xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision 78bb17f7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/debugreg.h>
36 #include <asm/desc.h>
37 #include <asm/fpu/internal.h>
38 #include <asm/io.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/kexec.h>
41 #include <asm/perf_event.h>
42 #include <asm/mce.h>
43 #include <asm/mmu_context.h>
44 #include <asm/mshyperv.h>
45 #include <asm/mwait.h>
46 #include <asm/spec-ctrl.h>
47 #include <asm/virtext.h>
48 #include <asm/vmx.h>
49 
50 #include "capabilities.h"
51 #include "cpuid.h"
52 #include "evmcs.h"
53 #include "irq.h"
54 #include "kvm_cache_regs.h"
55 #include "lapic.h"
56 #include "mmu.h"
57 #include "nested.h"
58 #include "ops.h"
59 #include "pmu.h"
60 #include "trace.h"
61 #include "vmcs.h"
62 #include "vmcs12.h"
63 #include "vmx.h"
64 #include "x86.h"
65 
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68 
69 #ifdef MODULE
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
72 	{}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 #endif
76 
77 bool __read_mostly enable_vpid = 1;
78 module_param_named(vpid, enable_vpid, bool, 0444);
79 
80 static bool __read_mostly enable_vnmi = 1;
81 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
82 
83 bool __read_mostly flexpriority_enabled = 1;
84 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
85 
86 bool __read_mostly enable_ept = 1;
87 module_param_named(ept, enable_ept, bool, S_IRUGO);
88 
89 bool __read_mostly enable_unrestricted_guest = 1;
90 module_param_named(unrestricted_guest,
91 			enable_unrestricted_guest, bool, S_IRUGO);
92 
93 bool __read_mostly enable_ept_ad_bits = 1;
94 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
95 
96 static bool __read_mostly emulate_invalid_guest_state = true;
97 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
98 
99 static bool __read_mostly fasteoi = 1;
100 module_param(fasteoi, bool, S_IRUGO);
101 
102 bool __read_mostly enable_apicv = 1;
103 module_param(enable_apicv, bool, S_IRUGO);
104 
105 /*
106  * If nested=1, nested virtualization is supported, i.e., guests may use
107  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
108  * use VMX instructions.
109  */
110 static bool __read_mostly nested = 1;
111 module_param(nested, bool, S_IRUGO);
112 
113 bool __read_mostly enable_pml = 1;
114 module_param_named(pml, enable_pml, bool, S_IRUGO);
115 
116 static bool __read_mostly dump_invalid_vmcs = 0;
117 module_param(dump_invalid_vmcs, bool, 0644);
118 
119 #define MSR_BITMAP_MODE_X2APIC		1
120 #define MSR_BITMAP_MODE_X2APIC_APICV	2
121 
122 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
123 
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
127 #ifdef CONFIG_X86_64
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #endif
130 
131 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
132 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
133 #define KVM_VM_CR0_ALWAYS_ON				\
134 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
135 	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
136 #define KVM_CR4_GUEST_OWNED_BITS				      \
137 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
138 	 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
139 
140 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
141 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
142 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
143 
144 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
145 
146 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
147 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
148 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
149 	RTIT_STATUS_BYTECNT))
150 
151 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
152 	(~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
153 
154 /*
155  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
156  * ple_gap:    upper bound on the amount of time between two successive
157  *             executions of PAUSE in a loop. Also indicate if ple enabled.
158  *             According to test, this time is usually smaller than 128 cycles.
159  * ple_window: upper bound on the amount of time a guest is allowed to execute
160  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
161  *             less than 2^12 cycles
162  * Time is measured based on a counter that runs at the same rate as the TSC,
163  * refer SDM volume 3b section 21.6.13 & 22.1.3.
164  */
165 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
166 module_param(ple_gap, uint, 0444);
167 
168 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
169 module_param(ple_window, uint, 0444);
170 
171 /* Default doubles per-vcpu window every exit. */
172 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
173 module_param(ple_window_grow, uint, 0444);
174 
175 /* Default resets per-vcpu window every exit to ple_window. */
176 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
177 module_param(ple_window_shrink, uint, 0444);
178 
179 /* Default is to compute the maximum so we can never overflow. */
180 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
181 module_param(ple_window_max, uint, 0444);
182 
183 /* Default is SYSTEM mode, 1 for host-guest mode */
184 int __read_mostly pt_mode = PT_MODE_SYSTEM;
185 module_param(pt_mode, int, S_IRUGO);
186 
187 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
188 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
189 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
190 
191 /* Storage for pre module init parameter parsing */
192 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
193 
194 static const struct {
195 	const char *option;
196 	bool for_parse;
197 } vmentry_l1d_param[] = {
198 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
199 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
200 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
201 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
202 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
203 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
204 };
205 
206 #define L1D_CACHE_ORDER 4
207 static void *vmx_l1d_flush_pages;
208 
209 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
210 {
211 	struct page *page;
212 	unsigned int i;
213 
214 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
215 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
216 		return 0;
217 	}
218 
219 	if (!enable_ept) {
220 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
221 		return 0;
222 	}
223 
224 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
225 		u64 msr;
226 
227 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
228 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
229 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
230 			return 0;
231 		}
232 	}
233 
234 	/* If set to auto use the default l1tf mitigation method */
235 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
236 		switch (l1tf_mitigation) {
237 		case L1TF_MITIGATION_OFF:
238 			l1tf = VMENTER_L1D_FLUSH_NEVER;
239 			break;
240 		case L1TF_MITIGATION_FLUSH_NOWARN:
241 		case L1TF_MITIGATION_FLUSH:
242 		case L1TF_MITIGATION_FLUSH_NOSMT:
243 			l1tf = VMENTER_L1D_FLUSH_COND;
244 			break;
245 		case L1TF_MITIGATION_FULL:
246 		case L1TF_MITIGATION_FULL_FORCE:
247 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
248 			break;
249 		}
250 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
251 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
252 	}
253 
254 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
255 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
256 		/*
257 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
258 		 * lifetime and so should not be charged to a memcg.
259 		 */
260 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
261 		if (!page)
262 			return -ENOMEM;
263 		vmx_l1d_flush_pages = page_address(page);
264 
265 		/*
266 		 * Initialize each page with a different pattern in
267 		 * order to protect against KSM in the nested
268 		 * virtualization case.
269 		 */
270 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
271 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
272 			       PAGE_SIZE);
273 		}
274 	}
275 
276 	l1tf_vmx_mitigation = l1tf;
277 
278 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
279 		static_branch_enable(&vmx_l1d_should_flush);
280 	else
281 		static_branch_disable(&vmx_l1d_should_flush);
282 
283 	if (l1tf == VMENTER_L1D_FLUSH_COND)
284 		static_branch_enable(&vmx_l1d_flush_cond);
285 	else
286 		static_branch_disable(&vmx_l1d_flush_cond);
287 	return 0;
288 }
289 
290 static int vmentry_l1d_flush_parse(const char *s)
291 {
292 	unsigned int i;
293 
294 	if (s) {
295 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
296 			if (vmentry_l1d_param[i].for_parse &&
297 			    sysfs_streq(s, vmentry_l1d_param[i].option))
298 				return i;
299 		}
300 	}
301 	return -EINVAL;
302 }
303 
304 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
305 {
306 	int l1tf, ret;
307 
308 	l1tf = vmentry_l1d_flush_parse(s);
309 	if (l1tf < 0)
310 		return l1tf;
311 
312 	if (!boot_cpu_has(X86_BUG_L1TF))
313 		return 0;
314 
315 	/*
316 	 * Has vmx_init() run already? If not then this is the pre init
317 	 * parameter parsing. In that case just store the value and let
318 	 * vmx_init() do the proper setup after enable_ept has been
319 	 * established.
320 	 */
321 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
322 		vmentry_l1d_flush_param = l1tf;
323 		return 0;
324 	}
325 
326 	mutex_lock(&vmx_l1d_flush_mutex);
327 	ret = vmx_setup_l1d_flush(l1tf);
328 	mutex_unlock(&vmx_l1d_flush_mutex);
329 	return ret;
330 }
331 
332 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
333 {
334 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
335 		return sprintf(s, "???\n");
336 
337 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
338 }
339 
340 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
341 	.set = vmentry_l1d_flush_set,
342 	.get = vmentry_l1d_flush_get,
343 };
344 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
345 
346 static bool guest_state_valid(struct kvm_vcpu *vcpu);
347 static u32 vmx_segment_access_rights(struct kvm_segment *var);
348 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
349 							  u32 msr, int type);
350 
351 void vmx_vmexit(void);
352 
353 #define vmx_insn_failed(fmt...)		\
354 do {					\
355 	WARN_ONCE(1, fmt);		\
356 	pr_warn_ratelimited(fmt);	\
357 } while (0)
358 
359 asmlinkage void vmread_error(unsigned long field, bool fault)
360 {
361 	if (fault)
362 		kvm_spurious_fault();
363 	else
364 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
365 }
366 
367 noinline void vmwrite_error(unsigned long field, unsigned long value)
368 {
369 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
370 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
371 }
372 
373 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
374 {
375 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
376 }
377 
378 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
379 {
380 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
381 }
382 
383 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
384 {
385 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
386 			ext, vpid, gva);
387 }
388 
389 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
390 {
391 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
392 			ext, eptp, gpa);
393 }
394 
395 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
396 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
397 /*
398  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
399  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
400  */
401 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
402 
403 /*
404  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
405  * can find which vCPU should be waken up.
406  */
407 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
408 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
409 
410 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
411 static DEFINE_SPINLOCK(vmx_vpid_lock);
412 
413 struct vmcs_config vmcs_config;
414 struct vmx_capability vmx_capability;
415 
416 #define VMX_SEGMENT_FIELD(seg)					\
417 	[VCPU_SREG_##seg] = {                                   \
418 		.selector = GUEST_##seg##_SELECTOR,		\
419 		.base = GUEST_##seg##_BASE,		   	\
420 		.limit = GUEST_##seg##_LIMIT,		   	\
421 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
422 	}
423 
424 static const struct kvm_vmx_segment_field {
425 	unsigned selector;
426 	unsigned base;
427 	unsigned limit;
428 	unsigned ar_bytes;
429 } kvm_vmx_segment_fields[] = {
430 	VMX_SEGMENT_FIELD(CS),
431 	VMX_SEGMENT_FIELD(DS),
432 	VMX_SEGMENT_FIELD(ES),
433 	VMX_SEGMENT_FIELD(FS),
434 	VMX_SEGMENT_FIELD(GS),
435 	VMX_SEGMENT_FIELD(SS),
436 	VMX_SEGMENT_FIELD(TR),
437 	VMX_SEGMENT_FIELD(LDTR),
438 };
439 
440 static unsigned long host_idt_base;
441 
442 /*
443  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
444  * will emulate SYSCALL in legacy mode if the vendor string in guest
445  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
446  * support this emulation, IA32_STAR must always be included in
447  * vmx_msr_index[], even in i386 builds.
448  */
449 const u32 vmx_msr_index[] = {
450 #ifdef CONFIG_X86_64
451 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
452 #endif
453 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
454 	MSR_IA32_TSX_CTRL,
455 };
456 
457 #if IS_ENABLED(CONFIG_HYPERV)
458 static bool __read_mostly enlightened_vmcs = true;
459 module_param(enlightened_vmcs, bool, 0444);
460 
461 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
462 static void check_ept_pointer_match(struct kvm *kvm)
463 {
464 	struct kvm_vcpu *vcpu;
465 	u64 tmp_eptp = INVALID_PAGE;
466 	int i;
467 
468 	kvm_for_each_vcpu(i, vcpu, kvm) {
469 		if (!VALID_PAGE(tmp_eptp)) {
470 			tmp_eptp = to_vmx(vcpu)->ept_pointer;
471 		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
472 			to_kvm_vmx(kvm)->ept_pointers_match
473 				= EPT_POINTERS_MISMATCH;
474 			return;
475 		}
476 	}
477 
478 	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
479 }
480 
481 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
482 		void *data)
483 {
484 	struct kvm_tlb_range *range = data;
485 
486 	return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
487 			range->pages);
488 }
489 
490 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
491 		struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
492 {
493 	u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
494 
495 	/*
496 	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
497 	 * of the base of EPT PML4 table, strip off EPT configuration
498 	 * information.
499 	 */
500 	if (range)
501 		return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
502 				kvm_fill_hv_flush_list_func, (void *)range);
503 	else
504 		return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
505 }
506 
507 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
508 		struct kvm_tlb_range *range)
509 {
510 	struct kvm_vcpu *vcpu;
511 	int ret = 0, i;
512 
513 	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
514 
515 	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
516 		check_ept_pointer_match(kvm);
517 
518 	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
519 		kvm_for_each_vcpu(i, vcpu, kvm) {
520 			/* If ept_pointer is invalid pointer, bypass flush request. */
521 			if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
522 				ret |= __hv_remote_flush_tlb_with_range(
523 					kvm, vcpu, range);
524 		}
525 	} else {
526 		ret = __hv_remote_flush_tlb_with_range(kvm,
527 				kvm_get_vcpu(kvm, 0), range);
528 	}
529 
530 	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
531 	return ret;
532 }
533 static int hv_remote_flush_tlb(struct kvm *kvm)
534 {
535 	return hv_remote_flush_tlb_with_range(kvm, NULL);
536 }
537 
538 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
539 {
540 	struct hv_enlightened_vmcs *evmcs;
541 	struct hv_partition_assist_pg **p_hv_pa_pg =
542 			&vcpu->kvm->arch.hyperv.hv_pa_pg;
543 	/*
544 	 * Synthetic VM-Exit is not enabled in current code and so All
545 	 * evmcs in singe VM shares same assist page.
546 	 */
547 	if (!*p_hv_pa_pg)
548 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
549 
550 	if (!*p_hv_pa_pg)
551 		return -ENOMEM;
552 
553 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
554 
555 	evmcs->partition_assist_page =
556 		__pa(*p_hv_pa_pg);
557 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
558 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
559 
560 	return 0;
561 }
562 
563 #endif /* IS_ENABLED(CONFIG_HYPERV) */
564 
565 /*
566  * Comment's format: document - errata name - stepping - processor name.
567  * Refer from
568  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
569  */
570 static u32 vmx_preemption_cpu_tfms[] = {
571 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
572 0x000206E6,
573 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
574 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
575 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
576 0x00020652,
577 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
578 0x00020655,
579 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
580 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
581 /*
582  * 320767.pdf - AAP86  - B1 -
583  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
584  */
585 0x000106E5,
586 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
587 0x000106A0,
588 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
589 0x000106A1,
590 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
591 0x000106A4,
592  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
593  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
594  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
595 0x000106A5,
596  /* Xeon E3-1220 V2 */
597 0x000306A8,
598 };
599 
600 static inline bool cpu_has_broken_vmx_preemption_timer(void)
601 {
602 	u32 eax = cpuid_eax(0x00000001), i;
603 
604 	/* Clear the reserved bits */
605 	eax &= ~(0x3U << 14 | 0xfU << 28);
606 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
607 		if (eax == vmx_preemption_cpu_tfms[i])
608 			return true;
609 
610 	return false;
611 }
612 
613 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
614 {
615 	return flexpriority_enabled && lapic_in_kernel(vcpu);
616 }
617 
618 static inline bool report_flexpriority(void)
619 {
620 	return flexpriority_enabled;
621 }
622 
623 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
624 {
625 	int i;
626 
627 	for (i = 0; i < vmx->nmsrs; ++i)
628 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
629 			return i;
630 	return -1;
631 }
632 
633 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
634 {
635 	int i;
636 
637 	i = __find_msr_index(vmx, msr);
638 	if (i >= 0)
639 		return &vmx->guest_msrs[i];
640 	return NULL;
641 }
642 
643 static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data)
644 {
645 	int ret = 0;
646 
647 	u64 old_msr_data = msr->data;
648 	msr->data = data;
649 	if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
650 		preempt_disable();
651 		ret = kvm_set_shared_msr(msr->index, msr->data,
652 					 msr->mask);
653 		preempt_enable();
654 		if (ret)
655 			msr->data = old_msr_data;
656 	}
657 	return ret;
658 }
659 
660 #ifdef CONFIG_KEXEC_CORE
661 static void crash_vmclear_local_loaded_vmcss(void)
662 {
663 	int cpu = raw_smp_processor_id();
664 	struct loaded_vmcs *v;
665 
666 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
667 			    loaded_vmcss_on_cpu_link)
668 		vmcs_clear(v->vmcs);
669 }
670 #endif /* CONFIG_KEXEC_CORE */
671 
672 static void __loaded_vmcs_clear(void *arg)
673 {
674 	struct loaded_vmcs *loaded_vmcs = arg;
675 	int cpu = raw_smp_processor_id();
676 
677 	if (loaded_vmcs->cpu != cpu)
678 		return; /* vcpu migration can race with cpu offline */
679 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
680 		per_cpu(current_vmcs, cpu) = NULL;
681 
682 	vmcs_clear(loaded_vmcs->vmcs);
683 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
684 		vmcs_clear(loaded_vmcs->shadow_vmcs);
685 
686 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
687 
688 	/*
689 	 * Ensure all writes to loaded_vmcs, including deleting it from its
690 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
691 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
692 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
693 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
694 	 */
695 	smp_wmb();
696 
697 	loaded_vmcs->cpu = -1;
698 	loaded_vmcs->launched = 0;
699 }
700 
701 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
702 {
703 	int cpu = loaded_vmcs->cpu;
704 
705 	if (cpu != -1)
706 		smp_call_function_single(cpu,
707 			 __loaded_vmcs_clear, loaded_vmcs, 1);
708 }
709 
710 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
711 				       unsigned field)
712 {
713 	bool ret;
714 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
715 
716 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
717 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
718 		vmx->segment_cache.bitmask = 0;
719 	}
720 	ret = vmx->segment_cache.bitmask & mask;
721 	vmx->segment_cache.bitmask |= mask;
722 	return ret;
723 }
724 
725 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
726 {
727 	u16 *p = &vmx->segment_cache.seg[seg].selector;
728 
729 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
730 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
731 	return *p;
732 }
733 
734 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
735 {
736 	ulong *p = &vmx->segment_cache.seg[seg].base;
737 
738 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
739 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
740 	return *p;
741 }
742 
743 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
744 {
745 	u32 *p = &vmx->segment_cache.seg[seg].limit;
746 
747 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
748 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
749 	return *p;
750 }
751 
752 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
753 {
754 	u32 *p = &vmx->segment_cache.seg[seg].ar;
755 
756 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
757 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
758 	return *p;
759 }
760 
761 void update_exception_bitmap(struct kvm_vcpu *vcpu)
762 {
763 	u32 eb;
764 
765 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
766 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
767 	/*
768 	 * Guest access to VMware backdoor ports could legitimately
769 	 * trigger #GP because of TSS I/O permission bitmap.
770 	 * We intercept those #GP and allow access to them anyway
771 	 * as VMware does.
772 	 */
773 	if (enable_vmware_backdoor)
774 		eb |= (1u << GP_VECTOR);
775 	if ((vcpu->guest_debug &
776 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
777 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
778 		eb |= 1u << BP_VECTOR;
779 	if (to_vmx(vcpu)->rmode.vm86_active)
780 		eb = ~0;
781 	if (enable_ept)
782 		eb &= ~(1u << PF_VECTOR);
783 
784 	/* When we are running a nested L2 guest and L1 specified for it a
785 	 * certain exception bitmap, we must trap the same exceptions and pass
786 	 * them to L1. When running L2, we will only handle the exceptions
787 	 * specified above if L1 did not want them.
788 	 */
789 	if (is_guest_mode(vcpu))
790 		eb |= get_vmcs12(vcpu)->exception_bitmap;
791 
792 	vmcs_write32(EXCEPTION_BITMAP, eb);
793 }
794 
795 /*
796  * Check if MSR is intercepted for currently loaded MSR bitmap.
797  */
798 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
799 {
800 	unsigned long *msr_bitmap;
801 	int f = sizeof(unsigned long);
802 
803 	if (!cpu_has_vmx_msr_bitmap())
804 		return true;
805 
806 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
807 
808 	if (msr <= 0x1fff) {
809 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
810 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
811 		msr &= 0x1fff;
812 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
813 	}
814 
815 	return true;
816 }
817 
818 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
819 		unsigned long entry, unsigned long exit)
820 {
821 	vm_entry_controls_clearbit(vmx, entry);
822 	vm_exit_controls_clearbit(vmx, exit);
823 }
824 
825 int vmx_find_msr_index(struct vmx_msrs *m, u32 msr)
826 {
827 	unsigned int i;
828 
829 	for (i = 0; i < m->nr; ++i) {
830 		if (m->val[i].index == msr)
831 			return i;
832 	}
833 	return -ENOENT;
834 }
835 
836 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
837 {
838 	int i;
839 	struct msr_autoload *m = &vmx->msr_autoload;
840 
841 	switch (msr) {
842 	case MSR_EFER:
843 		if (cpu_has_load_ia32_efer()) {
844 			clear_atomic_switch_msr_special(vmx,
845 					VM_ENTRY_LOAD_IA32_EFER,
846 					VM_EXIT_LOAD_IA32_EFER);
847 			return;
848 		}
849 		break;
850 	case MSR_CORE_PERF_GLOBAL_CTRL:
851 		if (cpu_has_load_perf_global_ctrl()) {
852 			clear_atomic_switch_msr_special(vmx,
853 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
854 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
855 			return;
856 		}
857 		break;
858 	}
859 	i = vmx_find_msr_index(&m->guest, msr);
860 	if (i < 0)
861 		goto skip_guest;
862 	--m->guest.nr;
863 	m->guest.val[i] = m->guest.val[m->guest.nr];
864 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
865 
866 skip_guest:
867 	i = vmx_find_msr_index(&m->host, msr);
868 	if (i < 0)
869 		return;
870 
871 	--m->host.nr;
872 	m->host.val[i] = m->host.val[m->host.nr];
873 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
874 }
875 
876 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
877 		unsigned long entry, unsigned long exit,
878 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
879 		u64 guest_val, u64 host_val)
880 {
881 	vmcs_write64(guest_val_vmcs, guest_val);
882 	if (host_val_vmcs != HOST_IA32_EFER)
883 		vmcs_write64(host_val_vmcs, host_val);
884 	vm_entry_controls_setbit(vmx, entry);
885 	vm_exit_controls_setbit(vmx, exit);
886 }
887 
888 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
889 				  u64 guest_val, u64 host_val, bool entry_only)
890 {
891 	int i, j = 0;
892 	struct msr_autoload *m = &vmx->msr_autoload;
893 
894 	switch (msr) {
895 	case MSR_EFER:
896 		if (cpu_has_load_ia32_efer()) {
897 			add_atomic_switch_msr_special(vmx,
898 					VM_ENTRY_LOAD_IA32_EFER,
899 					VM_EXIT_LOAD_IA32_EFER,
900 					GUEST_IA32_EFER,
901 					HOST_IA32_EFER,
902 					guest_val, host_val);
903 			return;
904 		}
905 		break;
906 	case MSR_CORE_PERF_GLOBAL_CTRL:
907 		if (cpu_has_load_perf_global_ctrl()) {
908 			add_atomic_switch_msr_special(vmx,
909 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
910 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
911 					GUEST_IA32_PERF_GLOBAL_CTRL,
912 					HOST_IA32_PERF_GLOBAL_CTRL,
913 					guest_val, host_val);
914 			return;
915 		}
916 		break;
917 	case MSR_IA32_PEBS_ENABLE:
918 		/* PEBS needs a quiescent period after being disabled (to write
919 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
920 		 * provide that period, so a CPU could write host's record into
921 		 * guest's memory.
922 		 */
923 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
924 	}
925 
926 	i = vmx_find_msr_index(&m->guest, msr);
927 	if (!entry_only)
928 		j = vmx_find_msr_index(&m->host, msr);
929 
930 	if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) ||
931 		(j < 0 &&  m->host.nr == NR_LOADSTORE_MSRS)) {
932 		printk_once(KERN_WARNING "Not enough msr switch entries. "
933 				"Can't add msr %x\n", msr);
934 		return;
935 	}
936 	if (i < 0) {
937 		i = m->guest.nr++;
938 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
939 	}
940 	m->guest.val[i].index = msr;
941 	m->guest.val[i].value = guest_val;
942 
943 	if (entry_only)
944 		return;
945 
946 	if (j < 0) {
947 		j = m->host.nr++;
948 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
949 	}
950 	m->host.val[j].index = msr;
951 	m->host.val[j].value = host_val;
952 }
953 
954 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
955 {
956 	u64 guest_efer = vmx->vcpu.arch.efer;
957 	u64 ignore_bits = 0;
958 
959 	/* Shadow paging assumes NX to be available.  */
960 	if (!enable_ept)
961 		guest_efer |= EFER_NX;
962 
963 	/*
964 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
965 	 */
966 	ignore_bits |= EFER_SCE;
967 #ifdef CONFIG_X86_64
968 	ignore_bits |= EFER_LMA | EFER_LME;
969 	/* SCE is meaningful only in long mode on Intel */
970 	if (guest_efer & EFER_LMA)
971 		ignore_bits &= ~(u64)EFER_SCE;
972 #endif
973 
974 	/*
975 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
976 	 * On CPUs that support "load IA32_EFER", always switch EFER
977 	 * atomically, since it's faster than switching it manually.
978 	 */
979 	if (cpu_has_load_ia32_efer() ||
980 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
981 		if (!(guest_efer & EFER_LMA))
982 			guest_efer &= ~EFER_LME;
983 		if (guest_efer != host_efer)
984 			add_atomic_switch_msr(vmx, MSR_EFER,
985 					      guest_efer, host_efer, false);
986 		else
987 			clear_atomic_switch_msr(vmx, MSR_EFER);
988 		return false;
989 	} else {
990 		clear_atomic_switch_msr(vmx, MSR_EFER);
991 
992 		guest_efer &= ~ignore_bits;
993 		guest_efer |= host_efer & ignore_bits;
994 
995 		vmx->guest_msrs[efer_offset].data = guest_efer;
996 		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
997 
998 		return true;
999 	}
1000 }
1001 
1002 #ifdef CONFIG_X86_32
1003 /*
1004  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1005  * VMCS rather than the segment table.  KVM uses this helper to figure
1006  * out the current bases to poke them into the VMCS before entry.
1007  */
1008 static unsigned long segment_base(u16 selector)
1009 {
1010 	struct desc_struct *table;
1011 	unsigned long v;
1012 
1013 	if (!(selector & ~SEGMENT_RPL_MASK))
1014 		return 0;
1015 
1016 	table = get_current_gdt_ro();
1017 
1018 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1019 		u16 ldt_selector = kvm_read_ldt();
1020 
1021 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1022 			return 0;
1023 
1024 		table = (struct desc_struct *)segment_base(ldt_selector);
1025 	}
1026 	v = get_desc_base(&table[selector >> 3]);
1027 	return v;
1028 }
1029 #endif
1030 
1031 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1032 {
1033 	return vmx_pt_mode_is_host_guest() &&
1034 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1035 }
1036 
1037 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1038 {
1039 	u32 i;
1040 
1041 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1042 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1043 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1044 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1045 	for (i = 0; i < addr_range; i++) {
1046 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1047 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1048 	}
1049 }
1050 
1051 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1052 {
1053 	u32 i;
1054 
1055 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1056 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1057 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1058 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1059 	for (i = 0; i < addr_range; i++) {
1060 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1061 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1062 	}
1063 }
1064 
1065 static void pt_guest_enter(struct vcpu_vmx *vmx)
1066 {
1067 	if (vmx_pt_mode_is_system())
1068 		return;
1069 
1070 	/*
1071 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1072 	 * Save host state before VM entry.
