1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <linux/highmem.h> 17 #include <linux/hrtimer.h> 18 #include <linux/kernel.h> 19 #include <linux/kvm_host.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mm.h> 24 #include <linux/objtool.h> 25 #include <linux/sched.h> 26 #include <linux/sched/smt.h> 27 #include <linux/slab.h> 28 #include <linux/tboot.h> 29 #include <linux/trace_events.h> 30 #include <linux/entry-kvm.h> 31 32 #include <asm/apic.h> 33 #include <asm/asm.h> 34 #include <asm/cpu.h> 35 #include <asm/cpu_device_id.h> 36 #include <asm/debugreg.h> 37 #include <asm/desc.h> 38 #include <asm/fpu/internal.h> 39 #include <asm/io.h> 40 #include <asm/irq_remapping.h> 41 #include <asm/kexec.h> 42 #include <asm/perf_event.h> 43 #include <asm/mmu_context.h> 44 #include <asm/mshyperv.h> 45 #include <asm/mwait.h> 46 #include <asm/spec-ctrl.h> 47 #include <asm/virtext.h> 48 #include <asm/vmx.h> 49 50 #include "capabilities.h" 51 #include "cpuid.h" 52 #include "evmcs.h" 53 #include "irq.h" 54 #include "kvm_cache_regs.h" 55 #include "lapic.h" 56 #include "mmu.h" 57 #include "nested.h" 58 #include "pmu.h" 59 #include "trace.h" 60 #include "vmcs.h" 61 #include "vmcs12.h" 62 #include "vmx.h" 63 #include "x86.h" 64 65 MODULE_AUTHOR("Qumranet"); 66 MODULE_LICENSE("GPL"); 67 68 #ifdef MODULE 69 static const struct x86_cpu_id vmx_cpu_id[] = { 70 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 71 {} 72 }; 73 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 74 #endif 75 76 bool __read_mostly enable_vpid = 1; 77 module_param_named(vpid, enable_vpid, bool, 0444); 78 79 static bool __read_mostly enable_vnmi = 1; 80 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 81 82 bool __read_mostly flexpriority_enabled = 1; 83 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 84 85 bool __read_mostly enable_ept = 1; 86 module_param_named(ept, enable_ept, bool, S_IRUGO); 87 88 bool __read_mostly enable_unrestricted_guest = 1; 89 module_param_named(unrestricted_guest, 90 enable_unrestricted_guest, bool, S_IRUGO); 91 92 bool __read_mostly enable_ept_ad_bits = 1; 93 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 94 95 static bool __read_mostly emulate_invalid_guest_state = true; 96 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 97 98 static bool __read_mostly fasteoi = 1; 99 module_param(fasteoi, bool, S_IRUGO); 100 101 bool __read_mostly enable_apicv = 1; 102 module_param(enable_apicv, bool, S_IRUGO); 103 104 /* 105 * If nested=1, nested virtualization is supported, i.e., guests may use 106 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 107 * use VMX instructions. 108 */ 109 static bool __read_mostly nested = 1; 110 module_param(nested, bool, S_IRUGO); 111 112 bool __read_mostly enable_pml = 1; 113 module_param_named(pml, enable_pml, bool, S_IRUGO); 114 115 static bool __read_mostly dump_invalid_vmcs = 0; 116 module_param(dump_invalid_vmcs, bool, 0644); 117 118 #define MSR_BITMAP_MODE_X2APIC 1 119 #define MSR_BITMAP_MODE_X2APIC_APICV 2 120 121 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 122 123 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 124 static int __read_mostly cpu_preemption_timer_multi; 125 static bool __read_mostly enable_preemption_timer = 1; 126 #ifdef CONFIG_X86_64 127 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 128 #endif 129 130 extern bool __read_mostly allow_smaller_maxphyaddr; 131 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 132 133 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 134 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 135 #define KVM_VM_CR0_ALWAYS_ON \ 136 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \ 137 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE) 138 139 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 140 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 141 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 142 143 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 144 145 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 146 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 147 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 148 RTIT_STATUS_BYTECNT)) 149 150 /* 151 * List of MSRs that can be directly passed to the guest. 152 * In addition to these x2apic and PT MSRs are handled specially. 153 */ 154 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 155 MSR_IA32_SPEC_CTRL, 156 MSR_IA32_PRED_CMD, 157 MSR_IA32_TSC, 158 MSR_FS_BASE, 159 MSR_GS_BASE, 160 MSR_KERNEL_GS_BASE, 161 MSR_IA32_SYSENTER_CS, 162 MSR_IA32_SYSENTER_ESP, 163 MSR_IA32_SYSENTER_EIP, 164 MSR_CORE_C1_RES, 165 MSR_CORE_C3_RESIDENCY, 166 MSR_CORE_C6_RESIDENCY, 167 MSR_CORE_C7_RESIDENCY, 168 }; 169 170 /* 171 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 172 * ple_gap: upper bound on the amount of time between two successive 173 * executions of PAUSE in a loop. Also indicate if ple enabled. 174 * According to test, this time is usually smaller than 128 cycles. 175 * ple_window: upper bound on the amount of time a guest is allowed to execute 176 * in a PAUSE loop. Tests indicate that most spinlocks are held for 177 * less than 2^12 cycles 178 * Time is measured based on a counter that runs at the same rate as the TSC, 179 * refer SDM volume 3b section 21.6.13 & 22.1.3. 180 */ 181 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 182 module_param(ple_gap, uint, 0444); 183 184 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 185 module_param(ple_window, uint, 0444); 186 187 /* Default doubles per-vcpu window every exit. */ 188 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 189 module_param(ple_window_grow, uint, 0444); 190 191 /* Default resets per-vcpu window every exit to ple_window. */ 192 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 193 module_param(ple_window_shrink, uint, 0444); 194 195 /* Default is to compute the maximum so we can never overflow. */ 196 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 197 module_param(ple_window_max, uint, 0444); 198 199 /* Default is SYSTEM mode, 1 for host-guest mode */ 200 int __read_mostly pt_mode = PT_MODE_SYSTEM; 201 module_param(pt_mode, int, S_IRUGO); 202 203 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 204 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 205 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 206 207 /* Storage for pre module init parameter parsing */ 208 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 209 210 static const struct { 211 const char *option; 212 bool for_parse; 213 } vmentry_l1d_param[] = { 214 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 215 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 216 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 217 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 218 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 219 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 220 }; 221 222 #define L1D_CACHE_ORDER 4 223 static void *vmx_l1d_flush_pages; 224 225 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 226 { 227 struct page *page; 228 unsigned int i; 229 230 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 231 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 232 return 0; 233 } 234 235 if (!enable_ept) { 236 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 237 return 0; 238 } 239 240 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 241 u64 msr; 242 243 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 244 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 245 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 246 return 0; 247 } 248 } 249 250 /* If set to auto use the default l1tf mitigation method */ 251 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 252 switch (l1tf_mitigation) { 253 case L1TF_MITIGATION_OFF: 254 l1tf = VMENTER_L1D_FLUSH_NEVER; 255 break; 256 case L1TF_MITIGATION_FLUSH_NOWARN: 257 case L1TF_MITIGATION_FLUSH: 258 case L1TF_MITIGATION_FLUSH_NOSMT: 259 l1tf = VMENTER_L1D_FLUSH_COND; 260 break; 261 case L1TF_MITIGATION_FULL: 262 case L1TF_MITIGATION_FULL_FORCE: 263 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 264 break; 265 } 266 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 267 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 268 } 269 270 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 271 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 272 /* 273 * This allocation for vmx_l1d_flush_pages is not tied to a VM 274 * lifetime and so should not be charged to a memcg. 275 */ 276 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 277 if (!page) 278 return -ENOMEM; 279 vmx_l1d_flush_pages = page_address(page); 280 281 /* 282 * Initialize each page with a different pattern in 283 * order to protect against KSM in the nested 284 * virtualization case. 285 */ 286 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 287 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 288 PAGE_SIZE); 289 } 290 } 291 292 l1tf_vmx_mitigation = l1tf; 293 294 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 295 static_branch_enable(&vmx_l1d_should_flush); 296 else 297 static_branch_disable(&vmx_l1d_should_flush); 298 299 if (l1tf == VMENTER_L1D_FLUSH_COND) 300 static_branch_enable(&vmx_l1d_flush_cond); 301 else 302 static_branch_disable(&vmx_l1d_flush_cond); 303 return 0; 304 } 305 306 static int vmentry_l1d_flush_parse(const char *s) 307 { 308 unsigned int i; 309 310 if (s) { 311 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 312 if (vmentry_l1d_param[i].for_parse && 313 sysfs_streq(s, vmentry_l1d_param[i].option)) 314 return i; 315 } 316 } 317 return -EINVAL; 318 } 319 320 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 321 { 322 int l1tf, ret; 323 324 l1tf = vmentry_l1d_flush_parse(s); 325 if (l1tf < 0) 326 return l1tf; 327 328 if (!boot_cpu_has(X86_BUG_L1TF)) 329 return 0; 330 331 /* 332 * Has vmx_init() run already? If not then this is the pre init 333 * parameter parsing. In that case just store the value and let 334 * vmx_init() do the proper setup after enable_ept has been 335 * established. 336 */ 337 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 338 vmentry_l1d_flush_param = l1tf; 339 return 0; 340 } 341 342 mutex_lock(&vmx_l1d_flush_mutex); 343 ret = vmx_setup_l1d_flush(l1tf); 344 mutex_unlock(&vmx_l1d_flush_mutex); 345 return ret; 346 } 347 348 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 349 { 350 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 351 return sprintf(s, "???\n"); 352 353 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 354 } 355 356 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 357 .set = vmentry_l1d_flush_set, 358 .get = vmentry_l1d_flush_get, 359 }; 360 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 361 362 static u32 vmx_segment_access_rights(struct kvm_segment *var); 363 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, 364 u32 msr, int type); 365 366 void vmx_vmexit(void); 367 368 #define vmx_insn_failed(fmt...) \ 369 do { \ 370 WARN_ONCE(1, fmt); \ 371 pr_warn_ratelimited(fmt); \ 372 } while (0) 373 374 asmlinkage void vmread_error(unsigned long field, bool fault) 375 { 376 if (fault) 377 kvm_spurious_fault(); 378 else 379 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field); 380 } 381 382 noinline void vmwrite_error(unsigned long field, unsigned long value) 383 { 384 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n", 385 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 386 } 387 388 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 389 { 390 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr); 391 } 392 393 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 394 { 395 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr); 396 } 397 398 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 399 { 400 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 401 ext, vpid, gva); 402 } 403 404 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 405 { 406 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 407 ext, eptp, gpa); 408 } 409 410 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 411 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 412 /* 413 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 414 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 415 */ 416 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 417 418 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 419 static DEFINE_SPINLOCK(vmx_vpid_lock); 420 421 struct vmcs_config vmcs_config; 422 struct vmx_capability vmx_capability; 423 424 #define VMX_SEGMENT_FIELD(seg) \ 425 [VCPU_SREG_##seg] = { \ 426 .selector = GUEST_##seg##_SELECTOR, \ 427 .base = GUEST_##seg##_BASE, \ 428 .limit = GUEST_##seg##_LIMIT, \ 429 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 430 } 431 432 static const struct kvm_vmx_segment_field { 433 unsigned selector; 434 unsigned base; 435 unsigned limit; 436 unsigned ar_bytes; 437 } kvm_vmx_segment_fields[] = { 438 VMX_SEGMENT_FIELD(CS), 439 VMX_SEGMENT_FIELD(DS), 440 VMX_SEGMENT_FIELD(ES), 441 VMX_SEGMENT_FIELD(FS), 442 VMX_SEGMENT_FIELD(GS), 443 VMX_SEGMENT_FIELD(SS), 444 VMX_SEGMENT_FIELD(TR), 445 VMX_SEGMENT_FIELD(LDTR), 446 }; 447 448 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 449 { 450 vmx->segment_cache.bitmask = 0; 451 } 452 453 static unsigned long host_idt_base; 454 455 /* 456 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 457 * will emulate SYSCALL in legacy mode if the vendor string in guest 458 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 459 * support this emulation, IA32_STAR must always be included in 460 * vmx_uret_msrs_list[], even in i386 builds. 461 */ 462 static const u32 vmx_uret_msrs_list[] = { 463 #ifdef CONFIG_X86_64 464 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 465 #endif 466 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 467 MSR_IA32_TSX_CTRL, 468 }; 469 470 #if IS_ENABLED(CONFIG_HYPERV) 471 static bool __read_mostly enlightened_vmcs = true; 472 module_param(enlightened_vmcs, bool, 0444); 473 474 /* check_ept_pointer() should be under protection of ept_pointer_lock. */ 475 static void check_ept_pointer_match(struct kvm *kvm) 476 { 477 struct kvm_vcpu *vcpu; 478 u64 tmp_eptp = INVALID_PAGE; 479 int i; 480 481 kvm_for_each_vcpu(i, vcpu, kvm) { 482 if (!VALID_PAGE(tmp_eptp)) { 483 tmp_eptp = to_vmx(vcpu)->ept_pointer; 484 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) { 485 to_kvm_vmx(kvm)->ept_pointers_match 486 = EPT_POINTERS_MISMATCH; 487 return; 488 } 489 } 490 491 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH; 492 } 493 494 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush, 495 void *data) 496 { 497 struct kvm_tlb_range *range = data; 498 499 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn, 500 range->pages); 501 } 502 503 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm, 504 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range) 505 { 506 u64 ept_pointer = to_vmx(vcpu)->ept_pointer; 507 508 /* 509 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address 510 * of the base of EPT PML4 table, strip off EPT configuration 511 * information. 512 */ 513 if (range) 514 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK, 515 kvm_fill_hv_flush_list_func, (void *)range); 516 else 517 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK); 518 } 519 520 static int hv_remote_flush_tlb_with_range(struct kvm *kvm, 521 struct kvm_tlb_range *range) 522 { 523 struct kvm_vcpu *vcpu; 524 int ret = 0, i; 525 526 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); 527 528 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK) 529 check_ept_pointer_match(kvm); 530 531 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) { 532 kvm_for_each_vcpu(i, vcpu, kvm) { 533 /* If ept_pointer is invalid pointer, bypass flush request. */ 534 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer)) 535 ret |= __hv_remote_flush_tlb_with_range( 536 kvm, vcpu, range); 537 } 538 } else { 539 ret = __hv_remote_flush_tlb_with_range(kvm, 540 kvm_get_vcpu(kvm, 0), range); 541 } 542 543 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); 544 return ret; 545 } 546 static int hv_remote_flush_tlb(struct kvm *kvm) 547 { 548 return hv_remote_flush_tlb_with_range(kvm, NULL); 549 } 550 551 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu) 552 { 553 struct hv_enlightened_vmcs *evmcs; 554 struct hv_partition_assist_pg **p_hv_pa_pg = 555 &vcpu->kvm->arch.hyperv.hv_pa_pg; 556 /* 557 * Synthetic VM-Exit is not enabled in current code and so All 558 * evmcs in singe VM shares same assist page. 559 */ 560 if (!*p_hv_pa_pg) 561 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL); 562 563 if (!*p_hv_pa_pg) 564 return -ENOMEM; 565 566 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 567 568 evmcs->partition_assist_page = 569 __pa(*p_hv_pa_pg); 570 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 571 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 572 573 return 0; 574 } 575 576 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 577 578 /* 579 * Comment's format: document - errata name - stepping - processor name. 580 * Refer from 581 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 582 */ 583 static u32 vmx_preemption_cpu_tfms[] = { 584 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 585 0x000206E6, 586 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 587 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 588 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 589 0x00020652, 590 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 591 0x00020655, 592 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 593 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 594 /* 595 * 320767.pdf - AAP86 - B1 - 596 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 597 */ 598 0x000106E5, 599 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 600 0x000106A0, 601 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 602 0x000106A1, 603 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 604 0x000106A4, 605 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 606 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 607 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 608 0x000106A5, 609 /* Xeon E3-1220 V2 */ 610 0x000306A8, 611 }; 612 613 static inline bool cpu_has_broken_vmx_preemption_timer(void) 614 { 615 u32 eax = cpuid_eax(0x00000001), i; 616 617 /* Clear the reserved bits */ 618 eax &= ~(0x3U << 14 | 0xfU << 28); 619 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 620 if (eax == vmx_preemption_cpu_tfms[i]) 621 return true; 622 623 return false; 624 } 625 626 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 627 { 628 return flexpriority_enabled && lapic_in_kernel(vcpu); 629 } 630 631 static inline bool report_flexpriority(void) 632 { 633 return flexpriority_enabled; 634 } 635 636 static int possible_passthrough_msr_slot(u32 msr) 637 { 638 u32 i; 639 640 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 641 if (vmx_possible_passthrough_msrs[i] == msr) 642 return i; 643 644 return -ENOENT; 645 } 646 647 static bool is_valid_passthrough_msr(u32 msr) 648 { 649 bool r; 650 651 switch (msr) { 652 case 0x800 ... 0x8ff: 653 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 654 return true; 655 case MSR_IA32_RTIT_STATUS: 656 case MSR_IA32_RTIT_OUTPUT_BASE: 657 case MSR_IA32_RTIT_OUTPUT_MASK: 658 case MSR_IA32_RTIT_CR3_MATCH: 659 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 660 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 661 return true; 662 } 663 664 r = possible_passthrough_msr_slot(msr) != -ENOENT; 665 666 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 667 668 return r; 669 } 670 671 static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 672 { 673 int i; 674 675 for (i = 0; i < vmx->nr_uret_msrs; ++i) 676 if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr) 677 return i; 678 return -1; 679 } 680 681 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 682 { 683 int i; 684 685 i = __vmx_find_uret_msr(vmx, msr); 686 if (i >= 0) 687 return &vmx->guest_uret_msrs[i]; 688 return NULL; 689 } 690 691 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 692 struct vmx_uret_msr *msr, u64 data) 693 { 694 int ret = 0; 695 696 u64 old_msr_data = msr->data; 697 msr->data = data; 698 if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) { 699 preempt_disable(); 700 ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask); 701 preempt_enable(); 702 if (ret) 703 msr->data = old_msr_data; 704 } 705 return ret; 706 } 707 708 #ifdef CONFIG_KEXEC_CORE 709 static void crash_vmclear_local_loaded_vmcss(void) 710 { 711 int cpu = raw_smp_processor_id(); 712 struct loaded_vmcs *v; 713 714 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 715 loaded_vmcss_on_cpu_link) 716 vmcs_clear(v->vmcs); 717 } 718 #endif /* CONFIG_KEXEC_CORE */ 719 720 static void __loaded_vmcs_clear(void *arg) 721 { 722 struct loaded_vmcs *loaded_vmcs = arg; 723 int cpu = raw_smp_processor_id(); 724 725 if (loaded_vmcs->cpu != cpu) 726 return; /* vcpu migration can race with cpu offline */ 727 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 728 per_cpu(current_vmcs, cpu) = NULL; 729 730 vmcs_clear(loaded_vmcs->vmcs); 731 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 732 vmcs_clear(loaded_vmcs->shadow_vmcs); 733 734 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 735 736 /* 737 * Ensure all writes to loaded_vmcs, including deleting it from its 738 * current percpu list, complete before setting loaded_vmcs->vcpu to 739 * -1, otherwise a different cpu can see vcpu == -1 first and add 740 * loaded_vmcs to its percpu list before it's deleted from this cpu's 741 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 742 */ 743 smp_wmb(); 744 745 loaded_vmcs->cpu = -1; 746 loaded_vmcs->launched = 0; 747 } 748 749 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 750 { 751 int cpu = loaded_vmcs->cpu; 752 753 if (cpu != -1) 754 smp_call_function_single(cpu, 755 __loaded_vmcs_clear, loaded_vmcs, 1); 756 } 757 758 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 759 unsigned field) 760 { 761 bool ret; 762 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 763 764 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 765 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 766 vmx->segment_cache.bitmask = 0; 767 } 768 ret = vmx->segment_cache.bitmask & mask; 769 vmx->segment_cache.bitmask |= mask; 770 return ret; 771 } 772 773 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 774 { 775 u16 *p = &vmx->segment_cache.seg[seg].selector; 776 777 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 778 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 779 return *p; 780 } 781 782 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 783 { 784 ulong *p = &vmx->segment_cache.seg[seg].base; 785 786 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 787 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 788 return *p; 789 } 790 791 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 792 { 793 u32 *p = &vmx->segment_cache.seg[seg].limit; 794 795 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 796 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 797 return *p; 798 } 799 800 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 801 { 802 u32 *p = &vmx->segment_cache.seg[seg].ar; 803 804 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 805 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 806 return *p; 807 } 808 809 void update_exception_bitmap(struct kvm_vcpu *vcpu) 810 { 811 u32 eb; 812 813 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 814 (1u << DB_VECTOR) | (1u << AC_VECTOR); 815 /* 816 * Guest access to VMware backdoor ports could legitimately 817 * trigger #GP because of TSS I/O permission bitmap. 818 * We intercept those #GP and allow access to them anyway 819 * as VMware does. 820 */ 821 if (enable_vmware_backdoor) 822 eb |= (1u << GP_VECTOR); 823 if ((vcpu->guest_debug & 824 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 825 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 826 eb |= 1u << BP_VECTOR; 827 if (to_vmx(vcpu)->rmode.vm86_active) 828 eb = ~0; 829 if (!vmx_need_pf_intercept(vcpu)) 830 eb &= ~(1u << PF_VECTOR); 831 832 /* When we are running a nested L2 guest and L1 specified for it a 833 * certain exception bitmap, we must trap the same exceptions and pass 834 * them to L1. When running L2, we will only handle the exceptions 835 * specified above if L1 did not want them. 836 */ 837 if (is_guest_mode(vcpu)) 838 eb |= get_vmcs12(vcpu)->exception_bitmap; 839 else { 840 /* 841 * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched 842 * between guest and host. In that case we only care about present 843 * faults. For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in 844 * prepare_vmcs02_rare. 845 */ 846 bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR)); 847 int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0; 848 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 849 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask); 850 } 851 852 vmcs_write32(EXCEPTION_BITMAP, eb); 853 } 854 855 /* 856 * Check if MSR is intercepted for currently loaded MSR bitmap. 857 */ 858 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 859 { 860 unsigned long *msr_bitmap; 861 int f = sizeof(unsigned long); 862 863 if (!cpu_has_vmx_msr_bitmap()) 864 return true; 865 866 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; 867 868 if (msr <= 0x1fff) { 869 return !!test_bit(msr, msr_bitmap + 0x800 / f); 870 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 871 msr &= 0x1fff; 872 return !!test_bit(msr, msr_bitmap + 0xc00 / f); 873 } 874 875 return true; 876 } 877 878 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 879 unsigned long entry, unsigned long exit) 880 { 881 vm_entry_controls_clearbit(vmx, entry); 882 vm_exit_controls_clearbit(vmx, exit); 883 } 884 885 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 886 { 887 unsigned int i; 888 889 for (i = 0; i < m->nr; ++i) { 890 if (m->val[i].index == msr) 891 return i; 892 } 893 return -ENOENT; 894 } 895 896 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 897 { 898 int i; 899 struct msr_autoload *m = &vmx->msr_autoload; 900 901 switch (msr) { 902 case MSR_EFER: 903 if (cpu_has_load_ia32_efer()) { 904 clear_atomic_switch_msr_special(vmx, 905 VM_ENTRY_LOAD_IA32_EFER, 906 VM_EXIT_LOAD_IA32_EFER); 907 return; 908 } 909 break; 910 case MSR_CORE_PERF_GLOBAL_CTRL: 911 if (cpu_has_load_perf_global_ctrl()) { 912 clear_atomic_switch_msr_special(vmx, 913 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 914 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 915 return; 916 } 917 break; 918 } 919 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 920 if (i < 0) 921 goto skip_guest; 922 --m->guest.nr; 923 m->guest.val[i] = m->guest.val[m->guest.nr]; 924 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 925 926 skip_guest: 927 i = vmx_find_loadstore_msr_slot(&m->host, msr); 928 if (i < 0) 929 return; 930 931 --m->host.nr; 932 m->host.val[i] = m->host.val[m->host.nr]; 933 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 934 } 935 936 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 937 unsigned long entry, unsigned long exit, 938 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 939 u64 guest_val, u64 host_val) 940 { 941 vmcs_write64(guest_val_vmcs, guest_val); 942 if (host_val_vmcs != HOST_IA32_EFER) 943 vmcs_write64(host_val_vmcs, host_val); 944 vm_entry_controls_setbit(vmx, entry); 945 vm_exit_controls_setbit(vmx, exit); 946 } 947 948 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 949 u64 guest_val, u64 host_val, bool entry_only) 950 { 951 int i, j = 0; 952 struct msr_autoload *m = &vmx->msr_autoload; 953 954 switch (msr) { 955 case MSR_EFER: 956 if (cpu_has_load_ia32_efer()) { 957 add_atomic_switch_msr_special(vmx, 958 VM_ENTRY_LOAD_IA32_EFER, 959 VM_EXIT_LOAD_IA32_EFER, 960 GUEST_IA32_EFER, 961 HOST_IA32_EFER, 962 guest_val, host_val); 963 return; 964 } 965 break; 966 case MSR_CORE_PERF_GLOBAL_CTRL: 967 if (cpu_has_load_perf_global_ctrl()) { 968 add_atomic_switch_msr_special(vmx, 969 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 970 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 971 GUEST_IA32_PERF_GLOBAL_CTRL, 972 HOST_IA32_PERF_GLOBAL_CTRL, 973 guest_val, host_val); 974 return; 975 } 976 break; 977 case MSR_IA32_PEBS_ENABLE: 978 /* PEBS needs a quiescent period after being disabled (to write 979 * a record). Disabling PEBS through VMX MSR swapping doesn't 980 * provide that period, so a CPU could write host's record into 981 * guest's memory. 982 */ 983 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 984 } 985 986 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 987 if (!entry_only) 988 j = vmx_find_loadstore_msr_slot(&m->host, msr); 989 990 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 991 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 992 printk_once(KERN_WARNING "Not enough msr switch entries. " 993 "Can't add msr %x\n", msr); 994 return; 995 } 996 if (i < 0) { 997 i = m->guest.nr++; 998 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 999 } 1000 m->guest.val[i].index = msr; 1001 m->guest.val[i].value = guest_val; 1002 1003 if (entry_only) 1004 return; 1005 1006 if (j < 0) { 1007 j = m->host.nr++; 1008 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1009 } 1010 m->host.val[j].index = msr; 1011 m->host.val[j].value = host_val; 1012 } 1013 1014 static bool update_transition_efer(struct vcpu_vmx *vmx) 1015 { 1016 u64 guest_efer = vmx->vcpu.arch.efer; 1017 u64 ignore_bits = 0; 1018 int i; 1019 1020 /* Shadow paging assumes NX to be available. */ 1021 if (!enable_ept) 1022 guest_efer |= EFER_NX; 1023 1024 /* 1025 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1026 */ 1027 ignore_bits |= EFER_SCE; 1028 #ifdef CONFIG_X86_64 1029 ignore_bits |= EFER_LMA | EFER_LME; 1030 /* SCE is meaningful only in long mode on Intel */ 1031 if (guest_efer & EFER_LMA) 1032 ignore_bits &= ~(u64)EFER_SCE; 1033 #endif 1034 1035 /* 1036 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1037 * On CPUs that support "load IA32_EFER", always switch EFER 1038 * atomically, since it's faster than switching it manually. 1039 */ 1040 if (cpu_has_load_ia32_efer() || 1041 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 1042 if (!(guest_efer & EFER_LMA)) 1043 guest_efer &= ~EFER_LME; 1044 if (guest_efer != host_efer) 1045 add_atomic_switch_msr(vmx, MSR_EFER, 1046 guest_efer, host_efer, false); 1047 else 1048 clear_atomic_switch_msr(vmx, MSR_EFER); 1049 return false; 1050 } 1051 1052 i = __vmx_find_uret_msr(vmx, MSR_EFER); 1053 if (i < 0) 1054 return false; 1055 1056 clear_atomic_switch_msr(vmx, MSR_EFER); 1057 1058 guest_efer &= ~ignore_bits; 1059 guest_efer |= host_efer & ignore_bits; 1060 1061 vmx->guest_uret_msrs[i].data = guest_efer; 1062 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1063 1064 return true; 1065 } 1066 1067 #ifdef CONFIG_X86_32 1068 /* 1069 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1070 * VMCS rather than the segment table. KVM uses this helper to figure 1071 * out the current bases to poke them into the VMCS before entry. 