xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision 80d0624d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32 
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/idtentry.h>
42 #include <asm/io.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/reboot.h>
45 #include <asm/perf_event.h>
46 #include <asm/mmu_context.h>
47 #include <asm/mshyperv.h>
48 #include <asm/mwait.h>
49 #include <asm/spec-ctrl.h>
50 #include <asm/vmx.h>
51 
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68 #include "smm.h"
69 #include "vmx_onhyperv.h"
70 #include "posted_intr.h"
71 
72 MODULE_AUTHOR("Qumranet");
73 MODULE_LICENSE("GPL");
74 
75 #ifdef MODULE
76 static const struct x86_cpu_id vmx_cpu_id[] = {
77 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
78 	{}
79 };
80 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
81 #endif
82 
83 bool __read_mostly enable_vpid = 1;
84 module_param_named(vpid, enable_vpid, bool, 0444);
85 
86 static bool __read_mostly enable_vnmi = 1;
87 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
88 
89 bool __read_mostly flexpriority_enabled = 1;
90 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
91 
92 bool __read_mostly enable_ept = 1;
93 module_param_named(ept, enable_ept, bool, S_IRUGO);
94 
95 bool __read_mostly enable_unrestricted_guest = 1;
96 module_param_named(unrestricted_guest,
97 			enable_unrestricted_guest, bool, S_IRUGO);
98 
99 bool __read_mostly enable_ept_ad_bits = 1;
100 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
101 
102 static bool __read_mostly emulate_invalid_guest_state = true;
103 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
104 
105 static bool __read_mostly fasteoi = 1;
106 module_param(fasteoi, bool, S_IRUGO);
107 
108 module_param(enable_apicv, bool, S_IRUGO);
109 
110 bool __read_mostly enable_ipiv = true;
111 module_param(enable_ipiv, bool, 0444);
112 
113 /*
114  * If nested=1, nested virtualization is supported, i.e., guests may use
115  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
116  * use VMX instructions.
117  */
118 static bool __read_mostly nested = 1;
119 module_param(nested, bool, S_IRUGO);
120 
121 bool __read_mostly enable_pml = 1;
122 module_param_named(pml, enable_pml, bool, S_IRUGO);
123 
124 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
125 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
126 
127 static bool __read_mostly dump_invalid_vmcs = 0;
128 module_param(dump_invalid_vmcs, bool, 0644);
129 
130 #define MSR_BITMAP_MODE_X2APIC		1
131 #define MSR_BITMAP_MODE_X2APIC_APICV	2
132 
133 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
134 
135 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
136 static int __read_mostly cpu_preemption_timer_multi;
137 static bool __read_mostly enable_preemption_timer = 1;
138 #ifdef CONFIG_X86_64
139 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
140 #endif
141 
142 extern bool __read_mostly allow_smaller_maxphyaddr;
143 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
144 
145 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
146 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
147 #define KVM_VM_CR0_ALWAYS_ON				\
148 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
149 
150 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
151 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
152 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
153 
154 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
155 
156 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
157 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
158 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
159 	RTIT_STATUS_BYTECNT))
160 
161 /*
162  * List of MSRs that can be directly passed to the guest.
163  * In addition to these x2apic and PT MSRs are handled specially.
164  */
165 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
166 	MSR_IA32_SPEC_CTRL,
167 	MSR_IA32_PRED_CMD,
168 	MSR_IA32_FLUSH_CMD,
169 	MSR_IA32_TSC,
170 #ifdef CONFIG_X86_64
171 	MSR_FS_BASE,
172 	MSR_GS_BASE,
173 	MSR_KERNEL_GS_BASE,
174 	MSR_IA32_XFD,
175 	MSR_IA32_XFD_ERR,
176 #endif
177 	MSR_IA32_SYSENTER_CS,
178 	MSR_IA32_SYSENTER_ESP,
179 	MSR_IA32_SYSENTER_EIP,
180 	MSR_CORE_C1_RES,
181 	MSR_CORE_C3_RESIDENCY,
182 	MSR_CORE_C6_RESIDENCY,
183 	MSR_CORE_C7_RESIDENCY,
184 };
185 
186 /*
187  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
188  * ple_gap:    upper bound on the amount of time between two successive
189  *             executions of PAUSE in a loop. Also indicate if ple enabled.
190  *             According to test, this time is usually smaller than 128 cycles.
191  * ple_window: upper bound on the amount of time a guest is allowed to execute
192  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
193  *             less than 2^12 cycles
194  * Time is measured based on a counter that runs at the same rate as the TSC,
195  * refer SDM volume 3b section 21.6.13 & 22.1.3.
196  */
197 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
198 module_param(ple_gap, uint, 0444);
199 
200 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
201 module_param(ple_window, uint, 0444);
202 
203 /* Default doubles per-vcpu window every exit. */
204 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
205 module_param(ple_window_grow, uint, 0444);
206 
207 /* Default resets per-vcpu window every exit to ple_window. */
208 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
209 module_param(ple_window_shrink, uint, 0444);
210 
211 /* Default is to compute the maximum so we can never overflow. */
212 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
213 module_param(ple_window_max, uint, 0444);
214 
215 /* Default is SYSTEM mode, 1 for host-guest mode */
216 int __read_mostly pt_mode = PT_MODE_SYSTEM;
217 module_param(pt_mode, int, S_IRUGO);
218 
219 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
220 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
221 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
222 
223 /* Storage for pre module init parameter parsing */
224 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
225 
226 static const struct {
227 	const char *option;
228 	bool for_parse;
229 } vmentry_l1d_param[] = {
230 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
231 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
232 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
233 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
234 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
235 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
236 };
237 
238 #define L1D_CACHE_ORDER 4
239 static void *vmx_l1d_flush_pages;
240 
241 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
242 {
243 	struct page *page;
244 	unsigned int i;
245 
246 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
247 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
248 		return 0;
249 	}
250 
251 	if (!enable_ept) {
252 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
253 		return 0;
254 	}
255 
256 	if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
257 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
258 		return 0;
259 	}
260 
261 	/* If set to auto use the default l1tf mitigation method */
262 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
263 		switch (l1tf_mitigation) {
264 		case L1TF_MITIGATION_OFF:
265 			l1tf = VMENTER_L1D_FLUSH_NEVER;
266 			break;
267 		case L1TF_MITIGATION_FLUSH_NOWARN:
268 		case L1TF_MITIGATION_FLUSH:
269 		case L1TF_MITIGATION_FLUSH_NOSMT:
270 			l1tf = VMENTER_L1D_FLUSH_COND;
271 			break;
272 		case L1TF_MITIGATION_FULL:
273 		case L1TF_MITIGATION_FULL_FORCE:
274 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
275 			break;
276 		}
277 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
278 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
279 	}
280 
281 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
282 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
283 		/*
284 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
285 		 * lifetime and so should not be charged to a memcg.
286 		 */
287 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
288 		if (!page)
289 			return -ENOMEM;
290 		vmx_l1d_flush_pages = page_address(page);
291 
292 		/*
293 		 * Initialize each page with a different pattern in
294 		 * order to protect against KSM in the nested
295 		 * virtualization case.
296 		 */
297 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
298 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
299 			       PAGE_SIZE);
300 		}
301 	}
302 
303 	l1tf_vmx_mitigation = l1tf;
304 
305 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
306 		static_branch_enable(&vmx_l1d_should_flush);
307 	else
308 		static_branch_disable(&vmx_l1d_should_flush);
309 
310 	if (l1tf == VMENTER_L1D_FLUSH_COND)
311 		static_branch_enable(&vmx_l1d_flush_cond);
312 	else
313 		static_branch_disable(&vmx_l1d_flush_cond);
314 	return 0;
315 }
316 
317 static int vmentry_l1d_flush_parse(const char *s)
318 {
319 	unsigned int i;
320 
321 	if (s) {
322 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
323 			if (vmentry_l1d_param[i].for_parse &&
324 			    sysfs_streq(s, vmentry_l1d_param[i].option))
325 				return i;
326 		}
327 	}
328 	return -EINVAL;
329 }
330 
331 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
332 {
333 	int l1tf, ret;
334 
335 	l1tf = vmentry_l1d_flush_parse(s);
336 	if (l1tf < 0)
337 		return l1tf;
338 
339 	if (!boot_cpu_has(X86_BUG_L1TF))
340 		return 0;
341 
342 	/*
343 	 * Has vmx_init() run already? If not then this is the pre init
344 	 * parameter parsing. In that case just store the value and let
345 	 * vmx_init() do the proper setup after enable_ept has been
346 	 * established.
347 	 */
348 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
349 		vmentry_l1d_flush_param = l1tf;
350 		return 0;
351 	}
352 
353 	mutex_lock(&vmx_l1d_flush_mutex);
354 	ret = vmx_setup_l1d_flush(l1tf);
355 	mutex_unlock(&vmx_l1d_flush_mutex);
356 	return ret;
357 }
358 
359 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
360 {
361 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
362 		return sysfs_emit(s, "???\n");
363 
364 	return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
365 }
366 
367 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
368 {
369 	u64 msr;
370 
371 	if (!vmx->disable_fb_clear)
372 		return;
373 
374 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
375 	msr |= FB_CLEAR_DIS;
376 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
377 	/* Cache the MSR value to avoid reading it later */
378 	vmx->msr_ia32_mcu_opt_ctrl = msr;
379 }
380 
381 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
382 {
383 	if (!vmx->disable_fb_clear)
384 		return;
385 
386 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
387 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
388 }
389 
390 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
391 {
392 	/*
393 	 * Disable VERW's behavior of clearing CPU buffers for the guest if the
394 	 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
395 	 * the mitigation. Disabling the clearing behavior provides a
396 	 * performance boost for guests that aren't aware that manually clearing
397 	 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
398 	 * and VM-Exit.
399 	 */
400 	vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
401 				(host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
402 				!boot_cpu_has_bug(X86_BUG_MDS) &&
403 				!boot_cpu_has_bug(X86_BUG_TAA);
404 
405 	/*
406 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
407 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
408 	 * execute VERW.
409 	 */
410 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
411 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
412 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
413 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
414 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
415 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
416 		vmx->disable_fb_clear = false;
417 }
418 
419 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
420 	.set = vmentry_l1d_flush_set,
421 	.get = vmentry_l1d_flush_get,
422 };
423 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
424 
425 static u32 vmx_segment_access_rights(struct kvm_segment *var);
426 
427 void vmx_vmexit(void);
428 
429 #define vmx_insn_failed(fmt...)		\
430 do {					\
431 	WARN_ONCE(1, fmt);		\
432 	pr_warn_ratelimited(fmt);	\
433 } while (0)
434 
435 noinline void vmread_error(unsigned long field)
436 {
437 	vmx_insn_failed("vmread failed: field=%lx\n", field);
438 }
439 
440 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
441 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
442 {
443 	if (fault) {
444 		kvm_spurious_fault();
445 	} else {
446 		instrumentation_begin();
447 		vmread_error(field);
448 		instrumentation_end();
449 	}
450 }
451 #endif
452 
453 noinline void vmwrite_error(unsigned long field, unsigned long value)
454 {
455 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
456 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
457 }
458 
459 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
460 {
461 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
462 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
463 }
464 
465 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
466 {
467 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
468 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
469 }
470 
471 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
472 {
473 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
474 			ext, vpid, gva);
475 }
476 
477 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
478 {
479 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
480 			ext, eptp, gpa);
481 }
482 
483 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
484 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
485 /*
486  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
487  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
488  */
489 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
490 
491 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
492 static DEFINE_SPINLOCK(vmx_vpid_lock);
493 
494 struct vmcs_config vmcs_config __ro_after_init;
495 struct vmx_capability vmx_capability __ro_after_init;
496 
497 #define VMX_SEGMENT_FIELD(seg)					\
498 	[VCPU_SREG_##seg] = {                                   \
499 		.selector = GUEST_##seg##_SELECTOR,		\
500 		.base = GUEST_##seg##_BASE,		   	\
501 		.limit = GUEST_##seg##_LIMIT,		   	\
502 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
503 	}
504 
505 static const struct kvm_vmx_segment_field {
506 	unsigned selector;
507 	unsigned base;
508 	unsigned limit;
509 	unsigned ar_bytes;
510 } kvm_vmx_segment_fields[] = {
511 	VMX_SEGMENT_FIELD(CS),
512 	VMX_SEGMENT_FIELD(DS),
513 	VMX_SEGMENT_FIELD(ES),
514 	VMX_SEGMENT_FIELD(FS),
515 	VMX_SEGMENT_FIELD(GS),
516 	VMX_SEGMENT_FIELD(SS),
517 	VMX_SEGMENT_FIELD(TR),
518 	VMX_SEGMENT_FIELD(LDTR),
519 };
520 
521 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
522 {
523 	vmx->segment_cache.bitmask = 0;
524 }
525 
526 static unsigned long host_idt_base;
527 
528 #if IS_ENABLED(CONFIG_HYPERV)
529 static struct kvm_x86_ops vmx_x86_ops __initdata;
530 
531 static bool __read_mostly enlightened_vmcs = true;
532 module_param(enlightened_vmcs, bool, 0444);
533 
534 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
535 {
536 	struct hv_enlightened_vmcs *evmcs;
537 	struct hv_partition_assist_pg **p_hv_pa_pg =
538 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
539 	/*
540 	 * Synthetic VM-Exit is not enabled in current code and so All
541 	 * evmcs in singe VM shares same assist page.
542 	 */
543 	if (!*p_hv_pa_pg)
544 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
545 
546 	if (!*p_hv_pa_pg)
547 		return -ENOMEM;
548 
549 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
550 
551 	evmcs->partition_assist_page =
552 		__pa(*p_hv_pa_pg);
553 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
554 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
555 
556 	return 0;
557 }
558 
559 static __init void hv_init_evmcs(void)
560 {
561 	int cpu;
562 
563 	if (!enlightened_vmcs)
564 		return;
565 
566 	/*
567 	 * Enlightened VMCS usage should be recommended and the host needs
568 	 * to support eVMCS v1 or above.
569 	 */
570 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
571 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
572 	     KVM_EVMCS_VERSION) {
573 
574 		/* Check that we have assist pages on all online CPUs */
575 		for_each_online_cpu(cpu) {
576 			if (!hv_get_vp_assist_page(cpu)) {
577 				enlightened_vmcs = false;
578 				break;
579 			}
580 		}
581 
582 		if (enlightened_vmcs) {
583 			pr_info("Using Hyper-V Enlightened VMCS\n");
584 			static_branch_enable(&__kvm_is_using_evmcs);
585 		}
586 
587 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
588 			vmx_x86_ops.enable_l2_tlb_flush
589 				= hv_enable_l2_tlb_flush;
590 
591 	} else {
592 		enlightened_vmcs = false;
593 	}
594 }
595 
596 static void hv_reset_evmcs(void)
597 {
598 	struct hv_vp_assist_page *vp_ap;
599 
600 	if (!kvm_is_using_evmcs())
601 		return;
602 
603 	/*
604 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
605 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
606 	 * doesn't have a VP assist page allocated.
607 	 */
608 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
609 	if (WARN_ON_ONCE(!vp_ap))
610 		return;
611 
612 	/*
613 	 * Reset everything to support using non-enlightened VMCS access later
614 	 * (e.g. when we reload the module with enlightened_vmcs=0)
615 	 */
616 	vp_ap->nested_control.features.directhypercall = 0;
617 	vp_ap->current_nested_vmcs = 0;
618 	vp_ap->enlighten_vmentry = 0;
619 }
620 
621 #else /* IS_ENABLED(CONFIG_HYPERV) */
622 static void hv_init_evmcs(void) {}
623 static void hv_reset_evmcs(void) {}
624 #endif /* IS_ENABLED(CONFIG_HYPERV) */
625 
626 /*
627  * Comment's format: document - errata name - stepping - processor name.
628  * Refer from
629  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
630  */
631 static u32 vmx_preemption_cpu_tfms[] = {
632 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
633 0x000206E6,
634 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
635 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
636 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
637 0x00020652,
638 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
639 0x00020655,
640 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
641 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
642 /*
643  * 320767.pdf - AAP86  - B1 -
644  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
645  */
646 0x000106E5,
647 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
648 0x000106A0,
649 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
650 0x000106A1,
651 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
652 0x000106A4,
653  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
654  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
655  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
656 0x000106A5,
657  /* Xeon E3-1220 V2 */
658 0x000306A8,
659 };
660 
661 static inline bool cpu_has_broken_vmx_preemption_timer(void)
662 {
663 	u32 eax = cpuid_eax(0x00000001), i;
664 
665 	/* Clear the reserved bits */
666 	eax &= ~(0x3U << 14 | 0xfU << 28);
667 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
668 		if (eax == vmx_preemption_cpu_tfms[i])
669 			return true;
670 
671 	return false;
672 }
673 
674 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
675 {
676 	return flexpriority_enabled && lapic_in_kernel(vcpu);
677 }
678 
679 static int possible_passthrough_msr_slot(u32 msr)
680 {
681 	u32 i;
682 
683 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
684 		if (vmx_possible_passthrough_msrs[i] == msr)
685 			return i;
686 
687 	return -ENOENT;
688 }
689 
690 static bool is_valid_passthrough_msr(u32 msr)
691 {
692 	bool r;
693 
694 	switch (msr) {
695 	case 0x800 ... 0x8ff:
696 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
697 		return true;
698 	case MSR_IA32_RTIT_STATUS:
699 	case MSR_IA32_RTIT_OUTPUT_BASE:
700 	case MSR_IA32_RTIT_OUTPUT_MASK:
701 	case MSR_IA32_RTIT_CR3_MATCH:
702 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
703 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
704 	case MSR_LBR_SELECT:
705 	case MSR_LBR_TOS:
706 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
707 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
708 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
709 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
710 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
711 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
712 		return true;
713 	}
714 
715 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
716 
717 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
718 
719 	return r;
720 }
721 
722 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
723 {
724 	int i;
725 
726 	i = kvm_find_user_return_msr(msr);
727 	if (i >= 0)
728 		return &vmx->guest_uret_msrs[i];
729 	return NULL;
730 }
731 
732 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
733 				  struct vmx_uret_msr *msr, u64 data)
734 {
735 	unsigned int slot = msr - vmx->guest_uret_msrs;
736 	int ret = 0;
737 
738 	if (msr->load_into_hardware) {
739 		preempt_disable();
740 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
741 		preempt_enable();
742 	}
743 	if (!ret)
744 		msr->data = data;
745 	return ret;
746 }
747 
748 /*
749  * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
750  *
751  * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
752  * atomically track post-VMXON state, e.g. this may be called in NMI context.
753  * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
754  * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
755  * magically in RM, VM86, compat mode, or at CPL>0.
756  */
757 static int kvm_cpu_vmxoff(void)
758 {
759 	asm goto("1: vmxoff\n\t"
760 			  _ASM_EXTABLE(1b, %l[fault])
761 			  ::: "cc", "memory" : fault);
762 
763 	cr4_clear_bits(X86_CR4_VMXE);
764 	return 0;
765 
766 fault:
767 	cr4_clear_bits(X86_CR4_VMXE);
768 	return -EIO;
769 }
770 
771 static void vmx_emergency_disable(void)
772 {
773 	int cpu = raw_smp_processor_id();
774 	struct loaded_vmcs *v;
775 
776 	kvm_rebooting = true;
777 
778 	/*
779 	 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
780 	 * set in task context.  If this races with VMX is disabled by an NMI,
781 	 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
782 	 * kvm_rebooting set.
783 	 */
784 	if (!(__read_cr4() & X86_CR4_VMXE))
785 		return;
786 
787 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
788 			    loaded_vmcss_on_cpu_link)
789 		vmcs_clear(v->vmcs);
790 
791 	kvm_cpu_vmxoff();
792 }
793 
794 static void __loaded_vmcs_clear(void *arg)
795 {
796 	struct loaded_vmcs *loaded_vmcs = arg;
797 	int cpu = raw_smp_processor_id();
798 
799 	if (loaded_vmcs->cpu != cpu)
800 		return; /* vcpu migration can race with cpu offline */
801 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
802 		per_cpu(current_vmcs, cpu) = NULL;
803 
804 	vmcs_clear(loaded_vmcs->vmcs);
805 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
806 		vmcs_clear(loaded_vmcs->shadow_vmcs);
807 
808 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
809 
810 	/*
811 	 * Ensure all writes to loaded_vmcs, including deleting it from its
812 	 * current percpu list, complete before setting loaded_vmcs->cpu to
813 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
814 	 * and add loaded_vmcs to its percpu list before it's deleted from this
815 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
816 	 */
817 	smp_wmb();
818 
819 	loaded_vmcs->cpu = -1;
820 	loaded_vmcs->launched = 0;
821 }
822 
823 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
824 {
825 	int cpu = loaded_vmcs->cpu;
826 
827 	if (cpu != -1)
828 		smp_call_function_single(cpu,
829 			 __loaded_vmcs_clear, loaded_vmcs, 1);
830 }
831 
832 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
833 				       unsigned field)
834 {
835 	bool ret;
836 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
837 
838 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
839 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
840 		vmx->segment_cache.bitmask = 0;
841 	}
842 	ret = vmx->segment_cache.bitmask & mask;
843 	vmx->segment_cache.bitmask |= mask;
844 	return ret;
845 }
846 
847 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
848 {
849 	u16 *p = &vmx->segment_cache.seg[seg].selector;
850 
851 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
852 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
853 	return *p;
854 }
855 
856 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
857 {
858 	ulong *p = &vmx->segment_cache.seg[seg].base;
859 
860 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
861 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
862 	return *p;
863 }
864 
865 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
866 {
867 	u32 *p = &vmx->segment_cache.seg[seg].limit;
868 
869 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
870 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
871 	return *p;
872 }
873 
874 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
875 {
876 	u32 *p = &vmx->segment_cache.seg[seg].ar;
877 
878 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
879 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
880 	return *p;
881 }
882 
883 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
884 {
885 	u32 eb;
886 
887 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
888 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
889 	/*
890 	 * Guest access to VMware backdoor ports could legitimately
891 	 * trigger #GP because of TSS I/O permission bitmap.
892 	 * We intercept those #GP and allow access to them anyway
893 	 * as VMware does.
894 	 */
895 	if (enable_vmware_backdoor)
896 		eb |= (1u << GP_VECTOR);
897 	if ((vcpu->guest_debug &
898 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
899 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
900 		eb |= 1u << BP_VECTOR;
901 	if (to_vmx(vcpu)->rmode.vm86_active)
902 		eb = ~0;
903 	if (!vmx_need_pf_intercept(vcpu))
904 		eb &= ~(1u << PF_VECTOR);
905 
906 	/* When we are running a nested L2 guest and L1 specified for it a
907 	 * certain exception bitmap, we must trap the same exceptions and pass
908 	 * them to L1. When running L2, we will only handle the exceptions
909 	 * specified above if L1 did not want them.
910 	 */
911 	if (is_guest_mode(vcpu))
912 		eb |= get_vmcs12(vcpu)->exception_bitmap;
913 	else {
914 		int mask = 0, match = 0;
915 
916 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
917 			/*
918 			 * If EPT is enabled, #PF is currently only intercepted
919 			 * if MAXPHYADDR is smaller on the guest than on the
920 			 * host.  In that case we only care about present,
921 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
922 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
923 			 */
924 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
925 			match = PFERR_PRESENT_MASK;
926 		}
927 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
928 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
929 	}
930 
931 	/*
932 	 * Disabling xfd interception indicates that dynamic xfeatures
933 	 * might be used in the guest. Always trap #NM in this case
934 	 * to save guest xfd_err timely.
935 	 */
936 	if (vcpu->arch.xfd_no_write_intercept)
937 		eb |= (1u << NM_VECTOR);
938 
939 	vmcs_write32(EXCEPTION_BITMAP, eb);
940 }
941 
942 /*
943  * Check if MSR is intercepted for currently loaded MSR bitmap.
944  */
945 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
946 {
947 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
948 		return true;
949 
950 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
951 }
952 
953 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
954 {
955 	unsigned int flags = 0;
956 
957 	if (vmx->loaded_vmcs->launched)
958 		flags |= VMX_RUN_VMRESUME;
959 
960 	/*
961 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
962 	 * to change it directly without causing a vmexit.  In that case read
963 	 * it after vmexit and store it in vmx->spec_ctrl.
964 	 */
965 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
966 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
967 
968 	return flags;
969 }
970 
971 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
972 		unsigned long entry, unsigned long exit)
973 {
974 	vm_entry_controls_clearbit(vmx, entry);
975 	vm_exit_controls_clearbit(vmx, exit);
976 }
977 
978 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
979 {
980 	unsigned int i;
981 
982 	for (i = 0; i < m->nr; ++i) {
983 		if (m->val[i].index == msr)
984 			return i;
985 	}
986 	return -ENOENT;
987 }
988 
989 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
990 {
991 	int i;
992 	struct msr_autoload *m = &vmx->msr_autoload;
993 
994 	switch (msr) {
995 	case MSR_EFER:
996 		if (cpu_has_load_ia32_efer()) {
997 			clear_atomic_switch_msr_special(vmx,
998 					VM_ENTRY_LOAD_IA32_EFER,
999 					VM_EXIT_LOAD_IA32_EFER);
1000 			return;
1001 		}
1002 		break;
1003 	case MSR_CORE_PERF_GLOBAL_CTRL:
1004 		if (cpu_has_load_perf_global_ctrl()) {
1005 			clear_atomic_switch_msr_special(vmx,
1006 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1007 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1008 			return;
1009 		}
1010 		break;
1011 	}
1012 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1013 	if (i < 0)
1014 		goto skip_guest;
1015 	--m->guest.nr;
1016 	m->guest.val[i] = m->guest.val[m->guest.nr];
1017 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1018 
1019 skip_guest:
1020 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
1021 	if (i < 0)
1022 		return;
1023 
1024 	--m->host.nr;
1025 	m->host.val[i] = m->host.val[m->host.nr];
1026 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1027 }
1028 
1029 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1030 		unsigned long entry, unsigned long exit,
1031 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1032 		u64 guest_val, u64 host_val)
1033 {
1034 	vmcs_write64(guest_val_vmcs, guest_val);
1035 	if (host_val_vmcs != HOST_IA32_EFER)
1036 		vmcs_write64(host_val_vmcs, host_val);
1037 	vm_entry_controls_setbit(vmx, entry);
1038 	vm_exit_controls_setbit(vmx, exit);
1039 }
1040 
1041 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1042 				  u64 guest_val, u64 host_val, bool entry_only)
1043 {
1044 	int i, j = 0;
1045 	struct msr_autoload *m = &vmx->msr_autoload;
1046 
1047 	switch (msr) {
1048 	case MSR_EFER:
1049 		if (cpu_has_load_ia32_efer()) {
1050 			add_atomic_switch_msr_special(vmx,
1051 					VM_ENTRY_LOAD_IA32_EFER,
1052 					VM_EXIT_LOAD_IA32_EFER,
1053 					GUEST_IA32_EFER,
1054 					HOST_IA32_EFER,
1055 					guest_val, host_val);
1056 			return;
1057 		}
1058 		break;
1059 	case MSR_CORE_PERF_GLOBAL_CTRL:
1060 		if (cpu_has_load_perf_global_ctrl()) {
1061 			add_atomic_switch_msr_special(vmx,
1062 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1063 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1064 					GUEST_IA32_PERF_GLOBAL_CTRL,
1065 					HOST_IA32_PERF_GLOBAL_CTRL,
1066 					guest_val, host_val);
1067 			return;
1068 		}
1069 		break;
1070 	case MSR_IA32_PEBS_ENABLE:
1071 		/* PEBS needs a quiescent period after being disabled (to write
1072 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1073 		 * provide that period, so a CPU could write host's record into
1074 		 * guest's memory.
1075 		 */
1076 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1077 	}
1078 
1079 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1080 	if (!entry_only)
1081 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1082 
1083 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1084 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1085 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1086 				"Can't add msr %x\n", msr);
1087 		return;
1088 	}
1089 	if (i < 0) {
1090 		i = m->guest.nr++;
1091 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1092 	}
1093 	m->guest.val[i].index = msr;
1094 	m->guest.val[i].value = guest_val;
1095 
1096 	if (entry_only)
1097 		return;
1098 
1099 	if (j < 0) {
1100 		j = m->host.nr++;
1101 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1102 	}
1103 	m->host.val[j].index = msr;
1104 	m->host.val[j].value = host_val;
1105 }
1106 
1107 static bool update_transition_efer(struct vcpu_vmx *vmx)
1108 {
1109 	u64 guest_efer = vmx->vcpu.arch.efer;
1110 	u64 ignore_bits = 0;
1111 	int i;
1112 
1113 	/* Shadow paging assumes NX to be available.  */
1114 	if (!enable_ept)
1115 		guest_efer |= EFER_NX;
1116 
1117 	/*
1118 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1119 	 */
1120 	ignore_bits |= EFER_SCE;
1121 #ifdef CONFIG_X86_64
1122 	ignore_bits |= EFER_LMA | EFER_LME;
1123 	/* SCE is meaningful only in long mode on Intel */
1124 	if (guest_efer & EFER_LMA)
1125 		ignore_bits &= ~(u64)EFER_SCE;
1126 #endif
1127 
1128 	/*
1129 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1130 	 * On CPUs that support "load IA32_EFER", always switch EFER
1131 	 * atomically, since it's faster than switching it manually.
