1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <linux/highmem.h> 17 #include <linux/hrtimer.h> 18 #include <linux/kernel.h> 19 #include <linux/kvm_host.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mm.h> 24 #include <linux/objtool.h> 25 #include <linux/sched.h> 26 #include <linux/sched/smt.h> 27 #include <linux/slab.h> 28 #include <linux/tboot.h> 29 #include <linux/trace_events.h> 30 #include <linux/entry-kvm.h> 31 32 #include <asm/apic.h> 33 #include <asm/asm.h> 34 #include <asm/cpu.h> 35 #include <asm/cpu_device_id.h> 36 #include <asm/debugreg.h> 37 #include <asm/desc.h> 38 #include <asm/fpu/api.h> 39 #include <asm/fpu/xstate.h> 40 #include <asm/idtentry.h> 41 #include <asm/io.h> 42 #include <asm/irq_remapping.h> 43 #include <asm/kexec.h> 44 #include <asm/perf_event.h> 45 #include <asm/mmu_context.h> 46 #include <asm/mshyperv.h> 47 #include <asm/mwait.h> 48 #include <asm/spec-ctrl.h> 49 #include <asm/virtext.h> 50 #include <asm/vmx.h> 51 52 #include "capabilities.h" 53 #include "cpuid.h" 54 #include "evmcs.h" 55 #include "hyperv.h" 56 #include "kvm_onhyperv.h" 57 #include "irq.h" 58 #include "kvm_cache_regs.h" 59 #include "lapic.h" 60 #include "mmu.h" 61 #include "nested.h" 62 #include "pmu.h" 63 #include "sgx.h" 64 #include "trace.h" 65 #include "vmcs.h" 66 #include "vmcs12.h" 67 #include "vmx.h" 68 #include "x86.h" 69 70 MODULE_AUTHOR("Qumranet"); 71 MODULE_LICENSE("GPL"); 72 73 #ifdef MODULE 74 static const struct x86_cpu_id vmx_cpu_id[] = { 75 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 76 {} 77 }; 78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 79 #endif 80 81 bool __read_mostly enable_vpid = 1; 82 module_param_named(vpid, enable_vpid, bool, 0444); 83 84 static bool __read_mostly enable_vnmi = 1; 85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 86 87 bool __read_mostly flexpriority_enabled = 1; 88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 89 90 bool __read_mostly enable_ept = 1; 91 module_param_named(ept, enable_ept, bool, S_IRUGO); 92 93 bool __read_mostly enable_unrestricted_guest = 1; 94 module_param_named(unrestricted_guest, 95 enable_unrestricted_guest, bool, S_IRUGO); 96 97 bool __read_mostly enable_ept_ad_bits = 1; 98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 99 100 static bool __read_mostly emulate_invalid_guest_state = true; 101 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 102 103 static bool __read_mostly fasteoi = 1; 104 module_param(fasteoi, bool, S_IRUGO); 105 106 module_param(enable_apicv, bool, S_IRUGO); 107 108 /* 109 * If nested=1, nested virtualization is supported, i.e., guests may use 110 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 111 * use VMX instructions. 112 */ 113 static bool __read_mostly nested = 1; 114 module_param(nested, bool, S_IRUGO); 115 116 bool __read_mostly enable_pml = 1; 117 module_param_named(pml, enable_pml, bool, S_IRUGO); 118 119 static bool __read_mostly dump_invalid_vmcs = 0; 120 module_param(dump_invalid_vmcs, bool, 0644); 121 122 #define MSR_BITMAP_MODE_X2APIC 1 123 #define MSR_BITMAP_MODE_X2APIC_APICV 2 124 125 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 126 127 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 128 static int __read_mostly cpu_preemption_timer_multi; 129 static bool __read_mostly enable_preemption_timer = 1; 130 #ifdef CONFIG_X86_64 131 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 132 #endif 133 134 extern bool __read_mostly allow_smaller_maxphyaddr; 135 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 136 137 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 138 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 139 #define KVM_VM_CR0_ALWAYS_ON \ 140 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 141 142 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 143 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 144 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 145 146 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 147 148 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 149 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 150 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 151 RTIT_STATUS_BYTECNT)) 152 153 /* 154 * List of MSRs that can be directly passed to the guest. 155 * In addition to these x2apic and PT MSRs are handled specially. 156 */ 157 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 158 MSR_IA32_SPEC_CTRL, 159 MSR_IA32_PRED_CMD, 160 MSR_IA32_TSC, 161 #ifdef CONFIG_X86_64 162 MSR_FS_BASE, 163 MSR_GS_BASE, 164 MSR_KERNEL_GS_BASE, 165 MSR_IA32_XFD, 166 MSR_IA32_XFD_ERR, 167 #endif 168 MSR_IA32_SYSENTER_CS, 169 MSR_IA32_SYSENTER_ESP, 170 MSR_IA32_SYSENTER_EIP, 171 MSR_CORE_C1_RES, 172 MSR_CORE_C3_RESIDENCY, 173 MSR_CORE_C6_RESIDENCY, 174 MSR_CORE_C7_RESIDENCY, 175 }; 176 177 /* 178 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 179 * ple_gap: upper bound on the amount of time between two successive 180 * executions of PAUSE in a loop. Also indicate if ple enabled. 