xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision 55fd7e02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/debugreg.h>
36 #include <asm/desc.h>
37 #include <asm/fpu/internal.h>
38 #include <asm/io.h>
39 #include <asm/irq_remapping.h>
40 #include <asm/kexec.h>
41 #include <asm/perf_event.h>
42 #include <asm/mce.h>
43 #include <asm/mmu_context.h>
44 #include <asm/mshyperv.h>
45 #include <asm/mwait.h>
46 #include <asm/spec-ctrl.h>
47 #include <asm/virtext.h>
48 #include <asm/vmx.h>
49 
50 #include "capabilities.h"
51 #include "cpuid.h"
52 #include "evmcs.h"
53 #include "irq.h"
54 #include "kvm_cache_regs.h"
55 #include "lapic.h"
56 #include "mmu.h"
57 #include "nested.h"
58 #include "ops.h"
59 #include "pmu.h"
60 #include "trace.h"
61 #include "vmcs.h"
62 #include "vmcs12.h"
63 #include "vmx.h"
64 #include "x86.h"
65 
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68 
69 #ifdef MODULE
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
72 	{}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 #endif
76 
77 bool __read_mostly enable_vpid = 1;
78 module_param_named(vpid, enable_vpid, bool, 0444);
79 
80 static bool __read_mostly enable_vnmi = 1;
81 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
82 
83 bool __read_mostly flexpriority_enabled = 1;
84 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
85 
86 bool __read_mostly enable_ept = 1;
87 module_param_named(ept, enable_ept, bool, S_IRUGO);
88 
89 bool __read_mostly enable_unrestricted_guest = 1;
90 module_param_named(unrestricted_guest,
91 			enable_unrestricted_guest, bool, S_IRUGO);
92 
93 bool __read_mostly enable_ept_ad_bits = 1;
94 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
95 
96 static bool __read_mostly emulate_invalid_guest_state = true;
97 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
98 
99 static bool __read_mostly fasteoi = 1;
100 module_param(fasteoi, bool, S_IRUGO);
101 
102 bool __read_mostly enable_apicv = 1;
103 module_param(enable_apicv, bool, S_IRUGO);
104 
105 /*
106  * If nested=1, nested virtualization is supported, i.e., guests may use
107  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
108  * use VMX instructions.
109  */
110 static bool __read_mostly nested = 1;
111 module_param(nested, bool, S_IRUGO);
112 
113 bool __read_mostly enable_pml = 1;
114 module_param_named(pml, enable_pml, bool, S_IRUGO);
115 
116 static bool __read_mostly dump_invalid_vmcs = 0;
117 module_param(dump_invalid_vmcs, bool, 0644);
118 
119 #define MSR_BITMAP_MODE_X2APIC		1
120 #define MSR_BITMAP_MODE_X2APIC_APICV	2
121 
122 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
123 
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
127 #ifdef CONFIG_X86_64
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #endif
130 
131 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
132 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
133 #define KVM_VM_CR0_ALWAYS_ON				\
134 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
135 	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
136 #define KVM_CR4_GUEST_OWNED_BITS				      \
137 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
138 	 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
139 
140 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
141 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
142 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
143 
144 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
145 
146 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
147 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
148 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
149 	RTIT_STATUS_BYTECNT))
150 
151 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
152 	(~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
153 
154 /*
155  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
156  * ple_gap:    upper bound on the amount of time between two successive
157  *             executions of PAUSE in a loop. Also indicate if ple enabled.
158  *             According to test, this time is usually smaller than 128 cycles.
159  * ple_window: upper bound on the amount of time a guest is allowed to execute
160  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
161  *             less than 2^12 cycles
162  * Time is measured based on a counter that runs at the same rate as the TSC,
163  * refer SDM volume 3b section 21.6.13 & 22.1.3.
164  */
165 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
166 module_param(ple_gap, uint, 0444);
167 
168 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
169 module_param(ple_window, uint, 0444);
170 
171 /* Default doubles per-vcpu window every exit. */
172 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
173 module_param(ple_window_grow, uint, 0444);
174 
175 /* Default resets per-vcpu window every exit to ple_window. */
176 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
177 module_param(ple_window_shrink, uint, 0444);
178 
179 /* Default is to compute the maximum so we can never overflow. */
180 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
181 module_param(ple_window_max, uint, 0444);
182 
183 /* Default is SYSTEM mode, 1 for host-guest mode */
184 int __read_mostly pt_mode = PT_MODE_SYSTEM;
185 module_param(pt_mode, int, S_IRUGO);
186 
187 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
188 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
189 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
190 
191 /* Storage for pre module init parameter parsing */
192 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
193 
194 static const struct {
195 	const char *option;
196 	bool for_parse;
197 } vmentry_l1d_param[] = {
198 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
199 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
200 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
201 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
202 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
203 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
204 };
205 
206 #define L1D_CACHE_ORDER 4
207 static void *vmx_l1d_flush_pages;
208 
209 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
210 {
211 	struct page *page;
212 	unsigned int i;
213 
214 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
215 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
216 		return 0;
217 	}
218 
219 	if (!enable_ept) {
220 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
221 		return 0;
222 	}
223 
224 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
225 		u64 msr;
226 
227 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
228 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
229 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
230 			return 0;
231 		}
232 	}
233 
234 	/* If set to auto use the default l1tf mitigation method */
235 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
236 		switch (l1tf_mitigation) {
237 		case L1TF_MITIGATION_OFF:
238 			l1tf = VMENTER_L1D_FLUSH_NEVER;
239 			break;
240 		case L1TF_MITIGATION_FLUSH_NOWARN:
241 		case L1TF_MITIGATION_FLUSH:
242 		case L1TF_MITIGATION_FLUSH_NOSMT:
243 			l1tf = VMENTER_L1D_FLUSH_COND;
244 			break;
245 		case L1TF_MITIGATION_FULL:
246 		case L1TF_MITIGATION_FULL_FORCE:
247 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
248 			break;
249 		}
250 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
251 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
252 	}
253 
254 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
255 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
256 		/*
257 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
258 		 * lifetime and so should not be charged to a memcg.
259 		 */
260 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
261 		if (!page)
262 			return -ENOMEM;
263 		vmx_l1d_flush_pages = page_address(page);
264 
265 		/*
266 		 * Initialize each page with a different pattern in
267 		 * order to protect against KSM in the nested
268 		 * virtualization case.
269 		 */
270 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
271 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
272 			       PAGE_SIZE);
273 		}
274 	}
275 
276 	l1tf_vmx_mitigation = l1tf;
277 
278 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
279 		static_branch_enable(&vmx_l1d_should_flush);
280 	else
281 		static_branch_disable(&vmx_l1d_should_flush);
282 
283 	if (l1tf == VMENTER_L1D_FLUSH_COND)
284 		static_branch_enable(&vmx_l1d_flush_cond);
285 	else
286 		static_branch_disable(&vmx_l1d_flush_cond);
287 	return 0;
288 }
289 
290 static int vmentry_l1d_flush_parse(const char *s)
291 {
292 	unsigned int i;
293 
294 	if (s) {
295 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
296 			if (vmentry_l1d_param[i].for_parse &&
297 			    sysfs_streq(s, vmentry_l1d_param[i].option))
298 				return i;
299 		}
300 	}
301 	return -EINVAL;
302 }
303 
304 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
305 {
306 	int l1tf, ret;
307 
308 	l1tf = vmentry_l1d_flush_parse(s);
309 	if (l1tf < 0)
310 		return l1tf;
311 
312 	if (!boot_cpu_has(X86_BUG_L1TF))
313 		return 0;
314 
315 	/*
316 	 * Has vmx_init() run already? If not then this is the pre init
317 	 * parameter parsing. In that case just store the value and let
318 	 * vmx_init() do the proper setup after enable_ept has been
319 	 * established.
320 	 */
321 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
322 		vmentry_l1d_flush_param = l1tf;
323 		return 0;
324 	}
325 
326 	mutex_lock(&vmx_l1d_flush_mutex);
327 	ret = vmx_setup_l1d_flush(l1tf);
328 	mutex_unlock(&vmx_l1d_flush_mutex);
329 	return ret;
330 }
331 
332 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
333 {
334 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
335 		return sprintf(s, "???\n");
336 
337 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
338 }
339 
340 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
341 	.set = vmentry_l1d_flush_set,
342 	.get = vmentry_l1d_flush_get,
343 };
344 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
345 
346 static bool guest_state_valid(struct kvm_vcpu *vcpu);
347 static u32 vmx_segment_access_rights(struct kvm_segment *var);
348 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
349 							  u32 msr, int type);
350 
351 void vmx_vmexit(void);
352 
353 #define vmx_insn_failed(fmt...)		\
354 do {					\
355 	WARN_ONCE(1, fmt);		\
356 	pr_warn_ratelimited(fmt);	\
357 } while (0)
358 
359 asmlinkage void vmread_error(unsigned long field, bool fault)
360 {
361 	if (fault)
362 		kvm_spurious_fault();
363 	else
364 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
365 }
366 
367 noinline void vmwrite_error(unsigned long field, unsigned long value)
368 {
369 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
370 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
371 }
372 
373 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
374 {
375 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
376 }
377 
378 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
379 {
380 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
381 }
382 
383 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
384 {
385 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
386 			ext, vpid, gva);
387 }
388 
389 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
390 {
391 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
392 			ext, eptp, gpa);
393 }
394 
395 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
396 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
397 /*
398  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
399  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
400  */
401 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
402 
403 /*
404  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
405  * can find which vCPU should be waken up.
406  */
407 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
408 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
409 
410 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
411 static DEFINE_SPINLOCK(vmx_vpid_lock);
412 
413 struct vmcs_config vmcs_config;
414 struct vmx_capability vmx_capability;
415 
416 #define VMX_SEGMENT_FIELD(seg)					\
417 	[VCPU_SREG_##seg] = {                                   \
418 		.selector = GUEST_##seg##_SELECTOR,		\
419 		.base = GUEST_##seg##_BASE,		   	\
420 		.limit = GUEST_##seg##_LIMIT,		   	\
421 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
422 	}
423 
424 static const struct kvm_vmx_segment_field {
425 	unsigned selector;
426 	unsigned base;
427 	unsigned limit;
428 	unsigned ar_bytes;
429 } kvm_vmx_segment_fields[] = {
430 	VMX_SEGMENT_FIELD(CS),
431 	VMX_SEGMENT_FIELD(DS),
432 	VMX_SEGMENT_FIELD(ES),
433 	VMX_SEGMENT_FIELD(FS),
434 	VMX_SEGMENT_FIELD(GS),
435 	VMX_SEGMENT_FIELD(SS),
436 	VMX_SEGMENT_FIELD(TR),
437 	VMX_SEGMENT_FIELD(LDTR),
438 };
439 
440 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
441 {
442 	vmx->segment_cache.bitmask = 0;
443 }
444 
445 static unsigned long host_idt_base;
446 
447 /*
448  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
449  * will emulate SYSCALL in legacy mode if the vendor string in guest
450  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
451  * support this emulation, IA32_STAR must always be included in
452  * vmx_msr_index[], even in i386 builds.
453  */
454 const u32 vmx_msr_index[] = {
455 #ifdef CONFIG_X86_64
456 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
457 #endif
458 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
459 	MSR_IA32_TSX_CTRL,
460 };
461 
462 #if IS_ENABLED(CONFIG_HYPERV)
463 static bool __read_mostly enlightened_vmcs = true;
464 module_param(enlightened_vmcs, bool, 0444);
465 
466 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
467 static void check_ept_pointer_match(struct kvm *kvm)
468 {
469 	struct kvm_vcpu *vcpu;
470 	u64 tmp_eptp = INVALID_PAGE;
471 	int i;
472 
473 	kvm_for_each_vcpu(i, vcpu, kvm) {
474 		if (!VALID_PAGE(tmp_eptp)) {
475 			tmp_eptp = to_vmx(vcpu)->ept_pointer;
476 		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
477 			to_kvm_vmx(kvm)->ept_pointers_match
478 				= EPT_POINTERS_MISMATCH;
479 			return;
480 		}
481 	}
482 
483 	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
484 }
485 
486 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
487 		void *data)
488 {
489 	struct kvm_tlb_range *range = data;
490 
491 	return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
492 			range->pages);
493 }
494 
495 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
496 		struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
497 {
498 	u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
499 
500 	/*
501 	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
502 	 * of the base of EPT PML4 table, strip off EPT configuration
503 	 * information.
504 	 */
505 	if (range)
506 		return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
507 				kvm_fill_hv_flush_list_func, (void *)range);
508 	else
509 		return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
510 }
511 
512 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
513 		struct kvm_tlb_range *range)
514 {
515 	struct kvm_vcpu *vcpu;
516 	int ret = 0, i;
517 
518 	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
519 
520 	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
521 		check_ept_pointer_match(kvm);
522 
523 	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
524 		kvm_for_each_vcpu(i, vcpu, kvm) {
525 			/* If ept_pointer is invalid pointer, bypass flush request. */
526 			if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
527 				ret |= __hv_remote_flush_tlb_with_range(
528 					kvm, vcpu, range);
529 		}
530 	} else {
531 		ret = __hv_remote_flush_tlb_with_range(kvm,
532 				kvm_get_vcpu(kvm, 0), range);
533 	}
534 
535 	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
536 	return ret;
537 }
538 static int hv_remote_flush_tlb(struct kvm *kvm)
539 {
540 	return hv_remote_flush_tlb_with_range(kvm, NULL);
541 }
542 
543 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
544 {
545 	struct hv_enlightened_vmcs *evmcs;
546 	struct hv_partition_assist_pg **p_hv_pa_pg =
547 			&vcpu->kvm->arch.hyperv.hv_pa_pg;
548 	/*
549 	 * Synthetic VM-Exit is not enabled in current code and so All
550 	 * evmcs in singe VM shares same assist page.
551 	 */
552 	if (!*p_hv_pa_pg)
553 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
554 
555 	if (!*p_hv_pa_pg)
556 		return -ENOMEM;
557 
558 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
559 
560 	evmcs->partition_assist_page =
561 		__pa(*p_hv_pa_pg);
562 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
563 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
564 
565 	return 0;
566 }
567 
568 #endif /* IS_ENABLED(CONFIG_HYPERV) */
569 
570 /*
571  * Comment's format: document - errata name - stepping - processor name.
572  * Refer from
573  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
574  */
575 static u32 vmx_preemption_cpu_tfms[] = {
576 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
577 0x000206E6,
578 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
579 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
580 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
581 0x00020652,
582 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
583 0x00020655,
584 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
585 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
586 /*
587  * 320767.pdf - AAP86  - B1 -
588  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
589  */
590 0x000106E5,
591 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
592 0x000106A0,
593 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
594 0x000106A1,
595 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
596 0x000106A4,
597  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
598  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
599  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
600 0x000106A5,
601  /* Xeon E3-1220 V2 */
602 0x000306A8,
603 };
604 
605 static inline bool cpu_has_broken_vmx_preemption_timer(void)
606 {
607 	u32 eax = cpuid_eax(0x00000001), i;
608 
609 	/* Clear the reserved bits */
610 	eax &= ~(0x3U << 14 | 0xfU << 28);
611 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
612 		if (eax == vmx_preemption_cpu_tfms[i])
613 			return true;
614 
615 	return false;
616 }
617 
618 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
619 {
620 	return flexpriority_enabled && lapic_in_kernel(vcpu);
621 }
622 
623 static inline bool report_flexpriority(void)
624 {
625 	return flexpriority_enabled;
626 }
627 
628 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
629 {
630 	int i;
631 
632 	for (i = 0; i < vmx->nmsrs; ++i)
633 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
634 			return i;
635 	return -1;
636 }
637 
638 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
639 {
640 	int i;
641 
642 	i = __find_msr_index(vmx, msr);
643 	if (i >= 0)
644 		return &vmx->guest_msrs[i];
645 	return NULL;
646 }
647 
648 static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data)
649 {
650 	int ret = 0;
651 
652 	u64 old_msr_data = msr->data;
653 	msr->data = data;
654 	if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
655 		preempt_disable();
656 		ret = kvm_set_shared_msr(msr->index, msr->data,
657 					 msr->mask);
658 		preempt_enable();
659 		if (ret)
660 			msr->data = old_msr_data;
661 	}
662 	return ret;
663 }
664 
665 #ifdef CONFIG_KEXEC_CORE
666 static void crash_vmclear_local_loaded_vmcss(void)
667 {
668 	int cpu = raw_smp_processor_id();
669 	struct loaded_vmcs *v;
670 
671 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
672 			    loaded_vmcss_on_cpu_link)
673 		vmcs_clear(v->vmcs);
674 }
675 #endif /* CONFIG_KEXEC_CORE */
676 
677 static void __loaded_vmcs_clear(void *arg)
678 {
679 	struct loaded_vmcs *loaded_vmcs = arg;
680 	int cpu = raw_smp_processor_id();
681 
682 	if (loaded_vmcs->cpu != cpu)
683 		return; /* vcpu migration can race with cpu offline */
684 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
685 		per_cpu(current_vmcs, cpu) = NULL;
686 
687 	vmcs_clear(loaded_vmcs->vmcs);
688 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
689 		vmcs_clear(loaded_vmcs->shadow_vmcs);
690 
691 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
692 
693 	/*
694 	 * Ensure all writes to loaded_vmcs, including deleting it from its
695 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
696 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
697 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
698 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
699 	 */
700 	smp_wmb();
701 
702 	loaded_vmcs->cpu = -1;
703 	loaded_vmcs->launched = 0;
704 }
705 
706 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
707 {
708 	int cpu = loaded_vmcs->cpu;
709 
710 	if (cpu != -1)
711 		smp_call_function_single(cpu,
712 			 __loaded_vmcs_clear, loaded_vmcs, 1);
713 }
714 
715 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
716 				       unsigned field)
717 {
718 	bool ret;
719 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
720 
721 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
722 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
723 		vmx->segment_cache.bitmask = 0;
724 	}
725 	ret = vmx->segment_cache.bitmask & mask;
726 	vmx->segment_cache.bitmask |= mask;
727 	return ret;
728 }
729 
730 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
731 {
732 	u16 *p = &vmx->segment_cache.seg[seg].selector;
733 
734 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
735 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
736 	return *p;
737 }
738 
739 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
740 {
741 	ulong *p = &vmx->segment_cache.seg[seg].base;
742 
743 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
744 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
745 	return *p;
746 }
747 
748 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
749 {
750 	u32 *p = &vmx->segment_cache.seg[seg].limit;
751 
752 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
753 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
754 	return *p;
755 }
756 
757 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
758 {
759 	u32 *p = &vmx->segment_cache.seg[seg].ar;
760 
761 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
762 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
763 	return *p;
764 }
765 
766 void update_exception_bitmap(struct kvm_vcpu *vcpu)
767 {
768 	u32 eb;
769 
770 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
771 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
772 	/*
773 	 * Guest access to VMware backdoor ports could legitimately
774 	 * trigger #GP because of TSS I/O permission bitmap.
775 	 * We intercept those #GP and allow access to them anyway
776 	 * as VMware does.
777 	 */
778 	if (enable_vmware_backdoor)
779 		eb |= (1u << GP_VECTOR);
780 	if ((vcpu->guest_debug &
781 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
782 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
783 		eb |= 1u << BP_VECTOR;
784 	if (to_vmx(vcpu)->rmode.vm86_active)
785 		eb = ~0;
786 	if (enable_ept)
787 		eb &= ~(1u << PF_VECTOR);
788 
789 	/* When we are running a nested L2 guest and L1 specified for it a
790 	 * certain exception bitmap, we must trap the same exceptions and pass
791 	 * them to L1. When running L2, we will only handle the exceptions
792 	 * specified above if L1 did not want them.
793 	 */
794 	if (is_guest_mode(vcpu))
795 		eb |= get_vmcs12(vcpu)->exception_bitmap;
796 
797 	vmcs_write32(EXCEPTION_BITMAP, eb);
798 }
799 
800 /*
801  * Check if MSR is intercepted for currently loaded MSR bitmap.
802  */
803 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
804 {
805 	unsigned long *msr_bitmap;
806 	int f = sizeof(unsigned long);
807 
808 	if (!cpu_has_vmx_msr_bitmap())
809 		return true;
810 
811 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
812 
813 	if (msr <= 0x1fff) {
814 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
815 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
816 		msr &= 0x1fff;
817 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
818 	}
819 
820 	return true;
821 }
822 
823 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
824 		unsigned long entry, unsigned long exit)
825 {
826 	vm_entry_controls_clearbit(vmx, entry);
827 	vm_exit_controls_clearbit(vmx, exit);
828 }
829 
830 int vmx_find_msr_index(struct vmx_msrs *m, u32 msr)
831 {
832 	unsigned int i;
833 
834 	for (i = 0; i < m->nr; ++i) {
835 		if (m->val[i].index == msr)
836 			return i;
837 	}
838 	return -ENOENT;
839 }
840 
841 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
842 {
843 	int i;
844 	struct msr_autoload *m = &vmx->msr_autoload;
845 
846 	switch (msr) {
847 	case MSR_EFER:
848 		if (cpu_has_load_ia32_efer()) {
849 			clear_atomic_switch_msr_special(vmx,
850 					VM_ENTRY_LOAD_IA32_EFER,
851 					VM_EXIT_LOAD_IA32_EFER);
852 			return;
853 		}
854 		break;
855 	case MSR_CORE_PERF_GLOBAL_CTRL:
856 		if (cpu_has_load_perf_global_ctrl()) {
857 			clear_atomic_switch_msr_special(vmx,
858 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
859 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
860 			return;
861 		}
862 		break;
863 	}
864 	i = vmx_find_msr_index(&m->guest, msr);
865 	if (i < 0)
866 		goto skip_guest;
867 	--m->guest.nr;
868 	m->guest.val[i] = m->guest.val[m->guest.nr];
869 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
870 
871 skip_guest:
872 	i = vmx_find_msr_index(&m->host, msr);
873 	if (i < 0)
874 		return;
875 
876 	--m->host.nr;
877 	m->host.val[i] = m->host.val[m->host.nr];
878 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
879 }
880 
881 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
882 		unsigned long entry, unsigned long exit,
883 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
884 		u64 guest_val, u64 host_val)
885 {
886 	vmcs_write64(guest_val_vmcs, guest_val);
887 	if (host_val_vmcs != HOST_IA32_EFER)
888 		vmcs_write64(host_val_vmcs, host_val);
889 	vm_entry_controls_setbit(vmx, entry);
890 	vm_exit_controls_setbit(vmx, exit);
891 }
892 
893 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
894 				  u64 guest_val, u64 host_val, bool entry_only)
895 {
896 	int i, j = 0;
897 	struct msr_autoload *m = &vmx->msr_autoload;
898 
899 	switch (msr) {
900 	case MSR_EFER:
901 		if (cpu_has_load_ia32_efer()) {
902 			add_atomic_switch_msr_special(vmx,
903 					VM_ENTRY_LOAD_IA32_EFER,
904 					VM_EXIT_LOAD_IA32_EFER,
905 					GUEST_IA32_EFER,
906 					HOST_IA32_EFER,
907 					guest_val, host_val);
908 			return;
909 		}
910 		break;
911 	case MSR_CORE_PERF_GLOBAL_CTRL:
912 		if (cpu_has_load_perf_global_ctrl()) {
913 			add_atomic_switch_msr_special(vmx,
914 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
915 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
916 					GUEST_IA32_PERF_GLOBAL_CTRL,
917 					HOST_IA32_PERF_GLOBAL_CTRL,
918 					guest_val, host_val);
919 			return;
920 		}
921 		break;
922 	case MSR_IA32_PEBS_ENABLE:
923 		/* PEBS needs a quiescent period after being disabled (to write
924 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
925 		 * provide that period, so a CPU could write host's record into
926 		 * guest's memory.
927 		 */
928 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
929 	}
930 
931 	i = vmx_find_msr_index(&m->guest, msr);
932 	if (!entry_only)
933 		j = vmx_find_msr_index(&m->host, msr);
934 
935 	if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) ||
936 		(j < 0 &&  m->host.nr == NR_LOADSTORE_MSRS)) {
937 		printk_once(KERN_WARNING "Not enough msr switch entries. "
938 				"Can't add msr %x\n", msr);
939 		return;
940 	}
941 	if (i < 0) {
942 		i = m->guest.nr++;
943 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
944 	}
945 	m->guest.val[i].index = msr;
946 	m->guest.val[i].value = guest_val;
947 
948 	if (entry_only)
949 		return;
950 
951 	if (j < 0) {
952 		j = m->host.nr++;
953 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
954 	}
955 	m->host.val[j].index = msr;
956 	m->host.val[j].value = host_val;
957 }
958 
959 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
960 {
961 	u64 guest_efer = vmx->vcpu.arch.efer;
962 	u64 ignore_bits = 0;
963 
964 	/* Shadow paging assumes NX to be available.  */
965 	if (!enable_ept)
966 		guest_efer |= EFER_NX;
967 
968 	/*
969 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
970 	 */
971 	ignore_bits |= EFER_SCE;
972 #ifdef CONFIG_X86_64
973 	ignore_bits |= EFER_LMA | EFER_LME;
974 	/* SCE is meaningful only in long mode on Intel */
975 	if (guest_efer & EFER_LMA)
976 		ignore_bits &= ~(u64)EFER_SCE;
977 #endif
978 
979 	/*
980 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
981 	 * On CPUs that support "load IA32_EFER", always switch EFER
982 	 * atomically, since it's faster than switching it manually.
983 	 */
984 	if (cpu_has_load_ia32_efer() ||
985 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
986 		if (!(guest_efer & EFER_LMA))
987 			guest_efer &= ~EFER_LME;
988 		if (guest_efer != host_efer)
989 			add_atomic_switch_msr(vmx, MSR_EFER,
990 					      guest_efer, host_efer, false);
991 		else
992 			clear_atomic_switch_msr(vmx, MSR_EFER);
993 		return false;
994 	} else {
995 		clear_atomic_switch_msr(vmx, MSR_EFER);
996 
997 		guest_efer &= ~ignore_bits;
998 		guest_efer |= host_efer & ignore_bits;
999 
1000 		vmx->guest_msrs[efer_offset].data = guest_efer;
1001 		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1002 
1003 		return true;
1004 	}
1005 }
1006 
1007 #ifdef CONFIG_X86_32
1008 /*
1009  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1010  * VMCS rather than the segment table.  KVM uses this helper to figure
1011  * out the current bases to poke them into the VMCS before entry.
1012  */
1013 static unsigned long segment_base(u16 selector)
1014 {
1015 	struct desc_struct *table;
1016 	unsigned long v;
1017 
1018 	if (!(selector & ~SEGMENT_RPL_MASK))
1019 		return 0;
1020 
1021 	table = get_current_gdt_ro();
1022 
1023 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1024 		u16 ldt_selector = kvm_read_ldt();
1025 
1026 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1027 			return 0;
1028 
1029 		table = (struct desc_struct *)segment_base(ldt_selector);
1030 	}
1031 	v = get_desc_base(&table[selector >> 3]);
1032 	return v;
1033 }
1034 #endif
1035 
1036 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1037 {
1038 	return vmx_pt_mode_is_host_guest() &&
1039 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1040 }
1041 
1042 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1043 {
1044 	u32 i;
1045 
1046 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1047 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1048 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1049 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1050 	for (i = 0; i < addr_range; i++) {
1051 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1052 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1053 	}
1054 }
1055 
1056 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1057 {
1058 	u32 i;
1059 
1060 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1061 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1062 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1063 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1064 	for (i = 0; i < addr_range; i++) {
1065 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1066 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1067 	}
1068 }
1069 
1070 static void pt_guest_enter(struct vcpu_vmx *vmx)
1071 {
1072 	if (vmx_pt_mode_is_system())
1073 		return;
1074 
1075 	/*
1076 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1077 	 * Save host state before VM entry.
1078 	 */
1079 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1080 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1081 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1082 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1083 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1084 	}
1085 }
1086 
1087 static void pt_guest_exit(struct vcpu_vmx *vmx)
1088 {
1089 	if (vmx_pt_mode_is_system())
1090 		return;
1091 
1092 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1093 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1094 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1095 	}
1096 
1097 	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1098 	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1099 }
1100 
1101 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1102 			unsigned long fs_base, unsigned long gs_base)
1103 {
1104 	if (unlikely(fs_sel != host->fs_sel)) {
1105 		if (!(fs_sel & 7))
1106 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1107 		else
1108 			vmcs_write16(HOST_FS_SELECTOR, 0);
1109 		host->fs_sel = fs_sel;
1110 	}
1111 	if (unlikely(gs_sel != host->gs_sel)) {
1112 		if (!(gs_sel & 7))
1113 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1114 		else
1115 			vmcs_write16(HOST_GS_SELECTOR, 0);
1116 		host->gs_sel = gs_sel;
1117 	}
1118 	if (unlikely(fs_base != host->fs_base)) {
1119 		vmcs_writel(HOST_FS_BASE, fs_base);
1120 		host->fs_base = fs_base;
1121 	}
1122 	if (unlikely(gs_base != host->gs_base)) {
1123 		vmcs_writel(HOST_GS_BASE, gs_base);
1124 		host->gs_base = gs_base;
1125 	}
1126 }
1127 
1128 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1129 {
1130 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1131 	struct vmcs_host_state *host_state;
1132 #ifdef CONFIG_X86_64
1133 	int cpu = raw_smp_processor_id();
1134 #endif
1135 	unsigned long fs_base, gs_base;
1136 	u16 fs_sel, gs_sel;
1137 	int i;
1138 
1139 	vmx->req_immediate_exit = false;
1140 
1141 	/*
1142 	 * Note that guest MSRs to be saved/restored can also be changed
1143 	 * when guest state is loaded. This happens when guest transitions
1144 	 * to/from long-mode by setting MSR_EFER.LMA.
