xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision 5e2421ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/fpu/xstate.h>
40 #include <asm/idtentry.h>
41 #include <asm/io.h>
42 #include <asm/irq_remapping.h>
43 #include <asm/kexec.h>
44 #include <asm/perf_event.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/mwait.h>
48 #include <asm/spec-ctrl.h>
49 #include <asm/virtext.h>
50 #include <asm/vmx.h>
51 
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "evmcs.h"
55 #include "hyperv.h"
56 #include "kvm_onhyperv.h"
57 #include "irq.h"
58 #include "kvm_cache_regs.h"
59 #include "lapic.h"
60 #include "mmu.h"
61 #include "nested.h"
62 #include "pmu.h"
63 #include "sgx.h"
64 #include "trace.h"
65 #include "vmcs.h"
66 #include "vmcs12.h"
67 #include "vmx.h"
68 #include "x86.h"
69 
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72 
73 #ifdef MODULE
74 static const struct x86_cpu_id vmx_cpu_id[] = {
75 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
76 	{}
77 };
78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
79 #endif
80 
81 bool __read_mostly enable_vpid = 1;
82 module_param_named(vpid, enable_vpid, bool, 0444);
83 
84 static bool __read_mostly enable_vnmi = 1;
85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
86 
87 bool __read_mostly flexpriority_enabled = 1;
88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
89 
90 bool __read_mostly enable_ept = 1;
91 module_param_named(ept, enable_ept, bool, S_IRUGO);
92 
93 bool __read_mostly enable_unrestricted_guest = 1;
94 module_param_named(unrestricted_guest,
95 			enable_unrestricted_guest, bool, S_IRUGO);
96 
97 bool __read_mostly enable_ept_ad_bits = 1;
98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
99 
100 static bool __read_mostly emulate_invalid_guest_state = true;
101 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
102 
103 static bool __read_mostly fasteoi = 1;
104 module_param(fasteoi, bool, S_IRUGO);
105 
106 module_param(enable_apicv, bool, S_IRUGO);
107 
108 /*
109  * If nested=1, nested virtualization is supported, i.e., guests may use
110  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
111  * use VMX instructions.
112  */
113 static bool __read_mostly nested = 1;
114 module_param(nested, bool, S_IRUGO);
115 
116 bool __read_mostly enable_pml = 1;
117 module_param_named(pml, enable_pml, bool, S_IRUGO);
118 
119 static bool __read_mostly dump_invalid_vmcs = 0;
120 module_param(dump_invalid_vmcs, bool, 0644);
121 
122 #define MSR_BITMAP_MODE_X2APIC		1
123 #define MSR_BITMAP_MODE_X2APIC_APICV	2
124 
125 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
126 
127 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
128 static int __read_mostly cpu_preemption_timer_multi;
129 static bool __read_mostly enable_preemption_timer = 1;
130 #ifdef CONFIG_X86_64
131 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
132 #endif
133 
134 extern bool __read_mostly allow_smaller_maxphyaddr;
135 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
136 
137 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
138 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
139 #define KVM_VM_CR0_ALWAYS_ON				\
140 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
141 
142 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
143 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
144 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
145 
146 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
147 
148 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
149 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
150 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
151 	RTIT_STATUS_BYTECNT))
152 
153 /*
154  * List of MSRs that can be directly passed to the guest.
155  * In addition to these x2apic and PT MSRs are handled specially.
156  */
157 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
158 	MSR_IA32_SPEC_CTRL,
159 	MSR_IA32_PRED_CMD,
160 	MSR_IA32_TSC,
161 #ifdef CONFIG_X86_64
162 	MSR_FS_BASE,
163 	MSR_GS_BASE,
164 	MSR_KERNEL_GS_BASE,
165 	MSR_IA32_XFD,
166 	MSR_IA32_XFD_ERR,
167 #endif
168 	MSR_IA32_SYSENTER_CS,
169 	MSR_IA32_SYSENTER_ESP,
170 	MSR_IA32_SYSENTER_EIP,
171 	MSR_CORE_C1_RES,
172 	MSR_CORE_C3_RESIDENCY,
173 	MSR_CORE_C6_RESIDENCY,
174 	MSR_CORE_C7_RESIDENCY,
175 };
176 
177 /*
178  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
179  * ple_gap:    upper bound on the amount of time between two successive
180  *             executions of PAUSE in a loop. Also indicate if ple enabled.
181  *             According to test, this time is usually smaller than 128 cycles.
182  * ple_window: upper bound on the amount of time a guest is allowed to execute
183  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
184  *             less than 2^12 cycles
185  * Time is measured based on a counter that runs at the same rate as the TSC,
186  * refer SDM volume 3b section 21.6.13 & 22.1.3.
187  */
188 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
189 module_param(ple_gap, uint, 0444);
190 
191 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
192 module_param(ple_window, uint, 0444);
193 
194 /* Default doubles per-vcpu window every exit. */
195 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
196 module_param(ple_window_grow, uint, 0444);
197 
198 /* Default resets per-vcpu window every exit to ple_window. */
199 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
200 module_param(ple_window_shrink, uint, 0444);
201 
202 /* Default is to compute the maximum so we can never overflow. */
203 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
204 module_param(ple_window_max, uint, 0444);
205 
206 /* Default is SYSTEM mode, 1 for host-guest mode */
207 int __read_mostly pt_mode = PT_MODE_SYSTEM;
208 module_param(pt_mode, int, S_IRUGO);
209 
210 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
211 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
212 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
213 
214 /* Storage for pre module init parameter parsing */
215 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
216 
217 static const struct {
218 	const char *option;
219 	bool for_parse;
220 } vmentry_l1d_param[] = {
221 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
222 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
223 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
224 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
225 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
226 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
227 };
228 
229 #define L1D_CACHE_ORDER 4
230 static void *vmx_l1d_flush_pages;
231 
232 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
233 {
234 	struct page *page;
235 	unsigned int i;
236 
237 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
238 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
239 		return 0;
240 	}
241 
242 	if (!enable_ept) {
243 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
244 		return 0;
245 	}
246 
247 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
248 		u64 msr;
249 
250 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
251 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
252 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
253 			return 0;
254 		}
255 	}
256 
257 	/* If set to auto use the default l1tf mitigation method */
258 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
259 		switch (l1tf_mitigation) {
260 		case L1TF_MITIGATION_OFF:
261 			l1tf = VMENTER_L1D_FLUSH_NEVER;
262 			break;
263 		case L1TF_MITIGATION_FLUSH_NOWARN:
264 		case L1TF_MITIGATION_FLUSH:
265 		case L1TF_MITIGATION_FLUSH_NOSMT:
266 			l1tf = VMENTER_L1D_FLUSH_COND;
267 			break;
268 		case L1TF_MITIGATION_FULL:
269 		case L1TF_MITIGATION_FULL_FORCE:
270 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
271 			break;
272 		}
273 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
274 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
275 	}
276 
277 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
278 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
279 		/*
280 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
281 		 * lifetime and so should not be charged to a memcg.
282 		 */
283 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
284 		if (!page)
285 			return -ENOMEM;
286 		vmx_l1d_flush_pages = page_address(page);
287 
288 		/*
289 		 * Initialize each page with a different pattern in
290 		 * order to protect against KSM in the nested
291 		 * virtualization case.
292 		 */
293 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
294 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
295 			       PAGE_SIZE);
296 		}
297 	}
298 
299 	l1tf_vmx_mitigation = l1tf;
300 
301 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
302 		static_branch_enable(&vmx_l1d_should_flush);
303 	else
304 		static_branch_disable(&vmx_l1d_should_flush);
305 
306 	if (l1tf == VMENTER_L1D_FLUSH_COND)
307 		static_branch_enable(&vmx_l1d_flush_cond);
308 	else
309 		static_branch_disable(&vmx_l1d_flush_cond);
310 	return 0;
311 }
312 
313 static int vmentry_l1d_flush_parse(const char *s)
314 {
315 	unsigned int i;
316 
317 	if (s) {
318 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
319 			if (vmentry_l1d_param[i].for_parse &&
320 			    sysfs_streq(s, vmentry_l1d_param[i].option))
321 				return i;
322 		}
323 	}
324 	return -EINVAL;
325 }
326 
327 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
328 {
329 	int l1tf, ret;
330 
331 	l1tf = vmentry_l1d_flush_parse(s);
332 	if (l1tf < 0)
333 		return l1tf;
334 
335 	if (!boot_cpu_has(X86_BUG_L1TF))
336 		return 0;
337 
338 	/*
339 	 * Has vmx_init() run already? If not then this is the pre init
340 	 * parameter parsing. In that case just store the value and let
341 	 * vmx_init() do the proper setup after enable_ept has been
342 	 * established.
343 	 */
344 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
345 		vmentry_l1d_flush_param = l1tf;
346 		return 0;
347 	}
348 
349 	mutex_lock(&vmx_l1d_flush_mutex);
350 	ret = vmx_setup_l1d_flush(l1tf);
351 	mutex_unlock(&vmx_l1d_flush_mutex);
352 	return ret;
353 }
354 
355 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
356 {
357 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
358 		return sprintf(s, "???\n");
359 
360 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
361 }
362 
363 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
364 	.set = vmentry_l1d_flush_set,
365 	.get = vmentry_l1d_flush_get,
366 };
367 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
368 
369 static u32 vmx_segment_access_rights(struct kvm_segment *var);
370 
371 void vmx_vmexit(void);
372 
373 #define vmx_insn_failed(fmt...)		\
374 do {					\
375 	WARN_ONCE(1, fmt);		\
376 	pr_warn_ratelimited(fmt);	\
377 } while (0)
378 
379 asmlinkage void vmread_error(unsigned long field, bool fault)
380 {
381 	if (fault)
382 		kvm_spurious_fault();
383 	else
384 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
385 }
386 
387 noinline void vmwrite_error(unsigned long field, unsigned long value)
388 {
389 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
390 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
391 }
392 
393 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
394 {
395 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
396 }
397 
398 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
399 {
400 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
401 }
402 
403 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
404 {
405 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
406 			ext, vpid, gva);
407 }
408 
409 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
410 {
411 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
412 			ext, eptp, gpa);
413 }
414 
415 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
416 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
417 /*
418  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
419  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
420  */
421 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
422 
423 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
424 static DEFINE_SPINLOCK(vmx_vpid_lock);
425 
426 struct vmcs_config vmcs_config;
427 struct vmx_capability vmx_capability;
428 
429 #define VMX_SEGMENT_FIELD(seg)					\
430 	[VCPU_SREG_##seg] = {                                   \
431 		.selector = GUEST_##seg##_SELECTOR,		\
432 		.base = GUEST_##seg##_BASE,		   	\
433 		.limit = GUEST_##seg##_LIMIT,		   	\
434 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
435 	}
436 
437 static const struct kvm_vmx_segment_field {
438 	unsigned selector;
439 	unsigned base;
440 	unsigned limit;
441 	unsigned ar_bytes;
442 } kvm_vmx_segment_fields[] = {
443 	VMX_SEGMENT_FIELD(CS),
444 	VMX_SEGMENT_FIELD(DS),
445 	VMX_SEGMENT_FIELD(ES),
446 	VMX_SEGMENT_FIELD(FS),
447 	VMX_SEGMENT_FIELD(GS),
448 	VMX_SEGMENT_FIELD(SS),
449 	VMX_SEGMENT_FIELD(TR),
450 	VMX_SEGMENT_FIELD(LDTR),
451 };
452 
453 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
454 {
455 	vmx->segment_cache.bitmask = 0;
456 }
457 
458 static unsigned long host_idt_base;
459 
460 #if IS_ENABLED(CONFIG_HYPERV)
461 static bool __read_mostly enlightened_vmcs = true;
462 module_param(enlightened_vmcs, bool, 0444);
463 
464 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
465 {
466 	struct hv_enlightened_vmcs *evmcs;
467 	struct hv_partition_assist_pg **p_hv_pa_pg =
468 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
469 	/*
470 	 * Synthetic VM-Exit is not enabled in current code and so All
471 	 * evmcs in singe VM shares same assist page.
472 	 */
473 	if (!*p_hv_pa_pg)
474 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
475 
476 	if (!*p_hv_pa_pg)
477 		return -ENOMEM;
478 
479 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
480 
481 	evmcs->partition_assist_page =
482 		__pa(*p_hv_pa_pg);
483 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
484 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
485 
486 	return 0;
487 }
488 
489 #endif /* IS_ENABLED(CONFIG_HYPERV) */
490 
491 /*
492  * Comment's format: document - errata name - stepping - processor name.
493  * Refer from
494  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
495  */
496 static u32 vmx_preemption_cpu_tfms[] = {
497 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
498 0x000206E6,
499 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
500 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
501 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
502 0x00020652,
503 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
504 0x00020655,
505 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
506 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
507 /*
508  * 320767.pdf - AAP86  - B1 -
509  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
510  */
511 0x000106E5,
512 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
513 0x000106A0,
514 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
515 0x000106A1,
516 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
517 0x000106A4,
518  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
519  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
520  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
521 0x000106A5,
522  /* Xeon E3-1220 V2 */
523 0x000306A8,
524 };
525 
526 static inline bool cpu_has_broken_vmx_preemption_timer(void)
527 {
528 	u32 eax = cpuid_eax(0x00000001), i;
529 
530 	/* Clear the reserved bits */
531 	eax &= ~(0x3U << 14 | 0xfU << 28);
532 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
533 		if (eax == vmx_preemption_cpu_tfms[i])
534 			return true;
535 
536 	return false;
537 }
538 
539 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
540 {
541 	return flexpriority_enabled && lapic_in_kernel(vcpu);
542 }
543 
544 static inline bool report_flexpriority(void)
545 {
546 	return flexpriority_enabled;
547 }
548 
549 static int possible_passthrough_msr_slot(u32 msr)
550 {
551 	u32 i;
552 
553 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
554 		if (vmx_possible_passthrough_msrs[i] == msr)
555 			return i;
556 
557 	return -ENOENT;
558 }
559 
560 static bool is_valid_passthrough_msr(u32 msr)
561 {
562 	bool r;
563 
564 	switch (msr) {
565 	case 0x800 ... 0x8ff:
566 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
567 		return true;
568 	case MSR_IA32_RTIT_STATUS:
569 	case MSR_IA32_RTIT_OUTPUT_BASE:
570 	case MSR_IA32_RTIT_OUTPUT_MASK:
571 	case MSR_IA32_RTIT_CR3_MATCH:
572 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
573 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
574 	case MSR_LBR_SELECT:
575 	case MSR_LBR_TOS:
576 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
577 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
578 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
579 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
580 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
581 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
582 		return true;
583 	}
584 
585 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
586 
587 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
588 
589 	return r;
590 }
591 
592 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
593 {
594 	int i;
595 
596 	i = kvm_find_user_return_msr(msr);
597 	if (i >= 0)
598 		return &vmx->guest_uret_msrs[i];
599 	return NULL;
600 }
601 
602 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
603 				  struct vmx_uret_msr *msr, u64 data)
604 {
605 	unsigned int slot = msr - vmx->guest_uret_msrs;
606 	int ret = 0;
607 
608 	if (msr->load_into_hardware) {
609 		preempt_disable();
610 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
611 		preempt_enable();
612 	}
613 	if (!ret)
614 		msr->data = data;
615 	return ret;
616 }
617 
618 #ifdef CONFIG_KEXEC_CORE
619 static void crash_vmclear_local_loaded_vmcss(void)
620 {
621 	int cpu = raw_smp_processor_id();
622 	struct loaded_vmcs *v;
623 
624 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
625 			    loaded_vmcss_on_cpu_link)
626 		vmcs_clear(v->vmcs);
627 }
628 #endif /* CONFIG_KEXEC_CORE */
629 
630 static void __loaded_vmcs_clear(void *arg)
631 {
632 	struct loaded_vmcs *loaded_vmcs = arg;
633 	int cpu = raw_smp_processor_id();
634 
635 	if (loaded_vmcs->cpu != cpu)
636 		return; /* vcpu migration can race with cpu offline */
637 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
638 		per_cpu(current_vmcs, cpu) = NULL;
639 
640 	vmcs_clear(loaded_vmcs->vmcs);
641 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
642 		vmcs_clear(loaded_vmcs->shadow_vmcs);
643 
644 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
645 
646 	/*
647 	 * Ensure all writes to loaded_vmcs, including deleting it from its
648 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
649 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
650 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
651 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
652 	 */
653 	smp_wmb();
654 
655 	loaded_vmcs->cpu = -1;
656 	loaded_vmcs->launched = 0;
657 }
658 
659 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
660 {
661 	int cpu = loaded_vmcs->cpu;
662 
663 	if (cpu != -1)
664 		smp_call_function_single(cpu,
665 			 __loaded_vmcs_clear, loaded_vmcs, 1);
666 }
667 
668 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
669 				       unsigned field)
670 {
671 	bool ret;
672 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
673 
674 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
675 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
676 		vmx->segment_cache.bitmask = 0;
677 	}
678 	ret = vmx->segment_cache.bitmask & mask;
679 	vmx->segment_cache.bitmask |= mask;
680 	return ret;
681 }
682 
683 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
684 {
685 	u16 *p = &vmx->segment_cache.seg[seg].selector;
686 
687 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
688 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
689 	return *p;
690 }
691 
692 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
693 {
694 	ulong *p = &vmx->segment_cache.seg[seg].base;
695 
696 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
697 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
698 	return *p;
699 }
700 
701 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
702 {
703 	u32 *p = &vmx->segment_cache.seg[seg].limit;
704 
705 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
706 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
707 	return *p;
708 }
709 
710 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
711 {
712 	u32 *p = &vmx->segment_cache.seg[seg].ar;
713 
714 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
715 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
716 	return *p;
717 }
718 
719 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
720 {
721 	u32 eb;
722 
723 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
724 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
725 	/*
726 	 * Guest access to VMware backdoor ports could legitimately
727 	 * trigger #GP because of TSS I/O permission bitmap.
728 	 * We intercept those #GP and allow access to them anyway
729 	 * as VMware does.
730 	 */
731 	if (enable_vmware_backdoor)
732 		eb |= (1u << GP_VECTOR);
733 	if ((vcpu->guest_debug &
734 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
735 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
736 		eb |= 1u << BP_VECTOR;
737 	if (to_vmx(vcpu)->rmode.vm86_active)
738 		eb = ~0;
739 	if (!vmx_need_pf_intercept(vcpu))
740 		eb &= ~(1u << PF_VECTOR);
741 
742 	/* When we are running a nested L2 guest and L1 specified for it a
743 	 * certain exception bitmap, we must trap the same exceptions and pass
744 	 * them to L1. When running L2, we will only handle the exceptions
745 	 * specified above if L1 did not want them.
746 	 */
747 	if (is_guest_mode(vcpu))
748 		eb |= get_vmcs12(vcpu)->exception_bitmap;
749         else {
750 		int mask = 0, match = 0;
751 
752 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
753 			/*
754 			 * If EPT is enabled, #PF is currently only intercepted
755 			 * if MAXPHYADDR is smaller on the guest than on the
756 			 * host.  In that case we only care about present,
757 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
758 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
759 			 */
760 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
761 			match = PFERR_PRESENT_MASK;
762 		}
763 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
764 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
765 	}
766 
767 	/*
768 	 * Disabling xfd interception indicates that dynamic xfeatures
769 	 * might be used in the guest. Always trap #NM in this case
770 	 * to save guest xfd_err timely.
771 	 */
772 	if (vcpu->arch.xfd_no_write_intercept)
773 		eb |= (1u << NM_VECTOR);
774 
775 	vmcs_write32(EXCEPTION_BITMAP, eb);
776 }
777 
778 /*
779  * Check if MSR is intercepted for currently loaded MSR bitmap.
780  */
781 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
782 {
783 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
784 		return true;
785 
786 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap,
787 					 MSR_IA32_SPEC_CTRL);
788 }
789 
790 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
791 		unsigned long entry, unsigned long exit)
792 {
793 	vm_entry_controls_clearbit(vmx, entry);
794 	vm_exit_controls_clearbit(vmx, exit);
795 }
796 
797 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
798 {
799 	unsigned int i;
800 
801 	for (i = 0; i < m->nr; ++i) {
802 		if (m->val[i].index == msr)
803 			return i;
804 	}
805 	return -ENOENT;
806 }
807 
808 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
809 {
810 	int i;
811 	struct msr_autoload *m = &vmx->msr_autoload;
812 
813 	switch (msr) {
814 	case MSR_EFER:
815 		if (cpu_has_load_ia32_efer()) {
816 			clear_atomic_switch_msr_special(vmx,
817 					VM_ENTRY_LOAD_IA32_EFER,
818 					VM_EXIT_LOAD_IA32_EFER);
819 			return;
820 		}
821 		break;
822 	case MSR_CORE_PERF_GLOBAL_CTRL:
823 		if (cpu_has_load_perf_global_ctrl()) {
824 			clear_atomic_switch_msr_special(vmx,
825 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
826 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
827 			return;
828 		}
829 		break;
830 	}
831 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
832 	if (i < 0)
833 		goto skip_guest;
834 	--m->guest.nr;
835 	m->guest.val[i] = m->guest.val[m->guest.nr];
836 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
837 
838 skip_guest:
839 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
840 	if (i < 0)
841 		return;
842 
843 	--m->host.nr;
844 	m->host.val[i] = m->host.val[m->host.nr];
845 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
846 }
847 
848 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
849 		unsigned long entry, unsigned long exit,
850 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
851 		u64 guest_val, u64 host_val)
852 {
853 	vmcs_write64(guest_val_vmcs, guest_val);
854 	if (host_val_vmcs != HOST_IA32_EFER)
855 		vmcs_write64(host_val_vmcs, host_val);
856 	vm_entry_controls_setbit(vmx, entry);
857 	vm_exit_controls_setbit(vmx, exit);
858 }
859 
860 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
861 				  u64 guest_val, u64 host_val, bool entry_only)
862 {
863 	int i, j = 0;
864 	struct msr_autoload *m = &vmx->msr_autoload;
865 
866 	switch (msr) {
867 	case MSR_EFER:
868 		if (cpu_has_load_ia32_efer()) {
869 			add_atomic_switch_msr_special(vmx,
870 					VM_ENTRY_LOAD_IA32_EFER,
871 					VM_EXIT_LOAD_IA32_EFER,
872 					GUEST_IA32_EFER,
873 					HOST_IA32_EFER,
874 					guest_val, host_val);
875 			return;
876 		}
877 		break;
878 	case MSR_CORE_PERF_GLOBAL_CTRL:
879 		if (cpu_has_load_perf_global_ctrl()) {
880 			add_atomic_switch_msr_special(vmx,
881 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
882 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
883 					GUEST_IA32_PERF_GLOBAL_CTRL,
884 					HOST_IA32_PERF_GLOBAL_CTRL,
885 					guest_val, host_val);
886 			return;
887 		}
888 		break;
889 	case MSR_IA32_PEBS_ENABLE:
890 		/* PEBS needs a quiescent period after being disabled (to write
891 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
892 		 * provide that period, so a CPU could write host's record into
893 		 * guest's memory.
894 		 */
895 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
896 	}
897 
898 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
899 	if (!entry_only)
900 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
901 
902 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
903 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
904 		printk_once(KERN_WARNING "Not enough msr switch entries. "
905 				"Can't add msr %x\n", msr);
906 		return;
907 	}
908 	if (i < 0) {
909 		i = m->guest.nr++;
910 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
911 	}
912 	m->guest.val[i].index = msr;
913 	m->guest.val[i].value = guest_val;
914 
915 	if (entry_only)
916 		return;
917 
918 	if (j < 0) {
919 		j = m->host.nr++;
920 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
921 	}
922 	m->host.val[j].index = msr;
923 	m->host.val[j].value = host_val;
924 }
925 
926 static bool update_transition_efer(struct vcpu_vmx *vmx)
927 {
928 	u64 guest_efer = vmx->vcpu.arch.efer;
929 	u64 ignore_bits = 0;
930 	int i;
931 
932 	/* Shadow paging assumes NX to be available.  */
933 	if (!enable_ept)
934 		guest_efer |= EFER_NX;
935 
936 	/*
937 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
938 	 */
939 	ignore_bits |= EFER_SCE;
940 #ifdef CONFIG_X86_64
941 	ignore_bits |= EFER_LMA | EFER_LME;
942 	/* SCE is meaningful only in long mode on Intel */
943 	if (guest_efer & EFER_LMA)
944 		ignore_bits &= ~(u64)EFER_SCE;
945 #endif
946 
947 	/*
948 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
949 	 * On CPUs that support "load IA32_EFER", always switch EFER
950 	 * atomically, since it's faster than switching it manually.
951 	 */
952 	if (cpu_has_load_ia32_efer() ||
953 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
954 		if (!(guest_efer & EFER_LMA))
955 			guest_efer &= ~EFER_LME;
956 		if (guest_efer != host_efer)
957 			add_atomic_switch_msr(vmx, MSR_EFER,
958 					      guest_efer, host_efer, false);
959 		else
960 			clear_atomic_switch_msr(vmx, MSR_EFER);
961 		return false;
962 	}
963 
964 	i = kvm_find_user_return_msr(MSR_EFER);
965 	if (i < 0)
966 		return false;
967 
968 	clear_atomic_switch_msr(vmx, MSR_EFER);
969 
970 	guest_efer &= ~ignore_bits;
971 	guest_efer |= host_efer & ignore_bits;
972 
973 	vmx->guest_uret_msrs[i].data = guest_efer;
974 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
975 
976 	return true;
977 }
978 
979 #ifdef CONFIG_X86_32
980 /*
981  * On 32-bit kernels, VM exits still load the FS and GS bases from the
982  * VMCS rather than the segment table.  KVM uses this helper to figure
983  * out the current bases to poke them into the VMCS before entry.
984  */
985 static unsigned long segment_base(u16 selector)
986 {
987 	struct desc_struct *table;
988 	unsigned long v;
989 
990 	if (!(selector & ~SEGMENT_RPL_MASK))
991 		return 0;
992 
993 	table = get_current_gdt_ro();
994 
995 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
996 		u16 ldt_selector = kvm_read_ldt();
997 
998 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
999 			return 0;
1000 
1001 		table = (struct desc_struct *)segment_base(ldt_selector);
1002 	}
1003 	v = get_desc_base(&table[selector >> 3]);
1004 	return v;
1005 }
1006 #endif
1007 
1008 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1009 {
1010 	return vmx_pt_mode_is_host_guest() &&
1011 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1012 }
1013 
1014 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1015 {
1016 	/* The base must be 128-byte aligned and a legal physical address. */
1017 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1018 }
1019 
1020 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1021 {
1022 	u32 i;
1023 
1024 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1025 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1026 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1027 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1028 	for (i = 0; i < addr_range; i++) {
1029 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1030 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1031 	}
1032 }
1033 
1034 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1035 {
1036 	u32 i;
1037 
1038 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1039 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1040 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1041 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1042 	for (i = 0; i < addr_range; i++) {
1043 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1044 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1045 	}
1046 }
1047 
1048 static void pt_guest_enter(struct vcpu_vmx *vmx)
1049 {
1050 	if (vmx_pt_mode_is_system())
1051 		return;
1052 
1053 	/*
1054 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1055 	 * Save host state before VM entry.