181 * According to test, this time is usually smaller than 128 cycles. 182 * ple_window: upper bound on the amount of time a guest is allowed to execute 183 * in a PAUSE loop. Tests indicate that most spinlocks are held for 184 * less than 2^12 cycles 185 * Time is measured based on a counter that runs at the same rate as the TSC, 186 * refer SDM volume 3b section 21.6.13 & 22.1.3. 187 */ 188 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 189 module_param(ple_gap, uint, 0444); 190 191 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 192 module_param(ple_window, uint, 0444); 193 194 /* Default doubles per-vcpu window every exit. */ 195 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 196 module_param(ple_window_grow, uint, 0444); 197 198 /* Default resets per-vcpu window every exit to ple_window. */ 199 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 200 module_param(ple_window_shrink, uint, 0444); 201 202 /* Default is to compute the maximum so we can never overflow. */ 203 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 204 module_param(ple_window_max, uint, 0444); 205 206 /* Default is SYSTEM mode, 1 for host-guest mode */ 207 int __read_mostly pt_mode = PT_MODE_SYSTEM; 208 module_param(pt_mode, int, S_IRUGO); 209 210 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 211 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 212 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 213 214 /* Storage for pre module init parameter parsing */ 215 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 216 217 static const struct { 218 const char *option; 219 bool for_parse; 220 } vmentry_l1d_param[] = { 221 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 222 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 223 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 224 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 225 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 226 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 227 }; 228 229 #define L1D_CACHE_ORDER 4 230 static void *vmx_l1d_flush_pages; 231 232 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 233 { 234 struct page *page; 235 unsigned int i; 236 237 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 238 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 239 return 0; 240 } 241 242 if (!enable_ept) { 243 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 244 return 0; 245 } 246 247 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 248 u64 msr; 249 250 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 251 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 252 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 253 return 0; 254 } 255 } 256 257 /* If set to auto use the default l1tf mitigation method */ 258 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 259 switch (l1tf_mitigation) { 260 case L1TF_MITIGATION_OFF: 261 l1tf = VMENTER_L1D_FLUSH_NEVER; 262 break; 263 case L1TF_MITIGATION_FLUSH_NOWARN: 264 case L1TF_MITIGATION_FLUSH: 265 case L1TF_MITIGATION_FLUSH_NOSMT: 266 l1tf = VMENTER_L1D_FLUSH_COND; 267 break; 268 case L1TF_MITIGATION_FULL: 269 case L1TF_MITIGATION_FULL_FORCE: 270 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 271 break; 272 } 273 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 274 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 275 } 276 277 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 278 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 279 /* 280 * This allocation for vmx_l1d_flush_pages is not tied to a VM 281 * lifetime and so should not be charged to a memcg. 282 */ 283 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 284 if (!page) 285 return -ENOMEM; 286 vmx_l1d_flush_pages = page_address(page); 287 288 /* 289 * Initialize each page with a different pattern in 290 * order to protect against KSM in the nested 291 * virtualization case. 292 */ 293 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 294 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 295 PAGE_SIZE); 296 } 297 } 298 299 l1tf_vmx_mitigation = l1tf; 300 301 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 302 static_branch_enable(&vmx_l1d_should_flush); 303 else 304 static_branch_disable(&vmx_l1d_should_flush); 305 306 if (l1tf == VMENTER_L1D_FLUSH_COND) 307 static_branch_enable(&vmx_l1d_flush_cond); 308 else 309 static_branch_disable(&vmx_l1d_flush_cond); 310 return 0; 311 } 312 313 static int