MATCH are set in prepare_vmcs02_rare. 819 */ 820 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 821 match = PFERR_PRESENT_MASK; 822 } 823 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 824 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 825 } 826 827 /* 828 * Disabling xfd interception indicates that dynamic xfeatures 829 * might be used in the guest. Always trap #NM in this case 830 * to save guest xfd_err timely. 831 */ 832 if (vcpu->arch.xfd_no_write_intercept) 833 eb |= (1u << NM_VECTOR); 834 835 vmcs_write32(EXCEPTION_BITMAP, eb); 836 } 837 838 /* 839 * Check if MSR is intercepted for currently loaded MSR bitmap. 840 */ 841 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 842 { 843 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 844 return true; 845 846 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); 847 } 848 849 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) 850 { 851 unsigned int flags = 0; 852 853 if (vmx->loaded_vmcs->launched) 854 flags |= VMX_RUN_VMRESUME; 855 856 /* 857 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free 858 * to change it directly without causing a vmexit. In that case read 859 * it after vmexit and store it in vmx->spec_ctrl. 860 */ 861 if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))) 862 flags |= VMX_RUN_SAVE_SPEC_CTRL; 863 864 return flags; 865 } 866 867 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 868 unsigned long entry, unsigned long exit) 869 { 870 vm_entry_controls_clearbit(vmx, entry); 871 vm_exit_controls_clearbit(vmx, exit); 872 } 873 874 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 875 { 876 unsigned int i; 877 878 for (i = 0; i < m->nr; ++i) { 879 if (m->val[i].index == msr) 880 return i; 881 } 882 return -ENOENT; 883 } 884 885 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 886 { 887 int i; 888 struct msr_autoload *m = &vmx->msr_autoload; 889 890 switch (msr) { 891 case MSR_EFER: 892 if (cpu_has_load_ia32_efer()) { 893 clear_atomic_switch_msr_special(vmx, 894 VM_ENTRY_LOAD_IA32_EFER, 895 VM_EXIT_LOAD_IA32_EFER); 896 return; 897 } 898 break; 899 case MSR_CORE_PERF_GLOBAL_CTRL: 900 if (cpu_has_load_perf_global_ctrl()) { 901 clear_atomic_switch_msr_special(vmx, 902 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 903 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 904 return; 905 } 906 break; 907 } 908 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 909 if (i < 0) 910 goto skip_guest; 911 --m->guest.nr; 912 m->guest.val[i] = m->guest.val[m->guest.nr]; 913 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 914 915 skip_guest: 916 i = vmx_find_loadstore_msr_slot(&m->host, msr); 917 if (i < 0) 918 return; 919 920 --m->host.nr; 921 m->host.val[i] = m->host.val[m->host.nr]; 922 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 923 } 924 925 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 926 unsigned long entry, unsigned long exit, 927 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 928 u64 guest_val, u64 host_val) 929 { 930 vmcs_write64(guest_val_vmcs, guest_val); 931 if (host_val_vmcs != HOST_IA32_EFER) 932 vmcs_write64(host_val_vmcs, host_val); 933 vm_entry_controls_setbit(vmx, entry); 934 vm_exit_controls_setbit(vmx, exit); 935 } 936 937 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 938 u64 guest_val, u64 host_val, bool entry_only) 939 { 940 int i, j = 0; 941 struct msr_autoload *m = &vmx->msr_autoload; 942 943 switch (msr) { 944 case MSR_EFER: 945 if (cpu_has_load_ia32_efer()) { 946 add_atomic_switch_msr_special(vmx, 947 VM_ENTRY_LOAD_IA32_EFER, 948 VM_EXIT_LOAD_IA32_EFER, 949 GUEST_IA32_EFER, 950 HOST_IA32_EFER, 951 guest_val, host_val); 952 return; 953 } 954 break; 955 case MSR_CORE_PERF_GLOBAL_CTRL: 956 if (cpu_has_load_perf_global_ctrl()) { 957 add_atomic_switch_msr_special(vmx, 958 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 959 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 960 GUEST_IA32_PERF_GLOBAL_CTRL, 961 HOST_IA32_PERF_GLOBAL_CTRL, 962 guest_val, host_val); 963 return; 964 } 965 break; 966 case MSR_IA32_PEBS_ENABLE: 967 /* PEBS needs a quiescent period after being disabled (to write 968 * a record). Disabling PEBS through VMX MSR swapping doesn't 969 * provide that period, so a CPU could write host's record into 970 * guest's memory. 971 */ 972 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 973 } 974 975 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 976 if (!entry_only) 977 j = vmx_find_loadstore_msr_slot(&m->host, msr); 978 979 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 980 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 981 printk_once(KERN_WARNING "Not enough msr switch entries. " 982 "Can't add msr %x\n", msr); 983 return; 984 } 985 if (i < 0) { 986 i = m->guest.nr++; 987 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 988 } 989 m->guest.val[i].index = msr; 990 m->guest.val[i].value = guest_val; 991 992 if (entry_only) 993 return; 994 995 if (j < 0) { 996 j = m->host.nr++; 997 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 998 } 999 m->host.val[j].index = msr; 1000 m->host.val[j].value = host_val; 1001 } 1002 1003 static bool update_transition_efer(struct vcpu_vmx *vmx) 1004 { 1005 u64 guest_efer = vmx->vcpu.arch.efer; 1006 u64 ignore_bits = 0; 1007 int i; 1008 1009 /* Shadow paging assumes NX to be available. */ 1010 if (!enable_ept) 1011 guest_efer |= EFER_NX; 1012 1013 /* 1014 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1015 */ 1016 ignore_bits |= EFER_SCE; 1017 #ifdef CONFIG_X86_64 1018 ignore_bits |= EFER_LMA | EFER_LME; 1019 /* SCE is meaningful only in long mode on Intel */ 1020 if (guest_efer & EFER_LMA) 1021 ignore_bits &= ~(u64)EFER_SCE; 1022 #endif 1023 1024 /* 1025 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1026 * On CPUs that support "load IA32_EFER", always switch EFER 1027 * atomically, since it's faster than switching it manually. 1028 */ 1029 if (cpu_has_load_ia32_efer() || 1030 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 1031 if (!(guest_efer & EFER_LMA)) 1032 guest_efer &= ~EFER_LME; 1033 if (guest_efer != host_efer) 1034 add_atomic_switch_msr(vmx, MSR_EFER, 1035 guest_efer, host_efer, false); 1036 else 1037 clear_atomic_switch_msr(vmx, MSR_EFER); 1038 return false; 1039 } 1040 1041 i = kvm_find_user_return_msr(MSR_EFER); 1042 if (i < 0) 1043 return false; 1044 1045 clear_atomic_switch_msr(vmx, MSR_EFER); 1046 1047 guest_efer &= ~ignore_bits; 1048 guest_efer |= host_efer & ignore_bits; 1049 1050 vmx->guest_uret_msrs[i].data = guest_efer; 1051 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1052 1053 return true; 1054 } 1055 1056 #ifdef CONFIG_X86_32 1057 /* 1058 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1059 * VMCS rather than the segment table. KVM uses this helper to figure 1060 * out the current bases to poke them into the VMCS before entry. 1061 */ 1062 static unsigned long segment_base(u16 selector) 1063 { 1064 struct desc_struct *table; 1065 unsigned long v; 1066 1067 if (!(selector & ~SEGMENT_RPL_MASK)) 1068 return 0; 1069 1070 table = get_current_gdt_ro(); 1071 1072 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1073 u16 ldt_selector = kvm_read_ldt(); 1074 1075 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1076 return 0; 1077 1078 table = (struct desc_struct *)segment_base(ldt_selector); 1079 } 1080 v = get_desc_base(&table[selector >> 3]); 1081 return v; 1082 } 1083 #endif 1084 1085 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1086 { 1087 return vmx_pt_mode_is_host_guest() && 1088 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1089 } 1090 1091 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1092 { 1093 /* The base must be 128-byte aligned and a legal physical address. */ 1094 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1095 } 1096 1097 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1098 { 1099 u32 i; 1100 1101 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1102 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1103 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1104 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1105 for (i = 0; i < addr_range; i++) { 1106 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1107 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1108 } 1109 } 1110 1111 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1112 { 1113 u32 i; 1114 1115 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1116 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1117 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1118 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1119 for (i = 0; i < addr_range; i++) { 1120 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1121 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1122 } 1123 } 1124 1125 static void pt_guest_enter(struct vcpu_vmx *vmx) 1126 { 1127 if (vmx_pt_mode_is_system()) 1128 return; 1129 1130 /* 1131 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1132 * Save host state before VM entry. 1133 */ 1134 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1135 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1136 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1137 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1138 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1139 } 1140 } 1141 1142 static void pt_guest_exit(struct vcpu_vmx *vmx) 1143 { 1144 if (vmx_pt_mode_is_system()) 1145 return; 1146 1147 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1148 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1149 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1150 } 1151 1152 /* 1153 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1154 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1155 */ 1156 if (vmx->pt_desc.host.ctl) 1157 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1158 } 1159 1160 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1161 unsigned long fs_base, unsigned long gs_base) 1162 { 1163 if (unlikely(fs_sel != host->fs_sel)) { 1164 if (!(fs_sel & 7)) 1165 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1166 else 1167 vmcs_write16(HOST_FS_SELECTOR, 0); 1168 host->fs_sel = fs_sel; 1169 } 1170 if (unlikely(gs_sel != host->gs_sel)) { 1171 if (!(gs_sel & 7)) 1172 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1173 else 1174 vmcs_write16(HOST_GS_SELECTOR, 0); 1175 host->gs_sel = gs_sel; 1176 } 1177 if (unlikely(fs_base != host->fs_base)) { 1178 vmcs_writel(HOST_FS_BASE, fs_base); 1179 host->fs_base = fs_base; 1180 } 1181 if (unlikely(gs_base != host->gs_base)) { 1182 vmcs_writel(HOST_GS_BASE, gs_base); 1183 host->gs_base = gs_base; 1184 } 1185 } 1186 1187 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1188 { 1189 struct vcpu_vmx *vmx = to_vmx(vcpu); 1190 struct vmcs_host_state *host_state; 1191 #ifdef CONFIG_X86_64 1192 int cpu = raw_smp_processor_id(); 1193 #endif 1194 unsigned long fs_base, gs_base; 1195 u16 fs_sel, gs_sel; 1196 int i; 1197 1198 vmx->req_immediate_exit = false; 1199 1200 /* 1201 * Note that guest MSRs to be saved/restored can also be changed 1202 * when guest state is loaded. This happens when guest transitions 1203 * to/from long-mode by setting MSR_EFER.LMA. 1204 */ 1205 if (!vmx->guest_uret_msrs_loaded) { 1206 vmx->guest_uret_msrs_loaded = true; 1207 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1208 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1209 continue; 1210 1211 kvm_set_user_return_msr(i, 1212 vmx->guest_uret_msrs[i].data, 1213 vmx->guest_uret_msrs[i].mask); 1214 } 1215 } 1216 1217 if (vmx->nested.need_vmcs12_to_shadow_sync) 1218 nested_sync_vmcs12_to_shadow(vcpu); 1219 1220 if (vmx->guest_state_loaded) 1221 return; 1222 1223 host_state = &vmx->loaded_vmcs->host_state; 1224 1225 /* 1226 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1227 * allow segment selectors with cpl > 0 or ti == 1. 1228 */ 1229 host_state->ldt_sel = kvm_read_ldt(); 1230 1231 #ifdef CONFIG_X86_64 1232 savesegment(ds, host_state->ds_sel); 1233 savesegment(es, host_state->es_sel); 1234 1235 gs_base = cpu_kernelmode_gs_base(cpu); 1236 if (likely(is_64bit_mm(current->mm))) { 1237 current_save_fsgs(); 1238 fs_sel = current->thread.fsindex; 1239 gs_sel = current->thread.gsindex; 1240 fs_base = current->thread.fsbase; 1241 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1242 } else { 1243 savesegment(fs, fs_sel); 1244 savesegment(gs, gs_sel); 1245 fs_base = read_msr(MSR_FS_BASE); 1246 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1247 } 1248 1249 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1250 #else 1251 savesegment(fs, fs_sel); 1252 savesegment(gs, gs_sel); 1253 fs_base = segment_base(fs_sel); 1254 gs_base = segment_base(gs_sel); 1255 #endif 1256 1257 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1258 vmx->guest_state_loaded = true; 1259 } 1260 1261 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1262 { 1263 struct vmcs_host_state *host_state; 1264 1265 if (!vmx->guest_state_loaded) 1266 return; 1267 1268 host_state = &vmx->loaded_vmcs->host_state; 1269 1270 ++vmx->vcpu.stat.host_state_reload; 1271 1272 #ifdef CONFIG_X86_64 1273 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1274 #endif 1275 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1276 kvm_load_ldt(host_state->ldt_sel); 1277 #ifdef CONFIG_X86_64 1278 load_gs_index(host_state->gs_sel); 1279 #else 1280 loadsegment(gs, host_state->gs_sel); 1281 #endif 1282 } 1283 if (host_state->fs_sel & 7) 1284 loadsegment(fs, host_state->fs_sel); 1285 #ifdef CONFIG_X86_64 1286 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1287 loadsegment(ds, host_state->ds_sel); 1288 loadsegment(es, host_state->es_sel); 1289 } 1290 #endif 1291 invalidate_tss_limit(); 1292 #ifdef CONFIG_X86_64 1293 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1294 #endif 1295 load_fixmap_gdt(raw_smp_processor_id()); 1296 vmx->guest_state_loaded = false; 1297 vmx->guest_uret_msrs_loaded = false; 1298 } 1299 1300 #ifdef CONFIG_X86_64 1301 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1302 { 1303 preempt_disable(); 1304 if (vmx->guest_state_loaded) 1305 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1306 preempt_enable(); 1307 return vmx->msr_guest_kernel_gs_base; 1308 } 1309 1310 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1311 { 1312 preempt_disable(); 1313 if (vmx->guest_state_loaded) 1314 wrmsrl(MSR_KERNEL_GS_BASE, data); 1315 preempt_enable(); 1316 vmx->msr_guest_kernel_gs_base = data; 1317 } 1318 #endif 1319 1320 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1321 struct loaded_vmcs *buddy) 1322 { 1323 struct vcpu_vmx *vmx = to_vmx(vcpu); 1324 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1325 struct vmcs *prev; 1326 1327 if (!already_loaded) { 1328 loaded_vmcs_clear(vmx->loaded_vmcs); 1329 local_irq_disable(); 1330 1331 /* 1332 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1333 * this cpu's percpu list, otherwise it may not yet be deleted 1334 * from its previous cpu's percpu list. Pairs with the 1335 * smb_wmb() in __loaded_vmcs_clear(). 1336 */ 1337 smp_rmb(); 1338 1339 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1340 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1341 local_irq_enable(); 1342 } 1343 1344 prev = per_cpu(current_vmcs, cpu); 1345 if (prev != vmx->loaded_vmcs->vmcs) { 1346 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1347 vmcs_load(vmx->loaded_vmcs->vmcs); 1348 1349 /* 1350 * No indirect branch prediction barrier needed when switching 1351 * the active VMCS within a guest, e.g. on nested VM-Enter. 1352 * The L1 VMM can protect itself with retpolines, IBPB or IBRS. 1353 */ 1354 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1355 indirect_branch_prediction_barrier(); 1356 } 1357 1358 if (!already_loaded) { 1359 void *gdt = get_current_gdt_ro(); 1360 1361 /* 1362 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1363 * TLB entries from its previous association with the vCPU. 1364 */ 1365 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1366 1367 /* 1368 * Linux uses per-cpu TSS and GDT, so set these when switching 1369 * processors. See 22.2.4. 1370 */ 1371 vmcs_writel(HOST_TR_BASE, 1372 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1373 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1374 1375 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1376 /* 22.2.3 */ 1377 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1378 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1379 } 1380 1381 vmx->loaded_vmcs->cpu = cpu; 1382 } 1383 } 1384 1385 /* 1386 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1387 * vcpu mutex is already taken. 1388 */ 1389 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1390 { 1391 struct vcpu_vmx *vmx = to_vmx(vcpu); 1392 1393 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1394 1395 vmx_vcpu_pi_load(vcpu, cpu); 1396 1397 vmx->host_debugctlmsr = get_debugctlmsr(); 1398 } 1399 1400 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1401 { 1402 vmx_vcpu_pi_put(vcpu); 1403 1404 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1405 } 1406 1407 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1408 { 1409 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1410 } 1411 1412 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1413 { 1414 struct vcpu_vmx *vmx = to_vmx(vcpu); 1415 unsigned long rflags, save_rflags; 1416 1417 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1418 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1419 rflags = vmcs_readl(GUEST_RFLAGS); 1420 if (vmx->rmode.vm86_active) { 1421 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1422 save_rflags = vmx->rmode.save_rflags; 1423 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1424 } 1425 vmx->rflags = rflags; 1426 } 1427 return vmx->rflags; 1428 } 1429 1430 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1431 { 1432 struct vcpu_vmx *vmx = to_vmx(vcpu); 1433 unsigned long old_rflags; 1434 1435 if (is_unrestricted_guest(vcpu)) { 1436 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1437 vmx->rflags = rflags; 1438 vmcs_writel(GUEST_RFLAGS, rflags); 1439 return; 1440 } 1441 1442 old_rflags = vmx_get_rflags(vcpu); 1443 vmx->rflags = rflags; 1444 if (vmx->rmode.vm86_active) { 1445 vmx->rmode.save_rflags = rflags; 1446 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1447 } 1448 vmcs_writel(GUEST_RFLAGS, rflags); 1449 1450 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1451 vmx->emulation_required = vmx_emulation_required(vcpu); 1452 } 1453 1454 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1455 { 1456 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1457 } 1458 1459 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1460 { 1461 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1462 int ret = 0; 1463 1464 if (interruptibility & GUEST_INTR_STATE_STI) 1465 ret |= KVM_X86_SHADOW_INT_STI; 1466 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1467 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1468 1469 return ret; 1470 } 1471 1472 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1473 { 1474 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1475 u32 interruptibility = interruptibility_old; 1476 1477 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1478 1479 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1480 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1481 else if (mask & KVM_X86_SHADOW_INT_STI) 1482 interruptibility |= GUEST_INTR_STATE_STI; 1483 1484 if ((interruptibility != interruptibility_old)) 1485 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1486 } 1487 1488 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1489 { 1490 struct vcpu_vmx *vmx = to_vmx(vcpu); 1491 unsigned long value; 1492 1493 /* 1494 * Any MSR write that attempts to change bits marked reserved will 1495 * case a #GP fault. 1496 */ 1497 if (data & vmx->pt_desc.ctl_bitmask) 1498 return 1; 1499 1500 /* 1501 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1502 * result in a #GP unless the same write also clears TraceEn. 1503 */ 1504 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1505 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1506 return 1; 1507 1508 /* 1509 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1510 * and FabricEn would cause #GP, if 1511 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1512 */ 1513 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1514 !(data & RTIT_CTL_FABRIC_EN) && 1515 !intel_pt_validate_cap(vmx->pt_desc.caps, 1516 PT_CAP_single_range_output)) 1517 return 1; 1518 1519 /* 1520 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1521 * utilize encodings marked reserved will cause a #GP fault. 1522 */ 1523 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1524 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1525 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1526 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1527 return 1; 1528 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1529 PT_CAP_cycle_thresholds); 1530 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1531 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1532 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1533 return 1; 1534 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1535 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1536 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1537 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1538 return 1; 1539 1540 /* 1541 * If ADDRx_CFG is reserved or the encodings is >2 will 1542 * cause a #GP fault. 1543 */ 1544 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1545 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1546 return 1; 1547 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1548 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1549 return 1; 1550 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1551 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1552 return 1; 1553 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1554 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1555 return 1; 1556 1557 return 0; 1558 } 1559 1560 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1561 void *insn, int insn_len) 1562 { 1563 /* 1564 * Emulation of instructions in SGX enclaves is impossible as RIP does 1565 * not point at the failing instruction, and even if it did, the code 1566 * stream is inaccessible. Inject #UD instead of exiting to userspace 1567 * so that guest userspace can't DoS the guest simply by triggering 1568 * emulation (enclaves are CPL3 only). 1569 */ 1570 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1571 kvm_queue_exception(vcpu, UD_VECTOR); 1572 return false; 1573 } 1574 return true; 1575 } 1576 1577 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1578 { 1579 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1580 unsigned long rip, orig_rip; 1581 u32 instr_len; 1582 1583 /* 1584 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1585 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1586 * set when EPT misconfig occurs. In practice, real hardware updates 1587 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1588 * (namely Hyper-V) don't set it due to it being undefined behavior, 1589 * i.e. we end up advancing IP with some random value. 1590 */ 1591 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1592 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1593 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1594 1595 /* 1596 * Emulating an enclave's instructions isn't supported as KVM 1597 * cannot access the enclave's memory or its true RIP, e.g. the 1598 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1599 * the RIP that actually triggered the VM-Exit. But, because 1600 * most instructions that cause VM-Exit will #UD in an enclave, 1601 * most instruction-based VM-Exits simply do not occur. 1602 * 1603 * There are a few exceptions, notably the debug instructions 1604 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1605 * and generate #DB/#BP as expected, which KVM might intercept. 1606 * But again, the CPU does the dirty work and saves an instr 1607 * length of zero so VMMs don't shoot themselves in the foot. 1608 * WARN if KVM tries to skip a non-zero length instruction on 1609 * a VM-Exit from an enclave. 1610 */ 1611 if (!instr_len) 1612 goto rip_updated; 1613 1614 WARN(exit_reason.enclave_mode, 1615 "KVM: skipping instruction after SGX enclave VM-Exit"); 1616 1617 orig_rip = kvm_rip_read(vcpu); 1618 rip = orig_rip + instr_len; 1619 #ifdef CONFIG_X86_64 1620 /* 1621 * We need to mask out the high 32 bits of RIP if not in 64-bit 1622 * mode, but just finding out that we are in 64-bit mode is 1623 * quite expensive. Only do it if there was a carry. 1624 */ 1625 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1626 rip = (u32)rip; 1627 #endif 1628 kvm_rip_write(vcpu, rip); 1629 } else { 1630 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1631 return 0; 1632 } 1633 1634 rip_updated: 1635 /* skipping an emulated instruction also counts */ 1636 vmx_set_interrupt_shadow(vcpu, 0); 1637 1638 return 1; 1639 } 1640 1641 /* 1642 * Recognizes a pending MTF VM-exit and records the nested state for later 1643 * delivery. 1644 */ 1645 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1646 { 1647 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1648 struct vcpu_vmx *vmx = to_vmx(vcpu); 1649 1650 if (!is_guest_mode(vcpu)) 1651 return; 1652 1653 /* 1654 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1655 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps 1656 * or ICEBP (in the emulator proper), and skipping of ICEBP after an 1657 * intercepted #DB deliberately avoids single-step #DB and MTF updates 1658 * as ICEBP is higher priority than both. As instruction emulation is 1659 * completed at this point (i.e. KVM is at the instruction boundary), 1660 * any #DB exception pending delivery must be a debug-trap of lower 1661 * priority than MTF. Record the pending MTF state to be delivered in 1662 * vmx_check_nested_events(). 1663 */ 1664 if (nested_cpu_has_mtf(vmcs12) && 1665 (!vcpu->arch.exception.pending || 1666 vcpu->arch.exception.vector == DB_VECTOR) && 1667 (!vcpu->arch.exception_vmexit.pending || 1668 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) { 1669 vmx->nested.mtf_pending = true; 1670 kvm_make_request(KVM_REQ_EVENT, vcpu); 1671 } else { 1672 vmx->nested.mtf_pending = false; 1673 } 1674 } 1675 1676 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1677 { 1678 vmx_update_emulated_instruction(vcpu); 1679 return skip_emulated_instruction(vcpu); 1680 } 1681 1682 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1683 { 1684 /* 1685 * Ensure that we clear the HLT state in the VMCS. We don't need to 1686 * explicitly skip the instruction because if the HLT state is set, 1687 * then the instruction is already executing and RIP has already been 1688 * advanced. 1689 */ 1690 if (kvm_hlt_in_guest(vcpu->kvm) && 1691 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1692 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1693 } 1694 1695 static void vmx_inject_exception(struct kvm_vcpu *vcpu) 1696 { 1697 struct kvm_queued_exception *ex = &vcpu->arch.exception; 1698 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; 1699 struct vcpu_vmx *vmx = to_vmx(vcpu); 1700 1701 kvm_deliver_exception_payload(vcpu, ex); 1702 1703 if (ex->has_error_code) { 1704 /* 1705 * Despite the error code being architecturally defined as 32 1706 * bits, and the VMCS field being 32 bits, Intel CPUs and thus 1707 * VMX don't actually supporting setting bits 31:16. Hardware 1708 * will (should) never provide a bogus error code, but AMD CPUs 1709 * do generate error codes with bits 31:16 set, and so KVM's 1710 * ABI lets userspace shove in arbitrary 32-bit values. Drop 1711 * the upper bits to avoid VM-Fail, losing information that 1712 * does't really exist is preferable to killing the VM. 1713 */ 1714 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code); 1715 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1716 } 1717 1718 if (vmx->rmode.vm86_active) { 1719 int inc_eip = 0; 1720 if (kvm_exception_is_soft(ex->vector)) 1721 inc_eip = vcpu->arch.event_exit_inst_len; 1722 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip); 1723 return; 1724 } 1725 1726 WARN_ON_ONCE(vmx->emulation_required); 1727 1728 if (kvm_exception_is_soft(ex->vector)) { 1729 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1730 vmx->vcpu.arch.event_exit_inst_len); 1731 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1732 } else 1733 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1734 1735 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1736 1737 vmx_clear_hlt(vcpu); 1738 } 1739 1740 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1741 bool load_into_hardware) 1742 { 1743 struct vmx_uret_msr *uret_msr; 1744 1745 uret_msr = vmx_find_uret_msr(vmx, msr); 1746 if (!uret_msr) 1747 return; 1748 1749 uret_msr->load_into_hardware = load_into_hardware; 1750 } 1751 1752 /* 1753 * Configuring user return MSRs to automatically save, load, and restore MSRs 1754 * that need to be shoved into hardware when running the guest. Note, omitting 1755 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1756 * loaded into hardware when running the guest. 1757 */ 1758 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1759 { 1760 #ifdef CONFIG_X86_64 1761 bool load_syscall_msrs; 1762 1763 /* 1764 * The SYSCALL MSRs are only needed on long mode guests, and only 1765 * when EFER.SCE is set. 1766 */ 1767 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1768 (vmx->vcpu.arch.efer & EFER_SCE); 1769 1770 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1771 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1772 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1773 #endif 1774 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1775 1776 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1777 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1778 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1779 1780 /* 1781 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1782 * kernel and old userspace. If those guests run on a tsx=off host, do 1783 * allow guests to use TSX_CTRL, but don't change the value in hardware 1784 * so that TSX remains always disabled. 1785 */ 1786 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1787 1788 /* 1789 * The set of MSRs to load may have changed, reload MSRs before the 1790 * next VM-Enter. 