1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <linux/highmem.h> 17 #include <linux/hrtimer.h> 18 #include <linux/kernel.h> 19 #include <linux/kvm_host.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mm.h> 24 #include <linux/objtool.h> 25 #include <linux/sched.h> 26 #include <linux/sched/smt.h> 27 #include <linux/slab.h> 28 #include <linux/tboot.h> 29 #include <linux/trace_events.h> 30 #include <linux/entry-kvm.h> 31 32 #include <asm/apic.h> 33 #include <asm/asm.h> 34 #include <asm/cpu.h> 35 #include <asm/cpu_device_id.h> 36 #include <asm/debugreg.h> 37 #include <asm/desc.h> 38 #include <asm/fpu/internal.h> 39 #include <asm/idtentry.h> 40 #include <asm/io.h> 41 #include <asm/irq_remapping.h> 42 #include <asm/kexec.h> 43 #include <asm/perf_event.h> 44 #include <asm/mmu_context.h> 45 #include <asm/mshyperv.h> 46 #include <asm/mwait.h> 47 #include <asm/spec-ctrl.h> 48 #include <asm/virtext.h> 49 #include <asm/vmx.h> 50 51 #include "capabilities.h" 52 #include "cpuid.h" 53 #include "evmcs.h" 54 #include "hyperv.h" 55 #include "kvm_onhyperv.h" 56 #include "irq.h" 57 #include "kvm_cache_regs.h" 58 #include "lapic.h" 59 #include "mmu.h" 60 #include "nested.h" 61 #include "pmu.h" 62 #include "sgx.h" 63 #include "trace.h" 64 #include "vmcs.h" 65 #include "vmcs12.h" 66 #include "vmx.h" 67 #include "x86.h" 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 #ifdef MODULE 73 static const struct x86_cpu_id vmx_cpu_id[] = { 74 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 75 {} 76 }; 77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 78 #endif 79 80 bool __read_mostly enable_vpid = 1; 81 module_param_named(vpid, enable_vpid, bool, 0444); 82 83 static bool __read_mostly enable_vnmi = 1; 84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 85 86 bool __read_mostly flexpriority_enabled = 1; 87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 88 89 bool __read_mostly enable_ept = 1; 90 module_param_named(ept, enable_ept, bool, S_IRUGO); 91 92 bool __read_mostly enable_unrestricted_guest = 1; 93 module_param_named(unrestricted_guest, 94 enable_unrestricted_guest, bool, S_IRUGO); 95 96 bool __read_mostly enable_ept_ad_bits = 1; 97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 98 99 static bool __read_mostly emulate_invalid_guest_state = true; 100 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 101 102 static bool __read_mostly fasteoi = 1; 103 module_param(fasteoi, bool, S_IRUGO); 104 105 module_param(enable_apicv, bool, S_IRUGO); 106 107 /* 108 * If nested=1, nested virtualization is supported, i.e., guests may use 109 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 110 * use VMX instructions. 111 */ 112 static bool __read_mostly nested = 1; 113 module_param(nested, bool, S_IRUGO); 114 115 bool __read_mostly enable_pml = 1; 116 module_param_named(pml, enable_pml, bool, S_IRUGO); 117 118 static bool __read_mostly dump_invalid_vmcs = 0; 119 module_param(dump_invalid_vmcs, bool, 0644); 120 121 #define MSR_BITMAP_MODE_X2APIC 1 122 #define MSR_BITMAP_MODE_X2APIC_APICV 2 123 124 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 125 126 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 127 static int __read_mostly cpu_preemption_timer_multi; 128 static bool __read_mostly enable_preemption_timer = 1; 129 #ifdef CONFIG_X86_64 130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 131 #endif 132 133 extern bool __read_mostly allow_smaller_maxphyaddr; 134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 135 136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 138 #define KVM_VM_CR0_ALWAYS_ON \ 139 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 140 141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 144 145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 146 147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 148 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 149 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 150 RTIT_STATUS_BYTECNT)) 151 152 /* 153 * List of MSRs that can be directly passed to the guest. 154 * In addition to these x2apic and PT MSRs are handled specially. 155 */ 156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 157 MSR_IA32_SPEC_CTRL, 158 MSR_IA32_PRED_CMD, 159 MSR_IA32_TSC, 160 #ifdef CONFIG_X86_64 161 MSR_FS_BASE, 162 MSR_GS_BASE, 163 MSR_KERNEL_GS_BASE, 164 #endif 165 MSR_IA32_SYSENTER_CS, 166 MSR_IA32_SYSENTER_ESP, 167 MSR_IA32_SYSENTER_EIP, 168 MSR_CORE_C1_RES, 169 MSR_CORE_C3_RESIDENCY, 170 MSR_CORE_C6_RESIDENCY, 171 MSR_CORE_C7_RESIDENCY, 172 }; 173 174 /* 175 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 176 * ple_gap: upper bound on the amount of time between two successive 177 * executions of PAUSE in a loop. Also indicate if ple enabled. 178 * According to test, this time is usually smaller than 128 cycles. 179 * ple_window: upper bound on the amount of time a guest is allowed to execute 180 * in a PAUSE loop. Tests indicate that most spinlocks are held for 181 * less than 2^12 cycles 182 * Time is measured based on a counter that runs at the same rate as the TSC, 183 * refer SDM volume 3b section 21.6.13 & 22.1.3. 184 */ 185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 186 module_param(ple_gap, uint, 0444); 187 188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 189 module_param(ple_window, uint, 0444); 190 191 /* Default doubles per-vcpu window every exit. */ 192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 193 module_param(ple_window_grow, uint, 0444); 194 195 /* Default resets per-vcpu window every exit to ple_window. */ 196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 197 module_param(ple_window_shrink, uint, 0444); 198 199 /* Default is to compute the maximum so we can never overflow. */ 200 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 201 module_param(ple_window_max, uint, 0444); 202 203 /* Default is SYSTEM mode, 1 for host-guest mode */ 204 int __read_mostly pt_mode = PT_MODE_SYSTEM; 205 module_param(pt_mode, int, S_IRUGO); 206 207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 209 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 210 211 /* Storage for pre module init parameter parsing */ 212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 213 214 static const struct { 215 const char *option; 216 bool for_parse; 217 } vmentry_l1d_param[] = { 218 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 219 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 220 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 221 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 222 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 223 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 224 }; 225 226 #define L1D_CACHE_ORDER 4 227 static void *vmx_l1d_flush_pages; 228 229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 230 { 231 struct page *page; 232 unsigned int i; 233 234 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 235 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 236 return 0; 237 } 238 239 if (!enable_ept) { 240 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 241 return 0; 242 } 243 244 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 245 u64 msr; 246 247 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 248 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 249 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 250 return 0; 251 } 252 } 253 254 /* If set to auto use the default l1tf mitigation method */ 255 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 256 switch (l1tf_mitigation) { 257 case L1TF_MITIGATION_OFF: 258 l1tf = VMENTER_L1D_FLUSH_NEVER; 259 break; 260 case L1TF_MITIGATION_FLUSH_NOWARN: 261 case L1TF_MITIGATION_FLUSH: 262 case L1TF_MITIGATION_FLUSH_NOSMT: 263 l1tf = VMENTER_L1D_FLUSH_COND; 264 break; 265 case L1TF_MITIGATION_FULL: 266 case L1TF_MITIGATION_FULL_FORCE: 267 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 268 break; 269 } 270 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 271 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 272 } 273 274 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 275 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 276 /* 277 * This allocation for vmx_l1d_flush_pages is not tied to a VM 278 * lifetime and so should not be charged to a memcg. 279 */ 280 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 281 if (!page) 282 return -ENOMEM; 283 vmx_l1d_flush_pages = page_address(page); 284 285 /* 286 * Initialize each page with a different pattern in 287 * order to protect against KSM in the nested 288 * virtualization case. 289 */ 290 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 291 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 292 PAGE_SIZE); 293 } 294 } 295 296 l1tf_vmx_mitigation = l1tf; 297 298 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 299 static_branch_enable(&vmx_l1d_should_flush); 300 else 301 static_branch_disable(&vmx_l1d_should_flush); 302 303 if (l1tf == VMENTER_L1D_FLUSH_COND) 304 static_branch_enable(&vmx_l1d_flush_cond); 305 else 306 static_branch_disable(&vmx_l1d_flush_cond); 307 return 0; 308 } 309 310 static int vmentry_l1d_flush_parse(const char *s) 311 { 312 unsigned int i; 313 314 if (s) { 315 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 316 if (vmentry_l1d_param[i].for_parse && 317 sysfs_streq(s, vmentry_l1d_param[i].option)) 318 return i; 319 } 320 } 321 return -EINVAL; 322 } 323 324 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 325 { 326 int l1tf, ret; 327 328 l1tf = vmentry_l1d_flush_parse(s); 329 if (l1tf < 0) 330 return l1tf; 331 332 if (!boot_cpu_has(X86_BUG_L1TF)) 333 return 0; 334 335 /* 336 * Has vmx_init() run already? If not then this is the pre init 337 * parameter parsing. In that case just store the value and let 338 * vmx_init() do the proper setup after enable_ept has been 339 * established. 340 */ 341 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 342 vmentry_l1d_flush_param = l1tf; 343 return 0; 344 } 345 346 mutex_lock(&vmx_l1d_flush_mutex); 347 ret = vmx_setup_l1d_flush(l1tf); 348 mutex_unlock(&vmx_l1d_flush_mutex); 349 return ret; 350 } 351 352 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 353 { 354 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 355 return sprintf(s, "???\n"); 356 357 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 358 } 359 360 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 361 .set = vmentry_l1d_flush_set, 362 .get = vmentry_l1d_flush_get, 363 }; 364 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 365 366 static u32 vmx_segment_access_rights(struct kvm_segment *var); 367 368 void vmx_vmexit(void); 369 370 #define vmx_insn_failed(fmt...) \ 371 do { \ 372 WARN_ONCE(1, fmt); \ 373 pr_warn_ratelimited(fmt); \ 374 } while (0) 375 376 asmlinkage void vmread_error(unsigned long field, bool fault) 377 { 378 if (fault) 379 kvm_spurious_fault(); 380 else 381 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field); 382 } 383 384 noinline void vmwrite_error(unsigned long field, unsigned long value) 385 { 386 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n", 387 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 388 } 389 390 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 391 { 392 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr); 393 } 394 395 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 396 { 397 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr); 398 } 399 400 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 401 { 402 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 403 ext, vpid, gva); 404 } 405 406 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 407 { 408 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 409 ext, eptp, gpa); 410 } 411 412 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 413 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 414 /* 415 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 416 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 417 */ 418 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 419 420 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 421 static DEFINE_SPINLOCK(vmx_vpid_lock); 422 423 struct vmcs_config vmcs_config; 424 struct vmx_capability vmx_capability; 425 426 #define VMX_SEGMENT_FIELD(seg) \ 427 [VCPU_SREG_##seg] = { \ 428 .selector = GUEST_##seg##_SELECTOR, \ 429 .base = GUEST_##seg##_BASE, \ 430 .limit = GUEST_##seg##_LIMIT, \ 431 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 432 } 433 434 static const struct kvm_vmx_segment_field { 435 unsigned selector; 436 unsigned base; 437 unsigned limit; 438 unsigned ar_bytes; 439 } kvm_vmx_segment_fields[] = { 440 VMX_SEGMENT_FIELD(CS), 441 VMX_SEGMENT_FIELD(DS), 442 VMX_SEGMENT_FIELD(ES), 443 VMX_SEGMENT_FIELD(FS), 444 VMX_SEGMENT_FIELD(GS), 445 VMX_SEGMENT_FIELD(SS), 446 VMX_SEGMENT_FIELD(TR), 447 VMX_SEGMENT_FIELD(LDTR), 448 }; 449 450 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 451 { 452 vmx->segment_cache.bitmask = 0; 453 } 454 455 static unsigned long host_idt_base; 456 457 #if IS_ENABLED(CONFIG_HYPERV) 458 static bool __read_mostly enlightened_vmcs = true; 459 module_param(enlightened_vmcs, bool, 0444); 460 461 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu) 462 { 463 struct hv_enlightened_vmcs *evmcs; 464 struct hv_partition_assist_pg **p_hv_pa_pg = 465 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 466 /* 467 * Synthetic VM-Exit is not enabled in current code and so All 468 * evmcs in singe VM shares same assist page. 469 */ 470 if (!*p_hv_pa_pg) 471 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 472 473 if (!*p_hv_pa_pg) 474 return -ENOMEM; 475 476 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 477 478 evmcs->partition_assist_page = 479 __pa(*p_hv_pa_pg); 480 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 481 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 482 483 return 0; 484 } 485 486 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 487 488 /* 489 * Comment's format: document - errata name - stepping - processor name. 490 * Refer from 491 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 492 */ 493 static u32 vmx_preemption_cpu_tfms[] = { 494 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 495 0x000206E6, 496 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 497 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 498 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 499 0x00020652, 500 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 501 0x00020655, 502 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 503 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 504 /* 505 * 320767.pdf - AAP86 - B1 - 506 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 507 */ 508 0x000106E5, 509 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 510 0x000106A0, 511 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 512 0x000106A1, 513 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 514 0x000106A4, 515 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 516 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 517 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 518 0x000106A5, 519 /* Xeon E3-1220 V2 */ 520 0x000306A8, 521 }; 522 523 static inline bool cpu_has_broken_vmx_preemption_timer(void) 524 { 525 u32 eax = cpuid_eax(0x00000001), i; 526 527 /* Clear the reserved bits */ 528 eax &= ~(0x3U << 14 | 0xfU << 28); 529 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 530 if (eax == vmx_preemption_cpu_tfms[i]) 531 return true; 532 533 return false; 534 } 535 536 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 537 { 538 return flexpriority_enabled && lapic_in_kernel(vcpu); 539 } 540 541 static inline bool report_flexpriority(void) 542 { 543 return flexpriority_enabled; 544 } 545 546 static int possible_passthrough_msr_slot(u32 msr) 547 { 548 u32 i; 549 550 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 551 if (vmx_possible_passthrough_msrs[i] == msr) 552 return i; 553 554 return -ENOENT; 555 } 556 557 static bool is_valid_passthrough_msr(u32 msr) 558 { 559 bool r; 560 561 switch (msr) { 562 case 0x800 ... 0x8ff: 563 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 564 return true; 565 case MSR_IA32_RTIT_STATUS: 566 case MSR_IA32_RTIT_OUTPUT_BASE: 567 case MSR_IA32_RTIT_OUTPUT_MASK: 568 case MSR_IA32_RTIT_CR3_MATCH: 569 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 570 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 571 case MSR_LBR_SELECT: 572 case MSR_LBR_TOS: 573 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 574 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 575 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 576 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 577 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 578 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 579 return true; 580 } 581 582 r = possible_passthrough_msr_slot(msr) != -ENOENT; 583 584 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 585 586 return r; 587 } 588 589 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 590 { 591 int i; 592 593 i = kvm_find_user_return_msr(msr); 594 if (i >= 0) 595 return &vmx->guest_uret_msrs[i]; 596 return NULL; 597 } 598 599 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 600 struct vmx_uret_msr *msr, u64 data) 601 { 602 unsigned int slot = msr - vmx->guest_uret_msrs; 603 int ret = 0; 604 605 u64 old_msr_data = msr->data; 606 msr->data = data; 607 if (msr->load_into_hardware) { 608 preempt_disable(); 609 ret = kvm_set_user_return_msr(slot, msr->data, msr->mask); 610 preempt_enable(); 611 if (ret) 612 msr->data = old_msr_data; 613 } 614 return ret; 615 } 616 617 #ifdef CONFIG_KEXEC_CORE 618 static void crash_vmclear_local_loaded_vmcss(void) 619 { 620 int cpu = raw_smp_processor_id(); 621 struct loaded_vmcs *v; 622 623 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 624 loaded_vmcss_on_cpu_link) 625 vmcs_clear(v->vmcs); 626 } 627 #endif /* CONFIG_KEXEC_CORE */ 628 629 static void __loaded_vmcs_clear(void *arg) 630 { 631 struct loaded_vmcs *loaded_vmcs = arg; 632 int cpu = raw_smp_processor_id(); 633 634 if (loaded_vmcs->cpu != cpu) 635 return; /* vcpu migration can race with cpu offline */ 636 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 637 per_cpu(current_vmcs, cpu) = NULL; 638 639 vmcs_clear(loaded_vmcs->vmcs); 640 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 641 vmcs_clear(loaded_vmcs->shadow_vmcs); 642 643 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 644 645 /* 646 * Ensure all writes to loaded_vmcs, including deleting it from its 647 * current percpu list, complete before setting loaded_vmcs->vcpu to 648 * -1, otherwise a different cpu can see vcpu == -1 first and add 649 * loaded_vmcs to its percpu list before it's deleted from this cpu's 650 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 651 */ 652 smp_wmb(); 653 654 loaded_vmcs->cpu = -1; 655 loaded_vmcs->launched = 0; 656 } 657 658 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 659 { 660 int cpu = loaded_vmcs->cpu; 661 662 if (cpu != -1) 663 smp_call_function_single(cpu, 664 __loaded_vmcs_clear, loaded_vmcs, 1); 665 } 666 667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 668 unsigned field) 669 { 670 bool ret; 671 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 672 673 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 674 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 675 vmx->segment_cache.bitmask = 0; 676 } 677 ret = vmx->segment_cache.bitmask & mask; 678 vmx->segment_cache.bitmask |= mask; 679 return ret; 680 } 681 682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 683 { 684 u16 *p = &vmx->segment_cache.seg[seg].selector; 685 686 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 687 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 688 return *p; 689 } 690 691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 692 { 693 ulong *p = &vmx->segment_cache.seg[seg].base; 694 695 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 696 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 697 return *p; 698 } 699 700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 701 { 702 u32 *p = &vmx->segment_cache.seg[seg].limit; 703 704 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 705 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 706 return *p; 707 } 708 709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 710 { 711 u32 *p = &vmx->segment_cache.seg[seg].ar; 712 713 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 714 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 715 return *p; 716 } 717 718 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 719 { 720 u32 eb; 721 722 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 723 (1u << DB_VECTOR) | (1u << AC_VECTOR); 724 /* 725 * Guest access to VMware backdoor ports could legitimately 726 * trigger #GP because of TSS I/O permission bitmap. 727 * We intercept those #GP and allow access to them anyway 728 * as VMware does. 729 */ 730 if (enable_vmware_backdoor) 731 eb |= (1u << GP_VECTOR); 732 if ((vcpu->guest_debug & 733 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 734 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 735 eb |= 1u << BP_VECTOR; 736 if (to_vmx(vcpu)->rmode.vm86_active) 737 eb = ~0; 738 if (!vmx_need_pf_intercept(vcpu)) 739 eb &= ~(1u << PF_VECTOR); 740 741 /* When we are running a nested L2 guest and L1 specified for it a 742 * certain exception bitmap, we must trap the same exceptions and pass 743 * them to L1. When running L2, we will only handle the exceptions 744 * specified above if L1 did not want them. 745 */ 746 if (is_guest_mode(vcpu)) 747 eb |= get_vmcs12(vcpu)->exception_bitmap; 748 else { 749 int mask = 0, match = 0; 750 751 if (enable_ept && (eb & (1u << PF_VECTOR))) { 752 /* 753 * If EPT is enabled, #PF is currently only intercepted 754 * if MAXPHYADDR is smaller on the guest than on the 755 * host. In that case we only care about present, 756 * non-reserved faults. For vmcs02, however, PFEC_MASK 757 * and PFEC_MATCH are set in prepare_vmcs02_rare. 758 */ 759 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 760 match = PFERR_PRESENT_MASK; 761 } 762 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 763 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 764 } 765 766 vmcs_write32(EXCEPTION_BITMAP, eb); 767 } 768 769 /* 770 * Check if MSR is intercepted for currently loaded MSR bitmap. 771 */ 772 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 773 { 774 unsigned long *msr_bitmap; 775 int f = sizeof(unsigned long); 776 777 if (!cpu_has_vmx_msr_bitmap()) 778 return true; 779 780 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; 781 782 if (msr <= 0x1fff) { 783 return !!test_bit(msr, msr_bitmap + 0x800 / f); 784 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 785 msr &= 0x1fff; 786 return !!test_bit(msr, msr_bitmap + 0xc00 / f); 787 } 788 789 return true; 790 } 791 792 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 793 unsigned long entry, unsigned long exit) 794 { 795 vm_entry_controls_clearbit(vmx, entry); 796 vm_exit_controls_clearbit(vmx, exit); 797 } 798 799 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 800 { 801 unsigned int i; 802 803 for (i = 0; i < m->nr; ++i) { 804 if (m->val[i].index == msr) 805 return i; 806 } 807 return -ENOENT; 808 } 809 810 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 811 { 812 int i; 813 struct msr_autoload *m = &vmx->msr_autoload; 814 815 switch (msr) { 816 case MSR_EFER: 817 if (cpu_has_load_ia32_efer()) { 818 clear_atomic_switch_msr_special(vmx, 819 VM_ENTRY_LOAD_IA32_EFER, 820 VM_EXIT_LOAD_IA32_EFER); 821 return; 822 } 823 break; 824 case MSR_CORE_PERF_GLOBAL_CTRL: 825 if (cpu_has_load_perf_global_ctrl()) { 826 clear_atomic_switch_msr_special(vmx, 827 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 828 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 829 return; 830 } 831 break; 832 } 833 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 834 if (i < 0) 835 goto skip_guest; 836 --m->guest.nr; 837 m->guest.val[i] = m->guest.val[m->guest.nr]; 838 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 839 840 skip_guest: 841 i = vmx_find_loadstore_msr_slot(&m->host, msr); 842 if (i < 0) 843 return; 844 845 --m->host.nr; 846 m->host.val[i] = m->host.val[m->host.nr]; 847 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 848 } 849 850 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 851 unsigned long entry, unsigned long exit, 852 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 853 u64 guest_val, u64 host_val) 854 { 855 vmcs_write64(guest_val_vmcs, guest_val); 856 if (host_val_vmcs != HOST_IA32_EFER) 857 vmcs_write64(host_val_vmcs, host_val); 858 vm_entry_controls_setbit(vmx, entry); 859 vm_exit_controls_setbit(vmx, exit); 860 } 861 862 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 863 u64 guest_val, u64 host_val, bool entry_only) 864 { 865 int i, j = 0; 866 struct msr_autoload *m = &vmx->msr_autoload; 867 868 switch (msr) { 869 case MSR_EFER: 870 if (cpu_has_load_ia32_efer()) { 871 add_atomic_switch_msr_special(vmx, 872 VM_ENTRY_LOAD_IA32_EFER, 873 VM_EXIT_LOAD_IA32_EFER, 874 GUEST_IA32_EFER, 875 HOST_IA32_EFER, 876 guest_val, host_val); 877 return; 878 } 879 break; 880 case MSR_CORE_PERF_GLOBAL_CTRL: 881 if (cpu_has_load_perf_global_ctrl()) { 882 add_atomic_switch_msr_special(vmx, 883 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 884 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 885 GUEST_IA32_PERF_GLOBAL_CTRL, 886 HOST_IA32_PERF_GLOBAL_CTRL, 887 guest_val, host_val); 888 return; 889 } 890 break; 891 case MSR_IA32_PEBS_ENABLE: 892 /* PEBS needs a quiescent period after being disabled (to write 893 * a record). Disabling PEBS through VMX MSR swapping doesn't 894 * provide that period, so a CPU could write host's record into 895 * guest's memory. 896 */ 897 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 898 } 899 900 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 901 if (!entry_only) 902 j = vmx_find_loadstore_msr_slot(&m->host, msr); 903 904 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 905 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 906 printk_once(KERN_WARNING "Not enough msr switch entries. " 907 "Can't add msr %x\n", msr); 908 return; 909 } 910 if (i < 0) { 911 i = m->guest.nr++; 912 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 913 } 914 m->guest.val[i].index = msr; 915 m->guest.val[i].value = guest_val; 916 917 if (entry_only) 918 return; 919 920 if (j < 0) { 921 j = m->host.nr++; 922 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 923 } 924 m->host.val[j].index = msr; 925 m->host.val[j].value = host_val; 926 } 927 928 static bool update_transition_efer(struct vcpu_vmx *vmx) 929 { 930 u64 guest_efer = vmx->vcpu.arch.efer; 931 u64 ignore_bits = 0; 932 int i; 933 934 /* Shadow paging assumes NX to be available. */ 935 if (!enable_ept) 936 guest_efer |= EFER_NX; 937 938 /* 939 * LMA and LME handled by hardware; SCE meaningless outside long mode. 940 */ 941 ignore_bits |= EFER_SCE; 942 #ifdef CONFIG_X86_64 943 ignore_bits |= EFER_LMA | EFER_LME; 944 /* SCE is meaningful only in long mode on Intel */ 945 if (guest_efer & EFER_LMA) 946 ignore_bits &= ~(u64)EFER_SCE; 947 #endif 948 949 /* 950 * On EPT, we can't emulate NX, so we must switch EFER atomically. 951 * On CPUs that support "load IA32_EFER", always switch EFER 952 * atomically, since it's faster than switching it manually. 953 */ 954 if (cpu_has_load_ia32_efer() || 955 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 956 if (!(guest_efer & EFER_LMA)) 957 guest_efer &= ~EFER_LME; 958 if (guest_efer != host_efer) 959 add_atomic_switch_msr(vmx, MSR_EFER, 960 guest_efer, host_efer, false); 961 else 962 clear_atomic_switch_msr(vmx, MSR_EFER); 963 return false; 964 } 965 966 i = kvm_find_user_return_msr(MSR_EFER); 967 if (i < 0) 968 return false; 969 970 clear_atomic_switch_msr(vmx, MSR_EFER); 971 972 guest_efer &= ~ignore_bits; 973 guest_efer |= host_efer & ignore_bits; 974 975 vmx->guest_uret_msrs[i].data = guest_efer; 976 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 977 978 return true; 979 } 980 981 #ifdef CONFIG_X86_32 982 /* 983 * On 32-bit kernels, VM exits still load the FS and GS bases from the 984 * VMCS rather than the segment table. KVM uses this helper to figure 985 * out the current bases to poke them into the VMCS before entry. 986 */ 987 static unsigned long segment_base(u16 selector) 988 { 989 struct desc_struct *table; 990 unsigned long v; 991 992 if (!(selector & ~SEGMENT_RPL_MASK)) 993 return 0; 994 995 table = get_current_gdt_ro(); 996 997 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 998 u16 ldt_selector = kvm_read_ldt(); 999 1000 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1001 return 0; 1002 1003 table = (struct desc_struct *)segment_base(ldt_selector); 1004 } 1005 v = get_desc_base(&table[selector >> 3]); 1006 return v; 1007 } 1008 #endif 1009 1010 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1011 { 1012 return vmx_pt_mode_is_host_guest() && 1013 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1014 } 1015 1016 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1017 { 1018 /* The base must be 128-byte aligned and a legal physical address. */ 1019 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1020 } 1021 1022 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1023 { 1024 u32 i; 1025 1026 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1027 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1028 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1029 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1030 for (i = 0; i < addr_range; i++) { 1031 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1032 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1033 } 1034 } 1035 1036 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1037 { 1038 u32 i; 1039 1040 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1041 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1042 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1043 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1044 for (i = 0; i < addr_range; i++) { 1045 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1046 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1047 } 1048 } 1049 1050 static void pt_guest_enter(struct vcpu_vmx *vmx) 1051 { 1052 if (vmx_pt_mode_is_system()) 1053 return; 1054 1055 /* 1056 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1057 * Save host state before VM entry. 1058 */ 1059 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1060 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1061 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1062 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1063 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1064 } 1065 } 1066 1067 static void pt_guest_exit(struct vcpu_vmx *vmx) 1068 { 1069 if (vmx_pt_mode_is_system()) 1070 return; 1071 1072 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1073 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1074 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1075 } 1076 1077 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */ 1078 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1079 } 1080 1081 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1082 unsigned long fs_base, unsigned long gs_base) 1083 { 1084 if (unlikely(fs_sel != host->fs_sel)) { 1085 if (!