1072 */ 1073 static unsigned long segment_base(u16 selector) 1074 { 1075 struct desc_struct *table; 1076 unsigned long v; 1077 1078 if (!(selector & ~SEGMENT_RPL_MASK)) 1079 return 0; 1080 1081 table = get_current_gdt_ro(); 1082 1083 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1084 u16 ldt_selector = kvm_read_ldt(); 1085 1086 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1087 return 0; 1088 1089 table = (struct desc_struct *)segment_base(ldt_selector); 1090 } 1091 v = get_desc_base(&table[selector >> 3]); 1092 return v; 1093 } 1094 #endif 1095 1096 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1097 { 1098 return vmx_pt_mode_is_host_guest() && 1099 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1100 } 1101 1102 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1103 { 1104 /* The base must be 128-byte aligned and a legal physical address. */ 1105 return !kvm_vcpu_is_illegal_gpa(vcpu, base) && !(base & 0x7f); 1106 } 1107 1108 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1109 { 1110 u32 i; 1111 1112 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1113 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1114 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1115 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1116 for (i = 0; i < addr_range; i++) { 1117 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1118 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1119 } 1120 } 1121 1122 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1123 { 1124 u32 i; 1125 1126 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1127 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1128 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1129 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1130 for (i = 0; i < addr_range; i++) { 1131 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1132 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1133 } 1134 } 1135 1136 static void pt_guest_enter(struct vcpu_vmx *vmx) 1137 { 1138 if (vmx_pt_mode_is_system()) 1139 return; 1140 1141 /* 1142 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1143 * Save host state before VM entry. 1144 */ 1145 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1146 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1147 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1148 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1149 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1150 } 1151 } 1152 1153 static void pt_guest_exit(struct vcpu_vmx *vmx) 1154 { 1155 if (vmx_pt_mode_is_system()) 1156 return; 1157 1158 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1159 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1160 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1161 } 1162 1163 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */ 1164 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1165 } 1166 1167 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1168 unsigned long fs_base, unsigned long gs_base) 1169 { 1170 if (unlikely(fs_sel != host->fs_sel)) { 1171 if (!(fs_sel & 7)) 1172 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1173 else 1174 vmcs_write16(HOST_FS_SELECTOR, 0); 1175 host->fs_sel = fs_sel; 1176 } 1177 if (unlikely(gs_sel != host->gs_sel)) { 1178 if (!(gs_sel & 7)) 1179 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1180 else 1181 vmcs_write16(HOST_GS_SELECTOR, 0); 1182 host->gs_sel = gs_sel; 1183 } 1184 if (unlikely(fs_base != host->fs_base)) { 1185 vmcs_writel(HOST_FS_BASE, fs_base); 1186 host->fs_base = fs_base; 1187 } 1188 if (unlikely(gs_base != host->gs_base)) { 1189 vmcs_writel(HOST_GS_BASE, gs_base); 1190 host->gs_base = gs_base; 1191 } 1192 } 1193 1194 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1195 { 1196 struct vcpu_vmx *vmx = to_vmx(vcpu); 1197 struct vmcs_host_state *host_state; 1198 #ifdef CONFIG_X86_64 1199 int cpu = raw_smp_processor_id(); 1200 #endif 1201 unsigned long fs_base, gs_base; 1202 u16 fs_sel, gs_sel; 1203 int i; 1204 1205 vmx->req_immediate_exit = false; 1206 1207 /* 1208 * Note that guest MSRs to be saved/restored can also be changed 1209 * when guest state is loaded. This happens when guest transitions 1210 * to/from long-mode by setting MSR_EFER.LMA. 1211 */ 1212 if (!vmx->guest_uret_msrs_loaded) { 1213 vmx->guest_uret_msrs_loaded = true; 1214 for (i = 0; i < vmx->nr_active_uret_msrs; ++i) 1215 kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot, 1216 vmx->guest_uret_msrs[i].data, 1217 vmx->guest_uret_msrs[i].mask); 1218 1219 } 1220 1221 if (vmx->nested.need_vmcs12_to_shadow_sync) 1222 nested_sync_vmcs12_to_shadow(vcpu); 1223 1224 if (vmx->guest_state_loaded) 1225 return; 1226 1227 host_state = &vmx->loaded_vmcs->host_state; 1228 1229 /* 1230 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1231 * allow segment selectors with cpl > 0 or ti == 1. 1232 */ 1233 host_state->ldt_sel = kvm_read_ldt(); 1234 1235 #ifdef CONFIG_X86_64 1236 savesegment(ds, host_state->ds_sel); 1237 savesegment(es, host_state->es_sel); 1238 1239 gs_base = cpu_kernelmode_gs_base(cpu); 1240 if (likely(is_64bit_mm(current->mm))) { 1241 current_save_fsgs(); 1242 fs_sel = current->thread.fsindex; 1243 gs_sel = current->thread.gsindex; 1244 fs_base = current->thread.fsbase; 1245 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1246 } else { 1247 savesegment(fs, fs_sel); 1248 savesegment(gs, gs_sel); 1249 fs_base = read_msr(MSR_FS_BASE); 1250 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1251 } 1252 1253 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1254 #else 1255 savesegment(fs, fs_sel); 1256 savesegment(gs, gs_sel); 1257 fs_base = segment_base(fs_sel); 1258 gs_base = segment_base(gs_sel); 1259 #endif 1260 1261 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1262 vmx->guest_state_loaded = true; 1263 } 1264 1265 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1266 { 1267 struct vmcs_host_state *host_state; 1268 1269 if (!vmx->guest_state_loaded) 1270 return; 1271 1272 host_state = &vmx->loaded_vmcs->host_state; 1273 1274 ++vmx->vcpu.stat.host_state_reload; 1275 1276 #ifdef CONFIG_X86_64 1277 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1278 #endif 1279 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1280 kvm_load_ldt(host_state->ldt_sel); 1281 #ifdef CONFIG_X86_64 1282 load_gs_index(host_state->gs_sel); 1283 #else 1284 loadsegment(gs, host_state->gs_sel); 1285 #endif 1286 } 1287 if (host_state->fs_sel & 7) 1288 loadsegment(fs, host_state->fs_sel); 1289 #ifdef CONFIG_X86_64 1290 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1291 loadsegment(ds, host_state->ds_sel); 1292 loadsegment(es, host_state->es_sel); 1293 } 1294 #endif 1295 invalidate_tss_limit(); 1296 #ifdef CONFIG_X86_64 1297 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1298 #endif 1299 load_fixmap_gdt(raw_smp_processor_id()); 1300 vmx->guest_state_loaded = false; 1301 vmx->guest_uret_msrs_loaded = false; 1302 } 1303 1304 #ifdef CONFIG_X86_64 1305 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1306 { 1307 preempt_disable(); 1308 if (vmx->guest_state_loaded) 1309 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1310 preempt_enable(); 1311 return vmx->msr_guest_kernel_gs_base; 1312 } 1313 1314 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1315 { 1316 preempt_disable(); 1317 if (vmx->guest_state_loaded) 1318 wrmsrl(MSR_KERNEL_GS_BASE, data); 1319 preempt_enable(); 1320 vmx->msr_guest_kernel_gs_base = data; 1321 } 1322 #endif 1323 1324 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1325 struct loaded_vmcs *buddy) 1326 { 1327 struct vcpu_vmx *vmx = to_vmx(vcpu); 1328 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1329 struct vmcs *prev; 1330 1331 if (!already_loaded) { 1332 loaded_vmcs_clear(vmx->loaded_vmcs); 1333 local_irq_disable(); 1334 1335 /* 1336 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1337 * this cpu's percpu list, otherwise it may not yet be deleted 1338 * from its previous cpu's percpu list. Pairs with the 1339 * smb_wmb() in __loaded_vmcs_clear(). 1340 */ 1341 smp_rmb(); 1342 1343 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1344 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1345 local_irq_enable(); 1346 } 1347 1348 prev = per_cpu(current_vmcs, cpu); 1349 if (prev != vmx->loaded_vmcs->vmcs) { 1350 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1351 vmcs_load(vmx->loaded_vmcs->vmcs); 1352 1353 /* 1354 * No indirect branch prediction barrier needed when switching 1355 * the active VMCS within a guest, e.g. on nested VM-Enter. 1356 * The L1 VMM can protect itself with retpolines, IBPB or IBRS. 1357 */ 1358 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1359 indirect_branch_prediction_barrier(); 1360 } 1361 1362 if (!already_loaded) { 1363 void *gdt = get_current_gdt_ro(); 1364 unsigned long sysenter_esp; 1365 1366 /* 1367 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1368 * TLB entries from its previous association with the vCPU. 1369 */ 1370 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1371 1372 /* 1373 * Linux uses per-cpu TSS and GDT, so set these when switching 1374 * processors. See 22.2.4. 1375 */ 1376 vmcs_writel(HOST_TR_BASE, 1377 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1378 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1379 1380 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); 1381 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ 1382 1383 vmx->loaded_vmcs->cpu = cpu; 1384 } 1385 1386 /* Setup TSC multiplier */ 1387 if (kvm_has_tsc_control && 1388 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) 1389 decache_tsc_multiplier(vmx); 1390 } 1391 1392 /* 1393 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1394 * vcpu mutex is already taken. 1395 */ 1396 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1397 { 1398 struct vcpu_vmx *vmx = to_vmx(vcpu); 1399 1400 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1401 1402 vmx_vcpu_pi_load(vcpu, cpu); 1403 1404 vmx->host_debugctlmsr = get_debugctlmsr(); 1405 } 1406 1407 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1408 { 1409 vmx_vcpu_pi_put(vcpu); 1410 1411 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1412 } 1413 1414 static bool emulation_required(struct kvm_vcpu *vcpu) 1415 { 1416 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1417 } 1418 1419 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1420 { 1421 struct vcpu_vmx *vmx = to_vmx(vcpu); 1422 unsigned long rflags, save_rflags; 1423 1424 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1425 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1426 rflags = vmcs_readl(GUEST_RFLAGS); 1427 if (vmx->rmode.vm86_active) { 1428 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1429 save_rflags = vmx->rmode.save_rflags; 1430 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1431 } 1432 vmx->rflags = rflags; 1433 } 1434 return vmx->rflags; 1435 } 1436 1437 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1438 { 1439 struct vcpu_vmx *vmx = to_vmx(vcpu); 1440 unsigned long old_rflags; 1441 1442 if (is_unrestricted_guest(vcpu)) { 1443 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1444 vmx->rflags = rflags; 1445 vmcs_writel(GUEST_RFLAGS, rflags); 1446 return; 1447 } 1448 1449 old_rflags = vmx_get_rflags(vcpu); 1450 vmx->rflags = rflags; 1451 if (vmx->rmode.vm86_active) { 1452 vmx->rmode.save_rflags = rflags; 1453 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1454 } 1455 vmcs_writel(GUEST_RFLAGS, rflags); 1456 1457 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1458 vmx->emulation_required = emulation_required(vcpu); 1459 } 1460 1461 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1462 { 1463 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1464 int ret = 0; 1465 1466 if (interruptibility & GUEST_INTR_STATE_STI) 1467 ret |= KVM_X86_SHADOW_INT_STI; 1468 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1469 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1470 1471 return ret; 1472 } 1473 1474 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1475 { 1476 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1477 u32 interruptibility = interruptibility_old; 1478 1479 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1480 1481 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1482 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1483 else if (mask & KVM_X86_SHADOW_INT_STI) 1484 interruptibility |= GUEST_INTR_STATE_STI; 1485 1486 if ((interruptibility != interruptibility_old)) 1487 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1488 } 1489 1490 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1491 { 1492 struct vcpu_vmx *vmx = to_vmx(vcpu); 1493 unsigned long value; 1494 1495 /* 1496 * Any MSR write that attempts to change bits marked reserved will 1497 * case a #GP fault. 1498 */ 1499 if (data & vmx->pt_desc.ctl_bitmask) 1500 return 1; 1501 1502 /* 1503 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1504 * result in a #GP unless the same write also clears TraceEn. 1505 */ 1506 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1507 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1508 return 1; 1509 1510 /* 1511 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1512 * and FabricEn would cause #GP, if 1513 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1514 */ 1515 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1516 !(data & RTIT_CTL_FABRIC_EN) && 1517 !intel_pt_validate_cap(vmx->pt_desc.caps, 1518 PT_CAP_single_range_output)) 1519 return 1; 1520 1521 /* 1522 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1523 * utilize encodings marked reserved will casue a #GP fault. 1524 */ 1525 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1526 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1527 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1528 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1529 return 1; 1530 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1531 PT_CAP_cycle_thresholds); 1532 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1533 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1534 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1535 return 1; 1536 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1537 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1538 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1539 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1540 return 1; 1541 1542 /* 1543 * If ADDRx_CFG is reserved or the encodings is >2 will 1544 * cause a #GP fault. 1545 */ 1546 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1547 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2)) 1548 return 1; 1549 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1550 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2)) 1551 return 1; 1552 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1553 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2)) 1554 return 1; 1555 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1556 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2)) 1557 return 1; 1558 1559 return 0; 1560 } 1561 1562 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 1563 { 1564 return true; 1565 } 1566 1567 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1568 { 1569 unsigned long rip, orig_rip; 1570 1571 /* 1572 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1573 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1574 * set when EPT misconfig occurs. In practice, real hardware updates 1575 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1576 * (namely Hyper-V) don't set it due to it being undefined behavior, 1577 * i.e. we end up advancing IP with some random value. 1578 */ 1579 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1580 to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) { 1581 orig_rip = kvm_rip_read(vcpu); 1582 rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1583 #ifdef CONFIG_X86_64 1584 /* 1585 * We need to mask out the high 32 bits of RIP if not in 64-bit 1586 * mode, but just finding out that we are in 64-bit mode is 1587 * quite expensive. Only do it if there was a carry. 1588 */ 1589 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1590 rip = (u32)rip; 1591 #endif 1592 kvm_rip_write(vcpu, rip); 1593 } else { 1594 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1595 return 0; 1596 } 1597 1598 /* skipping an emulated instruction also counts */ 1599 vmx_set_interrupt_shadow(vcpu, 0); 1600 1601 return 1; 1602 } 1603 1604 /* 1605 * Recognizes a pending MTF VM-exit and records the nested state for later 1606 * delivery. 1607 */ 1608 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1609 { 1610 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1611 struct vcpu_vmx *vmx = to_vmx(vcpu); 1612 1613 if (!is_guest_mode(vcpu)) 1614 return; 1615 1616 /* 1617 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1618 * T-bit traps. As instruction emulation is completed (i.e. at the 1619 * instruction boundary), any #DB exception pending delivery must be a 1620 * debug-trap. Record the pending MTF state to be delivered in 1621 * vmx_check_nested_events(). 1622 */ 1623 if (nested_cpu_has_mtf(vmcs12) && 1624 (!vcpu->arch.exception.pending || 1625 vcpu->arch.exception.nr == DB_VECTOR)) 1626 vmx->nested.mtf_pending = true; 1627 else 1628 vmx->nested.mtf_pending = false; 1629 } 1630 1631 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1632 { 1633 vmx_update_emulated_instruction(vcpu); 1634 return skip_emulated_instruction(vcpu); 1635 } 1636 1637 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1638 { 1639 /* 1640 * Ensure that we clear the HLT state in the VMCS. We don't need to 1641 * explicitly skip the instruction because if the HLT state is set, 1642 * then the instruction is already executing and RIP has already been 1643 * advanced. 1644 */ 1645 if (kvm_hlt_in_guest(vcpu->kvm) && 1646 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1647 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1648 } 1649 1650 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1651 { 1652 struct vcpu_vmx *vmx = to_vmx(vcpu); 1653 unsigned nr = vcpu->arch.exception.nr; 1654 bool has_error_code = vcpu->arch.exception.has_error_code; 1655 u32 error_code = vcpu->arch.exception.error_code; 1656 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1657 1658 kvm_deliver_exception_payload(vcpu); 1659 1660 if (has_error_code) { 1661 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1662 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1663 } 1664 1665 if (vmx->rmode.vm86_active) { 1666 int inc_eip = 0; 1667 if (kvm_exception_is_soft(nr)) 1668 inc_eip = vcpu->arch.event_exit_inst_len; 1669 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip); 1670 return; 1671 } 1672 1673 WARN_ON_ONCE(vmx->emulation_required); 1674 1675 if (kvm_exception_is_soft(nr)) { 1676 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1677 vmx->vcpu.arch.event_exit_inst_len); 1678 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1679 } else 1680 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1681 1682 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1683 1684 vmx_clear_hlt(vcpu); 1685 } 1686 1687 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr) 1688 { 1689 struct vmx_uret_msr tmp; 1690 int from, to; 1691 1692 from = __vmx_find_uret_msr(vmx, msr); 1693 if (from < 0) 1694 return; 1695 to = vmx->nr_active_uret_msrs++; 1696 1697 tmp = vmx->guest_uret_msrs[to]; 1698 vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from]; 1699 vmx->guest_uret_msrs[from] = tmp; 1700 } 1701 1702 /* 1703 * Set up the vmcs to automatically save and restore system 1704 * msrs. Don't touch the 64-bit msrs if the guest is in legacy 1705 * mode, as fiddling with msrs is very expensive. 1706 */ 1707 static void setup_msrs(struct vcpu_vmx *vmx) 1708 { 1709 vmx->guest_uret_msrs_loaded = false; 1710 vmx->nr_active_uret_msrs = 0; 1711 #ifdef CONFIG_X86_64 1712 /* 1713 * The SYSCALL MSRs are only needed on long mode guests, and only 1714 * when EFER.SCE is set. 1715 */ 1716 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) { 1717 vmx_setup_uret_msr(vmx, MSR_STAR); 1718 vmx_setup_uret_msr(vmx, MSR_LSTAR); 1719 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK); 1720 } 1721 #endif 1722 if (update_transition_efer(vmx)) 1723 vmx_setup_uret_msr(vmx, MSR_EFER); 1724 1725 if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP)) 1726 vmx_setup_uret_msr(vmx, MSR_TSC_AUX); 1727 1728 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL); 1729 1730 if (cpu_has_vmx_msr_bitmap()) 1731 vmx_update_msr_bitmap(&vmx->vcpu); 1732 } 1733 1734 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1735 { 1736 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1737 u64 g_tsc_offset = 0; 1738 1739 /* 1740 * We're here if L1 chose not to trap WRMSR to TSC. According 1741 * to the spec, this should set L1's TSC; The offset that L1 1742 * set for L2 remains unchanged, and still needs to be added 1743 * to the newly set TSC to get L2's TSC. 1744 */ 1745 if (is_guest_mode(vcpu) && 1746 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)) 1747 g_tsc_offset = vmcs12->tsc_offset; 1748 1749 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 1750 vcpu->arch.tsc_offset - g_tsc_offset, 1751 offset); 1752 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset); 1753 return offset + g_tsc_offset; 1754 } 1755 1756 /* 1757 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1758 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1759 * all guests if the "nested" module option is off, and can also be disabled 1760 * for a single guest by disabling its VMX cpuid bit. 1761 */ 1762 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1763 { 1764 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1765 } 1766 1767 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1768 uint64_t val) 1769 { 1770 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1771 1772 return !(val & ~valid_bits); 1773 } 1774 1775 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1776 { 1777 switch (msr->index) { 1778 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1779 if (!nested) 1780 return 1; 1781 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1782 case MSR_IA32_PERF_CAPABILITIES: 1783 msr->data = vmx_get_perf_capabilities(); 1784 return 0; 1785 default: 1786 return KVM_MSR_RET_INVALID; 1787 } 1788 } 1789 1790 /* 1791 * Reads an msr value (of 'msr_index') into 'pdata'. 1792 * Returns 0 on success, non-0 otherwise. 1793 * Assumes vcpu_load() was already called. 1794 */ 1795 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1796 { 1797 struct vcpu_vmx *vmx = to_vmx(vcpu); 1798 struct vmx_uret_msr *msr; 1799 u32 index; 1800 1801 switch (msr_info->index) { 1802 #ifdef CONFIG_X86_64 1803 case MSR_FS_BASE: 1804 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1805 break; 1806 case MSR_GS_BASE: 1807 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1808 break; 1809 case MSR_KERNEL_GS_BASE: 1810 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1811 break; 1812 #endif 1813 case MSR_EFER: 1814 return kvm_get_msr_common(vcpu, msr_info); 1815 case MSR_IA32_TSX_CTRL: 1816 if (!msr_info->host_initiated && 1817 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1818 return 1; 1819 goto find_uret_msr; 1820 case MSR_IA32_UMWAIT_CONTROL: 1821 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 1822 return 1; 1823 1824 msr_info->data = vmx->msr_ia32_umwait_control; 1825 break; 1826 case MSR_IA32_SPEC_CTRL: 1827 if (!msr_info->host_initiated && 1828 !guest_has_spec_ctrl_msr(vcpu)) 1829 return 1; 1830 1831 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1832 break; 1833 case MSR_IA32_SYSENTER_CS: 1834 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1835 break; 1836 case MSR_IA32_SYSENTER_EIP: 1837 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1838 break; 1839 case MSR_IA32_SYSENTER_ESP: 1840 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1841 break; 1842 case MSR_IA32_BNDCFGS: 1843 if (!kvm_mpx_supported() || 1844 (!msr_info->host_initiated && 1845 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1846 return 1; 1847 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1848 break; 1849 case MSR_IA32_MCG_EXT_CTL: 1850 if (!msr_info->host_initiated && 1851 !(vmx->msr_ia32_feature_control & 1852 FEAT_CTL_LMCE_ENABLED)) 1853 return 1; 1854 msr_info->data = vcpu->arch.mcg_ext_ctl; 1855 break; 1856 case MSR_IA32_FEAT_CTL: 1857 msr_info->data = vmx->msr_ia32_feature_control; 1858 break; 1859 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1860 if (!nested_vmx_allowed(vcpu)) 1861 return 1; 1862 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1863 &msr_info->data)) 1864 return 1; 1865 /* 1866 * Enlightened VMCS v1 doesn't have certain fields, but buggy 1867 * Hyper-V versions are still trying to use corresponding 1868 * features when they are exposed. Filter out the essential 1869 * minimum. 1870 */ 1871 if (!msr_info->host_initiated && 1872 vmx->nested.enlightened_vmcs_enabled) 1873 nested_evmcs_filter_control_msr(msr_info->index, 1874 &msr_info->data); 1875 break; 1876 case MSR_IA32_RTIT_CTL: 1877 if (!vmx_pt_mode_is_host_guest()) 1878 return 1; 1879 msr_info->data = vmx->pt_desc.guest.ctl; 1880 break; 1881 case MSR_IA32_RTIT_STATUS: 1882 if (!vmx_pt_mode_is_host_guest()) 1883 return 1; 1884 msr_info->data = vmx->pt_desc.guest.status; 1885 break; 1886 case MSR_IA32_RTIT_CR3_MATCH: 1887 if (!vmx_pt_mode_is_host_guest() || 1888 !intel_pt_validate_cap(vmx->pt_desc.caps, 1889 PT_CAP_cr3_filtering)) 1890 return 1; 1891 msr_info->data = vmx->pt_desc.guest.cr3_match; 1892 break; 1893 case MSR_IA32_RTIT_OUTPUT_BASE: 1894 if (!vmx_pt_mode_is_host_guest() || 1895 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1896 PT_CAP_topa_output) && 1897 !intel_pt_validate_cap(vmx->pt_desc.caps, 1898 PT_CAP_single_range_output))) 1899 return 1; 1900 msr_info->data = vmx->pt_desc.guest.output_base; 1901 break; 1902 case MSR_IA32_RTIT_OUTPUT_MASK: 1903 if (!vmx_pt_mode_is_host_guest() || 1904 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1905 PT_CAP_topa_output) && 1906 !intel_pt_validate_cap(vmx->pt_desc.caps, 1907 PT_CAP_single_range_output))) 1908 return 1; 1909 msr_info->data = vmx->pt_desc.guest.output_mask; 1910 break; 1911 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1912 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1913 if (!vmx_pt_mode_is_host_guest() || 1914 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 1915 PT_CAP_num_address_ranges))) 1916 return 1; 1917 if (index % 2) 1918 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1919 else 1920 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1921 break; 1922 case MSR_TSC_AUX: 1923 if (!msr_info->host_initiated && 1924 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1925 return 1; 1926 goto find_uret_msr; 1927 default: 1928 find_uret_msr: 1929 msr = vmx_find_uret_msr(vmx, msr_info->index); 1930 if (msr) { 1931 msr_info->data = msr->data; 1932 break; 1933 } 1934 return kvm_get_msr_common(vcpu, msr_info); 1935 } 1936 1937 return 0; 1938 } 1939 1940 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 1941 u64 data) 1942 { 1943 #ifdef CONFIG_X86_64 1944 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1945 return (u32)data; 1946 #endif 1947 return (unsigned long)data; 1948 } 1949 1950 /* 1951 * Writes msr value into the appropriate "register". 1952 * Returns 0 on success, non-0 otherwise. 1953 * Assumes vcpu_load() was already called. 1954 */ 1955 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1956 { 1957 struct vcpu_vmx *vmx = to_vmx(vcpu); 1958 struct vmx_uret_msr *msr; 1959 int ret = 0; 1960 u32 msr_index = msr_info->index; 1961 u64 data = msr_info->data; 1962 u32 index; 1963 1964 switch (msr_index) { 1965 case MSR_EFER: 1966 ret = kvm_set_msr_common(vcpu, msr_info); 1967 break; 1968 #ifdef CONFIG_X86_64 1969 case MSR_FS_BASE: 1970 vmx_segment_cache_clear(vmx); 1971 vmcs_writel(GUEST_FS_BASE, data); 1972 break; 1973 case MSR_GS_BASE: 1974 vmx_segment_cache_clear(vmx); 1975 vmcs_writel(GUEST_GS_BASE, data); 1976 break; 1977 case MSR_KERNEL_GS_BASE: 1978 vmx_write_guest_kernel_gs_base(vmx, data); 1979 break; 1980 #endif 1981 case MSR_IA32_SYSENTER_CS: 1982 if (is_guest_mode(vcpu)) 1983 get_vmcs12(vcpu)->guest_sysenter_cs = data; 1984 vmcs_write32(GUEST_SYSENTER_CS, data); 1985 break; 1986 case MSR_IA32_SYSENTER_EIP: 1987 if (is_guest_mode(vcpu)) { 1988 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 1989 get_vmcs12(vcpu)->guest_sysenter_eip = data; 1990 } 1991 vmcs_writel(GUEST_SYSENTER_EIP, data); 1992 break; 1993 case MSR_IA32_SYSENTER_ESP: 1994 if (is_guest_mode(vcpu)) { 1995 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 1996 get_vmcs12(vcpu)->guest_sysenter_esp = data; 1997 } 1998 vmcs_writel(GUEST_SYSENTER_ESP, data); 1999 break; 2000 case MSR_IA32_DEBUGCTLMSR: 2001 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2002 VM_EXIT_SAVE_DEBUG_CONTROLS) 2003 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2004 2005 ret = kvm_set_msr_common(vcpu, msr_info); 2006 break; 2007 2008 case MSR_IA32_BNDCFGS: 2009 if (!kvm_mpx_supported() || 2010 (!msr_info->host_initiated && 2011 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2012 return 1; 2013 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2014 (data & MSR_IA32_BNDCFGS_RSVD)) 2015 return 1; 2016 vmcs_write64(GUEST_BNDCFGS, data); 2017 break; 2018 case MSR_IA32_UMWAIT_CONTROL: 2019 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2020 return 1; 2021 2022 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2023 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2024 return 1; 2025 2026 vmx->msr_ia32_umwait_control = data; 2027 break; 2028 case MSR_IA32_SPEC_CTRL: 2029 if (!msr_info->host_initiated && 2030 !guest_has_spec_ctrl_msr(vcpu)) 2031 return 1; 2032 2033 if (kvm_spec_ctrl_test_value(data)) 2034 return 1; 2035 2036 vmx->spec_ctrl = data; 2037 if (!data) 2038 break; 2039 2040 /* 2041 * For non-nested: 2042 * When it's written (to non-zero) for the first time, pass 2043 * it through. 2044 * 2045 * For nested: 2046 * The handling of the MSR bitmap for L2 guests is done in 2047 * nested_vmx_prepare_msr_bitmap. We should not touch the 2048 * vmcs02.msr_bitmap here since it gets completely overwritten 2049 * in the merging. We update the vmcs01 here for L1 as well 2050 * since it will end up touching the MSR anyway now. 2051 */ 2052 vmx_disable_intercept_for_msr(vcpu, 2053 MSR_IA32_SPEC_CTRL, 2054 MSR_TYPE_RW); 2055 break; 2056 case MSR_IA32_TSX_CTRL: 2057 if (!msr_info->host_initiated && 2058 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2059 return 1; 2060 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2061 return 1; 2062 goto find_uret_msr; 2063 case MSR_IA32_PRED_CMD: 2064 if (!msr_info->host_initiated && 2065 !guest_has_pred_cmd_msr(vcpu)) 2066 return 1; 2067 2068 if (data & ~PRED_CMD_IBPB) 2069 return 1; 2070 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2071 return 1; 2072 if (!data) 2073 break; 2074 2075 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2076 2077 /* 2078 * For non-nested: 2079 * When it's written (to non-zero) for the first time, pass 2080 * it through. 