1056 	 */
1057 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1058 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1059 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1060 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1061 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1062 	}
1063 }
1064 
1065 static void pt_guest_exit(struct vcpu_vmx *vmx)
1066 {
1067 	if (vmx_pt_mode_is_system())
1068 		return;
1069 
1070 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1071 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1072 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1073 	}
1074 
1075 	/*
1076 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1077 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1078 	 */
1079 	if (vmx->pt_desc.host.ctl)
1080 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1081 }
1082 
1083 void vmx_set_vmcs_host_state(struct vmcs_host_state *host, unsigned long cr3,
1084 			     u16 fs_sel, u16 gs_sel,
1085 			     unsigned long fs_base, unsigned long gs_base)
1086 {
1087 	if (unlikely(cr3 != host->cr3)) {
1088 		vmcs_writel(HOST_CR3, cr3);
1089 		host->cr3 = cr3;
1090 	}
1091 	if (unlikely(fs_sel != host->fs_sel)) {
1092 		if (!(fs_sel & 7))
1093 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1094 		else
1095 			vmcs_write16(HOST_FS_SELECTOR, 0);
1096 		host->fs_sel = fs_sel;
1097 	}
1098 	if (unlikely(gs_sel != host->gs_sel)) {
1099 		if (!(gs_sel & 7))
1100 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1101 		else
1102 			vmcs_write16(HOST_GS_SELECTOR, 0);
1103 		host->gs_sel = gs_sel;
1104 	}
1105 	if (unlikely(fs_base != host->fs_base)) {
1106 		vmcs_writel(HOST_FS_BASE, fs_base);
1107 		host->fs_base = fs_base;
1108 	}
1109 	if (unlikely(gs_base != host->gs_base)) {
1110 		vmcs_writel(HOST_GS_BASE, gs_base);
1111 		host->gs_base = gs_base;
1112 	}
1113 }
1114 
1115 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1116 {
1117 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1118 	struct vmcs_host_state *host_state;
1119 #ifdef CONFIG_X86_64
1120 	int cpu = raw_smp_processor_id();
1121 #endif
1122 	unsigned long fs_base, gs_base;
1123 	u16 fs_sel, gs_sel;
1124 	int i;
1125 
1126 	vmx->req_immediate_exit = false;
1127 
1128 	/*
1129 	 * Note that guest MSRs to be saved/restored can also be changed
1130 	 * when guest state is loaded. This happens when guest transitions
1131 	 * to/from long-mode by setting MSR_EFER.LMA.
1132 	 */
1133 	if (!vmx->guest_uret_msrs_loaded) {
1134 		vmx->guest_uret_msrs_loaded = true;
1135 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1136 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1137 				continue;
1138 
1139 			kvm_set_user_return_msr(i,
1140 						vmx->guest_uret_msrs[i].data,
1141 						vmx->guest_uret_msrs[i].mask);
1142 		}
1143 	}
1144 
1145     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1146 		nested_sync_vmcs12_to_shadow(vcpu);
1147 
1148 	if (vmx->guest_state_loaded)
1149 		return;
1150 
1151 	host_state = &vmx->loaded_vmcs->host_state;
1152 
1153 	/*
1154 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1155 	 * allow segment selectors with cpl > 0 or ti == 1.
1156 	 */
1157 	host_state->ldt_sel = kvm_read_ldt();
1158 
1159 #ifdef CONFIG_X86_64
1160 	savesegment(ds, host_state->ds_sel);
1161 	savesegment(es, host_state->es_sel);
1162 
1163 	gs_base = cpu_kernelmode_gs_base(cpu);
1164 	if (likely(is_64bit_mm(current->mm))) {
1165 		current_save_fsgs();
1166 		fs_sel = current->thread.fsindex;
1167 		gs_sel = current->thread.gsindex;
1168 		fs_base = current->thread.fsbase;
1169 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1170 	} else {
1171 		savesegment(fs, fs_sel);
1172 		savesegment(gs, gs_sel);
1173 		fs_base = read_msr(MSR_FS_BASE);
1174 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1175 	}
1176 
1177 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1178 #else
1179 	savesegment(fs, fs_sel);
1180 	savesegment(gs, gs_sel);
1181 	fs_base = segment_base(fs_sel);
1182 	gs_base = segment_base(gs_sel);
1183 #endif
1184 
1185 	vmx_set_vmcs_host_state(host_state, __get_current_cr3_fast(),
1186 				fs_sel, gs_sel, fs_base, gs_base);
1187 
1188 	vmx->guest_state_loaded = true;
1189 }
1190 
1191 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1192 {
1193 	struct vmcs_host_state *host_state;
1194 
1195 	if (!vmx->guest_state_loaded)
1196 		return;
1197 
1198 	host_state = &vmx->loaded_vmcs->host_state;
1199 
1200 	++vmx->vcpu.stat.host_state_reload;
1201 
1202 #ifdef CONFIG_X86_64
1203 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1204 #endif
1205 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1206 		kvm_load_ldt(host_state->ldt_sel);
1207 #ifdef CONFIG_X86_64
1208 		load_gs_index(host_state->gs_sel);
1209 #else
1210 		loadsegment(gs, host_state->gs_sel);
1211 #endif
1212 	}
1213 	if (host_state->fs_sel & 7)
1214 		loadsegment(fs, host_state->fs_sel);
1215 #ifdef CONFIG_X86_64
1216 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1217 		loadsegment(ds, host_state->ds_sel);
1218 		loadsegment(es, host_state->es_sel);
1219 	}
1220 #endif
1221 	invalidate_tss_limit();
1222 #ifdef CONFIG_X86_64
1223 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1224 #endif
1225 	load_fixmap_gdt(raw_smp_processor_id());
1226 	vmx->guest_state_loaded = false;
1227 	vmx->guest_uret_msrs_loaded = false;
1228 }
1229 
1230 #ifdef CONFIG_X86_64
1231 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1232 {
1233 	preempt_disable();
1234 	if (vmx->guest_state_loaded)
1235 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1236 	preempt_enable();
1237 	return vmx->msr_guest_kernel_gs_base;
1238 }
1239 
1240 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1241 {
1242 	preempt_disable();
1243 	if (vmx->guest_state_loaded)
1244 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1245 	preempt_enable();
1246 	vmx->msr_guest_kernel_gs_base = data;
1247 }
1248 #endif
1249 
1250 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1251 			struct loaded_vmcs *buddy)
1252 {
1253 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1254 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1255 	struct vmcs *prev;
1256 
1257 	if (!already_loaded) {
1258 		loaded_vmcs_clear(vmx->loaded_vmcs);
1259 		local_irq_disable();
1260 
1261 		/*
1262 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1263 		 * this cpu's percpu list, otherwise it may not yet be deleted
1264 		 * from its previous cpu's percpu list.  Pairs with the
1265 		 * smb_wmb() in __loaded_vmcs_clear().
1266 		 */
1267 		smp_rmb();
1268 
1269 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1270 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1271 		local_irq_enable();
1272 	}
1273 
1274 	prev = per_cpu(current_vmcs, cpu);
1275 	if (prev != vmx->loaded_vmcs->vmcs) {
1276 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1277 		vmcs_load(vmx->loaded_vmcs->vmcs);
1278 
1279 		/*
1280 		 * No indirect branch prediction barrier needed when switching
1281 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1282 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1283 		 */
1284 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1285 			indirect_branch_prediction_barrier();
1286 	}
1287 
1288 	if (!already_loaded) {
1289 		void *gdt = get_current_gdt_ro();
1290 
1291 		/*
1292 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1293 		 * TLB entries from its previous association with the vCPU.
1294 		 */
1295 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1296 
1297 		/*
1298 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1299 		 * processors.  See 22.2.4.
1300 		 */
1301 		vmcs_writel(HOST_TR_BASE,
1302 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1303 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1304 
1305 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1306 			/* 22.2.3 */
1307 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1308 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1309 		}
1310 
1311 		vmx->loaded_vmcs->cpu = cpu;
1312 	}
1313 }
1314 
1315 /*
1316  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1317  * vcpu mutex is already taken.
1318  */
1319 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1320 {
1321 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1322 
1323 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1324 
1325 	vmx_vcpu_pi_load(vcpu, cpu);
1326 
1327 	vmx->host_debugctlmsr = get_debugctlmsr();
1328 }
1329 
1330 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1331 {
1332 	vmx_vcpu_pi_put(vcpu);
1333 
1334 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1335 }
1336 
1337 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1338 {
1339 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1340 }
1341 
1342 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1343 {
1344 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1345 	unsigned long rflags, save_rflags;
1346 
1347 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1348 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1349 		rflags = vmcs_readl(GUEST_RFLAGS);
1350 		if (vmx->rmode.vm86_active) {
1351 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1352 			save_rflags = vmx->rmode.save_rflags;
1353 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1354 		}
1355 		vmx->rflags = rflags;
1356 	}
1357 	return vmx->rflags;
1358 }
1359 
1360 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1361 {
1362 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1363 	unsigned long old_rflags;
1364 
1365 	if (is_unrestricted_guest(vcpu)) {
1366 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1367 		vmx->rflags = rflags;
1368 		vmcs_writel(GUEST_RFLAGS, rflags);
1369 		return;
1370 	}
1371 
1372 	old_rflags = vmx_get_rflags(vcpu);
1373 	vmx->rflags = rflags;
1374 	if (vmx->rmode.vm86_active) {
1375 		vmx->rmode.save_rflags = rflags;
1376 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1377 	}
1378 	vmcs_writel(GUEST_RFLAGS, rflags);
1379 
1380 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1381 		vmx->emulation_required = vmx_emulation_required(vcpu);
1382 }
1383 
1384 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1385 {
1386 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1387 }
1388 
1389 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1390 {
1391 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1392 	int ret = 0;
1393 
1394 	if (interruptibility & GUEST_INTR_STATE_STI)
1395 		ret |= KVM_X86_SHADOW_INT_STI;
1396 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1397 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1398 
1399 	return ret;
1400 }
1401 
1402 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1403 {
1404 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1405 	u32 interruptibility = interruptibility_old;
1406 
1407 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1408 
1409 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1410 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1411 	else if (mask & KVM_X86_SHADOW_INT_STI)
1412 		interruptibility |= GUEST_INTR_STATE_STI;
1413 
1414 	if ((interruptibility != interruptibility_old))
1415 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1416 }
1417 
1418 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1419 {
1420 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1421 	unsigned long value;
1422 
1423 	/*
1424 	 * Any MSR write that attempts to change bits marked reserved will
1425 	 * case a #GP fault.
1426 	 */
1427 	if (data & vmx->pt_desc.ctl_bitmask)
1428 		return 1;
1429 
1430 	/*
1431 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1432 	 * result in a #GP unless the same write also clears TraceEn.
1433 	 */
1434 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1435 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1436 		return 1;
1437 
1438 	/*
1439 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1440 	 * and FabricEn would cause #GP, if
1441 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1442 	 */
1443 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1444 		!(data & RTIT_CTL_FABRIC_EN) &&
1445 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1446 					PT_CAP_single_range_output))
1447 		return 1;
1448 
1449 	/*
1450 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1451 	 * utilize encodings marked reserved will cause a #GP fault.
1452 	 */
1453 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1454 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1455 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1456 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1457 		return 1;
1458 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1459 						PT_CAP_cycle_thresholds);
1460 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1461 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1462 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1463 		return 1;
1464 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1465 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1466 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1467 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1468 		return 1;
1469 
1470 	/*
1471 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1472 	 * cause a #GP fault.
1473 	 */
1474 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1475 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1476 		return 1;
1477 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1478 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1479 		return 1;
1480 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1481 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1482 		return 1;
1483 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1484 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1485 		return 1;
1486 
1487 	return 0;
1488 }
1489 
1490 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1491 					void *insn, int insn_len)
1492 {
1493 	/*
1494 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1495 	 * not point at the failing instruction, and even if it did, the code
1496 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1497 	 * so that guest userspace can't DoS the guest simply by triggering
1498 	 * emulation (enclaves are CPL3 only).
1499 	 */
1500 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1501 		kvm_queue_exception(vcpu, UD_VECTOR);
1502 		return false;
1503 	}
1504 	return true;
1505 }
1506 
1507 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1508 {
1509 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1510 	unsigned long rip, orig_rip;
1511 	u32 instr_len;
1512 
1513 	/*
1514 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1515 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1516 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1517 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1518 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1519 	 * i.e. we end up advancing IP with some random value.
1520 	 */
1521 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1522 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1523 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1524 
1525 		/*
1526 		 * Emulating an enclave's instructions isn't supported as KVM
1527 		 * cannot access the enclave's memory or its true RIP, e.g. the
1528 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1529 		 * the RIP that actually triggered the VM-Exit.  But, because
1530 		 * most instructions that cause VM-Exit will #UD in an enclave,
1531 		 * most instruction-based VM-Exits simply do not occur.
1532 		 *
1533 		 * There are a few exceptions, notably the debug instructions
1534 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1535 		 * and generate #DB/#BP as expected, which KVM might intercept.
1536 		 * But again, the CPU does the dirty work and saves an instr
1537 		 * length of zero so VMMs don't shoot themselves in the foot.
1538 		 * WARN if KVM tries to skip a non-zero length instruction on
1539 		 * a VM-Exit from an enclave.
1540 		 */
1541 		if (!instr_len)
1542 			goto rip_updated;
1543 
1544 		WARN(exit_reason.enclave_mode,
1545 		     "KVM: skipping instruction after SGX enclave VM-Exit");
1546 
1547 		orig_rip = kvm_rip_read(vcpu);
1548 		rip = orig_rip + instr_len;
1549 #ifdef CONFIG_X86_64
1550 		/*
1551 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1552 		 * mode, but just finding out that we are in 64-bit mode is
1553 		 * quite expensive.  Only do it if there was a carry.
1554 		 */
1555 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1556 			rip = (u32)rip;
1557 #endif
1558 		kvm_rip_write(vcpu, rip);
1559 	} else {
1560 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1561 			return 0;
1562 	}
1563 
1564 rip_updated:
1565 	/* skipping an emulated instruction also counts */
1566 	vmx_set_interrupt_shadow(vcpu, 0);
1567 
1568 	return 1;
1569 }
1570 
1571 /*
1572  * Recognizes a pending MTF VM-exit and records the nested state for later
1573  * delivery.
1574  */
1575 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1576 {
1577 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1578 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1579 
1580 	if (!is_guest_mode(vcpu))
1581 		return;
1582 
1583 	/*
1584 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1585 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1586 	 * instruction boundary), any #DB exception pending delivery must be a
1587 	 * debug-trap. Record the pending MTF state to be delivered in
1588 	 * vmx_check_nested_events().
1589 	 */
1590 	if (nested_cpu_has_mtf(vmcs12) &&
1591 	    (!vcpu->arch.exception.pending ||
1592 	     vcpu->arch.exception.nr == DB_VECTOR))
1593 		vmx->nested.mtf_pending = true;
1594 	else
1595 		vmx->nested.mtf_pending = false;
1596 }
1597 
1598 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1599 {
1600 	vmx_update_emulated_instruction(vcpu);
1601 	return skip_emulated_instruction(vcpu);
1602 }
1603 
1604 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1605 {
1606 	/*
1607 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1608 	 * explicitly skip the instruction because if the HLT state is set,
1609 	 * then the instruction is already executing and RIP has already been
1610 	 * advanced.
1611 	 */
1612 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1613 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1614 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1615 }
1616 
1617 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1618 {
1619 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1620 	unsigned nr = vcpu->arch.exception.nr;
1621 	bool has_error_code = vcpu->arch.exception.has_error_code;
1622 	u32 error_code = vcpu->arch.exception.error_code;
1623 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1624 
1625 	kvm_deliver_exception_payload(vcpu);
1626 
1627 	if (has_error_code) {
1628 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1629 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1630 	}
1631 
1632 	if (vmx->rmode.vm86_active) {
1633 		int inc_eip = 0;
1634 		if (kvm_exception_is_soft(nr))
1635 			inc_eip = vcpu->arch.event_exit_inst_len;
1636 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1637 		return;
1638 	}
1639 
1640 	WARN_ON_ONCE(vmx->emulation_required);
1641 
1642 	if (kvm_exception_is_soft(nr)) {
1643 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1644 			     vmx->vcpu.arch.event_exit_inst_len);
1645 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1646 	} else
1647 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1648 
1649 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1650 
1651 	vmx_clear_hlt(vcpu);
1652 }
1653 
1654 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1655 			       bool load_into_hardware)
1656 {
1657 	struct vmx_uret_msr *uret_msr;
1658 
1659 	uret_msr = vmx_find_uret_msr(vmx, msr);
1660 	if (!uret_msr)
1661 		return;
1662 
1663 	uret_msr->load_into_hardware = load_into_hardware;
1664 }
1665 
1666 /*
1667  * Configuring user return MSRs to automatically save, load, and restore MSRs
1668  * that need to be shoved into hardware when running the guest.  Note, omitting
1669  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1670  * loaded into hardware when running the guest.
1671  */
1672 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1673 {
1674 #ifdef CONFIG_X86_64
1675 	bool load_syscall_msrs;
1676 
1677 	/*
1678 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1679 	 * when EFER.SCE is set.
1680 	 */
1681 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1682 			    (vmx->vcpu.arch.efer & EFER_SCE);
1683 
1684 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1685 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1686 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1687 #endif
1688 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1689 
1690 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1691 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1692 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1693 
1694 	/*
1695 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1696 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1697 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1698 	 * so that TSX remains always disabled.
1699 	 */
1700 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1701 
1702 	/*
1703 	 * The set of MSRs to load may have changed, reload MSRs before the
1704 	 * next VM-Enter.
1705 	 */
1706 	vmx->guest_uret_msrs_loaded = false;
1707 }
1708 
1709 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1710 {
1711 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1712 
1713 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1714 		return vmcs12->tsc_offset;
1715 
1716 	return 0;
1717 }
1718 
1719 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1720 {
1721 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1722 
1723 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1724 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1725 		return vmcs12->tsc_multiplier;
1726 
1727 	return kvm_default_tsc_scaling_ratio;
1728 }
1729 
1730 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1731 {
1732 	vmcs_write64(TSC_OFFSET, offset);
1733 }
1734 
1735 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1736 {
1737 	vmcs_write64(TSC_MULTIPLIER, multiplier);
1738 }
1739 
1740 /*
1741  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1742  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1743  * all guests if the "nested" module option is off, and can also be disabled
1744  * for a single guest by disabling its VMX cpuid bit.
1745  */
1746 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1747 {
1748 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1749 }
1750 
1751 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1752 						 uint64_t val)
1753 {
1754 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1755 
1756 	return !(val & ~valid_bits);
1757 }
1758 
1759 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1760 {
1761 	switch (msr->index) {
1762 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1763 		if (!nested)
1764 			return 1;
1765 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1766 	case MSR_IA32_PERF_CAPABILITIES:
1767 		msr->data = vmx_get_perf_capabilities();
1768 		return 0;
1769 	default:
1770 		return KVM_MSR_RET_INVALID;
1771 	}
1772 }
1773 
1774 /*
1775  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1776  * Returns 0 on success, non-0 otherwise.
1777  * Assumes vcpu_load() was already called.
1778  */
1779 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1780 {
1781 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1782 	struct vmx_uret_msr *msr;
1783 	u32 index;
1784 
1785 	switch (msr_info->index) {
1786 #ifdef CONFIG_X86_64
1787 	case MSR_FS_BASE:
1788 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1789 		break;
1790 	case MSR_GS_BASE:
1791 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1792 		break;
1793 	case MSR_KERNEL_GS_BASE:
1794 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1795 		break;
1796 #endif
1797 	case MSR_EFER:
1798 		return kvm_get_msr_common(vcpu, msr_info);
1799 	case MSR_IA32_TSX_CTRL:
1800 		if (!msr_info->host_initiated &&
1801 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1802 			return 1;
1803 		goto find_uret_msr;
1804 	case MSR_IA32_UMWAIT_CONTROL:
1805 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1806 			return 1;
1807 
1808 		msr_info->data = vmx->msr_ia32_umwait_control;
1809 		break;
1810 	case MSR_IA32_SPEC_CTRL:
1811 		if (!msr_info->host_initiated &&
1812 		    !guest_has_spec_ctrl_msr(vcpu))
1813 			return 1;
1814 
1815 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1816 		break;
1817 	case MSR_IA32_SYSENTER_CS:
1818 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1819 		break;
1820 	case MSR_IA32_SYSENTER_EIP:
1821 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1822 		break;
1823 	case MSR_IA32_SYSENTER_ESP:
1824 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1825 		break;
1826 	case MSR_IA32_BNDCFGS:
1827 		if (!kvm_mpx_supported() ||
1828 		    (!msr_info->host_initiated &&
1829 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1830 			return 1;
1831 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1832 		break;
1833 	case MSR_IA32_MCG_EXT_CTL:
1834 		if (!msr_info->host_initiated &&
1835 		    !(vmx->msr_ia32_feature_control &
1836 		      FEAT_CTL_LMCE_ENABLED))
1837 			return 1;
1838 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1839 		break;
1840 	case MSR_IA32_FEAT_CTL:
1841 		msr_info->data = vmx->msr_ia32_feature_control;
1842 		break;
1843 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1844 		if (!msr_info->host_initiated &&
1845 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1846 			return 1;
1847 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1848 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1849 		break;
1850 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1851 		if (!nested_vmx_allowed(vcpu))
1852 			return 1;
1853 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1854 				    &msr_info->data))
1855 			return 1;
1856 		/*
1857 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
1858 		 * instead of just ignoring the features, different Hyper-V
1859 		 * versions are either trying to use them and fail or do some
1860 		 * sanity checking and refuse to boot. Filter all unsupported
1861 		 * features out.
1862 		 */
1863 		if (!msr_info->host_initiated &&
1864 		    vmx->nested.enlightened_vmcs_enabled)
1865 			nested_evmcs_filter_control_msr(msr_info->index,
1866 							&msr_info->data);
1867 		break;
1868 	case MSR_IA32_RTIT_CTL:
1869 		if (!vmx_pt_mode_is_host_guest())
1870 			return 1;
1871 		msr_info->data = vmx->pt_desc.guest.ctl;
1872 		break;
1873 	case MSR_IA32_RTIT_STATUS:
1874 		if (!vmx_pt_mode_is_host_guest())
1875 			return 1;
1876 		msr_info->data = vmx->pt_desc.guest.status;
1877 		break;
1878 	case MSR_IA32_RTIT_CR3_MATCH:
1879 		if (!vmx_pt_mode_is_host_guest() ||
1880 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1881 						PT_CAP_cr3_filtering))
1882 			return 1;
1883 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1884 		break;
1885 	case MSR_IA32_RTIT_OUTPUT_BASE:
1886 		if (!vmx_pt_mode_is_host_guest() ||
1887 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1888 					PT_CAP_topa_output) &&
1889 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1890 					PT_CAP_single_range_output)))
1891 			return 1;
1892 		msr_info->data = vmx->pt_desc.guest.output_base;
1893 		break;
1894 	case MSR_IA32_RTIT_OUTPUT_MASK:
1895 		if (!vmx_pt_mode_is_host_guest() ||
1896 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1897 					PT_CAP_topa_output) &&
1898 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1899 					PT_CAP_single_range_output)))
1900 			return 1;
1901 		msr_info->data = vmx->pt_desc.guest.output_mask;
1902 		break;
1903 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1904 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1905 		if (!vmx_pt_mode_is_host_guest() ||
1906 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
1907 			return 1;
1908 		if (index % 2)
1909 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1910 		else
1911 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1912 		break;
1913 	case MSR_IA32_DEBUGCTLMSR:
1914 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1915 		break;
1916 	default:
1917 	find_uret_msr:
1918 		msr = vmx_find_uret_msr(vmx, msr_info->index);
1919 		if (msr) {
1920 			msr_info->data = msr->data;
1921 			break;
1922 		}
1923 		return kvm_get_msr_common(vcpu, msr_info);
1924 	}
1925 
1926 	return 0;
1927 }
1928 
1929 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1930 						    u64 data)
1931 {
1932 #ifdef CONFIG_X86_64
1933 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1934 		return (u32)data;
1935 #endif
1936 	return (unsigned long)data;
1937 }
1938 
1939 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1940 {
1941 	u64 debugctl = vmx_supported_debugctl();
1942 
1943 	if (!intel_pmu_lbr_is_enabled(vcpu))
1944 		debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1945 
1946 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1947 		debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1948 
1949 	return debugctl;
1950 }
1951 
1952 /*
1953  * Writes msr value into the appropriate "register".
1954  * Returns 0 on success, non-0 otherwise.
1955  * Assumes vcpu_load() was already called.
1956  */
1957 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1958 {
1959 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1960 	struct vmx_uret_msr *msr;
1961 	int ret = 0;
1962 	u32 msr_index = msr_info->index;
1963 	u64 data = msr_info->data;
1964 	u32 index;
1965 
1966 	switch (msr_index) {
1967 	case MSR_EFER:
1968 		ret = kvm_set_msr_common(vcpu, msr_info);
1969 		break;
1970 #ifdef CONFIG_X86_64
1971 	case MSR_FS_BASE:
1972 		vmx_segment_cache_clear(vmx);
1973 		vmcs_writel(GUEST_FS_BASE, data);
1974 		break;
1975 	case MSR_GS_BASE:
1976 		vmx_segment_cache_clear(vmx);
1977 		vmcs_writel(GUEST_GS_BASE, data);
1978 		break;
1979 	case MSR_KERNEL_GS_BASE:
1980 		vmx_write_guest_kernel_gs_base(vmx, data);
1981 		break;
1982 	case MSR_IA32_XFD:
1983 		ret = kvm_set_msr_common(vcpu, msr_info);
1984 		/*
1985 		 * Always intercepting WRMSR could incur non-negligible
1986 		 * overhead given xfd might be changed frequently in
1987 		 * guest context switch. Disable write interception
1988 		 * upon the first write with a non-zero value (indicating
1989 		 * potential usage on dynamic xfeatures). Also update
1990 		 * exception bitmap to trap #NM for proper virtualization
1991 		 * of guest xfd_err.
1992 		 */
1993 		if (!ret && data) {
1994 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
1995 						      MSR_TYPE_RW);
1996 			vcpu->arch.xfd_no_write_intercept = true;
1997 			vmx_update_exception_bitmap(vcpu);
1998 		}
1999 		break;
2000 #endif
2001 	case MSR_IA32_SYSENTER_CS:
2002 		if (is_guest_mode(vcpu))
2003 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2004 		vmcs_write32(GUEST_SYSENTER_CS, data);
2005 		break;
2006 	case MSR_IA32_SYSENTER_EIP:
2007 		if (is_guest_mode(vcpu)) {
2008 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2009 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2010 		}
2011 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2012 		break;
2013 	case MSR_IA32_SYSENTER_ESP:
2014 		if (is_guest_mode(vcpu)) {
2015 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2016 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2017 		}
2018 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2019 		break;
2020 	case MSR_IA32_DEBUGCTLMSR: {
2021 		u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
2022 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2023 			if (report_ignored_msrs)
2024 				vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
2025 					    __func__, data);
2026 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2027 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2028 		}
2029 
2030 		if (invalid)
2031 			return 1;
2032 
2033 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2034 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2035 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2036 
2037 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2038 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2039 		    (data & DEBUGCTLMSR_LBR))
2040 			intel_pmu_create_guest_lbr_event(vcpu);
2041 		return 0;
2042 	}
2043 	case MSR_IA32_BNDCFGS:
2044 		if (!kvm_mpx_supported() ||
2045 		    (!msr_info->host_initiated &&
2046 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2047 			return 1;
2048 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2049 		    (data & MSR_IA32_BNDCFGS_RSVD))
2050 			return 1;
2051 		vmcs_write64(GUEST_BNDCFGS, data);
2052 		break;
2053 	case MSR_IA32_UMWAIT_CONTROL:
2054 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2055 			return 1;
2056 
2057 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2058 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2059 			return 1;
2060 
2061 		vmx->msr_ia32_umwait_control = data;
2062 		break;
2063 	case MSR_IA32_SPEC_CTRL:
2064 		if (!msr_info->host_initiated &&
2065 		    !guest_has_spec_ctrl_msr(vcpu))
2066 			return 1;
2067 
2068 		if (kvm_spec_ctrl_test_value(data))
2069 			return 1;
2070 
2071 		vmx->spec_ctrl = data;
2072 		if (!data)
2073 			break;
2074 
2075 		/*
2076 		 * For non-nested:
2077 		 * When it's written (to non-zero) for the first time, pass
2078 		 * it through.