1073 	 */
1074 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1075 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1076 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1077 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1078 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1079 	}
1080 }
1081 
1082 static void pt_guest_exit(struct vcpu_vmx *vmx)
1083 {
1084 	if (vmx_pt_mode_is_system())
1085 		return;
1086 
1087 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1088 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1089 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1090 	}
1091 
1092 	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1093 	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1094 }
1095 
1096 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1097 			unsigned long fs_base, unsigned long gs_base)
1098 {
1099 	if (unlikely(fs_sel != host->fs_sel)) {
1100 		if (!(fs_sel & 7))
1101 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1102 		else
1103 			vmcs_write16(HOST_FS_SELECTOR, 0);
1104 		host->fs_sel = fs_sel;
1105 	}
1106 	if (unlikely(gs_sel != host->gs_sel)) {
1107 		if (!(gs_sel & 7))
1108 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1109 		else
1110 			vmcs_write16(HOST_GS_SELECTOR, 0);
1111 		host->gs_sel = gs_sel;
1112 	}
1113 	if (unlikely(fs_base != host->fs_base)) {
1114 		vmcs_writel(HOST_FS_BASE, fs_base);
1115 		host->fs_base = fs_base;
1116 	}
1117 	if (unlikely(gs_base != host->gs_base)) {
1118 		vmcs_writel(HOST_GS_BASE, gs_base);
1119 		host->gs_base = gs_base;
1120 	}
1121 }
1122 
1123 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1124 {
1125 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1126 	struct vmcs_host_state *host_state;
1127 #ifdef CONFIG_X86_64
1128 	int cpu = raw_smp_processor_id();
1129 #endif
1130 	unsigned long fs_base, gs_base;
1131 	u16 fs_sel, gs_sel;
1132 	int i;
1133 
1134 	vmx->req_immediate_exit = false;
1135 
1136 	/*
1137 	 * Note that guest MSRs to be saved/restored can also be changed
1138 	 * when guest state is loaded. This happens when guest transitions
1139 	 * to/from long-mode by setting MSR_EFER.LMA.
1140 	 */
1141 	if (!vmx->guest_msrs_ready) {
1142 		vmx->guest_msrs_ready = true;
1143 		for (i = 0; i < vmx->save_nmsrs; ++i)
1144 			kvm_set_shared_msr(vmx->guest_msrs[i].index,
1145 					   vmx->guest_msrs[i].data,
1146 					   vmx->guest_msrs[i].mask);
1147 
1148 	}
1149 
1150     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1151 		nested_sync_vmcs12_to_shadow(vcpu);
1152 
1153 	if (vmx->guest_state_loaded)
1154 		return;
1155 
1156 	host_state = &vmx->loaded_vmcs->host_state;
1157 
1158 	/*
1159 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1160 	 * allow segment selectors with cpl > 0 or ti == 1.
1161 	 */
1162 	host_state->ldt_sel = kvm_read_ldt();
1163 
1164 #ifdef CONFIG_X86_64
1165 	savesegment(ds, host_state->ds_sel);
1166 	savesegment(es, host_state->es_sel);
1167 
1168 	gs_base = cpu_kernelmode_gs_base(cpu);
1169 	if (likely(is_64bit_mm(current->mm))) {
1170 		save_fsgs_for_kvm();
1171 		fs_sel = current->thread.fsindex;
1172 		gs_sel = current->thread.gsindex;
1173 		fs_base = current->thread.fsbase;
1174 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1175 	} else {
1176 		savesegment(fs, fs_sel);
1177 		savesegment(gs, gs_sel);
1178 		fs_base = read_msr(MSR_FS_BASE);
1179 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1180 	}
1181 
1182 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1183 #else
1184 	savesegment(fs, fs_sel);
1185 	savesegment(gs, gs_sel);
1186 	fs_base = segment_base(fs_sel);
1187 	gs_base = segment_base(gs_sel);
1188 #endif
1189 
1190 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1191 	vmx->guest_state_loaded = true;
1192 }
1193 
1194 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1195 {
1196 	struct vmcs_host_state *host_state;
1197 
1198 	if (!vmx->guest_state_loaded)
1199 		return;
1200 
1201 	host_state = &vmx->loaded_vmcs->host_state;
1202 
1203 	++vmx->vcpu.stat.host_state_reload;
1204 
1205 #ifdef CONFIG_X86_64
1206 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1207 #endif
1208 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1209 		kvm_load_ldt(host_state->ldt_sel);
1210 #ifdef CONFIG_X86_64
1211 		load_gs_index(host_state->gs_sel);
1212 #else
1213 		loadsegment(gs, host_state->gs_sel);
1214 #endif
1215 	}
1216 	if (host_state->fs_sel & 7)
1217 		loadsegment(fs, host_state->fs_sel);
1218 #ifdef CONFIG_X86_64
1219 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1220 		loadsegment(ds, host_state->ds_sel);
1221 		loadsegment(es, host_state->es_sel);
1222 	}
1223 #endif
1224 	invalidate_tss_limit();
1225 #ifdef CONFIG_X86_64
1226 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1227 #endif
1228 	load_fixmap_gdt(raw_smp_processor_id());
1229 	vmx->guest_state_loaded = false;
1230 	vmx->guest_msrs_ready = false;
1231 }
1232 
1233 #ifdef CONFIG_X86_64
1234 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1235 {
1236 	preempt_disable();
1237 	if (vmx->guest_state_loaded)
1238 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1239 	preempt_enable();
1240 	return vmx->msr_guest_kernel_gs_base;
1241 }
1242 
1243 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1244 {
1245 	preempt_disable();
1246 	if (vmx->guest_state_loaded)
1247 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1248 	preempt_enable();
1249 	vmx->msr_guest_kernel_gs_base = data;
1250 }
1251 #endif
1252 
1253 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1254 {
1255 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1256 	struct pi_desc old, new;
1257 	unsigned int dest;
1258 
1259 	/*
1260 	 * In case of hot-plug or hot-unplug, we may have to undo
1261 	 * vmx_vcpu_pi_put even if there is no assigned device.  And we
1262 	 * always keep PI.NDST up to date for simplicity: it makes the
1263 	 * code easier, and CPU migration is not a fast path.
1264 	 */
1265 	if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1266 		return;
1267 
1268 	/*
1269 	 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1270 	 * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1271 	 * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1272 	 * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1273 	 * correctly.
1274 	 */
1275 	if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1276 		pi_clear_sn(pi_desc);
1277 		goto after_clear_sn;
1278 	}
1279 
1280 	/* The full case.  */
1281 	do {
1282 		old.control = new.control = pi_desc->control;
1283 
1284 		dest = cpu_physical_id(cpu);
1285 
1286 		if (x2apic_enabled())
1287 			new.ndst = dest;
1288 		else
1289 			new.ndst = (dest << 8) & 0xFF00;
1290 
1291 		new.sn = 0;
1292 	} while (cmpxchg64(&pi_desc->control, old.control,
1293 			   new.control) != old.control);
1294 
1295 after_clear_sn:
1296 
1297 	/*
1298 	 * Clear SN before reading the bitmap.  The VT-d firmware
1299 	 * writes the bitmap and reads SN atomically (5.2.3 in the
1300 	 * spec), so it doesn't really have a memory barrier that
1301 	 * pairs with this, but we cannot do that and we need one.
1302 	 */
1303 	smp_mb__after_atomic();
1304 
1305 	if (!pi_is_pir_empty(pi_desc))
1306 		pi_set_on(pi_desc);
1307 }
1308 
1309 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1310 {
1311 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1312 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1313 
1314 	if (!already_loaded) {
1315 		loaded_vmcs_clear(vmx->loaded_vmcs);
1316 		local_irq_disable();
1317 
1318 		/*
1319 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1320 		 * this cpu's percpu list, otherwise it may not yet be deleted
1321 		 * from its previous cpu's percpu list.  Pairs with the
1322 		 * smb_wmb() in __loaded_vmcs_clear().
1323 		 */
1324 		smp_rmb();
1325 
1326 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1327 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1328 		local_irq_enable();
1329 	}
1330 
1331 	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1332 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1333 		vmcs_load(vmx->loaded_vmcs->vmcs);
1334 		indirect_branch_prediction_barrier();
1335 	}
1336 
1337 	if (!already_loaded) {
1338 		void *gdt = get_current_gdt_ro();
1339 		unsigned long sysenter_esp;
1340 
1341 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1342 
1343 		/*
1344 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1345 		 * processors.  See 22.2.4.
1346 		 */
1347 		vmcs_writel(HOST_TR_BASE,
1348 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1349 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1350 
1351 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1352 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1353 
1354 		vmx->loaded_vmcs->cpu = cpu;
1355 	}
1356 
1357 	/* Setup TSC multiplier */
1358 	if (kvm_has_tsc_control &&
1359 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1360 		decache_tsc_multiplier(vmx);
1361 }
1362 
1363 /*
1364  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1365  * vcpu mutex is already taken.
1366  */
1367 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1368 {
1369 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1370 
1371 	vmx_vcpu_load_vmcs(vcpu, cpu);
1372 
1373 	vmx_vcpu_pi_load(vcpu, cpu);
1374 
1375 	vmx->host_debugctlmsr = get_debugctlmsr();
1376 }
1377 
1378 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1379 {
1380 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1381 
1382 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1383 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
1384 		!kvm_vcpu_apicv_active(vcpu))
1385 		return;
1386 
1387 	/* Set SN when the vCPU is preempted */
1388 	if (vcpu->preempted)
1389 		pi_set_sn(pi_desc);
1390 }
1391 
1392 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1393 {
1394 	vmx_vcpu_pi_put(vcpu);
1395 
1396 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1397 }
1398 
1399 static bool emulation_required(struct kvm_vcpu *vcpu)
1400 {
1401 	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1402 }
1403 
1404 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1405 {
1406 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1407 	unsigned long rflags, save_rflags;
1408 
1409 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1410 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1411 		rflags = vmcs_readl(GUEST_RFLAGS);
1412 		if (vmx->rmode.vm86_active) {
1413 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1414 			save_rflags = vmx->rmode.save_rflags;
1415 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1416 		}
1417 		vmx->rflags = rflags;
1418 	}
1419 	return vmx->rflags;
1420 }
1421 
1422 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1423 {
1424 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1425 	unsigned long old_rflags;
1426 
1427 	if (enable_unrestricted_guest) {
1428 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1429 		vmx->rflags = rflags;
1430 		vmcs_writel(GUEST_RFLAGS, rflags);
1431 		return;
1432 	}
1433 
1434 	old_rflags = vmx_get_rflags(vcpu);
1435 	vmx->rflags = rflags;
1436 	if (vmx->rmode.vm86_active) {
1437 		vmx->rmode.save_rflags = rflags;
1438 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1439 	}
1440 	vmcs_writel(GUEST_RFLAGS, rflags);
1441 
1442 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1443 		vmx->emulation_required = emulation_required(vcpu);
1444 }
1445 
1446 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1447 {
1448 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1449 	int ret = 0;
1450 
1451 	if (interruptibility & GUEST_INTR_STATE_STI)
1452 		ret |= KVM_X86_SHADOW_INT_STI;
1453 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1454 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1455 
1456 	return ret;
1457 }
1458 
1459 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1460 {
1461 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1462 	u32 interruptibility = interruptibility_old;
1463 
1464 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1465 
1466 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1467 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1468 	else if (mask & KVM_X86_SHADOW_INT_STI)
1469 		interruptibility |= GUEST_INTR_STATE_STI;
1470 
1471 	if ((interruptibility != interruptibility_old))
1472 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1473 }
1474 
1475 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1476 {
1477 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1478 	unsigned long value;
1479 
1480 	/*
1481 	 * Any MSR write that attempts to change bits marked reserved will
1482 	 * case a #GP fault.
1483 	 */
1484 	if (data & vmx->pt_desc.ctl_bitmask)
1485 		return 1;
1486 
1487 	/*
1488 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1489 	 * result in a #GP unless the same write also clears TraceEn.
1490 	 */
1491 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1492 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1493 		return 1;
1494 
1495 	/*
1496 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1497 	 * and FabricEn would cause #GP, if
1498 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1499 	 */
1500 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1501 		!(data & RTIT_CTL_FABRIC_EN) &&
1502 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1503 					PT_CAP_single_range_output))
1504 		return 1;
1505 
1506 	/*
1507 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1508 	 * utilize encodings marked reserved will casue a #GP fault.
1509 	 */
1510 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1511 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1512 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1513 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1514 		return 1;
1515 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1516 						PT_CAP_cycle_thresholds);
1517 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1518 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1519 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1520 		return 1;
1521 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1522 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1523 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1524 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1525 		return 1;
1526 
1527 	/*
1528 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1529 	 * cause a #GP fault.
1530 	 */
1531 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1532 	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1533 		return 1;
1534 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1535 	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1536 		return 1;
1537 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1538 	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1539 		return 1;
1540 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1541 	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1542 		return 1;
1543 
1544 	return 0;
1545 }
1546 
1547 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1548 {
1549 	unsigned long rip;
1550 
1551 	/*
1552 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1553 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1554 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1555 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1556 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1557 	 * i.e. we end up advancing IP with some random value.
1558 	 */
1559 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1560 	    to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1561 		rip = kvm_rip_read(vcpu);
1562 		rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1563 		kvm_rip_write(vcpu, rip);
1564 	} else {
1565 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1566 			return 0;
1567 	}
1568 
1569 	/* skipping an emulated instruction also counts */
1570 	vmx_set_interrupt_shadow(vcpu, 0);
1571 
1572 	return 1;
1573 }
1574 
1575 
1576 /*
1577  * Recognizes a pending MTF VM-exit and records the nested state for later
1578  * delivery.
1579  */
1580 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1581 {
1582 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1583 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1584 
1585 	if (!is_guest_mode(vcpu))
1586 		return;
1587 
1588 	/*
1589 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1590 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1591 	 * instruction boundary), any #DB exception pending delivery must be a
1592 	 * debug-trap. Record the pending MTF state to be delivered in
1593 	 * vmx_check_nested_events().
1594 	 */
1595 	if (nested_cpu_has_mtf(vmcs12) &&
1596 	    (!vcpu->arch.exception.pending ||
1597 	     vcpu->arch.exception.nr == DB_VECTOR))
1598 		vmx->nested.mtf_pending = true;
1599 	else
1600 		vmx->nested.mtf_pending = false;
1601 }
1602 
1603 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1604 {
1605 	vmx_update_emulated_instruction(vcpu);
1606 	return skip_emulated_instruction(vcpu);
1607 }
1608 
1609 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1610 {
1611 	/*
1612 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1613 	 * explicitly skip the instruction because if the HLT state is set,
1614 	 * then the instruction is already executing and RIP has already been
1615 	 * advanced.
1616 	 */
1617 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1618 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1619 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1620 }
1621 
1622 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1623 {
1624 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1625 	unsigned nr = vcpu->arch.exception.nr;
1626 	bool has_error_code = vcpu->arch.exception.has_error_code;
1627 	u32 error_code = vcpu->arch.exception.error_code;
1628 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1629 
1630 	kvm_deliver_exception_payload(vcpu);
1631 
1632 	if (has_error_code) {
1633 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1634 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1635 	}
1636 
1637 	if (vmx->rmode.vm86_active) {
1638 		int inc_eip = 0;
1639 		if (kvm_exception_is_soft(nr))
1640 			inc_eip = vcpu->arch.event_exit_inst_len;
1641 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1642 		return;
1643 	}
1644 
1645 	WARN_ON_ONCE(vmx->emulation_required);
1646 
1647 	if (kvm_exception_is_soft(nr)) {
1648 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1649 			     vmx->vcpu.arch.event_exit_inst_len);
1650 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1651 	} else
1652 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1653 
1654 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1655 
1656 	vmx_clear_hlt(vcpu);
1657 }
1658 
1659 /*
1660  * Swap MSR entry in host/guest MSR entry array.
1661  */
1662 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1663 {
1664 	struct shared_msr_entry tmp;
1665 
1666 	tmp = vmx->guest_msrs[to];
1667 	vmx->guest_msrs[to] = vmx->guest_msrs[from];
1668 	vmx->guest_msrs[from] = tmp;
1669 }
1670 
1671 /*
1672  * Set up the vmcs to automatically save and restore system
1673  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1674  * mode, as fiddling with msrs is very expensive.
1675  */
1676 static void setup_msrs(struct vcpu_vmx *vmx)
1677 {
1678 	int save_nmsrs, index;
1679 
1680 	save_nmsrs = 0;
1681 #ifdef CONFIG_X86_64
1682 	/*
1683 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1684 	 * when EFER.SCE is set.
1685 	 */
1686 	if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1687 		index = __find_msr_index(vmx, MSR_STAR);
1688 		if (index >= 0)
1689 			move_msr_up(vmx, index, save_nmsrs++);
1690 		index = __find_msr_index(vmx, MSR_LSTAR);
1691 		if (index >= 0)
1692 			move_msr_up(vmx, index, save_nmsrs++);
1693 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1694 		if (index >= 0)
1695 			move_msr_up(vmx, index, save_nmsrs++);
1696 	}
1697 #endif
1698 	index = __find_msr_index(vmx, MSR_EFER);
1699 	if (index >= 0 && update_transition_efer(vmx, index))
1700 		move_msr_up(vmx, index, save_nmsrs++);
1701 	index = __find_msr_index(vmx, MSR_TSC_AUX);
1702 	if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1703 		move_msr_up(vmx, index, save_nmsrs++);
1704 	index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL);
1705 	if (index >= 0)
1706 		move_msr_up(vmx, index, save_nmsrs++);
1707 
1708 	vmx->save_nmsrs = save_nmsrs;
1709 	vmx->guest_msrs_ready = false;
1710 
1711 	if (cpu_has_vmx_msr_bitmap())
1712 		vmx_update_msr_bitmap(&vmx->vcpu);
1713 }
1714 
1715 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1716 {
1717 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1718 
1719 	if (is_guest_mode(vcpu) &&
1720 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1721 		return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1722 
1723 	return vcpu->arch.tsc_offset;
1724 }
1725 
1726 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1727 {
1728 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1729 	u64 g_tsc_offset = 0;
1730 
1731 	/*
1732 	 * We're here if L1 chose not to trap WRMSR to TSC. According
1733 	 * to the spec, this should set L1's TSC; The offset that L1
1734 	 * set for L2 remains unchanged, and still needs to be added
1735 	 * to the newly set TSC to get L2's TSC.
1736 	 */
1737 	if (is_guest_mode(vcpu) &&
1738 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1739 		g_tsc_offset = vmcs12->tsc_offset;
1740 
1741 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1742 				   vcpu->arch.tsc_offset - g_tsc_offset,
1743 				   offset);
1744 	vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1745 	return offset + g_tsc_offset;
1746 }
1747 
1748 /*
1749  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1750  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1751  * all guests if the "nested" module option is off, and can also be disabled
1752  * for a single guest by disabling its VMX cpuid bit.
1753  */
1754 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1755 {
1756 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1757 }
1758 
1759 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1760 						 uint64_t val)
1761 {
1762 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1763 
1764 	return !(val & ~valid_bits);
1765 }
1766 
1767 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1768 {
1769 	switch (msr->index) {
1770 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1771 		if (!nested)
1772 			return 1;
1773 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1774 	default:
1775 		return 1;
1776 	}
1777 }
1778 
1779 /*
1780  * Reads an msr value (of 'msr_index') into 'pdata'.
1781  * Returns 0 on success, non-0 otherwise.
1782  * Assumes vcpu_load() was already called.
1783  */
1784 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1785 {
1786 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1787 	struct shared_msr_entry *msr;
1788 	u32 index;
1789 
1790 	switch (msr_info->index) {
1791 #ifdef CONFIG_X86_64
1792 	case MSR_FS_BASE:
1793 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1794 		break;
1795 	case MSR_GS_BASE:
1796 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1797 		break;
1798 	case MSR_KERNEL_GS_BASE:
1799 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1800 		break;
1801 #endif
1802 	case MSR_EFER:
1803 		return kvm_get_msr_common(vcpu, msr_info);
1804 	case MSR_IA32_TSX_CTRL:
1805 		if (!msr_info->host_initiated &&
1806 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1807 			return 1;
1808 		goto find_shared_msr;
1809 	case MSR_IA32_UMWAIT_CONTROL:
1810 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1811 			return 1;
1812 
1813 		msr_info->data = vmx->msr_ia32_umwait_control;
1814 		break;
1815 	case MSR_IA32_SPEC_CTRL:
1816 		if (!msr_info->host_initiated &&
1817 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1818 			return 1;
1819 
1820 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1821 		break;
1822 	case MSR_IA32_SYSENTER_CS:
1823 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1824 		break;
1825 	case MSR_IA32_SYSENTER_EIP:
1826 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1827 		break;
1828 	case MSR_IA32_SYSENTER_ESP:
1829 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1830 		break;
1831 	case MSR_IA32_BNDCFGS:
1832 		if (!kvm_mpx_supported() ||
1833 		    (!msr_info->host_initiated &&
1834 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1835 			return 1;
1836 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1837 		break;
1838 	case MSR_IA32_MCG_EXT_CTL:
1839 		if (!msr_info->host_initiated &&
1840 		    !(vmx->msr_ia32_feature_control &
1841 		      FEAT_CTL_LMCE_ENABLED))
1842 			return 1;
1843 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1844 		break;
1845 	case MSR_IA32_FEAT_CTL:
1846 		msr_info->data = vmx->msr_ia32_feature_control;
1847 		break;
1848 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1849 		if (!nested_vmx_allowed(vcpu))
1850 			return 1;
1851 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1852 				    &msr_info->data))
1853 			return 1;
1854 		/*
1855 		 * Enlightened VMCS v1 doesn't have certain fields, but buggy
1856 		 * Hyper-V versions are still trying to use corresponding
1857 		 * features when they are exposed. Filter out the essential
1858 		 * minimum.
1859 		 */
1860 		if (!msr_info->host_initiated &&
1861 		    vmx->nested.enlightened_vmcs_enabled)
1862 			nested_evmcs_filter_control_msr(msr_info->index,
1863 							&msr_info->data);
1864 		break;
1865 	case MSR_IA32_RTIT_CTL:
1866 		if (!vmx_pt_mode_is_host_guest())
1867 			return 1;
1868 		msr_info->data = vmx->pt_desc.guest.ctl;
1869 		break;
1870 	case MSR_IA32_RTIT_STATUS:
1871 		if (!vmx_pt_mode_is_host_guest())
1872 			return 1;
1873 		msr_info->data = vmx->pt_desc.guest.status;
1874 		break;
1875 	case MSR_IA32_RTIT_CR3_MATCH:
1876 		if (!vmx_pt_mode_is_host_guest() ||
1877 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1878 						PT_CAP_cr3_filtering))
1879 			return 1;
1880 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1881 		break;
1882 	case MSR_IA32_RTIT_OUTPUT_BASE:
1883 		if (!vmx_pt_mode_is_host_guest() ||
1884 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1885 					PT_CAP_topa_output) &&
1886 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1887 					PT_CAP_single_range_output)))
1888 			return 1;
1889 		msr_info->data = vmx->pt_desc.guest.output_base;
1890 		break;
1891 	case MSR_IA32_RTIT_OUTPUT_MASK:
1892 		if (!vmx_pt_mode_is_host_guest() ||
1893 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1894 					PT_CAP_topa_output) &&
1895 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1896 					PT_CAP_single_range_output)))
1897 			return 1;
1898 		msr_info->data = vmx->pt_desc.guest.output_mask;
1899 		break;
1900 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1901 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1902 		if (!vmx_pt_mode_is_host_guest() ||
1903 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1904 					PT_CAP_num_address_ranges)))
1905 			return 1;
1906 		if (index % 2)
1907 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1908 		else
1909 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1910 		break;
1911 	case MSR_TSC_AUX:
1912 		if (!msr_info->host_initiated &&
1913 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1914 			return 1;
1915 		goto find_shared_msr;
1916 	default:
1917 	find_shared_msr:
1918 		msr = find_msr_entry(vmx, msr_info->index);
1919 		if (msr) {
1920 			msr_info->data = msr->data;
1921 			break;
1922 		}
1923 		return kvm_get_msr_common(vcpu, msr_info);
1924 	}
1925 
1926 	return 0;
1927 }
1928 
1929 /*
1930  * Writes msr value into the appropriate "register".
1931  * Returns 0 on success, non-0 otherwise.
1932  * Assumes vcpu_load() was already called.
1933  */
1934 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1935 {
1936 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1937 	struct shared_msr_entry *msr;
1938 	int ret = 0;
1939 	u32 msr_index = msr_info->index;
1940 	u64 data = msr_info->data;
1941 	u32 index;
1942 
1943 	switch (msr_index) {
1944 	case MSR_EFER:
1945 		ret = kvm_set_msr_common(vcpu, msr_info);
1946 		break;
1947 #ifdef CONFIG_X86_64
1948 	case MSR_FS_BASE:
1949 		vmx_segment_cache_clear(vmx);
1950 		vmcs_writel(GUEST_FS_BASE, data);
1951 		break;
1952 	case MSR_GS_BASE:
1953 		vmx_segment_cache_clear(vmx);
1954 		vmcs_writel(GUEST_GS_BASE, data);
1955 		break;
1956 	case MSR_KERNEL_GS_BASE:
1957 		vmx_write_guest_kernel_gs_base(vmx, data);
1958 		break;
1959 #endif
1960 	case MSR_IA32_SYSENTER_CS:
1961 		if (is_guest_mode(vcpu))
1962 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
1963 		vmcs_write32(GUEST_SYSENTER_CS, data);
1964 		break;
1965 	case MSR_IA32_SYSENTER_EIP:
1966 		if (is_guest_mode(vcpu))
1967 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
1968 		vmcs_writel(GUEST_SYSENTER_EIP, data);
1969 		break;
1970 	case MSR_IA32_SYSENTER_ESP:
1971 		if (is_guest_mode(vcpu))
1972 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
1973 		vmcs_writel(GUEST_SYSENTER_ESP, data);
1974 		break;
1975 	case MSR_IA32_DEBUGCTLMSR:
1976 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1977 						VM_EXIT_SAVE_DEBUG_CONTROLS)
1978 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1979 
1980 		ret = kvm_set_msr_common(vcpu, msr_info);
1981 		break;
1982 
1983 	case MSR_IA32_BNDCFGS:
1984 		if (!kvm_mpx_supported() ||
1985 		    (!msr_info->host_initiated &&
1986 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1987 			return 1;
1988 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1989 		    (data & MSR_IA32_BNDCFGS_RSVD))
1990 			return 1;
1991 		vmcs_write64(GUEST_BNDCFGS, data);
1992 		break;
1993 	case MSR_IA32_UMWAIT_CONTROL:
1994 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1995 			return 1;
1996 
1997 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
1998 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
1999 			return 1;
2000 
2001 		vmx->msr_ia32_umwait_control = data;
2002 		break;
2003 	case MSR_IA32_SPEC_CTRL:
2004 		if (!msr_info->host_initiated &&
2005 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2006 			return 1;
2007 
2008 		if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
2009 			return 1;
2010 
2011 		vmx->spec_ctrl = data;
2012 		if (!data)
2013 			break;
2014 
2015 		/*
2016 		 * For non-nested:
2017 		 * When it's written (to non-zero) for the first time, pass
2018 		 * it through.
2019 		 *
2020 		 * For nested:
2021 		 * The handling of the MSR bitmap for L2 guests is done in
2022 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2023 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2024 		 * in the merging. We update the vmcs01 here for L1 as well
2025 		 * since it will end up touching the MSR anyway now.
2026 		 */
2027 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2028 					      MSR_IA32_SPEC_CTRL,
2029 					      MSR_TYPE_RW);
2030 		break;
2031 	case MSR_IA32_TSX_CTRL:
2032 		if (!msr_info->host_initiated &&
2033 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2034 			return 1;
2035 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2036 			return 1;
2037 		goto find_shared_msr;
2038 	case MSR_IA32_PRED_CMD:
2039 		if (!msr_info->host_initiated &&
2040 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2041 			return 1;
2042 
2043 		if (data & ~PRED_CMD_IBPB)
2044 			return 1;
2045 		if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL))
2046 			return 1;
2047 		if (!data)
2048 			break;
2049 
2050 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2051 
2052 		/*
2053 		 * For non-nested:
2054 		 * When it's written (to non-zero) for the first time, pass
2055 		 * it through.
2056 		 *
2057 		 * For nested:
2058 		 * The handling of the MSR bitmap for L2 guests is done in
2059 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2060 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2061 		 * in the merging.