vmentry_l1d_flush_parse(const char *s) 314 { 315 unsigned int i; 316 317 if (s) { 318 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 319 if (vmentry_l1d_param[i].for_parse && 320 sysfs_streq(s, vmentry_l1d_param[i].option)) 321 return i; 322 } 323 } 324 return -EINVAL; 325 } 326 327 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 328 { 329 int l1tf, ret; 330 331 l1tf = vmentry_l1d_flush_parse(s); 332 if (l1tf < 0) 333 return l1tf; 334 335 if (!boot_cpu_has(X86_BUG_L1TF)) 336 return 0; 337 338 /* 339 * Has vmx_init() run already? If not then this is the pre init 340 * parameter parsing. In that case just store the value and let 341 * vmx_init() do the proper setup after enable_ept has been 342 * established. 343 */ 344 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 345 vmentry_l1d_flush_param = l1tf; 346 return 0; 347 } 348 349 mutex_lock(&vmx_l1d_flush_mutex); 350 ret = vmx_setup_l1d_flush(l1tf); 351 mutex_unlock(&vmx_l1d_flush_mutex); 352 return ret; 353 } 354 355 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 356 { 357 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 358 return sprintf(s, "???\n"); 359 360 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 361 } 362 363 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 364 .set = vmentry_l1d_flush_set, 365 .get = vmentry_l1d_flush_get, 366 }; 367 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 368 369 static u32 vmx_segment_access_rights(struct kvm_segment *var); 370 371 void vmx_vmexit(void); 372 373 #define vmx_insn_failed(fmt...) \ 374 do { \ 375 WARN_ONCE(1, fmt); \ 376 pr_warn_ratelimited(fmt); \ 377 } while (0) 378 379 asmlinkage void vmread_error(unsigned long field, bool fault) 380 { 381 if (fault) 382 kvm_spurious_fault(); 383 else 384 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field); 385 } 386 387 noinline void vmwrite_error(unsigned long field, unsigned long value) 388 { 389 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n", 390 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 391 } 392 393 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 394 { 395 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr); 396 } 397 398 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 399 { 400 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr); 401 } 402 403 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 404 { 405 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 406 ext, vpid, gva); 407 } 408 409 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 410 { 411 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 412 ext, eptp, gpa); 413 } 414 415 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 416 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 417 /* 418 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 419 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 420 */ 421 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 422 423 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 424 static DEFINE_SPINLOCK(vmx_vpid_lock); 425 426 struct vmcs_config vmcs_config; 427 struct vmx_capability vmx_capability; 428 429 #define VMX_SEGMENT_FIELD(seg) \ 430 [VCPU_SREG_##seg] = { \ 431 .selector = GUEST_##seg##_SELECTOR, \ 432 .base = GUEST_##seg##_BASE, \ 433 .limit = GUEST_##seg##_LIMIT, \ 434 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 435 } 436 437 static const struct kvm_vmx_segment_field { 438 unsigned selector; 439 unsigned base; 440 unsigned limit; 441 unsigned ar_bytes; 442 } kvm_vmx_segment_fields[] = { 443 VMX_SEGMENT_FIELD(CS), 444 VMX_SEGMENT_FIELD(DS), 445 VMX_SEGMENT_FIELD(ES), 446 VMX_SEGMENT_FIELD(FS), 447 VMX_SEGMENT_FIELD(GS), 448 VMX_SEGMENT_FIELD(SS), 449 VMX_SEGMENT_FIELD(TR), 450 VMX_SEGMENT_FIELD(LDTR), 451 }; 452 453 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 454 { 455 vmx->segment_cache.bitmask = 0; 456 } 457 458 static unsigned long host_idt_base; 459 460 #if IS_ENABLED(CONFIG_HYPERV) 461 static bool __read_mostly enlightened_vmcs = true; 462 module_param(enlightened_vmcs, bool, 0444); 463 464 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu) 465 { 466 struct hv_enlightened_vmcs *evmcs; 467 struct hv_partition_assist_pg **p_hv_pa_pg = 468 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 469 /* 470 * Synthetic VM-Exit is not enabled in current code and so All 471 * evmcs in singe VM shares same assist page. 472 */ 473 if (!*p_hv_pa_pg) 474 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 475 476 if (!