1145 	 */
1146 	if (!vmx->guest_msrs_ready) {
1147 		vmx->guest_msrs_ready = true;
1148 		for (i = 0; i < vmx->save_nmsrs; ++i)
1149 			kvm_set_shared_msr(vmx->guest_msrs[i].index,
1150 					   vmx->guest_msrs[i].data,
1151 					   vmx->guest_msrs[i].mask);
1152 
1153 	}
1154 
1155     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1156 		nested_sync_vmcs12_to_shadow(vcpu);
1157 
1158 	if (vmx->guest_state_loaded)
1159 		return;
1160 
1161 	host_state = &vmx->loaded_vmcs->host_state;
1162 
1163 	/*
1164 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1165 	 * allow segment selectors with cpl > 0 or ti == 1.
1166 	 */
1167 	host_state->ldt_sel = kvm_read_ldt();
1168 
1169 #ifdef CONFIG_X86_64
1170 	savesegment(ds, host_state->ds_sel);
1171 	savesegment(es, host_state->es_sel);
1172 
1173 	gs_base = cpu_kernelmode_gs_base(cpu);
1174 	if (likely(is_64bit_mm(current->mm))) {
1175 		save_fsgs_for_kvm();
1176 		fs_sel = current->thread.fsindex;
1177 		gs_sel = current->thread.gsindex;
1178 		fs_base = current->thread.fsbase;
1179 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1180 	} else {
1181 		savesegment(fs, fs_sel);
1182 		savesegment(gs, gs_sel);
1183 		fs_base = read_msr(MSR_FS_BASE);
1184 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1185 	}
1186 
1187 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1188 #else
1189 	savesegment(fs, fs_sel);
1190 	savesegment(gs, gs_sel);
1191 	fs_base = segment_base(fs_sel);
1192 	gs_base = segment_base(gs_sel);
1193 #endif
1194 
1195 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1196 	vmx->guest_state_loaded = true;
1197 }
1198 
1199 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1200 {
1201 	struct vmcs_host_state *host_state;
1202 
1203 	if (!vmx->guest_state_loaded)
1204 		return;
1205 
1206 	host_state = &vmx->loaded_vmcs->host_state;
1207 
1208 	++vmx->vcpu.stat.host_state_reload;
1209 
1210 #ifdef CONFIG_X86_64
1211 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1212 #endif
1213 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1214 		kvm_load_ldt(host_state->ldt_sel);
1215 #ifdef CONFIG_X86_64
1216 		load_gs_index(host_state->gs_sel);
1217 #else
1218 		loadsegment(gs, host_state->gs_sel);
1219 #endif
1220 	}
1221 	if (host_state->fs_sel & 7)
1222 		loadsegment(fs, host_state->fs_sel);
1223 #ifdef CONFIG_X86_64
1224 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1225 		loadsegment(ds, host_state->ds_sel);
1226 		loadsegment(es, host_state->es_sel);
1227 	}
1228 #endif
1229 	invalidate_tss_limit();
1230 #ifdef CONFIG_X86_64
1231 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1232 #endif
1233 	load_fixmap_gdt(raw_smp_processor_id());
1234 	vmx->guest_state_loaded = false;
1235 	vmx->guest_msrs_ready = false;
1236 }
1237 
1238 #ifdef CONFIG_X86_64
1239 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1240 {
1241 	preempt_disable();
1242 	if (vmx->guest_state_loaded)
1243 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1244 	preempt_enable();
1245 	return vmx->msr_guest_kernel_gs_base;
1246 }
1247 
1248 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1249 {
1250 	preempt_disable();
1251 	if (vmx->guest_state_loaded)
1252 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1253 	preempt_enable();
1254 	vmx->msr_guest_kernel_gs_base = data;
1255 }
1256 #endif
1257 
1258 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1259 {
1260 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1261 	struct pi_desc old, new;
1262 	unsigned int dest;
1263 
1264 	/*
1265 	 * In case of hot-plug or hot-unplug, we may have to undo
1266 	 * vmx_vcpu_pi_put even if there is no assigned device.  And we
1267 	 * always keep PI.NDST up to date for simplicity: it makes the
1268 	 * code easier, and CPU migration is not a fast path.
1269 	 */
1270 	if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1271 		return;
1272 
1273 	/*
1274 	 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1275 	 * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1276 	 * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1277 	 * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1278 	 * correctly.
1279 	 */
1280 	if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1281 		pi_clear_sn(pi_desc);
1282 		goto after_clear_sn;
1283 	}
1284 
1285 	/* The full case.  */
1286 	do {
1287 		old.control = new.control = pi_desc->control;
1288 
1289 		dest = cpu_physical_id(cpu);
1290 
1291 		if (x2apic_enabled())
1292 			new.ndst = dest;
1293 		else
1294 			new.ndst = (dest << 8) & 0xFF00;
1295 
1296 		new.sn = 0;
1297 	} while (cmpxchg64(&pi_desc->control, old.control,
1298 			   new.control) != old.control);
1299 
1300 after_clear_sn:
1301 
1302 	/*
1303 	 * Clear SN before reading the bitmap.  The VT-d firmware
1304 	 * writes the bitmap and reads SN atomically (5.2.3 in the
1305 	 * spec), so it doesn't really have a memory barrier that
1306 	 * pairs with this, but we cannot do that and we need one.
1307 	 */
1308 	smp_mb__after_atomic();
1309 
1310 	if (!pi_is_pir_empty(pi_desc))
1311 		pi_set_on(pi_desc);
1312 }
1313 
1314 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1315 			struct loaded_vmcs *buddy)
1316 {
1317 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1318 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1319 	struct vmcs *prev;
1320 
1321 	if (!already_loaded) {
1322 		loaded_vmcs_clear(vmx->loaded_vmcs);
1323 		local_irq_disable();
1324 
1325 		/*
1326 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1327 		 * this cpu's percpu list, otherwise it may not yet be deleted
1328 		 * from its previous cpu's percpu list.  Pairs with the
1329 		 * smb_wmb() in __loaded_vmcs_clear().
1330 		 */
1331 		smp_rmb();
1332 
1333 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1334 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1335 		local_irq_enable();
1336 	}
1337 
1338 	prev = per_cpu(current_vmcs, cpu);
1339 	if (prev != vmx->loaded_vmcs->vmcs) {
1340 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1341 		vmcs_load(vmx->loaded_vmcs->vmcs);
1342 
1343 		/*
1344 		 * No indirect branch prediction barrier needed when switching
1345 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1346 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1347 		 */
1348 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1349 			indirect_branch_prediction_barrier();
1350 	}
1351 
1352 	if (!already_loaded) {
1353 		void *gdt = get_current_gdt_ro();
1354 		unsigned long sysenter_esp;
1355 
1356 		/*
1357 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1358 		 * TLB entries from its previous association with the vCPU.
1359 		 */
1360 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1361 
1362 		/*
1363 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1364 		 * processors.  See 22.2.4.
1365 		 */
1366 		vmcs_writel(HOST_TR_BASE,
1367 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1368 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1369 
1370 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1371 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1372 
1373 		vmx->loaded_vmcs->cpu = cpu;
1374 	}
1375 
1376 	/* Setup TSC multiplier */
1377 	if (kvm_has_tsc_control &&
1378 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1379 		decache_tsc_multiplier(vmx);
1380 }
1381 
1382 /*
1383  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1384  * vcpu mutex is already taken.
1385  */
1386 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1387 {
1388 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1389 
1390 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1391 
1392 	vmx_vcpu_pi_load(vcpu, cpu);
1393 
1394 	vmx->host_debugctlmsr = get_debugctlmsr();
1395 }
1396 
1397 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1398 {
1399 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1400 
1401 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1402 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
1403 		!kvm_vcpu_apicv_active(vcpu))
1404 		return;
1405 
1406 	/* Set SN when the vCPU is preempted */
1407 	if (vcpu->preempted)
1408 		pi_set_sn(pi_desc);
1409 }
1410 
1411 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1412 {
1413 	vmx_vcpu_pi_put(vcpu);
1414 
1415 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1416 }
1417 
1418 static bool emulation_required(struct kvm_vcpu *vcpu)
1419 {
1420 	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1421 }
1422 
1423 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1424 {
1425 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1426 	unsigned long rflags, save_rflags;
1427 
1428 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1429 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1430 		rflags = vmcs_readl(GUEST_RFLAGS);
1431 		if (vmx->rmode.vm86_active) {
1432 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1433 			save_rflags = vmx->rmode.save_rflags;
1434 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1435 		}
1436 		vmx->rflags = rflags;
1437 	}
1438 	return vmx->rflags;
1439 }
1440 
1441 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1442 {
1443 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1444 	unsigned long old_rflags;
1445 
1446 	if (enable_unrestricted_guest) {
1447 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1448 		vmx->rflags = rflags;
1449 		vmcs_writel(GUEST_RFLAGS, rflags);
1450 		return;
1451 	}
1452 
1453 	old_rflags = vmx_get_rflags(vcpu);
1454 	vmx->rflags = rflags;
1455 	if (vmx->rmode.vm86_active) {
1456 		vmx->rmode.save_rflags = rflags;
1457 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1458 	}
1459 	vmcs_writel(GUEST_RFLAGS, rflags);
1460 
1461 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1462 		vmx->emulation_required = emulation_required(vcpu);
1463 }
1464 
1465 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1466 {
1467 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1468 	int ret = 0;
1469 
1470 	if (interruptibility & GUEST_INTR_STATE_STI)
1471 		ret |= KVM_X86_SHADOW_INT_STI;
1472 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1473 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1474 
1475 	return ret;
1476 }
1477 
1478 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1479 {
1480 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1481 	u32 interruptibility = interruptibility_old;
1482 
1483 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1484 
1485 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1486 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1487 	else if (mask & KVM_X86_SHADOW_INT_STI)
1488 		interruptibility |= GUEST_INTR_STATE_STI;
1489 
1490 	if ((interruptibility != interruptibility_old))
1491 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1492 }
1493 
1494 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1495 {
1496 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1497 	unsigned long value;
1498 
1499 	/*
1500 	 * Any MSR write that attempts to change bits marked reserved will
1501 	 * case a #GP fault.
1502 	 */
1503 	if (data & vmx->pt_desc.ctl_bitmask)
1504 		return 1;
1505 
1506 	/*
1507 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1508 	 * result in a #GP unless the same write also clears TraceEn.
1509 	 */
1510 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1511 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1512 		return 1;
1513 
1514 	/*
1515 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1516 	 * and FabricEn would cause #GP, if
1517 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1518 	 */
1519 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1520 		!(data & RTIT_CTL_FABRIC_EN) &&
1521 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1522 					PT_CAP_single_range_output))
1523 		return 1;
1524 
1525 	/*
1526 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1527 	 * utilize encodings marked reserved will casue a #GP fault.
1528 	 */
1529 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1530 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1531 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1532 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1533 		return 1;
1534 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1535 						PT_CAP_cycle_thresholds);
1536 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1537 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1538 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1539 		return 1;
1540 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1541 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1542 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1543 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1544 		return 1;
1545 
1546 	/*
1547 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1548 	 * cause a #GP fault.
1549 	 */
1550 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1551 	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1552 		return 1;
1553 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1554 	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1555 		return 1;
1556 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1557 	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1558 		return 1;
1559 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1560 	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1561 		return 1;
1562 
1563 	return 0;
1564 }
1565 
1566 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1567 {
1568 	unsigned long rip, orig_rip;
1569 
1570 	/*
1571 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1572 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1573 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1574 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1575 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1576 	 * i.e. we end up advancing IP with some random value.
1577 	 */
1578 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1579 	    to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1580 		orig_rip = kvm_rip_read(vcpu);
1581 		rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1582 #ifdef CONFIG_X86_64
1583 		/*
1584 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1585 		 * mode, but just finding out that we are in 64-bit mode is
1586 		 * quite expensive.  Only do it if there was a carry.
1587 		 */
1588 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1589 			rip = (u32)rip;
1590 #endif
1591 		kvm_rip_write(vcpu, rip);
1592 	} else {
1593 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1594 			return 0;
1595 	}
1596 
1597 	/* skipping an emulated instruction also counts */
1598 	vmx_set_interrupt_shadow(vcpu, 0);
1599 
1600 	return 1;
1601 }
1602 
1603 /*
1604  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
1605  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
1606  * indicates whether exit to userspace is needed.
1607  */
1608 int vmx_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
1609 			      struct x86_exception *e)
1610 {
1611 	if (r == X86EMUL_PROPAGATE_FAULT) {
1612 		kvm_inject_emulated_page_fault(vcpu, e);
1613 		return 1;
1614 	}
1615 
1616 	/*
1617 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
1618 	 * while handling a VMX instruction KVM could've handled the request
1619 	 * correctly by exiting to userspace and performing I/O but there
1620 	 * doesn't seem to be a real use-case behind such requests, just return
1621 	 * KVM_EXIT_INTERNAL_ERROR for now.
1622 	 */
1623 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1624 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
1625 	vcpu->run->internal.ndata = 0;
1626 
1627 	return 0;
1628 }
1629 
1630 /*
1631  * Recognizes a pending MTF VM-exit and records the nested state for later
1632  * delivery.
1633  */
1634 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1635 {
1636 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1637 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1638 
1639 	if (!is_guest_mode(vcpu))
1640 		return;
1641 
1642 	/*
1643 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1644 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1645 	 * instruction boundary), any #DB exception pending delivery must be a
1646 	 * debug-trap. Record the pending MTF state to be delivered in
1647 	 * vmx_check_nested_events().
1648 	 */
1649 	if (nested_cpu_has_mtf(vmcs12) &&
1650 	    (!vcpu->arch.exception.pending ||
1651 	     vcpu->arch.exception.nr == DB_VECTOR))
1652 		vmx->nested.mtf_pending = true;
1653 	else
1654 		vmx->nested.mtf_pending = false;
1655 }
1656 
1657 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1658 {
1659 	vmx_update_emulated_instruction(vcpu);
1660 	return skip_emulated_instruction(vcpu);
1661 }
1662 
1663 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1664 {
1665 	/*
1666 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1667 	 * explicitly skip the instruction because if the HLT state is set,
1668 	 * then the instruction is already executing and RIP has already been
1669 	 * advanced.
1670 	 */
1671 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1672 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1673 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1674 }
1675 
1676 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1677 {
1678 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1679 	unsigned nr = vcpu->arch.exception.nr;
1680 	bool has_error_code = vcpu->arch.exception.has_error_code;
1681 	u32 error_code = vcpu->arch.exception.error_code;
1682 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1683 
1684 	kvm_deliver_exception_payload(vcpu);
1685 
1686 	if (has_error_code) {
1687 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1688 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1689 	}
1690 
1691 	if (vmx->rmode.vm86_active) {
1692 		int inc_eip = 0;
1693 		if (kvm_exception_is_soft(nr))
1694 			inc_eip = vcpu->arch.event_exit_inst_len;
1695 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1696 		return;
1697 	}
1698 
1699 	WARN_ON_ONCE(vmx->emulation_required);
1700 
1701 	if (kvm_exception_is_soft(nr)) {
1702 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1703 			     vmx->vcpu.arch.event_exit_inst_len);
1704 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1705 	} else
1706 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1707 
1708 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1709 
1710 	vmx_clear_hlt(vcpu);
1711 }
1712 
1713 /*
1714  * Swap MSR entry in host/guest MSR entry array.
1715  */
1716 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1717 {
1718 	struct shared_msr_entry tmp;
1719 
1720 	tmp = vmx->guest_msrs[to];
1721 	vmx->guest_msrs[to] = vmx->guest_msrs[from];
1722 	vmx->guest_msrs[from] = tmp;
1723 }
1724 
1725 /*
1726  * Set up the vmcs to automatically save and restore system
1727  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1728  * mode, as fiddling with msrs is very expensive.
1729  */
1730 static void setup_msrs(struct vcpu_vmx *vmx)
1731 {
1732 	int save_nmsrs, index;
1733 
1734 	save_nmsrs = 0;
1735 #ifdef CONFIG_X86_64
1736 	/*
1737 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1738 	 * when EFER.SCE is set.
1739 	 */
1740 	if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1741 		index = __find_msr_index(vmx, MSR_STAR);
1742 		if (index >= 0)
1743 			move_msr_up(vmx, index, save_nmsrs++);
1744 		index = __find_msr_index(vmx, MSR_LSTAR);
1745 		if (index >= 0)
1746 			move_msr_up(vmx, index, save_nmsrs++);
1747 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1748 		if (index >= 0)
1749 			move_msr_up(vmx, index, save_nmsrs++);
1750 	}
1751 #endif
1752 	index = __find_msr_index(vmx, MSR_EFER);
1753 	if (index >= 0 && update_transition_efer(vmx, index))
1754 		move_msr_up(vmx, index, save_nmsrs++);
1755 	index = __find_msr_index(vmx, MSR_TSC_AUX);
1756 	if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1757 		move_msr_up(vmx, index, save_nmsrs++);
1758 	index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL);
1759 	if (index >= 0)
1760 		move_msr_up(vmx, index, save_nmsrs++);
1761 
1762 	vmx->save_nmsrs = save_nmsrs;
1763 	vmx->guest_msrs_ready = false;
1764 
1765 	if (cpu_has_vmx_msr_bitmap())
1766 		vmx_update_msr_bitmap(&vmx->vcpu);
1767 }
1768 
1769 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1770 {
1771 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1772 	u64 g_tsc_offset = 0;
1773 
1774 	/*
1775 	 * We're here if L1 chose not to trap WRMSR to TSC. According
1776 	 * to the spec, this should set L1's TSC; The offset that L1
1777 	 * set for L2 remains unchanged, and still needs to be added
1778 	 * to the newly set TSC to get L2's TSC.
1779 	 */
1780 	if (is_guest_mode(vcpu) &&
1781 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1782 		g_tsc_offset = vmcs12->tsc_offset;
1783 
1784 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1785 				   vcpu->arch.tsc_offset - g_tsc_offset,
1786 				   offset);
1787 	vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1788 	return offset + g_tsc_offset;
1789 }
1790 
1791 /*
1792  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1793  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1794  * all guests if the "nested" module option is off, and can also be disabled
1795  * for a single guest by disabling its VMX cpuid bit.
1796  */
1797 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1798 {
1799 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1800 }
1801 
1802 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1803 						 uint64_t val)
1804 {
1805 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1806 
1807 	return !(val & ~valid_bits);
1808 }
1809 
1810 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1811 {
1812 	switch (msr->index) {
1813 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1814 		if (!nested)
1815 			return 1;
1816 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1817 	case MSR_IA32_PERF_CAPABILITIES:
1818 		msr->data = vmx_get_perf_capabilities();
1819 		return 0;
1820 	default:
1821 		return 1;
1822 	}
1823 }
1824 
1825 /*
1826  * Reads an msr value (of 'msr_index') into 'pdata'.
1827  * Returns 0 on success, non-0 otherwise.
1828  * Assumes vcpu_load() was already called.
1829  */
1830 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1831 {
1832 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1833 	struct shared_msr_entry *msr;
1834 	u32 index;
1835 
1836 	switch (msr_info->index) {
1837 #ifdef CONFIG_X86_64
1838 	case MSR_FS_BASE:
1839 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1840 		break;
1841 	case MSR_GS_BASE:
1842 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1843 		break;
1844 	case MSR_KERNEL_GS_BASE:
1845 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1846 		break;
1847 #endif
1848 	case MSR_EFER:
1849 		return kvm_get_msr_common(vcpu, msr_info);
1850 	case MSR_IA32_TSX_CTRL:
1851 		if (!msr_info->host_initiated &&
1852 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1853 			return 1;
1854 		goto find_shared_msr;
1855 	case MSR_IA32_UMWAIT_CONTROL:
1856 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1857 			return 1;
1858 
1859 		msr_info->data = vmx->msr_ia32_umwait_control;
1860 		break;
1861 	case MSR_IA32_SPEC_CTRL:
1862 		if (!msr_info->host_initiated &&
1863 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1864 			return 1;
1865 
1866 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1867 		break;
1868 	case MSR_IA32_SYSENTER_CS:
1869 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1870 		break;
1871 	case MSR_IA32_SYSENTER_EIP:
1872 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1873 		break;
1874 	case MSR_IA32_SYSENTER_ESP:
1875 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1876 		break;
1877 	case MSR_IA32_BNDCFGS:
1878 		if (!kvm_mpx_supported() ||
1879 		    (!msr_info->host_initiated &&
1880 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1881 			return 1;
1882 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1883 		break;
1884 	case MSR_IA32_MCG_EXT_CTL:
1885 		if (!msr_info->host_initiated &&
1886 		    !(vmx->msr_ia32_feature_control &
1887 		      FEAT_CTL_LMCE_ENABLED))
1888 			return 1;
1889 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1890 		break;
1891 	case MSR_IA32_FEAT_CTL:
1892 		msr_info->data = vmx->msr_ia32_feature_control;
1893 		break;
1894 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1895 		if (!nested_vmx_allowed(vcpu))
1896 			return 1;
1897 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1898 				    &msr_info->data))
1899 			return 1;
1900 		/*
1901 		 * Enlightened VMCS v1 doesn't have certain fields, but buggy
1902 		 * Hyper-V versions are still trying to use corresponding
1903 		 * features when they are exposed. Filter out the essential
1904 		 * minimum.
1905 		 */
1906 		if (!msr_info->host_initiated &&
1907 		    vmx->nested.enlightened_vmcs_enabled)
1908 			nested_evmcs_filter_control_msr(msr_info->index,
1909 							&msr_info->data);
1910 		break;
1911 	case MSR_IA32_RTIT_CTL:
1912 		if (!vmx_pt_mode_is_host_guest())
1913 			return 1;
1914 		msr_info->data = vmx->pt_desc.guest.ctl;
1915 		break;
1916 	case MSR_IA32_RTIT_STATUS:
1917 		if (!vmx_pt_mode_is_host_guest())
1918 			return 1;
1919 		msr_info->data = vmx->pt_desc.guest.status;
1920 		break;
1921 	case MSR_IA32_RTIT_CR3_MATCH:
1922 		if (!vmx_pt_mode_is_host_guest() ||
1923 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1924 						PT_CAP_cr3_filtering))
1925 			return 1;
1926 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1927 		break;
1928 	case MSR_IA32_RTIT_OUTPUT_BASE:
1929 		if (!vmx_pt_mode_is_host_guest() ||
1930 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1931 					PT_CAP_topa_output) &&
1932 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1933 					PT_CAP_single_range_output)))
1934 			return 1;
1935 		msr_info->data = vmx->pt_desc.guest.output_base;
1936 		break;
1937 	case MSR_IA32_RTIT_OUTPUT_MASK:
1938 		if (!vmx_pt_mode_is_host_guest() ||
1939 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1940 					PT_CAP_topa_output) &&
1941 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1942 					PT_CAP_single_range_output)))
1943 			return 1;
1944 		msr_info->data = vmx->pt_desc.guest.output_mask;
1945 		break;
1946 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1947 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1948 		if (!vmx_pt_mode_is_host_guest() ||
1949 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1950 					PT_CAP_num_address_ranges)))
1951 			return 1;
1952 		if (index % 2)
1953 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1954 		else
1955 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1956 		break;
1957 	case MSR_TSC_AUX:
1958 		if (!msr_info->host_initiated &&
1959 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1960 			return 1;
1961 		goto find_shared_msr;
1962 	default:
1963 	find_shared_msr:
1964 		msr = find_msr_entry(vmx, msr_info->index);
1965 		if (msr) {
1966 			msr_info->data = msr->data;
1967 			break;
1968 		}
1969 		return kvm_get_msr_common(vcpu, msr_info);
1970 	}
1971 
1972 	return 0;
1973 }
1974 
1975 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1976 						    u64 data)
1977 {
1978 #ifdef CONFIG_X86_64
1979 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1980 		return (u32)data;
1981 #endif
1982 	return (unsigned long)data;
1983 }
1984 
1985 /*
1986  * Writes msr value into the appropriate "register".
1987  * Returns 0 on success, non-0 otherwise.
1988  * Assumes vcpu_load() was already called.
1989  */
1990 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1991 {
1992 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1993 	struct shared_msr_entry *msr;
1994 	int ret = 0;
1995 	u32 msr_index = msr_info->index;
1996 	u64 data = msr_info->data;
1997 	u32 index;
1998 
1999 	switch (msr_index) {
2000 	case MSR_EFER:
2001 		ret = kvm_set_msr_common(vcpu, msr_info);
2002 		break;
2003 #ifdef CONFIG_X86_64
2004 	case MSR_FS_BASE:
2005 		vmx_segment_cache_clear(vmx);
2006 		vmcs_writel(GUEST_FS_BASE, data);
2007 		break;
2008 	case MSR_GS_BASE:
2009 		vmx_segment_cache_clear(vmx);
2010 		vmcs_writel(GUEST_GS_BASE, data);
2011 		break;
2012 	case MSR_KERNEL_GS_BASE:
2013 		vmx_write_guest_kernel_gs_base(vmx, data);
2014 		break;
2015 #endif
2016 	case MSR_IA32_SYSENTER_CS:
2017 		if (is_guest_mode(vcpu))
2018 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2019 		vmcs_write32(GUEST_SYSENTER_CS, data);
2020 		break;
2021 	case MSR_IA32_SYSENTER_EIP:
2022 		if (is_guest_mode(vcpu)) {
2023 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2024 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2025 		}
2026 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2027 		break;
2028 	case MSR_IA32_SYSENTER_ESP:
2029 		if (is_guest_mode(vcpu)) {
2030 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2031 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2032 		}
2033 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2034 		break;
2035 	case MSR_IA32_DEBUGCTLMSR:
2036 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2037 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2038 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2039 
2040 		ret = kvm_set_msr_common(vcpu, msr_info);
2041 		break;
2042 
2043 	case MSR_IA32_BNDCFGS:
2044 		if (!kvm_mpx_supported() ||
2045 		    (!msr_info->host_initiated &&
2046 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2047 			return 1;
2048 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2049 		    (data & MSR_IA32_BNDCFGS_RSVD))
2050 			return 1;
2051 		vmcs_write64(GUEST_BNDCFGS, data);
2052 		break;
2053 	case MSR_IA32_UMWAIT_CONTROL:
2054 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2055 			return 1;
2056 
2057 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2058 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2059 			return 1;
2060 
2061 		vmx->msr_ia32_umwait_control = data;
2062 		break;
2063 	case MSR_IA32_SPEC_CTRL:
2064 		if (!msr_info->host_initiated &&
2065 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2066 			return 1;
2067 
2068 		if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
2069 			return 1;
2070 
2071 		vmx->spec_ctrl = data;
2072 		if (!data)
2073 			break;
2074 
2075 		/*
2076 		 * For non-nested:
2077 		 * When it's written (to non-zero) for the first time, pass
2078 		 * it through.
2079 		 *
2080 		 * For nested:
2081 		 * The handling of the MSR bitmap for L2 guests is done in
2082 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2083 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2084 		 * in the merging. We update the vmcs01 here for L1 as well
2085 		 * since it will end up touching the MSR anyway now.
2086 		 */
2087 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2088 					      MSR_IA32_SPEC_CTRL,
2089 					      MSR_TYPE_RW);
2090 		break;
2091 	case MSR_IA32_TSX_CTRL:
2092 		if (!msr_info->host_initiated &&
2093 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2094 			return 1;
2095 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2096 			return 1;
2097 		goto find_shared_msr;
2098 	case MSR_IA32_PRED_CMD:
2099 		if (!msr_info->host_initiated &&
2100 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2101 			return 1;
2102 
2103 		if (data & ~PRED_CMD_IBPB)
2104 			return 1;
2105 		if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL))
2106 			return 1;
2107 		if (!data)
2108 			break;
2109 
2110 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2111 
2112 		/*
2113 		 * For non-nested:
2114 		 * When it's written (to non-zero) for the first time, pass
2115 		 * it through.
2116 		 *
2117 		 * For nested:
2118 		 * The handling of the MSR bitmap for L2 guests is done in
2119 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2120 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2121 		 * in the merging.