2079 		 *
2080 		 * For nested:
2081 		 * The handling of the MSR bitmap for L2 guests is done in
2082 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2083 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2084 		 * in the merging. We update the vmcs01 here for L1 as well
2085 		 * since it will end up touching the MSR anyway now.
2086 		 */
2087 		vmx_disable_intercept_for_msr(vcpu,
2088 					      MSR_IA32_SPEC_CTRL,
2089 					      MSR_TYPE_RW);
2090 		break;
2091 	case MSR_IA32_TSX_CTRL:
2092 		if (!msr_info->host_initiated &&
2093 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2094 			return 1;
2095 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2096 			return 1;
2097 		goto find_uret_msr;
2098 	case MSR_IA32_PRED_CMD:
2099 		if (!msr_info->host_initiated &&
2100 		    !guest_has_pred_cmd_msr(vcpu))
2101 			return 1;
2102 
2103 		if (data & ~PRED_CMD_IBPB)
2104 			return 1;
2105 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2106 			return 1;
2107 		if (!data)
2108 			break;
2109 
2110 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2111 
2112 		/*
2113 		 * For non-nested:
2114 		 * When it's written (to non-zero) for the first time, pass
2115 		 * it through.
2116 		 *
2117 		 * For nested:
2118 		 * The handling of the MSR bitmap for L2 guests is done in
2119 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2120 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2121 		 * in the merging.
2122 		 */
2123 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2124 		break;
2125 	case MSR_IA32_CR_PAT:
2126 		if (!kvm_pat_valid(data))
2127 			return 1;
2128 
2129 		if (is_guest_mode(vcpu) &&
2130 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2131 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2132 
2133 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2134 			vmcs_write64(GUEST_IA32_PAT, data);
2135 			vcpu->arch.pat = data;
2136 			break;
2137 		}
2138 		ret = kvm_set_msr_common(vcpu, msr_info);
2139 		break;
2140 	case MSR_IA32_MCG_EXT_CTL:
2141 		if ((!msr_info->host_initiated &&
2142 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2143 		       FEAT_CTL_LMCE_ENABLED)) ||
2144 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2145 			return 1;
2146 		vcpu->arch.mcg_ext_ctl = data;
2147 		break;
2148 	case MSR_IA32_FEAT_CTL:
2149 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2150 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2151 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2152 			return 1;
2153 		vmx->msr_ia32_feature_control = data;
2154 		if (msr_info->host_initiated && data == 0)
2155 			vmx_leave_nested(vcpu);
2156 
2157 		/* SGX may be enabled/disabled by guest's firmware */
2158 		vmx_write_encls_bitmap(vcpu, NULL);
2159 		break;
2160 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2161 		/*
2162 		 * On real hardware, the LE hash MSRs are writable before
2163 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2164 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2165 		 * become writable.
2166 		 *
2167 		 * KVM does not emulate SGX activation for simplicity, so
2168 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2169 		 * is unlocked.  This is technically not architectural
2170 		 * behavior, but it's close enough.
2171 		 */
2172 		if (!msr_info->host_initiated &&
2173 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2174 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2175 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2176 			return 1;
2177 		vmx->msr_ia32_sgxlepubkeyhash
2178 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2179 		break;
2180 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2181 		if (!msr_info->host_initiated)
2182 			return 1; /* they are read-only */
2183 		if (!nested_vmx_allowed(vcpu))
2184 			return 1;
2185 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2186 	case MSR_IA32_RTIT_CTL:
2187 		if (!vmx_pt_mode_is_host_guest() ||
2188 			vmx_rtit_ctl_check(vcpu, data) ||
2189 			vmx->nested.vmxon)
2190 			return 1;
2191 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2192 		vmx->pt_desc.guest.ctl = data;
2193 		pt_update_intercept_for_msr(vcpu);
2194 		break;
2195 	case MSR_IA32_RTIT_STATUS:
2196 		if (!pt_can_write_msr(vmx))
2197 			return 1;
2198 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2199 			return 1;
2200 		vmx->pt_desc.guest.status = data;
2201 		break;
2202 	case MSR_IA32_RTIT_CR3_MATCH:
2203 		if (!pt_can_write_msr(vmx))
2204 			return 1;
2205 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2206 					   PT_CAP_cr3_filtering))
2207 			return 1;
2208 		vmx->pt_desc.guest.cr3_match = data;
2209 		break;
2210 	case MSR_IA32_RTIT_OUTPUT_BASE:
2211 		if (!pt_can_write_msr(vmx))
2212 			return 1;
2213 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2214 					   PT_CAP_topa_output) &&
2215 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2216 					   PT_CAP_single_range_output))
2217 			return 1;
2218 		if (!pt_output_base_valid(vcpu, data))
2219 			return 1;
2220 		vmx->pt_desc.guest.output_base = data;
2221 		break;
2222 	case MSR_IA32_RTIT_OUTPUT_MASK:
2223 		if (!pt_can_write_msr(vmx))
2224 			return 1;
2225 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2226 					   PT_CAP_topa_output) &&
2227 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2228 					   PT_CAP_single_range_output))
2229 			return 1;
2230 		vmx->pt_desc.guest.output_mask = data;
2231 		break;
2232 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2233 		if (!pt_can_write_msr(vmx))
2234 			return 1;
2235 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2236 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2237 			return 1;
2238 		if (is_noncanonical_address(data, vcpu))
2239 			return 1;
2240 		if (index % 2)
2241 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2242 		else
2243 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2244 		break;
2245 	case MSR_IA32_PERF_CAPABILITIES:
2246 		if (data && !vcpu_to_pmu(vcpu)->version)
2247 			return 1;
2248 		if (data & PMU_CAP_LBR_FMT) {
2249 			if ((data & PMU_CAP_LBR_FMT) !=
2250 			    (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2251 				return 1;
2252 			if (!intel_pmu_lbr_is_compatible(vcpu))
2253 				return 1;
2254 		}
2255 		ret = kvm_set_msr_common(vcpu, msr_info);
2256 		break;
2257 
2258 	default:
2259 	find_uret_msr:
2260 		msr = vmx_find_uret_msr(vmx, msr_index);
2261 		if (msr)
2262 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2263 		else
2264 			ret = kvm_set_msr_common(vcpu, msr_info);
2265 	}
2266 
2267 	return ret;
2268 }
2269 
2270 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2271 {
2272 	unsigned long guest_owned_bits;
2273 
2274 	kvm_register_mark_available(vcpu, reg);
2275 
2276 	switch (reg) {
2277 	case VCPU_REGS_RSP:
2278 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2279 		break;
2280 	case VCPU_REGS_RIP:
2281 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2282 		break;
2283 	case VCPU_EXREG_PDPTR:
2284 		if (enable_ept)
2285 			ept_save_pdptrs(vcpu);
2286 		break;
2287 	case VCPU_EXREG_CR0:
2288 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2289 
2290 		vcpu->arch.cr0 &= ~guest_owned_bits;
2291 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2292 		break;
2293 	case VCPU_EXREG_CR3:
2294 		/*
2295 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2296 		 * CR3 is loaded into hardware, not the guest's CR3.
2297 		 */
2298 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2299 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2300 		break;
2301 	case VCPU_EXREG_CR4:
2302 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2303 
2304 		vcpu->arch.cr4 &= ~guest_owned_bits;
2305 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2306 		break;
2307 	default:
2308 		KVM_BUG_ON(1, vcpu->kvm);
2309 		break;
2310 	}
2311 }
2312 
2313 static __init int cpu_has_kvm_support(void)
2314 {
2315 	return cpu_has_vmx();
2316 }
2317 
2318 static __init int vmx_disabled_by_bios(void)
2319 {
2320 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2321 	       !boot_cpu_has(X86_FEATURE_VMX);
2322 }
2323 
2324 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2325 {
2326 	u64 msr;
2327 
2328 	cr4_set_bits(X86_CR4_VMXE);
2329 
2330 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2331 			  _ASM_EXTABLE(1b, %l[fault])
2332 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2333 			  : : fault);
2334 	return 0;
2335 
2336 fault:
2337 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2338 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2339 	cr4_clear_bits(X86_CR4_VMXE);
2340 
2341 	return -EFAULT;
2342 }
2343 
2344 static int hardware_enable(void)
2345 {
2346 	int cpu = raw_smp_processor_id();
2347 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2348 	int r;
2349 
2350 	if (cr4_read_shadow() & X86_CR4_VMXE)
2351 		return -EBUSY;
2352 
2353 	/*
2354 	 * This can happen if we hot-added a CPU but failed to allocate
2355 	 * VP assist page for it.
2356 	 */
2357 	if (static_branch_unlikely(&enable_evmcs) &&
2358 	    !hv_get_vp_assist_page(cpu))
2359 		return -EFAULT;
2360 
2361 	intel_pt_handle_vmx(1);
2362 
2363 	r = kvm_cpu_vmxon(phys_addr);
2364 	if (r) {
2365 		intel_pt_handle_vmx(0);
2366 		return r;
2367 	}
2368 
2369 	if (enable_ept)
2370 		ept_sync_global();
2371 
2372 	return 0;
2373 }
2374 
2375 static void vmclear_local_loaded_vmcss(void)
2376 {
2377 	int cpu = raw_smp_processor_id();
2378 	struct loaded_vmcs *v, *n;
2379 
2380 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2381 				 loaded_vmcss_on_cpu_link)
2382 		__loaded_vmcs_clear(v);
2383 }
2384 
2385 static void hardware_disable(void)
2386 {
2387 	vmclear_local_loaded_vmcss();
2388 
2389 	if (cpu_vmxoff())
2390 		kvm_spurious_fault();
2391 
2392 	intel_pt_handle_vmx(0);
2393 }
2394 
2395 /*
2396  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2397  * directly instead of going through cpu_has(), to ensure KVM is trapping
2398  * ENCLS whenever it's supported in hardware.  It does not matter whether
2399  * the host OS supports or has enabled SGX.
2400  */
2401 static bool cpu_has_sgx(void)
2402 {
2403 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2404 }
2405 
2406 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2407 				      u32 msr, u32 *result)
2408 {
2409 	u32 vmx_msr_low, vmx_msr_high;
2410 	u32 ctl = ctl_min | ctl_opt;
2411 
2412 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2413 
2414 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2415 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2416 
2417 	/* Ensure minimum (required) set of control bits are supported. */
2418 	if (ctl_min & ~ctl)
2419 		return -EIO;
2420 
2421 	*result = ctl;
2422 	return 0;
2423 }
2424 
2425 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2426 				    struct vmx_capability *vmx_cap)
2427 {
2428 	u32 vmx_msr_low, vmx_msr_high;
2429 	u32 min, opt, min2, opt2;
2430 	u32 _pin_based_exec_control = 0;
2431 	u32 _cpu_based_exec_control = 0;
2432 	u32 _cpu_based_2nd_exec_control = 0;
2433 	u32 _vmexit_control = 0;
2434 	u32 _vmentry_control = 0;
2435 
2436 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2437 	min = CPU_BASED_HLT_EXITING |
2438 #ifdef CONFIG_X86_64
2439 	      CPU_BASED_CR8_LOAD_EXITING |
2440 	      CPU_BASED_CR8_STORE_EXITING |
2441 #endif
2442 	      CPU_BASED_CR3_LOAD_EXITING |
2443 	      CPU_BASED_CR3_STORE_EXITING |
2444 	      CPU_BASED_UNCOND_IO_EXITING |
2445 	      CPU_BASED_MOV_DR_EXITING |
2446 	      CPU_BASED_USE_TSC_OFFSETTING |
2447 	      CPU_BASED_MWAIT_EXITING |
2448 	      CPU_BASED_MONITOR_EXITING |
2449 	      CPU_BASED_INVLPG_EXITING |
2450 	      CPU_BASED_RDPMC_EXITING;
2451 
2452 	opt = CPU_BASED_TPR_SHADOW |
2453 	      CPU_BASED_USE_MSR_BITMAPS |
2454 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2455 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2456 				&_cpu_based_exec_control) < 0)
2457 		return -EIO;
2458 #ifdef CONFIG_X86_64
2459 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2460 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2461 					   ~CPU_BASED_CR8_STORE_EXITING;
2462 #endif
2463 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2464 		min2 = 0;
2465 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2466 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2467 			SECONDARY_EXEC_WBINVD_EXITING |
2468 			SECONDARY_EXEC_ENABLE_VPID |
2469 			SECONDARY_EXEC_ENABLE_EPT |
2470 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2471 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2472 			SECONDARY_EXEC_DESC |
2473 			SECONDARY_EXEC_ENABLE_RDTSCP |
2474 			SECONDARY_EXEC_ENABLE_INVPCID |
2475 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2476 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2477 			SECONDARY_EXEC_SHADOW_VMCS |
2478 			SECONDARY_EXEC_XSAVES |
2479 			SECONDARY_EXEC_RDSEED_EXITING |
2480 			SECONDARY_EXEC_RDRAND_EXITING |
2481 			SECONDARY_EXEC_ENABLE_PML |
2482 			SECONDARY_EXEC_TSC_SCALING |
2483 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2484 			SECONDARY_EXEC_PT_USE_GPA |
2485 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2486 			SECONDARY_EXEC_ENABLE_VMFUNC |
2487 			SECONDARY_EXEC_BUS_LOCK_DETECTION;
2488 		if (cpu_has_sgx())
2489 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2490 		if (adjust_vmx_controls(min2, opt2,
2491 					MSR_IA32_VMX_PROCBASED_CTLS2,
2492 					&_cpu_based_2nd_exec_control) < 0)
2493 			return -EIO;
2494 	}
2495 #ifndef CONFIG_X86_64
2496 	if (!(_cpu_based_2nd_exec_control &
2497 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2498 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2499 #endif
2500 
2501 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2502 		_cpu_based_2nd_exec_control &= ~(
2503 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2504 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2505 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2506 
2507 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2508 		&vmx_cap->ept, &vmx_cap->vpid);
2509 
2510 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2511 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2512 		   enabled */
2513 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2514 					     CPU_BASED_CR3_STORE_EXITING |
2515 					     CPU_BASED_INVLPG_EXITING);
2516 	} else if (vmx_cap->ept) {
2517 		vmx_cap->ept = 0;
2518 		pr_warn_once("EPT CAP should not exist if not support "
2519 				"1-setting enable EPT VM-execution control\n");
2520 	}
2521 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2522 		vmx_cap->vpid) {
2523 		vmx_cap->vpid = 0;
2524 		pr_warn_once("VPID CAP should not exist if not support "
2525 				"1-setting enable VPID VM-execution control\n");
2526 	}
2527 
2528 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2529 #ifdef CONFIG_X86_64
2530 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2531 #endif
2532 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2533 	      VM_EXIT_LOAD_IA32_PAT |
2534 	      VM_EXIT_LOAD_IA32_EFER |
2535 	      VM_EXIT_CLEAR_BNDCFGS |
2536 	      VM_EXIT_PT_CONCEAL_PIP |
2537 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2538 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2539 				&_vmexit_control) < 0)
2540 		return -EIO;
2541 
2542 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2543 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2544 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2545 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2546 				&_pin_based_exec_control) < 0)
2547 		return -EIO;
2548 
2549 	if (cpu_has_broken_vmx_preemption_timer())
2550 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2551 	if (!(_cpu_based_2nd_exec_control &
2552 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2553 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2554 
2555 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2556 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2557 	      VM_ENTRY_LOAD_IA32_PAT |
2558 	      VM_ENTRY_LOAD_IA32_EFER |
2559 	      VM_ENTRY_LOAD_BNDCFGS |
2560 	      VM_ENTRY_PT_CONCEAL_PIP |
2561 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2562 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2563 				&_vmentry_control) < 0)
2564 		return -EIO;
2565 
2566 	/*
2567 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2568 	 * can't be used due to an errata where VM Exit may incorrectly clear
2569 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2570 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2571 	 */
2572 	if (boot_cpu_data.x86 == 0x6) {
2573 		switch (boot_cpu_data.x86_model) {
2574 		case 26: /* AAK155 */
2575 		case 30: /* AAP115 */
2576 		case 37: /* AAT100 */
2577 		case 44: /* BC86,AAY89,BD102 */
2578 		case 46: /* BA97 */
2579 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2580 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2581 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2582 					"does not work properly. Using workaround\n");
2583 			break;
2584 		default:
2585 			break;
2586 		}
2587 	}
2588 
2589 
2590 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2591 
2592 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2593 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2594 		return -EIO;
2595 
2596 #ifdef CONFIG_X86_64
2597 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2598 	if (vmx_msr_high & (1u<<16))
2599 		return -EIO;
2600 #endif
2601 
2602 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2603 	if (((vmx_msr_high >> 18) & 15) != 6)
2604 		return -EIO;
2605 
2606 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2607 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2608 
2609 	vmcs_conf->revision_id = vmx_msr_low;
2610 
2611 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2612 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2613 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2614 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2615 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2616 
2617 #if IS_ENABLED(CONFIG_HYPERV)
2618 	if (enlightened_vmcs)
2619 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2620 #endif
2621 
2622 	return 0;
2623 }
2624 
2625 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2626 {
2627 	int node = cpu_to_node(cpu);
2628 	struct page *pages;
2629 	struct vmcs *vmcs;
2630 
2631 	pages = __alloc_pages_node(node, flags, 0);
2632 	if (!pages)
2633 		return NULL;
2634 	vmcs = page_address(pages);
2635 	memset(vmcs, 0, vmcs_config.size);
2636 
2637 	/* KVM supports Enlightened VMCS v1 only */
2638 	if (static_branch_unlikely(&enable_evmcs))
2639 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2640 	else
2641 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2642 
2643 	if (shadow)
2644 		vmcs->hdr.shadow_vmcs = 1;
2645 	return vmcs;
2646 }
2647 
2648 void free_vmcs(struct vmcs *vmcs)
2649 {
2650 	free_page((unsigned long)vmcs);
2651 }
2652 
2653 /*
2654  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2655  */
2656 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2657 {
2658 	if (!loaded_vmcs->vmcs)
2659 		return;
2660 	loaded_vmcs_clear(loaded_vmcs);
2661 	free_vmcs(loaded_vmcs->vmcs);
2662 	loaded_vmcs->vmcs = NULL;
2663 	if (loaded_vmcs->msr_bitmap)
2664 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2665 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2666 }
2667 
2668 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2669 {
2670 	loaded_vmcs->vmcs = alloc_vmcs(false);
2671 	if (!loaded_vmcs->vmcs)
2672 		return -ENOMEM;
2673 
2674 	vmcs_clear(loaded_vmcs->vmcs);
2675 
2676 	loaded_vmcs->shadow_vmcs = NULL;
2677 	loaded_vmcs->hv_timer_soft_disabled = false;
2678 	loaded_vmcs->cpu = -1;
2679 	loaded_vmcs->launched = 0;
2680 
2681 	if (cpu_has_vmx_msr_bitmap()) {
2682 		loaded_vmcs->msr_bitmap = (unsigned long *)
2683 				__get_free_page(GFP_KERNEL_ACCOUNT);
2684 		if (!loaded_vmcs->msr_bitmap)
2685 			goto out_vmcs;
2686 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2687 	}
2688 
2689 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2690 	memset(&loaded_vmcs->controls_shadow, 0,
2691 		sizeof(struct vmcs_controls_shadow));
2692 
2693 	return 0;
2694 
2695 out_vmcs:
2696 	free_loaded_vmcs(loaded_vmcs);
2697 	return -ENOMEM;
2698 }
2699 
2700 static void free_kvm_area(void)
2701 {
2702 	int cpu;
2703 
2704 	for_each_possible_cpu(cpu) {
2705 		free_vmcs(per_cpu(vmxarea, cpu));
2706 		per_cpu(vmxarea, cpu) = NULL;
2707 	}
2708 }
2709 
2710 static __init int alloc_kvm_area(void)
2711 {
2712 	int cpu;
2713 
2714 	for_each_possible_cpu(cpu) {
2715 		struct vmcs *vmcs;
2716 
2717 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2718 		if (!vmcs) {
2719 			free_kvm_area();
2720 			return -ENOMEM;
2721 		}
2722 
2723 		/*
2724 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2725 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2726 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2727 		 *
2728 		 * However, even though not explicitly documented by
2729 		 * TLFS, VMXArea passed as VMXON argument should
2730 		 * still be marked with revision_id reported by
2731 		 * physical CPU.
2732 		 */
2733 		if (static_branch_unlikely(&enable_evmcs))
2734 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2735 
2736 		per_cpu(vmxarea, cpu) = vmcs;
2737 	}
2738 	return 0;
2739 }
2740 
2741 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2742 		struct kvm_segment *save)
2743 {
2744 	if (!emulate_invalid_guest_state) {
2745 		/*
2746 		 * CS and SS RPL should be equal during guest entry according
2747 		 * to VMX spec, but in reality it is not always so. Since vcpu
2748 		 * is in the middle of the transition from real mode to
2749 		 * protected mode it is safe to assume that RPL 0 is a good
2750 		 * default value.
2751 		 */
2752 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2753 			save->selector &= ~SEGMENT_RPL_MASK;
2754 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2755 		save->s = 1;
2756 	}
2757 	__vmx_set_segment(vcpu, save, seg);
2758 }
2759 
2760 static void enter_pmode(struct kvm_vcpu *vcpu)
2761 {
2762 	unsigned long flags;
2763 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2764 
2765 	/*
2766 	 * Update real mode segment cache. It may be not up-to-date if segment
2767 	 * register was written while vcpu was in a guest mode.
2768 	 */
2769 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2770 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2771 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2772 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2773 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2774 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2775 
2776 	vmx->rmode.vm86_active = 0;
2777 
2778 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2779 
2780 	flags = vmcs_readl(GUEST_RFLAGS);
2781 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2782 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2783 	vmcs_writel(GUEST_RFLAGS, flags);
2784 
2785 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2786 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2787 
2788 	vmx_update_exception_bitmap(vcpu);
2789 
2790 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2791 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2792 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2793 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2794 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2795 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2796 }
2797 
2798 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2799 {
2800 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2801 	struct kvm_segment var = *save;
2802 
2803 	var.dpl = 0x3;
2804 	if (seg == VCPU_SREG_CS)
2805 		var.type = 0x3;
2806 
2807 	if (!emulate_invalid_guest_state) {
2808 		var.selector = var.base >> 4;
2809 		var.base = var.base & 0xffff0;
2810 		var.limit = 0xffff;
2811 		var.g = 0;
2812 		var.db = 0;
2813 		var.present = 1;
2814 		var.s = 1;
2815 		var.l = 0;
2816 		var.unusable = 0;
2817 		var.type = 0x3;
2818 		var.avl = 0;
2819 		if (save->base & 0xf)
2820 			printk_once(KERN_WARNING "kvm: segment base is not "
2821 					"paragraph aligned when entering "
2822 					"protected mode (seg=%d)", seg);
2823 	}
2824 
2825 	vmcs_write16(sf->selector, var.selector);
2826 	vmcs_writel(sf->base, var.base);
2827 	vmcs_write32(sf->limit, var.limit);
2828 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2829 }
2830 
2831 static void enter_rmode(struct kvm_vcpu *vcpu)
2832 {
2833 	unsigned long flags;
2834 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2835 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2836 
2837 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2838 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2839 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2840 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2841 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2842 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2843 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2844 
2845 	vmx->rmode.vm86_active = 1;
2846 
2847 	/*
2848 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2849 	 * vcpu. Warn the user that an update is overdue.
2850 	 */
2851 	if (!kvm_vmx->tss_addr)
2852 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2853 			     "called before entering vcpu\n");
2854 
2855 	vmx_segment_cache_clear(vmx);
2856 
2857 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2858 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2859 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2860 
2861 	flags = vmcs_readl(GUEST_RFLAGS);
2862 	vmx->rmode.save_rflags = flags;
2863 
2864 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2865 
2866 	vmcs_writel(GUEST_RFLAGS, flags);
2867 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2868 	vmx_update_exception_bitmap(vcpu);
2869 
2870 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2871 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2872 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2873 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2874 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2875 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2876 }
2877 
2878 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2879 {
2880 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2881 	struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2882 
2883 	/* Nothing to do if hardware doesn't support EFER. */
2884 	if (!msr)
2885 		return 0;
2886 
2887 	vcpu->arch.efer = efer;
2888 	if (efer & EFER_LMA) {
2889 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2890 		msr->data = efer;
2891 	} else {
2892 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2893 
2894 		msr->data = efer & ~EFER_LME;
2895 	}
2896 	vmx_setup_uret_msrs(vmx);
2897 	return 0;
2898 }
2899 
2900 #ifdef CONFIG_X86_64
2901 
2902 static void enter_lmode(struct kvm_vcpu *vcpu)
2903 {
2904 	u32 guest_tr_ar;
2905 
2906 	vmx_segment_cache_clear(to_vmx(vcpu));
2907 
2908 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2909 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2910 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2911 				     __func__);
2912 		vmcs_write32(GUEST_TR_AR_BYTES,
2913 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2914 			     | VMX_AR_TYPE_BUSY_64_TSS);
2915 	}
2916 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2917 }
2918 
2919 static void exit_lmode(struct kvm_vcpu *vcpu)
2920 {
2921 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2922 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2923 }
2924 
2925 #endif
2926 
2927 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2928 {
2929 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2930 
2931 	/*
2932 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2933 	 * the CPU is not required to invalidate guest-physical mappings on
2934 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2935 	 * associated with the root EPT structure and not any particular VPID
2936 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
2937 	 */
2938 	if (enable_ept) {
2939 		ept_sync_global();
2940 	} else if (enable_vpid) {
2941 		if (cpu_has_vmx_invvpid_global()) {
2942 			vpid_sync_vcpu_global();
2943 		} else {
2944 			vpid_sync_vcpu_single(vmx->vpid);
2945 			vpid_sync_vcpu_single(vmx->nested.vpid02);
2946 		}
2947 	}
2948 }
2949 
2950 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
2951 {
2952 	if (is_guest_mode(vcpu))
2953 		return nested_get_vpid02(vcpu);
2954 	return to_vmx(vcpu)->vpid;
2955 }
2956 
2957 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2958 {
2959 	struct kvm_mmu *mmu = vcpu->arch.mmu;
2960 	u64 root_hpa = mmu->root_hpa;
2961 
2962 	/* No flush required if the current context is invalid. */
2963 	if (!VALID_PAGE(root_hpa))
2964 		return;
2965 
2966 	if (enable_ept)
2967 		ept_sync_context(construct_eptp(vcpu, root_hpa,
2968 						mmu->shadow_root_level));
2969 	else
2970 		vpid_sync_context(vmx_get_current_vpid(vcpu));
2971 }
2972 
2973 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2974 {
2975 	/*
2976 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
2977 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2978 	 */
2979 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
2980 }
2981 
2982 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2983 {
2984 	/*
2985 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
2986 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
2987 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2988 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2989 	 * i.e. no explicit INVVPID is necessary.