*p_hv_pa_pg) 477 return -ENOMEM; 478 479 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 480 481 evmcs->partition_assist_page = 482 __pa(*p_hv_pa_pg); 483 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 484 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 485 486 return 0; 487 } 488 489 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 490 491 /* 492 * Comment's format: document - errata name - stepping - processor name. 493 * Refer from 494 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 495 */ 496 static u32 vmx_preemption_cpu_tfms[] = { 497 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 498 0x000206E6, 499 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 500 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 501 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 502 0x00020652, 503 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 504 0x00020655, 505 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 506 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 507 /* 508 * 320767.pdf - AAP86 - B1 - 509 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 510 */ 511 0x000106E5, 512 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 513 0x000106A0, 514 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 515 0x000106A1, 516 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 517 0x000106A4, 518 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 519 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 520 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 521 0x000106A5, 522 /* Xeon E3-1220 V2 */ 523 0x000306A8, 524 }; 525 526 static inline bool cpu_has_broken_vmx_preemption_timer(void) 527 { 528 u32 eax = cpuid_eax(0x00000001), i; 529 530 /* Clear the reserved bits */ 531 eax &= ~(0x3U << 14 | 0xfU << 28); 532 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 533 if (eax == vmx_preemption_cpu_tfms[i]) 534 return true; 535 536 return false; 537 } 538 539 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 540 { 541 return flexpriority_enabled && lapic_in_kernel(vcpu); 542 } 543 544 static inline bool report_flexpriority(void) 545 { 546 return flexpriority_enabled; 547 } 548 549 static int possible_passthrough_msr_slot(u32 msr) 550 { 551 u32 i; 552 553 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 554 if (vmx_possible_passthrough_msrs[i] == msr) 555 return i; 556 557 return -ENOENT; 558 } 559 560 static bool is_valid_passthrough_msr(u32 msr) 561 { 562 bool r; 563 564 switch (msr) { 565 case 0x800 ... 0x8ff: 566 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 567 return true; 568 case MSR_IA32_RTIT_STATUS: 569 case MSR_IA32_RTIT_OUTPUT_BASE: 570 case MSR_IA32_RTIT_OUTPUT_MASK: 571 case MSR_IA32_RTIT_CR3_MATCH: 572 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 573 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 574 case MSR_LBR_SELECT: 575 case MSR_LBR_TOS: 576 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 577 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 578 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 579 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 580 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 581 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 582 return true; 583 } 584 585 r = possible_passthrough_msr_slot(msr) != -ENOENT; 586 587 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 588 589 return r; 590 } 591 592 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 593 { 594 int i; 595 596 i = kvm_find_user_return_msr(msr); 597 if (i >= 0) 598 return &vmx->guest_uret_msrs[i]; 599 return NULL; 600 } 601 602 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 603 struct vmx_uret_msr *msr, u64 data) 604 { 605 unsigned int slot = msr - vmx->guest_uret_msrs; 606 int ret = 0; 607 608 if (msr->load_into_hardware) { 609 preempt_disable(); 610 ret = kvm_set_user_return_msr(slot, data, msr->mask); 611 preempt_enable(); 612 } 613 if (!ret) 614 msr->data = data; 615 return ret; 616 } 617 618 #ifdef CONFIG_KEXEC_CORE 619 static void crash_vmclear_local_loaded_vmcss(void) 620 { 621 int cpu = raw_smp_processor_id(); 622 struct loaded_vmcs *v; 623 624 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 625 loaded_vmcss_on_cpu_link) 626 vmcs_clear(v->vmcs); 627 } 628 #endif /* CONFIG_KEXEC_CORE */ 629 630 static void __loaded_vmcs_clear(void *arg) 631 { 632 struct loaded_vmcs *loaded_vmcs = arg; 633 int cpu = raw_smp_processor_id(); 634 635 if (loaded_vmcs->cpu != cpu) 636 return; /* vcpu migration can race with cpu offline */ 637 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 638 per_cpu(current_vmcs, cpu) = NULL; 639 640 vmcs_clear(loaded_vmcs->vmcs); 641 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 642 vmcs_clear(loaded_vmcs->shadow_vmcs); 643 644 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 645 646 /* 647 * Ensure all writes to loaded_vmcs, including deleting it from its 648 * current percpu list, complete before setting