2122 		 */
2123 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2124 					      MSR_TYPE_W);
2125 		break;
2126 	case MSR_IA32_CR_PAT:
2127 		if (!kvm_pat_valid(data))
2128 			return 1;
2129 
2130 		if (is_guest_mode(vcpu) &&
2131 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2132 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2133 
2134 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2135 			vmcs_write64(GUEST_IA32_PAT, data);
2136 			vcpu->arch.pat = data;
2137 			break;
2138 		}
2139 		ret = kvm_set_msr_common(vcpu, msr_info);
2140 		break;
2141 	case MSR_IA32_TSC_ADJUST:
2142 		ret = kvm_set_msr_common(vcpu, msr_info);
2143 		break;
2144 	case MSR_IA32_MCG_EXT_CTL:
2145 		if ((!msr_info->host_initiated &&
2146 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2147 		       FEAT_CTL_LMCE_ENABLED)) ||
2148 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2149 			return 1;
2150 		vcpu->arch.mcg_ext_ctl = data;
2151 		break;
2152 	case MSR_IA32_FEAT_CTL:
2153 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2154 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2155 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2156 			return 1;
2157 		vmx->msr_ia32_feature_control = data;
2158 		if (msr_info->host_initiated && data == 0)
2159 			vmx_leave_nested(vcpu);
2160 		break;
2161 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2162 		if (!msr_info->host_initiated)
2163 			return 1; /* they are read-only */
2164 		if (!nested_vmx_allowed(vcpu))
2165 			return 1;
2166 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2167 	case MSR_IA32_RTIT_CTL:
2168 		if (!vmx_pt_mode_is_host_guest() ||
2169 			vmx_rtit_ctl_check(vcpu, data) ||
2170 			vmx->nested.vmxon)
2171 			return 1;
2172 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2173 		vmx->pt_desc.guest.ctl = data;
2174 		pt_update_intercept_for_msr(vmx);
2175 		break;
2176 	case MSR_IA32_RTIT_STATUS:
2177 		if (!pt_can_write_msr(vmx))
2178 			return 1;
2179 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2180 			return 1;
2181 		vmx->pt_desc.guest.status = data;
2182 		break;
2183 	case MSR_IA32_RTIT_CR3_MATCH:
2184 		if (!pt_can_write_msr(vmx))
2185 			return 1;
2186 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2187 					   PT_CAP_cr3_filtering))
2188 			return 1;
2189 		vmx->pt_desc.guest.cr3_match = data;
2190 		break;
2191 	case MSR_IA32_RTIT_OUTPUT_BASE:
2192 		if (!pt_can_write_msr(vmx))
2193 			return 1;
2194 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2195 					   PT_CAP_topa_output) &&
2196 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2197 					   PT_CAP_single_range_output))
2198 			return 1;
2199 		if (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)
2200 			return 1;
2201 		vmx->pt_desc.guest.output_base = data;
2202 		break;
2203 	case MSR_IA32_RTIT_OUTPUT_MASK:
2204 		if (!pt_can_write_msr(vmx))
2205 			return 1;
2206 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2207 					   PT_CAP_topa_output) &&
2208 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2209 					   PT_CAP_single_range_output))
2210 			return 1;
2211 		vmx->pt_desc.guest.output_mask = data;
2212 		break;
2213 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2214 		if (!pt_can_write_msr(vmx))
2215 			return 1;
2216 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2217 		if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2218 						       PT_CAP_num_address_ranges))
2219 			return 1;
2220 		if (is_noncanonical_address(data, vcpu))
2221 			return 1;
2222 		if (index % 2)
2223 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2224 		else
2225 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2226 		break;
2227 	case MSR_TSC_AUX:
2228 		if (!msr_info->host_initiated &&
2229 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2230 			return 1;
2231 		/* Check reserved bit, higher 32 bits should be zero */
2232 		if ((data >> 32) != 0)
2233 			return 1;
2234 		goto find_shared_msr;
2235 
2236 	default:
2237 	find_shared_msr:
2238 		msr = find_msr_entry(vmx, msr_index);
2239 		if (msr)
2240 			ret = vmx_set_guest_msr(vmx, msr, data);
2241 		else
2242 			ret = kvm_set_msr_common(vcpu, msr_info);
2243 	}
2244 
2245 	return ret;
2246 }
2247 
2248 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2249 {
2250 	unsigned long guest_owned_bits;
2251 
2252 	kvm_register_mark_available(vcpu, reg);
2253 
2254 	switch (reg) {
2255 	case VCPU_REGS_RSP:
2256 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2257 		break;
2258 	case VCPU_REGS_RIP:
2259 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2260 		break;
2261 	case VCPU_EXREG_PDPTR:
2262 		if (enable_ept)
2263 			ept_save_pdptrs(vcpu);
2264 		break;
2265 	case VCPU_EXREG_CR0:
2266 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2267 
2268 		vcpu->arch.cr0 &= ~guest_owned_bits;
2269 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2270 		break;
2271 	case VCPU_EXREG_CR3:
2272 		if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2273 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2274 		break;
2275 	case VCPU_EXREG_CR4:
2276 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2277 
2278 		vcpu->arch.cr4 &= ~guest_owned_bits;
2279 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2280 		break;
2281 	default:
2282 		WARN_ON_ONCE(1);
2283 		break;
2284 	}
2285 }
2286 
2287 static __init int cpu_has_kvm_support(void)
2288 {
2289 	return cpu_has_vmx();
2290 }
2291 
2292 static __init int vmx_disabled_by_bios(void)
2293 {
2294 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2295 	       !boot_cpu_has(X86_FEATURE_VMX);
2296 }
2297 
2298 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2299 {
2300 	u64 msr;
2301 
2302 	cr4_set_bits(X86_CR4_VMXE);
2303 	intel_pt_handle_vmx(1);
2304 
2305 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2306 			  _ASM_EXTABLE(1b, %l[fault])
2307 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2308 			  : : fault);
2309 	return 0;
2310 
2311 fault:
2312 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2313 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2314 	intel_pt_handle_vmx(0);
2315 	cr4_clear_bits(X86_CR4_VMXE);
2316 
2317 	return -EFAULT;
2318 }
2319 
2320 static int hardware_enable(void)
2321 {
2322 	int cpu = raw_smp_processor_id();
2323 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2324 	int r;
2325 
2326 	if (cr4_read_shadow() & X86_CR4_VMXE)
2327 		return -EBUSY;
2328 
2329 	/*
2330 	 * This can happen if we hot-added a CPU but failed to allocate
2331 	 * VP assist page for it.
2332 	 */
2333 	if (static_branch_unlikely(&enable_evmcs) &&
2334 	    !hv_get_vp_assist_page(cpu))
2335 		return -EFAULT;
2336 
2337 	r = kvm_cpu_vmxon(phys_addr);
2338 	if (r)
2339 		return r;
2340 
2341 	if (enable_ept)
2342 		ept_sync_global();
2343 
2344 	return 0;
2345 }
2346 
2347 static void vmclear_local_loaded_vmcss(void)
2348 {
2349 	int cpu = raw_smp_processor_id();
2350 	struct loaded_vmcs *v, *n;
2351 
2352 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2353 				 loaded_vmcss_on_cpu_link)
2354 		__loaded_vmcs_clear(v);
2355 }
2356 
2357 
2358 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2359  * tricks.
2360  */
2361 static void kvm_cpu_vmxoff(void)
2362 {
2363 	asm volatile (__ex("vmxoff"));
2364 
2365 	intel_pt_handle_vmx(0);
2366 	cr4_clear_bits(X86_CR4_VMXE);
2367 }
2368 
2369 static void hardware_disable(void)
2370 {
2371 	vmclear_local_loaded_vmcss();
2372 	kvm_cpu_vmxoff();
2373 }
2374 
2375 /*
2376  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2377  * directly instead of going through cpu_has(), to ensure KVM is trapping
2378  * ENCLS whenever it's supported in hardware.  It does not matter whether
2379  * the host OS supports or has enabled SGX.
2380  */
2381 static bool cpu_has_sgx(void)
2382 {
2383 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2384 }
2385 
2386 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2387 				      u32 msr, u32 *result)
2388 {
2389 	u32 vmx_msr_low, vmx_msr_high;
2390 	u32 ctl = ctl_min | ctl_opt;
2391 
2392 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2393 
2394 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2395 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2396 
2397 	/* Ensure minimum (required) set of control bits are supported. */
2398 	if (ctl_min & ~ctl)
2399 		return -EIO;
2400 
2401 	*result = ctl;
2402 	return 0;
2403 }
2404 
2405 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2406 				    struct vmx_capability *vmx_cap)
2407 {
2408 	u32 vmx_msr_low, vmx_msr_high;
2409 	u32 min, opt, min2, opt2;
2410 	u32 _pin_based_exec_control = 0;
2411 	u32 _cpu_based_exec_control = 0;
2412 	u32 _cpu_based_2nd_exec_control = 0;
2413 	u32 _vmexit_control = 0;
2414 	u32 _vmentry_control = 0;
2415 
2416 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2417 	min = CPU_BASED_HLT_EXITING |
2418 #ifdef CONFIG_X86_64
2419 	      CPU_BASED_CR8_LOAD_EXITING |
2420 	      CPU_BASED_CR8_STORE_EXITING |
2421 #endif
2422 	      CPU_BASED_CR3_LOAD_EXITING |
2423 	      CPU_BASED_CR3_STORE_EXITING |
2424 	      CPU_BASED_UNCOND_IO_EXITING |
2425 	      CPU_BASED_MOV_DR_EXITING |
2426 	      CPU_BASED_USE_TSC_OFFSETTING |
2427 	      CPU_BASED_MWAIT_EXITING |
2428 	      CPU_BASED_MONITOR_EXITING |
2429 	      CPU_BASED_INVLPG_EXITING |
2430 	      CPU_BASED_RDPMC_EXITING;
2431 
2432 	opt = CPU_BASED_TPR_SHADOW |
2433 	      CPU_BASED_USE_MSR_BITMAPS |
2434 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2435 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2436 				&_cpu_based_exec_control) < 0)
2437 		return -EIO;
2438 #ifdef CONFIG_X86_64
2439 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2440 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2441 					   ~CPU_BASED_CR8_STORE_EXITING;
2442 #endif
2443 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2444 		min2 = 0;
2445 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2446 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2447 			SECONDARY_EXEC_WBINVD_EXITING |
2448 			SECONDARY_EXEC_ENABLE_VPID |
2449 			SECONDARY_EXEC_ENABLE_EPT |
2450 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2451 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2452 			SECONDARY_EXEC_DESC |
2453 			SECONDARY_EXEC_RDTSCP |
2454 			SECONDARY_EXEC_ENABLE_INVPCID |
2455 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2456 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2457 			SECONDARY_EXEC_SHADOW_VMCS |
2458 			SECONDARY_EXEC_XSAVES |
2459 			SECONDARY_EXEC_RDSEED_EXITING |
2460 			SECONDARY_EXEC_RDRAND_EXITING |
2461 			SECONDARY_EXEC_ENABLE_PML |
2462 			SECONDARY_EXEC_TSC_SCALING |
2463 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2464 			SECONDARY_EXEC_PT_USE_GPA |
2465 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2466 			SECONDARY_EXEC_ENABLE_VMFUNC;
2467 		if (cpu_has_sgx())
2468 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2469 		if (adjust_vmx_controls(min2, opt2,
2470 					MSR_IA32_VMX_PROCBASED_CTLS2,
2471 					&_cpu_based_2nd_exec_control) < 0)
2472 			return -EIO;
2473 	}
2474 #ifndef CONFIG_X86_64
2475 	if (!(_cpu_based_2nd_exec_control &
2476 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2477 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2478 #endif
2479 
2480 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2481 		_cpu_based_2nd_exec_control &= ~(
2482 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2483 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2484 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2485 
2486 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2487 		&vmx_cap->ept, &vmx_cap->vpid);
2488 
2489 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2490 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2491 		   enabled */
2492 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2493 					     CPU_BASED_CR3_STORE_EXITING |
2494 					     CPU_BASED_INVLPG_EXITING);
2495 	} else if (vmx_cap->ept) {
2496 		vmx_cap->ept = 0;
2497 		pr_warn_once("EPT CAP should not exist if not support "
2498 				"1-setting enable EPT VM-execution control\n");
2499 	}
2500 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2501 		vmx_cap->vpid) {
2502 		vmx_cap->vpid = 0;
2503 		pr_warn_once("VPID CAP should not exist if not support "
2504 				"1-setting enable VPID VM-execution control\n");
2505 	}
2506 
2507 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2508 #ifdef CONFIG_X86_64
2509 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2510 #endif
2511 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2512 	      VM_EXIT_LOAD_IA32_PAT |
2513 	      VM_EXIT_LOAD_IA32_EFER |
2514 	      VM_EXIT_CLEAR_BNDCFGS |
2515 	      VM_EXIT_PT_CONCEAL_PIP |
2516 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2517 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2518 				&_vmexit_control) < 0)
2519 		return -EIO;
2520 
2521 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2522 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2523 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2524 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2525 				&_pin_based_exec_control) < 0)
2526 		return -EIO;
2527 
2528 	if (cpu_has_broken_vmx_preemption_timer())
2529 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2530 	if (!(_cpu_based_2nd_exec_control &
2531 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2532 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2533 
2534 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2535 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2536 	      VM_ENTRY_LOAD_IA32_PAT |
2537 	      VM_ENTRY_LOAD_IA32_EFER |
2538 	      VM_ENTRY_LOAD_BNDCFGS |
2539 	      VM_ENTRY_PT_CONCEAL_PIP |
2540 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2541 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2542 				&_vmentry_control) < 0)
2543 		return -EIO;
2544 
2545 	/*
2546 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2547 	 * can't be used due to an errata where VM Exit may incorrectly clear
2548 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2549 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2550 	 */
2551 	if (boot_cpu_data.x86 == 0x6) {
2552 		switch (boot_cpu_data.x86_model) {
2553 		case 26: /* AAK155 */
2554 		case 30: /* AAP115 */
2555 		case 37: /* AAT100 */
2556 		case 44: /* BC86,AAY89,BD102 */
2557 		case 46: /* BA97 */
2558 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2559 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2560 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2561 					"does not work properly. Using workaround\n");
2562 			break;
2563 		default:
2564 			break;
2565 		}
2566 	}
2567 
2568 
2569 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2570 
2571 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2572 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2573 		return -EIO;
2574 
2575 #ifdef CONFIG_X86_64
2576 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2577 	if (vmx_msr_high & (1u<<16))
2578 		return -EIO;
2579 #endif
2580 
2581 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2582 	if (((vmx_msr_high >> 18) & 15) != 6)
2583 		return -EIO;
2584 
2585 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2586 	vmcs_conf->order = get_order(vmcs_conf->size);
2587 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2588 
2589 	vmcs_conf->revision_id = vmx_msr_low;
2590 
2591 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2592 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2593 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2594 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2595 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2596 
2597 	if (static_branch_unlikely(&enable_evmcs))
2598 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2599 
2600 	return 0;
2601 }
2602 
2603 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2604 {
2605 	int node = cpu_to_node(cpu);
2606 	struct page *pages;
2607 	struct vmcs *vmcs;
2608 
2609 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2610 	if (!pages)
2611 		return NULL;
2612 	vmcs = page_address(pages);
2613 	memset(vmcs, 0, vmcs_config.size);
2614 
2615 	/* KVM supports Enlightened VMCS v1 only */
2616 	if (static_branch_unlikely(&enable_evmcs))
2617 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2618 	else
2619 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2620 
2621 	if (shadow)
2622 		vmcs->hdr.shadow_vmcs = 1;
2623 	return vmcs;
2624 }
2625 
2626 void free_vmcs(struct vmcs *vmcs)
2627 {
2628 	free_pages((unsigned long)vmcs, vmcs_config.order);
2629 }
2630 
2631 /*
2632  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2633  */
2634 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2635 {
2636 	if (!loaded_vmcs->vmcs)
2637 		return;
2638 	loaded_vmcs_clear(loaded_vmcs);
2639 	free_vmcs(loaded_vmcs->vmcs);
2640 	loaded_vmcs->vmcs = NULL;
2641 	if (loaded_vmcs->msr_bitmap)
2642 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2643 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2644 }
2645 
2646 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2647 {
2648 	loaded_vmcs->vmcs = alloc_vmcs(false);
2649 	if (!loaded_vmcs->vmcs)
2650 		return -ENOMEM;
2651 
2652 	vmcs_clear(loaded_vmcs->vmcs);
2653 
2654 	loaded_vmcs->shadow_vmcs = NULL;
2655 	loaded_vmcs->hv_timer_soft_disabled = false;
2656 	loaded_vmcs->cpu = -1;
2657 	loaded_vmcs->launched = 0;
2658 
2659 	if (cpu_has_vmx_msr_bitmap()) {
2660 		loaded_vmcs->msr_bitmap = (unsigned long *)
2661 				__get_free_page(GFP_KERNEL_ACCOUNT);
2662 		if (!loaded_vmcs->msr_bitmap)
2663 			goto out_vmcs;
2664 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2665 
2666 		if (IS_ENABLED(CONFIG_HYPERV) &&
2667 		    static_branch_unlikely(&enable_evmcs) &&
2668 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2669 			struct hv_enlightened_vmcs *evmcs =
2670 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2671 
2672 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2673 		}
2674 	}
2675 
2676 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2677 	memset(&loaded_vmcs->controls_shadow, 0,
2678 		sizeof(struct vmcs_controls_shadow));
2679 
2680 	return 0;
2681 
2682 out_vmcs:
2683 	free_loaded_vmcs(loaded_vmcs);
2684 	return -ENOMEM;
2685 }
2686 
2687 static void free_kvm_area(void)
2688 {
2689 	int cpu;
2690 
2691 	for_each_possible_cpu(cpu) {
2692 		free_vmcs(per_cpu(vmxarea, cpu));
2693 		per_cpu(vmxarea, cpu) = NULL;
2694 	}
2695 }
2696 
2697 static __init int alloc_kvm_area(void)
2698 {
2699 	int cpu;
2700 
2701 	for_each_possible_cpu(cpu) {
2702 		struct vmcs *vmcs;
2703 
2704 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2705 		if (!vmcs) {
2706 			free_kvm_area();
2707 			return -ENOMEM;
2708 		}
2709 
2710 		/*
2711 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2712 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2713 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2714 		 *
2715 		 * However, even though not explicitly documented by
2716 		 * TLFS, VMXArea passed as VMXON argument should
2717 		 * still be marked with revision_id reported by
2718 		 * physical CPU.
2719 		 */
2720 		if (static_branch_unlikely(&enable_evmcs))
2721 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2722 
2723 		per_cpu(vmxarea, cpu) = vmcs;
2724 	}
2725 	return 0;
2726 }
2727 
2728 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2729 		struct kvm_segment *save)
2730 {
2731 	if (!emulate_invalid_guest_state) {
2732 		/*
2733 		 * CS and SS RPL should be equal during guest entry according
2734 		 * to VMX spec, but in reality it is not always so. Since vcpu
2735 		 * is in the middle of the transition from real mode to
2736 		 * protected mode it is safe to assume that RPL 0 is a good
2737 		 * default value.
2738 		 */
2739 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2740 			save->selector &= ~SEGMENT_RPL_MASK;
2741 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2742 		save->s = 1;
2743 	}
2744 	vmx_set_segment(vcpu, save, seg);
2745 }
2746 
2747 static void enter_pmode(struct kvm_vcpu *vcpu)
2748 {
2749 	unsigned long flags;
2750 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2751 
2752 	/*
2753 	 * Update real mode segment cache. It may be not up-to-date if sement
2754 	 * register was written while vcpu was in a guest mode.
2755 	 */
2756 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2757 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2758 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2759 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2760 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2761 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2762 
2763 	vmx->rmode.vm86_active = 0;
2764 
2765 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2766 
2767 	flags = vmcs_readl(GUEST_RFLAGS);
2768 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2769 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2770 	vmcs_writel(GUEST_RFLAGS, flags);
2771 
2772 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2773 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2774 
2775 	update_exception_bitmap(vcpu);
2776 
2777 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2778 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2779 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2780 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2781 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2782 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2783 }
2784 
2785 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2786 {
2787 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2788 	struct kvm_segment var = *save;
2789 
2790 	var.dpl = 0x3;
2791 	if (seg == VCPU_SREG_CS)
2792 		var.type = 0x3;
2793 
2794 	if (!emulate_invalid_guest_state) {
2795 		var.selector = var.base >> 4;
2796 		var.base = var.base & 0xffff0;
2797 		var.limit = 0xffff;
2798 		var.g = 0;
2799 		var.db = 0;
2800 		var.present = 1;
2801 		var.s = 1;
2802 		var.l = 0;
2803 		var.unusable = 0;
2804 		var.type = 0x3;
2805 		var.avl = 0;
2806 		if (save->base & 0xf)
2807 			printk_once(KERN_WARNING "kvm: segment base is not "
2808 					"paragraph aligned when entering "
2809 					"protected mode (seg=%d)", seg);
2810 	}
2811 
2812 	vmcs_write16(sf->selector, var.selector);
2813 	vmcs_writel(sf->base, var.base);
2814 	vmcs_write32(sf->limit, var.limit);
2815 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2816 }
2817 
2818 static void enter_rmode(struct kvm_vcpu *vcpu)
2819 {
2820 	unsigned long flags;
2821 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2822 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2823 
2824 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2825 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2826 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2827 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2828 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2829 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2830 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2831 
2832 	vmx->rmode.vm86_active = 1;
2833 
2834 	/*
2835 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2836 	 * vcpu. Warn the user that an update is overdue.
2837 	 */
2838 	if (!kvm_vmx->tss_addr)
2839 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2840 			     "called before entering vcpu\n");
2841 
2842 	vmx_segment_cache_clear(vmx);
2843 
2844 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2845 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2846 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2847 
2848 	flags = vmcs_readl(GUEST_RFLAGS);
2849 	vmx->rmode.save_rflags = flags;
2850 
2851 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2852 
2853 	vmcs_writel(GUEST_RFLAGS, flags);
2854 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2855 	update_exception_bitmap(vcpu);
2856 
2857 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2858 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2859 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2860 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2861 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2862 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2863 
2864 	kvm_mmu_reset_context(vcpu);
2865 }
2866 
2867 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2868 {
2869 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2870 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2871 
2872 	if (!msr)
2873 		return;
2874 
2875 	vcpu->arch.efer = efer;
2876 	if (efer & EFER_LMA) {
2877 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2878 		msr->data = efer;
2879 	} else {
2880 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2881 
2882 		msr->data = efer & ~EFER_LME;
2883 	}
2884 	setup_msrs(vmx);
2885 }
2886 
2887 #ifdef CONFIG_X86_64
2888 
2889 static void enter_lmode(struct kvm_vcpu *vcpu)
2890 {
2891 	u32 guest_tr_ar;
2892 
2893 	vmx_segment_cache_clear(to_vmx(vcpu));
2894 
2895 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2896 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2897 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2898 				     __func__);
2899 		vmcs_write32(GUEST_TR_AR_BYTES,
2900 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2901 			     | VMX_AR_TYPE_BUSY_64_TSS);
2902 	}
2903 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2904 }
2905 
2906 static void exit_lmode(struct kvm_vcpu *vcpu)
2907 {
2908 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2909 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2910 }
2911 
2912 #endif
2913 
2914 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2915 {
2916 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2917 
2918 	/*
2919 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2920 	 * the CPU is not required to invalidate guest-physical mappings on
2921 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2922 	 * associated with the root EPT structure and not any particular VPID
2923 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
2924 	 */
2925 	if (enable_ept) {
2926 		ept_sync_global();
2927 	} else if (enable_vpid) {
2928 		if (cpu_has_vmx_invvpid_global()) {
2929 			vpid_sync_vcpu_global();
2930 		} else {
2931 			vpid_sync_vcpu_single(vmx->vpid);
2932 			vpid_sync_vcpu_single(vmx->nested.vpid02);
2933 		}
2934 	}
2935 }
2936 
2937 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2938 {
2939 	u64 root_hpa = vcpu->arch.mmu->root_hpa;
2940 
2941 	/* No flush required if the current context is invalid. */
2942 	if (!VALID_PAGE(root_hpa))
2943 		return;
2944 
2945 	if (enable_ept)
2946 		ept_sync_context(construct_eptp(vcpu, root_hpa));
2947 	else if (!is_guest_mode(vcpu))
2948 		vpid_sync_context(to_vmx(vcpu)->vpid);
2949 	else
2950 		vpid_sync_context(nested_get_vpid02(vcpu));
2951 }
2952 
2953 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2954 {
2955 	/*
2956 	 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2957 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2958 	 */
2959 	vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2960 }
2961 
2962 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2963 {
2964 	/*
2965 	 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2966 	 * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
2967 	 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2968 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2969 	 * i.e. no explicit INVVPID is necessary.
2970 	 */
2971 	vpid_sync_context(to_vmx(vcpu)->vpid);
2972 }
2973 
2974 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2975 {
2976 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2977 
2978 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2979 		return;
2980 
2981 	if (is_pae_paging(vcpu)) {
2982 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2983 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2984 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2985 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2986 	}
2987 }
2988 
2989 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2990 {
2991 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2992 
2993 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2994 		return;
2995 
2996 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2997 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2998 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2999 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3000 
3001 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
3002 }
3003 
3004 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3005 					unsigned long cr0,
3006 					struct kvm_vcpu *vcpu)
3007 {
3008 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3009 
3010 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3011 		vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3012 	if (!(cr0 & X86_CR0_PG)) {
3013 		/* From paging/starting to nonpaging */
3014 		exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3015 					  CPU_BASED_CR3_STORE_EXITING);
3016 		vcpu->arch.cr0 = cr0;
3017 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3018 	} else if (!is_paging(vcpu)) {
3019 		/* From nonpaging to paging */
3020 		exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3021 					    CPU_BASED_CR3_STORE_EXITING);
3022 		vcpu->arch.cr0 = cr0;
3023 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3024 	}
3025 
3026 	if (!(cr0 & X86_CR0_WP))
3027 		*hw_cr0 &= ~X86_CR0_WP;
3028 }
3029 
3030 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3031 {
3032 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3033 	unsigned long hw_cr0;
3034 
3035 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3036 	if (enable_unrestricted_guest)
3037 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3038 	else {
3039 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3040 
3041 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3042 			enter_pmode(vcpu);
3043 
3044 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3045 			enter_rmode(vcpu);
3046 	}
3047 
3048 #ifdef CONFIG_X86_64
3049 	if (vcpu->arch.efer & EFER_LME) {
3050 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3051 			enter_lmode(vcpu);
3052 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3053 			exit_lmode(vcpu);
3054 	}
3055 #endif
3056 
3057 	if (enable_ept && !enable_unrestricted_guest)
3058 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3059 
3060 	vmcs_writel(CR0_READ_SHADOW, cr0);
3061 	vmcs_writel(GUEST_CR0, hw_cr0);
3062 	vcpu->arch.cr0 = cr0;
3063 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3064 
3065 	/* depends on vcpu->arch.cr0 to be set to a new value */
3066 	vmx->emulation_required = emulation_required(vcpu);
3067 }
3068 
3069 static int vmx_get_tdp_level(struct kvm_vcpu *vcpu)
3070 {
3071 	if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
3072 		return 5;
3073 	return 4;
3074 }
3075 
3076 static int get_ept_level(struct kvm_vcpu *vcpu)
3077 {
3078 	if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu)))
3079 		return vmx_eptp_page_walk_level(nested_ept_get_eptp(vcpu));
3080 
3081 	return vmx_get_tdp_level(vcpu);
3082 }
3083 
3084 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
3085 {
3086 	u64 eptp = VMX_EPTP_MT_WB;
3087 
3088 	eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3089 
3090 	if (enable_ept_ad_bits &&
3091 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3092 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3093 	eptp |= (root_hpa & PAGE_MASK);
3094 
3095 	return eptp;
3096 }
3097 
3098 void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd)
3099 {
3100 	struct kvm *kvm = vcpu->kvm;
3101 	bool update_guest_cr3 = true;
3102 	unsigned long guest_cr3;
3103 	u64 eptp;
3104 
3105 	if (enable_ept) {
3106 		eptp = construct_eptp(vcpu, pgd);
3107 		vmcs_write64(EPT_POINTER, eptp);
3108 
3109 		if (kvm_x86_ops.tlb_remote_flush) {
3110 			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3111 			to_vmx(vcpu)->ept_pointer = eptp;
3112 			to_kvm_vmx(kvm)->ept_pointers_match
3113 				= EPT_POINTERS_CHECK;
3114 			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3115 		}
3116 
3117 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3118 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3119 		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3120 			guest_cr3 = vcpu->arch.cr3;
3121 		else /* vmcs01.GUEST_CR3 is already up-to-date. */
3122 			update_guest_cr3 = false;
3123 		ept_load_pdptrs(vcpu);
3124 	} else {
3125 		guest_cr3 = pgd;
3126 	}
3127 
3128 	if (update_guest_cr3)
3129 		vmcs_writel(GUEST_CR3, guest_cr3);
3130 }
3131 
3132 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3133 {
3134 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3135 	/*
3136 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3137 	 * is in force while we are in guest mode.  Do not let guests control
3138 	 * this bit, even if host CR4.MCE == 0.