1132 	 */
1133 	if (cpu_has_load_ia32_efer() ||
1134 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1135 		if (!(guest_efer & EFER_LMA))
1136 			guest_efer &= ~EFER_LME;
1137 		if (guest_efer != host_efer)
1138 			add_atomic_switch_msr(vmx, MSR_EFER,
1139 					      guest_efer, host_efer, false);
1140 		else
1141 			clear_atomic_switch_msr(vmx, MSR_EFER);
1142 		return false;
1143 	}
1144 
1145 	i = kvm_find_user_return_msr(MSR_EFER);
1146 	if (i < 0)
1147 		return false;
1148 
1149 	clear_atomic_switch_msr(vmx, MSR_EFER);
1150 
1151 	guest_efer &= ~ignore_bits;
1152 	guest_efer |= host_efer & ignore_bits;
1153 
1154 	vmx->guest_uret_msrs[i].data = guest_efer;
1155 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1156 
1157 	return true;
1158 }
1159 
1160 #ifdef CONFIG_X86_32
1161 /*
1162  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1163  * VMCS rather than the segment table.  KVM uses this helper to figure
1164  * out the current bases to poke them into the VMCS before entry.
1165  */
1166 static unsigned long segment_base(u16 selector)
1167 {
1168 	struct desc_struct *table;
1169 	unsigned long v;
1170 
1171 	if (!(selector & ~SEGMENT_RPL_MASK))
1172 		return 0;
1173 
1174 	table = get_current_gdt_ro();
1175 
1176 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1177 		u16 ldt_selector = kvm_read_ldt();
1178 
1179 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1180 			return 0;
1181 
1182 		table = (struct desc_struct *)segment_base(ldt_selector);
1183 	}
1184 	v = get_desc_base(&table[selector >> 3]);
1185 	return v;
1186 }
1187 #endif
1188 
1189 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1190 {
1191 	return vmx_pt_mode_is_host_guest() &&
1192 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1193 }
1194 
1195 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1196 {
1197 	/* The base must be 128-byte aligned and a legal physical address. */
1198 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1199 }
1200 
1201 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1202 {
1203 	u32 i;
1204 
1205 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1206 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1207 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1208 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1209 	for (i = 0; i < addr_range; i++) {
1210 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1211 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1212 	}
1213 }
1214 
1215 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1216 {
1217 	u32 i;
1218 
1219 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1220 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1221 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1222 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1223 	for (i = 0; i < addr_range; i++) {
1224 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1225 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1226 	}
1227 }
1228 
1229 static void pt_guest_enter(struct vcpu_vmx *vmx)
1230 {
1231 	if (vmx_pt_mode_is_system())
1232 		return;
1233 
1234 	/*
1235 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1236 	 * Save host state before VM entry.
1237 	 */
1238 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1239 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1240 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1241 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1242 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1243 	}
1244 }
1245 
1246 static void pt_guest_exit(struct vcpu_vmx *vmx)
1247 {
1248 	if (vmx_pt_mode_is_system())
1249 		return;
1250 
1251 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1252 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1253 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1254 	}
1255 
1256 	/*
1257 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1258 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1259 	 */
1260 	if (vmx->pt_desc.host.ctl)
1261 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1262 }
1263 
1264 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1265 			unsigned long fs_base, unsigned long gs_base)
1266 {
1267 	if (unlikely(fs_sel != host->fs_sel)) {
1268 		if (!(fs_sel & 7))
1269 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1270 		else
1271 			vmcs_write16(HOST_FS_SELECTOR, 0);
1272 		host->fs_sel = fs_sel;
1273 	}
1274 	if (unlikely(gs_sel != host->gs_sel)) {
1275 		if (!(gs_sel & 7))
1276 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1277 		else
1278 			vmcs_write16(HOST_GS_SELECTOR, 0);
1279 		host->gs_sel = gs_sel;
1280 	}
1281 	if (unlikely(fs_base != host->fs_base)) {
1282 		vmcs_writel(HOST_FS_BASE, fs_base);
1283 		host->fs_base = fs_base;
1284 	}
1285 	if (unlikely(gs_base != host->gs_base)) {
1286 		vmcs_writel(HOST_GS_BASE, gs_base);
1287 		host->gs_base = gs_base;
1288 	}
1289 }
1290 
1291 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1292 {
1293 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1294 	struct vmcs_host_state *host_state;
1295 #ifdef CONFIG_X86_64
1296 	int cpu = raw_smp_processor_id();
1297 #endif
1298 	unsigned long fs_base, gs_base;
1299 	u16 fs_sel, gs_sel;
1300 	int i;
1301 
1302 	vmx->req_immediate_exit = false;
1303 
1304 	/*
1305 	 * Note that guest MSRs to be saved/restored can also be changed
1306 	 * when guest state is loaded. This happens when guest transitions
1307 	 * to/from long-mode by setting MSR_EFER.LMA.
1308 	 */
1309 	if (!vmx->guest_uret_msrs_loaded) {
1310 		vmx->guest_uret_msrs_loaded = true;
1311 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1312 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1313 				continue;
1314 
1315 			kvm_set_user_return_msr(i,
1316 						vmx->guest_uret_msrs[i].data,
1317 						vmx->guest_uret_msrs[i].mask);
1318 		}
1319 	}
1320 
1321 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1322 		nested_sync_vmcs12_to_shadow(vcpu);
1323 
1324 	if (vmx->guest_state_loaded)
1325 		return;
1326 
1327 	host_state = &vmx->loaded_vmcs->host_state;
1328 
1329 	/*
1330 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1331 	 * allow segment selectors with cpl > 0 or ti == 1.
1332 	 */
1333 	host_state->ldt_sel = kvm_read_ldt();
1334 
1335 #ifdef CONFIG_X86_64
1336 	savesegment(ds, host_state->ds_sel);
1337 	savesegment(es, host_state->es_sel);
1338 
1339 	gs_base = cpu_kernelmode_gs_base(cpu);
1340 	if (likely(is_64bit_mm(current->mm))) {
1341 		current_save_fsgs();
1342 		fs_sel = current->thread.fsindex;
1343 		gs_sel = current->thread.gsindex;
1344 		fs_base = current->thread.fsbase;
1345 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1346 	} else {
1347 		savesegment(fs, fs_sel);
1348 		savesegment(gs, gs_sel);
1349 		fs_base = read_msr(MSR_FS_BASE);
1350 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1351 	}
1352 
1353 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1354 #else
1355 	savesegment(fs, fs_sel);
1356 	savesegment(gs, gs_sel);
1357 	fs_base = segment_base(fs_sel);
1358 	gs_base = segment_base(gs_sel);
1359 #endif
1360 
1361 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1362 	vmx->guest_state_loaded = true;
1363 }
1364 
1365 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1366 {
1367 	struct vmcs_host_state *host_state;
1368 
1369 	if (!vmx->guest_state_loaded)
1370 		return;
1371 
1372 	host_state = &vmx->loaded_vmcs->host_state;
1373 
1374 	++vmx->vcpu.stat.host_state_reload;
1375 
1376 #ifdef CONFIG_X86_64
1377 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1378 #endif
1379 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1380 		kvm_load_ldt(host_state->ldt_sel);
1381 #ifdef CONFIG_X86_64
1382 		load_gs_index(host_state->gs_sel);
1383 #else
1384 		loadsegment(gs, host_state->gs_sel);
1385 #endif
1386 	}
1387 	if (host_state->fs_sel & 7)
1388 		loadsegment(fs, host_state->fs_sel);
1389 #ifdef CONFIG_X86_64
1390 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1391 		loadsegment(ds, host_state->ds_sel);
1392 		loadsegment(es, host_state->es_sel);
1393 	}
1394 #endif
1395 	invalidate_tss_limit();
1396 #ifdef CONFIG_X86_64
1397 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1398 #endif
1399 	load_fixmap_gdt(raw_smp_processor_id());
1400 	vmx->guest_state_loaded = false;
1401 	vmx->guest_uret_msrs_loaded = false;
1402 }
1403 
1404 #ifdef CONFIG_X86_64
1405 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1406 {
1407 	preempt_disable();
1408 	if (vmx->guest_state_loaded)
1409 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1410 	preempt_enable();
1411 	return vmx->msr_guest_kernel_gs_base;
1412 }
1413 
1414 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1415 {
1416 	preempt_disable();
1417 	if (vmx->guest_state_loaded)
1418 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1419 	preempt_enable();
1420 	vmx->msr_guest_kernel_gs_base = data;
1421 }
1422 #endif
1423 
1424 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1425 			struct loaded_vmcs *buddy)
1426 {
1427 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1428 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1429 	struct vmcs *prev;
1430 
1431 	if (!already_loaded) {
1432 		loaded_vmcs_clear(vmx->loaded_vmcs);
1433 		local_irq_disable();
1434 
1435 		/*
1436 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1437 		 * this cpu's percpu list, otherwise it may not yet be deleted
1438 		 * from its previous cpu's percpu list.  Pairs with the
1439 		 * smb_wmb() in __loaded_vmcs_clear().
1440 		 */
1441 		smp_rmb();
1442 
1443 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1444 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1445 		local_irq_enable();
1446 	}
1447 
1448 	prev = per_cpu(current_vmcs, cpu);
1449 	if (prev != vmx->loaded_vmcs->vmcs) {
1450 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1451 		vmcs_load(vmx->loaded_vmcs->vmcs);
1452 
1453 		/*
1454 		 * No indirect branch prediction barrier needed when switching
1455 		 * the active VMCS within a vCPU, unless IBRS is advertised to
1456 		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1457 		 * performs IBPB on nested VM-Exit (a single nested transition
1458 		 * may switch the active VMCS multiple times).
1459 		 */
1460 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1461 			indirect_branch_prediction_barrier();
1462 	}
1463 
1464 	if (!already_loaded) {
1465 		void *gdt = get_current_gdt_ro();
1466 
1467 		/*
1468 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1469 		 * TLB entries from its previous association with the vCPU.
1470 		 */
1471 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1472 
1473 		/*
1474 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1475 		 * processors.  See 22.2.4.
1476 		 */
1477 		vmcs_writel(HOST_TR_BASE,
1478 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1479 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1480 
1481 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1482 			/* 22.2.3 */
1483 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1484 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1485 		}
1486 
1487 		vmx->loaded_vmcs->cpu = cpu;
1488 	}
1489 }
1490 
1491 /*
1492  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1493  * vcpu mutex is already taken.
1494  */
1495 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1496 {
1497 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1498 
1499 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1500 
1501 	vmx_vcpu_pi_load(vcpu, cpu);
1502 
1503 	vmx->host_debugctlmsr = get_debugctlmsr();
1504 }
1505 
1506 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1507 {
1508 	vmx_vcpu_pi_put(vcpu);
1509 
1510 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1511 }
1512 
1513 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1514 {
1515 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1516 }
1517 
1518 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1519 {
1520 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1521 	unsigned long rflags, save_rflags;
1522 
1523 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1524 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1525 		rflags = vmcs_readl(GUEST_RFLAGS);
1526 		if (vmx->rmode.vm86_active) {
1527 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1528 			save_rflags = vmx->rmode.save_rflags;
1529 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1530 		}
1531 		vmx->rflags = rflags;
1532 	}
1533 	return vmx->rflags;
1534 }
1535 
1536 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1537 {
1538 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1539 	unsigned long old_rflags;
1540 
1541 	/*
1542 	 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1543 	 * is an unrestricted guest in order to mark L2 as needing emulation
1544 	 * if L1 runs L2 as a restricted guest.
1545 	 */
1546 	if (is_unrestricted_guest(vcpu)) {
1547 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1548 		vmx->rflags = rflags;
1549 		vmcs_writel(GUEST_RFLAGS, rflags);
1550 		return;
1551 	}
1552 
1553 	old_rflags = vmx_get_rflags(vcpu);
1554 	vmx->rflags = rflags;
1555 	if (vmx->rmode.vm86_active) {
1556 		vmx->rmode.save_rflags = rflags;
1557 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1558 	}
1559 	vmcs_writel(GUEST_RFLAGS, rflags);
1560 
1561 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1562 		vmx->emulation_required = vmx_emulation_required(vcpu);
1563 }
1564 
1565 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1566 {
1567 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1568 }
1569 
1570 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1571 {
1572 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1573 	int ret = 0;
1574 
1575 	if (interruptibility & GUEST_INTR_STATE_STI)
1576 		ret |= KVM_X86_SHADOW_INT_STI;
1577 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1578 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1579 
1580 	return ret;
1581 }
1582 
1583 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1584 {
1585 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1586 	u32 interruptibility = interruptibility_old;
1587 
1588 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1589 
1590 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1591 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1592 	else if (mask & KVM_X86_SHADOW_INT_STI)
1593 		interruptibility |= GUEST_INTR_STATE_STI;
1594 
1595 	if ((interruptibility != interruptibility_old))
1596 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1597 }
1598 
1599 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1600 {
1601 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1602 	unsigned long value;
1603 
1604 	/*
1605 	 * Any MSR write that attempts to change bits marked reserved will
1606 	 * case a #GP fault.
1607 	 */
1608 	if (data & vmx->pt_desc.ctl_bitmask)
1609 		return 1;
1610 
1611 	/*
1612 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1613 	 * result in a #GP unless the same write also clears TraceEn.
1614 	 */
1615 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1616 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1617 		return 1;
1618 
1619 	/*
1620 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1621 	 * and FabricEn would cause #GP, if
1622 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1623 	 */
1624 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1625 		!(data & RTIT_CTL_FABRIC_EN) &&
1626 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1627 					PT_CAP_single_range_output))
1628 		return 1;
1629 
1630 	/*
1631 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1632 	 * utilize encodings marked reserved will cause a #GP fault.
1633 	 */
1634 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1635 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1636 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1637 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1638 		return 1;
1639 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1640 						PT_CAP_cycle_thresholds);
1641 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1642 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1643 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1644 		return 1;
1645 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1646 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1647 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1648 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1649 		return 1;
1650 
1651 	/*
1652 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1653 	 * cause a #GP fault.
1654 	 */
1655 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1656 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1657 		return 1;
1658 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1659 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1660 		return 1;
1661 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1662 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1663 		return 1;
1664 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1665 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1666 		return 1;
1667 
1668 	return 0;
1669 }
1670 
1671 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1672 					void *insn, int insn_len)
1673 {
1674 	/*
1675 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1676 	 * not point at the failing instruction, and even if it did, the code
1677 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1678 	 * so that guest userspace can't DoS the guest simply by triggering
1679 	 * emulation (enclaves are CPL3 only).
1680 	 */
1681 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1682 		kvm_queue_exception(vcpu, UD_VECTOR);
1683 		return false;
1684 	}
1685 	return true;
1686 }
1687 
1688 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1689 {
1690 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1691 	unsigned long rip, orig_rip;
1692 	u32 instr_len;
1693 
1694 	/*
1695 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1696 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1697 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1698 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1699 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1700 	 * i.e. we end up advancing IP with some random value.
1701 	 */
1702 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1703 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1704 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1705 
1706 		/*
1707 		 * Emulating an enclave's instructions isn't supported as KVM
1708 		 * cannot access the enclave's memory or its true RIP, e.g. the
1709 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1710 		 * the RIP that actually triggered the VM-Exit.  But, because
1711 		 * most instructions that cause VM-Exit will #UD in an enclave,
1712 		 * most instruction-based VM-Exits simply do not occur.
1713 		 *
1714 		 * There are a few exceptions, notably the debug instructions
1715 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1716 		 * and generate #DB/#BP as expected, which KVM might intercept.
1717 		 * But again, the CPU does the dirty work and saves an instr
1718 		 * length of zero so VMMs don't shoot themselves in the foot.
1719 		 * WARN if KVM tries to skip a non-zero length instruction on
1720 		 * a VM-Exit from an enclave.
1721 		 */
1722 		if (!instr_len)
1723 			goto rip_updated;
1724 
1725 		WARN_ONCE(exit_reason.enclave_mode,
1726 			  "skipping instruction after SGX enclave VM-Exit");
1727 
1728 		orig_rip = kvm_rip_read(vcpu);
1729 		rip = orig_rip + instr_len;
1730 #ifdef CONFIG_X86_64
1731 		/*
1732 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1733 		 * mode, but just finding out that we are in 64-bit mode is
1734 		 * quite expensive.  Only do it if there was a carry.
1735 		 */
1736 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1737 			rip = (u32)rip;
1738 #endif
1739 		kvm_rip_write(vcpu, rip);
1740 	} else {
1741 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1742 			return 0;
1743 	}
1744 
1745 rip_updated:
1746 	/* skipping an emulated instruction also counts */
1747 	vmx_set_interrupt_shadow(vcpu, 0);
1748 
1749 	return 1;
1750 }
1751 
1752 /*
1753  * Recognizes a pending MTF VM-exit and records the nested state for later
1754  * delivery.
1755  */
1756 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1757 {
1758 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1759 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1760 
1761 	if (!is_guest_mode(vcpu))
1762 		return;
1763 
1764 	/*
1765 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1766 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1767 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1768 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1769 	 * as ICEBP is higher priority than both.  As instruction emulation is
1770 	 * completed at this point (i.e. KVM is at the instruction boundary),
1771 	 * any #DB exception pending delivery must be a debug-trap of lower
1772 	 * priority than MTF.  Record the pending MTF state to be delivered in
1773 	 * vmx_check_nested_events().
1774 	 */
1775 	if (nested_cpu_has_mtf(vmcs12) &&
1776 	    (!vcpu->arch.exception.pending ||
1777 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1778 	    (!vcpu->arch.exception_vmexit.pending ||
1779 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1780 		vmx->nested.mtf_pending = true;
1781 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1782 	} else {
1783 		vmx->nested.mtf_pending = false;
1784 	}
1785 }
1786 
1787 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1788 {
1789 	vmx_update_emulated_instruction(vcpu);
1790 	return skip_emulated_instruction(vcpu);
1791 }
1792 
1793 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1794 {
1795 	/*
1796 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1797 	 * explicitly skip the instruction because if the HLT state is set,
1798 	 * then the instruction is already executing and RIP has already been
1799 	 * advanced.
1800 	 */
1801 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1802 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1803 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1804 }
1805 
1806 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1807 {
1808 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1809 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1810 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1811 
1812 	kvm_deliver_exception_payload(vcpu, ex);
1813 
1814 	if (ex->has_error_code) {
1815 		/*
1816 		 * Despite the error code being architecturally defined as 32
1817 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1818 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1819 		 * will (should) never provide a bogus error code, but AMD CPUs
1820 		 * do generate error codes with bits 31:16 set, and so KVM's
1821 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1822 		 * the upper bits to avoid VM-Fail, losing information that
1823 		 * does't really exist is preferable to killing the VM.
1824 		 */
1825 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1826 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1827 	}
1828 
1829 	if (vmx->rmode.vm86_active) {
1830 		int inc_eip = 0;
1831 		if (kvm_exception_is_soft(ex->vector))
1832 			inc_eip = vcpu->arch.event_exit_inst_len;
1833 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1834 		return;
1835 	}
1836 
1837 	WARN_ON_ONCE(vmx->emulation_required);
1838 
1839 	if (kvm_exception_is_soft(ex->vector)) {
1840 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1841 			     vmx->vcpu.arch.event_exit_inst_len);
1842 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1843 	} else
1844 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1845 
1846 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1847 
1848 	vmx_clear_hlt(vcpu);
1849 }
1850 
1851 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1852 			       bool load_into_hardware)
1853 {
1854 	struct vmx_uret_msr *uret_msr;
1855 
1856 	uret_msr = vmx_find_uret_msr(vmx, msr);
1857 	if (!uret_msr)
1858 		return;
1859 
1860 	uret_msr->load_into_hardware = load_into_hardware;
1861 }
1862 
1863 /*
1864  * Configuring user return MSRs to automatically save, load, and restore MSRs
1865  * that need to be shoved into hardware when running the guest.  Note, omitting
1866  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1867  * loaded into hardware when running the guest.
1868  */
1869 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1870 {
1871 #ifdef CONFIG_X86_64
1872 	bool load_syscall_msrs;
1873 
1874 	/*
1875 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1876 	 * when EFER.SCE is set.
1877 	 */
1878 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1879 			    (vmx->vcpu.arch.efer & EFER_SCE);
1880 
1881 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1882 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1883 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1884 #endif
1885 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1886 
1887 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1888 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1889 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1890 
1891 	/*
1892 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1893 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1894 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1895 	 * so that TSX remains always disabled.
1896 	 */
1897 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1898 
1899 	/*
1900 	 * The set of MSRs to load may have changed, reload MSRs before the
1901 	 * next VM-Enter.
1902 	 */
1903 	vmx->guest_uret_msrs_loaded = false;
1904 }
1905 
1906 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1907 {
1908 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1909 
1910 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1911 		return vmcs12->tsc_offset;
1912 
1913 	return 0;
1914 }
1915 
1916 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1917 {
1918 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1919 
1920 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1921 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1922 		return vmcs12->tsc_multiplier;
1923 
1924 	return kvm_caps.default_tsc_scaling_ratio;
1925 }
1926 
1927 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1928 {
1929 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1930 }
1931 
1932 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1933 {
1934 	vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1935 }
1936 
1937 /*
1938  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1939  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1940  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1941  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1942  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1943  */
1944 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1945 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1946 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1947 					FEAT_CTL_SGX_LC_ENABLED		 | \
1948 					FEAT_CTL_SGX_ENABLED		 | \
1949 					FEAT_CTL_LMCE_ENABLED)
1950 
1951 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1952 						    struct msr_data *msr)
1953 {
1954 	uint64_t valid_bits;
1955 
1956 	/*
1957 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1958 	 * exposed to the guest.
1959 	 */
1960 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1961 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1962 
1963 	if (!msr->host_initiated &&
1964 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1965 		return false;
1966 
1967 	if (msr->host_initiated)
1968 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1969 	else
1970 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1971 
1972 	return !(msr->data & ~valid_bits);
1973 }
1974 
1975 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1976 {
1977 	switch (msr->index) {
1978 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1979 		if (!nested)
1980 			return 1;
1981 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1982 	default:
1983 		return KVM_MSR_RET_INVALID;
1984 	}
1985 }
1986 
1987 /*
1988  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1989  * Returns 0 on success, non-0 otherwise.
1990  * Assumes vcpu_load() was already called.
1991  */
1992 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1993 {
1994 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1995 	struct vmx_uret_msr *msr;
1996 	u32 index;
1997 
1998 	switch (msr_info->index) {
1999 #ifdef CONFIG_X86_64
2000 	case MSR_FS_BASE:
2001 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
2002 		break;
2003 	case MSR_GS_BASE:
2004 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
2005 		break;
2006 	case MSR_KERNEL_GS_BASE:
2007 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
2008 		break;
2009 #endif
2010 	case MSR_EFER:
2011 		return kvm_get_msr_common(vcpu, msr_info);
2012 	case MSR_IA32_TSX_CTRL:
2013 		if (!msr_info->host_initiated &&
2014 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2015 			return 1;
2016 		goto find_uret_msr;
2017 	case MSR_IA32_UMWAIT_CONTROL:
2018 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2019 			return 1;
2020 
2021 		msr_info->data = vmx->msr_ia32_umwait_control;
2022 		break;
2023 	case MSR_IA32_SPEC_CTRL:
2024 		if (!msr_info->host_initiated &&
2025 		    !guest_has_spec_ctrl_msr(vcpu))
2026 			return 1;
2027 
2028 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
2029 		break;
2030 	case MSR_IA32_SYSENTER_CS:
2031 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2032 		break;
2033 	case MSR_IA32_SYSENTER_EIP:
2034 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2035 		break;
2036 	case MSR_IA32_SYSENTER_ESP:
2037 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2038 		break;
2039 	case MSR_IA32_BNDCFGS:
2040 		if (!kvm_mpx_supported() ||
2041 		    (!msr_info->host_initiated &&
2042 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2043 			return 1;
2044 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2045 		break;
2046 	case MSR_IA32_MCG_EXT_CTL:
2047 		if (!msr_info->host_initiated &&
2048 		    !(vmx->msr_ia32_feature_control &
2049 		      FEAT_CTL_LMCE_ENABLED))
2050 			return 1;
2051 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2052 		break;
2053 	case MSR_IA32_FEAT_CTL:
2054 		msr_info->data = vmx->msr_ia32_feature_control;
2055 		break;
2056 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2057 		if (!msr_info->host_initiated &&
2058 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2059 			return 1;
2060 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2061 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2062 		break;
2063 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2064 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2065 			return 1;
2066 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2067 				    &msr_info->data))
2068 			return 1;
2069 		/*
2070 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2071 		 * instead of just ignoring the features, different Hyper-V
2072 		 * versions are either trying to use them and fail or do some
2073 		 * sanity checking and refuse to boot. Filter all unsupported
2074 		 * features out.
2075 		 */
2076 		if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2077 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2078 							&msr_info->data);
2079 		break;
2080 	case MSR_IA32_RTIT_CTL:
2081 		if (!vmx_pt_mode_is_host_guest())
2082 			return 1;
2083 		msr_info->data = vmx->pt_desc.guest.ctl;
2084 		break;
2085 	case MSR_IA32_RTIT_STATUS:
2086 		if (!vmx_pt_mode_is_host_guest())
2087 			return 1;
2088 		msr_info->data = vmx->pt_desc.guest.status;
2089 		break;
2090 	case MSR_IA32_RTIT_CR3_MATCH:
2091 		if (!vmx_pt_mode_is_host_guest() ||
2092 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2093 						PT_CAP_cr3_filtering))
2094 			return 1;
2095 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2096 		break;
2097 	case MSR_IA32_RTIT_OUTPUT_BASE:
2098 		if (!vmx_pt_mode_is_host_guest() ||
2099 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2100 					PT_CAP_topa_output) &&
2101 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2102 					PT_CAP_single_range_output)))
2103 			return 1;
2104 		msr_info->data = vmx->pt_desc.guest.output_base;
2105 		break;
2106 	case MSR_IA32_RTIT_OUTPUT_MASK:
2107 		if (!vmx_pt_mode_is_host_guest() ||
2108 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2109 					PT_CAP_topa_output) &&
2110 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2111 					PT_CAP_single_range_output)))
2112 			return 1;
2113 		msr_info->data = vmx->pt_desc.guest.output_mask;
2114 		break;
2115 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2116 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2117 		if (!vmx_pt_mode_is_host_guest() ||
2118 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2119 			return 1;
2120 		if (index % 2)
2121 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2122 		else
2123 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2124 		break;
2125 	case MSR_IA32_DEBUGCTLMSR:
2126 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2127 		break;
2128 	default:
2129 	find_uret_msr:
2130 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2131 		if (msr) {
2132 			msr_info->data = msr->data;
2133 			break;
2134 		}
2135 		return kvm_get_msr_common(vcpu, msr_info);
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2142 						    u64 data)
2143 {
2144 #ifdef CONFIG_X86_64
2145 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2146 		return (u32)data;
2147 #endif
2148 	return (unsigned long)data;
2149 }
2150 
2151 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2152 {
2153 	u64 debugctl = 0;
2154 
2155 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2156 	    (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2157 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2158 
2159 	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2160 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2161 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2162 
2163 	return debugctl;
2164 }
2165 
2166 /*
2167  * Writes msr value into the appropriate "register".
2168  * Returns 0 on success, non-0 otherwise.
2169  * Assumes vcpu_load() was already called.
2170  */
2171 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2172 {
2173 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2174 	struct vmx_uret_msr *msr;
2175 	int ret = 0;
2176 	u32 msr_index = msr_info->index;
2177 	u64 data = msr_info->data;
2178 	u32 index;
2179 
2180 	switch (msr_index) {
2181 	case MSR_EFER:
2182 		ret = kvm_set_msr_common(vcpu, msr_info);
2183 		break;
2184 #ifdef CONFIG_X86_64
2185 	case MSR_FS_BASE:
2186 		vmx_segment_cache_clear(vmx);
2187 		vmcs_writel(GUEST_FS_BASE, data);
2188 		break;
2189 	case MSR_GS_BASE:
2190 		vmx_segment_cache_clear(vmx);
2191 		vmcs_writel(GUEST_GS_BASE, data);
2192 		break;
2193 	case MSR_KERNEL_GS_BASE:
2194 		vmx_write_guest_kernel_gs_base(vmx, data);
2195 		break;
2196 	case MSR_IA32_XFD:
2197 		ret = kvm_set_msr_common(vcpu, msr_info);
2198 		/*
2199 		 * Always intercepting WRMSR could incur non-negligible
2200 		 * overhead given xfd might be changed frequently in
2201 		 * guest context switch. Disable write interception
2202 		 * upon the first write with a non-zero value (indicating
2203 		 * potential usage on dynamic xfeatures). Also update
2204 		 * exception bitmap to trap #NM for proper virtualization
2205 		 * of guest xfd_err.