1791 */ 1792 vmx->guest_uret_msrs_loaded = false; 1793 } 1794 1795 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1796 { 1797 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1798 1799 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1800 return vmcs12->tsc_offset; 1801 1802 return 0; 1803 } 1804 1805 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1806 { 1807 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1808 1809 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1810 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1811 return vmcs12->tsc_multiplier; 1812 1813 return kvm_caps.default_tsc_scaling_ratio; 1814 } 1815 1816 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1817 { 1818 vmcs_write64(TSC_OFFSET, offset); 1819 } 1820 1821 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1822 { 1823 vmcs_write64(TSC_MULTIPLIER, multiplier); 1824 } 1825 1826 /* 1827 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1828 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1829 * all guests if the "nested" module option is off, and can also be disabled 1830 * for a single guest by disabling its VMX cpuid bit. 1831 */ 1832 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1833 { 1834 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1835 } 1836 1837 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1838 uint64_t val) 1839 { 1840 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1841 1842 return !(val & ~valid_bits); 1843 } 1844 1845 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1846 { 1847 switch (msr->index) { 1848 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1849 if (!nested) 1850 return 1; 1851 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1852 case MSR_IA32_PERF_CAPABILITIES: 1853 msr->data = vmx_get_perf_capabilities(); 1854 return 0; 1855 default: 1856 return KVM_MSR_RET_INVALID; 1857 } 1858 } 1859 1860 /* 1861 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 1862 * Returns 0 on success, non-0 otherwise. 1863 * Assumes vcpu_load() was already called. 1864 */ 1865 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1866 { 1867 struct vcpu_vmx *vmx = to_vmx(vcpu); 1868 struct vmx_uret_msr *msr; 1869 u32 index; 1870 1871 switch (msr_info->index) { 1872 #ifdef CONFIG_X86_64 1873 case MSR_FS_BASE: 1874 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1875 break; 1876 case MSR_GS_BASE: 1877 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1878 break; 1879 case MSR_KERNEL_GS_BASE: 1880 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1881 break; 1882 #endif 1883 case MSR_EFER: 1884 return kvm_get_msr_common(vcpu, msr_info); 1885 case MSR_IA32_TSX_CTRL: 1886 if (!msr_info->host_initiated && 1887 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1888 return 1; 1889 goto find_uret_msr; 1890 case MSR_IA32_UMWAIT_CONTROL: 1891 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 1892 return 1; 1893 1894 msr_info->data = vmx->msr_ia32_umwait_control; 1895 break; 1896 case MSR_IA32_SPEC_CTRL: 1897 if (!msr_info->host_initiated && 1898 !guest_has_spec_ctrl_msr(vcpu)) 1899 return 1; 1900 1901 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1902 break; 1903 case MSR_IA32_SYSENTER_CS: 1904 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1905 break; 1906 case MSR_IA32_SYSENTER_EIP: 1907 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1908 break; 1909 case MSR_IA32_SYSENTER_ESP: 1910 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1911 break; 1912 case MSR_IA32_BNDCFGS: 1913 if (!kvm_mpx_supported() || 1914 (!msr_info->host_initiated && 1915 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1916 return 1; 1917 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1918 break; 1919 case MSR_IA32_MCG_EXT_CTL: 1920 if (!msr_info->host_initiated && 1921 !(vmx->msr_ia32_feature_control & 1922 FEAT_CTL_LMCE_ENABLED)) 1923 return 1; 1924 msr_info->data = vcpu->arch.mcg_ext_ctl; 1925 break; 1926 case MSR_IA32_FEAT_CTL: 1927 msr_info->data = vmx->msr_ia32_feature_control; 1928 break; 1929 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 1930 if (!msr_info->host_initiated && 1931 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 1932 return 1; 1933 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 1934 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 1935 break; 1936 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1937 if (!nested_vmx_allowed(vcpu)) 1938 return 1; 1939 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1940 &msr_info->data)) 1941 return 1; 1942 /* 1943 * Enlightened VMCS v1 doesn't have certain VMCS fields but 1944 * instead of just ignoring the features, different Hyper-V 1945 * versions are either trying to use them and fail or do some 1946 * sanity checking and refuse to boot. Filter all unsupported 1947 * features out. 1948 */ 1949 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu)) 1950 nested_evmcs_filter_control_msr(vcpu, msr_info->index, 1951 &msr_info->data); 1952 break; 1953 case MSR_IA32_RTIT_CTL: 1954 if (!vmx_pt_mode_is_host_guest()) 1955 return 1; 1956 msr_info->data = vmx->pt_desc.guest.ctl; 1957 break; 1958 case MSR_IA32_RTIT_STATUS: 1959 if (!vmx_pt_mode_is_host_guest()) 1960 return 1; 1961 msr_info->data = vmx->pt_desc.guest.status; 1962 break; 1963 case MSR_IA32_RTIT_CR3_MATCH: 1964 if (!vmx_pt_mode_is_host_guest() || 1965 !intel_pt_validate_cap(vmx->pt_desc.caps, 1966 PT_CAP_cr3_filtering)) 1967 return 1; 1968 msr_info->data = vmx->pt_desc.guest.cr3_match; 1969 break; 1970 case MSR_IA32_RTIT_OUTPUT_BASE: 1971 if (!vmx_pt_mode_is_host_guest() || 1972 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1973 PT_CAP_topa_output) && 1974 !intel_pt_validate_cap(vmx->pt_desc.caps, 1975 PT_CAP_single_range_output))) 1976 return 1; 1977 msr_info->data = vmx->pt_desc.guest.output_base; 1978 break; 1979 case MSR_IA32_RTIT_OUTPUT_MASK: 1980 if (!vmx_pt_mode_is_host_guest() || 1981 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1982 PT_CAP_topa_output) && 1983 !intel_pt_validate_cap(vmx->pt_desc.caps, 1984 PT_CAP_single_range_output))) 1985 return 1; 1986 msr_info->data = vmx->pt_desc.guest.output_mask; 1987 break; 1988 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1989 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1990 if (!vmx_pt_mode_is_host_guest() || 1991 (index >= 2 * vmx->pt_desc.num_address_ranges)) 1992 return 1; 1993 if (index % 2) 1994 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1995 else 1996 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1997 break; 1998 case MSR_IA32_DEBUGCTLMSR: 1999 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 2000 break; 2001 default: 2002 find_uret_msr: 2003 msr = vmx_find_uret_msr(vmx, msr_info->index); 2004 if (msr) { 2005 msr_info->data = msr->data; 2006 break; 2007 } 2008 return kvm_get_msr_common(vcpu, msr_info); 2009 } 2010 2011 return 0; 2012 } 2013 2014 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 2015 u64 data) 2016 { 2017 #ifdef CONFIG_X86_64 2018 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 2019 return (u32)data; 2020 #endif 2021 return (unsigned long)data; 2022 } 2023 2024 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu) 2025 { 2026 u64 debugctl = vmx_supported_debugctl(); 2027 2028 if (!intel_pmu_lbr_is_enabled(vcpu)) 2029 debugctl &= ~DEBUGCTLMSR_LBR_MASK; 2030 2031 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 2032 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT; 2033 2034 return debugctl; 2035 } 2036 2037 /* 2038 * Writes msr value into the appropriate "register". 2039 * Returns 0 on success, non-0 otherwise. 2040 * Assumes vcpu_load() was already called. 2041 */ 2042 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2043 { 2044 struct vcpu_vmx *vmx = to_vmx(vcpu); 2045 struct vmx_uret_msr *msr; 2046 int ret = 0; 2047 u32 msr_index = msr_info->index; 2048 u64 data = msr_info->data; 2049 u32 index; 2050 2051 switch (msr_index) { 2052 case MSR_EFER: 2053 ret = kvm_set_msr_common(vcpu, msr_info); 2054 break; 2055 #ifdef CONFIG_X86_64 2056 case MSR_FS_BASE: 2057 vmx_segment_cache_clear(vmx); 2058 vmcs_writel(GUEST_FS_BASE, data); 2059 break; 2060 case MSR_GS_BASE: 2061 vmx_segment_cache_clear(vmx); 2062 vmcs_writel(GUEST_GS_BASE, data); 2063 break; 2064 case MSR_KERNEL_GS_BASE: 2065 vmx_write_guest_kernel_gs_base(vmx, data); 2066 break; 2067 case MSR_IA32_XFD: 2068 ret = kvm_set_msr_common(vcpu, msr_info); 2069 /* 2070 * Always intercepting WRMSR could incur non-negligible 2071 * overhead given xfd might be changed frequently in 2072 * guest context switch. Disable write interception 2073 * upon the first write with a non-zero value (indicating 2074 * potential usage on dynamic xfeatures). Also update 2075 * exception bitmap to trap #NM for proper virtualization 2076 * of guest xfd_err. 2077 */ 2078 if (!ret && data) { 2079 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 2080 MSR_TYPE_RW); 2081 vcpu->arch.xfd_no_write_intercept = true; 2082 vmx_update_exception_bitmap(vcpu); 2083 } 2084 break; 2085 #endif 2086 case MSR_IA32_SYSENTER_CS: 2087 if (is_guest_mode(vcpu)) 2088 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2089 vmcs_write32(GUEST_SYSENTER_CS, data); 2090 break; 2091 case MSR_IA32_SYSENTER_EIP: 2092 if (is_guest_mode(vcpu)) { 2093 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2094 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2095 } 2096 vmcs_writel(GUEST_SYSENTER_EIP, data); 2097 break; 2098 case MSR_IA32_SYSENTER_ESP: 2099 if (is_guest_mode(vcpu)) { 2100 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2101 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2102 } 2103 vmcs_writel(GUEST_SYSENTER_ESP, data); 2104 break; 2105 case MSR_IA32_DEBUGCTLMSR: { 2106 u64 invalid = data & ~vcpu_supported_debugctl(vcpu); 2107 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2108 if (report_ignored_msrs) 2109 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n", 2110 __func__, data); 2111 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2112 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2113 } 2114 2115 if (invalid) 2116 return 1; 2117 2118 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2119 VM_EXIT_SAVE_DEBUG_CONTROLS) 2120 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2121 2122 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2123 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2124 (data & DEBUGCTLMSR_LBR)) 2125 intel_pmu_create_guest_lbr_event(vcpu); 2126 return 0; 2127 } 2128 case MSR_IA32_BNDCFGS: 2129 if (!kvm_mpx_supported() || 2130 (!msr_info->host_initiated && 2131 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2132 return 1; 2133 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2134 (data & MSR_IA32_BNDCFGS_RSVD)) 2135 return 1; 2136 2137 if (is_guest_mode(vcpu) && 2138 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) || 2139 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS))) 2140 get_vmcs12(vcpu)->guest_bndcfgs = data; 2141 2142 vmcs_write64(GUEST_BNDCFGS, data); 2143 break; 2144 case MSR_IA32_UMWAIT_CONTROL: 2145 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2146 return 1; 2147 2148 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2149 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2150 return 1; 2151 2152 vmx->msr_ia32_umwait_control = data; 2153 break; 2154 case MSR_IA32_SPEC_CTRL: 2155 if (!msr_info->host_initiated && 2156 !guest_has_spec_ctrl_msr(vcpu)) 2157 return 1; 2158 2159 if (kvm_spec_ctrl_test_value(data)) 2160 return 1; 2161 2162 vmx->spec_ctrl = data; 2163 if (!data) 2164 break; 2165 2166 /* 2167 * For non-nested: 2168 * When it's written (to non-zero) for the first time, pass 2169 * it through. 2170 * 2171 * For nested: 2172 * The handling of the MSR bitmap for L2 guests is done in 2173 * nested_vmx_prepare_msr_bitmap. We should not touch the 2174 * vmcs02.msr_bitmap here since it gets completely overwritten 2175 * in the merging. We update the vmcs01 here for L1 as well 2176 * since it will end up touching the MSR anyway now. 2177 */ 2178 vmx_disable_intercept_for_msr(vcpu, 2179 MSR_IA32_SPEC_CTRL, 2180 MSR_TYPE_RW); 2181 break; 2182 case MSR_IA32_TSX_CTRL: 2183 if (!msr_info->host_initiated && 2184 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2185 return 1; 2186 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2187 return 1; 2188 goto find_uret_msr; 2189 case MSR_IA32_PRED_CMD: 2190 if (!msr_info->host_initiated && 2191 !guest_has_pred_cmd_msr(vcpu)) 2192 return 1; 2193 2194 if (data & ~PRED_CMD_IBPB) 2195 return 1; 2196 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2197 return 1; 2198 if (!data) 2199 break; 2200 2201 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2202 2203 /* 2204 * For non-nested: 2205 * When it's written (to non-zero) for the first time, pass 2206 * it through. 2207 * 2208 * For nested: 2209 * The handling of the MSR bitmap for L2 guests is done in 2210 * nested_vmx_prepare_msr_bitmap. We should not touch the 2211 * vmcs02.msr_bitmap here since it gets completely overwritten 2212 * in the merging. 2213 */ 2214 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W); 2215 break; 2216 case MSR_IA32_CR_PAT: 2217 if (!kvm_pat_valid(data)) 2218 return 1; 2219 2220 if (is_guest_mode(vcpu) && 2221 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2222 get_vmcs12(vcpu)->guest_ia32_pat = data; 2223 2224 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2225 vmcs_write64(GUEST_IA32_PAT, data); 2226 vcpu->arch.pat = data; 2227 break; 2228 } 2229 ret = kvm_set_msr_common(vcpu, msr_info); 2230 break; 2231 case MSR_IA32_MCG_EXT_CTL: 2232 if ((!msr_info->host_initiated && 2233 !(to_vmx(vcpu)->msr_ia32_feature_control & 2234 FEAT_CTL_LMCE_ENABLED)) || 2235 (data & ~MCG_EXT_CTL_LMCE_EN)) 2236 return 1; 2237 vcpu->arch.mcg_ext_ctl = data; 2238 break; 2239 case MSR_IA32_FEAT_CTL: 2240 if (!vmx_feature_control_msr_valid(vcpu, data) || 2241 (to_vmx(vcpu)->msr_ia32_feature_control & 2242 FEAT_CTL_LOCKED && !msr_info->host_initiated)) 2243 return 1; 2244 vmx->msr_ia32_feature_control = data; 2245 if (msr_info->host_initiated && data == 0) 2246 vmx_leave_nested(vcpu); 2247 2248 /* SGX may be enabled/disabled by guest's firmware */ 2249 vmx_write_encls_bitmap(vcpu, NULL); 2250 break; 2251 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2252 /* 2253 * On real hardware, the LE hash MSRs are writable before 2254 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2255 * at which point SGX related bits in IA32_FEATURE_CONTROL 2256 * become writable. 2257 * 2258 * KVM does not emulate SGX activation for simplicity, so 2259 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2260 * is unlocked. This is technically not architectural 2261 * behavior, but it's close enough. 2262 */ 2263 if (!msr_info->host_initiated && 2264 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2265 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2266 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2267 return 1; 2268 vmx->msr_ia32_sgxlepubkeyhash 2269 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2270 break; 2271 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 2272 if (!msr_info->host_initiated) 2273 return 1; /* they are read-only */ 2274 if (!nested_vmx_allowed(vcpu)) 2275 return 1; 2276 return vmx_set_vmx_msr(vcpu, msr_index, data); 2277 case MSR_IA32_RTIT_CTL: 2278 if (!vmx_pt_mode_is_host_guest() || 2279 vmx_rtit_ctl_check(vcpu, data) || 2280 vmx->nested.vmxon) 2281 return 1; 2282 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2283 vmx->pt_desc.guest.ctl = data; 2284 pt_update_intercept_for_msr(vcpu); 2285 break; 2286 case MSR_IA32_RTIT_STATUS: 2287 if (!pt_can_write_msr(vmx)) 2288 return 1; 2289 if (data & MSR_IA32_RTIT_STATUS_MASK) 2290 return 1; 2291 vmx->pt_desc.guest.status = data; 2292 break; 2293 case MSR_IA32_RTIT_CR3_MATCH: 2294 if (!pt_can_write_msr(vmx)) 2295 return 1; 2296 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2297 PT_CAP_cr3_filtering)) 2298 return 1; 2299 vmx->pt_desc.guest.cr3_match = data; 2300 break; 2301 case MSR_IA32_RTIT_OUTPUT_BASE: 2302 if (!pt_can_write_msr(vmx)) 2303 return 1; 2304 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2305 PT_CAP_topa_output) && 2306 !intel_pt_validate_cap(vmx->pt_desc.caps, 2307 PT_CAP_single_range_output)) 2308 return 1; 2309 if (!pt_output_base_valid(vcpu, data)) 2310 return 1; 2311 vmx->pt_desc.guest.output_base = data; 2312 break; 2313 case MSR_IA32_RTIT_OUTPUT_MASK: 2314 if (!pt_can_write_msr(vmx)) 2315 return 1; 2316 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2317 PT_CAP_topa_output) && 2318 !intel_pt_validate_cap(vmx->pt_desc.caps, 2319 PT_CAP_single_range_output)) 2320 return 1; 2321 vmx->pt_desc.guest.output_mask = data; 2322 break; 2323 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2324 if (!pt_can_write_msr(vmx)) 2325 return 1; 2326 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2327 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2328 return 1; 2329 if (is_noncanonical_address(data, vcpu)) 2330 return 1; 2331 if (index % 2) 2332 vmx->pt_desc.guest.addr_b[index / 2] = data; 2333 else 2334 vmx->pt_desc.guest.addr_a[index / 2] = data; 2335 break; 2336 case MSR_IA32_PERF_CAPABILITIES: 2337 if (data && !vcpu_to_pmu(vcpu)->version) 2338 return 1; 2339 if (data & PMU_CAP_LBR_FMT) { 2340 if ((data & PMU_CAP_LBR_FMT) != 2341 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT)) 2342 return 1; 2343 if (!cpuid_model_is_consistent(vcpu)) 2344 return 1; 2345 } 2346 if (data & PERF_CAP_PEBS_FORMAT) { 2347 if ((data & PERF_CAP_PEBS_MASK) != 2348 (vmx_get_perf_capabilities() & PERF_CAP_PEBS_MASK)) 2349 return 1; 2350 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS)) 2351 return 1; 2352 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64)) 2353 return 1; 2354 if (!cpuid_model_is_consistent(vcpu)) 2355 return 1; 2356 } 2357 ret = kvm_set_msr_common(vcpu, msr_info); 2358 break; 2359 2360 default: 2361 find_uret_msr: 2362 msr = vmx_find_uret_msr(vmx, msr_index); 2363 if (msr) 2364 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2365 else 2366 ret = kvm_set_msr_common(vcpu, msr_info); 2367 } 2368 2369 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ 2370 if (msr_index == MSR_IA32_ARCH_CAPABILITIES) 2371 vmx_update_fb_clear_dis(vcpu, vmx); 2372 2373 return ret; 2374 } 2375 2376 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2377 { 2378 unsigned long guest_owned_bits; 2379 2380 kvm_register_mark_available(vcpu, reg); 2381 2382 switch (reg) { 2383 case VCPU_REGS_RSP: 2384 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2385 break; 2386 case VCPU_REGS_RIP: 2387 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2388 break; 2389 case VCPU_EXREG_PDPTR: 2390 if (enable_ept) 2391 ept_save_pdptrs(vcpu); 2392 break; 2393 case VCPU_EXREG_CR0: 2394 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2395 2396 vcpu->arch.cr0 &= ~guest_owned_bits; 2397 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2398 break; 2399 case VCPU_EXREG_CR3: 2400 /* 2401 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2402 * CR3 is loaded into hardware, not the guest's CR3. 2403 */ 2404 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2405 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2406 break; 2407 case VCPU_EXREG_CR4: 2408 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2409 2410 vcpu->arch.cr4 &= ~guest_owned_bits; 2411 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2412 break; 2413 default: 2414 KVM_BUG_ON(1, vcpu->kvm); 2415 break; 2416 } 2417 } 2418 2419 static __init int cpu_has_kvm_support(void) 2420 { 2421 return cpu_has_vmx(); 2422 } 2423 2424 static __init int vmx_disabled_by_bios(void) 2425 { 2426 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2427 !boot_cpu_has(X86_FEATURE_VMX); 2428 } 2429 2430 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2431 { 2432 u64 msr; 2433 2434 cr4_set_bits(X86_CR4_VMXE); 2435 2436 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2437 _ASM_EXTABLE(1b, %l[fault]) 2438 : : [vmxon_pointer] "m"(vmxon_pointer) 2439 : : fault); 2440 return 0; 2441 2442 fault: 2443 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2444 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2445 cr4_clear_bits(X86_CR4_VMXE); 2446 2447 return -EFAULT; 2448 } 2449 2450 static int vmx_hardware_enable(void) 2451 { 2452 int cpu = raw_smp_processor_id(); 2453 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2454 int r; 2455 2456 if (cr4_read_shadow() & X86_CR4_VMXE) 2457 return -EBUSY; 2458 2459 /* 2460 * This can happen if we hot-added a CPU but failed to allocate 2461 * VP assist page for it. 2462 */ 2463 if (static_branch_unlikely(&enable_evmcs) && 2464 !hv_get_vp_assist_page(cpu)) 2465 return -EFAULT; 2466 2467 intel_pt_handle_vmx(1); 2468 2469 r = kvm_cpu_vmxon(phys_addr); 2470 if (r) { 2471 intel_pt_handle_vmx(0); 2472 return r; 2473 } 2474 2475 if (enable_ept) 2476 ept_sync_global(); 2477 2478 return 0; 2479 } 2480 2481 static void vmclear_local_loaded_vmcss(void) 2482 { 2483 int cpu = raw_smp_processor_id(); 2484 struct loaded_vmcs *v, *n; 2485 2486 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2487 loaded_vmcss_on_cpu_link) 2488 __loaded_vmcs_clear(v); 2489 } 2490 2491 static void vmx_hardware_disable(void) 2492 { 2493 vmclear_local_loaded_vmcss(); 2494 2495 if (cpu_vmxoff()) 2496 kvm_spurious_fault(); 2497 2498 intel_pt_handle_vmx(0); 2499 } 2500 2501 /* 2502 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2503 * directly instead of going through cpu_has(), to ensure KVM is trapping 2504 * ENCLS whenever it's supported in hardware. It does not matter whether 2505 * the host OS supports or has enabled SGX. 2506 */ 2507 static bool cpu_has_sgx(void) 2508 { 2509 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2510 } 2511 2512 /* 2513 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2514 * can't be used due to errata where VM Exit may incorrectly clear 2515 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the 2516 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2517 */ 2518 static bool cpu_has_perf_global_ctrl_bug(void) 2519 { 2520 if (boot_cpu_data.x86 == 0x6) { 2521 switch (boot_cpu_data.x86_model) { 2522 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */ 2523 case INTEL_FAM6_NEHALEM: /* AAP115 */ 2524 case INTEL_FAM6_WESTMERE: /* AAT100 */ 2525 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */ 2526 case INTEL_FAM6_NEHALEM_EX: /* BA97 */ 2527 return true; 2528 default: 2529 break; 2530 } 2531 } 2532 2533 return false; 2534 } 2535 2536 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2537 u32 msr, u32 *result) 2538 { 2539 u32 vmx_msr_low, vmx_msr_high; 2540 u32 ctl = ctl_min | ctl_opt; 2541 2542 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2543 2544 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2545 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2546 2547 /* Ensure minimum (required) set of control bits are supported. */ 2548 if (ctl_min & ~ctl) 2549 return -EIO; 2550 2551 *result = ctl; 2552 return 0; 2553 } 2554 2555 static __init u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr) 2556 { 2557 u64 allowed; 2558 2559 rdmsrl(msr, allowed); 2560 2561 return ctl_opt & allowed; 2562 } 2563 2564 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2565 struct vmx_capability *vmx_cap) 2566 { 2567 u32 vmx_msr_low, vmx_msr_high; 2568 u32 _pin_based_exec_control = 0; 2569 u32 _cpu_based_exec_control = 0; 2570 u32 _cpu_based_2nd_exec_control = 0; 2571 u64 _cpu_based_3rd_exec_control = 0; 2572 u32 _vmexit_control = 0; 2573 u32 _vmentry_control = 0; 2574 u64 misc_msr; 2575 int i; 2576 2577 /* 2578 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory. 2579 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always 2580 * intercepts writes to PAT and EFER, i.e. never enables those controls. 2581 */ 2582 struct { 2583 u32 entry_control; 2584 u32 exit_control; 2585 } const vmcs_entry_exit_pairs[] = { 2586 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL }, 2587 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT }, 2588 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER }, 2589 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS }, 2590 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL }, 2591 }; 2592 2593 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2594 2595 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL, 2596 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL, 2597 MSR_IA32_VMX_PROCBASED_CTLS, 2598 &_cpu_based_exec_control)) 2599 return -EIO; 2600 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2601 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL, 2602 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL, 2603 MSR_IA32_VMX_PROCBASED_CTLS2, 2604 &_cpu_based_2nd_exec_control)) 2605 return -EIO; 2606 } 2607 #ifndef CONFIG_X86_64 2608 if (!(_cpu_based_2nd_exec_control & 2609 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2610 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2611 #endif 2612 2613 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2614 _cpu_based_2nd_exec_control &= ~( 2615 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2616 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2617 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2618 2619 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2620 &vmx_cap->ept, &vmx_cap->vpid); 2621 2622 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 2623 vmx_cap->ept) { 2624 pr_warn_once("EPT CAP should not exist if not support " 2625 "1-setting enable EPT VM-execution control\n"); 2626 2627 if (error_on_inconsistent_vmcs_config) 2628 return -EIO; 2629 2630 vmx_cap->ept = 0; 2631 } 2632 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2633 vmx_cap->vpid) { 2634 pr_warn_once("VPID CAP should not exist if not support " 2635 "1-setting enable VPID VM-execution control\n"); 2636 2637 if (error_on_inconsistent_vmcs_config) 2638 return -EIO; 2639 2640 vmx_cap->vpid = 0; 2641 } 2642 2643 if (!cpu_has_sgx()) 2644 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING; 2645 2646 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) 2647 _cpu_based_3rd_exec_control = 2648 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL, 2649 MSR_IA32_VMX_PROCBASED_CTLS3); 2650 2651 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS, 2652 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS, 2653 MSR_IA32_VMX_EXIT_CTLS, 2654 &_vmexit_control)) 2655 return -EIO; 2656 2657 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL, 2658 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL, 2659 MSR_IA32_VMX_PINBASED_CTLS, 2660 &_pin_based_exec_control)) 2661 return -EIO; 2662 2663 if (cpu_has_broken_vmx_preemption_timer()) 2664 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2665 if (!(_cpu_based_2nd_exec_control & 2666 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2667 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2668 2669 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS, 2670 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS, 2671 MSR_IA32_VMX_ENTRY_CTLS, 2672 &_vmentry_control)) 2673 return -EIO; 2674 2675 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) { 2676 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control; 2677 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control; 2678 2679 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl)) 2680 continue; 2681 2682 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n", 2683 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl); 2684 2685 if (error_on_inconsistent_vmcs_config) 2686 return -EIO; 2687 2688 _vmentry_control &= ~n_ctrl; 2689 _vmexit_control &= ~x_ctrl; 2690 } 2691 2692 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2693 2694 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2695 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2696 return -EIO; 2697 2698 #ifdef CONFIG_X86_64 2699 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2700 if (vmx_msr_high & (1u<<16)) 2701 return -EIO; 2702 #endif 2703 2704 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2705 if (((vmx_msr_high >> 18) & 15) != 6) 2706 return -EIO; 2707 2708 rdmsrl(MSR_IA32_VMX_MISC, misc_msr); 2709 2710 vmcs_conf->size = vmx_msr_high & 0x1fff; 2711 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2712 2713 vmcs_conf->revision_id = vmx_msr_low; 2714 2715 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2716 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2717 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2718 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control; 2719 vmcs_conf->vmexit_ctrl = _vmexit_control; 2720 vmcs_conf->vmentry_ctrl = _vmentry_control; 2721 vmcs_conf->misc = misc_msr; 2722 2723 return 0; 2724 } 2725 2726 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2727 { 2728 int node = cpu_to_node(cpu); 2729 struct page *pages; 2730 struct vmcs *vmcs; 2731 2732 pages = __alloc_pages_node(node, flags, 0); 2733 if (!pages) 2734 return NULL; 2735 vmcs = page_address(pages); 2736 memset(vmcs, 0, vmcs_config.size); 2737 2738 /* KVM supports Enlightened VMCS v1 only */ 2739 if (static_branch_unlikely(&enable_evmcs)) 2740 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2741 else 2742 vmcs->hdr.revision_id = vmcs_config.revision_id; 2743 2744 if (shadow) 2745 vmcs->hdr.shadow_vmcs = 1; 2746 return vmcs; 2747 } 2748 2749 void free_vmcs(struct vmcs *vmcs) 2750 { 2751 free_page((unsigned long)vmcs); 2752 } 2753 2754 /* 2755 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2756 */ 2757 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2758 { 2759 if (!loaded_vmcs->vmcs) 2760 return; 2761 loaded_vmcs_clear(loaded_vmcs); 2762 free_vmcs(loaded_vmcs->vmcs); 2763 loaded_vmcs->vmcs = NULL; 2764 if (loaded_vmcs->msr_bitmap) 2765 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2766 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2767 } 2768 2769 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2770 { 2771 loaded_vmcs->vmcs = alloc_vmcs(false); 2772 if (!loaded_vmcs->vmcs) 2773 return -ENOMEM; 2774 2775 vmcs_clear(loaded_vmcs->vmcs); 2776 2777 loaded_vmcs->shadow_vmcs = NULL; 2778 loaded_vmcs->hv_timer_soft_disabled = false; 2779 loaded_vmcs->cpu = -1; 2780 loaded_vmcs->launched = 0; 2781 2782 if (cpu_has_vmx_msr_bitmap()) { 2783 loaded_vmcs->msr_bitmap = (unsigned long *) 2784 __get_free_page(GFP_KERNEL_ACCOUNT); 2785 if (!loaded_vmcs->msr_bitmap) 2786 goto out_vmcs; 2787 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2788 } 2789 2790 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2791 memset(&loaded_vmcs->controls_shadow, 0, 2792 sizeof(struct vmcs_controls_shadow)); 2793 2794 return 0; 2795 2796 out_vmcs: 2797 free_loaded_vmcs(loaded_vmcs); 2798 return -ENOMEM; 2799 } 2800 2801 static void free_kvm_area(void) 2802 { 2803 int cpu; 2804 2805 for_each_possible_cpu(cpu) { 2806 free_vmcs(per_cpu(vmxarea, cpu)); 2807 per_cpu(vmxarea, cpu) = NULL; 2808 } 2809 } 2810 2811 static __init int alloc_kvm_area(void) 2812 { 2813 int cpu; 2814 2815 for_each_possible_cpu(cpu) { 2816 struct vmcs *vmcs; 2817 2818 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2819 if (!vmcs) { 2820 free_kvm_area(); 2821 return -ENOMEM; 2822 } 2823 2824 /* 2825 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2826 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2827 * revision_id reported by MSR_IA32_VMX_BASIC. 