2062 		 */
2063 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2064 					      MSR_TYPE_W);
2065 		break;
2066 	case MSR_IA32_CR_PAT:
2067 		if (!kvm_pat_valid(data))
2068 			return 1;
2069 
2070 		if (is_guest_mode(vcpu) &&
2071 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2072 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2073 
2074 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2075 			vmcs_write64(GUEST_IA32_PAT, data);
2076 			vcpu->arch.pat = data;
2077 			break;
2078 		}
2079 		ret = kvm_set_msr_common(vcpu, msr_info);
2080 		break;
2081 	case MSR_IA32_TSC_ADJUST:
2082 		ret = kvm_set_msr_common(vcpu, msr_info);
2083 		break;
2084 	case MSR_IA32_MCG_EXT_CTL:
2085 		if ((!msr_info->host_initiated &&
2086 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2087 		       FEAT_CTL_LMCE_ENABLED)) ||
2088 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2089 			return 1;
2090 		vcpu->arch.mcg_ext_ctl = data;
2091 		break;
2092 	case MSR_IA32_FEAT_CTL:
2093 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2094 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2095 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2096 			return 1;
2097 		vmx->msr_ia32_feature_control = data;
2098 		if (msr_info->host_initiated && data == 0)
2099 			vmx_leave_nested(vcpu);
2100 		break;
2101 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2102 		if (!msr_info->host_initiated)
2103 			return 1; /* they are read-only */
2104 		if (!nested_vmx_allowed(vcpu))
2105 			return 1;
2106 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2107 	case MSR_IA32_RTIT_CTL:
2108 		if (!vmx_pt_mode_is_host_guest() ||
2109 			vmx_rtit_ctl_check(vcpu, data) ||
2110 			vmx->nested.vmxon)
2111 			return 1;
2112 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2113 		vmx->pt_desc.guest.ctl = data;
2114 		pt_update_intercept_for_msr(vmx);
2115 		break;
2116 	case MSR_IA32_RTIT_STATUS:
2117 		if (!pt_can_write_msr(vmx))
2118 			return 1;
2119 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2120 			return 1;
2121 		vmx->pt_desc.guest.status = data;
2122 		break;
2123 	case MSR_IA32_RTIT_CR3_MATCH:
2124 		if (!pt_can_write_msr(vmx))
2125 			return 1;
2126 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2127 					   PT_CAP_cr3_filtering))
2128 			return 1;
2129 		vmx->pt_desc.guest.cr3_match = data;
2130 		break;
2131 	case MSR_IA32_RTIT_OUTPUT_BASE:
2132 		if (!pt_can_write_msr(vmx))
2133 			return 1;
2134 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2135 					   PT_CAP_topa_output) &&
2136 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2137 					   PT_CAP_single_range_output))
2138 			return 1;
2139 		if (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)
2140 			return 1;
2141 		vmx->pt_desc.guest.output_base = data;
2142 		break;
2143 	case MSR_IA32_RTIT_OUTPUT_MASK:
2144 		if (!pt_can_write_msr(vmx))
2145 			return 1;
2146 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2147 					   PT_CAP_topa_output) &&
2148 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2149 					   PT_CAP_single_range_output))
2150 			return 1;
2151 		vmx->pt_desc.guest.output_mask = data;
2152 		break;
2153 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2154 		if (!pt_can_write_msr(vmx))
2155 			return 1;
2156 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2157 		if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2158 						       PT_CAP_num_address_ranges))
2159 			return 1;
2160 		if (is_noncanonical_address(data, vcpu))
2161 			return 1;
2162 		if (index % 2)
2163 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2164 		else
2165 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2166 		break;
2167 	case MSR_TSC_AUX:
2168 		if (!msr_info->host_initiated &&
2169 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2170 			return 1;
2171 		/* Check reserved bit, higher 32 bits should be zero */
2172 		if ((data >> 32) != 0)
2173 			return 1;
2174 		goto find_shared_msr;
2175 
2176 	default:
2177 	find_shared_msr:
2178 		msr = find_msr_entry(vmx, msr_index);
2179 		if (msr)
2180 			ret = vmx_set_guest_msr(vmx, msr, data);
2181 		else
2182 			ret = kvm_set_msr_common(vcpu, msr_info);
2183 	}
2184 
2185 	return ret;
2186 }
2187 
2188 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2189 {
2190 	kvm_register_mark_available(vcpu, reg);
2191 
2192 	switch (reg) {
2193 	case VCPU_REGS_RSP:
2194 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2195 		break;
2196 	case VCPU_REGS_RIP:
2197 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2198 		break;
2199 	case VCPU_EXREG_PDPTR:
2200 		if (enable_ept)
2201 			ept_save_pdptrs(vcpu);
2202 		break;
2203 	case VCPU_EXREG_CR3:
2204 		if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2205 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2206 		break;
2207 	default:
2208 		WARN_ON_ONCE(1);
2209 		break;
2210 	}
2211 }
2212 
2213 static __init int cpu_has_kvm_support(void)
2214 {
2215 	return cpu_has_vmx();
2216 }
2217 
2218 static __init int vmx_disabled_by_bios(void)
2219 {
2220 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2221 	       !boot_cpu_has(X86_FEATURE_VMX);
2222 }
2223 
2224 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2225 {
2226 	u64 msr;
2227 
2228 	cr4_set_bits(X86_CR4_VMXE);
2229 	intel_pt_handle_vmx(1);
2230 
2231 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2232 			  _ASM_EXTABLE(1b, %l[fault])
2233 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2234 			  : : fault);
2235 	return 0;
2236 
2237 fault:
2238 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2239 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2240 	intel_pt_handle_vmx(0);
2241 	cr4_clear_bits(X86_CR4_VMXE);
2242 
2243 	return -EFAULT;
2244 }
2245 
2246 static int hardware_enable(void)
2247 {
2248 	int cpu = raw_smp_processor_id();
2249 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2250 	int r;
2251 
2252 	if (cr4_read_shadow() & X86_CR4_VMXE)
2253 		return -EBUSY;
2254 
2255 	/*
2256 	 * This can happen if we hot-added a CPU but failed to allocate
2257 	 * VP assist page for it.
2258 	 */
2259 	if (static_branch_unlikely(&enable_evmcs) &&
2260 	    !hv_get_vp_assist_page(cpu))
2261 		return -EFAULT;
2262 
2263 	r = kvm_cpu_vmxon(phys_addr);
2264 	if (r)
2265 		return r;
2266 
2267 	if (enable_ept)
2268 		ept_sync_global();
2269 
2270 	return 0;
2271 }
2272 
2273 static void vmclear_local_loaded_vmcss(void)
2274 {
2275 	int cpu = raw_smp_processor_id();
2276 	struct loaded_vmcs *v, *n;
2277 
2278 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2279 				 loaded_vmcss_on_cpu_link)
2280 		__loaded_vmcs_clear(v);
2281 }
2282 
2283 
2284 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2285  * tricks.
2286  */
2287 static void kvm_cpu_vmxoff(void)
2288 {
2289 	asm volatile (__ex("vmxoff"));
2290 
2291 	intel_pt_handle_vmx(0);
2292 	cr4_clear_bits(X86_CR4_VMXE);
2293 }
2294 
2295 static void hardware_disable(void)
2296 {
2297 	vmclear_local_loaded_vmcss();
2298 	kvm_cpu_vmxoff();
2299 }
2300 
2301 /*
2302  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2303  * directly instead of going through cpu_has(), to ensure KVM is trapping
2304  * ENCLS whenever it's supported in hardware.  It does not matter whether
2305  * the host OS supports or has enabled SGX.
2306  */
2307 static bool cpu_has_sgx(void)
2308 {
2309 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2310 }
2311 
2312 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2313 				      u32 msr, u32 *result)
2314 {
2315 	u32 vmx_msr_low, vmx_msr_high;
2316 	u32 ctl = ctl_min | ctl_opt;
2317 
2318 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2319 
2320 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2321 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2322 
2323 	/* Ensure minimum (required) set of control bits are supported. */
2324 	if (ctl_min & ~ctl)
2325 		return -EIO;
2326 
2327 	*result = ctl;
2328 	return 0;
2329 }
2330 
2331 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2332 				    struct vmx_capability *vmx_cap)
2333 {
2334 	u32 vmx_msr_low, vmx_msr_high;
2335 	u32 min, opt, min2, opt2;
2336 	u32 _pin_based_exec_control = 0;
2337 	u32 _cpu_based_exec_control = 0;
2338 	u32 _cpu_based_2nd_exec_control = 0;
2339 	u32 _vmexit_control = 0;
2340 	u32 _vmentry_control = 0;
2341 
2342 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2343 	min = CPU_BASED_HLT_EXITING |
2344 #ifdef CONFIG_X86_64
2345 	      CPU_BASED_CR8_LOAD_EXITING |
2346 	      CPU_BASED_CR8_STORE_EXITING |
2347 #endif
2348 	      CPU_BASED_CR3_LOAD_EXITING |
2349 	      CPU_BASED_CR3_STORE_EXITING |
2350 	      CPU_BASED_UNCOND_IO_EXITING |
2351 	      CPU_BASED_MOV_DR_EXITING |
2352 	      CPU_BASED_USE_TSC_OFFSETTING |
2353 	      CPU_BASED_MWAIT_EXITING |
2354 	      CPU_BASED_MONITOR_EXITING |
2355 	      CPU_BASED_INVLPG_EXITING |
2356 	      CPU_BASED_RDPMC_EXITING;
2357 
2358 	opt = CPU_BASED_TPR_SHADOW |
2359 	      CPU_BASED_USE_MSR_BITMAPS |
2360 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2361 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2362 				&_cpu_based_exec_control) < 0)
2363 		return -EIO;
2364 #ifdef CONFIG_X86_64
2365 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2366 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2367 					   ~CPU_BASED_CR8_STORE_EXITING;
2368 #endif
2369 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2370 		min2 = 0;
2371 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2372 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2373 			SECONDARY_EXEC_WBINVD_EXITING |
2374 			SECONDARY_EXEC_ENABLE_VPID |
2375 			SECONDARY_EXEC_ENABLE_EPT |
2376 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2377 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2378 			SECONDARY_EXEC_DESC |
2379 			SECONDARY_EXEC_RDTSCP |
2380 			SECONDARY_EXEC_ENABLE_INVPCID |
2381 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2382 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2383 			SECONDARY_EXEC_SHADOW_VMCS |
2384 			SECONDARY_EXEC_XSAVES |
2385 			SECONDARY_EXEC_RDSEED_EXITING |
2386 			SECONDARY_EXEC_RDRAND_EXITING |
2387 			SECONDARY_EXEC_ENABLE_PML |
2388 			SECONDARY_EXEC_TSC_SCALING |
2389 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2390 			SECONDARY_EXEC_PT_USE_GPA |
2391 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2392 			SECONDARY_EXEC_ENABLE_VMFUNC;
2393 		if (cpu_has_sgx())
2394 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2395 		if (adjust_vmx_controls(min2, opt2,
2396 					MSR_IA32_VMX_PROCBASED_CTLS2,
2397 					&_cpu_based_2nd_exec_control) < 0)
2398 			return -EIO;
2399 	}
2400 #ifndef CONFIG_X86_64
2401 	if (!(_cpu_based_2nd_exec_control &
2402 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2403 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2404 #endif
2405 
2406 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2407 		_cpu_based_2nd_exec_control &= ~(
2408 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2409 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2410 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2411 
2412 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2413 		&vmx_cap->ept, &vmx_cap->vpid);
2414 
2415 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2416 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2417 		   enabled */
2418 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2419 					     CPU_BASED_CR3_STORE_EXITING |
2420 					     CPU_BASED_INVLPG_EXITING);
2421 	} else if (vmx_cap->ept) {
2422 		vmx_cap->ept = 0;
2423 		pr_warn_once("EPT CAP should not exist if not support "
2424 				"1-setting enable EPT VM-execution control\n");
2425 	}
2426 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2427 		vmx_cap->vpid) {
2428 		vmx_cap->vpid = 0;
2429 		pr_warn_once("VPID CAP should not exist if not support "
2430 				"1-setting enable VPID VM-execution control\n");
2431 	}
2432 
2433 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2434 #ifdef CONFIG_X86_64
2435 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2436 #endif
2437 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2438 	      VM_EXIT_LOAD_IA32_PAT |
2439 	      VM_EXIT_LOAD_IA32_EFER |
2440 	      VM_EXIT_CLEAR_BNDCFGS |
2441 	      VM_EXIT_PT_CONCEAL_PIP |
2442 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2443 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2444 				&_vmexit_control) < 0)
2445 		return -EIO;
2446 
2447 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2448 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2449 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2450 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2451 				&_pin_based_exec_control) < 0)
2452 		return -EIO;
2453 
2454 	if (cpu_has_broken_vmx_preemption_timer())
2455 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2456 	if (!(_cpu_based_2nd_exec_control &
2457 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2458 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2459 
2460 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2461 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2462 	      VM_ENTRY_LOAD_IA32_PAT |
2463 	      VM_ENTRY_LOAD_IA32_EFER |
2464 	      VM_ENTRY_LOAD_BNDCFGS |
2465 	      VM_ENTRY_PT_CONCEAL_PIP |
2466 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2467 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2468 				&_vmentry_control) < 0)
2469 		return -EIO;
2470 
2471 	/*
2472 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2473 	 * can't be used due to an errata where VM Exit may incorrectly clear
2474 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2475 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2476 	 */
2477 	if (boot_cpu_data.x86 == 0x6) {
2478 		switch (boot_cpu_data.x86_model) {
2479 		case 26: /* AAK155 */
2480 		case 30: /* AAP115 */
2481 		case 37: /* AAT100 */
2482 		case 44: /* BC86,AAY89,BD102 */
2483 		case 46: /* BA97 */
2484 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2485 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2486 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2487 					"does not work properly. Using workaround\n");
2488 			break;
2489 		default:
2490 			break;
2491 		}
2492 	}
2493 
2494 
2495 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2496 
2497 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2498 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2499 		return -EIO;
2500 
2501 #ifdef CONFIG_X86_64
2502 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2503 	if (vmx_msr_high & (1u<<16))
2504 		return -EIO;
2505 #endif
2506 
2507 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2508 	if (((vmx_msr_high >> 18) & 15) != 6)
2509 		return -EIO;
2510 
2511 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2512 	vmcs_conf->order = get_order(vmcs_conf->size);
2513 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2514 
2515 	vmcs_conf->revision_id = vmx_msr_low;
2516 
2517 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2518 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2519 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2520 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2521 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2522 
2523 	if (static_branch_unlikely(&enable_evmcs))
2524 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2525 
2526 	return 0;
2527 }
2528 
2529 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2530 {
2531 	int node = cpu_to_node(cpu);
2532 	struct page *pages;
2533 	struct vmcs *vmcs;
2534 
2535 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2536 	if (!pages)
2537 		return NULL;
2538 	vmcs = page_address(pages);
2539 	memset(vmcs, 0, vmcs_config.size);
2540 
2541 	/* KVM supports Enlightened VMCS v1 only */
2542 	if (static_branch_unlikely(&enable_evmcs))
2543 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2544 	else
2545 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2546 
2547 	if (shadow)
2548 		vmcs->hdr.shadow_vmcs = 1;
2549 	return vmcs;
2550 }
2551 
2552 void free_vmcs(struct vmcs *vmcs)
2553 {
2554 	free_pages((unsigned long)vmcs, vmcs_config.order);
2555 }
2556 
2557 /*
2558  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2559  */
2560 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2561 {
2562 	if (!loaded_vmcs->vmcs)
2563 		return;
2564 	loaded_vmcs_clear(loaded_vmcs);
2565 	free_vmcs(loaded_vmcs->vmcs);
2566 	loaded_vmcs->vmcs = NULL;
2567 	if (loaded_vmcs->msr_bitmap)
2568 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2569 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2570 }
2571 
2572 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2573 {
2574 	loaded_vmcs->vmcs = alloc_vmcs(false);
2575 	if (!loaded_vmcs->vmcs)
2576 		return -ENOMEM;
2577 
2578 	vmcs_clear(loaded_vmcs->vmcs);
2579 
2580 	loaded_vmcs->shadow_vmcs = NULL;
2581 	loaded_vmcs->hv_timer_soft_disabled = false;
2582 	loaded_vmcs->cpu = -1;
2583 	loaded_vmcs->launched = 0;
2584 
2585 	if (cpu_has_vmx_msr_bitmap()) {
2586 		loaded_vmcs->msr_bitmap = (unsigned long *)
2587 				__get_free_page(GFP_KERNEL_ACCOUNT);
2588 		if (!loaded_vmcs->msr_bitmap)
2589 			goto out_vmcs;
2590 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2591 
2592 		if (IS_ENABLED(CONFIG_HYPERV) &&
2593 		    static_branch_unlikely(&enable_evmcs) &&
2594 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2595 			struct hv_enlightened_vmcs *evmcs =
2596 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2597 
2598 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2599 		}
2600 	}
2601 
2602 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2603 	memset(&loaded_vmcs->controls_shadow, 0,
2604 		sizeof(struct vmcs_controls_shadow));
2605 
2606 	return 0;
2607 
2608 out_vmcs:
2609 	free_loaded_vmcs(loaded_vmcs);
2610 	return -ENOMEM;
2611 }
2612 
2613 static void free_kvm_area(void)
2614 {
2615 	int cpu;
2616 
2617 	for_each_possible_cpu(cpu) {
2618 		free_vmcs(per_cpu(vmxarea, cpu));
2619 		per_cpu(vmxarea, cpu) = NULL;
2620 	}
2621 }
2622 
2623 static __init int alloc_kvm_area(void)
2624 {
2625 	int cpu;
2626 
2627 	for_each_possible_cpu(cpu) {
2628 		struct vmcs *vmcs;
2629 
2630 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2631 		if (!vmcs) {
2632 			free_kvm_area();
2633 			return -ENOMEM;
2634 		}
2635 
2636 		/*
2637 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2638 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2639 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2640 		 *
2641 		 * However, even though not explicitly documented by
2642 		 * TLFS, VMXArea passed as VMXON argument should
2643 		 * still be marked with revision_id reported by
2644 		 * physical CPU.
2645 		 */
2646 		if (static_branch_unlikely(&enable_evmcs))
2647 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2648 
2649 		per_cpu(vmxarea, cpu) = vmcs;
2650 	}
2651 	return 0;
2652 }
2653 
2654 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2655 		struct kvm_segment *save)
2656 {
2657 	if (!emulate_invalid_guest_state) {
2658 		/*
2659 		 * CS and SS RPL should be equal during guest entry according
2660 		 * to VMX spec, but in reality it is not always so. Since vcpu
2661 		 * is in the middle of the transition from real mode to
2662 		 * protected mode it is safe to assume that RPL 0 is a good
2663 		 * default value.
2664 		 */
2665 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2666 			save->selector &= ~SEGMENT_RPL_MASK;
2667 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2668 		save->s = 1;
2669 	}
2670 	vmx_set_segment(vcpu, save, seg);
2671 }
2672 
2673 static void enter_pmode(struct kvm_vcpu *vcpu)
2674 {
2675 	unsigned long flags;
2676 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2677 
2678 	/*
2679 	 * Update real mode segment cache. It may be not up-to-date if sement
2680 	 * register was written while vcpu was in a guest mode.
2681 	 */
2682 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2683 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2684 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2685 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2686 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2687 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2688 
2689 	vmx->rmode.vm86_active = 0;
2690 
2691 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2692 
2693 	flags = vmcs_readl(GUEST_RFLAGS);
2694 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2695 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2696 	vmcs_writel(GUEST_RFLAGS, flags);
2697 
2698 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2699 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2700 
2701 	update_exception_bitmap(vcpu);
2702 
2703 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2704 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2705 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2706 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2707 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2708 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2709 }
2710 
2711 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2712 {
2713 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2714 	struct kvm_segment var = *save;
2715 
2716 	var.dpl = 0x3;
2717 	if (seg == VCPU_SREG_CS)
2718 		var.type = 0x3;
2719 
2720 	if (!emulate_invalid_guest_state) {
2721 		var.selector = var.base >> 4;
2722 		var.base = var.base & 0xffff0;
2723 		var.limit = 0xffff;
2724 		var.g = 0;
2725 		var.db = 0;
2726 		var.present = 1;
2727 		var.s = 1;
2728 		var.l = 0;
2729 		var.unusable = 0;
2730 		var.type = 0x3;
2731 		var.avl = 0;
2732 		if (save->base & 0xf)
2733 			printk_once(KERN_WARNING "kvm: segment base is not "
2734 					"paragraph aligned when entering "
2735 					"protected mode (seg=%d)", seg);
2736 	}
2737 
2738 	vmcs_write16(sf->selector, var.selector);
2739 	vmcs_writel(sf->base, var.base);
2740 	vmcs_write32(sf->limit, var.limit);
2741 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2742 }
2743 
2744 static void enter_rmode(struct kvm_vcpu *vcpu)
2745 {
2746 	unsigned long flags;
2747 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2748 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2749 
2750 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2751 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2752 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2753 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2754 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2755 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2756 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2757 
2758 	vmx->rmode.vm86_active = 1;
2759 
2760 	/*
2761 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2762 	 * vcpu. Warn the user that an update is overdue.
2763 	 */
2764 	if (!kvm_vmx->tss_addr)
2765 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2766 			     "called before entering vcpu\n");
2767 
2768 	vmx_segment_cache_clear(vmx);
2769 
2770 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2771 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2772 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2773 
2774 	flags = vmcs_readl(GUEST_RFLAGS);
2775 	vmx->rmode.save_rflags = flags;
2776 
2777 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2778 
2779 	vmcs_writel(GUEST_RFLAGS, flags);
2780 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2781 	update_exception_bitmap(vcpu);
2782 
2783 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2784 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2785 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2786 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2787 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2788 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2789 
2790 	kvm_mmu_reset_context(vcpu);
2791 }
2792 
2793 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2794 {
2795 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2796 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2797 
2798 	if (!msr)
2799 		return;
2800 
2801 	vcpu->arch.efer = efer;
2802 	if (efer & EFER_LMA) {
2803 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2804 		msr->data = efer;
2805 	} else {
2806 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2807 
2808 		msr->data = efer & ~EFER_LME;
2809 	}
2810 	setup_msrs(vmx);
2811 }
2812 
2813 #ifdef CONFIG_X86_64
2814 
2815 static void enter_lmode(struct kvm_vcpu *vcpu)
2816 {
2817 	u32 guest_tr_ar;
2818 
2819 	vmx_segment_cache_clear(to_vmx(vcpu));
2820 
2821 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2822 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2823 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2824 				     __func__);
2825 		vmcs_write32(GUEST_TR_AR_BYTES,
2826 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2827 			     | VMX_AR_TYPE_BUSY_64_TSS);
2828 	}
2829 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2830 }
2831 
2832 static void exit_lmode(struct kvm_vcpu *vcpu)
2833 {
2834 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2835 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2836 }
2837 
2838 #endif
2839 
2840 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2841 {
2842 	int vpid = to_vmx(vcpu)->vpid;
2843 
2844 	if (!vpid_sync_vcpu_addr(vpid, addr))
2845 		vpid_sync_context(vpid);
2846 
2847 	/*
2848 	 * If VPIDs are not supported or enabled, then the above is a no-op.
2849 	 * But we don't really need a TLB flush in that case anyway, because
2850 	 * each VM entry/exit includes an implicit flush when VPID is 0.
2851 	 */
2852 }
2853 
2854 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2855 {
2856 	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2857 
2858 	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2859 	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2860 }
2861 
2862 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2863 {
2864 	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2865 
2866 	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2867 	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2868 }
2869 
2870 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2871 {
2872 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2873 
2874 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2875 		return;
2876 
2877 	if (is_pae_paging(vcpu)) {
2878 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2879 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2880 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2881 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2882 	}
2883 }
2884 
2885 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2886 {
2887 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2888 
2889 	if (is_pae_paging(vcpu)) {
2890 		mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2891 		mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2892 		mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2893 		mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2894 	}
2895 
2896 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2897 }
2898 
2899 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2900 					unsigned long cr0,
2901 					struct kvm_vcpu *vcpu)
2902 {
2903 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2904 
2905 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
2906 		vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
2907 	if (!(cr0 & X86_CR0_PG)) {
2908 		/* From paging/starting to nonpaging */
2909 		exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2910 					  CPU_BASED_CR3_STORE_EXITING);
2911 		vcpu->arch.cr0 = cr0;
2912 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2913 	} else if (!is_paging(vcpu)) {
2914 		/* From nonpaging to paging */
2915 		exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2916 					    CPU_BASED_CR3_STORE_EXITING);
2917 		vcpu->arch.cr0 = cr0;
2918 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2919 	}
2920 
2921 	if (!(cr0 & X86_CR0_WP))
2922 		*hw_cr0 &= ~X86_CR0_WP;
2923 }
2924 
2925 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2926 {
2927 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2928 	unsigned long hw_cr0;
2929 
2930 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2931 	if (enable_unrestricted_guest)
2932 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2933 	else {
2934 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2935 
2936 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2937 			enter_pmode(vcpu);
2938 
2939 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2940 			enter_rmode(vcpu);
2941 	}
2942 
2943 #ifdef CONFIG_X86_64
2944 	if (vcpu->arch.efer & EFER_LME) {
2945 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2946 			enter_lmode(vcpu);
2947 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2948 			exit_lmode(vcpu);
2949 	}
2950 #endif
2951 
2952 	if (enable_ept && !enable_unrestricted_guest)
2953 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2954 
2955 	vmcs_writel(CR0_READ_SHADOW, cr0);
2956 	vmcs_writel(GUEST_CR0, hw_cr0);
2957 	vcpu->arch.cr0 = cr0;
2958 
2959 	/* depends on vcpu->arch.cr0 to be set to a new value */
2960 	vmx->emulation_required = emulation_required(vcpu);
2961 }
2962 
2963 static int get_ept_level(struct kvm_vcpu *vcpu)
2964 {
2965 	if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu)))
2966 		return vmx_eptp_page_walk_level(nested_ept_get_eptp(vcpu));
2967 	if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2968 		return 5;
2969 	return 4;
2970 }
2971 
2972 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2973 {
2974 	u64 eptp = VMX_EPTP_MT_WB;
2975 
2976 	eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2977 
2978 	if (enable_ept_ad_bits &&
2979 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2980 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
2981 	eptp |= (root_hpa & PAGE_MASK);
2982 
2983 	return eptp;
2984 }
2985 
2986 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long cr3)
2987 {
2988 	struct kvm *kvm = vcpu->kvm;
2989 	bool update_guest_cr3 = true;
2990 	unsigned long guest_cr3;
2991 	u64 eptp;
2992 
2993 	guest_cr3 = cr3;
2994 	if (enable_ept) {
2995 		eptp = construct_eptp(vcpu, cr3);
2996 		vmcs_write64(EPT_POINTER, eptp);
2997 
2998 		if (kvm_x86_ops.tlb_remote_flush) {
2999 			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3000 			to_vmx(vcpu)->ept_pointer = eptp;
3001 			to_kvm_vmx(kvm)->ept_pointers_match
3002 				= EPT_POINTERS_CHECK;
3003 			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3004 		}
3005 
3006 		/* Loading vmcs02.GUEST_CR3 is handled by nested VM-Enter. */
3007 		if (is_guest_mode(vcpu))
3008 			update_guest_cr3 = false;
3009 		else if (!enable_unrestricted_guest && !is_paging(vcpu))
3010 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3011 		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3012 			guest_cr3 = vcpu->arch.cr3;
3013 		else /* vmcs01.GUEST_CR3 is already up-to-date. */
3014 			update_guest_cr3 = false;
3015 		ept_load_pdptrs(vcpu);
3016 	}
3017 
3018 	if (update_guest_cr3)
3019 		vmcs_writel(GUEST_CR3, guest_cr3);
3020 }
3021 
3022 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3023 {
3024 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3025 	/*
3026 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3027 	 * is in force while we are in guest mode.  Do not let guests control
3028 	 * this bit, even if host CR4.MCE == 0.
3029 	 */
3030 	unsigned long hw_cr4;
3031 
3032 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3033 	if (enable_unrestricted_guest)
3034 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3035 	else if (vmx->rmode.vm86_active)
3036 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3037 	else
3038 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3039 
3040 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3041 		if (cr4 & X86_CR4_UMIP) {
3042 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3043 			hw_cr4 &= ~X86_CR4_UMIP;
3044 		} else if (!is_guest_mode(vcpu) ||
3045 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3046 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3047 		}
3048 	}
3049 
3050 	if (cr4 & X86_CR4_VMXE) {
3051 		/*
3052 		 * To use VMXON (and later other VMX instructions), a guest
3053 		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3054 		 * So basically the check on whether to allow nested VMX
3055 		 * is here.  We operate under the default treatment of SMM,
3056 		 * so VMX cannot be enabled under SMM.