(fs_sel & 7)) 1086 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1087 else 1088 vmcs_write16(HOST_FS_SELECTOR, 0); 1089 host->fs_sel = fs_sel; 1090 } 1091 if (unlikely(gs_sel != host->gs_sel)) { 1092 if (!(gs_sel & 7)) 1093 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1094 else 1095 vmcs_write16(HOST_GS_SELECTOR, 0); 1096 host->gs_sel = gs_sel; 1097 } 1098 if (unlikely(fs_base != host->fs_base)) { 1099 vmcs_writel(HOST_FS_BASE, fs_base); 1100 host->fs_base = fs_base; 1101 } 1102 if (unlikely(gs_base != host->gs_base)) { 1103 vmcs_writel(HOST_GS_BASE, gs_base); 1104 host->gs_base = gs_base; 1105 } 1106 } 1107 1108 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1109 { 1110 struct vcpu_vmx *vmx = to_vmx(vcpu); 1111 struct vmcs_host_state *host_state; 1112 #ifdef CONFIG_X86_64 1113 int cpu = raw_smp_processor_id(); 1114 #endif 1115 unsigned long fs_base, gs_base; 1116 u16 fs_sel, gs_sel; 1117 int i; 1118 1119 vmx->req_immediate_exit = false; 1120 1121 /* 1122 * Note that guest MSRs to be saved/restored can also be changed 1123 * when guest state is loaded. This happens when guest transitions 1124 * to/from long-mode by setting MSR_EFER.LMA. 1125 */ 1126 if (!vmx->guest_uret_msrs_loaded) { 1127 vmx->guest_uret_msrs_loaded = true; 1128 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1129 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1130 continue; 1131 1132 kvm_set_user_return_msr(i, 1133 vmx->guest_uret_msrs[i].data, 1134 vmx->guest_uret_msrs[i].mask); 1135 } 1136 } 1137 1138 if (vmx->nested.need_vmcs12_to_shadow_sync) 1139 nested_sync_vmcs12_to_shadow(vcpu); 1140 1141 if (vmx->guest_state_loaded) 1142 return; 1143 1144 host_state = &vmx->loaded_vmcs->host_state; 1145 1146 /* 1147 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1148 * allow segment selectors with cpl > 0 or ti == 1. 1149 */ 1150 host_state->ldt_sel = kvm_read_ldt(); 1151 1152 #ifdef CONFIG_X86_64 1153 savesegment(ds, host_state->ds_sel); 1154 savesegment(es, host_state->es_sel); 1155 1156 gs_base = cpu_kernelmode_gs_base(cpu); 1157 if (likely(is_64bit_mm(current->mm))) { 1158 current_save_fsgs(); 1159 fs_sel = current->thread.fsindex; 1160 gs_sel = current->thread.gsindex; 1161 fs_base = current->thread.fsbase; 1162 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1163 } else { 1164 savesegment(fs, fs_sel); 1165 savesegment(gs, gs_sel); 1166 fs_base = read_msr(MSR_FS_BASE); 1167 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1168 } 1169 1170 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1171 #else 1172 savesegment(fs, fs_sel); 1173 savesegment(gs, gs_sel); 1174 fs_base = segment_base(fs_sel); 1175 gs_base = segment_base(gs_sel); 1176 #endif 1177 1178 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1179 vmx->guest_state_loaded = true; 1180 } 1181 1182 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1183 { 1184 struct vmcs_host_state *host_state; 1185 1186 if (!vmx->guest_state_loaded) 1187 return; 1188 1189 host_state = &vmx->loaded_vmcs->host_state; 1190 1191 ++vmx->vcpu.stat.host_state_reload; 1192 1193 #ifdef CONFIG_X86_64 1194 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1195 #endif 1196 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1197 kvm_load_ldt(host_state->ldt_sel); 1198 #ifdef CONFIG_X86_64 1199 load_gs_index(host_state->gs_sel); 1200 #else 1201 loadsegment(gs, host_state->gs_sel); 1202 #endif 1203 } 1204 if (host_state->fs_sel & 7) 1205 loadsegment(fs, host_state->fs_sel); 1206 #ifdef CONFIG_X86_64 1207 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1208 loadsegment(ds, host_state->ds_sel); 1209 loadsegment(es, host_state->es_sel); 1210 } 1211 #endif 1212 invalidate_tss_limit(); 1213 #ifdef CONFIG_X86_64 1214 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1215 #endif 1216 load_fixmap_gdt(raw_smp_processor_id()); 1217 vmx->guest_state_loaded = false; 1218 vmx->guest_uret_msrs_loaded = false; 1219 } 1220 1221 #ifdef CONFIG_X86_64 1222 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1223 { 1224 preempt_disable(); 1225 if (vmx->guest_state_loaded) 1226 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1227 preempt_enable(); 1228 return vmx->msr_guest_kernel_gs_base; 1229 } 1230 1231 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1232 { 1233 preempt_disable(); 1234 if (vmx->guest_state_loaded) 1235 wrmsrl(MSR_KERNEL_GS_BASE, data); 1236 preempt_enable(); 1237 vmx->msr_guest_kernel_gs_base = data; 1238 } 1239 #endif 1240 1241 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1242 struct loaded_vmcs *buddy) 1243 { 1244 struct vcpu_vmx *vmx = to_vmx(vcpu); 1245 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1246 struct vmcs *prev; 1247 1248 if (!already_loaded) { 1249 loaded_vmcs_clear(vmx->loaded_vmcs); 1250 local_irq_disable(); 1251 1252 /* 1253 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1254 * this cpu's percpu list, otherwise it may not yet be deleted 1255 * from its previous cpu's percpu list. Pairs with the 1256 * smb_wmb() in __loaded_vmcs_clear(). 1257 */ 1258 smp_rmb(); 1259 1260 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1261 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1262 local_irq_enable(); 1263 } 1264 1265 prev = per_cpu(current_vmcs, cpu); 1266 if (prev != vmx->loaded_vmcs->vmcs) { 1267 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1268 vmcs_load(vmx->loaded_vmcs->vmcs); 1269 1270 /* 1271 * No indirect branch prediction barrier needed when switching 1272 * the active VMCS within a guest, e.g. on nested VM-Enter. 1273 * The L1 VMM can protect itself with retpolines, IBPB or IBRS. 1274 */ 1275 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1276 indirect_branch_prediction_barrier(); 1277 } 1278 1279 if (!already_loaded) { 1280 void *gdt = get_current_gdt_ro(); 1281 unsigned long sysenter_esp; 1282 1283 /* 1284 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1285 * TLB entries from its previous association with the vCPU. 1286 */ 1287 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1288 1289 /* 1290 * Linux uses per-cpu TSS and GDT, so set these when switching 1291 * processors. See 22.2.4. 1292 */ 1293 vmcs_writel(HOST_TR_BASE, 1294 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1295 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1296 1297 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); 1298 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ 1299 1300 vmx->loaded_vmcs->cpu = cpu; 1301 } 1302 } 1303 1304 /* 1305 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1306 * vcpu mutex is already taken. 1307 */ 1308 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1309 { 1310 struct vcpu_vmx *vmx = to_vmx(vcpu); 1311 1312 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1313 1314 vmx_vcpu_pi_load(vcpu, cpu); 1315 1316 vmx->host_debugctlmsr = get_debugctlmsr(); 1317 } 1318 1319 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1320 { 1321 vmx_vcpu_pi_put(vcpu); 1322 1323 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1324 } 1325 1326 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1327 { 1328 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1329 } 1330 1331 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1332 { 1333 struct vcpu_vmx *vmx = to_vmx(vcpu); 1334 unsigned long rflags, save_rflags; 1335 1336 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1337 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1338 rflags = vmcs_readl(GUEST_RFLAGS); 1339 if (vmx->rmode.vm86_active) { 1340 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1341 save_rflags = vmx->rmode.save_rflags; 1342 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1343 } 1344 vmx->rflags = rflags; 1345 } 1346 return vmx->rflags; 1347 } 1348 1349 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1350 { 1351 struct vcpu_vmx *vmx = to_vmx(vcpu); 1352 unsigned long old_rflags; 1353 1354 if (is_unrestricted_guest(vcpu)) { 1355 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1356 vmx->rflags = rflags; 1357 vmcs_writel(GUEST_RFLAGS, rflags); 1358 return; 1359 } 1360 1361 old_rflags = vmx_get_rflags(vcpu); 1362 vmx->rflags = rflags; 1363 if (vmx->rmode.vm86_active) { 1364 vmx->rmode.save_rflags = rflags; 1365 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1366 } 1367 vmcs_writel(GUEST_RFLAGS, rflags); 1368 1369 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1370 vmx->emulation_required = vmx_emulation_required(vcpu); 1371 } 1372 1373 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1374 { 1375 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1376 int ret = 0; 1377 1378 if (interruptibility & GUEST_INTR_STATE_STI) 1379 ret |= KVM_X86_SHADOW_INT_STI; 1380 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1381 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1382 1383 return ret; 1384 } 1385 1386 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1387 { 1388 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1389 u32 interruptibility = interruptibility_old; 1390 1391 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1392 1393 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1394 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1395 else if (mask & KVM_X86_SHADOW_INT_STI) 1396 interruptibility |= GUEST_INTR_STATE_STI; 1397 1398 if ((interruptibility != interruptibility_old)) 1399 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1400 } 1401 1402 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1403 { 1404 struct vcpu_vmx *vmx = to_vmx(vcpu); 1405 unsigned long value; 1406 1407 /* 1408 * Any MSR write that attempts to change bits marked reserved will 1409 * case a #GP fault. 1410 */ 1411 if (data & vmx->pt_desc.ctl_bitmask) 1412 return 1; 1413 1414 /* 1415 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1416 * result in a #GP unless the same write also clears TraceEn. 1417 */ 1418 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1419 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1420 return 1; 1421 1422 /* 1423 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1424 * and FabricEn would cause #GP, if 1425 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1426 */ 1427 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1428 !(data & RTIT_CTL_FABRIC_EN) && 1429 !intel_pt_validate_cap(vmx->pt_desc.caps, 1430 PT_CAP_single_range_output)) 1431 return 1; 1432 1433 /* 1434 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1435 * utilize encodings marked reserved will cause a #GP fault. 1436 */ 1437 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1438 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1439 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1440 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1441 return 1; 1442 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1443 PT_CAP_cycle_thresholds); 1444 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1445 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1446 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1447 return 1; 1448 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1449 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1450 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1451 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1452 return 1; 1453 1454 /* 1455 * If ADDRx_CFG is reserved or the encodings is >2 will 1456 * cause a #GP fault. 1457 */ 1458 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1459 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2)) 1460 return 1; 1461 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1462 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2)) 1463 return 1; 1464 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1465 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2)) 1466 return 1; 1467 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1468 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2)) 1469 return 1; 1470 1471 return 0; 1472 } 1473 1474 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 1475 { 1476 /* 1477 * Emulation of instructions in SGX enclaves is impossible as RIP does 1478 * not point tthe failing instruction, and even if it did, the code 1479 * stream is inaccessible. Inject #UD instead of exiting to userspace 1480 * so that guest userspace can't DoS the guest simply by triggering 1481 * emulation (enclaves are CPL3 only). 1482 */ 1483 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1484 kvm_queue_exception(vcpu, UD_VECTOR); 1485 return false; 1486 } 1487 return true; 1488 } 1489 1490 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1491 { 1492 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1493 unsigned long rip, orig_rip; 1494 u32 instr_len; 1495 1496 /* 1497 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1498 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1499 * set when EPT misconfig occurs. In practice, real hardware updates 1500 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1501 * (namely Hyper-V) don't set it due to it being undefined behavior, 1502 * i.e. we end up advancing IP with some random value. 1503 */ 1504 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1505 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1506 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1507 1508 /* 1509 * Emulating an enclave's instructions isn't supported as KVM 1510 * cannot access the enclave's memory or its true RIP, e.g. the 1511 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1512 * the RIP that actually triggered the VM-Exit. But, because 1513 * most instructions that cause VM-Exit will #UD in an enclave, 1514 * most instruction-based VM-Exits simply do not occur. 1515 * 1516 * There are a few exceptions, notably the debug instructions 1517 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1518 * and generate #DB/#BP as expected, which KVM might intercept. 1519 * But again, the CPU does the dirty work and saves an instr 1520 * length of zero so VMMs don't shoot themselves in the foot. 1521 * WARN if KVM tries to skip a non-zero length instruction on 1522 * a VM-Exit from an enclave. 1523 */ 1524 if (!instr_len) 1525 goto rip_updated; 1526 1527 WARN(exit_reason.enclave_mode, 1528 "KVM: skipping instruction after SGX enclave VM-Exit"); 1529 1530 orig_rip = kvm_rip_read(vcpu); 1531 rip = orig_rip + instr_len; 1532 #ifdef CONFIG_X86_64 1533 /* 1534 * We need to mask out the high 32 bits of RIP if not in 64-bit 1535 * mode, but just finding out that we are in 64-bit mode is 1536 * quite expensive. Only do it if there was a carry. 1537 */ 1538 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1539 rip = (u32)rip; 1540 #endif 1541 kvm_rip_write(vcpu, rip); 1542 } else { 1543 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1544 return 0; 1545 } 1546 1547 rip_updated: 1548 /* skipping an emulated instruction also counts */ 1549 vmx_set_interrupt_shadow(vcpu, 0); 1550 1551 return 1; 1552 } 1553 1554 /* 1555 * Recognizes a pending MTF VM-exit and records the nested state for later 1556 * delivery. 1557 */ 1558 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1559 { 1560 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1561 struct vcpu_vmx *vmx = to_vmx(vcpu); 1562 1563 if (!is_guest_mode(vcpu)) 1564 return; 1565 1566 /* 1567 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1568 * T-bit traps. As instruction emulation is completed (i.e. at the 1569 * instruction boundary), any #DB exception pending delivery must be a 1570 * debug-trap. Record the pending MTF state to be delivered in 1571 * vmx_check_nested_events(). 1572 */ 1573 if (nested_cpu_has_mtf(vmcs12) && 1574 (!vcpu->arch.exception.pending || 1575 vcpu->arch.exception.nr == DB_VECTOR)) 1576 vmx->nested.mtf_pending = true; 1577 else 1578 vmx->nested.mtf_pending = false; 1579 } 1580 1581 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1582 { 1583 vmx_update_emulated_instruction(vcpu); 1584 return skip_emulated_instruction(vcpu); 1585 } 1586 1587 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1588 { 1589 /* 1590 * Ensure that we clear the HLT state in the VMCS. We don't need to 1591 * explicitly skip the instruction because if the HLT state is set, 1592 * then the instruction is already executing and RIP has already been 1593 * advanced. 1594 */ 1595 if (kvm_hlt_in_guest(vcpu->kvm) && 1596 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1597 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1598 } 1599 1600 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1601 { 1602 struct vcpu_vmx *vmx = to_vmx(vcpu); 1603 unsigned nr = vcpu->arch.exception.nr; 1604 bool has_error_code = vcpu->arch.exception.has_error_code; 1605 u32 error_code = vcpu->arch.exception.error_code; 1606 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1607 1608 kvm_deliver_exception_payload(vcpu); 1609 1610 if (has_error_code) { 1611 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1612 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1613 } 1614 1615 if (vmx->rmode.vm86_active) { 1616 int inc_eip = 0; 1617 if (kvm_exception_is_soft(nr)) 1618 inc_eip = vcpu->arch.event_exit_inst_len; 1619 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip); 1620 return; 1621 } 1622 1623 WARN_ON_ONCE(vmx->emulation_required); 1624 1625 if (kvm_exception_is_soft(nr)) { 1626 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1627 vmx->vcpu.arch.event_exit_inst_len); 1628 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1629 } else 1630 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1631 1632 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1633 1634 vmx_clear_hlt(vcpu); 1635 } 1636 1637 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1638 bool load_into_hardware) 1639 { 1640 struct vmx_uret_msr *uret_msr; 1641 1642 uret_msr = vmx_find_uret_msr(vmx, msr); 1643 if (!uret_msr) 1644 return; 1645 1646 uret_msr->load_into_hardware = load_into_hardware; 1647 } 1648 1649 /* 1650 * Configuring user return MSRs to automatically save, load, and restore MSRs 1651 * that need to be shoved into hardware when running the guest. Note, omitting 1652 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1653 * loaded into hardware when running the guest. 1654 */ 1655 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1656 { 1657 #ifdef CONFIG_X86_64 1658 bool load_syscall_msrs; 1659 1660 /* 1661 * The SYSCALL MSRs are only needed on long mode guests, and only 1662 * when EFER.SCE is set. 1663 */ 1664 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1665 (vmx->vcpu.arch.efer & EFER_SCE); 1666 1667 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1668 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1669 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1670 #endif 1671 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1672 1673 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1674 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1675 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1676 1677 /* 1678 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1679 * kernel and old userspace. If those guests run on a tsx=off host, do 1680 * allow guests to use TSX_CTRL, but don't change the value in hardware 1681 * so that TSX remains always disabled. 1682 */ 1683 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1684 1685 /* 1686 * The set of MSRs to load may have changed, reload MSRs before the 1687 * next VM-Enter. 1688 */ 1689 vmx->guest_uret_msrs_loaded = false; 1690 } 1691 1692 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1693 { 1694 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1695 1696 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1697 return vmcs12->tsc_offset; 1698 1699 return 0; 1700 } 1701 1702 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1703 { 1704 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1705 1706 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1707 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1708 return vmcs12->tsc_multiplier; 1709 1710 return kvm_default_tsc_scaling_ratio; 1711 } 1712 1713 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1714 { 1715 vmcs_write64(TSC_OFFSET, offset); 1716 } 1717 1718 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1719 { 1720 vmcs_write64(TSC_MULTIPLIER, multiplier); 1721 } 1722 1723 /* 1724 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1725 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1726 * all guests if the "nested" module option is off, and can also be disabled 1727 * for a single guest by disabling its VMX cpuid bit. 1728 */ 1729 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1730 { 1731 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1732 } 1733 1734 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1735 uint64_t val) 1736 { 1737 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1738 1739 return !(val & ~valid_bits); 1740 } 1741 1742 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1743 { 1744 switch (msr->index) { 1745 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1746 if (!nested) 1747 return 1; 1748 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1749 case MSR_IA32_PERF_CAPABILITIES: 1750 msr->data = vmx_get_perf_capabilities(); 1751 return 0; 1752 default: 1753 return KVM_MSR_RET_INVALID; 1754 } 1755 } 1756 1757 /* 1758 * Reads an msr value (of 'msr_index') into 'pdata'. 1759 * Returns 0 on success, non-0 otherwise. 1760 * Assumes vcpu_load() was already called. 1761 */ 1762 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1763 { 1764 struct vcpu_vmx *vmx = to_vmx(vcpu); 1765 struct vmx_uret_msr *msr; 1766 u32 index; 1767 1768 switch (msr_info->index) { 1769 #ifdef CONFIG_X86_64 1770 case MSR_FS_BASE: 1771 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1772 break; 1773 case MSR_GS_BASE: 1774 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1775 break; 1776 case MSR_KERNEL_GS_BASE: 1777 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1778 break; 1779 #endif 1780 case MSR_EFER: 1781 return kvm_get_msr_common(vcpu, msr_info); 1782 case MSR_IA32_TSX_CTRL: 1783 if (!msr_info->host_initiated && 1784 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1785 return 1; 1786 goto find_uret_msr; 1787 case MSR_IA32_UMWAIT_CONTROL: 1788 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 1789 return 1; 1790 1791 msr_info->data = vmx->msr_ia32_umwait_control; 1792 break; 1793 case MSR_IA32_SPEC_CTRL: 1794 if (!msr_info->host_initiated && 1795 !guest_has_spec_ctrl_msr(vcpu)) 1796 return 1; 1797 1798 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1799 break; 1800 case MSR_IA32_SYSENTER_CS: 1801 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1802 break; 1803 case MSR_IA32_SYSENTER_EIP: 1804 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1805 break; 1806 case MSR_IA32_SYSENTER_ESP: 1807 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1808 break; 1809 case MSR_IA32_BNDCFGS: 1810 if (!kvm_mpx_supported() || 1811 (!msr_info->host_initiated && 1812 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1813 return 1; 1814 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1815 break; 1816 case MSR_IA32_MCG_EXT_CTL: 1817 if (!msr_info->host_initiated && 1818 !(vmx->msr_ia32_feature_control & 1819 FEAT_CTL_LMCE_ENABLED)) 1820 return 1; 1821 msr_info->data = vcpu->arch.mcg_ext_ctl; 1822 break; 1823 case MSR_IA32_FEAT_CTL: 1824 msr_info->data = vmx->msr_ia32_feature_control; 1825 break; 1826 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 1827 if (!msr_info->host_initiated && 1828 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 1829 return 1; 1830 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 1831 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 1832 break; 1833 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1834 if (!nested_vmx_allowed(vcpu)) 1835 return 1; 1836 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1837 &msr_info->data)) 1838 return 1; 1839 /* 1840 * Enlightened VMCS v1 doesn't have certain VMCS fields but 1841 * instead of just ignoring the features, different Hyper-V 1842 * versions are either trying to use them and fail or do some 1843 * sanity checking and refuse to boot. Filter all unsupported 1844 * features out. 1845 */ 1846 if (!msr_info->host_initiated && 1847 vmx->nested.enlightened_vmcs_enabled) 1848 nested_evmcs_filter_control_msr(msr_info->index, 1849 &msr_info->data); 1850 break; 1851 case MSR_IA32_RTIT_CTL: 1852 if (!vmx_pt_mode_is_host_guest()) 1853 return 1; 1854 msr_info->data = vmx->pt_desc.guest.ctl; 1855 break; 1856 case MSR_IA32_RTIT_STATUS: 1857 if (!vmx_pt_mode_is_host_guest()) 1858 return 1; 1859 msr_info->data = vmx->pt_desc.guest.status; 1860 break; 1861 case MSR_IA32_RTIT_CR3_MATCH: 1862 if (!vmx_pt_mode_is_host_guest() || 1863 !intel_pt_validate_cap(vmx->pt_desc.caps, 1864 PT_CAP_cr3_filtering)) 1865 return 1; 1866 msr_info->data = vmx->pt_desc.guest.cr3_match; 1867 break; 1868 case MSR_IA32_RTIT_OUTPUT_BASE: 1869 if (!vmx_pt_mode_is_host_guest() || 1870 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1871 PT_CAP_topa_output) && 1872 !intel_pt_validate_cap(vmx->pt_desc.caps, 1873 PT_CAP_single_range_output))) 1874 return 1; 1875 msr_info->data = vmx->pt_desc.guest.output_base; 1876 break; 1877 case MSR_IA32_RTIT_OUTPUT_MASK: 1878 if (!vmx_pt_mode_is_host_guest() || 1879 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1880 PT_CAP_topa_output) && 1881 !intel_pt_validate_cap(vmx->pt_desc.caps, 1882 PT_CAP_single_range_output))) 1883 return 1; 1884 msr_info->data = vmx->pt_desc.guest.output_mask; 1885 break; 1886 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1887 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1888 if (!vmx_pt_mode_is_host_guest() || 1889 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 1890 PT_CAP_num_address_ranges))) 1891 return 1; 1892 if (index % 2) 1893 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1894 else 1895 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1896 break; 1897 case MSR_IA32_DEBUGCTLMSR: 1898 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 1899 break; 1900 default: 1901 find_uret_msr: 1902 msr = vmx_find_uret_msr(vmx, msr_info->index); 1903 if (msr) { 1904 msr_info->data = msr->data; 1905 break; 1906 } 1907 return kvm_get_msr_common(vcpu, msr_info); 1908 } 1909 1910 return 0; 1911 } 1912 1913 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 1914 u64 data) 1915 { 1916 #ifdef CONFIG_X86_64 1917 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1918 return (u32)data; 1919 #endif 1920 return (unsigned long)data; 1921 } 1922 1923 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu) 1924 { 1925 u64 debugctl = vmx_supported_debugctl(); 1926 1927 if (!intel_pmu_lbr_is_enabled(vcpu)) 1928 debugctl &= ~DEBUGCTLMSR_LBR_MASK; 1929 1930 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1931 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT; 1932 1933 return debugctl; 1934 } 1935 1936 /* 1937 * Writes msr value into the appropriate "register". 1938 * Returns 0 on success, non-0 otherwise. 1939 * Assumes vcpu_load() was already called. 1940 */ 1941 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1942 { 1943 struct vcpu_vmx *vmx = to_vmx(vcpu); 1944 struct vmx_uret_msr *msr; 1945 int ret = 0; 1946 u32 msr_index = msr_info->index; 1947 u64 data = msr_info->data; 1948 u32 index; 1949 1950 switch (msr_index) { 1951 case MSR_EFER: 1952 ret = kvm_set_msr_common(vcpu, msr_info); 1953 break; 1954 #ifdef CONFIG_X86_64 1955 case MSR_FS_BASE: 1956 vmx_segment_cache_clear(vmx); 1957 vmcs_writel(GUEST_FS_BASE, data); 1958 break; 1959 case MSR_GS_BASE: 1960 vmx_segment_cache_clear(vmx); 1961 vmcs_writel(GUEST_GS_BASE, data); 1962 break; 1963 case MSR_KERNEL_GS_BASE: 1964 vmx_write_guest_kernel_gs_base(vmx, data); 1965 break; 1966 #endif 1967 case MSR_IA32_SYSENTER_CS: 1968 if (is_guest_mode(vcpu)) 1969 get_vmcs12(vcpu)->guest_sysenter_cs = data; 1970 vmcs_write32(GUEST_SYSENTER_CS, data); 1971 break; 1972 case MSR_IA32_SYSENTER_EIP: 1973 if (is_guest_mode(vcpu)) { 1974 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 1975 get_vmcs12(vcpu)->guest_sysenter_eip = data; 1976 } 1977 vmcs_writel(GUEST_SYSENTER_EIP, data); 1978 break; 1979 case MSR_IA32_SYSENTER_ESP: 1980 if (is_guest_mode(vcpu)) { 1981 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 1982 get_vmcs12(vcpu)->guest_sysenter_esp = data; 1983 } 1984 vmcs_writel(GUEST_SYSENTER_ESP, data); 1985 break; 1986 case MSR_IA32_DEBUGCTLMSR: { 1987 u64 invalid = data & ~vcpu_supported_debugctl(vcpu); 1988 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 1989 if (report_ignored_msrs) 1990 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n", 1991 __func__, data); 1992 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 1993 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 1994 } 1995 1996 if (invalid) 1997 return 1; 1998 1999 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2000 VM_EXIT_SAVE_DEBUG_CONTROLS) 2001 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2002 2003 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2004 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2005 (data & DEBUGCTLMSR_LBR)) 2006 intel_pmu_create_guest_lbr_event(vcpu); 2007 return 0; 2008 } 2009 case MSR_IA32_BNDCFGS: 2010 if (!kvm_mpx_supported() || 2011 (!msr_info->host_initiated && 2012 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2013 return 1; 2014 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2015 (data & MSR_IA32_BNDCFGS_RSVD)) 2016 return 1; 2017 vmcs_write64(GUEST_BNDCFGS, data); 2018 break; 2019 case MSR_IA32_UMWAIT_CONTROL: 2020 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2021 return 1; 2022 2023 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2024 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2025 return 1; 2026 2027 vmx->msr_ia32_umwait_control = data; 2028 break; 2029 case MSR_IA32_SPEC_CTRL: 2030 if (!msr_info->host_initiated && 2031 !guest_has_spec_ctrl_msr(vcpu)) 2032 return 1; 2033 2034 if (kvm_spec_ctrl_test_value(data)) 2035 return 1; 2036 2037 vmx->spec_ctrl = data; 2038 if (!data) 2039 break; 2040 2041 /* 2042 * For non-nested: 2043 * When it's written (to non-zero) for the first time, pass 2044 * it through. 2045 * 2046 * For nested: 2047 * The handling of the MSR bitmap for L2 guests is done in 2048 * nested_vmx_prepare_msr_bitmap. We should not touch the 2049 * vmcs02.msr_bitmap here since it gets completely overwritten 2050 * in the merging. We update the vmcs01 here for L1 as well 2051 * since it will end up touching the MSR anyway now. 2052 */ 2053 vmx_disable_intercept_for_msr(vcpu, 2054 MSR_IA32_SPEC_CTRL, 2055 MSR_TYPE_RW); 2056 break; 2057 case MSR_IA32_TSX_CTRL: 2058 if (!msr_info->host_initiated && 2059 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2060 return 1; 2061 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2062 return 1; 2063 goto find_uret_msr; 2064 case MSR_IA32_PRED_CMD: 2065 if (!msr_info->host_initiated && 2066 !guest_has_pred_cmd_msr(vcpu)) 2067 return 1; 2068 2069 if (data & ~PRED_CMD_IBPB) 2070 return 1; 2071 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2072 return 1; 2073 if (!data) 2074 break; 2075 2076 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2077 2078 /* 2079 * For non-nested: 2080 * When it's written (to non-zero) for the first time, pass 2081 * it through. 