2828 * 2829 * However, even though not explicitly documented by 2830 * TLFS, VMXArea passed as VMXON argument should 2831 * still be marked with revision_id reported by 2832 * physical CPU. 2833 */ 2834 if (static_branch_unlikely(&enable_evmcs)) 2835 vmcs->hdr.revision_id = vmcs_config.revision_id; 2836 2837 per_cpu(vmxarea, cpu) = vmcs; 2838 } 2839 return 0; 2840 } 2841 2842 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2843 struct kvm_segment *save) 2844 { 2845 if (!emulate_invalid_guest_state) { 2846 /* 2847 * CS and SS RPL should be equal during guest entry according 2848 * to VMX spec, but in reality it is not always so. Since vcpu 2849 * is in the middle of the transition from real mode to 2850 * protected mode it is safe to assume that RPL 0 is a good 2851 * default value. 2852 */ 2853 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2854 save->selector &= ~SEGMENT_RPL_MASK; 2855 save->dpl = save->selector & SEGMENT_RPL_MASK; 2856 save->s = 1; 2857 } 2858 __vmx_set_segment(vcpu, save, seg); 2859 } 2860 2861 static void enter_pmode(struct kvm_vcpu *vcpu) 2862 { 2863 unsigned long flags; 2864 struct vcpu_vmx *vmx = to_vmx(vcpu); 2865 2866 /* 2867 * Update real mode segment cache. It may be not up-to-date if segment 2868 * register was written while vcpu was in a guest mode. 2869 */ 2870 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2871 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2872 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2873 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2874 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2875 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2876 2877 vmx->rmode.vm86_active = 0; 2878 2879 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2880 2881 flags = vmcs_readl(GUEST_RFLAGS); 2882 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2883 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2884 vmcs_writel(GUEST_RFLAGS, flags); 2885 2886 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2887 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2888 2889 vmx_update_exception_bitmap(vcpu); 2890 2891 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2892 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2893 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2894 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2895 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2896 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2897 } 2898 2899 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2900 { 2901 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2902 struct kvm_segment var = *save; 2903 2904 var.dpl = 0x3; 2905 if (seg == VCPU_SREG_CS) 2906 var.type = 0x3; 2907 2908 if (!emulate_invalid_guest_state) { 2909 var.selector = var.base >> 4; 2910 var.base = var.base & 0xffff0; 2911 var.limit = 0xffff; 2912 var.g = 0; 2913 var.db = 0; 2914 var.present = 1; 2915 var.s = 1; 2916 var.l = 0; 2917 var.unusable = 0; 2918 var.type = 0x3; 2919 var.avl = 0; 2920 if (save->base & 0xf) 2921 printk_once(KERN_WARNING "kvm: segment base is not " 2922 "paragraph aligned when entering " 2923 "protected mode (seg=%d)", seg); 2924 } 2925 2926 vmcs_write16(sf->selector, var.selector); 2927 vmcs_writel(sf->base, var.base); 2928 vmcs_write32(sf->limit, var.limit); 2929 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2930 } 2931 2932 static void enter_rmode(struct kvm_vcpu *vcpu) 2933 { 2934 unsigned long flags; 2935 struct vcpu_vmx *vmx = to_vmx(vcpu); 2936 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2937 2938 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2939 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2940 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2941 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2942 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2943 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2944 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2945 2946 vmx->rmode.vm86_active = 1; 2947 2948 /* 2949 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2950 * vcpu. Warn the user that an update is overdue. 2951 */ 2952 if (!kvm_vmx->tss_addr) 2953 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2954 "called before entering vcpu\n"); 2955 2956 vmx_segment_cache_clear(vmx); 2957 2958 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2959 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2960 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2961 2962 flags = vmcs_readl(GUEST_RFLAGS); 2963 vmx->rmode.save_rflags = flags; 2964 2965 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2966 2967 vmcs_writel(GUEST_RFLAGS, flags); 2968 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2969 vmx_update_exception_bitmap(vcpu); 2970 2971 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2972 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2973 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2974 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2975 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2976 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2977 } 2978 2979 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2980 { 2981 struct vcpu_vmx *vmx = to_vmx(vcpu); 2982 2983 /* Nothing to do if hardware doesn't support EFER. */ 2984 if (!vmx_find_uret_msr(vmx, MSR_EFER)) 2985 return 0; 2986 2987 vcpu->arch.efer = efer; 2988 #ifdef CONFIG_X86_64 2989 if (efer & EFER_LMA) 2990 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); 2991 else 2992 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); 2993 #else 2994 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm)) 2995 return 1; 2996 #endif 2997 2998 vmx_setup_uret_msrs(vmx); 2999 return 0; 3000 } 3001 3002 #ifdef CONFIG_X86_64 3003 3004 static void enter_lmode(struct kvm_vcpu *vcpu) 3005 { 3006 u32 guest_tr_ar; 3007 3008 vmx_segment_cache_clear(to_vmx(vcpu)); 3009 3010 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 3011 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 3012 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 3013 __func__); 3014 vmcs_write32(GUEST_TR_AR_BYTES, 3015 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 3016 | VMX_AR_TYPE_BUSY_64_TSS); 3017 } 3018 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 3019 } 3020 3021 static void exit_lmode(struct kvm_vcpu *vcpu) 3022 { 3023 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 3024 } 3025 3026 #endif 3027 3028 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 3029 { 3030 struct vcpu_vmx *vmx = to_vmx(vcpu); 3031 3032 /* 3033 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 3034 * the CPU is not required to invalidate guest-physical mappings on 3035 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 3036 * associated with the root EPT structure and not any particular VPID 3037 * (INVVPID also isn't required to invalidate guest-physical mappings). 3038 */ 3039 if (enable_ept) { 3040 ept_sync_global(); 3041 } else if (enable_vpid) { 3042 if (cpu_has_vmx_invvpid_global()) { 3043 vpid_sync_vcpu_global(); 3044 } else { 3045 vpid_sync_vcpu_single(vmx->vpid); 3046 vpid_sync_vcpu_single(vmx->nested.vpid02); 3047 } 3048 } 3049 } 3050 3051 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 3052 { 3053 if (is_guest_mode(vcpu)) 3054 return nested_get_vpid02(vcpu); 3055 return to_vmx(vcpu)->vpid; 3056 } 3057 3058 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 3059 { 3060 struct kvm_mmu *mmu = vcpu->arch.mmu; 3061 u64 root_hpa = mmu->root.hpa; 3062 3063 /* No flush required if the current context is invalid. */ 3064 if (!VALID_PAGE(root_hpa)) 3065 return; 3066 3067 if (enable_ept) 3068 ept_sync_context(construct_eptp(vcpu, root_hpa, 3069 mmu->root_role.level)); 3070 else 3071 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3072 } 3073 3074 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 3075 { 3076 /* 3077 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 3078 * vmx_flush_tlb_guest() for an explanation of why this is ok. 3079 */ 3080 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 3081 } 3082 3083 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 3084 { 3085 /* 3086 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 3087 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 3088 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 3089 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 3090 * i.e. no explicit INVVPID is necessary. 3091 */ 3092 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3093 } 3094 3095 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 3096 { 3097 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3098 3099 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 3100 return; 3101 3102 if (is_pae_paging(vcpu)) { 3103 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3104 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3105 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3106 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3107 } 3108 } 3109 3110 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3111 { 3112 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3113 3114 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3115 return; 3116 3117 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3118 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3119 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3120 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3121 3122 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3123 } 3124 3125 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3126 CPU_BASED_CR3_STORE_EXITING) 3127 3128 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3129 { 3130 struct vcpu_vmx *vmx = to_vmx(vcpu); 3131 unsigned long hw_cr0, old_cr0_pg; 3132 u32 tmp; 3133 3134 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3135 3136 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3137 if (is_unrestricted_guest(vcpu)) 3138 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3139 else { 3140 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3141 if (!enable_ept) 3142 hw_cr0 |= X86_CR0_WP; 3143 3144 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3145 enter_pmode(vcpu); 3146 3147 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3148 enter_rmode(vcpu); 3149 } 3150 3151 vmcs_writel(CR0_READ_SHADOW, cr0); 3152 vmcs_writel(GUEST_CR0, hw_cr0); 3153 vcpu->arch.cr0 = cr0; 3154 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3155 3156 #ifdef CONFIG_X86_64 3157 if (vcpu->arch.efer & EFER_LME) { 3158 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3159 enter_lmode(vcpu); 3160 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3161 exit_lmode(vcpu); 3162 } 3163 #endif 3164 3165 if (enable_ept && !is_unrestricted_guest(vcpu)) { 3166 /* 3167 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3168 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3169 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3170 * KVM's CR3 is installed. 3171 */ 3172 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3173 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3174 3175 /* 3176 * When running with EPT but not unrestricted guest, KVM must 3177 * intercept CR3 accesses when paging is _disabled_. This is 3178 * necessary because restricted guests can't actually run with 3179 * paging disabled, and so KVM stuffs its own CR3 in order to 3180 * run the guest when identity mapped page tables. 3181 * 3182 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3183 * update, it may be stale with respect to CR3 interception, 3184 * e.g. after nested VM-Enter. 3185 * 3186 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3187 * stores to forward them to L1, even if KVM does not need to 3188 * intercept them to preserve its identity mapped page tables. 3189 */ 3190 if (!(cr0 & X86_CR0_PG)) { 3191 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3192 } else if (!is_guest_mode(vcpu)) { 3193 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3194 } else { 3195 tmp = exec_controls_get(vmx); 3196 tmp &= ~CR3_EXITING_BITS; 3197 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3198 exec_controls_set(vmx, tmp); 3199 } 3200 3201 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3202 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3203 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3204 3205 /* 3206 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3207 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3208 */ 3209 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3210 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3211 } 3212 3213 /* depends on vcpu->arch.cr0 to be set to a new value */ 3214 vmx->emulation_required = vmx_emulation_required(vcpu); 3215 } 3216 3217 static int vmx_get_max_tdp_level(void) 3218 { 3219 if (cpu_has_vmx_ept_5levels()) 3220 return 5; 3221 return 4; 3222 } 3223 3224 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3225 { 3226 u64 eptp = VMX_EPTP_MT_WB; 3227 3228 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3229 3230 if (enable_ept_ad_bits && 3231 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3232 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3233 eptp |= root_hpa; 3234 3235 return eptp; 3236 } 3237 3238 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3239 int root_level) 3240 { 3241 struct kvm *kvm = vcpu->kvm; 3242 bool update_guest_cr3 = true; 3243 unsigned long guest_cr3; 3244 u64 eptp; 3245 3246 if (enable_ept) { 3247 eptp = construct_eptp(vcpu, root_hpa, root_level); 3248 vmcs_write64(EPT_POINTER, eptp); 3249 3250 hv_track_root_tdp(vcpu, root_hpa); 3251 3252 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3253 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3254 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3255 guest_cr3 = vcpu->arch.cr3; 3256 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3257 update_guest_cr3 = false; 3258 vmx_ept_load_pdptrs(vcpu); 3259 } else { 3260 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3261 } 3262 3263 if (update_guest_cr3) 3264 vmcs_writel(GUEST_CR3, guest_cr3); 3265 } 3266 3267 3268 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3269 { 3270 /* 3271 * We operate under the default treatment of SMM, so VMX cannot be 3272 * enabled under SMM. Note, whether or not VMXE is allowed at all, 3273 * i.e. is a reserved bit, is handled by common x86 code. 3274 */ 3275 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3276 return false; 3277 3278 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3279 return false; 3280 3281 return true; 3282 } 3283 3284 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3285 { 3286 unsigned long old_cr4 = vcpu->arch.cr4; 3287 struct vcpu_vmx *vmx = to_vmx(vcpu); 3288 /* 3289 * Pass through host's Machine Check Enable value to hw_cr4, which 3290 * is in force while we are in guest mode. Do not let guests control 3291 * this bit, even if host CR4.MCE == 0. 3292 */ 3293 unsigned long hw_cr4; 3294 3295 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3296 if (is_unrestricted_guest(vcpu)) 3297 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3298 else if (vmx->rmode.vm86_active) 3299 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3300 else 3301 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3302 3303 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 3304 if (cr4 & X86_CR4_UMIP) { 3305 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3306 hw_cr4 &= ~X86_CR4_UMIP; 3307 } else if (!is_guest_mode(vcpu) || 3308 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3309 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3310 } 3311 } 3312 3313 vcpu->arch.cr4 = cr4; 3314 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3315 3316 if (!is_unrestricted_guest(vcpu)) { 3317 if (enable_ept) { 3318 if (!is_paging(vcpu)) { 3319 hw_cr4 &= ~X86_CR4_PAE; 3320 hw_cr4 |= X86_CR4_PSE; 3321 } else if (!(cr4 & X86_CR4_PAE)) { 3322 hw_cr4 &= ~X86_CR4_PAE; 3323 } 3324 } 3325 3326 /* 3327 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3328 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3329 * to be manually disabled when guest switches to non-paging 3330 * mode. 3331 * 3332 * If !enable_unrestricted_guest, the CPU is always running 3333 * with CR0.PG=1 and CR4 needs to be modified. 3334 * If enable_unrestricted_guest, the CPU automatically 3335 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3336 */ 3337 if (!is_paging(vcpu)) 3338 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3339 } 3340 3341 vmcs_writel(CR4_READ_SHADOW, cr4); 3342 vmcs_writel(GUEST_CR4, hw_cr4); 3343 3344 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3345 kvm_update_cpuid_runtime(vcpu); 3346 } 3347 3348 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3349 { 3350 struct vcpu_vmx *vmx = to_vmx(vcpu); 3351 u32 ar; 3352 3353 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3354 *var = vmx->rmode.segs[seg]; 3355 if (seg == VCPU_SREG_TR 3356 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3357 return; 3358 var->base = vmx_read_guest_seg_base(vmx, seg); 3359 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3360 return; 3361 } 3362 var->base = vmx_read_guest_seg_base(vmx, seg); 3363 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3364 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3365 ar = vmx_read_guest_seg_ar(vmx, seg); 3366 var->unusable = (ar >> 16) & 1; 3367 var->type = ar & 15; 3368 var->s = (ar >> 4) & 1; 3369 var->dpl = (ar >> 5) & 3; 3370 /* 3371 * Some userspaces do not preserve unusable property. Since usable 3372 * segment has to be present according to VMX spec we can use present 3373 * property to amend userspace bug by making unusable segment always 3374 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3375 * segment as unusable. 3376 */ 3377 var->present = !var->unusable; 3378 var->avl = (ar >> 12) & 1; 3379 var->l = (ar >> 13) & 1; 3380 var->db = (ar >> 14) & 1; 3381 var->g = (ar >> 15) & 1; 3382 } 3383 3384 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3385 { 3386 struct kvm_segment s; 3387 3388 if (to_vmx(vcpu)->rmode.vm86_active) { 3389 vmx_get_segment(vcpu, &s, seg); 3390 return s.base; 3391 } 3392 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3393 } 3394 3395 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3396 { 3397 struct vcpu_vmx *vmx = to_vmx(vcpu); 3398 3399 if (unlikely(vmx->rmode.vm86_active)) 3400 return 0; 3401 else { 3402 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3403 return VMX_AR_DPL(ar); 3404 } 3405 } 3406 3407 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3408 { 3409 u32 ar; 3410 3411 if (var->unusable || !var->present) 3412 ar = 1 << 16; 3413 else { 3414 ar = var->type & 15; 3415 ar |= (var->s & 1) << 4; 3416 ar |= (var->dpl & 3) << 5; 3417 ar |= (var->present & 1) << 7; 3418 ar |= (var->avl & 1) << 12; 3419 ar |= (var->l & 1) << 13; 3420 ar |= (var->db & 1) << 14; 3421 ar |= (var->g & 1) << 15; 3422 } 3423 3424 return ar; 3425 } 3426 3427 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3428 { 3429 struct vcpu_vmx *vmx = to_vmx(vcpu); 3430 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3431 3432 vmx_segment_cache_clear(vmx); 3433 3434 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3435 vmx->rmode.segs[seg] = *var; 3436 if (seg == VCPU_SREG_TR) 3437 vmcs_write16(sf->selector, var->selector); 3438 else if (var->s) 3439 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3440 return; 3441 } 3442 3443 vmcs_writel(sf->base, var->base); 3444 vmcs_write32(sf->limit, var->limit); 3445 vmcs_write16(sf->selector, var->selector); 3446 3447 /* 3448 * Fix the "Accessed" bit in AR field of segment registers for older 3449 * qemu binaries. 3450 * IA32 arch specifies that at the time of processor reset the 3451 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3452 * is setting it to 0 in the userland code. This causes invalid guest 3453 * state vmexit when "unrestricted guest" mode is turned on. 3454 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3455 * tree. Newer qemu binaries with that qemu fix would not need this 3456 * kvm hack. 3457 */ 3458 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3459 var->type |= 0x1; /* Accessed */ 3460 3461 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3462 } 3463 3464 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3465 { 3466 __vmx_set_segment(vcpu, var, seg); 3467 3468 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3469 } 3470 3471 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3472 { 3473 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3474 3475 *db = (ar >> 14) & 1; 3476 *l = (ar >> 13) & 1; 3477 } 3478 3479 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3480 { 3481 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3482 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3483 } 3484 3485 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3486 { 3487 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3488 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3489 } 3490 3491 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3492 { 3493 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3494 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3495 } 3496 3497 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3498 { 3499 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3500 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3501 } 3502 3503 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3504 { 3505 struct kvm_segment var; 3506 u32 ar; 3507 3508 vmx_get_segment(vcpu, &var, seg); 3509 var.dpl = 0x3; 3510 if (seg == VCPU_SREG_CS) 3511 var.type = 0x3; 3512 ar = vmx_segment_access_rights(&var); 3513 3514 if (var.base != (var.selector << 4)) 3515 return false; 3516 if (var.limit != 0xffff) 3517 return false; 3518 if (ar != 0xf3) 3519 return false; 3520 3521 return true; 3522 } 3523 3524 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3525 { 3526 struct kvm_segment cs; 3527 unsigned int cs_rpl; 3528 3529 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3530 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3531 3532 if (cs.unusable) 3533 return false; 3534 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3535 return false; 3536 if (!cs.s) 3537 return false; 3538 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3539 if (cs.dpl > cs_rpl) 3540 return false; 3541 } else { 3542 if (cs.dpl != cs_rpl) 3543 return false; 3544 } 3545 if (!cs.present) 3546 return false; 3547 3548 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3549 return true; 3550 } 3551 3552 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3553 { 3554 struct kvm_segment ss; 3555 unsigned int ss_rpl; 3556 3557 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3558 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3559 3560 if (ss.unusable) 3561 return true; 3562 if (ss.type != 3 && ss.type != 7) 3563 return false; 3564 if (!ss.s) 3565 return false; 3566 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3567 return false; 3568 if (!ss.present) 3569 return false; 3570 3571 return true; 3572 } 3573 3574 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3575 { 3576 struct kvm_segment var; 3577 unsigned int rpl; 3578 3579 vmx_get_segment(vcpu, &var, seg); 3580 rpl = var.selector & SEGMENT_RPL_MASK; 3581 3582 if (var.unusable) 3583 return true; 3584 if (!var.s) 3585 return false; 3586 if (!var.present) 3587 return false; 3588 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3589 if (var.dpl < rpl) /* DPL < RPL */ 3590 return false; 3591 } 3592 3593 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3594 * rights flags 3595 */ 3596 return true; 3597 } 3598 3599 static bool tr_valid(struct kvm_vcpu *vcpu) 3600 { 3601 struct kvm_segment tr; 3602 3603 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3604 3605 if (tr.unusable) 3606 return false; 3607 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3608 return false; 3609 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3610 return false; 3611 if (!tr.present) 3612 return false; 3613 3614 return true; 3615 } 3616 3617 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3618 { 3619 struct kvm_segment ldtr; 3620 3621 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3622 3623 if (ldtr.unusable) 3624 return true; 3625 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3626 return false; 3627 if (ldtr.type != 2) 3628 return false; 3629 if (!ldtr.present) 3630 return false; 3631 3632 return true; 3633 } 3634 3635 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3636 { 3637 struct kvm_segment cs, ss; 3638 3639 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3640 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3641 3642 return ((cs.selector & SEGMENT_RPL_MASK) == 3643 (ss.selector & SEGMENT_RPL_MASK)); 3644 } 3645 3646 /* 3647 * Check if guest state is valid. Returns true if valid, false if 3648 * not. 3649 * We assume that registers are always usable 3650 */ 3651 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3652 { 3653 /* real mode guest state checks */ 3654 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3655 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3656 return false; 3657 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3658 return false; 3659 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3660 return false; 3661 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3662 return false; 3663 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3664 return false; 3665 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3666 return false; 3667 } else { 3668 /* protected mode guest state checks */ 3669 if (!cs_ss_rpl_check(vcpu)) 3670 return false; 3671 if (!code_segment_valid(vcpu)) 3672 return false; 3673 if (!stack_segment_valid(vcpu)) 3674 return false; 3675 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3676 return false; 3677 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3678 return false; 3679 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3680 return false; 3681 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3682 return false; 3683 if (!tr_valid(vcpu)) 3684 return false; 3685 if (!ldtr_valid(vcpu)) 3686 return false; 3687 } 3688 /* TODO: 3689 * - Add checks on RIP 3690 * - Add checks on RFLAGS 3691 */ 3692 3693 return true; 3694 } 3695 3696 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3697 { 3698 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3699 u16 data; 3700 int i; 3701 3702 for (i = 0; i < 3; i++) { 3703 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3704 return -EFAULT; 3705 } 3706 3707 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3708 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3709 return -EFAULT; 3710 3711 data = ~0; 3712 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3713 return -EFAULT; 3714 3715 return 0; 3716 } 3717 3718 static int init_rmode_identity_map(struct kvm *kvm) 3719 { 3720 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3721 int i, r = 0; 3722 void __user *uaddr; 3723 u32 tmp; 3724 3725 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3726 mutex_lock(&kvm->slots_lock); 3727 3728 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3729 goto out; 3730 3731 if (!kvm_vmx->ept_identity_map_addr) 3732 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3733 3734 uaddr = __x86_set_memory_region(kvm, 3735 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3736 kvm_vmx->ept_identity_map_addr, 3737 PAGE_SIZE); 3738 if (IS_ERR(uaddr)) { 3739 r = PTR_ERR(uaddr); 3740 goto out; 3741 } 3742 3743 /* Set up identity-mapping pagetable for EPT in real mode */ 3744 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) { 3745 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3746 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3747 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3748 r = -EFAULT; 3749 goto out; 3750 } 3751 } 3752 kvm_vmx->ept_identity_pagetable_done = true; 3753 3754 out: 3755 mutex_unlock(&kvm->slots_lock); 3756 return r; 3757 } 3758 3759 static void seg_setup(int seg) 3760 { 3761 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3762 unsigned int ar; 3763 3764 vmcs_write16(sf->selector, 0); 3765 vmcs_writel(sf->base, 0); 3766 vmcs_write32(sf->limit, 0xffff); 3767 ar = 0x93; 3768 if (seg == VCPU_SREG_CS) 3769 ar |= 0x08; /* code segment */ 3770 3771 vmcs_write32(sf->ar_bytes, ar); 3772 } 3773 3774 static int alloc_apic_access_page(struct kvm *kvm) 3775 { 3776 struct page *page; 3777 void __user *hva; 3778 int ret = 0; 3779 3780 mutex_lock(&kvm->slots_lock); 3781 if (kvm->arch.apic_access_memslot_enabled) 3782 goto out; 3783 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3784 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3785 if (IS_ERR(hva)) { 3786 ret = PTR_ERR(hva); 3787 goto out; 3788 } 3789 3790 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3791 if (is_error_page(page)) { 3792 ret = -EFAULT; 3793 goto out; 3794 } 3795 3796 /* 3797 * Do not pin the page in memory, so that memory hot-unplug 3798 * is able to migrate it. 3799 */ 3800 put_page(page); 3801 kvm->arch.apic_access_memslot_enabled = true; 3802 out: 3803 mutex_unlock(&kvm->slots_lock); 3804 return ret; 3805 } 3806 3807 int allocate_vpid(void) 3808 { 3809 int vpid; 3810 3811 if (!enable_vpid) 3812 return 0; 3813 spin_lock(&vmx_vpid_lock); 3814 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3815 if (vpid < VMX_NR_VPIDS) 3816 __set_bit(vpid, vmx_vpid_bitmap); 3817 else 3818 vpid = 0; 3819 spin_unlock(&vmx_vpid_lock); 3820 return vpid; 3821 } 3822 3823 void free_vpid(int vpid) 3824 { 3825 if (!enable_vpid || vpid == 0) 3826 return; 3827 spin_lock(&vmx_vpid_lock); 3828 __clear_bit(vpid, vmx_vpid_bitmap); 3829 spin_unlock(&vmx_vpid_lock); 3830 } 3831 3832 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3833 { 3834 /* 3835 * When KVM is a nested hypervisor on top of Hyper-V and uses 3836 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3837 * bitmap has changed. 