2990 	 */
2991 	vpid_sync_context(vmx_get_current_vpid(vcpu));
2992 }
2993 
2994 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2995 {
2996 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2997 
2998 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2999 		return;
3000 
3001 	if (is_pae_paging(vcpu)) {
3002 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3003 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3004 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3005 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3006 	}
3007 }
3008 
3009 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3010 {
3011 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3012 
3013 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3014 		return;
3015 
3016 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3017 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3018 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3019 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3020 
3021 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3022 }
3023 
3024 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3025 			  CPU_BASED_CR3_STORE_EXITING)
3026 
3027 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3028 {
3029 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3030 	unsigned long hw_cr0, old_cr0_pg;
3031 	u32 tmp;
3032 
3033 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3034 
3035 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3036 	if (is_unrestricted_guest(vcpu))
3037 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3038 	else {
3039 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3040 		if (!enable_ept)
3041 			hw_cr0 |= X86_CR0_WP;
3042 
3043 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3044 			enter_pmode(vcpu);
3045 
3046 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3047 			enter_rmode(vcpu);
3048 	}
3049 
3050 	vmcs_writel(CR0_READ_SHADOW, cr0);
3051 	vmcs_writel(GUEST_CR0, hw_cr0);
3052 	vcpu->arch.cr0 = cr0;
3053 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3054 
3055 #ifdef CONFIG_X86_64
3056 	if (vcpu->arch.efer & EFER_LME) {
3057 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3058 			enter_lmode(vcpu);
3059 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3060 			exit_lmode(vcpu);
3061 	}
3062 #endif
3063 
3064 	if (enable_ept && !is_unrestricted_guest(vcpu)) {
3065 		/*
3066 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3067 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3068 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3069 		 * KVM's CR3 is installed.
3070 		 */
3071 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3072 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3073 
3074 		/*
3075 		 * When running with EPT but not unrestricted guest, KVM must
3076 		 * intercept CR3 accesses when paging is _disabled_.  This is
3077 		 * necessary because restricted guests can't actually run with
3078 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3079 		 * run the guest when identity mapped page tables.
3080 		 *
3081 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3082 		 * update, it may be stale with respect to CR3 interception,
3083 		 * e.g. after nested VM-Enter.
3084 		 *
3085 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3086 		 * stores to forward them to L1, even if KVM does not need to
3087 		 * intercept them to preserve its identity mapped page tables.
3088 		 */
3089 		if (!(cr0 & X86_CR0_PG)) {
3090 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3091 		} else if (!is_guest_mode(vcpu)) {
3092 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3093 		} else {
3094 			tmp = exec_controls_get(vmx);
3095 			tmp &= ~CR3_EXITING_BITS;
3096 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3097 			exec_controls_set(vmx, tmp);
3098 		}
3099 
3100 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3101 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3102 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3103 
3104 		/*
3105 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3106 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3107 		 */
3108 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3109 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3110 	}
3111 
3112 	/* depends on vcpu->arch.cr0 to be set to a new value */
3113 	vmx->emulation_required = vmx_emulation_required(vcpu);
3114 }
3115 
3116 static int vmx_get_max_tdp_level(void)
3117 {
3118 	if (cpu_has_vmx_ept_5levels())
3119 		return 5;
3120 	return 4;
3121 }
3122 
3123 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3124 {
3125 	u64 eptp = VMX_EPTP_MT_WB;
3126 
3127 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3128 
3129 	if (enable_ept_ad_bits &&
3130 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3131 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3132 	eptp |= root_hpa;
3133 
3134 	return eptp;
3135 }
3136 
3137 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3138 			     int root_level)
3139 {
3140 	struct kvm *kvm = vcpu->kvm;
3141 	bool update_guest_cr3 = true;
3142 	unsigned long guest_cr3;
3143 	u64 eptp;
3144 
3145 	if (enable_ept) {
3146 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3147 		vmcs_write64(EPT_POINTER, eptp);
3148 
3149 		hv_track_root_tdp(vcpu, root_hpa);
3150 
3151 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3152 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3153 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3154 			guest_cr3 = vcpu->arch.cr3;
3155 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3156 			update_guest_cr3 = false;
3157 		vmx_ept_load_pdptrs(vcpu);
3158 	} else {
3159 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3160 	}
3161 
3162 	if (update_guest_cr3)
3163 		vmcs_writel(GUEST_CR3, guest_cr3);
3164 }
3165 
3166 
3167 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3168 {
3169 	/*
3170 	 * We operate under the default treatment of SMM, so VMX cannot be
3171 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3172 	 * handled by kvm_is_valid_cr4().
3173 	 */
3174 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3175 		return false;
3176 
3177 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3178 		return false;
3179 
3180 	return true;
3181 }
3182 
3183 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3184 {
3185 	unsigned long old_cr4 = vcpu->arch.cr4;
3186 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3187 	/*
3188 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3189 	 * is in force while we are in guest mode.  Do not let guests control
3190 	 * this bit, even if host CR4.MCE == 0.
3191 	 */
3192 	unsigned long hw_cr4;
3193 
3194 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3195 	if (is_unrestricted_guest(vcpu))
3196 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3197 	else if (vmx->rmode.vm86_active)
3198 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3199 	else
3200 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3201 
3202 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3203 		if (cr4 & X86_CR4_UMIP) {
3204 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3205 			hw_cr4 &= ~X86_CR4_UMIP;
3206 		} else if (!is_guest_mode(vcpu) ||
3207 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3208 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3209 		}
3210 	}
3211 
3212 	vcpu->arch.cr4 = cr4;
3213 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3214 
3215 	if (!is_unrestricted_guest(vcpu)) {
3216 		if (enable_ept) {
3217 			if (!is_paging(vcpu)) {
3218 				hw_cr4 &= ~X86_CR4_PAE;
3219 				hw_cr4 |= X86_CR4_PSE;
3220 			} else if (!(cr4 & X86_CR4_PAE)) {
3221 				hw_cr4 &= ~X86_CR4_PAE;
3222 			}
3223 		}
3224 
3225 		/*
3226 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3227 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3228 		 * to be manually disabled when guest switches to non-paging
3229 		 * mode.
3230 		 *
3231 		 * If !enable_unrestricted_guest, the CPU is always running
3232 		 * with CR0.PG=1 and CR4 needs to be modified.
3233 		 * If enable_unrestricted_guest, the CPU automatically
3234 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3235 		 */
3236 		if (!is_paging(vcpu))
3237 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3238 	}
3239 
3240 	vmcs_writel(CR4_READ_SHADOW, cr4);
3241 	vmcs_writel(GUEST_CR4, hw_cr4);
3242 
3243 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3244 		kvm_update_cpuid_runtime(vcpu);
3245 }
3246 
3247 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3248 {
3249 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3250 	u32 ar;
3251 
3252 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3253 		*var = vmx->rmode.segs[seg];
3254 		if (seg == VCPU_SREG_TR
3255 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3256 			return;
3257 		var->base = vmx_read_guest_seg_base(vmx, seg);
3258 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3259 		return;
3260 	}
3261 	var->base = vmx_read_guest_seg_base(vmx, seg);
3262 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3263 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3264 	ar = vmx_read_guest_seg_ar(vmx, seg);
3265 	var->unusable = (ar >> 16) & 1;
3266 	var->type = ar & 15;
3267 	var->s = (ar >> 4) & 1;
3268 	var->dpl = (ar >> 5) & 3;
3269 	/*
3270 	 * Some userspaces do not preserve unusable property. Since usable
3271 	 * segment has to be present according to VMX spec we can use present
3272 	 * property to amend userspace bug by making unusable segment always
3273 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3274 	 * segment as unusable.
3275 	 */
3276 	var->present = !var->unusable;
3277 	var->avl = (ar >> 12) & 1;
3278 	var->l = (ar >> 13) & 1;
3279 	var->db = (ar >> 14) & 1;
3280 	var->g = (ar >> 15) & 1;
3281 }
3282 
3283 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3284 {
3285 	struct kvm_segment s;
3286 
3287 	if (to_vmx(vcpu)->rmode.vm86_active) {
3288 		vmx_get_segment(vcpu, &s, seg);
3289 		return s.base;
3290 	}
3291 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3292 }
3293 
3294 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3295 {
3296 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3297 
3298 	if (unlikely(vmx->rmode.vm86_active))
3299 		return 0;
3300 	else {
3301 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3302 		return VMX_AR_DPL(ar);
3303 	}
3304 }
3305 
3306 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3307 {
3308 	u32 ar;
3309 
3310 	if (var->unusable || !var->present)
3311 		ar = 1 << 16;
3312 	else {
3313 		ar = var->type & 15;
3314 		ar |= (var->s & 1) << 4;
3315 		ar |= (var->dpl & 3) << 5;
3316 		ar |= (var->present & 1) << 7;
3317 		ar |= (var->avl & 1) << 12;
3318 		ar |= (var->l & 1) << 13;
3319 		ar |= (var->db & 1) << 14;
3320 		ar |= (var->g & 1) << 15;
3321 	}
3322 
3323 	return ar;
3324 }
3325 
3326 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3327 {
3328 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3329 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3330 
3331 	vmx_segment_cache_clear(vmx);
3332 
3333 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3334 		vmx->rmode.segs[seg] = *var;
3335 		if (seg == VCPU_SREG_TR)
3336 			vmcs_write16(sf->selector, var->selector);
3337 		else if (var->s)
3338 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3339 		return;
3340 	}
3341 
3342 	vmcs_writel(sf->base, var->base);
3343 	vmcs_write32(sf->limit, var->limit);
3344 	vmcs_write16(sf->selector, var->selector);
3345 
3346 	/*
3347 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3348 	 * qemu binaries.
3349 	 *   IA32 arch specifies that at the time of processor reset the
3350 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3351 	 * is setting it to 0 in the userland code. This causes invalid guest
3352 	 * state vmexit when "unrestricted guest" mode is turned on.
3353 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3354 	 * tree. Newer qemu binaries with that qemu fix would not need this
3355 	 * kvm hack.
3356 	 */
3357 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3358 		var->type |= 0x1; /* Accessed */
3359 
3360 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3361 }
3362 
3363 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3364 {
3365 	__vmx_set_segment(vcpu, var, seg);
3366 
3367 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3368 }
3369 
3370 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3371 {
3372 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3373 
3374 	*db = (ar >> 14) & 1;
3375 	*l = (ar >> 13) & 1;
3376 }
3377 
3378 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3379 {
3380 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3381 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3382 }
3383 
3384 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3385 {
3386 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3387 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3388 }
3389 
3390 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3391 {
3392 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3393 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3394 }
3395 
3396 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3397 {
3398 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3399 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3400 }
3401 
3402 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3403 {
3404 	struct kvm_segment var;
3405 	u32 ar;
3406 
3407 	vmx_get_segment(vcpu, &var, seg);
3408 	var.dpl = 0x3;
3409 	if (seg == VCPU_SREG_CS)
3410 		var.type = 0x3;
3411 	ar = vmx_segment_access_rights(&var);
3412 
3413 	if (var.base != (var.selector << 4))
3414 		return false;
3415 	if (var.limit != 0xffff)
3416 		return false;
3417 	if (ar != 0xf3)
3418 		return false;
3419 
3420 	return true;
3421 }
3422 
3423 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3424 {
3425 	struct kvm_segment cs;
3426 	unsigned int cs_rpl;
3427 
3428 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3429 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3430 
3431 	if (cs.unusable)
3432 		return false;
3433 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3434 		return false;
3435 	if (!cs.s)
3436 		return false;
3437 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3438 		if (cs.dpl > cs_rpl)
3439 			return false;
3440 	} else {
3441 		if (cs.dpl != cs_rpl)
3442 			return false;
3443 	}
3444 	if (!cs.present)
3445 		return false;
3446 
3447 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3448 	return true;
3449 }
3450 
3451 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3452 {
3453 	struct kvm_segment ss;
3454 	unsigned int ss_rpl;
3455 
3456 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3457 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3458 
3459 	if (ss.unusable)
3460 		return true;
3461 	if (ss.type != 3 && ss.type != 7)
3462 		return false;
3463 	if (!ss.s)
3464 		return false;
3465 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3466 		return false;
3467 	if (!ss.present)
3468 		return false;
3469 
3470 	return true;
3471 }
3472 
3473 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3474 {
3475 	struct kvm_segment var;
3476 	unsigned int rpl;
3477 
3478 	vmx_get_segment(vcpu, &var, seg);
3479 	rpl = var.selector & SEGMENT_RPL_MASK;
3480 
3481 	if (var.unusable)
3482 		return true;
3483 	if (!var.s)
3484 		return false;
3485 	if (!var.present)
3486 		return false;
3487 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3488 		if (var.dpl < rpl) /* DPL < RPL */
3489 			return false;
3490 	}
3491 
3492 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3493 	 * rights flags
3494 	 */
3495 	return true;
3496 }
3497 
3498 static bool tr_valid(struct kvm_vcpu *vcpu)
3499 {
3500 	struct kvm_segment tr;
3501 
3502 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3503 
3504 	if (tr.unusable)
3505 		return false;
3506 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3507 		return false;
3508 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3509 		return false;
3510 	if (!tr.present)
3511 		return false;
3512 
3513 	return true;
3514 }
3515 
3516 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3517 {
3518 	struct kvm_segment ldtr;
3519 
3520 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3521 
3522 	if (ldtr.unusable)
3523 		return true;
3524 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3525 		return false;
3526 	if (ldtr.type != 2)
3527 		return false;
3528 	if (!ldtr.present)
3529 		return false;
3530 
3531 	return true;
3532 }
3533 
3534 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3535 {
3536 	struct kvm_segment cs, ss;
3537 
3538 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3539 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3540 
3541 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3542 		 (ss.selector & SEGMENT_RPL_MASK));
3543 }
3544 
3545 /*
3546  * Check if guest state is valid. Returns true if valid, false if
3547  * not.
3548  * We assume that registers are always usable
3549  */
3550 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3551 {
3552 	/* real mode guest state checks */
3553 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3554 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3555 			return false;
3556 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3557 			return false;
3558 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3559 			return false;
3560 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3561 			return false;
3562 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3563 			return false;
3564 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3565 			return false;
3566 	} else {
3567 	/* protected mode guest state checks */
3568 		if (!cs_ss_rpl_check(vcpu))
3569 			return false;
3570 		if (!code_segment_valid(vcpu))
3571 			return false;
3572 		if (!stack_segment_valid(vcpu))
3573 			return false;
3574 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3575 			return false;
3576 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3577 			return false;
3578 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3579 			return false;
3580 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3581 			return false;
3582 		if (!tr_valid(vcpu))
3583 			return false;
3584 		if (!ldtr_valid(vcpu))
3585 			return false;
3586 	}
3587 	/* TODO:
3588 	 * - Add checks on RIP
3589 	 * - Add checks on RFLAGS
3590 	 */
3591 
3592 	return true;
3593 }
3594 
3595 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3596 {
3597 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3598 	u16 data;
3599 	int i;
3600 
3601 	for (i = 0; i < 3; i++) {
3602 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3603 			return -EFAULT;
3604 	}
3605 
3606 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3607 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3608 		return -EFAULT;
3609 
3610 	data = ~0;
3611 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3612 		return -EFAULT;
3613 
3614 	return 0;
3615 }
3616 
3617 static int init_rmode_identity_map(struct kvm *kvm)
3618 {
3619 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3620 	int i, r = 0;
3621 	void __user *uaddr;
3622 	u32 tmp;
3623 
3624 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3625 	mutex_lock(&kvm->slots_lock);
3626 
3627 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3628 		goto out;
3629 
3630 	if (!kvm_vmx->ept_identity_map_addr)
3631 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3632 
3633 	uaddr = __x86_set_memory_region(kvm,
3634 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3635 					kvm_vmx->ept_identity_map_addr,
3636 					PAGE_SIZE);
3637 	if (IS_ERR(uaddr)) {
3638 		r = PTR_ERR(uaddr);
3639 		goto out;
3640 	}
3641 
3642 	/* Set up identity-mapping pagetable for EPT in real mode */
3643 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3644 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3645 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3646 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3647 			r = -EFAULT;
3648 			goto out;
3649 		}
3650 	}
3651 	kvm_vmx->ept_identity_pagetable_done = true;
3652 
3653 out:
3654 	mutex_unlock(&kvm->slots_lock);
3655 	return r;
3656 }
3657 
3658 static void seg_setup(int seg)
3659 {
3660 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3661 	unsigned int ar;
3662 
3663 	vmcs_write16(sf->selector, 0);
3664 	vmcs_writel(sf->base, 0);
3665 	vmcs_write32(sf->limit, 0xffff);
3666 	ar = 0x93;
3667 	if (seg == VCPU_SREG_CS)
3668 		ar |= 0x08; /* code segment */
3669 
3670 	vmcs_write32(sf->ar_bytes, ar);
3671 }
3672 
3673 static int alloc_apic_access_page(struct kvm *kvm)
3674 {
3675 	struct page *page;
3676 	void __user *hva;
3677 	int ret = 0;
3678 
3679 	mutex_lock(&kvm->slots_lock);
3680 	if (kvm->arch.apic_access_memslot_enabled)
3681 		goto out;
3682 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3683 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3684 	if (IS_ERR(hva)) {
3685 		ret = PTR_ERR(hva);
3686 		goto out;
3687 	}
3688 
3689 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3690 	if (is_error_page(page)) {
3691 		ret = -EFAULT;
3692 		goto out;
3693 	}
3694 
3695 	/*
3696 	 * Do not pin the page in memory, so that memory hot-unplug
3697 	 * is able to migrate it.
3698 	 */
3699 	put_page(page);
3700 	kvm->arch.apic_access_memslot_enabled = true;
3701 out:
3702 	mutex_unlock(&kvm->slots_lock);
3703 	return ret;
3704 }
3705 
3706 int allocate_vpid(void)
3707 {
3708 	int vpid;
3709 
3710 	if (!enable_vpid)
3711 		return 0;
3712 	spin_lock(&vmx_vpid_lock);
3713 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3714 	if (vpid < VMX_NR_VPIDS)
3715 		__set_bit(vpid, vmx_vpid_bitmap);
3716 	else
3717 		vpid = 0;
3718 	spin_unlock(&vmx_vpid_lock);
3719 	return vpid;
3720 }
3721 
3722 void free_vpid(int vpid)
3723 {
3724 	if (!enable_vpid || vpid == 0)
3725 		return;
3726 	spin_lock(&vmx_vpid_lock);
3727 	__clear_bit(vpid, vmx_vpid_bitmap);
3728 	spin_unlock(&vmx_vpid_lock);
3729 }
3730 
3731 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3732 {
3733 	/*
3734 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3735 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3736 	 * bitmap has changed.
3737 	 */
3738 	if (static_branch_unlikely(&enable_evmcs))
3739 		evmcs_touch_msr_bitmap();
3740 
3741 	vmx->nested.force_msr_bitmap_recalc = true;
3742 }
3743 
3744 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3745 {
3746 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3747 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3748 
3749 	if (!cpu_has_vmx_msr_bitmap())
3750 		return;
3751 
3752 	vmx_msr_bitmap_l01_changed(vmx);
3753 
3754 	/*
3755 	 * Mark the desired intercept state in shadow bitmap, this is needed
3756 	 * for resync when the MSR filters change.
3757 	*/
3758 	if (is_valid_passthrough_msr(msr)) {
3759 		int idx = possible_passthrough_msr_slot(msr);
3760 
3761 		if (idx != -ENOENT) {
3762 			if (type & MSR_TYPE_R)
3763 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3764 			if (type & MSR_TYPE_W)
3765 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3766 		}
3767 	}
3768 
3769 	if ((type & MSR_TYPE_R) &&
3770 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3771 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3772 		type &= ~MSR_TYPE_R;
3773 	}
3774 
3775 	if ((type & MSR_TYPE_W) &&
3776 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3777 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3778 		type &= ~MSR_TYPE_W;
3779 	}
3780 
3781 	if (type & MSR_TYPE_R)
3782 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3783 
3784 	if (type & MSR_TYPE_W)
3785 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3786 }
3787 
3788 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3789 {
3790 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3791 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3792 
3793 	if (!cpu_has_vmx_msr_bitmap())
3794 		return;
3795 
3796 	vmx_msr_bitmap_l01_changed(vmx);
3797 
3798 	/*
3799 	 * Mark the desired intercept state in shadow bitmap, this is needed
3800 	 * for resync when the MSR filter changes.
3801 	*/
3802 	if (is_valid_passthrough_msr(msr)) {
3803 		int idx = possible_passthrough_msr_slot(msr);
3804 
3805 		if (idx != -ENOENT) {
3806 			if (type & MSR_TYPE_R)
3807 				set_bit(idx, vmx->shadow_msr_intercept.read);
3808 			if (type & MSR_TYPE_W)
3809 				set_bit(idx, vmx->shadow_msr_intercept.write);
3810 		}
3811 	}
3812 
3813 	if (type & MSR_TYPE_R)
3814 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3815 
3816 	if (type & MSR_TYPE_W)
3817 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3818 }
3819 
3820 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3821 {
3822 	unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3823 	unsigned long read_intercept;
3824 	int msr;
3825 
3826 	read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3827 
3828 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3829 		unsigned int read_idx = msr / BITS_PER_LONG;
3830 		unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3831 
3832 		msr_bitmap[read_idx] = read_intercept;
3833 		msr_bitmap[write_idx] = ~0ul;
3834 	}
3835 }
3836 
3837 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3838 {
3839 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3840 	u8 mode;
3841 
3842 	if (!cpu_has_vmx_msr_bitmap())
3843 		return;
3844 
3845 	if (cpu_has_secondary_exec_ctrls() &&
3846 	    (secondary_exec_controls_get(vmx) &
3847 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3848 		mode = MSR_BITMAP_MODE_X2APIC;
3849 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3850 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3851 	} else {
3852 		mode = 0;
3853 	}
3854 
3855 	if (mode == vmx->x2apic_msr_bitmap_mode)
3856 		return;
3857 
3858 	vmx->x2apic_msr_bitmap_mode = mode;
3859 
3860 	vmx_reset_x2apic_msrs(vcpu, mode);
3861 
3862 	/*
3863 	 * TPR reads and writes can be virtualized even if virtual interrupt
3864 	 * delivery is not in use.
3865 	 */
3866 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3867 				  !(mode & MSR_BITMAP_MODE_X2APIC));
3868 
3869 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3870 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3871 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3872 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3873 	}
3874 }
3875 
3876 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3877 {
3878 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3879 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3880 	u32 i;
3881 
3882 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3883 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3884 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3885 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3886 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
3887 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3888 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3889 	}
3890 }
3891 
3892 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3893 {
3894 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3895 	void *vapic_page;
3896 	u32 vppr;
3897 	int rvi;
3898 
3899 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3900 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3901 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3902 		return false;
3903 
3904 	rvi = vmx_get_rvi();
3905 
3906 	vapic_page = vmx->nested.virtual_apic_map.hva;
3907 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3908 
3909 	return ((rvi & 0xf0) > (vppr & 0xf0));
3910 }
3911 
3912 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3913 {
3914 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3915 	u32 i;
3916 
3917 	/*
3918 	 * Set intercept permissions for all potentially passed through MSRs
3919 	 * again. They will automatically get filtered through the MSR filter,
3920 	 * so we are back in sync after this.
3921 	 */
3922 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3923 		u32 msr = vmx_possible_passthrough_msrs[i];
3924 		bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3925 		bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3926 
3927 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3928 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3929 	}
3930 
3931 	pt_update_intercept_for_msr(vcpu);
3932 }
3933 
3934 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3935 						     int pi_vec)
3936 {
3937 #ifdef CONFIG_SMP
3938 	if (vcpu->mode == IN_GUEST_MODE) {
3939 		/*
3940 		 * The vector of interrupt to be delivered to vcpu had
3941 		 * been set in PIR before this function.
3942 		 *
3943 		 * Following cases will be reached in this block, and
3944 		 * we always send a notification event in all cases as
3945 		 * explained below.
3946 		 *
3947 		 * Case 1: vcpu keeps in non-root mode. Sending a
3948 		 * notification event posts the interrupt to vcpu.
3949 		 *
3950 		 * Case 2: vcpu exits to root mode and is still
3951 		 * runnable. PIR will be synced to vIRR before the
3952 		 * next vcpu entry. Sending a notification event in
3953 		 * this case has no effect, as vcpu is not in root
3954 		 * mode.
3955 		 *
3956 		 * Case 3: vcpu exits to root mode and is blocked.
3957 		 * vcpu_block() has already synced PIR to vIRR and
3958 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3959 		 * a blocked vcpu here does not wait for any requested
3960 		 * interrupts in PIR, and sending a notification event
3961 		 * which has no effect is safe here.
3962 		 */
3963 
3964 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3965 		return;
3966 	}
3967 #endif
3968 	/*
3969 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
3970 	 * otherwise do nothing as KVM will grab the highest priority pending
3971 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
3972 	 */
3973 	kvm_vcpu_wake_up(vcpu);
3974 }
3975 
3976 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3977 						int vector)
3978 {
3979 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3980 
3981 	if (is_guest_mode(vcpu) &&
3982 	    vector == vmx->nested.posted_intr_nv) {
3983 		/*
3984 		 * If a posted intr is not recognized by hardware,
3985 		 * we will accomplish it in the next vmentry.
3986 		 */
3987 		vmx->nested.pi_pending = true;
3988 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3989 
3990 		/*
3991 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
3992 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
3993 		 * request if triggering a posted interrupt "fails" because
3994 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
3995 		 * the smb_wmb() in kvm_make_request() only ensures everything
3996 		 * done before making the request is visible when the request
3997 		 * is visible, it doesn't ensure ordering between the store to
3998 		 * vcpu->requests and the load from vcpu->mode.
3999 		 */
4000 		smp_mb__after_atomic();
4001 
4002 		/* the PIR and ON have been set by L1. */
4003 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4004 		return 0;
4005 	}
4006 	return -1;
4007 }
4008 /*
4009  * Send interrupt to vcpu via posted interrupt way.
4010  * 1. If target vcpu is running(non-root mode), send posted interrupt
4011  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4012  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4013  * interrupt from PIR in next vmentry.
4014  */
4015 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4016 {
4017 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4018 	int r;
4019 
4020 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4021 	if (!r)
4022 		return 0;
4023 
4024 	if (!vcpu->arch.apicv_active)
4025 		return -1;
4026 
4027 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4028 		return 0;
4029 
4030 	/* If a previous notification has sent the IPI, nothing to do.  */
4031 	if (pi_test_and_set_on(&vmx->pi_desc))
4032 		return 0;
4033 
4034 	/*
4035 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4036 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4037 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4038 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4039 	 */
4040 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4041 	return 0;
4042 }
4043 
4044 /*
4045  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4046  * will not change in the lifetime of the guest.
4047  * Note that host-state that does change is set elsewhere. E.g., host-state
4048  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4049  */
4050 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4051 {
4052 	u32 low32, high32;
4053 	unsigned long tmpl;
4054 	unsigned long cr0, cr3, cr4;
4055 
4056 	cr0 = read_cr0();
4057 	WARN_ON(cr0 & X86_CR0_TS);
4058 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4059 
4060 	/*
4061 	 * Save the most likely value for this task's CR3 in the VMCS.
4062 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4063 	 */
4064 	cr3 = __read_cr3();
4065 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4066 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4067 
4068 	/* Save the most likely value for this task's CR4 in the VMCS. */
4069 	cr4 = cr4_read_shadow();
4070 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4071 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4072 
4073 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4074 #ifdef CONFIG_X86_64
4075 	/*
4076 	 * Load null selectors, so we can avoid reloading them in
4077 	 * vmx_prepare_switch_to_host(), in case userspace uses
4078 	 * the null selectors too (the expected case).