2082 * 2083 * For nested: 2084 * The handling of the MSR bitmap for L2 guests is done in 2085 * nested_vmx_prepare_msr_bitmap. We should not touch the 2086 * vmcs02.msr_bitmap here since it gets completely overwritten 2087 * in the merging. 2088 */ 2089 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W); 2090 break; 2091 case MSR_IA32_CR_PAT: 2092 if (!kvm_pat_valid(data)) 2093 return 1; 2094 2095 if (is_guest_mode(vcpu) && 2096 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2097 get_vmcs12(vcpu)->guest_ia32_pat = data; 2098 2099 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2100 vmcs_write64(GUEST_IA32_PAT, data); 2101 vcpu->arch.pat = data; 2102 break; 2103 } 2104 ret = kvm_set_msr_common(vcpu, msr_info); 2105 break; 2106 case MSR_IA32_TSC_ADJUST: 2107 ret = kvm_set_msr_common(vcpu, msr_info); 2108 break; 2109 case MSR_IA32_MCG_EXT_CTL: 2110 if ((!msr_info->host_initiated && 2111 !(to_vmx(vcpu)->msr_ia32_feature_control & 2112 FEAT_CTL_LMCE_ENABLED)) || 2113 (data & ~MCG_EXT_CTL_LMCE_EN)) 2114 return 1; 2115 vcpu->arch.mcg_ext_ctl = data; 2116 break; 2117 case MSR_IA32_FEAT_CTL: 2118 if (!vmx_feature_control_msr_valid(vcpu, data) || 2119 (to_vmx(vcpu)->msr_ia32_feature_control & 2120 FEAT_CTL_LOCKED && !msr_info->host_initiated)) 2121 return 1; 2122 vmx->msr_ia32_feature_control = data; 2123 if (msr_info->host_initiated && data == 0) 2124 vmx_leave_nested(vcpu); 2125 2126 /* SGX may be enabled/disabled by guest's firmware */ 2127 vmx_write_encls_bitmap(vcpu, NULL); 2128 break; 2129 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2130 /* 2131 * On real hardware, the LE hash MSRs are writable before 2132 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2133 * at which point SGX related bits in IA32_FEATURE_CONTROL 2134 * become writable. 2135 * 2136 * KVM does not emulate SGX activation for simplicity, so 2137 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2138 * is unlocked. This is technically not architectural 2139 * behavior, but it's close enough. 2140 */ 2141 if (!msr_info->host_initiated && 2142 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2143 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2144 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2145 return 1; 2146 vmx->msr_ia32_sgxlepubkeyhash 2147 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2148 break; 2149 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 2150 if (!msr_info->host_initiated) 2151 return 1; /* they are read-only */ 2152 if (!nested_vmx_allowed(vcpu)) 2153 return 1; 2154 return vmx_set_vmx_msr(vcpu, msr_index, data); 2155 case MSR_IA32_RTIT_CTL: 2156 if (!vmx_pt_mode_is_host_guest() || 2157 vmx_rtit_ctl_check(vcpu, data) || 2158 vmx->nested.vmxon) 2159 return 1; 2160 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2161 vmx->pt_desc.guest.ctl = data; 2162 pt_update_intercept_for_msr(vcpu); 2163 break; 2164 case MSR_IA32_RTIT_STATUS: 2165 if (!pt_can_write_msr(vmx)) 2166 return 1; 2167 if (data & MSR_IA32_RTIT_STATUS_MASK) 2168 return 1; 2169 vmx->pt_desc.guest.status = data; 2170 break; 2171 case MSR_IA32_RTIT_CR3_MATCH: 2172 if (!pt_can_write_msr(vmx)) 2173 return 1; 2174 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2175 PT_CAP_cr3_filtering)) 2176 return 1; 2177 vmx->pt_desc.guest.cr3_match = data; 2178 break; 2179 case MSR_IA32_RTIT_OUTPUT_BASE: 2180 if (!pt_can_write_msr(vmx)) 2181 return 1; 2182 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2183 PT_CAP_topa_output) && 2184 !intel_pt_validate_cap(vmx->pt_desc.caps, 2185 PT_CAP_single_range_output)) 2186 return 1; 2187 if (!pt_output_base_valid(vcpu, data)) 2188 return 1; 2189 vmx->pt_desc.guest.output_base = data; 2190 break; 2191 case MSR_IA32_RTIT_OUTPUT_MASK: 2192 if (!pt_can_write_msr(vmx)) 2193 return 1; 2194 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2195 PT_CAP_topa_output) && 2196 !intel_pt_validate_cap(vmx->pt_desc.caps, 2197 PT_CAP_single_range_output)) 2198 return 1; 2199 vmx->pt_desc.guest.output_mask = data; 2200 break; 2201 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2202 if (!pt_can_write_msr(vmx)) 2203 return 1; 2204 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2205 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 2206 PT_CAP_num_address_ranges)) 2207 return 1; 2208 if (is_noncanonical_address(data, vcpu)) 2209 return 1; 2210 if (index % 2) 2211 vmx->pt_desc.guest.addr_b[index / 2] = data; 2212 else 2213 vmx->pt_desc.guest.addr_a[index / 2] = data; 2214 break; 2215 case MSR_IA32_PERF_CAPABILITIES: 2216 if (data && !vcpu_to_pmu(vcpu)->version) 2217 return 1; 2218 if (data & PMU_CAP_LBR_FMT) { 2219 if ((data & PMU_CAP_LBR_FMT) != 2220 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT)) 2221 return 1; 2222 if (!intel_pmu_lbr_is_compatible(vcpu)) 2223 return 1; 2224 } 2225 ret = kvm_set_msr_common(vcpu, msr_info); 2226 break; 2227 2228 default: 2229 find_uret_msr: 2230 msr = vmx_find_uret_msr(vmx, msr_index); 2231 if (msr) 2232 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2233 else 2234 ret = kvm_set_msr_common(vcpu, msr_info); 2235 } 2236 2237 return ret; 2238 } 2239 2240 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2241 { 2242 unsigned long guest_owned_bits; 2243 2244 kvm_register_mark_available(vcpu, reg); 2245 2246 switch (reg) { 2247 case VCPU_REGS_RSP: 2248 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2249 break; 2250 case VCPU_REGS_RIP: 2251 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2252 break; 2253 case VCPU_EXREG_PDPTR: 2254 if (enable_ept) 2255 ept_save_pdptrs(vcpu); 2256 break; 2257 case VCPU_EXREG_CR0: 2258 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2259 2260 vcpu->arch.cr0 &= ~guest_owned_bits; 2261 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2262 break; 2263 case VCPU_EXREG_CR3: 2264 /* 2265 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2266 * CR3 is loaded into hardware, not the guest's CR3. 2267 */ 2268 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2269 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2270 break; 2271 case VCPU_EXREG_CR4: 2272 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2273 2274 vcpu->arch.cr4 &= ~guest_owned_bits; 2275 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2276 break; 2277 default: 2278 KVM_BUG_ON(1, vcpu->kvm); 2279 break; 2280 } 2281 } 2282 2283 static __init int cpu_has_kvm_support(void) 2284 { 2285 return cpu_has_vmx(); 2286 } 2287 2288 static __init int vmx_disabled_by_bios(void) 2289 { 2290 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2291 !boot_cpu_has(X86_FEATURE_VMX); 2292 } 2293 2294 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2295 { 2296 u64 msr; 2297 2298 cr4_set_bits(X86_CR4_VMXE); 2299 2300 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2301 _ASM_EXTABLE(1b, %l[fault]) 2302 : : [vmxon_pointer] "m"(vmxon_pointer) 2303 : : fault); 2304 return 0; 2305 2306 fault: 2307 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2308 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2309 cr4_clear_bits(X86_CR4_VMXE); 2310 2311 return -EFAULT; 2312 } 2313 2314 static int hardware_enable(void) 2315 { 2316 int cpu = raw_smp_processor_id(); 2317 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2318 int r; 2319 2320 if (cr4_read_shadow() & X86_CR4_VMXE) 2321 return -EBUSY; 2322 2323 /* 2324 * This can happen if we hot-added a CPU but failed to allocate 2325 * VP assist page for it. 2326 */ 2327 if (static_branch_unlikely(&enable_evmcs) && 2328 !hv_get_vp_assist_page(cpu)) 2329 return -EFAULT; 2330 2331 intel_pt_handle_vmx(1); 2332 2333 r = kvm_cpu_vmxon(phys_addr); 2334 if (r) { 2335 intel_pt_handle_vmx(0); 2336 return r; 2337 } 2338 2339 if (enable_ept) 2340 ept_sync_global(); 2341 2342 return 0; 2343 } 2344 2345 static void vmclear_local_loaded_vmcss(void) 2346 { 2347 int cpu = raw_smp_processor_id(); 2348 struct loaded_vmcs *v, *n; 2349 2350 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2351 loaded_vmcss_on_cpu_link) 2352 __loaded_vmcs_clear(v); 2353 } 2354 2355 static void hardware_disable(void) 2356 { 2357 vmclear_local_loaded_vmcss(); 2358 2359 if (cpu_vmxoff()) 2360 kvm_spurious_fault(); 2361 2362 intel_pt_handle_vmx(0); 2363 } 2364 2365 /* 2366 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2367 * directly instead of going through cpu_has(), to ensure KVM is trapping 2368 * ENCLS whenever it's supported in hardware. It does not matter whether 2369 * the host OS supports or has enabled SGX. 2370 */ 2371 static bool cpu_has_sgx(void) 2372 { 2373 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2374 } 2375 2376 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2377 u32 msr, u32 *result) 2378 { 2379 u32 vmx_msr_low, vmx_msr_high; 2380 u32 ctl = ctl_min | ctl_opt; 2381 2382 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2383 2384 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2385 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2386 2387 /* Ensure minimum (required) set of control bits are supported. */ 2388 if (ctl_min & ~ctl) 2389 return -EIO; 2390 2391 *result = ctl; 2392 return 0; 2393 } 2394 2395 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2396 struct vmx_capability *vmx_cap) 2397 { 2398 u32 vmx_msr_low, vmx_msr_high; 2399 u32 min, opt, min2, opt2; 2400 u32 _pin_based_exec_control = 0; 2401 u32 _cpu_based_exec_control = 0; 2402 u32 _cpu_based_2nd_exec_control = 0; 2403 u32 _vmexit_control = 0; 2404 u32 _vmentry_control = 0; 2405 2406 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2407 min = CPU_BASED_HLT_EXITING | 2408 #ifdef CONFIG_X86_64 2409 CPU_BASED_CR8_LOAD_EXITING | 2410 CPU_BASED_CR8_STORE_EXITING | 2411 #endif 2412 CPU_BASED_CR3_LOAD_EXITING | 2413 CPU_BASED_CR3_STORE_EXITING | 2414 CPU_BASED_UNCOND_IO_EXITING | 2415 CPU_BASED_MOV_DR_EXITING | 2416 CPU_BASED_USE_TSC_OFFSETTING | 2417 CPU_BASED_MWAIT_EXITING | 2418 CPU_BASED_MONITOR_EXITING | 2419 CPU_BASED_INVLPG_EXITING | 2420 CPU_BASED_RDPMC_EXITING; 2421 2422 opt = CPU_BASED_TPR_SHADOW | 2423 CPU_BASED_USE_MSR_BITMAPS | 2424 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2425 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2426 &_cpu_based_exec_control) < 0) 2427 return -EIO; 2428 #ifdef CONFIG_X86_64 2429 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2430 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2431 ~CPU_BASED_CR8_STORE_EXITING; 2432 #endif 2433 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2434 min2 = 0; 2435 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2436 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2437 SECONDARY_EXEC_WBINVD_EXITING | 2438 SECONDARY_EXEC_ENABLE_VPID | 2439 SECONDARY_EXEC_ENABLE_EPT | 2440 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2441 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2442 SECONDARY_EXEC_DESC | 2443 SECONDARY_EXEC_ENABLE_RDTSCP | 2444 SECONDARY_EXEC_ENABLE_INVPCID | 2445 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2446 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2447 SECONDARY_EXEC_SHADOW_VMCS | 2448 SECONDARY_EXEC_XSAVES | 2449 SECONDARY_EXEC_RDSEED_EXITING | 2450 SECONDARY_EXEC_RDRAND_EXITING | 2451 SECONDARY_EXEC_ENABLE_PML | 2452 SECONDARY_EXEC_TSC_SCALING | 2453 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | 2454 SECONDARY_EXEC_PT_USE_GPA | 2455 SECONDARY_EXEC_PT_CONCEAL_VMX | 2456 SECONDARY_EXEC_ENABLE_VMFUNC | 2457 SECONDARY_EXEC_BUS_LOCK_DETECTION; 2458 if (cpu_has_sgx()) 2459 opt2 |= SECONDARY_EXEC_ENCLS_EXITING; 2460 if (adjust_vmx_controls(min2, opt2, 2461 MSR_IA32_VMX_PROCBASED_CTLS2, 2462 &_cpu_based_2nd_exec_control) < 0) 2463 return -EIO; 2464 } 2465 #ifndef CONFIG_X86_64 2466 if (!(_cpu_based_2nd_exec_control & 2467 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2468 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2469 #endif 2470 2471 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2472 _cpu_based_2nd_exec_control &= ~( 2473 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2474 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2475 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2476 2477 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2478 &vmx_cap->ept, &vmx_cap->vpid); 2479 2480 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2481 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2482 enabled */ 2483 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2484 CPU_BASED_CR3_STORE_EXITING | 2485 CPU_BASED_INVLPG_EXITING); 2486 } else if (vmx_cap->ept) { 2487 vmx_cap->ept = 0; 2488 pr_warn_once("EPT CAP should not exist if not support " 2489 "1-setting enable EPT VM-execution control\n"); 2490 } 2491 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2492 vmx_cap->vpid) { 2493 vmx_cap->vpid = 0; 2494 pr_warn_once("VPID CAP should not exist if not support " 2495 "1-setting enable VPID VM-execution control\n"); 2496 } 2497 2498 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2499 #ifdef CONFIG_X86_64 2500 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2501 #endif 2502 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2503 VM_EXIT_LOAD_IA32_PAT | 2504 VM_EXIT_LOAD_IA32_EFER | 2505 VM_EXIT_CLEAR_BNDCFGS | 2506 VM_EXIT_PT_CONCEAL_PIP | 2507 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2508 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2509 &_vmexit_control) < 0) 2510 return -EIO; 2511 2512 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2513 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2514 PIN_BASED_VMX_PREEMPTION_TIMER; 2515 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2516 &_pin_based_exec_control) < 0) 2517 return -EIO; 2518 2519 if (cpu_has_broken_vmx_preemption_timer()) 2520 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2521 if (!(_cpu_based_2nd_exec_control & 2522 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2523 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2524 2525 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2526 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2527 VM_ENTRY_LOAD_IA32_PAT | 2528 VM_ENTRY_LOAD_IA32_EFER | 2529 VM_ENTRY_LOAD_BNDCFGS | 2530 VM_ENTRY_PT_CONCEAL_PIP | 2531 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2532 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2533 &_vmentry_control) < 0) 2534 return -EIO; 2535 2536 /* 2537 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2538 * can't be used due to an errata where VM Exit may incorrectly clear 2539 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2540 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2541 */ 2542 if (boot_cpu_data.x86 == 0x6) { 2543 switch (boot_cpu_data.x86_model) { 2544 case 26: /* AAK155 */ 2545 case 30: /* AAP115 */ 2546 case 37: /* AAT100 */ 2547 case 44: /* BC86,AAY89,BD102 */ 2548 case 46: /* BA97 */ 2549 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2550 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2551 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2552 "does not work properly. Using workaround\n"); 2553 break; 2554 default: 2555 break; 2556 } 2557 } 2558 2559 2560 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2561 2562 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2563 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2564 return -EIO; 2565 2566 #ifdef CONFIG_X86_64 2567 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2568 if (vmx_msr_high & (1u<<16)) 2569 return -EIO; 2570 #endif 2571 2572 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2573 if (((vmx_msr_high >> 18) & 15) != 6) 2574 return -EIO; 2575 2576 vmcs_conf->size = vmx_msr_high & 0x1fff; 2577 vmcs_conf->order = get_order(vmcs_conf->size); 2578 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2579 2580 vmcs_conf->revision_id = vmx_msr_low; 2581 2582 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2583 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2584 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2585 vmcs_conf->vmexit_ctrl = _vmexit_control; 2586 vmcs_conf->vmentry_ctrl = _vmentry_control; 2587 2588 #if IS_ENABLED(CONFIG_HYPERV) 2589 if (enlightened_vmcs) 2590 evmcs_sanitize_exec_ctrls(vmcs_conf); 2591 #endif 2592 2593 return 0; 2594 } 2595 2596 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2597 { 2598 int node = cpu_to_node(cpu); 2599 struct page *pages; 2600 struct vmcs *vmcs; 2601 2602 pages = __alloc_pages_node(node, flags, vmcs_config.order); 2603 if (!pages) 2604 return NULL; 2605 vmcs = page_address(pages); 2606 memset(vmcs, 0, vmcs_config.size); 2607 2608 /* KVM supports Enlightened VMCS v1 only */ 2609 if (static_branch_unlikely(&enable_evmcs)) 2610 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2611 else 2612 vmcs->hdr.revision_id = vmcs_config.revision_id; 2613 2614 if (shadow) 2615 vmcs->hdr.shadow_vmcs = 1; 2616 return vmcs; 2617 } 2618 2619 void free_vmcs(struct vmcs *vmcs) 2620 { 2621 free_pages((unsigned long)vmcs, vmcs_config.order); 2622 } 2623 2624 /* 2625 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2626 */ 2627 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2628 { 2629 if (!loaded_vmcs->vmcs) 2630 return; 2631 loaded_vmcs_clear(loaded_vmcs); 2632 free_vmcs(loaded_vmcs->vmcs); 2633 loaded_vmcs->vmcs = NULL; 2634 if (loaded_vmcs->msr_bitmap) 2635 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2636 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2637 } 2638 2639 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2640 { 2641 loaded_vmcs->vmcs = alloc_vmcs(false); 2642 if (!loaded_vmcs->vmcs) 2643 return -ENOMEM; 2644 2645 vmcs_clear(loaded_vmcs->vmcs); 2646 2647 loaded_vmcs->shadow_vmcs = NULL; 2648 loaded_vmcs->hv_timer_soft_disabled = false; 2649 loaded_vmcs->cpu = -1; 2650 loaded_vmcs->launched = 0; 2651 2652 if (cpu_has_vmx_msr_bitmap()) { 2653 loaded_vmcs->msr_bitmap = (unsigned long *) 2654 __get_free_page(GFP_KERNEL_ACCOUNT); 2655 if (!loaded_vmcs->msr_bitmap) 2656 goto out_vmcs; 2657 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2658 2659 if (IS_ENABLED(CONFIG_HYPERV) && 2660 static_branch_unlikely(&enable_evmcs) && 2661 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 2662 struct hv_enlightened_vmcs *evmcs = 2663 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; 2664 2665 evmcs->hv_enlightenments_control.msr_bitmap = 1; 2666 } 2667 } 2668 2669 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2670 memset(&loaded_vmcs->controls_shadow, 0, 2671 sizeof(struct vmcs_controls_shadow)); 2672 2673 return 0; 2674 2675 out_vmcs: 2676 free_loaded_vmcs(loaded_vmcs); 2677 return -ENOMEM; 2678 } 2679 2680 static void free_kvm_area(void) 2681 { 2682 int cpu; 2683 2684 for_each_possible_cpu(cpu) { 2685 free_vmcs(per_cpu(vmxarea, cpu)); 2686 per_cpu(vmxarea, cpu) = NULL; 2687 } 2688 } 2689 2690 static __init int alloc_kvm_area(void) 2691 { 2692 int cpu; 2693 2694 for_each_possible_cpu(cpu) { 2695 struct vmcs *vmcs; 2696 2697 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2698 if (!vmcs) { 2699 free_kvm_area(); 2700 return -ENOMEM; 2701 } 2702 2703 /* 2704 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2705 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2706 * revision_id reported by MSR_IA32_VMX_BASIC. 2707 * 2708 * However, even though not explicitly documented by 2709 * TLFS, VMXArea passed as VMXON argument should 2710 * still be marked with revision_id reported by 2711 * physical CPU. 2712 */ 2713 if (static_branch_unlikely(&enable_evmcs)) 2714 vmcs->hdr.revision_id = vmcs_config.revision_id; 2715 2716 per_cpu(vmxarea, cpu) = vmcs; 2717 } 2718 return 0; 2719 } 2720 2721 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2722 struct kvm_segment *save) 2723 { 2724 if (!emulate_invalid_guest_state) { 2725 /* 2726 * CS and SS RPL should be equal during guest entry according 2727 * to VMX spec, but in reality it is not always so. Since vcpu 2728 * is in the middle of the transition from real mode to 2729 * protected mode it is safe to assume that RPL 0 is a good 2730 * default value. 2731 */ 2732 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2733 save->selector &= ~SEGMENT_RPL_MASK; 2734 save->dpl = save->selector & SEGMENT_RPL_MASK; 2735 save->s = 1; 2736 } 2737 __vmx_set_segment(vcpu, save, seg); 2738 } 2739 2740 static void enter_pmode(struct kvm_vcpu *vcpu) 2741 { 2742 unsigned long flags; 2743 struct vcpu_vmx *vmx = to_vmx(vcpu); 2744 2745 /* 2746 * Update real mode segment cache. It may be not up-to-date if segment 2747 * register was written while vcpu was in a guest mode. 2748 */ 2749 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2750 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2751 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2752 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2753 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2754 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2755 2756 vmx->rmode.vm86_active = 0; 2757 2758 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2759 2760 flags = vmcs_readl(GUEST_RFLAGS); 2761 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2762 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2763 vmcs_writel(GUEST_RFLAGS, flags); 2764 2765 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2766 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2767 2768 vmx_update_exception_bitmap(vcpu); 2769 2770 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2771 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2772 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2773 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2774 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2775 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2776 } 2777 2778 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2779 { 2780 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2781 struct kvm_segment var = *save; 2782 2783 var.dpl = 0x3; 2784 if (seg == VCPU_SREG_CS) 2785 var.type = 0x3; 2786 2787 if (!emulate_invalid_guest_state) { 2788 var.selector = var.base >> 4; 2789 var.base = var.base & 0xffff0; 2790 var.limit = 0xffff; 2791 var.g = 0; 2792 var.db = 0; 2793 var.present = 1; 2794 var.s = 1; 2795 var.l = 0; 2796 var.unusable = 0; 2797 var.type = 0x3; 2798 var.avl = 0; 2799 if (save->base & 0xf) 2800 printk_once(KERN_WARNING "kvm: segment base is not " 2801 "paragraph aligned when entering " 2802 "protected mode (seg=%d)", seg); 2803 } 2804 2805 vmcs_write16(sf->selector, var.selector); 2806 vmcs_writel(sf->base, var.base); 2807 vmcs_write32(sf->limit, var.limit); 2808 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2809 } 2810 2811 static void enter_rmode(struct kvm_vcpu *vcpu) 2812 { 2813 unsigned long flags; 2814 struct vcpu_vmx *vmx = to_vmx(vcpu); 2815 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2816 2817 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2818 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2819 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2820 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2821 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2822 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2823 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2824 2825 vmx->rmode.vm86_active = 1; 2826 2827 /* 2828 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2829 * vcpu. Warn the user that an update is overdue. 2830 */ 2831 if (!kvm_vmx->tss_addr) 2832 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2833 "called before entering vcpu\n"); 2834 2835 vmx_segment_cache_clear(vmx); 2836 2837 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2838 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2839 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2840 2841 flags = vmcs_readl(GUEST_RFLAGS); 2842 vmx->rmode.save_rflags = flags; 2843 2844 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2845 2846 vmcs_writel(GUEST_RFLAGS, flags); 2847 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2848 vmx_update_exception_bitmap(vcpu); 2849 2850 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2851 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2852 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2853 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2854 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2855 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2856 } 2857 2858 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2859 { 2860 struct vcpu_vmx *vmx = to_vmx(vcpu); 2861 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER); 2862 2863 /* Nothing to do if hardware doesn't support EFER. */ 2864 if (!msr) 2865 return 0; 2866 2867 vcpu->arch.efer = efer; 2868 if (efer & EFER_LMA) { 2869 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2870 msr->data = efer; 2871 } else { 2872 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2873 2874 msr->data = efer & ~EFER_LME; 2875 } 2876 vmx_setup_uret_msrs(vmx); 2877 return 0; 2878 } 2879 2880 #ifdef CONFIG_X86_64 2881 2882 static void enter_lmode(struct kvm_vcpu *vcpu) 2883 { 2884 u32 guest_tr_ar; 2885 2886 vmx_segment_cache_clear(to_vmx(vcpu)); 2887 2888 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2889 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2890 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2891 __func__); 2892 vmcs_write32(GUEST_TR_AR_BYTES, 2893 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 2894 | VMX_AR_TYPE_BUSY_64_TSS); 2895 } 2896 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 2897 } 2898 2899 static void exit_lmode(struct kvm_vcpu *vcpu) 2900 { 2901 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2902 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 2903 } 2904 2905 #endif 2906 2907 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 2908 { 2909 struct vcpu_vmx *vmx = to_vmx(vcpu); 2910 2911 /* 2912 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 2913 * the CPU is not required to invalidate guest-physical mappings on 2914 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 2915 * associated with the root EPT structure and not any particular VPID 2916 * (INVVPID also isn't required to invalidate guest-physical mappings). 2917 */ 2918 if (enable_ept) { 2919 ept_sync_global(); 2920 } else if (enable_vpid) { 2921 if (cpu_has_vmx_invvpid_global()) { 2922 vpid_sync_vcpu_global(); 2923 } else { 2924 vpid_sync_vcpu_single(vmx->vpid); 2925 vpid_sync_vcpu_single(vmx->nested.vpid02); 2926 } 2927 } 2928 } 2929 2930 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 2931 { 2932 struct kvm_mmu *mmu = vcpu->arch.mmu; 2933 u64 root_hpa = mmu->root_hpa; 2934 2935 /* No flush required if the current context is invalid. */ 2936 if (!VALID_PAGE(root_hpa)) 2937 return; 2938 2939 if (enable_ept) 2940 ept_sync_context(construct_eptp(vcpu, root_hpa, 2941 mmu->shadow_root_level)); 2942 else if (!is_guest_mode(vcpu)) 2943 vpid_sync_context(to_vmx(vcpu)->vpid); 2944 else 2945 vpid_sync_context(nested_get_vpid02(vcpu)); 2946 } 2947 2948 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 2949 { 2950 /* 2951 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in 2952 * vmx_flush_tlb_guest() for an explanation of why this is ok. 2953 */ 2954 vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr); 2955 } 2956 2957 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 2958 { 2959 /* 2960 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0 2961 * or a vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit 2962 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is 2963 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 2964 * i.e. no explicit INVVPID is necessary. 2965 */ 2966 vpid_sync_context(to_vmx(vcpu)->vpid); 2967 } 2968 2969 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 2970 { 2971 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2972 2973 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 2974 return; 2975 2976 if (is_pae_paging(vcpu)) { 2977 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 2978 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 2979 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 2980 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 2981 } 2982 } 2983 2984 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 2985 { 2986 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2987 2988 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 2989 return; 2990 2991 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 2992 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 2993 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 2994 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 2995 2996 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 2997 } 2998 2999 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3000 CPU_BASED_CR3_STORE_EXITING) 3001 3002 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3003 { 3004 struct vcpu_vmx *vmx = to_vmx(vcpu); 3005 unsigned long hw_cr0, old_cr0_pg; 3006 u32 tmp; 3007 3008 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3009 3010 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3011 if (is_unrestricted_guest(vcpu)) 3012 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3013 else { 3014 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3015 if (!enable_ept) 3016 hw_cr0 |= X86_CR0_WP; 3017 3018 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3019 enter_pmode(vcpu); 3020 3021 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3022 enter_rmode(vcpu); 3023 } 3024 3025 vmcs_writel(CR0_READ_SHADOW, cr0); 3026 vmcs_writel(GUEST_CR0, hw_cr0); 3027 vcpu->arch.cr0 = cr0; 3028 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3029 3030 #ifdef CONFIG_X86_64 3031 if (vcpu->arch.efer & EFER_LME) { 3032 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3033 enter_lmode(vcpu); 3034 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3035 exit_lmode(vcpu); 3036 } 3037 #endif 3038 3039 if (enable_ept && !is_unrestricted_guest(vcpu)) { 3040 /* 3041 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3042 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3043 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3044 * KVM's CR3 is installed. 3045 */ 3046 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3047 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3048 3049 /* 3050 * When running with EPT but not unrestricted guest, KVM must 3051 * intercept CR3 accesses when paging is _disabled_. This is 3052 * necessary because restricted guests can't actually run with 3053 * paging disabled, and so KVM stuffs its own CR3 in order to 3054 * run the guest when identity mapped page tables. 3055 * 3056 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3057 * update, it may be stale with respect to CR3 interception, 3058 * e.g. after nested VM-Enter. 3059 * 3060 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3061 * stores to forward them to L1, even if KVM does not need to 3062 * intercept them to preserve its identity mapped page tables. 3063 */ 3064 if (!