3838 */ 3839 if (static_branch_unlikely(&enable_evmcs)) 3840 evmcs_touch_msr_bitmap(); 3841 3842 vmx->nested.force_msr_bitmap_recalc = true; 3843 } 3844 3845 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3846 { 3847 struct vcpu_vmx *vmx = to_vmx(vcpu); 3848 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3849 3850 if (!cpu_has_vmx_msr_bitmap()) 3851 return; 3852 3853 vmx_msr_bitmap_l01_changed(vmx); 3854 3855 /* 3856 * Mark the desired intercept state in shadow bitmap, this is needed 3857 * for resync when the MSR filters change. 3858 */ 3859 if (is_valid_passthrough_msr(msr)) { 3860 int idx = possible_passthrough_msr_slot(msr); 3861 3862 if (idx != -ENOENT) { 3863 if (type & MSR_TYPE_R) 3864 clear_bit(idx, vmx->shadow_msr_intercept.read); 3865 if (type & MSR_TYPE_W) 3866 clear_bit(idx, vmx->shadow_msr_intercept.write); 3867 } 3868 } 3869 3870 if ((type & MSR_TYPE_R) && 3871 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3872 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3873 type &= ~MSR_TYPE_R; 3874 } 3875 3876 if ((type & MSR_TYPE_W) && 3877 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3878 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3879 type &= ~MSR_TYPE_W; 3880 } 3881 3882 if (type & MSR_TYPE_R) 3883 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3884 3885 if (type & MSR_TYPE_W) 3886 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3887 } 3888 3889 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3890 { 3891 struct vcpu_vmx *vmx = to_vmx(vcpu); 3892 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3893 3894 if (!cpu_has_vmx_msr_bitmap()) 3895 return; 3896 3897 vmx_msr_bitmap_l01_changed(vmx); 3898 3899 /* 3900 * Mark the desired intercept state in shadow bitmap, this is needed 3901 * for resync when the MSR filter changes. 3902 */ 3903 if (is_valid_passthrough_msr(msr)) { 3904 int idx = possible_passthrough_msr_slot(msr); 3905 3906 if (idx != -ENOENT) { 3907 if (type & MSR_TYPE_R) 3908 set_bit(idx, vmx->shadow_msr_intercept.read); 3909 if (type & MSR_TYPE_W) 3910 set_bit(idx, vmx->shadow_msr_intercept.write); 3911 } 3912 } 3913 3914 if (type & MSR_TYPE_R) 3915 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3916 3917 if (type & MSR_TYPE_W) 3918 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3919 } 3920 3921 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode) 3922 { 3923 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; 3924 unsigned long read_intercept; 3925 int msr; 3926 3927 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3928 3929 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3930 unsigned int read_idx = msr / BITS_PER_LONG; 3931 unsigned int write_idx = read_idx + (0x800 / sizeof(long)); 3932 3933 msr_bitmap[read_idx] = read_intercept; 3934 msr_bitmap[write_idx] = ~0ul; 3935 } 3936 } 3937 3938 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 3939 { 3940 struct vcpu_vmx *vmx = to_vmx(vcpu); 3941 u8 mode; 3942 3943 if (!cpu_has_vmx_msr_bitmap()) 3944 return; 3945 3946 if (cpu_has_secondary_exec_ctrls() && 3947 (secondary_exec_controls_get(vmx) & 3948 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3949 mode = MSR_BITMAP_MODE_X2APIC; 3950 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3951 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3952 } else { 3953 mode = 0; 3954 } 3955 3956 if (mode == vmx->x2apic_msr_bitmap_mode) 3957 return; 3958 3959 vmx->x2apic_msr_bitmap_mode = mode; 3960 3961 vmx_reset_x2apic_msrs(vcpu, mode); 3962 3963 /* 3964 * TPR reads and writes can be virtualized even if virtual interrupt 3965 * delivery is not in use. 3966 */ 3967 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 3968 !(mode & MSR_BITMAP_MODE_X2APIC)); 3969 3970 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3971 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 3972 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3973 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3974 if (enable_ipiv) 3975 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW); 3976 } 3977 } 3978 3979 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 3980 { 3981 struct vcpu_vmx *vmx = to_vmx(vcpu); 3982 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3983 u32 i; 3984 3985 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 3986 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 3987 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 3988 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 3989 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 3990 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3991 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3992 } 3993 } 3994 3995 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3996 { 3997 struct vcpu_vmx *vmx = to_vmx(vcpu); 3998 void *vapic_page; 3999 u32 vppr; 4000 int rvi; 4001 4002 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 4003 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 4004 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 4005 return false; 4006 4007 rvi = vmx_get_rvi(); 4008 4009 vapic_page = vmx->nested.virtual_apic_map.hva; 4010 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 4011 4012 return ((rvi & 0xf0) > (vppr & 0xf0)); 4013 } 4014 4015 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 4016 { 4017 struct vcpu_vmx *vmx = to_vmx(vcpu); 4018 u32 i; 4019 4020 /* 4021 * Redo intercept permissions for MSRs that KVM is passing through to 4022 * the guest. Disabling interception will check the new MSR filter and 4023 * ensure that KVM enables interception if usersepace wants to filter 4024 * the MSR. MSRs that KVM is already intercepting don't need to be 4025 * refreshed since KVM is going to intercept them regardless of what 4026 * userspace wants. 4027 */ 4028 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 4029 u32 msr = vmx_possible_passthrough_msrs[i]; 4030 4031 if (!test_bit(i, vmx->shadow_msr_intercept.read)) 4032 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R); 4033 4034 if (!test_bit(i, vmx->shadow_msr_intercept.write)) 4035 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W); 4036 } 4037 4038 /* PT MSRs can be passed through iff PT is exposed to the guest. */ 4039 if (vmx_pt_mode_is_host_guest()) 4040 pt_update_intercept_for_msr(vcpu); 4041 } 4042 4043 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 4044 int pi_vec) 4045 { 4046 #ifdef CONFIG_SMP 4047 if (vcpu->mode == IN_GUEST_MODE) { 4048 /* 4049 * The vector of the virtual has already been set in the PIR. 4050 * Send a notification event to deliver the virtual interrupt 4051 * unless the vCPU is the currently running vCPU, i.e. the 4052 * event is being sent from a fastpath VM-Exit handler, in 4053 * which case the PIR will be synced to the vIRR before 4054 * re-entering the guest. 4055 * 4056 * When the target is not the running vCPU, the following 4057 * possibilities emerge: 4058 * 4059 * Case 1: vCPU stays in non-root mode. Sending a notification 4060 * event posts the interrupt to the vCPU. 4061 * 4062 * Case 2: vCPU exits to root mode and is still runnable. The 4063 * PIR will be synced to the vIRR before re-entering the guest. 4064 * Sending a notification event is ok as the host IRQ handler 4065 * will ignore the spurious event. 4066 * 4067 * Case 3: vCPU exits to root mode and is blocked. vcpu_block() 4068 * has already synced PIR to vIRR and never blocks the vCPU if 4069 * the vIRR is not empty. Therefore, a blocked vCPU here does 4070 * not wait for any requested interrupts in PIR, and sending a 4071 * notification event also results in a benign, spurious event. 4072 */ 4073 4074 if (vcpu != kvm_get_running_vcpu()) 4075 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 4076 return; 4077 } 4078 #endif 4079 /* 4080 * The vCPU isn't in the guest; wake the vCPU in case it is blocking, 4081 * otherwise do nothing as KVM will grab the highest priority pending 4082 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). 4083 */ 4084 kvm_vcpu_wake_up(vcpu); 4085 } 4086 4087 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 4088 int vector) 4089 { 4090 struct vcpu_vmx *vmx = to_vmx(vcpu); 4091 4092 if (is_guest_mode(vcpu) && 4093 vector == vmx->nested.posted_intr_nv) { 4094 /* 4095 * If a posted intr is not recognized by hardware, 4096 * we will accomplish it in the next vmentry. 4097 */ 4098 vmx->nested.pi_pending = true; 4099 kvm_make_request(KVM_REQ_EVENT, vcpu); 4100 4101 /* 4102 * This pairs with the smp_mb_*() after setting vcpu->mode in 4103 * vcpu_enter_guest() to guarantee the vCPU sees the event 4104 * request if triggering a posted interrupt "fails" because 4105 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 4106 * the smb_wmb() in kvm_make_request() only ensures everything 4107 * done before making the request is visible when the request 4108 * is visible, it doesn't ensure ordering between the store to 4109 * vcpu->requests and the load from vcpu->mode. 4110 */ 4111 smp_mb__after_atomic(); 4112 4113 /* the PIR and ON have been set by L1. */ 4114 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); 4115 return 0; 4116 } 4117 return -1; 4118 } 4119 /* 4120 * Send interrupt to vcpu via posted interrupt way. 4121 * 1. If target vcpu is running(non-root mode), send posted interrupt 4122 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4123 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4124 * interrupt from PIR in next vmentry. 4125 */ 4126 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4127 { 4128 struct vcpu_vmx *vmx = to_vmx(vcpu); 4129 int r; 4130 4131 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4132 if (!r) 4133 return 0; 4134 4135 /* Note, this is called iff the local APIC is in-kernel. */ 4136 if (!vcpu->arch.apic->apicv_active) 4137 return -1; 4138 4139 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4140 return 0; 4141 4142 /* If a previous notification has sent the IPI, nothing to do. */ 4143 if (pi_test_and_set_on(&vmx->pi_desc)) 4144 return 0; 4145 4146 /* 4147 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() 4148 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is 4149 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a 4150 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. 4151 */ 4152 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); 4153 return 0; 4154 } 4155 4156 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 4157 int trig_mode, int vector) 4158 { 4159 struct kvm_vcpu *vcpu = apic->vcpu; 4160 4161 if (vmx_deliver_posted_interrupt(vcpu, vector)) { 4162 kvm_lapic_set_irr(vector, apic); 4163 kvm_make_request(KVM_REQ_EVENT, vcpu); 4164 kvm_vcpu_kick(vcpu); 4165 } else { 4166 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 4167 trig_mode, vector); 4168 } 4169 } 4170 4171 /* 4172 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4173 * will not change in the lifetime of the guest. 4174 * Note that host-state that does change is set elsewhere. E.g., host-state 4175 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4176 */ 4177 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4178 { 4179 u32 low32, high32; 4180 unsigned long tmpl; 4181 unsigned long cr0, cr3, cr4; 4182 4183 cr0 = read_cr0(); 4184 WARN_ON(cr0 & X86_CR0_TS); 4185 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4186 4187 /* 4188 * Save the most likely value for this task's CR3 in the VMCS. 4189 * We can't use __get_current_cr3_fast() because we're not atomic. 4190 */ 4191 cr3 = __read_cr3(); 4192 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4193 vmx->loaded_vmcs->host_state.cr3 = cr3; 4194 4195 /* Save the most likely value for this task's CR4 in the VMCS. */ 4196 cr4 = cr4_read_shadow(); 4197 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4198 vmx->loaded_vmcs->host_state.cr4 = cr4; 4199 4200 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4201 #ifdef CONFIG_X86_64 4202 /* 4203 * Load null selectors, so we can avoid reloading them in 4204 * vmx_prepare_switch_to_host(), in case userspace uses 4205 * the null selectors too (the expected case). 4206 */ 4207 vmcs_write16(HOST_DS_SELECTOR, 0); 4208 vmcs_write16(HOST_ES_SELECTOR, 0); 4209 #else 4210 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4211 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4212 #endif 4213 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4214 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4215 4216 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4217 4218 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4219 4220 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4221 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4222 4223 /* 4224 * SYSENTER is used for 32-bit system calls on either 32-bit or 4225 * 64-bit kernels. It is always zero If neither is allowed, otherwise 4226 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may 4227 * have already done so!). 4228 */ 4229 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) 4230 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4231 4232 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4233 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4234 4235 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4236 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4237 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4238 } 4239 4240 if (cpu_has_load_ia32_efer()) 4241 vmcs_write64(HOST_IA32_EFER, host_efer); 4242 } 4243 4244 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4245 { 4246 struct kvm_vcpu *vcpu = &vmx->vcpu; 4247 4248 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4249 ~vcpu->arch.cr4_guest_rsvd_bits; 4250 if (!enable_ept) { 4251 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4252 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4253 } 4254 if (is_guest_mode(&vmx->vcpu)) 4255 vcpu->arch.cr4_guest_owned_bits &= 4256 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4257 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4258 } 4259 4260 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4261 { 4262 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4263 4264 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4265 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4266 4267 if (!enable_vnmi) 4268 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4269 4270 if (!enable_preemption_timer) 4271 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4272 4273 return pin_based_exec_ctrl; 4274 } 4275 4276 static u32 vmx_vmentry_ctrl(void) 4277 { 4278 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4279 4280 if (vmx_pt_mode_is_system()) 4281 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4282 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4283 /* 4284 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically. 4285 */ 4286 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 4287 VM_ENTRY_LOAD_IA32_EFER | 4288 VM_ENTRY_IA32E_MODE); 4289 4290 if (cpu_has_perf_global_ctrl_bug()) 4291 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 4292 4293 return vmentry_ctrl; 4294 } 4295 4296 static u32 vmx_vmexit_ctrl(void) 4297 { 4298 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4299 4300 /* 4301 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for 4302 * nested virtualization and thus allowed to be set in vmcs12. 4303 */ 4304 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER | 4305 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER); 4306 4307 if (vmx_pt_mode_is_system()) 4308 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4309 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4310 4311 if (cpu_has_perf_global_ctrl_bug()) 4312 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 4313 4314 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4315 return vmexit_ctrl & 4316 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4317 } 4318 4319 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4320 { 4321 struct vcpu_vmx *vmx = to_vmx(vcpu); 4322 4323 if (is_guest_mode(vcpu)) { 4324 vmx->nested.update_vmcs01_apicv_status = true; 4325 return; 4326 } 4327 4328 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4329 4330 if (kvm_vcpu_apicv_active(vcpu)) { 4331 secondary_exec_controls_setbit(vmx, 4332 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4333 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4334 if (enable_ipiv) 4335 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4336 } else { 4337 secondary_exec_controls_clearbit(vmx, 4338 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4339 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4340 if (enable_ipiv) 4341 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4342 } 4343 4344 vmx_update_msr_bitmap_x2apic(vcpu); 4345 } 4346 4347 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4348 { 4349 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4350 4351 /* 4352 * Not used by KVM, but fully supported for nesting, i.e. are allowed in 4353 * vmcs12 and propagated to vmcs02 when set in vmcs12. 4354 */ 4355 exec_control &= ~(CPU_BASED_RDTSC_EXITING | 4356 CPU_BASED_USE_IO_BITMAPS | 4357 CPU_BASED_MONITOR_TRAP_FLAG | 4358 CPU_BASED_PAUSE_EXITING); 4359 4360 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */ 4361 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING | 4362 CPU_BASED_NMI_WINDOW_EXITING); 4363 4364 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4365 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4366 4367 if (!cpu_need_tpr_shadow(&vmx->vcpu)) 4368 exec_control &= ~CPU_BASED_TPR_SHADOW; 4369 4370 #ifdef CONFIG_X86_64 4371 if (exec_control & CPU_BASED_TPR_SHADOW) 4372 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING | 4373 CPU_BASED_CR8_STORE_EXITING); 4374 else 4375 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4376 CPU_BASED_CR8_LOAD_EXITING; 4377 #endif 4378 /* No need to intercept CR3 access or INVPLG when using EPT. */ 4379 if (enable_ept) 4380 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 4381 CPU_BASED_CR3_STORE_EXITING | 4382 CPU_BASED_INVLPG_EXITING); 4383 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4384 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4385 CPU_BASED_MONITOR_EXITING); 4386 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4387 exec_control &= ~CPU_BASED_HLT_EXITING; 4388 return exec_control; 4389 } 4390 4391 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx) 4392 { 4393 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl; 4394 4395 /* 4396 * IPI virtualization relies on APICv. Disable IPI virtualization if 4397 * APICv is inhibited. 4398 */ 4399 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu)) 4400 exec_control &= ~TERTIARY_EXEC_IPI_VIRT; 4401 4402 return exec_control; 4403 } 4404 4405 /* 4406 * Adjust a single secondary execution control bit to intercept/allow an 4407 * instruction in the guest. This is usually done based on whether or not a 4408 * feature has been exposed to the guest in order to correctly emulate faults. 4409 */ 4410 static inline void 4411 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4412 u32 control, bool enabled, bool exiting) 4413 { 4414 /* 4415 * If the control is for an opt-in feature, clear the control if the 4416 * feature is not exposed to the guest, i.e. not enabled. If the 4417 * control is opt-out, i.e. an exiting control, clear the control if 4418 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4419 * disabled for the associated instruction. Note, the caller is 4420 * responsible presetting exec_control to set all supported bits. 4421 */ 4422 if (enabled == exiting) 4423 *exec_control &= ~control; 4424 4425 /* 4426 * Update the nested MSR settings so that a nested VMM can/can't set 4427 * controls for features that are/aren't exposed to the guest. 4428 */ 4429 if (nested) { 4430 if (enabled) 4431 vmx->nested.msrs.secondary_ctls_high |= control; 4432 else 4433 vmx->nested.msrs.secondary_ctls_high &= ~control; 4434 } 4435 } 4436 4437 /* 4438 * Wrapper macro for the common case of adjusting a secondary execution control 4439 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4440 * verifies that the control is actually supported by KVM and hardware. 4441 */ 4442 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4443 ({ \ 4444 bool __enabled; \ 4445 \ 4446 if (cpu_has_vmx_##name()) { \ 4447 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4448 X86_FEATURE_##feat_name); \ 4449 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4450 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4451 } \ 4452 }) 4453 4454 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4455 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4456 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4457 4458 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4459 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4460 4461 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4462 { 4463 struct kvm_vcpu *vcpu = &vmx->vcpu; 4464 4465 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4466 4467 if (vmx_pt_mode_is_system()) 4468 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4469 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4470 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4471 if (vmx->vpid == 0) 4472 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4473 if (!enable_ept) { 4474 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4475 enable_unrestricted_guest = 0; 4476 } 4477 if (!enable_unrestricted_guest) 4478 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4479 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4480 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4481 if (!kvm_vcpu_apicv_active(vcpu)) 4482 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4483 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4484 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4485 4486 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4487 * in vmx_set_cr4. */ 4488 exec_control &= ~SECONDARY_EXEC_DESC; 4489 4490 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4491 (handle_vmptrld). 4492 We can NOT enable shadow_vmcs here because we don't have yet 4493 a current VMCS12 4494 */ 4495 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4496 4497 /* 4498 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4499 * it needs to be set here when dirty logging is already active, e.g. 4500 * if this vCPU was created after dirty logging was enabled. 4501 */ 4502 if (!vcpu->kvm->arch.cpu_dirty_logging_count) 4503 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4504 4505 if (cpu_has_vmx_xsaves()) { 4506 /* Exposing XSAVES only when XSAVE is exposed */ 4507 bool xsaves_enabled = 4508 boot_cpu_has(X86_FEATURE_XSAVE) && 4509 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4510 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4511 4512 vcpu->arch.xsaves_enabled = xsaves_enabled; 4513 4514 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4515 SECONDARY_EXEC_XSAVES, 4516 xsaves_enabled, false); 4517 } 4518 4519 /* 4520 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4521 * feature is exposed to the guest. This creates a virtualization hole 4522 * if both are supported in hardware but only one is exposed to the 4523 * guest, but letting the guest execute RDTSCP or RDPID when either one 4524 * is advertised is preferable to emulating the advertised instruction 4525 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4526 */ 4527 if (cpu_has_vmx_rdtscp()) { 4528 bool rdpid_or_rdtscp_enabled = 4529 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4530 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4531 4532 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4533 SECONDARY_EXEC_ENABLE_RDTSCP, 4534 rdpid_or_rdtscp_enabled, false); 4535 } 4536 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4537 4538 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4539 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4540 4541 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4542 ENABLE_USR_WAIT_PAUSE, false); 4543 4544 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4545 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4546 4547 if (!kvm_notify_vmexit_enabled(vcpu->kvm)) 4548 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING; 4549 4550 return exec_control; 4551 } 4552 4553 static inline int vmx_get_pid_table_order(struct kvm *kvm) 4554 { 4555 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table)); 4556 } 4557 4558 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm) 4559 { 4560 struct page *pages; 4561 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4562 4563 if (!irqchip_in_kernel(kvm) || !enable_ipiv) 4564 return 0; 4565 4566 if (kvm_vmx->pid_table) 4567 return 0; 4568 4569 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, vmx_get_pid_table_order(kvm)); 4570 if (!pages) 4571 return -ENOMEM; 4572 4573 kvm_vmx->pid_table = (void *)page_address(pages); 4574 return 0; 4575 } 4576 4577 static int vmx_vcpu_precreate(struct kvm *kvm) 4578 { 4579 return vmx_alloc_ipiv_pid_table(kvm); 4580 } 4581 4582 #define VMX_XSS_EXIT_BITMAP 0 4583 4584 static void init_vmcs(struct vcpu_vmx *vmx) 4585 { 4586 struct kvm *kvm = vmx->vcpu.kvm; 4587 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4588 4589 if (nested) 4590 nested_vmx_set_vmcs_shadowing_bitmap(); 4591 4592 if (cpu_has_vmx_msr_bitmap()) 4593 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4594 4595 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4596 4597 /* Control */ 4598 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4599 4600 exec_controls_set(vmx, vmx_exec_control(vmx)); 4601 4602 if (cpu_has_secondary_exec_ctrls()) 4603 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4604 4605 if (cpu_has_tertiary_exec_ctrls()) 4606 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx)); 4607 4608 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) { 4609 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4610 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4611 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4612 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4613 4614 vmcs_write16(GUEST_INTR_STATUS, 0); 4615 4616 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4617 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4618 } 4619 4620 if (vmx_can_use_ipiv(&vmx->vcpu)) { 4621 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table)); 4622 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1); 4623 } 4624 4625 if (!kvm_pause_in_guest(kvm)) { 4626 vmcs_write32(PLE_GAP, ple_gap); 4627 vmx->ple_window = ple_window; 4628 vmx->ple_window_dirty = true; 4629 } 4630 4631 if (kvm_notify_vmexit_enabled(kvm)) 4632 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); 4633 4634 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4635 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4636 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4637 4638 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4639 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4640 vmx_set_constant_host_state(vmx); 4641 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4642 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4643 4644 if (cpu_has_vmx_vmfunc()) 4645 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4646 4647 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4648 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4649 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4650 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4651 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4652 4653 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4654 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4655 4656 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4657 4658 /* 22.2.1, 20.8.1 */ 4659 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4660 4661 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS; 4662 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4663 4664 set_cr4_guest_host_mask(vmx); 4665 4666 if (vmx->vpid != 0) 4667 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4668 4669 if (cpu_has_vmx_xsaves()) 4670 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4671 4672 if (enable_pml) { 4673 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4674 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4675 } 4676 4677 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4678 4679 if (vmx_pt_mode_is_host_guest()) { 4680 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4681 /* Bit[6~0] are forced to 1, writes are ignored. */ 4682 vmx->pt_desc.guest.output_mask = 0x7F; 4683 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4684 } 4685 4686 vmcs_write32(GUEST_SYSENTER_CS, 0); 4687 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4688 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4689 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4690 4691 if (cpu_has_vmx_tpr_shadow()) { 4692 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4693 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4694 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4695 __pa(vmx->vcpu.arch.apic->regs)); 4696 vmcs_write32(TPR_THRESHOLD, 0); 4697 } 4698 4699 vmx_setup_uret_msrs(vmx); 4700 } 4701 4702 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4703 { 4704 struct vcpu_vmx *vmx = to_vmx(vcpu); 4705 4706 init_vmcs(vmx); 4707 4708 if (nested) 4709 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4710 4711 vcpu_setup_sgx_lepubkeyhash(vcpu); 4712 4713 vmx->nested.posted_intr_nv = -1; 4714 vmx->nested.vmxon_ptr = INVALID_GPA; 4715 vmx->nested.current_vmptr = INVALID_GPA; 4716 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4717 4718 vcpu->arch.microcode_version = 0x100000000ULL; 4719 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4720 4721 /* 4722 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4723 * or POSTED_INTR_WAKEUP_VECTOR. 