loaded_vmcs->vcpu to 649 * -1, otherwise a different cpu can see vcpu == -1 first and add 650 * loaded_vmcs to its percpu list before it's deleted from this cpu's 651 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 652 */ 653 smp_wmb(); 654 655 loaded_vmcs->cpu = -1; 656 loaded_vmcs->launched = 0; 657 } 658 659 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 660 { 661 int cpu = loaded_vmcs->cpu; 662 663 if (cpu != -1) 664 smp_call_function_single(cpu, 665 __loaded_vmcs_clear, loaded_vmcs, 1); 666 } 667 668 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 669 unsigned field) 670 { 671 bool ret; 672 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 673 674 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 675 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 676 vmx->segment_cache.bitmask = 0; 677 } 678 ret = vmx->segment_cache.bitmask & mask; 679 vmx->segment_cache.bitmask |= mask; 680 return ret; 681 } 682 683 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 684 { 685 u16 *p = &vmx->segment_cache.seg[seg].selector; 686 687 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 688 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 689 return *p; 690 } 691 692 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 693 { 694 ulong *p = &vmx->segment_cache.seg[seg].base; 695 696 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 697 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 698 return *p; 699 } 700 701 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 702 { 703 u32 *p = &vmx->segment_cache.seg[seg].limit; 704 705 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 706 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 707 return *p; 708 } 709 710 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 711 { 712 u32 *p = &vmx->segment_cache.seg[seg].ar; 713 714 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 715 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 716 return *p; 717 } 718 719 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 720 { 721 u32 eb; 722 723 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 724 (1u << DB_VECTOR) | (1u << AC_VECTOR); 725 /* 726 * Guest access to VMware backdoor ports could legitimately 727 * trigger #GP because of TSS I/O permission bitmap. 728 * We intercept those #GP and allow access to them anyway 729 * as VMware does. 730 */ 731 if (enable_vmware_backdoor) 732 eb |= (1u << GP_VECTOR); 733 if ((vcpu->guest_debug & 734 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 735 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 736 eb |= 1u << BP_VECTOR; 737 if (to_vmx(vcpu)->rmode.vm86_active) 738 eb = ~0; 739 if (!vmx_need_pf_intercept(vcpu)) 740 eb &= ~(1u << PF_VECTOR); 741 742 /* When we are running a nested L2 guest and L1 specified for it a 743 * certain exception bitmap, we must trap the same exceptions and pass 744 * them to L1. When running L2, we will only handle the exceptions 745 * specified above if L1 did not want them. 746 */ 747 if (is_guest_mode(vcpu)) 748 eb |= get_vmcs12(vcpu)->exception_bitmap; 749 else { 750 int mask = 0, match = 0; 751 752 if (enable_ept && (eb & (1u << PF_VECTOR))) { 753 /* 754 * If EPT is enabled, #PF is currently only intercepted 755 * if MAXPHYADDR is smaller on the guest than on the 756 * host. In that case we only care about present, 757 * non-reserved faults. For vmcs02, however, PFEC_MASK 758 * and PFEC_MATCH are set in prepare_vmcs02_rare. 759 */ 760 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 761 match = PFERR_PRESENT_MASK; 762 } 763 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 764 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 765 } 766 767 /* 768 * Disabling xfd interception indicates that dynamic xfeatures 769 * might be used in the guest. Always trap #NM in this case 770 * to save guest xfd_err timely. 771 */ 772 if (vcpu->arch.xfd_no_write_intercept) 773 eb |= (1u << NM_VECTOR); 774 775 vmcs_write32(EXCEPTION_BITMAP, eb); 776 } 777 778 /* 779 * Check if MSR is intercepted for currently loaded MSR bitmap. 