2081 * 2082 * For nested: 2083 * The handling of the MSR bitmap for L2 guests is done in 2084 * nested_vmx_prepare_msr_bitmap. We should not touch the 2085 * vmcs02.msr_bitmap here since it gets completely overwritten 2086 * in the merging. 2087 */ 2088 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W); 2089 break; 2090 case MSR_IA32_CR_PAT: 2091 if (!kvm_pat_valid(data)) 2092 return 1; 2093 2094 if (is_guest_mode(vcpu) && 2095 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2096 get_vmcs12(vcpu)->guest_ia32_pat = data; 2097 2098 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2099 vmcs_write64(GUEST_IA32_PAT, data); 2100 vcpu->arch.pat = data; 2101 break; 2102 } 2103 ret = kvm_set_msr_common(vcpu, msr_info); 2104 break; 2105 case MSR_IA32_TSC_ADJUST: 2106 ret = kvm_set_msr_common(vcpu, msr_info); 2107 break; 2108 case MSR_IA32_MCG_EXT_CTL: 2109 if ((!msr_info->host_initiated && 2110 !(to_vmx(vcpu)->msr_ia32_feature_control & 2111 FEAT_CTL_LMCE_ENABLED)) || 2112 (data & ~MCG_EXT_CTL_LMCE_EN)) 2113 return 1; 2114 vcpu->arch.mcg_ext_ctl = data; 2115 break; 2116 case MSR_IA32_FEAT_CTL: 2117 if (!vmx_feature_control_msr_valid(vcpu, data) || 2118 (to_vmx(vcpu)->msr_ia32_feature_control & 2119 FEAT_CTL_LOCKED && !msr_info->host_initiated)) 2120 return 1; 2121 vmx->msr_ia32_feature_control = data; 2122 if (msr_info->host_initiated && data == 0) 2123 vmx_leave_nested(vcpu); 2124 break; 2125 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 2126 if (!msr_info->host_initiated) 2127 return 1; /* they are read-only */ 2128 if (!nested_vmx_allowed(vcpu)) 2129 return 1; 2130 return vmx_set_vmx_msr(vcpu, msr_index, data); 2131 case MSR_IA32_RTIT_CTL: 2132 if (!vmx_pt_mode_is_host_guest() || 2133 vmx_rtit_ctl_check(vcpu, data) || 2134 vmx->nested.vmxon) 2135 return 1; 2136 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2137 vmx->pt_desc.guest.ctl = data; 2138 pt_update_intercept_for_msr(vcpu); 2139 break; 2140 case MSR_IA32_RTIT_STATUS: 2141 if (!pt_can_write_msr(vmx)) 2142 return 1; 2143 if (data & MSR_IA32_RTIT_STATUS_MASK) 2144 return 1; 2145 vmx->pt_desc.guest.status = data; 2146 break; 2147 case MSR_IA32_RTIT_CR3_MATCH: 2148 if (!pt_can_write_msr(vmx)) 2149 return 1; 2150 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2151 PT_CAP_cr3_filtering)) 2152 return 1; 2153 vmx->pt_desc.guest.cr3_match = data; 2154 break; 2155 case MSR_IA32_RTIT_OUTPUT_BASE: 2156 if (!pt_can_write_msr(vmx)) 2157 return 1; 2158 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2159 PT_CAP_topa_output) && 2160 !intel_pt_validate_cap(vmx->pt_desc.caps, 2161 PT_CAP_single_range_output)) 2162 return 1; 2163 if (!pt_output_base_valid(vcpu, data)) 2164 return 1; 2165 vmx->pt_desc.guest.output_base = data; 2166 break; 2167 case MSR_IA32_RTIT_OUTPUT_MASK: 2168 if (!pt_can_write_msr(vmx)) 2169 return 1; 2170 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2171 PT_CAP_topa_output) && 2172 !intel_pt_validate_cap(vmx->pt_desc.caps, 2173 PT_CAP_single_range_output)) 2174 return 1; 2175 vmx->pt_desc.guest.output_mask = data; 2176 break; 2177 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2178 if (!pt_can_write_msr(vmx)) 2179 return 1; 2180 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2181 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 2182 PT_CAP_num_address_ranges)) 2183 return 1; 2184 if (is_noncanonical_address(data, vcpu)) 2185 return 1; 2186 if (index % 2) 2187 vmx->pt_desc.guest.addr_b[index / 2] = data; 2188 else 2189 vmx->pt_desc.guest.addr_a[index / 2] = data; 2190 break; 2191 case MSR_TSC_AUX: 2192 if (!msr_info->host_initiated && 2193 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 2194 return 1; 2195 /* Check reserved bit, higher 32 bits should be zero */ 2196 if ((data >> 32) != 0) 2197 return 1; 2198 goto find_uret_msr; 2199 2200 default: 2201 find_uret_msr: 2202 msr = vmx_find_uret_msr(vmx, msr_index); 2203 if (msr) 2204 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2205 else 2206 ret = kvm_set_msr_common(vcpu, msr_info); 2207 } 2208 2209 return ret; 2210 } 2211 2212 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2213 { 2214 unsigned long guest_owned_bits; 2215 2216 kvm_register_mark_available(vcpu, reg); 2217 2218 switch (reg) { 2219 case VCPU_REGS_RSP: 2220 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2221 break; 2222 case VCPU_REGS_RIP: 2223 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2224 break; 2225 case VCPU_EXREG_PDPTR: 2226 if (enable_ept) 2227 ept_save_pdptrs(vcpu); 2228 break; 2229 case VCPU_EXREG_CR0: 2230 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2231 2232 vcpu->arch.cr0 &= ~guest_owned_bits; 2233 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2234 break; 2235 case VCPU_EXREG_CR3: 2236 if (is_unrestricted_guest(vcpu) || 2237 (enable_ept && is_paging(vcpu))) 2238 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2239 break; 2240 case VCPU_EXREG_CR4: 2241 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2242 2243 vcpu->arch.cr4 &= ~guest_owned_bits; 2244 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2245 break; 2246 default: 2247 WARN_ON_ONCE(1); 2248 break; 2249 } 2250 } 2251 2252 static __init int cpu_has_kvm_support(void) 2253 { 2254 return cpu_has_vmx(); 2255 } 2256 2257 static __init int vmx_disabled_by_bios(void) 2258 { 2259 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2260 !boot_cpu_has(X86_FEATURE_VMX); 2261 } 2262 2263 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2264 { 2265 u64 msr; 2266 2267 cr4_set_bits(X86_CR4_VMXE); 2268 intel_pt_handle_vmx(1); 2269 2270 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2271 _ASM_EXTABLE(1b, %l[fault]) 2272 : : [vmxon_pointer] "m"(vmxon_pointer) 2273 : : fault); 2274 return 0; 2275 2276 fault: 2277 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2278 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2279 intel_pt_handle_vmx(0); 2280 cr4_clear_bits(X86_CR4_VMXE); 2281 2282 return -EFAULT; 2283 } 2284 2285 static int hardware_enable(void) 2286 { 2287 int cpu = raw_smp_processor_id(); 2288 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2289 int r; 2290 2291 if (cr4_read_shadow() & X86_CR4_VMXE) 2292 return -EBUSY; 2293 2294 /* 2295 * This can happen if we hot-added a CPU but failed to allocate 2296 * VP assist page for it. 2297 */ 2298 if (static_branch_unlikely(&enable_evmcs) && 2299 !hv_get_vp_assist_page(cpu)) 2300 return -EFAULT; 2301 2302 r = kvm_cpu_vmxon(phys_addr); 2303 if (r) 2304 return r; 2305 2306 if (enable_ept) 2307 ept_sync_global(); 2308 2309 return 0; 2310 } 2311 2312 static void vmclear_local_loaded_vmcss(void) 2313 { 2314 int cpu = raw_smp_processor_id(); 2315 struct loaded_vmcs *v, *n; 2316 2317 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2318 loaded_vmcss_on_cpu_link) 2319 __loaded_vmcs_clear(v); 2320 } 2321 2322 2323 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() 2324 * tricks. 2325 */ 2326 static void kvm_cpu_vmxoff(void) 2327 { 2328 asm volatile (__ex("vmxoff")); 2329 2330 intel_pt_handle_vmx(0); 2331 cr4_clear_bits(X86_CR4_VMXE); 2332 } 2333 2334 static void hardware_disable(void) 2335 { 2336 vmclear_local_loaded_vmcss(); 2337 kvm_cpu_vmxoff(); 2338 } 2339 2340 /* 2341 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2342 * directly instead of going through cpu_has(), to ensure KVM is trapping 2343 * ENCLS whenever it's supported in hardware. It does not matter whether 2344 * the host OS supports or has enabled SGX. 2345 */ 2346 static bool cpu_has_sgx(void) 2347 { 2348 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2349 } 2350 2351 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2352 u32 msr, u32 *result) 2353 { 2354 u32 vmx_msr_low, vmx_msr_high; 2355 u32 ctl = ctl_min | ctl_opt; 2356 2357 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2358 2359 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2360 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2361 2362 /* Ensure minimum (required) set of control bits are supported. */ 2363 if (ctl_min & ~ctl) 2364 return -EIO; 2365 2366 *result = ctl; 2367 return 0; 2368 } 2369 2370 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2371 struct vmx_capability *vmx_cap) 2372 { 2373 u32 vmx_msr_low, vmx_msr_high; 2374 u32 min, opt, min2, opt2; 2375 u32 _pin_based_exec_control = 0; 2376 u32 _cpu_based_exec_control = 0; 2377 u32 _cpu_based_2nd_exec_control = 0; 2378 u32 _vmexit_control = 0; 2379 u32 _vmentry_control = 0; 2380 2381 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2382 min = CPU_BASED_HLT_EXITING | 2383 #ifdef CONFIG_X86_64 2384 CPU_BASED_CR8_LOAD_EXITING | 2385 CPU_BASED_CR8_STORE_EXITING | 2386 #endif 2387 CPU_BASED_CR3_LOAD_EXITING | 2388 CPU_BASED_CR3_STORE_EXITING | 2389 CPU_BASED_UNCOND_IO_EXITING | 2390 CPU_BASED_MOV_DR_EXITING | 2391 CPU_BASED_USE_TSC_OFFSETTING | 2392 CPU_BASED_MWAIT_EXITING | 2393 CPU_BASED_MONITOR_EXITING | 2394 CPU_BASED_INVLPG_EXITING | 2395 CPU_BASED_RDPMC_EXITING; 2396 2397 opt = CPU_BASED_TPR_SHADOW | 2398 CPU_BASED_USE_MSR_BITMAPS | 2399 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2400 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2401 &_cpu_based_exec_control) < 0) 2402 return -EIO; 2403 #ifdef CONFIG_X86_64 2404 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2405 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2406 ~CPU_BASED_CR8_STORE_EXITING; 2407 #endif 2408 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2409 min2 = 0; 2410 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2411 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2412 SECONDARY_EXEC_WBINVD_EXITING | 2413 SECONDARY_EXEC_ENABLE_VPID | 2414 SECONDARY_EXEC_ENABLE_EPT | 2415 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2416 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2417 SECONDARY_EXEC_DESC | 2418 SECONDARY_EXEC_ENABLE_RDTSCP | 2419 SECONDARY_EXEC_ENABLE_INVPCID | 2420 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2421 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2422 SECONDARY_EXEC_SHADOW_VMCS | 2423 SECONDARY_EXEC_XSAVES | 2424 SECONDARY_EXEC_RDSEED_EXITING | 2425 SECONDARY_EXEC_RDRAND_EXITING | 2426 SECONDARY_EXEC_ENABLE_PML | 2427 SECONDARY_EXEC_TSC_SCALING | 2428 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | 2429 SECONDARY_EXEC_PT_USE_GPA | 2430 SECONDARY_EXEC_PT_CONCEAL_VMX | 2431 SECONDARY_EXEC_ENABLE_VMFUNC; 2432 if (cpu_has_sgx()) 2433 opt2 |= SECONDARY_EXEC_ENCLS_EXITING; 2434 if (adjust_vmx_controls(min2, opt2, 2435 MSR_IA32_VMX_PROCBASED_CTLS2, 2436 &_cpu_based_2nd_exec_control) < 0) 2437 return -EIO; 2438 } 2439 #ifndef CONFIG_X86_64 2440 if (!(_cpu_based_2nd_exec_control & 2441 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2442 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2443 #endif 2444 2445 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2446 _cpu_based_2nd_exec_control &= ~( 2447 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2448 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2449 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2450 2451 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2452 &vmx_cap->ept, &vmx_cap->vpid); 2453 2454 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2455 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2456 enabled */ 2457 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2458 CPU_BASED_CR3_STORE_EXITING | 2459 CPU_BASED_INVLPG_EXITING); 2460 } else if (vmx_cap->ept) { 2461 vmx_cap->ept = 0; 2462 pr_warn_once("EPT CAP should not exist if not support " 2463 "1-setting enable EPT VM-execution control\n"); 2464 } 2465 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2466 vmx_cap->vpid) { 2467 vmx_cap->vpid = 0; 2468 pr_warn_once("VPID CAP should not exist if not support " 2469 "1-setting enable VPID VM-execution control\n"); 2470 } 2471 2472 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2473 #ifdef CONFIG_X86_64 2474 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2475 #endif 2476 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2477 VM_EXIT_LOAD_IA32_PAT | 2478 VM_EXIT_LOAD_IA32_EFER | 2479 VM_EXIT_CLEAR_BNDCFGS | 2480 VM_EXIT_PT_CONCEAL_PIP | 2481 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2482 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2483 &_vmexit_control) < 0) 2484 return -EIO; 2485 2486 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2487 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2488 PIN_BASED_VMX_PREEMPTION_TIMER; 2489 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2490 &_pin_based_exec_control) < 0) 2491 return -EIO; 2492 2493 if (cpu_has_broken_vmx_preemption_timer()) 2494 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2495 if (!(_cpu_based_2nd_exec_control & 2496 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2497 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2498 2499 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2500 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2501 VM_ENTRY_LOAD_IA32_PAT | 2502 VM_ENTRY_LOAD_IA32_EFER | 2503 VM_ENTRY_LOAD_BNDCFGS | 2504 VM_ENTRY_PT_CONCEAL_PIP | 2505 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2506 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2507 &_vmentry_control) < 0) 2508 return -EIO; 2509 2510 /* 2511 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2512 * can't be used due to an errata where VM Exit may incorrectly clear 2513 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2514 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2515 */ 2516 if (boot_cpu_data.x86 == 0x6) { 2517 switch (boot_cpu_data.x86_model) { 2518 case 26: /* AAK155 */ 2519 case 30: /* AAP115 */ 2520 case 37: /* AAT100 */ 2521 case 44: /* BC86,AAY89,BD102 */ 2522 case 46: /* BA97 */ 2523 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2524 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2525 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2526 "does not work properly. Using workaround\n"); 2527 break; 2528 default: 2529 break; 2530 } 2531 } 2532 2533 2534 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2535 2536 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2537 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2538 return -EIO; 2539 2540 #ifdef CONFIG_X86_64 2541 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2542 if (vmx_msr_high & (1u<<16)) 2543 return -EIO; 2544 #endif 2545 2546 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2547 if (((vmx_msr_high >> 18) & 15) != 6) 2548 return -EIO; 2549 2550 vmcs_conf->size = vmx_msr_high & 0x1fff; 2551 vmcs_conf->order = get_order(vmcs_conf->size); 2552 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2553 2554 vmcs_conf->revision_id = vmx_msr_low; 2555 2556 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2557 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2558 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2559 vmcs_conf->vmexit_ctrl = _vmexit_control; 2560 vmcs_conf->vmentry_ctrl = _vmentry_control; 2561 2562 #if IS_ENABLED(CONFIG_HYPERV) 2563 if (enlightened_vmcs) 2564 evmcs_sanitize_exec_ctrls(vmcs_conf); 2565 #endif 2566 2567 return 0; 2568 } 2569 2570 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2571 { 2572 int node = cpu_to_node(cpu); 2573 struct page *pages; 2574 struct vmcs *vmcs; 2575 2576 pages = __alloc_pages_node(node, flags, vmcs_config.order); 2577 if (!pages) 2578 return NULL; 2579 vmcs = page_address(pages); 2580 memset(vmcs, 0, vmcs_config.size); 2581 2582 /* KVM supports Enlightened VMCS v1 only */ 2583 if (static_branch_unlikely(&enable_evmcs)) 2584 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2585 else 2586 vmcs->hdr.revision_id = vmcs_config.revision_id; 2587 2588 if (shadow) 2589 vmcs->hdr.shadow_vmcs = 1; 2590 return vmcs; 2591 } 2592 2593 void free_vmcs(struct vmcs *vmcs) 2594 { 2595 free_pages((unsigned long)vmcs, vmcs_config.order); 2596 } 2597 2598 /* 2599 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2600 */ 2601 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2602 { 2603 if (!loaded_vmcs->vmcs) 2604 return; 2605 loaded_vmcs_clear(loaded_vmcs); 2606 free_vmcs(loaded_vmcs->vmcs); 2607 loaded_vmcs->vmcs = NULL; 2608 if (loaded_vmcs->msr_bitmap) 2609 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2610 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2611 } 2612 2613 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2614 { 2615 loaded_vmcs->vmcs = alloc_vmcs(false); 2616 if (!loaded_vmcs->vmcs) 2617 return -ENOMEM; 2618 2619 vmcs_clear(loaded_vmcs->vmcs); 2620 2621 loaded_vmcs->shadow_vmcs = NULL; 2622 loaded_vmcs->hv_timer_soft_disabled = false; 2623 loaded_vmcs->cpu = -1; 2624 loaded_vmcs->launched = 0; 2625 2626 if (cpu_has_vmx_msr_bitmap()) { 2627 loaded_vmcs->msr_bitmap = (unsigned long *) 2628 __get_free_page(GFP_KERNEL_ACCOUNT); 2629 if (!loaded_vmcs->msr_bitmap) 2630 goto out_vmcs; 2631 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2632 2633 if (IS_ENABLED(CONFIG_HYPERV) && 2634 static_branch_unlikely(&enable_evmcs) && 2635 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 2636 struct hv_enlightened_vmcs *evmcs = 2637 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; 2638 2639 evmcs->hv_enlightenments_control.msr_bitmap = 1; 2640 } 2641 } 2642 2643 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2644 memset(&loaded_vmcs->controls_shadow, 0, 2645 sizeof(struct vmcs_controls_shadow)); 2646 2647 return 0; 2648 2649 out_vmcs: 2650 free_loaded_vmcs(loaded_vmcs); 2651 return -ENOMEM; 2652 } 2653 2654 static void free_kvm_area(void) 2655 { 2656 int cpu; 2657 2658 for_each_possible_cpu(cpu) { 2659 free_vmcs(per_cpu(vmxarea, cpu)); 2660 per_cpu(vmxarea, cpu) = NULL; 2661 } 2662 } 2663 2664 static __init int alloc_kvm_area(void) 2665 { 2666 int cpu; 2667 2668 for_each_possible_cpu(cpu) { 2669 struct vmcs *vmcs; 2670 2671 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2672 if (!vmcs) { 2673 free_kvm_area(); 2674 return -ENOMEM; 2675 } 2676 2677 /* 2678 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2679 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2680 * revision_id reported by MSR_IA32_VMX_BASIC. 2681 * 2682 * However, even though not explicitly documented by 2683 * TLFS, VMXArea passed as VMXON argument should 2684 * still be marked with revision_id reported by 2685 * physical CPU. 2686 */ 2687 if (static_branch_unlikely(&enable_evmcs)) 2688 vmcs->hdr.revision_id = vmcs_config.revision_id; 2689 2690 per_cpu(vmxarea, cpu) = vmcs; 2691 } 2692 return 0; 2693 } 2694 2695 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2696 struct kvm_segment *save) 2697 { 2698 if (!emulate_invalid_guest_state) { 2699 /* 2700 * CS and SS RPL should be equal during guest entry according 2701 * to VMX spec, but in reality it is not always so. Since vcpu 2702 * is in the middle of the transition from real mode to 2703 * protected mode it is safe to assume that RPL 0 is a good 2704 * default value. 2705 */ 2706 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2707 save->selector &= ~SEGMENT_RPL_MASK; 2708 save->dpl = save->selector & SEGMENT_RPL_MASK; 2709 save->s = 1; 2710 } 2711 vmx_set_segment(vcpu, save, seg); 2712 } 2713 2714 static void enter_pmode(struct kvm_vcpu *vcpu) 2715 { 2716 unsigned long flags; 2717 struct vcpu_vmx *vmx = to_vmx(vcpu); 2718 2719 /* 2720 * Update real mode segment cache. It may be not up-to-date if sement 2721 * register was written while vcpu was in a guest mode. 2722 */ 2723 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2724 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2725 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2726 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2727 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2728 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2729 2730 vmx->rmode.vm86_active = 0; 2731 2732 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2733 2734 flags = vmcs_readl(GUEST_RFLAGS); 2735 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2736 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2737 vmcs_writel(GUEST_RFLAGS, flags); 2738 2739 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2740 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2741 2742 update_exception_bitmap(vcpu); 2743 2744 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2745 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2746 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2747 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2748 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2749 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2750 } 2751 2752 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2753 { 2754 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2755 struct kvm_segment var = *save; 2756 2757 var.dpl = 0x3; 2758 if (seg == VCPU_SREG_CS) 2759 var.type = 0x3; 2760 2761 if (!emulate_invalid_guest_state) { 2762 var.selector = var.base >> 4; 2763 var.base = var.base & 0xffff0; 2764 var.limit = 0xffff; 2765 var.g = 0; 2766 var.db = 0; 2767 var.present = 1; 2768 var.s = 1; 2769 var.l = 0; 2770 var.unusable = 0; 2771 var.type = 0x3; 2772 var.avl = 0; 2773 if (save->base & 0xf) 2774 printk_once(KERN_WARNING "kvm: segment base is not " 2775 "paragraph aligned when entering " 2776 "protected mode (seg=%d)", seg); 2777 } 2778 2779 vmcs_write16(sf->selector, var.selector); 2780 vmcs_writel(sf->base, var.base); 2781 vmcs_write32(sf->limit, var.limit); 2782 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2783 } 2784 2785 static void enter_rmode(struct kvm_vcpu *vcpu) 2786 { 2787 unsigned long flags; 2788 struct vcpu_vmx *vmx = to_vmx(vcpu); 2789 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2790 2791 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2792 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2793 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2794 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2795 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2796 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2797 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2798 2799 vmx->rmode.vm86_active = 1; 2800 2801 /* 2802 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2803 * vcpu. Warn the user that an update is overdue. 2804 */ 2805 if (!kvm_vmx->tss_addr) 2806 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2807 "called before entering vcpu\n"); 2808 2809 vmx_segment_cache_clear(vmx); 2810 2811 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2812 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2813 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2814 2815 flags = vmcs_readl(GUEST_RFLAGS); 2816 vmx->rmode.save_rflags = flags; 2817 2818 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2819 2820 vmcs_writel(GUEST_RFLAGS, flags); 2821 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2822 update_exception_bitmap(vcpu); 2823 2824 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2825 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2826 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2827 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2828 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2829 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2830 2831 kvm_mmu_reset_context(vcpu); 2832 } 2833 2834 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2835 { 2836 struct vcpu_vmx *vmx = to_vmx(vcpu); 2837 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER); 2838 2839 /* Nothing to do if hardware doesn't support EFER. */ 2840 if (!msr) 2841 return 0; 2842 2843 vcpu->arch.efer = efer; 2844 if (efer & EFER_LMA) { 2845 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2846 msr->data = efer; 2847 } else { 2848 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2849 2850 msr->data = efer & ~EFER_LME; 2851 } 2852 setup_msrs(vmx); 2853 return 0; 2854 } 2855 2856 #ifdef CONFIG_X86_64 2857 2858 static void enter_lmode(struct kvm_vcpu *vcpu) 2859 { 2860 u32 guest_tr_ar; 2861 2862 vmx_segment_cache_clear(to_vmx(vcpu)); 2863 2864 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2865 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2866 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2867 __func__); 2868 vmcs_write32(GUEST_TR_AR_BYTES, 2869 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 2870 | VMX_AR_TYPE_BUSY_64_TSS); 2871 } 2872 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 2873 } 2874 2875 static void exit_lmode(struct kvm_vcpu *vcpu) 2876 { 2877 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2878 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 2879 } 2880 2881 #endif 2882 2883 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 2884 { 2885 struct vcpu_vmx *vmx = to_vmx(vcpu); 2886 2887 /* 2888 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 2889 * the CPU is not required to invalidate guest-physical mappings on 2890 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 2891 * associated with the root EPT structure and not any particular VPID 2892 * (INVVPID also isn't required to invalidate guest-physical mappings). 2893 */ 2894 if (enable_ept) { 2895 ept_sync_global(); 2896 } else if (enable_vpid) { 2897 if (cpu_has_vmx_invvpid_global()) { 2898 vpid_sync_vcpu_global(); 2899 } else { 2900 vpid_sync_vcpu_single(vmx->vpid); 2901 vpid_sync_vcpu_single(vmx->nested.vpid02); 2902 } 2903 } 2904 } 2905 2906 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 2907 { 2908 struct kvm_mmu *mmu = vcpu->arch.mmu; 2909 u64 root_hpa = mmu->root_hpa; 2910 2911 /* No flush required if the current context is invalid. */ 2912 if (!VALID_PAGE(root_hpa)) 2913 return; 2914 2915 if (enable_ept) 2916 ept_sync_context(construct_eptp(vcpu, root_hpa, 2917 mmu->shadow_root_level)); 2918 else if (!is_guest_mode(vcpu)) 2919 vpid_sync_context(to_vmx(vcpu)->vpid); 2920 else 2921 vpid_sync_context(nested_get_vpid02(vcpu)); 2922 } 2923 2924 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 2925 { 2926 /* 2927 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in 2928 * vmx_flush_tlb_guest() for an explanation of why this is ok. 2929 */ 2930 vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr); 2931 } 2932 2933 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 2934 { 2935 /* 2936 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0 2937 * or a vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit 2938 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is 2939 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 2940 * i.e. no explicit INVVPID is necessary. 2941 */ 2942 vpid_sync_context(to_vmx(vcpu)->vpid); 2943 } 2944 2945 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 2946 { 2947 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2948 2949 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 2950 return; 2951 2952 if (is_pae_paging(vcpu)) { 2953 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 2954 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 2955 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 2956 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 2957 } 2958 } 2959 2960 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 2961 { 2962 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2963 2964 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 2965 return; 2966 2967 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 2968 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 2969 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 2970 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 2971 2972 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 2973 } 2974 2975 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, 2976 unsigned long cr0, 2977 struct kvm_vcpu *vcpu) 2978 { 2979 struct vcpu_vmx *vmx = to_vmx(vcpu); 2980 2981 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 2982 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 2983 if (!(cr0 & X86_CR0_PG)) { 2984 /* From paging/starting to nonpaging */ 2985 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING | 2986 CPU_BASED_CR3_STORE_EXITING); 2987 vcpu->arch.cr0 = cr0; 2988 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 2989 } else if (!is_paging(vcpu)) { 2990 /* From nonpaging to paging */ 2991 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING | 2992 CPU_BASED_CR3_STORE_EXITING); 2993 vcpu->arch.cr0 = cr0; 2994 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 2995 } 2996 2997 if (!(cr0 & X86_CR0_WP)) 2998 *hw_cr0 &= ~X86_CR0_WP; 2999 } 3000 3001 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3002 { 3003 struct vcpu_vmx *vmx = to_vmx(vcpu); 3004 unsigned long hw_cr0; 3005 3006 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3007 if (is_unrestricted_guest(vcpu)) 3008 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3009 else { 3010 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3011 3012 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3013 enter_pmode(vcpu); 3014 3015 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3016 enter_rmode(vcpu); 3017 } 3018 3019 #ifdef CONFIG_X86_64 3020 if (vcpu->arch.efer & EFER_LME) { 3021 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) 3022 enter_lmode(vcpu); 3023 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) 3024 exit_lmode(vcpu); 3025 } 3026 #endif 3027 3028 if (enable_ept && !is_unrestricted_guest(vcpu)) 3029 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); 3030 3031 vmcs_writel(CR0_READ_SHADOW, cr0); 3032 vmcs_writel(GUEST_CR0, hw_cr0); 3033 vcpu->arch.cr0 = cr0; 3034 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3035 3036 /* depends on vcpu->arch.cr0 to be set to a new value */ 3037 vmx->emulation_required = emulation_required(vcpu); 3038 } 3039 3040 static int vmx_get_max_tdp_level(void) 3041 { 3042 if (cpu_has_vmx_ept_5levels()) 3043 return 5; 3044 return 4; 3045 } 3046 3047 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa, 3048 int root_level) 3049 { 3050 u64 eptp = VMX_EPTP_MT_WB; 3051 3052 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3053 3054 if (enable_ept_ad_bits && 3055 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3056 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3057 eptp |= (root_hpa & PAGE_MASK); 3058 3059 return eptp; 3060 } 3061 3062 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd, 3063 int pgd_level) 3064 { 3065 struct kvm *kvm = vcpu->kvm; 3066 bool update_guest_cr3 = true; 3067 unsigned long guest_cr3; 3068 u64 eptp; 3069 3070 if (enable_ept) { 3071 eptp = construct_eptp(vcpu, pgd, pgd_level); 3072 vmcs_write64(EPT_POINTER, eptp); 3073 3074 if (kvm_x86_ops.tlb_remote_flush) { 3075 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock); 3076 to_vmx(vcpu)->ept_pointer = eptp; 3077 to_kvm_vmx(kvm)->ept_pointers_match 3078 = EPT_POINTERS_CHECK; 3079 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock); 3080 } 3081 3082 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3083 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3084 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3085 guest_cr3 = vcpu->arch.cr3; 3086 else /* vmcs01.GUEST_CR3 is already up-to-date. */ 3087 update_guest_cr3 = false; 3088 vmx_ept_load_pdptrs(vcpu); 3089 } else { 3090 guest_cr3 = pgd; 3091 } 3092 3093 if (update_guest_cr3) 3094 vmcs_writel(GUEST_CR3, guest_cr3); 3095 } 3096 3097 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3098 { 3099 /* 3100 * We operate under the default treatment of SMM, so VMX cannot be 3101 * enabled under SMM. Note, whether or not VMXE is allowed at all is 3102 * handled by kvm_is_valid_cr4(). 