4724 */ 4725 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4726 vmx->pi_desc.sn = 1; 4727 } 4728 4729 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4730 { 4731 struct vcpu_vmx *vmx = to_vmx(vcpu); 4732 4733 if (!init_event) 4734 __vmx_vcpu_reset(vcpu); 4735 4736 vmx->rmode.vm86_active = 0; 4737 vmx->spec_ctrl = 0; 4738 4739 vmx->msr_ia32_umwait_control = 0; 4740 4741 vmx->hv_deadline_tsc = -1; 4742 kvm_set_cr8(vcpu, 0); 4743 4744 vmx_segment_cache_clear(vmx); 4745 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4746 4747 seg_setup(VCPU_SREG_CS); 4748 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4749 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4750 4751 seg_setup(VCPU_SREG_DS); 4752 seg_setup(VCPU_SREG_ES); 4753 seg_setup(VCPU_SREG_FS); 4754 seg_setup(VCPU_SREG_GS); 4755 seg_setup(VCPU_SREG_SS); 4756 4757 vmcs_write16(GUEST_TR_SELECTOR, 0); 4758 vmcs_writel(GUEST_TR_BASE, 0); 4759 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4760 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4761 4762 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4763 vmcs_writel(GUEST_LDTR_BASE, 0); 4764 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4765 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4766 4767 vmcs_writel(GUEST_GDTR_BASE, 0); 4768 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4769 4770 vmcs_writel(GUEST_IDTR_BASE, 0); 4771 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4772 4773 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4774 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4775 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4776 if (kvm_mpx_supported()) 4777 vmcs_write64(GUEST_BNDCFGS, 0); 4778 4779 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4780 4781 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4782 4783 vpid_sync_context(vmx->vpid); 4784 4785 vmx_update_fb_clear_dis(vcpu, vmx); 4786 } 4787 4788 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4789 { 4790 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4791 } 4792 4793 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4794 { 4795 if (!enable_vnmi || 4796 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4797 vmx_enable_irq_window(vcpu); 4798 return; 4799 } 4800 4801 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4802 } 4803 4804 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 4805 { 4806 struct vcpu_vmx *vmx = to_vmx(vcpu); 4807 uint32_t intr; 4808 int irq = vcpu->arch.interrupt.nr; 4809 4810 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected); 4811 4812 ++vcpu->stat.irq_injections; 4813 if (vmx->rmode.vm86_active) { 4814 int inc_eip = 0; 4815 if (vcpu->arch.interrupt.soft) 4816 inc_eip = vcpu->arch.event_exit_inst_len; 4817 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4818 return; 4819 } 4820 intr = irq | INTR_INFO_VALID_MASK; 4821 if (vcpu->arch.interrupt.soft) { 4822 intr |= INTR_TYPE_SOFT_INTR; 4823 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4824 vmx->vcpu.arch.event_exit_inst_len); 4825 } else 4826 intr |= INTR_TYPE_EXT_INTR; 4827 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4828 4829 vmx_clear_hlt(vcpu); 4830 } 4831 4832 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4833 { 4834 struct vcpu_vmx *vmx = to_vmx(vcpu); 4835 4836 if (!enable_vnmi) { 4837 /* 4838 * Tracking the NMI-blocked state in software is built upon 4839 * finding the next open IRQ window. This, in turn, depends on 4840 * well-behaving guests: They have to keep IRQs disabled at 4841 * least as long as the NMI handler runs. Otherwise we may 4842 * cause NMI nesting, maybe breaking the guest. But as this is 4843 * highly unlikely, we can live with the residual risk. 4844 */ 4845 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4846 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4847 } 4848 4849 ++vcpu->stat.nmi_injections; 4850 vmx->loaded_vmcs->nmi_known_unmasked = false; 4851 4852 if (vmx->rmode.vm86_active) { 4853 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4854 return; 4855 } 4856 4857 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4858 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4859 4860 vmx_clear_hlt(vcpu); 4861 } 4862 4863 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4864 { 4865 struct vcpu_vmx *vmx = to_vmx(vcpu); 4866 bool masked; 4867 4868 if (!enable_vnmi) 4869 return vmx->loaded_vmcs->soft_vnmi_blocked; 4870 if (vmx->loaded_vmcs->nmi_known_unmasked) 4871 return false; 4872 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4873 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4874 return masked; 4875 } 4876 4877 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4878 { 4879 struct vcpu_vmx *vmx = to_vmx(vcpu); 4880 4881 if (!enable_vnmi) { 4882 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4883 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4884 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4885 } 4886 } else { 4887 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4888 if (masked) 4889 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4890 GUEST_INTR_STATE_NMI); 4891 else 4892 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4893 GUEST_INTR_STATE_NMI); 4894 } 4895 } 4896 4897 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 4898 { 4899 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4900 return false; 4901 4902 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4903 return true; 4904 4905 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4906 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 4907 GUEST_INTR_STATE_NMI)); 4908 } 4909 4910 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4911 { 4912 if (to_vmx(vcpu)->nested.nested_run_pending) 4913 return -EBUSY; 4914 4915 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 4916 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4917 return -EBUSY; 4918 4919 return !vmx_nmi_blocked(vcpu); 4920 } 4921 4922 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 4923 { 4924 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4925 return false; 4926 4927 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 4928 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4929 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4930 } 4931 4932 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4933 { 4934 if (to_vmx(vcpu)->nested.nested_run_pending) 4935 return -EBUSY; 4936 4937 /* 4938 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 4939 * e.g. if the IRQ arrived asynchronously after checking nested events. 4940 */ 4941 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4942 return -EBUSY; 4943 4944 return !vmx_interrupt_blocked(vcpu); 4945 } 4946 4947 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4948 { 4949 void __user *ret; 4950 4951 if (enable_unrestricted_guest) 4952 return 0; 4953 4954 mutex_lock(&kvm->slots_lock); 4955 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4956 PAGE_SIZE * 3); 4957 mutex_unlock(&kvm->slots_lock); 4958 4959 if (IS_ERR(ret)) 4960 return PTR_ERR(ret); 4961 4962 to_kvm_vmx(kvm)->tss_addr = addr; 4963 4964 return init_rmode_tss(kvm, ret); 4965 } 4966 4967 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4968 { 4969 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4970 return 0; 4971 } 4972 4973 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4974 { 4975 switch (vec) { 4976 case BP_VECTOR: 4977 /* 4978 * Update instruction length as we may reinject the exception 4979 * from user space while in guest debugging mode. 4980 */ 4981 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4982 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4983 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4984 return false; 4985 fallthrough; 4986 case DB_VECTOR: 4987 return !(vcpu->guest_debug & 4988 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 4989 case DE_VECTOR: 4990 case OF_VECTOR: 4991 case BR_VECTOR: 4992 case UD_VECTOR: 4993 case DF_VECTOR: 4994 case SS_VECTOR: 4995 case GP_VECTOR: 4996 case MF_VECTOR: 4997 return true; 4998 } 4999 return false; 5000 } 5001 5002 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 5003 int vec, u32 err_code) 5004 { 5005 /* 5006 * Instruction with address size override prefix opcode 0x67 5007 * Cause the #SS fault with 0 error code in VM86 mode. 5008 */ 5009 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 5010 if (kvm_emulate_instruction(vcpu, 0)) { 5011 if (vcpu->arch.halt_request) { 5012 vcpu->arch.halt_request = 0; 5013 return kvm_emulate_halt_noskip(vcpu); 5014 } 5015 return 1; 5016 } 5017 return 0; 5018 } 5019 5020 /* 5021 * Forward all other exceptions that are valid in real mode. 5022 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 5023 * the required debugging infrastructure rework. 5024 */ 5025 kvm_queue_exception(vcpu, vec); 5026 return 1; 5027 } 5028 5029 static int handle_machine_check(struct kvm_vcpu *vcpu) 5030 { 5031 /* handled by vmx_vcpu_run() */ 5032 return 1; 5033 } 5034 5035 /* 5036 * If the host has split lock detection disabled, then #AC is 5037 * unconditionally injected into the guest, which is the pre split lock 5038 * detection behaviour. 5039 * 5040 * If the host has split lock detection enabled then #AC is 5041 * only injected into the guest when: 5042 * - Guest CPL == 3 (user mode) 5043 * - Guest has #AC detection enabled in CR0 5044 * - Guest EFLAGS has AC bit set 5045 */ 5046 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 5047 { 5048 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5049 return true; 5050 5051 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) && 5052 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 5053 } 5054 5055 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 5056 { 5057 struct vcpu_vmx *vmx = to_vmx(vcpu); 5058 struct kvm_run *kvm_run = vcpu->run; 5059 u32 intr_info, ex_no, error_code; 5060 unsigned long cr2, dr6; 5061 u32 vect_info; 5062 5063 vect_info = vmx->idt_vectoring_info; 5064 intr_info = vmx_get_intr_info(vcpu); 5065 5066 if (is_machine_check(intr_info) || is_nmi(intr_info)) 5067 return 1; /* handled by handle_exception_nmi_irqoff() */ 5068 5069 /* 5070 * Queue the exception here instead of in handle_nm_fault_irqoff(). 5071 * This ensures the nested_vmx check is not skipped so vmexit can 5072 * be reflected to L1 (when it intercepts #NM) before reaching this 5073 * point. 5074 */ 5075 if (is_nm_fault(intr_info)) { 5076 kvm_queue_exception(vcpu, NM_VECTOR); 5077 return 1; 5078 } 5079 5080 if (is_invalid_opcode(intr_info)) 5081 return handle_ud(vcpu); 5082 5083 error_code = 0; 5084 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 5085 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5086 5087 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 5088 WARN_ON_ONCE(!enable_vmware_backdoor); 5089 5090 /* 5091 * VMware backdoor emulation on #GP interception only handles 5092 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 5093 * error code on #GP. 5094 */ 5095 if (error_code) { 5096 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 5097 return 1; 5098 } 5099 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 5100 } 5101 5102 /* 5103 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 5104 * MMIO, it is better to report an internal error. 5105 * See the comments in vmx_handle_exit. 5106 */ 5107 if ((vect_info & VECTORING_INFO_VALID_MASK) && 5108 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 5109 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5110 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 5111 vcpu->run->internal.ndata = 4; 5112 vcpu->run->internal.data[0] = vect_info; 5113 vcpu->run->internal.data[1] = intr_info; 5114 vcpu->run->internal.data[2] = error_code; 5115 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 5116 return 0; 5117 } 5118 5119 if (is_page_fault(intr_info)) { 5120 cr2 = vmx_get_exit_qual(vcpu); 5121 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 5122 /* 5123 * EPT will cause page fault only if we need to 5124 * detect illegal GPAs. 5125 */ 5126 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 5127 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 5128 return 1; 5129 } else 5130 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 5131 } 5132 5133 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 5134 5135 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 5136 return handle_rmode_exception(vcpu, ex_no, error_code); 5137 5138 switch (ex_no) { 5139 case DB_VECTOR: 5140 dr6 = vmx_get_exit_qual(vcpu); 5141 if (!(vcpu->guest_debug & 5142 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 5143 /* 5144 * If the #DB was due to ICEBP, a.k.a. INT1, skip the 5145 * instruction. ICEBP generates a trap-like #DB, but 5146 * despite its interception control being tied to #DB, 5147 * is an instruction intercept, i.e. the VM-Exit occurs 5148 * on the ICEBP itself. Use the inner "skip" helper to 5149 * avoid single-step #DB and MTF updates, as ICEBP is 5150 * higher priority. Note, skipping ICEBP still clears 5151 * STI and MOVSS blocking. 5152 * 5153 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS 5154 * if single-step is enabled in RFLAGS and STI or MOVSS 5155 * blocking is active, as the CPU doesn't set the bit 5156 * on VM-Exit due to #DB interception. VM-Entry has a 5157 * consistency check that a single-step #DB is pending 5158 * in this scenario as the previous instruction cannot 5159 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV 5160 * don't modify RFLAGS), therefore the one instruction 5161 * delay when activating single-step breakpoints must 5162 * have already expired. Note, the CPU sets/clears BS 5163 * as appropriate for all other VM-Exits types. 5164 */ 5165 if (is_icebp(intr_info)) 5166 WARN_ON(!skip_emulated_instruction(vcpu)); 5167 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && 5168 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5169 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) 5170 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 5171 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); 5172 5173 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 5174 return 1; 5175 } 5176 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 5177 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 5178 fallthrough; 5179 case BP_VECTOR: 5180 /* 5181 * Update instruction length as we may reinject #BP from 5182 * user space while in guest debugging mode. Reading it for 5183 * #DB as well causes no harm, it is not used in that case. 5184 */ 5185 vmx->vcpu.arch.event_exit_inst_len = 5186 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5187 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5188 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5189 kvm_run->debug.arch.exception = ex_no; 5190 break; 5191 case AC_VECTOR: 5192 if (vmx_guest_inject_ac(vcpu)) { 5193 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 5194 return 1; 5195 } 5196 5197 /* 5198 * Handle split lock. Depending on detection mode this will 5199 * either warn and disable split lock detection for this 5200 * task or force SIGBUS on it. 5201 */ 5202 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 5203 return 1; 5204 fallthrough; 5205 default: 5206 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 5207 kvm_run->ex.exception = ex_no; 5208 kvm_run->ex.error_code = error_code; 5209 break; 5210 } 5211 return 0; 5212 } 5213 5214 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 5215 { 5216 ++vcpu->stat.irq_exits; 5217 return 1; 5218 } 5219 5220 static int handle_triple_fault(struct kvm_vcpu *vcpu) 5221 { 5222 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5223 vcpu->mmio_needed = 0; 5224 return 0; 5225 } 5226 5227 static int handle_io(struct kvm_vcpu *vcpu) 5228 { 5229 unsigned long exit_qualification; 5230 int size, in, string; 5231 unsigned port; 5232 5233 exit_qualification = vmx_get_exit_qual(vcpu); 5234 string = (exit_qualification & 16) != 0; 5235 5236 ++vcpu->stat.io_exits; 5237 5238 if (string) 5239 return kvm_emulate_instruction(vcpu, 0); 5240 5241 port = exit_qualification >> 16; 5242 size = (exit_qualification & 7) + 1; 5243 in = (exit_qualification & 8) != 0; 5244 5245 return kvm_fast_pio(vcpu, size, port, in); 5246 } 5247 5248 static void 5249 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5250 { 5251 /* 5252 * Patch in the VMCALL instruction: 5253 */ 5254 hypercall[0] = 0x0f; 5255 hypercall[1] = 0x01; 5256 hypercall[2] = 0xc1; 5257 } 5258 5259 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5260 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5261 { 5262 if (is_guest_mode(vcpu)) { 5263 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5264 unsigned long orig_val = val; 5265 5266 /* 5267 * We get here when L2 changed cr0 in a way that did not change 5268 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5269 * but did change L0 shadowed bits. So we first calculate the 5270 * effective cr0 value that L1 would like to write into the 5271 * hardware. It consists of the L2-owned bits from the new 5272 * value combined with the L1-owned bits from L1's guest_cr0. 5273 */ 5274 val = (val & ~vmcs12->cr0_guest_host_mask) | 5275 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5276 5277 if (!nested_guest_cr0_valid(vcpu, val)) 5278 return 1; 5279 5280 if (kvm_set_cr0(vcpu, val)) 5281 return 1; 5282 vmcs_writel(CR0_READ_SHADOW, orig_val); 5283 return 0; 5284 } else { 5285 if (to_vmx(vcpu)->nested.vmxon && 5286 !nested_host_cr0_valid(vcpu, val)) 5287 return 1; 5288 5289 return kvm_set_cr0(vcpu, val); 5290 } 5291 } 5292 5293 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5294 { 5295 if (is_guest_mode(vcpu)) { 5296 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5297 unsigned long orig_val = val; 5298 5299 /* analogously to handle_set_cr0 */ 5300 val = (val & ~vmcs12->cr4_guest_host_mask) | 5301 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5302 if (kvm_set_cr4(vcpu, val)) 5303 return 1; 5304 vmcs_writel(CR4_READ_SHADOW, orig_val); 5305 return 0; 5306 } else 5307 return kvm_set_cr4(vcpu, val); 5308 } 5309 5310 static int handle_desc(struct kvm_vcpu *vcpu) 5311 { 5312 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 5313 return kvm_emulate_instruction(vcpu, 0); 5314 } 5315 5316 static int handle_cr(struct kvm_vcpu *vcpu) 5317 { 5318 unsigned long exit_qualification, val; 5319 int cr; 5320 int reg; 5321 int err; 5322 int ret; 5323 5324 exit_qualification = vmx_get_exit_qual(vcpu); 5325 cr = exit_qualification & 15; 5326 reg = (exit_qualification >> 8) & 15; 5327 switch ((exit_qualification >> 4) & 3) { 5328 case 0: /* mov to cr */ 5329 val = kvm_register_read(vcpu, reg); 5330 trace_kvm_cr_write(cr, val); 5331 switch (cr) { 5332 case 0: 5333 err = handle_set_cr0(vcpu, val); 5334 return kvm_complete_insn_gp(vcpu, err); 5335 case 3: 5336 WARN_ON_ONCE(enable_unrestricted_guest); 5337 5338 err = kvm_set_cr3(vcpu, val); 5339 return kvm_complete_insn_gp(vcpu, err); 5340 case 4: 5341 err = handle_set_cr4(vcpu, val); 5342 return kvm_complete_insn_gp(vcpu, err); 5343 case 8: { 5344 u8 cr8_prev = kvm_get_cr8(vcpu); 5345 u8 cr8 = (u8)val; 5346 err = kvm_set_cr8(vcpu, cr8); 5347 ret = kvm_complete_insn_gp(vcpu, err); 5348 if (lapic_in_kernel(vcpu)) 5349 return ret; 5350 if (cr8_prev <= cr8) 5351 return ret; 5352 /* 5353 * TODO: we might be squashing a 5354 * KVM_GUESTDBG_SINGLESTEP-triggered 5355 * KVM_EXIT_DEBUG here. 5356 */ 5357 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5358 return 0; 5359 } 5360 } 5361 break; 5362 case 2: /* clts */ 5363 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5364 return -EIO; 5365 case 1: /*mov from cr*/ 5366 switch (cr) { 5367 case 3: 5368 WARN_ON_ONCE(enable_unrestricted_guest); 5369 5370 val = kvm_read_cr3(vcpu); 5371 kvm_register_write(vcpu, reg, val); 5372 trace_kvm_cr_read(cr, val); 5373 return kvm_skip_emulated_instruction(vcpu); 5374 case 8: 5375 val = kvm_get_cr8(vcpu); 5376 kvm_register_write(vcpu, reg, val); 5377 trace_kvm_cr_read(cr, val); 5378 return kvm_skip_emulated_instruction(vcpu); 5379 } 5380 break; 5381 case 3: /* lmsw */ 5382 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5383 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 5384 kvm_lmsw(vcpu, val); 5385 5386 return kvm_skip_emulated_instruction(vcpu); 5387 default: 5388 break; 5389 } 5390 vcpu->run->exit_reason = 0; 5391 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5392 (int)(exit_qualification >> 4) & 3, cr); 5393 return 0; 5394 } 5395 5396 static int handle_dr(struct kvm_vcpu *vcpu) 5397 { 5398 unsigned long exit_qualification; 5399 int dr, dr7, reg; 5400 int err = 1; 5401 5402 exit_qualification = vmx_get_exit_qual(vcpu); 5403 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5404 5405 /* First, if DR does not exist, trigger UD */ 5406 if (!kvm_require_dr(vcpu, dr)) 5407 return 1; 5408 5409 if (vmx_get_cpl(vcpu) > 0) 5410 goto out; 5411 5412 dr7 = vmcs_readl(GUEST_DR7); 5413 if (dr7 & DR7_GD) { 5414 /* 5415 * As the vm-exit takes precedence over the debug trap, we 5416 * need to emulate the latter, either for the host or the 5417 * guest debugging itself. 5418 */ 5419 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5420 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5421 vcpu->run->debug.arch.dr7 = dr7; 5422 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5423 vcpu->run->debug.arch.exception = DB_VECTOR; 5424 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5425 return 0; 5426 } else { 5427 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5428 return 1; 5429 } 5430 } 5431 5432 if (vcpu->guest_debug == 0) { 5433 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5434 5435 /* 5436 * No more DR vmexits; force a reload of the debug registers 5437 * and reenter on this instruction. The next vmexit will 5438 * retrieve the full state of the debug registers. 5439 */ 5440 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5441 return 1; 5442 } 5443 5444 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5445 if (exit_qualification & TYPE_MOV_FROM_DR) { 5446 unsigned long val; 5447 5448 kvm_get_dr(vcpu, dr, &val); 5449 kvm_register_write(vcpu, reg, val); 5450 err = 0; 5451 } else { 5452 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5453 } 5454 5455 out: 5456 return kvm_complete_insn_gp(vcpu, err); 5457 } 5458 5459 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5460 { 5461 get_debugreg(vcpu->arch.db[0], 0); 5462 get_debugreg(vcpu->arch.db[1], 1); 5463 get_debugreg(vcpu->arch.db[2], 2); 5464 get_debugreg(vcpu->arch.db[3], 3); 5465 get_debugreg(vcpu->arch.dr6, 6); 5466 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5467 5468 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5469 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5470 5471 /* 5472 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5473 * a stale dr6 from the guest. 5474 */ 5475 set_debugreg(DR6_RESERVED, 6); 5476 } 5477 5478 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5479 { 5480 vmcs_writel(GUEST_DR7, val); 5481 } 5482 5483 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5484 { 5485 kvm_apic_update_ppr(vcpu); 5486 return 1; 5487 } 5488 5489 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5490 { 5491 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5492 5493 kvm_make_request(KVM_REQ_EVENT, vcpu); 5494 5495 ++vcpu->stat.irq_window_exits; 5496 return 1; 5497 } 5498 5499 static int handle_invlpg(struct kvm_vcpu *vcpu) 5500 { 5501 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5502 5503 kvm_mmu_invlpg(vcpu, exit_qualification); 5504 return kvm_skip_emulated_instruction(vcpu); 5505 } 5506 5507 static int handle_apic_access(struct kvm_vcpu *vcpu) 5508 { 5509 if (likely(fasteoi)) { 5510 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5511 int access_type, offset; 5512 5513 access_type = exit_qualification & APIC_ACCESS_TYPE; 5514 offset = exit_qualification & APIC_ACCESS_OFFSET; 5515 /* 5516 * Sane guest uses MOV to write EOI, with written value 5517 * not cared. So make a short-circuit here by avoiding 5518 * heavy instruction emulation. 5519 */ 5520 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5521 (offset == APIC_EOI)) { 5522 kvm_lapic_set_eoi(vcpu); 5523 return kvm_skip_emulated_instruction(vcpu); 5524 } 5525 } 5526 return kvm_emulate_instruction(vcpu, 0); 5527 } 5528 5529 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5530 { 5531 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5532 int vector = exit_qualification & 0xff; 5533 5534 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5535 kvm_apic_set_eoi_accelerated(vcpu, vector); 5536 return 1; 5537 } 5538 5539 static int handle_apic_write(struct kvm_vcpu *vcpu) 5540 { 5541 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5542 5543 /* 5544 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and 5545 * hardware has done any necessary aliasing, offset adjustments, etc... 5546 * for the access. I.e. the correct value has already been written to 5547 * the vAPIC page for the correct 16-byte chunk. KVM needs only to 5548 * retrieve the register value and emulate the access. 5549 */ 5550 u32 offset = exit_qualification & 0xff0; 5551 5552 kvm_apic_write_nodecode(vcpu, offset); 5553 return 1; 5554 } 5555 5556 static int handle_task_switch(struct kvm_vcpu *vcpu) 5557 { 5558 struct vcpu_vmx *vmx = to_vmx(vcpu); 5559 unsigned long exit_qualification; 5560 bool has_error_code = false; 5561 u32 error_code = 0; 5562 u16 tss_selector; 5563 int reason, type, idt_v, idt_index; 5564 5565 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5566 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5567 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5568 5569 exit_qualification = vmx_get_exit_qual(vcpu); 5570 5571 reason = (u32)exit_qualification >> 30; 5572 if (reason == TASK_SWITCH_GATE && idt_v) { 5573 switch (type) { 5574 case INTR_TYPE_NMI_INTR: 5575 vcpu->arch.nmi_injected = false; 5576 vmx_set_nmi_mask(vcpu, true); 5577 break; 5578 case INTR_TYPE_EXT_INTR: 5579 case INTR_TYPE_SOFT_INTR: 5580 kvm_clear_interrupt_queue(vcpu); 5581 break; 5582 case INTR_TYPE_HARD_EXCEPTION: 5583 if (vmx->idt_vectoring_info & 5584 VECTORING_INFO_DELIVER_CODE_MASK) { 5585 has_error_code = true; 5586 error_code = 5587 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5588 } 5589 fallthrough; 5590 case INTR_TYPE_SOFT_EXCEPTION: 5591 kvm_clear_exception_queue(vcpu); 5592 break; 5593 default: 5594 break; 5595 } 5596 } 5597 tss_selector = exit_qualification; 5598 5599 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5600 type != INTR_TYPE_EXT_INTR && 5601 type != INTR_TYPE_NMI_INTR)) 5602 WARN_ON(!skip_emulated_instruction(vcpu)); 5603 5604 /* 5605 * TODO: What about debug traps on tss switch? 5606 * Are we supposed to inject them and update dr6? 5607 */ 5608 return kvm_task_switch(vcpu, tss_selector, 5609 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5610 reason, has_error_code, error_code); 5611 } 5612 5613 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5614 { 5615 unsigned long exit_qualification; 5616 gpa_t gpa; 5617 u64 error_code; 5618 5619 exit_qualification = vmx_get_exit_qual(vcpu); 5620 5621 /* 5622 * EPT violation happened while executing iret from NMI, 5623 * "blocked by NMI" bit has to be set before next VM entry. 5624 * There are errata that may cause this bit to not be set: 5625 * AAK134, BY25. 5626 */ 5627 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5628 enable_vnmi && 5629 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5630 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5631 5632 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5633 trace_kvm_page_fault(vcpu, gpa, exit_qualification); 5634 5635 /* Is it a read fault? */ 5636 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5637 ? PFERR_USER_MASK : 0; 5638 /* Is it a write fault? */ 5639 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5640 ? PFERR_WRITE_MASK : 0; 5641 /* Is it a fetch fault? */ 5642 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5643 ? PFERR_FETCH_MASK : 0; 5644 /* ept page table entry is present? */ 5645 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK) 5646 ? PFERR_PRESENT_MASK : 0; 5647 5648 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5649 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5650 5651 vcpu->arch.exit_qualification = exit_qualification; 5652 5653 /* 5654 * Check that the GPA doesn't exceed physical memory limits, as that is 5655 * a guest page fault. We have to emulate the instruction here, because 5656 * if the illegal address is that of a paging structure, then 5657 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5658 * would also use advanced VM-exit information for EPT violations to 5659 * reconstruct the page fault error code. 5660 */ 5661 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5662 return kvm_emulate_instruction(vcpu, 0); 5663 5664 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5665 } 5666 5667 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5668 { 5669 gpa_t gpa; 5670 5671 if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) 5672 return 1; 5673 5674 /* 5675 * A nested guest cannot optimize MMIO vmexits, because we have an 5676 * nGPA here instead of the required GPA. 5677 */ 5678 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5679 if (!is_guest_mode(vcpu) && 5680 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5681 trace_kvm_fast_mmio(gpa); 5682 return kvm_skip_emulated_instruction(vcpu); 5683 } 5684 5685 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5686 } 5687 5688 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5689 { 5690 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5691 return -EIO; 5692 5693 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5694 ++vcpu->stat.nmi_window_exits; 5695 kvm_make_request(KVM_REQ_EVENT, vcpu); 5696 5697 return 1; 5698 } 5699 5700 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) 5701 { 5702 struct vcpu_vmx *vmx = to_vmx(vcpu); 5703 5704 return vmx->emulation_required && !vmx->rmode.vm86_active && 5705 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected); 5706 } 5707 5708 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5709 { 5710 struct vcpu_vmx *vmx = to_vmx(vcpu); 5711 bool intr_window_requested; 5712 unsigned count = 130; 5713 5714 intr_window_requested = exec_controls_get(vmx) & 5715 CPU_BASED_INTR_WINDOW_EXITING; 5716 5717 while (vmx->emulation_required && count-- != 0) { 5718 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5719 return handle_interrupt_window(&vmx->vcpu); 5720 5721 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5722 return 1; 5723 5724 if (!kvm_emulate_instruction(vcpu, 0)) 5725 return 0; 5726 5727 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5728 kvm_prepare_emulation_failure_exit(vcpu); 5729 return 0; 5730 } 5731 5732 if (vcpu->arch.halt_request) { 5733 vcpu->arch.halt_request = 0; 5734 return kvm_emulate_halt_noskip(vcpu); 5735 } 5736 5737 /* 5738 * Note, return 1 and not 0, vcpu_run() will invoke 5739 * xfer_to_guest_mode() which will create a proper return 5740 * code. 5741 */ 5742 if (__xfer_to_guest_mode_work_pending()) 5743 return 1; 5744 } 5745 5746 return 1; 5747 } 5748 5749 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) 5750 { 5751 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5752 kvm_prepare_emulation_failure_exit(vcpu); 5753 return 0; 5754 } 5755 5756 return 1; 5757 } 5758 5759 static void grow_ple_window(struct kvm_vcpu *vcpu) 5760 { 5761 struct vcpu_vmx *vmx = to_vmx(vcpu); 5762 unsigned int old = vmx->ple_window; 5763 5764 vmx->ple_window = __grow_ple_window(old, ple_window, 5765 ple_window_grow, 5766 ple_window_max); 5767 5768 if (vmx->ple_window != old) { 5769 vmx->ple_window_dirty = true; 5770 trace_kvm_ple_window_update(vcpu->vcpu_id, 5771 vmx->ple_window, old); 5772 } 5773 } 5774 5775 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5776 { 5777 struct vcpu_vmx *vmx = to_vmx(vcpu); 5778 unsigned int old = vmx->ple_window; 5779 5780 vmx->ple_window = __shrink_ple_window(old, ple_window, 5781 ple_window_shrink, 5782 ple_window); 5783 5784 if (vmx->ple_window != old) { 5785 vmx->ple_window_dirty = true; 5786 trace_kvm_ple_window_update(vcpu->vcpu_id, 5787 vmx->ple_window, old); 5788 } 5789 } 5790 5791 /* 5792 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5793 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5794 */ 5795 static int handle_pause(struct kvm_vcpu *vcpu) 5796 { 5797 if (!kvm_pause_in_guest(vcpu->kvm)) 5798 grow_ple_window(vcpu); 5799 5800 /* 5801 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5802 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5803 * never set PAUSE_EXITING and just set PLE if supported, 5804 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5805 */ 5806 kvm_vcpu_on_spin(vcpu, true); 5807 return kvm_skip_emulated_instruction(vcpu); 5808 } 5809 5810 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5811 { 5812 return 1; 5813 } 5814 5815 static int handle_invpcid(struct kvm_vcpu *vcpu) 5816 { 5817 u32 vmx_instruction_info; 5818 unsigned long type; 5819 gva_t gva; 5820 struct { 5821 u64 pcid; 5822 u64 gla; 5823 } operand; 5824 int gpr_index; 5825 5826 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5827 kvm_queue_exception(vcpu, UD_VECTOR); 5828 return 1; 5829 } 5830 5831 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5832 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5833 type = kvm_register_read(vcpu, gpr_index); 5834 5835 /* According to the Intel instruction reference, the memory operand 5836 * is read even if it isn't needed (e.g., for type==all) 5837 */ 5838 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5839 vmx_instruction_info, false, 5840 sizeof(operand), &gva)) 5841 return 1; 5842 5843 return kvm_handle_invpcid(vcpu, type, gva); 5844 } 5845 5846 static int handle_pml_full(struct kvm_vcpu *vcpu) 5847 { 5848 unsigned long exit_qualification; 5849 5850 trace_kvm_pml_full(vcpu->vcpu_id); 5851 5852 exit_qualification = vmx_get_exit_qual(vcpu); 5853 5854 /* 5855 * PML buffer FULL happened while executing iret from NMI, 5856 * "blocked by NMI" bit has to be set before next VM entry. 