(cr0 & X86_CR0_PG)) { 3065 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3066 } else if (!is_guest_mode(vcpu)) { 3067 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3068 } else { 3069 tmp = exec_controls_get(vmx); 3070 tmp &= ~CR3_EXITING_BITS; 3071 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3072 exec_controls_set(vmx, tmp); 3073 } 3074 3075 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3076 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3077 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3078 } 3079 3080 /* depends on vcpu->arch.cr0 to be set to a new value */ 3081 vmx->emulation_required = vmx_emulation_required(vcpu); 3082 } 3083 3084 static int vmx_get_max_tdp_level(void) 3085 { 3086 if (cpu_has_vmx_ept_5levels()) 3087 return 5; 3088 return 4; 3089 } 3090 3091 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3092 { 3093 u64 eptp = VMX_EPTP_MT_WB; 3094 3095 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3096 3097 if (enable_ept_ad_bits && 3098 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3099 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3100 eptp |= root_hpa; 3101 3102 return eptp; 3103 } 3104 3105 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3106 int root_level) 3107 { 3108 struct kvm *kvm = vcpu->kvm; 3109 bool update_guest_cr3 = true; 3110 unsigned long guest_cr3; 3111 u64 eptp; 3112 3113 if (enable_ept) { 3114 eptp = construct_eptp(vcpu, root_hpa, root_level); 3115 vmcs_write64(EPT_POINTER, eptp); 3116 3117 hv_track_root_tdp(vcpu, root_hpa); 3118 3119 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3120 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3121 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3122 guest_cr3 = vcpu->arch.cr3; 3123 else /* vmcs01.GUEST_CR3 is already up-to-date. */ 3124 update_guest_cr3 = false; 3125 vmx_ept_load_pdptrs(vcpu); 3126 } else { 3127 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3128 } 3129 3130 if (update_guest_cr3) 3131 vmcs_writel(GUEST_CR3, guest_cr3); 3132 } 3133 3134 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3135 { 3136 /* 3137 * We operate under the default treatment of SMM, so VMX cannot be 3138 * enabled under SMM. Note, whether or not VMXE is allowed at all is 3139 * handled by kvm_is_valid_cr4(). 3140 */ 3141 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3142 return false; 3143 3144 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3145 return false; 3146 3147 return true; 3148 } 3149 3150 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3151 { 3152 unsigned long old_cr4 = vcpu->arch.cr4; 3153 struct vcpu_vmx *vmx = to_vmx(vcpu); 3154 /* 3155 * Pass through host's Machine Check Enable value to hw_cr4, which 3156 * is in force while we are in guest mode. Do not let guests control 3157 * this bit, even if host CR4.MCE == 0. 3158 */ 3159 unsigned long hw_cr4; 3160 3161 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3162 if (is_unrestricted_guest(vcpu)) 3163 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3164 else if (vmx->rmode.vm86_active) 3165 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3166 else 3167 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3168 3169 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 3170 if (cr4 & X86_CR4_UMIP) { 3171 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3172 hw_cr4 &= ~X86_CR4_UMIP; 3173 } else if (!is_guest_mode(vcpu) || 3174 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3175 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3176 } 3177 } 3178 3179 vcpu->arch.cr4 = cr4; 3180 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3181 3182 if (!is_unrestricted_guest(vcpu)) { 3183 if (enable_ept) { 3184 if (!is_paging(vcpu)) { 3185 hw_cr4 &= ~X86_CR4_PAE; 3186 hw_cr4 |= X86_CR4_PSE; 3187 } else if (!(cr4 & X86_CR4_PAE)) { 3188 hw_cr4 &= ~X86_CR4_PAE; 3189 } 3190 } 3191 3192 /* 3193 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3194 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3195 * to be manually disabled when guest switches to non-paging 3196 * mode. 3197 * 3198 * If !enable_unrestricted_guest, the CPU is always running 3199 * with CR0.PG=1 and CR4 needs to be modified. 3200 * If enable_unrestricted_guest, the CPU automatically 3201 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3202 */ 3203 if (!is_paging(vcpu)) 3204 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3205 } 3206 3207 vmcs_writel(CR4_READ_SHADOW, cr4); 3208 vmcs_writel(GUEST_CR4, hw_cr4); 3209 3210 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3211 kvm_update_cpuid_runtime(vcpu); 3212 } 3213 3214 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3215 { 3216 struct vcpu_vmx *vmx = to_vmx(vcpu); 3217 u32 ar; 3218 3219 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3220 *var = vmx->rmode.segs[seg]; 3221 if (seg == VCPU_SREG_TR 3222 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3223 return; 3224 var->base = vmx_read_guest_seg_base(vmx, seg); 3225 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3226 return; 3227 } 3228 var->base = vmx_read_guest_seg_base(vmx, seg); 3229 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3230 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3231 ar = vmx_read_guest_seg_ar(vmx, seg); 3232 var->unusable = (ar >> 16) & 1; 3233 var->type = ar & 15; 3234 var->s = (ar >> 4) & 1; 3235 var->dpl = (ar >> 5) & 3; 3236 /* 3237 * Some userspaces do not preserve unusable property. Since usable 3238 * segment has to be present according to VMX spec we can use present 3239 * property to amend userspace bug by making unusable segment always 3240 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3241 * segment as unusable. 3242 */ 3243 var->present = !var->unusable; 3244 var->avl = (ar >> 12) & 1; 3245 var->l = (ar >> 13) & 1; 3246 var->db = (ar >> 14) & 1; 3247 var->g = (ar >> 15) & 1; 3248 } 3249 3250 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3251 { 3252 struct kvm_segment s; 3253 3254 if (to_vmx(vcpu)->rmode.vm86_active) { 3255 vmx_get_segment(vcpu, &s, seg); 3256 return s.base; 3257 } 3258 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3259 } 3260 3261 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3262 { 3263 struct vcpu_vmx *vmx = to_vmx(vcpu); 3264 3265 if (unlikely(vmx->rmode.vm86_active)) 3266 return 0; 3267 else { 3268 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3269 return VMX_AR_DPL(ar); 3270 } 3271 } 3272 3273 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3274 { 3275 u32 ar; 3276 3277 if (var->unusable || !var->present) 3278 ar = 1 << 16; 3279 else { 3280 ar = var->type & 15; 3281 ar |= (var->s & 1) << 4; 3282 ar |= (var->dpl & 3) << 5; 3283 ar |= (var->present & 1) << 7; 3284 ar |= (var->avl & 1) << 12; 3285 ar |= (var->l & 1) << 13; 3286 ar |= (var->db & 1) << 14; 3287 ar |= (var->g & 1) << 15; 3288 } 3289 3290 return ar; 3291 } 3292 3293 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3294 { 3295 struct vcpu_vmx *vmx = to_vmx(vcpu); 3296 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3297 3298 vmx_segment_cache_clear(vmx); 3299 3300 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3301 vmx->rmode.segs[seg] = *var; 3302 if (seg == VCPU_SREG_TR) 3303 vmcs_write16(sf->selector, var->selector); 3304 else if (var->s) 3305 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3306 return; 3307 } 3308 3309 vmcs_writel(sf->base, var->base); 3310 vmcs_write32(sf->limit, var->limit); 3311 vmcs_write16(sf->selector, var->selector); 3312 3313 /* 3314 * Fix the "Accessed" bit in AR field of segment registers for older 3315 * qemu binaries. 3316 * IA32 arch specifies that at the time of processor reset the 3317 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3318 * is setting it to 0 in the userland code. This causes invalid guest 3319 * state vmexit when "unrestricted guest" mode is turned on. 3320 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3321 * tree. Newer qemu binaries with that qemu fix would not need this 3322 * kvm hack. 3323 */ 3324 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3325 var->type |= 0x1; /* Accessed */ 3326 3327 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3328 } 3329 3330 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3331 { 3332 __vmx_set_segment(vcpu, var, seg); 3333 3334 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3335 } 3336 3337 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3338 { 3339 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3340 3341 *db = (ar >> 14) & 1; 3342 *l = (ar >> 13) & 1; 3343 } 3344 3345 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3346 { 3347 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3348 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3349 } 3350 3351 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3352 { 3353 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3354 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3355 } 3356 3357 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3358 { 3359 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3360 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3361 } 3362 3363 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3364 { 3365 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3366 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3367 } 3368 3369 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3370 { 3371 struct kvm_segment var; 3372 u32 ar; 3373 3374 vmx_get_segment(vcpu, &var, seg); 3375 var.dpl = 0x3; 3376 if (seg == VCPU_SREG_CS) 3377 var.type = 0x3; 3378 ar = vmx_segment_access_rights(&var); 3379 3380 if (var.base != (var.selector << 4)) 3381 return false; 3382 if (var.limit != 0xffff) 3383 return false; 3384 if (ar != 0xf3) 3385 return false; 3386 3387 return true; 3388 } 3389 3390 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3391 { 3392 struct kvm_segment cs; 3393 unsigned int cs_rpl; 3394 3395 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3396 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3397 3398 if (cs.unusable) 3399 return false; 3400 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3401 return false; 3402 if (!cs.s) 3403 return false; 3404 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3405 if (cs.dpl > cs_rpl) 3406 return false; 3407 } else { 3408 if (cs.dpl != cs_rpl) 3409 return false; 3410 } 3411 if (!cs.present) 3412 return false; 3413 3414 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3415 return true; 3416 } 3417 3418 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3419 { 3420 struct kvm_segment ss; 3421 unsigned int ss_rpl; 3422 3423 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3424 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3425 3426 if (ss.unusable) 3427 return true; 3428 if (ss.type != 3 && ss.type != 7) 3429 return false; 3430 if (!ss.s) 3431 return false; 3432 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3433 return false; 3434 if (!ss.present) 3435 return false; 3436 3437 return true; 3438 } 3439 3440 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3441 { 3442 struct kvm_segment var; 3443 unsigned int rpl; 3444 3445 vmx_get_segment(vcpu, &var, seg); 3446 rpl = var.selector & SEGMENT_RPL_MASK; 3447 3448 if (var.unusable) 3449 return true; 3450 if (!var.s) 3451 return false; 3452 if (!var.present) 3453 return false; 3454 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3455 if (var.dpl < rpl) /* DPL < RPL */ 3456 return false; 3457 } 3458 3459 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3460 * rights flags 3461 */ 3462 return true; 3463 } 3464 3465 static bool tr_valid(struct kvm_vcpu *vcpu) 3466 { 3467 struct kvm_segment tr; 3468 3469 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3470 3471 if (tr.unusable) 3472 return false; 3473 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3474 return false; 3475 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3476 return false; 3477 if (!tr.present) 3478 return false; 3479 3480 return true; 3481 } 3482 3483 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3484 { 3485 struct kvm_segment ldtr; 3486 3487 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3488 3489 if (ldtr.unusable) 3490 return true; 3491 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3492 return false; 3493 if (ldtr.type != 2) 3494 return false; 3495 if (!ldtr.present) 3496 return false; 3497 3498 return true; 3499 } 3500 3501 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3502 { 3503 struct kvm_segment cs, ss; 3504 3505 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3506 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3507 3508 return ((cs.selector & SEGMENT_RPL_MASK) == 3509 (ss.selector & SEGMENT_RPL_MASK)); 3510 } 3511 3512 /* 3513 * Check if guest state is valid. Returns true if valid, false if 3514 * not. 3515 * We assume that registers are always usable 3516 */ 3517 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3518 { 3519 /* real mode guest state checks */ 3520 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3521 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3522 return false; 3523 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3524 return false; 3525 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3526 return false; 3527 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3528 return false; 3529 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3530 return false; 3531 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3532 return false; 3533 } else { 3534 /* protected mode guest state checks */ 3535 if (!cs_ss_rpl_check(vcpu)) 3536 return false; 3537 if (!code_segment_valid(vcpu)) 3538 return false; 3539 if (!stack_segment_valid(vcpu)) 3540 return false; 3541 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3542 return false; 3543 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3544 return false; 3545 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3546 return false; 3547 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3548 return false; 3549 if (!tr_valid(vcpu)) 3550 return false; 3551 if (!ldtr_valid(vcpu)) 3552 return false; 3553 } 3554 /* TODO: 3555 * - Add checks on RIP 3556 * - Add checks on RFLAGS 3557 */ 3558 3559 return true; 3560 } 3561 3562 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3563 { 3564 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3565 u16 data; 3566 int i; 3567 3568 for (i = 0; i < 3; i++) { 3569 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3570 return -EFAULT; 3571 } 3572 3573 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3574 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3575 return -EFAULT; 3576 3577 data = ~0; 3578 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3579 return -EFAULT; 3580 3581 return 0; 3582 } 3583 3584 static int init_rmode_identity_map(struct kvm *kvm) 3585 { 3586 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3587 int i, r = 0; 3588 void __user *uaddr; 3589 u32 tmp; 3590 3591 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3592 mutex_lock(&kvm->slots_lock); 3593 3594 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3595 goto out; 3596 3597 if (!kvm_vmx->ept_identity_map_addr) 3598 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3599 3600 uaddr = __x86_set_memory_region(kvm, 3601 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3602 kvm_vmx->ept_identity_map_addr, 3603 PAGE_SIZE); 3604 if (IS_ERR(uaddr)) { 3605 r = PTR_ERR(uaddr); 3606 goto out; 3607 } 3608 3609 /* Set up identity-mapping pagetable for EPT in real mode */ 3610 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3611 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3612 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3613 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3614 r = -EFAULT; 3615 goto out; 3616 } 3617 } 3618 kvm_vmx->ept_identity_pagetable_done = true; 3619 3620 out: 3621 mutex_unlock(&kvm->slots_lock); 3622 return r; 3623 } 3624 3625 static void seg_setup(int seg) 3626 { 3627 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3628 unsigned int ar; 3629 3630 vmcs_write16(sf->selector, 0); 3631 vmcs_writel(sf->base, 0); 3632 vmcs_write32(sf->limit, 0xffff); 3633 ar = 0x93; 3634 if (seg == VCPU_SREG_CS) 3635 ar |= 0x08; /* code segment */ 3636 3637 vmcs_write32(sf->ar_bytes, ar); 3638 } 3639 3640 static int alloc_apic_access_page(struct kvm *kvm) 3641 { 3642 struct page *page; 3643 void __user *hva; 3644 int ret = 0; 3645 3646 mutex_lock(&kvm->slots_lock); 3647 if (kvm->arch.apic_access_memslot_enabled) 3648 goto out; 3649 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3650 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3651 if (IS_ERR(hva)) { 3652 ret = PTR_ERR(hva); 3653 goto out; 3654 } 3655 3656 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3657 if (is_error_page(page)) { 3658 ret = -EFAULT; 3659 goto out; 3660 } 3661 3662 /* 3663 * Do not pin the page in memory, so that memory hot-unplug 3664 * is able to migrate it. 3665 */ 3666 put_page(page); 3667 kvm->arch.apic_access_memslot_enabled = true; 3668 out: 3669 mutex_unlock(&kvm->slots_lock); 3670 return ret; 3671 } 3672 3673 int allocate_vpid(void) 3674 { 3675 int vpid; 3676 3677 if (!enable_vpid) 3678 return 0; 3679 spin_lock(&vmx_vpid_lock); 3680 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3681 if (vpid < VMX_NR_VPIDS) 3682 __set_bit(vpid, vmx_vpid_bitmap); 3683 else 3684 vpid = 0; 3685 spin_unlock(&vmx_vpid_lock); 3686 return vpid; 3687 } 3688 3689 void free_vpid(int vpid) 3690 { 3691 if (!enable_vpid || vpid == 0) 3692 return; 3693 spin_lock(&vmx_vpid_lock); 3694 __clear_bit(vpid, vmx_vpid_bitmap); 3695 spin_unlock(&vmx_vpid_lock); 3696 } 3697 3698 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr) 3699 { 3700 int f = sizeof(unsigned long); 3701 3702 if (msr <= 0x1fff) 3703 __clear_bit(msr, msr_bitmap + 0x000 / f); 3704 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3705 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f); 3706 } 3707 3708 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr) 3709 { 3710 int f = sizeof(unsigned long); 3711 3712 if (msr <= 0x1fff) 3713 __clear_bit(msr, msr_bitmap + 0x800 / f); 3714 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3715 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f); 3716 } 3717 3718 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr) 3719 { 3720 int f = sizeof(unsigned long); 3721 3722 if (msr <= 0x1fff) 3723 __set_bit(msr, msr_bitmap + 0x000 / f); 3724 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3725 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f); 3726 } 3727 3728 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr) 3729 { 3730 int f = sizeof(unsigned long); 3731 3732 if (msr <= 0x1fff) 3733 __set_bit(msr, msr_bitmap + 0x800 / f); 3734 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3735 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f); 3736 } 3737 3738 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3739 { 3740 struct vcpu_vmx *vmx = to_vmx(vcpu); 3741 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3742 3743 if (!cpu_has_vmx_msr_bitmap()) 3744 return; 3745 3746 if (static_branch_unlikely(&enable_evmcs)) 3747 evmcs_touch_msr_bitmap(); 3748 3749 /* 3750 * Mark the desired intercept state in shadow bitmap, this is needed 3751 * for resync when the MSR filters change. 3752 */ 3753 if (is_valid_passthrough_msr(msr)) { 3754 int idx = possible_passthrough_msr_slot(msr); 3755 3756 if (idx != -ENOENT) { 3757 if (type & MSR_TYPE_R) 3758 clear_bit(idx, vmx->shadow_msr_intercept.read); 3759 if (type & MSR_TYPE_W) 3760 clear_bit(idx, vmx->shadow_msr_intercept.write); 3761 } 3762 } 3763 3764 if ((type & MSR_TYPE_R) && 3765 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3766 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3767 type &= ~MSR_TYPE_R; 3768 } 3769 3770 if ((type & MSR_TYPE_W) && 3771 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3772 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3773 type &= ~MSR_TYPE_W; 3774 } 3775 3776 if (type & MSR_TYPE_R) 3777 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3778 3779 if (type & MSR_TYPE_W) 3780 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3781 } 3782 3783 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3784 { 3785 struct vcpu_vmx *vmx = to_vmx(vcpu); 3786 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3787 3788 if (!cpu_has_vmx_msr_bitmap()) 3789 return; 3790 3791 if (static_branch_unlikely(&enable_evmcs)) 3792 evmcs_touch_msr_bitmap(); 3793 3794 /* 3795 * Mark the desired intercept state in shadow bitmap, this is needed 3796 * for resync when the MSR filter changes. 3797 */ 3798 if (is_valid_passthrough_msr(msr)) { 3799 int idx = possible_passthrough_msr_slot(msr); 3800 3801 if (idx != -ENOENT) { 3802 if (type & MSR_TYPE_R) 3803 set_bit(idx, vmx->shadow_msr_intercept.read); 3804 if (type & MSR_TYPE_W) 3805 set_bit(idx, vmx->shadow_msr_intercept.write); 3806 } 3807 } 3808 3809 if (type & MSR_TYPE_R) 3810 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3811 3812 if (type & MSR_TYPE_W) 3813 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3814 } 3815 3816 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode) 3817 { 3818 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; 3819 unsigned long read_intercept; 3820 int msr; 3821 3822 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3823 3824 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3825 unsigned int read_idx = msr / BITS_PER_LONG; 3826 unsigned int write_idx = read_idx + (0x800 / sizeof(long)); 3827 3828 msr_bitmap[read_idx] = read_intercept; 3829 msr_bitmap[write_idx] = ~0ul; 3830 } 3831 } 3832 3833 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 3834 { 3835 struct vcpu_vmx *vmx = to_vmx(vcpu); 3836 u8 mode; 3837 3838 if (!cpu_has_vmx_msr_bitmap()) 3839 return; 3840 3841 if (cpu_has_secondary_exec_ctrls() && 3842 (secondary_exec_controls_get(vmx) & 3843 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3844 mode = MSR_BITMAP_MODE_X2APIC; 3845 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3846 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3847 } else { 3848 mode = 0; 3849 } 3850 3851 if (mode == vmx->x2apic_msr_bitmap_mode) 3852 return; 3853 3854 vmx->x2apic_msr_bitmap_mode = mode; 3855 3856 vmx_reset_x2apic_msrs(vcpu, mode); 3857 3858 /* 3859 * TPR reads and writes can be virtualized even if virtual interrupt 3860 * delivery is not in use. 3861 */ 3862 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 3863 !(mode & MSR_BITMAP_MODE_X2APIC)); 3864 3865 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3866 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 3867 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3868 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3869 } 3870 } 3871 3872 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 3873 { 3874 struct vcpu_vmx *vmx = to_vmx(vcpu); 3875 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3876 u32 i; 3877 3878 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 3879 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 3880 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 3881 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 3882 for (i = 0; i < vmx->pt_desc.addr_range; i++) { 3883 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3884 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3885 } 3886 } 3887 3888 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3889 { 3890 struct vcpu_vmx *vmx = to_vmx(vcpu); 3891 void *vapic_page; 3892 u32 vppr; 3893 int rvi; 3894 3895 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3896 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3897 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3898 return false; 3899 3900 rvi = vmx_get_rvi(); 3901 3902 vapic_page = vmx->nested.virtual_apic_map.hva; 3903 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 3904 3905 return ((rvi & 0xf0) > (vppr & 0xf0)); 3906 } 3907 3908 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 3909 { 3910 struct vcpu_vmx *vmx = to_vmx(vcpu); 3911 u32 i; 3912 3913 /* 3914 * Set intercept permissions for all potentially passed through MSRs 3915 * again. They will automatically get filtered through the MSR filter, 3916 * so we are back in sync after this. 3917 */ 3918 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 3919 u32 msr = vmx_possible_passthrough_msrs[i]; 3920 bool read = test_bit(i, vmx->shadow_msr_intercept.read); 3921 bool write = test_bit(i, vmx->shadow_msr_intercept.write); 3922 3923 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read); 3924 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write); 3925 } 3926 3927 pt_update_intercept_for_msr(vcpu); 3928 } 3929 3930 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 3931 bool nested) 3932 { 3933 #ifdef CONFIG_SMP 3934 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; 3935 3936 if (vcpu->mode == IN_GUEST_MODE) { 3937 /* 3938 * The vector of interrupt to be delivered to vcpu had 3939 * been set in PIR before this function. 3940 * 3941 * Following cases will be reached in this block, and 3942 * we always send a notification event in all cases as 3943 * explained below. 3944 * 3945 * Case 1: vcpu keeps in non-root mode. Sending a 3946 * notification event posts the interrupt to vcpu. 3947 * 3948 * Case 2: vcpu exits to root mode and is still 3949 * runnable. PIR will be synced to vIRR before the 3950 * next vcpu entry. Sending a notification event in 3951 * this case has no effect, as vcpu is not in root 3952 * mode. 3953 * 3954 * Case 3: vcpu exits to root mode and is blocked. 3955 * vcpu_block() has already synced PIR to vIRR and 3956 * never blocks vcpu if vIRR is not cleared. Therefore, 3957 * a blocked vcpu here does not wait for any requested 3958 * interrupts in PIR, and sending a notification event 3959 * which has no effect is safe here. 3960 */ 3961 3962 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 3963 return true; 3964 } 3965 #endif 3966 return false; 3967 } 3968 3969 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 3970 int vector) 3971 { 3972 struct vcpu_vmx *vmx = to_vmx(vcpu); 3973 3974 if (is_guest_mode(vcpu) && 3975 vector == vmx->nested.posted_intr_nv) { 3976 /* 3977 * If a posted intr is not recognized by hardware, 3978 * we will accomplish it in the next vmentry. 3979 */ 3980 vmx->nested.pi_pending = true; 3981 kvm_make_request(KVM_REQ_EVENT, vcpu); 3982 /* the PIR and ON have been set by L1. */ 3983 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) 3984 kvm_vcpu_kick(vcpu); 3985 return 0; 3986 } 3987 return -1; 3988 } 3989 /* 3990 * Send interrupt to vcpu via posted interrupt way. 3991 * 1. If target vcpu is running(non-root mode), send posted interrupt 3992 * notification to vcpu and hardware will sync PIR to vIRR atomically. 3993 * 2. If target vcpu isn't running(root mode), kick it to pick up the 3994 * interrupt from PIR in next vmentry. 3995 */ 3996 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 3997 { 3998 struct vcpu_vmx *vmx = to_vmx(vcpu); 3999 int r; 4000 4001 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4002 if (!r) 4003 return 0; 4004 4005 if (!vcpu->arch.apicv_active) 4006 return -1; 4007 4008 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4009 return 0; 4010 4011 /* If a previous notification has sent the IPI, nothing to do. */ 4012 if (pi_test_and_set_on(&vmx->pi_desc)) 4013 return 0; 4014 4015 if (vcpu != kvm_get_running_vcpu() && 4016 !kvm_vcpu_trigger_posted_interrupt(vcpu, false)) 4017 kvm_vcpu_kick(vcpu); 4018 4019 return 0; 4020 } 4021 4022 /* 4023 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4024 * will not change in the lifetime of the guest. 4025 * Note that host-state that does change is set elsewhere. E.g., host-state 4026 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4027 */ 4028 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4029 { 4030 u32 low32, high32; 4031 unsigned long tmpl; 4032 unsigned long cr0, cr3, cr4; 4033 4034 cr0 = read_cr0(); 4035 WARN_ON(cr0 & X86_CR0_TS); 4036 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4037 4038 /* 4039 * Save the most likely value for this task's CR3 in the VMCS. 4040 * We can't use __get_current_cr3_fast() because we're not atomic. 4041 */ 4042 cr3 = __read_cr3(); 4043 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4044 vmx->loaded_vmcs->host_state.cr3 = cr3; 4045 4046 /* Save the most likely value for this task's CR4 in the VMCS. */ 4047 cr4 = cr4_read_shadow(); 4048 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4049 vmx->loaded_vmcs->host_state.cr4 = cr4; 4050 4051 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4052 #ifdef CONFIG_X86_64 4053 /* 4054 * Load null selectors, so we can avoid reloading them in 4055 * vmx_prepare_switch_to_host(), in case userspace uses 4056 * the null selectors too (the expected case). 4057 */ 4058 vmcs_write16(HOST_DS_SELECTOR, 0); 4059 vmcs_write16(HOST_ES_SELECTOR, 0); 4060 #else 4061 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4062 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4063 #endif 4064 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4065 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4066 4067 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4068 4069 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4070 4071 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4072 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4073 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4074 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4075 4076 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4077 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4078 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4079 } 4080 4081 if (cpu_has_load_ia32_efer()) 4082 vmcs_write64(HOST_IA32_EFER, host_efer); 4083 } 4084 4085 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4086 { 4087 struct kvm_vcpu *vcpu = &vmx->vcpu; 4088 4089 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4090 ~vcpu->arch.cr4_guest_rsvd_bits; 4091 if (!enable_ept) 4092 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE; 4093 if (is_guest_mode(&vmx->vcpu)) 4094 vcpu->arch.cr4_guest_owned_bits &= 4095 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4096 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4097 } 4098 4099 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4100 { 4101 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4102 4103 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4104 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4105 4106 if (!enable_vnmi) 4107 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4108 4109 if (!enable_preemption_timer) 4110 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4111 4112 return pin_based_exec_ctrl; 4113 } 4114 4115 static u32 vmx_vmentry_ctrl(void) 4116 { 4117 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4118 4119 if (vmx_pt_mode_is_system()) 4120 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4121 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4122 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4123 return vmentry_ctrl & 4124 ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER); 4125 } 4126 4127 static u32 vmx_vmexit_ctrl(void) 4128 { 4129 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4130 4131 if (vmx_pt_mode_is_system()) 4132 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4133 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4134 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4135 return vmexit_ctrl & 4136 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4137 } 4138 4139 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4140 { 4141 struct vcpu_vmx *vmx = to_vmx(vcpu); 4142 4143 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4144 if (cpu_has_secondary_exec_ctrls()) { 4145 if (kvm_vcpu_apicv_active(vcpu)) 4146 secondary_exec_controls_setbit(vmx, 4147 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4148 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4149 else 4150 secondary_exec_controls_clearbit(vmx, 4151 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4152 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4153 } 4154 4155 vmx_update_msr_bitmap_x2apic(vcpu); 4156 } 4157 4158 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4159 { 4160 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4161 4162 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4163 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4164 4165 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 4166 exec_control &= ~CPU_BASED_TPR_SHADOW; 4167 #ifdef CONFIG_X86_64 4168 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4169 CPU_BASED_CR8_LOAD_EXITING; 4170 #endif 4171 } 4172 if (!enable_ept) 4173 exec_control |= CPU_BASED_CR3_STORE_EXITING | 4174 CPU_BASED_CR3_LOAD_EXITING | 4175 CPU_BASED_INVLPG_EXITING; 4176 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4177 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4178 CPU_BASED_MONITOR_EXITING); 4179 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4180 exec_control &= ~CPU_BASED_HLT_EXITING; 4181 return exec_control; 4182 } 4183 4184 /* 4185 * Adjust a single secondary execution control bit to intercept/allow an 4186 * instruction in the guest. This is usually done based on whether or not a 4187 * feature has been exposed to the guest in order to correctly emulate faults. 