3139 	 */
3140 	unsigned long hw_cr4;
3141 
3142 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3143 	if (enable_unrestricted_guest)
3144 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3145 	else if (vmx->rmode.vm86_active)
3146 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3147 	else
3148 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3149 
3150 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3151 		if (cr4 & X86_CR4_UMIP) {
3152 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3153 			hw_cr4 &= ~X86_CR4_UMIP;
3154 		} else if (!is_guest_mode(vcpu) ||
3155 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3156 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3157 		}
3158 	}
3159 
3160 	if (cr4 & X86_CR4_VMXE) {
3161 		/*
3162 		 * To use VMXON (and later other VMX instructions), a guest
3163 		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3164 		 * So basically the check on whether to allow nested VMX
3165 		 * is here.  We operate under the default treatment of SMM,
3166 		 * so VMX cannot be enabled under SMM.
3167 		 */
3168 		if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3169 			return 1;
3170 	}
3171 
3172 	if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3173 		return 1;
3174 
3175 	vcpu->arch.cr4 = cr4;
3176 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3177 
3178 	if (!enable_unrestricted_guest) {
3179 		if (enable_ept) {
3180 			if (!is_paging(vcpu)) {
3181 				hw_cr4 &= ~X86_CR4_PAE;
3182 				hw_cr4 |= X86_CR4_PSE;
3183 			} else if (!(cr4 & X86_CR4_PAE)) {
3184 				hw_cr4 &= ~X86_CR4_PAE;
3185 			}
3186 		}
3187 
3188 		/*
3189 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3190 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3191 		 * to be manually disabled when guest switches to non-paging
3192 		 * mode.
3193 		 *
3194 		 * If !enable_unrestricted_guest, the CPU is always running
3195 		 * with CR0.PG=1 and CR4 needs to be modified.
3196 		 * If enable_unrestricted_guest, the CPU automatically
3197 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3198 		 */
3199 		if (!is_paging(vcpu))
3200 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3201 	}
3202 
3203 	vmcs_writel(CR4_READ_SHADOW, cr4);
3204 	vmcs_writel(GUEST_CR4, hw_cr4);
3205 	return 0;
3206 }
3207 
3208 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3209 {
3210 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3211 	u32 ar;
3212 
3213 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3214 		*var = vmx->rmode.segs[seg];
3215 		if (seg == VCPU_SREG_TR
3216 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3217 			return;
3218 		var->base = vmx_read_guest_seg_base(vmx, seg);
3219 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3220 		return;
3221 	}
3222 	var->base = vmx_read_guest_seg_base(vmx, seg);
3223 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3224 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3225 	ar = vmx_read_guest_seg_ar(vmx, seg);
3226 	var->unusable = (ar >> 16) & 1;
3227 	var->type = ar & 15;
3228 	var->s = (ar >> 4) & 1;
3229 	var->dpl = (ar >> 5) & 3;
3230 	/*
3231 	 * Some userspaces do not preserve unusable property. Since usable
3232 	 * segment has to be present according to VMX spec we can use present
3233 	 * property to amend userspace bug by making unusable segment always
3234 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3235 	 * segment as unusable.
3236 	 */
3237 	var->present = !var->unusable;
3238 	var->avl = (ar >> 12) & 1;
3239 	var->l = (ar >> 13) & 1;
3240 	var->db = (ar >> 14) & 1;
3241 	var->g = (ar >> 15) & 1;
3242 }
3243 
3244 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3245 {
3246 	struct kvm_segment s;
3247 
3248 	if (to_vmx(vcpu)->rmode.vm86_active) {
3249 		vmx_get_segment(vcpu, &s, seg);
3250 		return s.base;
3251 	}
3252 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3253 }
3254 
3255 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3256 {
3257 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3258 
3259 	if (unlikely(vmx->rmode.vm86_active))
3260 		return 0;
3261 	else {
3262 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3263 		return VMX_AR_DPL(ar);
3264 	}
3265 }
3266 
3267 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3268 {
3269 	u32 ar;
3270 
3271 	if (var->unusable || !var->present)
3272 		ar = 1 << 16;
3273 	else {
3274 		ar = var->type & 15;
3275 		ar |= (var->s & 1) << 4;
3276 		ar |= (var->dpl & 3) << 5;
3277 		ar |= (var->present & 1) << 7;
3278 		ar |= (var->avl & 1) << 12;
3279 		ar |= (var->l & 1) << 13;
3280 		ar |= (var->db & 1) << 14;
3281 		ar |= (var->g & 1) << 15;
3282 	}
3283 
3284 	return ar;
3285 }
3286 
3287 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3288 {
3289 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3290 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3291 
3292 	vmx_segment_cache_clear(vmx);
3293 
3294 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3295 		vmx->rmode.segs[seg] = *var;
3296 		if (seg == VCPU_SREG_TR)
3297 			vmcs_write16(sf->selector, var->selector);
3298 		else if (var->s)
3299 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3300 		goto out;
3301 	}
3302 
3303 	vmcs_writel(sf->base, var->base);
3304 	vmcs_write32(sf->limit, var->limit);
3305 	vmcs_write16(sf->selector, var->selector);
3306 
3307 	/*
3308 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3309 	 * qemu binaries.
3310 	 *   IA32 arch specifies that at the time of processor reset the
3311 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3312 	 * is setting it to 0 in the userland code. This causes invalid guest
3313 	 * state vmexit when "unrestricted guest" mode is turned on.
3314 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3315 	 * tree. Newer qemu binaries with that qemu fix would not need this
3316 	 * kvm hack.
3317 	 */
3318 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3319 		var->type |= 0x1; /* Accessed */
3320 
3321 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3322 
3323 out:
3324 	vmx->emulation_required = emulation_required(vcpu);
3325 }
3326 
3327 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3328 {
3329 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3330 
3331 	*db = (ar >> 14) & 1;
3332 	*l = (ar >> 13) & 1;
3333 }
3334 
3335 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3336 {
3337 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3338 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3339 }
3340 
3341 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3342 {
3343 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3344 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3345 }
3346 
3347 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3348 {
3349 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3350 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3351 }
3352 
3353 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3354 {
3355 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3356 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3357 }
3358 
3359 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3360 {
3361 	struct kvm_segment var;
3362 	u32 ar;
3363 
3364 	vmx_get_segment(vcpu, &var, seg);
3365 	var.dpl = 0x3;
3366 	if (seg == VCPU_SREG_CS)
3367 		var.type = 0x3;
3368 	ar = vmx_segment_access_rights(&var);
3369 
3370 	if (var.base != (var.selector << 4))
3371 		return false;
3372 	if (var.limit != 0xffff)
3373 		return false;
3374 	if (ar != 0xf3)
3375 		return false;
3376 
3377 	return true;
3378 }
3379 
3380 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3381 {
3382 	struct kvm_segment cs;
3383 	unsigned int cs_rpl;
3384 
3385 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3386 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3387 
3388 	if (cs.unusable)
3389 		return false;
3390 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3391 		return false;
3392 	if (!cs.s)
3393 		return false;
3394 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3395 		if (cs.dpl > cs_rpl)
3396 			return false;
3397 	} else {
3398 		if (cs.dpl != cs_rpl)
3399 			return false;
3400 	}
3401 	if (!cs.present)
3402 		return false;
3403 
3404 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3405 	return true;
3406 }
3407 
3408 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3409 {
3410 	struct kvm_segment ss;
3411 	unsigned int ss_rpl;
3412 
3413 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3414 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3415 
3416 	if (ss.unusable)
3417 		return true;
3418 	if (ss.type != 3 && ss.type != 7)
3419 		return false;
3420 	if (!ss.s)
3421 		return false;
3422 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3423 		return false;
3424 	if (!ss.present)
3425 		return false;
3426 
3427 	return true;
3428 }
3429 
3430 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3431 {
3432 	struct kvm_segment var;
3433 	unsigned int rpl;
3434 
3435 	vmx_get_segment(vcpu, &var, seg);
3436 	rpl = var.selector & SEGMENT_RPL_MASK;
3437 
3438 	if (var.unusable)
3439 		return true;
3440 	if (!var.s)
3441 		return false;
3442 	if (!var.present)
3443 		return false;
3444 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3445 		if (var.dpl < rpl) /* DPL < RPL */
3446 			return false;
3447 	}
3448 
3449 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3450 	 * rights flags
3451 	 */
3452 	return true;
3453 }
3454 
3455 static bool tr_valid(struct kvm_vcpu *vcpu)
3456 {
3457 	struct kvm_segment tr;
3458 
3459 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3460 
3461 	if (tr.unusable)
3462 		return false;
3463 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3464 		return false;
3465 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3466 		return false;
3467 	if (!tr.present)
3468 		return false;
3469 
3470 	return true;
3471 }
3472 
3473 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3474 {
3475 	struct kvm_segment ldtr;
3476 
3477 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3478 
3479 	if (ldtr.unusable)
3480 		return true;
3481 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3482 		return false;
3483 	if (ldtr.type != 2)
3484 		return false;
3485 	if (!ldtr.present)
3486 		return false;
3487 
3488 	return true;
3489 }
3490 
3491 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3492 {
3493 	struct kvm_segment cs, ss;
3494 
3495 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3496 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3497 
3498 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3499 		 (ss.selector & SEGMENT_RPL_MASK));
3500 }
3501 
3502 /*
3503  * Check if guest state is valid. Returns true if valid, false if
3504  * not.
3505  * We assume that registers are always usable
3506  */
3507 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3508 {
3509 	if (enable_unrestricted_guest)
3510 		return true;
3511 
3512 	/* real mode guest state checks */
3513 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3514 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3515 			return false;
3516 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3517 			return false;
3518 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3519 			return false;
3520 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3521 			return false;
3522 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3523 			return false;
3524 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3525 			return false;
3526 	} else {
3527 	/* protected mode guest state checks */
3528 		if (!cs_ss_rpl_check(vcpu))
3529 			return false;
3530 		if (!code_segment_valid(vcpu))
3531 			return false;
3532 		if (!stack_segment_valid(vcpu))
3533 			return false;
3534 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3535 			return false;
3536 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3537 			return false;
3538 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3539 			return false;
3540 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3541 			return false;
3542 		if (!tr_valid(vcpu))
3543 			return false;
3544 		if (!ldtr_valid(vcpu))
3545 			return false;
3546 	}
3547 	/* TODO:
3548 	 * - Add checks on RIP
3549 	 * - Add checks on RFLAGS
3550 	 */
3551 
3552 	return true;
3553 }
3554 
3555 static int init_rmode_tss(struct kvm *kvm)
3556 {
3557 	gfn_t fn;
3558 	u16 data = 0;
3559 	int idx, r;
3560 
3561 	idx = srcu_read_lock(&kvm->srcu);
3562 	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3563 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3564 	if (r < 0)
3565 		goto out;
3566 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3567 	r = kvm_write_guest_page(kvm, fn++, &data,
3568 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
3569 	if (r < 0)
3570 		goto out;
3571 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3572 	if (r < 0)
3573 		goto out;
3574 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3575 	if (r < 0)
3576 		goto out;
3577 	data = ~0;
3578 	r = kvm_write_guest_page(kvm, fn, &data,
3579 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3580 				 sizeof(u8));
3581 out:
3582 	srcu_read_unlock(&kvm->srcu, idx);
3583 	return r;
3584 }
3585 
3586 static int init_rmode_identity_map(struct kvm *kvm)
3587 {
3588 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3589 	int i, r = 0;
3590 	kvm_pfn_t identity_map_pfn;
3591 	u32 tmp;
3592 
3593 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3594 	mutex_lock(&kvm->slots_lock);
3595 
3596 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3597 		goto out;
3598 
3599 	if (!kvm_vmx->ept_identity_map_addr)
3600 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3601 	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3602 
3603 	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3604 				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3605 	if (r < 0)
3606 		goto out;
3607 
3608 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3609 	if (r < 0)
3610 		goto out;
3611 	/* Set up identity-mapping pagetable for EPT in real mode */
3612 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3613 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3614 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3615 		r = kvm_write_guest_page(kvm, identity_map_pfn,
3616 				&tmp, i * sizeof(tmp), sizeof(tmp));
3617 		if (r < 0)
3618 			goto out;
3619 	}
3620 	kvm_vmx->ept_identity_pagetable_done = true;
3621 
3622 out:
3623 	mutex_unlock(&kvm->slots_lock);
3624 	return r;
3625 }
3626 
3627 static void seg_setup(int seg)
3628 {
3629 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3630 	unsigned int ar;
3631 
3632 	vmcs_write16(sf->selector, 0);
3633 	vmcs_writel(sf->base, 0);
3634 	vmcs_write32(sf->limit, 0xffff);
3635 	ar = 0x93;
3636 	if (seg == VCPU_SREG_CS)
3637 		ar |= 0x08; /* code segment */
3638 
3639 	vmcs_write32(sf->ar_bytes, ar);
3640 }
3641 
3642 static int alloc_apic_access_page(struct kvm *kvm)
3643 {
3644 	struct page *page;
3645 	int r = 0;
3646 
3647 	mutex_lock(&kvm->slots_lock);
3648 	if (kvm->arch.apic_access_page_done)
3649 		goto out;
3650 	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3651 				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3652 	if (r)
3653 		goto out;
3654 
3655 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3656 	if (is_error_page(page)) {
3657 		r = -EFAULT;
3658 		goto out;
3659 	}
3660 
3661 	/*
3662 	 * Do not pin the page in memory, so that memory hot-unplug
3663 	 * is able to migrate it.
3664 	 */
3665 	put_page(page);
3666 	kvm->arch.apic_access_page_done = true;
3667 out:
3668 	mutex_unlock(&kvm->slots_lock);
3669 	return r;
3670 }
3671 
3672 int allocate_vpid(void)
3673 {
3674 	int vpid;
3675 
3676 	if (!enable_vpid)
3677 		return 0;
3678 	spin_lock(&vmx_vpid_lock);
3679 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3680 	if (vpid < VMX_NR_VPIDS)
3681 		__set_bit(vpid, vmx_vpid_bitmap);
3682 	else
3683 		vpid = 0;
3684 	spin_unlock(&vmx_vpid_lock);
3685 	return vpid;
3686 }
3687 
3688 void free_vpid(int vpid)
3689 {
3690 	if (!enable_vpid || vpid == 0)
3691 		return;
3692 	spin_lock(&vmx_vpid_lock);
3693 	__clear_bit(vpid, vmx_vpid_bitmap);
3694 	spin_unlock(&vmx_vpid_lock);
3695 }
3696 
3697 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3698 							  u32 msr, int type)
3699 {
3700 	int f = sizeof(unsigned long);
3701 
3702 	if (!cpu_has_vmx_msr_bitmap())
3703 		return;
3704 
3705 	if (static_branch_unlikely(&enable_evmcs))
3706 		evmcs_touch_msr_bitmap();
3707 
3708 	/*
3709 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3710 	 * have the write-low and read-high bitmap offsets the wrong way round.
3711 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3712 	 */
3713 	if (msr <= 0x1fff) {
3714 		if (type & MSR_TYPE_R)
3715 			/* read-low */
3716 			__clear_bit(msr, msr_bitmap + 0x000 / f);
3717 
3718 		if (type & MSR_TYPE_W)
3719 			/* write-low */
3720 			__clear_bit(msr, msr_bitmap + 0x800 / f);
3721 
3722 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3723 		msr &= 0x1fff;
3724 		if (type & MSR_TYPE_R)
3725 			/* read-high */
3726 			__clear_bit(msr, msr_bitmap + 0x400 / f);
3727 
3728 		if (type & MSR_TYPE_W)
3729 			/* write-high */
3730 			__clear_bit(msr, msr_bitmap + 0xc00 / f);
3731 
3732 	}
3733 }
3734 
3735 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3736 							 u32 msr, int type)
3737 {
3738 	int f = sizeof(unsigned long);
3739 
3740 	if (!cpu_has_vmx_msr_bitmap())
3741 		return;
3742 
3743 	if (static_branch_unlikely(&enable_evmcs))
3744 		evmcs_touch_msr_bitmap();
3745 
3746 	/*
3747 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3748 	 * have the write-low and read-high bitmap offsets the wrong way round.
3749 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3750 	 */
3751 	if (msr <= 0x1fff) {
3752 		if (type & MSR_TYPE_R)
3753 			/* read-low */
3754 			__set_bit(msr, msr_bitmap + 0x000 / f);
3755 
3756 		if (type & MSR_TYPE_W)
3757 			/* write-low */
3758 			__set_bit(msr, msr_bitmap + 0x800 / f);
3759 
3760 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3761 		msr &= 0x1fff;
3762 		if (type & MSR_TYPE_R)
3763 			/* read-high */
3764 			__set_bit(msr, msr_bitmap + 0x400 / f);
3765 
3766 		if (type & MSR_TYPE_W)
3767 			/* write-high */
3768 			__set_bit(msr, msr_bitmap + 0xc00 / f);
3769 
3770 	}
3771 }
3772 
3773 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3774 			     			      u32 msr, int type, bool value)
3775 {
3776 	if (value)
3777 		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3778 	else
3779 		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3780 }
3781 
3782 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3783 {
3784 	u8 mode = 0;
3785 
3786 	if (cpu_has_secondary_exec_ctrls() &&
3787 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
3788 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3789 		mode |= MSR_BITMAP_MODE_X2APIC;
3790 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3791 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3792 	}
3793 
3794 	return mode;
3795 }
3796 
3797 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3798 					 u8 mode)
3799 {
3800 	int msr;
3801 
3802 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3803 		unsigned word = msr / BITS_PER_LONG;
3804 		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3805 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3806 	}
3807 
3808 	if (mode & MSR_BITMAP_MODE_X2APIC) {
3809 		/*
3810 		 * TPR reads and writes can be virtualized even if virtual interrupt
3811 		 * delivery is not in use.
3812 		 */
3813 		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3814 		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3815 			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3816 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3817 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3818 		}
3819 	}
3820 }
3821 
3822 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3823 {
3824 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3825 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3826 	u8 mode = vmx_msr_bitmap_mode(vcpu);
3827 	u8 changed = mode ^ vmx->msr_bitmap_mode;
3828 
3829 	if (!changed)
3830 		return;
3831 
3832 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3833 		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3834 
3835 	vmx->msr_bitmap_mode = mode;
3836 }
3837 
3838 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3839 {
3840 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3841 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3842 	u32 i;
3843 
3844 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3845 							MSR_TYPE_RW, flag);
3846 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3847 							MSR_TYPE_RW, flag);
3848 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3849 							MSR_TYPE_RW, flag);
3850 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3851 							MSR_TYPE_RW, flag);
3852 	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3853 		vmx_set_intercept_for_msr(msr_bitmap,
3854 			MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3855 		vmx_set_intercept_for_msr(msr_bitmap,
3856 			MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3857 	}
3858 }
3859 
3860 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3861 {
3862 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3863 	void *vapic_page;
3864 	u32 vppr;
3865 	int rvi;
3866 
3867 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3868 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3869 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3870 		return false;
3871 
3872 	rvi = vmx_get_rvi();
3873 
3874 	vapic_page = vmx->nested.virtual_apic_map.hva;
3875 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3876 
3877 	return ((rvi & 0xf0) > (vppr & 0xf0));
3878 }
3879 
3880 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3881 						     bool nested)
3882 {
3883 #ifdef CONFIG_SMP
3884 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3885 
3886 	if (vcpu->mode == IN_GUEST_MODE) {
3887 		/*
3888 		 * The vector of interrupt to be delivered to vcpu had
3889 		 * been set in PIR before this function.
3890 		 *
3891 		 * Following cases will be reached in this block, and
3892 		 * we always send a notification event in all cases as
3893 		 * explained below.
3894 		 *
3895 		 * Case 1: vcpu keeps in non-root mode. Sending a
3896 		 * notification event posts the interrupt to vcpu.
3897 		 *
3898 		 * Case 2: vcpu exits to root mode and is still
3899 		 * runnable. PIR will be synced to vIRR before the
3900 		 * next vcpu entry. Sending a notification event in
3901 		 * this case has no effect, as vcpu is not in root
3902 		 * mode.
3903 		 *
3904 		 * Case 3: vcpu exits to root mode and is blocked.
3905 		 * vcpu_block() has already synced PIR to vIRR and
3906 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3907 		 * a blocked vcpu here does not wait for any requested
3908 		 * interrupts in PIR, and sending a notification event
3909 		 * which has no effect is safe here.
3910 		 */
3911 
3912 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3913 		return true;
3914 	}
3915 #endif
3916 	return false;
3917 }
3918 
3919 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3920 						int vector)
3921 {
3922 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3923 
3924 	if (is_guest_mode(vcpu) &&
3925 	    vector == vmx->nested.posted_intr_nv) {
3926 		/*
3927 		 * If a posted intr is not recognized by hardware,
3928 		 * we will accomplish it in the next vmentry.
3929 		 */
3930 		vmx->nested.pi_pending = true;
3931 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3932 		/* the PIR and ON have been set by L1. */
3933 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3934 			kvm_vcpu_kick(vcpu);
3935 		return 0;
3936 	}
3937 	return -1;
3938 }
3939 /*
3940  * Send interrupt to vcpu via posted interrupt way.
3941  * 1. If target vcpu is running(non-root mode), send posted interrupt
3942  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3943  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3944  * interrupt from PIR in next vmentry.
3945  */
3946 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3947 {
3948 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3949 	int r;
3950 
3951 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3952 	if (!r)
3953 		return 0;
3954 
3955 	if (!vcpu->arch.apicv_active)
3956 		return -1;
3957 
3958 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3959 		return 0;
3960 
3961 	/* If a previous notification has sent the IPI, nothing to do.  */
3962 	if (pi_test_and_set_on(&vmx->pi_desc))
3963 		return 0;
3964 
3965 	if (vcpu != kvm_get_running_vcpu() &&
3966 	    !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3967 		kvm_vcpu_kick(vcpu);
3968 
3969 	return 0;
3970 }
3971 
3972 /*
3973  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3974  * will not change in the lifetime of the guest.
3975  * Note that host-state that does change is set elsewhere. E.g., host-state
3976  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3977  */
3978 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3979 {
3980 	u32 low32, high32;
3981 	unsigned long tmpl;
3982 	unsigned long cr0, cr3, cr4;
3983 
3984 	cr0 = read_cr0();
3985 	WARN_ON(cr0 & X86_CR0_TS);
3986 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3987 
3988 	/*
3989 	 * Save the most likely value for this task's CR3 in the VMCS.
3990 	 * We can't use __get_current_cr3_fast() because we're not atomic.
3991 	 */
3992 	cr3 = __read_cr3();
3993 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
3994 	vmx->loaded_vmcs->host_state.cr3 = cr3;
3995 
3996 	/* Save the most likely value for this task's CR4 in the VMCS. */
3997 	cr4 = cr4_read_shadow();
3998 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
3999 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4000 
4001 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4002 #ifdef CONFIG_X86_64
4003 	/*
4004 	 * Load null selectors, so we can avoid reloading them in
4005 	 * vmx_prepare_switch_to_host(), in case userspace uses
4006 	 * the null selectors too (the expected case).
4007 	 */
4008 	vmcs_write16(HOST_DS_SELECTOR, 0);
4009 	vmcs_write16(HOST_ES_SELECTOR, 0);
4010 #else
4011 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4012 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4013 #endif
4014 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4015 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4016 
4017 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4018 
4019 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4020 
4021 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4022 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4023 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4024 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4025 
4026 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4027 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4028 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4029 	}
4030 
4031 	if (cpu_has_load_ia32_efer())
4032 		vmcs_write64(HOST_IA32_EFER, host_efer);
4033 }
4034 
4035 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4036 {
4037 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4038 	if (enable_ept)
4039 		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4040 	if (is_guest_mode(&vmx->vcpu))
4041 		vmx->vcpu.arch.cr4_guest_owned_bits &=
4042 			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4043 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4044 }
4045 
4046 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4047 {
4048 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4049 
4050 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4051 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4052 
4053 	if (!enable_vnmi)
4054 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4055 
4056 	if (!enable_preemption_timer)
4057 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4058 
4059 	return pin_based_exec_ctrl;
4060 }
4061 
4062 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4063 {
4064 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4065 
4066 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4067 	if (cpu_has_secondary_exec_ctrls()) {
4068 		if (kvm_vcpu_apicv_active(vcpu))
4069 			secondary_exec_controls_setbit(vmx,
4070 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4071 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4072 		else
4073 			secondary_exec_controls_clearbit(vmx,
4074 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4075 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4076 	}
4077 
4078 	if (cpu_has_vmx_msr_bitmap())
4079 		vmx_update_msr_bitmap(vcpu);
4080 }
4081 
4082 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4083 {
4084 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4085 
4086 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4087 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4088 
4089 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4090 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4091 #ifdef CONFIG_X86_64
4092 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4093 				CPU_BASED_CR8_LOAD_EXITING;
4094 #endif
4095 	}
4096 	if (!enable_ept)
4097 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4098 				CPU_BASED_CR3_LOAD_EXITING  |
4099 				CPU_BASED_INVLPG_EXITING;
4100 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4101 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4102 				CPU_BASED_MONITOR_EXITING);
4103 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4104 		exec_control &= ~CPU_BASED_HLT_EXITING;
4105 	return exec_control;
4106 }
4107 
4108 
4109 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4110 {
4111 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4112 
4113 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4114 
4115 	if (vmx_pt_mode_is_system())
4116 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4117 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4118 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4119 	if (vmx->vpid == 0)
4120 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4121 	if (!enable_ept) {
4122 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4123 		enable_unrestricted_guest = 0;
4124 	}
4125 	if (!enable_unrestricted_guest)
4126 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4127 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4128 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4129 	if (!kvm_vcpu_apicv_active(vcpu))
4130 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4131 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4132 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4133 
4134 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4135 	 * in vmx_set_cr4.  */
4136 	exec_control &= ~SECONDARY_EXEC_DESC;
4137 
4138 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4139 	   (handle_vmptrld).
4140 	   We can NOT enable shadow_vmcs here because we don't have yet
4141 	   a current VMCS12
4142 	*/
4143 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4144 
4145 	if (!enable_pml)
4146 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4147 
4148 	if (vmx_xsaves_supported()) {
4149 		/* Exposing XSAVES only when XSAVE is exposed */
4150 		bool xsaves_enabled =
4151 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4152 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4153 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4154 
4155 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4156 
4157 		if (!xsaves_enabled)
4158 			exec_control &= ~SECONDARY_EXEC_XSAVES;
4159 
4160 		if (nested) {
4161 			if (xsaves_enabled)
4162 				vmx->nested.msrs.secondary_ctls_high |=
4163 					SECONDARY_EXEC_XSAVES;
4164 			else
4165 				vmx->nested.msrs.secondary_ctls_high &=
4166 					~SECONDARY_EXEC_XSAVES;
4167 		}
4168 	}
4169 
4170 	if (cpu_has_vmx_rdtscp()) {
4171 		bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4172 		if (!rdtscp_enabled)
4173 			exec_control &= ~SECONDARY_EXEC_RDTSCP;
4174 
4175 		if (nested) {
4176 			if (rdtscp_enabled)
4177 				vmx->nested.msrs.secondary_ctls_high |=
4178 					SECONDARY_EXEC_RDTSCP;
4179 			else
4180 				vmx->nested.msrs.secondary_ctls_high &=
4181 					~SECONDARY_EXEC_RDTSCP;
4182 		}
4183 	}
4184 
4185 	if (cpu_has_vmx_invpcid()) {
4186 		/* Exposing INVPCID only when PCID is exposed */
4187 		bool invpcid_enabled =
4188 			guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4189 			guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4190 
4191 		if (!invpcid_enabled) {
4192 			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4193 			guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4194 		}
4195 
4196 		if (nested) {
4197 			if (invpcid_enabled)
4198 				vmx->nested.msrs.secondary_ctls_high |=
4199 					SECONDARY_EXEC_ENABLE_INVPCID;
4200 			else
4201 				vmx->nested.msrs.secondary_ctls_high &=
4202 					~SECONDARY_EXEC_ENABLE_INVPCID;
4203 		}
4204 	}
4205 
4206 	if (vmx_rdrand_supported()) {
4207 		bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4208 		if (rdrand_enabled)
4209 			exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4210 
4211 		if (nested) {
4212 			if (rdrand_enabled)
4213 				vmx->nested.msrs.secondary_ctls_high |=
4214 					SECONDARY_EXEC_RDRAND_EXITING;
4215 			else
4216 				vmx->nested.msrs.secondary_ctls_high &=
4217 					~SECONDARY_EXEC_RDRAND_EXITING;
4218 		}
4219 	}
4220 
4221 	if (vmx_rdseed_supported()) {
4222 		bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4223 		if (rdseed_enabled)
4224 			exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4225 
4226 		if (nested) {
4227 			if (rdseed_enabled)
4228 				vmx->nested.msrs.secondary_ctls_high |=
4229 					SECONDARY_EXEC_RDSEED_EXITING;
4230 			else
4231 				vmx->nested.msrs.secondary_ctls_high &=
4232 					~SECONDARY_EXEC_RDSEED_EXITING;
4233 		}
4234 	}
4235 
4236 	if (vmx_waitpkg_supported()) {
4237 		bool waitpkg_enabled =
4238 			guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4239 
4240 		if (!waitpkg_enabled)
4241 			exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4242 
4243 		if (nested) {
4244 			if (waitpkg_enabled)
4245 				vmx->nested.msrs.secondary_ctls_high |=
4246 					SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4247 			else
4248 				vmx->nested.msrs.secondary_ctls_high &=
4249 					~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4250 		}
4251 	}
4252 
4253 	vmx->secondary_exec_control = exec_control;
4254 }
4255 
4256 static void ept_set_mmio_spte_mask(void)
4257 {
4258 	/*
4259 	 * EPT Misconfigurations can be generated if the value of bits 2:0
4260 	 * of an EPT paging-structure entry is 110b (write/execute).