5857 */ 5858 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5859 enable_vnmi && 5860 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5861 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5862 GUEST_INTR_STATE_NMI); 5863 5864 /* 5865 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5866 * here.., and there's no userspace involvement needed for PML. 5867 */ 5868 return 1; 5869 } 5870 5871 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5872 { 5873 struct vcpu_vmx *vmx = to_vmx(vcpu); 5874 5875 if (!vmx->req_immediate_exit && 5876 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 5877 kvm_lapic_expired_hv_timer(vcpu); 5878 return EXIT_FASTPATH_REENTER_GUEST; 5879 } 5880 5881 return EXIT_FASTPATH_NONE; 5882 } 5883 5884 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5885 { 5886 handle_fastpath_preemption_timer(vcpu); 5887 return 1; 5888 } 5889 5890 /* 5891 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5892 * are overwritten by nested_vmx_setup() when nested=1. 5893 */ 5894 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5895 { 5896 kvm_queue_exception(vcpu, UD_VECTOR); 5897 return 1; 5898 } 5899 5900 #ifndef CONFIG_X86_SGX_KVM 5901 static int handle_encls(struct kvm_vcpu *vcpu) 5902 { 5903 /* 5904 * SGX virtualization is disabled. There is no software enable bit for 5905 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 5906 * the guest from executing ENCLS (when SGX is supported by hardware). 5907 */ 5908 kvm_queue_exception(vcpu, UD_VECTOR); 5909 return 1; 5910 } 5911 #endif /* CONFIG_X86_SGX_KVM */ 5912 5913 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 5914 { 5915 /* 5916 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 5917 * VM-Exits. Unconditionally set the flag here and leave the handling to 5918 * vmx_handle_exit(). 5919 */ 5920 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 5921 return 1; 5922 } 5923 5924 static int handle_notify(struct kvm_vcpu *vcpu) 5925 { 5926 unsigned long exit_qual = vmx_get_exit_qual(vcpu); 5927 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID; 5928 5929 ++vcpu->stat.notify_window_exits; 5930 5931 /* 5932 * Notify VM exit happened while executing iret from NMI, 5933 * "blocked by NMI" bit has to be set before next VM entry. 5934 */ 5935 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI)) 5936 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5937 GUEST_INTR_STATE_NMI); 5938 5939 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER || 5940 context_invalid) { 5941 vcpu->run->exit_reason = KVM_EXIT_NOTIFY; 5942 vcpu->run->notify.flags = context_invalid ? 5943 KVM_NOTIFY_CONTEXT_INVALID : 0; 5944 return 0; 5945 } 5946 5947 return 1; 5948 } 5949 5950 /* 5951 * The exit handlers return 1 if the exit was handled fully and guest execution 5952 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5953 * to be done to userspace and return 0. 5954 */ 5955 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5956 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 5957 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5958 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5959 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5960 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5961 [EXIT_REASON_CR_ACCESS] = handle_cr, 5962 [EXIT_REASON_DR_ACCESS] = handle_dr, 5963 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 5964 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 5965 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 5966 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 5967 [EXIT_REASON_HLT] = kvm_emulate_halt, 5968 [EXIT_REASON_INVD] = kvm_emulate_invd, 5969 [EXIT_REASON_INVLPG] = handle_invlpg, 5970 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 5971 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 5972 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5973 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5974 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5975 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5976 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5977 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5978 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5979 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5980 [EXIT_REASON_VMON] = handle_vmx_instruction, 5981 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5982 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5983 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5984 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5985 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 5986 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 5987 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5988 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5989 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5990 [EXIT_REASON_LDTR_TR] = handle_desc, 5991 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5992 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5993 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5994 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 5995 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5996 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 5997 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5998 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5999 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 6000 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 6001 [EXIT_REASON_PML_FULL] = handle_pml_full, 6002 [EXIT_REASON_INVPCID] = handle_invpcid, 6003 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 6004 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 6005 [EXIT_REASON_ENCLS] = handle_encls, 6006 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 6007 [EXIT_REASON_NOTIFY] = handle_notify, 6008 }; 6009 6010 static const int kvm_vmx_max_exit_handlers = 6011 ARRAY_SIZE(kvm_vmx_exit_handlers); 6012 6013 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 6014 u64 *info1, u64 *info2, 6015 u32 *intr_info, u32 *error_code) 6016 { 6017 struct vcpu_vmx *vmx = to_vmx(vcpu); 6018 6019 *reason = vmx->exit_reason.full; 6020 *info1 = vmx_get_exit_qual(vcpu); 6021 if (!(vmx->exit_reason.failed_vmentry)) { 6022 *info2 = vmx->idt_vectoring_info; 6023 *intr_info = vmx_get_intr_info(vcpu); 6024 if (is_exception_with_error_code(*intr_info)) 6025 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 6026 else 6027 *error_code = 0; 6028 } else { 6029 *info2 = 0; 6030 *intr_info = 0; 6031 *error_code = 0; 6032 } 6033 } 6034 6035 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 6036 { 6037 if (vmx->pml_pg) { 6038 __free_page(vmx->pml_pg); 6039 vmx->pml_pg = NULL; 6040 } 6041 } 6042 6043 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 6044 { 6045 struct vcpu_vmx *vmx = to_vmx(vcpu); 6046 u64 *pml_buf; 6047 u16 pml_idx; 6048 6049 pml_idx = vmcs_read16(GUEST_PML_INDEX); 6050 6051 /* Do nothing if PML buffer is empty */ 6052 if (pml_idx == (PML_ENTITY_NUM - 1)) 6053 return; 6054 6055 /* PML index always points to next available PML buffer entity */ 6056 if (pml_idx >= PML_ENTITY_NUM) 6057 pml_idx = 0; 6058 else 6059 pml_idx++; 6060 6061 pml_buf = page_address(vmx->pml_pg); 6062 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 6063 u64 gpa; 6064 6065 gpa = pml_buf[pml_idx]; 6066 WARN_ON(gpa & (PAGE_SIZE - 1)); 6067 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 6068 } 6069 6070 /* reset PML index */ 6071 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 6072 } 6073 6074 static void vmx_dump_sel(char *name, uint32_t sel) 6075 { 6076 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 6077 name, vmcs_read16(sel), 6078 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 6079 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 6080 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 6081 } 6082 6083 static void vmx_dump_dtsel(char *name, uint32_t limit) 6084 { 6085 pr_err("%s limit=0x%08x, base=0x%016lx\n", 6086 name, vmcs_read32(limit), 6087 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 6088 } 6089 6090 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 6091 { 6092 unsigned int i; 6093 struct vmx_msr_entry *e; 6094 6095 pr_err("MSR %s:\n", name); 6096 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 6097 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 6098 } 6099 6100 void dump_vmcs(struct kvm_vcpu *vcpu) 6101 { 6102 struct vcpu_vmx *vmx = to_vmx(vcpu); 6103 u32 vmentry_ctl, vmexit_ctl; 6104 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 6105 u64 tertiary_exec_control; 6106 unsigned long cr4; 6107 int efer_slot; 6108 6109 if (!dump_invalid_vmcs) { 6110 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 6111 return; 6112 } 6113 6114 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 6115 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 6116 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 6117 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 6118 cr4 = vmcs_readl(GUEST_CR4); 6119 6120 if (cpu_has_secondary_exec_ctrls()) 6121 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 6122 else 6123 secondary_exec_control = 0; 6124 6125 if (cpu_has_tertiary_exec_ctrls()) 6126 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL); 6127 else 6128 tertiary_exec_control = 0; 6129 6130 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 6131 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 6132 pr_err("*** Guest State ***\n"); 6133 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6134 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 6135 vmcs_readl(CR0_GUEST_HOST_MASK)); 6136 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6137 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 6138 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 6139 if (cpu_has_vmx_ept()) { 6140 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 6141 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 6142 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 6143 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 6144 } 6145 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 6146 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 6147 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 6148 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 6149 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6150 vmcs_readl(GUEST_SYSENTER_ESP), 6151 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 6152 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 6153 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 6154 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 6155 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 6156 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 6157 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 6158 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 6159 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 6160 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 6161 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 6162 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 6163 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 6164 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 6165 else if (efer_slot >= 0) 6166 pr_err("EFER= 0x%016llx (autoload)\n", 6167 vmx->msr_autoload.guest.val[efer_slot].value); 6168 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 6169 pr_err("EFER= 0x%016llx (effective)\n", 6170 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 6171 else 6172 pr_err("EFER= 0x%016llx (effective)\n", 6173 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 6174 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 6175 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 6176 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 6177 vmcs_read64(GUEST_IA32_DEBUGCTL), 6178 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 6179 if (cpu_has_load_perf_global_ctrl() && 6180 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 6181 pr_err("PerfGlobCtl = 0x%016llx\n", 6182 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 6183 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 6184 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 6185 pr_err("Interruptibility = %08x ActivityState = %08x\n", 6186 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 6187 vmcs_read32(GUEST_ACTIVITY_STATE)); 6188 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 6189 pr_err("InterruptStatus = %04x\n", 6190 vmcs_read16(GUEST_INTR_STATUS)); 6191 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 6192 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 6193 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 6194 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 6195 6196 pr_err("*** Host State ***\n"); 6197 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 6198 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 6199 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 6200 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 6201 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 6202 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 6203 vmcs_read16(HOST_TR_SELECTOR)); 6204 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 6205 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 6206 vmcs_readl(HOST_TR_BASE)); 6207 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 6208 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 6209 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 6210 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 6211 vmcs_readl(HOST_CR4)); 6212 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6213 vmcs_readl(HOST_IA32_SYSENTER_ESP), 6214 vmcs_read32(HOST_IA32_SYSENTER_CS), 6215 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 6216 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 6217 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 6218 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 6219 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 6220 if (cpu_has_load_perf_global_ctrl() && 6221 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 6222 pr_err("PerfGlobCtl = 0x%016llx\n", 6223 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 6224 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 6225 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 6226 6227 pr_err("*** Control State ***\n"); 6228 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n", 6229 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control); 6230 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n", 6231 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl); 6232 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 6233 vmcs_read32(EXCEPTION_BITMAP), 6234 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 6235 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 6236 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 6237 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6238 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 6239 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 6240 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 6241 vmcs_read32(VM_EXIT_INTR_INFO), 6242 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 6243 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 6244 pr_err(" reason=%08x qualification=%016lx\n", 6245 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 6246 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 6247 vmcs_read32(IDT_VECTORING_INFO_FIELD), 6248 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 6249 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 6250 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 6251 pr_err("TSC Multiplier = 0x%016llx\n", 6252 vmcs_read64(TSC_MULTIPLIER)); 6253 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 6254 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 6255 u16 status = vmcs_read16(GUEST_INTR_STATUS); 6256 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 6257 } 6258 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 6259 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 6260 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 6261 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 6262 } 6263 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 6264 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 6265 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 6266 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 6267 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 6268 pr_err("PLE Gap=%08x Window=%08x\n", 6269 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 6270 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 6271 pr_err("Virtual processor ID = 0x%04x\n", 6272 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 6273 } 6274 6275 /* 6276 * The guest has exited. See if we can fix it or if we need userspace 6277 * assistance. 6278 */ 6279 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6280 { 6281 struct vcpu_vmx *vmx = to_vmx(vcpu); 6282 union vmx_exit_reason exit_reason = vmx->exit_reason; 6283 u32 vectoring_info = vmx->idt_vectoring_info; 6284 u16 exit_handler_index; 6285 6286 /* 6287 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 6288 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 6289 * querying dirty_bitmap, we only need to kick all vcpus out of guest 6290 * mode as if vcpus is in root mode, the PML buffer must has been 6291 * flushed already. Note, PML is never enabled in hardware while 6292 * running L2. 6293 */ 6294 if (enable_pml && !is_guest_mode(vcpu)) 6295 vmx_flush_pml_buffer(vcpu); 6296 6297 /* 6298 * KVM should never reach this point with a pending nested VM-Enter. 6299 * More specifically, short-circuiting VM-Entry to emulate L2 due to 6300 * invalid guest state should never happen as that means KVM knowingly 6301 * allowed a nested VM-Enter with an invalid vmcs12. More below. 6302 */ 6303 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 6304 return -EIO; 6305 6306 if (is_guest_mode(vcpu)) { 6307 /* 6308 * PML is never enabled when running L2, bail immediately if a 6309 * PML full exit occurs as something is horribly wrong. 6310 */ 6311 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6312 goto unexpected_vmexit; 6313 6314 /* 6315 * The host physical addresses of some pages of guest memory 6316 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6317 * Page). The CPU may write to these pages via their host 6318 * physical address while L2 is running, bypassing any 6319 * address-translation-based dirty tracking (e.g. EPT write 6320 * protection). 6321 * 6322 * Mark them dirty on every exit from L2 to prevent them from 6323 * getting out of sync with dirty tracking. 6324 */ 6325 nested_mark_vmcs12_pages_dirty(vcpu); 6326 6327 /* 6328 * Synthesize a triple fault if L2 state is invalid. In normal 6329 * operation, nested VM-Enter rejects any attempt to enter L2 6330 * with invalid state. However, those checks are skipped if 6331 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6332 * L2 state is invalid, it means either L1 modified SMRAM state 6333 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6334 * doing so is architecturally allowed in the RSM case, and is 6335 * the least awful solution for the userspace case without 6336 * risking false positives. 6337 */ 6338 if (vmx->emulation_required) { 6339 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6340 return 1; 6341 } 6342 6343 if (nested_vmx_reflect_vmexit(vcpu)) 6344 return 1; 6345 } 6346 6347 /* If guest state is invalid, start emulating. L2 is handled above. */ 6348 if (vmx->emulation_required) 6349 return handle_invalid_guest_state(vcpu); 6350 6351 if (exit_reason.failed_vmentry) { 6352 dump_vmcs(vcpu); 6353 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6354 vcpu->run->fail_entry.hardware_entry_failure_reason 6355 = exit_reason.full; 6356 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6357 return 0; 6358 } 6359 6360 if (unlikely(vmx->fail)) { 6361 dump_vmcs(vcpu); 6362 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6363 vcpu->run->fail_entry.hardware_entry_failure_reason 6364 = vmcs_read32(VM_INSTRUCTION_ERROR); 6365 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6366 return 0; 6367 } 6368 6369 /* 6370 * Note: 6371 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6372 * delivery event since it indicates guest is accessing MMIO. 6373 * The vm-exit can be triggered again after return to guest that 6374 * will cause infinite loop. 6375 */ 6376 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6377 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6378 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6379 exit_reason.basic != EXIT_REASON_PML_FULL && 6380 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6381 exit_reason.basic != EXIT_REASON_TASK_SWITCH && 6382 exit_reason.basic != EXIT_REASON_NOTIFY)) { 6383 int ndata = 3; 6384 6385 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6386 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6387 vcpu->run->internal.data[0] = vectoring_info; 6388 vcpu->run->internal.data[1] = exit_reason.full; 6389 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 6390 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6391 vcpu->run->internal.data[ndata++] = 6392 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6393 } 6394 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6395 vcpu->run->internal.ndata = ndata; 6396 return 0; 6397 } 6398 6399 if (unlikely(!enable_vnmi && 6400 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6401 if (!vmx_interrupt_blocked(vcpu)) { 6402 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6403 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6404 vcpu->arch.nmi_pending) { 6405 /* 6406 * This CPU don't support us in finding the end of an 6407 * NMI-blocked window if the guest runs with IRQs 6408 * disabled. So we pull the trigger after 1 s of 6409 * futile waiting, but inform the user about this. 6410 */ 6411 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6412 "state on VCPU %d after 1 s timeout\n", 6413 __func__, vcpu->vcpu_id); 6414 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6415 } 6416 } 6417 6418 if (exit_fastpath != EXIT_FASTPATH_NONE) 6419 return 1; 6420 6421 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6422 goto unexpected_vmexit; 6423 #ifdef CONFIG_RETPOLINE 6424 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6425 return kvm_emulate_wrmsr(vcpu); 6426 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6427 return handle_preemption_timer(vcpu); 6428 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6429 return handle_interrupt_window(vcpu); 6430 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6431 return handle_external_interrupt(vcpu); 6432 else if (exit_reason.basic == EXIT_REASON_HLT) 6433 return kvm_emulate_halt(vcpu); 6434 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6435 return handle_ept_misconfig(vcpu); 6436 #endif 6437 6438 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6439 kvm_vmx_max_exit_handlers); 6440 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6441 goto unexpected_vmexit; 6442 6443 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6444 6445 unexpected_vmexit: 6446 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6447 exit_reason.full); 6448 dump_vmcs(vcpu); 6449 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6450 vcpu->run->internal.suberror = 6451 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6452 vcpu->run->internal.ndata = 2; 6453 vcpu->run->internal.data[0] = exit_reason.full; 6454 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6455 return 0; 6456 } 6457 6458 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6459 { 6460 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6461 6462 /* 6463 * Exit to user space when bus lock detected to inform that there is 6464 * a bus lock in guest. 6465 */ 6466 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6467 if (ret > 0) 6468 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6469 6470 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6471 return 0; 6472 } 6473 return ret; 6474 } 6475 6476 /* 6477 * Software based L1D cache flush which is used when microcode providing 6478 * the cache control MSR is not loaded. 6479 * 6480 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6481 * flush it is required to read in 64 KiB because the replacement algorithm 6482 * is not exactly LRU. This could be sized at runtime via topology 6483 * information but as all relevant affected CPUs have 32KiB L1D cache size 6484 * there is no point in doing so. 6485 */ 6486 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6487 { 6488 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6489 6490 /* 6491 * This code is only executed when the flush mode is 'cond' or 6492 * 'always' 6493 */ 6494 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6495 bool flush_l1d; 6496 6497 /* 6498 * Clear the per-vcpu flush bit, it gets set again 6499 * either from vcpu_run() or from one of the unsafe 6500 * VMEXIT handlers. 6501 */ 6502 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6503 vcpu->arch.l1tf_flush_l1d = false; 6504 6505 /* 6506 * Clear the per-cpu flush bit, it gets set again from 6507 * the interrupt handlers. 6508 */ 6509 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6510 kvm_clear_cpu_l1tf_flush_l1d(); 6511 6512 if (!flush_l1d) 6513 return; 6514 } 6515 6516 vcpu->stat.l1d_flush++; 6517 6518 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6519 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6520 return; 6521 } 6522 6523 asm volatile( 6524 /* First ensure the pages are in the TLB */ 6525 "xorl %%eax, %%eax\n" 6526 ".Lpopulate_tlb:\n\t" 6527 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6528 "addl $4096, %%eax\n\t" 6529 "cmpl %%eax, %[size]\n\t" 6530 "jne .Lpopulate_tlb\n\t" 6531 "xorl %%eax, %%eax\n\t" 6532 "cpuid\n\t" 6533 /* Now fill the cache */ 6534 "xorl %%eax, %%eax\n" 6535 ".Lfill_cache:\n" 6536 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6537 "addl $64, %%eax\n\t" 6538 "cmpl %%eax, %[size]\n\t" 6539 "jne .Lfill_cache\n\t" 6540 "lfence\n" 6541 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6542 [size] "r" (size) 6543 : "eax", "ebx", "ecx", "edx"); 6544 } 6545 6546 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6547 { 6548 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6549 int tpr_threshold; 6550 6551 if (is_guest_mode(vcpu) && 6552 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6553 return; 6554 6555 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6556 if (is_guest_mode(vcpu)) 6557 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6558 else 6559 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6560 } 6561 6562 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6563 { 6564 struct vcpu_vmx *vmx = to_vmx(vcpu); 6565 u32 sec_exec_control; 6566 6567 if (!lapic_in_kernel(vcpu)) 6568 return; 6569 6570 if (!flexpriority_enabled && 6571 !cpu_has_vmx_virtualize_x2apic_mode()) 6572 return; 6573 6574 /* Postpone execution until vmcs01 is the current VMCS. */ 6575 if (is_guest_mode(vcpu)) { 6576 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6577 return; 6578 } 6579 6580 sec_exec_control = secondary_exec_controls_get(vmx); 6581 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6582 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6583 6584 switch (kvm_get_apic_mode(vcpu)) { 6585 case LAPIC_MODE_INVALID: 6586 WARN_ONCE(true, "Invalid local APIC state"); 6587 break; 6588 case LAPIC_MODE_DISABLED: 6589 break; 6590 case LAPIC_MODE_XAPIC: 6591 if (flexpriority_enabled) { 6592 sec_exec_control |= 6593 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6594 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6595 6596 /* 6597 * Flush the TLB, reloading the APIC access page will 6598 * only do so if its physical address has changed, but 6599 * the guest may have inserted a non-APIC mapping into 6600 * the TLB while the APIC access page was disabled. 