4188 */ 4189 static inline void 4190 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4191 u32 control, bool enabled, bool exiting) 4192 { 4193 /* 4194 * If the control is for an opt-in feature, clear the control if the 4195 * feature is not exposed to the guest, i.e. not enabled. If the 4196 * control is opt-out, i.e. an exiting control, clear the control if 4197 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4198 * disabled for the associated instruction. Note, the caller is 4199 * responsible presetting exec_control to set all supported bits. 4200 */ 4201 if (enabled == exiting) 4202 *exec_control &= ~control; 4203 4204 /* 4205 * Update the nested MSR settings so that a nested VMM can/can't set 4206 * controls for features that are/aren't exposed to the guest. 4207 */ 4208 if (nested) { 4209 if (enabled) 4210 vmx->nested.msrs.secondary_ctls_high |= control; 4211 else 4212 vmx->nested.msrs.secondary_ctls_high &= ~control; 4213 } 4214 } 4215 4216 /* 4217 * Wrapper macro for the common case of adjusting a secondary execution control 4218 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4219 * verifies that the control is actually supported by KVM and hardware. 4220 */ 4221 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4222 ({ \ 4223 bool __enabled; \ 4224 \ 4225 if (cpu_has_vmx_##name()) { \ 4226 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4227 X86_FEATURE_##feat_name); \ 4228 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4229 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4230 } \ 4231 }) 4232 4233 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4234 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4235 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4236 4237 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4238 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4239 4240 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4241 { 4242 struct kvm_vcpu *vcpu = &vmx->vcpu; 4243 4244 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4245 4246 if (vmx_pt_mode_is_system()) 4247 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4248 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4249 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4250 if (vmx->vpid == 0) 4251 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4252 if (!enable_ept) { 4253 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4254 enable_unrestricted_guest = 0; 4255 } 4256 if (!enable_unrestricted_guest) 4257 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4258 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4259 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4260 if (!kvm_vcpu_apicv_active(vcpu)) 4261 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4262 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4263 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4264 4265 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4266 * in vmx_set_cr4. */ 4267 exec_control &= ~SECONDARY_EXEC_DESC; 4268 4269 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4270 (handle_vmptrld). 4271 We can NOT enable shadow_vmcs here because we don't have yet 4272 a current VMCS12 4273 */ 4274 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4275 4276 /* 4277 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4278 * it needs to be set here when dirty logging is already active, e.g. 4279 * if this vCPU was created after dirty logging was enabled. 4280 */ 4281 if (!vcpu->kvm->arch.cpu_dirty_logging_count) 4282 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4283 4284 if (cpu_has_vmx_xsaves()) { 4285 /* Exposing XSAVES only when XSAVE is exposed */ 4286 bool xsaves_enabled = 4287 boot_cpu_has(X86_FEATURE_XSAVE) && 4288 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4289 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4290 4291 vcpu->arch.xsaves_enabled = xsaves_enabled; 4292 4293 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4294 SECONDARY_EXEC_XSAVES, 4295 xsaves_enabled, false); 4296 } 4297 4298 /* 4299 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4300 * feature is exposed to the guest. This creates a virtualization hole 4301 * if both are supported in hardware but only one is exposed to the 4302 * guest, but letting the guest execute RDTSCP or RDPID when either one 4303 * is advertised is preferable to emulating the advertised instruction 4304 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4305 */ 4306 if (cpu_has_vmx_rdtscp()) { 4307 bool rdpid_or_rdtscp_enabled = 4308 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4309 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4310 4311 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4312 SECONDARY_EXEC_ENABLE_RDTSCP, 4313 rdpid_or_rdtscp_enabled, false); 4314 } 4315 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4316 4317 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4318 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4319 4320 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4321 ENABLE_USR_WAIT_PAUSE, false); 4322 4323 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4324 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4325 4326 return exec_control; 4327 } 4328 4329 #define VMX_XSS_EXIT_BITMAP 0 4330 4331 /* 4332 * Noting that the initialization of Guest-state Area of VMCS is in 4333 * vmx_vcpu_reset(). 4334 */ 4335 static void init_vmcs(struct vcpu_vmx *vmx) 4336 { 4337 if (nested) 4338 nested_vmx_set_vmcs_shadowing_bitmap(); 4339 4340 if (cpu_has_vmx_msr_bitmap()) 4341 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4342 4343 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ 4344 4345 /* Control */ 4346 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4347 4348 exec_controls_set(vmx, vmx_exec_control(vmx)); 4349 4350 if (cpu_has_secondary_exec_ctrls()) 4351 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4352 4353 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4354 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4355 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4356 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4357 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4358 4359 vmcs_write16(GUEST_INTR_STATUS, 0); 4360 4361 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4362 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4363 } 4364 4365 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4366 vmcs_write32(PLE_GAP, ple_gap); 4367 vmx->ple_window = ple_window; 4368 vmx->ple_window_dirty = true; 4369 } 4370 4371 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4372 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4373 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4374 4375 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4376 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4377 vmx_set_constant_host_state(vmx); 4378 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4379 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4380 4381 if (cpu_has_vmx_vmfunc()) 4382 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4383 4384 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4385 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4386 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4387 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4388 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4389 4390 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4391 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4392 4393 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4394 4395 /* 22.2.1, 20.8.1 */ 4396 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4397 4398 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS; 4399 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4400 4401 set_cr4_guest_host_mask(vmx); 4402 4403 if (vmx->vpid != 0) 4404 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4405 4406 if (cpu_has_vmx_xsaves()) 4407 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4408 4409 if (enable_pml) { 4410 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4411 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4412 } 4413 4414 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4415 4416 if (vmx_pt_mode_is_host_guest()) { 4417 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4418 /* Bit[6~0] are forced to 1, writes are ignored. */ 4419 vmx->pt_desc.guest.output_mask = 0x7F; 4420 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4421 } 4422 4423 vmcs_write32(GUEST_SYSENTER_CS, 0); 4424 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4425 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4426 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4427 4428 if (cpu_has_vmx_tpr_shadow()) { 4429 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4430 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4431 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4432 __pa(vmx->vcpu.arch.apic->regs)); 4433 vmcs_write32(TPR_THRESHOLD, 0); 4434 } 4435 4436 vmx_setup_uret_msrs(vmx); 4437 } 4438 4439 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4440 { 4441 struct vcpu_vmx *vmx = to_vmx(vcpu); 4442 4443 vmx->rmode.vm86_active = 0; 4444 vmx->spec_ctrl = 0; 4445 4446 vmx->msr_ia32_umwait_control = 0; 4447 4448 vmx->hv_deadline_tsc = -1; 4449 kvm_set_cr8(vcpu, 0); 4450 4451 vmx_segment_cache_clear(vmx); 4452 4453 seg_setup(VCPU_SREG_CS); 4454 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4455 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4456 4457 seg_setup(VCPU_SREG_DS); 4458 seg_setup(VCPU_SREG_ES); 4459 seg_setup(VCPU_SREG_FS); 4460 seg_setup(VCPU_SREG_GS); 4461 seg_setup(VCPU_SREG_SS); 4462 4463 vmcs_write16(GUEST_TR_SELECTOR, 0); 4464 vmcs_writel(GUEST_TR_BASE, 0); 4465 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4466 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4467 4468 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4469 vmcs_writel(GUEST_LDTR_BASE, 0); 4470 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4471 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4472 4473 vmcs_writel(GUEST_GDTR_BASE, 0); 4474 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4475 4476 vmcs_writel(GUEST_IDTR_BASE, 0); 4477 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4478 4479 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4480 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4481 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4482 if (kvm_mpx_supported()) 4483 vmcs_write64(GUEST_BNDCFGS, 0); 4484 4485 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4486 4487 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4488 4489 vpid_sync_context(vmx->vpid); 4490 } 4491 4492 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4493 { 4494 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4495 } 4496 4497 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4498 { 4499 if (!enable_vnmi || 4500 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4501 vmx_enable_irq_window(vcpu); 4502 return; 4503 } 4504 4505 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4506 } 4507 4508 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4509 { 4510 struct vcpu_vmx *vmx = to_vmx(vcpu); 4511 uint32_t intr; 4512 int irq = vcpu->arch.interrupt.nr; 4513 4514 trace_kvm_inj_virq(irq); 4515 4516 ++vcpu->stat.irq_injections; 4517 if (vmx->rmode.vm86_active) { 4518 int inc_eip = 0; 4519 if (vcpu->arch.interrupt.soft) 4520 inc_eip = vcpu->arch.event_exit_inst_len; 4521 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4522 return; 4523 } 4524 intr = irq | INTR_INFO_VALID_MASK; 4525 if (vcpu->arch.interrupt.soft) { 4526 intr |= INTR_TYPE_SOFT_INTR; 4527 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4528 vmx->vcpu.arch.event_exit_inst_len); 4529 } else 4530 intr |= INTR_TYPE_EXT_INTR; 4531 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4532 4533 vmx_clear_hlt(vcpu); 4534 } 4535 4536 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4537 { 4538 struct vcpu_vmx *vmx = to_vmx(vcpu); 4539 4540 if (!enable_vnmi) { 4541 /* 4542 * Tracking the NMI-blocked state in software is built upon 4543 * finding the next open IRQ window. This, in turn, depends on 4544 * well-behaving guests: They have to keep IRQs disabled at 4545 * least as long as the NMI handler runs. Otherwise we may 4546 * cause NMI nesting, maybe breaking the guest. But as this is 4547 * highly unlikely, we can live with the residual risk. 4548 */ 4549 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4550 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4551 } 4552 4553 ++vcpu->stat.nmi_injections; 4554 vmx->loaded_vmcs->nmi_known_unmasked = false; 4555 4556 if (vmx->rmode.vm86_active) { 4557 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4558 return; 4559 } 4560 4561 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4562 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4563 4564 vmx_clear_hlt(vcpu); 4565 } 4566 4567 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4568 { 4569 struct vcpu_vmx *vmx = to_vmx(vcpu); 4570 bool masked; 4571 4572 if (!enable_vnmi) 4573 return vmx->loaded_vmcs->soft_vnmi_blocked; 4574 if (vmx->loaded_vmcs->nmi_known_unmasked) 4575 return false; 4576 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4577 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4578 return masked; 4579 } 4580 4581 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4582 { 4583 struct vcpu_vmx *vmx = to_vmx(vcpu); 4584 4585 if (!enable_vnmi) { 4586 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4587 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4588 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4589 } 4590 } else { 4591 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4592 if (masked) 4593 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4594 GUEST_INTR_STATE_NMI); 4595 else 4596 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4597 GUEST_INTR_STATE_NMI); 4598 } 4599 } 4600 4601 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 4602 { 4603 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4604 return false; 4605 4606 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4607 return true; 4608 4609 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4610 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 4611 GUEST_INTR_STATE_NMI)); 4612 } 4613 4614 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4615 { 4616 if (to_vmx(vcpu)->nested.nested_run_pending) 4617 return -EBUSY; 4618 4619 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 4620 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4621 return -EBUSY; 4622 4623 return !vmx_nmi_blocked(vcpu); 4624 } 4625 4626 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 4627 { 4628 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4629 return false; 4630 4631 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 4632 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4633 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4634 } 4635 4636 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4637 { 4638 if (to_vmx(vcpu)->nested.nested_run_pending) 4639 return -EBUSY; 4640 4641 /* 4642 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 4643 * e.g. if the IRQ arrived asynchronously after checking nested events. 4644 */ 4645 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4646 return -EBUSY; 4647 4648 return !vmx_interrupt_blocked(vcpu); 4649 } 4650 4651 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4652 { 4653 void __user *ret; 4654 4655 if (enable_unrestricted_guest) 4656 return 0; 4657 4658 mutex_lock(&kvm->slots_lock); 4659 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4660 PAGE_SIZE * 3); 4661 mutex_unlock(&kvm->slots_lock); 4662 4663 if (IS_ERR(ret)) 4664 return PTR_ERR(ret); 4665 4666 to_kvm_vmx(kvm)->tss_addr = addr; 4667 4668 return init_rmode_tss(kvm, ret); 4669 } 4670 4671 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4672 { 4673 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4674 return 0; 4675 } 4676 4677 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4678 { 4679 switch (vec) { 4680 case BP_VECTOR: 4681 /* 4682 * Update instruction length as we may reinject the exception 4683 * from user space while in guest debugging mode. 4684 */ 4685 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4686 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4687 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4688 return false; 4689 fallthrough; 4690 case DB_VECTOR: 4691 return !(vcpu->guest_debug & 4692 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 4693 case DE_VECTOR: 4694 case OF_VECTOR: 4695 case BR_VECTOR: 4696 case UD_VECTOR: 4697 case DF_VECTOR: 4698 case SS_VECTOR: 4699 case GP_VECTOR: 4700 case MF_VECTOR: 4701 return true; 4702 } 4703 return false; 4704 } 4705 4706 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4707 int vec, u32 err_code) 4708 { 4709 /* 4710 * Instruction with address size override prefix opcode 0x67 4711 * Cause the #SS fault with 0 error code in VM86 mode. 4712 */ 4713 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4714 if (kvm_emulate_instruction(vcpu, 0)) { 4715 if (vcpu->arch.halt_request) { 4716 vcpu->arch.halt_request = 0; 4717 return kvm_vcpu_halt(vcpu); 4718 } 4719 return 1; 4720 } 4721 return 0; 4722 } 4723 4724 /* 4725 * Forward all other exceptions that are valid in real mode. 4726 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4727 * the required debugging infrastructure rework. 4728 */ 4729 kvm_queue_exception(vcpu, vec); 4730 return 1; 4731 } 4732 4733 static int handle_machine_check(struct kvm_vcpu *vcpu) 4734 { 4735 /* handled by vmx_vcpu_run() */ 4736 return 1; 4737 } 4738 4739 /* 4740 * If the host has split lock detection disabled, then #AC is 4741 * unconditionally injected into the guest, which is the pre split lock 4742 * detection behaviour. 4743 * 4744 * If the host has split lock detection enabled then #AC is 4745 * only injected into the guest when: 4746 * - Guest CPL == 3 (user mode) 4747 * - Guest has #AC detection enabled in CR0 4748 * - Guest EFLAGS has AC bit set 4749 */ 4750 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 4751 { 4752 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 4753 return true; 4754 4755 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) && 4756 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 4757 } 4758 4759 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 4760 { 4761 struct vcpu_vmx *vmx = to_vmx(vcpu); 4762 struct kvm_run *kvm_run = vcpu->run; 4763 u32 intr_info, ex_no, error_code; 4764 unsigned long cr2, dr6; 4765 u32 vect_info; 4766 4767 vect_info = vmx->idt_vectoring_info; 4768 intr_info = vmx_get_intr_info(vcpu); 4769 4770 if (is_machine_check(intr_info) || is_nmi(intr_info)) 4771 return 1; /* handled by handle_exception_nmi_irqoff() */ 4772 4773 if (is_invalid_opcode(intr_info)) 4774 return handle_ud(vcpu); 4775 4776 error_code = 0; 4777 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4778 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4779 4780 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4781 WARN_ON_ONCE(!enable_vmware_backdoor); 4782 4783 /* 4784 * VMware backdoor emulation on #GP interception only handles 4785 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 4786 * error code on #GP. 4787 */ 4788 if (error_code) { 4789 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4790 return 1; 4791 } 4792 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 4793 } 4794 4795 /* 4796 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4797 * MMIO, it is better to report an internal error. 4798 * See the comments in vmx_handle_exit. 4799 */ 4800 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4801 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4802 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4803 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4804 vcpu->run->internal.ndata = 4; 4805 vcpu->run->internal.data[0] = vect_info; 4806 vcpu->run->internal.data[1] = intr_info; 4807 vcpu->run->internal.data[2] = error_code; 4808 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 4809 return 0; 4810 } 4811 4812 if (is_page_fault(intr_info)) { 4813 cr2 = vmx_get_exit_qual(vcpu); 4814 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 4815 /* 4816 * EPT will cause page fault only if we need to 4817 * detect illegal GPAs. 4818 */ 4819 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 4820 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 4821 return 1; 4822 } else 4823 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4824 } 4825 4826 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4827 4828 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4829 return handle_rmode_exception(vcpu, ex_no, error_code); 4830 4831 switch (ex_no) { 4832 case DB_VECTOR: 4833 dr6 = vmx_get_exit_qual(vcpu); 4834 if (!(vcpu->guest_debug & 4835 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4836 if (is_icebp(intr_info)) 4837 WARN_ON(!skip_emulated_instruction(vcpu)); 4838 4839 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 4840 return 1; 4841 } 4842 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 4843 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4844 fallthrough; 4845 case BP_VECTOR: 4846 /* 4847 * Update instruction length as we may reinject #BP from 4848 * user space while in guest debugging mode. Reading it for 4849 * #DB as well causes no harm, it is not used in that case. 4850 */ 4851 vmx->vcpu.arch.event_exit_inst_len = 4852 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4853 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4854 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 4855 kvm_run->debug.arch.exception = ex_no; 4856 break; 4857 case AC_VECTOR: 4858 if (vmx_guest_inject_ac(vcpu)) { 4859 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4860 return 1; 4861 } 4862 4863 /* 4864 * Handle split lock. Depending on detection mode this will 4865 * either warn and disable split lock detection for this 4866 * task or force SIGBUS on it. 4867 */ 4868 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 4869 return 1; 4870 fallthrough; 4871 default: 4872 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4873 kvm_run->ex.exception = ex_no; 4874 kvm_run->ex.error_code = error_code; 4875 break; 4876 } 4877 return 0; 4878 } 4879 4880 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 4881 { 4882 ++vcpu->stat.irq_exits; 4883 return 1; 4884 } 4885 4886 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4887 { 4888 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 4889 vcpu->mmio_needed = 0; 4890 return 0; 4891 } 4892 4893 static int handle_io(struct kvm_vcpu *vcpu) 4894 { 4895 unsigned long exit_qualification; 4896 int size, in, string; 4897 unsigned port; 4898 4899 exit_qualification = vmx_get_exit_qual(vcpu); 4900 string = (exit_qualification & 16) != 0; 4901 4902 ++vcpu->stat.io_exits; 4903 4904 if (string) 4905 return kvm_emulate_instruction(vcpu, 0); 4906 4907 port = exit_qualification >> 16; 4908 size = (exit_qualification & 7) + 1; 4909 in = (exit_qualification & 8) != 0; 4910 4911 return kvm_fast_pio(vcpu, size, port, in); 4912 } 4913 4914 static void 4915 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4916 { 4917 /* 4918 * Patch in the VMCALL instruction: 4919 */ 4920 hypercall[0] = 0x0f; 4921 hypercall[1] = 0x01; 4922 hypercall[2] = 0xc1; 4923 } 4924 4925 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 4926 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 4927 { 4928 if (is_guest_mode(vcpu)) { 4929 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4930 unsigned long orig_val = val; 4931 4932 /* 4933 * We get here when L2 changed cr0 in a way that did not change 4934 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 4935 * but did change L0 shadowed bits. So we first calculate the 4936 * effective cr0 value that L1 would like to write into the 4937 * hardware. It consists of the L2-owned bits from the new 4938 * value combined with the L1-owned bits from L1's guest_cr0. 4939 */ 4940 val = (val & ~vmcs12->cr0_guest_host_mask) | 4941 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 4942 4943 if (!nested_guest_cr0_valid(vcpu, val)) 4944 return 1; 4945 4946 if (kvm_set_cr0(vcpu, val)) 4947 return 1; 4948 vmcs_writel(CR0_READ_SHADOW, orig_val); 4949 return 0; 4950 } else { 4951 if (to_vmx(vcpu)->nested.vmxon && 4952 !nested_host_cr0_valid(vcpu, val)) 4953 return 1; 4954 4955 return kvm_set_cr0(vcpu, val); 4956 } 4957 } 4958 4959 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 4960 { 4961 if (is_guest_mode(vcpu)) { 4962 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4963 unsigned long orig_val = val; 4964 4965 /* analogously to handle_set_cr0 */ 4966 val = (val & ~vmcs12->cr4_guest_host_mask) | 4967 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 4968 if (kvm_set_cr4(vcpu, val)) 4969 return 1; 4970 vmcs_writel(CR4_READ_SHADOW, orig_val); 4971 return 0; 4972 } else 4973 return kvm_set_cr4(vcpu, val); 4974 } 4975 4976 static int handle_desc(struct kvm_vcpu *vcpu) 4977 { 4978 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 4979 return kvm_emulate_instruction(vcpu, 0); 4980 } 4981 4982 static int handle_cr(struct kvm_vcpu *vcpu) 4983 { 4984 unsigned long exit_qualification, val; 4985 int cr; 4986 int reg; 4987 int err; 4988 int ret; 4989 4990 exit_qualification = vmx_get_exit_qual(vcpu); 4991 cr = exit_qualification & 15; 4992 reg = (exit_qualification >> 8) & 15; 4993 switch ((exit_qualification >> 4) & 3) { 4994 case 0: /* mov to cr */ 4995 val = kvm_register_read(vcpu, reg); 4996 trace_kvm_cr_write(cr, val); 4997 switch (cr) { 4998 case 0: 4999 err = handle_set_cr0(vcpu, val); 5000 return kvm_complete_insn_gp(vcpu, err); 5001 case 3: 5002 WARN_ON_ONCE(enable_unrestricted_guest); 5003 5004 err = kvm_set_cr3(vcpu, val); 5005 return kvm_complete_insn_gp(vcpu, err); 5006 case 4: 5007 err = handle_set_cr4(vcpu, val); 5008 return kvm_complete_insn_gp(vcpu, err); 5009 case 8: { 5010 u8 cr8_prev = kvm_get_cr8(vcpu); 5011 u8 cr8 = (u8)val; 5012 err = kvm_set_cr8(vcpu, cr8); 5013 ret = kvm_complete_insn_gp(vcpu, err); 5014 if (lapic_in_kernel(vcpu)) 5015 return ret; 5016 if (cr8_prev <= cr8) 5017 return ret; 5018 /* 5019 * TODO: we might be squashing a 5020 * KVM_GUESTDBG_SINGLESTEP-triggered 5021 * KVM_EXIT_DEBUG here. 5022 */ 5023 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5024 return 0; 5025 } 5026 } 5027 break; 5028 case 2: /* clts */ 5029 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5030 return -EIO; 5031 case 1: /*mov from cr*/ 5032 switch (cr) { 5033 case 3: 5034 WARN_ON_ONCE(enable_unrestricted_guest); 5035 5036 val = kvm_read_cr3(vcpu); 5037 kvm_register_write(vcpu, reg, val); 5038 trace_kvm_cr_read(cr, val); 5039 return kvm_skip_emulated_instruction(vcpu); 5040 case 8: 5041 val = kvm_get_cr8(vcpu); 5042 kvm_register_write(vcpu, reg, val); 5043 trace_kvm_cr_read(cr, val); 5044 return kvm_skip_emulated_instruction(vcpu); 5045 } 5046 break; 5047 case 3: /* lmsw */ 5048 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5049 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 5050 kvm_lmsw(vcpu, val); 5051 5052 return kvm_skip_emulated_instruction(vcpu); 5053 default: 5054 break; 5055 } 5056 vcpu->run->exit_reason = 0; 5057 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5058 (int)(exit_qualification >> 4) & 3, cr); 5059 return 0; 5060 } 5061 5062 static int handle_dr(struct kvm_vcpu *vcpu) 5063 { 5064 unsigned long exit_qualification; 5065 int dr, dr7, reg; 5066 int err = 1; 5067 5068 exit_qualification = vmx_get_exit_qual(vcpu); 5069 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5070 5071 /* First, if DR does not exist, trigger UD */ 5072 if (!kvm_require_dr(vcpu, dr)) 5073 return 1; 5074 5075 if (kvm_x86_ops.get_cpl(vcpu) > 0) 5076 goto out; 5077 5078 dr7 = vmcs_readl(GUEST_DR7); 5079 if (dr7 & DR7_GD) { 5080 /* 5081 * As the vm-exit takes precedence over the debug trap, we 5082 * need to emulate the latter, either for the host or the 5083 * guest debugging itself. 5084 */ 5085 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5086 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5087 vcpu->run->debug.arch.dr7 = dr7; 5088 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5089 vcpu->run->debug.arch.exception = DB_VECTOR; 5090 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5091 return 0; 5092 } else { 5093 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5094 return 1; 5095 } 5096 } 5097 5098 if (vcpu->guest_debug == 0) { 5099 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5100 5101 /* 5102 * No more DR vmexits; force a reload of the debug registers 5103 * and reenter on this instruction. The next vmexit will 5104 * retrieve the full state of the debug registers. 5105 */ 5106 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5107 return 1; 5108 } 5109 5110 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5111 if (exit_qualification & TYPE_MOV_FROM_DR) { 5112 unsigned long val; 5113 5114 kvm_get_dr(vcpu, dr, &val); 5115 kvm_register_write(vcpu, reg, val); 5116 err = 0; 5117 } else { 5118 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5119 } 5120 5121 out: 5122 return kvm_complete_insn_gp(vcpu, err); 5123 } 5124 5125 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5126 { 5127 get_debugreg(vcpu->arch.db[0], 0); 5128 get_debugreg(vcpu->arch.db[1], 1); 5129 get_debugreg(vcpu->arch.db[2], 2); 5130 get_debugreg(vcpu->arch.db[3], 3); 5131 get_debugreg(vcpu->arch.dr6, 6); 5132 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5133 5134 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5135 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5136 5137 /* 5138 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5139 * a stale dr6 from the guest. 