4079 	 */
4080 	vmcs_write16(HOST_DS_SELECTOR, 0);
4081 	vmcs_write16(HOST_ES_SELECTOR, 0);
4082 #else
4083 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4084 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4085 #endif
4086 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4087 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4088 
4089 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4090 
4091 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4092 
4093 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4094 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4095 
4096 	/*
4097 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4098 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4099 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4100 	 * have already done so!).
4101 	 */
4102 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4103 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4104 
4105 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4106 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4107 
4108 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4109 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4110 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4111 	}
4112 
4113 	if (cpu_has_load_ia32_efer())
4114 		vmcs_write64(HOST_IA32_EFER, host_efer);
4115 }
4116 
4117 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4118 {
4119 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4120 
4121 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4122 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4123 	if (!enable_ept) {
4124 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4125 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4126 	}
4127 	if (is_guest_mode(&vmx->vcpu))
4128 		vcpu->arch.cr4_guest_owned_bits &=
4129 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4130 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4131 }
4132 
4133 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4134 {
4135 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4136 
4137 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4138 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4139 
4140 	if (!enable_vnmi)
4141 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4142 
4143 	if (!enable_preemption_timer)
4144 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4145 
4146 	return pin_based_exec_ctrl;
4147 }
4148 
4149 static u32 vmx_vmentry_ctrl(void)
4150 {
4151 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4152 
4153 	if (vmx_pt_mode_is_system())
4154 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4155 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4156 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4157 	return vmentry_ctrl &
4158 		~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
4159 }
4160 
4161 static u32 vmx_vmexit_ctrl(void)
4162 {
4163 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4164 
4165 	if (vmx_pt_mode_is_system())
4166 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4167 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4168 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4169 	return vmexit_ctrl &
4170 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4171 }
4172 
4173 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4174 {
4175 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4176 
4177 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4178 	if (cpu_has_secondary_exec_ctrls()) {
4179 		if (kvm_vcpu_apicv_active(vcpu))
4180 			secondary_exec_controls_setbit(vmx,
4181 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4182 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4183 		else
4184 			secondary_exec_controls_clearbit(vmx,
4185 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4186 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4187 	}
4188 
4189 	vmx_update_msr_bitmap_x2apic(vcpu);
4190 }
4191 
4192 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4193 {
4194 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4195 
4196 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4197 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4198 
4199 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4200 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4201 #ifdef CONFIG_X86_64
4202 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4203 				CPU_BASED_CR8_LOAD_EXITING;
4204 #endif
4205 	}
4206 	if (!enable_ept)
4207 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4208 				CPU_BASED_CR3_LOAD_EXITING  |
4209 				CPU_BASED_INVLPG_EXITING;
4210 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4211 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4212 				CPU_BASED_MONITOR_EXITING);
4213 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4214 		exec_control &= ~CPU_BASED_HLT_EXITING;
4215 	return exec_control;
4216 }
4217 
4218 /*
4219  * Adjust a single secondary execution control bit to intercept/allow an
4220  * instruction in the guest.  This is usually done based on whether or not a
4221  * feature has been exposed to the guest in order to correctly emulate faults.
4222  */
4223 static inline void
4224 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4225 				  u32 control, bool enabled, bool exiting)
4226 {
4227 	/*
4228 	 * If the control is for an opt-in feature, clear the control if the
4229 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4230 	 * control is opt-out, i.e. an exiting control, clear the control if
4231 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4232 	 * disabled for the associated instruction.  Note, the caller is
4233 	 * responsible presetting exec_control to set all supported bits.
4234 	 */
4235 	if (enabled == exiting)
4236 		*exec_control &= ~control;
4237 
4238 	/*
4239 	 * Update the nested MSR settings so that a nested VMM can/can't set
4240 	 * controls for features that are/aren't exposed to the guest.
4241 	 */
4242 	if (nested) {
4243 		if (enabled)
4244 			vmx->nested.msrs.secondary_ctls_high |= control;
4245 		else
4246 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4247 	}
4248 }
4249 
4250 /*
4251  * Wrapper macro for the common case of adjusting a secondary execution control
4252  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4253  * verifies that the control is actually supported by KVM and hardware.
4254  */
4255 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4256 ({									 \
4257 	bool __enabled;							 \
4258 									 \
4259 	if (cpu_has_vmx_##name()) {					 \
4260 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4261 					    X86_FEATURE_##feat_name);	 \
4262 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4263 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4264 	}								 \
4265 })
4266 
4267 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4268 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4269 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4270 
4271 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4272 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4273 
4274 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4275 {
4276 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4277 
4278 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4279 
4280 	if (vmx_pt_mode_is_system())
4281 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4282 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4283 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4284 	if (vmx->vpid == 0)
4285 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4286 	if (!enable_ept) {
4287 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4288 		enable_unrestricted_guest = 0;
4289 	}
4290 	if (!enable_unrestricted_guest)
4291 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4292 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4293 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4294 	if (!kvm_vcpu_apicv_active(vcpu))
4295 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4296 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4297 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4298 
4299 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4300 	 * in vmx_set_cr4.  */
4301 	exec_control &= ~SECONDARY_EXEC_DESC;
4302 
4303 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4304 	   (handle_vmptrld).
4305 	   We can NOT enable shadow_vmcs here because we don't have yet
4306 	   a current VMCS12
4307 	*/
4308 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4309 
4310 	/*
4311 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4312 	 * it needs to be set here when dirty logging is already active, e.g.
4313 	 * if this vCPU was created after dirty logging was enabled.
4314 	 */
4315 	if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4316 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4317 
4318 	if (cpu_has_vmx_xsaves()) {
4319 		/* Exposing XSAVES only when XSAVE is exposed */
4320 		bool xsaves_enabled =
4321 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4322 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4323 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4324 
4325 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4326 
4327 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4328 						  SECONDARY_EXEC_XSAVES,
4329 						  xsaves_enabled, false);
4330 	}
4331 
4332 	/*
4333 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4334 	 * feature is exposed to the guest.  This creates a virtualization hole
4335 	 * if both are supported in hardware but only one is exposed to the
4336 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4337 	 * is advertised is preferable to emulating the advertised instruction
4338 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4339 	 */
4340 	if (cpu_has_vmx_rdtscp()) {
4341 		bool rdpid_or_rdtscp_enabled =
4342 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4343 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4344 
4345 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4346 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4347 						  rdpid_or_rdtscp_enabled, false);
4348 	}
4349 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4350 
4351 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4352 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4353 
4354 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4355 				    ENABLE_USR_WAIT_PAUSE, false);
4356 
4357 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4358 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4359 
4360 	return exec_control;
4361 }
4362 
4363 #define VMX_XSS_EXIT_BITMAP 0
4364 
4365 static void init_vmcs(struct vcpu_vmx *vmx)
4366 {
4367 	if (nested)
4368 		nested_vmx_set_vmcs_shadowing_bitmap();
4369 
4370 	if (cpu_has_vmx_msr_bitmap())
4371 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4372 
4373 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4374 
4375 	/* Control */
4376 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4377 
4378 	exec_controls_set(vmx, vmx_exec_control(vmx));
4379 
4380 	if (cpu_has_secondary_exec_ctrls())
4381 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4382 
4383 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4384 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4385 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4386 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4387 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4388 
4389 		vmcs_write16(GUEST_INTR_STATUS, 0);
4390 
4391 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4392 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4393 	}
4394 
4395 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4396 		vmcs_write32(PLE_GAP, ple_gap);
4397 		vmx->ple_window = ple_window;
4398 		vmx->ple_window_dirty = true;
4399 	}
4400 
4401 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4402 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4403 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4404 
4405 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4406 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4407 	vmx_set_constant_host_state(vmx);
4408 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4409 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4410 
4411 	if (cpu_has_vmx_vmfunc())
4412 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4413 
4414 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4415 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4416 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4417 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4418 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4419 
4420 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4421 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4422 
4423 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4424 
4425 	/* 22.2.1, 20.8.1 */
4426 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4427 
4428 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4429 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4430 
4431 	set_cr4_guest_host_mask(vmx);
4432 
4433 	if (vmx->vpid != 0)
4434 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4435 
4436 	if (cpu_has_vmx_xsaves())
4437 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4438 
4439 	if (enable_pml) {
4440 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4441 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4442 	}
4443 
4444 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4445 
4446 	if (vmx_pt_mode_is_host_guest()) {
4447 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4448 		/* Bit[6~0] are forced to 1, writes are ignored. */
4449 		vmx->pt_desc.guest.output_mask = 0x7F;
4450 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4451 	}
4452 
4453 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4454 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4455 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4456 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4457 
4458 	if (cpu_has_vmx_tpr_shadow()) {
4459 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4460 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4461 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4462 				     __pa(vmx->vcpu.arch.apic->regs));
4463 		vmcs_write32(TPR_THRESHOLD, 0);
4464 	}
4465 
4466 	vmx_setup_uret_msrs(vmx);
4467 }
4468 
4469 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4470 {
4471 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4472 
4473 	init_vmcs(vmx);
4474 
4475 	if (nested)
4476 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4477 
4478 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4479 
4480 	vmx->nested.posted_intr_nv = -1;
4481 	vmx->nested.vmxon_ptr = INVALID_GPA;
4482 	vmx->nested.current_vmptr = INVALID_GPA;
4483 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4484 
4485 	vcpu->arch.microcode_version = 0x100000000ULL;
4486 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4487 
4488 	/*
4489 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4490 	 * or POSTED_INTR_WAKEUP_VECTOR.
4491 	 */
4492 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4493 	vmx->pi_desc.sn = 1;
4494 }
4495 
4496 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4497 {
4498 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4499 
4500 	if (!init_event)
4501 		__vmx_vcpu_reset(vcpu);
4502 
4503 	vmx->rmode.vm86_active = 0;
4504 	vmx->spec_ctrl = 0;
4505 
4506 	vmx->msr_ia32_umwait_control = 0;
4507 
4508 	vmx->hv_deadline_tsc = -1;
4509 	kvm_set_cr8(vcpu, 0);
4510 
4511 	vmx_segment_cache_clear(vmx);
4512 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4513 
4514 	seg_setup(VCPU_SREG_CS);
4515 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4516 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4517 
4518 	seg_setup(VCPU_SREG_DS);
4519 	seg_setup(VCPU_SREG_ES);
4520 	seg_setup(VCPU_SREG_FS);
4521 	seg_setup(VCPU_SREG_GS);
4522 	seg_setup(VCPU_SREG_SS);
4523 
4524 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4525 	vmcs_writel(GUEST_TR_BASE, 0);
4526 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4527 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4528 
4529 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4530 	vmcs_writel(GUEST_LDTR_BASE, 0);
4531 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4532 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4533 
4534 	vmcs_writel(GUEST_GDTR_BASE, 0);
4535 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4536 
4537 	vmcs_writel(GUEST_IDTR_BASE, 0);
4538 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4539 
4540 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4541 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4542 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4543 	if (kvm_mpx_supported())
4544 		vmcs_write64(GUEST_BNDCFGS, 0);
4545 
4546 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4547 
4548 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4549 
4550 	vpid_sync_context(vmx->vpid);
4551 }
4552 
4553 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4554 {
4555 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4556 }
4557 
4558 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4559 {
4560 	if (!enable_vnmi ||
4561 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4562 		vmx_enable_irq_window(vcpu);
4563 		return;
4564 	}
4565 
4566 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4567 }
4568 
4569 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4570 {
4571 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4572 	uint32_t intr;
4573 	int irq = vcpu->arch.interrupt.nr;
4574 
4575 	trace_kvm_inj_virq(irq);
4576 
4577 	++vcpu->stat.irq_injections;
4578 	if (vmx->rmode.vm86_active) {
4579 		int inc_eip = 0;
4580 		if (vcpu->arch.interrupt.soft)
4581 			inc_eip = vcpu->arch.event_exit_inst_len;
4582 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4583 		return;
4584 	}
4585 	intr = irq | INTR_INFO_VALID_MASK;
4586 	if (vcpu->arch.interrupt.soft) {
4587 		intr |= INTR_TYPE_SOFT_INTR;
4588 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4589 			     vmx->vcpu.arch.event_exit_inst_len);
4590 	} else
4591 		intr |= INTR_TYPE_EXT_INTR;
4592 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4593 
4594 	vmx_clear_hlt(vcpu);
4595 }
4596 
4597 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4598 {
4599 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4600 
4601 	if (!enable_vnmi) {
4602 		/*
4603 		 * Tracking the NMI-blocked state in software is built upon
4604 		 * finding the next open IRQ window. This, in turn, depends on
4605 		 * well-behaving guests: They have to keep IRQs disabled at
4606 		 * least as long as the NMI handler runs. Otherwise we may
4607 		 * cause NMI nesting, maybe breaking the guest. But as this is
4608 		 * highly unlikely, we can live with the residual risk.
4609 		 */
4610 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4611 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4612 	}
4613 
4614 	++vcpu->stat.nmi_injections;
4615 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4616 
4617 	if (vmx->rmode.vm86_active) {
4618 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4619 		return;
4620 	}
4621 
4622 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4623 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4624 
4625 	vmx_clear_hlt(vcpu);
4626 }
4627 
4628 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4629 {
4630 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4631 	bool masked;
4632 
4633 	if (!enable_vnmi)
4634 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4635 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4636 		return false;
4637 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4638 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4639 	return masked;
4640 }
4641 
4642 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4643 {
4644 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4645 
4646 	if (!enable_vnmi) {
4647 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4648 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4649 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4650 		}
4651 	} else {
4652 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4653 		if (masked)
4654 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4655 				      GUEST_INTR_STATE_NMI);
4656 		else
4657 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4658 					GUEST_INTR_STATE_NMI);
4659 	}
4660 }
4661 
4662 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4663 {
4664 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4665 		return false;
4666 
4667 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4668 		return true;
4669 
4670 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4671 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4672 		 GUEST_INTR_STATE_NMI));
4673 }
4674 
4675 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4676 {
4677 	if (to_vmx(vcpu)->nested.nested_run_pending)
4678 		return -EBUSY;
4679 
4680 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4681 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4682 		return -EBUSY;
4683 
4684 	return !vmx_nmi_blocked(vcpu);
4685 }
4686 
4687 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4688 {
4689 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4690 		return false;
4691 
4692 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4693 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4694 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4695 }
4696 
4697 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4698 {
4699 	if (to_vmx(vcpu)->nested.nested_run_pending)
4700 		return -EBUSY;
4701 
4702        /*
4703         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4704         * e.g. if the IRQ arrived asynchronously after checking nested events.
4705         */
4706 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4707 		return -EBUSY;
4708 
4709 	return !vmx_interrupt_blocked(vcpu);
4710 }
4711 
4712 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4713 {
4714 	void __user *ret;
4715 
4716 	if (enable_unrestricted_guest)
4717 		return 0;
4718 
4719 	mutex_lock(&kvm->slots_lock);
4720 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4721 				      PAGE_SIZE * 3);
4722 	mutex_unlock(&kvm->slots_lock);
4723 
4724 	if (IS_ERR(ret))
4725 		return PTR_ERR(ret);
4726 
4727 	to_kvm_vmx(kvm)->tss_addr = addr;
4728 
4729 	return init_rmode_tss(kvm, ret);
4730 }
4731 
4732 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4733 {
4734 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4735 	return 0;
4736 }
4737 
4738 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4739 {
4740 	switch (vec) {
4741 	case BP_VECTOR:
4742 		/*
4743 		 * Update instruction length as we may reinject the exception
4744 		 * from user space while in guest debugging mode.
4745 		 */
4746 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4747 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4748 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4749 			return false;
4750 		fallthrough;
4751 	case DB_VECTOR:
4752 		return !(vcpu->guest_debug &
4753 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4754 	case DE_VECTOR:
4755 	case OF_VECTOR:
4756 	case BR_VECTOR:
4757 	case UD_VECTOR:
4758 	case DF_VECTOR:
4759 	case SS_VECTOR:
4760 	case GP_VECTOR:
4761 	case MF_VECTOR:
4762 		return true;
4763 	}
4764 	return false;
4765 }
4766 
4767 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4768 				  int vec, u32 err_code)
4769 {
4770 	/*
4771 	 * Instruction with address size override prefix opcode 0x67
4772 	 * Cause the #SS fault with 0 error code in VM86 mode.
4773 	 */
4774 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4775 		if (kvm_emulate_instruction(vcpu, 0)) {
4776 			if (vcpu->arch.halt_request) {
4777 				vcpu->arch.halt_request = 0;
4778 				return kvm_emulate_halt_noskip(vcpu);
4779 			}
4780 			return 1;
4781 		}
4782 		return 0;
4783 	}
4784 
4785 	/*
4786 	 * Forward all other exceptions that are valid in real mode.
4787 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4788 	 *        the required debugging infrastructure rework.
4789 	 */
4790 	kvm_queue_exception(vcpu, vec);
4791 	return 1;
4792 }
4793 
4794 static int handle_machine_check(struct kvm_vcpu *vcpu)
4795 {
4796 	/* handled by vmx_vcpu_run() */
4797 	return 1;
4798 }
4799 
4800 /*
4801  * If the host has split lock detection disabled, then #AC is
4802  * unconditionally injected into the guest, which is the pre split lock
4803  * detection behaviour.
4804  *
4805  * If the host has split lock detection enabled then #AC is
4806  * only injected into the guest when:
4807  *  - Guest CPL == 3 (user mode)
4808  *  - Guest has #AC detection enabled in CR0
4809  *  - Guest EFLAGS has AC bit set
4810  */
4811 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4812 {
4813 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4814 		return true;
4815 
4816 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4817 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4818 }
4819 
4820 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4821 {
4822 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4823 	struct kvm_run *kvm_run = vcpu->run;
4824 	u32 intr_info, ex_no, error_code;
4825 	unsigned long cr2, dr6;
4826 	u32 vect_info;
4827 
4828 	vect_info = vmx->idt_vectoring_info;
4829 	intr_info = vmx_get_intr_info(vcpu);
4830 
4831 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4832 		return 1; /* handled by handle_exception_nmi_irqoff() */
4833 
4834 	/*
4835 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
4836 	 * This ensures the nested_vmx check is not skipped so vmexit can
4837 	 * be reflected to L1 (when it intercepts #NM) before reaching this
4838 	 * point.
4839 	 */
4840 	if (is_nm_fault(intr_info)) {
4841 		kvm_queue_exception(vcpu, NM_VECTOR);
4842 		return 1;
4843 	}
4844 
4845 	if (is_invalid_opcode(intr_info))
4846 		return handle_ud(vcpu);
4847 
4848 	error_code = 0;
4849 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4850 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4851 
4852 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4853 		WARN_ON_ONCE(!enable_vmware_backdoor);
4854 
4855 		/*
4856 		 * VMware backdoor emulation on #GP interception only handles
4857 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4858 		 * error code on #GP.
4859 		 */
4860 		if (error_code) {
4861 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4862 			return 1;
4863 		}
4864 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4865 	}
4866 
4867 	/*
4868 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4869 	 * MMIO, it is better to report an internal error.
4870 	 * See the comments in vmx_handle_exit.
4871 	 */
4872 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4873 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4874 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4875 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4876 		vcpu->run->internal.ndata = 4;
4877 		vcpu->run->internal.data[0] = vect_info;
4878 		vcpu->run->internal.data[1] = intr_info;
4879 		vcpu->run->internal.data[2] = error_code;
4880 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4881 		return 0;
4882 	}
4883 
4884 	if (is_page_fault(intr_info)) {
4885 		cr2 = vmx_get_exit_qual(vcpu);
4886 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4887 			/*
4888 			 * EPT will cause page fault only if we need to
4889 			 * detect illegal GPAs.
4890 			 */
4891 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4892 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4893 			return 1;
4894 		} else
4895 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4896 	}
4897 
4898 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4899 
4900 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4901 		return handle_rmode_exception(vcpu, ex_no, error_code);
4902 
4903 	switch (ex_no) {
4904 	case DB_VECTOR:
4905 		dr6 = vmx_get_exit_qual(vcpu);
4906 		if (!(vcpu->guest_debug &
4907 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4908 			/*
4909 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
4910 			 * instruction.  ICEBP generates a trap-like #DB, but
4911 			 * despite its interception control being tied to #DB,
4912 			 * is an instruction intercept, i.e. the VM-Exit occurs
4913 			 * on the ICEBP itself.  Note, skipping ICEBP also
4914 			 * clears STI and MOVSS blocking.
4915 			 *
4916 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
4917 			 * if single-step is enabled in RFLAGS and STI or MOVSS
4918 			 * blocking is active, as the CPU doesn't set the bit
4919 			 * on VM-Exit due to #DB interception.  VM-Entry has a
4920 			 * consistency check that a single-step #DB is pending
4921 			 * in this scenario as the previous instruction cannot
4922 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
4923 			 * don't modify RFLAGS), therefore the one instruction
4924 			 * delay when activating single-step breakpoints must
4925 			 * have already expired.  Note, the CPU sets/clears BS
4926 			 * as appropriate for all other VM-Exits types.
4927 			 */
4928 			if (is_icebp(intr_info))
4929 				WARN_ON(!skip_emulated_instruction(vcpu));
4930 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
4931 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4932 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
4933 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
4934 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
4935 
4936 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4937 			return 1;
4938 		}
4939 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4940 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4941 		fallthrough;
4942 	case BP_VECTOR:
4943 		/*
4944 		 * Update instruction length as we may reinject #BP from
4945 		 * user space while in guest debugging mode. Reading it for
4946 		 * #DB as well causes no harm, it is not used in that case.
4947 		 */
4948 		vmx->vcpu.arch.event_exit_inst_len =
4949 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4950 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4951 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4952 		kvm_run->debug.arch.exception = ex_no;
4953 		break;
4954 	case AC_VECTOR:
4955 		if (vmx_guest_inject_ac(vcpu)) {
4956 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4957 			return 1;
4958 		}
4959 
4960 		/*
4961 		 * Handle split lock. Depending on detection mode this will
4962 		 * either warn and disable split lock detection for this
4963 		 * task or force SIGBUS on it.
4964 		 */
4965 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4966 			return 1;
4967 		fallthrough;
4968 	default:
4969 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4970 		kvm_run->ex.exception = ex_no;
4971 		kvm_run->ex.error_code = error_code;
4972 		break;
4973 	}
4974 	return 0;
4975 }
4976 
4977 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4978 {
4979 	++vcpu->stat.irq_exits;
4980 	return 1;
4981 }
4982 
4983 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4984 {
4985 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4986 	vcpu->mmio_needed = 0;
4987 	return 0;
4988 }
4989 
4990 static int handle_io(struct kvm_vcpu *vcpu)
4991 {
4992 	unsigned long exit_qualification;
4993 	int size, in, string;
4994 	unsigned port;
4995 
4996 	exit_qualification = vmx_get_exit_qual(vcpu);
4997 	string = (exit_qualification & 16) != 0;
4998 
4999 	++vcpu->stat.io_exits;
5000 
5001 	if (string)
5002 		return kvm_emulate_instruction(vcpu, 0);
5003 
5004 	port = exit_qualification >> 16;
5005 	size = (exit_qualification & 7) + 1;
5006 	in = (exit_qualification & 8) != 0;
5007 
5008 	return kvm_fast_pio(vcpu, size, port, in);
5009 }
5010 
5011 static void
5012 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5013 {
5014 	/*
5015 	 * Patch in the VMCALL instruction:
5016 	 */
5017 	hypercall[0] = 0x0f;
5018 	hypercall[1] = 0x01;
5019 	hypercall[2] = 0xc1;
5020 }
5021 
5022 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5023 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5024 {
5025 	if (is_guest_mode(vcpu)) {
5026 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5027 		unsigned long orig_val = val;
5028 
5029 		/*
5030 		 * We get here when L2 changed cr0 in a way that did not change
5031 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5032 		 * but did change L0 shadowed bits. So we first calculate the
5033 		 * effective cr0 value that L1 would like to write into the
5034 		 * hardware. It consists of the L2-owned bits from the new
5035 		 * value combined with the L1-owned bits from L1's guest_cr0.
5036 		 */
5037 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5038 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5039 
5040 		if (!nested_guest_cr0_valid(vcpu, val))
5041 			return 1;
5042 
5043 		if (kvm_set_cr0(vcpu, val))
5044 			return 1;
5045 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5046 		return 0;
5047 	} else {
5048 		if (to_vmx(vcpu)->nested.vmxon &&
5049 		    !nested_host_cr0_valid(vcpu, val))
5050 			return 1;
5051 
5052 		return kvm_set_cr0(vcpu, val);
5053 	}
5054 }
5055 
5056 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5057 {
5058 	if (is_guest_mode(vcpu)) {
5059 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5060 		unsigned long orig_val = val;
5061 
5062 		/* analogously to handle_set_cr0 */
5063 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5064 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5065 		if (kvm_set_cr4(vcpu, val))
5066 			return 1;
5067 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5068 		return 0;
5069 	} else
5070 		return kvm_set_cr4(vcpu, val);
5071 }
5072 
5073 static int handle_desc(struct kvm_vcpu *vcpu)
5074 {
5075 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5076 	return kvm_emulate_instruction(vcpu, 0);
5077 }
5078 
5079 static int handle_cr(struct kvm_vcpu *vcpu)
5080 {
5081 	unsigned long exit_qualification, val;
5082 	int cr;
5083 	int reg;
5084 	int err;
5085 	int ret;
5086 
5087 	exit_qualification = vmx_get_exit_qual(vcpu);
5088 	cr = exit_qualification & 15;
5089 	reg = (exit_qualification >> 8) & 15;
5090 	switch ((exit_qualification >> 4) & 3) {
5091 	case 0: /* mov to cr */
5092 		val = kvm_register_read(vcpu, reg);
5093 		trace_kvm_cr_write(cr, val);
5094 		switch (cr) {
5095 		case 0:
5096 			err = handle_set_cr0(vcpu, val);
5097 			return kvm_complete_insn_gp(vcpu, err);
5098 		case 3:
5099 			WARN_ON_ONCE(enable_unrestricted_guest);
5100 
5101 			err = kvm_set_cr3(vcpu, val);
5102 			return kvm_complete_insn_gp(vcpu, err);
5103 		case 4:
5104 			err = handle_set_cr4(vcpu, val);
5105 			return kvm_complete_insn_gp(vcpu, err);
5106 		case 8: {
5107 				u8 cr8_prev = kvm_get_cr8(vcpu);
5108 				u8 cr8 = (u8)val;
5109 				err = kvm_set_cr8(vcpu, cr8);
5110 				ret = kvm_complete_insn_gp(vcpu, err);
5111 				if (lapic_in_kernel(vcpu))
5112 					return ret;
5113 				if (cr8_prev <= cr8)
5114 					return ret;
5115 				/*
5116 				 * TODO: we might be squashing a
5117 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5118 				 * KVM_EXIT_DEBUG here.