780 */ 781 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 782 { 783 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 784 return true; 785 786 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, 787 MSR_IA32_SPEC_CTRL); 788 } 789 790 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 791 unsigned long entry, unsigned long exit) 792 { 793 vm_entry_controls_clearbit(vmx, entry); 794 vm_exit_controls_clearbit(vmx, exit); 795 } 796 797 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 798 { 799 unsigned int i; 800 801 for (i = 0; i < m->nr; ++i) { 802 if (m->val[i].index == msr) 803 return i; 804 } 805 return -ENOENT; 806 } 807 808 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 809 { 810 int i; 811 struct msr_autoload *m = &vmx->msr_autoload; 812 813 switch (msr) { 814 case MSR_EFER: 815 if (cpu_has_load_ia32_efer()) { 816 clear_atomic_switch_msr_special(vmx, 817 VM_ENTRY_LOAD_IA32_EFER, 818 VM_EXIT_LOAD_IA32_EFER); 819 return; 820 } 821 break; 822 case MSR_CORE_PERF_GLOBAL_CTRL: 823 if (cpu_has_load_perf_global_ctrl()) { 824 clear_atomic_switch_msr_special(vmx, 825 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 826 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 827 return; 828 } 829 break; 830 } 831 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 832 if (i < 0) 833 goto skip_guest; 834 --m->guest.nr; 835 m->guest.val[i] = m->guest.val[m->guest.nr]; 836 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 837 838 skip_guest: 839 i = vmx_find_loadstore_msr_slot(&m->host, msr); 840 if (i < 0) 841 return; 842 843 --m->host.nr; 844 m->host.val[i] = m->host.val[m->host.nr]; 845 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 846 } 847 848 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 849 unsigned long entry, unsigned long exit, 850 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 851 u64 guest_val, u64 host_val) 852 { 853 vmcs_write64(guest_val_vmcs, guest_val); 854 if (host_val_vmcs != HOST_IA32_EFER) 855 vmcs_write64(host_val_vmcs, host_val); 856 vm_entry_controls_setbit(vmx, entry); 857 vm_exit_controls_setbit(vmx, exit); 858 } 859 860 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 861 u64 guest_val, u64 host_val, bool entry_only) 862 { 863 int i, j = 0; 864 struct msr_autoload *m = &vmx->msr_autoload; 865 866 switch (msr) { 867 case MSR_EFER: 868 if (cpu_has_load_ia32_efer()) { 869 add_atomic_switch_msr_special(vmx, 870 VM_ENTRY_LOAD_IA32_EFER, 871 VM_EXIT_LOAD_IA32_EFER, 872 GUEST_IA32_EFER, 873 HOST_IA32_EFER, 874 guest_val, host_val); 875 return; 876 } 877 break; 878 case MSR_CORE_PERF_GLOBAL_CTRL: 879 if (cpu_has_load_perf_global_ctrl()) { 880 add_atomic_switch_msr_special(vmx, 881 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 882 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 883 GUEST_IA32_PERF_GLOBAL_CTRL, 884 HOST_IA32_PERF_GLOBAL_CTRL, 885 guest_val, host_val); 886 return; 887 } 888 break; 889 case MSR_IA32_PEBS_ENABLE: 890 /* PEBS needs a quiescent period after being disabled (to write 891 * a record). Disabling PEBS through VMX MSR swapping doesn't 892 * provide that period, so a CPU could write host's record into 893 * guest's memory. 894 */ 895 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 896 } 897 898 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 899 if (!entry_only) 900 j = vmx_find_loadstore_msr_slot(&m->host, msr); 901 902 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 903 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 904 printk_once(KERN_WARNING "Not enough msr switch entries. " 905 "Can't add msr %x\n", msr); 906 return; 907 } 908 if (i < 0) { 909 i = m->guest.nr++; 910 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 911 } 912 m->guest.val[i].index = msr; 913 m->guest.val[i].value = guest_val; 914 915 if (entry_only) 916 return; 917 918 if (j < 0) { 919 j = m->host.nr++; 920 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 921 } 922 m->host.val[j].index = msr; 923 m->host.val[j].value = host_val; 924 } 925 926 static bool update_transition_efer(struct vcpu_vmx *vmx) 927 { 928 u64 guest_efer = vmx->vcpu.arch.efer; 929 u64 ignore_bits = 0; 930 int i; 931 932 /* Shadow paging assumes NX to be available. */ 933 if (!enable_ept) 934 guest_efer |= EFER_NX; 935 936 /* 937 * LMA and LME handled by hardware; SCE meaningless outside long mode. 938 */ 939 ignore_bits |= EFER_SCE; 940 #ifdef CONFIG_X86_64 941 ignore_bits |= EFER_LMA | EFER_LME; 942 /* SCE is meaningful only in long mode on Intel */ 943 if (guest_efer & EFER_LMA) 944 ignore_bits &= ~(u64)EFER_SCE; 945 #endif 946 947 /* 948 * On EPT, we can't emulate NX, so we must switch EFER atomically. 949 * On CPUs that support "load IA32_EFER", always switch EFER 950 * atomically, since it's faster than switching it manually. 951 */ 952 if (cpu_has_load_ia32_efer() || 953 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 954 if (!(guest_efer & EFER_LMA)) 955 guest_efer &= ~EFER_LME; 956 if (guest_efer != host_efer) 957 add_atomic_switch_msr(vmx, MSR_EFER, 958 guest_efer, host_efer, false); 959 else 960 clear_atomic_switch_msr(vmx, MSR_EFER); 961 return false; 962 } 963 964 i = kvm_find_user_return_msr(MSR_EFER); 965 if (i < 0) 966 return false; 967 968 clear_atomic_switch_msr(vmx, MSR_EFER); 969 970 guest_efer &= ~ignore_bits; 971 guest_efer |= host_efer & ignore_bits; 972 973 vmx->guest_uret_msrs[i].data = guest_efer; 974 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 975 976 return true; 977 } 978 979 #ifdef CONFIG_X86_32 980 /* 981 * On 32-bit kernels, VM exits still load the FS and GS bases from the 982 * VMCS rather than the segment table. KVM uses this helper to figure 983 * out the current bases to poke them into the VMCS before entry. 