3103 */ 3104 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3105 return false; 3106 3107 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3108 return false; 3109 3110 return true; 3111 } 3112 3113 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3114 { 3115 unsigned long old_cr4 = vcpu->arch.cr4; 3116 struct vcpu_vmx *vmx = to_vmx(vcpu); 3117 /* 3118 * Pass through host's Machine Check Enable value to hw_cr4, which 3119 * is in force while we are in guest mode. Do not let guests control 3120 * this bit, even if host CR4.MCE == 0. 3121 */ 3122 unsigned long hw_cr4; 3123 3124 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3125 if (is_unrestricted_guest(vcpu)) 3126 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3127 else if (vmx->rmode.vm86_active) 3128 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3129 else 3130 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3131 3132 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 3133 if (cr4 & X86_CR4_UMIP) { 3134 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3135 hw_cr4 &= ~X86_CR4_UMIP; 3136 } else if (!is_guest_mode(vcpu) || 3137 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3138 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3139 } 3140 } 3141 3142 vcpu->arch.cr4 = cr4; 3143 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3144 3145 if (!is_unrestricted_guest(vcpu)) { 3146 if (enable_ept) { 3147 if (!is_paging(vcpu)) { 3148 hw_cr4 &= ~X86_CR4_PAE; 3149 hw_cr4 |= X86_CR4_PSE; 3150 } else if (!(cr4 & X86_CR4_PAE)) { 3151 hw_cr4 &= ~X86_CR4_PAE; 3152 } 3153 } 3154 3155 /* 3156 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3157 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3158 * to be manually disabled when guest switches to non-paging 3159 * mode. 3160 * 3161 * If !enable_unrestricted_guest, the CPU is always running 3162 * with CR0.PG=1 and CR4 needs to be modified. 3163 * If enable_unrestricted_guest, the CPU automatically 3164 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3165 */ 3166 if (!is_paging(vcpu)) 3167 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3168 } 3169 3170 vmcs_writel(CR4_READ_SHADOW, cr4); 3171 vmcs_writel(GUEST_CR4, hw_cr4); 3172 3173 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3174 kvm_update_cpuid_runtime(vcpu); 3175 } 3176 3177 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3178 { 3179 struct vcpu_vmx *vmx = to_vmx(vcpu); 3180 u32 ar; 3181 3182 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3183 *var = vmx->rmode.segs[seg]; 3184 if (seg == VCPU_SREG_TR 3185 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3186 return; 3187 var->base = vmx_read_guest_seg_base(vmx, seg); 3188 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3189 return; 3190 } 3191 var->base = vmx_read_guest_seg_base(vmx, seg); 3192 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3193 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3194 ar = vmx_read_guest_seg_ar(vmx, seg); 3195 var->unusable = (ar >> 16) & 1; 3196 var->type = ar & 15; 3197 var->s = (ar >> 4) & 1; 3198 var->dpl = (ar >> 5) & 3; 3199 /* 3200 * Some userspaces do not preserve unusable property. Since usable 3201 * segment has to be present according to VMX spec we can use present 3202 * property to amend userspace bug by making unusable segment always 3203 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3204 * segment as unusable. 3205 */ 3206 var->present = !var->unusable; 3207 var->avl = (ar >> 12) & 1; 3208 var->l = (ar >> 13) & 1; 3209 var->db = (ar >> 14) & 1; 3210 var->g = (ar >> 15) & 1; 3211 } 3212 3213 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3214 { 3215 struct kvm_segment s; 3216 3217 if (to_vmx(vcpu)->rmode.vm86_active) { 3218 vmx_get_segment(vcpu, &s, seg); 3219 return s.base; 3220 } 3221 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3222 } 3223 3224 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3225 { 3226 struct vcpu_vmx *vmx = to_vmx(vcpu); 3227 3228 if (unlikely(vmx->rmode.vm86_active)) 3229 return 0; 3230 else { 3231 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3232 return VMX_AR_DPL(ar); 3233 } 3234 } 3235 3236 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3237 { 3238 u32 ar; 3239 3240 if (var->unusable || !var->present) 3241 ar = 1 << 16; 3242 else { 3243 ar = var->type & 15; 3244 ar |= (var->s & 1) << 4; 3245 ar |= (var->dpl & 3) << 5; 3246 ar |= (var->present & 1) << 7; 3247 ar |= (var->avl & 1) << 12; 3248 ar |= (var->l & 1) << 13; 3249 ar |= (var->db & 1) << 14; 3250 ar |= (var->g & 1) << 15; 3251 } 3252 3253 return ar; 3254 } 3255 3256 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3257 { 3258 struct vcpu_vmx *vmx = to_vmx(vcpu); 3259 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3260 3261 vmx_segment_cache_clear(vmx); 3262 3263 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3264 vmx->rmode.segs[seg] = *var; 3265 if (seg == VCPU_SREG_TR) 3266 vmcs_write16(sf->selector, var->selector); 3267 else if (var->s) 3268 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3269 goto out; 3270 } 3271 3272 vmcs_writel(sf->base, var->base); 3273 vmcs_write32(sf->limit, var->limit); 3274 vmcs_write16(sf->selector, var->selector); 3275 3276 /* 3277 * Fix the "Accessed" bit in AR field of segment registers for older 3278 * qemu binaries. 3279 * IA32 arch specifies that at the time of processor reset the 3280 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3281 * is setting it to 0 in the userland code. This causes invalid guest 3282 * state vmexit when "unrestricted guest" mode is turned on. 3283 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3284 * tree. Newer qemu binaries with that qemu fix would not need this 3285 * kvm hack. 3286 */ 3287 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3288 var->type |= 0x1; /* Accessed */ 3289 3290 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3291 3292 out: 3293 vmx->emulation_required = emulation_required(vcpu); 3294 } 3295 3296 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3297 { 3298 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3299 3300 *db = (ar >> 14) & 1; 3301 *l = (ar >> 13) & 1; 3302 } 3303 3304 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3305 { 3306 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3307 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3308 } 3309 3310 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3311 { 3312 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3313 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3314 } 3315 3316 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3317 { 3318 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3319 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3320 } 3321 3322 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3323 { 3324 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3325 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3326 } 3327 3328 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3329 { 3330 struct kvm_segment var; 3331 u32 ar; 3332 3333 vmx_get_segment(vcpu, &var, seg); 3334 var.dpl = 0x3; 3335 if (seg == VCPU_SREG_CS) 3336 var.type = 0x3; 3337 ar = vmx_segment_access_rights(&var); 3338 3339 if (var.base != (var.selector << 4)) 3340 return false; 3341 if (var.limit != 0xffff) 3342 return false; 3343 if (ar != 0xf3) 3344 return false; 3345 3346 return true; 3347 } 3348 3349 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3350 { 3351 struct kvm_segment cs; 3352 unsigned int cs_rpl; 3353 3354 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3355 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3356 3357 if (cs.unusable) 3358 return false; 3359 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3360 return false; 3361 if (!cs.s) 3362 return false; 3363 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3364 if (cs.dpl > cs_rpl) 3365 return false; 3366 } else { 3367 if (cs.dpl != cs_rpl) 3368 return false; 3369 } 3370 if (!cs.present) 3371 return false; 3372 3373 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3374 return true; 3375 } 3376 3377 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3378 { 3379 struct kvm_segment ss; 3380 unsigned int ss_rpl; 3381 3382 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3383 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3384 3385 if (ss.unusable) 3386 return true; 3387 if (ss.type != 3 && ss.type != 7) 3388 return false; 3389 if (!ss.s) 3390 return false; 3391 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3392 return false; 3393 if (!ss.present) 3394 return false; 3395 3396 return true; 3397 } 3398 3399 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3400 { 3401 struct kvm_segment var; 3402 unsigned int rpl; 3403 3404 vmx_get_segment(vcpu, &var, seg); 3405 rpl = var.selector & SEGMENT_RPL_MASK; 3406 3407 if (var.unusable) 3408 return true; 3409 if (!var.s) 3410 return false; 3411 if (!var.present) 3412 return false; 3413 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3414 if (var.dpl < rpl) /* DPL < RPL */ 3415 return false; 3416 } 3417 3418 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3419 * rights flags 3420 */ 3421 return true; 3422 } 3423 3424 static bool tr_valid(struct kvm_vcpu *vcpu) 3425 { 3426 struct kvm_segment tr; 3427 3428 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3429 3430 if (tr.unusable) 3431 return false; 3432 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3433 return false; 3434 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3435 return false; 3436 if (!tr.present) 3437 return false; 3438 3439 return true; 3440 } 3441 3442 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3443 { 3444 struct kvm_segment ldtr; 3445 3446 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3447 3448 if (ldtr.unusable) 3449 return true; 3450 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3451 return false; 3452 if (ldtr.type != 2) 3453 return false; 3454 if (!ldtr.present) 3455 return false; 3456 3457 return true; 3458 } 3459 3460 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3461 { 3462 struct kvm_segment cs, ss; 3463 3464 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3465 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3466 3467 return ((cs.selector & SEGMENT_RPL_MASK) == 3468 (ss.selector & SEGMENT_RPL_MASK)); 3469 } 3470 3471 /* 3472 * Check if guest state is valid. Returns true if valid, false if 3473 * not. 3474 * We assume that registers are always usable 3475 */ 3476 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3477 { 3478 /* real mode guest state checks */ 3479 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3480 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3481 return false; 3482 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3483 return false; 3484 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3485 return false; 3486 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3487 return false; 3488 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3489 return false; 3490 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3491 return false; 3492 } else { 3493 /* protected mode guest state checks */ 3494 if (!cs_ss_rpl_check(vcpu)) 3495 return false; 3496 if (!code_segment_valid(vcpu)) 3497 return false; 3498 if (!stack_segment_valid(vcpu)) 3499 return false; 3500 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3501 return false; 3502 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3503 return false; 3504 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3505 return false; 3506 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3507 return false; 3508 if (!tr_valid(vcpu)) 3509 return false; 3510 if (!ldtr_valid(vcpu)) 3511 return false; 3512 } 3513 /* TODO: 3514 * - Add checks on RIP 3515 * - Add checks on RFLAGS 3516 */ 3517 3518 return true; 3519 } 3520 3521 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3522 { 3523 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3524 u16 data; 3525 int i; 3526 3527 for (i = 0; i < 3; i++) { 3528 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3529 return -EFAULT; 3530 } 3531 3532 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3533 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3534 return -EFAULT; 3535 3536 data = ~0; 3537 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3538 return -EFAULT; 3539 3540 return 0; 3541 } 3542 3543 static int init_rmode_identity_map(struct kvm *kvm) 3544 { 3545 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3546 int i, r = 0; 3547 void __user *uaddr; 3548 u32 tmp; 3549 3550 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3551 mutex_lock(&kvm->slots_lock); 3552 3553 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3554 goto out; 3555 3556 if (!kvm_vmx->ept_identity_map_addr) 3557 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3558 3559 uaddr = __x86_set_memory_region(kvm, 3560 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3561 kvm_vmx->ept_identity_map_addr, 3562 PAGE_SIZE); 3563 if (IS_ERR(uaddr)) { 3564 r = PTR_ERR(uaddr); 3565 goto out; 3566 } 3567 3568 /* Set up identity-mapping pagetable for EPT in real mode */ 3569 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3570 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3571 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3572 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3573 r = -EFAULT; 3574 goto out; 3575 } 3576 } 3577 kvm_vmx->ept_identity_pagetable_done = true; 3578 3579 out: 3580 mutex_unlock(&kvm->slots_lock); 3581 return r; 3582 } 3583 3584 static void seg_setup(int seg) 3585 { 3586 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3587 unsigned int ar; 3588 3589 vmcs_write16(sf->selector, 0); 3590 vmcs_writel(sf->base, 0); 3591 vmcs_write32(sf->limit, 0xffff); 3592 ar = 0x93; 3593 if (seg == VCPU_SREG_CS) 3594 ar |= 0x08; /* code segment */ 3595 3596 vmcs_write32(sf->ar_bytes, ar); 3597 } 3598 3599 static int alloc_apic_access_page(struct kvm *kvm) 3600 { 3601 struct page *page; 3602 void __user *hva; 3603 int ret = 0; 3604 3605 mutex_lock(&kvm->slots_lock); 3606 if (kvm->arch.apic_access_page_done) 3607 goto out; 3608 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3609 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3610 if (IS_ERR(hva)) { 3611 ret = PTR_ERR(hva); 3612 goto out; 3613 } 3614 3615 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3616 if (is_error_page(page)) { 3617 ret = -EFAULT; 3618 goto out; 3619 } 3620 3621 /* 3622 * Do not pin the page in memory, so that memory hot-unplug 3623 * is able to migrate it. 3624 */ 3625 put_page(page); 3626 kvm->arch.apic_access_page_done = true; 3627 out: 3628 mutex_unlock(&kvm->slots_lock); 3629 return ret; 3630 } 3631 3632 int allocate_vpid(void) 3633 { 3634 int vpid; 3635 3636 if (!enable_vpid) 3637 return 0; 3638 spin_lock(&vmx_vpid_lock); 3639 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3640 if (vpid < VMX_NR_VPIDS) 3641 __set_bit(vpid, vmx_vpid_bitmap); 3642 else 3643 vpid = 0; 3644 spin_unlock(&vmx_vpid_lock); 3645 return vpid; 3646 } 3647 3648 void free_vpid(int vpid) 3649 { 3650 if (!enable_vpid || vpid == 0) 3651 return; 3652 spin_lock(&vmx_vpid_lock); 3653 __clear_bit(vpid, vmx_vpid_bitmap); 3654 spin_unlock(&vmx_vpid_lock); 3655 } 3656 3657 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr) 3658 { 3659 int f = sizeof(unsigned long); 3660 3661 if (msr <= 0x1fff) 3662 __clear_bit(msr, msr_bitmap + 0x000 / f); 3663 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3664 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f); 3665 } 3666 3667 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr) 3668 { 3669 int f = sizeof(unsigned long); 3670 3671 if (msr <= 0x1fff) 3672 __clear_bit(msr, msr_bitmap + 0x800 / f); 3673 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3674 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f); 3675 } 3676 3677 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr) 3678 { 3679 int f = sizeof(unsigned long); 3680 3681 if (msr <= 0x1fff) 3682 __set_bit(msr, msr_bitmap + 0x000 / f); 3683 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3684 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f); 3685 } 3686 3687 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr) 3688 { 3689 int f = sizeof(unsigned long); 3690 3691 if (msr <= 0x1fff) 3692 __set_bit(msr, msr_bitmap + 0x800 / f); 3693 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3694 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f); 3695 } 3696 3697 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, 3698 u32 msr, int type) 3699 { 3700 struct vcpu_vmx *vmx = to_vmx(vcpu); 3701 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3702 3703 if (!cpu_has_vmx_msr_bitmap()) 3704 return; 3705 3706 if (static_branch_unlikely(&enable_evmcs)) 3707 evmcs_touch_msr_bitmap(); 3708 3709 /* 3710 * Mark the desired intercept state in shadow bitmap, this is needed 3711 * for resync when the MSR filters change. 3712 */ 3713 if (is_valid_passthrough_msr(msr)) { 3714 int idx = possible_passthrough_msr_slot(msr); 3715 3716 if (idx != -ENOENT) { 3717 if (type & MSR_TYPE_R) 3718 clear_bit(idx, vmx->shadow_msr_intercept.read); 3719 if (type & MSR_TYPE_W) 3720 clear_bit(idx, vmx->shadow_msr_intercept.write); 3721 } 3722 } 3723 3724 if ((type & MSR_TYPE_R) && 3725 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3726 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3727 type &= ~MSR_TYPE_R; 3728 } 3729 3730 if ((type & MSR_TYPE_W) && 3731 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3732 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3733 type &= ~MSR_TYPE_W; 3734 } 3735 3736 if (type & MSR_TYPE_R) 3737 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3738 3739 if (type & MSR_TYPE_W) 3740 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3741 } 3742 3743 static __always_inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, 3744 u32 msr, int type) 3745 { 3746 struct vcpu_vmx *vmx = to_vmx(vcpu); 3747 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3748 3749 if (!cpu_has_vmx_msr_bitmap()) 3750 return; 3751 3752 if (static_branch_unlikely(&enable_evmcs)) 3753 evmcs_touch_msr_bitmap(); 3754 3755 /* 3756 * Mark the desired intercept state in shadow bitmap, this is needed 3757 * for resync when the MSR filter changes. 3758 */ 3759 if (is_valid_passthrough_msr(msr)) { 3760 int idx = possible_passthrough_msr_slot(msr); 3761 3762 if (idx != -ENOENT) { 3763 if (type & MSR_TYPE_R) 3764 set_bit(idx, vmx->shadow_msr_intercept.read); 3765 if (type & MSR_TYPE_W) 3766 set_bit(idx, vmx->shadow_msr_intercept.write); 3767 } 3768 } 3769 3770 if (type & MSR_TYPE_R) 3771 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3772 3773 if (type & MSR_TYPE_W) 3774 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3775 } 3776 3777 static __always_inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, 3778 u32 msr, int type, bool value) 3779 { 3780 if (value) 3781 vmx_enable_intercept_for_msr(vcpu, msr, type); 3782 else 3783 vmx_disable_intercept_for_msr(vcpu, msr, type); 3784 } 3785 3786 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu) 3787 { 3788 u8 mode = 0; 3789 3790 if (cpu_has_secondary_exec_ctrls() && 3791 (secondary_exec_controls_get(to_vmx(vcpu)) & 3792 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3793 mode |= MSR_BITMAP_MODE_X2APIC; 3794 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3795 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3796 } 3797 3798 return mode; 3799 } 3800 3801 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode) 3802 { 3803 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; 3804 unsigned long read_intercept; 3805 int msr; 3806 3807 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3808 3809 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3810 unsigned int read_idx = msr / BITS_PER_LONG; 3811 unsigned int write_idx = read_idx + (0x800 / sizeof(long)); 3812 3813 msr_bitmap[read_idx] = read_intercept; 3814 msr_bitmap[write_idx] = ~0ul; 3815 } 3816 } 3817 3818 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode) 3819 { 3820 if (!cpu_has_vmx_msr_bitmap()) 3821 return; 3822 3823 vmx_reset_x2apic_msrs(vcpu, mode); 3824 3825 /* 3826 * TPR reads and writes can be virtualized even if virtual interrupt 3827 * delivery is not in use. 3828 */ 3829 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 3830 !(mode & MSR_BITMAP_MODE_X2APIC)); 3831 3832 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3833 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 3834 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3835 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3836 } 3837 } 3838 3839 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu) 3840 { 3841 struct vcpu_vmx *vmx = to_vmx(vcpu); 3842 u8 mode = vmx_msr_bitmap_mode(vcpu); 3843 u8 changed = mode ^ vmx->msr_bitmap_mode; 3844 3845 if (!changed) 3846 return; 3847 3848 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV)) 3849 vmx_update_msr_bitmap_x2apic(vcpu, mode); 3850 3851 vmx->msr_bitmap_mode = mode; 3852 } 3853 3854 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 3855 { 3856 struct vcpu_vmx *vmx = to_vmx(vcpu); 3857 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3858 u32 i; 3859 3860 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 3861 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 3862 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 3863 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 3864 for (i = 0; i < vmx->pt_desc.addr_range; i++) { 3865 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3866 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3867 } 3868 } 3869 3870 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3871 { 3872 struct vcpu_vmx *vmx = to_vmx(vcpu); 3873 void *vapic_page; 3874 u32 vppr; 3875 int rvi; 3876 3877 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3878 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3879 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3880 return false; 3881 3882 rvi = vmx_get_rvi(); 3883 3884 vapic_page = vmx->nested.virtual_apic_map.hva; 3885 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 3886 3887 return ((rvi & 0xf0) > (vppr & 0xf0)); 3888 } 3889 3890 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 3891 { 3892 struct vcpu_vmx *vmx = to_vmx(vcpu); 3893 u32 i; 3894 3895 /* 3896 * Set intercept permissions for all potentially passed through MSRs 3897 * again. They will automatically get filtered through the MSR filter, 3898 * so we are back in sync after this. 3899 */ 3900 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 3901 u32 msr = vmx_possible_passthrough_msrs[i]; 3902 bool read = test_bit(i, vmx->shadow_msr_intercept.read); 3903 bool write = test_bit(i, vmx->shadow_msr_intercept.write); 3904 3905 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read); 3906 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write); 3907 } 3908 3909 pt_update_intercept_for_msr(vcpu); 3910 vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu)); 3911 } 3912 3913 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 3914 bool nested) 3915 { 3916 #ifdef CONFIG_SMP 3917 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; 3918 3919 if (vcpu->mode == IN_GUEST_MODE) { 3920 /* 3921 * The vector of interrupt to be delivered to vcpu had 3922 * been set in PIR before this function. 3923 * 3924 * Following cases will be reached in this block, and 3925 * we always send a notification event in all cases as 3926 * explained below. 3927 * 3928 * Case 1: vcpu keeps in non-root mode. Sending a 3929 * notification event posts the interrupt to vcpu. 3930 * 3931 * Case 2: vcpu exits to root mode and is still 3932 * runnable. PIR will be synced to vIRR before the 3933 * next vcpu entry. Sending a notification event in 3934 * this case has no effect, as vcpu is not in root 3935 * mode. 3936 * 3937 * Case 3: vcpu exits to root mode and is blocked. 3938 * vcpu_block() has already synced PIR to vIRR and 3939 * never blocks vcpu if vIRR is not cleared. Therefore, 3940 * a blocked vcpu here does not wait for any requested 3941 * interrupts in PIR, and sending a notification event 3942 * which has no effect is safe here. 3943 */ 3944 3945 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 3946 return true; 3947 } 3948 #endif 3949 return false; 3950 } 3951 3952 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 3953 int vector) 3954 { 3955 struct vcpu_vmx *vmx = to_vmx(vcpu); 3956 3957 if (is_guest_mode(vcpu) && 3958 vector == vmx->nested.posted_intr_nv) { 3959 /* 3960 * If a posted intr is not recognized by hardware, 3961 * we will accomplish it in the next vmentry. 3962 */ 3963 vmx->nested.pi_pending = true; 3964 kvm_make_request(KVM_REQ_EVENT, vcpu); 3965 /* the PIR and ON have been set by L1. */ 3966 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) 3967 kvm_vcpu_kick(vcpu); 3968 return 0; 3969 } 3970 return -1; 3971 } 3972 /* 3973 * Send interrupt to vcpu via posted interrupt way. 3974 * 1. If target vcpu is running(non-root mode), send posted interrupt 3975 * notification to vcpu and hardware will sync PIR to vIRR atomically. 3976 * 2. If target vcpu isn't running(root mode), kick it to pick up the 3977 * interrupt from PIR in next vmentry. 3978 */ 3979 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 3980 { 3981 struct vcpu_vmx *vmx = to_vmx(vcpu); 3982 int r; 3983 3984 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 3985 if (!r) 3986 return 0; 3987 3988 if (!vcpu->arch.apicv_active) 3989 return -1; 3990 3991 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 3992 return 0; 3993 3994 /* If a previous notification has sent the IPI, nothing to do. */ 3995 if (pi_test_and_set_on(&vmx->pi_desc)) 3996 return 0; 3997 3998 if (vcpu != kvm_get_running_vcpu() && 3999 !kvm_vcpu_trigger_posted_interrupt(vcpu, false)) 4000 kvm_vcpu_kick(vcpu); 4001 4002 return 0; 4003 } 4004 4005 /* 4006 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4007 * will not change in the lifetime of the guest. 4008 * Note that host-state that does change is set elsewhere. E.g., host-state 4009 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4010 */ 4011 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4012 { 4013 u32 low32, high32; 4014 unsigned long tmpl; 4015 unsigned long cr0, cr3, cr4; 4016 4017 cr0 = read_cr0(); 4018 WARN_ON(cr0 & X86_CR0_TS); 4019 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4020 4021 /* 4022 * Save the most likely value for this task's CR3 in the VMCS. 4023 * We can't use __get_current_cr3_fast() because we're not atomic. 4024 */ 4025 cr3 = __read_cr3(); 4026 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4027 vmx->loaded_vmcs->host_state.cr3 = cr3; 4028 4029 /* Save the most likely value for this task's CR4 in the VMCS. */ 4030 cr4 = cr4_read_shadow(); 4031 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4032 vmx->loaded_vmcs->host_state.cr4 = cr4; 4033 4034 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4035 #ifdef CONFIG_X86_64 4036 /* 4037 * Load null selectors, so we can avoid reloading them in 4038 * vmx_prepare_switch_to_host(), in case userspace uses 4039 * the null selectors too (the expected case). 4040 */ 4041 vmcs_write16(HOST_DS_SELECTOR, 0); 4042 vmcs_write16(HOST_ES_SELECTOR, 0); 4043 #else 4044 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4045 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4046 #endif 4047 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4048 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4049 4050 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4051 4052 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4053 4054 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4055 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4056 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4057 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4058 4059 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4060 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4061 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4062 } 4063 4064 if (cpu_has_load_ia32_efer()) 4065 vmcs_write64(HOST_IA32_EFER, host_efer); 4066 } 4067 4068 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4069 { 4070 struct kvm_vcpu *vcpu = &vmx->vcpu; 4071 4072 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4073 ~vcpu->arch.cr4_guest_rsvd_bits; 4074 if (!enable_ept) 4075 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE; 4076 if (is_guest_mode(&vmx->vcpu)) 4077 vcpu->arch.cr4_guest_owned_bits &= 4078 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4079 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4080 } 4081 4082 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4083 { 4084 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4085 4086 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4087 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4088 4089 if (!enable_vnmi) 4090 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4091 4092 if (!enable_preemption_timer) 4093 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4094 4095 return pin_based_exec_ctrl; 4096 } 4097 4098 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4099 { 4100 struct vcpu_vmx *vmx = to_vmx(vcpu); 4101 4102 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4103 if (cpu_has_secondary_exec_ctrls()) { 4104 if (kvm_vcpu_apicv_active(vcpu)) 4105 secondary_exec_controls_setbit(vmx, 4106 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4107 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4108 else 4109 secondary_exec_controls_clearbit(vmx, 4110 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4111 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4112 } 4113 4114 if (cpu_has_vmx_msr_bitmap()) 4115 vmx_update_msr_bitmap(vcpu); 4116 } 4117 4118 u32 vmx_exec_control(struct vcpu_vmx *vmx) 4119 { 4120 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4121 4122 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4123 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4124 4125 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 4126 exec_control &= ~CPU_BASED_TPR_SHADOW; 4127 #ifdef CONFIG_X86_64 4128 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4129 CPU_BASED_CR8_LOAD_EXITING; 4130 #endif 4131 } 4132 if (!enable_ept) 4133 exec_control |= CPU_BASED_CR3_STORE_EXITING | 4134 CPU_BASED_CR3_LOAD_EXITING | 4135 CPU_BASED_INVLPG_EXITING; 4136 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4137 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4138 CPU_BASED_MONITOR_EXITING); 4139 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4140 exec_control &= ~CPU_BASED_HLT_EXITING; 4141 return exec_control; 4142 } 4143 4144 /* 4145 * Adjust a single secondary execution control bit to intercept/allow an 4146 * instruction in the guest. This is usually done based on whether or not a 4147 * feature has been exposed to the guest in order to correctly emulate faults. 