2206 		 */
2207 		if (!ret && data) {
2208 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2209 						      MSR_TYPE_RW);
2210 			vcpu->arch.xfd_no_write_intercept = true;
2211 			vmx_update_exception_bitmap(vcpu);
2212 		}
2213 		break;
2214 #endif
2215 	case MSR_IA32_SYSENTER_CS:
2216 		if (is_guest_mode(vcpu))
2217 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2218 		vmcs_write32(GUEST_SYSENTER_CS, data);
2219 		break;
2220 	case MSR_IA32_SYSENTER_EIP:
2221 		if (is_guest_mode(vcpu)) {
2222 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2223 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2224 		}
2225 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2226 		break;
2227 	case MSR_IA32_SYSENTER_ESP:
2228 		if (is_guest_mode(vcpu)) {
2229 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2230 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2231 		}
2232 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2233 		break;
2234 	case MSR_IA32_DEBUGCTLMSR: {
2235 		u64 invalid;
2236 
2237 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2238 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2239 			kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2240 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2241 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2242 		}
2243 
2244 		if (invalid)
2245 			return 1;
2246 
2247 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2248 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2249 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2250 
2251 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2252 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2253 		    (data & DEBUGCTLMSR_LBR))
2254 			intel_pmu_create_guest_lbr_event(vcpu);
2255 		return 0;
2256 	}
2257 	case MSR_IA32_BNDCFGS:
2258 		if (!kvm_mpx_supported() ||
2259 		    (!msr_info->host_initiated &&
2260 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2261 			return 1;
2262 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2263 		    (data & MSR_IA32_BNDCFGS_RSVD))
2264 			return 1;
2265 
2266 		if (is_guest_mode(vcpu) &&
2267 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2268 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2269 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2270 
2271 		vmcs_write64(GUEST_BNDCFGS, data);
2272 		break;
2273 	case MSR_IA32_UMWAIT_CONTROL:
2274 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2275 			return 1;
2276 
2277 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2278 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2279 			return 1;
2280 
2281 		vmx->msr_ia32_umwait_control = data;
2282 		break;
2283 	case MSR_IA32_SPEC_CTRL:
2284 		if (!msr_info->host_initiated &&
2285 		    !guest_has_spec_ctrl_msr(vcpu))
2286 			return 1;
2287 
2288 		if (kvm_spec_ctrl_test_value(data))
2289 			return 1;
2290 
2291 		vmx->spec_ctrl = data;
2292 		if (!data)
2293 			break;
2294 
2295 		/*
2296 		 * For non-nested:
2297 		 * When it's written (to non-zero) for the first time, pass
2298 		 * it through.
2299 		 *
2300 		 * For nested:
2301 		 * The handling of the MSR bitmap for L2 guests is done in
2302 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2303 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2304 		 * in the merging. We update the vmcs01 here for L1 as well
2305 		 * since it will end up touching the MSR anyway now.
2306 		 */
2307 		vmx_disable_intercept_for_msr(vcpu,
2308 					      MSR_IA32_SPEC_CTRL,
2309 					      MSR_TYPE_RW);
2310 		break;
2311 	case MSR_IA32_TSX_CTRL:
2312 		if (!msr_info->host_initiated &&
2313 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2314 			return 1;
2315 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2316 			return 1;
2317 		goto find_uret_msr;
2318 	case MSR_IA32_CR_PAT:
2319 		ret = kvm_set_msr_common(vcpu, msr_info);
2320 		if (ret)
2321 			break;
2322 
2323 		if (is_guest_mode(vcpu) &&
2324 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2325 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2326 
2327 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2328 			vmcs_write64(GUEST_IA32_PAT, data);
2329 		break;
2330 	case MSR_IA32_MCG_EXT_CTL:
2331 		if ((!msr_info->host_initiated &&
2332 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2333 		       FEAT_CTL_LMCE_ENABLED)) ||
2334 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2335 			return 1;
2336 		vcpu->arch.mcg_ext_ctl = data;
2337 		break;
2338 	case MSR_IA32_FEAT_CTL:
2339 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2340 			return 1;
2341 
2342 		vmx->msr_ia32_feature_control = data;
2343 		if (msr_info->host_initiated && data == 0)
2344 			vmx_leave_nested(vcpu);
2345 
2346 		/* SGX may be enabled/disabled by guest's firmware */
2347 		vmx_write_encls_bitmap(vcpu, NULL);
2348 		break;
2349 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2350 		/*
2351 		 * On real hardware, the LE hash MSRs are writable before
2352 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2353 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2354 		 * become writable.
2355 		 *
2356 		 * KVM does not emulate SGX activation for simplicity, so
2357 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2358 		 * is unlocked.  This is technically not architectural
2359 		 * behavior, but it's close enough.
2360 		 */
2361 		if (!msr_info->host_initiated &&
2362 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2363 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2364 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2365 			return 1;
2366 		vmx->msr_ia32_sgxlepubkeyhash
2367 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2368 		break;
2369 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2370 		if (!msr_info->host_initiated)
2371 			return 1; /* they are read-only */
2372 		if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2373 			return 1;
2374 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2375 	case MSR_IA32_RTIT_CTL:
2376 		if (!vmx_pt_mode_is_host_guest() ||
2377 			vmx_rtit_ctl_check(vcpu, data) ||
2378 			vmx->nested.vmxon)
2379 			return 1;
2380 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2381 		vmx->pt_desc.guest.ctl = data;
2382 		pt_update_intercept_for_msr(vcpu);
2383 		break;
2384 	case MSR_IA32_RTIT_STATUS:
2385 		if (!pt_can_write_msr(vmx))
2386 			return 1;
2387 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2388 			return 1;
2389 		vmx->pt_desc.guest.status = data;
2390 		break;
2391 	case MSR_IA32_RTIT_CR3_MATCH:
2392 		if (!pt_can_write_msr(vmx))
2393 			return 1;
2394 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2395 					   PT_CAP_cr3_filtering))
2396 			return 1;
2397 		vmx->pt_desc.guest.cr3_match = data;
2398 		break;
2399 	case MSR_IA32_RTIT_OUTPUT_BASE:
2400 		if (!pt_can_write_msr(vmx))
2401 			return 1;
2402 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2403 					   PT_CAP_topa_output) &&
2404 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2405 					   PT_CAP_single_range_output))
2406 			return 1;
2407 		if (!pt_output_base_valid(vcpu, data))
2408 			return 1;
2409 		vmx->pt_desc.guest.output_base = data;
2410 		break;
2411 	case MSR_IA32_RTIT_OUTPUT_MASK:
2412 		if (!pt_can_write_msr(vmx))
2413 			return 1;
2414 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2415 					   PT_CAP_topa_output) &&
2416 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2417 					   PT_CAP_single_range_output))
2418 			return 1;
2419 		vmx->pt_desc.guest.output_mask = data;
2420 		break;
2421 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2422 		if (!pt_can_write_msr(vmx))
2423 			return 1;
2424 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2425 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2426 			return 1;
2427 		if (is_noncanonical_address(data, vcpu))
2428 			return 1;
2429 		if (index % 2)
2430 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2431 		else
2432 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2433 		break;
2434 	case MSR_IA32_PERF_CAPABILITIES:
2435 		if (data && !vcpu_to_pmu(vcpu)->version)
2436 			return 1;
2437 		if (data & PMU_CAP_LBR_FMT) {
2438 			if ((data & PMU_CAP_LBR_FMT) !=
2439 			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2440 				return 1;
2441 			if (!cpuid_model_is_consistent(vcpu))
2442 				return 1;
2443 		}
2444 		if (data & PERF_CAP_PEBS_FORMAT) {
2445 			if ((data & PERF_CAP_PEBS_MASK) !=
2446 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2447 				return 1;
2448 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2449 				return 1;
2450 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2451 				return 1;
2452 			if (!cpuid_model_is_consistent(vcpu))
2453 				return 1;
2454 		}
2455 		ret = kvm_set_msr_common(vcpu, msr_info);
2456 		break;
2457 
2458 	default:
2459 	find_uret_msr:
2460 		msr = vmx_find_uret_msr(vmx, msr_index);
2461 		if (msr)
2462 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2463 		else
2464 			ret = kvm_set_msr_common(vcpu, msr_info);
2465 	}
2466 
2467 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2468 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2469 		vmx_update_fb_clear_dis(vcpu, vmx);
2470 
2471 	return ret;
2472 }
2473 
2474 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2475 {
2476 	unsigned long guest_owned_bits;
2477 
2478 	kvm_register_mark_available(vcpu, reg);
2479 
2480 	switch (reg) {
2481 	case VCPU_REGS_RSP:
2482 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2483 		break;
2484 	case VCPU_REGS_RIP:
2485 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2486 		break;
2487 	case VCPU_EXREG_PDPTR:
2488 		if (enable_ept)
2489 			ept_save_pdptrs(vcpu);
2490 		break;
2491 	case VCPU_EXREG_CR0:
2492 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2493 
2494 		vcpu->arch.cr0 &= ~guest_owned_bits;
2495 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2496 		break;
2497 	case VCPU_EXREG_CR3:
2498 		/*
2499 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2500 		 * CR3 is loaded into hardware, not the guest's CR3.
2501 		 */
2502 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2503 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2504 		break;
2505 	case VCPU_EXREG_CR4:
2506 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2507 
2508 		vcpu->arch.cr4 &= ~guest_owned_bits;
2509 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2510 		break;
2511 	default:
2512 		KVM_BUG_ON(1, vcpu->kvm);
2513 		break;
2514 	}
2515 }
2516 
2517 /*
2518  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2519  * directly instead of going through cpu_has(), to ensure KVM is trapping
2520  * ENCLS whenever it's supported in hardware.  It does not matter whether
2521  * the host OS supports or has enabled SGX.
2522  */
2523 static bool cpu_has_sgx(void)
2524 {
2525 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2526 }
2527 
2528 /*
2529  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2530  * can't be used due to errata where VM Exit may incorrectly clear
2531  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2532  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2533  */
2534 static bool cpu_has_perf_global_ctrl_bug(void)
2535 {
2536 	if (boot_cpu_data.x86 == 0x6) {
2537 		switch (boot_cpu_data.x86_model) {
2538 		case INTEL_FAM6_NEHALEM_EP:	/* AAK155 */
2539 		case INTEL_FAM6_NEHALEM:	/* AAP115 */
2540 		case INTEL_FAM6_WESTMERE:	/* AAT100 */
2541 		case INTEL_FAM6_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2542 		case INTEL_FAM6_NEHALEM_EX:	/* BA97 */
2543 			return true;
2544 		default:
2545 			break;
2546 		}
2547 	}
2548 
2549 	return false;
2550 }
2551 
2552 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2553 {
2554 	u32 vmx_msr_low, vmx_msr_high;
2555 	u32 ctl = ctl_min | ctl_opt;
2556 
2557 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2558 
2559 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2560 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2561 
2562 	/* Ensure minimum (required) set of control bits are supported. */
2563 	if (ctl_min & ~ctl)
2564 		return -EIO;
2565 
2566 	*result = ctl;
2567 	return 0;
2568 }
2569 
2570 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2571 {
2572 	u64 allowed;
2573 
2574 	rdmsrl(msr, allowed);
2575 
2576 	return  ctl_opt & allowed;
2577 }
2578 
2579 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2580 			     struct vmx_capability *vmx_cap)
2581 {
2582 	u32 vmx_msr_low, vmx_msr_high;
2583 	u32 _pin_based_exec_control = 0;
2584 	u32 _cpu_based_exec_control = 0;
2585 	u32 _cpu_based_2nd_exec_control = 0;
2586 	u64 _cpu_based_3rd_exec_control = 0;
2587 	u32 _vmexit_control = 0;
2588 	u32 _vmentry_control = 0;
2589 	u64 misc_msr;
2590 	int i;
2591 
2592 	/*
2593 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2594 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2595 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2596 	 */
2597 	struct {
2598 		u32 entry_control;
2599 		u32 exit_control;
2600 	} const vmcs_entry_exit_pairs[] = {
2601 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2602 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2603 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2604 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2605 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2606 	};
2607 
2608 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2609 
2610 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2611 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2612 				MSR_IA32_VMX_PROCBASED_CTLS,
2613 				&_cpu_based_exec_control))
2614 		return -EIO;
2615 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2616 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2617 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2618 					MSR_IA32_VMX_PROCBASED_CTLS2,
2619 					&_cpu_based_2nd_exec_control))
2620 			return -EIO;
2621 	}
2622 #ifndef CONFIG_X86_64
2623 	if (!(_cpu_based_2nd_exec_control &
2624 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2625 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2626 #endif
2627 
2628 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2629 		_cpu_based_2nd_exec_control &= ~(
2630 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2631 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2632 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2633 
2634 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2635 		&vmx_cap->ept, &vmx_cap->vpid);
2636 
2637 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2638 	    vmx_cap->ept) {
2639 		pr_warn_once("EPT CAP should not exist if not support "
2640 				"1-setting enable EPT VM-execution control\n");
2641 
2642 		if (error_on_inconsistent_vmcs_config)
2643 			return -EIO;
2644 
2645 		vmx_cap->ept = 0;
2646 	}
2647 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2648 	    vmx_cap->vpid) {
2649 		pr_warn_once("VPID CAP should not exist if not support "
2650 				"1-setting enable VPID VM-execution control\n");
2651 
2652 		if (error_on_inconsistent_vmcs_config)
2653 			return -EIO;
2654 
2655 		vmx_cap->vpid = 0;
2656 	}
2657 
2658 	if (!cpu_has_sgx())
2659 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2660 
2661 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2662 		_cpu_based_3rd_exec_control =
2663 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2664 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2665 
2666 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2667 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2668 				MSR_IA32_VMX_EXIT_CTLS,
2669 				&_vmexit_control))
2670 		return -EIO;
2671 
2672 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2673 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2674 				MSR_IA32_VMX_PINBASED_CTLS,
2675 				&_pin_based_exec_control))
2676 		return -EIO;
2677 
2678 	if (cpu_has_broken_vmx_preemption_timer())
2679 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2680 	if (!(_cpu_based_2nd_exec_control &
2681 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2682 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2683 
2684 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2685 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2686 				MSR_IA32_VMX_ENTRY_CTLS,
2687 				&_vmentry_control))
2688 		return -EIO;
2689 
2690 	for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2691 		u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2692 		u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2693 
2694 		if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2695 			continue;
2696 
2697 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2698 			     _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2699 
2700 		if (error_on_inconsistent_vmcs_config)
2701 			return -EIO;
2702 
2703 		_vmentry_control &= ~n_ctrl;
2704 		_vmexit_control &= ~x_ctrl;
2705 	}
2706 
2707 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2708 
2709 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2710 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2711 		return -EIO;
2712 
2713 #ifdef CONFIG_X86_64
2714 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2715 	if (vmx_msr_high & (1u<<16))
2716 		return -EIO;
2717 #endif
2718 
2719 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2720 	if (((vmx_msr_high >> 18) & 15) != 6)
2721 		return -EIO;
2722 
2723 	rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2724 
2725 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2726 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2727 
2728 	vmcs_conf->revision_id = vmx_msr_low;
2729 
2730 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2731 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2732 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2733 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2734 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2735 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2736 	vmcs_conf->misc	= misc_msr;
2737 
2738 #if IS_ENABLED(CONFIG_HYPERV)
2739 	if (enlightened_vmcs)
2740 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2741 #endif
2742 
2743 	return 0;
2744 }
2745 
2746 static bool __kvm_is_vmx_supported(void)
2747 {
2748 	int cpu = smp_processor_id();
2749 
2750 	if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2751 		pr_err("VMX not supported by CPU %d\n", cpu);
2752 		return false;
2753 	}
2754 
2755 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2756 	    !this_cpu_has(X86_FEATURE_VMX)) {
2757 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2758 		return false;
2759 	}
2760 
2761 	return true;
2762 }
2763 
2764 static bool kvm_is_vmx_supported(void)
2765 {
2766 	bool supported;
2767 
2768 	migrate_disable();
2769 	supported = __kvm_is_vmx_supported();
2770 	migrate_enable();
2771 
2772 	return supported;
2773 }
2774 
2775 static int vmx_check_processor_compat(void)
2776 {
2777 	int cpu = raw_smp_processor_id();
2778 	struct vmcs_config vmcs_conf;
2779 	struct vmx_capability vmx_cap;
2780 
2781 	if (!__kvm_is_vmx_supported())
2782 		return -EIO;
2783 
2784 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2785 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2786 		return -EIO;
2787 	}
2788 	if (nested)
2789 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2790 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2791 		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2792 		return -EIO;
2793 	}
2794 	return 0;
2795 }
2796 
2797 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2798 {
2799 	u64 msr;
2800 
2801 	cr4_set_bits(X86_CR4_VMXE);
2802 
2803 	asm goto("1: vmxon %[vmxon_pointer]\n\t"
2804 			  _ASM_EXTABLE(1b, %l[fault])
2805 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2806 			  : : fault);
2807 	return 0;
2808 
2809 fault:
2810 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2811 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2812 	cr4_clear_bits(X86_CR4_VMXE);
2813 
2814 	return -EFAULT;
2815 }
2816 
2817 static int vmx_hardware_enable(void)
2818 {
2819 	int cpu = raw_smp_processor_id();
2820 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2821 	int r;
2822 
2823 	if (cr4_read_shadow() & X86_CR4_VMXE)
2824 		return -EBUSY;
2825 
2826 	/*
2827 	 * This can happen if we hot-added a CPU but failed to allocate
2828 	 * VP assist page for it.
2829 	 */
2830 	if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2831 		return -EFAULT;
2832 
2833 	intel_pt_handle_vmx(1);
2834 
2835 	r = kvm_cpu_vmxon(phys_addr);
2836 	if (r) {
2837 		intel_pt_handle_vmx(0);
2838 		return r;
2839 	}
2840 
2841 	if (enable_ept)
2842 		ept_sync_global();
2843 
2844 	return 0;
2845 }
2846 
2847 static void vmclear_local_loaded_vmcss(void)
2848 {
2849 	int cpu = raw_smp_processor_id();
2850 	struct loaded_vmcs *v, *n;
2851 
2852 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2853 				 loaded_vmcss_on_cpu_link)
2854 		__loaded_vmcs_clear(v);
2855 }
2856 
2857 static void vmx_hardware_disable(void)
2858 {
2859 	vmclear_local_loaded_vmcss();
2860 
2861 	if (kvm_cpu_vmxoff())
2862 		kvm_spurious_fault();
2863 
2864 	hv_reset_evmcs();
2865 
2866 	intel_pt_handle_vmx(0);
2867 }
2868 
2869 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2870 {
2871 	int node = cpu_to_node(cpu);
2872 	struct page *pages;
2873 	struct vmcs *vmcs;
2874 
2875 	pages = __alloc_pages_node(node, flags, 0);
2876 	if (!pages)
2877 		return NULL;
2878 	vmcs = page_address(pages);
2879 	memset(vmcs, 0, vmcs_config.size);
2880 
2881 	/* KVM supports Enlightened VMCS v1 only */
2882 	if (kvm_is_using_evmcs())
2883 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2884 	else
2885 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2886 
2887 	if (shadow)
2888 		vmcs->hdr.shadow_vmcs = 1;
2889 	return vmcs;
2890 }
2891 
2892 void free_vmcs(struct vmcs *vmcs)
2893 {
2894 	free_page((unsigned long)vmcs);
2895 }
2896 
2897 /*
2898  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2899  */
2900 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2901 {
2902 	if (!loaded_vmcs->vmcs)
2903 		return;
2904 	loaded_vmcs_clear(loaded_vmcs);
2905 	free_vmcs(loaded_vmcs->vmcs);
2906 	loaded_vmcs->vmcs = NULL;
2907 	if (loaded_vmcs->msr_bitmap)
2908 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2909 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2910 }
2911 
2912 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2913 {
2914 	loaded_vmcs->vmcs = alloc_vmcs(false);
2915 	if (!loaded_vmcs->vmcs)
2916 		return -ENOMEM;
2917 
2918 	vmcs_clear(loaded_vmcs->vmcs);
2919 
2920 	loaded_vmcs->shadow_vmcs = NULL;
2921 	loaded_vmcs->hv_timer_soft_disabled = false;
2922 	loaded_vmcs->cpu = -1;
2923 	loaded_vmcs->launched = 0;
2924 
2925 	if (cpu_has_vmx_msr_bitmap()) {
2926 		loaded_vmcs->msr_bitmap = (unsigned long *)
2927 				__get_free_page(GFP_KERNEL_ACCOUNT);
2928 		if (!loaded_vmcs->msr_bitmap)
2929 			goto out_vmcs;
2930 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2931 	}
2932 
2933 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2934 	memset(&loaded_vmcs->controls_shadow, 0,
2935 		sizeof(struct vmcs_controls_shadow));
2936 
2937 	return 0;
2938 
2939 out_vmcs:
2940 	free_loaded_vmcs(loaded_vmcs);
2941 	return -ENOMEM;
2942 }
2943 
2944 static void free_kvm_area(void)
2945 {
2946 	int cpu;
2947 
2948 	for_each_possible_cpu(cpu) {
2949 		free_vmcs(per_cpu(vmxarea, cpu));
2950 		per_cpu(vmxarea, cpu) = NULL;
2951 	}
2952 }
2953 
2954 static __init int alloc_kvm_area(void)
2955 {
2956 	int cpu;
2957 
2958 	for_each_possible_cpu(cpu) {
2959 		struct vmcs *vmcs;
2960 
2961 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2962 		if (!vmcs) {
2963 			free_kvm_area();
2964 			return -ENOMEM;
2965 		}
2966 
2967 		/*
2968 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2969 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2970 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2971 		 *
2972 		 * However, even though not explicitly documented by
2973 		 * TLFS, VMXArea passed as VMXON argument should
2974 		 * still be marked with revision_id reported by
2975 		 * physical CPU.
2976 		 */
2977 		if (kvm_is_using_evmcs())
2978 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2979 
2980 		per_cpu(vmxarea, cpu) = vmcs;
2981 	}
2982 	return 0;
2983 }
2984 
2985 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2986 		struct kvm_segment *save)
2987 {
2988 	if (!emulate_invalid_guest_state) {
2989 		/*
2990 		 * CS and SS RPL should be equal during guest entry according
2991 		 * to VMX spec, but in reality it is not always so. Since vcpu
2992 		 * is in the middle of the transition from real mode to
2993 		 * protected mode it is safe to assume that RPL 0 is a good
2994 		 * default value.
2995 		 */
2996 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2997 			save->selector &= ~SEGMENT_RPL_MASK;
2998 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2999 		save->s = 1;
3000 	}
3001 	__vmx_set_segment(vcpu, save, seg);
3002 }
3003 
3004 static void enter_pmode(struct kvm_vcpu *vcpu)
3005 {
3006 	unsigned long flags;
3007 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3008 
3009 	/*
3010 	 * Update real mode segment cache. It may be not up-to-date if segment
3011 	 * register was written while vcpu was in a guest mode.
3012 	 */
3013 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3014 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3015 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3016 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3017 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3018 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3019 
3020 	vmx->rmode.vm86_active = 0;
3021 
3022 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3023 
3024 	flags = vmcs_readl(GUEST_RFLAGS);
3025 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3026 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3027 	vmcs_writel(GUEST_RFLAGS, flags);
3028 
3029 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3030 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3031 
3032 	vmx_update_exception_bitmap(vcpu);
3033 
3034 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3035 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3036 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3037 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3038 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3039 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3040 }
3041 
3042 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3043 {
3044 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3045 	struct kvm_segment var = *save;
3046 
3047 	var.dpl = 0x3;
3048 	if (seg == VCPU_SREG_CS)
3049 		var.type = 0x3;
3050 
3051 	if (!emulate_invalid_guest_state) {
3052 		var.selector = var.base >> 4;
3053 		var.base = var.base & 0xffff0;
3054 		var.limit = 0xffff;
3055 		var.g = 0;
3056 		var.db = 0;
3057 		var.present = 1;
3058 		var.s = 1;
3059 		var.l = 0;
3060 		var.unusable = 0;
3061 		var.type = 0x3;
3062 		var.avl = 0;
3063 		if (save->base & 0xf)
3064 			pr_warn_once("segment base is not paragraph aligned "
3065 				     "when entering protected mode (seg=%d)", seg);
3066 	}
3067 
3068 	vmcs_write16(sf->selector, var.selector);
3069 	vmcs_writel(sf->base, var.base);
3070 	vmcs_write32(sf->limit, var.limit);
3071 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3072 }
3073 
3074 static void enter_rmode(struct kvm_vcpu *vcpu)
3075 {
3076 	unsigned long flags;
3077 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3078 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3079 
3080 	/*
3081 	 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3082 	 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3083 	 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3084 	 * should VM-Fail and KVM should reject userspace attempts to stuff
3085 	 * CR0.PG=0 when L2 is active.
3086 	 */
3087 	WARN_ON_ONCE(is_guest_mode(vcpu));
3088 
3089 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3090 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3091 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3092 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3093 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3094 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3095 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3096 
3097 	vmx->rmode.vm86_active = 1;
3098 
3099 	vmx_segment_cache_clear(vmx);
3100 
3101 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3102 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3103 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3104 
3105 	flags = vmcs_readl(GUEST_RFLAGS);
3106 	vmx->rmode.save_rflags = flags;
3107 
3108 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3109 
3110 	vmcs_writel(GUEST_RFLAGS, flags);
3111 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3112 	vmx_update_exception_bitmap(vcpu);
3113 
3114 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3115 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3116 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3117 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3118 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3119 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3120 }
3121 
3122 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3123 {
3124 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3125 
3126 	/* Nothing to do if hardware doesn't support EFER. */
3127 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3128 		return 0;
3129 
3130 	vcpu->arch.efer = efer;
3131 #ifdef CONFIG_X86_64
3132 	if (efer & EFER_LMA)
3133 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3134 	else
3135 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3136 #else
3137 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3138 		return 1;
3139 #endif
3140 
3141 	vmx_setup_uret_msrs(vmx);
3142 	return 0;
3143 }
3144 
3145 #ifdef CONFIG_X86_64
3146 
3147 static void enter_lmode(struct kvm_vcpu *vcpu)
3148 {
3149 	u32 guest_tr_ar;
3150 
3151 	vmx_segment_cache_clear(to_vmx(vcpu));
3152 
3153 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3154 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3155 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3156 				     __func__);
3157 		vmcs_write32(GUEST_TR_AR_BYTES,
3158 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3159 			     | VMX_AR_TYPE_BUSY_64_TSS);
3160 	}
3161 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3162 }
3163 
3164 static void exit_lmode(struct kvm_vcpu *vcpu)
3165 {
3166 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3167 }
3168 
3169 #endif
3170 
3171 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3172 {
3173 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3174 
3175 	/*
3176 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3177 	 * the CPU is not required to invalidate guest-physical mappings on
3178 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3179 	 * associated with the root EPT structure and not any particular VPID
3180 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3181 	 */
3182 	if (enable_ept) {
3183 		ept_sync_global();
3184 	} else if (enable_vpid) {
3185 		if (cpu_has_vmx_invvpid_global()) {
3186 			vpid_sync_vcpu_global();
3187 		} else {
3188 			vpid_sync_vcpu_single(vmx->vpid);
3189 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3190 		}
3191 	}
3192 }
3193 
3194 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3195 {
3196 	if (is_guest_mode(vcpu))
3197 		return nested_get_vpid02(vcpu);
3198 	return to_vmx(vcpu)->vpid;
3199 }
3200 
3201 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3202 {
3203 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3204 	u64 root_hpa = mmu->root.hpa;
3205 
3206 	/* No flush required if the current context is invalid. */
3207 	if (!VALID_PAGE(root_hpa))
3208 		return;
3209 
3210 	if (enable_ept)
3211 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3212 						mmu->root_role.level));
3213 	else
3214 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3215 }
3216 
3217 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3218 {
3219 	/*
3220 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3221 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3222 	 */
3223 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3224 }
3225 
3226 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3227 {
3228 	/*
3229 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3230 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3231 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3232 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3233 	 * i.e. no explicit INVVPID is necessary.
3234 	 */
3235 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3236 }
3237 
3238 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3239 {
3240 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3241 
3242 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3243 		return;
3244 
3245 	if (is_pae_paging(vcpu)) {
3246 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3247 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3248 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3249 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3250 	}
3251 }
3252 
3253 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3254 {
3255 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3256 
3257 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3258 		return;
3259 
3260 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3261 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3262 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3263 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3264 
3265 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3266 }
3267 
3268 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3269 			  CPU_BASED_CR3_STORE_EXITING)
3270 
3271 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3272 {
3273 	if (is_guest_mode(vcpu))
3274 		return nested_guest_cr0_valid(vcpu, cr0);
3275 
3276 	if (to_vmx(vcpu)->nested.vmxon)
3277 		return nested_host_cr0_valid(vcpu, cr0);
3278 
3279 	return true;
3280 }
3281 
3282 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3283 {
3284 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3285 	unsigned long hw_cr0, old_cr0_pg;
3286 	u32 tmp;
3287 
3288 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3289 
3290 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3291 	if (enable_unrestricted_guest)
3292 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3293 	else {
3294 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3295 		if (!enable_ept)
3296 			hw_cr0 |= X86_CR0_WP;
3297 
3298 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3299 			enter_pmode(vcpu);
3300 
3301 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3302 			enter_rmode(vcpu);
3303 	}
3304 
3305 	vmcs_writel(CR0_READ_SHADOW, cr0);
3306 	vmcs_writel(GUEST_CR0, hw_cr0);
3307 	vcpu->arch.cr0 = cr0;
3308 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3309 
3310 #ifdef CONFIG_X86_64
3311 	if (vcpu->arch.efer & EFER_LME) {
3312 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3313 			enter_lmode(vcpu);
3314 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3315 			exit_lmode(vcpu);
3316 	}
3317 #endif
3318 
3319 	if (enable_ept && !enable_unrestricted_guest) {
3320 		/*
3321 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3322 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3323 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3324 		 * KVM's CR3 is installed.