3057 		 */
3058 		if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3059 			return 1;
3060 	}
3061 
3062 	if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3063 		return 1;
3064 
3065 	vcpu->arch.cr4 = cr4;
3066 
3067 	if (!enable_unrestricted_guest) {
3068 		if (enable_ept) {
3069 			if (!is_paging(vcpu)) {
3070 				hw_cr4 &= ~X86_CR4_PAE;
3071 				hw_cr4 |= X86_CR4_PSE;
3072 			} else if (!(cr4 & X86_CR4_PAE)) {
3073 				hw_cr4 &= ~X86_CR4_PAE;
3074 			}
3075 		}
3076 
3077 		/*
3078 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3079 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3080 		 * to be manually disabled when guest switches to non-paging
3081 		 * mode.
3082 		 *
3083 		 * If !enable_unrestricted_guest, the CPU is always running
3084 		 * with CR0.PG=1 and CR4 needs to be modified.
3085 		 * If enable_unrestricted_guest, the CPU automatically
3086 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3087 		 */
3088 		if (!is_paging(vcpu))
3089 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3090 	}
3091 
3092 	vmcs_writel(CR4_READ_SHADOW, cr4);
3093 	vmcs_writel(GUEST_CR4, hw_cr4);
3094 	return 0;
3095 }
3096 
3097 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3098 {
3099 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3100 	u32 ar;
3101 
3102 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3103 		*var = vmx->rmode.segs[seg];
3104 		if (seg == VCPU_SREG_TR
3105 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3106 			return;
3107 		var->base = vmx_read_guest_seg_base(vmx, seg);
3108 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3109 		return;
3110 	}
3111 	var->base = vmx_read_guest_seg_base(vmx, seg);
3112 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3113 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3114 	ar = vmx_read_guest_seg_ar(vmx, seg);
3115 	var->unusable = (ar >> 16) & 1;
3116 	var->type = ar & 15;
3117 	var->s = (ar >> 4) & 1;
3118 	var->dpl = (ar >> 5) & 3;
3119 	/*
3120 	 * Some userspaces do not preserve unusable property. Since usable
3121 	 * segment has to be present according to VMX spec we can use present
3122 	 * property to amend userspace bug by making unusable segment always
3123 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3124 	 * segment as unusable.
3125 	 */
3126 	var->present = !var->unusable;
3127 	var->avl = (ar >> 12) & 1;
3128 	var->l = (ar >> 13) & 1;
3129 	var->db = (ar >> 14) & 1;
3130 	var->g = (ar >> 15) & 1;
3131 }
3132 
3133 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3134 {
3135 	struct kvm_segment s;
3136 
3137 	if (to_vmx(vcpu)->rmode.vm86_active) {
3138 		vmx_get_segment(vcpu, &s, seg);
3139 		return s.base;
3140 	}
3141 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3142 }
3143 
3144 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3145 {
3146 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3147 
3148 	if (unlikely(vmx->rmode.vm86_active))
3149 		return 0;
3150 	else {
3151 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3152 		return VMX_AR_DPL(ar);
3153 	}
3154 }
3155 
3156 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3157 {
3158 	u32 ar;
3159 
3160 	if (var->unusable || !var->present)
3161 		ar = 1 << 16;
3162 	else {
3163 		ar = var->type & 15;
3164 		ar |= (var->s & 1) << 4;
3165 		ar |= (var->dpl & 3) << 5;
3166 		ar |= (var->present & 1) << 7;
3167 		ar |= (var->avl & 1) << 12;
3168 		ar |= (var->l & 1) << 13;
3169 		ar |= (var->db & 1) << 14;
3170 		ar |= (var->g & 1) << 15;
3171 	}
3172 
3173 	return ar;
3174 }
3175 
3176 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3177 {
3178 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3179 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3180 
3181 	vmx_segment_cache_clear(vmx);
3182 
3183 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3184 		vmx->rmode.segs[seg] = *var;
3185 		if (seg == VCPU_SREG_TR)
3186 			vmcs_write16(sf->selector, var->selector);
3187 		else if (var->s)
3188 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3189 		goto out;
3190 	}
3191 
3192 	vmcs_writel(sf->base, var->base);
3193 	vmcs_write32(sf->limit, var->limit);
3194 	vmcs_write16(sf->selector, var->selector);
3195 
3196 	/*
3197 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3198 	 * qemu binaries.
3199 	 *   IA32 arch specifies that at the time of processor reset the
3200 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3201 	 * is setting it to 0 in the userland code. This causes invalid guest
3202 	 * state vmexit when "unrestricted guest" mode is turned on.
3203 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3204 	 * tree. Newer qemu binaries with that qemu fix would not need this
3205 	 * kvm hack.
3206 	 */
3207 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3208 		var->type |= 0x1; /* Accessed */
3209 
3210 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3211 
3212 out:
3213 	vmx->emulation_required = emulation_required(vcpu);
3214 }
3215 
3216 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3217 {
3218 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3219 
3220 	*db = (ar >> 14) & 1;
3221 	*l = (ar >> 13) & 1;
3222 }
3223 
3224 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3225 {
3226 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3227 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3228 }
3229 
3230 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3231 {
3232 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3233 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3234 }
3235 
3236 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3237 {
3238 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3239 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3240 }
3241 
3242 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3243 {
3244 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3245 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3246 }
3247 
3248 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3249 {
3250 	struct kvm_segment var;
3251 	u32 ar;
3252 
3253 	vmx_get_segment(vcpu, &var, seg);
3254 	var.dpl = 0x3;
3255 	if (seg == VCPU_SREG_CS)
3256 		var.type = 0x3;
3257 	ar = vmx_segment_access_rights(&var);
3258 
3259 	if (var.base != (var.selector << 4))
3260 		return false;
3261 	if (var.limit != 0xffff)
3262 		return false;
3263 	if (ar != 0xf3)
3264 		return false;
3265 
3266 	return true;
3267 }
3268 
3269 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3270 {
3271 	struct kvm_segment cs;
3272 	unsigned int cs_rpl;
3273 
3274 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3275 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3276 
3277 	if (cs.unusable)
3278 		return false;
3279 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3280 		return false;
3281 	if (!cs.s)
3282 		return false;
3283 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3284 		if (cs.dpl > cs_rpl)
3285 			return false;
3286 	} else {
3287 		if (cs.dpl != cs_rpl)
3288 			return false;
3289 	}
3290 	if (!cs.present)
3291 		return false;
3292 
3293 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3294 	return true;
3295 }
3296 
3297 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3298 {
3299 	struct kvm_segment ss;
3300 	unsigned int ss_rpl;
3301 
3302 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3303 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3304 
3305 	if (ss.unusable)
3306 		return true;
3307 	if (ss.type != 3 && ss.type != 7)
3308 		return false;
3309 	if (!ss.s)
3310 		return false;
3311 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3312 		return false;
3313 	if (!ss.present)
3314 		return false;
3315 
3316 	return true;
3317 }
3318 
3319 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3320 {
3321 	struct kvm_segment var;
3322 	unsigned int rpl;
3323 
3324 	vmx_get_segment(vcpu, &var, seg);
3325 	rpl = var.selector & SEGMENT_RPL_MASK;
3326 
3327 	if (var.unusable)
3328 		return true;
3329 	if (!var.s)
3330 		return false;
3331 	if (!var.present)
3332 		return false;
3333 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3334 		if (var.dpl < rpl) /* DPL < RPL */
3335 			return false;
3336 	}
3337 
3338 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3339 	 * rights flags
3340 	 */
3341 	return true;
3342 }
3343 
3344 static bool tr_valid(struct kvm_vcpu *vcpu)
3345 {
3346 	struct kvm_segment tr;
3347 
3348 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3349 
3350 	if (tr.unusable)
3351 		return false;
3352 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3353 		return false;
3354 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3355 		return false;
3356 	if (!tr.present)
3357 		return false;
3358 
3359 	return true;
3360 }
3361 
3362 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3363 {
3364 	struct kvm_segment ldtr;
3365 
3366 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3367 
3368 	if (ldtr.unusable)
3369 		return true;
3370 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3371 		return false;
3372 	if (ldtr.type != 2)
3373 		return false;
3374 	if (!ldtr.present)
3375 		return false;
3376 
3377 	return true;
3378 }
3379 
3380 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3381 {
3382 	struct kvm_segment cs, ss;
3383 
3384 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3385 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3386 
3387 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3388 		 (ss.selector & SEGMENT_RPL_MASK));
3389 }
3390 
3391 /*
3392  * Check if guest state is valid. Returns true if valid, false if
3393  * not.
3394  * We assume that registers are always usable
3395  */
3396 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3397 {
3398 	if (enable_unrestricted_guest)
3399 		return true;
3400 
3401 	/* real mode guest state checks */
3402 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3403 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3404 			return false;
3405 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3406 			return false;
3407 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3408 			return false;
3409 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3410 			return false;
3411 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3412 			return false;
3413 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3414 			return false;
3415 	} else {
3416 	/* protected mode guest state checks */
3417 		if (!cs_ss_rpl_check(vcpu))
3418 			return false;
3419 		if (!code_segment_valid(vcpu))
3420 			return false;
3421 		if (!stack_segment_valid(vcpu))
3422 			return false;
3423 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3424 			return false;
3425 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3426 			return false;
3427 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3428 			return false;
3429 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3430 			return false;
3431 		if (!tr_valid(vcpu))
3432 			return false;
3433 		if (!ldtr_valid(vcpu))
3434 			return false;
3435 	}
3436 	/* TODO:
3437 	 * - Add checks on RIP
3438 	 * - Add checks on RFLAGS
3439 	 */
3440 
3441 	return true;
3442 }
3443 
3444 static int init_rmode_tss(struct kvm *kvm)
3445 {
3446 	gfn_t fn;
3447 	u16 data = 0;
3448 	int idx, r;
3449 
3450 	idx = srcu_read_lock(&kvm->srcu);
3451 	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3452 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3453 	if (r < 0)
3454 		goto out;
3455 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3456 	r = kvm_write_guest_page(kvm, fn++, &data,
3457 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
3458 	if (r < 0)
3459 		goto out;
3460 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3461 	if (r < 0)
3462 		goto out;
3463 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3464 	if (r < 0)
3465 		goto out;
3466 	data = ~0;
3467 	r = kvm_write_guest_page(kvm, fn, &data,
3468 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3469 				 sizeof(u8));
3470 out:
3471 	srcu_read_unlock(&kvm->srcu, idx);
3472 	return r;
3473 }
3474 
3475 static int init_rmode_identity_map(struct kvm *kvm)
3476 {
3477 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3478 	int i, r = 0;
3479 	kvm_pfn_t identity_map_pfn;
3480 	u32 tmp;
3481 
3482 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3483 	mutex_lock(&kvm->slots_lock);
3484 
3485 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3486 		goto out;
3487 
3488 	if (!kvm_vmx->ept_identity_map_addr)
3489 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3490 	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3491 
3492 	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3493 				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3494 	if (r < 0)
3495 		goto out;
3496 
3497 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3498 	if (r < 0)
3499 		goto out;
3500 	/* Set up identity-mapping pagetable for EPT in real mode */
3501 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3502 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3503 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3504 		r = kvm_write_guest_page(kvm, identity_map_pfn,
3505 				&tmp, i * sizeof(tmp), sizeof(tmp));
3506 		if (r < 0)
3507 			goto out;
3508 	}
3509 	kvm_vmx->ept_identity_pagetable_done = true;
3510 
3511 out:
3512 	mutex_unlock(&kvm->slots_lock);
3513 	return r;
3514 }
3515 
3516 static void seg_setup(int seg)
3517 {
3518 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3519 	unsigned int ar;
3520 
3521 	vmcs_write16(sf->selector, 0);
3522 	vmcs_writel(sf->base, 0);
3523 	vmcs_write32(sf->limit, 0xffff);
3524 	ar = 0x93;
3525 	if (seg == VCPU_SREG_CS)
3526 		ar |= 0x08; /* code segment */
3527 
3528 	vmcs_write32(sf->ar_bytes, ar);
3529 }
3530 
3531 static int alloc_apic_access_page(struct kvm *kvm)
3532 {
3533 	struct page *page;
3534 	int r = 0;
3535 
3536 	mutex_lock(&kvm->slots_lock);
3537 	if (kvm->arch.apic_access_page_done)
3538 		goto out;
3539 	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3540 				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3541 	if (r)
3542 		goto out;
3543 
3544 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3545 	if (is_error_page(page)) {
3546 		r = -EFAULT;
3547 		goto out;
3548 	}
3549 
3550 	/*
3551 	 * Do not pin the page in memory, so that memory hot-unplug
3552 	 * is able to migrate it.
3553 	 */
3554 	put_page(page);
3555 	kvm->arch.apic_access_page_done = true;
3556 out:
3557 	mutex_unlock(&kvm->slots_lock);
3558 	return r;
3559 }
3560 
3561 int allocate_vpid(void)
3562 {
3563 	int vpid;
3564 
3565 	if (!enable_vpid)
3566 		return 0;
3567 	spin_lock(&vmx_vpid_lock);
3568 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3569 	if (vpid < VMX_NR_VPIDS)
3570 		__set_bit(vpid, vmx_vpid_bitmap);
3571 	else
3572 		vpid = 0;
3573 	spin_unlock(&vmx_vpid_lock);
3574 	return vpid;
3575 }
3576 
3577 void free_vpid(int vpid)
3578 {
3579 	if (!enable_vpid || vpid == 0)
3580 		return;
3581 	spin_lock(&vmx_vpid_lock);
3582 	__clear_bit(vpid, vmx_vpid_bitmap);
3583 	spin_unlock(&vmx_vpid_lock);
3584 }
3585 
3586 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3587 							  u32 msr, int type)
3588 {
3589 	int f = sizeof(unsigned long);
3590 
3591 	if (!cpu_has_vmx_msr_bitmap())
3592 		return;
3593 
3594 	if (static_branch_unlikely(&enable_evmcs))
3595 		evmcs_touch_msr_bitmap();
3596 
3597 	/*
3598 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3599 	 * have the write-low and read-high bitmap offsets the wrong way round.
3600 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3601 	 */
3602 	if (msr <= 0x1fff) {
3603 		if (type & MSR_TYPE_R)
3604 			/* read-low */
3605 			__clear_bit(msr, msr_bitmap + 0x000 / f);
3606 
3607 		if (type & MSR_TYPE_W)
3608 			/* write-low */
3609 			__clear_bit(msr, msr_bitmap + 0x800 / f);
3610 
3611 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3612 		msr &= 0x1fff;
3613 		if (type & MSR_TYPE_R)
3614 			/* read-high */
3615 			__clear_bit(msr, msr_bitmap + 0x400 / f);
3616 
3617 		if (type & MSR_TYPE_W)
3618 			/* write-high */
3619 			__clear_bit(msr, msr_bitmap + 0xc00 / f);
3620 
3621 	}
3622 }
3623 
3624 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3625 							 u32 msr, int type)
3626 {
3627 	int f = sizeof(unsigned long);
3628 
3629 	if (!cpu_has_vmx_msr_bitmap())
3630 		return;
3631 
3632 	if (static_branch_unlikely(&enable_evmcs))
3633 		evmcs_touch_msr_bitmap();
3634 
3635 	/*
3636 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3637 	 * have the write-low and read-high bitmap offsets the wrong way round.
3638 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3639 	 */
3640 	if (msr <= 0x1fff) {
3641 		if (type & MSR_TYPE_R)
3642 			/* read-low */
3643 			__set_bit(msr, msr_bitmap + 0x000 / f);
3644 
3645 		if (type & MSR_TYPE_W)
3646 			/* write-low */
3647 			__set_bit(msr, msr_bitmap + 0x800 / f);
3648 
3649 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3650 		msr &= 0x1fff;
3651 		if (type & MSR_TYPE_R)
3652 			/* read-high */
3653 			__set_bit(msr, msr_bitmap + 0x400 / f);
3654 
3655 		if (type & MSR_TYPE_W)
3656 			/* write-high */
3657 			__set_bit(msr, msr_bitmap + 0xc00 / f);
3658 
3659 	}
3660 }
3661 
3662 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3663 			     			      u32 msr, int type, bool value)
3664 {
3665 	if (value)
3666 		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3667 	else
3668 		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3669 }
3670 
3671 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3672 {
3673 	u8 mode = 0;
3674 
3675 	if (cpu_has_secondary_exec_ctrls() &&
3676 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
3677 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3678 		mode |= MSR_BITMAP_MODE_X2APIC;
3679 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3680 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3681 	}
3682 
3683 	return mode;
3684 }
3685 
3686 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3687 					 u8 mode)
3688 {
3689 	int msr;
3690 
3691 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3692 		unsigned word = msr / BITS_PER_LONG;
3693 		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3694 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3695 	}
3696 
3697 	if (mode & MSR_BITMAP_MODE_X2APIC) {
3698 		/*
3699 		 * TPR reads and writes can be virtualized even if virtual interrupt
3700 		 * delivery is not in use.
3701 		 */
3702 		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3703 		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3704 			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3705 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3706 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3707 		}
3708 	}
3709 }
3710 
3711 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3712 {
3713 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3714 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3715 	u8 mode = vmx_msr_bitmap_mode(vcpu);
3716 	u8 changed = mode ^ vmx->msr_bitmap_mode;
3717 
3718 	if (!changed)
3719 		return;
3720 
3721 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3722 		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3723 
3724 	vmx->msr_bitmap_mode = mode;
3725 }
3726 
3727 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3728 {
3729 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3730 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3731 	u32 i;
3732 
3733 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3734 							MSR_TYPE_RW, flag);
3735 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3736 							MSR_TYPE_RW, flag);
3737 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3738 							MSR_TYPE_RW, flag);
3739 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3740 							MSR_TYPE_RW, flag);
3741 	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3742 		vmx_set_intercept_for_msr(msr_bitmap,
3743 			MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3744 		vmx_set_intercept_for_msr(msr_bitmap,
3745 			MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3746 	}
3747 }
3748 
3749 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3750 {
3751 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3752 	void *vapic_page;
3753 	u32 vppr;
3754 	int rvi;
3755 
3756 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3757 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3758 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3759 		return false;
3760 
3761 	rvi = vmx_get_rvi();
3762 
3763 	vapic_page = vmx->nested.virtual_apic_map.hva;
3764 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3765 
3766 	return ((rvi & 0xf0) > (vppr & 0xf0));
3767 }
3768 
3769 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3770 						     bool nested)
3771 {
3772 #ifdef CONFIG_SMP
3773 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3774 
3775 	if (vcpu->mode == IN_GUEST_MODE) {
3776 		/*
3777 		 * The vector of interrupt to be delivered to vcpu had
3778 		 * been set in PIR before this function.
3779 		 *
3780 		 * Following cases will be reached in this block, and
3781 		 * we always send a notification event in all cases as
3782 		 * explained below.
3783 		 *
3784 		 * Case 1: vcpu keeps in non-root mode. Sending a
3785 		 * notification event posts the interrupt to vcpu.
3786 		 *
3787 		 * Case 2: vcpu exits to root mode and is still
3788 		 * runnable. PIR will be synced to vIRR before the
3789 		 * next vcpu entry. Sending a notification event in
3790 		 * this case has no effect, as vcpu is not in root
3791 		 * mode.
3792 		 *
3793 		 * Case 3: vcpu exits to root mode and is blocked.
3794 		 * vcpu_block() has already synced PIR to vIRR and
3795 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3796 		 * a blocked vcpu here does not wait for any requested
3797 		 * interrupts in PIR, and sending a notification event
3798 		 * which has no effect is safe here.
3799 		 */
3800 
3801 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3802 		return true;
3803 	}
3804 #endif
3805 	return false;
3806 }
3807 
3808 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3809 						int vector)
3810 {
3811 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3812 
3813 	if (is_guest_mode(vcpu) &&
3814 	    vector == vmx->nested.posted_intr_nv) {
3815 		/*
3816 		 * If a posted intr is not recognized by hardware,
3817 		 * we will accomplish it in the next vmentry.
3818 		 */
3819 		vmx->nested.pi_pending = true;
3820 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3821 		/* the PIR and ON have been set by L1. */
3822 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3823 			kvm_vcpu_kick(vcpu);
3824 		return 0;
3825 	}
3826 	return -1;
3827 }
3828 /*
3829  * Send interrupt to vcpu via posted interrupt way.
3830  * 1. If target vcpu is running(non-root mode), send posted interrupt
3831  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3832  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3833  * interrupt from PIR in next vmentry.
3834  */
3835 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3836 {
3837 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3838 	int r;
3839 
3840 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3841 	if (!r)
3842 		return 0;
3843 
3844 	if (!vcpu->arch.apicv_active)
3845 		return -1;
3846 
3847 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3848 		return 0;
3849 
3850 	/* If a previous notification has sent the IPI, nothing to do.  */
3851 	if (pi_test_and_set_on(&vmx->pi_desc))
3852 		return 0;
3853 
3854 	if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3855 		kvm_vcpu_kick(vcpu);
3856 
3857 	return 0;
3858 }
3859 
3860 /*
3861  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3862  * will not change in the lifetime of the guest.
3863  * Note that host-state that does change is set elsewhere. E.g., host-state
3864  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3865  */
3866 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3867 {
3868 	u32 low32, high32;
3869 	unsigned long tmpl;
3870 	unsigned long cr0, cr3, cr4;
3871 
3872 	cr0 = read_cr0();
3873 	WARN_ON(cr0 & X86_CR0_TS);
3874 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3875 
3876 	/*
3877 	 * Save the most likely value for this task's CR3 in the VMCS.
3878 	 * We can't use __get_current_cr3_fast() because we're not atomic.
3879 	 */
3880 	cr3 = __read_cr3();
3881 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
3882 	vmx->loaded_vmcs->host_state.cr3 = cr3;
3883 
3884 	/* Save the most likely value for this task's CR4 in the VMCS. */
3885 	cr4 = cr4_read_shadow();
3886 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
3887 	vmx->loaded_vmcs->host_state.cr4 = cr4;
3888 
3889 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3890 #ifdef CONFIG_X86_64
3891 	/*
3892 	 * Load null selectors, so we can avoid reloading them in
3893 	 * vmx_prepare_switch_to_host(), in case userspace uses
3894 	 * the null selectors too (the expected case).
3895 	 */
3896 	vmcs_write16(HOST_DS_SELECTOR, 0);
3897 	vmcs_write16(HOST_ES_SELECTOR, 0);
3898 #else
3899 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3900 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3901 #endif
3902 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3903 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3904 
3905 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3906 
3907 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3908 
3909 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3910 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3911 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3912 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3913 
3914 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3915 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
3916 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3917 	}
3918 
3919 	if (cpu_has_load_ia32_efer())
3920 		vmcs_write64(HOST_IA32_EFER, host_efer);
3921 }
3922 
3923 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3924 {
3925 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3926 	if (enable_ept)
3927 		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3928 	if (is_guest_mode(&vmx->vcpu))
3929 		vmx->vcpu.arch.cr4_guest_owned_bits &=
3930 			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3931 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3932 }
3933 
3934 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3935 {
3936 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3937 
3938 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3939 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3940 
3941 	if (!enable_vnmi)
3942 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3943 
3944 	if (!enable_preemption_timer)
3945 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3946 
3947 	return pin_based_exec_ctrl;
3948 }
3949 
3950 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3951 {
3952 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3953 
3954 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3955 	if (cpu_has_secondary_exec_ctrls()) {
3956 		if (kvm_vcpu_apicv_active(vcpu))
3957 			secondary_exec_controls_setbit(vmx,
3958 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
3959 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3960 		else
3961 			secondary_exec_controls_clearbit(vmx,
3962 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
3963 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3964 	}
3965 
3966 	if (cpu_has_vmx_msr_bitmap())
3967 		vmx_update_msr_bitmap(vcpu);
3968 }
3969 
3970 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3971 {
3972 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3973 
3974 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3975 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3976 
3977 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3978 		exec_control &= ~CPU_BASED_TPR_SHADOW;
3979 #ifdef CONFIG_X86_64
3980 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
3981 				CPU_BASED_CR8_LOAD_EXITING;
3982 #endif
3983 	}
3984 	if (!enable_ept)
3985 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
3986 				CPU_BASED_CR3_LOAD_EXITING  |
3987 				CPU_BASED_INVLPG_EXITING;
3988 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3989 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3990 				CPU_BASED_MONITOR_EXITING);
3991 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3992 		exec_control &= ~CPU_BASED_HLT_EXITING;
3993 	return exec_control;
3994 }
3995 
3996 
3997 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
3998 {
3999 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4000 
4001 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4002 
4003 	if (vmx_pt_mode_is_system())
4004 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4005 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4006 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4007 	if (vmx->vpid == 0)
4008 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4009 	if (!enable_ept) {
4010 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4011 		enable_unrestricted_guest = 0;
4012 	}
4013 	if (!enable_unrestricted_guest)
4014 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4015 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4016 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4017 	if (!kvm_vcpu_apicv_active(vcpu))
4018 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4019 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4020 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4021 
4022 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4023 	 * in vmx_set_cr4.  */
4024 	exec_control &= ~SECONDARY_EXEC_DESC;
4025 
4026 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4027 	   (handle_vmptrld).
4028 	   We can NOT enable shadow_vmcs here because we don't have yet
4029 	   a current VMCS12
4030 	*/
4031 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4032 
4033 	if (!enable_pml)
4034 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4035 
4036 	if (vmx_xsaves_supported()) {
4037 		/* Exposing XSAVES only when XSAVE is exposed */
4038 		bool xsaves_enabled =
4039 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4040 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4041 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4042 
4043 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4044 
4045 		if (!xsaves_enabled)
4046 			exec_control &= ~SECONDARY_EXEC_XSAVES;
4047 
4048 		if (nested) {
4049 			if (xsaves_enabled)
4050 				vmx->nested.msrs.secondary_ctls_high |=
4051 					SECONDARY_EXEC_XSAVES;
4052 			else
4053 				vmx->nested.msrs.secondary_ctls_high &=
4054 					~SECONDARY_EXEC_XSAVES;
4055 		}
4056 	}
4057 
4058 	if (cpu_has_vmx_rdtscp()) {
4059 		bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4060 		if (!rdtscp_enabled)
4061 			exec_control &= ~SECONDARY_EXEC_RDTSCP;
4062 
4063 		if (nested) {
4064 			if (rdtscp_enabled)
4065 				vmx->nested.msrs.secondary_ctls_high |=
4066 					SECONDARY_EXEC_RDTSCP;
4067 			else
4068 				vmx->nested.msrs.secondary_ctls_high &=
4069 					~SECONDARY_EXEC_RDTSCP;
4070 		}
4071 	}
4072 
4073 	if (cpu_has_vmx_invpcid()) {
4074 		/* Exposing INVPCID only when PCID is exposed */
4075 		bool invpcid_enabled =
4076 			guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4077 			guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4078 
4079 		if (!invpcid_enabled) {
4080 			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4081 			guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4082 		}
4083 
4084 		if (nested) {
4085 			if (invpcid_enabled)
4086 				vmx->nested.msrs.secondary_ctls_high |=
4087 					SECONDARY_EXEC_ENABLE_INVPCID;
4088 			else
4089 				vmx->nested.msrs.secondary_ctls_high &=
4090 					~SECONDARY_EXEC_ENABLE_INVPCID;
4091 		}
4092 	}
4093 
4094 	if (vmx_rdrand_supported()) {
4095 		bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4096 		if (rdrand_enabled)
4097 			exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4098 
4099 		if (nested) {
4100 			if (rdrand_enabled)
4101 				vmx->nested.msrs.secondary_ctls_high |=
4102 					SECONDARY_EXEC_RDRAND_EXITING;
4103 			else
4104 				vmx->nested.msrs.secondary_ctls_high &=
4105 					~SECONDARY_EXEC_RDRAND_EXITING;
4106 		}
4107 	}
4108 
4109 	if (vmx_rdseed_supported()) {
4110 		bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4111 		if (rdseed_enabled)
4112 			exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4113 
4114 		if (nested) {
4115 			if (rdseed_enabled)
4116 				vmx->nested.msrs.secondary_ctls_high |=
4117 					SECONDARY_EXEC_RDSEED_EXITING;
4118 			else
4119 				vmx->nested.msrs.secondary_ctls_high &=
4120 					~SECONDARY_EXEC_RDSEED_EXITING;
4121 		}
4122 	}
4123 
4124 	if (vmx_waitpkg_supported()) {
4125 		bool waitpkg_enabled =
4126 			guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4127 
4128 		if (!waitpkg_enabled)
4129 			exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4130 
4131 		if (nested) {
4132 			if (waitpkg_enabled)
4133 				vmx->nested.msrs.secondary_ctls_high |=
4134 					SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4135 			else
4136 				vmx->nested.msrs.secondary_ctls_high &=
4137 					~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4138 		}
4139 	}
4140 
4141 	vmx->secondary_exec_control = exec_control;
4142 }
4143 
4144 static void ept_set_mmio_spte_mask(void)
4145 {
4146 	/*
4147 	 * EPT Misconfigurations can be generated if the value of bits 2:0
4148 	 * of an EPT paging-structure entry is 110b (write/execute).