5119 				 */
5120 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5121 				return 0;
5122 			}
5123 		}
5124 		break;
5125 	case 2: /* clts */
5126 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5127 		return -EIO;
5128 	case 1: /*mov from cr*/
5129 		switch (cr) {
5130 		case 3:
5131 			WARN_ON_ONCE(enable_unrestricted_guest);
5132 
5133 			val = kvm_read_cr3(vcpu);
5134 			kvm_register_write(vcpu, reg, val);
5135 			trace_kvm_cr_read(cr, val);
5136 			return kvm_skip_emulated_instruction(vcpu);
5137 		case 8:
5138 			val = kvm_get_cr8(vcpu);
5139 			kvm_register_write(vcpu, reg, val);
5140 			trace_kvm_cr_read(cr, val);
5141 			return kvm_skip_emulated_instruction(vcpu);
5142 		}
5143 		break;
5144 	case 3: /* lmsw */
5145 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5146 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5147 		kvm_lmsw(vcpu, val);
5148 
5149 		return kvm_skip_emulated_instruction(vcpu);
5150 	default:
5151 		break;
5152 	}
5153 	vcpu->run->exit_reason = 0;
5154 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5155 	       (int)(exit_qualification >> 4) & 3, cr);
5156 	return 0;
5157 }
5158 
5159 static int handle_dr(struct kvm_vcpu *vcpu)
5160 {
5161 	unsigned long exit_qualification;
5162 	int dr, dr7, reg;
5163 	int err = 1;
5164 
5165 	exit_qualification = vmx_get_exit_qual(vcpu);
5166 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5167 
5168 	/* First, if DR does not exist, trigger UD */
5169 	if (!kvm_require_dr(vcpu, dr))
5170 		return 1;
5171 
5172 	if (kvm_x86_ops.get_cpl(vcpu) > 0)
5173 		goto out;
5174 
5175 	dr7 = vmcs_readl(GUEST_DR7);
5176 	if (dr7 & DR7_GD) {
5177 		/*
5178 		 * As the vm-exit takes precedence over the debug trap, we
5179 		 * need to emulate the latter, either for the host or the
5180 		 * guest debugging itself.
5181 		 */
5182 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5183 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5184 			vcpu->run->debug.arch.dr7 = dr7;
5185 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5186 			vcpu->run->debug.arch.exception = DB_VECTOR;
5187 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5188 			return 0;
5189 		} else {
5190 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5191 			return 1;
5192 		}
5193 	}
5194 
5195 	if (vcpu->guest_debug == 0) {
5196 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5197 
5198 		/*
5199 		 * No more DR vmexits; force a reload of the debug registers
5200 		 * and reenter on this instruction.  The next vmexit will
5201 		 * retrieve the full state of the debug registers.
5202 		 */
5203 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5204 		return 1;
5205 	}
5206 
5207 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5208 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5209 		unsigned long val;
5210 
5211 		kvm_get_dr(vcpu, dr, &val);
5212 		kvm_register_write(vcpu, reg, val);
5213 		err = 0;
5214 	} else {
5215 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5216 	}
5217 
5218 out:
5219 	return kvm_complete_insn_gp(vcpu, err);
5220 }
5221 
5222 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5223 {
5224 	get_debugreg(vcpu->arch.db[0], 0);
5225 	get_debugreg(vcpu->arch.db[1], 1);
5226 	get_debugreg(vcpu->arch.db[2], 2);
5227 	get_debugreg(vcpu->arch.db[3], 3);
5228 	get_debugreg(vcpu->arch.dr6, 6);
5229 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5230 
5231 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5232 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5233 
5234 	/*
5235 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5236 	 * a stale dr6 from the guest.
5237 	 */
5238 	set_debugreg(DR6_RESERVED, 6);
5239 }
5240 
5241 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5242 {
5243 	vmcs_writel(GUEST_DR7, val);
5244 }
5245 
5246 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5247 {
5248 	kvm_apic_update_ppr(vcpu);
5249 	return 1;
5250 }
5251 
5252 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5253 {
5254 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5255 
5256 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5257 
5258 	++vcpu->stat.irq_window_exits;
5259 	return 1;
5260 }
5261 
5262 static int handle_invlpg(struct kvm_vcpu *vcpu)
5263 {
5264 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5265 
5266 	kvm_mmu_invlpg(vcpu, exit_qualification);
5267 	return kvm_skip_emulated_instruction(vcpu);
5268 }
5269 
5270 static int handle_apic_access(struct kvm_vcpu *vcpu)
5271 {
5272 	if (likely(fasteoi)) {
5273 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5274 		int access_type, offset;
5275 
5276 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5277 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5278 		/*
5279 		 * Sane guest uses MOV to write EOI, with written value
5280 		 * not cared. So make a short-circuit here by avoiding
5281 		 * heavy instruction emulation.
5282 		 */
5283 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5284 		    (offset == APIC_EOI)) {
5285 			kvm_lapic_set_eoi(vcpu);
5286 			return kvm_skip_emulated_instruction(vcpu);
5287 		}
5288 	}
5289 	return kvm_emulate_instruction(vcpu, 0);
5290 }
5291 
5292 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5293 {
5294 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5295 	int vector = exit_qualification & 0xff;
5296 
5297 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5298 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5299 	return 1;
5300 }
5301 
5302 static int handle_apic_write(struct kvm_vcpu *vcpu)
5303 {
5304 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5305 	u32 offset = exit_qualification & 0xfff;
5306 
5307 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5308 	kvm_apic_write_nodecode(vcpu, offset);
5309 	return 1;
5310 }
5311 
5312 static int handle_task_switch(struct kvm_vcpu *vcpu)
5313 {
5314 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5315 	unsigned long exit_qualification;
5316 	bool has_error_code = false;
5317 	u32 error_code = 0;
5318 	u16 tss_selector;
5319 	int reason, type, idt_v, idt_index;
5320 
5321 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5322 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5323 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5324 
5325 	exit_qualification = vmx_get_exit_qual(vcpu);
5326 
5327 	reason = (u32)exit_qualification >> 30;
5328 	if (reason == TASK_SWITCH_GATE && idt_v) {
5329 		switch (type) {
5330 		case INTR_TYPE_NMI_INTR:
5331 			vcpu->arch.nmi_injected = false;
5332 			vmx_set_nmi_mask(vcpu, true);
5333 			break;
5334 		case INTR_TYPE_EXT_INTR:
5335 		case INTR_TYPE_SOFT_INTR:
5336 			kvm_clear_interrupt_queue(vcpu);
5337 			break;
5338 		case INTR_TYPE_HARD_EXCEPTION:
5339 			if (vmx->idt_vectoring_info &
5340 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5341 				has_error_code = true;
5342 				error_code =
5343 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5344 			}
5345 			fallthrough;
5346 		case INTR_TYPE_SOFT_EXCEPTION:
5347 			kvm_clear_exception_queue(vcpu);
5348 			break;
5349 		default:
5350 			break;
5351 		}
5352 	}
5353 	tss_selector = exit_qualification;
5354 
5355 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5356 		       type != INTR_TYPE_EXT_INTR &&
5357 		       type != INTR_TYPE_NMI_INTR))
5358 		WARN_ON(!skip_emulated_instruction(vcpu));
5359 
5360 	/*
5361 	 * TODO: What about debug traps on tss switch?
5362 	 *       Are we supposed to inject them and update dr6?
5363 	 */
5364 	return kvm_task_switch(vcpu, tss_selector,
5365 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5366 			       reason, has_error_code, error_code);
5367 }
5368 
5369 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5370 {
5371 	unsigned long exit_qualification;
5372 	gpa_t gpa;
5373 	u64 error_code;
5374 
5375 	exit_qualification = vmx_get_exit_qual(vcpu);
5376 
5377 	/*
5378 	 * EPT violation happened while executing iret from NMI,
5379 	 * "blocked by NMI" bit has to be set before next VM entry.
5380 	 * There are errata that may cause this bit to not be set:
5381 	 * AAK134, BY25.
5382 	 */
5383 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5384 			enable_vnmi &&
5385 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5386 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5387 
5388 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5389 	trace_kvm_page_fault(gpa, exit_qualification);
5390 
5391 	/* Is it a read fault? */
5392 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5393 		     ? PFERR_USER_MASK : 0;
5394 	/* Is it a write fault? */
5395 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5396 		      ? PFERR_WRITE_MASK : 0;
5397 	/* Is it a fetch fault? */
5398 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5399 		      ? PFERR_FETCH_MASK : 0;
5400 	/* ept page table entry is present? */
5401 	error_code |= (exit_qualification &
5402 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5403 			EPT_VIOLATION_EXECUTABLE))
5404 		      ? PFERR_PRESENT_MASK : 0;
5405 
5406 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5407 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5408 
5409 	vcpu->arch.exit_qualification = exit_qualification;
5410 
5411 	/*
5412 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5413 	 * a guest page fault.  We have to emulate the instruction here, because
5414 	 * if the illegal address is that of a paging structure, then
5415 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5416 	 * would also use advanced VM-exit information for EPT violations to
5417 	 * reconstruct the page fault error code.
5418 	 */
5419 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5420 		return kvm_emulate_instruction(vcpu, 0);
5421 
5422 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5423 }
5424 
5425 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5426 {
5427 	gpa_t gpa;
5428 
5429 	if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5430 		return 1;
5431 
5432 	/*
5433 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5434 	 * nGPA here instead of the required GPA.
5435 	 */
5436 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5437 	if (!is_guest_mode(vcpu) &&
5438 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5439 		trace_kvm_fast_mmio(gpa);
5440 		return kvm_skip_emulated_instruction(vcpu);
5441 	}
5442 
5443 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5444 }
5445 
5446 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5447 {
5448 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5449 		return -EIO;
5450 
5451 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5452 	++vcpu->stat.nmi_window_exits;
5453 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5454 
5455 	return 1;
5456 }
5457 
5458 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5459 {
5460 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5461 
5462 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5463 	       vcpu->arch.exception.pending;
5464 }
5465 
5466 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5467 {
5468 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5469 	bool intr_window_requested;
5470 	unsigned count = 130;
5471 
5472 	intr_window_requested = exec_controls_get(vmx) &
5473 				CPU_BASED_INTR_WINDOW_EXITING;
5474 
5475 	while (vmx->emulation_required && count-- != 0) {
5476 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5477 			return handle_interrupt_window(&vmx->vcpu);
5478 
5479 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5480 			return 1;
5481 
5482 		if (!kvm_emulate_instruction(vcpu, 0))
5483 			return 0;
5484 
5485 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5486 			kvm_prepare_emulation_failure_exit(vcpu);
5487 			return 0;
5488 		}
5489 
5490 		if (vcpu->arch.halt_request) {
5491 			vcpu->arch.halt_request = 0;
5492 			return kvm_emulate_halt_noskip(vcpu);
5493 		}
5494 
5495 		/*
5496 		 * Note, return 1 and not 0, vcpu_run() will invoke
5497 		 * xfer_to_guest_mode() which will create a proper return
5498 		 * code.
5499 		 */
5500 		if (__xfer_to_guest_mode_work_pending())
5501 			return 1;
5502 	}
5503 
5504 	return 1;
5505 }
5506 
5507 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5508 {
5509 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5510 		kvm_prepare_emulation_failure_exit(vcpu);
5511 		return 0;
5512 	}
5513 
5514 	return 1;
5515 }
5516 
5517 static void grow_ple_window(struct kvm_vcpu *vcpu)
5518 {
5519 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5520 	unsigned int old = vmx->ple_window;
5521 
5522 	vmx->ple_window = __grow_ple_window(old, ple_window,
5523 					    ple_window_grow,
5524 					    ple_window_max);
5525 
5526 	if (vmx->ple_window != old) {
5527 		vmx->ple_window_dirty = true;
5528 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5529 					    vmx->ple_window, old);
5530 	}
5531 }
5532 
5533 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5534 {
5535 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5536 	unsigned int old = vmx->ple_window;
5537 
5538 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5539 					      ple_window_shrink,
5540 					      ple_window);
5541 
5542 	if (vmx->ple_window != old) {
5543 		vmx->ple_window_dirty = true;
5544 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5545 					    vmx->ple_window, old);
5546 	}
5547 }
5548 
5549 /*
5550  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5551  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5552  */
5553 static int handle_pause(struct kvm_vcpu *vcpu)
5554 {
5555 	if (!kvm_pause_in_guest(vcpu->kvm))
5556 		grow_ple_window(vcpu);
5557 
5558 	/*
5559 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5560 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5561 	 * never set PAUSE_EXITING and just set PLE if supported,
5562 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5563 	 */
5564 	kvm_vcpu_on_spin(vcpu, true);
5565 	return kvm_skip_emulated_instruction(vcpu);
5566 }
5567 
5568 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5569 {
5570 	return 1;
5571 }
5572 
5573 static int handle_invpcid(struct kvm_vcpu *vcpu)
5574 {
5575 	u32 vmx_instruction_info;
5576 	unsigned long type;
5577 	gva_t gva;
5578 	struct {
5579 		u64 pcid;
5580 		u64 gla;
5581 	} operand;
5582 	int gpr_index;
5583 
5584 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5585 		kvm_queue_exception(vcpu, UD_VECTOR);
5586 		return 1;
5587 	}
5588 
5589 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5590 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5591 	type = kvm_register_read(vcpu, gpr_index);
5592 
5593 	/* According to the Intel instruction reference, the memory operand
5594 	 * is read even if it isn't needed (e.g., for type==all)
5595 	 */
5596 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5597 				vmx_instruction_info, false,
5598 				sizeof(operand), &gva))
5599 		return 1;
5600 
5601 	return kvm_handle_invpcid(vcpu, type, gva);
5602 }
5603 
5604 static int handle_pml_full(struct kvm_vcpu *vcpu)
5605 {
5606 	unsigned long exit_qualification;
5607 
5608 	trace_kvm_pml_full(vcpu->vcpu_id);
5609 
5610 	exit_qualification = vmx_get_exit_qual(vcpu);
5611 
5612 	/*
5613 	 * PML buffer FULL happened while executing iret from NMI,
5614 	 * "blocked by NMI" bit has to be set before next VM entry.
5615 	 */
5616 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5617 			enable_vnmi &&
5618 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5619 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5620 				GUEST_INTR_STATE_NMI);
5621 
5622 	/*
5623 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5624 	 * here.., and there's no userspace involvement needed for PML.
5625 	 */
5626 	return 1;
5627 }
5628 
5629 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5630 {
5631 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5632 
5633 	if (!vmx->req_immediate_exit &&
5634 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5635 		kvm_lapic_expired_hv_timer(vcpu);
5636 		return EXIT_FASTPATH_REENTER_GUEST;
5637 	}
5638 
5639 	return EXIT_FASTPATH_NONE;
5640 }
5641 
5642 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5643 {
5644 	handle_fastpath_preemption_timer(vcpu);
5645 	return 1;
5646 }
5647 
5648 /*
5649  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5650  * are overwritten by nested_vmx_setup() when nested=1.
5651  */
5652 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5653 {
5654 	kvm_queue_exception(vcpu, UD_VECTOR);
5655 	return 1;
5656 }
5657 
5658 #ifndef CONFIG_X86_SGX_KVM
5659 static int handle_encls(struct kvm_vcpu *vcpu)
5660 {
5661 	/*
5662 	 * SGX virtualization is disabled.  There is no software enable bit for
5663 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5664 	 * the guest from executing ENCLS (when SGX is supported by hardware).
5665 	 */
5666 	kvm_queue_exception(vcpu, UD_VECTOR);
5667 	return 1;
5668 }
5669 #endif /* CONFIG_X86_SGX_KVM */
5670 
5671 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5672 {
5673 	/*
5674 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5675 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
5676 	 * vmx_handle_exit().
5677 	 */
5678 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
5679 	return 1;
5680 }
5681 
5682 /*
5683  * The exit handlers return 1 if the exit was handled fully and guest execution
5684  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5685  * to be done to userspace and return 0.
5686  */
5687 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5688 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5689 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5690 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5691 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5692 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5693 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5694 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5695 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5696 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5697 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5698 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5699 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5700 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
5701 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5702 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5703 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5704 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5705 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5706 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5707 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5708 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5709 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5710 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5711 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5712 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5713 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5714 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5715 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5716 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5717 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5718 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5719 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5720 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5721 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5722 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5723 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5724 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5725 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5726 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
5727 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5728 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
5729 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5730 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5731 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
5732 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
5733 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5734 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5735 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5736 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5737 	[EXIT_REASON_ENCLS]		      = handle_encls,
5738 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5739 };
5740 
5741 static const int kvm_vmx_max_exit_handlers =
5742 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5743 
5744 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
5745 			      u64 *info1, u64 *info2,
5746 			      u32 *intr_info, u32 *error_code)
5747 {
5748 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5749 
5750 	*reason = vmx->exit_reason.full;
5751 	*info1 = vmx_get_exit_qual(vcpu);
5752 	if (!(vmx->exit_reason.failed_vmentry)) {
5753 		*info2 = vmx->idt_vectoring_info;
5754 		*intr_info = vmx_get_intr_info(vcpu);
5755 		if (is_exception_with_error_code(*intr_info))
5756 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5757 		else
5758 			*error_code = 0;
5759 	} else {
5760 		*info2 = 0;
5761 		*intr_info = 0;
5762 		*error_code = 0;
5763 	}
5764 }
5765 
5766 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5767 {
5768 	if (vmx->pml_pg) {
5769 		__free_page(vmx->pml_pg);
5770 		vmx->pml_pg = NULL;
5771 	}
5772 }
5773 
5774 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5775 {
5776 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5777 	u64 *pml_buf;
5778 	u16 pml_idx;
5779 
5780 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5781 
5782 	/* Do nothing if PML buffer is empty */
5783 	if (pml_idx == (PML_ENTITY_NUM - 1))
5784 		return;
5785 
5786 	/* PML index always points to next available PML buffer entity */
5787 	if (pml_idx >= PML_ENTITY_NUM)
5788 		pml_idx = 0;
5789 	else
5790 		pml_idx++;
5791 
5792 	pml_buf = page_address(vmx->pml_pg);
5793 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5794 		u64 gpa;
5795 
5796 		gpa = pml_buf[pml_idx];
5797 		WARN_ON(gpa & (PAGE_SIZE - 1));
5798 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5799 	}
5800 
5801 	/* reset PML index */
5802 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5803 }
5804 
5805 static void vmx_dump_sel(char *name, uint32_t sel)
5806 {
5807 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5808 	       name, vmcs_read16(sel),
5809 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5810 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5811 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5812 }
5813 
5814 static void vmx_dump_dtsel(char *name, uint32_t limit)
5815 {
5816 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5817 	       name, vmcs_read32(limit),
5818 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5819 }
5820 
5821 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5822 {
5823 	unsigned int i;
5824 	struct vmx_msr_entry *e;
5825 
5826 	pr_err("MSR %s:\n", name);
5827 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5828 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5829 }
5830 
5831 void dump_vmcs(struct kvm_vcpu *vcpu)
5832 {
5833 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5834 	u32 vmentry_ctl, vmexit_ctl;
5835 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5836 	unsigned long cr4;
5837 	int efer_slot;
5838 
5839 	if (!dump_invalid_vmcs) {
5840 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5841 		return;
5842 	}
5843 
5844 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5845 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5846 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5847 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5848 	cr4 = vmcs_readl(GUEST_CR4);
5849 	secondary_exec_control = 0;
5850 	if (cpu_has_secondary_exec_ctrls())
5851 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5852 
5853 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
5854 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
5855 	pr_err("*** Guest State ***\n");
5856 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5857 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5858 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5859 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5860 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5861 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5862 	if (cpu_has_vmx_ept()) {
5863 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5864 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5865 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5866 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5867 	}
5868 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5869 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5870 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5871 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5872 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5873 	       vmcs_readl(GUEST_SYSENTER_ESP),
5874 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5875 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5876 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5877 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5878 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5879 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5880 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5881 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5882 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5883 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5884 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5885 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5886 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5887 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5888 	else if (efer_slot >= 0)
5889 		pr_err("EFER= 0x%016llx (autoload)\n",
5890 		       vmx->msr_autoload.guest.val[efer_slot].value);
5891 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5892 		pr_err("EFER= 0x%016llx (effective)\n",
5893 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
5894 	else
5895 		pr_err("EFER= 0x%016llx (effective)\n",
5896 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5897 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5898 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5899 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5900 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5901 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5902 	if (cpu_has_load_perf_global_ctrl() &&
5903 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5904 		pr_err("PerfGlobCtl = 0x%016llx\n",
5905 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5906 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5907 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5908 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5909 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5910 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5911 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5912 		pr_err("InterruptStatus = %04x\n",
5913 		       vmcs_read16(GUEST_INTR_STATUS));
5914 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5915 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5916 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5917 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5918 
5919 	pr_err("*** Host State ***\n");
5920 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5921 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5922 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5923 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5924 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5925 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5926 	       vmcs_read16(HOST_TR_SELECTOR));
5927 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5928 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5929 	       vmcs_readl(HOST_TR_BASE));
5930 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5931 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5932 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5933 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5934 	       vmcs_readl(HOST_CR4));
5935 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5936 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5937 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5938 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5939 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
5940 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
5941 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
5942 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
5943 	if (cpu_has_load_perf_global_ctrl() &&
5944 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5945 		pr_err("PerfGlobCtl = 0x%016llx\n",
5946 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5947 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
5948 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
5949 
5950 	pr_err("*** Control State ***\n");
5951 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5952 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5953 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5954 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5955 	       vmcs_read32(EXCEPTION_BITMAP),
5956 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5957 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5958 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5959 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5960 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5961 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5962 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5963 	       vmcs_read32(VM_EXIT_INTR_INFO),
5964 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5965 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5966 	pr_err("        reason=%08x qualification=%016lx\n",
5967 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5968 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5969 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5970 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5971 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5972 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5973 		pr_err("TSC Multiplier = 0x%016llx\n",
5974 		       vmcs_read64(TSC_MULTIPLIER));
5975 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5976 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5977 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5978 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5979 		}
5980 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5981 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5982 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5983 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5984 	}
5985 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5986 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5987 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5988 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5989 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5990 		pr_err("PLE Gap=%08x Window=%08x\n",
5991 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5992 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5993 		pr_err("Virtual processor ID = 0x%04x\n",
5994 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5995 }
5996 
5997 /*
5998  * The guest has exited.  See if we can fix it or if we need userspace
5999  * assistance.
6000  */
6001 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6002 {
6003 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6004 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6005 	u32 vectoring_info = vmx->idt_vectoring_info;
6006 	u16 exit_handler_index;
6007 
6008 	/*
6009 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6010 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6011 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6012 	 * mode as if vcpus is in root mode, the PML buffer must has been
6013 	 * flushed already.  Note, PML is never enabled in hardware while
6014 	 * running L2.
6015 	 */
6016 	if (enable_pml && !is_guest_mode(vcpu))
6017 		vmx_flush_pml_buffer(vcpu);
6018 
6019 	/*
6020 	 * KVM should never reach this point with a pending nested VM-Enter.
6021 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6022 	 * invalid guest state should never happen as that means KVM knowingly
6023 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6024 	 */
6025 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6026 		return -EIO;
6027 
6028 	if (is_guest_mode(vcpu)) {
6029 		/*
6030 		 * PML is never enabled when running L2, bail immediately if a
6031 		 * PML full exit occurs as something is horribly wrong.
6032 		 */
6033 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6034 			goto unexpected_vmexit;
6035 
6036 		/*
6037 		 * The host physical addresses of some pages of guest memory
6038 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6039 		 * Page). The CPU may write to these pages via their host
6040 		 * physical address while L2 is running, bypassing any
6041 		 * address-translation-based dirty tracking (e.g. EPT write
6042 		 * protection).
6043 		 *
6044 		 * Mark them dirty on every exit from L2 to prevent them from
6045 		 * getting out of sync with dirty tracking.
6046 		 */
6047 		nested_mark_vmcs12_pages_dirty(vcpu);
6048 
6049 		/*
6050 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6051 		 * operation, nested VM-Enter rejects any attempt to enter L2
6052 		 * with invalid state.  However, those checks are skipped if
6053 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6054 		 * L2 state is invalid, it means either L1 modified SMRAM state
6055 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6056 		 * doing so is architecturally allowed in the RSM case, and is
6057 		 * the least awful solution for the userspace case without
6058 		 * risking false positives.
6059 		 */
6060 		if (vmx->emulation_required) {
6061 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6062 			return 1;
6063 		}
6064 
6065 		if (nested_vmx_reflect_vmexit(vcpu))
6066 			return 1;
6067 	}
6068 
6069 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6070 	if (vmx->emulation_required)
6071 		return handle_invalid_guest_state(vcpu);
6072 
6073 	if (exit_reason.failed_vmentry) {
6074 		dump_vmcs(vcpu);
6075 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6076 		vcpu->run->fail_entry.hardware_entry_failure_reason
6077 			= exit_reason.full;
6078 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6079 		return 0;
6080 	}
6081 
6082 	if (unlikely(vmx->fail)) {
6083 		dump_vmcs(vcpu);
6084 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6085 		vcpu->run->fail_entry.hardware_entry_failure_reason
6086 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6087 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6088 		return 0;
6089 	}
6090 
6091 	/*
6092 	 * Note:
6093 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6094 	 * delivery event since it indicates guest is accessing MMIO.
6095 	 * The vm-exit can be triggered again after return to guest that
6096 	 * will cause infinite loop.
6097 	 */
6098 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6099 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6100 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6101 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6102 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6103 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6104 		int ndata = 3;
6105 
6106 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6107 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6108 		vcpu->run->internal.data[0] = vectoring_info;
6109 		vcpu->run->internal.data[1] = exit_reason.full;
6110 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6111 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6112 			vcpu->run->internal.data[ndata++] =
6113 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6114 		}
6115 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6116 		vcpu->run->internal.ndata = ndata;
6117 		return 0;
6118 	}
6119 
6120 	if (unlikely(!enable_vnmi &&
6121 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6122 		if (!vmx_interrupt_blocked(vcpu)) {
6123 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6124 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6125 			   vcpu->arch.nmi_pending) {
6126 			/*
6127 			 * This CPU don't support us in finding the end of an
6128 			 * NMI-blocked window if the guest runs with IRQs
6129 			 * disabled. So we pull the trigger after 1 s of
6130 			 * futile waiting, but inform the user about this.
6131 			 */
6132 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6133 			       "state on VCPU %d after 1 s timeout\n",
6134 			       __func__, vcpu->vcpu_id);
6135 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6136 		}
6137 	}
6138 
6139 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6140 		return 1;
6141 
6142 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6143 		goto unexpected_vmexit;
6144 #ifdef CONFIG_RETPOLINE
6145 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6146 		return kvm_emulate_wrmsr(vcpu);
6147 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6148 		return handle_preemption_timer(vcpu);
6149 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6150 		return handle_interrupt_window(vcpu);
6151 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6152 		return handle_external_interrupt(vcpu);
6153 	else if (exit_reason.basic == EXIT_REASON_HLT)
6154 		return kvm_emulate_halt(vcpu);
6155 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6156 		return handle_ept_misconfig(vcpu);
6157 #endif
6158 
6159 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6160 						kvm_vmx_max_exit_handlers);
6161 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6162 		goto unexpected_vmexit;
6163 
6164 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6165 
6166 unexpected_vmexit:
6167 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6168 		    exit_reason.full);
6169 	dump_vmcs(vcpu);
6170 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6171 	vcpu->run->internal.suberror =
6172 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6173 	vcpu->run->internal.ndata = 2;
6174 	vcpu->run->internal.data[0] = exit_reason.full;
6175 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6176 	return 0;
6177 }
6178 
6179 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6180 {
6181 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6182 
6183 	/*
6184 	 * Exit to user space when bus lock detected to inform that there is
6185 	 * a bus lock in guest.
6186 	 */
6187 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6188 		if (ret > 0)
6189 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6190 
6191 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6192 		return 0;
6193 	}
6194 	return ret;
6195 }
6196 
6197 /*
6198  * Software based L1D cache flush which is used when microcode providing
6199  * the cache control MSR is not loaded.