4261 	 */
4262 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0);
4263 }
4264 
4265 #define VMX_XSS_EXIT_BITMAP 0
4266 
4267 /*
4268  * Noting that the initialization of Guest-state Area of VMCS is in
4269  * vmx_vcpu_reset().
4270  */
4271 static void init_vmcs(struct vcpu_vmx *vmx)
4272 {
4273 	if (nested)
4274 		nested_vmx_set_vmcs_shadowing_bitmap();
4275 
4276 	if (cpu_has_vmx_msr_bitmap())
4277 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4278 
4279 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4280 
4281 	/* Control */
4282 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4283 
4284 	exec_controls_set(vmx, vmx_exec_control(vmx));
4285 
4286 	if (cpu_has_secondary_exec_ctrls()) {
4287 		vmx_compute_secondary_exec_control(vmx);
4288 		secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4289 	}
4290 
4291 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4292 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4293 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4294 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4295 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4296 
4297 		vmcs_write16(GUEST_INTR_STATUS, 0);
4298 
4299 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4300 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4301 	}
4302 
4303 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4304 		vmcs_write32(PLE_GAP, ple_gap);
4305 		vmx->ple_window = ple_window;
4306 		vmx->ple_window_dirty = true;
4307 	}
4308 
4309 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4310 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4311 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4312 
4313 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4314 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4315 	vmx_set_constant_host_state(vmx);
4316 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4317 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4318 
4319 	if (cpu_has_vmx_vmfunc())
4320 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4321 
4322 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4323 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4324 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4325 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4326 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4327 
4328 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4329 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4330 
4331 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4332 
4333 	/* 22.2.1, 20.8.1 */
4334 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4335 
4336 	vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4337 	vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4338 
4339 	set_cr4_guest_host_mask(vmx);
4340 
4341 	if (vmx->vpid != 0)
4342 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4343 
4344 	if (vmx_xsaves_supported())
4345 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4346 
4347 	if (enable_pml) {
4348 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4349 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4350 	}
4351 
4352 	if (cpu_has_vmx_encls_vmexit())
4353 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4354 
4355 	if (vmx_pt_mode_is_host_guest()) {
4356 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4357 		/* Bit[6~0] are forced to 1, writes are ignored. */
4358 		vmx->pt_desc.guest.output_mask = 0x7F;
4359 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4360 	}
4361 }
4362 
4363 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4364 {
4365 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4366 	struct msr_data apic_base_msr;
4367 	u64 cr0;
4368 
4369 	vmx->rmode.vm86_active = 0;
4370 	vmx->spec_ctrl = 0;
4371 
4372 	vmx->msr_ia32_umwait_control = 0;
4373 
4374 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4375 	vmx->hv_deadline_tsc = -1;
4376 	kvm_set_cr8(vcpu, 0);
4377 
4378 	if (!init_event) {
4379 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4380 				     MSR_IA32_APICBASE_ENABLE;
4381 		if (kvm_vcpu_is_reset_bsp(vcpu))
4382 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4383 		apic_base_msr.host_initiated = true;
4384 		kvm_set_apic_base(vcpu, &apic_base_msr);
4385 	}
4386 
4387 	vmx_segment_cache_clear(vmx);
4388 
4389 	seg_setup(VCPU_SREG_CS);
4390 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4391 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4392 
4393 	seg_setup(VCPU_SREG_DS);
4394 	seg_setup(VCPU_SREG_ES);
4395 	seg_setup(VCPU_SREG_FS);
4396 	seg_setup(VCPU_SREG_GS);
4397 	seg_setup(VCPU_SREG_SS);
4398 
4399 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4400 	vmcs_writel(GUEST_TR_BASE, 0);
4401 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4402 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4403 
4404 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4405 	vmcs_writel(GUEST_LDTR_BASE, 0);
4406 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4407 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4408 
4409 	if (!init_event) {
4410 		vmcs_write32(GUEST_SYSENTER_CS, 0);
4411 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
4412 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
4413 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4414 	}
4415 
4416 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4417 	kvm_rip_write(vcpu, 0xfff0);
4418 
4419 	vmcs_writel(GUEST_GDTR_BASE, 0);
4420 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4421 
4422 	vmcs_writel(GUEST_IDTR_BASE, 0);
4423 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4424 
4425 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4426 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4427 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4428 	if (kvm_mpx_supported())
4429 		vmcs_write64(GUEST_BNDCFGS, 0);
4430 
4431 	setup_msrs(vmx);
4432 
4433 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4434 
4435 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
4436 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4437 		if (cpu_need_tpr_shadow(vcpu))
4438 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4439 				     __pa(vcpu->arch.apic->regs));
4440 		vmcs_write32(TPR_THRESHOLD, 0);
4441 	}
4442 
4443 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4444 
4445 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4446 	vmx->vcpu.arch.cr0 = cr0;
4447 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
4448 	vmx_set_cr4(vcpu, 0);
4449 	vmx_set_efer(vcpu, 0);
4450 
4451 	update_exception_bitmap(vcpu);
4452 
4453 	vpid_sync_context(vmx->vpid);
4454 	if (init_event)
4455 		vmx_clear_hlt(vcpu);
4456 }
4457 
4458 static void enable_irq_window(struct kvm_vcpu *vcpu)
4459 {
4460 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4461 }
4462 
4463 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4464 {
4465 	if (!enable_vnmi ||
4466 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4467 		enable_irq_window(vcpu);
4468 		return;
4469 	}
4470 
4471 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4472 }
4473 
4474 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4475 {
4476 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4477 	uint32_t intr;
4478 	int irq = vcpu->arch.interrupt.nr;
4479 
4480 	trace_kvm_inj_virq(irq);
4481 
4482 	++vcpu->stat.irq_injections;
4483 	if (vmx->rmode.vm86_active) {
4484 		int inc_eip = 0;
4485 		if (vcpu->arch.interrupt.soft)
4486 			inc_eip = vcpu->arch.event_exit_inst_len;
4487 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4488 		return;
4489 	}
4490 	intr = irq | INTR_INFO_VALID_MASK;
4491 	if (vcpu->arch.interrupt.soft) {
4492 		intr |= INTR_TYPE_SOFT_INTR;
4493 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4494 			     vmx->vcpu.arch.event_exit_inst_len);
4495 	} else
4496 		intr |= INTR_TYPE_EXT_INTR;
4497 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4498 
4499 	vmx_clear_hlt(vcpu);
4500 }
4501 
4502 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4503 {
4504 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4505 
4506 	if (!enable_vnmi) {
4507 		/*
4508 		 * Tracking the NMI-blocked state in software is built upon
4509 		 * finding the next open IRQ window. This, in turn, depends on
4510 		 * well-behaving guests: They have to keep IRQs disabled at
4511 		 * least as long as the NMI handler runs. Otherwise we may
4512 		 * cause NMI nesting, maybe breaking the guest. But as this is
4513 		 * highly unlikely, we can live with the residual risk.
4514 		 */
4515 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4516 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4517 	}
4518 
4519 	++vcpu->stat.nmi_injections;
4520 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4521 
4522 	if (vmx->rmode.vm86_active) {
4523 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4524 		return;
4525 	}
4526 
4527 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4528 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4529 
4530 	vmx_clear_hlt(vcpu);
4531 }
4532 
4533 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4534 {
4535 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4536 	bool masked;
4537 
4538 	if (!enable_vnmi)
4539 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4540 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4541 		return false;
4542 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4543 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4544 	return masked;
4545 }
4546 
4547 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4548 {
4549 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4550 
4551 	if (!enable_vnmi) {
4552 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4553 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4554 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4555 		}
4556 	} else {
4557 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4558 		if (masked)
4559 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4560 				      GUEST_INTR_STATE_NMI);
4561 		else
4562 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4563 					GUEST_INTR_STATE_NMI);
4564 	}
4565 }
4566 
4567 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4568 {
4569 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4570 		return false;
4571 
4572 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4573 		return true;
4574 
4575 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4576 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4577 		 GUEST_INTR_STATE_NMI));
4578 }
4579 
4580 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4581 {
4582 	if (to_vmx(vcpu)->nested.nested_run_pending)
4583 		return -EBUSY;
4584 
4585 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4586 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4587 		return -EBUSY;
4588 
4589 	return !vmx_nmi_blocked(vcpu);
4590 }
4591 
4592 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4593 {
4594 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4595 		return false;
4596 
4597 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4598 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4599 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4600 }
4601 
4602 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4603 {
4604 	if (to_vmx(vcpu)->nested.nested_run_pending)
4605 		return -EBUSY;
4606 
4607        /*
4608         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4609         * e.g. if the IRQ arrived asynchronously after checking nested events.
4610         */
4611 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4612 		return -EBUSY;
4613 
4614 	return !vmx_interrupt_blocked(vcpu);
4615 }
4616 
4617 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4618 {
4619 	int ret;
4620 
4621 	if (enable_unrestricted_guest)
4622 		return 0;
4623 
4624 	mutex_lock(&kvm->slots_lock);
4625 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4626 				      PAGE_SIZE * 3);
4627 	mutex_unlock(&kvm->slots_lock);
4628 
4629 	if (ret)
4630 		return ret;
4631 	to_kvm_vmx(kvm)->tss_addr = addr;
4632 	return init_rmode_tss(kvm);
4633 }
4634 
4635 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4636 {
4637 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4638 	return 0;
4639 }
4640 
4641 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4642 {
4643 	switch (vec) {
4644 	case BP_VECTOR:
4645 		/*
4646 		 * Update instruction length as we may reinject the exception
4647 		 * from user space while in guest debugging mode.
4648 		 */
4649 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4650 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4651 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4652 			return false;
4653 		/* fall through */
4654 	case DB_VECTOR:
4655 		return !(vcpu->guest_debug &
4656 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4657 	case DE_VECTOR:
4658 	case OF_VECTOR:
4659 	case BR_VECTOR:
4660 	case UD_VECTOR:
4661 	case DF_VECTOR:
4662 	case SS_VECTOR:
4663 	case GP_VECTOR:
4664 	case MF_VECTOR:
4665 		return true;
4666 	}
4667 	return false;
4668 }
4669 
4670 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4671 				  int vec, u32 err_code)
4672 {
4673 	/*
4674 	 * Instruction with address size override prefix opcode 0x67
4675 	 * Cause the #SS fault with 0 error code in VM86 mode.
4676 	 */
4677 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4678 		if (kvm_emulate_instruction(vcpu, 0)) {
4679 			if (vcpu->arch.halt_request) {
4680 				vcpu->arch.halt_request = 0;
4681 				return kvm_vcpu_halt(vcpu);
4682 			}
4683 			return 1;
4684 		}
4685 		return 0;
4686 	}
4687 
4688 	/*
4689 	 * Forward all other exceptions that are valid in real mode.
4690 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4691 	 *        the required debugging infrastructure rework.
4692 	 */
4693 	kvm_queue_exception(vcpu, vec);
4694 	return 1;
4695 }
4696 
4697 /*
4698  * Trigger machine check on the host. We assume all the MSRs are already set up
4699  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4700  * We pass a fake environment to the machine check handler because we want
4701  * the guest to be always treated like user space, no matter what context
4702  * it used internally.
4703  */
4704 static void kvm_machine_check(void)
4705 {
4706 #if defined(CONFIG_X86_MCE)
4707 	struct pt_regs regs = {
4708 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
4709 		.flags = X86_EFLAGS_IF,
4710 	};
4711 
4712 	do_machine_check(&regs);
4713 #endif
4714 }
4715 
4716 static int handle_machine_check(struct kvm_vcpu *vcpu)
4717 {
4718 	/* handled by vmx_vcpu_run() */
4719 	return 1;
4720 }
4721 
4722 /*
4723  * If the host has split lock detection disabled, then #AC is
4724  * unconditionally injected into the guest, which is the pre split lock
4725  * detection behaviour.
4726  *
4727  * If the host has split lock detection enabled then #AC is
4728  * only injected into the guest when:
4729  *  - Guest CPL == 3 (user mode)
4730  *  - Guest has #AC detection enabled in CR0
4731  *  - Guest EFLAGS has AC bit set
4732  */
4733 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4734 {
4735 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4736 		return true;
4737 
4738 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4739 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4740 }
4741 
4742 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4743 {
4744 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4745 	struct kvm_run *kvm_run = vcpu->run;
4746 	u32 intr_info, ex_no, error_code;
4747 	unsigned long cr2, rip, dr6;
4748 	u32 vect_info;
4749 
4750 	vect_info = vmx->idt_vectoring_info;
4751 	intr_info = vmx_get_intr_info(vcpu);
4752 
4753 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4754 		return 1; /* handled by handle_exception_nmi_irqoff() */
4755 
4756 	if (is_invalid_opcode(intr_info))
4757 		return handle_ud(vcpu);
4758 
4759 	error_code = 0;
4760 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4761 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4762 
4763 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4764 		WARN_ON_ONCE(!enable_vmware_backdoor);
4765 
4766 		/*
4767 		 * VMware backdoor emulation on #GP interception only handles
4768 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4769 		 * error code on #GP.
4770 		 */
4771 		if (error_code) {
4772 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4773 			return 1;
4774 		}
4775 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4776 	}
4777 
4778 	/*
4779 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4780 	 * MMIO, it is better to report an internal error.
4781 	 * See the comments in vmx_handle_exit.
4782 	 */
4783 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4784 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4785 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4786 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4787 		vcpu->run->internal.ndata = 3;
4788 		vcpu->run->internal.data[0] = vect_info;
4789 		vcpu->run->internal.data[1] = intr_info;
4790 		vcpu->run->internal.data[2] = error_code;
4791 		return 0;
4792 	}
4793 
4794 	if (is_page_fault(intr_info)) {
4795 		cr2 = vmx_get_exit_qual(vcpu);
4796 		/* EPT won't cause page fault directly */
4797 		WARN_ON_ONCE(!vcpu->arch.apf.host_apf_flags && enable_ept);
4798 		return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4799 	}
4800 
4801 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4802 
4803 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4804 		return handle_rmode_exception(vcpu, ex_no, error_code);
4805 
4806 	switch (ex_no) {
4807 	case DB_VECTOR:
4808 		dr6 = vmx_get_exit_qual(vcpu);
4809 		if (!(vcpu->guest_debug &
4810 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4811 			if (is_icebp(intr_info))
4812 				WARN_ON(!skip_emulated_instruction(vcpu));
4813 
4814 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4815 			return 1;
4816 		}
4817 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4818 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4819 		/* fall through */
4820 	case BP_VECTOR:
4821 		/*
4822 		 * Update instruction length as we may reinject #BP from
4823 		 * user space while in guest debugging mode. Reading it for
4824 		 * #DB as well causes no harm, it is not used in that case.
4825 		 */
4826 		vmx->vcpu.arch.event_exit_inst_len =
4827 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4828 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4829 		rip = kvm_rip_read(vcpu);
4830 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4831 		kvm_run->debug.arch.exception = ex_no;
4832 		break;
4833 	case AC_VECTOR:
4834 		if (guest_inject_ac(vcpu)) {
4835 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4836 			return 1;
4837 		}
4838 
4839 		/*
4840 		 * Handle split lock. Depending on detection mode this will
4841 		 * either warn and disable split lock detection for this
4842 		 * task or force SIGBUS on it.
4843 		 */
4844 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4845 			return 1;
4846 		fallthrough;
4847 	default:
4848 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4849 		kvm_run->ex.exception = ex_no;
4850 		kvm_run->ex.error_code = error_code;
4851 		break;
4852 	}
4853 	return 0;
4854 }
4855 
4856 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4857 {
4858 	++vcpu->stat.irq_exits;
4859 	return 1;
4860 }
4861 
4862 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4863 {
4864 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4865 	vcpu->mmio_needed = 0;
4866 	return 0;
4867 }
4868 
4869 static int handle_io(struct kvm_vcpu *vcpu)
4870 {
4871 	unsigned long exit_qualification;
4872 	int size, in, string;
4873 	unsigned port;
4874 
4875 	exit_qualification = vmx_get_exit_qual(vcpu);
4876 	string = (exit_qualification & 16) != 0;
4877 
4878 	++vcpu->stat.io_exits;
4879 
4880 	if (string)
4881 		return kvm_emulate_instruction(vcpu, 0);
4882 
4883 	port = exit_qualification >> 16;
4884 	size = (exit_qualification & 7) + 1;
4885 	in = (exit_qualification & 8) != 0;
4886 
4887 	return kvm_fast_pio(vcpu, size, port, in);
4888 }
4889 
4890 static void
4891 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4892 {
4893 	/*
4894 	 * Patch in the VMCALL instruction:
4895 	 */
4896 	hypercall[0] = 0x0f;
4897 	hypercall[1] = 0x01;
4898 	hypercall[2] = 0xc1;
4899 }
4900 
4901 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4902 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4903 {
4904 	if (is_guest_mode(vcpu)) {
4905 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4906 		unsigned long orig_val = val;
4907 
4908 		/*
4909 		 * We get here when L2 changed cr0 in a way that did not change
4910 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4911 		 * but did change L0 shadowed bits. So we first calculate the
4912 		 * effective cr0 value that L1 would like to write into the
4913 		 * hardware. It consists of the L2-owned bits from the new
4914 		 * value combined with the L1-owned bits from L1's guest_cr0.
4915 		 */
4916 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4917 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4918 
4919 		if (!nested_guest_cr0_valid(vcpu, val))
4920 			return 1;
4921 
4922 		if (kvm_set_cr0(vcpu, val))
4923 			return 1;
4924 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4925 		return 0;
4926 	} else {
4927 		if (to_vmx(vcpu)->nested.vmxon &&
4928 		    !nested_host_cr0_valid(vcpu, val))
4929 			return 1;
4930 
4931 		return kvm_set_cr0(vcpu, val);
4932 	}
4933 }
4934 
4935 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4936 {
4937 	if (is_guest_mode(vcpu)) {
4938 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4939 		unsigned long orig_val = val;
4940 
4941 		/* analogously to handle_set_cr0 */
4942 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4943 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4944 		if (kvm_set_cr4(vcpu, val))
4945 			return 1;
4946 		vmcs_writel(CR4_READ_SHADOW, orig_val);
4947 		return 0;
4948 	} else
4949 		return kvm_set_cr4(vcpu, val);
4950 }
4951 
4952 static int handle_desc(struct kvm_vcpu *vcpu)
4953 {
4954 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4955 	return kvm_emulate_instruction(vcpu, 0);
4956 }
4957 
4958 static int handle_cr(struct kvm_vcpu *vcpu)
4959 {
4960 	unsigned long exit_qualification, val;
4961 	int cr;
4962 	int reg;
4963 	int err;
4964 	int ret;
4965 
4966 	exit_qualification = vmx_get_exit_qual(vcpu);
4967 	cr = exit_qualification & 15;
4968 	reg = (exit_qualification >> 8) & 15;
4969 	switch ((exit_qualification >> 4) & 3) {
4970 	case 0: /* mov to cr */
4971 		val = kvm_register_readl(vcpu, reg);
4972 		trace_kvm_cr_write(cr, val);
4973 		switch (cr) {
4974 		case 0:
4975 			err = handle_set_cr0(vcpu, val);
4976 			return kvm_complete_insn_gp(vcpu, err);
4977 		case 3:
4978 			WARN_ON_ONCE(enable_unrestricted_guest);
4979 			err = kvm_set_cr3(vcpu, val);
4980 			return kvm_complete_insn_gp(vcpu, err);
4981 		case 4:
4982 			err = handle_set_cr4(vcpu, val);
4983 			return kvm_complete_insn_gp(vcpu, err);
4984 		case 8: {
4985 				u8 cr8_prev = kvm_get_cr8(vcpu);
4986 				u8 cr8 = (u8)val;
4987 				err = kvm_set_cr8(vcpu, cr8);
4988 				ret = kvm_complete_insn_gp(vcpu, err);
4989 				if (lapic_in_kernel(vcpu))
4990 					return ret;
4991 				if (cr8_prev <= cr8)
4992 					return ret;
4993 				/*
4994 				 * TODO: we might be squashing a
4995 				 * KVM_GUESTDBG_SINGLESTEP-triggered
4996 				 * KVM_EXIT_DEBUG here.
4997 				 */
4998 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4999 				return 0;
5000 			}
5001 		}
5002 		break;
5003 	case 2: /* clts */
5004 		WARN_ONCE(1, "Guest should always own CR0.TS");
5005 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5006 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5007 		return kvm_skip_emulated_instruction(vcpu);
5008 	case 1: /*mov from cr*/
5009 		switch (cr) {
5010 		case 3:
5011 			WARN_ON_ONCE(enable_unrestricted_guest);
5012 			val = kvm_read_cr3(vcpu);
5013 			kvm_register_write(vcpu, reg, val);
5014 			trace_kvm_cr_read(cr, val);
5015 			return kvm_skip_emulated_instruction(vcpu);
5016 		case 8:
5017 			val = kvm_get_cr8(vcpu);
5018 			kvm_register_write(vcpu, reg, val);
5019 			trace_kvm_cr_read(cr, val);
5020 			return kvm_skip_emulated_instruction(vcpu);
5021 		}
5022 		break;
5023 	case 3: /* lmsw */
5024 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5025 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5026 		kvm_lmsw(vcpu, val);
5027 
5028 		return kvm_skip_emulated_instruction(vcpu);
5029 	default:
5030 		break;
5031 	}
5032 	vcpu->run->exit_reason = 0;
5033 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5034 	       (int)(exit_qualification >> 4) & 3, cr);
5035 	return 0;
5036 }
5037 
5038 static int handle_dr(struct kvm_vcpu *vcpu)
5039 {
5040 	unsigned long exit_qualification;
5041 	int dr, dr7, reg;
5042 
5043 	exit_qualification = vmx_get_exit_qual(vcpu);
5044 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5045 
5046 	/* First, if DR does not exist, trigger UD */
5047 	if (!kvm_require_dr(vcpu, dr))
5048 		return 1;
5049 
5050 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
5051 	if (!kvm_require_cpl(vcpu, 0))
5052 		return 1;
5053 	dr7 = vmcs_readl(GUEST_DR7);
5054 	if (dr7 & DR7_GD) {
5055 		/*
5056 		 * As the vm-exit takes precedence over the debug trap, we
5057 		 * need to emulate the latter, either for the host or the
5058 		 * guest debugging itself.
5059 		 */
5060 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5061 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
5062 			vcpu->run->debug.arch.dr7 = dr7;
5063 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5064 			vcpu->run->debug.arch.exception = DB_VECTOR;
5065 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5066 			return 0;
5067 		} else {
5068 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5069 			return 1;
5070 		}
5071 	}
5072 
5073 	if (vcpu->guest_debug == 0) {
5074 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5075 
5076 		/*
5077 		 * No more DR vmexits; force a reload of the debug registers
5078 		 * and reenter on this instruction.  The next vmexit will
5079 		 * retrieve the full state of the debug registers.
5080 		 */
5081 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5082 		return 1;
5083 	}
5084 
5085 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5086 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5087 		unsigned long val;
5088 
5089 		if (kvm_get_dr(vcpu, dr, &val))
5090 			return 1;
5091 		kvm_register_write(vcpu, reg, val);
5092 	} else
5093 		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5094 			return 1;
5095 
5096 	return kvm_skip_emulated_instruction(vcpu);
5097 }
5098 
5099 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5100 {
5101 	get_debugreg(vcpu->arch.db[0], 0);
5102 	get_debugreg(vcpu->arch.db[1], 1);
5103 	get_debugreg(vcpu->arch.db[2], 2);
5104 	get_debugreg(vcpu->arch.db[3], 3);
5105 	get_debugreg(vcpu->arch.dr6, 6);
5106 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5107 
5108 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5109 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5110 }
5111 
5112 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5113 {
5114 	vmcs_writel(GUEST_DR7, val);
5115 }
5116 
5117 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5118 {
5119 	kvm_apic_update_ppr(vcpu);
5120 	return 1;
5121 }
5122 
5123 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5124 {
5125 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5126 
5127 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5128 
5129 	++vcpu->stat.irq_window_exits;
5130 	return 1;
5131 }
5132 
5133 static int handle_vmcall(struct kvm_vcpu *vcpu)
5134 {
5135 	return kvm_emulate_hypercall(vcpu);
5136 }
5137 
5138 static int handle_invd(struct kvm_vcpu *vcpu)
5139 {
5140 	return kvm_emulate_instruction(vcpu, 0);
5141 }
5142 
5143 static int handle_invlpg(struct kvm_vcpu *vcpu)
5144 {
5145 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5146 
5147 	kvm_mmu_invlpg(vcpu, exit_qualification);
5148 	return kvm_skip_emulated_instruction(vcpu);
5149 }
5150 
5151 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5152 {
5153 	int err;
5154 
5155 	err = kvm_rdpmc(vcpu);
5156 	return kvm_complete_insn_gp(vcpu, err);
5157 }
5158 
5159 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5160 {
5161 	return kvm_emulate_wbinvd(vcpu);
5162 }
5163 
5164 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5165 {
5166 	u64 new_bv = kvm_read_edx_eax(vcpu);
5167 	u32 index = kvm_rcx_read(vcpu);
5168 
5169 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5170 		return kvm_skip_emulated_instruction(vcpu);
5171 	return 1;
5172 }
5173 
5174 static int handle_apic_access(struct kvm_vcpu *vcpu)
5175 {
5176 	if (likely(fasteoi)) {
5177 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5178 		int access_type, offset;
5179 
5180 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5181 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5182 		/*
5183 		 * Sane guest uses MOV to write EOI, with written value
5184 		 * not cared. So make a short-circuit here by avoiding
5185 		 * heavy instruction emulation.
5186 		 */
5187 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5188 		    (offset == APIC_EOI)) {
5189 			kvm_lapic_set_eoi(vcpu);
5190 			return kvm_skip_emulated_instruction(vcpu);
5191 		}
5192 	}
5193 	return kvm_emulate_instruction(vcpu, 0);
5194 }
5195 
5196 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5197 {
5198 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5199 	int vector = exit_qualification & 0xff;
5200 
5201 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5202 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5203 	return 1;
5204 }
5205 
5206 static int handle_apic_write(struct kvm_vcpu *vcpu)
5207 {
5208 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5209 	u32 offset = exit_qualification & 0xfff;
5210 
5211 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5212 	kvm_apic_write_nodecode(vcpu, offset);
5213 	return 1;
5214 }
5215 
5216 static int handle_task_switch(struct kvm_vcpu *vcpu)
5217 {
5218 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5219 	unsigned long exit_qualification;
5220 	bool has_error_code = false;
5221 	u32 error_code = 0;
5222 	u16 tss_selector;
5223 	int reason, type, idt_v, idt_index;
5224 
5225 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5226 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5227 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5228 
5229 	exit_qualification = vmx_get_exit_qual(vcpu);
5230 
5231 	reason = (u32)exit_qualification >> 30;
5232 	if (reason == TASK_SWITCH_GATE && idt_v) {
5233 		switch (type) {
5234 		case INTR_TYPE_NMI_INTR:
5235 			vcpu->arch.nmi_injected = false;
5236 			vmx_set_nmi_mask(vcpu, true);
5237 			break;
5238 		case INTR_TYPE_EXT_INTR:
5239 		case INTR_TYPE_SOFT_INTR:
5240 			kvm_clear_interrupt_queue(vcpu);
5241 			break;
5242 		case INTR_TYPE_HARD_EXCEPTION:
5243 			if (vmx->idt_vectoring_info &
5244 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5245 				has_error_code = true;
5246 				error_code =
5247 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5248 			}
5249 			/* fall through */
5250 		case INTR_TYPE_SOFT_EXCEPTION:
5251 			kvm_clear_exception_queue(vcpu);
5252 			break;
5253 		default:
5254 			break;
5255 		}
5256 	}
5257 	tss_selector = exit_qualification;
5258 
5259 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5260 		       type != INTR_TYPE_EXT_INTR &&
5261 		       type != INTR_TYPE_NMI_INTR))
5262 		WARN_ON(!skip_emulated_instruction(vcpu));
5263 
5264 	/*
5265 	 * TODO: What about debug traps on tss switch?