4149 	 */
4150 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4151 				   VMX_EPT_MISCONFIG_WX_VALUE, 0);
4152 }
4153 
4154 #define VMX_XSS_EXIT_BITMAP 0
4155 
4156 /*
4157  * Noting that the initialization of Guest-state Area of VMCS is in
4158  * vmx_vcpu_reset().
4159  */
4160 static void init_vmcs(struct vcpu_vmx *vmx)
4161 {
4162 	if (nested)
4163 		nested_vmx_set_vmcs_shadowing_bitmap();
4164 
4165 	if (cpu_has_vmx_msr_bitmap())
4166 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4167 
4168 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4169 
4170 	/* Control */
4171 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4172 
4173 	exec_controls_set(vmx, vmx_exec_control(vmx));
4174 
4175 	if (cpu_has_secondary_exec_ctrls()) {
4176 		vmx_compute_secondary_exec_control(vmx);
4177 		secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4178 	}
4179 
4180 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4181 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4182 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4183 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4184 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4185 
4186 		vmcs_write16(GUEST_INTR_STATUS, 0);
4187 
4188 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4189 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4190 	}
4191 
4192 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4193 		vmcs_write32(PLE_GAP, ple_gap);
4194 		vmx->ple_window = ple_window;
4195 		vmx->ple_window_dirty = true;
4196 	}
4197 
4198 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4199 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4200 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4201 
4202 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4203 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4204 	vmx_set_constant_host_state(vmx);
4205 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4206 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4207 
4208 	if (cpu_has_vmx_vmfunc())
4209 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4210 
4211 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4212 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4213 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4214 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4215 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4216 
4217 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4218 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4219 
4220 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4221 
4222 	/* 22.2.1, 20.8.1 */
4223 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4224 
4225 	vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4226 	vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4227 
4228 	set_cr4_guest_host_mask(vmx);
4229 
4230 	if (vmx->vpid != 0)
4231 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4232 
4233 	if (vmx_xsaves_supported())
4234 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4235 
4236 	if (enable_pml) {
4237 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4238 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4239 	}
4240 
4241 	if (cpu_has_vmx_encls_vmexit())
4242 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4243 
4244 	if (vmx_pt_mode_is_host_guest()) {
4245 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4246 		/* Bit[6~0] are forced to 1, writes are ignored. */
4247 		vmx->pt_desc.guest.output_mask = 0x7F;
4248 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4249 	}
4250 }
4251 
4252 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4253 {
4254 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4255 	struct msr_data apic_base_msr;
4256 	u64 cr0;
4257 
4258 	vmx->rmode.vm86_active = 0;
4259 	vmx->spec_ctrl = 0;
4260 
4261 	vmx->msr_ia32_umwait_control = 0;
4262 
4263 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4264 	vmx->hv_deadline_tsc = -1;
4265 	kvm_set_cr8(vcpu, 0);
4266 
4267 	if (!init_event) {
4268 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4269 				     MSR_IA32_APICBASE_ENABLE;
4270 		if (kvm_vcpu_is_reset_bsp(vcpu))
4271 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4272 		apic_base_msr.host_initiated = true;
4273 		kvm_set_apic_base(vcpu, &apic_base_msr);
4274 	}
4275 
4276 	vmx_segment_cache_clear(vmx);
4277 
4278 	seg_setup(VCPU_SREG_CS);
4279 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4280 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4281 
4282 	seg_setup(VCPU_SREG_DS);
4283 	seg_setup(VCPU_SREG_ES);
4284 	seg_setup(VCPU_SREG_FS);
4285 	seg_setup(VCPU_SREG_GS);
4286 	seg_setup(VCPU_SREG_SS);
4287 
4288 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4289 	vmcs_writel(GUEST_TR_BASE, 0);
4290 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4291 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4292 
4293 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4294 	vmcs_writel(GUEST_LDTR_BASE, 0);
4295 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4296 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4297 
4298 	if (!init_event) {
4299 		vmcs_write32(GUEST_SYSENTER_CS, 0);
4300 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
4301 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
4302 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4303 	}
4304 
4305 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4306 	kvm_rip_write(vcpu, 0xfff0);
4307 
4308 	vmcs_writel(GUEST_GDTR_BASE, 0);
4309 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4310 
4311 	vmcs_writel(GUEST_IDTR_BASE, 0);
4312 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4313 
4314 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4315 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4316 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4317 	if (kvm_mpx_supported())
4318 		vmcs_write64(GUEST_BNDCFGS, 0);
4319 
4320 	setup_msrs(vmx);
4321 
4322 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4323 
4324 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
4325 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4326 		if (cpu_need_tpr_shadow(vcpu))
4327 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4328 				     __pa(vcpu->arch.apic->regs));
4329 		vmcs_write32(TPR_THRESHOLD, 0);
4330 	}
4331 
4332 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4333 
4334 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4335 	vmx->vcpu.arch.cr0 = cr0;
4336 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
4337 	vmx_set_cr4(vcpu, 0);
4338 	vmx_set_efer(vcpu, 0);
4339 
4340 	update_exception_bitmap(vcpu);
4341 
4342 	vpid_sync_context(vmx->vpid);
4343 	if (init_event)
4344 		vmx_clear_hlt(vcpu);
4345 }
4346 
4347 static void enable_irq_window(struct kvm_vcpu *vcpu)
4348 {
4349 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4350 }
4351 
4352 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4353 {
4354 	if (!enable_vnmi ||
4355 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4356 		enable_irq_window(vcpu);
4357 		return;
4358 	}
4359 
4360 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4361 }
4362 
4363 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4364 {
4365 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4366 	uint32_t intr;
4367 	int irq = vcpu->arch.interrupt.nr;
4368 
4369 	trace_kvm_inj_virq(irq);
4370 
4371 	++vcpu->stat.irq_injections;
4372 	if (vmx->rmode.vm86_active) {
4373 		int inc_eip = 0;
4374 		if (vcpu->arch.interrupt.soft)
4375 			inc_eip = vcpu->arch.event_exit_inst_len;
4376 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4377 		return;
4378 	}
4379 	intr = irq | INTR_INFO_VALID_MASK;
4380 	if (vcpu->arch.interrupt.soft) {
4381 		intr |= INTR_TYPE_SOFT_INTR;
4382 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4383 			     vmx->vcpu.arch.event_exit_inst_len);
4384 	} else
4385 		intr |= INTR_TYPE_EXT_INTR;
4386 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4387 
4388 	vmx_clear_hlt(vcpu);
4389 }
4390 
4391 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4392 {
4393 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4394 
4395 	if (!enable_vnmi) {
4396 		/*
4397 		 * Tracking the NMI-blocked state in software is built upon
4398 		 * finding the next open IRQ window. This, in turn, depends on
4399 		 * well-behaving guests: They have to keep IRQs disabled at
4400 		 * least as long as the NMI handler runs. Otherwise we may
4401 		 * cause NMI nesting, maybe breaking the guest. But as this is
4402 		 * highly unlikely, we can live with the residual risk.
4403 		 */
4404 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4405 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4406 	}
4407 
4408 	++vcpu->stat.nmi_injections;
4409 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4410 
4411 	if (vmx->rmode.vm86_active) {
4412 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4413 		return;
4414 	}
4415 
4416 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4417 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4418 
4419 	vmx_clear_hlt(vcpu);
4420 }
4421 
4422 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4423 {
4424 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4425 	bool masked;
4426 
4427 	if (!enable_vnmi)
4428 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4429 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4430 		return false;
4431 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4432 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4433 	return masked;
4434 }
4435 
4436 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4437 {
4438 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4439 
4440 	if (!enable_vnmi) {
4441 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4442 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4443 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4444 		}
4445 	} else {
4446 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4447 		if (masked)
4448 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4449 				      GUEST_INTR_STATE_NMI);
4450 		else
4451 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4452 					GUEST_INTR_STATE_NMI);
4453 	}
4454 }
4455 
4456 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4457 {
4458 	if (to_vmx(vcpu)->nested.nested_run_pending)
4459 		return 0;
4460 
4461 	if (!enable_vnmi &&
4462 	    to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4463 		return 0;
4464 
4465 	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4466 		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4467 		   | GUEST_INTR_STATE_NMI));
4468 }
4469 
4470 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4471 {
4472 	if (to_vmx(vcpu)->nested.nested_run_pending)
4473 		return false;
4474 
4475 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4476 		return true;
4477 
4478 	return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4479 		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4480 			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4481 }
4482 
4483 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4484 {
4485 	int ret;
4486 
4487 	if (enable_unrestricted_guest)
4488 		return 0;
4489 
4490 	mutex_lock(&kvm->slots_lock);
4491 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4492 				      PAGE_SIZE * 3);
4493 	mutex_unlock(&kvm->slots_lock);
4494 
4495 	if (ret)
4496 		return ret;
4497 	to_kvm_vmx(kvm)->tss_addr = addr;
4498 	return init_rmode_tss(kvm);
4499 }
4500 
4501 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4502 {
4503 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4504 	return 0;
4505 }
4506 
4507 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4508 {
4509 	switch (vec) {
4510 	case BP_VECTOR:
4511 		/*
4512 		 * Update instruction length as we may reinject the exception
4513 		 * from user space while in guest debugging mode.
4514 		 */
4515 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4516 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4517 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4518 			return false;
4519 		/* fall through */
4520 	case DB_VECTOR:
4521 		if (vcpu->guest_debug &
4522 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4523 			return false;
4524 		/* fall through */
4525 	case DE_VECTOR:
4526 	case OF_VECTOR:
4527 	case BR_VECTOR:
4528 	case UD_VECTOR:
4529 	case DF_VECTOR:
4530 	case SS_VECTOR:
4531 	case GP_VECTOR:
4532 	case MF_VECTOR:
4533 		return true;
4534 	}
4535 	return false;
4536 }
4537 
4538 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4539 				  int vec, u32 err_code)
4540 {
4541 	/*
4542 	 * Instruction with address size override prefix opcode 0x67
4543 	 * Cause the #SS fault with 0 error code in VM86 mode.
4544 	 */
4545 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4546 		if (kvm_emulate_instruction(vcpu, 0)) {
4547 			if (vcpu->arch.halt_request) {
4548 				vcpu->arch.halt_request = 0;
4549 				return kvm_vcpu_halt(vcpu);
4550 			}
4551 			return 1;
4552 		}
4553 		return 0;
4554 	}
4555 
4556 	/*
4557 	 * Forward all other exceptions that are valid in real mode.
4558 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4559 	 *        the required debugging infrastructure rework.
4560 	 */
4561 	kvm_queue_exception(vcpu, vec);
4562 	return 1;
4563 }
4564 
4565 /*
4566  * Trigger machine check on the host. We assume all the MSRs are already set up
4567  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4568  * We pass a fake environment to the machine check handler because we want
4569  * the guest to be always treated like user space, no matter what context
4570  * it used internally.
4571  */
4572 static void kvm_machine_check(void)
4573 {
4574 #if defined(CONFIG_X86_MCE)
4575 	struct pt_regs regs = {
4576 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
4577 		.flags = X86_EFLAGS_IF,
4578 	};
4579 
4580 	do_machine_check(&regs, 0);
4581 #endif
4582 }
4583 
4584 static int handle_machine_check(struct kvm_vcpu *vcpu)
4585 {
4586 	/* handled by vmx_vcpu_run() */
4587 	return 1;
4588 }
4589 
4590 /*
4591  * If the host has split lock detection disabled, then #AC is
4592  * unconditionally injected into the guest, which is the pre split lock
4593  * detection behaviour.
4594  *
4595  * If the host has split lock detection enabled then #AC is
4596  * only injected into the guest when:
4597  *  - Guest CPL == 3 (user mode)
4598  *  - Guest has #AC detection enabled in CR0
4599  *  - Guest EFLAGS has AC bit set
4600  */
4601 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4602 {
4603 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4604 		return true;
4605 
4606 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4607 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4608 }
4609 
4610 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4611 {
4612 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4613 	struct kvm_run *kvm_run = vcpu->run;
4614 	u32 intr_info, ex_no, error_code;
4615 	unsigned long cr2, rip, dr6;
4616 	u32 vect_info;
4617 
4618 	vect_info = vmx->idt_vectoring_info;
4619 	intr_info = vmx->exit_intr_info;
4620 
4621 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4622 		return 1; /* handled by handle_exception_nmi_irqoff() */
4623 
4624 	if (is_invalid_opcode(intr_info))
4625 		return handle_ud(vcpu);
4626 
4627 	error_code = 0;
4628 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4629 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4630 
4631 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4632 		WARN_ON_ONCE(!enable_vmware_backdoor);
4633 
4634 		/*
4635 		 * VMware backdoor emulation on #GP interception only handles
4636 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4637 		 * error code on #GP.
4638 		 */
4639 		if (error_code) {
4640 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4641 			return 1;
4642 		}
4643 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4644 	}
4645 
4646 	/*
4647 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4648 	 * MMIO, it is better to report an internal error.
4649 	 * See the comments in vmx_handle_exit.
4650 	 */
4651 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4652 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4653 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4654 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4655 		vcpu->run->internal.ndata = 3;
4656 		vcpu->run->internal.data[0] = vect_info;
4657 		vcpu->run->internal.data[1] = intr_info;
4658 		vcpu->run->internal.data[2] = error_code;
4659 		return 0;
4660 	}
4661 
4662 	if (is_page_fault(intr_info)) {
4663 		cr2 = vmcs_readl(EXIT_QUALIFICATION);
4664 		/* EPT won't cause page fault directly */
4665 		WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4666 		return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4667 	}
4668 
4669 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4670 
4671 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4672 		return handle_rmode_exception(vcpu, ex_no, error_code);
4673 
4674 	switch (ex_no) {
4675 	case DB_VECTOR:
4676 		dr6 = vmcs_readl(EXIT_QUALIFICATION);
4677 		if (!(vcpu->guest_debug &
4678 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4679 			if (is_icebp(intr_info))
4680 				WARN_ON(!skip_emulated_instruction(vcpu));
4681 
4682 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4683 			return 1;
4684 		}
4685 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4686 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4687 		/* fall through */
4688 	case BP_VECTOR:
4689 		/*
4690 		 * Update instruction length as we may reinject #BP from
4691 		 * user space while in guest debugging mode. Reading it for
4692 		 * #DB as well causes no harm, it is not used in that case.
4693 		 */
4694 		vmx->vcpu.arch.event_exit_inst_len =
4695 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4696 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4697 		rip = kvm_rip_read(vcpu);
4698 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4699 		kvm_run->debug.arch.exception = ex_no;
4700 		break;
4701 	case AC_VECTOR:
4702 		if (guest_inject_ac(vcpu)) {
4703 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4704 			return 1;
4705 		}
4706 
4707 		/*
4708 		 * Handle split lock. Depending on detection mode this will
4709 		 * either warn and disable split lock detection for this
4710 		 * task or force SIGBUS on it.
4711 		 */
4712 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4713 			return 1;
4714 		fallthrough;
4715 	default:
4716 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4717 		kvm_run->ex.exception = ex_no;
4718 		kvm_run->ex.error_code = error_code;
4719 		break;
4720 	}
4721 	return 0;
4722 }
4723 
4724 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4725 {
4726 	++vcpu->stat.irq_exits;
4727 	return 1;
4728 }
4729 
4730 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4731 {
4732 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4733 	vcpu->mmio_needed = 0;
4734 	return 0;
4735 }
4736 
4737 static int handle_io(struct kvm_vcpu *vcpu)
4738 {
4739 	unsigned long exit_qualification;
4740 	int size, in, string;
4741 	unsigned port;
4742 
4743 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4744 	string = (exit_qualification & 16) != 0;
4745 
4746 	++vcpu->stat.io_exits;
4747 
4748 	if (string)
4749 		return kvm_emulate_instruction(vcpu, 0);
4750 
4751 	port = exit_qualification >> 16;
4752 	size = (exit_qualification & 7) + 1;
4753 	in = (exit_qualification & 8) != 0;
4754 
4755 	return kvm_fast_pio(vcpu, size, port, in);
4756 }
4757 
4758 static void
4759 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4760 {
4761 	/*
4762 	 * Patch in the VMCALL instruction:
4763 	 */
4764 	hypercall[0] = 0x0f;
4765 	hypercall[1] = 0x01;
4766 	hypercall[2] = 0xc1;
4767 }
4768 
4769 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4770 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4771 {
4772 	if (is_guest_mode(vcpu)) {
4773 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4774 		unsigned long orig_val = val;
4775 
4776 		/*
4777 		 * We get here when L2 changed cr0 in a way that did not change
4778 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4779 		 * but did change L0 shadowed bits. So we first calculate the
4780 		 * effective cr0 value that L1 would like to write into the
4781 		 * hardware. It consists of the L2-owned bits from the new
4782 		 * value combined with the L1-owned bits from L1's guest_cr0.
4783 		 */
4784 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4785 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4786 
4787 		if (!nested_guest_cr0_valid(vcpu, val))
4788 			return 1;
4789 
4790 		if (kvm_set_cr0(vcpu, val))
4791 			return 1;
4792 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4793 		return 0;
4794 	} else {
4795 		if (to_vmx(vcpu)->nested.vmxon &&
4796 		    !nested_host_cr0_valid(vcpu, val))
4797 			return 1;
4798 
4799 		return kvm_set_cr0(vcpu, val);
4800 	}
4801 }
4802 
4803 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4804 {
4805 	if (is_guest_mode(vcpu)) {
4806 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4807 		unsigned long orig_val = val;
4808 
4809 		/* analogously to handle_set_cr0 */
4810 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4811 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4812 		if (kvm_set_cr4(vcpu, val))
4813 			return 1;
4814 		vmcs_writel(CR4_READ_SHADOW, orig_val);
4815 		return 0;
4816 	} else
4817 		return kvm_set_cr4(vcpu, val);
4818 }
4819 
4820 static int handle_desc(struct kvm_vcpu *vcpu)
4821 {
4822 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4823 	return kvm_emulate_instruction(vcpu, 0);
4824 }
4825 
4826 static int handle_cr(struct kvm_vcpu *vcpu)
4827 {
4828 	unsigned long exit_qualification, val;
4829 	int cr;
4830 	int reg;
4831 	int err;
4832 	int ret;
4833 
4834 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4835 	cr = exit_qualification & 15;
4836 	reg = (exit_qualification >> 8) & 15;
4837 	switch ((exit_qualification >> 4) & 3) {
4838 	case 0: /* mov to cr */
4839 		val = kvm_register_readl(vcpu, reg);
4840 		trace_kvm_cr_write(cr, val);
4841 		switch (cr) {
4842 		case 0:
4843 			err = handle_set_cr0(vcpu, val);
4844 			return kvm_complete_insn_gp(vcpu, err);
4845 		case 3:
4846 			WARN_ON_ONCE(enable_unrestricted_guest);
4847 			err = kvm_set_cr3(vcpu, val);
4848 			return kvm_complete_insn_gp(vcpu, err);
4849 		case 4:
4850 			err = handle_set_cr4(vcpu, val);
4851 			return kvm_complete_insn_gp(vcpu, err);
4852 		case 8: {
4853 				u8 cr8_prev = kvm_get_cr8(vcpu);
4854 				u8 cr8 = (u8)val;
4855 				err = kvm_set_cr8(vcpu, cr8);
4856 				ret = kvm_complete_insn_gp(vcpu, err);
4857 				if (lapic_in_kernel(vcpu))
4858 					return ret;
4859 				if (cr8_prev <= cr8)
4860 					return ret;
4861 				/*
4862 				 * TODO: we might be squashing a
4863 				 * KVM_GUESTDBG_SINGLESTEP-triggered
4864 				 * KVM_EXIT_DEBUG here.
4865 				 */
4866 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4867 				return 0;
4868 			}
4869 		}
4870 		break;
4871 	case 2: /* clts */
4872 		WARN_ONCE(1, "Guest should always own CR0.TS");
4873 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4874 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4875 		return kvm_skip_emulated_instruction(vcpu);
4876 	case 1: /*mov from cr*/
4877 		switch (cr) {
4878 		case 3:
4879 			WARN_ON_ONCE(enable_unrestricted_guest);
4880 			val = kvm_read_cr3(vcpu);
4881 			kvm_register_write(vcpu, reg, val);
4882 			trace_kvm_cr_read(cr, val);
4883 			return kvm_skip_emulated_instruction(vcpu);
4884 		case 8:
4885 			val = kvm_get_cr8(vcpu);
4886 			kvm_register_write(vcpu, reg, val);
4887 			trace_kvm_cr_read(cr, val);
4888 			return kvm_skip_emulated_instruction(vcpu);
4889 		}
4890 		break;
4891 	case 3: /* lmsw */
4892 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4893 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4894 		kvm_lmsw(vcpu, val);
4895 
4896 		return kvm_skip_emulated_instruction(vcpu);
4897 	default:
4898 		break;
4899 	}
4900 	vcpu->run->exit_reason = 0;
4901 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4902 	       (int)(exit_qualification >> 4) & 3, cr);
4903 	return 0;
4904 }
4905 
4906 static int handle_dr(struct kvm_vcpu *vcpu)
4907 {
4908 	unsigned long exit_qualification;
4909 	int dr, dr7, reg;
4910 
4911 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4912 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4913 
4914 	/* First, if DR does not exist, trigger UD */
4915 	if (!kvm_require_dr(vcpu, dr))
4916 		return 1;
4917 
4918 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
4919 	if (!kvm_require_cpl(vcpu, 0))
4920 		return 1;
4921 	dr7 = vmcs_readl(GUEST_DR7);
4922 	if (dr7 & DR7_GD) {
4923 		/*
4924 		 * As the vm-exit takes precedence over the debug trap, we
4925 		 * need to emulate the latter, either for the host or the
4926 		 * guest debugging itself.
4927 		 */
4928 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4929 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
4930 			vcpu->run->debug.arch.dr7 = dr7;
4931 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4932 			vcpu->run->debug.arch.exception = DB_VECTOR;
4933 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4934 			return 0;
4935 		} else {
4936 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
4937 			return 1;
4938 		}
4939 	}
4940 
4941 	if (vcpu->guest_debug == 0) {
4942 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4943 
4944 		/*
4945 		 * No more DR vmexits; force a reload of the debug registers
4946 		 * and reenter on this instruction.  The next vmexit will
4947 		 * retrieve the full state of the debug registers.
4948 		 */
4949 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4950 		return 1;
4951 	}
4952 
4953 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4954 	if (exit_qualification & TYPE_MOV_FROM_DR) {
4955 		unsigned long val;
4956 
4957 		if (kvm_get_dr(vcpu, dr, &val))
4958 			return 1;
4959 		kvm_register_write(vcpu, reg, val);
4960 	} else
4961 		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4962 			return 1;
4963 
4964 	return kvm_skip_emulated_instruction(vcpu);
4965 }
4966 
4967 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4968 {
4969 	get_debugreg(vcpu->arch.db[0], 0);
4970 	get_debugreg(vcpu->arch.db[1], 1);
4971 	get_debugreg(vcpu->arch.db[2], 2);
4972 	get_debugreg(vcpu->arch.db[3], 3);
4973 	get_debugreg(vcpu->arch.dr6, 6);
4974 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4975 
4976 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4977 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4978 }
4979 
4980 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4981 {
4982 	vmcs_writel(GUEST_DR7, val);
4983 }
4984 
4985 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4986 {
4987 	kvm_apic_update_ppr(vcpu);
4988 	return 1;
4989 }
4990 
4991 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4992 {
4993 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4994 
4995 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4996 
4997 	++vcpu->stat.irq_window_exits;
4998 	return 1;
4999 }
5000 
5001 static int handle_vmcall(struct kvm_vcpu *vcpu)
5002 {
5003 	return kvm_emulate_hypercall(vcpu);
5004 }
5005 
5006 static int handle_invd(struct kvm_vcpu *vcpu)
5007 {
5008 	return kvm_emulate_instruction(vcpu, 0);
5009 }
5010 
5011 static int handle_invlpg(struct kvm_vcpu *vcpu)
5012 {
5013 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5014 
5015 	kvm_mmu_invlpg(vcpu, exit_qualification);
5016 	return kvm_skip_emulated_instruction(vcpu);
5017 }
5018 
5019 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5020 {
5021 	int err;
5022 
5023 	err = kvm_rdpmc(vcpu);
5024 	return kvm_complete_insn_gp(vcpu, err);
5025 }
5026 
5027 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5028 {
5029 	return kvm_emulate_wbinvd(vcpu);
5030 }
5031 
5032 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5033 {
5034 	u64 new_bv = kvm_read_edx_eax(vcpu);
5035 	u32 index = kvm_rcx_read(vcpu);
5036 
5037 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5038 		return kvm_skip_emulated_instruction(vcpu);
5039 	return 1;
5040 }
5041 
5042 static int handle_apic_access(struct kvm_vcpu *vcpu)
5043 {
5044 	if (likely(fasteoi)) {
5045 		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5046 		int access_type, offset;
5047 
5048 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5049 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5050 		/*
5051 		 * Sane guest uses MOV to write EOI, with written value
5052 		 * not cared. So make a short-circuit here by avoiding
5053 		 * heavy instruction emulation.
5054 		 */
5055 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5056 		    (offset == APIC_EOI)) {
5057 			kvm_lapic_set_eoi(vcpu);
5058 			return kvm_skip_emulated_instruction(vcpu);
5059 		}
5060 	}
5061 	return kvm_emulate_instruction(vcpu, 0);
5062 }
5063 
5064 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5065 {
5066 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5067 	int vector = exit_qualification & 0xff;
5068 
5069 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5070 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5071 	return 1;
5072 }
5073 
5074 static int handle_apic_write(struct kvm_vcpu *vcpu)
5075 {
5076 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5077 	u32 offset = exit_qualification & 0xfff;
5078 
5079 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5080 	kvm_apic_write_nodecode(vcpu, offset);
5081 	return 1;
5082 }
5083 
5084 static int handle_task_switch(struct kvm_vcpu *vcpu)
5085 {
5086 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5087 	unsigned long exit_qualification;
5088 	bool has_error_code = false;
5089 	u32 error_code = 0;
5090 	u16 tss_selector;
5091 	int reason, type, idt_v, idt_index;
5092 
5093 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5094 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5095 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5096 
5097 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5098 
5099 	reason = (u32)exit_qualification >> 30;
5100 	if (reason == TASK_SWITCH_GATE && idt_v) {
5101 		switch (type) {
5102 		case INTR_TYPE_NMI_INTR:
5103 			vcpu->arch.nmi_injected = false;
5104 			vmx_set_nmi_mask(vcpu, true);
5105 			break;
5106 		case INTR_TYPE_EXT_INTR:
5107 		case INTR_TYPE_SOFT_INTR:
5108 			kvm_clear_interrupt_queue(vcpu);
5109 			break;
5110 		case INTR_TYPE_HARD_EXCEPTION:
5111 			if (vmx->idt_vectoring_info &
5112 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5113 				has_error_code = true;
5114 				error_code =
5115 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5116 			}
5117 			/* fall through */
5118 		case INTR_TYPE_SOFT_EXCEPTION:
5119 			kvm_clear_exception_queue(vcpu);
5120 			break;
5121 		default:
5122 			break;
5123 		}
5124 	}
5125 	tss_selector = exit_qualification;
5126 
5127 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5128 		       type != INTR_TYPE_EXT_INTR &&
5129 		       type != INTR_TYPE_NMI_INTR))
5130 		WARN_ON(!skip_emulated_instruction(vcpu));
5131 
5132 	/*
5133 	 * TODO: What about debug traps on tss switch?
5134 	 *       Are we supposed to inject them and update dr6?
5135 	 */
5136 	return kvm_task_switch(vcpu, tss_selector,
5137 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5138 			       reason, has_error_code, error_code);
5139 }
5140 
5141 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5142 {
5143 	unsigned long exit_qualification;
5144 	gpa_t gpa;
5145 	u64 error_code;
5146 
5147 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5148 
5149 	/*
5150 	 * EPT violation happened while executing iret from NMI,
5151 	 * "blocked by NMI" bit has to be set before next VM entry.