4148 */ 4149 static inline void 4150 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4151 u32 control, bool enabled, bool exiting) 4152 { 4153 /* 4154 * If the control is for an opt-in feature, clear the control if the 4155 * feature is not exposed to the guest, i.e. not enabled. If the 4156 * control is opt-out, i.e. an exiting control, clear the control if 4157 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4158 * disabled for the associated instruction. Note, the caller is 4159 * responsible presetting exec_control to set all supported bits. 4160 */ 4161 if (enabled == exiting) 4162 *exec_control &= ~control; 4163 4164 /* 4165 * Update the nested MSR settings so that a nested VMM can/can't set 4166 * controls for features that are/aren't exposed to the guest. 4167 */ 4168 if (nested) { 4169 if (enabled) 4170 vmx->nested.msrs.secondary_ctls_high |= control; 4171 else 4172 vmx->nested.msrs.secondary_ctls_high &= ~control; 4173 } 4174 } 4175 4176 /* 4177 * Wrapper macro for the common case of adjusting a secondary execution control 4178 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4179 * verifies that the control is actually supported by KVM and hardware. 4180 */ 4181 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4182 ({ \ 4183 bool __enabled; \ 4184 \ 4185 if (cpu_has_vmx_##name()) { \ 4186 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4187 X86_FEATURE_##feat_name); \ 4188 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4189 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4190 } \ 4191 }) 4192 4193 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4194 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4195 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4196 4197 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4198 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4199 4200 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx) 4201 { 4202 struct kvm_vcpu *vcpu = &vmx->vcpu; 4203 4204 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4205 4206 if (vmx_pt_mode_is_system()) 4207 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4208 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4209 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4210 if (vmx->vpid == 0) 4211 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4212 if (!enable_ept) { 4213 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4214 enable_unrestricted_guest = 0; 4215 } 4216 if (!enable_unrestricted_guest) 4217 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4218 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4219 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4220 if (!kvm_vcpu_apicv_active(vcpu)) 4221 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4222 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4223 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4224 4225 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4226 * in vmx_set_cr4. */ 4227 exec_control &= ~SECONDARY_EXEC_DESC; 4228 4229 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4230 (handle_vmptrld). 4231 We can NOT enable shadow_vmcs here because we don't have yet 4232 a current VMCS12 4233 */ 4234 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4235 4236 if (!enable_pml) 4237 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4238 4239 if (cpu_has_vmx_xsaves()) { 4240 /* Exposing XSAVES only when XSAVE is exposed */ 4241 bool xsaves_enabled = 4242 boot_cpu_has(X86_FEATURE_XSAVE) && 4243 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4244 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4245 4246 vcpu->arch.xsaves_enabled = xsaves_enabled; 4247 4248 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4249 SECONDARY_EXEC_XSAVES, 4250 xsaves_enabled, false); 4251 } 4252 4253 vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP); 4254 4255 /* 4256 * Expose INVPCID if and only if PCID is also exposed to the guest. 4257 * INVPCID takes a #UD when it's disabled in the VMCS, but a #GP or #PF 4258 * if CR4.PCIDE=0. Enumerating CPUID.INVPCID=1 would lead to incorrect 4259 * behavior from the guest perspective (it would expect #GP or #PF). 4260 */ 4261 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID)) 4262 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID); 4263 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4264 4265 4266 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4267 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4268 4269 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4270 ENABLE_USR_WAIT_PAUSE, false); 4271 4272 vmx->secondary_exec_control = exec_control; 4273 } 4274 4275 static void ept_set_mmio_spte_mask(void) 4276 { 4277 /* 4278 * EPT Misconfigurations can be generated if the value of bits 2:0 4279 * of an EPT paging-structure entry is 110b (write/execute). 4280 */ 4281 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0); 4282 } 4283 4284 #define VMX_XSS_EXIT_BITMAP 0 4285 4286 /* 4287 * Noting that the initialization of Guest-state Area of VMCS is in 4288 * vmx_vcpu_reset(). 4289 */ 4290 static void init_vmcs(struct vcpu_vmx *vmx) 4291 { 4292 if (nested) 4293 nested_vmx_set_vmcs_shadowing_bitmap(); 4294 4295 if (cpu_has_vmx_msr_bitmap()) 4296 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4297 4298 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ 4299 4300 /* Control */ 4301 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4302 4303 exec_controls_set(vmx, vmx_exec_control(vmx)); 4304 4305 if (cpu_has_secondary_exec_ctrls()) { 4306 vmx_compute_secondary_exec_control(vmx); 4307 secondary_exec_controls_set(vmx, vmx->secondary_exec_control); 4308 } 4309 4310 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4311 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4312 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4313 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4314 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4315 4316 vmcs_write16(GUEST_INTR_STATUS, 0); 4317 4318 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4319 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4320 } 4321 4322 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4323 vmcs_write32(PLE_GAP, ple_gap); 4324 vmx->ple_window = ple_window; 4325 vmx->ple_window_dirty = true; 4326 } 4327 4328 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4329 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4330 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4331 4332 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4333 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4334 vmx_set_constant_host_state(vmx); 4335 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4336 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4337 4338 if (cpu_has_vmx_vmfunc()) 4339 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4340 4341 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4342 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4343 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4344 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4345 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4346 4347 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4348 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4349 4350 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4351 4352 /* 22.2.1, 20.8.1 */ 4353 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4354 4355 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS; 4356 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4357 4358 set_cr4_guest_host_mask(vmx); 4359 4360 if (vmx->vpid != 0) 4361 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4362 4363 if (cpu_has_vmx_xsaves()) 4364 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4365 4366 if (enable_pml) { 4367 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4368 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4369 } 4370 4371 if (cpu_has_vmx_encls_vmexit()) 4372 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull); 4373 4374 if (vmx_pt_mode_is_host_guest()) { 4375 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4376 /* Bit[6~0] are forced to 1, writes are ignored. */ 4377 vmx->pt_desc.guest.output_mask = 0x7F; 4378 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4379 } 4380 } 4381 4382 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4383 { 4384 struct vcpu_vmx *vmx = to_vmx(vcpu); 4385 struct msr_data apic_base_msr; 4386 u64 cr0; 4387 4388 vmx->rmode.vm86_active = 0; 4389 vmx->spec_ctrl = 0; 4390 4391 vmx->msr_ia32_umwait_control = 0; 4392 4393 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); 4394 vmx->hv_deadline_tsc = -1; 4395 kvm_set_cr8(vcpu, 0); 4396 4397 if (!init_event) { 4398 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | 4399 MSR_IA32_APICBASE_ENABLE; 4400 if (kvm_vcpu_is_reset_bsp(vcpu)) 4401 apic_base_msr.data |= MSR_IA32_APICBASE_BSP; 4402 apic_base_msr.host_initiated = true; 4403 kvm_set_apic_base(vcpu, &apic_base_msr); 4404 } 4405 4406 vmx_segment_cache_clear(vmx); 4407 4408 seg_setup(VCPU_SREG_CS); 4409 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4410 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4411 4412 seg_setup(VCPU_SREG_DS); 4413 seg_setup(VCPU_SREG_ES); 4414 seg_setup(VCPU_SREG_FS); 4415 seg_setup(VCPU_SREG_GS); 4416 seg_setup(VCPU_SREG_SS); 4417 4418 vmcs_write16(GUEST_TR_SELECTOR, 0); 4419 vmcs_writel(GUEST_TR_BASE, 0); 4420 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4421 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4422 4423 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4424 vmcs_writel(GUEST_LDTR_BASE, 0); 4425 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4426 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4427 4428 if (!init_event) { 4429 vmcs_write32(GUEST_SYSENTER_CS, 0); 4430 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4431 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4432 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4433 } 4434 4435 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 4436 kvm_rip_write(vcpu, 0xfff0); 4437 4438 vmcs_writel(GUEST_GDTR_BASE, 0); 4439 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4440 4441 vmcs_writel(GUEST_IDTR_BASE, 0); 4442 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4443 4444 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4445 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4446 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4447 if (kvm_mpx_supported()) 4448 vmcs_write64(GUEST_BNDCFGS, 0); 4449 4450 setup_msrs(vmx); 4451 4452 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4453 4454 if (cpu_has_vmx_tpr_shadow() && !init_event) { 4455 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4456 if (cpu_need_tpr_shadow(vcpu)) 4457 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4458 __pa(vcpu->arch.apic->regs)); 4459 vmcs_write32(TPR_THRESHOLD, 0); 4460 } 4461 4462 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4463 4464 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; 4465 vmx->vcpu.arch.cr0 = cr0; 4466 vmx_set_cr0(vcpu, cr0); /* enter rmode */ 4467 vmx_set_cr4(vcpu, 0); 4468 vmx_set_efer(vcpu, 0); 4469 4470 update_exception_bitmap(vcpu); 4471 4472 vpid_sync_context(vmx->vpid); 4473 if (init_event) 4474 vmx_clear_hlt(vcpu); 4475 } 4476 4477 static void enable_irq_window(struct kvm_vcpu *vcpu) 4478 { 4479 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4480 } 4481 4482 static void enable_nmi_window(struct kvm_vcpu *vcpu) 4483 { 4484 if (!enable_vnmi || 4485 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4486 enable_irq_window(vcpu); 4487 return; 4488 } 4489 4490 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4491 } 4492 4493 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4494 { 4495 struct vcpu_vmx *vmx = to_vmx(vcpu); 4496 uint32_t intr; 4497 int irq = vcpu->arch.interrupt.nr; 4498 4499 trace_kvm_inj_virq(irq); 4500 4501 ++vcpu->stat.irq_injections; 4502 if (vmx->rmode.vm86_active) { 4503 int inc_eip = 0; 4504 if (vcpu->arch.interrupt.soft) 4505 inc_eip = vcpu->arch.event_exit_inst_len; 4506 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4507 return; 4508 } 4509 intr = irq | INTR_INFO_VALID_MASK; 4510 if (vcpu->arch.interrupt.soft) { 4511 intr |= INTR_TYPE_SOFT_INTR; 4512 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4513 vmx->vcpu.arch.event_exit_inst_len); 4514 } else 4515 intr |= INTR_TYPE_EXT_INTR; 4516 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4517 4518 vmx_clear_hlt(vcpu); 4519 } 4520 4521 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4522 { 4523 struct vcpu_vmx *vmx = to_vmx(vcpu); 4524 4525 if (!enable_vnmi) { 4526 /* 4527 * Tracking the NMI-blocked state in software is built upon 4528 * finding the next open IRQ window. This, in turn, depends on 4529 * well-behaving guests: They have to keep IRQs disabled at 4530 * least as long as the NMI handler runs. Otherwise we may 4531 * cause NMI nesting, maybe breaking the guest. But as this is 4532 * highly unlikely, we can live with the residual risk. 4533 */ 4534 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4535 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4536 } 4537 4538 ++vcpu->stat.nmi_injections; 4539 vmx->loaded_vmcs->nmi_known_unmasked = false; 4540 4541 if (vmx->rmode.vm86_active) { 4542 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4543 return; 4544 } 4545 4546 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4547 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4548 4549 vmx_clear_hlt(vcpu); 4550 } 4551 4552 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4553 { 4554 struct vcpu_vmx *vmx = to_vmx(vcpu); 4555 bool masked; 4556 4557 if (!enable_vnmi) 4558 return vmx->loaded_vmcs->soft_vnmi_blocked; 4559 if (vmx->loaded_vmcs->nmi_known_unmasked) 4560 return false; 4561 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4562 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4563 return masked; 4564 } 4565 4566 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4567 { 4568 struct vcpu_vmx *vmx = to_vmx(vcpu); 4569 4570 if (!enable_vnmi) { 4571 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4572 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4573 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4574 } 4575 } else { 4576 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4577 if (masked) 4578 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4579 GUEST_INTR_STATE_NMI); 4580 else 4581 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4582 GUEST_INTR_STATE_NMI); 4583 } 4584 } 4585 4586 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 4587 { 4588 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4589 return false; 4590 4591 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4592 return true; 4593 4594 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4595 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 4596 GUEST_INTR_STATE_NMI)); 4597 } 4598 4599 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4600 { 4601 if (to_vmx(vcpu)->nested.nested_run_pending) 4602 return -EBUSY; 4603 4604 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 4605 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4606 return -EBUSY; 4607 4608 return !vmx_nmi_blocked(vcpu); 4609 } 4610 4611 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 4612 { 4613 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4614 return false; 4615 4616 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 4617 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4618 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4619 } 4620 4621 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4622 { 4623 if (to_vmx(vcpu)->nested.nested_run_pending) 4624 return -EBUSY; 4625 4626 /* 4627 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 4628 * e.g. if the IRQ arrived asynchronously after checking nested events. 4629 */ 4630 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4631 return -EBUSY; 4632 4633 return !vmx_interrupt_blocked(vcpu); 4634 } 4635 4636 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4637 { 4638 void __user *ret; 4639 4640 if (enable_unrestricted_guest) 4641 return 0; 4642 4643 mutex_lock(&kvm->slots_lock); 4644 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4645 PAGE_SIZE * 3); 4646 mutex_unlock(&kvm->slots_lock); 4647 4648 if (IS_ERR(ret)) 4649 return PTR_ERR(ret); 4650 4651 to_kvm_vmx(kvm)->tss_addr = addr; 4652 4653 return init_rmode_tss(kvm, ret); 4654 } 4655 4656 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4657 { 4658 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4659 return 0; 4660 } 4661 4662 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4663 { 4664 switch (vec) { 4665 case BP_VECTOR: 4666 /* 4667 * Update instruction length as we may reinject the exception 4668 * from user space while in guest debugging mode. 4669 */ 4670 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4671 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4672 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4673 return false; 4674 fallthrough; 4675 case DB_VECTOR: 4676 return !(vcpu->guest_debug & 4677 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 4678 case DE_VECTOR: 4679 case OF_VECTOR: 4680 case BR_VECTOR: 4681 case UD_VECTOR: 4682 case DF_VECTOR: 4683 case SS_VECTOR: 4684 case GP_VECTOR: 4685 case MF_VECTOR: 4686 return true; 4687 } 4688 return false; 4689 } 4690 4691 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4692 int vec, u32 err_code) 4693 { 4694 /* 4695 * Instruction with address size override prefix opcode 0x67 4696 * Cause the #SS fault with 0 error code in VM86 mode. 4697 */ 4698 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4699 if (kvm_emulate_instruction(vcpu, 0)) { 4700 if (vcpu->arch.halt_request) { 4701 vcpu->arch.halt_request = 0; 4702 return kvm_vcpu_halt(vcpu); 4703 } 4704 return 1; 4705 } 4706 return 0; 4707 } 4708 4709 /* 4710 * Forward all other exceptions that are valid in real mode. 4711 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4712 * the required debugging infrastructure rework. 4713 */ 4714 kvm_queue_exception(vcpu, vec); 4715 return 1; 4716 } 4717 4718 static int handle_machine_check(struct kvm_vcpu *vcpu) 4719 { 4720 /* handled by vmx_vcpu_run() */ 4721 return 1; 4722 } 4723 4724 /* 4725 * If the host has split lock detection disabled, then #AC is 4726 * unconditionally injected into the guest, which is the pre split lock 4727 * detection behaviour. 4728 * 4729 * If the host has split lock detection enabled then #AC is 4730 * only injected into the guest when: 4731 * - Guest CPL == 3 (user mode) 4732 * - Guest has #AC detection enabled in CR0 4733 * - Guest EFLAGS has AC bit set 4734 */ 4735 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu) 4736 { 4737 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 4738 return true; 4739 4740 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) && 4741 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 4742 } 4743 4744 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 4745 { 4746 struct vcpu_vmx *vmx = to_vmx(vcpu); 4747 struct kvm_run *kvm_run = vcpu->run; 4748 u32 intr_info, ex_no, error_code; 4749 unsigned long cr2, rip, dr6; 4750 u32 vect_info; 4751 4752 vect_info = vmx->idt_vectoring_info; 4753 intr_info = vmx_get_intr_info(vcpu); 4754 4755 if (is_machine_check(intr_info) || is_nmi(intr_info)) 4756 return 1; /* handled by handle_exception_nmi_irqoff() */ 4757 4758 if (is_invalid_opcode(intr_info)) 4759 return handle_ud(vcpu); 4760 4761 error_code = 0; 4762 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4763 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4764 4765 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4766 WARN_ON_ONCE(!enable_vmware_backdoor); 4767 4768 /* 4769 * VMware backdoor emulation on #GP interception only handles 4770 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 4771 * error code on #GP. 4772 */ 4773 if (error_code) { 4774 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4775 return 1; 4776 } 4777 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 4778 } 4779 4780 /* 4781 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4782 * MMIO, it is better to report an internal error. 4783 * See the comments in vmx_handle_exit. 4784 */ 4785 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4786 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4787 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4788 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4789 vcpu->run->internal.ndata = 4; 4790 vcpu->run->internal.data[0] = vect_info; 4791 vcpu->run->internal.data[1] = intr_info; 4792 vcpu->run->internal.data[2] = error_code; 4793 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 4794 return 0; 4795 } 4796 4797 if (is_page_fault(intr_info)) { 4798 cr2 = vmx_get_exit_qual(vcpu); 4799 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 4800 /* 4801 * EPT will cause page fault only if we need to 4802 * detect illegal GPAs. 4803 */ 4804 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 4805 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 4806 return 1; 4807 } else 4808 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4809 } 4810 4811 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4812 4813 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4814 return handle_rmode_exception(vcpu, ex_no, error_code); 4815 4816 switch (ex_no) { 4817 case DB_VECTOR: 4818 dr6 = vmx_get_exit_qual(vcpu); 4819 if (!(vcpu->guest_debug & 4820 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4821 if (is_icebp(intr_info)) 4822 WARN_ON(!skip_emulated_instruction(vcpu)); 4823 4824 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 4825 return 1; 4826 } 4827 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM; 4828 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4829 fallthrough; 4830 case BP_VECTOR: 4831 /* 4832 * Update instruction length as we may reinject #BP from 4833 * user space while in guest debugging mode. Reading it for 4834 * #DB as well causes no harm, it is not used in that case. 4835 */ 4836 vmx->vcpu.arch.event_exit_inst_len = 4837 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4838 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4839 rip = kvm_rip_read(vcpu); 4840 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; 4841 kvm_run->debug.arch.exception = ex_no; 4842 break; 4843 case AC_VECTOR: 4844 if (guest_inject_ac(vcpu)) { 4845 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4846 return 1; 4847 } 4848 4849 /* 4850 * Handle split lock. Depending on detection mode this will 4851 * either warn and disable split lock detection for this 4852 * task or force SIGBUS on it. 4853 */ 4854 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 4855 return 1; 4856 fallthrough; 4857 default: 4858 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4859 kvm_run->ex.exception = ex_no; 4860 kvm_run->ex.error_code = error_code; 4861 break; 4862 } 4863 return 0; 4864 } 4865 4866 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 4867 { 4868 ++vcpu->stat.irq_exits; 4869 return 1; 4870 } 4871 4872 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4873 { 4874 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 4875 vcpu->mmio_needed = 0; 4876 return 0; 4877 } 4878 4879 static int handle_io(struct kvm_vcpu *vcpu) 4880 { 4881 unsigned long exit_qualification; 4882 int size, in, string; 4883 unsigned port; 4884 4885 exit_qualification = vmx_get_exit_qual(vcpu); 4886 string = (exit_qualification & 16) != 0; 4887 4888 ++vcpu->stat.io_exits; 4889 4890 if (string) 4891 return kvm_emulate_instruction(vcpu, 0); 4892 4893 port = exit_qualification >> 16; 4894 size = (exit_qualification & 7) + 1; 4895 in = (exit_qualification & 8) != 0; 4896 4897 return kvm_fast_pio(vcpu, size, port, in); 4898 } 4899 4900 static void 4901 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4902 { 4903 /* 4904 * Patch in the VMCALL instruction: 4905 */ 4906 hypercall[0] = 0x0f; 4907 hypercall[1] = 0x01; 4908 hypercall[2] = 0xc1; 4909 } 4910 4911 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 4912 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 4913 { 4914 if (is_guest_mode(vcpu)) { 4915 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4916 unsigned long orig_val = val; 4917 4918 /* 4919 * We get here when L2 changed cr0 in a way that did not change 4920 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 4921 * but did change L0 shadowed bits. So we first calculate the 4922 * effective cr0 value that L1 would like to write into the 4923 * hardware. It consists of the L2-owned bits from the new 4924 * value combined with the L1-owned bits from L1's guest_cr0. 4925 */ 4926 val = (val & ~vmcs12->cr0_guest_host_mask) | 4927 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 4928 4929 if (!nested_guest_cr0_valid(vcpu, val)) 4930 return 1; 4931 4932 if (kvm_set_cr0(vcpu, val)) 4933 return 1; 4934 vmcs_writel(CR0_READ_SHADOW, orig_val); 4935 return 0; 4936 } else { 4937 if (to_vmx(vcpu)->nested.vmxon && 4938 !nested_host_cr0_valid(vcpu, val)) 4939 return 1; 4940 4941 return kvm_set_cr0(vcpu, val); 4942 } 4943 } 4944 4945 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 4946 { 4947 if (is_guest_mode(vcpu)) { 4948 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4949 unsigned long orig_val = val; 4950 4951 /* analogously to handle_set_cr0 */ 4952 val = (val & ~vmcs12->cr4_guest_host_mask) | 4953 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 4954 if (kvm_set_cr4(vcpu, val)) 4955 return 1; 4956 vmcs_writel(CR4_READ_SHADOW, orig_val); 4957 return 0; 4958 } else 4959 return kvm_set_cr4(vcpu, val); 4960 } 4961 4962 static int handle_desc(struct kvm_vcpu *vcpu) 4963 { 4964 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 4965 return kvm_emulate_instruction(vcpu, 0); 4966 } 4967 4968 static int handle_cr(struct kvm_vcpu *vcpu) 4969 { 4970 unsigned long exit_qualification, val; 4971 int cr; 4972 int reg; 4973 int err; 4974 int ret; 4975 4976 exit_qualification = vmx_get_exit_qual(vcpu); 4977 cr = exit_qualification & 15; 4978 reg = (exit_qualification >> 8) & 15; 4979 switch ((exit_qualification >> 4) & 3) { 4980 case 0: /* mov to cr */ 4981 val = kvm_register_readl(vcpu, reg); 4982 trace_kvm_cr_write(cr, val); 4983 switch (cr) { 4984 case 0: 4985 err = handle_set_cr0(vcpu, val); 4986 return kvm_complete_insn_gp(vcpu, err); 4987 case 3: 4988 WARN_ON_ONCE(enable_unrestricted_guest); 4989 err = kvm_set_cr3(vcpu, val); 4990 return kvm_complete_insn_gp(vcpu, err); 4991 case 4: 4992 err = handle_set_cr4(vcpu, val); 4993 return kvm_complete_insn_gp(vcpu, err); 4994 case 8: { 4995 u8 cr8_prev = kvm_get_cr8(vcpu); 4996 u8 cr8 = (u8)val; 4997 err = kvm_set_cr8(vcpu, cr8); 4998 ret = kvm_complete_insn_gp(vcpu, err); 4999 if (lapic_in_kernel(vcpu)) 5000 return ret; 5001 if (cr8_prev <= cr8) 5002 return ret; 5003 /* 5004 * TODO: we might be squashing a 5005 * KVM_GUESTDBG_SINGLESTEP-triggered 5006 * KVM_EXIT_DEBUG here. 5007 */ 5008 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5009 return 0; 5010 } 5011 } 5012 break; 5013 case 2: /* clts */ 5014 WARN_ONCE(1, "Guest should always own CR0.TS"); 5015 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); 5016 trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); 5017 return kvm_skip_emulated_instruction(vcpu); 5018 case 1: /*mov from cr*/ 5019 switch (cr) { 5020 case 3: 5021 WARN_ON_ONCE(enable_unrestricted_guest); 5022 val = kvm_read_cr3(vcpu); 5023 kvm_register_write(vcpu, reg, val); 5024 trace_kvm_cr_read(cr, val); 5025 return kvm_skip_emulated_instruction(vcpu); 5026 case 8: 5027 val = kvm_get_cr8(vcpu); 5028 kvm_register_write(vcpu, reg, val); 5029 trace_kvm_cr_read(cr, val); 5030 return kvm_skip_emulated_instruction(vcpu); 5031 } 5032 break; 5033 case 3: /* lmsw */ 5034 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5035 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 5036 kvm_lmsw(vcpu, val); 5037 5038 return kvm_skip_emulated_instruction(vcpu); 5039 default: 5040 break; 5041 } 5042 vcpu->run->exit_reason = 0; 5043 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5044 (int)(exit_qualification >> 4) & 3, cr); 5045 return 0; 5046 } 5047 5048 static int handle_dr(struct kvm_vcpu *vcpu) 5049 { 5050 unsigned long exit_qualification; 5051 int dr, dr7, reg; 5052 5053 exit_qualification = vmx_get_exit_qual(vcpu); 5054 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5055 5056 /* First, if DR does not exist, trigger UD */ 5057 if (!kvm_require_dr(vcpu, dr)) 5058 return 1; 5059 5060 /* Do not handle if the CPL > 0, will trigger GP on re-entry */ 5061 if (!kvm_require_cpl(vcpu, 0)) 5062 return 1; 5063 dr7 = vmcs_readl(GUEST_DR7); 5064 if (dr7 & DR7_GD) { 5065 /* 5066 * As the vm-exit takes precedence over the debug trap, we 5067 * need to emulate the latter, either for the host or the 5068 * guest debugging itself. 5069 */ 5070 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5071 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1; 5072 vcpu->run->debug.arch.dr7 = dr7; 5073 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5074 vcpu->run->debug.arch.exception = DB_VECTOR; 5075 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5076 return 0; 5077 } else { 5078 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5079 return 1; 5080 } 5081 } 5082 5083 if (vcpu->guest_debug == 0) { 5084 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5085 5086 /* 5087 * No more DR vmexits; force a reload of the debug registers 5088 * and reenter on this instruction. The next vmexit will 5089 * retrieve the full state of the debug registers. 