984 */ 985 static unsigned long segment_base(u16 selector) 986 { 987 struct desc_struct *table; 988 unsigned long v; 989 990 if (!(selector & ~SEGMENT_RPL_MASK)) 991 return 0; 992 993 table = get_current_gdt_ro(); 994 995 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 996 u16 ldt_selector = kvm_read_ldt(); 997 998 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 999 return 0; 1000 1001 table = (struct desc_struct *)segment_base(ldt_selector); 1002 } 1003 v = get_desc_base(&table[selector >> 3]); 1004 return v; 1005 } 1006 #endif 1007 1008 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1009 { 1010 return vmx_pt_mode_is_host_guest() && 1011 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1012 } 1013 1014 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1015 { 1016 /* The base must be 128-byte aligned and a legal physical address. */ 1017 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1018 } 1019 1020 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1021 { 1022 u32 i; 1023 1024 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1025 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1026 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1027 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1028 for (i = 0; i < addr_range; i++) { 1029 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1030 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1031 } 1032 } 1033 1034 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1035 { 1036 u32 i; 1037 1038 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1039 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1040 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1041 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1042 for (i = 0; i < addr_range; i++) { 1043 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1044 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1045 } 1046 } 1047 1048 static void pt_guest_enter(struct vcpu_vmx *vmx) 1049 { 1050 if (vmx_pt_mode_is_system()) 1051 return; 1052 1053 /* 1054 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1055 * Save host state before VM entry. 1056 */ 1057 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1058 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1059 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1060 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1061 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1062 } 1063 } 1064 1065 static void pt_guest_exit(struct vcpu_vmx *vmx) 1066 { 1067 if (vmx_pt_mode_is_system()) 1068 return; 1069 1070 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1071 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1072 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1073 } 1074 1075 /* 1076 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1077 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1078 */ 1079 if (vmx->pt_desc.host.ctl) 1080 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1081 } 1082 1083 void vmx_set_vmcs_host_state(struct vmcs_host_state *host, unsigned long cr3, 1084 u16 fs_sel, u16 gs_sel, 1085 unsigned long fs_base, unsigned long gs_base) 1086 { 1087 if (unlikely(cr3 != host->cr3)) { 1088 vmcs_writel(HOST_CR3, cr3); 1089 host->cr3 = cr3; 1090 } 1091 if (unlikely(fs_sel != host->fs_sel)) { 1092 if (!(fs_sel & 7)) 1093 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1094 else 1095 vmcs_write16(HOST_FS_SELECTOR, 0); 1096 host->fs_sel = fs_sel; 1097 } 1098 if (unlikely(gs_sel != host->gs_sel)) { 1099 if (!(gs_sel & 7)) 1100 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1101 else 1102 vmcs_write16(HOST_GS_SELECTOR, 0); 1103 host->gs_sel = gs_sel; 1104 } 1105 if (unlikely(fs_base != host->fs_base)) { 1106 vmcs_writel(HOST_FS_BASE, fs_base); 1107 host->fs_base = fs_base; 1108 } 1109 if (unlikely(gs_base != host->gs_base)) { 1110 vmcs_writel(HOST_GS_BASE, gs_base); 1111 host->gs_base = gs_base; 1112 } 1113 } 1114 1115 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1116 { 1117 struct vcpu_vmx *vmx = to_vmx(vcpu); 1118 struct vmcs_host_state *host_state; 1119 #ifdef CONFIG_X86_64 1120 int cpu = raw_smp_processor_id(); 1121 #endif 1122 unsigned long fs_base, gs_base; 1123 u16 fs_sel, gs_sel; 1124 int i; 1125 1126 vmx->req_immediate_exit = false; 1127 1128 /* 1129 * Note that guest MSRs to be saved/restored can also be changed 1130 * when guest state is