5152 	 * There are errata that may cause this bit to not be set:
5153 	 * AAK134, BY25.
5154 	 */
5155 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5156 			enable_vnmi &&
5157 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5158 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5159 
5160 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5161 	trace_kvm_page_fault(gpa, exit_qualification);
5162 
5163 	/* Is it a read fault? */
5164 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5165 		     ? PFERR_USER_MASK : 0;
5166 	/* Is it a write fault? */
5167 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5168 		      ? PFERR_WRITE_MASK : 0;
5169 	/* Is it a fetch fault? */
5170 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5171 		      ? PFERR_FETCH_MASK : 0;
5172 	/* ept page table entry is present? */
5173 	error_code |= (exit_qualification &
5174 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5175 			EPT_VIOLATION_EXECUTABLE))
5176 		      ? PFERR_PRESENT_MASK : 0;
5177 
5178 	error_code |= (exit_qualification & 0x100) != 0 ?
5179 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5180 
5181 	vcpu->arch.exit_qualification = exit_qualification;
5182 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5183 }
5184 
5185 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5186 {
5187 	gpa_t gpa;
5188 
5189 	/*
5190 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5191 	 * nGPA here instead of the required GPA.
5192 	 */
5193 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5194 	if (!is_guest_mode(vcpu) &&
5195 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5196 		trace_kvm_fast_mmio(gpa);
5197 		return kvm_skip_emulated_instruction(vcpu);
5198 	}
5199 
5200 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5201 }
5202 
5203 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5204 {
5205 	WARN_ON_ONCE(!enable_vnmi);
5206 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5207 	++vcpu->stat.nmi_window_exits;
5208 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5209 
5210 	return 1;
5211 }
5212 
5213 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5214 {
5215 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5216 	bool intr_window_requested;
5217 	unsigned count = 130;
5218 
5219 	/*
5220 	 * We should never reach the point where we are emulating L2
5221 	 * due to invalid guest state as that means we incorrectly
5222 	 * allowed a nested VMEntry with an invalid vmcs12.
5223 	 */
5224 	WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5225 
5226 	intr_window_requested = exec_controls_get(vmx) &
5227 				CPU_BASED_INTR_WINDOW_EXITING;
5228 
5229 	while (vmx->emulation_required && count-- != 0) {
5230 		if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5231 			return handle_interrupt_window(&vmx->vcpu);
5232 
5233 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5234 			return 1;
5235 
5236 		if (!kvm_emulate_instruction(vcpu, 0))
5237 			return 0;
5238 
5239 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5240 		    vcpu->arch.exception.pending) {
5241 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5242 			vcpu->run->internal.suberror =
5243 						KVM_INTERNAL_ERROR_EMULATION;
5244 			vcpu->run->internal.ndata = 0;
5245 			return 0;
5246 		}
5247 
5248 		if (vcpu->arch.halt_request) {
5249 			vcpu->arch.halt_request = 0;
5250 			return kvm_vcpu_halt(vcpu);
5251 		}
5252 
5253 		/*
5254 		 * Note, return 1 and not 0, vcpu_run() is responsible for
5255 		 * morphing the pending signal into the proper return code.
5256 		 */
5257 		if (signal_pending(current))
5258 			return 1;
5259 
5260 		if (need_resched())
5261 			schedule();
5262 	}
5263 
5264 	return 1;
5265 }
5266 
5267 static void grow_ple_window(struct kvm_vcpu *vcpu)
5268 {
5269 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5270 	unsigned int old = vmx->ple_window;
5271 
5272 	vmx->ple_window = __grow_ple_window(old, ple_window,
5273 					    ple_window_grow,
5274 					    ple_window_max);
5275 
5276 	if (vmx->ple_window != old) {
5277 		vmx->ple_window_dirty = true;
5278 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5279 					    vmx->ple_window, old);
5280 	}
5281 }
5282 
5283 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5284 {
5285 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5286 	unsigned int old = vmx->ple_window;
5287 
5288 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5289 					      ple_window_shrink,
5290 					      ple_window);
5291 
5292 	if (vmx->ple_window != old) {
5293 		vmx->ple_window_dirty = true;
5294 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5295 					    vmx->ple_window, old);
5296 	}
5297 }
5298 
5299 /*
5300  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5301  */
5302 static void wakeup_handler(void)
5303 {
5304 	struct kvm_vcpu *vcpu;
5305 	int cpu = smp_processor_id();
5306 
5307 	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5308 	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5309 			blocked_vcpu_list) {
5310 		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5311 
5312 		if (pi_test_on(pi_desc) == 1)
5313 			kvm_vcpu_kick(vcpu);
5314 	}
5315 	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5316 }
5317 
5318 static void vmx_enable_tdp(void)
5319 {
5320 	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5321 		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5322 		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5323 		0ull, VMX_EPT_EXECUTABLE_MASK,
5324 		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5325 		VMX_EPT_RWX_MASK, 0ull);
5326 
5327 	ept_set_mmio_spte_mask();
5328 }
5329 
5330 /*
5331  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5332  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5333  */
5334 static int handle_pause(struct kvm_vcpu *vcpu)
5335 {
5336 	if (!kvm_pause_in_guest(vcpu->kvm))
5337 		grow_ple_window(vcpu);
5338 
5339 	/*
5340 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5341 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5342 	 * never set PAUSE_EXITING and just set PLE if supported,
5343 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5344 	 */
5345 	kvm_vcpu_on_spin(vcpu, true);
5346 	return kvm_skip_emulated_instruction(vcpu);
5347 }
5348 
5349 static int handle_nop(struct kvm_vcpu *vcpu)
5350 {
5351 	return kvm_skip_emulated_instruction(vcpu);
5352 }
5353 
5354 static int handle_mwait(struct kvm_vcpu *vcpu)
5355 {
5356 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5357 	return handle_nop(vcpu);
5358 }
5359 
5360 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5361 {
5362 	kvm_queue_exception(vcpu, UD_VECTOR);
5363 	return 1;
5364 }
5365 
5366 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5367 {
5368 	return 1;
5369 }
5370 
5371 static int handle_monitor(struct kvm_vcpu *vcpu)
5372 {
5373 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5374 	return handle_nop(vcpu);
5375 }
5376 
5377 static int handle_invpcid(struct kvm_vcpu *vcpu)
5378 {
5379 	u32 vmx_instruction_info;
5380 	unsigned long type;
5381 	bool pcid_enabled;
5382 	gva_t gva;
5383 	struct x86_exception e;
5384 	unsigned i;
5385 	unsigned long roots_to_free = 0;
5386 	struct {
5387 		u64 pcid;
5388 		u64 gla;
5389 	} operand;
5390 
5391 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5392 		kvm_queue_exception(vcpu, UD_VECTOR);
5393 		return 1;
5394 	}
5395 
5396 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5397 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5398 
5399 	if (type > 3) {
5400 		kvm_inject_gp(vcpu, 0);
5401 		return 1;
5402 	}
5403 
5404 	/* According to the Intel instruction reference, the memory operand
5405 	 * is read even if it isn't needed (e.g., for type==all)
5406 	 */
5407 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5408 				vmx_instruction_info, false,
5409 				sizeof(operand), &gva))
5410 		return 1;
5411 
5412 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5413 		kvm_inject_page_fault(vcpu, &e);
5414 		return 1;
5415 	}
5416 
5417 	if (operand.pcid >> 12 != 0) {
5418 		kvm_inject_gp(vcpu, 0);
5419 		return 1;
5420 	}
5421 
5422 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5423 
5424 	switch (type) {
5425 	case INVPCID_TYPE_INDIV_ADDR:
5426 		if ((!pcid_enabled && (operand.pcid != 0)) ||
5427 		    is_noncanonical_address(operand.gla, vcpu)) {
5428 			kvm_inject_gp(vcpu, 0);
5429 			return 1;
5430 		}
5431 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5432 		return kvm_skip_emulated_instruction(vcpu);
5433 
5434 	case INVPCID_TYPE_SINGLE_CTXT:
5435 		if (!pcid_enabled && (operand.pcid != 0)) {
5436 			kvm_inject_gp(vcpu, 0);
5437 			return 1;
5438 		}
5439 
5440 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5441 			kvm_mmu_sync_roots(vcpu);
5442 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5443 		}
5444 
5445 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5446 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5447 			    == operand.pcid)
5448 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5449 
5450 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5451 		/*
5452 		 * If neither the current cr3 nor any of the prev_roots use the
5453 		 * given PCID, then nothing needs to be done here because a
5454 		 * resync will happen anyway before switching to any other CR3.
5455 		 */
5456 
5457 		return kvm_skip_emulated_instruction(vcpu);
5458 
5459 	case INVPCID_TYPE_ALL_NON_GLOBAL:
5460 		/*
5461 		 * Currently, KVM doesn't mark global entries in the shadow
5462 		 * page tables, so a non-global flush just degenerates to a
5463 		 * global flush. If needed, we could optimize this later by
5464 		 * keeping track of global entries in shadow page tables.
5465 		 */
5466 
5467 		/* fall-through */
5468 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
5469 		kvm_mmu_unload(vcpu);
5470 		return kvm_skip_emulated_instruction(vcpu);
5471 
5472 	default:
5473 		BUG(); /* We have already checked above that type <= 3 */
5474 	}
5475 }
5476 
5477 static int handle_pml_full(struct kvm_vcpu *vcpu)
5478 {
5479 	unsigned long exit_qualification;
5480 
5481 	trace_kvm_pml_full(vcpu->vcpu_id);
5482 
5483 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5484 
5485 	/*
5486 	 * PML buffer FULL happened while executing iret from NMI,
5487 	 * "blocked by NMI" bit has to be set before next VM entry.
5488 	 */
5489 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5490 			enable_vnmi &&
5491 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5492 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5493 				GUEST_INTR_STATE_NMI);
5494 
5495 	/*
5496 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5497 	 * here.., and there's no userspace involvement needed for PML.
5498 	 */
5499 	return 1;
5500 }
5501 
5502 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5503 {
5504 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5505 
5506 	if (!vmx->req_immediate_exit &&
5507 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5508 		kvm_lapic_expired_hv_timer(vcpu);
5509 
5510 	return 1;
5511 }
5512 
5513 /*
5514  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5515  * are overwritten by nested_vmx_setup() when nested=1.
5516  */
5517 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5518 {
5519 	kvm_queue_exception(vcpu, UD_VECTOR);
5520 	return 1;
5521 }
5522 
5523 static int handle_encls(struct kvm_vcpu *vcpu)
5524 {
5525 	/*
5526 	 * SGX virtualization is not yet supported.  There is no software
5527 	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5528 	 * to prevent the guest from executing ENCLS.
5529 	 */
5530 	kvm_queue_exception(vcpu, UD_VECTOR);
5531 	return 1;
5532 }
5533 
5534 /*
5535  * The exit handlers return 1 if the exit was handled fully and guest execution
5536  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5537  * to be done to userspace and return 0.
5538  */
5539 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5540 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5541 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5542 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5543 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5544 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5545 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5546 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5547 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5548 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5549 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5550 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5551 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5552 	[EXIT_REASON_INVD]		      = handle_invd,
5553 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5554 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
5555 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
5556 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5557 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5558 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5559 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5560 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5561 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5562 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5563 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5564 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5565 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5566 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5567 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5568 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5569 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
5570 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
5571 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5572 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5573 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5574 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5575 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5576 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5577 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5578 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
5579 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5580 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5581 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5582 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5583 	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
5584 	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
5585 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5586 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5587 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5588 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5589 	[EXIT_REASON_ENCLS]		      = handle_encls,
5590 };
5591 
5592 static const int kvm_vmx_max_exit_handlers =
5593 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5594 
5595 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5596 {
5597 	*info1 = vmcs_readl(EXIT_QUALIFICATION);
5598 	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5599 }
5600 
5601 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5602 {
5603 	if (vmx->pml_pg) {
5604 		__free_page(vmx->pml_pg);
5605 		vmx->pml_pg = NULL;
5606 	}
5607 }
5608 
5609 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5610 {
5611 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5612 	u64 *pml_buf;
5613 	u16 pml_idx;
5614 
5615 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5616 
5617 	/* Do nothing if PML buffer is empty */
5618 	if (pml_idx == (PML_ENTITY_NUM - 1))
5619 		return;
5620 
5621 	/* PML index always points to next available PML buffer entity */
5622 	if (pml_idx >= PML_ENTITY_NUM)
5623 		pml_idx = 0;
5624 	else
5625 		pml_idx++;
5626 
5627 	pml_buf = page_address(vmx->pml_pg);
5628 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5629 		u64 gpa;
5630 
5631 		gpa = pml_buf[pml_idx];
5632 		WARN_ON(gpa & (PAGE_SIZE - 1));
5633 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5634 	}
5635 
5636 	/* reset PML index */
5637 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5638 }
5639 
5640 /*
5641  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5642  * Called before reporting dirty_bitmap to userspace.
5643  */
5644 static void kvm_flush_pml_buffers(struct kvm *kvm)
5645 {
5646 	int i;
5647 	struct kvm_vcpu *vcpu;
5648 	/*
5649 	 * We only need to kick vcpu out of guest mode here, as PML buffer
5650 	 * is flushed at beginning of all VMEXITs, and it's obvious that only
5651 	 * vcpus running in guest are possible to have unflushed GPAs in PML
5652 	 * buffer.
5653 	 */
5654 	kvm_for_each_vcpu(i, vcpu, kvm)
5655 		kvm_vcpu_kick(vcpu);
5656 }
5657 
5658 static void vmx_dump_sel(char *name, uint32_t sel)
5659 {
5660 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5661 	       name, vmcs_read16(sel),
5662 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5663 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5664 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5665 }
5666 
5667 static void vmx_dump_dtsel(char *name, uint32_t limit)
5668 {
5669 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5670 	       name, vmcs_read32(limit),
5671 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5672 }
5673 
5674 void dump_vmcs(void)
5675 {
5676 	u32 vmentry_ctl, vmexit_ctl;
5677 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5678 	unsigned long cr4;
5679 	u64 efer;
5680 	int i, n;
5681 
5682 	if (!dump_invalid_vmcs) {
5683 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5684 		return;
5685 	}
5686 
5687 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5688 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5689 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5690 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5691 	cr4 = vmcs_readl(GUEST_CR4);
5692 	efer = vmcs_read64(GUEST_IA32_EFER);
5693 	secondary_exec_control = 0;
5694 	if (cpu_has_secondary_exec_ctrls())
5695 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5696 
5697 	pr_err("*** Guest State ***\n");
5698 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5699 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5700 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5701 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5702 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5703 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5704 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5705 	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5706 	{
5707 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5708 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5709 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5710 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5711 	}
5712 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5713 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5714 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5715 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5716 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5717 	       vmcs_readl(GUEST_SYSENTER_ESP),
5718 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5719 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5720 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5721 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5722 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5723 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5724 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5725 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5726 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5727 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5728 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5729 	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5730 	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5731 		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5732 		       efer, vmcs_read64(GUEST_IA32_PAT));
5733 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5734 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5735 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5736 	if (cpu_has_load_perf_global_ctrl() &&
5737 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5738 		pr_err("PerfGlobCtl = 0x%016llx\n",
5739 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5740 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5741 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5742 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5743 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5744 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5745 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5746 		pr_err("InterruptStatus = %04x\n",
5747 		       vmcs_read16(GUEST_INTR_STATUS));
5748 
5749 	pr_err("*** Host State ***\n");
5750 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5751 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5752 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5753 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5754 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5755 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5756 	       vmcs_read16(HOST_TR_SELECTOR));
5757 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5758 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5759 	       vmcs_readl(HOST_TR_BASE));
5760 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5761 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5762 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5763 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5764 	       vmcs_readl(HOST_CR4));
5765 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5766 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5767 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5768 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5769 	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5770 		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5771 		       vmcs_read64(HOST_IA32_EFER),
5772 		       vmcs_read64(HOST_IA32_PAT));
5773 	if (cpu_has_load_perf_global_ctrl() &&
5774 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5775 		pr_err("PerfGlobCtl = 0x%016llx\n",
5776 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5777 
5778 	pr_err("*** Control State ***\n");
5779 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5780 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5781 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5782 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5783 	       vmcs_read32(EXCEPTION_BITMAP),
5784 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5785 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5786 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5787 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5788 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5789 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5790 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5791 	       vmcs_read32(VM_EXIT_INTR_INFO),
5792 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5793 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5794 	pr_err("        reason=%08x qualification=%016lx\n",
5795 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5796 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5797 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5798 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5799 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5800 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5801 		pr_err("TSC Multiplier = 0x%016llx\n",
5802 		       vmcs_read64(TSC_MULTIPLIER));
5803 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5804 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5805 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5806 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5807 		}
5808 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5809 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5810 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5811 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5812 	}
5813 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5814 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5815 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5816 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5817 	n = vmcs_read32(CR3_TARGET_COUNT);
5818 	for (i = 0; i + 1 < n; i += 4)
5819 		pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5820 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5821 		       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5822 	if (i < n)
5823 		pr_err("CR3 target%u=%016lx\n",
5824 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5825 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5826 		pr_err("PLE Gap=%08x Window=%08x\n",
5827 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5828 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5829 		pr_err("Virtual processor ID = 0x%04x\n",
5830 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5831 }
5832 
5833 /*
5834  * The guest has exited.  See if we can fix it or if we need userspace
5835  * assistance.
5836  */
5837 static int vmx_handle_exit(struct kvm_vcpu *vcpu,
5838 	enum exit_fastpath_completion exit_fastpath)
5839 {
5840 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5841 	u32 exit_reason = vmx->exit_reason;
5842 	u32 vectoring_info = vmx->idt_vectoring_info;
5843 
5844 	trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5845 
5846 	/*
5847 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5848 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5849 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5850 	 * mode as if vcpus is in root mode, the PML buffer must has been
5851 	 * flushed already.
5852 	 */
5853 	if (enable_pml)
5854 		vmx_flush_pml_buffer(vcpu);
5855 
5856 	/* If guest state is invalid, start emulating */
5857 	if (vmx->emulation_required)
5858 		return handle_invalid_guest_state(vcpu);
5859 
5860 	if (is_guest_mode(vcpu)) {
5861 		/*
5862 		 * The host physical addresses of some pages of guest memory
5863 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5864 		 * Page). The CPU may write to these pages via their host
5865 		 * physical address while L2 is running, bypassing any
5866 		 * address-translation-based dirty tracking (e.g. EPT write
5867 		 * protection).
5868 		 *
5869 		 * Mark them dirty on every exit from L2 to prevent them from
5870 		 * getting out of sync with dirty tracking.
5871 		 */
5872 		nested_mark_vmcs12_pages_dirty(vcpu);
5873 
5874 		if (nested_vmx_exit_reflected(vcpu, exit_reason))
5875 			return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5876 	}
5877 
5878 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5879 		dump_vmcs();
5880 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5881 		vcpu->run->fail_entry.hardware_entry_failure_reason
5882 			= exit_reason;
5883 		return 0;
5884 	}
5885 
5886 	if (unlikely(vmx->fail)) {
5887 		dump_vmcs();
5888 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5889 		vcpu->run->fail_entry.hardware_entry_failure_reason
5890 			= vmcs_read32(VM_INSTRUCTION_ERROR);
5891 		return 0;
5892 	}
5893 
5894 	/*
5895 	 * Note:
5896 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5897 	 * delivery event since it indicates guest is accessing MMIO.
5898 	 * The vm-exit can be triggered again after return to guest that
5899 	 * will cause infinite loop.
5900 	 */
5901 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5902 			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5903 			exit_reason != EXIT_REASON_EPT_VIOLATION &&
5904 			exit_reason != EXIT_REASON_PML_FULL &&
5905 			exit_reason != EXIT_REASON_TASK_SWITCH)) {
5906 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5907 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5908 		vcpu->run->internal.ndata = 3;
5909 		vcpu->run->internal.data[0] = vectoring_info;
5910 		vcpu->run->internal.data[1] = exit_reason;
5911 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5912 		if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5913 			vcpu->run->internal.ndata++;
5914 			vcpu->run->internal.data[3] =
5915 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5916 		}
5917 		return 0;
5918 	}
5919 
5920 	if (unlikely(!enable_vnmi &&
5921 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
5922 		if (vmx_interrupt_allowed(vcpu)) {
5923 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5924 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5925 			   vcpu->arch.nmi_pending) {
5926 			/*
5927 			 * This CPU don't support us in finding the end of an
5928 			 * NMI-blocked window if the guest runs with IRQs
5929 			 * disabled. So we pull the trigger after 1 s of
5930 			 * futile waiting, but inform the user about this.
5931 			 */
5932 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5933 			       "state on VCPU %d after 1 s timeout\n",
5934 			       __func__, vcpu->vcpu_id);
5935 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5936 		}
5937 	}
5938 
5939 	if (exit_fastpath == EXIT_FASTPATH_SKIP_EMUL_INS) {
5940 		kvm_skip_emulated_instruction(vcpu);
5941 		return 1;
5942 	}
5943 
5944 	if (exit_reason >= kvm_vmx_max_exit_handlers)
5945 		goto unexpected_vmexit;
5946 #ifdef CONFIG_RETPOLINE
5947 	if (exit_reason == EXIT_REASON_MSR_WRITE)
5948 		return kvm_emulate_wrmsr(vcpu);
5949 	else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
5950 		return handle_preemption_timer(vcpu);
5951 	else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
5952 		return handle_interrupt_window(vcpu);
5953 	else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
5954 		return handle_external_interrupt(vcpu);
5955 	else if (exit_reason == EXIT_REASON_HLT)
5956 		return kvm_emulate_halt(vcpu);
5957 	else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
5958 		return handle_ept_misconfig(vcpu);
5959 #endif
5960 
5961 	exit_reason = array_index_nospec(exit_reason,
5962 					 kvm_vmx_max_exit_handlers);
5963 	if (!kvm_vmx_exit_handlers[exit_reason])
5964 		goto unexpected_vmexit;
5965 
5966 	return kvm_vmx_exit_handlers[exit_reason](vcpu);
5967 
5968 unexpected_vmexit:
5969 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason);
5970 	dump_vmcs();
5971 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5972 	vcpu->run->internal.suberror =
5973 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5974 	vcpu->run->internal.ndata = 1;
5975 	vcpu->run->internal.data[0] = exit_reason;
5976 	return 0;
5977 }
5978 
5979 /*
5980  * Software based L1D cache flush which is used when microcode providing
5981  * the cache control MSR is not loaded.
5982  *
5983  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5984  * flush it is required to read in 64 KiB because the replacement algorithm
5985  * is not exactly LRU. This could be sized at runtime via topology
5986  * information but as all relevant affected CPUs have 32KiB L1D cache size
5987  * there is no point in doing so.
5988  */
5989 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5990 {
5991 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
5992 
5993 	/*
5994 	 * This code is only executed when the the flush mode is 'cond' or
5995 	 * 'always'
5996 	 */
5997 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
5998 		bool flush_l1d;
5999 
6000 		/*
6001 		 * Clear the per-vcpu flush bit, it gets set again
6002 		 * either from vcpu_run() or from one of the unsafe
6003 		 * VMEXIT handlers.
6004 		 */
6005 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6006 		vcpu->arch.l1tf_flush_l1d = false;
6007 
6008 		/*
6009 		 * Clear the per-cpu flush bit, it gets set again from
6010 		 * the interrupt handlers.
6011 		 */
6012 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6013 		kvm_clear_cpu_l1tf_flush_l1d();
6014 
6015 		if (!flush_l1d)
6016 			return;
6017 	}
6018 
6019 	vcpu->stat.l1d_flush++;
6020 
6021 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6022 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6023 		return;
6024 	}
6025 
6026 	asm volatile(
6027 		/* First ensure the pages are in the TLB */
6028 		"xorl	%%eax, %%eax\n"
6029 		".Lpopulate_tlb:\n\t"
6030 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6031 		"addl	$4096, %%eax\n\t"
6032 		"cmpl	%%eax, %[size]\n\t"
6033 		"jne	.Lpopulate_tlb\n\t"
6034 		"xorl	%%eax, %%eax\n\t"
6035 		"cpuid\n\t"
6036 		/* Now fill the cache */
6037 		"xorl	%%eax, %%eax\n"
6038 		".Lfill_cache:\n"
6039 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6040 		"addl	$64, %%eax\n\t"
6041 		"cmpl	%%eax, %[size]\n\t"
6042 		"jne	.Lfill_cache\n\t"
6043 		"lfence\n"
6044 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6045 		    [size] "r" (size)
6046 		: "eax", "ebx", "ecx", "edx");
6047 }
6048 
6049 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6050 {
6051 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6052 	int tpr_threshold;
6053 
6054 	if (is_guest_mode(vcpu) &&
6055 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6056 		return;
6057 
6058 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6059 	if (is_guest_mode(vcpu))
6060 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6061 	else
6062 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6063 }
6064 
6065 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6066 {
6067 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6068 	u32 sec_exec_control;
6069 
6070 	if (!lapic_in_kernel(vcpu))
6071 		return;
6072 
6073 	if (!flexpriority_enabled &&
6074 	    !cpu_has_vmx_virtualize_x2apic_mode())
6075 		return;
6076 
6077 	/* Postpone execution until vmcs01 is the current VMCS. */
6078 	if (is_guest_mode(vcpu)) {
6079 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6080 		return;
6081 	}
6082 
6083 	sec_exec_control = secondary_exec_controls_get(vmx);
6084 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6085 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6086 
6087 	switch (kvm_get_apic_mode(vcpu)) {
6088 	case LAPIC_MODE_INVALID:
6089 		WARN_ONCE(true, "Invalid local APIC state");
6090 	case LAPIC_MODE_DISABLED:
6091 		break;
6092 	case LAPIC_MODE_XAPIC:
6093 		if (flexpriority_enabled) {
6094 			sec_exec_control |=
6095 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6096 			vmx_flush_tlb(vcpu, true);
6097 		}
6098 		break;
6099 	case LAPIC_MODE_X2APIC:
6100 		if (cpu_has_vmx_virtualize_x2apic_mode())
6101 			sec_exec_control |=
6102 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6103 		break;
6104 	}
6105 	secondary_exec_controls_set(vmx, sec_exec_control);
6106 
6107 	vmx_update_msr_bitmap(vcpu);
6108 }
6109 
6110 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6111 {
6112 	if (!is_guest_mode(vcpu)) {
6113 		vmcs_write64(APIC_ACCESS_ADDR, hpa);
6114 		vmx_flush_tlb(vcpu, true);
6115 	}
6116 }
6117 
6118 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6119 {
6120 	u16 status;
6121 	u8 old;
6122 
6123 	if (max_isr == -1)
6124 		max_isr = 0;
6125 
6126 	status = vmcs_read16(GUEST_INTR_STATUS);
6127 	old = status >> 8;
6128 	if (max_isr != old) {
6129 		status &= 0xff;
6130 		status |= max_isr << 8;
6131 		vmcs_write16(GUEST_INTR_STATUS, status);
6132 	}
6133 }
6134 
6135 static void vmx_set_rvi(int vector)
6136 {
6137 	u16 status;
6138 	u8 old;
6139 
6140 	if (vector == -1)
6141 		vector = 0;
6142 
6143 	status = vmcs_read16(GUEST_INTR_STATUS);
6144 	old = (u8)status & 0xff;
6145 	if ((u8)vector != old) {
6146 		status &= ~0xff;
6147 		status |= (u8)vector;
6148 		vmcs_write16(GUEST_INTR_STATUS, status);
6149 	}
6150 }
6151 
6152 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6153 {
6154 	/*
6155 	 * When running L2, updating RVI is only relevant when
6156 	 * vmcs12 virtual-interrupt-delivery enabled.
6157 	 * However, it can be enabled only when L1 also
6158 	 * intercepts external-interrupts and in that case
6159 	 * we should not update vmcs02 RVI but instead intercept
6160 	 * interrupt. Therefore, do nothing when running L2.
6161 	 */
6162 	if (!is_guest_mode(vcpu))
6163 		vmx_set_rvi(max_irr);
6164 }
6165 
6166 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6167 {
6168 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6169 	int max_irr;
6170 	bool max_irr_updated;
6171 
6172 	WARN_ON(!vcpu->arch.apicv_active);
6173 	if (pi_test_on(&vmx->pi_desc)) {
6174 		pi_clear_on(&vmx->pi_desc);
6175 		/*
6176 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6177 		 * But on x86 this is just a compiler barrier anyway.