6200  *
6201  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6202  * flush it is required to read in 64 KiB because the replacement algorithm
6203  * is not exactly LRU. This could be sized at runtime via topology
6204  * information but as all relevant affected CPUs have 32KiB L1D cache size
6205  * there is no point in doing so.
6206  */
6207 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6208 {
6209 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6210 
6211 	/*
6212 	 * This code is only executed when the the flush mode is 'cond' or
6213 	 * 'always'
6214 	 */
6215 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6216 		bool flush_l1d;
6217 
6218 		/*
6219 		 * Clear the per-vcpu flush bit, it gets set again
6220 		 * either from vcpu_run() or from one of the unsafe
6221 		 * VMEXIT handlers.
6222 		 */
6223 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6224 		vcpu->arch.l1tf_flush_l1d = false;
6225 
6226 		/*
6227 		 * Clear the per-cpu flush bit, it gets set again from
6228 		 * the interrupt handlers.
6229 		 */
6230 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6231 		kvm_clear_cpu_l1tf_flush_l1d();
6232 
6233 		if (!flush_l1d)
6234 			return;
6235 	}
6236 
6237 	vcpu->stat.l1d_flush++;
6238 
6239 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6240 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6241 		return;
6242 	}
6243 
6244 	asm volatile(
6245 		/* First ensure the pages are in the TLB */
6246 		"xorl	%%eax, %%eax\n"
6247 		".Lpopulate_tlb:\n\t"
6248 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6249 		"addl	$4096, %%eax\n\t"
6250 		"cmpl	%%eax, %[size]\n\t"
6251 		"jne	.Lpopulate_tlb\n\t"
6252 		"xorl	%%eax, %%eax\n\t"
6253 		"cpuid\n\t"
6254 		/* Now fill the cache */
6255 		"xorl	%%eax, %%eax\n"
6256 		".Lfill_cache:\n"
6257 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6258 		"addl	$64, %%eax\n\t"
6259 		"cmpl	%%eax, %[size]\n\t"
6260 		"jne	.Lfill_cache\n\t"
6261 		"lfence\n"
6262 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6263 		    [size] "r" (size)
6264 		: "eax", "ebx", "ecx", "edx");
6265 }
6266 
6267 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6268 {
6269 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6270 	int tpr_threshold;
6271 
6272 	if (is_guest_mode(vcpu) &&
6273 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6274 		return;
6275 
6276 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6277 	if (is_guest_mode(vcpu))
6278 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6279 	else
6280 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6281 }
6282 
6283 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6284 {
6285 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6286 	u32 sec_exec_control;
6287 
6288 	if (!lapic_in_kernel(vcpu))
6289 		return;
6290 
6291 	if (!flexpriority_enabled &&
6292 	    !cpu_has_vmx_virtualize_x2apic_mode())
6293 		return;
6294 
6295 	/* Postpone execution until vmcs01 is the current VMCS. */
6296 	if (is_guest_mode(vcpu)) {
6297 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6298 		return;
6299 	}
6300 
6301 	sec_exec_control = secondary_exec_controls_get(vmx);
6302 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6303 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6304 
6305 	switch (kvm_get_apic_mode(vcpu)) {
6306 	case LAPIC_MODE_INVALID:
6307 		WARN_ONCE(true, "Invalid local APIC state");
6308 		break;
6309 	case LAPIC_MODE_DISABLED:
6310 		break;
6311 	case LAPIC_MODE_XAPIC:
6312 		if (flexpriority_enabled) {
6313 			sec_exec_control |=
6314 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6315 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6316 
6317 			/*
6318 			 * Flush the TLB, reloading the APIC access page will
6319 			 * only do so if its physical address has changed, but
6320 			 * the guest may have inserted a non-APIC mapping into
6321 			 * the TLB while the APIC access page was disabled.
6322 			 */
6323 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6324 		}
6325 		break;
6326 	case LAPIC_MODE_X2APIC:
6327 		if (cpu_has_vmx_virtualize_x2apic_mode())
6328 			sec_exec_control |=
6329 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6330 		break;
6331 	}
6332 	secondary_exec_controls_set(vmx, sec_exec_control);
6333 
6334 	vmx_update_msr_bitmap_x2apic(vcpu);
6335 }
6336 
6337 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6338 {
6339 	struct page *page;
6340 
6341 	/* Defer reload until vmcs01 is the current VMCS. */
6342 	if (is_guest_mode(vcpu)) {
6343 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6344 		return;
6345 	}
6346 
6347 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6348 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6349 		return;
6350 
6351 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6352 	if (is_error_page(page))
6353 		return;
6354 
6355 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6356 	vmx_flush_tlb_current(vcpu);
6357 
6358 	/*
6359 	 * Do not pin apic access page in memory, the MMU notifier
6360 	 * will call us again if it is migrated or swapped out.
6361 	 */
6362 	put_page(page);
6363 }
6364 
6365 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6366 {
6367 	u16 status;
6368 	u8 old;
6369 
6370 	if (max_isr == -1)
6371 		max_isr = 0;
6372 
6373 	status = vmcs_read16(GUEST_INTR_STATUS);
6374 	old = status >> 8;
6375 	if (max_isr != old) {
6376 		status &= 0xff;
6377 		status |= max_isr << 8;
6378 		vmcs_write16(GUEST_INTR_STATUS, status);
6379 	}
6380 }
6381 
6382 static void vmx_set_rvi(int vector)
6383 {
6384 	u16 status;
6385 	u8 old;
6386 
6387 	if (vector == -1)
6388 		vector = 0;
6389 
6390 	status = vmcs_read16(GUEST_INTR_STATUS);
6391 	old = (u8)status & 0xff;
6392 	if ((u8)vector != old) {
6393 		status &= ~0xff;
6394 		status |= (u8)vector;
6395 		vmcs_write16(GUEST_INTR_STATUS, status);
6396 	}
6397 }
6398 
6399 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6400 {
6401 	/*
6402 	 * When running L2, updating RVI is only relevant when
6403 	 * vmcs12 virtual-interrupt-delivery enabled.
6404 	 * However, it can be enabled only when L1 also
6405 	 * intercepts external-interrupts and in that case
6406 	 * we should not update vmcs02 RVI but instead intercept
6407 	 * interrupt. Therefore, do nothing when running L2.
6408 	 */
6409 	if (!is_guest_mode(vcpu))
6410 		vmx_set_rvi(max_irr);
6411 }
6412 
6413 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6414 {
6415 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6416 	int max_irr;
6417 	bool got_posted_interrupt;
6418 
6419 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6420 		return -EIO;
6421 
6422 	if (pi_test_on(&vmx->pi_desc)) {
6423 		pi_clear_on(&vmx->pi_desc);
6424 		/*
6425 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6426 		 * But on x86 this is just a compiler barrier anyway.
6427 		 */
6428 		smp_mb__after_atomic();
6429 		got_posted_interrupt =
6430 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6431 	} else {
6432 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6433 		got_posted_interrupt = false;
6434 	}
6435 
6436 	/*
6437 	 * Newly recognized interrupts are injected via either virtual interrupt
6438 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6439 	 * disabled in two cases:
6440 	 *
6441 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6442 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6443 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6444 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6445 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6446 	 *
6447 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6448 	 * attempt to post interrupts.  The posted interrupt vector will cause
6449 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6450 	 */
6451 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6452 		vmx_set_rvi(max_irr);
6453 	else if (got_posted_interrupt)
6454 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6455 
6456 	return max_irr;
6457 }
6458 
6459 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6460 {
6461 	if (!kvm_vcpu_apicv_active(vcpu))
6462 		return;
6463 
6464 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6465 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6466 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6467 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6468 }
6469 
6470 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6471 {
6472 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6473 
6474 	pi_clear_on(&vmx->pi_desc);
6475 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6476 }
6477 
6478 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6479 
6480 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6481 					unsigned long entry)
6482 {
6483 	bool is_nmi = entry == (unsigned long)asm_exc_nmi_noist;
6484 
6485 	kvm_before_interrupt(vcpu, is_nmi ? KVM_HANDLING_NMI : KVM_HANDLING_IRQ);
6486 	vmx_do_interrupt_nmi_irqoff(entry);
6487 	kvm_after_interrupt(vcpu);
6488 }
6489 
6490 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6491 {
6492 	/*
6493 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6494 	 * MSR value is not clobbered by the host activity before the guest
6495 	 * has chance to consume it.
6496 	 *
6497 	 * Do not blindly read xfd_err here, since this exception might
6498 	 * be caused by L1 interception on a platform which doesn't
6499 	 * support xfd at all.
6500 	 *
6501 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6502 	 * only when xfd contains a non-zero value.
6503 	 *
6504 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6505 	 */
6506 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6507 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6508 }
6509 
6510 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6511 {
6512 	const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6513 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6514 
6515 	/* if exit due to PF check for async PF */
6516 	if (is_page_fault(intr_info))
6517 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6518 	/* if exit due to NM, handle before interrupts are enabled */
6519 	else if (is_nm_fault(intr_info))
6520 		handle_nm_fault_irqoff(&vmx->vcpu);
6521 	/* Handle machine checks before interrupts are enabled */
6522 	else if (is_machine_check(intr_info))
6523 		kvm_machine_check();
6524 	/* We need to handle NMIs before interrupts are enabled */
6525 	else if (is_nmi(intr_info))
6526 		handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6527 }
6528 
6529 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6530 {
6531 	u32 intr_info = vmx_get_intr_info(vcpu);
6532 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6533 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6534 
6535 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6536 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6537 		return;
6538 
6539 	handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6540 }
6541 
6542 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6543 {
6544 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6545 
6546 	if (vmx->emulation_required)
6547 		return;
6548 
6549 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6550 		handle_external_interrupt_irqoff(vcpu);
6551 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6552 		handle_exception_nmi_irqoff(vmx);
6553 }
6554 
6555 /*
6556  * The kvm parameter can be NULL (module initialization, or invocation before
6557  * VM creation). Be sure to check the kvm parameter before using it.
6558  */
6559 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6560 {
6561 	switch (index) {
6562 	case MSR_IA32_SMBASE:
6563 		/*
6564 		 * We cannot do SMM unless we can run the guest in big
6565 		 * real mode.
6566 		 */
6567 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6568 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6569 		return nested;
6570 	case MSR_AMD64_VIRT_SPEC_CTRL:
6571 	case MSR_AMD64_TSC_RATIO:
6572 		/* This is AMD only.  */
6573 		return false;
6574 	default:
6575 		return true;
6576 	}
6577 }
6578 
6579 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6580 {
6581 	u32 exit_intr_info;
6582 	bool unblock_nmi;
6583 	u8 vector;
6584 	bool idtv_info_valid;
6585 
6586 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6587 
6588 	if (enable_vnmi) {
6589 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6590 			return;
6591 
6592 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6593 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6594 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6595 		/*
6596 		 * SDM 3: 27.7.1.2 (September 2008)
6597 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6598 		 * a guest IRET fault.
6599 		 * SDM 3: 23.2.2 (September 2008)
6600 		 * Bit 12 is undefined in any of the following cases:
6601 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6602 		 *   information field.
6603 		 *  If the VM exit is due to a double fault.
6604 		 */
6605 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6606 		    vector != DF_VECTOR && !idtv_info_valid)
6607 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6608 				      GUEST_INTR_STATE_NMI);
6609 		else
6610 			vmx->loaded_vmcs->nmi_known_unmasked =
6611 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6612 				  & GUEST_INTR_STATE_NMI);
6613 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6614 		vmx->loaded_vmcs->vnmi_blocked_time +=
6615 			ktime_to_ns(ktime_sub(ktime_get(),
6616 					      vmx->loaded_vmcs->entry_time));
6617 }
6618 
6619 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6620 				      u32 idt_vectoring_info,
6621 				      int instr_len_field,
6622 				      int error_code_field)
6623 {
6624 	u8 vector;
6625 	int type;
6626 	bool idtv_info_valid;
6627 
6628 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6629 
6630 	vcpu->arch.nmi_injected = false;
6631 	kvm_clear_exception_queue(vcpu);
6632 	kvm_clear_interrupt_queue(vcpu);
6633 
6634 	if (!idtv_info_valid)
6635 		return;
6636 
6637 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6638 
6639 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6640 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6641 
6642 	switch (type) {
6643 	case INTR_TYPE_NMI_INTR:
6644 		vcpu->arch.nmi_injected = true;
6645 		/*
6646 		 * SDM 3: 27.7.1.2 (September 2008)
6647 		 * Clear bit "block by NMI" before VM entry if a NMI
6648 		 * delivery faulted.
6649 		 */
6650 		vmx_set_nmi_mask(vcpu, false);
6651 		break;
6652 	case INTR_TYPE_SOFT_EXCEPTION:
6653 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6654 		fallthrough;
6655 	case INTR_TYPE_HARD_EXCEPTION:
6656 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6657 			u32 err = vmcs_read32(error_code_field);
6658 			kvm_requeue_exception_e(vcpu, vector, err);
6659 		} else
6660 			kvm_requeue_exception(vcpu, vector);
6661 		break;
6662 	case INTR_TYPE_SOFT_INTR:
6663 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6664 		fallthrough;
6665 	case INTR_TYPE_EXT_INTR:
6666 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6667 		break;
6668 	default:
6669 		break;
6670 	}
6671 }
6672 
6673 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6674 {
6675 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6676 				  VM_EXIT_INSTRUCTION_LEN,
6677 				  IDT_VECTORING_ERROR_CODE);
6678 }
6679 
6680 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6681 {
6682 	__vmx_complete_interrupts(vcpu,
6683 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6684 				  VM_ENTRY_INSTRUCTION_LEN,
6685 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6686 
6687 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6688 }
6689 
6690 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6691 {
6692 	int i, nr_msrs;
6693 	struct perf_guest_switch_msr *msrs;
6694 
6695 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6696 	msrs = perf_guest_get_msrs(&nr_msrs);
6697 	if (!msrs)
6698 		return;
6699 
6700 	for (i = 0; i < nr_msrs; i++)
6701 		if (msrs[i].host == msrs[i].guest)
6702 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6703 		else
6704 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6705 					msrs[i].host, false);
6706 }
6707 
6708 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6709 {
6710 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6711 	u64 tscl;
6712 	u32 delta_tsc;
6713 
6714 	if (vmx->req_immediate_exit) {
6715 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6716 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6717 	} else if (vmx->hv_deadline_tsc != -1) {
6718 		tscl = rdtsc();
6719 		if (vmx->hv_deadline_tsc > tscl)
6720 			/* set_hv_timer ensures the delta fits in 32-bits */
6721 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6722 				cpu_preemption_timer_multi);
6723 		else
6724 			delta_tsc = 0;
6725 
6726 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6727 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6728 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6729 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6730 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6731 	}
6732 }
6733 
6734 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6735 {
6736 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6737 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6738 		vmcs_writel(HOST_RSP, host_rsp);
6739 	}
6740 }
6741 
6742 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6743 {
6744 	switch (to_vmx(vcpu)->exit_reason.basic) {
6745 	case EXIT_REASON_MSR_WRITE:
6746 		return handle_fastpath_set_msr_irqoff(vcpu);
6747 	case EXIT_REASON_PREEMPTION_TIMER:
6748 		return handle_fastpath_preemption_timer(vcpu);
6749 	default:
6750 		return EXIT_FASTPATH_NONE;
6751 	}
6752 }
6753 
6754 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6755 					struct vcpu_vmx *vmx)
6756 {
6757 	kvm_guest_enter_irqoff();
6758 
6759 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6760 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6761 		vmx_l1d_flush(vcpu);
6762 	else if (static_branch_unlikely(&mds_user_clear))
6763 		mds_clear_cpu_buffers();
6764 
6765 	if (vcpu->arch.cr2 != native_read_cr2())
6766 		native_write_cr2(vcpu->arch.cr2);
6767 
6768 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6769 				   vmx->loaded_vmcs->launched);
6770 
6771 	vcpu->arch.cr2 = native_read_cr2();
6772 
6773 	kvm_guest_exit_irqoff();
6774 }
6775 
6776 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6777 {
6778 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6779 	unsigned long cr4;
6780 
6781 	/* Record the guest's net vcpu time for enforced NMI injections. */
6782 	if (unlikely(!enable_vnmi &&
6783 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6784 		vmx->loaded_vmcs->entry_time = ktime_get();
6785 
6786 	/*
6787 	 * Don't enter VMX if guest state is invalid, let the exit handler
6788 	 * start emulation until we arrive back to a valid state.  Synthesize a
6789 	 * consistency check VM-Exit due to invalid guest state and bail.
6790 	 */
6791 	if (unlikely(vmx->emulation_required)) {
6792 		vmx->fail = 0;
6793 
6794 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
6795 		vmx->exit_reason.failed_vmentry = 1;
6796 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
6797 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
6798 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
6799 		vmx->exit_intr_info = 0;
6800 		return EXIT_FASTPATH_NONE;
6801 	}
6802 
6803 	trace_kvm_entry(vcpu);
6804 
6805 	if (vmx->ple_window_dirty) {
6806 		vmx->ple_window_dirty = false;
6807 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6808 	}
6809 
6810 	/*
6811 	 * We did this in prepare_switch_to_guest, because it needs to
6812 	 * be within srcu_read_lock.
6813 	 */
6814 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6815 
6816 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6817 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6818 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6819 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6820 	vcpu->arch.regs_dirty = 0;
6821 
6822 	cr4 = cr4_read_shadow();
6823 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6824 		vmcs_writel(HOST_CR4, cr4);
6825 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6826 	}
6827 
6828 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
6829 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
6830 		set_debugreg(vcpu->arch.dr6, 6);
6831 
6832 	/* When single-stepping over STI and MOV SS, we must clear the
6833 	 * corresponding interruptibility bits in the guest state. Otherwise
6834 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6835 	 * exceptions being set, but that's not correct for the guest debugging
6836 	 * case. */
6837 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6838 		vmx_set_interrupt_shadow(vcpu, 0);
6839 
6840 	kvm_load_guest_xsave_state(vcpu);
6841 
6842 	pt_guest_enter(vmx);
6843 
6844 	atomic_switch_perf_msrs(vmx);
6845 	if (intel_pmu_lbr_is_enabled(vcpu))
6846 		vmx_passthrough_lbr_msrs(vcpu);
6847 
6848 	if (enable_preemption_timer)
6849 		vmx_update_hv_timer(vcpu);
6850 
6851 	kvm_wait_lapic_expire(vcpu);
6852 
6853 	/*
6854 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6855 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6856 	 * is no need to worry about the conditional branch over the wrmsr
6857 	 * being speculatively taken.
6858 	 */
6859 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6860 
6861 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
6862 	vmx_vcpu_enter_exit(vcpu, vmx);
6863 
6864 	/*
6865 	 * We do not use IBRS in the kernel. If this vCPU has used the
6866 	 * SPEC_CTRL MSR it may have left it on; save the value and
6867 	 * turn it off. This is much more efficient than blindly adding
6868 	 * it to the atomic save/restore list. Especially as the former
6869 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6870 	 *
6871 	 * For non-nested case:
6872 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6873 	 * save it.
6874 	 *
6875 	 * For nested case:
6876 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6877 	 * save it.
6878 	 */
6879 	if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
6880 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6881 
6882 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6883 
6884 	/* All fields are clean at this point */
6885 	if (static_branch_unlikely(&enable_evmcs)) {
6886 		current_evmcs->hv_clean_fields |=
6887 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6888 
6889 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6890 	}
6891 
6892 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6893 	if (vmx->host_debugctlmsr)
6894 		update_debugctlmsr(vmx->host_debugctlmsr);
6895 
6896 #ifndef CONFIG_X86_64
6897 	/*
6898 	 * The sysexit path does not restore ds/es, so we must set them to
6899 	 * a reasonable value ourselves.
6900 	 *
6901 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6902 	 * function may be executed in interrupt context, which saves and
6903 	 * restore segments around it, nullifying its effect.
6904 	 */
6905 	loadsegment(ds, __USER_DS);
6906 	loadsegment(es, __USER_DS);
6907 #endif
6908 
6909 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
6910 
6911 	pt_guest_exit(vmx);
6912 
6913 	kvm_load_host_xsave_state(vcpu);
6914 
6915 	if (is_guest_mode(vcpu)) {
6916 		/*
6917 		 * Track VMLAUNCH/VMRESUME that have made past guest state
6918 		 * checking.
6919 		 */
6920 		if (vmx->nested.nested_run_pending &&
6921 		    !vmx->exit_reason.failed_vmentry)
6922 			++vcpu->stat.nested_run;
6923 
6924 		vmx->nested.nested_run_pending = 0;
6925 	}
6926 
6927 	vmx->idt_vectoring_info = 0;
6928 
6929 	if (unlikely(vmx->fail)) {
6930 		vmx->exit_reason.full = 0xdead;
6931 		return EXIT_FASTPATH_NONE;
6932 	}
6933 
6934 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6935 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6936 		kvm_machine_check();
6937 
6938 	if (likely(!vmx->exit_reason.failed_vmentry))
6939 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6940 
6941 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
6942 
6943 	if (unlikely(vmx->exit_reason.failed_vmentry))
6944 		return EXIT_FASTPATH_NONE;
6945 
6946 	vmx->loaded_vmcs->launched = 1;
6947 
6948 	vmx_recover_nmi_blocking(vmx);
6949 	vmx_complete_interrupts(vmx);
6950 
6951 	if (is_guest_mode(vcpu))
6952 		return EXIT_FASTPATH_NONE;
6953 
6954 	return vmx_exit_handlers_fastpath(vcpu);
6955 }
6956 
6957 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6958 {
6959 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6960 
6961 	if (enable_pml)
6962 		vmx_destroy_pml_buffer(vmx);
6963 	free_vpid(vmx->vpid);
6964 	nested_vmx_free_vcpu(vcpu);
6965 	free_loaded_vmcs(vmx->loaded_vmcs);
6966 }
6967 
6968 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6969 {
6970 	struct vmx_uret_msr *tsx_ctrl;
6971 	struct vcpu_vmx *vmx;
6972 	int i, err;
6973 
6974 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6975 	vmx = to_vmx(vcpu);
6976 
6977 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
6978 
6979 	err = -ENOMEM;
6980 
6981 	vmx->vpid = allocate_vpid();
6982 
6983 	/*
6984 	 * If PML is turned on, failure on enabling PML just results in failure
6985 	 * of creating the vcpu, therefore we can simplify PML logic (by
6986 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6987 	 * for the guest), etc.
6988 	 */
6989 	if (enable_pml) {
6990 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6991 		if (!vmx->pml_pg)
6992 			goto free_vpid;
6993 	}
6994 
6995 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
6996 		vmx->guest_uret_msrs[i].mask = -1ull;
6997 	if (boot_cpu_has(X86_FEATURE_RTM)) {
6998 		/*
6999 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7000 		 * Keep the host value unchanged to avoid changing CPUID bits
7001 		 * under the host kernel's feet.
7002 		 */
7003 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7004 		if (tsx_ctrl)
7005 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7006 	}
7007 
7008 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7009 	if (err < 0)
7010 		goto free_pml;
7011 
7012 	/*
7013 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7014 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7015 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7016 	 * performance benefits from enabling it for vmcs02.
7017 	 */
7018 	if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) &&
7019 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7020 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7021 
7022 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7023 	}
7024 
7025 	/* The MSR bitmap starts with all ones */
7026 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7027 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7028 
7029 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7030 #ifdef CONFIG_X86_64
7031 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7032 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7033 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7034 #endif
7035 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7036 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7037 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7038 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7039 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7040 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7041 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7042 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7043 	}
7044 
7045 	vmx->loaded_vmcs = &vmx->vmcs01;
7046 
7047 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7048 		err = alloc_apic_access_page(vcpu->kvm);
7049 		if (err)
7050 			goto free_vmcs;
7051 	}
7052 
7053 	if (enable_ept && !enable_unrestricted_guest) {
7054 		err = init_rmode_identity_map(vcpu->kvm);
7055 		if (err)
7056 			goto free_vmcs;
7057 	}
7058 
7059 	return 0;
7060 
7061 free_vmcs:
7062 	free_loaded_vmcs(vmx->loaded_vmcs);
7063 free_pml:
7064 	vmx_destroy_pml_buffer(vmx);
7065 free_vpid:
7066 	free_vpid(vmx->vpid);
7067 	return err;
7068 }
7069 
7070 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7071 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7072 
7073 static int vmx_vm_init(struct kvm *kvm)
7074 {
7075 	if (!ple_gap)
7076 		kvm->arch.pause_in_guest = true;
7077 
7078 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7079 		switch (l1tf_mitigation) {
7080 		case L1TF_MITIGATION_OFF:
7081 		case L1TF_MITIGATION_FLUSH_NOWARN:
7082 			/* 'I explicitly don't care' is set */
7083 			break;
7084 		case L1TF_MITIGATION_FLUSH:
7085 		case L1TF_MITIGATION_FLUSH_NOSMT:
7086 		case L1TF_MITIGATION_FULL:
7087 			/*
7088 			 * Warn upon starting the first VM in a potentially
7089 			 * insecure environment.
7090 			 */
7091 			if (sched_smt_active())
7092 				pr_warn_once(L1TF_MSG_SMT);
7093 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7094 				pr_warn_once(L1TF_MSG_L1D);
7095 			break;
7096 		case L1TF_MITIGATION_FULL_FORCE:
7097 			/* Flush is enforced */
7098 			break;
7099 		}
7100 	}
7101 	return 0;
7102 }
7103 
7104 static int __init vmx_check_processor_compat(void)
7105 {
7106 	struct vmcs_config vmcs_conf;
7107 	struct vmx_capability vmx_cap;
7108 
7109 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7110 	    !this_cpu_has(X86_FEATURE_VMX)) {
7111 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7112 		return -EIO;
7113 	}
7114 
7115 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7116 		return -EIO;
7117 	if (nested)
7118 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7119 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7120 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7121 				smp_processor_id());
7122 		return -EIO;
7123 	}
7124 	return 0;
7125 }
7126 
7127 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7128 {
7129 	u8 cache;
7130 
7131 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7132 	 * memory aliases with conflicting memory types and sometimes MCEs.
7133 	 * We have to be careful as to what are honored and when.
7134 	 *
7135 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7136 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7137 	 * This was historically the source of MCEs and we want to be
7138 	 * conservative.
7139 	 *
7140 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7141 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7142 	 * EPT memory type is set to WB.  The effective memory type is forced
7143 	 * WB.
7144 	 *
7145 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7146 	 * EPT memory type is used to emulate guest CD/MTRR.
7147 	 */
7148 
7149 	if (is_mmio)
7150 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7151 
7152 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7153 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7154 
7155 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7156 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7157 			cache = MTRR_TYPE_WRBACK;
7158 		else
7159 			cache = MTRR_TYPE_UNCACHABLE;
7160 
7161 		return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7162 	}
7163 
7164 	return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7165 }
7166 
7167 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7168 {
7169 	/*
7170 	 * These bits in the secondary execution controls field
7171 	 * are dynamic, the others are mostly based on the hypervisor
7172 	 * architecture and the guest's CPUID.  Do not touch the
7173 	 * dynamic bits.