5140 */ 5141 set_debugreg(DR6_RESERVED, 6); 5142 } 5143 5144 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5145 { 5146 vmcs_writel(GUEST_DR7, val); 5147 } 5148 5149 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5150 { 5151 kvm_apic_update_ppr(vcpu); 5152 return 1; 5153 } 5154 5155 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5156 { 5157 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5158 5159 kvm_make_request(KVM_REQ_EVENT, vcpu); 5160 5161 ++vcpu->stat.irq_window_exits; 5162 return 1; 5163 } 5164 5165 static int handle_invlpg(struct kvm_vcpu *vcpu) 5166 { 5167 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5168 5169 kvm_mmu_invlpg(vcpu, exit_qualification); 5170 return kvm_skip_emulated_instruction(vcpu); 5171 } 5172 5173 static int handle_apic_access(struct kvm_vcpu *vcpu) 5174 { 5175 if (likely(fasteoi)) { 5176 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5177 int access_type, offset; 5178 5179 access_type = exit_qualification & APIC_ACCESS_TYPE; 5180 offset = exit_qualification & APIC_ACCESS_OFFSET; 5181 /* 5182 * Sane guest uses MOV to write EOI, with written value 5183 * not cared. So make a short-circuit here by avoiding 5184 * heavy instruction emulation. 5185 */ 5186 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5187 (offset == APIC_EOI)) { 5188 kvm_lapic_set_eoi(vcpu); 5189 return kvm_skip_emulated_instruction(vcpu); 5190 } 5191 } 5192 return kvm_emulate_instruction(vcpu, 0); 5193 } 5194 5195 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5196 { 5197 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5198 int vector = exit_qualification & 0xff; 5199 5200 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5201 kvm_apic_set_eoi_accelerated(vcpu, vector); 5202 return 1; 5203 } 5204 5205 static int handle_apic_write(struct kvm_vcpu *vcpu) 5206 { 5207 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5208 u32 offset = exit_qualification & 0xfff; 5209 5210 /* APIC-write VM exit is trap-like and thus no need to adjust IP */ 5211 kvm_apic_write_nodecode(vcpu, offset); 5212 return 1; 5213 } 5214 5215 static int handle_task_switch(struct kvm_vcpu *vcpu) 5216 { 5217 struct vcpu_vmx *vmx = to_vmx(vcpu); 5218 unsigned long exit_qualification; 5219 bool has_error_code = false; 5220 u32 error_code = 0; 5221 u16 tss_selector; 5222 int reason, type, idt_v, idt_index; 5223 5224 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5225 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5226 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5227 5228 exit_qualification = vmx_get_exit_qual(vcpu); 5229 5230 reason = (u32)exit_qualification >> 30; 5231 if (reason == TASK_SWITCH_GATE && idt_v) { 5232 switch (type) { 5233 case INTR_TYPE_NMI_INTR: 5234 vcpu->arch.nmi_injected = false; 5235 vmx_set_nmi_mask(vcpu, true); 5236 break; 5237 case INTR_TYPE_EXT_INTR: 5238 case INTR_TYPE_SOFT_INTR: 5239 kvm_clear_interrupt_queue(vcpu); 5240 break; 5241 case INTR_TYPE_HARD_EXCEPTION: 5242 if (vmx->idt_vectoring_info & 5243 VECTORING_INFO_DELIVER_CODE_MASK) { 5244 has_error_code = true; 5245 error_code = 5246 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5247 } 5248 fallthrough; 5249 case INTR_TYPE_SOFT_EXCEPTION: 5250 kvm_clear_exception_queue(vcpu); 5251 break; 5252 default: 5253 break; 5254 } 5255 } 5256 tss_selector = exit_qualification; 5257 5258 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5259 type != INTR_TYPE_EXT_INTR && 5260 type != INTR_TYPE_NMI_INTR)) 5261 WARN_ON(!skip_emulated_instruction(vcpu)); 5262 5263 /* 5264 * TODO: What about debug traps on tss switch? 5265 * Are we supposed to inject them and update dr6? 5266 */ 5267 return kvm_task_switch(vcpu, tss_selector, 5268 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5269 reason, has_error_code, error_code); 5270 } 5271 5272 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5273 { 5274 unsigned long exit_qualification; 5275 gpa_t gpa; 5276 u64 error_code; 5277 5278 exit_qualification = vmx_get_exit_qual(vcpu); 5279 5280 /* 5281 * EPT violation happened while executing iret from NMI, 5282 * "blocked by NMI" bit has to be set before next VM entry. 5283 * There are errata that may cause this bit to not be set: 5284 * AAK134, BY25. 5285 */ 5286 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5287 enable_vnmi && 5288 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5289 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5290 5291 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5292 trace_kvm_page_fault(gpa, exit_qualification); 5293 5294 /* Is it a read fault? */ 5295 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5296 ? PFERR_USER_MASK : 0; 5297 /* Is it a write fault? */ 5298 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5299 ? PFERR_WRITE_MASK : 0; 5300 /* Is it a fetch fault? */ 5301 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5302 ? PFERR_FETCH_MASK : 0; 5303 /* ept page table entry is present? */ 5304 error_code |= (exit_qualification & 5305 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5306 EPT_VIOLATION_EXECUTABLE)) 5307 ? PFERR_PRESENT_MASK : 0; 5308 5309 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5310 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5311 5312 vcpu->arch.exit_qualification = exit_qualification; 5313 5314 /* 5315 * Check that the GPA doesn't exceed physical memory limits, as that is 5316 * a guest page fault. We have to emulate the instruction here, because 5317 * if the illegal address is that of a paging structure, then 5318 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5319 * would also use advanced VM-exit information for EPT violations to 5320 * reconstruct the page fault error code. 5321 */ 5322 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5323 return kvm_emulate_instruction(vcpu, 0); 5324 5325 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5326 } 5327 5328 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5329 { 5330 gpa_t gpa; 5331 5332 if (!vmx_can_emulate_instruction(vcpu, NULL, 0)) 5333 return 1; 5334 5335 /* 5336 * A nested guest cannot optimize MMIO vmexits, because we have an 5337 * nGPA here instead of the required GPA. 5338 */ 5339 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5340 if (!is_guest_mode(vcpu) && 5341 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5342 trace_kvm_fast_mmio(gpa); 5343 return kvm_skip_emulated_instruction(vcpu); 5344 } 5345 5346 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5347 } 5348 5349 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5350 { 5351 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5352 return -EIO; 5353 5354 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5355 ++vcpu->stat.nmi_window_exits; 5356 kvm_make_request(KVM_REQ_EVENT, vcpu); 5357 5358 return 1; 5359 } 5360 5361 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5362 { 5363 struct vcpu_vmx *vmx = to_vmx(vcpu); 5364 bool intr_window_requested; 5365 unsigned count = 130; 5366 5367 intr_window_requested = exec_controls_get(vmx) & 5368 CPU_BASED_INTR_WINDOW_EXITING; 5369 5370 while (vmx->emulation_required && count-- != 0) { 5371 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5372 return handle_interrupt_window(&vmx->vcpu); 5373 5374 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5375 return 1; 5376 5377 if (!kvm_emulate_instruction(vcpu, 0)) 5378 return 0; 5379 5380 if (vmx->emulation_required && !vmx->rmode.vm86_active && 5381 vcpu->arch.exception.pending) { 5382 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5383 vcpu->run->internal.suberror = 5384 KVM_INTERNAL_ERROR_EMULATION; 5385 vcpu->run->internal.ndata = 0; 5386 return 0; 5387 } 5388 5389 if (vcpu->arch.halt_request) { 5390 vcpu->arch.halt_request = 0; 5391 return kvm_vcpu_halt(vcpu); 5392 } 5393 5394 /* 5395 * Note, return 1 and not 0, vcpu_run() will invoke 5396 * xfer_to_guest_mode() which will create a proper return 5397 * code. 5398 */ 5399 if (__xfer_to_guest_mode_work_pending()) 5400 return 1; 5401 } 5402 5403 return 1; 5404 } 5405 5406 static void grow_ple_window(struct kvm_vcpu *vcpu) 5407 { 5408 struct vcpu_vmx *vmx = to_vmx(vcpu); 5409 unsigned int old = vmx->ple_window; 5410 5411 vmx->ple_window = __grow_ple_window(old, ple_window, 5412 ple_window_grow, 5413 ple_window_max); 5414 5415 if (vmx->ple_window != old) { 5416 vmx->ple_window_dirty = true; 5417 trace_kvm_ple_window_update(vcpu->vcpu_id, 5418 vmx->ple_window, old); 5419 } 5420 } 5421 5422 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5423 { 5424 struct vcpu_vmx *vmx = to_vmx(vcpu); 5425 unsigned int old = vmx->ple_window; 5426 5427 vmx->ple_window = __shrink_ple_window(old, ple_window, 5428 ple_window_shrink, 5429 ple_window); 5430 5431 if (vmx->ple_window != old) { 5432 vmx->ple_window_dirty = true; 5433 trace_kvm_ple_window_update(vcpu->vcpu_id, 5434 vmx->ple_window, old); 5435 } 5436 } 5437 5438 /* 5439 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5440 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5441 */ 5442 static int handle_pause(struct kvm_vcpu *vcpu) 5443 { 5444 if (!kvm_pause_in_guest(vcpu->kvm)) 5445 grow_ple_window(vcpu); 5446 5447 /* 5448 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5449 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5450 * never set PAUSE_EXITING and just set PLE if supported, 5451 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5452 */ 5453 kvm_vcpu_on_spin(vcpu, true); 5454 return kvm_skip_emulated_instruction(vcpu); 5455 } 5456 5457 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5458 { 5459 return 1; 5460 } 5461 5462 static int handle_invpcid(struct kvm_vcpu *vcpu) 5463 { 5464 u32 vmx_instruction_info; 5465 unsigned long type; 5466 gva_t gva; 5467 struct { 5468 u64 pcid; 5469 u64 gla; 5470 } operand; 5471 5472 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5473 kvm_queue_exception(vcpu, UD_VECTOR); 5474 return 1; 5475 } 5476 5477 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5478 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf); 5479 5480 if (type > 3) { 5481 kvm_inject_gp(vcpu, 0); 5482 return 1; 5483 } 5484 5485 /* According to the Intel instruction reference, the memory operand 5486 * is read even if it isn't needed (e.g., for type==all) 5487 */ 5488 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5489 vmx_instruction_info, false, 5490 sizeof(operand), &gva)) 5491 return 1; 5492 5493 return kvm_handle_invpcid(vcpu, type, gva); 5494 } 5495 5496 static int handle_pml_full(struct kvm_vcpu *vcpu) 5497 { 5498 unsigned long exit_qualification; 5499 5500 trace_kvm_pml_full(vcpu->vcpu_id); 5501 5502 exit_qualification = vmx_get_exit_qual(vcpu); 5503 5504 /* 5505 * PML buffer FULL happened while executing iret from NMI, 5506 * "blocked by NMI" bit has to be set before next VM entry. 5507 */ 5508 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5509 enable_vnmi && 5510 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5511 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5512 GUEST_INTR_STATE_NMI); 5513 5514 /* 5515 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5516 * here.., and there's no userspace involvement needed for PML. 5517 */ 5518 return 1; 5519 } 5520 5521 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5522 { 5523 struct vcpu_vmx *vmx = to_vmx(vcpu); 5524 5525 if (!vmx->req_immediate_exit && 5526 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 5527 kvm_lapic_expired_hv_timer(vcpu); 5528 return EXIT_FASTPATH_REENTER_GUEST; 5529 } 5530 5531 return EXIT_FASTPATH_NONE; 5532 } 5533 5534 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5535 { 5536 handle_fastpath_preemption_timer(vcpu); 5537 return 1; 5538 } 5539 5540 /* 5541 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5542 * are overwritten by nested_vmx_setup() when nested=1. 5543 */ 5544 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5545 { 5546 kvm_queue_exception(vcpu, UD_VECTOR); 5547 return 1; 5548 } 5549 5550 #ifndef CONFIG_X86_SGX_KVM 5551 static int handle_encls(struct kvm_vcpu *vcpu) 5552 { 5553 /* 5554 * SGX virtualization is disabled. There is no software enable bit for 5555 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 5556 * the guest from executing ENCLS (when SGX is supported by hardware). 5557 */ 5558 kvm_queue_exception(vcpu, UD_VECTOR); 5559 return 1; 5560 } 5561 #endif /* CONFIG_X86_SGX_KVM */ 5562 5563 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 5564 { 5565 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 5566 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 5567 return 0; 5568 } 5569 5570 /* 5571 * The exit handlers return 1 if the exit was handled fully and guest execution 5572 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5573 * to be done to userspace and return 0. 5574 */ 5575 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5576 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 5577 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5578 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5579 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5580 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5581 [EXIT_REASON_CR_ACCESS] = handle_cr, 5582 [EXIT_REASON_DR_ACCESS] = handle_dr, 5583 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 5584 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 5585 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 5586 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 5587 [EXIT_REASON_HLT] = kvm_emulate_halt, 5588 [EXIT_REASON_INVD] = kvm_emulate_invd, 5589 [EXIT_REASON_INVLPG] = handle_invlpg, 5590 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 5591 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 5592 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5593 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5594 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5595 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5596 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5597 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5598 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5599 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5600 [EXIT_REASON_VMON] = handle_vmx_instruction, 5601 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5602 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5603 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5604 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5605 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 5606 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 5607 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5608 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5609 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5610 [EXIT_REASON_LDTR_TR] = handle_desc, 5611 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5612 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5613 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5614 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 5615 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5616 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 5617 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5618 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5619 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 5620 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 5621 [EXIT_REASON_PML_FULL] = handle_pml_full, 5622 [EXIT_REASON_INVPCID] = handle_invpcid, 5623 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5624 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5625 [EXIT_REASON_ENCLS] = handle_encls, 5626 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 5627 }; 5628 5629 static const int kvm_vmx_max_exit_handlers = 5630 ARRAY_SIZE(kvm_vmx_exit_handlers); 5631 5632 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, 5633 u32 *intr_info, u32 *error_code) 5634 { 5635 struct vcpu_vmx *vmx = to_vmx(vcpu); 5636 5637 *info1 = vmx_get_exit_qual(vcpu); 5638 if (!(vmx->exit_reason.failed_vmentry)) { 5639 *info2 = vmx->idt_vectoring_info; 5640 *intr_info = vmx_get_intr_info(vcpu); 5641 if (is_exception_with_error_code(*intr_info)) 5642 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5643 else 5644 *error_code = 0; 5645 } else { 5646 *info2 = 0; 5647 *intr_info = 0; 5648 *error_code = 0; 5649 } 5650 } 5651 5652 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5653 { 5654 if (vmx->pml_pg) { 5655 __free_page(vmx->pml_pg); 5656 vmx->pml_pg = NULL; 5657 } 5658 } 5659 5660 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5661 { 5662 struct vcpu_vmx *vmx = to_vmx(vcpu); 5663 u64 *pml_buf; 5664 u16 pml_idx; 5665 5666 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5667 5668 /* Do nothing if PML buffer is empty */ 5669 if (pml_idx == (PML_ENTITY_NUM - 1)) 5670 return; 5671 5672 /* PML index always points to next available PML buffer entity */ 5673 if (pml_idx >= PML_ENTITY_NUM) 5674 pml_idx = 0; 5675 else 5676 pml_idx++; 5677 5678 pml_buf = page_address(vmx->pml_pg); 5679 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5680 u64 gpa; 5681 5682 gpa = pml_buf[pml_idx]; 5683 WARN_ON(gpa & (PAGE_SIZE - 1)); 5684 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5685 } 5686 5687 /* reset PML index */ 5688 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5689 } 5690 5691 static void vmx_dump_sel(char *name, uint32_t sel) 5692 { 5693 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5694 name, vmcs_read16(sel), 5695 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5696 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5697 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5698 } 5699 5700 static void vmx_dump_dtsel(char *name, uint32_t limit) 5701 { 5702 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5703 name, vmcs_read32(limit), 5704 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5705 } 5706 5707 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 5708 { 5709 unsigned int i; 5710 struct vmx_msr_entry *e; 5711 5712 pr_err("MSR %s:\n", name); 5713 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 5714 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 5715 } 5716 5717 void dump_vmcs(struct kvm_vcpu *vcpu) 5718 { 5719 struct vcpu_vmx *vmx = to_vmx(vcpu); 5720 u32 vmentry_ctl, vmexit_ctl; 5721 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 5722 unsigned long cr4; 5723 int efer_slot; 5724 5725 if (!dump_invalid_vmcs) { 5726 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 5727 return; 5728 } 5729 5730 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5731 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5732 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5733 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5734 cr4 = vmcs_readl(GUEST_CR4); 5735 secondary_exec_control = 0; 5736 if (cpu_has_secondary_exec_ctrls()) 5737 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5738 5739 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 5740 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 5741 pr_err("*** Guest State ***\n"); 5742 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5743 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5744 vmcs_readl(CR0_GUEST_HOST_MASK)); 5745 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5746 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5747 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5748 if (cpu_has_vmx_ept()) { 5749 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5750 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5751 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5752 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5753 } 5754 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5755 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5756 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5757 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5758 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5759 vmcs_readl(GUEST_SYSENTER_ESP), 5760 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5761 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5762 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5763 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5764 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5765 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5766 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5767 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5768 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5769 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5770 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5771 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 5772 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 5773 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 5774 else if (efer_slot >= 0) 5775 pr_err("EFER= 0x%016llx (autoload)\n", 5776 vmx->msr_autoload.guest.val[efer_slot].value); 5777 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 5778 pr_err("EFER= 0x%016llx (effective)\n", 5779 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 5780 else 5781 pr_err("EFER= 0x%016llx (effective)\n", 5782 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 5783 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 5784 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 5785 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5786 vmcs_read64(GUEST_IA32_DEBUGCTL), 5787 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5788 if (cpu_has_load_perf_global_ctrl() && 5789 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5790 pr_err("PerfGlobCtl = 0x%016llx\n", 5791 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5792 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5793 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5794 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5795 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5796 vmcs_read32(GUEST_ACTIVITY_STATE)); 5797 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5798 pr_err("InterruptStatus = %04x\n", 5799 vmcs_read16(GUEST_INTR_STATUS)); 5800 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 5801 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 5802 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 5803 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 5804 5805 pr_err("*** Host State ***\n"); 5806 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5807 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5808 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5809 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5810 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5811 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5812 vmcs_read16(HOST_TR_SELECTOR)); 5813 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5814 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5815 vmcs_readl(HOST_TR_BASE)); 5816 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5817 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5818 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5819 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5820 vmcs_readl(HOST_CR4)); 5821 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5822 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5823 vmcs_read32(HOST_IA32_SYSENTER_CS), 5824 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5825 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 5826 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 5827 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 5828 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 5829 if (cpu_has_load_perf_global_ctrl() && 5830 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5831 pr_err("PerfGlobCtl = 0x%016llx\n", 5832 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5833 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 5834 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 5835 5836 pr_err("*** Control State ***\n"); 5837 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5838 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5839 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5840 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5841 vmcs_read32(EXCEPTION_BITMAP), 5842 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5843 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5844 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5845 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5846 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5847 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5848 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5849 vmcs_read32(VM_EXIT_INTR_INFO), 5850 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5851 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5852 pr_err(" reason=%08x qualification=%016lx\n", 5853 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5854 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5855 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5856 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5857 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5858 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5859 pr_err("TSC Multiplier = 0x%016llx\n", 5860 vmcs_read64(TSC_MULTIPLIER)); 5861 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5862 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5863 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5864 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5865 } 5866 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5867 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5868 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5869 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5870 } 5871 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 5872 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 5873 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 5874 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 5875 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 5876 pr_err("PLE Gap=%08x Window=%08x\n", 5877 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 5878 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 5879 pr_err("Virtual processor ID = 0x%04x\n", 5880 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 5881 } 5882 5883 /* 5884 * The guest has exited. See if we can fix it or if we need userspace 5885 * assistance. 5886 */ 5887 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 5888 { 5889 struct vcpu_vmx *vmx = to_vmx(vcpu); 5890 union vmx_exit_reason exit_reason = vmx->exit_reason; 5891 u32 vectoring_info = vmx->idt_vectoring_info; 5892 u16 exit_handler_index; 5893 5894 /* 5895 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 5896 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 5897 * querying dirty_bitmap, we only need to kick all vcpus out of guest 5898 * mode as if vcpus is in root mode, the PML buffer must has been 5899 * flushed already. Note, PML is never enabled in hardware while 5900 * running L2. 5901 */ 5902 if (enable_pml && !is_guest_mode(vcpu)) 5903 vmx_flush_pml_buffer(vcpu); 5904 5905 /* 5906 * We should never reach this point with a pending nested VM-Enter, and 5907 * more specifically emulation of L2 due to invalid guest state (see 5908 * below) should never happen as that means we incorrectly allowed a 5909 * nested VM-Enter with an invalid vmcs12. 5910 */ 5911 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 5912 return -EIO; 5913 5914 /* If guest state is invalid, start emulating */ 5915 if (vmx->emulation_required) 5916 return handle_invalid_guest_state(vcpu); 5917 5918 if (is_guest_mode(vcpu)) { 5919 /* 5920 * PML is never enabled when running L2, bail immediately if a 5921 * PML full exit occurs as something is horribly wrong. 5922 */ 5923 if (exit_reason.basic == EXIT_REASON_PML_FULL) 5924 goto unexpected_vmexit; 5925 5926 /* 5927 * The host physical addresses of some pages of guest memory 5928 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 5929 * Page). The CPU may write to these pages via their host 5930 * physical address while L2 is running, bypassing any 5931 * address-translation-based dirty tracking (e.g. EPT write 5932 * protection). 5933 * 5934 * Mark them dirty on every exit from L2 to prevent them from 5935 * getting out of sync with dirty tracking. 5936 */ 5937 nested_mark_vmcs12_pages_dirty(vcpu); 5938 5939 if (nested_vmx_reflect_vmexit(vcpu)) 5940 return 1; 5941 } 5942 5943 if (exit_reason.failed_vmentry) { 5944 dump_vmcs(vcpu); 5945 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5946 vcpu->run->fail_entry.hardware_entry_failure_reason 5947 = exit_reason.full; 5948 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 5949 return 0; 5950 } 5951 5952 if (unlikely(vmx->fail)) { 5953 dump_vmcs(vcpu); 5954 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5955 vcpu->run->fail_entry.hardware_entry_failure_reason 5956 = vmcs_read32(VM_INSTRUCTION_ERROR); 5957 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 5958 return 0; 5959 } 5960 5961 /* 5962 * Note: 5963 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 5964 * delivery event since it indicates guest is accessing MMIO. 5965 * The vm-exit can be triggered again after return to guest that 5966 * will cause infinite loop. 5967 */ 5968 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 5969 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 5970 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 5971 exit_reason.basic != EXIT_REASON_PML_FULL && 5972 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 5973 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) { 5974 int ndata = 3; 5975 5976 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5977 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 5978 vcpu->run->internal.data[0] = vectoring_info; 5979 vcpu->run->internal.data[1] = exit_reason.full; 5980 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 5981 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 5982 vcpu->run->internal.data[ndata++] = 5983 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5984 } 5985 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 5986 vcpu->run->internal.ndata = ndata; 5987 return 0; 5988 } 5989 5990 if (unlikely(!enable_vnmi && 5991 vmx->loaded_vmcs->soft_vnmi_blocked)) { 5992 if (!vmx_interrupt_blocked(vcpu)) { 5993 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5994 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 5995 vcpu->arch.nmi_pending) { 5996 /* 5997 * This CPU don't support us in finding the end of an 5998 * NMI-blocked window if the guest runs with IRQs 5999 * disabled. So we pull the trigger after 1 s of 6000 * futile waiting, but inform the user about this. 6001 */ 6002 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6003 "state on VCPU %d after 1 s timeout\n", 6004 __func__, vcpu->vcpu_id); 6005 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6006 } 6007 } 6008 6009 if (exit_fastpath != EXIT_FASTPATH_NONE) 6010 return 1; 6011 6012 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6013 goto unexpected_vmexit; 6014 #ifdef CONFIG_RETPOLINE 6015 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6016 return kvm_emulate_wrmsr(vcpu); 6017 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6018 return handle_preemption_timer(vcpu); 6019 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6020 return handle_interrupt_window(vcpu); 6021 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6022 return handle_external_interrupt(vcpu); 6023 else if (exit_reason.basic == EXIT_REASON_HLT) 6024 return kvm_emulate_halt(vcpu); 6025 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6026 return handle_ept_misconfig(vcpu); 6027 #endif 6028 6029 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6030 kvm_vmx_max_exit_handlers); 6031 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6032 goto unexpected_vmexit; 6033 6034 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6035 6036 unexpected_vmexit: 6037 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6038 exit_reason.full); 6039 dump_vmcs(vcpu); 6040 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6041 vcpu->run->internal.suberror = 6042 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6043 vcpu->run->internal.ndata = 2; 6044 vcpu->run->internal.data[0] = exit_reason.full; 6045 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6046 return 0; 6047 } 6048 6049 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6050 { 6051 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6052 6053 /* 6054 * Even when current exit reason is handled by KVM internally, we 6055 * still need to exit to user space when bus lock detected to inform 6056 * that there is a bus lock in guest. 