6178 		 */
6179 		smp_mb__after_atomic();
6180 		max_irr_updated =
6181 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6182 
6183 		/*
6184 		 * If we are running L2 and L1 has a new pending interrupt
6185 		 * which can be injected, we should re-evaluate
6186 		 * what should be done with this new L1 interrupt.
6187 		 * If L1 intercepts external-interrupts, we should
6188 		 * exit from L2 to L1. Otherwise, interrupt should be
6189 		 * delivered directly to L2.
6190 		 */
6191 		if (is_guest_mode(vcpu) && max_irr_updated) {
6192 			if (nested_exit_on_intr(vcpu))
6193 				kvm_vcpu_exiting_guest_mode(vcpu);
6194 			else
6195 				kvm_make_request(KVM_REQ_EVENT, vcpu);
6196 		}
6197 	} else {
6198 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6199 	}
6200 	vmx_hwapic_irr_update(vcpu, max_irr);
6201 	return max_irr;
6202 }
6203 
6204 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6205 {
6206 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6207 
6208 	return pi_test_on(pi_desc) ||
6209 		(pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6210 }
6211 
6212 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6213 {
6214 	if (!kvm_vcpu_apicv_active(vcpu))
6215 		return;
6216 
6217 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6218 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6219 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6220 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6221 }
6222 
6223 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6224 {
6225 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6226 
6227 	pi_clear_on(&vmx->pi_desc);
6228 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6229 }
6230 
6231 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6232 {
6233 	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6234 
6235 	/* if exit due to PF check for async PF */
6236 	if (is_page_fault(vmx->exit_intr_info)) {
6237 		vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6238 	/* Handle machine checks before interrupts are enabled */
6239 	} else if (is_machine_check(vmx->exit_intr_info)) {
6240 		kvm_machine_check();
6241 	/* We need to handle NMIs before interrupts are enabled */
6242 	} else if (is_nmi(vmx->exit_intr_info)) {
6243 		kvm_before_interrupt(&vmx->vcpu);
6244 		asm("int $2");
6245 		kvm_after_interrupt(&vmx->vcpu);
6246 	}
6247 }
6248 
6249 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6250 {
6251 	unsigned int vector;
6252 	unsigned long entry;
6253 #ifdef CONFIG_X86_64
6254 	unsigned long tmp;
6255 #endif
6256 	gate_desc *desc;
6257 	u32 intr_info;
6258 
6259 	intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6260 	if (WARN_ONCE(!is_external_intr(intr_info),
6261 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6262 		return;
6263 
6264 	vector = intr_info & INTR_INFO_VECTOR_MASK;
6265 	desc = (gate_desc *)host_idt_base + vector;
6266 	entry = gate_offset(desc);
6267 
6268 	kvm_before_interrupt(vcpu);
6269 
6270 	asm volatile(
6271 #ifdef CONFIG_X86_64
6272 		"mov %%" _ASM_SP ", %[sp]\n\t"
6273 		"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6274 		"push $%c[ss]\n\t"
6275 		"push %[sp]\n\t"
6276 #endif
6277 		"pushf\n\t"
6278 		__ASM_SIZE(push) " $%c[cs]\n\t"
6279 		CALL_NOSPEC
6280 		:
6281 #ifdef CONFIG_X86_64
6282 		[sp]"=&r"(tmp),
6283 #endif
6284 		ASM_CALL_CONSTRAINT
6285 		:
6286 		[thunk_target]"r"(entry),
6287 		[ss]"i"(__KERNEL_DS),
6288 		[cs]"i"(__KERNEL_CS)
6289 	);
6290 
6291 	kvm_after_interrupt(vcpu);
6292 }
6293 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6294 
6295 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu,
6296 	enum exit_fastpath_completion *exit_fastpath)
6297 {
6298 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6299 
6300 	if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6301 		handle_external_interrupt_irqoff(vcpu);
6302 	else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6303 		handle_exception_nmi_irqoff(vmx);
6304 	else if (!is_guest_mode(vcpu) &&
6305 		vmx->exit_reason == EXIT_REASON_MSR_WRITE)
6306 		*exit_fastpath = handle_fastpath_set_msr_irqoff(vcpu);
6307 }
6308 
6309 static bool vmx_has_emulated_msr(int index)
6310 {
6311 	switch (index) {
6312 	case MSR_IA32_SMBASE:
6313 		/*
6314 		 * We cannot do SMM unless we can run the guest in big
6315 		 * real mode.
6316 		 */
6317 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6318 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6319 		return nested;
6320 	case MSR_AMD64_VIRT_SPEC_CTRL:
6321 		/* This is AMD only.  */
6322 		return false;
6323 	default:
6324 		return true;
6325 	}
6326 }
6327 
6328 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6329 {
6330 	u32 exit_intr_info;
6331 	bool unblock_nmi;
6332 	u8 vector;
6333 	bool idtv_info_valid;
6334 
6335 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6336 
6337 	if (enable_vnmi) {
6338 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6339 			return;
6340 		/*
6341 		 * Can't use vmx->exit_intr_info since we're not sure what
6342 		 * the exit reason is.
6343 		 */
6344 		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6345 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6346 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6347 		/*
6348 		 * SDM 3: 27.7.1.2 (September 2008)
6349 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6350 		 * a guest IRET fault.
6351 		 * SDM 3: 23.2.2 (September 2008)
6352 		 * Bit 12 is undefined in any of the following cases:
6353 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6354 		 *   information field.
6355 		 *  If the VM exit is due to a double fault.
6356 		 */
6357 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6358 		    vector != DF_VECTOR && !idtv_info_valid)
6359 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6360 				      GUEST_INTR_STATE_NMI);
6361 		else
6362 			vmx->loaded_vmcs->nmi_known_unmasked =
6363 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6364 				  & GUEST_INTR_STATE_NMI);
6365 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6366 		vmx->loaded_vmcs->vnmi_blocked_time +=
6367 			ktime_to_ns(ktime_sub(ktime_get(),
6368 					      vmx->loaded_vmcs->entry_time));
6369 }
6370 
6371 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6372 				      u32 idt_vectoring_info,
6373 				      int instr_len_field,
6374 				      int error_code_field)
6375 {
6376 	u8 vector;
6377 	int type;
6378 	bool idtv_info_valid;
6379 
6380 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6381 
6382 	vcpu->arch.nmi_injected = false;
6383 	kvm_clear_exception_queue(vcpu);
6384 	kvm_clear_interrupt_queue(vcpu);
6385 
6386 	if (!idtv_info_valid)
6387 		return;
6388 
6389 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6390 
6391 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6392 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6393 
6394 	switch (type) {
6395 	case INTR_TYPE_NMI_INTR:
6396 		vcpu->arch.nmi_injected = true;
6397 		/*
6398 		 * SDM 3: 27.7.1.2 (September 2008)
6399 		 * Clear bit "block by NMI" before VM entry if a NMI
6400 		 * delivery faulted.
6401 		 */
6402 		vmx_set_nmi_mask(vcpu, false);
6403 		break;
6404 	case INTR_TYPE_SOFT_EXCEPTION:
6405 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6406 		/* fall through */
6407 	case INTR_TYPE_HARD_EXCEPTION:
6408 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6409 			u32 err = vmcs_read32(error_code_field);
6410 			kvm_requeue_exception_e(vcpu, vector, err);
6411 		} else
6412 			kvm_requeue_exception(vcpu, vector);
6413 		break;
6414 	case INTR_TYPE_SOFT_INTR:
6415 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6416 		/* fall through */
6417 	case INTR_TYPE_EXT_INTR:
6418 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6419 		break;
6420 	default:
6421 		break;
6422 	}
6423 }
6424 
6425 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6426 {
6427 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6428 				  VM_EXIT_INSTRUCTION_LEN,
6429 				  IDT_VECTORING_ERROR_CODE);
6430 }
6431 
6432 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6433 {
6434 	__vmx_complete_interrupts(vcpu,
6435 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6436 				  VM_ENTRY_INSTRUCTION_LEN,
6437 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6438 
6439 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6440 }
6441 
6442 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6443 {
6444 	int i, nr_msrs;
6445 	struct perf_guest_switch_msr *msrs;
6446 
6447 	msrs = perf_guest_get_msrs(&nr_msrs);
6448 
6449 	if (!msrs)
6450 		return;
6451 
6452 	for (i = 0; i < nr_msrs; i++)
6453 		if (msrs[i].host == msrs[i].guest)
6454 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6455 		else
6456 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6457 					msrs[i].host, false);
6458 }
6459 
6460 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6461 {
6462 	u32 host_umwait_control;
6463 
6464 	if (!vmx_has_waitpkg(vmx))
6465 		return;
6466 
6467 	host_umwait_control = get_umwait_control_msr();
6468 
6469 	if (vmx->msr_ia32_umwait_control != host_umwait_control)
6470 		add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6471 			vmx->msr_ia32_umwait_control,
6472 			host_umwait_control, false);
6473 	else
6474 		clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6475 }
6476 
6477 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6478 {
6479 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6480 	u64 tscl;
6481 	u32 delta_tsc;
6482 
6483 	if (vmx->req_immediate_exit) {
6484 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6485 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6486 	} else if (vmx->hv_deadline_tsc != -1) {
6487 		tscl = rdtsc();
6488 		if (vmx->hv_deadline_tsc > tscl)
6489 			/* set_hv_timer ensures the delta fits in 32-bits */
6490 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6491 				cpu_preemption_timer_multi);
6492 		else
6493 			delta_tsc = 0;
6494 
6495 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6496 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6497 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6498 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6499 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6500 	}
6501 }
6502 
6503 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6504 {
6505 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6506 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6507 		vmcs_writel(HOST_RSP, host_rsp);
6508 	}
6509 }
6510 
6511 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6512 
6513 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6514 {
6515 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6516 	unsigned long cr3, cr4;
6517 
6518 	/* Record the guest's net vcpu time for enforced NMI injections. */
6519 	if (unlikely(!enable_vnmi &&
6520 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6521 		vmx->loaded_vmcs->entry_time = ktime_get();
6522 
6523 	/* Don't enter VMX if guest state is invalid, let the exit handler
6524 	   start emulation until we arrive back to a valid state */
6525 	if (vmx->emulation_required)
6526 		return;
6527 
6528 	if (vmx->ple_window_dirty) {
6529 		vmx->ple_window_dirty = false;
6530 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6531 	}
6532 
6533 	/*
6534 	 * We did this in prepare_switch_to_guest, because it needs to
6535 	 * be within srcu_read_lock.
6536 	 */
6537 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6538 
6539 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6540 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6541 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6542 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6543 
6544 	cr3 = __get_current_cr3_fast();
6545 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6546 		vmcs_writel(HOST_CR3, cr3);
6547 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6548 	}
6549 
6550 	cr4 = cr4_read_shadow();
6551 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6552 		vmcs_writel(HOST_CR4, cr4);
6553 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6554 	}
6555 
6556 	/* When single-stepping over STI and MOV SS, we must clear the
6557 	 * corresponding interruptibility bits in the guest state. Otherwise
6558 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6559 	 * exceptions being set, but that's not correct for the guest debugging
6560 	 * case. */
6561 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6562 		vmx_set_interrupt_shadow(vcpu, 0);
6563 
6564 	kvm_load_guest_xsave_state(vcpu);
6565 
6566 	pt_guest_enter(vmx);
6567 
6568 	if (vcpu_to_pmu(vcpu)->version)
6569 		atomic_switch_perf_msrs(vmx);
6570 	atomic_switch_umwait_control_msr(vmx);
6571 
6572 	if (enable_preemption_timer)
6573 		vmx_update_hv_timer(vcpu);
6574 
6575 	if (lapic_in_kernel(vcpu) &&
6576 		vcpu->arch.apic->lapic_timer.timer_advance_ns)
6577 		kvm_wait_lapic_expire(vcpu);
6578 
6579 	/*
6580 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6581 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6582 	 * is no need to worry about the conditional branch over the wrmsr
6583 	 * being speculatively taken.
6584 	 */
6585 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6586 
6587 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6588 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6589 		vmx_l1d_flush(vcpu);
6590 	else if (static_branch_unlikely(&mds_user_clear))
6591 		mds_clear_cpu_buffers();
6592 
6593 	if (vcpu->arch.cr2 != read_cr2())
6594 		write_cr2(vcpu->arch.cr2);
6595 
6596 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6597 				   vmx->loaded_vmcs->launched);
6598 
6599 	vcpu->arch.cr2 = read_cr2();
6600 
6601 	/*
6602 	 * We do not use IBRS in the kernel. If this vCPU has used the
6603 	 * SPEC_CTRL MSR it may have left it on; save the value and
6604 	 * turn it off. This is much more efficient than blindly adding
6605 	 * it to the atomic save/restore list. Especially as the former
6606 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6607 	 *
6608 	 * For non-nested case:
6609 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6610 	 * save it.
6611 	 *
6612 	 * For nested case:
6613 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6614 	 * save it.
6615 	 */
6616 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6617 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6618 
6619 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6620 
6621 	/* All fields are clean at this point */
6622 	if (static_branch_unlikely(&enable_evmcs))
6623 		current_evmcs->hv_clean_fields |=
6624 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6625 
6626 	if (static_branch_unlikely(&enable_evmcs))
6627 		current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6628 
6629 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6630 	if (vmx->host_debugctlmsr)
6631 		update_debugctlmsr(vmx->host_debugctlmsr);
6632 
6633 #ifndef CONFIG_X86_64
6634 	/*
6635 	 * The sysexit path does not restore ds/es, so we must set them to
6636 	 * a reasonable value ourselves.
6637 	 *
6638 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6639 	 * function may be executed in interrupt context, which saves and
6640 	 * restore segments around it, nullifying its effect.
6641 	 */
6642 	loadsegment(ds, __USER_DS);
6643 	loadsegment(es, __USER_DS);
6644 #endif
6645 
6646 	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6647 				  | (1 << VCPU_EXREG_RFLAGS)
6648 				  | (1 << VCPU_EXREG_PDPTR)
6649 				  | (1 << VCPU_EXREG_SEGMENTS)
6650 				  | (1 << VCPU_EXREG_CR3));
6651 	vcpu->arch.regs_dirty = 0;
6652 
6653 	pt_guest_exit(vmx);
6654 
6655 	kvm_load_host_xsave_state(vcpu);
6656 
6657 	vmx->nested.nested_run_pending = 0;
6658 	vmx->idt_vectoring_info = 0;
6659 
6660 	vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6661 	if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6662 		kvm_machine_check();
6663 
6664 	if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6665 		return;
6666 
6667 	vmx->loaded_vmcs->launched = 1;
6668 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6669 
6670 	vmx_recover_nmi_blocking(vmx);
6671 	vmx_complete_interrupts(vmx);
6672 }
6673 
6674 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6675 {
6676 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6677 
6678 	if (enable_pml)
6679 		vmx_destroy_pml_buffer(vmx);
6680 	free_vpid(vmx->vpid);
6681 	nested_vmx_free_vcpu(vcpu);
6682 	free_loaded_vmcs(vmx->loaded_vmcs);
6683 }
6684 
6685 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6686 {
6687 	struct vcpu_vmx *vmx;
6688 	unsigned long *msr_bitmap;
6689 	int i, cpu, err;
6690 
6691 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6692 	vmx = to_vmx(vcpu);
6693 
6694 	err = -ENOMEM;
6695 
6696 	vmx->vpid = allocate_vpid();
6697 
6698 	/*
6699 	 * If PML is turned on, failure on enabling PML just results in failure
6700 	 * of creating the vcpu, therefore we can simplify PML logic (by
6701 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6702 	 * for the guest), etc.
6703 	 */
6704 	if (enable_pml) {
6705 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6706 		if (!vmx->pml_pg)
6707 			goto free_vpid;
6708 	}
6709 
6710 	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) != NR_SHARED_MSRS);
6711 
6712 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6713 		u32 index = vmx_msr_index[i];
6714 		u32 data_low, data_high;
6715 		int j = vmx->nmsrs;
6716 
6717 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
6718 			continue;
6719 		if (wrmsr_safe(index, data_low, data_high) < 0)
6720 			continue;
6721 
6722 		vmx->guest_msrs[j].index = i;
6723 		vmx->guest_msrs[j].data = 0;
6724 		switch (index) {
6725 		case MSR_IA32_TSX_CTRL:
6726 			/*
6727 			 * No need to pass TSX_CTRL_CPUID_CLEAR through, so
6728 			 * let's avoid changing CPUID bits under the host
6729 			 * kernel's feet.
6730 			 */
6731 			vmx->guest_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6732 			break;
6733 		default:
6734 			vmx->guest_msrs[j].mask = -1ull;
6735 			break;
6736 		}
6737 		++vmx->nmsrs;
6738 	}
6739 
6740 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6741 	if (err < 0)
6742 		goto free_pml;
6743 
6744 	msr_bitmap = vmx->vmcs01.msr_bitmap;
6745 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6746 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6747 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6748 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6749 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6750 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6751 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6752 	if (kvm_cstate_in_guest(vcpu->kvm)) {
6753 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6754 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6755 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6756 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6757 	}
6758 	vmx->msr_bitmap_mode = 0;
6759 
6760 	vmx->loaded_vmcs = &vmx->vmcs01;
6761 	cpu = get_cpu();
6762 	vmx_vcpu_load(vcpu, cpu);
6763 	vcpu->cpu = cpu;
6764 	init_vmcs(vmx);
6765 	vmx_vcpu_put(vcpu);
6766 	put_cpu();
6767 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
6768 		err = alloc_apic_access_page(vcpu->kvm);
6769 		if (err)
6770 			goto free_vmcs;
6771 	}
6772 
6773 	if (enable_ept && !enable_unrestricted_guest) {
6774 		err = init_rmode_identity_map(vcpu->kvm);
6775 		if (err)
6776 			goto free_vmcs;
6777 	}
6778 
6779 	if (nested)
6780 		nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6781 					   vmx_capability.ept);
6782 	else
6783 		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6784 
6785 	vmx->nested.posted_intr_nv = -1;
6786 	vmx->nested.current_vmptr = -1ull;
6787 
6788 	vcpu->arch.microcode_version = 0x100000000ULL;
6789 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6790 
6791 	/*
6792 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6793 	 * or POSTED_INTR_WAKEUP_VECTOR.
6794 	 */
6795 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6796 	vmx->pi_desc.sn = 1;
6797 
6798 	vmx->ept_pointer = INVALID_PAGE;
6799 
6800 	return 0;
6801 
6802 free_vmcs:
6803 	free_loaded_vmcs(vmx->loaded_vmcs);
6804 free_pml:
6805 	vmx_destroy_pml_buffer(vmx);
6806 free_vpid:
6807 	free_vpid(vmx->vpid);
6808 	return err;
6809 }
6810 
6811 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6812 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6813 
6814 static int vmx_vm_init(struct kvm *kvm)
6815 {
6816 	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6817 
6818 	if (!ple_gap)
6819 		kvm->arch.pause_in_guest = true;
6820 
6821 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6822 		switch (l1tf_mitigation) {
6823 		case L1TF_MITIGATION_OFF:
6824 		case L1TF_MITIGATION_FLUSH_NOWARN:
6825 			/* 'I explicitly don't care' is set */
6826 			break;
6827 		case L1TF_MITIGATION_FLUSH:
6828 		case L1TF_MITIGATION_FLUSH_NOSMT:
6829 		case L1TF_MITIGATION_FULL:
6830 			/*
6831 			 * Warn upon starting the first VM in a potentially
6832 			 * insecure environment.
6833 			 */
6834 			if (sched_smt_active())
6835 				pr_warn_once(L1TF_MSG_SMT);
6836 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6837 				pr_warn_once(L1TF_MSG_L1D);
6838 			break;
6839 		case L1TF_MITIGATION_FULL_FORCE:
6840 			/* Flush is enforced */
6841 			break;
6842 		}
6843 	}
6844 	kvm_apicv_init(kvm, enable_apicv);
6845 	return 0;
6846 }
6847 
6848 static int __init vmx_check_processor_compat(void)
6849 {
6850 	struct vmcs_config vmcs_conf;
6851 	struct vmx_capability vmx_cap;
6852 
6853 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6854 	    !this_cpu_has(X86_FEATURE_VMX)) {
6855 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6856 		return -EIO;
6857 	}
6858 
6859 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6860 		return -EIO;
6861 	if (nested)
6862 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6863 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6864 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6865 				smp_processor_id());
6866 		return -EIO;
6867 	}
6868 	return 0;
6869 }
6870 
6871 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6872 {
6873 	u8 cache;
6874 	u64 ipat = 0;
6875 
6876 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
6877 	 * memory aliases with conflicting memory types and sometimes MCEs.
6878 	 * We have to be careful as to what are honored and when.
6879 	 *
6880 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
6881 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
6882 	 * This was historically the source of MCEs and we want to be
6883 	 * conservative.
6884 	 *
6885 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
6886 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
6887 	 * EPT memory type is set to WB.  The effective memory type is forced
6888 	 * WB.
6889 	 *
6890 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
6891 	 * EPT memory type is used to emulate guest CD/MTRR.
6892 	 */
6893 
6894 	if (is_mmio) {
6895 		cache = MTRR_TYPE_UNCACHABLE;
6896 		goto exit;
6897 	}
6898 
6899 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6900 		ipat = VMX_EPT_IPAT_BIT;
6901 		cache = MTRR_TYPE_WRBACK;
6902 		goto exit;
6903 	}
6904 
6905 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6906 		ipat = VMX_EPT_IPAT_BIT;
6907 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6908 			cache = MTRR_TYPE_WRBACK;
6909 		else
6910 			cache = MTRR_TYPE_UNCACHABLE;
6911 		goto exit;
6912 	}
6913 
6914 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6915 
6916 exit:
6917 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6918 }
6919 
6920 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6921 {
6922 	/*
6923 	 * These bits in the secondary execution controls field
6924 	 * are dynamic, the others are mostly based on the hypervisor
6925 	 * architecture and the guest's CPUID.  Do not touch the
6926 	 * dynamic bits.
6927 	 */
6928 	u32 mask =
6929 		SECONDARY_EXEC_SHADOW_VMCS |
6930 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6931 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6932 		SECONDARY_EXEC_DESC;
6933 
6934 	u32 new_ctl = vmx->secondary_exec_control;
6935 	u32 cur_ctl = secondary_exec_controls_get(vmx);
6936 
6937 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6938 }
6939 
6940 /*
6941  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6942  * (indicating "allowed-1") if they are supported in the guest's CPUID.
6943  */
6944 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6945 {
6946 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6947 	struct kvm_cpuid_entry2 *entry;
6948 
6949 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6950 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6951 
6952 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
6953 	if (entry && (entry->_reg & (_cpuid_mask)))			\
6954 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
6955 } while (0)
6956 
6957 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6958 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
6959 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
6960 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
6961 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
6962 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
6963 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
6964 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
6965 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
6966 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
6967 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
6968 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
6969 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
6970 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
6971 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
6972 
6973 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6974 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
6975 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
6976 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
6977 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
6978 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
6979 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
6980 
6981 #undef cr4_fixed1_update
6982 }
6983 
6984 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
6985 {
6986 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6987 
6988 	if (kvm_mpx_supported()) {
6989 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
6990 
6991 		if (mpx_enabled) {
6992 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
6993 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
6994 		} else {
6995 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
6996 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
6997 		}
6998 	}
6999 }
7000 
7001 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7002 {
7003 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7004 	struct kvm_cpuid_entry2 *best = NULL;
7005 	int i;
7006 
7007 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7008 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7009 		if (!best)
7010 			return;
7011 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7012 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7013 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7014 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7015 	}
7016 
7017 	/* Get the number of configurable Address Ranges for filtering */
7018 	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7019 						PT_CAP_num_address_ranges);
7020 
7021 	/* Initialize and clear the no dependency bits */
7022 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7023 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7024 
7025 	/*
7026 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7027 	 * will inject an #GP
7028 	 */
7029 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7030 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7031 
7032 	/*
7033 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7034 	 * PSBFreq can be set
7035 	 */
7036 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7037 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7038 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7039 
7040 	/*
7041 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7042 	 * MTCFreq can be set
7043 	 */
7044 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7045 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7046 				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7047 
7048 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7049 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7050 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7051 							RTIT_CTL_PTW_EN);
7052 
7053 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7054 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7055 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7056 
7057 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7058 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7059 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7060 
7061 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7062 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7063 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7064 
7065 	/* unmask address range configure area */
7066 	for (i = 0; i < vmx->pt_desc.addr_range; i++)
7067 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7068 }
7069 
7070 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7071 {
7072 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7073 
7074 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7075 	vcpu->arch.xsaves_enabled = false;
7076 
7077 	if (cpu_has_secondary_exec_ctrls()) {
7078 		vmx_compute_secondary_exec_control(vmx);
7079 		vmcs_set_secondary_exec_control(vmx);
7080 	}
7081 
7082 	if (nested_vmx_allowed(vcpu))
7083 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7084 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7085 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7086 	else
7087 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7088 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7089 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7090 
7091 	if (nested_vmx_allowed(vcpu)) {
7092 		nested_vmx_cr_fixed1_bits_update(vcpu);
7093 		nested_vmx_entry_exit_ctls_update(vcpu);
7094 	}
7095 
7096 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7097 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7098 		update_intel_pt_cfg(vcpu);
7099 
7100 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7101 		struct shared_msr_entry *msr;
7102 		msr = find_msr_entry(vmx, MSR_IA32_TSX_CTRL);
7103 		if (msr) {
7104 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7105 			vmx_set_guest_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7106 		}
7107 	}
7108 }
7109 
7110 static __init void vmx_set_cpu_caps(void)
7111 {
7112 	kvm_set_cpu_caps();
7113 
7114 	/* CPUID 0x1 */
7115 	if (nested)
7116 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7117 
7118 	/* CPUID 0x7 */
7119 	if (kvm_mpx_supported())
7120 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7121 	if (cpu_has_vmx_invpcid())
7122 		kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7123 	if (vmx_pt_mode_is_host_guest())
7124 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7125 
7126 	/* PKU is not yet implemented for shadow paging. */
7127 	if (enable_ept && boot_cpu_has(X86_FEATURE_OSPKE))
7128 		kvm_cpu_cap_check_and_set(X86_FEATURE_PKU);
7129 
7130 	if (vmx_umip_emulated())
7131 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7132 
7133 	/* CPUID 0xD.1 */
7134 	supported_xss = 0;
7135 	if (!vmx_xsaves_supported())
7136 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7137 
7138 	/* CPUID 0x80000001 */
7139 	if (!cpu_has_vmx_rdtscp())
7140 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7141 }
7142 
7143 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7144 {
7145 	to_vmx(vcpu)->req_immediate_exit = true;
7146 }
7147 
7148 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7149 				  struct x86_instruction_info *info)
7150 {
7151 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7152 	unsigned short port;
7153 	bool intercept;
7154 	int size;
7155 
7156 	if (info->intercept == x86_intercept_in ||
7157 	    info->intercept == x86_intercept_ins) {
7158 		port = info->src_val;
7159 		size = info->dst_bytes;
7160 	} else {
7161 		port = info->dst_val;
7162 		size = info->src_bytes;
7163 	}
7164 
7165 	/*
7166 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7167 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7168 	 * control.
7169 	 *
7170 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7171 	 */
7172 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7173 		intercept = nested_cpu_has(vmcs12,
7174 					   CPU_BASED_UNCOND_IO_EXITING);
7175 	else
7176 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7177 
7178 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7179 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7180 }
7181 
7182 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7183 			       struct x86_instruction_info *info,
7184 			       enum x86_intercept_stage stage,
7185 			       struct x86_exception *exception)
7186 {
7187 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7188 
7189 	switch (info->intercept) {
7190 	/*
7191 	 * RDPID causes #UD if disabled through secondary execution controls.