6601 */ 6602 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6603 } 6604 break; 6605 case LAPIC_MODE_X2APIC: 6606 if (cpu_has_vmx_virtualize_x2apic_mode()) 6607 sec_exec_control |= 6608 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6609 break; 6610 } 6611 secondary_exec_controls_set(vmx, sec_exec_control); 6612 6613 vmx_update_msr_bitmap_x2apic(vcpu); 6614 } 6615 6616 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6617 { 6618 struct page *page; 6619 6620 /* Defer reload until vmcs01 is the current VMCS. */ 6621 if (is_guest_mode(vcpu)) { 6622 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6623 return; 6624 } 6625 6626 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6627 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6628 return; 6629 6630 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6631 if (is_error_page(page)) 6632 return; 6633 6634 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page)); 6635 vmx_flush_tlb_current(vcpu); 6636 6637 /* 6638 * Do not pin apic access page in memory, the MMU notifier 6639 * will call us again if it is migrated or swapped out. 6640 */ 6641 put_page(page); 6642 } 6643 6644 static void vmx_hwapic_isr_update(int max_isr) 6645 { 6646 u16 status; 6647 u8 old; 6648 6649 if (max_isr == -1) 6650 max_isr = 0; 6651 6652 status = vmcs_read16(GUEST_INTR_STATUS); 6653 old = status >> 8; 6654 if (max_isr != old) { 6655 status &= 0xff; 6656 status |= max_isr << 8; 6657 vmcs_write16(GUEST_INTR_STATUS, status); 6658 } 6659 } 6660 6661 static void vmx_set_rvi(int vector) 6662 { 6663 u16 status; 6664 u8 old; 6665 6666 if (vector == -1) 6667 vector = 0; 6668 6669 status = vmcs_read16(GUEST_INTR_STATUS); 6670 old = (u8)status & 0xff; 6671 if ((u8)vector != old) { 6672 status &= ~0xff; 6673 status |= (u8)vector; 6674 vmcs_write16(GUEST_INTR_STATUS, status); 6675 } 6676 } 6677 6678 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6679 { 6680 /* 6681 * When running L2, updating RVI is only relevant when 6682 * vmcs12 virtual-interrupt-delivery enabled. 6683 * However, it can be enabled only when L1 also 6684 * intercepts external-interrupts and in that case 6685 * we should not update vmcs02 RVI but instead intercept 6686 * interrupt. Therefore, do nothing when running L2. 6687 */ 6688 if (!is_guest_mode(vcpu)) 6689 vmx_set_rvi(max_irr); 6690 } 6691 6692 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6693 { 6694 struct vcpu_vmx *vmx = to_vmx(vcpu); 6695 int max_irr; 6696 bool got_posted_interrupt; 6697 6698 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6699 return -EIO; 6700 6701 if (pi_test_on(&vmx->pi_desc)) { 6702 pi_clear_on(&vmx->pi_desc); 6703 /* 6704 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6705 * But on x86 this is just a compiler barrier anyway. 6706 */ 6707 smp_mb__after_atomic(); 6708 got_posted_interrupt = 6709 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6710 } else { 6711 max_irr = kvm_lapic_find_highest_irr(vcpu); 6712 got_posted_interrupt = false; 6713 } 6714 6715 /* 6716 * Newly recognized interrupts are injected via either virtual interrupt 6717 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6718 * disabled in two cases: 6719 * 6720 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6721 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6722 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6723 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6724 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6725 * 6726 * 2) If APICv is disabled for this vCPU, assigned devices may still 6727 * attempt to post interrupts. The posted interrupt vector will cause 6728 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6729 */ 6730 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6731 vmx_set_rvi(max_irr); 6732 else if (got_posted_interrupt) 6733 kvm_make_request(KVM_REQ_EVENT, vcpu); 6734 6735 return max_irr; 6736 } 6737 6738 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6739 { 6740 if (!kvm_vcpu_apicv_active(vcpu)) 6741 return; 6742 6743 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6744 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6745 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6746 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6747 } 6748 6749 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6750 { 6751 struct vcpu_vmx *vmx = to_vmx(vcpu); 6752 6753 pi_clear_on(&vmx->pi_desc); 6754 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6755 } 6756 6757 void vmx_do_interrupt_nmi_irqoff(unsigned long entry); 6758 6759 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, 6760 unsigned long entry) 6761 { 6762 bool is_nmi = entry == (unsigned long)asm_exc_nmi_noist; 6763 6764 kvm_before_interrupt(vcpu, is_nmi ? KVM_HANDLING_NMI : KVM_HANDLING_IRQ); 6765 vmx_do_interrupt_nmi_irqoff(entry); 6766 kvm_after_interrupt(vcpu); 6767 } 6768 6769 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6770 { 6771 /* 6772 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6773 * MSR value is not clobbered by the host activity before the guest 6774 * has chance to consume it. 6775 * 6776 * Do not blindly read xfd_err here, since this exception might 6777 * be caused by L1 interception on a platform which doesn't 6778 * support xfd at all. 6779 * 6780 * Do it conditionally upon guest_fpu::xfd. xfd_err matters 6781 * only when xfd contains a non-zero value. 6782 * 6783 * Queuing exception is done in vmx_handle_exit. See comment there. 6784 */ 6785 if (vcpu->arch.guest_fpu.fpstate->xfd) 6786 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 6787 } 6788 6789 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) 6790 { 6791 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist; 6792 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6793 6794 /* if exit due to PF check for async PF */ 6795 if (is_page_fault(intr_info)) 6796 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6797 /* if exit due to NM, handle before interrupts are enabled */ 6798 else if (is_nm_fault(intr_info)) 6799 handle_nm_fault_irqoff(&vmx->vcpu); 6800 /* Handle machine checks before interrupts are enabled */ 6801 else if (is_machine_check(intr_info)) 6802 kvm_machine_check(); 6803 /* We need to handle NMIs before interrupts are enabled */ 6804 else if (is_nmi(intr_info)) 6805 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry); 6806 } 6807 6808 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6809 { 6810 u32 intr_info = vmx_get_intr_info(vcpu); 6811 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6812 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6813 6814 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6815 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6816 return; 6817 6818 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc)); 6819 vcpu->arch.at_instruction_boundary = true; 6820 } 6821 6822 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6823 { 6824 struct vcpu_vmx *vmx = to_vmx(vcpu); 6825 6826 if (vmx->emulation_required) 6827 return; 6828 6829 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6830 handle_external_interrupt_irqoff(vcpu); 6831 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6832 handle_exception_nmi_irqoff(vmx); 6833 } 6834 6835 /* 6836 * The kvm parameter can be NULL (module initialization, or invocation before 6837 * VM creation). Be sure to check the kvm parameter before using it. 6838 */ 6839 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6840 { 6841 switch (index) { 6842 case MSR_IA32_SMBASE: 6843 /* 6844 * We cannot do SMM unless we can run the guest in big 6845 * real mode. 6846 */ 6847 return enable_unrestricted_guest || emulate_invalid_guest_state; 6848 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 6849 return nested; 6850 case MSR_AMD64_VIRT_SPEC_CTRL: 6851 case MSR_AMD64_TSC_RATIO: 6852 /* This is AMD only. */ 6853 return false; 6854 default: 6855 return true; 6856 } 6857 } 6858 6859 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6860 { 6861 u32 exit_intr_info; 6862 bool unblock_nmi; 6863 u8 vector; 6864 bool idtv_info_valid; 6865 6866 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6867 6868 if (enable_vnmi) { 6869 if (vmx->loaded_vmcs->nmi_known_unmasked) 6870 return; 6871 6872 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 6873 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6874 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6875 /* 6876 * SDM 3: 27.7.1.2 (September 2008) 6877 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6878 * a guest IRET fault. 6879 * SDM 3: 23.2.2 (September 2008) 6880 * Bit 12 is undefined in any of the following cases: 6881 * If the VM exit sets the valid bit in the IDT-vectoring 6882 * information field. 6883 * If the VM exit is due to a double fault. 6884 */ 6885 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6886 vector != DF_VECTOR && !idtv_info_valid) 6887 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6888 GUEST_INTR_STATE_NMI); 6889 else 6890 vmx->loaded_vmcs->nmi_known_unmasked = 6891 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6892 & GUEST_INTR_STATE_NMI); 6893 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6894 vmx->loaded_vmcs->vnmi_blocked_time += 6895 ktime_to_ns(ktime_sub(ktime_get(), 6896 vmx->loaded_vmcs->entry_time)); 6897 } 6898 6899 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6900 u32 idt_vectoring_info, 6901 int instr_len_field, 6902 int error_code_field) 6903 { 6904 u8 vector; 6905 int type; 6906 bool idtv_info_valid; 6907 6908 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6909 6910 vcpu->arch.nmi_injected = false; 6911 kvm_clear_exception_queue(vcpu); 6912 kvm_clear_interrupt_queue(vcpu); 6913 6914 if (!idtv_info_valid) 6915 return; 6916 6917 kvm_make_request(KVM_REQ_EVENT, vcpu); 6918 6919 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6920 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6921 6922 switch (type) { 6923 case INTR_TYPE_NMI_INTR: 6924 vcpu->arch.nmi_injected = true; 6925 /* 6926 * SDM 3: 27.7.1.2 (September 2008) 6927 * Clear bit "block by NMI" before VM entry if a NMI 6928 * delivery faulted. 6929 */ 6930 vmx_set_nmi_mask(vcpu, false); 6931 break; 6932 case INTR_TYPE_SOFT_EXCEPTION: 6933 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6934 fallthrough; 6935 case INTR_TYPE_HARD_EXCEPTION: 6936 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6937 u32 err = vmcs_read32(error_code_field); 6938 kvm_requeue_exception_e(vcpu, vector, err); 6939 } else 6940 kvm_requeue_exception(vcpu, vector); 6941 break; 6942 case INTR_TYPE_SOFT_INTR: 6943 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6944 fallthrough; 6945 case INTR_TYPE_EXT_INTR: 6946 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6947 break; 6948 default: 6949 break; 6950 } 6951 } 6952 6953 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6954 { 6955 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6956 VM_EXIT_INSTRUCTION_LEN, 6957 IDT_VECTORING_ERROR_CODE); 6958 } 6959 6960 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6961 { 6962 __vmx_complete_interrupts(vcpu, 6963 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6964 VM_ENTRY_INSTRUCTION_LEN, 6965 VM_ENTRY_EXCEPTION_ERROR_CODE); 6966 6967 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6968 } 6969 6970 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6971 { 6972 int i, nr_msrs; 6973 struct perf_guest_switch_msr *msrs; 6974 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu); 6975 6976 pmu->host_cross_mapped_mask = 0; 6977 if (pmu->pebs_enable & pmu->global_ctrl) 6978 intel_pmu_cross_mapped_check(pmu); 6979 6980 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 6981 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu); 6982 if (!msrs) 6983 return; 6984 6985 for (i = 0; i < nr_msrs; i++) 6986 if (msrs[i].host == msrs[i].guest) 6987 clear_atomic_switch_msr(vmx, msrs[i].msr); 6988 else 6989 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6990 msrs[i].host, false); 6991 } 6992 6993 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6994 { 6995 struct vcpu_vmx *vmx = to_vmx(vcpu); 6996 u64 tscl; 6997 u32 delta_tsc; 6998 6999 if (vmx->req_immediate_exit) { 7000 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 7001 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7002 } else if (vmx->hv_deadline_tsc != -1) { 7003 tscl = rdtsc(); 7004 if (vmx->hv_deadline_tsc > tscl) 7005 /* set_hv_timer ensures the delta fits in 32-bits */ 7006 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 7007 cpu_preemption_timer_multi); 7008 else 7009 delta_tsc = 0; 7010 7011 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 7012 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7013 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 7014 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 7015 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 7016 } 7017 } 7018 7019 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 7020 { 7021 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 7022 vmx->loaded_vmcs->host_state.rsp = host_rsp; 7023 vmcs_writel(HOST_RSP, host_rsp); 7024 } 7025 } 7026 7027 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, 7028 unsigned int flags) 7029 { 7030 u64 hostval = this_cpu_read(x86_spec_ctrl_current); 7031 7032 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) 7033 return; 7034 7035 if (flags & VMX_RUN_SAVE_SPEC_CTRL) 7036 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL); 7037 7038 /* 7039 * If the guest/host SPEC_CTRL values differ, restore the host value. 7040 * 7041 * For legacy IBRS, the IBRS bit always needs to be written after 7042 * transitioning from a less privileged predictor mode, regardless of 7043 * whether the guest/host values differ. 7044 */ 7045 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) || 7046 vmx->spec_ctrl != hostval) 7047 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval); 7048 7049 barrier_nospec(); 7050 } 7051 7052 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 7053 { 7054 switch (to_vmx(vcpu)->exit_reason.basic) { 7055 case EXIT_REASON_MSR_WRITE: 7056 return handle_fastpath_set_msr_irqoff(vcpu); 7057 case EXIT_REASON_PREEMPTION_TIMER: 7058 return handle_fastpath_preemption_timer(vcpu); 7059 default: 7060 return EXIT_FASTPATH_NONE; 7061 } 7062 } 7063 7064 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 7065 struct vcpu_vmx *vmx, 7066 unsigned long flags) 7067 { 7068 guest_state_enter_irqoff(); 7069 7070 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 7071 if (static_branch_unlikely(&vmx_l1d_should_flush)) 7072 vmx_l1d_flush(vcpu); 7073 else if (static_branch_unlikely(&mds_user_clear)) 7074 mds_clear_cpu_buffers(); 7075 else if (static_branch_unlikely(&mmio_stale_data_clear) && 7076 kvm_arch_has_assigned_device(vcpu->kvm)) 7077 mds_clear_cpu_buffers(); 7078 7079 vmx_disable_fb_clear(vmx); 7080 7081 if (vcpu->arch.cr2 != native_read_cr2()) 7082 native_write_cr2(vcpu->arch.cr2); 7083 7084 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 7085 flags); 7086 7087 vcpu->arch.cr2 = native_read_cr2(); 7088 7089 vmx_enable_fb_clear(vmx); 7090 7091 guest_state_exit_irqoff(); 7092 } 7093 7094 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 7095 { 7096 struct vcpu_vmx *vmx = to_vmx(vcpu); 7097 unsigned long cr3, cr4; 7098 7099 /* Record the guest's net vcpu time for enforced NMI injections. */ 7100 if (unlikely(!enable_vnmi && 7101 vmx->loaded_vmcs->soft_vnmi_blocked)) 7102 vmx->loaded_vmcs->entry_time = ktime_get(); 7103 7104 /* 7105 * Don't enter VMX if guest state is invalid, let the exit handler 7106 * start emulation until we arrive back to a valid state. Synthesize a 7107 * consistency check VM-Exit due to invalid guest state and bail. 7108 */ 7109 if (unlikely(vmx->emulation_required)) { 7110 vmx->fail = 0; 7111 7112 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 7113 vmx->exit_reason.failed_vmentry = 1; 7114 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 7115 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 7116 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 7117 vmx->exit_intr_info = 0; 7118 return EXIT_FASTPATH_NONE; 7119 } 7120 7121 trace_kvm_entry(vcpu); 7122 7123 if (vmx->ple_window_dirty) { 7124 vmx->ple_window_dirty = false; 7125 vmcs_write32(PLE_WINDOW, vmx->ple_window); 7126 } 7127 7128 /* 7129 * We did this in prepare_switch_to_guest, because it needs to 7130 * be within srcu_read_lock. 7131 */ 7132 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 7133 7134 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 7135 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 7136 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 7137 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 7138 vcpu->arch.regs_dirty = 0; 7139 7140 /* 7141 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately 7142 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time 7143 * it switches back to the current->mm, which can occur in KVM context 7144 * when switching to a temporary mm to patch kernel code, e.g. if KVM 7145 * toggles a static key while handling a VM-Exit. 7146 */ 7147 cr3 = __get_current_cr3_fast(); 7148 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 7149 vmcs_writel(HOST_CR3, cr3); 7150 vmx->loaded_vmcs->host_state.cr3 = cr3; 7151 } 7152 7153 cr4 = cr4_read_shadow(); 7154 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 7155 vmcs_writel(HOST_CR4, cr4); 7156 vmx->loaded_vmcs->host_state.cr4 = cr4; 7157 } 7158 7159 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 7160 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 7161 set_debugreg(vcpu->arch.dr6, 6); 7162 7163 /* When single-stepping over STI and MOV SS, we must clear the 7164 * corresponding interruptibility bits in the guest state. Otherwise 7165 * vmentry fails as it then expects bit 14 (BS) in pending debug 7166 * exceptions being set, but that's not correct for the guest debugging 7167 * case. */ 7168 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7169 vmx_set_interrupt_shadow(vcpu, 0); 7170 7171 kvm_load_guest_xsave_state(vcpu); 7172 7173 pt_guest_enter(vmx); 7174 7175 atomic_switch_perf_msrs(vmx); 7176 if (intel_pmu_lbr_is_enabled(vcpu)) 7177 vmx_passthrough_lbr_msrs(vcpu); 7178 7179 if (enable_preemption_timer) 7180 vmx_update_hv_timer(vcpu); 7181 7182 kvm_wait_lapic_expire(vcpu); 7183 7184 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 7185 vmx_vcpu_enter_exit(vcpu, vmx, __vmx_vcpu_run_flags(vmx)); 7186 7187 /* All fields are clean at this point */ 7188 if (static_branch_unlikely(&enable_evmcs)) { 7189 current_evmcs->hv_clean_fields |= 7190 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 7191 7192 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 7193 } 7194 7195 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 7196 if (vmx->host_debugctlmsr) 7197 update_debugctlmsr(vmx->host_debugctlmsr); 7198 7199 #ifndef CONFIG_X86_64 7200 /* 7201 * The sysexit path does not restore ds/es, so we must set them to 7202 * a reasonable value ourselves. 7203 * 7204 * We can't defer this to vmx_prepare_switch_to_host() since that 7205 * function may be executed in interrupt context, which saves and 7206 * restore segments around it, nullifying its effect. 7207 */ 7208 loadsegment(ds, __USER_DS); 7209 loadsegment(es, __USER_DS); 7210 #endif 7211 7212 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 7213 7214 pt_guest_exit(vmx); 7215 7216 kvm_load_host_xsave_state(vcpu); 7217 7218 if (is_guest_mode(vcpu)) { 7219 /* 7220 * Track VMLAUNCH/VMRESUME that have made past guest state 7221 * checking. 7222 */ 7223 if (vmx->nested.nested_run_pending && 7224 !vmx->exit_reason.failed_vmentry) 7225 ++vcpu->stat.nested_run; 7226 7227 vmx->nested.nested_run_pending = 0; 7228 } 7229 7230 vmx->idt_vectoring_info = 0; 7231 7232 if (unlikely(vmx->fail)) { 7233 vmx->exit_reason.full = 0xdead; 7234 return EXIT_FASTPATH_NONE; 7235 } 7236 7237 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 7238 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 7239 kvm_machine_check(); 7240 7241 if (likely(!vmx->exit_reason.failed_vmentry)) 7242 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 7243 7244 trace_kvm_exit(vcpu, KVM_ISA_VMX); 7245 7246 if (unlikely(vmx->exit_reason.failed_vmentry)) 7247 return EXIT_FASTPATH_NONE; 7248 7249 vmx->loaded_vmcs->launched = 1; 7250 7251 vmx_recover_nmi_blocking(vmx); 7252 vmx_complete_interrupts(vmx); 7253 7254 if (is_guest_mode(vcpu)) 7255 return EXIT_FASTPATH_NONE; 7256 7257 return vmx_exit_handlers_fastpath(vcpu); 7258 } 7259 7260 static void vmx_vcpu_free(struct kvm_vcpu *vcpu) 7261 { 7262 struct vcpu_vmx *vmx = to_vmx(vcpu); 7263 7264 if (enable_pml) 7265 vmx_destroy_pml_buffer(vmx); 7266 free_vpid(vmx->vpid); 7267 nested_vmx_free_vcpu(vcpu); 7268 free_loaded_vmcs(vmx->loaded_vmcs); 7269 } 7270 7271 static int vmx_vcpu_create(struct kvm_vcpu *vcpu) 7272 { 7273 struct vmx_uret_msr *tsx_ctrl; 7274 struct vcpu_vmx *vmx; 7275 int i, err; 7276 7277 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 7278 vmx = to_vmx(vcpu); 7279 7280 INIT_LIST_HEAD(&vmx->pi_wakeup_list); 7281 7282 err = -ENOMEM; 7283 7284 vmx->vpid = allocate_vpid(); 7285 7286 /* 7287 * If PML is turned on, failure on enabling PML just results in failure 7288 * of creating the vcpu, therefore we can simplify PML logic (by 7289 * avoiding dealing with cases, such as enabling PML partially on vcpus 7290 * for the guest), etc. 7291 */ 7292 if (enable_pml) { 7293 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7294 if (!vmx->pml_pg) 7295 goto free_vpid; 7296 } 7297 7298 for (i = 0; i < kvm_nr_uret_msrs; ++i) 7299 vmx->guest_uret_msrs[i].mask = -1ull; 7300 if (boot_cpu_has(X86_FEATURE_RTM)) { 7301 /* 7302 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 7303 * Keep the host value unchanged to avoid changing CPUID bits 7304 * under the host kernel's feet. 7305 */ 7306 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7307 if (tsx_ctrl) 7308 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 7309 } 7310 7311 err = alloc_loaded_vmcs(&vmx->vmcs01); 7312 if (err < 0) 7313 goto free_pml; 7314 7315 /* 7316 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 7317 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 7318 * feature only for vmcs01, KVM currently isn't equipped to realize any 7319 * performance benefits from enabling it for vmcs02. 7320 */ 7321 if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) && 7322 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 7323 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 7324 7325 evmcs->hv_enlightenments_control.msr_bitmap = 1; 7326 } 7327 7328 /* The MSR bitmap starts with all ones */ 7329 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7330 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7331 7332 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 7333 #ifdef CONFIG_X86_64 7334 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 7335 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 7336 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 7337 #endif 7338 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 7339 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 7340 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 7341 if (kvm_cstate_in_guest(vcpu->kvm)) { 7342 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 7343 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 7344 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 7345 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 7346 } 7347 7348 vmx->loaded_vmcs = &vmx->vmcs01; 7349 7350 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7351 err = alloc_apic_access_page(vcpu->kvm); 7352 if (err) 7353 goto free_vmcs; 7354 } 7355 7356 if (enable_ept && !enable_unrestricted_guest) { 7357 err = init_rmode_identity_map(vcpu->kvm); 7358 if (err) 7359 goto free_vmcs; 7360 } 7361 7362 if (vmx_can_use_ipiv(vcpu)) 7363 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id], 7364 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID); 7365 7366 return 0; 7367 7368 free_vmcs: 7369 free_loaded_vmcs(vmx->loaded_vmcs); 7370 free_pml: 7371 vmx_destroy_pml_buffer(vmx); 7372 free_vpid: 7373 free_vpid(vmx->vpid); 7374 return err; 7375 } 7376 7377 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7378 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7379 7380 static int vmx_vm_init(struct kvm *kvm) 7381 { 7382 if (!ple_gap) 7383 kvm->arch.pause_in_guest = true; 7384 7385 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7386 switch (l1tf_mitigation) { 7387 case L1TF_MITIGATION_OFF: 7388 case L1TF_MITIGATION_FLUSH_NOWARN: 7389 /* 'I explicitly don't care' is set */ 7390 break; 7391 case L1TF_MITIGATION_FLUSH: 7392 case L1TF_MITIGATION_FLUSH_NOSMT: 7393 case L1TF_MITIGATION_FULL: 7394 /* 7395 * Warn upon starting the first VM in a potentially 7396 * insecure environment. 7397 */ 7398 if (sched_smt_active()) 7399 pr_warn_once(L1TF_MSG_SMT); 7400 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7401 pr_warn_once(L1TF_MSG_L1D); 7402 break; 7403 case L1TF_MITIGATION_FULL_FORCE: 7404 /* Flush is enforced */ 7405 break; 7406 } 7407 } 7408 return 0; 7409 } 7410 7411 static int __init vmx_check_processor_compat(void) 7412 { 7413 struct vmcs_config vmcs_conf; 7414 struct vmx_capability vmx_cap; 7415 7416 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 7417 !this_cpu_has(X86_FEATURE_VMX)) { 7418 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id()); 7419 return -EIO; 7420 } 7421 7422 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 7423 return -EIO; 7424 if (nested) 7425 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept); 7426 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 7427 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 7428 smp_processor_id()); 7429 return -EIO; 7430 } 7431 return 0; 7432 } 7433 7434 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7435 { 7436 u8 cache; 7437 7438 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 7439 * memory aliases with conflicting memory types and sometimes MCEs. 7440 * We have to be careful as to what are honored and when. 7441 * 7442 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 7443 * UC. The effective memory type is UC or WC depending on guest PAT. 7444 * This was historically the source of MCEs and we want to be 7445 * conservative. 