5090 */ 5091 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5092 return 1; 5093 } 5094 5095 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5096 if (exit_qualification & TYPE_MOV_FROM_DR) { 5097 unsigned long val; 5098 5099 if (kvm_get_dr(vcpu, dr, &val)) 5100 return 1; 5101 kvm_register_write(vcpu, reg, val); 5102 } else 5103 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg))) 5104 return 1; 5105 5106 return kvm_skip_emulated_instruction(vcpu); 5107 } 5108 5109 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5110 { 5111 get_debugreg(vcpu->arch.db[0], 0); 5112 get_debugreg(vcpu->arch.db[1], 1); 5113 get_debugreg(vcpu->arch.db[2], 2); 5114 get_debugreg(vcpu->arch.db[3], 3); 5115 get_debugreg(vcpu->arch.dr6, 6); 5116 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5117 5118 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5119 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5120 } 5121 5122 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5123 { 5124 vmcs_writel(GUEST_DR7, val); 5125 } 5126 5127 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5128 { 5129 kvm_apic_update_ppr(vcpu); 5130 return 1; 5131 } 5132 5133 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5134 { 5135 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5136 5137 kvm_make_request(KVM_REQ_EVENT, vcpu); 5138 5139 ++vcpu->stat.irq_window_exits; 5140 return 1; 5141 } 5142 5143 static int handle_vmcall(struct kvm_vcpu *vcpu) 5144 { 5145 return kvm_emulate_hypercall(vcpu); 5146 } 5147 5148 static int handle_invd(struct kvm_vcpu *vcpu) 5149 { 5150 /* Treat an INVD instruction as a NOP and just skip it. */ 5151 return kvm_skip_emulated_instruction(vcpu); 5152 } 5153 5154 static int handle_invlpg(struct kvm_vcpu *vcpu) 5155 { 5156 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5157 5158 kvm_mmu_invlpg(vcpu, exit_qualification); 5159 return kvm_skip_emulated_instruction(vcpu); 5160 } 5161 5162 static int handle_rdpmc(struct kvm_vcpu *vcpu) 5163 { 5164 int err; 5165 5166 err = kvm_rdpmc(vcpu); 5167 return kvm_complete_insn_gp(vcpu, err); 5168 } 5169 5170 static int handle_wbinvd(struct kvm_vcpu *vcpu) 5171 { 5172 return kvm_emulate_wbinvd(vcpu); 5173 } 5174 5175 static int handle_xsetbv(struct kvm_vcpu *vcpu) 5176 { 5177 u64 new_bv = kvm_read_edx_eax(vcpu); 5178 u32 index = kvm_rcx_read(vcpu); 5179 5180 if (kvm_set_xcr(vcpu, index, new_bv) == 0) 5181 return kvm_skip_emulated_instruction(vcpu); 5182 return 1; 5183 } 5184 5185 static int handle_apic_access(struct kvm_vcpu *vcpu) 5186 { 5187 if (likely(fasteoi)) { 5188 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5189 int access_type, offset; 5190 5191 access_type = exit_qualification & APIC_ACCESS_TYPE; 5192 offset = exit_qualification & APIC_ACCESS_OFFSET; 5193 /* 5194 * Sane guest uses MOV to write EOI, with written value 5195 * not cared. So make a short-circuit here by avoiding 5196 * heavy instruction emulation. 5197 */ 5198 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5199 (offset == APIC_EOI)) { 5200 kvm_lapic_set_eoi(vcpu); 5201 return kvm_skip_emulated_instruction(vcpu); 5202 } 5203 } 5204 return kvm_emulate_instruction(vcpu, 0); 5205 } 5206 5207 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5208 { 5209 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5210 int vector = exit_qualification & 0xff; 5211 5212 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5213 kvm_apic_set_eoi_accelerated(vcpu, vector); 5214 return 1; 5215 } 5216 5217 static int handle_apic_write(struct kvm_vcpu *vcpu) 5218 { 5219 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5220 u32 offset = exit_qualification & 0xfff; 5221 5222 /* APIC-write VM exit is trap-like and thus no need to adjust IP */ 5223 kvm_apic_write_nodecode(vcpu, offset); 5224 return 1; 5225 } 5226 5227 static int handle_task_switch(struct kvm_vcpu *vcpu) 5228 { 5229 struct vcpu_vmx *vmx = to_vmx(vcpu); 5230 unsigned long exit_qualification; 5231 bool has_error_code = false; 5232 u32 error_code = 0; 5233 u16 tss_selector; 5234 int reason, type, idt_v, idt_index; 5235 5236 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5237 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5238 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5239 5240 exit_qualification = vmx_get_exit_qual(vcpu); 5241 5242 reason = (u32)exit_qualification >> 30; 5243 if (reason == TASK_SWITCH_GATE && idt_v) { 5244 switch (type) { 5245 case INTR_TYPE_NMI_INTR: 5246 vcpu->arch.nmi_injected = false; 5247 vmx_set_nmi_mask(vcpu, true); 5248 break; 5249 case INTR_TYPE_EXT_INTR: 5250 case INTR_TYPE_SOFT_INTR: 5251 kvm_clear_interrupt_queue(vcpu); 5252 break; 5253 case INTR_TYPE_HARD_EXCEPTION: 5254 if (vmx->idt_vectoring_info & 5255 VECTORING_INFO_DELIVER_CODE_MASK) { 5256 has_error_code = true; 5257 error_code = 5258 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5259 } 5260 fallthrough; 5261 case INTR_TYPE_SOFT_EXCEPTION: 5262 kvm_clear_exception_queue(vcpu); 5263 break; 5264 default: 5265 break; 5266 } 5267 } 5268 tss_selector = exit_qualification; 5269 5270 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5271 type != INTR_TYPE_EXT_INTR && 5272 type != INTR_TYPE_NMI_INTR)) 5273 WARN_ON(!skip_emulated_instruction(vcpu)); 5274 5275 /* 5276 * TODO: What about debug traps on tss switch? 5277 * Are we supposed to inject them and update dr6? 5278 */ 5279 return kvm_task_switch(vcpu, tss_selector, 5280 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5281 reason, has_error_code, error_code); 5282 } 5283 5284 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5285 { 5286 unsigned long exit_qualification; 5287 gpa_t gpa; 5288 u64 error_code; 5289 5290 exit_qualification = vmx_get_exit_qual(vcpu); 5291 5292 /* 5293 * EPT violation happened while executing iret from NMI, 5294 * "blocked by NMI" bit has to be set before next VM entry. 5295 * There are errata that may cause this bit to not be set: 5296 * AAK134, BY25. 5297 */ 5298 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5299 enable_vnmi && 5300 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5301 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5302 5303 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5304 trace_kvm_page_fault(gpa, exit_qualification); 5305 5306 /* Is it a read fault? */ 5307 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5308 ? PFERR_USER_MASK : 0; 5309 /* Is it a write fault? */ 5310 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5311 ? PFERR_WRITE_MASK : 0; 5312 /* Is it a fetch fault? */ 5313 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5314 ? PFERR_FETCH_MASK : 0; 5315 /* ept page table entry is present? */ 5316 error_code |= (exit_qualification & 5317 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5318 EPT_VIOLATION_EXECUTABLE)) 5319 ? PFERR_PRESENT_MASK : 0; 5320 5321 error_code |= (exit_qualification & 0x100) != 0 ? 5322 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5323 5324 vcpu->arch.exit_qualification = exit_qualification; 5325 5326 /* 5327 * Check that the GPA doesn't exceed physical memory limits, as that is 5328 * a guest page fault. We have to emulate the instruction here, because 5329 * if the illegal address is that of a paging structure, then 5330 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5331 * would also use advanced VM-exit information for EPT violations to 5332 * reconstruct the page fault error code. 5333 */ 5334 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5335 return kvm_emulate_instruction(vcpu, 0); 5336 5337 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5338 } 5339 5340 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5341 { 5342 gpa_t gpa; 5343 5344 /* 5345 * A nested guest cannot optimize MMIO vmexits, because we have an 5346 * nGPA here instead of the required GPA. 5347 */ 5348 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5349 if (!is_guest_mode(vcpu) && 5350 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5351 trace_kvm_fast_mmio(gpa); 5352 return kvm_skip_emulated_instruction(vcpu); 5353 } 5354 5355 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5356 } 5357 5358 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5359 { 5360 WARN_ON_ONCE(!enable_vnmi); 5361 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5362 ++vcpu->stat.nmi_window_exits; 5363 kvm_make_request(KVM_REQ_EVENT, vcpu); 5364 5365 return 1; 5366 } 5367 5368 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5369 { 5370 struct vcpu_vmx *vmx = to_vmx(vcpu); 5371 bool intr_window_requested; 5372 unsigned count = 130; 5373 5374 intr_window_requested = exec_controls_get(vmx) & 5375 CPU_BASED_INTR_WINDOW_EXITING; 5376 5377 while (vmx->emulation_required && count-- != 0) { 5378 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5379 return handle_interrupt_window(&vmx->vcpu); 5380 5381 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5382 return 1; 5383 5384 if (!kvm_emulate_instruction(vcpu, 0)) 5385 return 0; 5386 5387 if (vmx->emulation_required && !vmx->rmode.vm86_active && 5388 vcpu->arch.exception.pending) { 5389 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5390 vcpu->run->internal.suberror = 5391 KVM_INTERNAL_ERROR_EMULATION; 5392 vcpu->run->internal.ndata = 0; 5393 return 0; 5394 } 5395 5396 if (vcpu->arch.halt_request) { 5397 vcpu->arch.halt_request = 0; 5398 return kvm_vcpu_halt(vcpu); 5399 } 5400 5401 /* 5402 * Note, return 1 and not 0, vcpu_run() will invoke 5403 * xfer_to_guest_mode() which will create a proper return 5404 * code. 5405 */ 5406 if (__xfer_to_guest_mode_work_pending()) 5407 return 1; 5408 } 5409 5410 return 1; 5411 } 5412 5413 static void grow_ple_window(struct kvm_vcpu *vcpu) 5414 { 5415 struct vcpu_vmx *vmx = to_vmx(vcpu); 5416 unsigned int old = vmx->ple_window; 5417 5418 vmx->ple_window = __grow_ple_window(old, ple_window, 5419 ple_window_grow, 5420 ple_window_max); 5421 5422 if (vmx->ple_window != old) { 5423 vmx->ple_window_dirty = true; 5424 trace_kvm_ple_window_update(vcpu->vcpu_id, 5425 vmx->ple_window, old); 5426 } 5427 } 5428 5429 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5430 { 5431 struct vcpu_vmx *vmx = to_vmx(vcpu); 5432 unsigned int old = vmx->ple_window; 5433 5434 vmx->ple_window = __shrink_ple_window(old, ple_window, 5435 ple_window_shrink, 5436 ple_window); 5437 5438 if (vmx->ple_window != old) { 5439 vmx->ple_window_dirty = true; 5440 trace_kvm_ple_window_update(vcpu->vcpu_id, 5441 vmx->ple_window, old); 5442 } 5443 } 5444 5445 static void vmx_enable_tdp(void) 5446 { 5447 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK, 5448 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull, 5449 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull, 5450 0ull, VMX_EPT_EXECUTABLE_MASK, 5451 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK, 5452 VMX_EPT_RWX_MASK, 0ull); 5453 5454 ept_set_mmio_spte_mask(); 5455 } 5456 5457 /* 5458 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5459 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5460 */ 5461 static int handle_pause(struct kvm_vcpu *vcpu) 5462 { 5463 if (!kvm_pause_in_guest(vcpu->kvm)) 5464 grow_ple_window(vcpu); 5465 5466 /* 5467 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5468 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5469 * never set PAUSE_EXITING and just set PLE if supported, 5470 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5471 */ 5472 kvm_vcpu_on_spin(vcpu, true); 5473 return kvm_skip_emulated_instruction(vcpu); 5474 } 5475 5476 static int handle_nop(struct kvm_vcpu *vcpu) 5477 { 5478 return kvm_skip_emulated_instruction(vcpu); 5479 } 5480 5481 static int handle_mwait(struct kvm_vcpu *vcpu) 5482 { 5483 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); 5484 return handle_nop(vcpu); 5485 } 5486 5487 static int handle_invalid_op(struct kvm_vcpu *vcpu) 5488 { 5489 kvm_queue_exception(vcpu, UD_VECTOR); 5490 return 1; 5491 } 5492 5493 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5494 { 5495 return 1; 5496 } 5497 5498 static int handle_monitor(struct kvm_vcpu *vcpu) 5499 { 5500 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); 5501 return handle_nop(vcpu); 5502 } 5503 5504 static int handle_invpcid(struct kvm_vcpu *vcpu) 5505 { 5506 u32 vmx_instruction_info; 5507 unsigned long type; 5508 gva_t gva; 5509 struct { 5510 u64 pcid; 5511 u64 gla; 5512 } operand; 5513 5514 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5515 kvm_queue_exception(vcpu, UD_VECTOR); 5516 return 1; 5517 } 5518 5519 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5520 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf); 5521 5522 if (type > 3) { 5523 kvm_inject_gp(vcpu, 0); 5524 return 1; 5525 } 5526 5527 /* According to the Intel instruction reference, the memory operand 5528 * is read even if it isn't needed (e.g., for type==all) 5529 */ 5530 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5531 vmx_instruction_info, false, 5532 sizeof(operand), &gva)) 5533 return 1; 5534 5535 return kvm_handle_invpcid(vcpu, type, gva); 5536 } 5537 5538 static int handle_pml_full(struct kvm_vcpu *vcpu) 5539 { 5540 unsigned long exit_qualification; 5541 5542 trace_kvm_pml_full(vcpu->vcpu_id); 5543 5544 exit_qualification = vmx_get_exit_qual(vcpu); 5545 5546 /* 5547 * PML buffer FULL happened while executing iret from NMI, 5548 * "blocked by NMI" bit has to be set before next VM entry. 5549 */ 5550 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5551 enable_vnmi && 5552 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5553 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5554 GUEST_INTR_STATE_NMI); 5555 5556 /* 5557 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5558 * here.., and there's no userspace involvement needed for PML. 5559 */ 5560 return 1; 5561 } 5562 5563 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5564 { 5565 struct vcpu_vmx *vmx = to_vmx(vcpu); 5566 5567 if (!vmx->req_immediate_exit && 5568 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 5569 kvm_lapic_expired_hv_timer(vcpu); 5570 return EXIT_FASTPATH_REENTER_GUEST; 5571 } 5572 5573 return EXIT_FASTPATH_NONE; 5574 } 5575 5576 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5577 { 5578 handle_fastpath_preemption_timer(vcpu); 5579 return 1; 5580 } 5581 5582 /* 5583 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5584 * are overwritten by nested_vmx_setup() when nested=1. 5585 */ 5586 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5587 { 5588 kvm_queue_exception(vcpu, UD_VECTOR); 5589 return 1; 5590 } 5591 5592 static int handle_encls(struct kvm_vcpu *vcpu) 5593 { 5594 /* 5595 * SGX virtualization is not yet supported. There is no software 5596 * enable bit for SGX, so we have to trap ENCLS and inject a #UD 5597 * to prevent the guest from executing ENCLS. 5598 */ 5599 kvm_queue_exception(vcpu, UD_VECTOR); 5600 return 1; 5601 } 5602 5603 /* 5604 * The exit handlers return 1 if the exit was handled fully and guest execution 5605 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5606 * to be done to userspace and return 0. 5607 */ 5608 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5609 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 5610 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5611 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5612 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5613 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5614 [EXIT_REASON_CR_ACCESS] = handle_cr, 5615 [EXIT_REASON_DR_ACCESS] = handle_dr, 5616 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 5617 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 5618 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 5619 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 5620 [EXIT_REASON_HLT] = kvm_emulate_halt, 5621 [EXIT_REASON_INVD] = handle_invd, 5622 [EXIT_REASON_INVLPG] = handle_invlpg, 5623 [EXIT_REASON_RDPMC] = handle_rdpmc, 5624 [EXIT_REASON_VMCALL] = handle_vmcall, 5625 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5626 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5627 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5628 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5629 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5630 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5631 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5632 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5633 [EXIT_REASON_VMON] = handle_vmx_instruction, 5634 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5635 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5636 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5637 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5638 [EXIT_REASON_WBINVD] = handle_wbinvd, 5639 [EXIT_REASON_XSETBV] = handle_xsetbv, 5640 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5641 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5642 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5643 [EXIT_REASON_LDTR_TR] = handle_desc, 5644 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5645 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5646 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5647 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait, 5648 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5649 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor, 5650 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5651 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5652 [EXIT_REASON_RDRAND] = handle_invalid_op, 5653 [EXIT_REASON_RDSEED] = handle_invalid_op, 5654 [EXIT_REASON_PML_FULL] = handle_pml_full, 5655 [EXIT_REASON_INVPCID] = handle_invpcid, 5656 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5657 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5658 [EXIT_REASON_ENCLS] = handle_encls, 5659 }; 5660 5661 static const int kvm_vmx_max_exit_handlers = 5662 ARRAY_SIZE(kvm_vmx_exit_handlers); 5663 5664 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, 5665 u32 *intr_info, u32 *error_code) 5666 { 5667 struct vcpu_vmx *vmx = to_vmx(vcpu); 5668 5669 *info1 = vmx_get_exit_qual(vcpu); 5670 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) { 5671 *info2 = vmx->idt_vectoring_info; 5672 *intr_info = vmx_get_intr_info(vcpu); 5673 if (is_exception_with_error_code(*intr_info)) 5674 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5675 else 5676 *error_code = 0; 5677 } else { 5678 *info2 = 0; 5679 *intr_info = 0; 5680 *error_code = 0; 5681 } 5682 } 5683 5684 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5685 { 5686 if (vmx->pml_pg) { 5687 __free_page(vmx->pml_pg); 5688 vmx->pml_pg = NULL; 5689 } 5690 } 5691 5692 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5693 { 5694 struct vcpu_vmx *vmx = to_vmx(vcpu); 5695 u64 *pml_buf; 5696 u16 pml_idx; 5697 5698 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5699 5700 /* Do nothing if PML buffer is empty */ 5701 if (pml_idx == (PML_ENTITY_NUM - 1)) 5702 return; 5703 5704 /* PML index always points to next available PML buffer entity */ 5705 if (pml_idx >= PML_ENTITY_NUM) 5706 pml_idx = 0; 5707 else 5708 pml_idx++; 5709 5710 pml_buf = page_address(vmx->pml_pg); 5711 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5712 u64 gpa; 5713 5714 gpa = pml_buf[pml_idx]; 5715 WARN_ON(gpa & (PAGE_SIZE - 1)); 5716 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5717 } 5718 5719 /* reset PML index */ 5720 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5721 } 5722 5723 /* 5724 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap. 5725 * Called before reporting dirty_bitmap to userspace. 5726 */ 5727 static void kvm_flush_pml_buffers(struct kvm *kvm) 5728 { 5729 int i; 5730 struct kvm_vcpu *vcpu; 5731 /* 5732 * We only need to kick vcpu out of guest mode here, as PML buffer 5733 * is flushed at beginning of all VMEXITs, and it's obvious that only 5734 * vcpus running in guest are possible to have unflushed GPAs in PML 5735 * buffer. 5736 */ 5737 kvm_for_each_vcpu(i, vcpu, kvm) 5738 kvm_vcpu_kick(vcpu); 5739 } 5740 5741 static void vmx_dump_sel(char *name, uint32_t sel) 5742 { 5743 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5744 name, vmcs_read16(sel), 5745 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5746 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5747 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5748 } 5749 5750 static void vmx_dump_dtsel(char *name, uint32_t limit) 5751 { 5752 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5753 name, vmcs_read32(limit), 5754 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5755 } 5756 5757 void dump_vmcs(void) 5758 { 5759 u32 vmentry_ctl, vmexit_ctl; 5760 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 5761 unsigned long cr4; 5762 u64 efer; 5763 5764 if (!dump_invalid_vmcs) { 5765 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 5766 return; 5767 } 5768 5769 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5770 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5771 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5772 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5773 cr4 = vmcs_readl(GUEST_CR4); 5774 efer = vmcs_read64(GUEST_IA32_EFER); 5775 secondary_exec_control = 0; 5776 if (cpu_has_secondary_exec_ctrls()) 5777 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5778 5779 pr_err("*** Guest State ***\n"); 5780 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5781 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5782 vmcs_readl(CR0_GUEST_HOST_MASK)); 5783 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5784 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5785 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5786 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 5787 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA)) 5788 { 5789 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5790 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5791 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5792 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5793 } 5794 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5795 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5796 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5797 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5798 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5799 vmcs_readl(GUEST_SYSENTER_ESP), 5800 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5801 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5802 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5803 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5804 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5805 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5806 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5807 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5808 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5809 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5810 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5811 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) || 5812 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER))) 5813 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", 5814 efer, vmcs_read64(GUEST_IA32_PAT)); 5815 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5816 vmcs_read64(GUEST_IA32_DEBUGCTL), 5817 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5818 if (cpu_has_load_perf_global_ctrl() && 5819 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5820 pr_err("PerfGlobCtl = 0x%016llx\n", 5821 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5822 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5823 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5824 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5825 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5826 vmcs_read32(GUEST_ACTIVITY_STATE)); 5827 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5828 pr_err("InterruptStatus = %04x\n", 5829 vmcs_read16(GUEST_INTR_STATUS)); 5830 5831 pr_err("*** Host State ***\n"); 5832 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5833 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5834 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5835 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5836 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5837 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5838 vmcs_read16(HOST_TR_SELECTOR)); 5839 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5840 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5841 vmcs_readl(HOST_TR_BASE)); 5842 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5843 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5844 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5845 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5846 vmcs_readl(HOST_CR4)); 5847 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5848 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5849 vmcs_read32(HOST_IA32_SYSENTER_CS), 5850 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5851 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER)) 5852 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n", 5853 vmcs_read64(HOST_IA32_EFER), 5854 vmcs_read64(HOST_IA32_PAT)); 5855 if (cpu_has_load_perf_global_ctrl() && 5856 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5857 pr_err("PerfGlobCtl = 0x%016llx\n", 5858 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5859 5860 pr_err("*** Control State ***\n"); 5861 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5862 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5863 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5864 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5865 vmcs_read32(EXCEPTION_BITMAP), 5866 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5867 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5868 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5869 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5870 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5871 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5872 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5873 vmcs_read32(VM_EXIT_INTR_INFO), 5874 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5875 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5876 pr_err(" reason=%08x qualification=%016lx\n", 5877 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5878 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5879 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5880 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5881 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5882 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5883 pr_err("TSC Multiplier = 0x%016llx\n", 5884 vmcs_read64(TSC_MULTIPLIER)); 5885 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5886 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5887 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5888 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5889 } 5890 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5891 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5892 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5893 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5894 } 5895 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 5896 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 5897 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 5898 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 5899 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 5900 pr_err("PLE Gap=%08x Window=%08x\n", 5901 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 5902 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 5903 pr_err("Virtual processor ID = 0x%04x\n", 5904 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 5905 } 5906 5907 /* 5908 * The guest has exited. See if we can fix it or if we need userspace 5909 * assistance. 5910 */ 5911 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 5912 { 5913 struct vcpu_vmx *vmx = to_vmx(vcpu); 5914 u32 exit_reason = vmx->exit_reason; 5915 u32 vectoring_info = vmx->idt_vectoring_info; 5916 5917 /* 5918 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 5919 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 5920 * querying dirty_bitmap, we only need to kick all vcpus out of guest 5921 * mode as if vcpus is in root mode, the PML buffer must has been 5922 * flushed already. 5923 */ 5924 if (enable_pml) 5925 vmx_flush_pml_buffer(vcpu); 5926 5927 /* 5928 * We should never reach this point with a pending nested VM-Enter, and 5929 * more specifically emulation of L2 due to invalid guest state (see 5930 * below) should never happen as that means we incorrectly allowed a 5931 * nested VM-Enter with an invalid vmcs12. 5932 */ 5933 WARN_ON_ONCE(vmx->nested.nested_run_pending); 5934 5935 /* If guest state is invalid, start emulating */ 5936 if (vmx->emulation_required) 5937 return handle_invalid_guest_state(vcpu); 5938 5939 if (is_guest_mode(vcpu)) { 5940 /* 5941 * The host physical addresses of some pages of guest memory 5942 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 5943 * Page). The CPU may write to these pages via their host 5944 * physical address while L2 is running, bypassing any 5945 * address-translation-based dirty tracking (e.g. EPT write 5946 * protection). 5947 * 5948 * Mark them dirty on every exit from L2 to prevent them from 5949 * getting out of sync with dirty tracking. 5950 */ 5951 nested_mark_vmcs12_pages_dirty(vcpu); 5952 5953 if (nested_vmx_reflect_vmexit(vcpu)) 5954 return 1; 5955 } 5956 5957 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) { 5958 dump_vmcs(); 5959 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5960 vcpu->run->fail_entry.hardware_entry_failure_reason 5961 = exit_reason; 5962 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 5963 return 0; 5964 } 5965 5966 if (unlikely(vmx->fail)) { 5967 dump_vmcs(); 5968 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5969 vcpu->run->fail_entry.hardware_entry_failure_reason 5970 = vmcs_read32(VM_INSTRUCTION_ERROR); 5971 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 5972 return 0; 5973 } 5974 5975 /* 5976 * Note: 5977 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 5978 * delivery event since it indicates guest is accessing MMIO. 5979 * The vm-exit can be triggered again after return to guest that 5980 * will cause infinite loop. 5981 */ 5982 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 5983 (exit_reason != EXIT_REASON_EXCEPTION_NMI && 5984 exit_reason != EXIT_REASON_EPT_VIOLATION && 5985 exit_reason != EXIT_REASON_PML_FULL && 5986 exit_reason != EXIT_REASON_APIC_ACCESS && 5987 exit_reason != EXIT_REASON_TASK_SWITCH)) { 5988 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5989 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 5990 vcpu->run->internal.ndata = 3; 5991 vcpu->run->internal.data[0] = vectoring_info; 5992 vcpu->run->internal.data[1] = exit_reason; 5993 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 5994 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) { 5995 vcpu->run->internal.ndata++; 5996 vcpu->run->internal.data[3] = 5997 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5998 } 5999 vcpu->run->internal.data[vcpu->run->internal.ndata++] = 6000 vcpu->arch.last_vmentry_cpu; 6001 return 0; 6002 } 6003 6004 if (unlikely(!enable_vnmi && 6005 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6006 if (!vmx_interrupt_blocked(vcpu)) { 6007 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6008 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6009 vcpu->arch.nmi_pending) { 6010 /* 6011 * This CPU don't support us in finding the end of an 6012 * NMI-blocked window if the guest runs with IRQs 6013 * disabled. So we pull the trigger after 1 s of 6014 * futile waiting, but inform the user about this. 6015 */ 6016 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6017 "state on VCPU %d after 1 s timeout\n", 6018 __func__, vcpu->vcpu_id); 6019 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6020 } 6021 } 6022 6023 if (exit_fastpath != EXIT_FASTPATH_NONE) 6024 return 1; 6025 6026 if (exit_reason >= kvm_vmx_max_exit_handlers) 6027 goto unexpected_vmexit; 6028 #ifdef CONFIG_RETPOLINE 6029 if (exit_reason == EXIT_REASON_MSR_WRITE) 6030 return kvm_emulate_wrmsr(vcpu); 6031 else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER) 6032 return handle_preemption_timer(vcpu); 6033 else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW) 6034 return handle_interrupt_window(vcpu); 6035 else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT) 6036 return handle_external_interrupt(vcpu); 6037 else if (exit_reason == EXIT_REASON_HLT) 6038 return kvm_emulate_halt(vcpu); 6039 else if (exit_reason == EXIT_REASON_EPT_MISCONFIG) 6040 return handle_ept_misconfig(vcpu); 6041 #endif 6042 6043 exit_reason = array_index_nospec(exit_reason, 6044 kvm_vmx_max_exit_handlers); 6045 if (!kvm_vmx_exit_handlers[exit_reason]) 6046 goto unexpected_vmexit; 6047 6048 return kvm_vmx_exit_handlers[exit_reason](vcpu); 6049 6050 unexpected_vmexit: 6051 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason); 6052 dump_vmcs(); 6053 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6054 vcpu->run->internal.suberror = 6055 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6056 vcpu->run->internal.ndata = 2; 6057 vcpu->run->internal.data[0] = exit_reason; 6058 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6059 return 0; 6060 } 6061 6062 /* 6063 * Software based L1D cache flush which is used when microcode providing 6064 * the cache control MSR is not loaded. 