3325 		 */
3326 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3327 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3328 
3329 		/*
3330 		 * When running with EPT but not unrestricted guest, KVM must
3331 		 * intercept CR3 accesses when paging is _disabled_.  This is
3332 		 * necessary because restricted guests can't actually run with
3333 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3334 		 * run the guest when identity mapped page tables.
3335 		 *
3336 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3337 		 * update, it may be stale with respect to CR3 interception,
3338 		 * e.g. after nested VM-Enter.
3339 		 *
3340 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3341 		 * stores to forward them to L1, even if KVM does not need to
3342 		 * intercept them to preserve its identity mapped page tables.
3343 		 */
3344 		if (!(cr0 & X86_CR0_PG)) {
3345 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3346 		} else if (!is_guest_mode(vcpu)) {
3347 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3348 		} else {
3349 			tmp = exec_controls_get(vmx);
3350 			tmp &= ~CR3_EXITING_BITS;
3351 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3352 			exec_controls_set(vmx, tmp);
3353 		}
3354 
3355 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3356 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3357 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3358 
3359 		/*
3360 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3361 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3362 		 */
3363 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3364 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3365 	}
3366 
3367 	/* depends on vcpu->arch.cr0 to be set to a new value */
3368 	vmx->emulation_required = vmx_emulation_required(vcpu);
3369 }
3370 
3371 static int vmx_get_max_ept_level(void)
3372 {
3373 	if (cpu_has_vmx_ept_5levels())
3374 		return 5;
3375 	return 4;
3376 }
3377 
3378 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3379 {
3380 	u64 eptp = VMX_EPTP_MT_WB;
3381 
3382 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3383 
3384 	if (enable_ept_ad_bits &&
3385 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3386 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3387 	eptp |= root_hpa;
3388 
3389 	return eptp;
3390 }
3391 
3392 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3393 			     int root_level)
3394 {
3395 	struct kvm *kvm = vcpu->kvm;
3396 	bool update_guest_cr3 = true;
3397 	unsigned long guest_cr3;
3398 	u64 eptp;
3399 
3400 	if (enable_ept) {
3401 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3402 		vmcs_write64(EPT_POINTER, eptp);
3403 
3404 		hv_track_root_tdp(vcpu, root_hpa);
3405 
3406 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3407 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3408 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3409 			guest_cr3 = vcpu->arch.cr3;
3410 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3411 			update_guest_cr3 = false;
3412 		vmx_ept_load_pdptrs(vcpu);
3413 	} else {
3414 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3415 	}
3416 
3417 	if (update_guest_cr3)
3418 		vmcs_writel(GUEST_CR3, guest_cr3);
3419 }
3420 
3421 
3422 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3423 {
3424 	/*
3425 	 * We operate under the default treatment of SMM, so VMX cannot be
3426 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3427 	 * i.e. is a reserved bit, is handled by common x86 code.
3428 	 */
3429 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3430 		return false;
3431 
3432 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3433 		return false;
3434 
3435 	return true;
3436 }
3437 
3438 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3439 {
3440 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
3441 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3442 	unsigned long hw_cr4;
3443 
3444 	/*
3445 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3446 	 * is in force while we are in guest mode.  Do not let guests control
3447 	 * this bit, even if host CR4.MCE == 0.
3448 	 */
3449 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3450 	if (enable_unrestricted_guest)
3451 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3452 	else if (vmx->rmode.vm86_active)
3453 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3454 	else
3455 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3456 
3457 	if (vmx_umip_emulated()) {
3458 		if (cr4 & X86_CR4_UMIP) {
3459 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3460 			hw_cr4 &= ~X86_CR4_UMIP;
3461 		} else if (!is_guest_mode(vcpu) ||
3462 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3463 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3464 		}
3465 	}
3466 
3467 	vcpu->arch.cr4 = cr4;
3468 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3469 
3470 	if (!enable_unrestricted_guest) {
3471 		if (enable_ept) {
3472 			if (!is_paging(vcpu)) {
3473 				hw_cr4 &= ~X86_CR4_PAE;
3474 				hw_cr4 |= X86_CR4_PSE;
3475 			} else if (!(cr4 & X86_CR4_PAE)) {
3476 				hw_cr4 &= ~X86_CR4_PAE;
3477 			}
3478 		}
3479 
3480 		/*
3481 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3482 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3483 		 * to be manually disabled when guest switches to non-paging
3484 		 * mode.
3485 		 *
3486 		 * If !enable_unrestricted_guest, the CPU is always running
3487 		 * with CR0.PG=1 and CR4 needs to be modified.
3488 		 * If enable_unrestricted_guest, the CPU automatically
3489 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3490 		 */
3491 		if (!is_paging(vcpu))
3492 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3493 	}
3494 
3495 	vmcs_writel(CR4_READ_SHADOW, cr4);
3496 	vmcs_writel(GUEST_CR4, hw_cr4);
3497 
3498 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3499 		kvm_update_cpuid_runtime(vcpu);
3500 }
3501 
3502 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3503 {
3504 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3505 	u32 ar;
3506 
3507 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3508 		*var = vmx->rmode.segs[seg];
3509 		if (seg == VCPU_SREG_TR
3510 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3511 			return;
3512 		var->base = vmx_read_guest_seg_base(vmx, seg);
3513 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3514 		return;
3515 	}
3516 	var->base = vmx_read_guest_seg_base(vmx, seg);
3517 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3518 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3519 	ar = vmx_read_guest_seg_ar(vmx, seg);
3520 	var->unusable = (ar >> 16) & 1;
3521 	var->type = ar & 15;
3522 	var->s = (ar >> 4) & 1;
3523 	var->dpl = (ar >> 5) & 3;
3524 	/*
3525 	 * Some userspaces do not preserve unusable property. Since usable
3526 	 * segment has to be present according to VMX spec we can use present
3527 	 * property to amend userspace bug by making unusable segment always
3528 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3529 	 * segment as unusable.
3530 	 */
3531 	var->present = !var->unusable;
3532 	var->avl = (ar >> 12) & 1;
3533 	var->l = (ar >> 13) & 1;
3534 	var->db = (ar >> 14) & 1;
3535 	var->g = (ar >> 15) & 1;
3536 }
3537 
3538 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3539 {
3540 	struct kvm_segment s;
3541 
3542 	if (to_vmx(vcpu)->rmode.vm86_active) {
3543 		vmx_get_segment(vcpu, &s, seg);
3544 		return s.base;
3545 	}
3546 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3547 }
3548 
3549 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3550 {
3551 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3552 
3553 	if (unlikely(vmx->rmode.vm86_active))
3554 		return 0;
3555 	else {
3556 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3557 		return VMX_AR_DPL(ar);
3558 	}
3559 }
3560 
3561 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3562 {
3563 	u32 ar;
3564 
3565 	ar = var->type & 15;
3566 	ar |= (var->s & 1) << 4;
3567 	ar |= (var->dpl & 3) << 5;
3568 	ar |= (var->present & 1) << 7;
3569 	ar |= (var->avl & 1) << 12;
3570 	ar |= (var->l & 1) << 13;
3571 	ar |= (var->db & 1) << 14;
3572 	ar |= (var->g & 1) << 15;
3573 	ar |= (var->unusable || !var->present) << 16;
3574 
3575 	return ar;
3576 }
3577 
3578 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3579 {
3580 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3581 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3582 
3583 	vmx_segment_cache_clear(vmx);
3584 
3585 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3586 		vmx->rmode.segs[seg] = *var;
3587 		if (seg == VCPU_SREG_TR)
3588 			vmcs_write16(sf->selector, var->selector);
3589 		else if (var->s)
3590 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3591 		return;
3592 	}
3593 
3594 	vmcs_writel(sf->base, var->base);
3595 	vmcs_write32(sf->limit, var->limit);
3596 	vmcs_write16(sf->selector, var->selector);
3597 
3598 	/*
3599 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3600 	 * qemu binaries.
3601 	 *   IA32 arch specifies that at the time of processor reset the
3602 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3603 	 * is setting it to 0 in the userland code. This causes invalid guest
3604 	 * state vmexit when "unrestricted guest" mode is turned on.
3605 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3606 	 * tree. Newer qemu binaries with that qemu fix would not need this
3607 	 * kvm hack.
3608 	 */
3609 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3610 		var->type |= 0x1; /* Accessed */
3611 
3612 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3613 }
3614 
3615 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3616 {
3617 	__vmx_set_segment(vcpu, var, seg);
3618 
3619 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3620 }
3621 
3622 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3623 {
3624 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3625 
3626 	*db = (ar >> 14) & 1;
3627 	*l = (ar >> 13) & 1;
3628 }
3629 
3630 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3631 {
3632 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3633 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3634 }
3635 
3636 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3637 {
3638 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3639 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3640 }
3641 
3642 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3643 {
3644 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3645 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3646 }
3647 
3648 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3649 {
3650 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3651 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3652 }
3653 
3654 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3655 {
3656 	struct kvm_segment var;
3657 	u32 ar;
3658 
3659 	vmx_get_segment(vcpu, &var, seg);
3660 	var.dpl = 0x3;
3661 	if (seg == VCPU_SREG_CS)
3662 		var.type = 0x3;
3663 	ar = vmx_segment_access_rights(&var);
3664 
3665 	if (var.base != (var.selector << 4))
3666 		return false;
3667 	if (var.limit != 0xffff)
3668 		return false;
3669 	if (ar != 0xf3)
3670 		return false;
3671 
3672 	return true;
3673 }
3674 
3675 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3676 {
3677 	struct kvm_segment cs;
3678 	unsigned int cs_rpl;
3679 
3680 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3681 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3682 
3683 	if (cs.unusable)
3684 		return false;
3685 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3686 		return false;
3687 	if (!cs.s)
3688 		return false;
3689 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3690 		if (cs.dpl > cs_rpl)
3691 			return false;
3692 	} else {
3693 		if (cs.dpl != cs_rpl)
3694 			return false;
3695 	}
3696 	if (!cs.present)
3697 		return false;
3698 
3699 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3700 	return true;
3701 }
3702 
3703 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3704 {
3705 	struct kvm_segment ss;
3706 	unsigned int ss_rpl;
3707 
3708 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3709 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3710 
3711 	if (ss.unusable)
3712 		return true;
3713 	if (ss.type != 3 && ss.type != 7)
3714 		return false;
3715 	if (!ss.s)
3716 		return false;
3717 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3718 		return false;
3719 	if (!ss.present)
3720 		return false;
3721 
3722 	return true;
3723 }
3724 
3725 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3726 {
3727 	struct kvm_segment var;
3728 	unsigned int rpl;
3729 
3730 	vmx_get_segment(vcpu, &var, seg);
3731 	rpl = var.selector & SEGMENT_RPL_MASK;
3732 
3733 	if (var.unusable)
3734 		return true;
3735 	if (!var.s)
3736 		return false;
3737 	if (!var.present)
3738 		return false;
3739 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3740 		if (var.dpl < rpl) /* DPL < RPL */
3741 			return false;
3742 	}
3743 
3744 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3745 	 * rights flags
3746 	 */
3747 	return true;
3748 }
3749 
3750 static bool tr_valid(struct kvm_vcpu *vcpu)
3751 {
3752 	struct kvm_segment tr;
3753 
3754 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3755 
3756 	if (tr.unusable)
3757 		return false;
3758 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3759 		return false;
3760 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3761 		return false;
3762 	if (!tr.present)
3763 		return false;
3764 
3765 	return true;
3766 }
3767 
3768 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3769 {
3770 	struct kvm_segment ldtr;
3771 
3772 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3773 
3774 	if (ldtr.unusable)
3775 		return true;
3776 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3777 		return false;
3778 	if (ldtr.type != 2)
3779 		return false;
3780 	if (!ldtr.present)
3781 		return false;
3782 
3783 	return true;
3784 }
3785 
3786 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3787 {
3788 	struct kvm_segment cs, ss;
3789 
3790 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3791 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3792 
3793 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3794 		 (ss.selector & SEGMENT_RPL_MASK));
3795 }
3796 
3797 /*
3798  * Check if guest state is valid. Returns true if valid, false if
3799  * not.
3800  * We assume that registers are always usable
3801  */
3802 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3803 {
3804 	/* real mode guest state checks */
3805 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3806 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3807 			return false;
3808 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3809 			return false;
3810 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3811 			return false;
3812 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3813 			return false;
3814 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3815 			return false;
3816 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3817 			return false;
3818 	} else {
3819 	/* protected mode guest state checks */
3820 		if (!cs_ss_rpl_check(vcpu))
3821 			return false;
3822 		if (!code_segment_valid(vcpu))
3823 			return false;
3824 		if (!stack_segment_valid(vcpu))
3825 			return false;
3826 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3827 			return false;
3828 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3829 			return false;
3830 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3831 			return false;
3832 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3833 			return false;
3834 		if (!tr_valid(vcpu))
3835 			return false;
3836 		if (!ldtr_valid(vcpu))
3837 			return false;
3838 	}
3839 	/* TODO:
3840 	 * - Add checks on RIP
3841 	 * - Add checks on RFLAGS
3842 	 */
3843 
3844 	return true;
3845 }
3846 
3847 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3848 {
3849 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3850 	u16 data;
3851 	int i;
3852 
3853 	for (i = 0; i < 3; i++) {
3854 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3855 			return -EFAULT;
3856 	}
3857 
3858 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3859 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3860 		return -EFAULT;
3861 
3862 	data = ~0;
3863 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3864 		return -EFAULT;
3865 
3866 	return 0;
3867 }
3868 
3869 static int init_rmode_identity_map(struct kvm *kvm)
3870 {
3871 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3872 	int i, r = 0;
3873 	void __user *uaddr;
3874 	u32 tmp;
3875 
3876 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3877 	mutex_lock(&kvm->slots_lock);
3878 
3879 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3880 		goto out;
3881 
3882 	if (!kvm_vmx->ept_identity_map_addr)
3883 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3884 
3885 	uaddr = __x86_set_memory_region(kvm,
3886 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3887 					kvm_vmx->ept_identity_map_addr,
3888 					PAGE_SIZE);
3889 	if (IS_ERR(uaddr)) {
3890 		r = PTR_ERR(uaddr);
3891 		goto out;
3892 	}
3893 
3894 	/* Set up identity-mapping pagetable for EPT in real mode */
3895 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3896 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3897 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3898 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3899 			r = -EFAULT;
3900 			goto out;
3901 		}
3902 	}
3903 	kvm_vmx->ept_identity_pagetable_done = true;
3904 
3905 out:
3906 	mutex_unlock(&kvm->slots_lock);
3907 	return r;
3908 }
3909 
3910 static void seg_setup(int seg)
3911 {
3912 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3913 	unsigned int ar;
3914 
3915 	vmcs_write16(sf->selector, 0);
3916 	vmcs_writel(sf->base, 0);
3917 	vmcs_write32(sf->limit, 0xffff);
3918 	ar = 0x93;
3919 	if (seg == VCPU_SREG_CS)
3920 		ar |= 0x08; /* code segment */
3921 
3922 	vmcs_write32(sf->ar_bytes, ar);
3923 }
3924 
3925 int allocate_vpid(void)
3926 {
3927 	int vpid;
3928 
3929 	if (!enable_vpid)
3930 		return 0;
3931 	spin_lock(&vmx_vpid_lock);
3932 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3933 	if (vpid < VMX_NR_VPIDS)
3934 		__set_bit(vpid, vmx_vpid_bitmap);
3935 	else
3936 		vpid = 0;
3937 	spin_unlock(&vmx_vpid_lock);
3938 	return vpid;
3939 }
3940 
3941 void free_vpid(int vpid)
3942 {
3943 	if (!enable_vpid || vpid == 0)
3944 		return;
3945 	spin_lock(&vmx_vpid_lock);
3946 	__clear_bit(vpid, vmx_vpid_bitmap);
3947 	spin_unlock(&vmx_vpid_lock);
3948 }
3949 
3950 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3951 {
3952 	/*
3953 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3954 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3955 	 * bitmap has changed.
3956 	 */
3957 	if (kvm_is_using_evmcs()) {
3958 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3959 
3960 		if (evmcs->hv_enlightenments_control.msr_bitmap)
3961 			evmcs->hv_clean_fields &=
3962 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3963 	}
3964 
3965 	vmx->nested.force_msr_bitmap_recalc = true;
3966 }
3967 
3968 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3969 {
3970 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3971 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3972 
3973 	if (!cpu_has_vmx_msr_bitmap())
3974 		return;
3975 
3976 	vmx_msr_bitmap_l01_changed(vmx);
3977 
3978 	/*
3979 	 * Mark the desired intercept state in shadow bitmap, this is needed
3980 	 * for resync when the MSR filters change.
3981 	*/
3982 	if (is_valid_passthrough_msr(msr)) {
3983 		int idx = possible_passthrough_msr_slot(msr);
3984 
3985 		if (idx != -ENOENT) {
3986 			if (type & MSR_TYPE_R)
3987 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3988 			if (type & MSR_TYPE_W)
3989 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3990 		}
3991 	}
3992 
3993 	if ((type & MSR_TYPE_R) &&
3994 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3995 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3996 		type &= ~MSR_TYPE_R;
3997 	}
3998 
3999 	if ((type & MSR_TYPE_W) &&
4000 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
4001 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4002 		type &= ~MSR_TYPE_W;
4003 	}
4004 
4005 	if (type & MSR_TYPE_R)
4006 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4007 
4008 	if (type & MSR_TYPE_W)
4009 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4010 }
4011 
4012 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4013 {
4014 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4015 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4016 
4017 	if (!cpu_has_vmx_msr_bitmap())
4018 		return;
4019 
4020 	vmx_msr_bitmap_l01_changed(vmx);
4021 
4022 	/*
4023 	 * Mark the desired intercept state in shadow bitmap, this is needed
4024 	 * for resync when the MSR filter changes.
4025 	*/
4026 	if (is_valid_passthrough_msr(msr)) {
4027 		int idx = possible_passthrough_msr_slot(msr);
4028 
4029 		if (idx != -ENOENT) {
4030 			if (type & MSR_TYPE_R)
4031 				set_bit(idx, vmx->shadow_msr_intercept.read);
4032 			if (type & MSR_TYPE_W)
4033 				set_bit(idx, vmx->shadow_msr_intercept.write);
4034 		}
4035 	}
4036 
4037 	if (type & MSR_TYPE_R)
4038 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4039 
4040 	if (type & MSR_TYPE_W)
4041 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4042 }
4043 
4044 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4045 {
4046 	/*
4047 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4048 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4049 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4050 	 */
4051 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4052 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4053 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4054 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4055 	u8 mode;
4056 
4057 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4058 		return;
4059 
4060 	if (cpu_has_secondary_exec_ctrls() &&
4061 	    (secondary_exec_controls_get(vmx) &
4062 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4063 		mode = MSR_BITMAP_MODE_X2APIC;
4064 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4065 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4066 	} else {
4067 		mode = 0;
4068 	}
4069 
4070 	if (mode == vmx->x2apic_msr_bitmap_mode)
4071 		return;
4072 
4073 	vmx->x2apic_msr_bitmap_mode = mode;
4074 
4075 	/*
4076 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4077 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4078 	 * Intercept all writes by default and poke holes as needed.  Pass
4079 	 * through reads for all valid registers by default in x2APIC+APICv
4080 	 * mode, only the current timer count needs on-demand emulation by KVM.
4081 	 */
4082 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4083 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4084 	else
4085 		msr_bitmap[read_idx] = ~0ull;
4086 	msr_bitmap[write_idx] = ~0ull;
4087 
4088 	/*
4089 	 * TPR reads and writes can be virtualized even if virtual interrupt
4090 	 * delivery is not in use.
4091 	 */
4092 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4093 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4094 
4095 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4096 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4097 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4098 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4099 		if (enable_ipiv)
4100 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4101 	}
4102 }
4103 
4104 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4105 {
4106 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4107 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4108 	u32 i;
4109 
4110 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4111 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4112 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4113 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4114 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4115 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4116 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4117 	}
4118 }
4119 
4120 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4121 {
4122 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4123 	void *vapic_page;
4124 	u32 vppr;
4125 	int rvi;
4126 
4127 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4128 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4129 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4130 		return false;
4131 
4132 	rvi = vmx_get_rvi();
4133 
4134 	vapic_page = vmx->nested.virtual_apic_map.hva;
4135 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4136 
4137 	return ((rvi & 0xf0) > (vppr & 0xf0));
4138 }
4139 
4140 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4141 {
4142 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4143 	u32 i;
4144 
4145 	/*
4146 	 * Redo intercept permissions for MSRs that KVM is passing through to
4147 	 * the guest.  Disabling interception will check the new MSR filter and
4148 	 * ensure that KVM enables interception if usersepace wants to filter
4149 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4150 	 * refreshed since KVM is going to intercept them regardless of what
4151 	 * userspace wants.
4152 	 */
4153 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4154 		u32 msr = vmx_possible_passthrough_msrs[i];
4155 
4156 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4157 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4158 
4159 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4160 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4161 	}
4162 
4163 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4164 	if (vmx_pt_mode_is_host_guest())
4165 		pt_update_intercept_for_msr(vcpu);
4166 }
4167 
4168 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4169 						     int pi_vec)
4170 {
4171 #ifdef CONFIG_SMP
4172 	if (vcpu->mode == IN_GUEST_MODE) {
4173 		/*
4174 		 * The vector of the virtual has already been set in the PIR.
4175 		 * Send a notification event to deliver the virtual interrupt
4176 		 * unless the vCPU is the currently running vCPU, i.e. the
4177 		 * event is being sent from a fastpath VM-Exit handler, in
4178 		 * which case the PIR will be synced to the vIRR before
4179 		 * re-entering the guest.
4180 		 *
4181 		 * When the target is not the running vCPU, the following
4182 		 * possibilities emerge:
4183 		 *
4184 		 * Case 1: vCPU stays in non-root mode. Sending a notification
4185 		 * event posts the interrupt to the vCPU.
4186 		 *
4187 		 * Case 2: vCPU exits to root mode and is still runnable. The
4188 		 * PIR will be synced to the vIRR before re-entering the guest.
4189 		 * Sending a notification event is ok as the host IRQ handler
4190 		 * will ignore the spurious event.
4191 		 *
4192 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4193 		 * has already synced PIR to vIRR and never blocks the vCPU if
4194 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4195 		 * not wait for any requested interrupts in PIR, and sending a
4196 		 * notification event also results in a benign, spurious event.
4197 		 */
4198 
4199 		if (vcpu != kvm_get_running_vcpu())
4200 			__apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4201 		return;
4202 	}
4203 #endif
4204 	/*
4205 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4206 	 * otherwise do nothing as KVM will grab the highest priority pending
4207 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4208 	 */
4209 	kvm_vcpu_wake_up(vcpu);
4210 }
4211 
4212 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4213 						int vector)
4214 {
4215 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4216 
4217 	if (is_guest_mode(vcpu) &&
4218 	    vector == vmx->nested.posted_intr_nv) {
4219 		/*
4220 		 * If a posted intr is not recognized by hardware,
4221 		 * we will accomplish it in the next vmentry.
4222 		 */
4223 		vmx->nested.pi_pending = true;
4224 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4225 
4226 		/*
4227 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4228 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4229 		 * request if triggering a posted interrupt "fails" because
4230 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4231 		 * the smb_wmb() in kvm_make_request() only ensures everything
4232 		 * done before making the request is visible when the request
4233 		 * is visible, it doesn't ensure ordering between the store to
4234 		 * vcpu->requests and the load from vcpu->mode.
4235 		 */
4236 		smp_mb__after_atomic();
4237 
4238 		/* the PIR and ON have been set by L1. */
4239 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4240 		return 0;
4241 	}
4242 	return -1;
4243 }
4244 /*
4245  * Send interrupt to vcpu via posted interrupt way.
4246  * 1. If target vcpu is running(non-root mode), send posted interrupt
4247  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4248  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4249  * interrupt from PIR in next vmentry.
4250  */
4251 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4252 {
4253 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4254 	int r;
4255 
4256 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4257 	if (!r)
4258 		return 0;
4259 
4260 	/* Note, this is called iff the local APIC is in-kernel. */
4261 	if (!vcpu->arch.apic->apicv_active)
4262 		return -1;
4263 
4264 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4265 		return 0;
4266 
4267 	/* If a previous notification has sent the IPI, nothing to do.  */
4268 	if (pi_test_and_set_on(&vmx->pi_desc))
4269 		return 0;
4270 
4271 	/*
4272 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4273 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4274 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4275 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4276 	 */
4277 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4278 	return 0;
4279 }
4280 
4281 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4282 				  int trig_mode, int vector)
4283 {
4284 	struct kvm_vcpu *vcpu = apic->vcpu;
4285 
4286 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4287 		kvm_lapic_set_irr(vector, apic);
4288 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4289 		kvm_vcpu_kick(vcpu);
4290 	} else {
4291 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4292 					   trig_mode, vector);
4293 	}
4294 }
4295 
4296 /*
4297  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4298  * will not change in the lifetime of the guest.
4299  * Note that host-state that does change is set elsewhere. E.g., host-state
4300  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4301  */
4302 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4303 {
4304 	u32 low32, high32;
4305 	unsigned long tmpl;
4306 	unsigned long cr0, cr3, cr4;
4307 
4308 	cr0 = read_cr0();
4309 	WARN_ON(cr0 & X86_CR0_TS);
4310 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4311 
4312 	/*
4313 	 * Save the most likely value for this task's CR3 in the VMCS.
4314 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4315 	 */
4316 	cr3 = __read_cr3();
4317 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4318 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4319 
4320 	/* Save the most likely value for this task's CR4 in the VMCS. */
4321 	cr4 = cr4_read_shadow();
4322 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4323 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4324 
4325 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4326 #ifdef CONFIG_X86_64
4327 	/*
4328 	 * Load null selectors, so we can avoid reloading them in
4329 	 * vmx_prepare_switch_to_host(), in case userspace uses
4330 	 * the null selectors too (the expected case).
4331 	 */
4332 	vmcs_write16(HOST_DS_SELECTOR, 0);
4333 	vmcs_write16(HOST_ES_SELECTOR, 0);
4334 #else
4335 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4336 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4337 #endif
4338 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4339 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4340 
4341 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4342 
4343 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4344 
4345 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4346 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4347 
4348 	/*
4349 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4350 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4351 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4352 	 * have already done so!).
4353 	 */
4354 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4355 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4356 
4357 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4358 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4359 
4360 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4361 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4362 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4363 	}
4364 
4365 	if (cpu_has_load_ia32_efer())
4366 		vmcs_write64(HOST_IA32_EFER, host_efer);
4367 }
4368 
4369 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4370 {
4371 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4372 
4373 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4374 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4375 	if (!enable_ept) {
4376 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4377 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4378 	}
4379 	if (is_guest_mode(&vmx->vcpu))
4380 		vcpu->arch.cr4_guest_owned_bits &=
4381 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4382 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4383 }
4384 
4385 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4386 {
4387 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4388 
4389 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4390 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4391 
4392 	if (!enable_vnmi)
4393 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4394 
4395 	if (!enable_preemption_timer)
4396 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4397 
4398 	return pin_based_exec_ctrl;
4399 }
4400 
4401 static u32 vmx_vmentry_ctrl(void)
4402 {
4403 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4404 
4405 	if (vmx_pt_mode_is_system())
4406 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4407 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4408 	/*
4409 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4410 	 */
4411 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4412 			  VM_ENTRY_LOAD_IA32_EFER |
4413 			  VM_ENTRY_IA32E_MODE);
4414 
4415 	if (cpu_has_perf_global_ctrl_bug())
4416 		vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4417 
4418 	return vmentry_ctrl;
4419 }
4420 
4421 static u32 vmx_vmexit_ctrl(void)
4422 {
4423 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4424 
4425 	/*
4426 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4427 	 * nested virtualization and thus allowed to be set in vmcs12.