5266 	 *       Are we supposed to inject them and update dr6?
5267 	 */
5268 	return kvm_task_switch(vcpu, tss_selector,
5269 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5270 			       reason, has_error_code, error_code);
5271 }
5272 
5273 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5274 {
5275 	unsigned long exit_qualification;
5276 	gpa_t gpa;
5277 	u64 error_code;
5278 
5279 	exit_qualification = vmx_get_exit_qual(vcpu);
5280 
5281 	/*
5282 	 * EPT violation happened while executing iret from NMI,
5283 	 * "blocked by NMI" bit has to be set before next VM entry.
5284 	 * There are errata that may cause this bit to not be set:
5285 	 * AAK134, BY25.
5286 	 */
5287 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5288 			enable_vnmi &&
5289 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5290 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5291 
5292 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5293 	trace_kvm_page_fault(gpa, exit_qualification);
5294 
5295 	/* Is it a read fault? */
5296 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5297 		     ? PFERR_USER_MASK : 0;
5298 	/* Is it a write fault? */
5299 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5300 		      ? PFERR_WRITE_MASK : 0;
5301 	/* Is it a fetch fault? */
5302 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5303 		      ? PFERR_FETCH_MASK : 0;
5304 	/* ept page table entry is present? */
5305 	error_code |= (exit_qualification &
5306 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5307 			EPT_VIOLATION_EXECUTABLE))
5308 		      ? PFERR_PRESENT_MASK : 0;
5309 
5310 	error_code |= (exit_qualification & 0x100) != 0 ?
5311 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5312 
5313 	vcpu->arch.exit_qualification = exit_qualification;
5314 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5315 }
5316 
5317 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5318 {
5319 	gpa_t gpa;
5320 
5321 	/*
5322 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5323 	 * nGPA here instead of the required GPA.
5324 	 */
5325 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5326 	if (!is_guest_mode(vcpu) &&
5327 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5328 		trace_kvm_fast_mmio(gpa);
5329 		return kvm_skip_emulated_instruction(vcpu);
5330 	}
5331 
5332 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5333 }
5334 
5335 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5336 {
5337 	WARN_ON_ONCE(!enable_vnmi);
5338 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5339 	++vcpu->stat.nmi_window_exits;
5340 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5341 
5342 	return 1;
5343 }
5344 
5345 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5346 {
5347 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5348 	bool intr_window_requested;
5349 	unsigned count = 130;
5350 
5351 	intr_window_requested = exec_controls_get(vmx) &
5352 				CPU_BASED_INTR_WINDOW_EXITING;
5353 
5354 	while (vmx->emulation_required && count-- != 0) {
5355 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5356 			return handle_interrupt_window(&vmx->vcpu);
5357 
5358 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5359 			return 1;
5360 
5361 		if (!kvm_emulate_instruction(vcpu, 0))
5362 			return 0;
5363 
5364 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5365 		    vcpu->arch.exception.pending) {
5366 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5367 			vcpu->run->internal.suberror =
5368 						KVM_INTERNAL_ERROR_EMULATION;
5369 			vcpu->run->internal.ndata = 0;
5370 			return 0;
5371 		}
5372 
5373 		if (vcpu->arch.halt_request) {
5374 			vcpu->arch.halt_request = 0;
5375 			return kvm_vcpu_halt(vcpu);
5376 		}
5377 
5378 		/*
5379 		 * Note, return 1 and not 0, vcpu_run() is responsible for
5380 		 * morphing the pending signal into the proper return code.
5381 		 */
5382 		if (signal_pending(current))
5383 			return 1;
5384 
5385 		if (need_resched())
5386 			schedule();
5387 	}
5388 
5389 	return 1;
5390 }
5391 
5392 static void grow_ple_window(struct kvm_vcpu *vcpu)
5393 {
5394 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5395 	unsigned int old = vmx->ple_window;
5396 
5397 	vmx->ple_window = __grow_ple_window(old, ple_window,
5398 					    ple_window_grow,
5399 					    ple_window_max);
5400 
5401 	if (vmx->ple_window != old) {
5402 		vmx->ple_window_dirty = true;
5403 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5404 					    vmx->ple_window, old);
5405 	}
5406 }
5407 
5408 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5409 {
5410 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5411 	unsigned int old = vmx->ple_window;
5412 
5413 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5414 					      ple_window_shrink,
5415 					      ple_window);
5416 
5417 	if (vmx->ple_window != old) {
5418 		vmx->ple_window_dirty = true;
5419 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5420 					    vmx->ple_window, old);
5421 	}
5422 }
5423 
5424 /*
5425  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5426  */
5427 static void wakeup_handler(void)
5428 {
5429 	struct kvm_vcpu *vcpu;
5430 	int cpu = smp_processor_id();
5431 
5432 	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5433 	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5434 			blocked_vcpu_list) {
5435 		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5436 
5437 		if (pi_test_on(pi_desc) == 1)
5438 			kvm_vcpu_kick(vcpu);
5439 	}
5440 	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5441 }
5442 
5443 static void vmx_enable_tdp(void)
5444 {
5445 	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5446 		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5447 		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5448 		0ull, VMX_EPT_EXECUTABLE_MASK,
5449 		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5450 		VMX_EPT_RWX_MASK, 0ull);
5451 
5452 	ept_set_mmio_spte_mask();
5453 }
5454 
5455 /*
5456  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5457  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5458  */
5459 static int handle_pause(struct kvm_vcpu *vcpu)
5460 {
5461 	if (!kvm_pause_in_guest(vcpu->kvm))
5462 		grow_ple_window(vcpu);
5463 
5464 	/*
5465 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5466 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5467 	 * never set PAUSE_EXITING and just set PLE if supported,
5468 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5469 	 */
5470 	kvm_vcpu_on_spin(vcpu, true);
5471 	return kvm_skip_emulated_instruction(vcpu);
5472 }
5473 
5474 static int handle_nop(struct kvm_vcpu *vcpu)
5475 {
5476 	return kvm_skip_emulated_instruction(vcpu);
5477 }
5478 
5479 static int handle_mwait(struct kvm_vcpu *vcpu)
5480 {
5481 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5482 	return handle_nop(vcpu);
5483 }
5484 
5485 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5486 {
5487 	kvm_queue_exception(vcpu, UD_VECTOR);
5488 	return 1;
5489 }
5490 
5491 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5492 {
5493 	return 1;
5494 }
5495 
5496 static int handle_monitor(struct kvm_vcpu *vcpu)
5497 {
5498 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5499 	return handle_nop(vcpu);
5500 }
5501 
5502 static int handle_invpcid(struct kvm_vcpu *vcpu)
5503 {
5504 	u32 vmx_instruction_info;
5505 	unsigned long type;
5506 	bool pcid_enabled;
5507 	gva_t gva;
5508 	struct x86_exception e;
5509 	unsigned i;
5510 	unsigned long roots_to_free = 0;
5511 	struct {
5512 		u64 pcid;
5513 		u64 gla;
5514 	} operand;
5515 	int r;
5516 
5517 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5518 		kvm_queue_exception(vcpu, UD_VECTOR);
5519 		return 1;
5520 	}
5521 
5522 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5523 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5524 
5525 	if (type > 3) {
5526 		kvm_inject_gp(vcpu, 0);
5527 		return 1;
5528 	}
5529 
5530 	/* According to the Intel instruction reference, the memory operand
5531 	 * is read even if it isn't needed (e.g., for type==all)
5532 	 */
5533 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5534 				vmx_instruction_info, false,
5535 				sizeof(operand), &gva))
5536 		return 1;
5537 
5538 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5539 	if (r != X86EMUL_CONTINUE)
5540 		return vmx_handle_memory_failure(vcpu, r, &e);
5541 
5542 	if (operand.pcid >> 12 != 0) {
5543 		kvm_inject_gp(vcpu, 0);
5544 		return 1;
5545 	}
5546 
5547 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5548 
5549 	switch (type) {
5550 	case INVPCID_TYPE_INDIV_ADDR:
5551 		if ((!pcid_enabled && (operand.pcid != 0)) ||
5552 		    is_noncanonical_address(operand.gla, vcpu)) {
5553 			kvm_inject_gp(vcpu, 0);
5554 			return 1;
5555 		}
5556 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5557 		return kvm_skip_emulated_instruction(vcpu);
5558 
5559 	case INVPCID_TYPE_SINGLE_CTXT:
5560 		if (!pcid_enabled && (operand.pcid != 0)) {
5561 			kvm_inject_gp(vcpu, 0);
5562 			return 1;
5563 		}
5564 
5565 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5566 			kvm_mmu_sync_roots(vcpu);
5567 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
5568 		}
5569 
5570 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5571 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
5572 			    == operand.pcid)
5573 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5574 
5575 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5576 		/*
5577 		 * If neither the current cr3 nor any of the prev_roots use the
5578 		 * given PCID, then nothing needs to be done here because a
5579 		 * resync will happen anyway before switching to any other CR3.
5580 		 */
5581 
5582 		return kvm_skip_emulated_instruction(vcpu);
5583 
5584 	case INVPCID_TYPE_ALL_NON_GLOBAL:
5585 		/*
5586 		 * Currently, KVM doesn't mark global entries in the shadow
5587 		 * page tables, so a non-global flush just degenerates to a
5588 		 * global flush. If needed, we could optimize this later by
5589 		 * keeping track of global entries in shadow page tables.
5590 		 */
5591 
5592 		/* fall-through */
5593 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
5594 		kvm_mmu_unload(vcpu);
5595 		return kvm_skip_emulated_instruction(vcpu);
5596 
5597 	default:
5598 		BUG(); /* We have already checked above that type <= 3 */
5599 	}
5600 }
5601 
5602 static int handle_pml_full(struct kvm_vcpu *vcpu)
5603 {
5604 	unsigned long exit_qualification;
5605 
5606 	trace_kvm_pml_full(vcpu->vcpu_id);
5607 
5608 	exit_qualification = vmx_get_exit_qual(vcpu);
5609 
5610 	/*
5611 	 * PML buffer FULL happened while executing iret from NMI,
5612 	 * "blocked by NMI" bit has to be set before next VM entry.
5613 	 */
5614 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5615 			enable_vnmi &&
5616 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5617 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5618 				GUEST_INTR_STATE_NMI);
5619 
5620 	/*
5621 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5622 	 * here.., and there's no userspace involvement needed for PML.
5623 	 */
5624 	return 1;
5625 }
5626 
5627 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5628 {
5629 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5630 
5631 	if (!vmx->req_immediate_exit &&
5632 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5633 		kvm_lapic_expired_hv_timer(vcpu);
5634 		return EXIT_FASTPATH_REENTER_GUEST;
5635 	}
5636 
5637 	return EXIT_FASTPATH_NONE;
5638 }
5639 
5640 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5641 {
5642 	handle_fastpath_preemption_timer(vcpu);
5643 	return 1;
5644 }
5645 
5646 /*
5647  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5648  * are overwritten by nested_vmx_setup() when nested=1.
5649  */
5650 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5651 {
5652 	kvm_queue_exception(vcpu, UD_VECTOR);
5653 	return 1;
5654 }
5655 
5656 static int handle_encls(struct kvm_vcpu *vcpu)
5657 {
5658 	/*
5659 	 * SGX virtualization is not yet supported.  There is no software
5660 	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5661 	 * to prevent the guest from executing ENCLS.
5662 	 */
5663 	kvm_queue_exception(vcpu, UD_VECTOR);
5664 	return 1;
5665 }
5666 
5667 /*
5668  * The exit handlers return 1 if the exit was handled fully and guest execution
5669  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5670  * to be done to userspace and return 0.
5671  */
5672 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5673 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5674 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5675 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5676 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5677 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5678 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5679 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5680 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5681 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5682 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5683 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5684 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5685 	[EXIT_REASON_INVD]		      = handle_invd,
5686 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5687 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
5688 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
5689 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5690 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5691 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5692 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5693 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5694 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5695 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5696 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5697 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5698 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5699 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5700 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5701 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5702 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
5703 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
5704 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5705 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5706 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5707 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5708 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5709 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5710 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5711 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
5712 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5713 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5714 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5715 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5716 	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
5717 	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
5718 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5719 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5720 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5721 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5722 	[EXIT_REASON_ENCLS]		      = handle_encls,
5723 };
5724 
5725 static const int kvm_vmx_max_exit_handlers =
5726 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5727 
5728 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5729 {
5730 	*info1 = vmx_get_exit_qual(vcpu);
5731 	*info2 = vmx_get_intr_info(vcpu);
5732 }
5733 
5734 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5735 {
5736 	if (vmx->pml_pg) {
5737 		__free_page(vmx->pml_pg);
5738 		vmx->pml_pg = NULL;
5739 	}
5740 }
5741 
5742 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5743 {
5744 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5745 	u64 *pml_buf;
5746 	u16 pml_idx;
5747 
5748 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5749 
5750 	/* Do nothing if PML buffer is empty */
5751 	if (pml_idx == (PML_ENTITY_NUM - 1))
5752 		return;
5753 
5754 	/* PML index always points to next available PML buffer entity */
5755 	if (pml_idx >= PML_ENTITY_NUM)
5756 		pml_idx = 0;
5757 	else
5758 		pml_idx++;
5759 
5760 	pml_buf = page_address(vmx->pml_pg);
5761 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5762 		u64 gpa;
5763 
5764 		gpa = pml_buf[pml_idx];
5765 		WARN_ON(gpa & (PAGE_SIZE - 1));
5766 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5767 	}
5768 
5769 	/* reset PML index */
5770 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5771 }
5772 
5773 /*
5774  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5775  * Called before reporting dirty_bitmap to userspace.
5776  */
5777 static void kvm_flush_pml_buffers(struct kvm *kvm)
5778 {
5779 	int i;
5780 	struct kvm_vcpu *vcpu;
5781 	/*
5782 	 * We only need to kick vcpu out of guest mode here, as PML buffer
5783 	 * is flushed at beginning of all VMEXITs, and it's obvious that only
5784 	 * vcpus running in guest are possible to have unflushed GPAs in PML
5785 	 * buffer.
5786 	 */
5787 	kvm_for_each_vcpu(i, vcpu, kvm)
5788 		kvm_vcpu_kick(vcpu);
5789 }
5790 
5791 static void vmx_dump_sel(char *name, uint32_t sel)
5792 {
5793 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5794 	       name, vmcs_read16(sel),
5795 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5796 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5797 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5798 }
5799 
5800 static void vmx_dump_dtsel(char *name, uint32_t limit)
5801 {
5802 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5803 	       name, vmcs_read32(limit),
5804 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5805 }
5806 
5807 void dump_vmcs(void)
5808 {
5809 	u32 vmentry_ctl, vmexit_ctl;
5810 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5811 	unsigned long cr4;
5812 	u64 efer;
5813 
5814 	if (!dump_invalid_vmcs) {
5815 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5816 		return;
5817 	}
5818 
5819 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5820 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5821 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5822 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5823 	cr4 = vmcs_readl(GUEST_CR4);
5824 	efer = vmcs_read64(GUEST_IA32_EFER);
5825 	secondary_exec_control = 0;
5826 	if (cpu_has_secondary_exec_ctrls())
5827 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5828 
5829 	pr_err("*** Guest State ***\n");
5830 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5831 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5832 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5833 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5834 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5835 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5836 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5837 	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5838 	{
5839 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5840 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5841 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5842 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5843 	}
5844 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5845 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5846 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5847 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5848 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5849 	       vmcs_readl(GUEST_SYSENTER_ESP),
5850 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5851 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5852 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5853 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5854 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5855 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5856 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5857 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5858 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5859 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5860 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5861 	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5862 	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5863 		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5864 		       efer, vmcs_read64(GUEST_IA32_PAT));
5865 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5866 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5867 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5868 	if (cpu_has_load_perf_global_ctrl() &&
5869 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5870 		pr_err("PerfGlobCtl = 0x%016llx\n",
5871 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5872 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5873 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5874 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5875 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5876 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5877 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5878 		pr_err("InterruptStatus = %04x\n",
5879 		       vmcs_read16(GUEST_INTR_STATUS));
5880 
5881 	pr_err("*** Host State ***\n");
5882 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5883 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5884 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5885 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5886 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5887 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5888 	       vmcs_read16(HOST_TR_SELECTOR));
5889 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5890 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5891 	       vmcs_readl(HOST_TR_BASE));
5892 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5893 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5894 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5895 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5896 	       vmcs_readl(HOST_CR4));
5897 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5898 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5899 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5900 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5901 	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5902 		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5903 		       vmcs_read64(HOST_IA32_EFER),
5904 		       vmcs_read64(HOST_IA32_PAT));
5905 	if (cpu_has_load_perf_global_ctrl() &&
5906 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5907 		pr_err("PerfGlobCtl = 0x%016llx\n",
5908 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5909 
5910 	pr_err("*** Control State ***\n");
5911 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5912 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5913 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5914 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5915 	       vmcs_read32(EXCEPTION_BITMAP),
5916 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5917 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5918 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5919 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5920 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5921 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5922 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5923 	       vmcs_read32(VM_EXIT_INTR_INFO),
5924 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5925 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5926 	pr_err("        reason=%08x qualification=%016lx\n",
5927 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5928 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5929 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5930 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5931 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5932 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5933 		pr_err("TSC Multiplier = 0x%016llx\n",
5934 		       vmcs_read64(TSC_MULTIPLIER));
5935 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5936 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5937 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5938 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5939 		}
5940 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5941 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5942 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5943 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5944 	}
5945 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5946 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5947 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5948 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5949 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5950 		pr_err("PLE Gap=%08x Window=%08x\n",
5951 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5952 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5953 		pr_err("Virtual processor ID = 0x%04x\n",
5954 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5955 }
5956 
5957 /*
5958  * The guest has exited.  See if we can fix it or if we need userspace
5959  * assistance.
5960  */
5961 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5962 {
5963 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5964 	u32 exit_reason = vmx->exit_reason;
5965 	u32 vectoring_info = vmx->idt_vectoring_info;
5966 
5967 	/*
5968 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5969 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5970 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5971 	 * mode as if vcpus is in root mode, the PML buffer must has been
5972 	 * flushed already.
5973 	 */
5974 	if (enable_pml)
5975 		vmx_flush_pml_buffer(vcpu);
5976 
5977 	/*
5978 	 * We should never reach this point with a pending nested VM-Enter, and
5979 	 * more specifically emulation of L2 due to invalid guest state (see
5980 	 * below) should never happen as that means we incorrectly allowed a
5981 	 * nested VM-Enter with an invalid vmcs12.
5982 	 */
5983 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
5984 
5985 	/* If guest state is invalid, start emulating */
5986 	if (vmx->emulation_required)
5987 		return handle_invalid_guest_state(vcpu);
5988 
5989 	if (is_guest_mode(vcpu)) {
5990 		/*
5991 		 * The host physical addresses of some pages of guest memory
5992 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5993 		 * Page). The CPU may write to these pages via their host
5994 		 * physical address while L2 is running, bypassing any
5995 		 * address-translation-based dirty tracking (e.g. EPT write
5996 		 * protection).
5997 		 *
5998 		 * Mark them dirty on every exit from L2 to prevent them from
5999 		 * getting out of sync with dirty tracking.
6000 		 */
6001 		nested_mark_vmcs12_pages_dirty(vcpu);
6002 
6003 		if (nested_vmx_reflect_vmexit(vcpu))
6004 			return 1;
6005 	}
6006 
6007 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6008 		dump_vmcs();
6009 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6010 		vcpu->run->fail_entry.hardware_entry_failure_reason
6011 			= exit_reason;
6012 		return 0;
6013 	}
6014 
6015 	if (unlikely(vmx->fail)) {
6016 		dump_vmcs();
6017 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6018 		vcpu->run->fail_entry.hardware_entry_failure_reason
6019 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6020 		return 0;
6021 	}
6022 
6023 	/*
6024 	 * Note:
6025 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6026 	 * delivery event since it indicates guest is accessing MMIO.
6027 	 * The vm-exit can be triggered again after return to guest that
6028 	 * will cause infinite loop.
6029 	 */
6030 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6031 			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6032 			exit_reason != EXIT_REASON_EPT_VIOLATION &&
6033 			exit_reason != EXIT_REASON_PML_FULL &&
6034 			exit_reason != EXIT_REASON_TASK_SWITCH)) {
6035 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6036 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6037 		vcpu->run->internal.ndata = 3;
6038 		vcpu->run->internal.data[0] = vectoring_info;
6039 		vcpu->run->internal.data[1] = exit_reason;
6040 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6041 		if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
6042 			vcpu->run->internal.ndata++;
6043 			vcpu->run->internal.data[3] =
6044 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6045 		}
6046 		return 0;
6047 	}
6048 
6049 	if (unlikely(!enable_vnmi &&
6050 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6051 		if (!vmx_interrupt_blocked(vcpu)) {
6052 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6053 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6054 			   vcpu->arch.nmi_pending) {
6055 			/*
6056 			 * This CPU don't support us in finding the end of an
6057 			 * NMI-blocked window if the guest runs with IRQs
6058 			 * disabled. So we pull the trigger after 1 s of
6059 			 * futile waiting, but inform the user about this.
6060 			 */
6061 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6062 			       "state on VCPU %d after 1 s timeout\n",
6063 			       __func__, vcpu->vcpu_id);
6064 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6065 		}
6066 	}
6067 
6068 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6069 		return 1;
6070 
6071 	if (exit_reason >= kvm_vmx_max_exit_handlers)
6072 		goto unexpected_vmexit;
6073 #ifdef CONFIG_RETPOLINE
6074 	if (exit_reason == EXIT_REASON_MSR_WRITE)
6075 		return kvm_emulate_wrmsr(vcpu);
6076 	else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
6077 		return handle_preemption_timer(vcpu);
6078 	else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
6079 		return handle_interrupt_window(vcpu);
6080 	else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6081 		return handle_external_interrupt(vcpu);
6082 	else if (exit_reason == EXIT_REASON_HLT)
6083 		return kvm_emulate_halt(vcpu);
6084 	else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
6085 		return handle_ept_misconfig(vcpu);
6086 #endif
6087 
6088 	exit_reason = array_index_nospec(exit_reason,
6089 					 kvm_vmx_max_exit_handlers);
6090 	if (!kvm_vmx_exit_handlers[exit_reason])
6091 		goto unexpected_vmexit;
6092 
6093 	return kvm_vmx_exit_handlers[exit_reason](vcpu);
6094 
6095 unexpected_vmexit:
6096 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason);
6097 	dump_vmcs();
6098 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6099 	vcpu->run->internal.suberror =
6100 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6101 	vcpu->run->internal.ndata = 1;
6102 	vcpu->run->internal.data[0] = exit_reason;
6103 	return 0;
6104 }
6105 
6106 /*
6107  * Software based L1D cache flush which is used when microcode providing
6108  * the cache control MSR is not loaded.
6109  *
6110  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6111  * flush it is required to read in 64 KiB because the replacement algorithm
6112  * is not exactly LRU. This could be sized at runtime via topology
6113  * information but as all relevant affected CPUs have 32KiB L1D cache size
6114  * there is no point in doing so.
6115  */
6116 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6117 {
6118 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6119 
6120 	/*
6121 	 * This code is only executed when the the flush mode is 'cond' or
6122 	 * 'always'
6123 	 */
6124 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6125 		bool flush_l1d;
6126 
6127 		/*
6128 		 * Clear the per-vcpu flush bit, it gets set again
6129 		 * either from vcpu_run() or from one of the unsafe
6130 		 * VMEXIT handlers.
6131 		 */
6132 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6133 		vcpu->arch.l1tf_flush_l1d = false;
6134 
6135 		/*
6136 		 * Clear the per-cpu flush bit, it gets set again from
6137 		 * the interrupt handlers.
6138 		 */
6139 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6140 		kvm_clear_cpu_l1tf_flush_l1d();
6141 
6142 		if (!flush_l1d)
6143 			return;
6144 	}
6145 
6146 	vcpu->stat.l1d_flush++;
6147 
6148 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6149 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6150 		return;
6151 	}
6152 
6153 	asm volatile(
6154 		/* First ensure the pages are in the TLB */
6155 		"xorl	%%eax, %%eax\n"
6156 		".Lpopulate_tlb:\n\t"
6157 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6158 		"addl	$4096, %%eax\n\t"
6159 		"cmpl	%%eax, %[size]\n\t"
6160 		"jne	.Lpopulate_tlb\n\t"
6161 		"xorl	%%eax, %%eax\n\t"
6162 		"cpuid\n\t"
6163 		/* Now fill the cache */
6164 		"xorl	%%eax, %%eax\n"
6165 		".Lfill_cache:\n"
6166 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6167 		"addl	$64, %%eax\n\t"
6168 		"cmpl	%%eax, %[size]\n\t"
6169 		"jne	.Lfill_cache\n\t"
6170 		"lfence\n"
6171 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6172 		    [size] "r" (size)
6173 		: "eax", "ebx", "ecx", "edx");
6174 }
6175 
6176 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6177 {
6178 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6179 	int tpr_threshold;
6180 
6181 	if (is_guest_mode(vcpu) &&
6182 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6183 		return;
6184 
6185 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6186 	if (is_guest_mode(vcpu))
6187 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6188 	else
6189 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6190 }
6191 
6192 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6193 {
6194 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6195 	u32 sec_exec_control;
6196 
6197 	if (!lapic_in_kernel(vcpu))
6198 		return;
6199 
6200 	if (!flexpriority_enabled &&
6201 	    !cpu_has_vmx_virtualize_x2apic_mode())
6202 		return;
6203 
6204 	/* Postpone execution until vmcs01 is the current VMCS. */
6205 	if (is_guest_mode(vcpu)) {
6206 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6207 		return;
6208 	}
6209 
6210 	sec_exec_control = secondary_exec_controls_get(vmx);
6211 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6212 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6213 
6214 	switch (kvm_get_apic_mode(vcpu)) {
6215 	case LAPIC_MODE_INVALID:
6216 		WARN_ONCE(true, "Invalid local APIC state");
6217 	case LAPIC_MODE_DISABLED:
6218 		break;
6219 	case LAPIC_MODE_XAPIC:
6220 		if (flexpriority_enabled) {
6221 			sec_exec_control |=
6222 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6223 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6224 
6225 			/*
6226 			 * Flush the TLB, reloading the APIC access page will
6227 			 * only do so if its physical address has changed, but
6228 			 * the guest may have inserted a non-APIC mapping into
6229 			 * the TLB while the APIC access page was disabled.
6230 			 */
6231 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6232 		}
6233 		break;
6234 	case LAPIC_MODE_X2APIC:
6235 		if (cpu_has_vmx_virtualize_x2apic_mode())
6236 			sec_exec_control |=
6237 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6238 		break;
6239 	}
6240 	secondary_exec_controls_set(vmx, sec_exec_control);
6241 
6242 	vmx_update_msr_bitmap(vcpu);
6243 }
6244 
6245 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6246 {
6247 	struct page *page;
6248 
6249 	/* Defer reload until vmcs01 is the current VMCS. */
6250 	if (is_guest_mode(vcpu)) {
6251 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6252 		return;
6253 	}
6254 
6255 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6256 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6257 		return;
6258 
6259 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6260 	if (is_error_page(page))
6261 		return;
6262 
6263 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6264 	vmx_flush_tlb_current(vcpu);
6265 
6266 	/*
6267 	 * Do not pin apic access page in memory, the MMU notifier
6268 	 * will call us again if it is migrated or swapped out.
6269 	 */
6270 	put_page(page);
6271 }
6272 
6273 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6274 {
6275 	u16 status;
6276 	u8 old;
6277 
6278 	if (max_isr == -1)
6279 		max_isr = 0;
6280 
6281 	status = vmcs_read16(GUEST_INTR_STATUS);
6282 	old = status >> 8;
6283 	if (max_isr != old) {
6284 		status &= 0xff;
6285 		status |= max_isr << 8;
6286 		vmcs_write16(GUEST_INTR_STATUS, status);
6287 	}
6288 }
6289 
6290 static void vmx_set_rvi(int vector)
6291 {
6292 	u16 status;
6293 	u8 old;
6294 
6295 	if (vector == -1)
6296 		vector = 0;
6297 
6298 	status = vmcs_read16(GUEST_INTR_STATUS);
6299 	old = (u8)status & 0xff;
6300 	if ((u8)vector != old) {
6301 		status &= ~0xff;
6302 		status |= (u8)vector;
6303 		vmcs_write16(GUEST_INTR_STATUS, status);
6304 	}
6305 }
6306 
6307 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6308 {
6309 	/*
6310 	 * When running L2, updating RVI is only relevant when
6311 	 * vmcs12 virtual-interrupt-delivery enabled.