6065 * 6066 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6067 * flush it is required to read in 64 KiB because the replacement algorithm 6068 * is not exactly LRU. This could be sized at runtime via topology 6069 * information but as all relevant affected CPUs have 32KiB L1D cache size 6070 * there is no point in doing so. 6071 */ 6072 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6073 { 6074 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6075 6076 /* 6077 * This code is only executed when the the flush mode is 'cond' or 6078 * 'always' 6079 */ 6080 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6081 bool flush_l1d; 6082 6083 /* 6084 * Clear the per-vcpu flush bit, it gets set again 6085 * either from vcpu_run() or from one of the unsafe 6086 * VMEXIT handlers. 6087 */ 6088 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6089 vcpu->arch.l1tf_flush_l1d = false; 6090 6091 /* 6092 * Clear the per-cpu flush bit, it gets set again from 6093 * the interrupt handlers. 6094 */ 6095 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6096 kvm_clear_cpu_l1tf_flush_l1d(); 6097 6098 if (!flush_l1d) 6099 return; 6100 } 6101 6102 vcpu->stat.l1d_flush++; 6103 6104 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6105 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6106 return; 6107 } 6108 6109 asm volatile( 6110 /* First ensure the pages are in the TLB */ 6111 "xorl %%eax, %%eax\n" 6112 ".Lpopulate_tlb:\n\t" 6113 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6114 "addl $4096, %%eax\n\t" 6115 "cmpl %%eax, %[size]\n\t" 6116 "jne .Lpopulate_tlb\n\t" 6117 "xorl %%eax, %%eax\n\t" 6118 "cpuid\n\t" 6119 /* Now fill the cache */ 6120 "xorl %%eax, %%eax\n" 6121 ".Lfill_cache:\n" 6122 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6123 "addl $64, %%eax\n\t" 6124 "cmpl %%eax, %[size]\n\t" 6125 "jne .Lfill_cache\n\t" 6126 "lfence\n" 6127 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6128 [size] "r" (size) 6129 : "eax", "ebx", "ecx", "edx"); 6130 } 6131 6132 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6133 { 6134 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6135 int tpr_threshold; 6136 6137 if (is_guest_mode(vcpu) && 6138 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6139 return; 6140 6141 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6142 if (is_guest_mode(vcpu)) 6143 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6144 else 6145 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6146 } 6147 6148 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6149 { 6150 struct vcpu_vmx *vmx = to_vmx(vcpu); 6151 u32 sec_exec_control; 6152 6153 if (!lapic_in_kernel(vcpu)) 6154 return; 6155 6156 if (!flexpriority_enabled && 6157 !cpu_has_vmx_virtualize_x2apic_mode()) 6158 return; 6159 6160 /* Postpone execution until vmcs01 is the current VMCS. */ 6161 if (is_guest_mode(vcpu)) { 6162 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6163 return; 6164 } 6165 6166 sec_exec_control = secondary_exec_controls_get(vmx); 6167 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6168 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6169 6170 switch (kvm_get_apic_mode(vcpu)) { 6171 case LAPIC_MODE_INVALID: 6172 WARN_ONCE(true, "Invalid local APIC state"); 6173 case LAPIC_MODE_DISABLED: 6174 break; 6175 case LAPIC_MODE_XAPIC: 6176 if (flexpriority_enabled) { 6177 sec_exec_control |= 6178 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6179 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6180 6181 /* 6182 * Flush the TLB, reloading the APIC access page will 6183 * only do so if its physical address has changed, but 6184 * the guest may have inserted a non-APIC mapping into 6185 * the TLB while the APIC access page was disabled. 6186 */ 6187 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6188 } 6189 break; 6190 case LAPIC_MODE_X2APIC: 6191 if (cpu_has_vmx_virtualize_x2apic_mode()) 6192 sec_exec_control |= 6193 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6194 break; 6195 } 6196 secondary_exec_controls_set(vmx, sec_exec_control); 6197 6198 vmx_update_msr_bitmap(vcpu); 6199 } 6200 6201 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6202 { 6203 struct page *page; 6204 6205 /* Defer reload until vmcs01 is the current VMCS. */ 6206 if (is_guest_mode(vcpu)) { 6207 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6208 return; 6209 } 6210 6211 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6212 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6213 return; 6214 6215 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6216 if (is_error_page(page)) 6217 return; 6218 6219 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page)); 6220 vmx_flush_tlb_current(vcpu); 6221 6222 /* 6223 * Do not pin apic access page in memory, the MMU notifier 6224 * will call us again if it is migrated or swapped out. 6225 */ 6226 put_page(page); 6227 } 6228 6229 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6230 { 6231 u16 status; 6232 u8 old; 6233 6234 if (max_isr == -1) 6235 max_isr = 0; 6236 6237 status = vmcs_read16(GUEST_INTR_STATUS); 6238 old = status >> 8; 6239 if (max_isr != old) { 6240 status &= 0xff; 6241 status |= max_isr << 8; 6242 vmcs_write16(GUEST_INTR_STATUS, status); 6243 } 6244 } 6245 6246 static void vmx_set_rvi(int vector) 6247 { 6248 u16 status; 6249 u8 old; 6250 6251 if (vector == -1) 6252 vector = 0; 6253 6254 status = vmcs_read16(GUEST_INTR_STATUS); 6255 old = (u8)status & 0xff; 6256 if ((u8)vector != old) { 6257 status &= ~0xff; 6258 status |= (u8)vector; 6259 vmcs_write16(GUEST_INTR_STATUS, status); 6260 } 6261 } 6262 6263 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6264 { 6265 /* 6266 * When running L2, updating RVI is only relevant when 6267 * vmcs12 virtual-interrupt-delivery enabled. 6268 * However, it can be enabled only when L1 also 6269 * intercepts external-interrupts and in that case 6270 * we should not update vmcs02 RVI but instead intercept 6271 * interrupt. Therefore, do nothing when running L2. 6272 */ 6273 if (!is_guest_mode(vcpu)) 6274 vmx_set_rvi(max_irr); 6275 } 6276 6277 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6278 { 6279 struct vcpu_vmx *vmx = to_vmx(vcpu); 6280 int max_irr; 6281 bool max_irr_updated; 6282 6283 WARN_ON(!vcpu->arch.apicv_active); 6284 if (pi_test_on(&vmx->pi_desc)) { 6285 pi_clear_on(&vmx->pi_desc); 6286 /* 6287 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6288 * But on x86 this is just a compiler barrier anyway. 6289 */ 6290 smp_mb__after_atomic(); 6291 max_irr_updated = 6292 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6293 6294 /* 6295 * If we are running L2 and L1 has a new pending interrupt 6296 * which can be injected, we should re-evaluate 6297 * what should be done with this new L1 interrupt. 6298 * If L1 intercepts external-interrupts, we should 6299 * exit from L2 to L1. Otherwise, interrupt should be 6300 * delivered directly to L2. 6301 */ 6302 if (is_guest_mode(vcpu) && max_irr_updated) { 6303 if (nested_exit_on_intr(vcpu)) 6304 kvm_vcpu_exiting_guest_mode(vcpu); 6305 else 6306 kvm_make_request(KVM_REQ_EVENT, vcpu); 6307 } 6308 } else { 6309 max_irr = kvm_lapic_find_highest_irr(vcpu); 6310 } 6311 vmx_hwapic_irr_update(vcpu, max_irr); 6312 return max_irr; 6313 } 6314 6315 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6316 { 6317 if (!kvm_vcpu_apicv_active(vcpu)) 6318 return; 6319 6320 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6321 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6322 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6323 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6324 } 6325 6326 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6327 { 6328 struct vcpu_vmx *vmx = to_vmx(vcpu); 6329 6330 pi_clear_on(&vmx->pi_desc); 6331 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6332 } 6333 6334 void vmx_do_interrupt_nmi_irqoff(unsigned long entry); 6335 6336 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, u32 intr_info) 6337 { 6338 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6339 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6340 6341 kvm_before_interrupt(vcpu); 6342 vmx_do_interrupt_nmi_irqoff(gate_offset(desc)); 6343 kvm_after_interrupt(vcpu); 6344 } 6345 6346 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) 6347 { 6348 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6349 6350 /* if exit due to PF check for async PF */ 6351 if (is_page_fault(intr_info)) 6352 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6353 /* Handle machine checks before interrupts are enabled */ 6354 else if (is_machine_check(intr_info)) 6355 kvm_machine_check(); 6356 /* We need to handle NMIs before interrupts are enabled */ 6357 else if (is_nmi(intr_info)) 6358 handle_interrupt_nmi_irqoff(&vmx->vcpu, intr_info); 6359 } 6360 6361 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6362 { 6363 u32 intr_info = vmx_get_intr_info(vcpu); 6364 6365 if (WARN_ONCE(!is_external_intr(intr_info), 6366 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6367 return; 6368 6369 handle_interrupt_nmi_irqoff(vcpu, intr_info); 6370 } 6371 6372 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6373 { 6374 struct vcpu_vmx *vmx = to_vmx(vcpu); 6375 6376 if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT) 6377 handle_external_interrupt_irqoff(vcpu); 6378 else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI) 6379 handle_exception_nmi_irqoff(vmx); 6380 } 6381 6382 /* 6383 * The kvm parameter can be NULL (module initialization, or invocation before 6384 * VM creation). Be sure to check the kvm parameter before using it. 6385 */ 6386 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6387 { 6388 switch (index) { 6389 case MSR_IA32_SMBASE: 6390 /* 6391 * We cannot do SMM unless we can run the guest in big 6392 * real mode. 6393 */ 6394 return enable_unrestricted_guest || emulate_invalid_guest_state; 6395 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 6396 return nested; 6397 case MSR_AMD64_VIRT_SPEC_CTRL: 6398 /* This is AMD only. */ 6399 return false; 6400 default: 6401 return true; 6402 } 6403 } 6404 6405 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6406 { 6407 u32 exit_intr_info; 6408 bool unblock_nmi; 6409 u8 vector; 6410 bool idtv_info_valid; 6411 6412 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6413 6414 if (enable_vnmi) { 6415 if (vmx->loaded_vmcs->nmi_known_unmasked) 6416 return; 6417 6418 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 6419 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6420 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6421 /* 6422 * SDM 3: 27.7.1.2 (September 2008) 6423 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6424 * a guest IRET fault. 6425 * SDM 3: 23.2.2 (September 2008) 6426 * Bit 12 is undefined in any of the following cases: 6427 * If the VM exit sets the valid bit in the IDT-vectoring 6428 * information field. 6429 * If the VM exit is due to a double fault. 6430 */ 6431 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6432 vector != DF_VECTOR && !idtv_info_valid) 6433 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6434 GUEST_INTR_STATE_NMI); 6435 else 6436 vmx->loaded_vmcs->nmi_known_unmasked = 6437 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6438 & GUEST_INTR_STATE_NMI); 6439 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6440 vmx->loaded_vmcs->vnmi_blocked_time += 6441 ktime_to_ns(ktime_sub(ktime_get(), 6442 vmx->loaded_vmcs->entry_time)); 6443 } 6444 6445 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6446 u32 idt_vectoring_info, 6447 int instr_len_field, 6448 int error_code_field) 6449 { 6450 u8 vector; 6451 int type; 6452 bool idtv_info_valid; 6453 6454 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6455 6456 vcpu->arch.nmi_injected = false; 6457 kvm_clear_exception_queue(vcpu); 6458 kvm_clear_interrupt_queue(vcpu); 6459 6460 if (!idtv_info_valid) 6461 return; 6462 6463 kvm_make_request(KVM_REQ_EVENT, vcpu); 6464 6465 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6466 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6467 6468 switch (type) { 6469 case INTR_TYPE_NMI_INTR: 6470 vcpu->arch.nmi_injected = true; 6471 /* 6472 * SDM 3: 27.7.1.2 (September 2008) 6473 * Clear bit "block by NMI" before VM entry if a NMI 6474 * delivery faulted. 6475 */ 6476 vmx_set_nmi_mask(vcpu, false); 6477 break; 6478 case INTR_TYPE_SOFT_EXCEPTION: 6479 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6480 fallthrough; 6481 case INTR_TYPE_HARD_EXCEPTION: 6482 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6483 u32 err = vmcs_read32(error_code_field); 6484 kvm_requeue_exception_e(vcpu, vector, err); 6485 } else 6486 kvm_requeue_exception(vcpu, vector); 6487 break; 6488 case INTR_TYPE_SOFT_INTR: 6489 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6490 fallthrough; 6491 case INTR_TYPE_EXT_INTR: 6492 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6493 break; 6494 default: 6495 break; 6496 } 6497 } 6498 6499 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6500 { 6501 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6502 VM_EXIT_INSTRUCTION_LEN, 6503 IDT_VECTORING_ERROR_CODE); 6504 } 6505 6506 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6507 { 6508 __vmx_complete_interrupts(vcpu, 6509 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6510 VM_ENTRY_INSTRUCTION_LEN, 6511 VM_ENTRY_EXCEPTION_ERROR_CODE); 6512 6513 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6514 } 6515 6516 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6517 { 6518 int i, nr_msrs; 6519 struct perf_guest_switch_msr *msrs; 6520 6521 msrs = perf_guest_get_msrs(&nr_msrs); 6522 6523 if (!msrs) 6524 return; 6525 6526 for (i = 0; i < nr_msrs; i++) 6527 if (msrs[i].host == msrs[i].guest) 6528 clear_atomic_switch_msr(vmx, msrs[i].msr); 6529 else 6530 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6531 msrs[i].host, false); 6532 } 6533 6534 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6535 { 6536 struct vcpu_vmx *vmx = to_vmx(vcpu); 6537 u64 tscl; 6538 u32 delta_tsc; 6539 6540 if (vmx->req_immediate_exit) { 6541 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 6542 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6543 } else if (vmx->hv_deadline_tsc != -1) { 6544 tscl = rdtsc(); 6545 if (vmx->hv_deadline_tsc > tscl) 6546 /* set_hv_timer ensures the delta fits in 32-bits */ 6547 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6548 cpu_preemption_timer_multi); 6549 else 6550 delta_tsc = 0; 6551 6552 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 6553 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6554 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 6555 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 6556 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 6557 } 6558 } 6559 6560 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6561 { 6562 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6563 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6564 vmcs_writel(HOST_RSP, host_rsp); 6565 } 6566 } 6567 6568 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 6569 { 6570 switch (to_vmx(vcpu)->exit_reason) { 6571 case EXIT_REASON_MSR_WRITE: 6572 return handle_fastpath_set_msr_irqoff(vcpu); 6573 case EXIT_REASON_PREEMPTION_TIMER: 6574 return handle_fastpath_preemption_timer(vcpu); 6575 default: 6576 return EXIT_FASTPATH_NONE; 6577 } 6578 } 6579 6580 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched); 6581 6582 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 6583 struct vcpu_vmx *vmx) 6584 { 6585 /* 6586 * VMENTER enables interrupts (host state), but the kernel state is 6587 * interrupts disabled when this is invoked. Also tell RCU about 6588 * it. This is the same logic as for exit_to_user_mode(). 6589 * 6590 * This ensures that e.g. latency analysis on the host observes 6591 * guest mode as interrupt enabled. 6592 * 6593 * guest_enter_irqoff() informs context tracking about the 6594 * transition to guest mode and if enabled adjusts RCU state 6595 * accordingly. 6596 */ 6597 instrumentation_begin(); 6598 trace_hardirqs_on_prepare(); 6599 lockdep_hardirqs_on_prepare(CALLER_ADDR0); 6600 instrumentation_end(); 6601 6602 guest_enter_irqoff(); 6603 lockdep_hardirqs_on(CALLER_ADDR0); 6604 6605 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6606 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6607 vmx_l1d_flush(vcpu); 6608 else if (static_branch_unlikely(&mds_user_clear)) 6609 mds_clear_cpu_buffers(); 6610 6611 if (vcpu->arch.cr2 != native_read_cr2()) 6612 native_write_cr2(vcpu->arch.cr2); 6613 6614 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6615 vmx->loaded_vmcs->launched); 6616 6617 vcpu->arch.cr2 = native_read_cr2(); 6618 6619 /* 6620 * VMEXIT disables interrupts (host state), but tracing and lockdep 6621 * have them in state 'on' as recorded before entering guest mode. 6622 * Same as enter_from_user_mode(). 6623 * 6624 * guest_exit_irqoff() restores host context and reinstates RCU if 6625 * enabled and required. 6626 * 6627 * This needs to be done before the below as native_read_msr() 6628 * contains a tracepoint and x86_spec_ctrl_restore_host() calls 6629 * into world and some more. 6630 */ 6631 lockdep_hardirqs_off(CALLER_ADDR0); 6632 guest_exit_irqoff(); 6633 6634 instrumentation_begin(); 6635 trace_hardirqs_off_finish(); 6636 instrumentation_end(); 6637 } 6638 6639 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 6640 { 6641 fastpath_t exit_fastpath; 6642 struct vcpu_vmx *vmx = to_vmx(vcpu); 6643 unsigned long cr3, cr4; 6644 6645 reenter_guest: 6646 /* Record the guest's net vcpu time for enforced NMI injections. */ 6647 if (unlikely(!enable_vnmi && 6648 vmx->loaded_vmcs->soft_vnmi_blocked)) 6649 vmx->loaded_vmcs->entry_time = ktime_get(); 6650 6651 /* Don't enter VMX if guest state is invalid, let the exit handler 6652 start emulation until we arrive back to a valid state */ 6653 if (vmx->emulation_required) 6654 return EXIT_FASTPATH_NONE; 6655 6656 trace_kvm_entry(vcpu); 6657 6658 if (vmx->ple_window_dirty) { 6659 vmx->ple_window_dirty = false; 6660 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6661 } 6662 6663 /* 6664 * We did this in prepare_switch_to_guest, because it needs to 6665 * be within srcu_read_lock. 6666 */ 6667 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 6668 6669 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 6670 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6671 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 6672 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6673 6674 cr3 = __get_current_cr3_fast(); 6675 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 6676 vmcs_writel(HOST_CR3, cr3); 6677 vmx->loaded_vmcs->host_state.cr3 = cr3; 6678 } 6679 6680 cr4 = cr4_read_shadow(); 6681 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6682 vmcs_writel(HOST_CR4, cr4); 6683 vmx->loaded_vmcs->host_state.cr4 = cr4; 6684 } 6685 6686 /* When single-stepping over STI and MOV SS, we must clear the 6687 * corresponding interruptibility bits in the guest state. Otherwise 6688 * vmentry fails as it then expects bit 14 (BS) in pending debug 6689 * exceptions being set, but that's not correct for the guest debugging 6690 * case. */ 6691 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6692 vmx_set_interrupt_shadow(vcpu, 0); 6693 6694 kvm_load_guest_xsave_state(vcpu); 6695 6696 pt_guest_enter(vmx); 6697 6698 atomic_switch_perf_msrs(vmx); 6699 6700 if (enable_preemption_timer) 6701 vmx_update_hv_timer(vcpu); 6702 6703 kvm_wait_lapic_expire(vcpu); 6704 6705 /* 6706 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6707 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6708 * is no need to worry about the conditional branch over the wrmsr 6709 * being speculatively taken. 6710 */ 6711 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6712 6713 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 6714 vmx_vcpu_enter_exit(vcpu, vmx); 6715 6716 /* 6717 * We do not use IBRS in the kernel. If this vCPU has used the 6718 * SPEC_CTRL MSR it may have left it on; save the value and 6719 * turn it off. This is much more efficient than blindly adding 6720 * it to the atomic save/restore list. Especially as the former 6721 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6722 * 6723 * For non-nested case: 6724 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6725 * save it. 6726 * 6727 * For nested case: 6728 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6729 * save it. 6730 */ 6731 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 6732 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6733 6734 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6735 6736 /* All fields are clean at this point */ 6737 if (static_branch_unlikely(&enable_evmcs)) 6738 current_evmcs->hv_clean_fields |= 6739 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6740 6741 if (static_branch_unlikely(&enable_evmcs)) 6742 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index; 6743 6744 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6745 if (vmx->host_debugctlmsr) 6746 update_debugctlmsr(vmx->host_debugctlmsr); 6747 6748 #ifndef CONFIG_X86_64 6749 /* 6750 * The sysexit path does not restore ds/es, so we must set them to 6751 * a reasonable value ourselves. 6752 * 6753 * We can't defer this to vmx_prepare_switch_to_host() since that 6754 * function may be executed in interrupt context, which saves and 6755 * restore segments around it, nullifying its effect. 6756 */ 6757 loadsegment(ds, __USER_DS); 6758 loadsegment(es, __USER_DS); 6759 #endif 6760 6761 vmx_register_cache_reset(vcpu); 6762 6763 pt_guest_exit(vmx); 6764 6765 kvm_load_host_xsave_state(vcpu); 6766 6767 vmx->nested.nested_run_pending = 0; 6768 vmx->idt_vectoring_info = 0; 6769 6770 if (unlikely(vmx->fail)) { 6771 vmx->exit_reason = 0xdead; 6772 return EXIT_FASTPATH_NONE; 6773 } 6774 6775 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON); 6776 if (unlikely((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)) 6777 kvm_machine_check(); 6778 6779 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX); 6780 6781 if (unlikely(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) 6782 return EXIT_FASTPATH_NONE; 6783 6784 vmx->loaded_vmcs->launched = 1; 6785 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6786 6787 vmx_recover_nmi_blocking(vmx); 6788 vmx_complete_interrupts(vmx); 6789 6790 if (is_guest_mode(vcpu)) 6791 return EXIT_FASTPATH_NONE; 6792 6793 exit_fastpath = vmx_exit_handlers_fastpath(vcpu); 6794 if (exit_fastpath == EXIT_FASTPATH_REENTER_GUEST) { 6795 if (!kvm_vcpu_exit_request(vcpu)) { 6796 /* 6797 * FIXME: this goto should be a loop in vcpu_enter_guest, 6798 * but it would incur the cost of a retpoline for now. 6799 * Revisit once static calls are available. 6800 */ 6801 if (vcpu->arch.apicv_active) 6802 vmx_sync_pir_to_irr(vcpu); 6803 goto reenter_guest; 6804 } 6805 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; 6806 } 6807 6808 return exit_fastpath; 6809 } 6810 6811 static void vmx_free_vcpu(struct kvm_vcpu *vcpu) 6812 { 6813 struct vcpu_vmx *vmx = to_vmx(vcpu); 6814 6815 if (enable_pml) 6816 vmx_destroy_pml_buffer(vmx); 6817 free_vpid(vmx->vpid); 6818 nested_vmx_free_vcpu(vcpu); 6819 free_loaded_vmcs(vmx->loaded_vmcs); 6820 } 6821 6822 static int vmx_create_vcpu(struct kvm_vcpu *vcpu) 6823 { 6824 struct vcpu_vmx *vmx; 6825 int i, cpu, err; 6826 6827 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 6828 vmx = to_vmx(vcpu); 6829 6830 err = -ENOMEM; 6831 6832 vmx->vpid = allocate_vpid(); 6833 6834 /* 6835 * If PML is turned on, failure on enabling PML just results in failure 6836 * of creating the vcpu, therefore we can simplify PML logic (by 6837 * avoiding dealing with cases, such as enabling PML partially on vcpus 6838 * for the guest), etc. 6839 */ 6840 if (enable_pml) { 6841 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 6842 if (!vmx->pml_pg) 6843 goto free_vpid; 6844 } 6845 6846 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 6847 6848 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) { 6849 u32 index = vmx_uret_msrs_list[i]; 6850 u32 data_low, data_high; 6851 int j = vmx->nr_uret_msrs; 6852 6853 if (rdmsr_safe(index, &data_low, &data_high) < 0) 6854 continue; 6855 if (wrmsr_safe(index, data_low, data_high) < 0) 6856 continue; 6857 6858 vmx->guest_uret_msrs[j].slot = i; 6859 vmx->guest_uret_msrs[j].data = 0; 6860 switch (index) { 6861 case MSR_IA32_TSX_CTRL: 6862 /* 6863 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID 6864 * interception. Keep the host value unchanged to avoid 6865 * changing CPUID bits under the host kernel's feet. 6866 * 6867 * hle=0, rtm=0, tsx_ctrl=1 can be found with some 6868 * combinations of new kernel and old userspace. If 6869 * those guests run on a tsx=off host, do allow guests 6870 * to use TSX_CTRL, but do not change the value on the 6871 * host so that TSX remains always disabled. 6872 */ 6873 if (boot_cpu_has(X86_FEATURE_RTM)) 6874 vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 6875 else 6876 vmx->guest_uret_msrs[j].mask = 0; 6877 break; 6878 default: 6879 vmx->guest_uret_msrs[j].mask = -1ull; 6880 break; 6881 } 6882 ++vmx->nr_uret_msrs; 6883 } 6884 6885 err = alloc_loaded_vmcs(&vmx->vmcs01); 6886 if (err < 0) 6887 goto free_pml; 6888 6889 /* The MSR bitmap starts with all ones */ 6890 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6891 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6892 6893 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 6894 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 6895 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 6896 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 6897 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 6898 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 6899 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 6900 if (kvm_cstate_in_guest(vcpu->kvm)) { 6901 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 6902 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 6903 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 6904 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 6905 } 6906 vmx->msr_bitmap_mode = 0; 6907 6908 vmx->loaded_vmcs = &vmx->vmcs01; 6909 cpu = get_cpu(); 6910 vmx_vcpu_load(vcpu, cpu); 6911 vcpu->cpu = cpu; 6912 init_vmcs(vmx); 6913 vmx_vcpu_put(vcpu); 6914 put_cpu(); 6915 if (cpu_need_virtualize_apic_accesses(vcpu)) { 6916 err = alloc_apic_access_page(vcpu->kvm); 6917 if (err) 6918 goto free_vmcs; 6919 } 6920 6921 if (enable_ept && !enable_unrestricted_guest) { 6922 err = init_rmode_identity_map(vcpu->kvm); 6923 if (err) 6924 goto free_vmcs; 6925 } 6926 6927 if (nested) 6928 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 6929 else 6930 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs)); 6931 6932 vmx->nested.posted_intr_nv = -1; 6933 vmx->nested.current_vmptr = -1ull; 6934 6935 vcpu->arch.microcode_version = 0x100000000ULL; 6936 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 6937 6938 /* 6939 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 6940 * or POSTED_INTR_WAKEUP_VECTOR. 6941 */ 6942 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 6943 vmx->pi_desc.sn = 1; 6944 6945 vmx->ept_pointer = INVALID_PAGE; 6946 6947 return 0; 6948 6949 free_vmcs: 6950 free_loaded_vmcs(vmx->loaded_vmcs); 6951 free_pml: 6952 vmx_destroy_pml_buffer(vmx); 6953 free_vpid: 6954 free_vpid(vmx->vpid); 6955 return err; 6956 } 6957 6958 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6959 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6960 6961 static int vmx_vm_init(struct kvm *kvm) 6962 { 6963 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock); 6964 6965 if (!ple_gap) 6966 kvm->arch.pause_in_guest = true; 6967 6968 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 6969 switch (l1tf_mitigation) { 6970 case L1TF_MITIGATION_OFF: 6971 case L1TF_MITIGATION_FLUSH_NOWARN: 6972 /* 'I explicitly don't care' is set */ 6973 break; 6974 case L1TF_MITIGATION_FLUSH: 6975 case L1TF_MITIGATION_FLUSH_NOSMT: 6976 case L1TF_MITIGATION_FULL: 6977 /* 6978 * Warn upon starting the first VM in a potentially 6979 * insecure environment. 6980 */ 6981 if (sched_smt_active()) 6982 pr_warn_once(L1TF_MSG_SMT); 6983 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 6984 pr_warn_once(L1TF_MSG_L1D); 6985 break; 6986 case L1TF_MITIGATION_FULL_FORCE: 6987 /* Flush is enforced */ 6988 break; 6989 } 6990 } 6991 kvm_apicv_init(kvm, enable_apicv); 6992 return 0; 6993 } 6994 6995 static int __init vmx_check_processor_compat(void) 6996 { 6997 struct vmcs_config vmcs_conf; 6998 struct vmx_capability vmx_cap; 6999 7000 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 7001 !this_cpu_has(X86_FEATURE_VMX)) { 7002 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id()); 7003 return -EIO; 7004 } 7005 7006 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 7007 return -EIO; 7008 if (nested) 7009 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept); 7010 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 7011 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 7012 smp_processor_id()); 7013 return -EIO; 7014 } 7015 return 0; 7016 } 7017 7018 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7019 { 7020 u8 cache; 7021 u64 ipat = 0; 7022 7023 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 7024 * memory aliases with conflicting memory types and sometimes MCEs. 7025 * We have to be careful as to what are honored and when. 7026 * 7027 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 7028 * UC. The effective memory type is UC or WC depending on guest PAT. 7029 * This was historically the source of MCEs and we want to be 7030 * conservative. 