6057 */ 6058 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6059 if (ret > 0) 6060 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6061 6062 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6063 return 0; 6064 } 6065 return ret; 6066 } 6067 6068 /* 6069 * Software based L1D cache flush which is used when microcode providing 6070 * the cache control MSR is not loaded. 6071 * 6072 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6073 * flush it is required to read in 64 KiB because the replacement algorithm 6074 * is not exactly LRU. This could be sized at runtime via topology 6075 * information but as all relevant affected CPUs have 32KiB L1D cache size 6076 * there is no point in doing so. 6077 */ 6078 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6079 { 6080 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6081 6082 /* 6083 * This code is only executed when the the flush mode is 'cond' or 6084 * 'always' 6085 */ 6086 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6087 bool flush_l1d; 6088 6089 /* 6090 * Clear the per-vcpu flush bit, it gets set again 6091 * either from vcpu_run() or from one of the unsafe 6092 * VMEXIT handlers. 6093 */ 6094 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6095 vcpu->arch.l1tf_flush_l1d = false; 6096 6097 /* 6098 * Clear the per-cpu flush bit, it gets set again from 6099 * the interrupt handlers. 6100 */ 6101 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6102 kvm_clear_cpu_l1tf_flush_l1d(); 6103 6104 if (!flush_l1d) 6105 return; 6106 } 6107 6108 vcpu->stat.l1d_flush++; 6109 6110 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6111 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6112 return; 6113 } 6114 6115 asm volatile( 6116 /* First ensure the pages are in the TLB */ 6117 "xorl %%eax, %%eax\n" 6118 ".Lpopulate_tlb:\n\t" 6119 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6120 "addl $4096, %%eax\n\t" 6121 "cmpl %%eax, %[size]\n\t" 6122 "jne .Lpopulate_tlb\n\t" 6123 "xorl %%eax, %%eax\n\t" 6124 "cpuid\n\t" 6125 /* Now fill the cache */ 6126 "xorl %%eax, %%eax\n" 6127 ".Lfill_cache:\n" 6128 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6129 "addl $64, %%eax\n\t" 6130 "cmpl %%eax, %[size]\n\t" 6131 "jne .Lfill_cache\n\t" 6132 "lfence\n" 6133 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6134 [size] "r" (size) 6135 : "eax", "ebx", "ecx", "edx"); 6136 } 6137 6138 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6139 { 6140 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6141 int tpr_threshold; 6142 6143 if (is_guest_mode(vcpu) && 6144 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6145 return; 6146 6147 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6148 if (is_guest_mode(vcpu)) 6149 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6150 else 6151 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6152 } 6153 6154 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6155 { 6156 struct vcpu_vmx *vmx = to_vmx(vcpu); 6157 u32 sec_exec_control; 6158 6159 if (!lapic_in_kernel(vcpu)) 6160 return; 6161 6162 if (!flexpriority_enabled && 6163 !cpu_has_vmx_virtualize_x2apic_mode()) 6164 return; 6165 6166 /* Postpone execution until vmcs01 is the current VMCS. */ 6167 if (is_guest_mode(vcpu)) { 6168 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6169 return; 6170 } 6171 6172 sec_exec_control = secondary_exec_controls_get(vmx); 6173 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6174 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6175 6176 switch (kvm_get_apic_mode(vcpu)) { 6177 case LAPIC_MODE_INVALID: 6178 WARN_ONCE(true, "Invalid local APIC state"); 6179 break; 6180 case LAPIC_MODE_DISABLED: 6181 break; 6182 case LAPIC_MODE_XAPIC: 6183 if (flexpriority_enabled) { 6184 sec_exec_control |= 6185 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6186 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6187 6188 /* 6189 * Flush the TLB, reloading the APIC access page will 6190 * only do so if its physical address has changed, but 6191 * the guest may have inserted a non-APIC mapping into 6192 * the TLB while the APIC access page was disabled. 6193 */ 6194 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6195 } 6196 break; 6197 case LAPIC_MODE_X2APIC: 6198 if (cpu_has_vmx_virtualize_x2apic_mode()) 6199 sec_exec_control |= 6200 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6201 break; 6202 } 6203 secondary_exec_controls_set(vmx, sec_exec_control); 6204 6205 vmx_update_msr_bitmap_x2apic(vcpu); 6206 } 6207 6208 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6209 { 6210 struct page *page; 6211 6212 /* Defer reload until vmcs01 is the current VMCS. */ 6213 if (is_guest_mode(vcpu)) { 6214 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6215 return; 6216 } 6217 6218 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6219 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6220 return; 6221 6222 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6223 if (is_error_page(page)) 6224 return; 6225 6226 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page)); 6227 vmx_flush_tlb_current(vcpu); 6228 6229 /* 6230 * Do not pin apic access page in memory, the MMU notifier 6231 * will call us again if it is migrated or swapped out. 6232 */ 6233 put_page(page); 6234 } 6235 6236 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6237 { 6238 u16 status; 6239 u8 old; 6240 6241 if (max_isr == -1) 6242 max_isr = 0; 6243 6244 status = vmcs_read16(GUEST_INTR_STATUS); 6245 old = status >> 8; 6246 if (max_isr != old) { 6247 status &= 0xff; 6248 status |= max_isr << 8; 6249 vmcs_write16(GUEST_INTR_STATUS, status); 6250 } 6251 } 6252 6253 static void vmx_set_rvi(int vector) 6254 { 6255 u16 status; 6256 u8 old; 6257 6258 if (vector == -1) 6259 vector = 0; 6260 6261 status = vmcs_read16(GUEST_INTR_STATUS); 6262 old = (u8)status & 0xff; 6263 if ((u8)vector != old) { 6264 status &= ~0xff; 6265 status |= (u8)vector; 6266 vmcs_write16(GUEST_INTR_STATUS, status); 6267 } 6268 } 6269 6270 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6271 { 6272 /* 6273 * When running L2, updating RVI is only relevant when 6274 * vmcs12 virtual-interrupt-delivery enabled. 6275 * However, it can be enabled only when L1 also 6276 * intercepts external-interrupts and in that case 6277 * we should not update vmcs02 RVI but instead intercept 6278 * interrupt. Therefore, do nothing when running L2. 6279 */ 6280 if (!is_guest_mode(vcpu)) 6281 vmx_set_rvi(max_irr); 6282 } 6283 6284 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6285 { 6286 struct vcpu_vmx *vmx = to_vmx(vcpu); 6287 int max_irr; 6288 bool max_irr_updated; 6289 6290 if (KVM_BUG_ON(!vcpu->arch.apicv_active, vcpu->kvm)) 6291 return -EIO; 6292 6293 if (pi_test_on(&vmx->pi_desc)) { 6294 pi_clear_on(&vmx->pi_desc); 6295 /* 6296 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6297 * But on x86 this is just a compiler barrier anyway. 6298 */ 6299 smp_mb__after_atomic(); 6300 max_irr_updated = 6301 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6302 6303 /* 6304 * If we are running L2 and L1 has a new pending interrupt 6305 * which can be injected, we should re-evaluate 6306 * what should be done with this new L1 interrupt. 6307 * If L1 intercepts external-interrupts, we should 6308 * exit from L2 to L1. Otherwise, interrupt should be 6309 * delivered directly to L2. 6310 */ 6311 if (is_guest_mode(vcpu) && max_irr_updated) { 6312 if (nested_exit_on_intr(vcpu)) 6313 kvm_vcpu_exiting_guest_mode(vcpu); 6314 else 6315 kvm_make_request(KVM_REQ_EVENT, vcpu); 6316 } 6317 } else { 6318 max_irr = kvm_lapic_find_highest_irr(vcpu); 6319 } 6320 vmx_hwapic_irr_update(vcpu, max_irr); 6321 return max_irr; 6322 } 6323 6324 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6325 { 6326 if (!kvm_vcpu_apicv_active(vcpu)) 6327 return; 6328 6329 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6330 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6331 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6332 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6333 } 6334 6335 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6336 { 6337 struct vcpu_vmx *vmx = to_vmx(vcpu); 6338 6339 pi_clear_on(&vmx->pi_desc); 6340 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6341 } 6342 6343 void vmx_do_interrupt_nmi_irqoff(unsigned long entry); 6344 6345 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, 6346 unsigned long entry) 6347 { 6348 kvm_before_interrupt(vcpu); 6349 vmx_do_interrupt_nmi_irqoff(entry); 6350 kvm_after_interrupt(vcpu); 6351 } 6352 6353 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) 6354 { 6355 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist; 6356 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6357 6358 /* if exit due to PF check for async PF */ 6359 if (is_page_fault(intr_info)) 6360 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6361 /* Handle machine checks before interrupts are enabled */ 6362 else if (is_machine_check(intr_info)) 6363 kvm_machine_check(); 6364 /* We need to handle NMIs before interrupts are enabled */ 6365 else if (is_nmi(intr_info)) 6366 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry); 6367 } 6368 6369 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6370 { 6371 u32 intr_info = vmx_get_intr_info(vcpu); 6372 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6373 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6374 6375 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6376 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6377 return; 6378 6379 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc)); 6380 } 6381 6382 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6383 { 6384 struct vcpu_vmx *vmx = to_vmx(vcpu); 6385 6386 if (vmx->emulation_required) 6387 return; 6388 6389 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6390 handle_external_interrupt_irqoff(vcpu); 6391 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6392 handle_exception_nmi_irqoff(vmx); 6393 } 6394 6395 /* 6396 * The kvm parameter can be NULL (module initialization, or invocation before 6397 * VM creation). Be sure to check the kvm parameter before using it. 6398 */ 6399 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6400 { 6401 switch (index) { 6402 case MSR_IA32_SMBASE: 6403 /* 6404 * We cannot do SMM unless we can run the guest in big 6405 * real mode. 6406 */ 6407 return enable_unrestricted_guest || emulate_invalid_guest_state; 6408 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 6409 return nested; 6410 case MSR_AMD64_VIRT_SPEC_CTRL: 6411 /* This is AMD only. */ 6412 return false; 6413 default: 6414 return true; 6415 } 6416 } 6417 6418 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6419 { 6420 u32 exit_intr_info; 6421 bool unblock_nmi; 6422 u8 vector; 6423 bool idtv_info_valid; 6424 6425 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6426 6427 if (enable_vnmi) { 6428 if (vmx->loaded_vmcs->nmi_known_unmasked) 6429 return; 6430 6431 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 6432 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6433 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6434 /* 6435 * SDM 3: 27.7.1.2 (September 2008) 6436 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6437 * a guest IRET fault. 6438 * SDM 3: 23.2.2 (September 2008) 6439 * Bit 12 is undefined in any of the following cases: 6440 * If the VM exit sets the valid bit in the IDT-vectoring 6441 * information field. 6442 * If the VM exit is due to a double fault. 6443 */ 6444 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6445 vector != DF_VECTOR && !idtv_info_valid) 6446 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6447 GUEST_INTR_STATE_NMI); 6448 else 6449 vmx->loaded_vmcs->nmi_known_unmasked = 6450 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6451 & GUEST_INTR_STATE_NMI); 6452 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6453 vmx->loaded_vmcs->vnmi_blocked_time += 6454 ktime_to_ns(ktime_sub(ktime_get(), 6455 vmx->loaded_vmcs->entry_time)); 6456 } 6457 6458 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6459 u32 idt_vectoring_info, 6460 int instr_len_field, 6461 int error_code_field) 6462 { 6463 u8 vector; 6464 int type; 6465 bool idtv_info_valid; 6466 6467 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6468 6469 vcpu->arch.nmi_injected = false; 6470 kvm_clear_exception_queue(vcpu); 6471 kvm_clear_interrupt_queue(vcpu); 6472 6473 if (!idtv_info_valid) 6474 return; 6475 6476 kvm_make_request(KVM_REQ_EVENT, vcpu); 6477 6478 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6479 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6480 6481 switch (type) { 6482 case INTR_TYPE_NMI_INTR: 6483 vcpu->arch.nmi_injected = true; 6484 /* 6485 * SDM 3: 27.7.1.2 (September 2008) 6486 * Clear bit "block by NMI" before VM entry if a NMI 6487 * delivery faulted. 6488 */ 6489 vmx_set_nmi_mask(vcpu, false); 6490 break; 6491 case INTR_TYPE_SOFT_EXCEPTION: 6492 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6493 fallthrough; 6494 case INTR_TYPE_HARD_EXCEPTION: 6495 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6496 u32 err = vmcs_read32(error_code_field); 6497 kvm_requeue_exception_e(vcpu, vector, err); 6498 } else 6499 kvm_requeue_exception(vcpu, vector); 6500 break; 6501 case INTR_TYPE_SOFT_INTR: 6502 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6503 fallthrough; 6504 case INTR_TYPE_EXT_INTR: 6505 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6506 break; 6507 default: 6508 break; 6509 } 6510 } 6511 6512 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6513 { 6514 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6515 VM_EXIT_INSTRUCTION_LEN, 6516 IDT_VECTORING_ERROR_CODE); 6517 } 6518 6519 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6520 { 6521 __vmx_complete_interrupts(vcpu, 6522 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6523 VM_ENTRY_INSTRUCTION_LEN, 6524 VM_ENTRY_EXCEPTION_ERROR_CODE); 6525 6526 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6527 } 6528 6529 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6530 { 6531 int i, nr_msrs; 6532 struct perf_guest_switch_msr *msrs; 6533 6534 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 6535 msrs = perf_guest_get_msrs(&nr_msrs); 6536 if (!msrs) 6537 return; 6538 6539 for (i = 0; i < nr_msrs; i++) 6540 if (msrs[i].host == msrs[i].guest) 6541 clear_atomic_switch_msr(vmx, msrs[i].msr); 6542 else 6543 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6544 msrs[i].host, false); 6545 } 6546 6547 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6548 { 6549 struct vcpu_vmx *vmx = to_vmx(vcpu); 6550 u64 tscl; 6551 u32 delta_tsc; 6552 6553 if (vmx->req_immediate_exit) { 6554 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 6555 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6556 } else if (vmx->hv_deadline_tsc != -1) { 6557 tscl = rdtsc(); 6558 if (vmx->hv_deadline_tsc > tscl) 6559 /* set_hv_timer ensures the delta fits in 32-bits */ 6560 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6561 cpu_preemption_timer_multi); 6562 else 6563 delta_tsc = 0; 6564 6565 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 6566 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6567 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 6568 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 6569 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 6570 } 6571 } 6572 6573 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6574 { 6575 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6576 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6577 vmcs_writel(HOST_RSP, host_rsp); 6578 } 6579 } 6580 6581 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 6582 { 6583 switch (to_vmx(vcpu)->exit_reason.basic) { 6584 case EXIT_REASON_MSR_WRITE: 6585 return handle_fastpath_set_msr_irqoff(vcpu); 6586 case EXIT_REASON_PREEMPTION_TIMER: 6587 return handle_fastpath_preemption_timer(vcpu); 6588 default: 6589 return EXIT_FASTPATH_NONE; 6590 } 6591 } 6592 6593 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 6594 struct vcpu_vmx *vmx) 6595 { 6596 kvm_guest_enter_irqoff(); 6597 6598 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6599 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6600 vmx_l1d_flush(vcpu); 6601 else if (static_branch_unlikely(&mds_user_clear)) 6602 mds_clear_cpu_buffers(); 6603 6604 if (vcpu->arch.cr2 != native_read_cr2()) 6605 native_write_cr2(vcpu->arch.cr2); 6606 6607 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6608 vmx->loaded_vmcs->launched); 6609 6610 vcpu->arch.cr2 = native_read_cr2(); 6611 6612 kvm_guest_exit_irqoff(); 6613 } 6614 6615 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 6616 { 6617 struct vcpu_vmx *vmx = to_vmx(vcpu); 6618 unsigned long cr3, cr4; 6619 6620 /* Record the guest's net vcpu time for enforced NMI injections. */ 6621 if (unlikely(!enable_vnmi && 6622 vmx->loaded_vmcs->soft_vnmi_blocked)) 6623 vmx->loaded_vmcs->entry_time = ktime_get(); 6624 6625 /* 6626 * Don't enter VMX if guest state is invalid, let the exit handler 6627 * start emulation until we arrive back to a valid state. Synthesize a 6628 * consistency check VM-Exit due to invalid guest state and bail. 6629 */ 6630 if (unlikely(vmx->emulation_required)) { 6631 6632 /* We don't emulate invalid state of a nested guest */ 6633 vmx->fail = is_guest_mode(vcpu); 6634 6635 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 6636 vmx->exit_reason.failed_vmentry = 1; 6637 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 6638 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 6639 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 6640 vmx->exit_intr_info = 0; 6641 return EXIT_FASTPATH_NONE; 6642 } 6643 6644 trace_kvm_entry(vcpu); 6645 6646 if (vmx->ple_window_dirty) { 6647 vmx->ple_window_dirty = false; 6648 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6649 } 6650 6651 /* 6652 * We did this in prepare_switch_to_guest, because it needs to 6653 * be within srcu_read_lock. 6654 */ 6655 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 6656 6657 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 6658 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6659 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 6660 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6661 6662 cr3 = __get_current_cr3_fast(); 6663 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 6664 vmcs_writel(HOST_CR3, cr3); 6665 vmx->loaded_vmcs->host_state.cr3 = cr3; 6666 } 6667 6668 cr4 = cr4_read_shadow(); 6669 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6670 vmcs_writel(HOST_CR4, cr4); 6671 vmx->loaded_vmcs->host_state.cr4 = cr4; 6672 } 6673 6674 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 6675 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 6676 set_debugreg(vcpu->arch.dr6, 6); 6677 6678 /* When single-stepping over STI and MOV SS, we must clear the 6679 * corresponding interruptibility bits in the guest state. Otherwise 6680 * vmentry fails as it then expects bit 14 (BS) in pending debug 6681 * exceptions being set, but that's not correct for the guest debugging 6682 * case. */ 6683 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6684 vmx_set_interrupt_shadow(vcpu, 0); 6685 6686 kvm_load_guest_xsave_state(vcpu); 6687 6688 pt_guest_enter(vmx); 6689 6690 atomic_switch_perf_msrs(vmx); 6691 if (intel_pmu_lbr_is_enabled(vcpu)) 6692 vmx_passthrough_lbr_msrs(vcpu); 6693 6694 if (enable_preemption_timer) 6695 vmx_update_hv_timer(vcpu); 6696 6697 kvm_wait_lapic_expire(vcpu); 6698 6699 /* 6700 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6701 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6702 * is no need to worry about the conditional branch over the wrmsr 6703 * being speculatively taken. 6704 */ 6705 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6706 6707 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 6708 vmx_vcpu_enter_exit(vcpu, vmx); 6709 6710 /* 6711 * We do not use IBRS in the kernel. If this vCPU has used the 6712 * SPEC_CTRL MSR it may have left it on; save the value and 6713 * turn it off. This is much more efficient than blindly adding 6714 * it to the atomic save/restore list. Especially as the former 6715 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6716 * 6717 * For non-nested case: 6718 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6719 * save it. 6720 * 6721 * For nested case: 6722 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6723 * save it. 6724 */ 6725 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 6726 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6727 6728 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6729 6730 /* All fields are clean at this point */ 6731 if (static_branch_unlikely(&enable_evmcs)) { 6732 current_evmcs->hv_clean_fields |= 6733 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6734 6735 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 6736 } 6737 6738 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6739 if (vmx->host_debugctlmsr) 6740 update_debugctlmsr(vmx->host_debugctlmsr); 6741 6742 #ifndef CONFIG_X86_64 6743 /* 6744 * The sysexit path does not restore ds/es, so we must set them to 6745 * a reasonable value ourselves. 6746 * 6747 * We can't defer this to vmx_prepare_switch_to_host() since that 6748 * function may be executed in interrupt context, which saves and 6749 * restore segments around it, nullifying its effect. 6750 */ 6751 loadsegment(ds, __USER_DS); 6752 loadsegment(es, __USER_DS); 6753 #endif 6754 6755 vmx_register_cache_reset(vcpu); 6756 6757 pt_guest_exit(vmx); 6758 6759 kvm_load_host_xsave_state(vcpu); 6760 6761 if (is_guest_mode(vcpu)) { 6762 /* 6763 * Track VMLAUNCH/VMRESUME that have made past guest state 6764 * checking. 6765 */ 6766 if (vmx->nested.nested_run_pending && 6767 !vmx->exit_reason.failed_vmentry) 6768 ++vcpu->stat.nested_run; 6769 6770 vmx->nested.nested_run_pending = 0; 6771 } 6772 6773 vmx->idt_vectoring_info = 0; 6774 6775 if (unlikely(vmx->fail)) { 6776 vmx->exit_reason.full = 0xdead; 6777 return EXIT_FASTPATH_NONE; 6778 } 6779 6780 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 6781 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 6782 kvm_machine_check(); 6783 6784 if (likely(!vmx->exit_reason.failed_vmentry)) 6785 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6786 6787 trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX); 6788 6789 if (unlikely(vmx->exit_reason.failed_vmentry)) 6790 return EXIT_FASTPATH_NONE; 6791 6792 vmx->loaded_vmcs->launched = 1; 6793 6794 vmx_recover_nmi_blocking(vmx); 6795 vmx_complete_interrupts(vmx); 6796 6797 if (is_guest_mode(vcpu)) 6798 return EXIT_FASTPATH_NONE; 6799 6800 return vmx_exit_handlers_fastpath(vcpu); 6801 } 6802 6803 static void vmx_free_vcpu(struct kvm_vcpu *vcpu) 6804 { 6805 struct vcpu_vmx *vmx = to_vmx(vcpu); 6806 6807 if (enable_pml) 6808 vmx_destroy_pml_buffer(vmx); 6809 free_vpid(vmx->vpid); 6810 nested_vmx_free_vcpu(vcpu); 6811 free_loaded_vmcs(vmx->loaded_vmcs); 6812 } 6813 6814 static int vmx_create_vcpu(struct kvm_vcpu *vcpu) 6815 { 6816 struct vmx_uret_msr *tsx_ctrl; 6817 struct vcpu_vmx *vmx; 6818 int i, cpu, err; 6819 6820 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 6821 vmx = to_vmx(vcpu); 6822 6823 err = -ENOMEM; 6824 6825 vmx->vpid = allocate_vpid(); 6826 6827 /* 6828 * If PML is turned on, failure on enabling PML just results in failure 6829 * of creating the vcpu, therefore we can simplify PML logic (by 6830 * avoiding dealing with cases, such as enabling PML partially on vcpus 6831 * for the guest), etc. 6832 */ 6833 if (enable_pml) { 6834 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 6835 if (!vmx->pml_pg) 6836 goto free_vpid; 6837 } 6838 6839 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 6840 vmx->guest_uret_msrs[i].data = 0; 6841 vmx->guest_uret_msrs[i].mask = -1ull; 6842 } 6843 if (boot_cpu_has(X86_FEATURE_RTM)) { 6844 /* 6845 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 6846 * Keep the host value unchanged to avoid changing CPUID bits 6847 * under the host kernel's feet. 6848 */ 6849 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 6850 if (tsx_ctrl) 6851 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 6852 } 6853 6854 err = alloc_loaded_vmcs(&vmx->vmcs01); 6855 if (err < 0) 6856 goto free_pml; 6857 6858 /* The MSR bitmap starts with all ones */ 6859 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6860 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6861 6862 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 6863 #ifdef CONFIG_X86_64 6864 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 6865 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 6866 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 6867 #endif 6868 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 6869 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 6870 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 6871 if (kvm_cstate_in_guest(vcpu->kvm)) { 6872 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 6873 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 6874 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 6875 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 6876 } 6877 6878 vmx->loaded_vmcs = &vmx->vmcs01; 6879 cpu = get_cpu(); 6880 vmx_vcpu_load(vcpu, cpu); 6881 vcpu->cpu = cpu; 6882 init_vmcs(vmx); 6883 vmx_vcpu_put(vcpu); 6884 put_cpu(); 6885 if (cpu_need_virtualize_apic_accesses(vcpu)) { 6886 err = alloc_apic_access_page(vcpu->kvm); 6887 if (err) 6888 goto free_vmcs; 6889 } 6890 6891 if (enable_ept && !enable_unrestricted_guest) { 6892 err = init_rmode_identity_map(vcpu->kvm); 6893 if (err) 6894 goto free_vmcs; 6895 } 6896 6897 if (nested) 6898 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 6899 else 6900 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs)); 6901 6902 vcpu_setup_sgx_lepubkeyhash(vcpu); 6903 6904 vmx->nested.posted_intr_nv = -1; 6905 vmx->nested.current_vmptr = -1ull; 6906 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 6907 6908 vcpu->arch.microcode_version = 0x100000000ULL; 6909 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 6910 6911 /* 6912 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 6913 * or POSTED_INTR_WAKEUP_VECTOR. 6914 */ 6915 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 6916 vmx->pi_desc.sn = 1; 6917 6918 return 0; 6919 6920 free_vmcs: 6921 free_loaded_vmcs(vmx->loaded_vmcs); 6922 free_pml: 6923 vmx_destroy_pml_buffer(vmx); 6924 free_vpid: 6925 free_vpid(vmx->vpid); 6926 return err; 6927 } 6928 6929 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6930 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6931 6932 static int vmx_vm_init(struct kvm *kvm) 6933 { 6934 if (!ple_gap) 6935 kvm->arch.pause_in_guest = true; 6936 6937 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 6938 switch (l1tf_mitigation) { 6939 case L1TF_MITIGATION_OFF: 6940 case L1TF_MITIGATION_FLUSH_NOWARN: 6941 /* 'I explicitly don't care' is set */ 6942 break; 6943 case L1TF_MITIGATION_FLUSH: 6944 case L1TF_MITIGATION_FLUSH_NOSMT: 6945 case L1TF_MITIGATION_FULL: 6946 /* 6947 * Warn upon starting the first VM in a potentially 6948 * insecure environment. 6949 */ 6950 if (sched_smt_active()) 6951 pr_warn_once(L1TF_MSG_SMT); 6952 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 6953 pr_warn_once(L1TF_MSG_L1D); 6954 break; 6955 case L1TF_MITIGATION_FULL_FORCE: 6956 /* Flush is enforced */ 6957 break; 6958 } 6959 } 6960 return 0; 6961 } 6962 6963 static int __init vmx_check_processor_compat(void) 6964 { 6965 struct vmcs_config vmcs_conf; 6966 struct vmx_capability vmx_cap; 6967 6968 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 6969 !this_cpu_has(X86_FEATURE_VMX)) { 6970 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id()); 6971 return -EIO; 6972 } 6973 6974 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 6975 return -EIO; 6976 if (nested) 6977 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept); 6978 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 6979 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 6980 smp_processor_id()); 6981 return -EIO; 6982 } 6983 return 0; 6984 } 6985 6986 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 6987 { 6988 u8 cache; 6989 u64 ipat = 0; 6990 6991 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 6992 * memory aliases with conflicting memory types and sometimes MCEs. 6993 * We have to be careful as to what are honored and when. 6994 * 6995 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 6996 * UC. The effective memory type is UC or WC depending on guest PAT. 6997 * This was historically the source of MCEs and we want to be 6998 * conservative. 