6312 	 * However, it can be enabled only when L1 also
6313 	 * intercepts external-interrupts and in that case
6314 	 * we should not update vmcs02 RVI but instead intercept
6315 	 * interrupt. Therefore, do nothing when running L2.
6316 	 */
6317 	if (!is_guest_mode(vcpu))
6318 		vmx_set_rvi(max_irr);
6319 }
6320 
6321 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6322 {
6323 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6324 	int max_irr;
6325 	bool max_irr_updated;
6326 
6327 	WARN_ON(!vcpu->arch.apicv_active);
6328 	if (pi_test_on(&vmx->pi_desc)) {
6329 		pi_clear_on(&vmx->pi_desc);
6330 		/*
6331 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6332 		 * But on x86 this is just a compiler barrier anyway.
6333 		 */
6334 		smp_mb__after_atomic();
6335 		max_irr_updated =
6336 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6337 
6338 		/*
6339 		 * If we are running L2 and L1 has a new pending interrupt
6340 		 * which can be injected, we should re-evaluate
6341 		 * what should be done with this new L1 interrupt.
6342 		 * If L1 intercepts external-interrupts, we should
6343 		 * exit from L2 to L1. Otherwise, interrupt should be
6344 		 * delivered directly to L2.
6345 		 */
6346 		if (is_guest_mode(vcpu) && max_irr_updated) {
6347 			if (nested_exit_on_intr(vcpu))
6348 				kvm_vcpu_exiting_guest_mode(vcpu);
6349 			else
6350 				kvm_make_request(KVM_REQ_EVENT, vcpu);
6351 		}
6352 	} else {
6353 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6354 	}
6355 	vmx_hwapic_irr_update(vcpu, max_irr);
6356 	return max_irr;
6357 }
6358 
6359 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6360 {
6361 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6362 
6363 	return pi_test_on(pi_desc) ||
6364 		(pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6365 }
6366 
6367 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6368 {
6369 	if (!kvm_vcpu_apicv_active(vcpu))
6370 		return;
6371 
6372 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6373 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6374 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6375 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6376 }
6377 
6378 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6379 {
6380 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6381 
6382 	pi_clear_on(&vmx->pi_desc);
6383 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6384 }
6385 
6386 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6387 {
6388 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6389 
6390 	/* if exit due to PF check for async PF */
6391 	if (is_page_fault(intr_info)) {
6392 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6393 	/* Handle machine checks before interrupts are enabled */
6394 	} else if (is_machine_check(intr_info)) {
6395 		kvm_machine_check();
6396 	/* We need to handle NMIs before interrupts are enabled */
6397 	} else if (is_nmi(intr_info)) {
6398 		kvm_before_interrupt(&vmx->vcpu);
6399 		asm("int $2");
6400 		kvm_after_interrupt(&vmx->vcpu);
6401 	}
6402 }
6403 
6404 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6405 {
6406 	unsigned int vector;
6407 	unsigned long entry;
6408 #ifdef CONFIG_X86_64
6409 	unsigned long tmp;
6410 #endif
6411 	gate_desc *desc;
6412 	u32 intr_info = vmx_get_intr_info(vcpu);
6413 
6414 	if (WARN_ONCE(!is_external_intr(intr_info),
6415 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6416 		return;
6417 
6418 	vector = intr_info & INTR_INFO_VECTOR_MASK;
6419 	desc = (gate_desc *)host_idt_base + vector;
6420 	entry = gate_offset(desc);
6421 
6422 	kvm_before_interrupt(vcpu);
6423 
6424 	asm volatile(
6425 #ifdef CONFIG_X86_64
6426 		"mov %%rsp, %[sp]\n\t"
6427 		"and $-16, %%rsp\n\t"
6428 		"push %[ss]\n\t"
6429 		"push %[sp]\n\t"
6430 #endif
6431 		"pushf\n\t"
6432 		"push %[cs]\n\t"
6433 		CALL_NOSPEC
6434 		:
6435 #ifdef CONFIG_X86_64
6436 		[sp]"=&r"(tmp),
6437 #endif
6438 		ASM_CALL_CONSTRAINT
6439 		:
6440 		[thunk_target]"r"(entry),
6441 #ifdef CONFIG_X86_64
6442 		[ss]"i"(__KERNEL_DS),
6443 #endif
6444 		[cs]"i"(__KERNEL_CS)
6445 	);
6446 
6447 	kvm_after_interrupt(vcpu);
6448 }
6449 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6450 
6451 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6452 {
6453 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6454 
6455 	if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6456 		handle_external_interrupt_irqoff(vcpu);
6457 	else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6458 		handle_exception_nmi_irqoff(vmx);
6459 }
6460 
6461 static bool vmx_has_emulated_msr(u32 index)
6462 {
6463 	switch (index) {
6464 	case MSR_IA32_SMBASE:
6465 		/*
6466 		 * We cannot do SMM unless we can run the guest in big
6467 		 * real mode.
6468 		 */
6469 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6470 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6471 		return nested;
6472 	case MSR_AMD64_VIRT_SPEC_CTRL:
6473 		/* This is AMD only.  */
6474 		return false;
6475 	default:
6476 		return true;
6477 	}
6478 }
6479 
6480 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6481 {
6482 	u32 exit_intr_info;
6483 	bool unblock_nmi;
6484 	u8 vector;
6485 	bool idtv_info_valid;
6486 
6487 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6488 
6489 	if (enable_vnmi) {
6490 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6491 			return;
6492 
6493 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6494 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6495 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6496 		/*
6497 		 * SDM 3: 27.7.1.2 (September 2008)
6498 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6499 		 * a guest IRET fault.
6500 		 * SDM 3: 23.2.2 (September 2008)
6501 		 * Bit 12 is undefined in any of the following cases:
6502 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6503 		 *   information field.
6504 		 *  If the VM exit is due to a double fault.
6505 		 */
6506 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6507 		    vector != DF_VECTOR && !idtv_info_valid)
6508 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6509 				      GUEST_INTR_STATE_NMI);
6510 		else
6511 			vmx->loaded_vmcs->nmi_known_unmasked =
6512 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6513 				  & GUEST_INTR_STATE_NMI);
6514 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6515 		vmx->loaded_vmcs->vnmi_blocked_time +=
6516 			ktime_to_ns(ktime_sub(ktime_get(),
6517 					      vmx->loaded_vmcs->entry_time));
6518 }
6519 
6520 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6521 				      u32 idt_vectoring_info,
6522 				      int instr_len_field,
6523 				      int error_code_field)
6524 {
6525 	u8 vector;
6526 	int type;
6527 	bool idtv_info_valid;
6528 
6529 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6530 
6531 	vcpu->arch.nmi_injected = false;
6532 	kvm_clear_exception_queue(vcpu);
6533 	kvm_clear_interrupt_queue(vcpu);
6534 
6535 	if (!idtv_info_valid)
6536 		return;
6537 
6538 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6539 
6540 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6541 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6542 
6543 	switch (type) {
6544 	case INTR_TYPE_NMI_INTR:
6545 		vcpu->arch.nmi_injected = true;
6546 		/*
6547 		 * SDM 3: 27.7.1.2 (September 2008)
6548 		 * Clear bit "block by NMI" before VM entry if a NMI
6549 		 * delivery faulted.
6550 		 */
6551 		vmx_set_nmi_mask(vcpu, false);
6552 		break;
6553 	case INTR_TYPE_SOFT_EXCEPTION:
6554 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6555 		/* fall through */
6556 	case INTR_TYPE_HARD_EXCEPTION:
6557 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6558 			u32 err = vmcs_read32(error_code_field);
6559 			kvm_requeue_exception_e(vcpu, vector, err);
6560 		} else
6561 			kvm_requeue_exception(vcpu, vector);
6562 		break;
6563 	case INTR_TYPE_SOFT_INTR:
6564 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6565 		/* fall through */
6566 	case INTR_TYPE_EXT_INTR:
6567 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6568 		break;
6569 	default:
6570 		break;
6571 	}
6572 }
6573 
6574 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6575 {
6576 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6577 				  VM_EXIT_INSTRUCTION_LEN,
6578 				  IDT_VECTORING_ERROR_CODE);
6579 }
6580 
6581 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6582 {
6583 	__vmx_complete_interrupts(vcpu,
6584 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6585 				  VM_ENTRY_INSTRUCTION_LEN,
6586 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6587 
6588 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6589 }
6590 
6591 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6592 {
6593 	int i, nr_msrs;
6594 	struct perf_guest_switch_msr *msrs;
6595 
6596 	msrs = perf_guest_get_msrs(&nr_msrs);
6597 
6598 	if (!msrs)
6599 		return;
6600 
6601 	for (i = 0; i < nr_msrs; i++)
6602 		if (msrs[i].host == msrs[i].guest)
6603 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6604 		else
6605 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6606 					msrs[i].host, false);
6607 }
6608 
6609 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6610 {
6611 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6612 	u64 tscl;
6613 	u32 delta_tsc;
6614 
6615 	if (vmx->req_immediate_exit) {
6616 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6617 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6618 	} else if (vmx->hv_deadline_tsc != -1) {
6619 		tscl = rdtsc();
6620 		if (vmx->hv_deadline_tsc > tscl)
6621 			/* set_hv_timer ensures the delta fits in 32-bits */
6622 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6623 				cpu_preemption_timer_multi);
6624 		else
6625 			delta_tsc = 0;
6626 
6627 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6628 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6629 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6630 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6631 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6632 	}
6633 }
6634 
6635 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6636 {
6637 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6638 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6639 		vmcs_writel(HOST_RSP, host_rsp);
6640 	}
6641 }
6642 
6643 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6644 {
6645 	switch (to_vmx(vcpu)->exit_reason) {
6646 	case EXIT_REASON_MSR_WRITE:
6647 		return handle_fastpath_set_msr_irqoff(vcpu);
6648 	case EXIT_REASON_PREEMPTION_TIMER:
6649 		return handle_fastpath_preemption_timer(vcpu);
6650 	default:
6651 		return EXIT_FASTPATH_NONE;
6652 	}
6653 }
6654 
6655 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6656 
6657 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6658 {
6659 	fastpath_t exit_fastpath;
6660 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6661 	unsigned long cr3, cr4;
6662 
6663 reenter_guest:
6664 	/* Record the guest's net vcpu time for enforced NMI injections. */
6665 	if (unlikely(!enable_vnmi &&
6666 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6667 		vmx->loaded_vmcs->entry_time = ktime_get();
6668 
6669 	/* Don't enter VMX if guest state is invalid, let the exit handler
6670 	   start emulation until we arrive back to a valid state */
6671 	if (vmx->emulation_required)
6672 		return EXIT_FASTPATH_NONE;
6673 
6674 	if (vmx->ple_window_dirty) {
6675 		vmx->ple_window_dirty = false;
6676 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6677 	}
6678 
6679 	/*
6680 	 * We did this in prepare_switch_to_guest, because it needs to
6681 	 * be within srcu_read_lock.
6682 	 */
6683 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6684 
6685 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6686 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6687 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6688 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6689 
6690 	cr3 = __get_current_cr3_fast();
6691 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6692 		vmcs_writel(HOST_CR3, cr3);
6693 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6694 	}
6695 
6696 	cr4 = cr4_read_shadow();
6697 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6698 		vmcs_writel(HOST_CR4, cr4);
6699 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6700 	}
6701 
6702 	/* When single-stepping over STI and MOV SS, we must clear the
6703 	 * corresponding interruptibility bits in the guest state. Otherwise
6704 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6705 	 * exceptions being set, but that's not correct for the guest debugging
6706 	 * case. */
6707 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6708 		vmx_set_interrupt_shadow(vcpu, 0);
6709 
6710 	kvm_load_guest_xsave_state(vcpu);
6711 
6712 	pt_guest_enter(vmx);
6713 
6714 	atomic_switch_perf_msrs(vmx);
6715 
6716 	if (enable_preemption_timer)
6717 		vmx_update_hv_timer(vcpu);
6718 
6719 	if (lapic_in_kernel(vcpu) &&
6720 		vcpu->arch.apic->lapic_timer.timer_advance_ns)
6721 		kvm_wait_lapic_expire(vcpu);
6722 
6723 	/*
6724 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6725 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6726 	 * is no need to worry about the conditional branch over the wrmsr
6727 	 * being speculatively taken.
6728 	 */
6729 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6730 
6731 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6732 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6733 		vmx_l1d_flush(vcpu);
6734 	else if (static_branch_unlikely(&mds_user_clear))
6735 		mds_clear_cpu_buffers();
6736 
6737 	if (vcpu->arch.cr2 != read_cr2())
6738 		write_cr2(vcpu->arch.cr2);
6739 
6740 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6741 				   vmx->loaded_vmcs->launched);
6742 
6743 	vcpu->arch.cr2 = read_cr2();
6744 
6745 	/*
6746 	 * We do not use IBRS in the kernel. If this vCPU has used the
6747 	 * SPEC_CTRL MSR it may have left it on; save the value and
6748 	 * turn it off. This is much more efficient than blindly adding
6749 	 * it to the atomic save/restore list. Especially as the former
6750 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6751 	 *
6752 	 * For non-nested case:
6753 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6754 	 * save it.
6755 	 *
6756 	 * For nested case:
6757 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6758 	 * save it.
6759 	 */
6760 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6761 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6762 
6763 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6764 
6765 	/* All fields are clean at this point */
6766 	if (static_branch_unlikely(&enable_evmcs))
6767 		current_evmcs->hv_clean_fields |=
6768 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6769 
6770 	if (static_branch_unlikely(&enable_evmcs))
6771 		current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6772 
6773 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6774 	if (vmx->host_debugctlmsr)
6775 		update_debugctlmsr(vmx->host_debugctlmsr);
6776 
6777 #ifndef CONFIG_X86_64
6778 	/*
6779 	 * The sysexit path does not restore ds/es, so we must set them to
6780 	 * a reasonable value ourselves.
6781 	 *
6782 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6783 	 * function may be executed in interrupt context, which saves and
6784 	 * restore segments around it, nullifying its effect.
6785 	 */
6786 	loadsegment(ds, __USER_DS);
6787 	loadsegment(es, __USER_DS);
6788 #endif
6789 
6790 	vmx_register_cache_reset(vcpu);
6791 
6792 	pt_guest_exit(vmx);
6793 
6794 	kvm_load_host_xsave_state(vcpu);
6795 
6796 	vmx->nested.nested_run_pending = 0;
6797 	vmx->idt_vectoring_info = 0;
6798 
6799 	if (unlikely(vmx->fail)) {
6800 		vmx->exit_reason = 0xdead;
6801 		return EXIT_FASTPATH_NONE;
6802 	}
6803 
6804 	vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6805 	if (unlikely((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY))
6806 		kvm_machine_check();
6807 
6808 	trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6809 
6810 	if (unlikely(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6811 		return EXIT_FASTPATH_NONE;
6812 
6813 	vmx->loaded_vmcs->launched = 1;
6814 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6815 
6816 	vmx_recover_nmi_blocking(vmx);
6817 	vmx_complete_interrupts(vmx);
6818 
6819 	if (is_guest_mode(vcpu))
6820 		return EXIT_FASTPATH_NONE;
6821 
6822 	exit_fastpath = vmx_exit_handlers_fastpath(vcpu);
6823 	if (exit_fastpath == EXIT_FASTPATH_REENTER_GUEST) {
6824 		if (!kvm_vcpu_exit_request(vcpu)) {
6825 			/*
6826 			 * FIXME: this goto should be a loop in vcpu_enter_guest,
6827 			 * but it would incur the cost of a retpoline for now.
6828 			 * Revisit once static calls are available.
6829 			 */
6830 			if (vcpu->arch.apicv_active)
6831 				vmx_sync_pir_to_irr(vcpu);
6832 			goto reenter_guest;
6833 		}
6834 		exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
6835 	}
6836 
6837 	return exit_fastpath;
6838 }
6839 
6840 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6841 {
6842 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6843 
6844 	if (enable_pml)
6845 		vmx_destroy_pml_buffer(vmx);
6846 	free_vpid(vmx->vpid);
6847 	nested_vmx_free_vcpu(vcpu);
6848 	free_loaded_vmcs(vmx->loaded_vmcs);
6849 }
6850 
6851 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6852 {
6853 	struct vcpu_vmx *vmx;
6854 	unsigned long *msr_bitmap;
6855 	int i, cpu, err;
6856 
6857 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6858 	vmx = to_vmx(vcpu);
6859 
6860 	err = -ENOMEM;
6861 
6862 	vmx->vpid = allocate_vpid();
6863 
6864 	/*
6865 	 * If PML is turned on, failure on enabling PML just results in failure
6866 	 * of creating the vcpu, therefore we can simplify PML logic (by
6867 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6868 	 * for the guest), etc.
6869 	 */
6870 	if (enable_pml) {
6871 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6872 		if (!vmx->pml_pg)
6873 			goto free_vpid;
6874 	}
6875 
6876 	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) != NR_SHARED_MSRS);
6877 
6878 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6879 		u32 index = vmx_msr_index[i];
6880 		u32 data_low, data_high;
6881 		int j = vmx->nmsrs;
6882 
6883 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
6884 			continue;
6885 		if (wrmsr_safe(index, data_low, data_high) < 0)
6886 			continue;
6887 
6888 		vmx->guest_msrs[j].index = i;
6889 		vmx->guest_msrs[j].data = 0;
6890 		switch (index) {
6891 		case MSR_IA32_TSX_CTRL:
6892 			/*
6893 			 * No need to pass TSX_CTRL_CPUID_CLEAR through, so
6894 			 * let's avoid changing CPUID bits under the host
6895 			 * kernel's feet.
6896 			 */
6897 			vmx->guest_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6898 			break;
6899 		default:
6900 			vmx->guest_msrs[j].mask = -1ull;
6901 			break;
6902 		}
6903 		++vmx->nmsrs;
6904 	}
6905 
6906 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6907 	if (err < 0)
6908 		goto free_pml;
6909 
6910 	msr_bitmap = vmx->vmcs01.msr_bitmap;
6911 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6912 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6913 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6914 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6915 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6916 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6917 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6918 	if (kvm_cstate_in_guest(vcpu->kvm)) {
6919 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6920 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6921 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6922 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6923 	}
6924 	vmx->msr_bitmap_mode = 0;
6925 
6926 	vmx->loaded_vmcs = &vmx->vmcs01;
6927 	cpu = get_cpu();
6928 	vmx_vcpu_load(vcpu, cpu);
6929 	vcpu->cpu = cpu;
6930 	init_vmcs(vmx);
6931 	vmx_vcpu_put(vcpu);
6932 	put_cpu();
6933 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
6934 		err = alloc_apic_access_page(vcpu->kvm);
6935 		if (err)
6936 			goto free_vmcs;
6937 	}
6938 
6939 	if (enable_ept && !enable_unrestricted_guest) {
6940 		err = init_rmode_identity_map(vcpu->kvm);
6941 		if (err)
6942 			goto free_vmcs;
6943 	}
6944 
6945 	if (nested)
6946 		nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6947 					   vmx_capability.ept);
6948 	else
6949 		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6950 
6951 	vmx->nested.posted_intr_nv = -1;
6952 	vmx->nested.current_vmptr = -1ull;
6953 
6954 	vcpu->arch.microcode_version = 0x100000000ULL;
6955 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6956 
6957 	/*
6958 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6959 	 * or POSTED_INTR_WAKEUP_VECTOR.
6960 	 */
6961 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6962 	vmx->pi_desc.sn = 1;
6963 
6964 	vmx->ept_pointer = INVALID_PAGE;
6965 
6966 	return 0;
6967 
6968 free_vmcs:
6969 	free_loaded_vmcs(vmx->loaded_vmcs);
6970 free_pml:
6971 	vmx_destroy_pml_buffer(vmx);
6972 free_vpid:
6973 	free_vpid(vmx->vpid);
6974 	return err;
6975 }
6976 
6977 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6978 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6979 
6980 static int vmx_vm_init(struct kvm *kvm)
6981 {
6982 	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6983 
6984 	if (!ple_gap)
6985 		kvm->arch.pause_in_guest = true;
6986 
6987 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6988 		switch (l1tf_mitigation) {
6989 		case L1TF_MITIGATION_OFF:
6990 		case L1TF_MITIGATION_FLUSH_NOWARN:
6991 			/* 'I explicitly don't care' is set */
6992 			break;
6993 		case L1TF_MITIGATION_FLUSH:
6994 		case L1TF_MITIGATION_FLUSH_NOSMT:
6995 		case L1TF_MITIGATION_FULL:
6996 			/*
6997 			 * Warn upon starting the first VM in a potentially
6998 			 * insecure environment.
6999 			 */
7000 			if (sched_smt_active())
7001 				pr_warn_once(L1TF_MSG_SMT);
7002 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7003 				pr_warn_once(L1TF_MSG_L1D);
7004 			break;
7005 		case L1TF_MITIGATION_FULL_FORCE:
7006 			/* Flush is enforced */
7007 			break;
7008 		}
7009 	}
7010 	kvm_apicv_init(kvm, enable_apicv);
7011 	return 0;
7012 }
7013 
7014 static int __init vmx_check_processor_compat(void)
7015 {
7016 	struct vmcs_config vmcs_conf;
7017 	struct vmx_capability vmx_cap;
7018 
7019 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7020 	    !this_cpu_has(X86_FEATURE_VMX)) {
7021 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7022 		return -EIO;
7023 	}
7024 
7025 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7026 		return -EIO;
7027 	if (nested)
7028 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7029 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7030 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7031 				smp_processor_id());
7032 		return -EIO;
7033 	}
7034 	return 0;
7035 }
7036 
7037 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7038 {
7039 	u8 cache;
7040 	u64 ipat = 0;
7041 
7042 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7043 	 * memory aliases with conflicting memory types and sometimes MCEs.
7044 	 * We have to be careful as to what are honored and when.
7045 	 *
7046 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7047 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7048 	 * This was historically the source of MCEs and we want to be
7049 	 * conservative.
7050 	 *
7051 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7052 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7053 	 * EPT memory type is set to WB.  The effective memory type is forced
7054 	 * WB.
7055 	 *
7056 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7057 	 * EPT memory type is used to emulate guest CD/MTRR.
7058 	 */
7059 
7060 	if (is_mmio) {
7061 		cache = MTRR_TYPE_UNCACHABLE;
7062 		goto exit;
7063 	}
7064 
7065 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7066 		ipat = VMX_EPT_IPAT_BIT;
7067 		cache = MTRR_TYPE_WRBACK;
7068 		goto exit;
7069 	}
7070 
7071 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7072 		ipat = VMX_EPT_IPAT_BIT;
7073 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7074 			cache = MTRR_TYPE_WRBACK;
7075 		else
7076 			cache = MTRR_TYPE_UNCACHABLE;
7077 		goto exit;
7078 	}
7079 
7080 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7081 
7082 exit:
7083 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7084 }
7085 
7086 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7087 {
7088 	/*
7089 	 * These bits in the secondary execution controls field
7090 	 * are dynamic, the others are mostly based on the hypervisor
7091 	 * architecture and the guest's CPUID.  Do not touch the
7092 	 * dynamic bits.
7093 	 */
7094 	u32 mask =
7095 		SECONDARY_EXEC_SHADOW_VMCS |
7096 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7097 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7098 		SECONDARY_EXEC_DESC;
7099 
7100 	u32 new_ctl = vmx->secondary_exec_control;
7101 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7102 
7103 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7104 }
7105 
7106 /*
7107  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7108  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7109  */
7110 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7111 {
7112 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7113 	struct kvm_cpuid_entry2 *entry;
7114 
7115 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7116 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7117 
7118 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7119 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7120 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7121 } while (0)
7122 
7123 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7124 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7125 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7126 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7127 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7128 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7129 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7130 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7131 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7132 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7133 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7134 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7135 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7136 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7137 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7138 
7139 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7140 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7141 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7142 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7143 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7144 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7145 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7146 
7147 #undef cr4_fixed1_update
7148 }
7149 
7150 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7151 {
7152 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7153 
7154 	if (kvm_mpx_supported()) {
7155 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7156 
7157 		if (mpx_enabled) {
7158 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7159 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7160 		} else {
7161 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7162 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7163 		}
7164 	}
7165 }
7166 
7167 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7168 {
7169 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7170 	struct kvm_cpuid_entry2 *best = NULL;
7171 	int i;
7172 
7173 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7174 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7175 		if (!best)
7176 			return;
7177 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7178 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7179 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7180 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7181 	}
7182 
7183 	/* Get the number of configurable Address Ranges for filtering */
7184 	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7185 						PT_CAP_num_address_ranges);
7186 
7187 	/* Initialize and clear the no dependency bits */
7188 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7189 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7190 
7191 	/*
7192 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7193 	 * will inject an #GP
7194 	 */
7195 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7196 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7197 
7198 	/*
7199 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7200 	 * PSBFreq can be set
7201 	 */
7202 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7203 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7204 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7205 
7206 	/*
7207 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7208 	 * MTCFreq can be set
7209 	 */
7210 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7211 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7212 				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7213 
7214 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7215 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7216 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7217 							RTIT_CTL_PTW_EN);
7218 
7219 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7220 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7221 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7222 
7223 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7224 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7225 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7226 
7227 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7228 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7229 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7230 
7231 	/* unmask address range configure area */
7232 	for (i = 0; i < vmx->pt_desc.addr_range; i++)
7233 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7234 }
7235 
7236 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7237 {
7238 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7239 
7240 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7241 	vcpu->arch.xsaves_enabled = false;
7242 
7243 	if (cpu_has_secondary_exec_ctrls()) {
7244 		vmx_compute_secondary_exec_control(vmx);
7245 		vmcs_set_secondary_exec_control(vmx);
7246 	}
7247 
7248 	if (nested_vmx_allowed(vcpu))
7249 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7250 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7251 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7252 	else
7253 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7254 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7255 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7256 
7257 	if (nested_vmx_allowed(vcpu)) {
7258 		nested_vmx_cr_fixed1_bits_update(vcpu);
7259 		nested_vmx_entry_exit_ctls_update(vcpu);
7260 	}
7261 
7262 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7263 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7264 		update_intel_pt_cfg(vcpu);
7265 
7266 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7267 		struct shared_msr_entry *msr;
7268 		msr = find_msr_entry(vmx, MSR_IA32_TSX_CTRL);
7269 		if (msr) {
7270 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7271 			vmx_set_guest_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7272 		}
7273 	}
7274 }
7275 
7276 static __init void vmx_set_cpu_caps(void)
7277 {
7278 	kvm_set_cpu_caps();
7279 
7280 	/* CPUID 0x1 */
7281 	if (nested)
7282 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7283 
7284 	/* CPUID 0x7 */
7285 	if (kvm_mpx_supported())
7286 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7287 	if (cpu_has_vmx_invpcid())
7288 		kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7289 	if (vmx_pt_mode_is_host_guest())
7290 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7291 
7292 	if (vmx_umip_emulated())
7293 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7294 
7295 	/* CPUID 0xD.1 */
7296 	supported_xss = 0;
7297 	if (!vmx_xsaves_supported())
7298 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7299 
7300 	/* CPUID 0x80000001 */
7301 	if (!cpu_has_vmx_rdtscp())
7302 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7303 
7304 	if (vmx_waitpkg_supported())
7305 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7306 }
7307 
7308 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7309 {
7310 	to_vmx(vcpu)->req_immediate_exit = true;
7311 }
7312 
7313 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7314 				  struct x86_instruction_info *info)
7315 {
7316 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7317 	unsigned short port;
7318 	bool intercept;
7319 	int size;
7320 
7321 	if (info->intercept == x86_intercept_in ||
7322 	    info->intercept == x86_intercept_ins) {
7323 		port = info->src_val;
7324 		size = info->dst_bytes;
7325 	} else {
7326 		port = info->dst_val;
7327 		size = info->src_bytes;
7328 	}
7329 
7330 	/*
7331 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7332 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7333 	 * control.
7334 	 *
7335 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7336 	 */
7337 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7338 		intercept = nested_cpu_has(vmcs12,
7339 					   CPU_BASED_UNCOND_IO_EXITING);
7340 	else
7341 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7342 
7343 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7344 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7345 }
7346 
7347 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7348 			       struct x86_instruction_info *info,
7349 			       enum x86_intercept_stage stage,
7350 			       struct x86_exception *exception)
7351 {
7352 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7353 
7354 	switch (info->intercept) {
7355 	/*
7356 	 * RDPID causes #UD if disabled through secondary execution controls.