4428 	 */
4429 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4430 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4431 
4432 	if (vmx_pt_mode_is_system())
4433 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4434 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4435 
4436 	if (cpu_has_perf_global_ctrl_bug())
4437 		vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4438 
4439 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4440 	return vmexit_ctrl &
4441 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4442 }
4443 
4444 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4445 {
4446 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4447 
4448 	if (is_guest_mode(vcpu)) {
4449 		vmx->nested.update_vmcs01_apicv_status = true;
4450 		return;
4451 	}
4452 
4453 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4454 
4455 	if (kvm_vcpu_apicv_active(vcpu)) {
4456 		secondary_exec_controls_setbit(vmx,
4457 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4458 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4459 		if (enable_ipiv)
4460 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4461 	} else {
4462 		secondary_exec_controls_clearbit(vmx,
4463 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4464 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4465 		if (enable_ipiv)
4466 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4467 	}
4468 
4469 	vmx_update_msr_bitmap_x2apic(vcpu);
4470 }
4471 
4472 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4473 {
4474 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4475 
4476 	/*
4477 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4478 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4479 	 */
4480 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4481 			  CPU_BASED_USE_IO_BITMAPS |
4482 			  CPU_BASED_MONITOR_TRAP_FLAG |
4483 			  CPU_BASED_PAUSE_EXITING);
4484 
4485 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4486 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4487 			  CPU_BASED_NMI_WINDOW_EXITING);
4488 
4489 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4490 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4491 
4492 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4493 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4494 
4495 #ifdef CONFIG_X86_64
4496 	if (exec_control & CPU_BASED_TPR_SHADOW)
4497 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4498 				  CPU_BASED_CR8_STORE_EXITING);
4499 	else
4500 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4501 				CPU_BASED_CR8_LOAD_EXITING;
4502 #endif
4503 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4504 	if (enable_ept)
4505 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4506 				  CPU_BASED_CR3_STORE_EXITING |
4507 				  CPU_BASED_INVLPG_EXITING);
4508 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4509 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4510 				CPU_BASED_MONITOR_EXITING);
4511 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4512 		exec_control &= ~CPU_BASED_HLT_EXITING;
4513 	return exec_control;
4514 }
4515 
4516 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4517 {
4518 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4519 
4520 	/*
4521 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4522 	 * APICv is inhibited.
4523 	 */
4524 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4525 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4526 
4527 	return exec_control;
4528 }
4529 
4530 /*
4531  * Adjust a single secondary execution control bit to intercept/allow an
4532  * instruction in the guest.  This is usually done based on whether or not a
4533  * feature has been exposed to the guest in order to correctly emulate faults.
4534  */
4535 static inline void
4536 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4537 				  u32 control, bool enabled, bool exiting)
4538 {
4539 	/*
4540 	 * If the control is for an opt-in feature, clear the control if the
4541 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4542 	 * control is opt-out, i.e. an exiting control, clear the control if
4543 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4544 	 * disabled for the associated instruction.  Note, the caller is
4545 	 * responsible presetting exec_control to set all supported bits.
4546 	 */
4547 	if (enabled == exiting)
4548 		*exec_control &= ~control;
4549 
4550 	/*
4551 	 * Update the nested MSR settings so that a nested VMM can/can't set
4552 	 * controls for features that are/aren't exposed to the guest.
4553 	 */
4554 	if (nested) {
4555 		/*
4556 		 * All features that can be added or removed to VMX MSRs must
4557 		 * be supported in the first place for nested virtualization.
4558 		 */
4559 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4560 			enabled = false;
4561 
4562 		if (enabled)
4563 			vmx->nested.msrs.secondary_ctls_high |= control;
4564 		else
4565 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4566 	}
4567 }
4568 
4569 /*
4570  * Wrapper macro for the common case of adjusting a secondary execution control
4571  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4572  * verifies that the control is actually supported by KVM and hardware.
4573  */
4574 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting)	\
4575 ({												\
4576 	struct kvm_vcpu *__vcpu = &(vmx)->vcpu;							\
4577 	bool __enabled;										\
4578 												\
4579 	if (cpu_has_vmx_##name()) {								\
4580 		if (kvm_is_governed_feature(X86_FEATURE_##feat_name))				\
4581 			__enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name);		\
4582 		else										\
4583 			__enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name);		\
4584 		vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4585 						  __enabled, exiting);				\
4586 	}											\
4587 })
4588 
4589 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4590 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4591 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4592 
4593 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4594 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4595 
4596 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4597 {
4598 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4599 
4600 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4601 
4602 	if (vmx_pt_mode_is_system())
4603 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4604 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4605 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4606 	if (vmx->vpid == 0)
4607 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4608 	if (!enable_ept) {
4609 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4610 		enable_unrestricted_guest = 0;
4611 	}
4612 	if (!enable_unrestricted_guest)
4613 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4614 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4615 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4616 	if (!kvm_vcpu_apicv_active(vcpu))
4617 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4618 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4619 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4620 
4621 	/*
4622 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4623 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4624 	 */
4625 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4626 
4627 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4628 	 * in vmx_set_cr4.  */
4629 	exec_control &= ~SECONDARY_EXEC_DESC;
4630 
4631 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4632 	   (handle_vmptrld).
4633 	   We can NOT enable shadow_vmcs here because we don't have yet
4634 	   a current VMCS12
4635 	*/
4636 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4637 
4638 	/*
4639 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4640 	 * it needs to be set here when dirty logging is already active, e.g.
4641 	 * if this vCPU was created after dirty logging was enabled.
4642 	 */
4643 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4644 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4645 
4646 	vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4647 
4648 	/*
4649 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4650 	 * feature is exposed to the guest.  This creates a virtualization hole
4651 	 * if both are supported in hardware but only one is exposed to the
4652 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4653 	 * is advertised is preferable to emulating the advertised instruction
4654 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4655 	 */
4656 	if (cpu_has_vmx_rdtscp()) {
4657 		bool rdpid_or_rdtscp_enabled =
4658 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4659 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4660 
4661 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4662 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4663 						  rdpid_or_rdtscp_enabled, false);
4664 	}
4665 
4666 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4667 
4668 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4669 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4670 
4671 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4672 				    ENABLE_USR_WAIT_PAUSE, false);
4673 
4674 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4675 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4676 
4677 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4678 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4679 
4680 	return exec_control;
4681 }
4682 
4683 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4684 {
4685 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4686 }
4687 
4688 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4689 {
4690 	struct page *pages;
4691 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4692 
4693 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4694 		return 0;
4695 
4696 	if (kvm_vmx->pid_table)
4697 		return 0;
4698 
4699 	pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4700 			    vmx_get_pid_table_order(kvm));
4701 	if (!pages)
4702 		return -ENOMEM;
4703 
4704 	kvm_vmx->pid_table = (void *)page_address(pages);
4705 	return 0;
4706 }
4707 
4708 static int vmx_vcpu_precreate(struct kvm *kvm)
4709 {
4710 	return vmx_alloc_ipiv_pid_table(kvm);
4711 }
4712 
4713 #define VMX_XSS_EXIT_BITMAP 0
4714 
4715 static void init_vmcs(struct vcpu_vmx *vmx)
4716 {
4717 	struct kvm *kvm = vmx->vcpu.kvm;
4718 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4719 
4720 	if (nested)
4721 		nested_vmx_set_vmcs_shadowing_bitmap();
4722 
4723 	if (cpu_has_vmx_msr_bitmap())
4724 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4725 
4726 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4727 
4728 	/* Control */
4729 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4730 
4731 	exec_controls_set(vmx, vmx_exec_control(vmx));
4732 
4733 	if (cpu_has_secondary_exec_ctrls())
4734 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4735 
4736 	if (cpu_has_tertiary_exec_ctrls())
4737 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4738 
4739 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4740 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4741 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4742 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4743 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4744 
4745 		vmcs_write16(GUEST_INTR_STATUS, 0);
4746 
4747 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4748 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4749 	}
4750 
4751 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4752 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4753 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4754 	}
4755 
4756 	if (!kvm_pause_in_guest(kvm)) {
4757 		vmcs_write32(PLE_GAP, ple_gap);
4758 		vmx->ple_window = ple_window;
4759 		vmx->ple_window_dirty = true;
4760 	}
4761 
4762 	if (kvm_notify_vmexit_enabled(kvm))
4763 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4764 
4765 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4766 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4767 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4768 
4769 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4770 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4771 	vmx_set_constant_host_state(vmx);
4772 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4773 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4774 
4775 	if (cpu_has_vmx_vmfunc())
4776 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4777 
4778 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4779 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4780 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4781 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4782 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4783 
4784 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4785 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4786 
4787 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4788 
4789 	/* 22.2.1, 20.8.1 */
4790 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4791 
4792 	vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4793 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4794 
4795 	set_cr4_guest_host_mask(vmx);
4796 
4797 	if (vmx->vpid != 0)
4798 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4799 
4800 	if (cpu_has_vmx_xsaves())
4801 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4802 
4803 	if (enable_pml) {
4804 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4805 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4806 	}
4807 
4808 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4809 
4810 	if (vmx_pt_mode_is_host_guest()) {
4811 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4812 		/* Bit[6~0] are forced to 1, writes are ignored. */
4813 		vmx->pt_desc.guest.output_mask = 0x7F;
4814 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4815 	}
4816 
4817 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4818 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4819 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4820 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4821 
4822 	if (cpu_has_vmx_tpr_shadow()) {
4823 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4824 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4825 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4826 				     __pa(vmx->vcpu.arch.apic->regs));
4827 		vmcs_write32(TPR_THRESHOLD, 0);
4828 	}
4829 
4830 	vmx_setup_uret_msrs(vmx);
4831 }
4832 
4833 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4834 {
4835 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4836 
4837 	init_vmcs(vmx);
4838 
4839 	if (nested)
4840 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4841 
4842 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4843 
4844 	vmx->nested.posted_intr_nv = -1;
4845 	vmx->nested.vmxon_ptr = INVALID_GPA;
4846 	vmx->nested.current_vmptr = INVALID_GPA;
4847 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4848 
4849 	vcpu->arch.microcode_version = 0x100000000ULL;
4850 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4851 
4852 	/*
4853 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4854 	 * or POSTED_INTR_WAKEUP_VECTOR.
4855 	 */
4856 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4857 	vmx->pi_desc.sn = 1;
4858 }
4859 
4860 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4861 {
4862 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4863 
4864 	if (!init_event)
4865 		__vmx_vcpu_reset(vcpu);
4866 
4867 	vmx->rmode.vm86_active = 0;
4868 	vmx->spec_ctrl = 0;
4869 
4870 	vmx->msr_ia32_umwait_control = 0;
4871 
4872 	vmx->hv_deadline_tsc = -1;
4873 	kvm_set_cr8(vcpu, 0);
4874 
4875 	vmx_segment_cache_clear(vmx);
4876 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4877 
4878 	seg_setup(VCPU_SREG_CS);
4879 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4880 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4881 
4882 	seg_setup(VCPU_SREG_DS);
4883 	seg_setup(VCPU_SREG_ES);
4884 	seg_setup(VCPU_SREG_FS);
4885 	seg_setup(VCPU_SREG_GS);
4886 	seg_setup(VCPU_SREG_SS);
4887 
4888 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4889 	vmcs_writel(GUEST_TR_BASE, 0);
4890 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4891 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4892 
4893 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4894 	vmcs_writel(GUEST_LDTR_BASE, 0);
4895 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4896 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4897 
4898 	vmcs_writel(GUEST_GDTR_BASE, 0);
4899 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4900 
4901 	vmcs_writel(GUEST_IDTR_BASE, 0);
4902 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4903 
4904 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4905 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4906 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4907 	if (kvm_mpx_supported())
4908 		vmcs_write64(GUEST_BNDCFGS, 0);
4909 
4910 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4911 
4912 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4913 
4914 	vpid_sync_context(vmx->vpid);
4915 
4916 	vmx_update_fb_clear_dis(vcpu, vmx);
4917 }
4918 
4919 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4920 {
4921 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4922 }
4923 
4924 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4925 {
4926 	if (!enable_vnmi ||
4927 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4928 		vmx_enable_irq_window(vcpu);
4929 		return;
4930 	}
4931 
4932 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4933 }
4934 
4935 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4936 {
4937 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4938 	uint32_t intr;
4939 	int irq = vcpu->arch.interrupt.nr;
4940 
4941 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4942 
4943 	++vcpu->stat.irq_injections;
4944 	if (vmx->rmode.vm86_active) {
4945 		int inc_eip = 0;
4946 		if (vcpu->arch.interrupt.soft)
4947 			inc_eip = vcpu->arch.event_exit_inst_len;
4948 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4949 		return;
4950 	}
4951 	intr = irq | INTR_INFO_VALID_MASK;
4952 	if (vcpu->arch.interrupt.soft) {
4953 		intr |= INTR_TYPE_SOFT_INTR;
4954 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4955 			     vmx->vcpu.arch.event_exit_inst_len);
4956 	} else
4957 		intr |= INTR_TYPE_EXT_INTR;
4958 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4959 
4960 	vmx_clear_hlt(vcpu);
4961 }
4962 
4963 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4964 {
4965 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4966 
4967 	if (!enable_vnmi) {
4968 		/*
4969 		 * Tracking the NMI-blocked state in software is built upon
4970 		 * finding the next open IRQ window. This, in turn, depends on
4971 		 * well-behaving guests: They have to keep IRQs disabled at
4972 		 * least as long as the NMI handler runs. Otherwise we may
4973 		 * cause NMI nesting, maybe breaking the guest. But as this is
4974 		 * highly unlikely, we can live with the residual risk.
4975 		 */
4976 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4977 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4978 	}
4979 
4980 	++vcpu->stat.nmi_injections;
4981 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4982 
4983 	if (vmx->rmode.vm86_active) {
4984 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4985 		return;
4986 	}
4987 
4988 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4989 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4990 
4991 	vmx_clear_hlt(vcpu);
4992 }
4993 
4994 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4995 {
4996 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4997 	bool masked;
4998 
4999 	if (!enable_vnmi)
5000 		return vmx->loaded_vmcs->soft_vnmi_blocked;
5001 	if (vmx->loaded_vmcs->nmi_known_unmasked)
5002 		return false;
5003 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5004 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5005 	return masked;
5006 }
5007 
5008 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5009 {
5010 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5011 
5012 	if (!enable_vnmi) {
5013 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5014 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5015 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
5016 		}
5017 	} else {
5018 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5019 		if (masked)
5020 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5021 				      GUEST_INTR_STATE_NMI);
5022 		else
5023 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5024 					GUEST_INTR_STATE_NMI);
5025 	}
5026 }
5027 
5028 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5029 {
5030 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5031 		return false;
5032 
5033 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5034 		return true;
5035 
5036 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5037 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5038 		 GUEST_INTR_STATE_NMI));
5039 }
5040 
5041 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5042 {
5043 	if (to_vmx(vcpu)->nested.nested_run_pending)
5044 		return -EBUSY;
5045 
5046 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5047 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5048 		return -EBUSY;
5049 
5050 	return !vmx_nmi_blocked(vcpu);
5051 }
5052 
5053 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5054 {
5055 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5056 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5057 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5058 }
5059 
5060 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5061 {
5062 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5063 		return false;
5064 
5065 	return __vmx_interrupt_blocked(vcpu);
5066 }
5067 
5068 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5069 {
5070 	if (to_vmx(vcpu)->nested.nested_run_pending)
5071 		return -EBUSY;
5072 
5073 	/*
5074 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5075 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5076 	 */
5077 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5078 		return -EBUSY;
5079 
5080 	return !vmx_interrupt_blocked(vcpu);
5081 }
5082 
5083 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5084 {
5085 	void __user *ret;
5086 
5087 	if (enable_unrestricted_guest)
5088 		return 0;
5089 
5090 	mutex_lock(&kvm->slots_lock);
5091 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5092 				      PAGE_SIZE * 3);
5093 	mutex_unlock(&kvm->slots_lock);
5094 
5095 	if (IS_ERR(ret))
5096 		return PTR_ERR(ret);
5097 
5098 	to_kvm_vmx(kvm)->tss_addr = addr;
5099 
5100 	return init_rmode_tss(kvm, ret);
5101 }
5102 
5103 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5104 {
5105 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5106 	return 0;
5107 }
5108 
5109 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5110 {
5111 	switch (vec) {
5112 	case BP_VECTOR:
5113 		/*
5114 		 * Update instruction length as we may reinject the exception
5115 		 * from user space while in guest debugging mode.
5116 		 */
5117 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5118 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5119 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5120 			return false;
5121 		fallthrough;
5122 	case DB_VECTOR:
5123 		return !(vcpu->guest_debug &
5124 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5125 	case DE_VECTOR:
5126 	case OF_VECTOR:
5127 	case BR_VECTOR:
5128 	case UD_VECTOR:
5129 	case DF_VECTOR:
5130 	case SS_VECTOR:
5131 	case GP_VECTOR:
5132 	case MF_VECTOR:
5133 		return true;
5134 	}
5135 	return false;
5136 }
5137 
5138 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5139 				  int vec, u32 err_code)
5140 {
5141 	/*
5142 	 * Instruction with address size override prefix opcode 0x67
5143 	 * Cause the #SS fault with 0 error code in VM86 mode.
5144 	 */
5145 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5146 		if (kvm_emulate_instruction(vcpu, 0)) {
5147 			if (vcpu->arch.halt_request) {
5148 				vcpu->arch.halt_request = 0;
5149 				return kvm_emulate_halt_noskip(vcpu);
5150 			}
5151 			return 1;
5152 		}
5153 		return 0;
5154 	}
5155 
5156 	/*
5157 	 * Forward all other exceptions that are valid in real mode.
5158 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5159 	 *        the required debugging infrastructure rework.
5160 	 */
5161 	kvm_queue_exception(vcpu, vec);
5162 	return 1;
5163 }
5164 
5165 static int handle_machine_check(struct kvm_vcpu *vcpu)
5166 {
5167 	/* handled by vmx_vcpu_run() */
5168 	return 1;
5169 }
5170 
5171 /*
5172  * If the host has split lock detection disabled, then #AC is
5173  * unconditionally injected into the guest, which is the pre split lock
5174  * detection behaviour.
5175  *
5176  * If the host has split lock detection enabled then #AC is
5177  * only injected into the guest when:
5178  *  - Guest CPL == 3 (user mode)
5179  *  - Guest has #AC detection enabled in CR0
5180  *  - Guest EFLAGS has AC bit set
5181  */
5182 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5183 {
5184 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5185 		return true;
5186 
5187 	return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5188 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5189 }
5190 
5191 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5192 {
5193 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5194 	struct kvm_run *kvm_run = vcpu->run;
5195 	u32 intr_info, ex_no, error_code;
5196 	unsigned long cr2, dr6;
5197 	u32 vect_info;
5198 
5199 	vect_info = vmx->idt_vectoring_info;
5200 	intr_info = vmx_get_intr_info(vcpu);
5201 
5202 	/*
5203 	 * Machine checks are handled by handle_exception_irqoff(), or by
5204 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5205 	 * vmx_vcpu_enter_exit().
5206 	 */
5207 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5208 		return 1;
5209 
5210 	/*
5211 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5212 	 * This ensures the nested_vmx check is not skipped so vmexit can
5213 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5214 	 * point.
5215 	 */
5216 	if (is_nm_fault(intr_info)) {
5217 		kvm_queue_exception(vcpu, NM_VECTOR);
5218 		return 1;
5219 	}
5220 
5221 	if (is_invalid_opcode(intr_info))
5222 		return handle_ud(vcpu);
5223 
5224 	error_code = 0;
5225 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5226 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5227 
5228 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5229 		WARN_ON_ONCE(!enable_vmware_backdoor);
5230 
5231 		/*
5232 		 * VMware backdoor emulation on #GP interception only handles
5233 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5234 		 * error code on #GP.
5235 		 */
5236 		if (error_code) {
5237 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5238 			return 1;
5239 		}
5240 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5241 	}
5242 
5243 	/*
5244 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5245 	 * MMIO, it is better to report an internal error.
5246 	 * See the comments in vmx_handle_exit.
5247 	 */
5248 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5249 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5250 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5251 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5252 		vcpu->run->internal.ndata = 4;
5253 		vcpu->run->internal.data[0] = vect_info;
5254 		vcpu->run->internal.data[1] = intr_info;
5255 		vcpu->run->internal.data[2] = error_code;
5256 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5257 		return 0;
5258 	}
5259 
5260 	if (is_page_fault(intr_info)) {
5261 		cr2 = vmx_get_exit_qual(vcpu);
5262 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5263 			/*
5264 			 * EPT will cause page fault only if we need to
5265 			 * detect illegal GPAs.
5266 			 */
5267 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5268 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5269 			return 1;
5270 		} else
5271 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5272 	}
5273 
5274 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5275 
5276 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5277 		return handle_rmode_exception(vcpu, ex_no, error_code);
5278 
5279 	switch (ex_no) {
5280 	case DB_VECTOR:
5281 		dr6 = vmx_get_exit_qual(vcpu);
5282 		if (!(vcpu->guest_debug &
5283 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5284 			/*
5285 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5286 			 * instruction.  ICEBP generates a trap-like #DB, but
5287 			 * despite its interception control being tied to #DB,
5288 			 * is an instruction intercept, i.e. the VM-Exit occurs
5289 			 * on the ICEBP itself.  Use the inner "skip" helper to
5290 			 * avoid single-step #DB and MTF updates, as ICEBP is
5291 			 * higher priority.  Note, skipping ICEBP still clears
5292 			 * STI and MOVSS blocking.
5293 			 *
5294 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5295 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5296 			 * blocking is active, as the CPU doesn't set the bit
5297 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5298 			 * consistency check that a single-step #DB is pending
5299 			 * in this scenario as the previous instruction cannot
5300 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5301 			 * don't modify RFLAGS), therefore the one instruction
5302 			 * delay when activating single-step breakpoints must
5303 			 * have already expired.  Note, the CPU sets/clears BS
5304 			 * as appropriate for all other VM-Exits types.
5305 			 */
5306 			if (is_icebp(intr_info))
5307 				WARN_ON(!skip_emulated_instruction(vcpu));
5308 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5309 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5310 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5311 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5312 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5313 
5314 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5315 			return 1;
5316 		}
5317 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5318 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5319 		fallthrough;
5320 	case BP_VECTOR:
5321 		/*
5322 		 * Update instruction length as we may reinject #BP from
5323 		 * user space while in guest debugging mode. Reading it for
5324 		 * #DB as well causes no harm, it is not used in that case.
5325 		 */
5326 		vmx->vcpu.arch.event_exit_inst_len =
5327 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5328 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5329 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5330 		kvm_run->debug.arch.exception = ex_no;
5331 		break;
5332 	case AC_VECTOR:
5333 		if (vmx_guest_inject_ac(vcpu)) {
5334 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5335 			return 1;
5336 		}
5337 
5338 		/*
5339 		 * Handle split lock. Depending on detection mode this will
5340 		 * either warn and disable split lock detection for this
5341 		 * task or force SIGBUS on it.
5342 		 */
5343 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5344 			return 1;
5345 		fallthrough;
5346 	default:
5347 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5348 		kvm_run->ex.exception = ex_no;
5349 		kvm_run->ex.error_code = error_code;
5350 		break;
5351 	}
5352 	return 0;
5353 }
5354 
5355 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5356 {
5357 	++vcpu->stat.irq_exits;
5358 	return 1;
5359 }
5360 
5361 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5362 {
5363 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5364 	vcpu->mmio_needed = 0;
5365 	return 0;
5366 }
5367 
5368 static int handle_io(struct kvm_vcpu *vcpu)
5369 {
5370 	unsigned long exit_qualification;
5371 	int size, in, string;
5372 	unsigned port;
5373 
5374 	exit_qualification = vmx_get_exit_qual(vcpu);
5375 	string = (exit_qualification & 16) != 0;
5376 
5377 	++vcpu->stat.io_exits;
5378 
5379 	if (string)
5380 		return kvm_emulate_instruction(vcpu, 0);
5381 
5382 	port = exit_qualification >> 16;
5383 	size = (exit_qualification & 7) + 1;
5384 	in = (exit_qualification & 8) != 0;
5385 
5386 	return kvm_fast_pio(vcpu, size, port, in);
5387 }
5388 
5389 static void
5390 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5391 {
5392 	/*
5393 	 * Patch in the VMCALL instruction:
5394 	 */
5395 	hypercall[0] = 0x0f;
5396 	hypercall[1] = 0x01;
5397 	hypercall[2] = 0xc1;
5398 }
5399 
5400 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5401 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5402 {
5403 	if (is_guest_mode(vcpu)) {
5404 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5405 		unsigned long orig_val = val;
5406 
5407 		/*
5408 		 * We get here when L2 changed cr0 in a way that did not change
5409 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5410 		 * but did change L0 shadowed bits. So we first calculate the
5411 		 * effective cr0 value that L1 would like to write into the
5412 		 * hardware. It consists of the L2-owned bits from the new
5413 		 * value combined with the L1-owned bits from L1's guest_cr0.
5414 		 */
5415 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5416 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5417 
5418 		if (kvm_set_cr0(vcpu, val))
5419 			return 1;
5420 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5421 		return 0;
5422 	} else {
5423 		return kvm_set_cr0(vcpu, val);
5424 	}
5425 }
5426 
5427 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5428 {
5429 	if (is_guest_mode(vcpu)) {
5430 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5431 		unsigned long orig_val = val;
5432 
5433 		/* analogously to handle_set_cr0 */
5434 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5435 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5436 		if (kvm_set_cr4(vcpu, val))
5437 			return 1;
5438 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5439 		return 0;
5440 	} else
5441 		return kvm_set_cr4(vcpu, val);
5442 }
5443 
5444 static int handle_desc(struct kvm_vcpu *vcpu)
5445 {
5446 	/*
5447 	 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5448 	 * and other code needs to be updated if UMIP can be guest owned.
5449 	 */
5450 	BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5451 
5452 	WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5453 	return kvm_emulate_instruction(vcpu, 0);
5454 }
5455 
5456 static int handle_cr(struct kvm_vcpu *vcpu)
5457 {
5458 	unsigned long exit_qualification, val;
5459 	int cr;
5460 	int reg;
5461 	int err;
5462 	int ret;
5463 
5464 	exit_qualification = vmx_get_exit_qual(vcpu);
5465 	cr = exit_qualification & 15;
5466 	reg = (exit_qualification >> 8) & 15;
5467 	switch ((exit_qualification >> 4) & 3) {
5468 	case 0: /* mov to cr */
5469 		val = kvm_register_read(vcpu, reg);
5470 		trace_kvm_cr_write(cr, val);
5471 		switch (cr) {
5472 		case 0:
5473 			err = handle_set_cr0(vcpu, val);
5474 			return kvm_complete_insn_gp(vcpu, err);
5475 		case 3:
5476 			WARN_ON_ONCE(enable_unrestricted_guest);
5477 
5478 			err = kvm_set_cr3(vcpu, val);
5479 			return kvm_complete_insn_gp(vcpu, err);
5480 		case 4:
5481 			err = handle_set_cr4(vcpu, val);
5482 			return kvm_complete_insn_gp(vcpu, err);
5483 		case 8: {
5484 				u8 cr8_prev = kvm_get_cr8(vcpu);
5485 				u8 cr8 = (u8)val;
5486 				err = kvm_set_cr8(vcpu, cr8);
5487 				ret = kvm_complete_insn_gp(vcpu, err);
5488 				if (lapic_in_kernel(vcpu))
5489 					return ret;
5490 				if (cr8_prev <= cr8)
5491 					return ret;
5492 				/*
5493 				 * TODO: we might be squashing a
5494 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5495 				 * KVM_EXIT_DEBUG here.
5496 				 */
5497 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5498 				return 0;
5499 			}
5500 		}
5501 		break;
5502 	case 2: /* clts */
5503 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5504 		return -EIO;
5505 	case 1: /*mov from cr*/
5506 		switch (cr) {
5507 		case 3:
5508 			WARN_ON_ONCE(enable_unrestricted_guest);
5509 
5510 			val = kvm_read_cr3(vcpu);
5511 			kvm_register_write(vcpu, reg, val);
5512 			trace_kvm_cr_read(cr, val);
5513 			return kvm_skip_emulated_instruction(vcpu);
5514 		case 8:
5515 			val = kvm_get_cr8(vcpu);
5516 			kvm_register_write(vcpu, reg, val);
5517 			trace_kvm_cr_read(cr, val);
5518 			return kvm_skip_emulated_instruction(vcpu);
5519 		}
5520 		break;
5521 	case 3: /* lmsw */
5522 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5523 		trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5524 		kvm_lmsw(vcpu, val);
5525 
5526 		return kvm_skip_emulated_instruction(vcpu);
5527 	default:
5528 		break;
5529 	}
5530 	vcpu->run->exit_reason = 0;
5531 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5532 	       (int)(exit_qualification >> 4) & 3, cr);
5533 	return 0;
5534 }
5535 
5536 static int handle_dr(struct kvm_vcpu *vcpu)
5537 {
5538 	unsigned long exit_qualification;
5539 	int dr, dr7, reg;
5540 	int err = 1;
5541 
5542 	exit_qualification = vmx_get_exit_qual(vcpu);
5543 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5544 
5545 	/* First, if DR does not exist, trigger UD */
5546 	if (!kvm_require_dr(vcpu, dr))
5547 		return 1;
5548 
5549 	if (vmx_get_cpl(vcpu) > 0)
5550 		goto out;
5551 
5552 	dr7 = vmcs_readl(GUEST_DR7);
5553 	if (dr7 & DR7_GD) {
5554 		/*
5555 		 * As the vm-exit takes precedence over the debug trap, we
5556 		 * need to emulate the latter, either for the host or the
5557 		 * guest debugging itself.