7174 	 */
7175 	u32 mask =
7176 		SECONDARY_EXEC_SHADOW_VMCS |
7177 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7178 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7179 		SECONDARY_EXEC_DESC;
7180 
7181 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7182 
7183 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7184 }
7185 
7186 /*
7187  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7188  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7189  */
7190 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7191 {
7192 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7193 	struct kvm_cpuid_entry2 *entry;
7194 
7195 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7196 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7197 
7198 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7199 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7200 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7201 } while (0)
7202 
7203 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7204 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7205 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7206 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7207 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7208 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7209 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7210 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7211 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7212 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7213 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7214 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7215 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7216 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7217 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7218 
7219 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7220 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7221 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7222 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7223 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7224 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7225 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7226 
7227 #undef cr4_fixed1_update
7228 }
7229 
7230 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7231 {
7232 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7233 
7234 	if (kvm_mpx_supported()) {
7235 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7236 
7237 		if (mpx_enabled) {
7238 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7239 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7240 		} else {
7241 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7242 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7243 		}
7244 	}
7245 }
7246 
7247 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7248 {
7249 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7250 	struct kvm_cpuid_entry2 *best = NULL;
7251 	int i;
7252 
7253 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7254 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7255 		if (!best)
7256 			return;
7257 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7258 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7259 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7260 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7261 	}
7262 
7263 	/* Get the number of configurable Address Ranges for filtering */
7264 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7265 						PT_CAP_num_address_ranges);
7266 
7267 	/* Initialize and clear the no dependency bits */
7268 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7269 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7270 			RTIT_CTL_BRANCH_EN);
7271 
7272 	/*
7273 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7274 	 * will inject an #GP
7275 	 */
7276 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7277 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7278 
7279 	/*
7280 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7281 	 * PSBFreq can be set
7282 	 */
7283 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7284 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7285 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7286 
7287 	/*
7288 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7289 	 */
7290 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7291 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7292 					      RTIT_CTL_MTC_RANGE);
7293 
7294 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7295 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7296 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7297 							RTIT_CTL_PTW_EN);
7298 
7299 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7300 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7301 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7302 
7303 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7304 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7305 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7306 
7307 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7308 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7309 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7310 
7311 	/* unmask address range configure area */
7312 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7313 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7314 }
7315 
7316 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7317 {
7318 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7319 
7320 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7321 	vcpu->arch.xsaves_enabled = false;
7322 
7323 	vmx_setup_uret_msrs(vmx);
7324 
7325 	if (cpu_has_secondary_exec_ctrls())
7326 		vmcs_set_secondary_exec_control(vmx,
7327 						vmx_secondary_exec_control(vmx));
7328 
7329 	if (nested_vmx_allowed(vcpu))
7330 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7331 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7332 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7333 	else
7334 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7335 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7336 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7337 
7338 	if (nested_vmx_allowed(vcpu)) {
7339 		nested_vmx_cr_fixed1_bits_update(vcpu);
7340 		nested_vmx_entry_exit_ctls_update(vcpu);
7341 	}
7342 
7343 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7344 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7345 		update_intel_pt_cfg(vcpu);
7346 
7347 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7348 		struct vmx_uret_msr *msr;
7349 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7350 		if (msr) {
7351 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7352 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7353 		}
7354 	}
7355 
7356 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7357 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7358 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7359 
7360 
7361 	set_cr4_guest_host_mask(vmx);
7362 
7363 	vmx_write_encls_bitmap(vcpu, NULL);
7364 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7365 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7366 	else
7367 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7368 
7369 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7370 		vmx->msr_ia32_feature_control_valid_bits |=
7371 			FEAT_CTL_SGX_LC_ENABLED;
7372 	else
7373 		vmx->msr_ia32_feature_control_valid_bits &=
7374 			~FEAT_CTL_SGX_LC_ENABLED;
7375 
7376 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7377 	vmx_update_exception_bitmap(vcpu);
7378 }
7379 
7380 static __init void vmx_set_cpu_caps(void)
7381 {
7382 	kvm_set_cpu_caps();
7383 
7384 	/* CPUID 0x1 */
7385 	if (nested)
7386 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7387 
7388 	/* CPUID 0x7 */
7389 	if (kvm_mpx_supported())
7390 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7391 	if (!cpu_has_vmx_invpcid())
7392 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7393 	if (vmx_pt_mode_is_host_guest())
7394 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7395 
7396 	if (!enable_sgx) {
7397 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7398 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7399 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7400 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7401 	}
7402 
7403 	if (vmx_umip_emulated())
7404 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7405 
7406 	/* CPUID 0xD.1 */
7407 	supported_xss = 0;
7408 	if (!cpu_has_vmx_xsaves())
7409 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7410 
7411 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7412 	if (!cpu_has_vmx_rdtscp()) {
7413 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7414 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7415 	}
7416 
7417 	if (cpu_has_vmx_waitpkg())
7418 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7419 }
7420 
7421 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7422 {
7423 	to_vmx(vcpu)->req_immediate_exit = true;
7424 }
7425 
7426 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7427 				  struct x86_instruction_info *info)
7428 {
7429 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7430 	unsigned short port;
7431 	bool intercept;
7432 	int size;
7433 
7434 	if (info->intercept == x86_intercept_in ||
7435 	    info->intercept == x86_intercept_ins) {
7436 		port = info->src_val;
7437 		size = info->dst_bytes;
7438 	} else {
7439 		port = info->dst_val;
7440 		size = info->src_bytes;
7441 	}
7442 
7443 	/*
7444 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7445 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7446 	 * control.
7447 	 *
7448 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7449 	 */
7450 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7451 		intercept = nested_cpu_has(vmcs12,
7452 					   CPU_BASED_UNCOND_IO_EXITING);
7453 	else
7454 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7455 
7456 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7457 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7458 }
7459 
7460 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7461 			       struct x86_instruction_info *info,
7462 			       enum x86_intercept_stage stage,
7463 			       struct x86_exception *exception)
7464 {
7465 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7466 
7467 	switch (info->intercept) {
7468 	/*
7469 	 * RDPID causes #UD if disabled through secondary execution controls.
7470 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7471 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7472 	 */
7473 	case x86_intercept_rdpid:
7474 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7475 			exception->vector = UD_VECTOR;
7476 			exception->error_code_valid = false;
7477 			return X86EMUL_PROPAGATE_FAULT;
7478 		}
7479 		break;
7480 
7481 	case x86_intercept_in:
7482 	case x86_intercept_ins:
7483 	case x86_intercept_out:
7484 	case x86_intercept_outs:
7485 		return vmx_check_intercept_io(vcpu, info);
7486 
7487 	case x86_intercept_lgdt:
7488 	case x86_intercept_lidt:
7489 	case x86_intercept_lldt:
7490 	case x86_intercept_ltr:
7491 	case x86_intercept_sgdt:
7492 	case x86_intercept_sidt:
7493 	case x86_intercept_sldt:
7494 	case x86_intercept_str:
7495 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7496 			return X86EMUL_CONTINUE;
7497 
7498 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7499 		break;
7500 
7501 	/* TODO: check more intercepts... */
7502 	default:
7503 		break;
7504 	}
7505 
7506 	return X86EMUL_UNHANDLEABLE;
7507 }
7508 
7509 #ifdef CONFIG_X86_64
7510 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7511 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7512 				  u64 divisor, u64 *result)
7513 {
7514 	u64 low = a << shift, high = a >> (64 - shift);
7515 
7516 	/* To avoid the overflow on divq */
7517 	if (high >= divisor)
7518 		return 1;
7519 
7520 	/* Low hold the result, high hold rem which is discarded */
7521 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7522 	    "rm" (divisor), "0" (low), "1" (high));
7523 	*result = low;
7524 
7525 	return 0;
7526 }
7527 
7528 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7529 			    bool *expired)
7530 {
7531 	struct vcpu_vmx *vmx;
7532 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7533 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7534 
7535 	vmx = to_vmx(vcpu);
7536 	tscl = rdtsc();
7537 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7538 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7539 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7540 						    ktimer->timer_advance_ns);
7541 
7542 	if (delta_tsc > lapic_timer_advance_cycles)
7543 		delta_tsc -= lapic_timer_advance_cycles;
7544 	else
7545 		delta_tsc = 0;
7546 
7547 	/* Convert to host delta tsc if tsc scaling is enabled */
7548 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7549 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7550 				kvm_tsc_scaling_ratio_frac_bits,
7551 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7552 		return -ERANGE;
7553 
7554 	/*
7555 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7556 	 * we can't use the preemption timer.
7557 	 * It's possible that it fits on later vmentries, but checking
7558 	 * on every vmentry is costly so we just use an hrtimer.
7559 	 */
7560 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7561 		return -ERANGE;
7562 
7563 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7564 	*expired = !delta_tsc;
7565 	return 0;
7566 }
7567 
7568 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7569 {
7570 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7571 }
7572 #endif
7573 
7574 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7575 {
7576 	if (!kvm_pause_in_guest(vcpu->kvm))
7577 		shrink_ple_window(vcpu);
7578 }
7579 
7580 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7581 {
7582 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7583 
7584 	if (is_guest_mode(vcpu)) {
7585 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7586 		return;
7587 	}
7588 
7589 	/*
7590 	 * Note, cpu_dirty_logging_count can be changed concurrent with this
7591 	 * code, but in that case another update request will be made and so
7592 	 * the guest will never run with a stale PML value.
7593 	 */
7594 	if (vcpu->kvm->arch.cpu_dirty_logging_count)
7595 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7596 	else
7597 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7598 }
7599 
7600 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7601 {
7602 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7603 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7604 			FEAT_CTL_LMCE_ENABLED;
7605 	else
7606 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7607 			~FEAT_CTL_LMCE_ENABLED;
7608 }
7609 
7610 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7611 {
7612 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7613 	if (to_vmx(vcpu)->nested.nested_run_pending)
7614 		return -EBUSY;
7615 	return !is_smm(vcpu);
7616 }
7617 
7618 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7619 {
7620 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7621 
7622 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7623 	if (vmx->nested.smm.guest_mode)
7624 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7625 
7626 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7627 	vmx->nested.vmxon = false;
7628 	vmx_clear_hlt(vcpu);
7629 	return 0;
7630 }
7631 
7632 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7633 {
7634 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7635 	int ret;
7636 
7637 	if (vmx->nested.smm.vmxon) {
7638 		vmx->nested.vmxon = true;
7639 		vmx->nested.smm.vmxon = false;
7640 	}
7641 
7642 	if (vmx->nested.smm.guest_mode) {
7643 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7644 		if (ret)
7645 			return ret;
7646 
7647 		vmx->nested.smm.guest_mode = false;
7648 	}
7649 	return 0;
7650 }
7651 
7652 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7653 {
7654 	/* RSM will cause a vmexit anyway.  */
7655 }
7656 
7657 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7658 {
7659 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7660 }
7661 
7662 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7663 {
7664 	if (is_guest_mode(vcpu)) {
7665 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7666 
7667 		if (hrtimer_try_to_cancel(timer) == 1)
7668 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7669 	}
7670 }
7671 
7672 static void hardware_unsetup(void)
7673 {
7674 	kvm_set_posted_intr_wakeup_handler(NULL);
7675 
7676 	if (nested)
7677 		nested_vmx_hardware_unsetup();
7678 
7679 	free_kvm_area();
7680 }
7681 
7682 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7683 {
7684 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7685 			  BIT(APICV_INHIBIT_REASON_ABSENT) |
7686 			  BIT(APICV_INHIBIT_REASON_HYPERV) |
7687 			  BIT(APICV_INHIBIT_REASON_BLOCKIRQ);
7688 
7689 	return supported & BIT(bit);
7690 }
7691 
7692 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7693 	.name = "kvm_intel",
7694 
7695 	.hardware_unsetup = hardware_unsetup,
7696 
7697 	.hardware_enable = hardware_enable,
7698 	.hardware_disable = hardware_disable,
7699 	.cpu_has_accelerated_tpr = report_flexpriority,
7700 	.has_emulated_msr = vmx_has_emulated_msr,
7701 
7702 	.vm_size = sizeof(struct kvm_vmx),
7703 	.vm_init = vmx_vm_init,
7704 
7705 	.vcpu_create = vmx_create_vcpu,
7706 	.vcpu_free = vmx_free_vcpu,
7707 	.vcpu_reset = vmx_vcpu_reset,
7708 
7709 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7710 	.vcpu_load = vmx_vcpu_load,
7711 	.vcpu_put = vmx_vcpu_put,
7712 
7713 	.update_exception_bitmap = vmx_update_exception_bitmap,
7714 	.get_msr_feature = vmx_get_msr_feature,
7715 	.get_msr = vmx_get_msr,
7716 	.set_msr = vmx_set_msr,
7717 	.get_segment_base = vmx_get_segment_base,
7718 	.get_segment = vmx_get_segment,
7719 	.set_segment = vmx_set_segment,
7720 	.get_cpl = vmx_get_cpl,
7721 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7722 	.set_cr0 = vmx_set_cr0,
7723 	.is_valid_cr4 = vmx_is_valid_cr4,
7724 	.set_cr4 = vmx_set_cr4,
7725 	.set_efer = vmx_set_efer,
7726 	.get_idt = vmx_get_idt,
7727 	.set_idt = vmx_set_idt,
7728 	.get_gdt = vmx_get_gdt,
7729 	.set_gdt = vmx_set_gdt,
7730 	.set_dr7 = vmx_set_dr7,
7731 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7732 	.cache_reg = vmx_cache_reg,
7733 	.get_rflags = vmx_get_rflags,
7734 	.set_rflags = vmx_set_rflags,
7735 	.get_if_flag = vmx_get_if_flag,
7736 
7737 	.tlb_flush_all = vmx_flush_tlb_all,
7738 	.tlb_flush_current = vmx_flush_tlb_current,
7739 	.tlb_flush_gva = vmx_flush_tlb_gva,
7740 	.tlb_flush_guest = vmx_flush_tlb_guest,
7741 
7742 	.vcpu_pre_run = vmx_vcpu_pre_run,
7743 	.run = vmx_vcpu_run,
7744 	.handle_exit = vmx_handle_exit,
7745 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7746 	.update_emulated_instruction = vmx_update_emulated_instruction,
7747 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7748 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7749 	.patch_hypercall = vmx_patch_hypercall,
7750 	.set_irq = vmx_inject_irq,
7751 	.set_nmi = vmx_inject_nmi,
7752 	.queue_exception = vmx_queue_exception,
7753 	.cancel_injection = vmx_cancel_injection,
7754 	.interrupt_allowed = vmx_interrupt_allowed,
7755 	.nmi_allowed = vmx_nmi_allowed,
7756 	.get_nmi_mask = vmx_get_nmi_mask,
7757 	.set_nmi_mask = vmx_set_nmi_mask,
7758 	.enable_nmi_window = vmx_enable_nmi_window,
7759 	.enable_irq_window = vmx_enable_irq_window,
7760 	.update_cr8_intercept = vmx_update_cr8_intercept,
7761 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7762 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7763 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7764 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7765 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7766 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7767 	.hwapic_irr_update = vmx_hwapic_irr_update,
7768 	.hwapic_isr_update = vmx_hwapic_isr_update,
7769 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7770 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7771 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7772 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7773 
7774 	.set_tss_addr = vmx_set_tss_addr,
7775 	.set_identity_map_addr = vmx_set_identity_map_addr,
7776 	.get_mt_mask = vmx_get_mt_mask,
7777 
7778 	.get_exit_info = vmx_get_exit_info,
7779 
7780 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7781 
7782 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7783 
7784 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
7785 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
7786 	.write_tsc_offset = vmx_write_tsc_offset,
7787 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
7788 
7789 	.load_mmu_pgd = vmx_load_mmu_pgd,
7790 
7791 	.check_intercept = vmx_check_intercept,
7792 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7793 
7794 	.request_immediate_exit = vmx_request_immediate_exit,
7795 
7796 	.sched_in = vmx_sched_in,
7797 
7798 	.cpu_dirty_log_size = PML_ENTITY_NUM,
7799 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7800 
7801 	.pmu_ops = &intel_pmu_ops,
7802 	.nested_ops = &vmx_nested_ops,
7803 
7804 	.update_pi_irte = pi_update_irte,
7805 	.start_assignment = vmx_pi_start_assignment,
7806 
7807 #ifdef CONFIG_X86_64
7808 	.set_hv_timer = vmx_set_hv_timer,
7809 	.cancel_hv_timer = vmx_cancel_hv_timer,
7810 #endif
7811 
7812 	.setup_mce = vmx_setup_mce,
7813 
7814 	.smi_allowed = vmx_smi_allowed,
7815 	.enter_smm = vmx_enter_smm,
7816 	.leave_smm = vmx_leave_smm,
7817 	.enable_smi_window = vmx_enable_smi_window,
7818 
7819 	.can_emulate_instruction = vmx_can_emulate_instruction,
7820 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7821 	.migrate_timers = vmx_migrate_timers,
7822 
7823 	.msr_filter_changed = vmx_msr_filter_changed,
7824 	.complete_emulated_msr = kvm_complete_insn_gp,
7825 
7826 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7827 };
7828 
7829 static unsigned int vmx_handle_intel_pt_intr(void)
7830 {
7831 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
7832 
7833 	/* '0' on failure so that the !PT case can use a RET0 static call. */
7834 	if (!kvm_arch_pmi_in_guest(vcpu))
7835 		return 0;
7836 
7837 	kvm_make_request(KVM_REQ_PMI, vcpu);
7838 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7839 		  (unsigned long *)&vcpu->arch.pmu.global_status);
7840 	return 1;
7841 }
7842 
7843 static __init void vmx_setup_user_return_msrs(void)
7844 {
7845 
7846 	/*
7847 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7848 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
7849 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7850 	 * support this emulation, MSR_STAR is included in the list for i386,
7851 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
7852 	 * into hardware and is here purely for emulation purposes.
7853 	 */
7854 	const u32 vmx_uret_msrs_list[] = {
7855 	#ifdef CONFIG_X86_64
7856 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7857 	#endif
7858 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7859 		MSR_IA32_TSX_CTRL,
7860 	};
7861 	int i;
7862 
7863 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7864 
7865 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7866 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7867 }
7868 
7869 static struct kvm_x86_init_ops vmx_init_ops __initdata;
7870 
7871 static __init int hardware_setup(void)
7872 {
7873 	unsigned long host_bndcfgs;
7874 	struct desc_ptr dt;
7875 	int r;
7876 
7877 	store_idt(&dt);
7878 	host_idt_base = dt.address;
7879 
7880 	vmx_setup_user_return_msrs();
7881 
7882 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7883 		return -EIO;
7884 
7885 	if (boot_cpu_has(X86_FEATURE_NX))
7886 		kvm_enable_efer_bits(EFER_NX);
7887 
7888 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7889 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7890 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7891 	}
7892 
7893 	if (!cpu_has_vmx_mpx())
7894 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7895 				    XFEATURE_MASK_BNDCSR);
7896 
7897 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7898 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7899 		enable_vpid = 0;
7900 
7901 	if (!cpu_has_vmx_ept() ||
7902 	    !cpu_has_vmx_ept_4levels() ||
7903 	    !cpu_has_vmx_ept_mt_wb() ||
7904 	    !cpu_has_vmx_invept_global())
7905 		enable_ept = 0;
7906 
7907 	/* NX support is required for shadow paging. */
7908 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
7909 		pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
7910 		return -EOPNOTSUPP;
7911 	}
7912 
7913 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7914 		enable_ept_ad_bits = 0;
7915 
7916 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7917 		enable_unrestricted_guest = 0;
7918 
7919 	if (!cpu_has_vmx_flexpriority())
7920 		flexpriority_enabled = 0;
7921 
7922 	if (!cpu_has_virtual_nmis())
7923 		enable_vnmi = 0;
7924 
7925 	/*
7926 	 * set_apic_access_page_addr() is used to reload apic access
7927 	 * page upon invalidation.  No need to do anything if not
7928 	 * using the APIC_ACCESS_ADDR VMCS field.
7929 	 */
7930 	if (!flexpriority_enabled)
7931 		vmx_x86_ops.set_apic_access_page_addr = NULL;
7932 
7933 	if (!cpu_has_vmx_tpr_shadow())
7934 		vmx_x86_ops.update_cr8_intercept = NULL;
7935 
7936 #if IS_ENABLED(CONFIG_HYPERV)
7937 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7938 	    && enable_ept) {
7939 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7940 		vmx_x86_ops.tlb_remote_flush_with_range =
7941 				hv_remote_flush_tlb_with_range;
7942 	}
7943 #endif
7944 
7945 	if (!cpu_has_vmx_ple()) {
7946 		ple_gap = 0;
7947 		ple_window = 0;
7948 		ple_window_grow = 0;
7949 		ple_window_max = 0;
7950 		ple_window_shrink = 0;
7951 	}
7952 
7953 	if (!cpu_has_vmx_apicv())
7954 		enable_apicv = 0;
7955 	if (!enable_apicv)
7956 		vmx_x86_ops.sync_pir_to_irr = NULL;
7957 
7958 	if (cpu_has_vmx_tsc_scaling()) {
7959 		kvm_has_tsc_control = true;
7960 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7961 		kvm_tsc_scaling_ratio_frac_bits = 48;
7962 	}
7963 
7964 	kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7965 
7966 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7967 
7968 	if (enable_ept)
7969 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
7970 				      cpu_has_vmx_ept_execute_only());
7971 
7972 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
7973 			  ept_caps_to_lpage_level(vmx_capability.ept));
7974 
7975 	/*
7976 	 * Only enable PML when hardware supports PML feature, and both EPT
7977 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7978 	 */
7979 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7980 		enable_pml = 0;
7981 
7982 	if (!enable_pml)
7983 		vmx_x86_ops.cpu_dirty_log_size = 0;
7984 
7985 	if (!cpu_has_vmx_preemption_timer())
7986 		enable_preemption_timer = false;
7987 
7988 	if (enable_preemption_timer) {
7989 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
7990 		u64 vmx_msr;
7991 
7992 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7993 		cpu_preemption_timer_multi =
7994 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7995 
7996 		if (tsc_khz)
7997 			use_timer_freq = (u64)tsc_khz * 1000;
7998 		use_timer_freq >>= cpu_preemption_timer_multi;
7999 
8000 		/*
8001 		 * KVM "disables" the preemption timer by setting it to its max
8002 		 * value.  Don't use the timer if it might cause spurious exits
8003 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8004 		 */
8005 		if (use_timer_freq > 0xffffffffu / 10)
8006 			enable_preemption_timer = false;
8007 	}
8008 
8009 	if (!enable_preemption_timer) {
8010 		vmx_x86_ops.set_hv_timer = NULL;
8011 		vmx_x86_ops.cancel_hv_timer = NULL;
8012 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8013 	}
8014 
8015 	kvm_mce_cap_supported |= MCG_LMCE_P;
8016 
8017 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8018 		return -EINVAL;
8019 	if (!enable_ept || !cpu_has_vmx_intel_pt())
8020 		pt_mode = PT_MODE_SYSTEM;
8021 	if (pt_mode == PT_MODE_HOST_GUEST)
8022 		vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8023 	else
8024 		vmx_init_ops.handle_intel_pt_intr = NULL;
8025 
8026 	setup_default_sgx_lepubkeyhash();
8027 
8028 	if (nested) {
8029 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8030 					   vmx_capability.ept);
8031 
8032 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8033 		if (r)
8034 			return r;
8035 	}
8036 
8037 	vmx_set_cpu_caps();
8038 
8039 	r = alloc_kvm_area();
8040 	if (r)
8041 		nested_vmx_hardware_unsetup();
8042 
8043 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8044 
8045 	return r;
8046 }
8047 
8048 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8049 	.cpu_has_kvm_support = cpu_has_kvm_support,
8050 	.disabled_by_bios = vmx_disabled_by_bios,
8051 	.check_processor_compatibility = vmx_check_processor_compat,
8052 	.hardware_setup = hardware_setup,
8053 	.handle_intel_pt_intr = NULL,
8054 
8055 	.runtime_ops = &vmx_x86_ops,
8056 };
8057 
8058 static void vmx_cleanup_l1d_flush(void)
8059 {
8060 	if (vmx_l1d_flush_pages) {
8061 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8062 		vmx_l1d_flush_pages = NULL;
8063 	}
8064 	/* Restore state so sysfs ignores VMX */
8065 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8066 }
8067 
8068 static void vmx_exit(void)
8069 {
8070 #ifdef CONFIG_KEXEC_CORE
8071 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8072 	synchronize_rcu();
8073 #endif
8074 
8075 	kvm_exit();
8076 
8077 #if IS_ENABLED(CONFIG_HYPERV)
8078 	if (static_branch_unlikely(&enable_evmcs)) {
8079 		int cpu;
8080 		struct hv_vp_assist_page *vp_ap;
8081 		/*
8082 		 * Reset everything to support using non-enlightened VMCS
8083 		 * access later (e.g. when we reload the module with
8084 		 * enlightened_vmcs=0)
8085 		 */
8086 		for_each_online_cpu(cpu) {
8087 			vp_ap =	hv_get_vp_assist_page(cpu);
8088 
8089 			if (!vp_ap)
8090 				continue;
8091 
8092 			vp_ap->nested_control.features.directhypercall = 0;
8093 			vp_ap->current_nested_vmcs = 0;
8094 			vp_ap->enlighten_vmentry = 0;
8095 		}
8096 
8097 		static_branch_disable(&enable_evmcs);
8098 	}
8099 #endif
8100 	vmx_cleanup_l1d_flush();
8101 
8102 	allow_smaller_maxphyaddr = false;
8103 }
8104 module_exit(vmx_exit);
8105 
8106 static int __init vmx_init(void)
8107 {
8108 	int r, cpu;
8109 
8110 #if IS_ENABLED(CONFIG_HYPERV)
8111 	/*
8112 	 * Enlightened VMCS usage should be recommended and the host needs
8113 	 * to support eVMCS v1 or above. We can also disable eVMCS support
8114 	 * with module parameter.
8115 	 */
8116 	if (enlightened_vmcs &&
8117 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8118 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8119 	    KVM_EVMCS_VERSION) {
8120 		int cpu;
8121 
8122 		/* Check that we have assist pages on all online CPUs */
8123 		for_each_online_cpu(cpu) {
8124 			if (!hv_get_vp_assist_page(cpu)) {
8125 				enlightened_vmcs = false;
8126 				break;
8127 			}
8128 		}
8129 
8130 		if (enlightened_vmcs) {
8131 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8132 			static_branch_enable(&enable_evmcs);
8133 		}
8134 
8135 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8136 			vmx_x86_ops.enable_direct_tlbflush
8137 				= hv_enable_direct_tlbflush;
8138 
8139 	} else {
8140 		enlightened_vmcs = false;
8141 	}
8142 #endif
8143 
8144 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8145 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8146 	if (r)
8147 		return r;
8148 
8149 	/*
8150 	 * Must be called after kvm_init() so enable_ept is properly set
8151 	 * up. Hand the parameter mitigation value in which was stored in
8152 	 * the pre module init parser. If no parameter was given, it will
8153 	 * contain 'auto' which will be turned into the default 'cond'
8154 	 * mitigation mode.
8155 	 */
8156 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8157 	if (r) {
8158 		vmx_exit();
8159 		return r;
8160 	}
8161 
8162 	for_each_possible_cpu(cpu) {
8163 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8164 
8165 		pi_init_cpu(cpu);
8166 	}
8167 
8168 #ifdef CONFIG_KEXEC_CORE
8169 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8170 			   crash_vmclear_local_loaded_vmcss);
8171 #endif
8172 	vmx_check_vmcs12_offsets();
8173 
8174 	/*
8175 	 * Shadow paging doesn't have a (further) performance penalty
8176 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8177 	 * by default
8178 	 */
8179 	if (!enable_ept)
8180 		allow_smaller_maxphyaddr = true;
8181 
8182 	return 0;
8183 }
8184 module_init(vmx_init);
8185