7031 * 7032 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7033 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7034 * EPT memory type is set to WB. The effective memory type is forced 7035 * WB. 7036 * 7037 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7038 * EPT memory type is used to emulate guest CD/MTRR. 7039 */ 7040 7041 if (is_mmio) { 7042 cache = MTRR_TYPE_UNCACHABLE; 7043 goto exit; 7044 } 7045 7046 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 7047 ipat = VMX_EPT_IPAT_BIT; 7048 cache = MTRR_TYPE_WRBACK; 7049 goto exit; 7050 } 7051 7052 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 7053 ipat = VMX_EPT_IPAT_BIT; 7054 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7055 cache = MTRR_TYPE_WRBACK; 7056 else 7057 cache = MTRR_TYPE_UNCACHABLE; 7058 goto exit; 7059 } 7060 7061 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); 7062 7063 exit: 7064 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; 7065 } 7066 7067 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx) 7068 { 7069 /* 7070 * These bits in the secondary execution controls field 7071 * are dynamic, the others are mostly based on the hypervisor 7072 * architecture and the guest's CPUID. Do not touch the 7073 * dynamic bits. 7074 */ 7075 u32 mask = 7076 SECONDARY_EXEC_SHADOW_VMCS | 7077 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7078 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7079 SECONDARY_EXEC_DESC; 7080 7081 u32 new_ctl = vmx->secondary_exec_control; 7082 u32 cur_ctl = secondary_exec_controls_get(vmx); 7083 7084 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7085 } 7086 7087 /* 7088 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7089 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7090 */ 7091 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7092 { 7093 struct vcpu_vmx *vmx = to_vmx(vcpu); 7094 struct kvm_cpuid_entry2 *entry; 7095 7096 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7097 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7098 7099 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7100 if (entry && (entry->_reg & (_cpuid_mask))) \ 7101 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7102 } while (0) 7103 7104 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 7105 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7106 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7107 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7108 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7109 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7110 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7111 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7112 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7113 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7114 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7115 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7116 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7117 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7118 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7119 7120 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 7121 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7122 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7123 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7124 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7125 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7126 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7127 7128 #undef cr4_fixed1_update 7129 } 7130 7131 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 7132 { 7133 struct vcpu_vmx *vmx = to_vmx(vcpu); 7134 7135 if (kvm_mpx_supported()) { 7136 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 7137 7138 if (mpx_enabled) { 7139 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 7140 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 7141 } else { 7142 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 7143 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 7144 } 7145 } 7146 } 7147 7148 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7149 { 7150 struct vcpu_vmx *vmx = to_vmx(vcpu); 7151 struct kvm_cpuid_entry2 *best = NULL; 7152 int i; 7153 7154 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7155 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 7156 if (!best) 7157 return; 7158 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7159 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7160 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7161 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7162 } 7163 7164 /* Get the number of configurable Address Ranges for filtering */ 7165 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps, 7166 PT_CAP_num_address_ranges); 7167 7168 /* Initialize and clear the no dependency bits */ 7169 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7170 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC); 7171 7172 /* 7173 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7174 * will inject an #GP 7175 */ 7176 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7177 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7178 7179 /* 7180 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7181 * PSBFreq can be set 7182 */ 7183 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7184 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7185 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7186 7187 /* 7188 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and 7189 * MTCFreq can be set 7190 */ 7191 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7192 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7193 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE); 7194 7195 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7196 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7197 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7198 RTIT_CTL_PTW_EN); 7199 7200 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7201 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7202 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7203 7204 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7205 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7206 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7207 7208 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */ 7209 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7210 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7211 7212 /* unmask address range configure area */ 7213 for (i = 0; i < vmx->pt_desc.addr_range; i++) 7214 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7215 } 7216 7217 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7218 { 7219 struct vcpu_vmx *vmx = to_vmx(vcpu); 7220 7221 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7222 vcpu->arch.xsaves_enabled = false; 7223 7224 if (cpu_has_secondary_exec_ctrls()) { 7225 vmx_compute_secondary_exec_control(vmx); 7226 vmcs_set_secondary_exec_control(vmx); 7227 } 7228 7229 if (nested_vmx_allowed(vcpu)) 7230 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7231 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7232 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7233 else 7234 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7235 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7236 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7237 7238 if (nested_vmx_allowed(vcpu)) { 7239 nested_vmx_cr_fixed1_bits_update(vcpu); 7240 nested_vmx_entry_exit_ctls_update(vcpu); 7241 } 7242 7243 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7244 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7245 update_intel_pt_cfg(vcpu); 7246 7247 if (boot_cpu_has(X86_FEATURE_RTM)) { 7248 struct vmx_uret_msr *msr; 7249 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7250 if (msr) { 7251 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7252 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7253 } 7254 } 7255 7256 set_cr4_guest_host_mask(vmx); 7257 7258 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7259 update_exception_bitmap(vcpu); 7260 } 7261 7262 static __init void vmx_set_cpu_caps(void) 7263 { 7264 kvm_set_cpu_caps(); 7265 7266 /* CPUID 0x1 */ 7267 if (nested) 7268 kvm_cpu_cap_set(X86_FEATURE_VMX); 7269 7270 /* CPUID 0x7 */ 7271 if (kvm_mpx_supported()) 7272 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7273 if (cpu_has_vmx_invpcid()) 7274 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID); 7275 if (vmx_pt_mode_is_host_guest()) 7276 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7277 7278 if (vmx_umip_emulated()) 7279 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7280 7281 /* CPUID 0xD.1 */ 7282 supported_xss = 0; 7283 if (!cpu_has_vmx_xsaves()) 7284 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7285 7286 /* CPUID 0x80000001 */ 7287 if (!cpu_has_vmx_rdtscp()) 7288 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7289 7290 if (cpu_has_vmx_waitpkg()) 7291 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7292 } 7293 7294 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7295 { 7296 to_vmx(vcpu)->req_immediate_exit = true; 7297 } 7298 7299 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7300 struct x86_instruction_info *info) 7301 { 7302 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7303 unsigned short port; 7304 bool intercept; 7305 int size; 7306 7307 if (info->intercept == x86_intercept_in || 7308 info->intercept == x86_intercept_ins) { 7309 port = info->src_val; 7310 size = info->dst_bytes; 7311 } else { 7312 port = info->dst_val; 7313 size = info->src_bytes; 7314 } 7315 7316 /* 7317 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7318 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7319 * control. 7320 * 7321 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7322 */ 7323 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7324 intercept = nested_cpu_has(vmcs12, 7325 CPU_BASED_UNCOND_IO_EXITING); 7326 else 7327 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7328 7329 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7330 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7331 } 7332 7333 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7334 struct x86_instruction_info *info, 7335 enum x86_intercept_stage stage, 7336 struct x86_exception *exception) 7337 { 7338 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7339 7340 switch (info->intercept) { 7341 /* 7342 * RDPID causes #UD if disabled through secondary execution controls. 7343 * Because it is marked as EmulateOnUD, we need to intercept it here. 7344 */ 7345 case x86_intercept_rdtscp: 7346 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7347 exception->vector = UD_VECTOR; 7348 exception->error_code_valid = false; 7349 return X86EMUL_PROPAGATE_FAULT; 7350 } 7351 break; 7352 7353 case x86_intercept_in: 7354 case x86_intercept_ins: 7355 case x86_intercept_out: 7356 case x86_intercept_outs: 7357 return vmx_check_intercept_io(vcpu, info); 7358 7359 case x86_intercept_lgdt: 7360 case x86_intercept_lidt: 7361 case x86_intercept_lldt: 7362 case x86_intercept_ltr: 7363 case x86_intercept_sgdt: 7364 case x86_intercept_sidt: 7365 case x86_intercept_sldt: 7366 case x86_intercept_str: 7367 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7368 return X86EMUL_CONTINUE; 7369 7370 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7371 break; 7372 7373 /* TODO: check more intercepts... */ 7374 default: 7375 break; 7376 } 7377 7378 return X86EMUL_UNHANDLEABLE; 7379 } 7380 7381 #ifdef CONFIG_X86_64 7382 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7383 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7384 u64 divisor, u64 *result) 7385 { 7386 u64 low = a << shift, high = a >> (64 - shift); 7387 7388 /* To avoid the overflow on divq */ 7389 if (high >= divisor) 7390 return 1; 7391 7392 /* Low hold the result, high hold rem which is discarded */ 7393 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7394 "rm" (divisor), "0" (low), "1" (high)); 7395 *result = low; 7396 7397 return 0; 7398 } 7399 7400 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7401 bool *expired) 7402 { 7403 struct vcpu_vmx *vmx; 7404 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7405 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7406 7407 vmx = to_vmx(vcpu); 7408 tscl = rdtsc(); 7409 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7410 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7411 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7412 ktimer->timer_advance_ns); 7413 7414 if (delta_tsc > lapic_timer_advance_cycles) 7415 delta_tsc -= lapic_timer_advance_cycles; 7416 else 7417 delta_tsc = 0; 7418 7419 /* Convert to host delta tsc if tsc scaling is enabled */ 7420 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7421 delta_tsc && u64_shl_div_u64(delta_tsc, 7422 kvm_tsc_scaling_ratio_frac_bits, 7423 vcpu->arch.tsc_scaling_ratio, &delta_tsc)) 7424 return -ERANGE; 7425 7426 /* 7427 * If the delta tsc can't fit in the 32 bit after the multi shift, 7428 * we can't use the preemption timer. 7429 * It's possible that it fits on later vmentries, but checking 7430 * on every vmentry is costly so we just use an hrtimer. 7431 */ 7432 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7433 return -ERANGE; 7434 7435 vmx->hv_deadline_tsc = tscl + delta_tsc; 7436 *expired = !delta_tsc; 7437 return 0; 7438 } 7439 7440 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7441 { 7442 to_vmx(vcpu)->hv_deadline_tsc = -1; 7443 } 7444 #endif 7445 7446 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7447 { 7448 if (!kvm_pause_in_guest(vcpu->kvm)) 7449 shrink_ple_window(vcpu); 7450 } 7451 7452 static void vmx_slot_enable_log_dirty(struct kvm *kvm, 7453 struct kvm_memory_slot *slot) 7454 { 7455 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) 7456 kvm_mmu_slot_leaf_clear_dirty(kvm, slot); 7457 kvm_mmu_slot_largepage_remove_write_access(kvm, slot); 7458 } 7459 7460 static void vmx_slot_disable_log_dirty(struct kvm *kvm, 7461 struct kvm_memory_slot *slot) 7462 { 7463 kvm_mmu_slot_set_dirty(kvm, slot); 7464 } 7465 7466 static void vmx_flush_log_dirty(struct kvm *kvm) 7467 { 7468 kvm_flush_pml_buffers(kvm); 7469 } 7470 7471 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm, 7472 struct kvm_memory_slot *memslot, 7473 gfn_t offset, unsigned long mask) 7474 { 7475 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask); 7476 } 7477 7478 static int vmx_pre_block(struct kvm_vcpu *vcpu) 7479 { 7480 if (pi_pre_block(vcpu)) 7481 return 1; 7482 7483 if (kvm_lapic_hv_timer_in_use(vcpu)) 7484 kvm_lapic_switch_to_sw_timer(vcpu); 7485 7486 return 0; 7487 } 7488 7489 static void vmx_post_block(struct kvm_vcpu *vcpu) 7490 { 7491 if (kvm_x86_ops.set_hv_timer) 7492 kvm_lapic_switch_to_hv_timer(vcpu); 7493 7494 pi_post_block(vcpu); 7495 } 7496 7497 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7498 { 7499 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7500 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7501 FEAT_CTL_LMCE_ENABLED; 7502 else 7503 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7504 ~FEAT_CTL_LMCE_ENABLED; 7505 } 7506 7507 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 7508 { 7509 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7510 if (to_vmx(vcpu)->nested.nested_run_pending) 7511 return -EBUSY; 7512 return !is_smm(vcpu); 7513 } 7514 7515 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7516 { 7517 struct vcpu_vmx *vmx = to_vmx(vcpu); 7518 7519 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7520 if (vmx->nested.smm.guest_mode) 7521 nested_vmx_vmexit(vcpu, -1, 0, 0); 7522 7523 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7524 vmx->nested.vmxon = false; 7525 vmx_clear_hlt(vcpu); 7526 return 0; 7527 } 7528 7529 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7530 { 7531 struct vcpu_vmx *vmx = to_vmx(vcpu); 7532 int ret; 7533 7534 if (vmx->nested.smm.vmxon) { 7535 vmx->nested.vmxon = true; 7536 vmx->nested.smm.vmxon = false; 7537 } 7538 7539 if (vmx->nested.smm.guest_mode) { 7540 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7541 if (ret) 7542 return ret; 7543 7544 vmx->nested.smm.guest_mode = false; 7545 } 7546 return 0; 7547 } 7548 7549 static void enable_smi_window(struct kvm_vcpu *vcpu) 7550 { 7551 /* RSM will cause a vmexit anyway. */ 7552 } 7553 7554 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 7555 { 7556 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 7557 } 7558 7559 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 7560 { 7561 if (is_guest_mode(vcpu)) { 7562 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 7563 7564 if (hrtimer_try_to_cancel(timer) == 1) 7565 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 7566 } 7567 } 7568 7569 static void hardware_unsetup(void) 7570 { 7571 if (nested) 7572 nested_vmx_hardware_unsetup(); 7573 7574 free_kvm_area(); 7575 } 7576 7577 static bool vmx_check_apicv_inhibit_reasons(ulong bit) 7578 { 7579 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 7580 BIT(APICV_INHIBIT_REASON_HYPERV); 7581 7582 return supported & BIT(bit); 7583 } 7584 7585 static int vmx_cpu_dirty_log_size(void) 7586 { 7587 return enable_pml ? PML_ENTITY_NUM : 0; 7588 } 7589 7590 static struct kvm_x86_ops vmx_x86_ops __initdata = { 7591 .hardware_unsetup = hardware_unsetup, 7592 7593 .hardware_enable = hardware_enable, 7594 .hardware_disable = hardware_disable, 7595 .cpu_has_accelerated_tpr = report_flexpriority, 7596 .has_emulated_msr = vmx_has_emulated_msr, 7597 7598 .vm_size = sizeof(struct kvm_vmx), 7599 .vm_init = vmx_vm_init, 7600 7601 .vcpu_create = vmx_create_vcpu, 7602 .vcpu_free = vmx_free_vcpu, 7603 .vcpu_reset = vmx_vcpu_reset, 7604 7605 .prepare_guest_switch = vmx_prepare_switch_to_guest, 7606 .vcpu_load = vmx_vcpu_load, 7607 .vcpu_put = vmx_vcpu_put, 7608 7609 .update_exception_bitmap = update_exception_bitmap, 7610 .get_msr_feature = vmx_get_msr_feature, 7611 .get_msr = vmx_get_msr, 7612 .set_msr = vmx_set_msr, 7613 .get_segment_base = vmx_get_segment_base, 7614 .get_segment = vmx_get_segment, 7615 .set_segment = vmx_set_segment, 7616 .get_cpl = vmx_get_cpl, 7617 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7618 .set_cr0 = vmx_set_cr0, 7619 .is_valid_cr4 = vmx_is_valid_cr4, 7620 .set_cr4 = vmx_set_cr4, 7621 .set_efer = vmx_set_efer, 7622 .get_idt = vmx_get_idt, 7623 .set_idt = vmx_set_idt, 7624 .get_gdt = vmx_get_gdt, 7625 .set_gdt = vmx_set_gdt, 7626 .set_dr7 = vmx_set_dr7, 7627 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7628 .cache_reg = vmx_cache_reg, 7629 .get_rflags = vmx_get_rflags, 7630 .set_rflags = vmx_set_rflags, 7631 7632 .tlb_flush_all = vmx_flush_tlb_all, 7633 .tlb_flush_current = vmx_flush_tlb_current, 7634 .tlb_flush_gva = vmx_flush_tlb_gva, 7635 .tlb_flush_guest = vmx_flush_tlb_guest, 7636 7637 .run = vmx_vcpu_run, 7638 .handle_exit = vmx_handle_exit, 7639 .skip_emulated_instruction = vmx_skip_emulated_instruction, 7640 .update_emulated_instruction = vmx_update_emulated_instruction, 7641 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7642 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7643 .patch_hypercall = vmx_patch_hypercall, 7644 .set_irq = vmx_inject_irq, 7645 .set_nmi = vmx_inject_nmi, 7646 .queue_exception = vmx_queue_exception, 7647 .cancel_injection = vmx_cancel_injection, 7648 .interrupt_allowed = vmx_interrupt_allowed, 7649 .nmi_allowed = vmx_nmi_allowed, 7650 .get_nmi_mask = vmx_get_nmi_mask, 7651 .set_nmi_mask = vmx_set_nmi_mask, 7652 .enable_nmi_window = enable_nmi_window, 7653 .enable_irq_window = enable_irq_window, 7654 .update_cr8_intercept = update_cr8_intercept, 7655 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7656 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7657 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7658 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7659 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7660 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons, 7661 .hwapic_irr_update = vmx_hwapic_irr_update, 7662 .hwapic_isr_update = vmx_hwapic_isr_update, 7663 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7664 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7665 .deliver_posted_interrupt = vmx_deliver_posted_interrupt, 7666 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 7667 7668 .set_tss_addr = vmx_set_tss_addr, 7669 .set_identity_map_addr = vmx_set_identity_map_addr, 7670 .get_mt_mask = vmx_get_mt_mask, 7671 7672 .get_exit_info = vmx_get_exit_info, 7673 7674 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 7675 7676 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7677 7678 .write_l1_tsc_offset = vmx_write_l1_tsc_offset, 7679 7680 .load_mmu_pgd = vmx_load_mmu_pgd, 7681 7682 .check_intercept = vmx_check_intercept, 7683 .handle_exit_irqoff = vmx_handle_exit_irqoff, 7684 7685 .request_immediate_exit = vmx_request_immediate_exit, 7686 7687 .sched_in = vmx_sched_in, 7688 7689 .slot_enable_log_dirty = vmx_slot_enable_log_dirty, 7690 .slot_disable_log_dirty = vmx_slot_disable_log_dirty, 7691 .flush_log_dirty = vmx_flush_log_dirty, 7692 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked, 7693 7694 .pre_block = vmx_pre_block, 7695 .post_block = vmx_post_block, 7696 7697 .pmu_ops = &intel_pmu_ops, 7698 .nested_ops = &vmx_nested_ops, 7699 7700 .update_pi_irte = pi_update_irte, 7701 7702 #ifdef CONFIG_X86_64 7703 .set_hv_timer = vmx_set_hv_timer, 7704 .cancel_hv_timer = vmx_cancel_hv_timer, 7705 #endif 7706 7707 .setup_mce = vmx_setup_mce, 7708 7709 .smi_allowed = vmx_smi_allowed, 7710 .pre_enter_smm = vmx_pre_enter_smm, 7711 .pre_leave_smm = vmx_pre_leave_smm, 7712 .enable_smi_window = enable_smi_window, 7713 7714 .can_emulate_instruction = vmx_can_emulate_instruction, 7715 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 7716 .migrate_timers = vmx_migrate_timers, 7717 7718 .msr_filter_changed = vmx_msr_filter_changed, 7719 .complete_emulated_msr = kvm_complete_insn_gp, 7720 .cpu_dirty_log_size = vmx_cpu_dirty_log_size, 7721 7722 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 7723 }; 7724 7725 static __init int hardware_setup(void) 7726 { 7727 unsigned long host_bndcfgs; 7728 struct desc_ptr dt; 7729 int r, i, ept_lpage_level; 7730 7731 store_idt(&dt); 7732 host_idt_base = dt.address; 7733 7734 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 7735 kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]); 7736 7737 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7738 return -EIO; 7739 7740 if (boot_cpu_has(X86_FEATURE_NX)) 7741 kvm_enable_efer_bits(EFER_NX); 7742 7743 if (boot_cpu_has(X86_FEATURE_MPX)) { 7744 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7745 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7746 } 7747 7748 if (!cpu_has_vmx_mpx()) 7749 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 7750 XFEATURE_MASK_BNDCSR); 7751 7752 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7753 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7754 enable_vpid = 0; 7755 7756 if (!cpu_has_vmx_ept() || 7757 !cpu_has_vmx_ept_4levels() || 7758 !cpu_has_vmx_ept_mt_wb() || 7759 !cpu_has_vmx_invept_global()) 7760 enable_ept = 0; 7761 7762 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7763 enable_ept_ad_bits = 0; 7764 7765 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7766 enable_unrestricted_guest = 0; 7767 7768 if (!cpu_has_vmx_flexpriority()) 7769 flexpriority_enabled = 0; 7770 7771 if (!cpu_has_virtual_nmis()) 7772 enable_vnmi = 0; 7773 7774 /* 7775 * set_apic_access_page_addr() is used to reload apic access 7776 * page upon invalidation. No need to do anything if not 7777 * using the APIC_ACCESS_ADDR VMCS field. 7778 */ 7779 if (!flexpriority_enabled) 7780 vmx_x86_ops.set_apic_access_page_addr = NULL; 7781 7782 if (!cpu_has_vmx_tpr_shadow()) 7783 vmx_x86_ops.update_cr8_intercept = NULL; 7784 7785 #if IS_ENABLED(CONFIG_HYPERV) 7786 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7787 && enable_ept) { 7788 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb; 7789 vmx_x86_ops.tlb_remote_flush_with_range = 7790 hv_remote_flush_tlb_with_range; 7791 } 7792 #endif 7793 7794 if (!cpu_has_vmx_ple()) { 7795 ple_gap = 0; 7796 ple_window = 0; 7797 ple_window_grow = 0; 7798 ple_window_max = 0; 7799 ple_window_shrink = 0; 7800 } 7801 7802 if (!cpu_has_vmx_apicv()) { 7803 enable_apicv = 0; 7804 vmx_x86_ops.sync_pir_to_irr = NULL; 7805 } 7806 7807 if (cpu_has_vmx_tsc_scaling()) { 7808 kvm_has_tsc_control = true; 7809 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7810 kvm_tsc_scaling_ratio_frac_bits = 48; 7811 } 7812 7813 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7814 7815 if (enable_ept) 7816 vmx_enable_tdp(); 7817 7818 if (!enable_ept) 7819 ept_lpage_level = 0; 7820 else if (cpu_has_vmx_ept_1g_page()) 7821 ept_lpage_level = PG_LEVEL_1G; 7822 else if (cpu_has_vmx_ept_2m_page()) 7823 ept_lpage_level = PG_LEVEL_2M; 7824 else 7825 ept_lpage_level = PG_LEVEL_4K; 7826 kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level); 7827 7828 /* 7829 * Only enable PML when hardware supports PML feature, and both EPT 7830 * and EPT A/D bit features are enabled -- PML depends on them to work. 7831 */ 7832 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 7833 enable_pml = 0; 7834 7835 if (!enable_pml) { 7836 vmx_x86_ops.slot_enable_log_dirty = NULL; 7837 vmx_x86_ops.slot_disable_log_dirty = NULL; 7838 vmx_x86_ops.flush_log_dirty = NULL; 7839 vmx_x86_ops.enable_log_dirty_pt_masked = NULL; 7840 vmx_x86_ops.cpu_dirty_log_size = NULL; 7841 } 7842 7843 if (!cpu_has_vmx_preemption_timer()) 7844 enable_preemption_timer = false; 7845 7846 if (enable_preemption_timer) { 7847 u64 use_timer_freq = 5000ULL * 1000 * 1000; 7848 u64 vmx_msr; 7849 7850 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 7851 cpu_preemption_timer_multi = 7852 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 7853 7854 if (tsc_khz) 7855 use_timer_freq = (u64)tsc_khz * 1000; 7856 use_timer_freq >>= cpu_preemption_timer_multi; 7857 7858 /* 7859 * KVM "disables" the preemption timer by setting it to its max 7860 * value. Don't use the timer if it might cause spurious exits 7861 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 7862 */ 7863 if (use_timer_freq > 0xffffffffu / 10) 7864 enable_preemption_timer = false; 7865 } 7866 7867 if (!enable_preemption_timer) { 7868 vmx_x86_ops.set_hv_timer = NULL; 7869 vmx_x86_ops.cancel_hv_timer = NULL; 7870 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 7871 } 7872 7873 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 7874 7875 kvm_mce_cap_supported |= MCG_LMCE_P; 7876 7877 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 7878 return -EINVAL; 7879 if (!enable_ept || !cpu_has_vmx_intel_pt()) 7880 pt_mode = PT_MODE_SYSTEM; 7881 7882 if (nested) { 7883 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 7884 vmx_capability.ept); 7885 7886 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 7887 if (r) 7888 return r; 7889 } 7890 7891 vmx_set_cpu_caps(); 7892 7893 r = alloc_kvm_area(); 7894 if (r) 7895 nested_vmx_hardware_unsetup(); 7896 return r; 7897 } 7898 7899 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 7900 .cpu_has_kvm_support = cpu_has_kvm_support, 7901 .disabled_by_bios = vmx_disabled_by_bios, 7902 .check_processor_compatibility = vmx_check_processor_compat, 7903 .hardware_setup = hardware_setup, 7904 7905 .runtime_ops = &vmx_x86_ops, 7906 }; 7907 7908 static void vmx_cleanup_l1d_flush(void) 7909 { 7910 if (vmx_l1d_flush_pages) { 7911 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 7912 vmx_l1d_flush_pages = NULL; 7913 } 7914 /* Restore state so sysfs ignores VMX */ 7915 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 7916 } 7917 7918 static void vmx_exit(void) 7919 { 7920 #ifdef CONFIG_KEXEC_CORE 7921 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 7922 synchronize_rcu(); 7923 #endif 7924 7925 kvm_exit(); 7926 7927 #if IS_ENABLED(CONFIG_HYPERV) 7928 if (static_branch_unlikely(&enable_evmcs)) { 7929 int cpu; 7930 struct hv_vp_assist_page *vp_ap; 7931 /* 7932 * Reset everything to support using non-enlightened VMCS 7933 * access later (e.g. when we reload the module with 7934 * enlightened_vmcs=0) 7935 */ 7936 for_each_online_cpu(cpu) { 7937 vp_ap = hv_get_vp_assist_page(cpu); 7938 7939 if (!vp_ap) 7940 continue; 7941 7942 vp_ap->nested_control.features.directhypercall = 0; 7943 vp_ap->current_nested_vmcs = 0; 7944 vp_ap->enlighten_vmentry = 0; 7945 } 7946 7947 static_branch_disable(&enable_evmcs); 7948 } 7949 #endif 7950 vmx_cleanup_l1d_flush(); 7951 } 7952 module_exit(vmx_exit); 7953 7954 static int __init vmx_init(void) 7955 { 7956 int r, cpu; 7957 7958 #if IS_ENABLED(CONFIG_HYPERV) 7959 /* 7960 * Enlightened VMCS usage should be recommended and the host needs 7961 * to support eVMCS v1 or above. We can also disable eVMCS support 7962 * with module parameter. 7963 */ 7964 if (enlightened_vmcs && 7965 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 7966 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 7967 KVM_EVMCS_VERSION) { 7968 int cpu; 7969 7970 /* Check that we have assist pages on all online CPUs */ 7971 for_each_online_cpu(cpu) { 7972 if (!hv_get_vp_assist_page(cpu)) { 7973 enlightened_vmcs = false; 7974 break; 7975 } 7976 } 7977 7978 if (enlightened_vmcs) { 7979 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 7980 static_branch_enable(&enable_evmcs); 7981 } 7982 7983 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 7984 vmx_x86_ops.enable_direct_tlbflush 7985 = hv_enable_direct_tlbflush; 7986 7987 } else { 7988 enlightened_vmcs = false; 7989 } 7990 #endif 7991 7992 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx), 7993 __alignof__(struct vcpu_vmx), THIS_MODULE); 7994 if (r) 7995 return r; 7996 7997 /* 7998 * Must be called after kvm_init() so enable_ept is properly set 7999 * up. Hand the parameter mitigation value in which was stored in 8000 * the pre module init parser. If no parameter was given, it will 8001 * contain 'auto' which will be turned into the default 'cond' 8002 * mitigation mode. 8003 */ 8004 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8005 if (r) { 8006 vmx_exit(); 8007 return r; 8008 } 8009 8010 for_each_possible_cpu(cpu) { 8011 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8012 8013 pi_init_cpu(cpu); 8014 } 8015 8016 #ifdef CONFIG_KEXEC_CORE 8017 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 8018 crash_vmclear_local_loaded_vmcss); 8019 #endif 8020 vmx_check_vmcs12_offsets(); 8021 8022 /* 8023 * Shadow paging doesn't have a (further) performance penalty 8024 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8025 * by default 8026 */ 8027 if (!enable_ept) 8028 allow_smaller_maxphyaddr = true; 8029 8030 return 0; 8031 } 8032 module_init(vmx_init); 8033