5558 		 */
5559 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5560 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5561 			vcpu->run->debug.arch.dr7 = dr7;
5562 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5563 			vcpu->run->debug.arch.exception = DB_VECTOR;
5564 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5565 			return 0;
5566 		} else {
5567 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5568 			return 1;
5569 		}
5570 	}
5571 
5572 	if (vcpu->guest_debug == 0) {
5573 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5574 
5575 		/*
5576 		 * No more DR vmexits; force a reload of the debug registers
5577 		 * and reenter on this instruction.  The next vmexit will
5578 		 * retrieve the full state of the debug registers.
5579 		 */
5580 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5581 		return 1;
5582 	}
5583 
5584 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5585 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5586 		unsigned long val;
5587 
5588 		kvm_get_dr(vcpu, dr, &val);
5589 		kvm_register_write(vcpu, reg, val);
5590 		err = 0;
5591 	} else {
5592 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5593 	}
5594 
5595 out:
5596 	return kvm_complete_insn_gp(vcpu, err);
5597 }
5598 
5599 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5600 {
5601 	get_debugreg(vcpu->arch.db[0], 0);
5602 	get_debugreg(vcpu->arch.db[1], 1);
5603 	get_debugreg(vcpu->arch.db[2], 2);
5604 	get_debugreg(vcpu->arch.db[3], 3);
5605 	get_debugreg(vcpu->arch.dr6, 6);
5606 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5607 
5608 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5609 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5610 
5611 	/*
5612 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5613 	 * a stale dr6 from the guest.
5614 	 */
5615 	set_debugreg(DR6_RESERVED, 6);
5616 }
5617 
5618 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5619 {
5620 	vmcs_writel(GUEST_DR7, val);
5621 }
5622 
5623 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5624 {
5625 	kvm_apic_update_ppr(vcpu);
5626 	return 1;
5627 }
5628 
5629 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5630 {
5631 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5632 
5633 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5634 
5635 	++vcpu->stat.irq_window_exits;
5636 	return 1;
5637 }
5638 
5639 static int handle_invlpg(struct kvm_vcpu *vcpu)
5640 {
5641 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5642 
5643 	kvm_mmu_invlpg(vcpu, exit_qualification);
5644 	return kvm_skip_emulated_instruction(vcpu);
5645 }
5646 
5647 static int handle_apic_access(struct kvm_vcpu *vcpu)
5648 {
5649 	if (likely(fasteoi)) {
5650 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5651 		int access_type, offset;
5652 
5653 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5654 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5655 		/*
5656 		 * Sane guest uses MOV to write EOI, with written value
5657 		 * not cared. So make a short-circuit here by avoiding
5658 		 * heavy instruction emulation.
5659 		 */
5660 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5661 		    (offset == APIC_EOI)) {
5662 			kvm_lapic_set_eoi(vcpu);
5663 			return kvm_skip_emulated_instruction(vcpu);
5664 		}
5665 	}
5666 	return kvm_emulate_instruction(vcpu, 0);
5667 }
5668 
5669 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5670 {
5671 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5672 	int vector = exit_qualification & 0xff;
5673 
5674 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5675 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5676 	return 1;
5677 }
5678 
5679 static int handle_apic_write(struct kvm_vcpu *vcpu)
5680 {
5681 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5682 
5683 	/*
5684 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5685 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5686 	 * for the access.  I.e. the correct value has already been  written to
5687 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5688 	 * retrieve the register value and emulate the access.
5689 	 */
5690 	u32 offset = exit_qualification & 0xff0;
5691 
5692 	kvm_apic_write_nodecode(vcpu, offset);
5693 	return 1;
5694 }
5695 
5696 static int handle_task_switch(struct kvm_vcpu *vcpu)
5697 {
5698 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5699 	unsigned long exit_qualification;
5700 	bool has_error_code = false;
5701 	u32 error_code = 0;
5702 	u16 tss_selector;
5703 	int reason, type, idt_v, idt_index;
5704 
5705 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5706 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5707 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5708 
5709 	exit_qualification = vmx_get_exit_qual(vcpu);
5710 
5711 	reason = (u32)exit_qualification >> 30;
5712 	if (reason == TASK_SWITCH_GATE && idt_v) {
5713 		switch (type) {
5714 		case INTR_TYPE_NMI_INTR:
5715 			vcpu->arch.nmi_injected = false;
5716 			vmx_set_nmi_mask(vcpu, true);
5717 			break;
5718 		case INTR_TYPE_EXT_INTR:
5719 		case INTR_TYPE_SOFT_INTR:
5720 			kvm_clear_interrupt_queue(vcpu);
5721 			break;
5722 		case INTR_TYPE_HARD_EXCEPTION:
5723 			if (vmx->idt_vectoring_info &
5724 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5725 				has_error_code = true;
5726 				error_code =
5727 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5728 			}
5729 			fallthrough;
5730 		case INTR_TYPE_SOFT_EXCEPTION:
5731 			kvm_clear_exception_queue(vcpu);
5732 			break;
5733 		default:
5734 			break;
5735 		}
5736 	}
5737 	tss_selector = exit_qualification;
5738 
5739 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5740 		       type != INTR_TYPE_EXT_INTR &&
5741 		       type != INTR_TYPE_NMI_INTR))
5742 		WARN_ON(!skip_emulated_instruction(vcpu));
5743 
5744 	/*
5745 	 * TODO: What about debug traps on tss switch?
5746 	 *       Are we supposed to inject them and update dr6?
5747 	 */
5748 	return kvm_task_switch(vcpu, tss_selector,
5749 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5750 			       reason, has_error_code, error_code);
5751 }
5752 
5753 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5754 {
5755 	unsigned long exit_qualification;
5756 	gpa_t gpa;
5757 	u64 error_code;
5758 
5759 	exit_qualification = vmx_get_exit_qual(vcpu);
5760 
5761 	/*
5762 	 * EPT violation happened while executing iret from NMI,
5763 	 * "blocked by NMI" bit has to be set before next VM entry.
5764 	 * There are errata that may cause this bit to not be set:
5765 	 * AAK134, BY25.
5766 	 */
5767 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5768 			enable_vnmi &&
5769 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5770 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5771 
5772 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5773 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5774 
5775 	/* Is it a read fault? */
5776 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5777 		     ? PFERR_USER_MASK : 0;
5778 	/* Is it a write fault? */
5779 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5780 		      ? PFERR_WRITE_MASK : 0;
5781 	/* Is it a fetch fault? */
5782 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5783 		      ? PFERR_FETCH_MASK : 0;
5784 	/* ept page table entry is present? */
5785 	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5786 		      ? PFERR_PRESENT_MASK : 0;
5787 
5788 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5789 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5790 
5791 	vcpu->arch.exit_qualification = exit_qualification;
5792 
5793 	/*
5794 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5795 	 * a guest page fault.  We have to emulate the instruction here, because
5796 	 * if the illegal address is that of a paging structure, then
5797 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5798 	 * would also use advanced VM-exit information for EPT violations to
5799 	 * reconstruct the page fault error code.
5800 	 */
5801 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5802 		return kvm_emulate_instruction(vcpu, 0);
5803 
5804 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5805 }
5806 
5807 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5808 {
5809 	gpa_t gpa;
5810 
5811 	if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5812 		return 1;
5813 
5814 	/*
5815 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5816 	 * nGPA here instead of the required GPA.
5817 	 */
5818 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5819 	if (!is_guest_mode(vcpu) &&
5820 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5821 		trace_kvm_fast_mmio(gpa);
5822 		return kvm_skip_emulated_instruction(vcpu);
5823 	}
5824 
5825 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5826 }
5827 
5828 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5829 {
5830 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5831 		return -EIO;
5832 
5833 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5834 	++vcpu->stat.nmi_window_exits;
5835 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5836 
5837 	return 1;
5838 }
5839 
5840 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5841 {
5842 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5843 
5844 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5845 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5846 }
5847 
5848 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5849 {
5850 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5851 	bool intr_window_requested;
5852 	unsigned count = 130;
5853 
5854 	intr_window_requested = exec_controls_get(vmx) &
5855 				CPU_BASED_INTR_WINDOW_EXITING;
5856 
5857 	while (vmx->emulation_required && count-- != 0) {
5858 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5859 			return handle_interrupt_window(&vmx->vcpu);
5860 
5861 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5862 			return 1;
5863 
5864 		if (!kvm_emulate_instruction(vcpu, 0))
5865 			return 0;
5866 
5867 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5868 			kvm_prepare_emulation_failure_exit(vcpu);
5869 			return 0;
5870 		}
5871 
5872 		if (vcpu->arch.halt_request) {
5873 			vcpu->arch.halt_request = 0;
5874 			return kvm_emulate_halt_noskip(vcpu);
5875 		}
5876 
5877 		/*
5878 		 * Note, return 1 and not 0, vcpu_run() will invoke
5879 		 * xfer_to_guest_mode() which will create a proper return
5880 		 * code.
5881 		 */
5882 		if (__xfer_to_guest_mode_work_pending())
5883 			return 1;
5884 	}
5885 
5886 	return 1;
5887 }
5888 
5889 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5890 {
5891 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5892 		kvm_prepare_emulation_failure_exit(vcpu);
5893 		return 0;
5894 	}
5895 
5896 	return 1;
5897 }
5898 
5899 static void grow_ple_window(struct kvm_vcpu *vcpu)
5900 {
5901 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5902 	unsigned int old = vmx->ple_window;
5903 
5904 	vmx->ple_window = __grow_ple_window(old, ple_window,
5905 					    ple_window_grow,
5906 					    ple_window_max);
5907 
5908 	if (vmx->ple_window != old) {
5909 		vmx->ple_window_dirty = true;
5910 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5911 					    vmx->ple_window, old);
5912 	}
5913 }
5914 
5915 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5916 {
5917 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5918 	unsigned int old = vmx->ple_window;
5919 
5920 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5921 					      ple_window_shrink,
5922 					      ple_window);
5923 
5924 	if (vmx->ple_window != old) {
5925 		vmx->ple_window_dirty = true;
5926 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5927 					    vmx->ple_window, old);
5928 	}
5929 }
5930 
5931 /*
5932  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5933  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5934  */
5935 static int handle_pause(struct kvm_vcpu *vcpu)
5936 {
5937 	if (!kvm_pause_in_guest(vcpu->kvm))
5938 		grow_ple_window(vcpu);
5939 
5940 	/*
5941 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5942 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5943 	 * never set PAUSE_EXITING and just set PLE if supported,
5944 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5945 	 */
5946 	kvm_vcpu_on_spin(vcpu, true);
5947 	return kvm_skip_emulated_instruction(vcpu);
5948 }
5949 
5950 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5951 {
5952 	return 1;
5953 }
5954 
5955 static int handle_invpcid(struct kvm_vcpu *vcpu)
5956 {
5957 	u32 vmx_instruction_info;
5958 	unsigned long type;
5959 	gva_t gva;
5960 	struct {
5961 		u64 pcid;
5962 		u64 gla;
5963 	} operand;
5964 	int gpr_index;
5965 
5966 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5967 		kvm_queue_exception(vcpu, UD_VECTOR);
5968 		return 1;
5969 	}
5970 
5971 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5972 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5973 	type = kvm_register_read(vcpu, gpr_index);
5974 
5975 	/* According to the Intel instruction reference, the memory operand
5976 	 * is read even if it isn't needed (e.g., for type==all)
5977 	 */
5978 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5979 				vmx_instruction_info, false,
5980 				sizeof(operand), &gva))
5981 		return 1;
5982 
5983 	return kvm_handle_invpcid(vcpu, type, gva);
5984 }
5985 
5986 static int handle_pml_full(struct kvm_vcpu *vcpu)
5987 {
5988 	unsigned long exit_qualification;
5989 
5990 	trace_kvm_pml_full(vcpu->vcpu_id);
5991 
5992 	exit_qualification = vmx_get_exit_qual(vcpu);
5993 
5994 	/*
5995 	 * PML buffer FULL happened while executing iret from NMI,
5996 	 * "blocked by NMI" bit has to be set before next VM entry.
5997 	 */
5998 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5999 			enable_vnmi &&
6000 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
6001 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6002 				GUEST_INTR_STATE_NMI);
6003 
6004 	/*
6005 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
6006 	 * here.., and there's no userspace involvement needed for PML.
6007 	 */
6008 	return 1;
6009 }
6010 
6011 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
6012 {
6013 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6014 
6015 	if (!vmx->req_immediate_exit &&
6016 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
6017 		kvm_lapic_expired_hv_timer(vcpu);
6018 		return EXIT_FASTPATH_REENTER_GUEST;
6019 	}
6020 
6021 	return EXIT_FASTPATH_NONE;
6022 }
6023 
6024 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6025 {
6026 	handle_fastpath_preemption_timer(vcpu);
6027 	return 1;
6028 }
6029 
6030 /*
6031  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6032  * are overwritten by nested_vmx_setup() when nested=1.
6033  */
6034 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6035 {
6036 	kvm_queue_exception(vcpu, UD_VECTOR);
6037 	return 1;
6038 }
6039 
6040 #ifndef CONFIG_X86_SGX_KVM
6041 static int handle_encls(struct kvm_vcpu *vcpu)
6042 {
6043 	/*
6044 	 * SGX virtualization is disabled.  There is no software enable bit for
6045 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6046 	 * the guest from executing ENCLS (when SGX is supported by hardware).
6047 	 */
6048 	kvm_queue_exception(vcpu, UD_VECTOR);
6049 	return 1;
6050 }
6051 #endif /* CONFIG_X86_SGX_KVM */
6052 
6053 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6054 {
6055 	/*
6056 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6057 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6058 	 * vmx_handle_exit().
6059 	 */
6060 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6061 	return 1;
6062 }
6063 
6064 static int handle_notify(struct kvm_vcpu *vcpu)
6065 {
6066 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6067 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6068 
6069 	++vcpu->stat.notify_window_exits;
6070 
6071 	/*
6072 	 * Notify VM exit happened while executing iret from NMI,
6073 	 * "blocked by NMI" bit has to be set before next VM entry.
6074 	 */
6075 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6076 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6077 			      GUEST_INTR_STATE_NMI);
6078 
6079 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6080 	    context_invalid) {
6081 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6082 		vcpu->run->notify.flags = context_invalid ?
6083 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6084 		return 0;
6085 	}
6086 
6087 	return 1;
6088 }
6089 
6090 /*
6091  * The exit handlers return 1 if the exit was handled fully and guest execution
6092  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6093  * to be done to userspace and return 0.
6094  */
6095 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6096 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6097 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6098 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6099 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6100 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6101 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6102 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6103 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6104 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6105 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6106 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6107 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6108 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6109 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6110 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6111 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6112 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6113 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6114 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6115 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6116 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6117 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6118 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6119 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6120 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6121 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6122 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6123 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6124 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6125 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6126 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6127 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6128 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6129 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6130 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6131 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6132 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6133 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6134 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6135 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6136 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6137 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6138 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6139 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6140 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6141 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6142 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6143 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6144 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6145 	[EXIT_REASON_ENCLS]		      = handle_encls,
6146 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6147 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6148 };
6149 
6150 static const int kvm_vmx_max_exit_handlers =
6151 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6152 
6153 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6154 			      u64 *info1, u64 *info2,
6155 			      u32 *intr_info, u32 *error_code)
6156 {
6157 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6158 
6159 	*reason = vmx->exit_reason.full;
6160 	*info1 = vmx_get_exit_qual(vcpu);
6161 	if (!(vmx->exit_reason.failed_vmentry)) {
6162 		*info2 = vmx->idt_vectoring_info;
6163 		*intr_info = vmx_get_intr_info(vcpu);
6164 		if (is_exception_with_error_code(*intr_info))
6165 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6166 		else
6167 			*error_code = 0;
6168 	} else {
6169 		*info2 = 0;
6170 		*intr_info = 0;
6171 		*error_code = 0;
6172 	}
6173 }
6174 
6175 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6176 {
6177 	if (vmx->pml_pg) {
6178 		__free_page(vmx->pml_pg);
6179 		vmx->pml_pg = NULL;
6180 	}
6181 }
6182 
6183 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6184 {
6185 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6186 	u64 *pml_buf;
6187 	u16 pml_idx;
6188 
6189 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6190 
6191 	/* Do nothing if PML buffer is empty */
6192 	if (pml_idx == (PML_ENTITY_NUM - 1))
6193 		return;
6194 
6195 	/* PML index always points to next available PML buffer entity */
6196 	if (pml_idx >= PML_ENTITY_NUM)
6197 		pml_idx = 0;
6198 	else
6199 		pml_idx++;
6200 
6201 	pml_buf = page_address(vmx->pml_pg);
6202 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6203 		u64 gpa;
6204 
6205 		gpa = pml_buf[pml_idx];
6206 		WARN_ON(gpa & (PAGE_SIZE - 1));
6207 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6208 	}
6209 
6210 	/* reset PML index */
6211 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6212 }
6213 
6214 static void vmx_dump_sel(char *name, uint32_t sel)
6215 {
6216 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6217 	       name, vmcs_read16(sel),
6218 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6219 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6220 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6221 }
6222 
6223 static void vmx_dump_dtsel(char *name, uint32_t limit)
6224 {
6225 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6226 	       name, vmcs_read32(limit),
6227 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6228 }
6229 
6230 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6231 {
6232 	unsigned int i;
6233 	struct vmx_msr_entry *e;
6234 
6235 	pr_err("MSR %s:\n", name);
6236 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6237 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6238 }
6239 
6240 void dump_vmcs(struct kvm_vcpu *vcpu)
6241 {
6242 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6243 	u32 vmentry_ctl, vmexit_ctl;
6244 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6245 	u64 tertiary_exec_control;
6246 	unsigned long cr4;
6247 	int efer_slot;
6248 
6249 	if (!dump_invalid_vmcs) {
6250 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6251 		return;
6252 	}
6253 
6254 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6255 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6256 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6257 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6258 	cr4 = vmcs_readl(GUEST_CR4);
6259 
6260 	if (cpu_has_secondary_exec_ctrls())
6261 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6262 	else
6263 		secondary_exec_control = 0;
6264 
6265 	if (cpu_has_tertiary_exec_ctrls())
6266 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6267 	else
6268 		tertiary_exec_control = 0;
6269 
6270 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6271 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6272 	pr_err("*** Guest State ***\n");
6273 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6274 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6275 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6276 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6277 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6278 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6279 	if (cpu_has_vmx_ept()) {
6280 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6281 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6282 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6283 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6284 	}
6285 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6286 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6287 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6288 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6289 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6290 	       vmcs_readl(GUEST_SYSENTER_ESP),
6291 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6292 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6293 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6294 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6295 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6296 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6297 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6298 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6299 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6300 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6301 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6302 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6303 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6304 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6305 	else if (efer_slot >= 0)
6306 		pr_err("EFER= 0x%016llx (autoload)\n",
6307 		       vmx->msr_autoload.guest.val[efer_slot].value);
6308 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6309 		pr_err("EFER= 0x%016llx (effective)\n",
6310 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6311 	else
6312 		pr_err("EFER= 0x%016llx (effective)\n",
6313 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6314 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6315 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6316 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6317 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6318 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6319 	if (cpu_has_load_perf_global_ctrl() &&
6320 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6321 		pr_err("PerfGlobCtl = 0x%016llx\n",
6322 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6323 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6324 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6325 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6326 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6327 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6328 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6329 		pr_err("InterruptStatus = %04x\n",
6330 		       vmcs_read16(GUEST_INTR_STATUS));
6331 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6332 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6333 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6334 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6335 
6336 	pr_err("*** Host State ***\n");
6337 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6338 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6339 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6340 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6341 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6342 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6343 	       vmcs_read16(HOST_TR_SELECTOR));
6344 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6345 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6346 	       vmcs_readl(HOST_TR_BASE));
6347 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6348 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6349 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6350 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6351 	       vmcs_readl(HOST_CR4));
6352 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6353 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6354 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6355 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6356 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6357 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6358 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6359 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6360 	if (cpu_has_load_perf_global_ctrl() &&
6361 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6362 		pr_err("PerfGlobCtl = 0x%016llx\n",
6363 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6364 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6365 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6366 
6367 	pr_err("*** Control State ***\n");
6368 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6369 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6370 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6371 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6372 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6373 	       vmcs_read32(EXCEPTION_BITMAP),
6374 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6375 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6376 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6377 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6378 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6379 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6380 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6381 	       vmcs_read32(VM_EXIT_INTR_INFO),
6382 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6383 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6384 	pr_err("        reason=%08x qualification=%016lx\n",
6385 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6386 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6387 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6388 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6389 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6390 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6391 		pr_err("TSC Multiplier = 0x%016llx\n",
6392 		       vmcs_read64(TSC_MULTIPLIER));
6393 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6394 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6395 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6396 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6397 		}
6398 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6399 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6400 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6401 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6402 	}
6403 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6404 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6405 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6406 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6407 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6408 		pr_err("PLE Gap=%08x Window=%08x\n",
6409 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6410 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6411 		pr_err("Virtual processor ID = 0x%04x\n",
6412 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6413 }
6414 
6415 /*
6416  * The guest has exited.  See if we can fix it or if we need userspace
6417  * assistance.
6418  */
6419 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6420 {
6421 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6422 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6423 	u32 vectoring_info = vmx->idt_vectoring_info;
6424 	u16 exit_handler_index;
6425 
6426 	/*
6427 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6428 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6429 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6430 	 * mode as if vcpus is in root mode, the PML buffer must has been
6431 	 * flushed already.  Note, PML is never enabled in hardware while
6432 	 * running L2.
6433 	 */
6434 	if (enable_pml && !is_guest_mode(vcpu))
6435 		vmx_flush_pml_buffer(vcpu);
6436 
6437 	/*
6438 	 * KVM should never reach this point with a pending nested VM-Enter.
6439 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6440 	 * invalid guest state should never happen as that means KVM knowingly
6441 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6442 	 */
6443 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6444 		return -EIO;
6445 
6446 	if (is_guest_mode(vcpu)) {
6447 		/*
6448 		 * PML is never enabled when running L2, bail immediately if a
6449 		 * PML full exit occurs as something is horribly wrong.
6450 		 */
6451 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6452 			goto unexpected_vmexit;
6453 
6454 		/*
6455 		 * The host physical addresses of some pages of guest memory
6456 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6457 		 * Page). The CPU may write to these pages via their host
6458 		 * physical address while L2 is running, bypassing any
6459 		 * address-translation-based dirty tracking (e.g. EPT write
6460 		 * protection).
6461 		 *
6462 		 * Mark them dirty on every exit from L2 to prevent them from
6463 		 * getting out of sync with dirty tracking.
6464 		 */
6465 		nested_mark_vmcs12_pages_dirty(vcpu);
6466 
6467 		/*
6468 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6469 		 * operation, nested VM-Enter rejects any attempt to enter L2
6470 		 * with invalid state.  However, those checks are skipped if
6471 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6472 		 * L2 state is invalid, it means either L1 modified SMRAM state
6473 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6474 		 * doing so is architecturally allowed in the RSM case, and is
6475 		 * the least awful solution for the userspace case without
6476 		 * risking false positives.
6477 		 */
6478 		if (vmx->emulation_required) {
6479 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6480 			return 1;
6481 		}
6482 
6483 		if (nested_vmx_reflect_vmexit(vcpu))
6484 			return 1;
6485 	}
6486 
6487 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6488 	if (vmx->emulation_required)
6489 		return handle_invalid_guest_state(vcpu);
6490 
6491 	if (exit_reason.failed_vmentry) {
6492 		dump_vmcs(vcpu);
6493 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6494 		vcpu->run->fail_entry.hardware_entry_failure_reason
6495 			= exit_reason.full;
6496 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6497 		return 0;
6498 	}
6499 
6500 	if (unlikely(vmx->fail)) {
6501 		dump_vmcs(vcpu);
6502 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6503 		vcpu->run->fail_entry.hardware_entry_failure_reason
6504 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6505 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6506 		return 0;
6507 	}
6508 
6509 	/*
6510 	 * Note:
6511 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6512 	 * delivery event since it indicates guest is accessing MMIO.
6513 	 * The vm-exit can be triggered again after return to guest that
6514 	 * will cause infinite loop.
6515 	 */
6516 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6517 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6518 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6519 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6520 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6521 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6522 	     exit_reason.basic != EXIT_REASON_NOTIFY)) {
6523 		int ndata = 3;
6524 
6525 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6526 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6527 		vcpu->run->internal.data[0] = vectoring_info;
6528 		vcpu->run->internal.data[1] = exit_reason.full;
6529 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6530 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6531 			vcpu->run->internal.data[ndata++] =
6532 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6533 		}
6534 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6535 		vcpu->run->internal.ndata = ndata;
6536 		return 0;
6537 	}
6538 
6539 	if (unlikely(!enable_vnmi &&
6540 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6541 		if (!vmx_interrupt_blocked(vcpu)) {
6542 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6543 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6544 			   vcpu->arch.nmi_pending) {
6545 			/*
6546 			 * This CPU don't support us in finding the end of an
6547 			 * NMI-blocked window if the guest runs with IRQs
6548 			 * disabled. So we pull the trigger after 1 s of
6549 			 * futile waiting, but inform the user about this.
6550 			 */
6551 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6552 			       "state on VCPU %d after 1 s timeout\n",
6553 			       __func__, vcpu->vcpu_id);
6554 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6555 		}
6556 	}
6557 
6558 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6559 		return 1;
6560 
6561 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6562 		goto unexpected_vmexit;
6563 #ifdef CONFIG_RETPOLINE
6564 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6565 		return kvm_emulate_wrmsr(vcpu);
6566 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6567 		return handle_preemption_timer(vcpu);
6568 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6569 		return handle_interrupt_window(vcpu);
6570 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6571 		return handle_external_interrupt(vcpu);
6572 	else if (exit_reason.basic == EXIT_REASON_HLT)
6573 		return kvm_emulate_halt(vcpu);
6574 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6575 		return handle_ept_misconfig(vcpu);
6576 #endif
6577 
6578 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6579 						kvm_vmx_max_exit_handlers);
6580 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6581 		goto unexpected_vmexit;
6582 
6583 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6584 
6585 unexpected_vmexit:
6586 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6587 		    exit_reason.full);
6588 	dump_vmcs(vcpu);
6589 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6590 	vcpu->run->internal.suberror =
6591 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6592 	vcpu->run->internal.ndata = 2;
6593 	vcpu->run->internal.data[0] = exit_reason.full;
6594 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6595 	return 0;
6596 }
6597 
6598 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6599 {
6600 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6601 
6602 	/*
6603 	 * Exit to user space when bus lock detected to inform that there is
6604 	 * a bus lock in guest.
6605 	 */
6606 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6607 		if (ret > 0)
6608 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6609 
6610 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6611 		return 0;
6612 	}
6613 	return ret;
6614 }
6615 
6616 /*
6617  * Software based L1D cache flush which is used when microcode providing
6618  * the cache control MSR is not loaded.
6619  *
6620  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6621  * flush it is required to read in 64 KiB because the replacement algorithm
6622  * is not exactly LRU. This could be sized at runtime via topology
6623  * information but as all relevant affected CPUs have 32KiB L1D cache size
6624  * there is no point in doing so.
6625  */
6626 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6627 {
6628 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6629 
6630 	/*
6631 	 * This code is only executed when the flush mode is 'cond' or
6632 	 * 'always'
6633 	 */
6634 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6635 		bool flush_l1d;
6636 
6637 		/*
6638 		 * Clear the per-vcpu flush bit, it gets set again
6639 		 * either from vcpu_run() or from one of the unsafe
6640 		 * VMEXIT handlers.
6641 		 */
6642 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6643 		vcpu->arch.l1tf_flush_l1d = false;
6644 
6645 		/*
6646 		 * Clear the per-cpu flush bit, it gets set again from
6647 		 * the interrupt handlers.