7446 * 7447 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7448 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7449 * EPT memory type is set to WB. The effective memory type is forced 7450 * WB. 7451 * 7452 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7453 * EPT memory type is used to emulate guest CD/MTRR. 7454 */ 7455 7456 if (is_mmio) 7457 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7458 7459 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) 7460 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7461 7462 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 7463 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7464 cache = MTRR_TYPE_WRBACK; 7465 else 7466 cache = MTRR_TYPE_UNCACHABLE; 7467 7468 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7469 } 7470 7471 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT; 7472 } 7473 7474 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7475 { 7476 /* 7477 * These bits in the secondary execution controls field 7478 * are dynamic, the others are mostly based on the hypervisor 7479 * architecture and the guest's CPUID. Do not touch the 7480 * dynamic bits. 7481 */ 7482 u32 mask = 7483 SECONDARY_EXEC_SHADOW_VMCS | 7484 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7485 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7486 SECONDARY_EXEC_DESC; 7487 7488 u32 cur_ctl = secondary_exec_controls_get(vmx); 7489 7490 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7491 } 7492 7493 /* 7494 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7495 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7496 */ 7497 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7498 { 7499 struct vcpu_vmx *vmx = to_vmx(vcpu); 7500 struct kvm_cpuid_entry2 *entry; 7501 7502 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7503 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7504 7505 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7506 if (entry && (entry->_reg & (_cpuid_mask))) \ 7507 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7508 } while (0) 7509 7510 entry = kvm_find_cpuid_entry(vcpu, 0x1); 7511 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7512 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7513 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7514 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7515 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7516 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7517 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7518 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7519 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7520 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7521 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7522 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7523 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7524 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7525 7526 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0); 7527 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7528 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7529 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7530 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7531 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7532 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7533 7534 #undef cr4_fixed1_update 7535 } 7536 7537 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7538 { 7539 struct vcpu_vmx *vmx = to_vmx(vcpu); 7540 struct kvm_cpuid_entry2 *best = NULL; 7541 int i; 7542 7543 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7544 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i); 7545 if (!best) 7546 return; 7547 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7548 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7549 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7550 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7551 } 7552 7553 /* Get the number of configurable Address Ranges for filtering */ 7554 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7555 PT_CAP_num_address_ranges); 7556 7557 /* Initialize and clear the no dependency bits */ 7558 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7559 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7560 RTIT_CTL_BRANCH_EN); 7561 7562 /* 7563 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7564 * will inject an #GP 7565 */ 7566 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7567 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7568 7569 /* 7570 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7571 * PSBFreq can be set 7572 */ 7573 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7574 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7575 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7576 7577 /* 7578 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7579 */ 7580 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7581 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7582 RTIT_CTL_MTC_RANGE); 7583 7584 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7585 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7586 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7587 RTIT_CTL_PTW_EN); 7588 7589 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7590 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7591 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7592 7593 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7594 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7595 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7596 7597 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7598 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7599 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7600 7601 /* unmask address range configure area */ 7602 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7603 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7604 } 7605 7606 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7607 { 7608 struct vcpu_vmx *vmx = to_vmx(vcpu); 7609 7610 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7611 vcpu->arch.xsaves_enabled = false; 7612 7613 vmx_setup_uret_msrs(vmx); 7614 7615 if (cpu_has_secondary_exec_ctrls()) 7616 vmcs_set_secondary_exec_control(vmx, 7617 vmx_secondary_exec_control(vmx)); 7618 7619 if (nested_vmx_allowed(vcpu)) 7620 vmx->msr_ia32_feature_control_valid_bits |= 7621 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7622 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7623 else 7624 vmx->msr_ia32_feature_control_valid_bits &= 7625 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7626 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7627 7628 if (nested_vmx_allowed(vcpu)) 7629 nested_vmx_cr_fixed1_bits_update(vcpu); 7630 7631 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7632 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7633 update_intel_pt_cfg(vcpu); 7634 7635 if (boot_cpu_has(X86_FEATURE_RTM)) { 7636 struct vmx_uret_msr *msr; 7637 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7638 if (msr) { 7639 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7640 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7641 } 7642 } 7643 7644 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 7645 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 7646 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); 7647 7648 7649 set_cr4_guest_host_mask(vmx); 7650 7651 vmx_write_encls_bitmap(vcpu, NULL); 7652 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7653 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7654 else 7655 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7656 7657 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7658 vmx->msr_ia32_feature_control_valid_bits |= 7659 FEAT_CTL_SGX_LC_ENABLED; 7660 else 7661 vmx->msr_ia32_feature_control_valid_bits &= 7662 ~FEAT_CTL_SGX_LC_ENABLED; 7663 7664 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7665 vmx_update_exception_bitmap(vcpu); 7666 } 7667 7668 static __init void vmx_set_cpu_caps(void) 7669 { 7670 kvm_set_cpu_caps(); 7671 7672 /* CPUID 0x1 */ 7673 if (nested) 7674 kvm_cpu_cap_set(X86_FEATURE_VMX); 7675 7676 /* CPUID 0x7 */ 7677 if (kvm_mpx_supported()) 7678 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7679 if (!cpu_has_vmx_invpcid()) 7680 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7681 if (vmx_pt_mode_is_host_guest()) 7682 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7683 if (vmx_pebs_supported()) { 7684 kvm_cpu_cap_check_and_set(X86_FEATURE_DS); 7685 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64); 7686 } 7687 7688 if (!enable_pmu) 7689 kvm_cpu_cap_clear(X86_FEATURE_PDCM); 7690 7691 if (!enable_sgx) { 7692 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7693 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7694 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7695 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7696 } 7697 7698 if (vmx_umip_emulated()) 7699 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7700 7701 /* CPUID 0xD.1 */ 7702 kvm_caps.supported_xss = 0; 7703 if (!cpu_has_vmx_xsaves()) 7704 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7705 7706 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7707 if (!cpu_has_vmx_rdtscp()) { 7708 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7709 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7710 } 7711 7712 if (cpu_has_vmx_waitpkg()) 7713 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7714 } 7715 7716 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7717 { 7718 to_vmx(vcpu)->req_immediate_exit = true; 7719 } 7720 7721 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7722 struct x86_instruction_info *info) 7723 { 7724 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7725 unsigned short port; 7726 bool intercept; 7727 int size; 7728 7729 if (info->intercept == x86_intercept_in || 7730 info->intercept == x86_intercept_ins) { 7731 port = info->src_val; 7732 size = info->dst_bytes; 7733 } else { 7734 port = info->dst_val; 7735 size = info->src_bytes; 7736 } 7737 7738 /* 7739 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7740 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7741 * control. 7742 * 7743 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7744 */ 7745 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7746 intercept = nested_cpu_has(vmcs12, 7747 CPU_BASED_UNCOND_IO_EXITING); 7748 else 7749 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7750 7751 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7752 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7753 } 7754 7755 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7756 struct x86_instruction_info *info, 7757 enum x86_intercept_stage stage, 7758 struct x86_exception *exception) 7759 { 7760 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7761 7762 switch (info->intercept) { 7763 /* 7764 * RDPID causes #UD if disabled through secondary execution controls. 7765 * Because it is marked as EmulateOnUD, we need to intercept it here. 7766 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7767 */ 7768 case x86_intercept_rdpid: 7769 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7770 exception->vector = UD_VECTOR; 7771 exception->error_code_valid = false; 7772 return X86EMUL_PROPAGATE_FAULT; 7773 } 7774 break; 7775 7776 case x86_intercept_in: 7777 case x86_intercept_ins: 7778 case x86_intercept_out: 7779 case x86_intercept_outs: 7780 return vmx_check_intercept_io(vcpu, info); 7781 7782 case x86_intercept_lgdt: 7783 case x86_intercept_lidt: 7784 case x86_intercept_lldt: 7785 case x86_intercept_ltr: 7786 case x86_intercept_sgdt: 7787 case x86_intercept_sidt: 7788 case x86_intercept_sldt: 7789 case x86_intercept_str: 7790 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7791 return X86EMUL_CONTINUE; 7792 7793 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7794 break; 7795 7796 /* TODO: check more intercepts... */ 7797 default: 7798 break; 7799 } 7800 7801 return X86EMUL_UNHANDLEABLE; 7802 } 7803 7804 #ifdef CONFIG_X86_64 7805 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7806 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7807 u64 divisor, u64 *result) 7808 { 7809 u64 low = a << shift, high = a >> (64 - shift); 7810 7811 /* To avoid the overflow on divq */ 7812 if (high >= divisor) 7813 return 1; 7814 7815 /* Low hold the result, high hold rem which is discarded */ 7816 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7817 "rm" (divisor), "0" (low), "1" (high)); 7818 *result = low; 7819 7820 return 0; 7821 } 7822 7823 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7824 bool *expired) 7825 { 7826 struct vcpu_vmx *vmx; 7827 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7828 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7829 7830 vmx = to_vmx(vcpu); 7831 tscl = rdtsc(); 7832 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7833 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7834 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7835 ktimer->timer_advance_ns); 7836 7837 if (delta_tsc > lapic_timer_advance_cycles) 7838 delta_tsc -= lapic_timer_advance_cycles; 7839 else 7840 delta_tsc = 0; 7841 7842 /* Convert to host delta tsc if tsc scaling is enabled */ 7843 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio && 7844 delta_tsc && u64_shl_div_u64(delta_tsc, 7845 kvm_caps.tsc_scaling_ratio_frac_bits, 7846 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 7847 return -ERANGE; 7848 7849 /* 7850 * If the delta tsc can't fit in the 32 bit after the multi shift, 7851 * we can't use the preemption timer. 7852 * It's possible that it fits on later vmentries, but checking 7853 * on every vmentry is costly so we just use an hrtimer. 7854 */ 7855 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7856 return -ERANGE; 7857 7858 vmx->hv_deadline_tsc = tscl + delta_tsc; 7859 *expired = !delta_tsc; 7860 return 0; 7861 } 7862 7863 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7864 { 7865 to_vmx(vcpu)->hv_deadline_tsc = -1; 7866 } 7867 #endif 7868 7869 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7870 { 7871 if (!kvm_pause_in_guest(vcpu->kvm)) 7872 shrink_ple_window(vcpu); 7873 } 7874 7875 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 7876 { 7877 struct vcpu_vmx *vmx = to_vmx(vcpu); 7878 7879 if (is_guest_mode(vcpu)) { 7880 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 7881 return; 7882 } 7883 7884 /* 7885 * Note, cpu_dirty_logging_count can be changed concurrent with this 7886 * code, but in that case another update request will be made and so 7887 * the guest will never run with a stale PML value. 7888 */ 7889 if (vcpu->kvm->arch.cpu_dirty_logging_count) 7890 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7891 else 7892 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7893 } 7894 7895 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7896 { 7897 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7898 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7899 FEAT_CTL_LMCE_ENABLED; 7900 else 7901 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7902 ~FEAT_CTL_LMCE_ENABLED; 7903 } 7904 7905 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 7906 { 7907 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7908 if (to_vmx(vcpu)->nested.nested_run_pending) 7909 return -EBUSY; 7910 return !is_smm(vcpu); 7911 } 7912 7913 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7914 { 7915 struct vcpu_vmx *vmx = to_vmx(vcpu); 7916 7917 /* 7918 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on 7919 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong 7920 * SMI and RSM only modify state that is saved and restored via SMRAM. 7921 * E.g. most MSRs are left untouched, but many are modified by VM-Exit 7922 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM. 7923 */ 7924 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7925 if (vmx->nested.smm.guest_mode) 7926 nested_vmx_vmexit(vcpu, -1, 0, 0); 7927 7928 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7929 vmx->nested.vmxon = false; 7930 vmx_clear_hlt(vcpu); 7931 return 0; 7932 } 7933 7934 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7935 { 7936 struct vcpu_vmx *vmx = to_vmx(vcpu); 7937 int ret; 7938 7939 if (vmx->nested.smm.vmxon) { 7940 vmx->nested.vmxon = true; 7941 vmx->nested.smm.vmxon = false; 7942 } 7943 7944 if (vmx->nested.smm.guest_mode) { 7945 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7946 if (ret) 7947 return ret; 7948 7949 vmx->nested.nested_run_pending = 1; 7950 vmx->nested.smm.guest_mode = false; 7951 } 7952 return 0; 7953 } 7954 7955 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 7956 { 7957 /* RSM will cause a vmexit anyway. */ 7958 } 7959 7960 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 7961 { 7962 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 7963 } 7964 7965 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 7966 { 7967 if (is_guest_mode(vcpu)) { 7968 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 7969 7970 if (hrtimer_try_to_cancel(timer) == 1) 7971 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 7972 } 7973 } 7974 7975 static void vmx_hardware_unsetup(void) 7976 { 7977 kvm_set_posted_intr_wakeup_handler(NULL); 7978 7979 if (nested) 7980 nested_vmx_hardware_unsetup(); 7981 7982 free_kvm_area(); 7983 } 7984 7985 static bool vmx_check_apicv_inhibit_reasons(enum kvm_apicv_inhibit reason) 7986 { 7987 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 7988 BIT(APICV_INHIBIT_REASON_ABSENT) | 7989 BIT(APICV_INHIBIT_REASON_HYPERV) | 7990 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | 7991 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | 7992 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED); 7993 7994 return supported & BIT(reason); 7995 } 7996 7997 static void vmx_vm_destroy(struct kvm *kvm) 7998 { 7999 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 8000 8001 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm)); 8002 } 8003 8004 static struct kvm_x86_ops vmx_x86_ops __initdata = { 8005 .name = "kvm_intel", 8006 8007 .hardware_unsetup = vmx_hardware_unsetup, 8008 8009 .hardware_enable = vmx_hardware_enable, 8010 .hardware_disable = vmx_hardware_disable, 8011 .has_emulated_msr = vmx_has_emulated_msr, 8012 8013 .vm_size = sizeof(struct kvm_vmx), 8014 .vm_init = vmx_vm_init, 8015 .vm_destroy = vmx_vm_destroy, 8016 8017 .vcpu_precreate = vmx_vcpu_precreate, 8018 .vcpu_create = vmx_vcpu_create, 8019 .vcpu_free = vmx_vcpu_free, 8020 .vcpu_reset = vmx_vcpu_reset, 8021 8022 .prepare_switch_to_guest = vmx_prepare_switch_to_guest, 8023 .vcpu_load = vmx_vcpu_load, 8024 .vcpu_put = vmx_vcpu_put, 8025 8026 .update_exception_bitmap = vmx_update_exception_bitmap, 8027 .get_msr_feature = vmx_get_msr_feature, 8028 .get_msr = vmx_get_msr, 8029 .set_msr = vmx_set_msr, 8030 .get_segment_base = vmx_get_segment_base, 8031 .get_segment = vmx_get_segment, 8032 .set_segment = vmx_set_segment, 8033 .get_cpl = vmx_get_cpl, 8034 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 8035 .set_cr0 = vmx_set_cr0, 8036 .is_valid_cr4 = vmx_is_valid_cr4, 8037 .set_cr4 = vmx_set_cr4, 8038 .set_efer = vmx_set_efer, 8039 .get_idt = vmx_get_idt, 8040 .set_idt = vmx_set_idt, 8041 .get_gdt = vmx_get_gdt, 8042 .set_gdt = vmx_set_gdt, 8043 .set_dr7 = vmx_set_dr7, 8044 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 8045 .cache_reg = vmx_cache_reg, 8046 .get_rflags = vmx_get_rflags, 8047 .set_rflags = vmx_set_rflags, 8048 .get_if_flag = vmx_get_if_flag, 8049 8050 .flush_tlb_all = vmx_flush_tlb_all, 8051 .flush_tlb_current = vmx_flush_tlb_current, 8052 .flush_tlb_gva = vmx_flush_tlb_gva, 8053 .flush_tlb_guest = vmx_flush_tlb_guest, 8054 8055 .vcpu_pre_run = vmx_vcpu_pre_run, 8056 .vcpu_run = vmx_vcpu_run, 8057 .handle_exit = vmx_handle_exit, 8058 .skip_emulated_instruction = vmx_skip_emulated_instruction, 8059 .update_emulated_instruction = vmx_update_emulated_instruction, 8060 .set_interrupt_shadow = vmx_set_interrupt_shadow, 8061 .get_interrupt_shadow = vmx_get_interrupt_shadow, 8062 .patch_hypercall = vmx_patch_hypercall, 8063 .inject_irq = vmx_inject_irq, 8064 .inject_nmi = vmx_inject_nmi, 8065 .inject_exception = vmx_inject_exception, 8066 .cancel_injection = vmx_cancel_injection, 8067 .interrupt_allowed = vmx_interrupt_allowed, 8068 .nmi_allowed = vmx_nmi_allowed, 8069 .get_nmi_mask = vmx_get_nmi_mask, 8070 .set_nmi_mask = vmx_set_nmi_mask, 8071 .enable_nmi_window = vmx_enable_nmi_window, 8072 .enable_irq_window = vmx_enable_irq_window, 8073 .update_cr8_intercept = vmx_update_cr8_intercept, 8074 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 8075 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 8076 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 8077 .load_eoi_exitmap = vmx_load_eoi_exitmap, 8078 .apicv_post_state_restore = vmx_apicv_post_state_restore, 8079 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons, 8080 .hwapic_irr_update = vmx_hwapic_irr_update, 8081 .hwapic_isr_update = vmx_hwapic_isr_update, 8082 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 8083 .sync_pir_to_irr = vmx_sync_pir_to_irr, 8084 .deliver_interrupt = vmx_deliver_interrupt, 8085 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 8086 8087 .set_tss_addr = vmx_set_tss_addr, 8088 .set_identity_map_addr = vmx_set_identity_map_addr, 8089 .get_mt_mask = vmx_get_mt_mask, 8090 8091 .get_exit_info = vmx_get_exit_info, 8092 8093 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 8094 8095 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 8096 8097 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 8098 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 8099 .write_tsc_offset = vmx_write_tsc_offset, 8100 .write_tsc_multiplier = vmx_write_tsc_multiplier, 8101 8102 .load_mmu_pgd = vmx_load_mmu_pgd, 8103 8104 .check_intercept = vmx_check_intercept, 8105 .handle_exit_irqoff = vmx_handle_exit_irqoff, 8106 8107 .request_immediate_exit = vmx_request_immediate_exit, 8108 8109 .sched_in = vmx_sched_in, 8110 8111 .cpu_dirty_log_size = PML_ENTITY_NUM, 8112 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 8113 8114 .nested_ops = &vmx_nested_ops, 8115 8116 .pi_update_irte = vmx_pi_update_irte, 8117 .pi_start_assignment = vmx_pi_start_assignment, 8118 8119 #ifdef CONFIG_X86_64 8120 .set_hv_timer = vmx_set_hv_timer, 8121 .cancel_hv_timer = vmx_cancel_hv_timer, 8122 #endif 8123 8124 .setup_mce = vmx_setup_mce, 8125 8126 .smi_allowed = vmx_smi_allowed, 8127 .enter_smm = vmx_enter_smm, 8128 .leave_smm = vmx_leave_smm, 8129 .enable_smi_window = vmx_enable_smi_window, 8130 8131 .can_emulate_instruction = vmx_can_emulate_instruction, 8132 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 8133 .migrate_timers = vmx_migrate_timers, 8134 8135 .msr_filter_changed = vmx_msr_filter_changed, 8136 .complete_emulated_msr = kvm_complete_insn_gp, 8137 8138 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 8139 }; 8140 8141 static unsigned int vmx_handle_intel_pt_intr(void) 8142 { 8143 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 8144 8145 /* '0' on failure so that the !PT case can use a RET0 static call. */ 8146 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu)) 8147 return 0; 8148 8149 kvm_make_request(KVM_REQ_PMI, vcpu); 8150 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 8151 (unsigned long *)&vcpu->arch.pmu.global_status); 8152 return 1; 8153 } 8154 8155 static __init void vmx_setup_user_return_msrs(void) 8156 { 8157 8158 /* 8159 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 8160 * will emulate SYSCALL in legacy mode if the vendor string in guest 8161 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 8162 * support this emulation, MSR_STAR is included in the list for i386, 8163 * but is never loaded into hardware. MSR_CSTAR is also never loaded 8164 * into hardware and is here purely for emulation purposes. 8165 */ 8166 const u32 vmx_uret_msrs_list[] = { 8167 #ifdef CONFIG_X86_64 8168 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 8169 #endif 8170 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 8171 MSR_IA32_TSX_CTRL, 8172 }; 8173 int i; 8174 8175 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 8176 8177 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 8178 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 8179 } 8180 8181 static void __init vmx_setup_me_spte_mask(void) 8182 { 8183 u64 me_mask = 0; 8184 8185 /* 8186 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use 8187 * the former to avoid exposing shadow_phys_bits. 8188 * 8189 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to 8190 * shadow_phys_bits. On MKTME and/or TDX capable systems, 8191 * boot_cpu_data.x86_phys_bits holds the actual physical address 8192 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR 8193 * reported by CPUID. Those bits between are KeyID bits. 8194 */ 8195 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits()) 8196 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits, 8197 kvm_get_shadow_phys_bits() - 1); 8198 /* 8199 * Unlike SME, host kernel doesn't support setting up any 8200 * MKTME KeyID on Intel platforms. No memory encryption 8201 * bits should be included into the SPTE. 8202 */ 8203 kvm_mmu_set_me_spte_mask(0, me_mask); 8204 } 8205 8206 static struct kvm_x86_init_ops vmx_init_ops __initdata; 8207 8208 static __init int hardware_setup(void) 8209 { 8210 unsigned long host_bndcfgs; 8211 struct desc_ptr dt; 8212 int r; 8213 8214 store_idt(&dt); 8215 host_idt_base = dt.address; 8216 8217 vmx_setup_user_return_msrs(); 8218 8219 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 8220 return -EIO; 8221 8222 if (cpu_has_perf_global_ctrl_bug()) 8223 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 8224 "does not work properly. Using workaround\n"); 8225 8226 if (boot_cpu_has(X86_FEATURE_NX)) 8227 kvm_enable_efer_bits(EFER_NX); 8228 8229 if (boot_cpu_has(X86_FEATURE_MPX)) { 8230 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 8231 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 8232 } 8233 8234 if (!cpu_has_vmx_mpx()) 8235 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 8236 XFEATURE_MASK_BNDCSR); 8237 8238 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 8239 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 8240 enable_vpid = 0; 8241 8242 if (!cpu_has_vmx_ept() || 8243 !cpu_has_vmx_ept_4levels() || 8244 !cpu_has_vmx_ept_mt_wb() || 8245 !cpu_has_vmx_invept_global()) 8246 enable_ept = 0; 8247 8248 /* NX support is required for shadow paging. */ 8249 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 8250 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n"); 8251 return -EOPNOTSUPP; 8252 } 8253 8254 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 8255 enable_ept_ad_bits = 0; 8256 8257 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 8258 enable_unrestricted_guest = 0; 8259 8260 if (!cpu_has_vmx_flexpriority()) 8261 flexpriority_enabled = 0; 8262 8263 if (!cpu_has_virtual_nmis()) 8264 enable_vnmi = 0; 8265 8266 /* 8267 * set_apic_access_page_addr() is used to reload apic access 8268 * page upon invalidation. No need to do anything if not 8269 * using the APIC_ACCESS_ADDR VMCS field. 8270 */ 8271 if (!flexpriority_enabled) 8272 vmx_x86_ops.set_apic_access_page_addr = NULL; 8273 8274 if (!cpu_has_vmx_tpr_shadow()) 8275 vmx_x86_ops.update_cr8_intercept = NULL; 8276 8277 #if IS_ENABLED(CONFIG_HYPERV) 8278 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 8279 && enable_ept) { 8280 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb; 8281 vmx_x86_ops.tlb_remote_flush_with_range = 8282 hv_remote_flush_tlb_with_range; 8283 } 8284 #endif 8285 8286 if (!cpu_has_vmx_ple()) { 8287 ple_gap = 0; 8288 ple_window = 0; 8289 ple_window_grow = 0; 8290 ple_window_max = 0; 8291 ple_window_shrink = 0; 8292 } 8293 8294 if (!cpu_has_vmx_apicv()) 8295 enable_apicv = 0; 8296 if (!enable_apicv) 8297 vmx_x86_ops.sync_pir_to_irr = NULL; 8298 8299 if (!enable_apicv || !cpu_has_vmx_ipiv()) 8300 enable_ipiv = false; 8301 8302 if (cpu_has_vmx_tsc_scaling()) 8303 kvm_caps.has_tsc_control = true; 8304 8305 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 8306 kvm_caps.tsc_scaling_ratio_frac_bits = 48; 8307 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 8308 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit(); 8309 8310 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 8311 8312 if (enable_ept) 8313 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 8314 cpu_has_vmx_ept_execute_only()); 8315 8316 /* 8317 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID 8318 * bits to shadow_zero_check. 8319 */ 8320 vmx_setup_me_spte_mask(); 8321 8322 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(), 8323 ept_caps_to_lpage_level(vmx_capability.ept)); 8324 8325 /* 8326 * Only enable PML when hardware supports PML feature, and both EPT 8327 * and EPT A/D bit features are enabled -- PML depends on them to work. 8328 */ 8329 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 8330 enable_pml = 0; 8331 8332 if (!enable_pml) 8333 vmx_x86_ops.cpu_dirty_log_size = 0; 8334 8335 if (!cpu_has_vmx_preemption_timer()) 8336 enable_preemption_timer = false; 8337 8338 if (enable_preemption_timer) { 8339 u64 use_timer_freq = 5000ULL * 1000 * 1000; 8340 8341 cpu_preemption_timer_multi = 8342 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 8343 8344 if (tsc_khz) 8345 use_timer_freq = (u64)tsc_khz * 1000; 8346 use_timer_freq >>= cpu_preemption_timer_multi; 8347 8348 /* 8349 * KVM "disables" the preemption timer by setting it to its max 8350 * value. Don't use the timer if it might cause spurious exits 8351 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 8352 */ 8353 if (use_timer_freq > 0xffffffffu / 10) 8354 enable_preemption_timer = false; 8355 } 8356 8357 if (!enable_preemption_timer) { 8358 vmx_x86_ops.set_hv_timer = NULL; 8359 vmx_x86_ops.cancel_hv_timer = NULL; 8360 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 8361 } 8362 8363 kvm_caps.supported_mce_cap |= MCG_LMCE_P; 8364 kvm_caps.supported_mce_cap |= MCG_CMCI_P; 8365 8366 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 8367 return -EINVAL; 8368 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt()) 8369 pt_mode = PT_MODE_SYSTEM; 8370 if (pt_mode == PT_MODE_HOST_GUEST) 8371 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 8372 else 8373 vmx_init_ops.handle_intel_pt_intr = NULL; 8374 8375 setup_default_sgx_lepubkeyhash(); 8376 8377 if (nested) { 8378 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept); 8379 8380 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8381 if (r) 8382 return r; 8383 } 8384 8385 vmx_set_cpu_caps(); 8386 8387 r = alloc_kvm_area(); 8388 if (r && nested) 8389 nested_vmx_hardware_unsetup(); 8390 8391 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8392 8393 return r; 8394 } 8395 8396 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 8397 .cpu_has_kvm_support = cpu_has_kvm_support, 8398 .disabled_by_bios = vmx_disabled_by_bios, 8399 .check_processor_compatibility = vmx_check_processor_compat, 8400 .hardware_setup = hardware_setup, 8401 .handle_intel_pt_intr = NULL, 8402 8403 .runtime_ops = &vmx_x86_ops, 8404 .pmu_ops = &intel_pmu_ops, 8405 }; 8406 8407 static void vmx_cleanup_l1d_flush(void) 8408 { 8409 if (vmx_l1d_flush_pages) { 8410 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8411 vmx_l1d_flush_pages = NULL; 8412 } 8413 /* Restore state so sysfs ignores VMX */ 8414 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8415 } 8416 8417 static void vmx_exit(void) 8418 { 8419 #ifdef CONFIG_KEXEC_CORE 8420 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 8421 synchronize_rcu(); 8422 #endif 8423 8424 kvm_exit(); 8425 8426 #if IS_ENABLED(CONFIG_HYPERV) 8427 if (static_branch_unlikely(&enable_evmcs)) { 8428 int cpu; 8429 struct hv_vp_assist_page *vp_ap; 8430 /* 8431 * Reset everything to support using non-enlightened VMCS 8432 * access later (e.g. when we reload the module with 8433 * enlightened_vmcs=0) 8434 */ 8435 for_each_online_cpu(cpu) { 8436 vp_ap = hv_get_vp_assist_page(cpu); 8437 8438 if (!vp_ap) 8439 continue; 8440 8441 vp_ap->nested_control.features.directhypercall = 0; 8442 vp_ap->current_nested_vmcs = 0; 8443 vp_ap->enlighten_vmentry = 0; 8444 } 8445 8446 static_branch_disable(&enable_evmcs); 8447 } 8448 #endif 8449 vmx_cleanup_l1d_flush(); 8450 8451 allow_smaller_maxphyaddr = false; 8452 } 8453 module_exit(vmx_exit); 8454 8455 static int __init vmx_init(void) 8456 { 8457 int r, cpu; 8458 8459 #if IS_ENABLED(CONFIG_HYPERV) 8460 /* 8461 * Enlightened VMCS usage should be recommended and the host needs 8462 * to support eVMCS v1 or above. We can also disable eVMCS support 8463 * with module parameter. 8464 */ 8465 if (enlightened_vmcs && 8466 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 8467 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 8468 KVM_EVMCS_VERSION) { 8469 8470 /* Check that we have assist pages on all online CPUs */ 8471 for_each_online_cpu(cpu) { 8472 if (!hv_get_vp_assist_page(cpu)) { 8473 enlightened_vmcs = false; 8474 break; 8475 } 8476 } 8477 8478 if (enlightened_vmcs) { 8479 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 8480 static_branch_enable(&enable_evmcs); 8481 } 8482 8483 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 8484 vmx_x86_ops.enable_direct_tlbflush 8485 = hv_enable_direct_tlbflush; 8486 8487 } else { 8488 enlightened_vmcs = false; 8489 } 8490 #endif 8491 8492 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx), 8493 __alignof__(struct vcpu_vmx), THIS_MODULE); 8494 if (r) 8495 return r; 8496 8497 /* 8498 * Must be called after kvm_init() so enable_ept is properly set 8499 * up. Hand the parameter mitigation value in which was stored in 8500 * the pre module init parser. If no parameter was given, it will 8501 * contain 'auto' which will be turned into the default 'cond' 8502 * mitigation mode. 8503 */ 8504 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8505 if (r) { 8506 vmx_exit(); 8507 return r; 8508 } 8509 8510 vmx_setup_fb_clear_ctrl(); 8511 8512 for_each_possible_cpu(cpu) { 8513 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8514 8515 pi_init_cpu(cpu); 8516 } 8517 8518 #ifdef CONFIG_KEXEC_CORE 8519 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 8520 crash_vmclear_local_loaded_vmcss); 8521 #endif 8522 vmx_check_vmcs12_offsets(); 8523 8524 /* 8525 * Shadow paging doesn't have a (further) performance penalty 8526 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8527 * by default 8528 */ 8529 if (!enable_ept) 8530 allow_smaller_maxphyaddr = true; 8531 8532 return 0; 8533 } 8534 module_init(vmx_init); 8535