7192 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7193 	 */
7194 	case x86_intercept_rdtscp:
7195 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7196 			exception->vector = UD_VECTOR;
7197 			exception->error_code_valid = false;
7198 			return X86EMUL_PROPAGATE_FAULT;
7199 		}
7200 		break;
7201 
7202 	case x86_intercept_in:
7203 	case x86_intercept_ins:
7204 	case x86_intercept_out:
7205 	case x86_intercept_outs:
7206 		return vmx_check_intercept_io(vcpu, info);
7207 
7208 	case x86_intercept_lgdt:
7209 	case x86_intercept_lidt:
7210 	case x86_intercept_lldt:
7211 	case x86_intercept_ltr:
7212 	case x86_intercept_sgdt:
7213 	case x86_intercept_sidt:
7214 	case x86_intercept_sldt:
7215 	case x86_intercept_str:
7216 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7217 			return X86EMUL_CONTINUE;
7218 
7219 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7220 		break;
7221 
7222 	/* TODO: check more intercepts... */
7223 	default:
7224 		break;
7225 	}
7226 
7227 	return X86EMUL_UNHANDLEABLE;
7228 }
7229 
7230 #ifdef CONFIG_X86_64
7231 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7232 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7233 				  u64 divisor, u64 *result)
7234 {
7235 	u64 low = a << shift, high = a >> (64 - shift);
7236 
7237 	/* To avoid the overflow on divq */
7238 	if (high >= divisor)
7239 		return 1;
7240 
7241 	/* Low hold the result, high hold rem which is discarded */
7242 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7243 	    "rm" (divisor), "0" (low), "1" (high));
7244 	*result = low;
7245 
7246 	return 0;
7247 }
7248 
7249 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7250 			    bool *expired)
7251 {
7252 	struct vcpu_vmx *vmx;
7253 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7254 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7255 
7256 	if (kvm_mwait_in_guest(vcpu->kvm) ||
7257 		kvm_can_post_timer_interrupt(vcpu))
7258 		return -EOPNOTSUPP;
7259 
7260 	vmx = to_vmx(vcpu);
7261 	tscl = rdtsc();
7262 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7263 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7264 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7265 						    ktimer->timer_advance_ns);
7266 
7267 	if (delta_tsc > lapic_timer_advance_cycles)
7268 		delta_tsc -= lapic_timer_advance_cycles;
7269 	else
7270 		delta_tsc = 0;
7271 
7272 	/* Convert to host delta tsc if tsc scaling is enabled */
7273 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7274 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7275 				kvm_tsc_scaling_ratio_frac_bits,
7276 				vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7277 		return -ERANGE;
7278 
7279 	/*
7280 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7281 	 * we can't use the preemption timer.
7282 	 * It's possible that it fits on later vmentries, but checking
7283 	 * on every vmentry is costly so we just use an hrtimer.
7284 	 */
7285 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7286 		return -ERANGE;
7287 
7288 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7289 	*expired = !delta_tsc;
7290 	return 0;
7291 }
7292 
7293 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7294 {
7295 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7296 }
7297 #endif
7298 
7299 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7300 {
7301 	if (!kvm_pause_in_guest(vcpu->kvm))
7302 		shrink_ple_window(vcpu);
7303 }
7304 
7305 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7306 				     struct kvm_memory_slot *slot)
7307 {
7308 	if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7309 		kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7310 	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7311 }
7312 
7313 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7314 				       struct kvm_memory_slot *slot)
7315 {
7316 	kvm_mmu_slot_set_dirty(kvm, slot);
7317 }
7318 
7319 static void vmx_flush_log_dirty(struct kvm *kvm)
7320 {
7321 	kvm_flush_pml_buffers(kvm);
7322 }
7323 
7324 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7325 {
7326 	struct vmcs12 *vmcs12;
7327 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7328 	gpa_t gpa, dst;
7329 
7330 	if (is_guest_mode(vcpu)) {
7331 		WARN_ON_ONCE(vmx->nested.pml_full);
7332 
7333 		/*
7334 		 * Check if PML is enabled for the nested guest.
7335 		 * Whether eptp bit 6 is set is already checked
7336 		 * as part of A/D emulation.
7337 		 */
7338 		vmcs12 = get_vmcs12(vcpu);
7339 		if (!nested_cpu_has_pml(vmcs12))
7340 			return 0;
7341 
7342 		if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7343 			vmx->nested.pml_full = true;
7344 			return 1;
7345 		}
7346 
7347 		gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7348 		dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7349 
7350 		if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7351 					 offset_in_page(dst), sizeof(gpa)))
7352 			return 0;
7353 
7354 		vmcs12->guest_pml_index--;
7355 	}
7356 
7357 	return 0;
7358 }
7359 
7360 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7361 					   struct kvm_memory_slot *memslot,
7362 					   gfn_t offset, unsigned long mask)
7363 {
7364 	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7365 }
7366 
7367 static void __pi_post_block(struct kvm_vcpu *vcpu)
7368 {
7369 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7370 	struct pi_desc old, new;
7371 	unsigned int dest;
7372 
7373 	do {
7374 		old.control = new.control = pi_desc->control;
7375 		WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7376 		     "Wakeup handler not enabled while the VCPU is blocked\n");
7377 
7378 		dest = cpu_physical_id(vcpu->cpu);
7379 
7380 		if (x2apic_enabled())
7381 			new.ndst = dest;
7382 		else
7383 			new.ndst = (dest << 8) & 0xFF00;
7384 
7385 		/* set 'NV' to 'notification vector' */
7386 		new.nv = POSTED_INTR_VECTOR;
7387 	} while (cmpxchg64(&pi_desc->control, old.control,
7388 			   new.control) != old.control);
7389 
7390 	if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7391 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7392 		list_del(&vcpu->blocked_vcpu_list);
7393 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7394 		vcpu->pre_pcpu = -1;
7395 	}
7396 }
7397 
7398 /*
7399  * This routine does the following things for vCPU which is going
7400  * to be blocked if VT-d PI is enabled.
7401  * - Store the vCPU to the wakeup list, so when interrupts happen
7402  *   we can find the right vCPU to wake up.
7403  * - Change the Posted-interrupt descriptor as below:
7404  *      'NDST' <-- vcpu->pre_pcpu
7405  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7406  * - If 'ON' is set during this process, which means at least one
7407  *   interrupt is posted for this vCPU, we cannot block it, in
7408  *   this case, return 1, otherwise, return 0.
7409  *
7410  */
7411 static int pi_pre_block(struct kvm_vcpu *vcpu)
7412 {
7413 	unsigned int dest;
7414 	struct pi_desc old, new;
7415 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7416 
7417 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7418 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
7419 		!kvm_vcpu_apicv_active(vcpu))
7420 		return 0;
7421 
7422 	WARN_ON(irqs_disabled());
7423 	local_irq_disable();
7424 	if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7425 		vcpu->pre_pcpu = vcpu->cpu;
7426 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7427 		list_add_tail(&vcpu->blocked_vcpu_list,
7428 			      &per_cpu(blocked_vcpu_on_cpu,
7429 				       vcpu->pre_pcpu));
7430 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7431 	}
7432 
7433 	do {
7434 		old.control = new.control = pi_desc->control;
7435 
7436 		WARN((pi_desc->sn == 1),
7437 		     "Warning: SN field of posted-interrupts "
7438 		     "is set before blocking\n");
7439 
7440 		/*
7441 		 * Since vCPU can be preempted during this process,
7442 		 * vcpu->cpu could be different with pre_pcpu, we
7443 		 * need to set pre_pcpu as the destination of wakeup
7444 		 * notification event, then we can find the right vCPU
7445 		 * to wakeup in wakeup handler if interrupts happen
7446 		 * when the vCPU is in blocked state.
7447 		 */
7448 		dest = cpu_physical_id(vcpu->pre_pcpu);
7449 
7450 		if (x2apic_enabled())
7451 			new.ndst = dest;
7452 		else
7453 			new.ndst = (dest << 8) & 0xFF00;
7454 
7455 		/* set 'NV' to 'wakeup vector' */
7456 		new.nv = POSTED_INTR_WAKEUP_VECTOR;
7457 	} while (cmpxchg64(&pi_desc->control, old.control,
7458 			   new.control) != old.control);
7459 
7460 	/* We should not block the vCPU if an interrupt is posted for it.  */
7461 	if (pi_test_on(pi_desc) == 1)
7462 		__pi_post_block(vcpu);
7463 
7464 	local_irq_enable();
7465 	return (vcpu->pre_pcpu == -1);
7466 }
7467 
7468 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7469 {
7470 	if (pi_pre_block(vcpu))
7471 		return 1;
7472 
7473 	if (kvm_lapic_hv_timer_in_use(vcpu))
7474 		kvm_lapic_switch_to_sw_timer(vcpu);
7475 
7476 	return 0;
7477 }
7478 
7479 static void pi_post_block(struct kvm_vcpu *vcpu)
7480 {
7481 	if (vcpu->pre_pcpu == -1)
7482 		return;
7483 
7484 	WARN_ON(irqs_disabled());
7485 	local_irq_disable();
7486 	__pi_post_block(vcpu);
7487 	local_irq_enable();
7488 }
7489 
7490 static void vmx_post_block(struct kvm_vcpu *vcpu)
7491 {
7492 	if (kvm_x86_ops.set_hv_timer)
7493 		kvm_lapic_switch_to_hv_timer(vcpu);
7494 
7495 	pi_post_block(vcpu);
7496 }
7497 
7498 /*
7499  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7500  *
7501  * @kvm: kvm
7502  * @host_irq: host irq of the interrupt
7503  * @guest_irq: gsi of the interrupt
7504  * @set: set or unset PI
7505  * returns 0 on success, < 0 on failure
7506  */
7507 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7508 			      uint32_t guest_irq, bool set)
7509 {
7510 	struct kvm_kernel_irq_routing_entry *e;
7511 	struct kvm_irq_routing_table *irq_rt;
7512 	struct kvm_lapic_irq irq;
7513 	struct kvm_vcpu *vcpu;
7514 	struct vcpu_data vcpu_info;
7515 	int idx, ret = 0;
7516 
7517 	if (!kvm_arch_has_assigned_device(kvm) ||
7518 		!irq_remapping_cap(IRQ_POSTING_CAP) ||
7519 		!kvm_vcpu_apicv_active(kvm->vcpus[0]))
7520 		return 0;
7521 
7522 	idx = srcu_read_lock(&kvm->irq_srcu);
7523 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7524 	if (guest_irq >= irq_rt->nr_rt_entries ||
7525 	    hlist_empty(&irq_rt->map[guest_irq])) {
7526 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7527 			     guest_irq, irq_rt->nr_rt_entries);
7528 		goto out;
7529 	}
7530 
7531 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7532 		if (e->type != KVM_IRQ_ROUTING_MSI)
7533 			continue;
7534 		/*
7535 		 * VT-d PI cannot support posting multicast/broadcast
7536 		 * interrupts to a vCPU, we still use interrupt remapping
7537 		 * for these kind of interrupts.
7538 		 *
7539 		 * For lowest-priority interrupts, we only support
7540 		 * those with single CPU as the destination, e.g. user
7541 		 * configures the interrupts via /proc/irq or uses
7542 		 * irqbalance to make the interrupts single-CPU.
7543 		 *
7544 		 * We will support full lowest-priority interrupt later.
7545 		 *
7546 		 * In addition, we can only inject generic interrupts using
7547 		 * the PI mechanism, refuse to route others through it.
7548 		 */
7549 
7550 		kvm_set_msi_irq(kvm, e, &irq);
7551 		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7552 		    !kvm_irq_is_postable(&irq)) {
7553 			/*
7554 			 * Make sure the IRTE is in remapped mode if
7555 			 * we don't handle it in posted mode.
7556 			 */
7557 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7558 			if (ret < 0) {
7559 				printk(KERN_INFO
7560 				   "failed to back to remapped mode, irq: %u\n",
7561 				   host_irq);
7562 				goto out;
7563 			}
7564 
7565 			continue;
7566 		}
7567 
7568 		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7569 		vcpu_info.vector = irq.vector;
7570 
7571 		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7572 				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7573 
7574 		if (set)
7575 			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7576 		else
7577 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7578 
7579 		if (ret < 0) {
7580 			printk(KERN_INFO "%s: failed to update PI IRTE\n",
7581 					__func__);
7582 			goto out;
7583 		}
7584 	}
7585 
7586 	ret = 0;
7587 out:
7588 	srcu_read_unlock(&kvm->irq_srcu, idx);
7589 	return ret;
7590 }
7591 
7592 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7593 {
7594 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7595 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7596 			FEAT_CTL_LMCE_ENABLED;
7597 	else
7598 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7599 			~FEAT_CTL_LMCE_ENABLED;
7600 }
7601 
7602 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7603 {
7604 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7605 	if (to_vmx(vcpu)->nested.nested_run_pending)
7606 		return 0;
7607 	return 1;
7608 }
7609 
7610 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7611 {
7612 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7613 
7614 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7615 	if (vmx->nested.smm.guest_mode)
7616 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7617 
7618 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7619 	vmx->nested.vmxon = false;
7620 	vmx_clear_hlt(vcpu);
7621 	return 0;
7622 }
7623 
7624 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7625 {
7626 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7627 	int ret;
7628 
7629 	if (vmx->nested.smm.vmxon) {
7630 		vmx->nested.vmxon = true;
7631 		vmx->nested.smm.vmxon = false;
7632 	}
7633 
7634 	if (vmx->nested.smm.guest_mode) {
7635 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7636 		if (ret)
7637 			return ret;
7638 
7639 		vmx->nested.smm.guest_mode = false;
7640 	}
7641 	return 0;
7642 }
7643 
7644 static int enable_smi_window(struct kvm_vcpu *vcpu)
7645 {
7646 	return 0;
7647 }
7648 
7649 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7650 {
7651 	return false;
7652 }
7653 
7654 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7655 {
7656 	return to_vmx(vcpu)->nested.vmxon;
7657 }
7658 
7659 static void hardware_unsetup(void)
7660 {
7661 	if (nested)
7662 		nested_vmx_hardware_unsetup();
7663 
7664 	free_kvm_area();
7665 }
7666 
7667 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7668 {
7669 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7670 			  BIT(APICV_INHIBIT_REASON_HYPERV);
7671 
7672 	return supported & BIT(bit);
7673 }
7674 
7675 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7676 	.hardware_unsetup = hardware_unsetup,
7677 
7678 	.hardware_enable = hardware_enable,
7679 	.hardware_disable = hardware_disable,
7680 	.cpu_has_accelerated_tpr = report_flexpriority,
7681 	.has_emulated_msr = vmx_has_emulated_msr,
7682 
7683 	.vm_size = sizeof(struct kvm_vmx),
7684 	.vm_init = vmx_vm_init,
7685 
7686 	.vcpu_create = vmx_create_vcpu,
7687 	.vcpu_free = vmx_free_vcpu,
7688 	.vcpu_reset = vmx_vcpu_reset,
7689 
7690 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7691 	.vcpu_load = vmx_vcpu_load,
7692 	.vcpu_put = vmx_vcpu_put,
7693 
7694 	.update_bp_intercept = update_exception_bitmap,
7695 	.get_msr_feature = vmx_get_msr_feature,
7696 	.get_msr = vmx_get_msr,
7697 	.set_msr = vmx_set_msr,
7698 	.get_segment_base = vmx_get_segment_base,
7699 	.get_segment = vmx_get_segment,
7700 	.set_segment = vmx_set_segment,
7701 	.get_cpl = vmx_get_cpl,
7702 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7703 	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7704 	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7705 	.set_cr0 = vmx_set_cr0,
7706 	.set_cr4 = vmx_set_cr4,
7707 	.set_efer = vmx_set_efer,
7708 	.get_idt = vmx_get_idt,
7709 	.set_idt = vmx_set_idt,
7710 	.get_gdt = vmx_get_gdt,
7711 	.set_gdt = vmx_set_gdt,
7712 	.set_dr7 = vmx_set_dr7,
7713 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7714 	.cache_reg = vmx_cache_reg,
7715 	.get_rflags = vmx_get_rflags,
7716 	.set_rflags = vmx_set_rflags,
7717 
7718 	.tlb_flush = vmx_flush_tlb,
7719 	.tlb_flush_gva = vmx_flush_tlb_gva,
7720 
7721 	.run = vmx_vcpu_run,
7722 	.handle_exit = vmx_handle_exit,
7723 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7724 	.update_emulated_instruction = vmx_update_emulated_instruction,
7725 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7726 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7727 	.patch_hypercall = vmx_patch_hypercall,
7728 	.set_irq = vmx_inject_irq,
7729 	.set_nmi = vmx_inject_nmi,
7730 	.queue_exception = vmx_queue_exception,
7731 	.cancel_injection = vmx_cancel_injection,
7732 	.interrupt_allowed = vmx_interrupt_allowed,
7733 	.nmi_allowed = vmx_nmi_allowed,
7734 	.get_nmi_mask = vmx_get_nmi_mask,
7735 	.set_nmi_mask = vmx_set_nmi_mask,
7736 	.enable_nmi_window = enable_nmi_window,
7737 	.enable_irq_window = enable_irq_window,
7738 	.update_cr8_intercept = update_cr8_intercept,
7739 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7740 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7741 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7742 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7743 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7744 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7745 	.hwapic_irr_update = vmx_hwapic_irr_update,
7746 	.hwapic_isr_update = vmx_hwapic_isr_update,
7747 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7748 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7749 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7750 	.dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7751 
7752 	.set_tss_addr = vmx_set_tss_addr,
7753 	.set_identity_map_addr = vmx_set_identity_map_addr,
7754 	.get_tdp_level = get_ept_level,
7755 	.get_mt_mask = vmx_get_mt_mask,
7756 
7757 	.get_exit_info = vmx_get_exit_info,
7758 
7759 	.cpuid_update = vmx_cpuid_update,
7760 
7761 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7762 
7763 	.read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7764 	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7765 
7766 	.load_mmu_pgd = vmx_load_mmu_pgd,
7767 
7768 	.check_intercept = vmx_check_intercept,
7769 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7770 
7771 	.request_immediate_exit = vmx_request_immediate_exit,
7772 
7773 	.sched_in = vmx_sched_in,
7774 
7775 	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7776 	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7777 	.flush_log_dirty = vmx_flush_log_dirty,
7778 	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7779 	.write_log_dirty = vmx_write_pml_buffer,
7780 
7781 	.pre_block = vmx_pre_block,
7782 	.post_block = vmx_post_block,
7783 
7784 	.pmu_ops = &intel_pmu_ops,
7785 
7786 	.update_pi_irte = vmx_update_pi_irte,
7787 
7788 #ifdef CONFIG_X86_64
7789 	.set_hv_timer = vmx_set_hv_timer,
7790 	.cancel_hv_timer = vmx_cancel_hv_timer,
7791 #endif
7792 
7793 	.setup_mce = vmx_setup_mce,
7794 
7795 	.smi_allowed = vmx_smi_allowed,
7796 	.pre_enter_smm = vmx_pre_enter_smm,
7797 	.pre_leave_smm = vmx_pre_leave_smm,
7798 	.enable_smi_window = enable_smi_window,
7799 
7800 	.check_nested_events = NULL,
7801 	.get_nested_state = NULL,
7802 	.set_nested_state = NULL,
7803 	.get_vmcs12_pages = NULL,
7804 	.nested_enable_evmcs = NULL,
7805 	.nested_get_evmcs_version = NULL,
7806 	.need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7807 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7808 };
7809 
7810 static __init int hardware_setup(void)
7811 {
7812 	unsigned long host_bndcfgs;
7813 	struct desc_ptr dt;
7814 	int r, i, ept_lpage_level;
7815 
7816 	store_idt(&dt);
7817 	host_idt_base = dt.address;
7818 
7819 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7820 		kvm_define_shared_msr(i, vmx_msr_index[i]);
7821 
7822 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7823 		return -EIO;
7824 
7825 	if (boot_cpu_has(X86_FEATURE_NX))
7826 		kvm_enable_efer_bits(EFER_NX);
7827 
7828 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7829 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7830 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7831 	}
7832 
7833 	if (!cpu_has_vmx_mpx())
7834 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7835 				    XFEATURE_MASK_BNDCSR);
7836 
7837 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7838 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7839 		enable_vpid = 0;
7840 
7841 	if (!cpu_has_vmx_ept() ||
7842 	    !cpu_has_vmx_ept_4levels() ||
7843 	    !cpu_has_vmx_ept_mt_wb() ||
7844 	    !cpu_has_vmx_invept_global())
7845 		enable_ept = 0;
7846 
7847 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7848 		enable_ept_ad_bits = 0;
7849 
7850 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7851 		enable_unrestricted_guest = 0;
7852 
7853 	if (!cpu_has_vmx_flexpriority())
7854 		flexpriority_enabled = 0;
7855 
7856 	if (!cpu_has_virtual_nmis())
7857 		enable_vnmi = 0;
7858 
7859 	/*
7860 	 * set_apic_access_page_addr() is used to reload apic access
7861 	 * page upon invalidation.  No need to do anything if not
7862 	 * using the APIC_ACCESS_ADDR VMCS field.
7863 	 */
7864 	if (!flexpriority_enabled)
7865 		vmx_x86_ops.set_apic_access_page_addr = NULL;
7866 
7867 	if (!cpu_has_vmx_tpr_shadow())
7868 		vmx_x86_ops.update_cr8_intercept = NULL;
7869 
7870 #if IS_ENABLED(CONFIG_HYPERV)
7871 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7872 	    && enable_ept) {
7873 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7874 		vmx_x86_ops.tlb_remote_flush_with_range =
7875 				hv_remote_flush_tlb_with_range;
7876 	}
7877 #endif
7878 
7879 	if (!cpu_has_vmx_ple()) {
7880 		ple_gap = 0;
7881 		ple_window = 0;
7882 		ple_window_grow = 0;
7883 		ple_window_max = 0;
7884 		ple_window_shrink = 0;
7885 	}
7886 
7887 	if (!cpu_has_vmx_apicv()) {
7888 		enable_apicv = 0;
7889 		vmx_x86_ops.sync_pir_to_irr = NULL;
7890 	}
7891 
7892 	if (cpu_has_vmx_tsc_scaling()) {
7893 		kvm_has_tsc_control = true;
7894 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7895 		kvm_tsc_scaling_ratio_frac_bits = 48;
7896 	}
7897 
7898 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7899 
7900 	if (enable_ept)
7901 		vmx_enable_tdp();
7902 
7903 	if (!enable_ept)
7904 		ept_lpage_level = 0;
7905 	else if (cpu_has_vmx_ept_1g_page())
7906 		ept_lpage_level = PT_PDPE_LEVEL;
7907 	else if (cpu_has_vmx_ept_2m_page())
7908 		ept_lpage_level = PT_DIRECTORY_LEVEL;
7909 	else
7910 		ept_lpage_level = PT_PAGE_TABLE_LEVEL;
7911 	kvm_configure_mmu(enable_ept, ept_lpage_level);
7912 
7913 	/*
7914 	 * Only enable PML when hardware supports PML feature, and both EPT
7915 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7916 	 */
7917 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7918 		enable_pml = 0;
7919 
7920 	if (!enable_pml) {
7921 		vmx_x86_ops.slot_enable_log_dirty = NULL;
7922 		vmx_x86_ops.slot_disable_log_dirty = NULL;
7923 		vmx_x86_ops.flush_log_dirty = NULL;
7924 		vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
7925 	}
7926 
7927 	if (!cpu_has_vmx_preemption_timer())
7928 		enable_preemption_timer = false;
7929 
7930 	if (enable_preemption_timer) {
7931 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
7932 		u64 vmx_msr;
7933 
7934 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7935 		cpu_preemption_timer_multi =
7936 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7937 
7938 		if (tsc_khz)
7939 			use_timer_freq = (u64)tsc_khz * 1000;
7940 		use_timer_freq >>= cpu_preemption_timer_multi;
7941 
7942 		/*
7943 		 * KVM "disables" the preemption timer by setting it to its max
7944 		 * value.  Don't use the timer if it might cause spurious exits
7945 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7946 		 */
7947 		if (use_timer_freq > 0xffffffffu / 10)
7948 			enable_preemption_timer = false;
7949 	}
7950 
7951 	if (!enable_preemption_timer) {
7952 		vmx_x86_ops.set_hv_timer = NULL;
7953 		vmx_x86_ops.cancel_hv_timer = NULL;
7954 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7955 	}
7956 
7957 	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7958 
7959 	kvm_mce_cap_supported |= MCG_LMCE_P;
7960 
7961 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7962 		return -EINVAL;
7963 	if (!enable_ept || !cpu_has_vmx_intel_pt())
7964 		pt_mode = PT_MODE_SYSTEM;
7965 
7966 	if (nested) {
7967 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7968 					   vmx_capability.ept);
7969 
7970 		r = nested_vmx_hardware_setup(&vmx_x86_ops,
7971 					      kvm_vmx_exit_handlers);
7972 		if (r)
7973 			return r;
7974 	}
7975 
7976 	vmx_set_cpu_caps();
7977 
7978 	r = alloc_kvm_area();
7979 	if (r)
7980 		nested_vmx_hardware_unsetup();
7981 	return r;
7982 }
7983 
7984 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7985 	.cpu_has_kvm_support = cpu_has_kvm_support,
7986 	.disabled_by_bios = vmx_disabled_by_bios,
7987 	.check_processor_compatibility = vmx_check_processor_compat,
7988 	.hardware_setup = hardware_setup,
7989 
7990 	.runtime_ops = &vmx_x86_ops,
7991 };
7992 
7993 static void vmx_cleanup_l1d_flush(void)
7994 {
7995 	if (vmx_l1d_flush_pages) {
7996 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7997 		vmx_l1d_flush_pages = NULL;
7998 	}
7999 	/* Restore state so sysfs ignores VMX */
8000 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8001 }
8002 
8003 static void vmx_exit(void)
8004 {
8005 #ifdef CONFIG_KEXEC_CORE
8006 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8007 	synchronize_rcu();
8008 #endif
8009 
8010 	kvm_exit();
8011 
8012 #if IS_ENABLED(CONFIG_HYPERV)
8013 	if (static_branch_unlikely(&enable_evmcs)) {
8014 		int cpu;
8015 		struct hv_vp_assist_page *vp_ap;
8016 		/*
8017 		 * Reset everything to support using non-enlightened VMCS
8018 		 * access later (e.g. when we reload the module with
8019 		 * enlightened_vmcs=0)
8020 		 */
8021 		for_each_online_cpu(cpu) {
8022 			vp_ap =	hv_get_vp_assist_page(cpu);
8023 
8024 			if (!vp_ap)
8025 				continue;
8026 
8027 			vp_ap->nested_control.features.directhypercall = 0;
8028 			vp_ap->current_nested_vmcs = 0;
8029 			vp_ap->enlighten_vmentry = 0;
8030 		}
8031 
8032 		static_branch_disable(&enable_evmcs);
8033 	}
8034 #endif
8035 	vmx_cleanup_l1d_flush();
8036 }
8037 module_exit(vmx_exit);
8038 
8039 static int __init vmx_init(void)
8040 {
8041 	int r, cpu;
8042 
8043 #if IS_ENABLED(CONFIG_HYPERV)
8044 	/*
8045 	 * Enlightened VMCS usage should be recommended and the host needs
8046 	 * to support eVMCS v1 or above. We can also disable eVMCS support
8047 	 * with module parameter.
8048 	 */
8049 	if (enlightened_vmcs &&
8050 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8051 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8052 	    KVM_EVMCS_VERSION) {
8053 		int cpu;
8054 
8055 		/* Check that we have assist pages on all online CPUs */
8056 		for_each_online_cpu(cpu) {
8057 			if (!hv_get_vp_assist_page(cpu)) {
8058 				enlightened_vmcs = false;
8059 				break;
8060 			}
8061 		}
8062 
8063 		if (enlightened_vmcs) {
8064 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8065 			static_branch_enable(&enable_evmcs);
8066 		}
8067 
8068 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8069 			vmx_x86_ops.enable_direct_tlbflush
8070 				= hv_enable_direct_tlbflush;
8071 
8072 	} else {
8073 		enlightened_vmcs = false;
8074 	}
8075 #endif
8076 
8077 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8078 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8079 	if (r)
8080 		return r;
8081 
8082 	/*
8083 	 * Must be called after kvm_init() so enable_ept is properly set
8084 	 * up. Hand the parameter mitigation value in which was stored in
8085 	 * the pre module init parser. If no parameter was given, it will
8086 	 * contain 'auto' which will be turned into the default 'cond'
8087 	 * mitigation mode.
8088 	 */
8089 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8090 	if (r) {
8091 		vmx_exit();
8092 		return r;
8093 	}
8094 
8095 	for_each_possible_cpu(cpu) {
8096 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8097 		INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
8098 		spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8099 	}
8100 
8101 #ifdef CONFIG_KEXEC_CORE
8102 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8103 			   crash_vmclear_local_loaded_vmcss);
8104 #endif
8105 	vmx_check_vmcs12_offsets();
8106 
8107 	return 0;
8108 }
8109 module_init(vmx_init);
8110