6648 		 */
6649 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6650 		kvm_clear_cpu_l1tf_flush_l1d();
6651 
6652 		if (!flush_l1d)
6653 			return;
6654 	}
6655 
6656 	vcpu->stat.l1d_flush++;
6657 
6658 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6659 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6660 		return;
6661 	}
6662 
6663 	asm volatile(
6664 		/* First ensure the pages are in the TLB */
6665 		"xorl	%%eax, %%eax\n"
6666 		".Lpopulate_tlb:\n\t"
6667 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6668 		"addl	$4096, %%eax\n\t"
6669 		"cmpl	%%eax, %[size]\n\t"
6670 		"jne	.Lpopulate_tlb\n\t"
6671 		"xorl	%%eax, %%eax\n\t"
6672 		"cpuid\n\t"
6673 		/* Now fill the cache */
6674 		"xorl	%%eax, %%eax\n"
6675 		".Lfill_cache:\n"
6676 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6677 		"addl	$64, %%eax\n\t"
6678 		"cmpl	%%eax, %[size]\n\t"
6679 		"jne	.Lfill_cache\n\t"
6680 		"lfence\n"
6681 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6682 		    [size] "r" (size)
6683 		: "eax", "ebx", "ecx", "edx");
6684 }
6685 
6686 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6687 {
6688 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6689 	int tpr_threshold;
6690 
6691 	if (is_guest_mode(vcpu) &&
6692 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6693 		return;
6694 
6695 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6696 	if (is_guest_mode(vcpu))
6697 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6698 	else
6699 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6700 }
6701 
6702 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6703 {
6704 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6705 	u32 sec_exec_control;
6706 
6707 	if (!lapic_in_kernel(vcpu))
6708 		return;
6709 
6710 	if (!flexpriority_enabled &&
6711 	    !cpu_has_vmx_virtualize_x2apic_mode())
6712 		return;
6713 
6714 	/* Postpone execution until vmcs01 is the current VMCS. */
6715 	if (is_guest_mode(vcpu)) {
6716 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6717 		return;
6718 	}
6719 
6720 	sec_exec_control = secondary_exec_controls_get(vmx);
6721 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6722 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6723 
6724 	switch (kvm_get_apic_mode(vcpu)) {
6725 	case LAPIC_MODE_INVALID:
6726 		WARN_ONCE(true, "Invalid local APIC state");
6727 		break;
6728 	case LAPIC_MODE_DISABLED:
6729 		break;
6730 	case LAPIC_MODE_XAPIC:
6731 		if (flexpriority_enabled) {
6732 			sec_exec_control |=
6733 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6734 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6735 
6736 			/*
6737 			 * Flush the TLB, reloading the APIC access page will
6738 			 * only do so if its physical address has changed, but
6739 			 * the guest may have inserted a non-APIC mapping into
6740 			 * the TLB while the APIC access page was disabled.
6741 			 */
6742 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6743 		}
6744 		break;
6745 	case LAPIC_MODE_X2APIC:
6746 		if (cpu_has_vmx_virtualize_x2apic_mode())
6747 			sec_exec_control |=
6748 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6749 		break;
6750 	}
6751 	secondary_exec_controls_set(vmx, sec_exec_control);
6752 
6753 	vmx_update_msr_bitmap_x2apic(vcpu);
6754 }
6755 
6756 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6757 {
6758 	const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6759 	struct kvm *kvm = vcpu->kvm;
6760 	struct kvm_memslots *slots = kvm_memslots(kvm);
6761 	struct kvm_memory_slot *slot;
6762 	unsigned long mmu_seq;
6763 	kvm_pfn_t pfn;
6764 
6765 	/* Defer reload until vmcs01 is the current VMCS. */
6766 	if (is_guest_mode(vcpu)) {
6767 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6768 		return;
6769 	}
6770 
6771 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6772 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6773 		return;
6774 
6775 	/*
6776 	 * Grab the memslot so that the hva lookup for the mmu_notifier retry
6777 	 * is guaranteed to use the same memslot as the pfn lookup, i.e. rely
6778 	 * on the pfn lookup's validation of the memslot to ensure a valid hva
6779 	 * is used for the retry check.
6780 	 */
6781 	slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6782 	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6783 		return;
6784 
6785 	/*
6786 	 * Ensure that the mmu_notifier sequence count is read before KVM
6787 	 * retrieves the pfn from the primary MMU.  Note, the memslot is
6788 	 * protected by SRCU, not the mmu_notifier.  Pairs with the smp_wmb()
6789 	 * in kvm_mmu_invalidate_end().
6790 	 */
6791 	mmu_seq = kvm->mmu_invalidate_seq;
6792 	smp_rmb();
6793 
6794 	/*
6795 	 * No need to retry if the memslot does not exist or is invalid.  KVM
6796 	 * controls the APIC-access page memslot, and only deletes the memslot
6797 	 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6798 	 */
6799 	pfn = gfn_to_pfn_memslot(slot, gfn);
6800 	if (is_error_noslot_pfn(pfn))
6801 		return;
6802 
6803 	read_lock(&vcpu->kvm->mmu_lock);
6804 	if (mmu_invalidate_retry_hva(kvm, mmu_seq,
6805 				     gfn_to_hva_memslot(slot, gfn))) {
6806 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6807 		read_unlock(&vcpu->kvm->mmu_lock);
6808 		goto out;
6809 	}
6810 
6811 	vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6812 	read_unlock(&vcpu->kvm->mmu_lock);
6813 
6814 	/*
6815 	 * No need for a manual TLB flush at this point, KVM has already done a
6816 	 * flush if there were SPTEs pointing at the previous page.
6817 	 */
6818 out:
6819 	/*
6820 	 * Do not pin apic access page in memory, the MMU notifier
6821 	 * will call us again if it is migrated or swapped out.
6822 	 */
6823 	kvm_release_pfn_clean(pfn);
6824 }
6825 
6826 static void vmx_hwapic_isr_update(int max_isr)
6827 {
6828 	u16 status;
6829 	u8 old;
6830 
6831 	if (max_isr == -1)
6832 		max_isr = 0;
6833 
6834 	status = vmcs_read16(GUEST_INTR_STATUS);
6835 	old = status >> 8;
6836 	if (max_isr != old) {
6837 		status &= 0xff;
6838 		status |= max_isr << 8;
6839 		vmcs_write16(GUEST_INTR_STATUS, status);
6840 	}
6841 }
6842 
6843 static void vmx_set_rvi(int vector)
6844 {
6845 	u16 status;
6846 	u8 old;
6847 
6848 	if (vector == -1)
6849 		vector = 0;
6850 
6851 	status = vmcs_read16(GUEST_INTR_STATUS);
6852 	old = (u8)status & 0xff;
6853 	if ((u8)vector != old) {
6854 		status &= ~0xff;
6855 		status |= (u8)vector;
6856 		vmcs_write16(GUEST_INTR_STATUS, status);
6857 	}
6858 }
6859 
6860 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6861 {
6862 	/*
6863 	 * When running L2, updating RVI is only relevant when
6864 	 * vmcs12 virtual-interrupt-delivery enabled.
6865 	 * However, it can be enabled only when L1 also
6866 	 * intercepts external-interrupts and in that case
6867 	 * we should not update vmcs02 RVI but instead intercept
6868 	 * interrupt. Therefore, do nothing when running L2.
6869 	 */
6870 	if (!is_guest_mode(vcpu))
6871 		vmx_set_rvi(max_irr);
6872 }
6873 
6874 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6875 {
6876 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6877 	int max_irr;
6878 	bool got_posted_interrupt;
6879 
6880 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6881 		return -EIO;
6882 
6883 	if (pi_test_on(&vmx->pi_desc)) {
6884 		pi_clear_on(&vmx->pi_desc);
6885 		/*
6886 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6887 		 * But on x86 this is just a compiler barrier anyway.
6888 		 */
6889 		smp_mb__after_atomic();
6890 		got_posted_interrupt =
6891 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6892 	} else {
6893 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6894 		got_posted_interrupt = false;
6895 	}
6896 
6897 	/*
6898 	 * Newly recognized interrupts are injected via either virtual interrupt
6899 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6900 	 * disabled in two cases:
6901 	 *
6902 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6903 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6904 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6905 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6906 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6907 	 *
6908 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6909 	 * attempt to post interrupts.  The posted interrupt vector will cause
6910 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6911 	 */
6912 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6913 		vmx_set_rvi(max_irr);
6914 	else if (got_posted_interrupt)
6915 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6916 
6917 	return max_irr;
6918 }
6919 
6920 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6921 {
6922 	if (!kvm_vcpu_apicv_active(vcpu))
6923 		return;
6924 
6925 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6926 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6927 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6928 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6929 }
6930 
6931 static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6932 {
6933 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6934 
6935 	pi_clear_on(&vmx->pi_desc);
6936 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6937 }
6938 
6939 void vmx_do_interrupt_irqoff(unsigned long entry);
6940 void vmx_do_nmi_irqoff(void);
6941 
6942 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6943 {
6944 	/*
6945 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6946 	 * MSR value is not clobbered by the host activity before the guest
6947 	 * has chance to consume it.
6948 	 *
6949 	 * Do not blindly read xfd_err here, since this exception might
6950 	 * be caused by L1 interception on a platform which doesn't
6951 	 * support xfd at all.
6952 	 *
6953 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6954 	 * only when xfd contains a non-zero value.
6955 	 *
6956 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6957 	 */
6958 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6959 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6960 }
6961 
6962 static void handle_exception_irqoff(struct vcpu_vmx *vmx)
6963 {
6964 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6965 
6966 	/* if exit due to PF check for async PF */
6967 	if (is_page_fault(intr_info))
6968 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6969 	/* if exit due to NM, handle before interrupts are enabled */
6970 	else if (is_nm_fault(intr_info))
6971 		handle_nm_fault_irqoff(&vmx->vcpu);
6972 	/* Handle machine checks before interrupts are enabled */
6973 	else if (is_machine_check(intr_info))
6974 		kvm_machine_check();
6975 }
6976 
6977 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6978 {
6979 	u32 intr_info = vmx_get_intr_info(vcpu);
6980 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6981 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6982 
6983 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6984 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6985 		return;
6986 
6987 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6988 	vmx_do_interrupt_irqoff(gate_offset(desc));
6989 	kvm_after_interrupt(vcpu);
6990 
6991 	vcpu->arch.at_instruction_boundary = true;
6992 }
6993 
6994 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6995 {
6996 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6997 
6998 	if (vmx->emulation_required)
6999 		return;
7000 
7001 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7002 		handle_external_interrupt_irqoff(vcpu);
7003 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
7004 		handle_exception_irqoff(vmx);
7005 }
7006 
7007 /*
7008  * The kvm parameter can be NULL (module initialization, or invocation before
7009  * VM creation). Be sure to check the kvm parameter before using it.
7010  */
7011 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7012 {
7013 	switch (index) {
7014 	case MSR_IA32_SMBASE:
7015 		if (!IS_ENABLED(CONFIG_KVM_SMM))
7016 			return false;
7017 		/*
7018 		 * We cannot do SMM unless we can run the guest in big
7019 		 * real mode.
7020 		 */
7021 		return enable_unrestricted_guest || emulate_invalid_guest_state;
7022 	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7023 		return nested;
7024 	case MSR_AMD64_VIRT_SPEC_CTRL:
7025 	case MSR_AMD64_TSC_RATIO:
7026 		/* This is AMD only.  */
7027 		return false;
7028 	default:
7029 		return true;
7030 	}
7031 }
7032 
7033 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7034 {
7035 	u32 exit_intr_info;
7036 	bool unblock_nmi;
7037 	u8 vector;
7038 	bool idtv_info_valid;
7039 
7040 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7041 
7042 	if (enable_vnmi) {
7043 		if (vmx->loaded_vmcs->nmi_known_unmasked)
7044 			return;
7045 
7046 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7047 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7048 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7049 		/*
7050 		 * SDM 3: 27.7.1.2 (September 2008)
7051 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7052 		 * a guest IRET fault.
7053 		 * SDM 3: 23.2.2 (September 2008)
7054 		 * Bit 12 is undefined in any of the following cases:
7055 		 *  If the VM exit sets the valid bit in the IDT-vectoring
7056 		 *   information field.
7057 		 *  If the VM exit is due to a double fault.
7058 		 */
7059 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7060 		    vector != DF_VECTOR && !idtv_info_valid)
7061 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7062 				      GUEST_INTR_STATE_NMI);
7063 		else
7064 			vmx->loaded_vmcs->nmi_known_unmasked =
7065 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7066 				  & GUEST_INTR_STATE_NMI);
7067 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7068 		vmx->loaded_vmcs->vnmi_blocked_time +=
7069 			ktime_to_ns(ktime_sub(ktime_get(),
7070 					      vmx->loaded_vmcs->entry_time));
7071 }
7072 
7073 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7074 				      u32 idt_vectoring_info,
7075 				      int instr_len_field,
7076 				      int error_code_field)
7077 {
7078 	u8 vector;
7079 	int type;
7080 	bool idtv_info_valid;
7081 
7082 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7083 
7084 	vcpu->arch.nmi_injected = false;
7085 	kvm_clear_exception_queue(vcpu);
7086 	kvm_clear_interrupt_queue(vcpu);
7087 
7088 	if (!idtv_info_valid)
7089 		return;
7090 
7091 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7092 
7093 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7094 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7095 
7096 	switch (type) {
7097 	case INTR_TYPE_NMI_INTR:
7098 		vcpu->arch.nmi_injected = true;
7099 		/*
7100 		 * SDM 3: 27.7.1.2 (September 2008)
7101 		 * Clear bit "block by NMI" before VM entry if a NMI
7102 		 * delivery faulted.
7103 		 */
7104 		vmx_set_nmi_mask(vcpu, false);
7105 		break;
7106 	case INTR_TYPE_SOFT_EXCEPTION:
7107 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7108 		fallthrough;
7109 	case INTR_TYPE_HARD_EXCEPTION:
7110 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7111 			u32 err = vmcs_read32(error_code_field);
7112 			kvm_requeue_exception_e(vcpu, vector, err);
7113 		} else
7114 			kvm_requeue_exception(vcpu, vector);
7115 		break;
7116 	case INTR_TYPE_SOFT_INTR:
7117 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7118 		fallthrough;
7119 	case INTR_TYPE_EXT_INTR:
7120 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7121 		break;
7122 	default:
7123 		break;
7124 	}
7125 }
7126 
7127 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7128 {
7129 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7130 				  VM_EXIT_INSTRUCTION_LEN,
7131 				  IDT_VECTORING_ERROR_CODE);
7132 }
7133 
7134 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7135 {
7136 	__vmx_complete_interrupts(vcpu,
7137 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7138 				  VM_ENTRY_INSTRUCTION_LEN,
7139 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7140 
7141 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7142 }
7143 
7144 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7145 {
7146 	int i, nr_msrs;
7147 	struct perf_guest_switch_msr *msrs;
7148 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7149 
7150 	pmu->host_cross_mapped_mask = 0;
7151 	if (pmu->pebs_enable & pmu->global_ctrl)
7152 		intel_pmu_cross_mapped_check(pmu);
7153 
7154 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7155 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7156 	if (!msrs)
7157 		return;
7158 
7159 	for (i = 0; i < nr_msrs; i++)
7160 		if (msrs[i].host == msrs[i].guest)
7161 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7162 		else
7163 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7164 					msrs[i].host, false);
7165 }
7166 
7167 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
7168 {
7169 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7170 	u64 tscl;
7171 	u32 delta_tsc;
7172 
7173 	if (vmx->req_immediate_exit) {
7174 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7175 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7176 	} else if (vmx->hv_deadline_tsc != -1) {
7177 		tscl = rdtsc();
7178 		if (vmx->hv_deadline_tsc > tscl)
7179 			/* set_hv_timer ensures the delta fits in 32-bits */
7180 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7181 				cpu_preemption_timer_multi);
7182 		else
7183 			delta_tsc = 0;
7184 
7185 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7186 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7187 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7188 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7189 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7190 	}
7191 }
7192 
7193 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7194 {
7195 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7196 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7197 		vmcs_writel(HOST_RSP, host_rsp);
7198 	}
7199 }
7200 
7201 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7202 					unsigned int flags)
7203 {
7204 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7205 
7206 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7207 		return;
7208 
7209 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7210 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7211 
7212 	/*
7213 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7214 	 *
7215 	 * For legacy IBRS, the IBRS bit always needs to be written after
7216 	 * transitioning from a less privileged predictor mode, regardless of
7217 	 * whether the guest/host values differ.
7218 	 */
7219 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7220 	    vmx->spec_ctrl != hostval)
7221 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7222 
7223 	barrier_nospec();
7224 }
7225 
7226 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7227 {
7228 	switch (to_vmx(vcpu)->exit_reason.basic) {
7229 	case EXIT_REASON_MSR_WRITE:
7230 		return handle_fastpath_set_msr_irqoff(vcpu);
7231 	case EXIT_REASON_PREEMPTION_TIMER:
7232 		return handle_fastpath_preemption_timer(vcpu);
7233 	default:
7234 		return EXIT_FASTPATH_NONE;
7235 	}
7236 }
7237 
7238 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7239 					unsigned int flags)
7240 {
7241 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7242 
7243 	guest_state_enter_irqoff();
7244 
7245 	/*
7246 	 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7247 	 * mitigation for MDS is done late in VMentry and is still
7248 	 * executed in spite of L1D Flush. This is because an extra VERW
7249 	 * should not matter much after the big hammer L1D Flush.
7250 	 */
7251 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7252 		vmx_l1d_flush(vcpu);
7253 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7254 		 kvm_arch_has_assigned_device(vcpu->kvm))
7255 		mds_clear_cpu_buffers();
7256 
7257 	vmx_disable_fb_clear(vmx);
7258 
7259 	if (vcpu->arch.cr2 != native_read_cr2())
7260 		native_write_cr2(vcpu->arch.cr2);
7261 
7262 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7263 				   flags);
7264 
7265 	vcpu->arch.cr2 = native_read_cr2();
7266 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7267 
7268 	vmx->idt_vectoring_info = 0;
7269 
7270 	vmx_enable_fb_clear(vmx);
7271 
7272 	if (unlikely(vmx->fail)) {
7273 		vmx->exit_reason.full = 0xdead;
7274 		goto out;
7275 	}
7276 
7277 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7278 	if (likely(!vmx->exit_reason.failed_vmentry))
7279 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7280 
7281 	if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7282 	    is_nmi(vmx_get_intr_info(vcpu))) {
7283 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7284 		vmx_do_nmi_irqoff();
7285 		kvm_after_interrupt(vcpu);
7286 	}
7287 
7288 out:
7289 	guest_state_exit_irqoff();
7290 }
7291 
7292 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7293 {
7294 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7295 	unsigned long cr3, cr4;
7296 
7297 	/* Record the guest's net vcpu time for enforced NMI injections. */
7298 	if (unlikely(!enable_vnmi &&
7299 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7300 		vmx->loaded_vmcs->entry_time = ktime_get();
7301 
7302 	/*
7303 	 * Don't enter VMX if guest state is invalid, let the exit handler
7304 	 * start emulation until we arrive back to a valid state.  Synthesize a
7305 	 * consistency check VM-Exit due to invalid guest state and bail.
7306 	 */
7307 	if (unlikely(vmx->emulation_required)) {
7308 		vmx->fail = 0;
7309 
7310 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7311 		vmx->exit_reason.failed_vmentry = 1;
7312 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7313 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7314 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7315 		vmx->exit_intr_info = 0;
7316 		return EXIT_FASTPATH_NONE;
7317 	}
7318 
7319 	trace_kvm_entry(vcpu);
7320 
7321 	if (vmx->ple_window_dirty) {
7322 		vmx->ple_window_dirty = false;
7323 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7324 	}
7325 
7326 	/*
7327 	 * We did this in prepare_switch_to_guest, because it needs to
7328 	 * be within srcu_read_lock.
7329 	 */
7330 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7331 
7332 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7333 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7334 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7335 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7336 	vcpu->arch.regs_dirty = 0;
7337 
7338 	/*
7339 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7340 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7341 	 * it switches back to the current->mm, which can occur in KVM context
7342 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7343 	 * toggles a static key while handling a VM-Exit.
7344 	 */
7345 	cr3 = __get_current_cr3_fast();
7346 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7347 		vmcs_writel(HOST_CR3, cr3);
7348 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7349 	}
7350 
7351 	cr4 = cr4_read_shadow();
7352 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7353 		vmcs_writel(HOST_CR4, cr4);
7354 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7355 	}
7356 
7357 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7358 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7359 		set_debugreg(vcpu->arch.dr6, 6);
7360 
7361 	/* When single-stepping over STI and MOV SS, we must clear the
7362 	 * corresponding interruptibility bits in the guest state. Otherwise
7363 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7364 	 * exceptions being set, but that's not correct for the guest debugging
7365 	 * case. */
7366 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7367 		vmx_set_interrupt_shadow(vcpu, 0);
7368 
7369 	kvm_load_guest_xsave_state(vcpu);
7370 
7371 	pt_guest_enter(vmx);
7372 
7373 	atomic_switch_perf_msrs(vmx);
7374 	if (intel_pmu_lbr_is_enabled(vcpu))
7375 		vmx_passthrough_lbr_msrs(vcpu);
7376 
7377 	if (enable_preemption_timer)
7378 		vmx_update_hv_timer(vcpu);
7379 
7380 	kvm_wait_lapic_expire(vcpu);
7381 
7382 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7383 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7384 
7385 	/* All fields are clean at this point */
7386 	if (kvm_is_using_evmcs()) {
7387 		current_evmcs->hv_clean_fields |=
7388 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7389 
7390 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7391 	}
7392 
7393 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7394 	if (vmx->host_debugctlmsr)
7395 		update_debugctlmsr(vmx->host_debugctlmsr);
7396 
7397 #ifndef CONFIG_X86_64
7398 	/*
7399 	 * The sysexit path does not restore ds/es, so we must set them to
7400 	 * a reasonable value ourselves.
7401 	 *
7402 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7403 	 * function may be executed in interrupt context, which saves and
7404 	 * restore segments around it, nullifying its effect.
7405 	 */
7406 	loadsegment(ds, __USER_DS);
7407 	loadsegment(es, __USER_DS);
7408 #endif
7409 
7410 	pt_guest_exit(vmx);
7411 
7412 	kvm_load_host_xsave_state(vcpu);
7413 
7414 	if (is_guest_mode(vcpu)) {
7415 		/*
7416 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7417 		 * checking.
7418 		 */
7419 		if (vmx->nested.nested_run_pending &&
7420 		    !vmx->exit_reason.failed_vmentry)
7421 			++vcpu->stat.nested_run;
7422 
7423 		vmx->nested.nested_run_pending = 0;
7424 	}
7425 
7426 	if (unlikely(vmx->fail))
7427 		return EXIT_FASTPATH_NONE;
7428 
7429 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7430 		kvm_machine_check();
7431 
7432 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7433 
7434 	if (unlikely(vmx->exit_reason.failed_vmentry))
7435 		return EXIT_FASTPATH_NONE;
7436 
7437 	vmx->loaded_vmcs->launched = 1;
7438 
7439 	vmx_recover_nmi_blocking(vmx);
7440 	vmx_complete_interrupts(vmx);
7441 
7442 	if (is_guest_mode(vcpu))
7443 		return EXIT_FASTPATH_NONE;
7444 
7445 	return vmx_exit_handlers_fastpath(vcpu);
7446 }
7447 
7448 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7449 {
7450 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7451 
7452 	if (enable_pml)
7453 		vmx_destroy_pml_buffer(vmx);
7454 	free_vpid(vmx->vpid);
7455 	nested_vmx_free_vcpu(vcpu);
7456 	free_loaded_vmcs(vmx->loaded_vmcs);
7457 }
7458 
7459 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7460 {
7461 	struct vmx_uret_msr *tsx_ctrl;
7462 	struct vcpu_vmx *vmx;
7463 	int i, err;
7464 
7465 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7466 	vmx = to_vmx(vcpu);
7467 
7468 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7469 
7470 	err = -ENOMEM;
7471 
7472 	vmx->vpid = allocate_vpid();
7473 
7474 	/*
7475 	 * If PML is turned on, failure on enabling PML just results in failure
7476 	 * of creating the vcpu, therefore we can simplify PML logic (by
7477 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7478 	 * for the guest), etc.
7479 	 */
7480 	if (enable_pml) {
7481 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7482 		if (!vmx->pml_pg)
7483 			goto free_vpid;
7484 	}
7485 
7486 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7487 		vmx->guest_uret_msrs[i].mask = -1ull;
7488 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7489 		/*
7490 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7491 		 * Keep the host value unchanged to avoid changing CPUID bits
7492 		 * under the host kernel's feet.
7493 		 */
7494 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7495 		if (tsx_ctrl)
7496 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7497 	}
7498 
7499 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7500 	if (err < 0)
7501 		goto free_pml;
7502 
7503 	/*
7504 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7505 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7506 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7507 	 * performance benefits from enabling it for vmcs02.
7508 	 */
7509 	if (kvm_is_using_evmcs() &&
7510 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7511 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7512 
7513 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7514 	}
7515 
7516 	/* The MSR bitmap starts with all ones */
7517 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7518 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7519 
7520 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7521 #ifdef CONFIG_X86_64
7522 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7523 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7524 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7525 #endif
7526 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7527 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7528 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7529 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7530 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7531 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7532 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7533 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7534 	}
7535 
7536 	vmx->loaded_vmcs = &vmx->vmcs01;
7537 
7538 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7539 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7540 		if (err)
7541 			goto free_vmcs;
7542 	}
7543 
7544 	if (enable_ept && !enable_unrestricted_guest) {
7545 		err = init_rmode_identity_map(vcpu->kvm);
7546 		if (err)
7547 			goto free_vmcs;
7548 	}
7549 
7550 	if (vmx_can_use_ipiv(vcpu))
7551 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7552 			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7553 
7554 	return 0;
7555 
7556 free_vmcs:
7557 	free_loaded_vmcs(vmx->loaded_vmcs);
7558 free_pml:
7559 	vmx_destroy_pml_buffer(vmx);
7560 free_vpid:
7561 	free_vpid(vmx->vpid);
7562 	return err;
7563 }
7564 
7565 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7566 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7567 
7568 static int vmx_vm_init(struct kvm *kvm)
7569 {
7570 	if (!ple_gap)
7571 		kvm->arch.pause_in_guest = true;
7572 
7573 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7574 		switch (l1tf_mitigation) {
7575 		case L1TF_MITIGATION_OFF:
7576 		case L1TF_MITIGATION_FLUSH_NOWARN:
7577 			/* 'I explicitly don't care' is set */
7578 			break;
7579 		case L1TF_MITIGATION_FLUSH:
7580 		case L1TF_MITIGATION_FLUSH_NOSMT:
7581 		case L1TF_MITIGATION_FULL:
7582 			/*
7583 			 * Warn upon starting the first VM in a potentially
7584 			 * insecure environment.
7585 			 */
7586 			if (sched_smt_active())
7587 				pr_warn_once(L1TF_MSG_SMT);
7588 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7589 				pr_warn_once(L1TF_MSG_L1D);
7590 			break;
7591 		case L1TF_MITIGATION_FULL_FORCE:
7592 			/* Flush is enforced */
7593 			break;
7594 		}
7595 	}
7596 	return 0;
7597 }
7598 
7599 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7600 {
7601 	u8 cache;
7602 
7603 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7604 	 * memory aliases with conflicting memory types and sometimes MCEs.
7605 	 * We have to be careful as to what are honored and when.
7606 	 *
7607 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7608 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7609 	 * This was historically the source of MCEs and we want to be
7610 	 * conservative.
7611 	 *
7612 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7613 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7614 	 * EPT memory type is set to WB.  The effective memory type is forced
7615 	 * WB.
7616 	 *
7617 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7618 	 * EPT memory type is used to emulate guest CD/MTRR.
7619 	 */
7620 
7621 	if (is_mmio)
7622 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7623 
7624 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7625 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7626 
7627 	if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7628 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7629 			cache = MTRR_TYPE_WRBACK;
7630 		else
7631 			cache = MTRR_TYPE_UNCACHABLE;
7632 
7633 		return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7634 	}
7635 
7636 	return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7637 }
7638 
7639 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7640 {
7641 	/*
7642 	 * These bits in the secondary execution controls field
7643 	 * are dynamic, the others are mostly based on the hypervisor
7644 	 * architecture and the guest's CPUID.  Do not touch the
7645 	 * dynamic bits.
7646 	 */
7647 	u32 mask =
7648 		SECONDARY_EXEC_SHADOW_VMCS |
7649 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7650 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7651 		SECONDARY_EXEC_DESC;
7652 
7653 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7654 
7655 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7656 }
7657 
7658 /*
7659  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7660  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7661  */
7662 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7663 {
7664 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7665 	struct kvm_cpuid_entry2 *entry;
7666 
7667 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7668 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7669 
7670 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7671 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7672 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7673 } while (0)
7674 
7675 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7676 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7677 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7678 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7679 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7680 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7681 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7682 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7683 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7684 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7685 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7686 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7687 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7688 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7689 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7690 
7691 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7692 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7693 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7694 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7695 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7696 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7697 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7698 
7699 #undef cr4_fixed1_update
7700 }
7701 
7702 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7703 {
7704 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7705 	struct kvm_cpuid_entry2 *best = NULL;
7706 	int i;
7707 
7708 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7709 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7710 		if (!best)
7711 			return;
7712 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7713 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7714 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7715 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7716 	}
7717 
7718 	/* Get the number of configurable Address Ranges for filtering */
7719 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7720 						PT_CAP_num_address_ranges);
7721 
7722 	/* Initialize and clear the no dependency bits */
7723 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7724 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7725 			RTIT_CTL_BRANCH_EN);
7726 
7727 	/*
7728 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7729 	 * will inject an #GP
7730 	 */
7731 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7732 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7733 
7734 	/*
7735 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7736 	 * PSBFreq can be set
7737 	 */
7738 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7739 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7740 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7741 
7742 	/*
7743 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7744 	 */
7745 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7746 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7747 					      RTIT_CTL_MTC_RANGE);
7748 
7749 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7750 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7751 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7752 							RTIT_CTL_PTW_EN);
7753 
7754 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7755 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7756 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7757 
7758 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7759 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7760 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7761 
7762 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7763 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7764 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7765 
7766 	/* unmask address range configure area */
7767 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7768 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7769 }
7770 
7771 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7772 {
7773 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7774 
7775 	/*
7776 	 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7777 	 * to the guest.  XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7778 	 * set if and only if XSAVE is supported.