6999 * 7000 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7001 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7002 * EPT memory type is set to WB. The effective memory type is forced 7003 * WB. 7004 * 7005 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7006 * EPT memory type is used to emulate guest CD/MTRR. 7007 */ 7008 7009 if (is_mmio) { 7010 cache = MTRR_TYPE_UNCACHABLE; 7011 goto exit; 7012 } 7013 7014 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 7015 ipat = VMX_EPT_IPAT_BIT; 7016 cache = MTRR_TYPE_WRBACK; 7017 goto exit; 7018 } 7019 7020 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 7021 ipat = VMX_EPT_IPAT_BIT; 7022 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7023 cache = MTRR_TYPE_WRBACK; 7024 else 7025 cache = MTRR_TYPE_UNCACHABLE; 7026 goto exit; 7027 } 7028 7029 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); 7030 7031 exit: 7032 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; 7033 } 7034 7035 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7036 { 7037 /* 7038 * These bits in the secondary execution controls field 7039 * are dynamic, the others are mostly based on the hypervisor 7040 * architecture and the guest's CPUID. Do not touch the 7041 * dynamic bits. 7042 */ 7043 u32 mask = 7044 SECONDARY_EXEC_SHADOW_VMCS | 7045 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7046 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7047 SECONDARY_EXEC_DESC; 7048 7049 u32 cur_ctl = secondary_exec_controls_get(vmx); 7050 7051 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7052 } 7053 7054 /* 7055 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7056 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7057 */ 7058 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7059 { 7060 struct vcpu_vmx *vmx = to_vmx(vcpu); 7061 struct kvm_cpuid_entry2 *entry; 7062 7063 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7064 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7065 7066 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7067 if (entry && (entry->_reg & (_cpuid_mask))) \ 7068 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7069 } while (0) 7070 7071 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 7072 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7073 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7074 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7075 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7076 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7077 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7078 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7079 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7080 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7081 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7082 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7083 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7084 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7085 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7086 7087 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 7088 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7089 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7090 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7091 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7092 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7093 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7094 7095 #undef cr4_fixed1_update 7096 } 7097 7098 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 7099 { 7100 struct vcpu_vmx *vmx = to_vmx(vcpu); 7101 7102 if (kvm_mpx_supported()) { 7103 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 7104 7105 if (mpx_enabled) { 7106 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 7107 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 7108 } else { 7109 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 7110 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 7111 } 7112 } 7113 } 7114 7115 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7116 { 7117 struct vcpu_vmx *vmx = to_vmx(vcpu); 7118 struct kvm_cpuid_entry2 *best = NULL; 7119 int i; 7120 7121 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7122 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 7123 if (!best) 7124 return; 7125 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7126 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7127 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7128 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7129 } 7130 7131 /* Get the number of configurable Address Ranges for filtering */ 7132 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps, 7133 PT_CAP_num_address_ranges); 7134 7135 /* Initialize and clear the no dependency bits */ 7136 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7137 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC); 7138 7139 /* 7140 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7141 * will inject an #GP 7142 */ 7143 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7144 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7145 7146 /* 7147 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7148 * PSBFreq can be set 7149 */ 7150 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7151 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7152 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7153 7154 /* 7155 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and 7156 * MTCFreq can be set 7157 */ 7158 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7159 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7160 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE); 7161 7162 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7163 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7164 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7165 RTIT_CTL_PTW_EN); 7166 7167 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7168 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7169 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7170 7171 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7172 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7173 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7174 7175 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7176 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7177 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7178 7179 /* unmask address range configure area */ 7180 for (i = 0; i < vmx->pt_desc.addr_range; i++) 7181 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7182 } 7183 7184 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7185 { 7186 struct vcpu_vmx *vmx = to_vmx(vcpu); 7187 7188 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7189 vcpu->arch.xsaves_enabled = false; 7190 7191 vmx_setup_uret_msrs(vmx); 7192 7193 if (cpu_has_secondary_exec_ctrls()) 7194 vmcs_set_secondary_exec_control(vmx, 7195 vmx_secondary_exec_control(vmx)); 7196 7197 if (nested_vmx_allowed(vcpu)) 7198 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7199 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7200 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7201 else 7202 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7203 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7204 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7205 7206 if (nested_vmx_allowed(vcpu)) { 7207 nested_vmx_cr_fixed1_bits_update(vcpu); 7208 nested_vmx_entry_exit_ctls_update(vcpu); 7209 } 7210 7211 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7212 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7213 update_intel_pt_cfg(vcpu); 7214 7215 if (boot_cpu_has(X86_FEATURE_RTM)) { 7216 struct vmx_uret_msr *msr; 7217 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7218 if (msr) { 7219 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7220 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7221 } 7222 } 7223 7224 set_cr4_guest_host_mask(vmx); 7225 7226 vmx_write_encls_bitmap(vcpu, NULL); 7227 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7228 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7229 else 7230 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7231 7232 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7233 vmx->msr_ia32_feature_control_valid_bits |= 7234 FEAT_CTL_SGX_LC_ENABLED; 7235 else 7236 vmx->msr_ia32_feature_control_valid_bits &= 7237 ~FEAT_CTL_SGX_LC_ENABLED; 7238 7239 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7240 vmx_update_exception_bitmap(vcpu); 7241 } 7242 7243 static __init void vmx_set_cpu_caps(void) 7244 { 7245 kvm_set_cpu_caps(); 7246 7247 /* CPUID 0x1 */ 7248 if (nested) 7249 kvm_cpu_cap_set(X86_FEATURE_VMX); 7250 7251 /* CPUID 0x7 */ 7252 if (kvm_mpx_supported()) 7253 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7254 if (!cpu_has_vmx_invpcid()) 7255 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7256 if (vmx_pt_mode_is_host_guest()) 7257 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7258 7259 if (!enable_sgx) { 7260 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7261 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7262 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7263 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7264 } 7265 7266 if (vmx_umip_emulated()) 7267 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7268 7269 /* CPUID 0xD.1 */ 7270 supported_xss = 0; 7271 if (!cpu_has_vmx_xsaves()) 7272 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7273 7274 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7275 if (!cpu_has_vmx_rdtscp()) { 7276 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7277 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7278 } 7279 7280 if (cpu_has_vmx_waitpkg()) 7281 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7282 } 7283 7284 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7285 { 7286 to_vmx(vcpu)->req_immediate_exit = true; 7287 } 7288 7289 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7290 struct x86_instruction_info *info) 7291 { 7292 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7293 unsigned short port; 7294 bool intercept; 7295 int size; 7296 7297 if (info->intercept == x86_intercept_in || 7298 info->intercept == x86_intercept_ins) { 7299 port = info->src_val; 7300 size = info->dst_bytes; 7301 } else { 7302 port = info->dst_val; 7303 size = info->src_bytes; 7304 } 7305 7306 /* 7307 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7308 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7309 * control. 7310 * 7311 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7312 */ 7313 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7314 intercept = nested_cpu_has(vmcs12, 7315 CPU_BASED_UNCOND_IO_EXITING); 7316 else 7317 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7318 7319 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7320 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7321 } 7322 7323 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7324 struct x86_instruction_info *info, 7325 enum x86_intercept_stage stage, 7326 struct x86_exception *exception) 7327 { 7328 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7329 7330 switch (info->intercept) { 7331 /* 7332 * RDPID causes #UD if disabled through secondary execution controls. 7333 * Because it is marked as EmulateOnUD, we need to intercept it here. 7334 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7335 */ 7336 case x86_intercept_rdpid: 7337 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7338 exception->vector = UD_VECTOR; 7339 exception->error_code_valid = false; 7340 return X86EMUL_PROPAGATE_FAULT; 7341 } 7342 break; 7343 7344 case x86_intercept_in: 7345 case x86_intercept_ins: 7346 case x86_intercept_out: 7347 case x86_intercept_outs: 7348 return vmx_check_intercept_io(vcpu, info); 7349 7350 case x86_intercept_lgdt: 7351 case x86_intercept_lidt: 7352 case x86_intercept_lldt: 7353 case x86_intercept_ltr: 7354 case x86_intercept_sgdt: 7355 case x86_intercept_sidt: 7356 case x86_intercept_sldt: 7357 case x86_intercept_str: 7358 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7359 return X86EMUL_CONTINUE; 7360 7361 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7362 break; 7363 7364 /* TODO: check more intercepts... */ 7365 default: 7366 break; 7367 } 7368 7369 return X86EMUL_UNHANDLEABLE; 7370 } 7371 7372 #ifdef CONFIG_X86_64 7373 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7374 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7375 u64 divisor, u64 *result) 7376 { 7377 u64 low = a << shift, high = a >> (64 - shift); 7378 7379 /* To avoid the overflow on divq */ 7380 if (high >= divisor) 7381 return 1; 7382 7383 /* Low hold the result, high hold rem which is discarded */ 7384 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7385 "rm" (divisor), "0" (low), "1" (high)); 7386 *result = low; 7387 7388 return 0; 7389 } 7390 7391 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7392 bool *expired) 7393 { 7394 struct vcpu_vmx *vmx; 7395 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7396 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7397 7398 vmx = to_vmx(vcpu); 7399 tscl = rdtsc(); 7400 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7401 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7402 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7403 ktimer->timer_advance_ns); 7404 7405 if (delta_tsc > lapic_timer_advance_cycles) 7406 delta_tsc -= lapic_timer_advance_cycles; 7407 else 7408 delta_tsc = 0; 7409 7410 /* Convert to host delta tsc if tsc scaling is enabled */ 7411 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7412 delta_tsc && u64_shl_div_u64(delta_tsc, 7413 kvm_tsc_scaling_ratio_frac_bits, 7414 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 7415 return -ERANGE; 7416 7417 /* 7418 * If the delta tsc can't fit in the 32 bit after the multi shift, 7419 * we can't use the preemption timer. 7420 * It's possible that it fits on later vmentries, but checking 7421 * on every vmentry is costly so we just use an hrtimer. 7422 */ 7423 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7424 return -ERANGE; 7425 7426 vmx->hv_deadline_tsc = tscl + delta_tsc; 7427 *expired = !delta_tsc; 7428 return 0; 7429 } 7430 7431 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7432 { 7433 to_vmx(vcpu)->hv_deadline_tsc = -1; 7434 } 7435 #endif 7436 7437 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7438 { 7439 if (!kvm_pause_in_guest(vcpu->kvm)) 7440 shrink_ple_window(vcpu); 7441 } 7442 7443 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 7444 { 7445 struct vcpu_vmx *vmx = to_vmx(vcpu); 7446 7447 if (is_guest_mode(vcpu)) { 7448 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 7449 return; 7450 } 7451 7452 /* 7453 * Note, cpu_dirty_logging_count can be changed concurrent with this 7454 * code, but in that case another update request will be made and so 7455 * the guest will never run with a stale PML value. 7456 */ 7457 if (vcpu->kvm->arch.cpu_dirty_logging_count) 7458 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7459 else 7460 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7461 } 7462 7463 static int vmx_pre_block(struct kvm_vcpu *vcpu) 7464 { 7465 if (pi_pre_block(vcpu)) 7466 return 1; 7467 7468 if (kvm_lapic_hv_timer_in_use(vcpu)) 7469 kvm_lapic_switch_to_sw_timer(vcpu); 7470 7471 return 0; 7472 } 7473 7474 static void vmx_post_block(struct kvm_vcpu *vcpu) 7475 { 7476 if (kvm_x86_ops.set_hv_timer) 7477 kvm_lapic_switch_to_hv_timer(vcpu); 7478 7479 pi_post_block(vcpu); 7480 } 7481 7482 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7483 { 7484 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7485 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7486 FEAT_CTL_LMCE_ENABLED; 7487 else 7488 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7489 ~FEAT_CTL_LMCE_ENABLED; 7490 } 7491 7492 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 7493 { 7494 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7495 if (to_vmx(vcpu)->nested.nested_run_pending) 7496 return -EBUSY; 7497 return !is_smm(vcpu); 7498 } 7499 7500 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7501 { 7502 struct vcpu_vmx *vmx = to_vmx(vcpu); 7503 7504 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7505 if (vmx->nested.smm.guest_mode) 7506 nested_vmx_vmexit(vcpu, -1, 0, 0); 7507 7508 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7509 vmx->nested.vmxon = false; 7510 vmx_clear_hlt(vcpu); 7511 return 0; 7512 } 7513 7514 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7515 { 7516 struct vcpu_vmx *vmx = to_vmx(vcpu); 7517 int ret; 7518 7519 if (vmx->nested.smm.vmxon) { 7520 vmx->nested.vmxon = true; 7521 vmx->nested.smm.vmxon = false; 7522 } 7523 7524 if (vmx->nested.smm.guest_mode) { 7525 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7526 if (ret) 7527 return ret; 7528 7529 vmx->nested.smm.guest_mode = false; 7530 } 7531 return 0; 7532 } 7533 7534 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 7535 { 7536 /* RSM will cause a vmexit anyway. */ 7537 } 7538 7539 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 7540 { 7541 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 7542 } 7543 7544 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 7545 { 7546 if (is_guest_mode(vcpu)) { 7547 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 7548 7549 if (hrtimer_try_to_cancel(timer) == 1) 7550 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 7551 } 7552 } 7553 7554 static void hardware_unsetup(void) 7555 { 7556 if (nested) 7557 nested_vmx_hardware_unsetup(); 7558 7559 free_kvm_area(); 7560 } 7561 7562 static bool vmx_check_apicv_inhibit_reasons(ulong bit) 7563 { 7564 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 7565 BIT(APICV_INHIBIT_REASON_HYPERV); 7566 7567 return supported & BIT(bit); 7568 } 7569 7570 static struct kvm_x86_ops vmx_x86_ops __initdata = { 7571 .hardware_unsetup = hardware_unsetup, 7572 7573 .hardware_enable = hardware_enable, 7574 .hardware_disable = hardware_disable, 7575 .cpu_has_accelerated_tpr = report_flexpriority, 7576 .has_emulated_msr = vmx_has_emulated_msr, 7577 7578 .vm_size = sizeof(struct kvm_vmx), 7579 .vm_init = vmx_vm_init, 7580 7581 .vcpu_create = vmx_create_vcpu, 7582 .vcpu_free = vmx_free_vcpu, 7583 .vcpu_reset = vmx_vcpu_reset, 7584 7585 .prepare_guest_switch = vmx_prepare_switch_to_guest, 7586 .vcpu_load = vmx_vcpu_load, 7587 .vcpu_put = vmx_vcpu_put, 7588 7589 .update_exception_bitmap = vmx_update_exception_bitmap, 7590 .get_msr_feature = vmx_get_msr_feature, 7591 .get_msr = vmx_get_msr, 7592 .set_msr = vmx_set_msr, 7593 .get_segment_base = vmx_get_segment_base, 7594 .get_segment = vmx_get_segment, 7595 .set_segment = vmx_set_segment, 7596 .get_cpl = vmx_get_cpl, 7597 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7598 .set_cr0 = vmx_set_cr0, 7599 .is_valid_cr4 = vmx_is_valid_cr4, 7600 .set_cr4 = vmx_set_cr4, 7601 .set_efer = vmx_set_efer, 7602 .get_idt = vmx_get_idt, 7603 .set_idt = vmx_set_idt, 7604 .get_gdt = vmx_get_gdt, 7605 .set_gdt = vmx_set_gdt, 7606 .set_dr7 = vmx_set_dr7, 7607 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7608 .cache_reg = vmx_cache_reg, 7609 .get_rflags = vmx_get_rflags, 7610 .set_rflags = vmx_set_rflags, 7611 7612 .tlb_flush_all = vmx_flush_tlb_all, 7613 .tlb_flush_current = vmx_flush_tlb_current, 7614 .tlb_flush_gva = vmx_flush_tlb_gva, 7615 .tlb_flush_guest = vmx_flush_tlb_guest, 7616 7617 .run = vmx_vcpu_run, 7618 .handle_exit = vmx_handle_exit, 7619 .skip_emulated_instruction = vmx_skip_emulated_instruction, 7620 .update_emulated_instruction = vmx_update_emulated_instruction, 7621 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7622 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7623 .patch_hypercall = vmx_patch_hypercall, 7624 .set_irq = vmx_inject_irq, 7625 .set_nmi = vmx_inject_nmi, 7626 .queue_exception = vmx_queue_exception, 7627 .cancel_injection = vmx_cancel_injection, 7628 .interrupt_allowed = vmx_interrupt_allowed, 7629 .nmi_allowed = vmx_nmi_allowed, 7630 .get_nmi_mask = vmx_get_nmi_mask, 7631 .set_nmi_mask = vmx_set_nmi_mask, 7632 .enable_nmi_window = vmx_enable_nmi_window, 7633 .enable_irq_window = vmx_enable_irq_window, 7634 .update_cr8_intercept = vmx_update_cr8_intercept, 7635 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7636 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7637 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7638 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7639 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7640 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons, 7641 .hwapic_irr_update = vmx_hwapic_irr_update, 7642 .hwapic_isr_update = vmx_hwapic_isr_update, 7643 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7644 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7645 .deliver_posted_interrupt = vmx_deliver_posted_interrupt, 7646 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 7647 7648 .set_tss_addr = vmx_set_tss_addr, 7649 .set_identity_map_addr = vmx_set_identity_map_addr, 7650 .get_mt_mask = vmx_get_mt_mask, 7651 7652 .get_exit_info = vmx_get_exit_info, 7653 7654 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 7655 7656 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7657 7658 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 7659 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 7660 .write_tsc_offset = vmx_write_tsc_offset, 7661 .write_tsc_multiplier = vmx_write_tsc_multiplier, 7662 7663 .load_mmu_pgd = vmx_load_mmu_pgd, 7664 7665 .check_intercept = vmx_check_intercept, 7666 .handle_exit_irqoff = vmx_handle_exit_irqoff, 7667 7668 .request_immediate_exit = vmx_request_immediate_exit, 7669 7670 .sched_in = vmx_sched_in, 7671 7672 .cpu_dirty_log_size = PML_ENTITY_NUM, 7673 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 7674 7675 .pre_block = vmx_pre_block, 7676 .post_block = vmx_post_block, 7677 7678 .pmu_ops = &intel_pmu_ops, 7679 .nested_ops = &vmx_nested_ops, 7680 7681 .update_pi_irte = pi_update_irte, 7682 .start_assignment = vmx_pi_start_assignment, 7683 7684 #ifdef CONFIG_X86_64 7685 .set_hv_timer = vmx_set_hv_timer, 7686 .cancel_hv_timer = vmx_cancel_hv_timer, 7687 #endif 7688 7689 .setup_mce = vmx_setup_mce, 7690 7691 .smi_allowed = vmx_smi_allowed, 7692 .enter_smm = vmx_enter_smm, 7693 .leave_smm = vmx_leave_smm, 7694 .enable_smi_window = vmx_enable_smi_window, 7695 7696 .can_emulate_instruction = vmx_can_emulate_instruction, 7697 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 7698 .migrate_timers = vmx_migrate_timers, 7699 7700 .msr_filter_changed = vmx_msr_filter_changed, 7701 .complete_emulated_msr = kvm_complete_insn_gp, 7702 7703 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 7704 }; 7705 7706 static __init void vmx_setup_user_return_msrs(void) 7707 { 7708 7709 /* 7710 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 7711 * will emulate SYSCALL in legacy mode if the vendor string in guest 7712 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 7713 * support this emulation, MSR_STAR is included in the list for i386, 7714 * but is never loaded into hardware. MSR_CSTAR is also never loaded 7715 * into hardware and is here purely for emulation purposes. 7716 */ 7717 const u32 vmx_uret_msrs_list[] = { 7718 #ifdef CONFIG_X86_64 7719 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 7720 #endif 7721 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 7722 MSR_IA32_TSX_CTRL, 7723 }; 7724 int i; 7725 7726 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 7727 7728 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 7729 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 7730 } 7731 7732 static __init int hardware_setup(void) 7733 { 7734 unsigned long host_bndcfgs; 7735 struct desc_ptr dt; 7736 int r, ept_lpage_level; 7737 7738 store_idt(&dt); 7739 host_idt_base = dt.address; 7740 7741 vmx_setup_user_return_msrs(); 7742 7743 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7744 return -EIO; 7745 7746 if (boot_cpu_has(X86_FEATURE_NX)) 7747 kvm_enable_efer_bits(EFER_NX); 7748 7749 if (boot_cpu_has(X86_FEATURE_MPX)) { 7750 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7751 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7752 } 7753 7754 if (!cpu_has_vmx_mpx()) 7755 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 7756 XFEATURE_MASK_BNDCSR); 7757 7758 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7759 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7760 enable_vpid = 0; 7761 7762 if (!cpu_has_vmx_ept() || 7763 !cpu_has_vmx_ept_4levels() || 7764 !cpu_has_vmx_ept_mt_wb() || 7765 !cpu_has_vmx_invept_global()) 7766 enable_ept = 0; 7767 7768 /* NX support is required for shadow paging. */ 7769 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 7770 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n"); 7771 return -EOPNOTSUPP; 7772 } 7773 7774 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7775 enable_ept_ad_bits = 0; 7776 7777 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7778 enable_unrestricted_guest = 0; 7779 7780 if (!cpu_has_vmx_flexpriority()) 7781 flexpriority_enabled = 0; 7782 7783 if (!cpu_has_virtual_nmis()) 7784 enable_vnmi = 0; 7785 7786 /* 7787 * set_apic_access_page_addr() is used to reload apic access 7788 * page upon invalidation. No need to do anything if not 7789 * using the APIC_ACCESS_ADDR VMCS field. 7790 */ 7791 if (!flexpriority_enabled) 7792 vmx_x86_ops.set_apic_access_page_addr = NULL; 7793 7794 if (!cpu_has_vmx_tpr_shadow()) 7795 vmx_x86_ops.update_cr8_intercept = NULL; 7796 7797 #if IS_ENABLED(CONFIG_HYPERV) 7798 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7799 && enable_ept) { 7800 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb; 7801 vmx_x86_ops.tlb_remote_flush_with_range = 7802 hv_remote_flush_tlb_with_range; 7803 } 7804 #endif 7805 7806 if (!cpu_has_vmx_ple()) { 7807 ple_gap = 0; 7808 ple_window = 0; 7809 ple_window_grow = 0; 7810 ple_window_max = 0; 7811 ple_window_shrink = 0; 7812 } 7813 7814 if (!cpu_has_vmx_apicv()) { 7815 enable_apicv = 0; 7816 vmx_x86_ops.sync_pir_to_irr = NULL; 7817 } 7818 7819 if (cpu_has_vmx_tsc_scaling()) { 7820 kvm_has_tsc_control = true; 7821 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7822 kvm_tsc_scaling_ratio_frac_bits = 48; 7823 } 7824 7825 kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 7826 7827 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7828 7829 if (enable_ept) 7830 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 7831 cpu_has_vmx_ept_execute_only()); 7832 7833 if (!enable_ept) 7834 ept_lpage_level = 0; 7835 else if (cpu_has_vmx_ept_1g_page()) 7836 ept_lpage_level = PG_LEVEL_1G; 7837 else if (cpu_has_vmx_ept_2m_page()) 7838 ept_lpage_level = PG_LEVEL_2M; 7839 else 7840 ept_lpage_level = PG_LEVEL_4K; 7841 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(), 7842 ept_lpage_level); 7843 7844 /* 7845 * Only enable PML when hardware supports PML feature, and both EPT 7846 * and EPT A/D bit features are enabled -- PML depends on them to work. 7847 */ 7848 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 7849 enable_pml = 0; 7850 7851 if (!enable_pml) 7852 vmx_x86_ops.cpu_dirty_log_size = 0; 7853 7854 if (!cpu_has_vmx_preemption_timer()) 7855 enable_preemption_timer = false; 7856 7857 if (enable_preemption_timer) { 7858 u64 use_timer_freq = 5000ULL * 1000 * 1000; 7859 u64 vmx_msr; 7860 7861 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 7862 cpu_preemption_timer_multi = 7863 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 7864 7865 if (tsc_khz) 7866 use_timer_freq = (u64)tsc_khz * 1000; 7867 use_timer_freq >>= cpu_preemption_timer_multi; 7868 7869 /* 7870 * KVM "disables" the preemption timer by setting it to its max 7871 * value. Don't use the timer if it might cause spurious exits 7872 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 7873 */ 7874 if (use_timer_freq > 0xffffffffu / 10) 7875 enable_preemption_timer = false; 7876 } 7877 7878 if (!enable_preemption_timer) { 7879 vmx_x86_ops.set_hv_timer = NULL; 7880 vmx_x86_ops.cancel_hv_timer = NULL; 7881 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 7882 } 7883 7884 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 7885 7886 kvm_mce_cap_supported |= MCG_LMCE_P; 7887 7888 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 7889 return -EINVAL; 7890 if (!enable_ept || !cpu_has_vmx_intel_pt()) 7891 pt_mode = PT_MODE_SYSTEM; 7892 7893 setup_default_sgx_lepubkeyhash(); 7894 7895 if (nested) { 7896 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 7897 vmx_capability.ept); 7898 7899 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 7900 if (r) 7901 return r; 7902 } 7903 7904 vmx_set_cpu_caps(); 7905 7906 r = alloc_kvm_area(); 7907 if (r) 7908 nested_vmx_hardware_unsetup(); 7909 return r; 7910 } 7911 7912 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 7913 .cpu_has_kvm_support = cpu_has_kvm_support, 7914 .disabled_by_bios = vmx_disabled_by_bios, 7915 .check_processor_compatibility = vmx_check_processor_compat, 7916 .hardware_setup = hardware_setup, 7917 7918 .runtime_ops = &vmx_x86_ops, 7919 }; 7920 7921 static void vmx_cleanup_l1d_flush(void) 7922 { 7923 if (vmx_l1d_flush_pages) { 7924 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 7925 vmx_l1d_flush_pages = NULL; 7926 } 7927 /* Restore state so sysfs ignores VMX */ 7928 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 7929 } 7930 7931 static void vmx_exit(void) 7932 { 7933 #ifdef CONFIG_KEXEC_CORE 7934 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 7935 synchronize_rcu(); 7936 #endif 7937 7938 kvm_exit(); 7939 7940 #if IS_ENABLED(CONFIG_HYPERV) 7941 if (static_branch_unlikely(&enable_evmcs)) { 7942 int cpu; 7943 struct hv_vp_assist_page *vp_ap; 7944 /* 7945 * Reset everything to support using non-enlightened VMCS 7946 * access later (e.g. when we reload the module with 7947 * enlightened_vmcs=0) 7948 */ 7949 for_each_online_cpu(cpu) { 7950 vp_ap = hv_get_vp_assist_page(cpu); 7951 7952 if (!vp_ap) 7953 continue; 7954 7955 vp_ap->nested_control.features.directhypercall = 0; 7956 vp_ap->current_nested_vmcs = 0; 7957 vp_ap->enlighten_vmentry = 0; 7958 } 7959 7960 static_branch_disable(&enable_evmcs); 7961 } 7962 #endif 7963 vmx_cleanup_l1d_flush(); 7964 7965 allow_smaller_maxphyaddr = false; 7966 } 7967 module_exit(vmx_exit); 7968 7969 static int __init vmx_init(void) 7970 { 7971 int r, cpu; 7972 7973 #if IS_ENABLED(CONFIG_HYPERV) 7974 /* 7975 * Enlightened VMCS usage should be recommended and the host needs 7976 * to support eVMCS v1 or above. We can also disable eVMCS support 7977 * with module parameter. 7978 */ 7979 if (enlightened_vmcs && 7980 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 7981 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 7982 KVM_EVMCS_VERSION) { 7983 int cpu; 7984 7985 /* Check that we have assist pages on all online CPUs */ 7986 for_each_online_cpu(cpu) { 7987 if (!hv_get_vp_assist_page(cpu)) { 7988 enlightened_vmcs = false; 7989 break; 7990 } 7991 } 7992 7993 if (enlightened_vmcs) { 7994 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 7995 static_branch_enable(&enable_evmcs); 7996 } 7997 7998 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 7999 vmx_x86_ops.enable_direct_tlbflush 8000 = hv_enable_direct_tlbflush; 8001 8002 } else { 8003 enlightened_vmcs = false; 8004 } 8005 #endif 8006 8007 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx), 8008 __alignof__(struct vcpu_vmx), THIS_MODULE); 8009 if (r) 8010 return r; 8011 8012 /* 8013 * Must be called after kvm_init() so enable_ept is properly set 8014 * up. Hand the parameter mitigation value in which was stored in 8015 * the pre module init parser. If no parameter was given, it will 8016 * contain 'auto' which will be turned into the default 'cond' 8017 * mitigation mode. 8018 */ 8019 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8020 if (r) { 8021 vmx_exit(); 8022 return r; 8023 } 8024 8025 for_each_possible_cpu(cpu) { 8026 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8027 8028 pi_init_cpu(cpu); 8029 } 8030 8031 #ifdef CONFIG_KEXEC_CORE 8032 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 8033 crash_vmclear_local_loaded_vmcss); 8034 #endif 8035 vmx_check_vmcs12_offsets(); 8036 8037 /* 8038 * Shadow paging doesn't have a (further) performance penalty 8039 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8040 * by default 8041 */ 8042 if (!enable_ept) 8043 allow_smaller_maxphyaddr = true; 8044 8045 return 0; 8046 } 8047 module_init(vmx_init); 8048