7357 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7358 	 */
7359 	case x86_intercept_rdtscp:
7360 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7361 			exception->vector = UD_VECTOR;
7362 			exception->error_code_valid = false;
7363 			return X86EMUL_PROPAGATE_FAULT;
7364 		}
7365 		break;
7366 
7367 	case x86_intercept_in:
7368 	case x86_intercept_ins:
7369 	case x86_intercept_out:
7370 	case x86_intercept_outs:
7371 		return vmx_check_intercept_io(vcpu, info);
7372 
7373 	case x86_intercept_lgdt:
7374 	case x86_intercept_lidt:
7375 	case x86_intercept_lldt:
7376 	case x86_intercept_ltr:
7377 	case x86_intercept_sgdt:
7378 	case x86_intercept_sidt:
7379 	case x86_intercept_sldt:
7380 	case x86_intercept_str:
7381 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7382 			return X86EMUL_CONTINUE;
7383 
7384 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7385 		break;
7386 
7387 	/* TODO: check more intercepts... */
7388 	default:
7389 		break;
7390 	}
7391 
7392 	return X86EMUL_UNHANDLEABLE;
7393 }
7394 
7395 #ifdef CONFIG_X86_64
7396 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7397 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7398 				  u64 divisor, u64 *result)
7399 {
7400 	u64 low = a << shift, high = a >> (64 - shift);
7401 
7402 	/* To avoid the overflow on divq */
7403 	if (high >= divisor)
7404 		return 1;
7405 
7406 	/* Low hold the result, high hold rem which is discarded */
7407 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7408 	    "rm" (divisor), "0" (low), "1" (high));
7409 	*result = low;
7410 
7411 	return 0;
7412 }
7413 
7414 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7415 			    bool *expired)
7416 {
7417 	struct vcpu_vmx *vmx;
7418 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7419 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7420 
7421 	vmx = to_vmx(vcpu);
7422 	tscl = rdtsc();
7423 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7424 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7425 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7426 						    ktimer->timer_advance_ns);
7427 
7428 	if (delta_tsc > lapic_timer_advance_cycles)
7429 		delta_tsc -= lapic_timer_advance_cycles;
7430 	else
7431 		delta_tsc = 0;
7432 
7433 	/* Convert to host delta tsc if tsc scaling is enabled */
7434 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7435 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7436 				kvm_tsc_scaling_ratio_frac_bits,
7437 				vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7438 		return -ERANGE;
7439 
7440 	/*
7441 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7442 	 * we can't use the preemption timer.
7443 	 * It's possible that it fits on later vmentries, but checking
7444 	 * on every vmentry is costly so we just use an hrtimer.
7445 	 */
7446 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7447 		return -ERANGE;
7448 
7449 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7450 	*expired = !delta_tsc;
7451 	return 0;
7452 }
7453 
7454 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7455 {
7456 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7457 }
7458 #endif
7459 
7460 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7461 {
7462 	if (!kvm_pause_in_guest(vcpu->kvm))
7463 		shrink_ple_window(vcpu);
7464 }
7465 
7466 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7467 				     struct kvm_memory_slot *slot)
7468 {
7469 	if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7470 		kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7471 	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7472 }
7473 
7474 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7475 				       struct kvm_memory_slot *slot)
7476 {
7477 	kvm_mmu_slot_set_dirty(kvm, slot);
7478 }
7479 
7480 static void vmx_flush_log_dirty(struct kvm *kvm)
7481 {
7482 	kvm_flush_pml_buffers(kvm);
7483 }
7484 
7485 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
7486 {
7487 	struct vmcs12 *vmcs12;
7488 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7489 	gpa_t dst;
7490 
7491 	if (is_guest_mode(vcpu)) {
7492 		WARN_ON_ONCE(vmx->nested.pml_full);
7493 
7494 		/*
7495 		 * Check if PML is enabled for the nested guest.
7496 		 * Whether eptp bit 6 is set is already checked
7497 		 * as part of A/D emulation.
7498 		 */
7499 		vmcs12 = get_vmcs12(vcpu);
7500 		if (!nested_cpu_has_pml(vmcs12))
7501 			return 0;
7502 
7503 		if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7504 			vmx->nested.pml_full = true;
7505 			return 1;
7506 		}
7507 
7508 		gpa &= ~0xFFFull;
7509 		dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7510 
7511 		if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7512 					 offset_in_page(dst), sizeof(gpa)))
7513 			return 0;
7514 
7515 		vmcs12->guest_pml_index--;
7516 	}
7517 
7518 	return 0;
7519 }
7520 
7521 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7522 					   struct kvm_memory_slot *memslot,
7523 					   gfn_t offset, unsigned long mask)
7524 {
7525 	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7526 }
7527 
7528 static void __pi_post_block(struct kvm_vcpu *vcpu)
7529 {
7530 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7531 	struct pi_desc old, new;
7532 	unsigned int dest;
7533 
7534 	do {
7535 		old.control = new.control = pi_desc->control;
7536 		WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7537 		     "Wakeup handler not enabled while the VCPU is blocked\n");
7538 
7539 		dest = cpu_physical_id(vcpu->cpu);
7540 
7541 		if (x2apic_enabled())
7542 			new.ndst = dest;
7543 		else
7544 			new.ndst = (dest << 8) & 0xFF00;
7545 
7546 		/* set 'NV' to 'notification vector' */
7547 		new.nv = POSTED_INTR_VECTOR;
7548 	} while (cmpxchg64(&pi_desc->control, old.control,
7549 			   new.control) != old.control);
7550 
7551 	if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7552 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7553 		list_del(&vcpu->blocked_vcpu_list);
7554 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7555 		vcpu->pre_pcpu = -1;
7556 	}
7557 }
7558 
7559 /*
7560  * This routine does the following things for vCPU which is going
7561  * to be blocked if VT-d PI is enabled.
7562  * - Store the vCPU to the wakeup list, so when interrupts happen
7563  *   we can find the right vCPU to wake up.
7564  * - Change the Posted-interrupt descriptor as below:
7565  *      'NDST' <-- vcpu->pre_pcpu
7566  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7567  * - If 'ON' is set during this process, which means at least one
7568  *   interrupt is posted for this vCPU, we cannot block it, in
7569  *   this case, return 1, otherwise, return 0.
7570  *
7571  */
7572 static int pi_pre_block(struct kvm_vcpu *vcpu)
7573 {
7574 	unsigned int dest;
7575 	struct pi_desc old, new;
7576 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7577 
7578 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7579 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
7580 		!kvm_vcpu_apicv_active(vcpu))
7581 		return 0;
7582 
7583 	WARN_ON(irqs_disabled());
7584 	local_irq_disable();
7585 	if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7586 		vcpu->pre_pcpu = vcpu->cpu;
7587 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7588 		list_add_tail(&vcpu->blocked_vcpu_list,
7589 			      &per_cpu(blocked_vcpu_on_cpu,
7590 				       vcpu->pre_pcpu));
7591 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7592 	}
7593 
7594 	do {
7595 		old.control = new.control = pi_desc->control;
7596 
7597 		WARN((pi_desc->sn == 1),
7598 		     "Warning: SN field of posted-interrupts "
7599 		     "is set before blocking\n");
7600 
7601 		/*
7602 		 * Since vCPU can be preempted during this process,
7603 		 * vcpu->cpu could be different with pre_pcpu, we
7604 		 * need to set pre_pcpu as the destination of wakeup
7605 		 * notification event, then we can find the right vCPU
7606 		 * to wakeup in wakeup handler if interrupts happen
7607 		 * when the vCPU is in blocked state.
7608 		 */
7609 		dest = cpu_physical_id(vcpu->pre_pcpu);
7610 
7611 		if (x2apic_enabled())
7612 			new.ndst = dest;
7613 		else
7614 			new.ndst = (dest << 8) & 0xFF00;
7615 
7616 		/* set 'NV' to 'wakeup vector' */
7617 		new.nv = POSTED_INTR_WAKEUP_VECTOR;
7618 	} while (cmpxchg64(&pi_desc->control, old.control,
7619 			   new.control) != old.control);
7620 
7621 	/* We should not block the vCPU if an interrupt is posted for it.  */
7622 	if (pi_test_on(pi_desc) == 1)
7623 		__pi_post_block(vcpu);
7624 
7625 	local_irq_enable();
7626 	return (vcpu->pre_pcpu == -1);
7627 }
7628 
7629 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7630 {
7631 	if (pi_pre_block(vcpu))
7632 		return 1;
7633 
7634 	if (kvm_lapic_hv_timer_in_use(vcpu))
7635 		kvm_lapic_switch_to_sw_timer(vcpu);
7636 
7637 	return 0;
7638 }
7639 
7640 static void pi_post_block(struct kvm_vcpu *vcpu)
7641 {
7642 	if (vcpu->pre_pcpu == -1)
7643 		return;
7644 
7645 	WARN_ON(irqs_disabled());
7646 	local_irq_disable();
7647 	__pi_post_block(vcpu);
7648 	local_irq_enable();
7649 }
7650 
7651 static void vmx_post_block(struct kvm_vcpu *vcpu)
7652 {
7653 	if (kvm_x86_ops.set_hv_timer)
7654 		kvm_lapic_switch_to_hv_timer(vcpu);
7655 
7656 	pi_post_block(vcpu);
7657 }
7658 
7659 /*
7660  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7661  *
7662  * @kvm: kvm
7663  * @host_irq: host irq of the interrupt
7664  * @guest_irq: gsi of the interrupt
7665  * @set: set or unset PI
7666  * returns 0 on success, < 0 on failure
7667  */
7668 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7669 			      uint32_t guest_irq, bool set)
7670 {
7671 	struct kvm_kernel_irq_routing_entry *e;
7672 	struct kvm_irq_routing_table *irq_rt;
7673 	struct kvm_lapic_irq irq;
7674 	struct kvm_vcpu *vcpu;
7675 	struct vcpu_data vcpu_info;
7676 	int idx, ret = 0;
7677 
7678 	if (!kvm_arch_has_assigned_device(kvm) ||
7679 		!irq_remapping_cap(IRQ_POSTING_CAP) ||
7680 		!kvm_vcpu_apicv_active(kvm->vcpus[0]))
7681 		return 0;
7682 
7683 	idx = srcu_read_lock(&kvm->irq_srcu);
7684 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7685 	if (guest_irq >= irq_rt->nr_rt_entries ||
7686 	    hlist_empty(&irq_rt->map[guest_irq])) {
7687 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7688 			     guest_irq, irq_rt->nr_rt_entries);
7689 		goto out;
7690 	}
7691 
7692 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7693 		if (e->type != KVM_IRQ_ROUTING_MSI)
7694 			continue;
7695 		/*
7696 		 * VT-d PI cannot support posting multicast/broadcast
7697 		 * interrupts to a vCPU, we still use interrupt remapping
7698 		 * for these kind of interrupts.
7699 		 *
7700 		 * For lowest-priority interrupts, we only support
7701 		 * those with single CPU as the destination, e.g. user
7702 		 * configures the interrupts via /proc/irq or uses
7703 		 * irqbalance to make the interrupts single-CPU.
7704 		 *
7705 		 * We will support full lowest-priority interrupt later.
7706 		 *
7707 		 * In addition, we can only inject generic interrupts using
7708 		 * the PI mechanism, refuse to route others through it.
7709 		 */
7710 
7711 		kvm_set_msi_irq(kvm, e, &irq);
7712 		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7713 		    !kvm_irq_is_postable(&irq)) {
7714 			/*
7715 			 * Make sure the IRTE is in remapped mode if
7716 			 * we don't handle it in posted mode.
7717 			 */
7718 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7719 			if (ret < 0) {
7720 				printk(KERN_INFO
7721 				   "failed to back to remapped mode, irq: %u\n",
7722 				   host_irq);
7723 				goto out;
7724 			}
7725 
7726 			continue;
7727 		}
7728 
7729 		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7730 		vcpu_info.vector = irq.vector;
7731 
7732 		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7733 				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7734 
7735 		if (set)
7736 			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7737 		else
7738 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7739 
7740 		if (ret < 0) {
7741 			printk(KERN_INFO "%s: failed to update PI IRTE\n",
7742 					__func__);
7743 			goto out;
7744 		}
7745 	}
7746 
7747 	ret = 0;
7748 out:
7749 	srcu_read_unlock(&kvm->irq_srcu, idx);
7750 	return ret;
7751 }
7752 
7753 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7754 {
7755 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7756 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7757 			FEAT_CTL_LMCE_ENABLED;
7758 	else
7759 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7760 			~FEAT_CTL_LMCE_ENABLED;
7761 }
7762 
7763 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7764 {
7765 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7766 	if (to_vmx(vcpu)->nested.nested_run_pending)
7767 		return -EBUSY;
7768 	return !is_smm(vcpu);
7769 }
7770 
7771 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7772 {
7773 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7774 
7775 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7776 	if (vmx->nested.smm.guest_mode)
7777 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7778 
7779 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7780 	vmx->nested.vmxon = false;
7781 	vmx_clear_hlt(vcpu);
7782 	return 0;
7783 }
7784 
7785 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7786 {
7787 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7788 	int ret;
7789 
7790 	if (vmx->nested.smm.vmxon) {
7791 		vmx->nested.vmxon = true;
7792 		vmx->nested.smm.vmxon = false;
7793 	}
7794 
7795 	if (vmx->nested.smm.guest_mode) {
7796 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7797 		if (ret)
7798 			return ret;
7799 
7800 		vmx->nested.smm.guest_mode = false;
7801 	}
7802 	return 0;
7803 }
7804 
7805 static void enable_smi_window(struct kvm_vcpu *vcpu)
7806 {
7807 	/* RSM will cause a vmexit anyway.  */
7808 }
7809 
7810 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7811 {
7812 	return false;
7813 }
7814 
7815 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7816 {
7817 	return to_vmx(vcpu)->nested.vmxon;
7818 }
7819 
7820 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7821 {
7822 	if (is_guest_mode(vcpu)) {
7823 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7824 
7825 		if (hrtimer_try_to_cancel(timer) == 1)
7826 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7827 	}
7828 }
7829 
7830 static void hardware_unsetup(void)
7831 {
7832 	if (nested)
7833 		nested_vmx_hardware_unsetup();
7834 
7835 	free_kvm_area();
7836 }
7837 
7838 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7839 {
7840 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7841 			  BIT(APICV_INHIBIT_REASON_HYPERV);
7842 
7843 	return supported & BIT(bit);
7844 }
7845 
7846 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7847 	.hardware_unsetup = hardware_unsetup,
7848 
7849 	.hardware_enable = hardware_enable,
7850 	.hardware_disable = hardware_disable,
7851 	.cpu_has_accelerated_tpr = report_flexpriority,
7852 	.has_emulated_msr = vmx_has_emulated_msr,
7853 
7854 	.vm_size = sizeof(struct kvm_vmx),
7855 	.vm_init = vmx_vm_init,
7856 
7857 	.vcpu_create = vmx_create_vcpu,
7858 	.vcpu_free = vmx_free_vcpu,
7859 	.vcpu_reset = vmx_vcpu_reset,
7860 
7861 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7862 	.vcpu_load = vmx_vcpu_load,
7863 	.vcpu_put = vmx_vcpu_put,
7864 
7865 	.update_bp_intercept = update_exception_bitmap,
7866 	.get_msr_feature = vmx_get_msr_feature,
7867 	.get_msr = vmx_get_msr,
7868 	.set_msr = vmx_set_msr,
7869 	.get_segment_base = vmx_get_segment_base,
7870 	.get_segment = vmx_get_segment,
7871 	.set_segment = vmx_set_segment,
7872 	.get_cpl = vmx_get_cpl,
7873 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7874 	.set_cr0 = vmx_set_cr0,
7875 	.set_cr4 = vmx_set_cr4,
7876 	.set_efer = vmx_set_efer,
7877 	.get_idt = vmx_get_idt,
7878 	.set_idt = vmx_set_idt,
7879 	.get_gdt = vmx_get_gdt,
7880 	.set_gdt = vmx_set_gdt,
7881 	.set_dr7 = vmx_set_dr7,
7882 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7883 	.cache_reg = vmx_cache_reg,
7884 	.get_rflags = vmx_get_rflags,
7885 	.set_rflags = vmx_set_rflags,
7886 
7887 	.tlb_flush_all = vmx_flush_tlb_all,
7888 	.tlb_flush_current = vmx_flush_tlb_current,
7889 	.tlb_flush_gva = vmx_flush_tlb_gva,
7890 	.tlb_flush_guest = vmx_flush_tlb_guest,
7891 
7892 	.run = vmx_vcpu_run,
7893 	.handle_exit = vmx_handle_exit,
7894 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7895 	.update_emulated_instruction = vmx_update_emulated_instruction,
7896 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7897 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7898 	.patch_hypercall = vmx_patch_hypercall,
7899 	.set_irq = vmx_inject_irq,
7900 	.set_nmi = vmx_inject_nmi,
7901 	.queue_exception = vmx_queue_exception,
7902 	.cancel_injection = vmx_cancel_injection,
7903 	.interrupt_allowed = vmx_interrupt_allowed,
7904 	.nmi_allowed = vmx_nmi_allowed,
7905 	.get_nmi_mask = vmx_get_nmi_mask,
7906 	.set_nmi_mask = vmx_set_nmi_mask,
7907 	.enable_nmi_window = enable_nmi_window,
7908 	.enable_irq_window = enable_irq_window,
7909 	.update_cr8_intercept = update_cr8_intercept,
7910 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7911 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7912 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7913 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7914 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7915 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7916 	.hwapic_irr_update = vmx_hwapic_irr_update,
7917 	.hwapic_isr_update = vmx_hwapic_isr_update,
7918 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7919 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7920 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7921 	.dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7922 
7923 	.set_tss_addr = vmx_set_tss_addr,
7924 	.set_identity_map_addr = vmx_set_identity_map_addr,
7925 	.get_tdp_level = vmx_get_tdp_level,
7926 	.get_mt_mask = vmx_get_mt_mask,
7927 
7928 	.get_exit_info = vmx_get_exit_info,
7929 
7930 	.cpuid_update = vmx_cpuid_update,
7931 
7932 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7933 
7934 	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7935 
7936 	.load_mmu_pgd = vmx_load_mmu_pgd,
7937 
7938 	.check_intercept = vmx_check_intercept,
7939 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7940 
7941 	.request_immediate_exit = vmx_request_immediate_exit,
7942 
7943 	.sched_in = vmx_sched_in,
7944 
7945 	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7946 	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7947 	.flush_log_dirty = vmx_flush_log_dirty,
7948 	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7949 	.write_log_dirty = vmx_write_pml_buffer,
7950 
7951 	.pre_block = vmx_pre_block,
7952 	.post_block = vmx_post_block,
7953 
7954 	.pmu_ops = &intel_pmu_ops,
7955 	.nested_ops = &vmx_nested_ops,
7956 
7957 	.update_pi_irte = vmx_update_pi_irte,
7958 
7959 #ifdef CONFIG_X86_64
7960 	.set_hv_timer = vmx_set_hv_timer,
7961 	.cancel_hv_timer = vmx_cancel_hv_timer,
7962 #endif
7963 
7964 	.setup_mce = vmx_setup_mce,
7965 
7966 	.smi_allowed = vmx_smi_allowed,
7967 	.pre_enter_smm = vmx_pre_enter_smm,
7968 	.pre_leave_smm = vmx_pre_leave_smm,
7969 	.enable_smi_window = enable_smi_window,
7970 
7971 	.need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7972 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7973 	.migrate_timers = vmx_migrate_timers,
7974 };
7975 
7976 static __init int hardware_setup(void)
7977 {
7978 	unsigned long host_bndcfgs;
7979 	struct desc_ptr dt;
7980 	int r, i, ept_lpage_level;
7981 
7982 	store_idt(&dt);
7983 	host_idt_base = dt.address;
7984 
7985 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7986 		kvm_define_shared_msr(i, vmx_msr_index[i]);
7987 
7988 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7989 		return -EIO;
7990 
7991 	if (boot_cpu_has(X86_FEATURE_NX))
7992 		kvm_enable_efer_bits(EFER_NX);
7993 
7994 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7995 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7996 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7997 	}
7998 
7999 	if (!cpu_has_vmx_mpx())
8000 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8001 				    XFEATURE_MASK_BNDCSR);
8002 
8003 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8004 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8005 		enable_vpid = 0;
8006 
8007 	if (!cpu_has_vmx_ept() ||
8008 	    !cpu_has_vmx_ept_4levels() ||
8009 	    !cpu_has_vmx_ept_mt_wb() ||
8010 	    !cpu_has_vmx_invept_global())
8011 		enable_ept = 0;
8012 
8013 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8014 		enable_ept_ad_bits = 0;
8015 
8016 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8017 		enable_unrestricted_guest = 0;
8018 
8019 	if (!cpu_has_vmx_flexpriority())
8020 		flexpriority_enabled = 0;
8021 
8022 	if (!cpu_has_virtual_nmis())
8023 		enable_vnmi = 0;
8024 
8025 	/*
8026 	 * set_apic_access_page_addr() is used to reload apic access
8027 	 * page upon invalidation.  No need to do anything if not
8028 	 * using the APIC_ACCESS_ADDR VMCS field.
8029 	 */
8030 	if (!flexpriority_enabled)
8031 		vmx_x86_ops.set_apic_access_page_addr = NULL;
8032 
8033 	if (!cpu_has_vmx_tpr_shadow())
8034 		vmx_x86_ops.update_cr8_intercept = NULL;
8035 
8036 #if IS_ENABLED(CONFIG_HYPERV)
8037 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8038 	    && enable_ept) {
8039 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
8040 		vmx_x86_ops.tlb_remote_flush_with_range =
8041 				hv_remote_flush_tlb_with_range;
8042 	}
8043 #endif
8044 
8045 	if (!cpu_has_vmx_ple()) {
8046 		ple_gap = 0;
8047 		ple_window = 0;
8048 		ple_window_grow = 0;
8049 		ple_window_max = 0;
8050 		ple_window_shrink = 0;
8051 	}
8052 
8053 	if (!cpu_has_vmx_apicv()) {
8054 		enable_apicv = 0;
8055 		vmx_x86_ops.sync_pir_to_irr = NULL;
8056 	}
8057 
8058 	if (cpu_has_vmx_tsc_scaling()) {
8059 		kvm_has_tsc_control = true;
8060 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8061 		kvm_tsc_scaling_ratio_frac_bits = 48;
8062 	}
8063 
8064 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8065 
8066 	if (enable_ept)
8067 		vmx_enable_tdp();
8068 
8069 	if (!enable_ept)
8070 		ept_lpage_level = 0;
8071 	else if (cpu_has_vmx_ept_1g_page())
8072 		ept_lpage_level = PG_LEVEL_1G;
8073 	else if (cpu_has_vmx_ept_2m_page())
8074 		ept_lpage_level = PG_LEVEL_2M;
8075 	else
8076 		ept_lpage_level = PG_LEVEL_4K;
8077 	kvm_configure_mmu(enable_ept, ept_lpage_level);
8078 
8079 	/*
8080 	 * Only enable PML when hardware supports PML feature, and both EPT
8081 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8082 	 */
8083 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8084 		enable_pml = 0;
8085 
8086 	if (!enable_pml) {
8087 		vmx_x86_ops.slot_enable_log_dirty = NULL;
8088 		vmx_x86_ops.slot_disable_log_dirty = NULL;
8089 		vmx_x86_ops.flush_log_dirty = NULL;
8090 		vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
8091 	}
8092 
8093 	if (!cpu_has_vmx_preemption_timer())
8094 		enable_preemption_timer = false;
8095 
8096 	if (enable_preemption_timer) {
8097 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8098 		u64 vmx_msr;
8099 
8100 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
8101 		cpu_preemption_timer_multi =
8102 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8103 
8104 		if (tsc_khz)
8105 			use_timer_freq = (u64)tsc_khz * 1000;
8106 		use_timer_freq >>= cpu_preemption_timer_multi;
8107 
8108 		/*
8109 		 * KVM "disables" the preemption timer by setting it to its max
8110 		 * value.  Don't use the timer if it might cause spurious exits
8111 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8112 		 */
8113 		if (use_timer_freq > 0xffffffffu / 10)
8114 			enable_preemption_timer = false;
8115 	}
8116 
8117 	if (!enable_preemption_timer) {
8118 		vmx_x86_ops.set_hv_timer = NULL;
8119 		vmx_x86_ops.cancel_hv_timer = NULL;
8120 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8121 	}
8122 
8123 	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
8124 
8125 	kvm_mce_cap_supported |= MCG_LMCE_P;
8126 
8127 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8128 		return -EINVAL;
8129 	if (!enable_ept || !cpu_has_vmx_intel_pt())
8130 		pt_mode = PT_MODE_SYSTEM;
8131 
8132 	if (nested) {
8133 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
8134 					   vmx_capability.ept);
8135 
8136 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8137 		if (r)
8138 			return r;
8139 	}
8140 
8141 	vmx_set_cpu_caps();
8142 
8143 	r = alloc_kvm_area();
8144 	if (r)
8145 		nested_vmx_hardware_unsetup();
8146 	return r;
8147 }
8148 
8149 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8150 	.cpu_has_kvm_support = cpu_has_kvm_support,
8151 	.disabled_by_bios = vmx_disabled_by_bios,
8152 	.check_processor_compatibility = vmx_check_processor_compat,
8153 	.hardware_setup = hardware_setup,
8154 
8155 	.runtime_ops = &vmx_x86_ops,
8156 };
8157 
8158 static void vmx_cleanup_l1d_flush(void)
8159 {
8160 	if (vmx_l1d_flush_pages) {
8161 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8162 		vmx_l1d_flush_pages = NULL;
8163 	}
8164 	/* Restore state so sysfs ignores VMX */
8165 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8166 }
8167 
8168 static void vmx_exit(void)
8169 {
8170 #ifdef CONFIG_KEXEC_CORE
8171 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8172 	synchronize_rcu();
8173 #endif
8174 
8175 	kvm_exit();
8176 
8177 #if IS_ENABLED(CONFIG_HYPERV)
8178 	if (static_branch_unlikely(&enable_evmcs)) {
8179 		int cpu;
8180 		struct hv_vp_assist_page *vp_ap;
8181 		/*
8182 		 * Reset everything to support using non-enlightened VMCS
8183 		 * access later (e.g. when we reload the module with
8184 		 * enlightened_vmcs=0)
8185 		 */
8186 		for_each_online_cpu(cpu) {
8187 			vp_ap =	hv_get_vp_assist_page(cpu);
8188 
8189 			if (!vp_ap)
8190 				continue;
8191 
8192 			vp_ap->nested_control.features.directhypercall = 0;
8193 			vp_ap->current_nested_vmcs = 0;
8194 			vp_ap->enlighten_vmentry = 0;
8195 		}
8196 
8197 		static_branch_disable(&enable_evmcs);
8198 	}
8199 #endif
8200 	vmx_cleanup_l1d_flush();
8201 }
8202 module_exit(vmx_exit);
8203 
8204 static int __init vmx_init(void)
8205 {
8206 	int r, cpu;
8207 
8208 #if IS_ENABLED(CONFIG_HYPERV)
8209 	/*
8210 	 * Enlightened VMCS usage should be recommended and the host needs
8211 	 * to support eVMCS v1 or above. We can also disable eVMCS support
8212 	 * with module parameter.
8213 	 */
8214 	if (enlightened_vmcs &&
8215 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8216 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8217 	    KVM_EVMCS_VERSION) {
8218 		int cpu;
8219 
8220 		/* Check that we have assist pages on all online CPUs */
8221 		for_each_online_cpu(cpu) {
8222 			if (!hv_get_vp_assist_page(cpu)) {
8223 				enlightened_vmcs = false;
8224 				break;
8225 			}
8226 		}
8227 
8228 		if (enlightened_vmcs) {
8229 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8230 			static_branch_enable(&enable_evmcs);
8231 		}
8232 
8233 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8234 			vmx_x86_ops.enable_direct_tlbflush
8235 				= hv_enable_direct_tlbflush;
8236 
8237 	} else {
8238 		enlightened_vmcs = false;
8239 	}
8240 #endif
8241 
8242 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8243 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8244 	if (r)
8245 		return r;
8246 
8247 	/*
8248 	 * Must be called after kvm_init() so enable_ept is properly set
8249 	 * up. Hand the parameter mitigation value in which was stored in
8250 	 * the pre module init parser. If no parameter was given, it will
8251 	 * contain 'auto' which will be turned into the default 'cond'
8252 	 * mitigation mode.
8253 	 */
8254 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8255 	if (r) {
8256 		vmx_exit();
8257 		return r;
8258 	}
8259 
8260 	for_each_possible_cpu(cpu) {
8261 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8262 		INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
8263 		spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8264 	}
8265 
8266 #ifdef CONFIG_KEXEC_CORE
8267 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8268 			   crash_vmclear_local_loaded_vmcss);
8269 #endif
8270 	vmx_check_vmcs12_offsets();
8271 
8272 	return 0;
8273 }
8274 module_init(vmx_init);
8275