7779 	 */
7780 	if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7781 	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7782 		kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7783 
7784 	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7785 
7786 	vmx_setup_uret_msrs(vmx);
7787 
7788 	if (cpu_has_secondary_exec_ctrls())
7789 		vmcs_set_secondary_exec_control(vmx,
7790 						vmx_secondary_exec_control(vmx));
7791 
7792 	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7793 		vmx->msr_ia32_feature_control_valid_bits |=
7794 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7795 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7796 	else
7797 		vmx->msr_ia32_feature_control_valid_bits &=
7798 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7799 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7800 
7801 	if (guest_can_use(vcpu, X86_FEATURE_VMX))
7802 		nested_vmx_cr_fixed1_bits_update(vcpu);
7803 
7804 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7805 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7806 		update_intel_pt_cfg(vcpu);
7807 
7808 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7809 		struct vmx_uret_msr *msr;
7810 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7811 		if (msr) {
7812 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7813 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7814 		}
7815 	}
7816 
7817 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7818 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7819 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7820 
7821 	if (boot_cpu_has(X86_FEATURE_IBPB))
7822 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7823 					  !guest_has_pred_cmd_msr(vcpu));
7824 
7825 	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7826 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7827 					  !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7828 
7829 	set_cr4_guest_host_mask(vmx);
7830 
7831 	vmx_write_encls_bitmap(vcpu, NULL);
7832 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7833 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7834 	else
7835 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7836 
7837 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7838 		vmx->msr_ia32_feature_control_valid_bits |=
7839 			FEAT_CTL_SGX_LC_ENABLED;
7840 	else
7841 		vmx->msr_ia32_feature_control_valid_bits &=
7842 			~FEAT_CTL_SGX_LC_ENABLED;
7843 
7844 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7845 	vmx_update_exception_bitmap(vcpu);
7846 }
7847 
7848 static u64 vmx_get_perf_capabilities(void)
7849 {
7850 	u64 perf_cap = PMU_CAP_FW_WRITES;
7851 	struct x86_pmu_lbr lbr;
7852 	u64 host_perf_cap = 0;
7853 
7854 	if (!enable_pmu)
7855 		return 0;
7856 
7857 	if (boot_cpu_has(X86_FEATURE_PDCM))
7858 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7859 
7860 	if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7861 		x86_perf_get_lbr(&lbr);
7862 		if (lbr.nr)
7863 			perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7864 	}
7865 
7866 	if (vmx_pebs_supported()) {
7867 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7868 
7869 		/*
7870 		 * Disallow adaptive PEBS as it is functionally broken, can be
7871 		 * used by the guest to read *host* LBRs, and can be used to
7872 		 * bypass userspace event filters.  To correctly and safely
7873 		 * support adaptive PEBS, KVM needs to:
7874 		 *
7875 		 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7876 		 *    counters.
7877 		 *
7878 		 * 2. Gain support from perf (or take direct control of counter
7879 		 *    programming) to support events without adaptive PEBS
7880 		 *    enabled for the hardware counter.
7881 		 *
7882 		 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7883 		 *    adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7884 		 *
7885 		 * 4. Document which PMU events are effectively exposed to the
7886 		 *    guest via adaptive PEBS, and make adaptive PEBS mutually
7887 		 *    exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7888 		 */
7889 		perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7890 	}
7891 
7892 	return perf_cap;
7893 }
7894 
7895 static __init void vmx_set_cpu_caps(void)
7896 {
7897 	kvm_set_cpu_caps();
7898 
7899 	/* CPUID 0x1 */
7900 	if (nested)
7901 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7902 
7903 	/* CPUID 0x7 */
7904 	if (kvm_mpx_supported())
7905 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7906 	if (!cpu_has_vmx_invpcid())
7907 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7908 	if (vmx_pt_mode_is_host_guest())
7909 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7910 	if (vmx_pebs_supported()) {
7911 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7912 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7913 	}
7914 
7915 	if (!enable_pmu)
7916 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7917 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7918 
7919 	if (!enable_sgx) {
7920 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7921 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7922 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7923 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7924 	}
7925 
7926 	if (vmx_umip_emulated())
7927 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7928 
7929 	/* CPUID 0xD.1 */
7930 	kvm_caps.supported_xss = 0;
7931 	if (!cpu_has_vmx_xsaves())
7932 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7933 
7934 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7935 	if (!cpu_has_vmx_rdtscp()) {
7936 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7937 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7938 	}
7939 
7940 	if (cpu_has_vmx_waitpkg())
7941 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7942 }
7943 
7944 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7945 {
7946 	to_vmx(vcpu)->req_immediate_exit = true;
7947 }
7948 
7949 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7950 				  struct x86_instruction_info *info)
7951 {
7952 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7953 	unsigned short port;
7954 	bool intercept;
7955 	int size;
7956 
7957 	if (info->intercept == x86_intercept_in ||
7958 	    info->intercept == x86_intercept_ins) {
7959 		port = info->src_val;
7960 		size = info->dst_bytes;
7961 	} else {
7962 		port = info->dst_val;
7963 		size = info->src_bytes;
7964 	}
7965 
7966 	/*
7967 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7968 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7969 	 * control.
7970 	 *
7971 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7972 	 */
7973 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7974 		intercept = nested_cpu_has(vmcs12,
7975 					   CPU_BASED_UNCOND_IO_EXITING);
7976 	else
7977 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7978 
7979 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7980 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7981 }
7982 
7983 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7984 			       struct x86_instruction_info *info,
7985 			       enum x86_intercept_stage stage,
7986 			       struct x86_exception *exception)
7987 {
7988 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7989 
7990 	switch (info->intercept) {
7991 	/*
7992 	 * RDPID causes #UD if disabled through secondary execution controls.
7993 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7994 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7995 	 */
7996 	case x86_intercept_rdpid:
7997 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7998 			exception->vector = UD_VECTOR;
7999 			exception->error_code_valid = false;
8000 			return X86EMUL_PROPAGATE_FAULT;
8001 		}
8002 		break;
8003 
8004 	case x86_intercept_in:
8005 	case x86_intercept_ins:
8006 	case x86_intercept_out:
8007 	case x86_intercept_outs:
8008 		return vmx_check_intercept_io(vcpu, info);
8009 
8010 	case x86_intercept_lgdt:
8011 	case x86_intercept_lidt:
8012 	case x86_intercept_lldt:
8013 	case x86_intercept_ltr:
8014 	case x86_intercept_sgdt:
8015 	case x86_intercept_sidt:
8016 	case x86_intercept_sldt:
8017 	case x86_intercept_str:
8018 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8019 			return X86EMUL_CONTINUE;
8020 
8021 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
8022 		break;
8023 
8024 	case x86_intercept_pause:
8025 		/*
8026 		 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8027 		 * with vanilla NOPs in the emulator.  Apply the interception
8028 		 * check only to actual PAUSE instructions.  Don't check
8029 		 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8030 		 * exit, i.e. KVM is within its rights to allow L2 to execute
8031 		 * the PAUSE.
8032 		 */
8033 		if ((info->rep_prefix != REPE_PREFIX) ||
8034 		    !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
8035 			return X86EMUL_CONTINUE;
8036 
8037 		break;
8038 
8039 	/* TODO: check more intercepts... */
8040 	default:
8041 		break;
8042 	}
8043 
8044 	return X86EMUL_UNHANDLEABLE;
8045 }
8046 
8047 #ifdef CONFIG_X86_64
8048 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
8049 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8050 				  u64 divisor, u64 *result)
8051 {
8052 	u64 low = a << shift, high = a >> (64 - shift);
8053 
8054 	/* To avoid the overflow on divq */
8055 	if (high >= divisor)
8056 		return 1;
8057 
8058 	/* Low hold the result, high hold rem which is discarded */
8059 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8060 	    "rm" (divisor), "0" (low), "1" (high));
8061 	*result = low;
8062 
8063 	return 0;
8064 }
8065 
8066 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8067 			    bool *expired)
8068 {
8069 	struct vcpu_vmx *vmx;
8070 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8071 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8072 
8073 	vmx = to_vmx(vcpu);
8074 	tscl = rdtsc();
8075 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8076 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8077 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8078 						    ktimer->timer_advance_ns);
8079 
8080 	if (delta_tsc > lapic_timer_advance_cycles)
8081 		delta_tsc -= lapic_timer_advance_cycles;
8082 	else
8083 		delta_tsc = 0;
8084 
8085 	/* Convert to host delta tsc if tsc scaling is enabled */
8086 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8087 	    delta_tsc && u64_shl_div_u64(delta_tsc,
8088 				kvm_caps.tsc_scaling_ratio_frac_bits,
8089 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8090 		return -ERANGE;
8091 
8092 	/*
8093 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
8094 	 * we can't use the preemption timer.
8095 	 * It's possible that it fits on later vmentries, but checking
8096 	 * on every vmentry is costly so we just use an hrtimer.
8097 	 */
8098 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8099 		return -ERANGE;
8100 
8101 	vmx->hv_deadline_tsc = tscl + delta_tsc;
8102 	*expired = !delta_tsc;
8103 	return 0;
8104 }
8105 
8106 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8107 {
8108 	to_vmx(vcpu)->hv_deadline_tsc = -1;
8109 }
8110 #endif
8111 
8112 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
8113 {
8114 	if (!kvm_pause_in_guest(vcpu->kvm))
8115 		shrink_ple_window(vcpu);
8116 }
8117 
8118 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8119 {
8120 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8121 
8122 	if (WARN_ON_ONCE(!enable_pml))
8123 		return;
8124 
8125 	if (is_guest_mode(vcpu)) {
8126 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8127 		return;
8128 	}
8129 
8130 	/*
8131 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8132 	 * code, but in that case another update request will be made and so
8133 	 * the guest will never run with a stale PML value.
8134 	 */
8135 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8136 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8137 	else
8138 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8139 }
8140 
8141 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
8142 {
8143 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8144 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8145 			FEAT_CTL_LMCE_ENABLED;
8146 	else
8147 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8148 			~FEAT_CTL_LMCE_ENABLED;
8149 }
8150 
8151 #ifdef CONFIG_KVM_SMM
8152 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8153 {
8154 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8155 	if (to_vmx(vcpu)->nested.nested_run_pending)
8156 		return -EBUSY;
8157 	return !is_smm(vcpu);
8158 }
8159 
8160 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8161 {
8162 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8163 
8164 	/*
8165 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8166 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8167 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8168 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8169 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8170 	 */
8171 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8172 	if (vmx->nested.smm.guest_mode)
8173 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8174 
8175 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8176 	vmx->nested.vmxon = false;
8177 	vmx_clear_hlt(vcpu);
8178 	return 0;
8179 }
8180 
8181 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8182 {
8183 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8184 	int ret;
8185 
8186 	if (vmx->nested.smm.vmxon) {
8187 		vmx->nested.vmxon = true;
8188 		vmx->nested.smm.vmxon = false;
8189 	}
8190 
8191 	if (vmx->nested.smm.guest_mode) {
8192 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8193 		if (ret)
8194 			return ret;
8195 
8196 		vmx->nested.nested_run_pending = 1;
8197 		vmx->nested.smm.guest_mode = false;
8198 	}
8199 	return 0;
8200 }
8201 
8202 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8203 {
8204 	/* RSM will cause a vmexit anyway.  */
8205 }
8206 #endif
8207 
8208 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8209 {
8210 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8211 }
8212 
8213 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8214 {
8215 	if (is_guest_mode(vcpu)) {
8216 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8217 
8218 		if (hrtimer_try_to_cancel(timer) == 1)
8219 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8220 	}
8221 }
8222 
8223 static void vmx_hardware_unsetup(void)
8224 {
8225 	kvm_set_posted_intr_wakeup_handler(NULL);
8226 
8227 	if (nested)
8228 		nested_vmx_hardware_unsetup();
8229 
8230 	free_kvm_area();
8231 }
8232 
8233 #define VMX_REQUIRED_APICV_INHIBITS			\
8234 (							\
8235 	BIT(APICV_INHIBIT_REASON_DISABLE)|		\
8236 	BIT(APICV_INHIBIT_REASON_ABSENT) |		\
8237 	BIT(APICV_INHIBIT_REASON_HYPERV) |		\
8238 	BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |		\
8239 	BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) |	\
8240 	BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |	\
8241 	BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED)	\
8242 )
8243 
8244 static void vmx_vm_destroy(struct kvm *kvm)
8245 {
8246 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8247 
8248 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8249 }
8250 
8251 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8252 	.name = KBUILD_MODNAME,
8253 
8254 	.check_processor_compatibility = vmx_check_processor_compat,
8255 
8256 	.hardware_unsetup = vmx_hardware_unsetup,
8257 
8258 	.hardware_enable = vmx_hardware_enable,
8259 	.hardware_disable = vmx_hardware_disable,
8260 	.has_emulated_msr = vmx_has_emulated_msr,
8261 
8262 	.vm_size = sizeof(struct kvm_vmx),
8263 	.vm_init = vmx_vm_init,
8264 	.vm_destroy = vmx_vm_destroy,
8265 
8266 	.vcpu_precreate = vmx_vcpu_precreate,
8267 	.vcpu_create = vmx_vcpu_create,
8268 	.vcpu_free = vmx_vcpu_free,
8269 	.vcpu_reset = vmx_vcpu_reset,
8270 
8271 	.prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8272 	.vcpu_load = vmx_vcpu_load,
8273 	.vcpu_put = vmx_vcpu_put,
8274 
8275 	.update_exception_bitmap = vmx_update_exception_bitmap,
8276 	.get_msr_feature = vmx_get_msr_feature,
8277 	.get_msr = vmx_get_msr,
8278 	.set_msr = vmx_set_msr,
8279 	.get_segment_base = vmx_get_segment_base,
8280 	.get_segment = vmx_get_segment,
8281 	.set_segment = vmx_set_segment,
8282 	.get_cpl = vmx_get_cpl,
8283 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8284 	.is_valid_cr0 = vmx_is_valid_cr0,
8285 	.set_cr0 = vmx_set_cr0,
8286 	.is_valid_cr4 = vmx_is_valid_cr4,
8287 	.set_cr4 = vmx_set_cr4,
8288 	.set_efer = vmx_set_efer,
8289 	.get_idt = vmx_get_idt,
8290 	.set_idt = vmx_set_idt,
8291 	.get_gdt = vmx_get_gdt,
8292 	.set_gdt = vmx_set_gdt,
8293 	.set_dr7 = vmx_set_dr7,
8294 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8295 	.cache_reg = vmx_cache_reg,
8296 	.get_rflags = vmx_get_rflags,
8297 	.set_rflags = vmx_set_rflags,
8298 	.get_if_flag = vmx_get_if_flag,
8299 
8300 	.flush_tlb_all = vmx_flush_tlb_all,
8301 	.flush_tlb_current = vmx_flush_tlb_current,
8302 	.flush_tlb_gva = vmx_flush_tlb_gva,
8303 	.flush_tlb_guest = vmx_flush_tlb_guest,
8304 
8305 	.vcpu_pre_run = vmx_vcpu_pre_run,
8306 	.vcpu_run = vmx_vcpu_run,
8307 	.handle_exit = vmx_handle_exit,
8308 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
8309 	.update_emulated_instruction = vmx_update_emulated_instruction,
8310 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
8311 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
8312 	.patch_hypercall = vmx_patch_hypercall,
8313 	.inject_irq = vmx_inject_irq,
8314 	.inject_nmi = vmx_inject_nmi,
8315 	.inject_exception = vmx_inject_exception,
8316 	.cancel_injection = vmx_cancel_injection,
8317 	.interrupt_allowed = vmx_interrupt_allowed,
8318 	.nmi_allowed = vmx_nmi_allowed,
8319 	.get_nmi_mask = vmx_get_nmi_mask,
8320 	.set_nmi_mask = vmx_set_nmi_mask,
8321 	.enable_nmi_window = vmx_enable_nmi_window,
8322 	.enable_irq_window = vmx_enable_irq_window,
8323 	.update_cr8_intercept = vmx_update_cr8_intercept,
8324 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8325 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8326 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8327 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
8328 	.apicv_pre_state_restore = vmx_apicv_pre_state_restore,
8329 	.required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
8330 	.hwapic_irr_update = vmx_hwapic_irr_update,
8331 	.hwapic_isr_update = vmx_hwapic_isr_update,
8332 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8333 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
8334 	.deliver_interrupt = vmx_deliver_interrupt,
8335 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8336 
8337 	.set_tss_addr = vmx_set_tss_addr,
8338 	.set_identity_map_addr = vmx_set_identity_map_addr,
8339 	.get_mt_mask = vmx_get_mt_mask,
8340 
8341 	.get_exit_info = vmx_get_exit_info,
8342 
8343 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8344 
8345 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8346 
8347 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8348 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8349 	.write_tsc_offset = vmx_write_tsc_offset,
8350 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
8351 
8352 	.load_mmu_pgd = vmx_load_mmu_pgd,
8353 
8354 	.check_intercept = vmx_check_intercept,
8355 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
8356 
8357 	.request_immediate_exit = vmx_request_immediate_exit,
8358 
8359 	.sched_in = vmx_sched_in,
8360 
8361 	.cpu_dirty_log_size = PML_ENTITY_NUM,
8362 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8363 
8364 	.nested_ops = &vmx_nested_ops,
8365 
8366 	.pi_update_irte = vmx_pi_update_irte,
8367 	.pi_start_assignment = vmx_pi_start_assignment,
8368 
8369 #ifdef CONFIG_X86_64
8370 	.set_hv_timer = vmx_set_hv_timer,
8371 	.cancel_hv_timer = vmx_cancel_hv_timer,
8372 #endif
8373 
8374 	.setup_mce = vmx_setup_mce,
8375 
8376 #ifdef CONFIG_KVM_SMM
8377 	.smi_allowed = vmx_smi_allowed,
8378 	.enter_smm = vmx_enter_smm,
8379 	.leave_smm = vmx_leave_smm,
8380 	.enable_smi_window = vmx_enable_smi_window,
8381 #endif
8382 
8383 	.can_emulate_instruction = vmx_can_emulate_instruction,
8384 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8385 	.migrate_timers = vmx_migrate_timers,
8386 
8387 	.msr_filter_changed = vmx_msr_filter_changed,
8388 	.complete_emulated_msr = kvm_complete_insn_gp,
8389 
8390 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8391 };
8392 
8393 static unsigned int vmx_handle_intel_pt_intr(void)
8394 {
8395 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8396 
8397 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8398 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8399 		return 0;
8400 
8401 	kvm_make_request(KVM_REQ_PMI, vcpu);
8402 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8403 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8404 	return 1;
8405 }
8406 
8407 static __init void vmx_setup_user_return_msrs(void)
8408 {
8409 
8410 	/*
8411 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8412 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8413 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8414 	 * support this emulation, MSR_STAR is included in the list for i386,
8415 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8416 	 * into hardware and is here purely for emulation purposes.
8417 	 */
8418 	const u32 vmx_uret_msrs_list[] = {
8419 	#ifdef CONFIG_X86_64
8420 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8421 	#endif
8422 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8423 		MSR_IA32_TSX_CTRL,
8424 	};
8425 	int i;
8426 
8427 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8428 
8429 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8430 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8431 }
8432 
8433 static void __init vmx_setup_me_spte_mask(void)
8434 {
8435 	u64 me_mask = 0;
8436 
8437 	/*
8438 	 * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
8439 	 * the former to avoid exposing shadow_phys_bits.
8440 	 *
8441 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8442 	 * shadow_phys_bits.  On MKTME and/or TDX capable systems,
8443 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8444 	 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8445 	 * reported by CPUID.  Those bits between are KeyID bits.
8446 	 */
8447 	if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8448 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8449 			kvm_get_shadow_phys_bits() - 1);
8450 	/*
8451 	 * Unlike SME, host kernel doesn't support setting up any
8452 	 * MKTME KeyID on Intel platforms.  No memory encryption
8453 	 * bits should be included into the SPTE.
8454 	 */
8455 	kvm_mmu_set_me_spte_mask(0, me_mask);
8456 }
8457 
8458 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8459 
8460 static __init int hardware_setup(void)
8461 {
8462 	unsigned long host_bndcfgs;
8463 	struct desc_ptr dt;
8464 	int r;
8465 
8466 	store_idt(&dt);
8467 	host_idt_base = dt.address;
8468 
8469 	vmx_setup_user_return_msrs();
8470 
8471 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8472 		return -EIO;
8473 
8474 	if (cpu_has_perf_global_ctrl_bug())
8475 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8476 			     "does not work properly. Using workaround\n");
8477 
8478 	if (boot_cpu_has(X86_FEATURE_NX))
8479 		kvm_enable_efer_bits(EFER_NX);
8480 
8481 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8482 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8483 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8484 	}
8485 
8486 	if (!cpu_has_vmx_mpx())
8487 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8488 					     XFEATURE_MASK_BNDCSR);
8489 
8490 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8491 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8492 		enable_vpid = 0;
8493 
8494 	if (!cpu_has_vmx_ept() ||
8495 	    !cpu_has_vmx_ept_4levels() ||
8496 	    !cpu_has_vmx_ept_mt_wb() ||
8497 	    !cpu_has_vmx_invept_global())
8498 		enable_ept = 0;
8499 
8500 	/* NX support is required for shadow paging. */
8501 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8502 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8503 		return -EOPNOTSUPP;
8504 	}
8505 
8506 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8507 		enable_ept_ad_bits = 0;
8508 
8509 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8510 		enable_unrestricted_guest = 0;
8511 
8512 	if (!cpu_has_vmx_flexpriority())
8513 		flexpriority_enabled = 0;
8514 
8515 	if (!cpu_has_virtual_nmis())
8516 		enable_vnmi = 0;
8517 
8518 #ifdef CONFIG_X86_SGX_KVM
8519 	if (!cpu_has_vmx_encls_vmexit())
8520 		enable_sgx = false;
8521 #endif
8522 
8523 	/*
8524 	 * set_apic_access_page_addr() is used to reload apic access
8525 	 * page upon invalidation.  No need to do anything if not
8526 	 * using the APIC_ACCESS_ADDR VMCS field.
8527 	 */
8528 	if (!flexpriority_enabled)
8529 		vmx_x86_ops.set_apic_access_page_addr = NULL;
8530 
8531 	if (!cpu_has_vmx_tpr_shadow())
8532 		vmx_x86_ops.update_cr8_intercept = NULL;
8533 
8534 #if IS_ENABLED(CONFIG_HYPERV)
8535 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8536 	    && enable_ept) {
8537 		vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8538 		vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8539 	}
8540 #endif
8541 
8542 	if (!cpu_has_vmx_ple()) {
8543 		ple_gap = 0;
8544 		ple_window = 0;
8545 		ple_window_grow = 0;
8546 		ple_window_max = 0;
8547 		ple_window_shrink = 0;
8548 	}
8549 
8550 	if (!cpu_has_vmx_apicv())
8551 		enable_apicv = 0;
8552 	if (!enable_apicv)
8553 		vmx_x86_ops.sync_pir_to_irr = NULL;
8554 
8555 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8556 		enable_ipiv = false;
8557 
8558 	if (cpu_has_vmx_tsc_scaling())
8559 		kvm_caps.has_tsc_control = true;
8560 
8561 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8562 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8563 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8564 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8565 
8566 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8567 
8568 	if (enable_ept)
8569 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8570 				      cpu_has_vmx_ept_execute_only());
8571 
8572 	/*
8573 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8574 	 * bits to shadow_zero_check.
8575 	 */
8576 	vmx_setup_me_spte_mask();
8577 
8578 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8579 			  ept_caps_to_lpage_level(vmx_capability.ept));
8580 
8581 	/*
8582 	 * Only enable PML when hardware supports PML feature, and both EPT
8583 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8584 	 */
8585 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8586 		enable_pml = 0;
8587 
8588 	if (!enable_pml)
8589 		vmx_x86_ops.cpu_dirty_log_size = 0;
8590 
8591 	if (!cpu_has_vmx_preemption_timer())
8592 		enable_preemption_timer = false;
8593 
8594 	if (enable_preemption_timer) {
8595 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8596 
8597 		cpu_preemption_timer_multi =
8598 			vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8599 
8600 		if (tsc_khz)
8601 			use_timer_freq = (u64)tsc_khz * 1000;
8602 		use_timer_freq >>= cpu_preemption_timer_multi;
8603 
8604 		/*
8605 		 * KVM "disables" the preemption timer by setting it to its max
8606 		 * value.  Don't use the timer if it might cause spurious exits
8607 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8608 		 */
8609 		if (use_timer_freq > 0xffffffffu / 10)
8610 			enable_preemption_timer = false;
8611 	}
8612 
8613 	if (!enable_preemption_timer) {
8614 		vmx_x86_ops.set_hv_timer = NULL;
8615 		vmx_x86_ops.cancel_hv_timer = NULL;
8616 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8617 	}
8618 
8619 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8620 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8621 
8622 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8623 		return -EINVAL;
8624 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8625 		pt_mode = PT_MODE_SYSTEM;
8626 	if (pt_mode == PT_MODE_HOST_GUEST)
8627 		vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8628 	else
8629 		vmx_init_ops.handle_intel_pt_intr = NULL;
8630 
8631 	setup_default_sgx_lepubkeyhash();
8632 
8633 	if (nested) {
8634 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8635 
8636 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8637 		if (r)
8638 			return r;
8639 	}
8640 
8641 	vmx_set_cpu_caps();
8642 
8643 	r = alloc_kvm_area();
8644 	if (r && nested)
8645 		nested_vmx_hardware_unsetup();
8646 
8647 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8648 
8649 	return r;
8650 }
8651 
8652 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8653 	.hardware_setup = hardware_setup,
8654 	.handle_intel_pt_intr = NULL,
8655 
8656 	.runtime_ops = &vmx_x86_ops,
8657 	.pmu_ops = &intel_pmu_ops,
8658 };
8659 
8660 static void vmx_cleanup_l1d_flush(void)
8661 {
8662 	if (vmx_l1d_flush_pages) {
8663 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8664 		vmx_l1d_flush_pages = NULL;
8665 	}
8666 	/* Restore state so sysfs ignores VMX */
8667 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8668 }
8669 
8670 static void __vmx_exit(void)
8671 {
8672 	allow_smaller_maxphyaddr = false;
8673 
8674 	cpu_emergency_unregister_virt_callback(vmx_emergency_disable);
8675 
8676 	vmx_cleanup_l1d_flush();
8677 }
8678 
8679 static void vmx_exit(void)
8680 {
8681 	kvm_exit();
8682 	kvm_x86_vendor_exit();
8683 
8684 	__vmx_exit();
8685 }
8686 module_exit(vmx_exit);
8687 
8688 static int __init vmx_init(void)
8689 {
8690 	int r, cpu;
8691 
8692 	if (!kvm_is_vmx_supported())
8693 		return -EOPNOTSUPP;
8694 
8695 	/*
8696 	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8697 	 * to unwind if a later step fails.
8698 	 */
8699 	hv_init_evmcs();
8700 
8701 	r = kvm_x86_vendor_init(&vmx_init_ops);
8702 	if (r)
8703 		return r;
8704 
8705 	/*
8706 	 * Must be called after common x86 init so enable_ept is properly set
8707 	 * up. Hand the parameter mitigation value in which was stored in
8708 	 * the pre module init parser. If no parameter was given, it will
8709 	 * contain 'auto' which will be turned into the default 'cond'
8710 	 * mitigation mode.
8711 	 */
8712 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8713 	if (r)
8714 		goto err_l1d_flush;
8715 
8716 	for_each_possible_cpu(cpu) {
8717 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8718 
8719 		pi_init_cpu(cpu);
8720 	}
8721 
8722 	cpu_emergency_register_virt_callback(vmx_emergency_disable);
8723 
8724 	vmx_check_vmcs12_offsets();
8725 
8726 	/*
8727 	 * Shadow paging doesn't have a (further) performance penalty
8728 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8729 	 * by default
8730 	 */
8731 	if (!enable_ept)
8732 		allow_smaller_maxphyaddr = true;
8733 
8734 	/*
8735 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8736 	 * exposed to userspace!
8737 	 */
8738 	r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8739 		     THIS_MODULE);
8740 	if (r)
8741 		goto err_kvm_init;
8742 
8743 	return 0;
8744 
8745 err_kvm_init:
8746 	__vmx_exit();
8747 err_l1d_flush:
8748 	kvm_x86_vendor_exit();
8749 	return r;
8750 }
8751 module_init(vmx_init);
8752