loaded. This happens when guest transitions 1131 * to/from long-mode by setting MSR_EFER.LMA. 1132 */ 1133 if (!vmx->guest_uret_msrs_loaded) { 1134 vmx->guest_uret_msrs_loaded = true; 1135 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1136 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1137 continue; 1138 1139 kvm_set_user_return_msr(i, 1140 vmx->guest_uret_msrs[i].data, 1141 vmx->guest_uret_msrs[i].mask); 1142 } 1143 } 1144 1145 if (vmx->nested.need_vmcs12_to_shadow_sync) 1146 nested_sync_vmcs12_to_shadow(vcpu); 1147 1148 if (vmx->guest_state_loaded) 1149 return; 1150 1151 host_state = &vmx->loaded_vmcs->host_state; 1152 1153 /* 1154 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1155 * allow segment selectors with cpl > 0 or ti == 1. 1156 */ 1157 host_state->ldt_sel = kvm_read_ldt(); 1158 1159 #ifdef CONFIG_X86_64 1160 savesegment(ds, host_state->ds_sel); 1161 savesegment(es, host_state->es_sel); 1162 1163 gs_base = cpu_kernelmode_gs_base(cpu); 1164 if (likely(is_64bit_mm(current->mm))) { 1165 current_save_fsgs(); 1166 fs_sel = current->thread.fsindex; 1167 gs_sel = current->thread.gsindex; 1168 fs_base = current->thread.fsbase; 1169 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1170 } else { 1171 savesegment(fs, fs_sel); 1172 savesegment(gs, gs_sel); 1173 fs_base = read_msr(MSR_FS_BASE); 1174 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1175 } 1176 1177 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1178 #else 1179 savesegment(fs, fs_sel); 1180 savesegment(gs, gs_sel); 1181 fs_base = segment_base(fs_sel); 1182 gs_base = segment_base(gs_sel); 1183 #endif 1184 1185 vmx_set_vmcs_host_state(host_state, __get_current_cr3_fast(), 1186 fs_sel, gs_sel, fs_base, gs_base); 1187 1188 vmx->guest_state_loaded = true; 1189 } 1190 1191 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1192 { 1193 struct vmcs_host_state *host_state; 1194 1195 if (!vmx->guest_state_loaded) 1196 return; 1197 1198 host_state = &vmx->loaded_vmcs->host_state; 1199 1200 ++vmx->vcpu.stat.host_state_reload; 1201 1202 #ifdef CONFIG_X86_64 1203 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1204 #endif 1205 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1206 kvm_load_ldt(host_state->ldt_sel); 1207 #ifdef CONFIG_X86_64 1208 load_gs_index(host_state->gs_sel); 1209 #else 1210 loadsegment(gs, host_state->gs_sel); 1211 #endif 1212 } 1213 if (host_state->fs_sel & 7) 1214 loadsegment(fs, host_state->fs_sel); 1215 #ifdef CONFIG_X86_64 1216 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1217 loadsegment(ds, host_state->ds_sel); 1218 loadsegment(es, host_state->es_sel); 1219 } 1220 #endif 1221 invalidate_tss_limit(); 1222 #ifdef CONFIG_X86_64 1223 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1224 #endif 1225 load_fixmap_gdt(raw_smp_processor_id()); 1226 vmx->guest_state_loaded = false; 1227 vmx->guest_uret_msrs_loaded = false; 1228 } 1229 1230 #ifdef CONFIG_X86_64 1231 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1232 { 1233 preempt_disable(); 1234 if (vmx->guest_state_loaded) 1235 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1236 preempt_enable(); 1237 return vmx->msr_guest_kernel_gs_base; 1238 } 1239 1240 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1241 { 1242 preempt_disable(); 1243 if (vmx->guest_state_loaded) 1244 wrmsrl(MSR_KERNEL_GS_BASE, data); 1245 preempt_enable(); 1246 vmx->msr_guest_kernel_gs_base = data; 1247 } 1248 #endif 1249 1250 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1251 struct loaded_vmcs *buddy) 1252 { 1253 struct vcpu_vmx *vmx = to_vmx(vcpu); 1254 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1255 struct vmcs *prev; 1256 1257 if (!already_loaded) { 1258 loaded_vmcs_clear(vmx->loaded_vmcs); 1259 local_irq_disable(); 1260 1261 /* 1262 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1263 * this cpu's percpu list, otherwise it may not yet be deleted 1264 * from its previous cpu's percpu list. Pairs with the 1265 * smb_wmb() in __loaded_vmcs_clear(). 1266 */ 1267 smp_rmb(); 1268 1269 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1270 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1271 local_irq_enable(); 1272 } 1273 1274 prev = per_cpu(current_vmcs, cpu); 1275 if (prev != vmx->loaded_vmcs->vmcs) { 1276 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1277 vmcs_load(vmx->loaded_vmcs->vmcs); 1278 1279 /* 1280 * No indirect branch prediction barrier needed when switching 1281 * the active VMCS within a guest, e.g. on nested VM-Enter. 1282 * The L1 VMM can protect itself with retpolines, IBPB or IBRS. 1283 */ 1284 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1285 indirect_branch_prediction_barrier(); 1286 } 1287 1288 if (!already_loaded) { 1289 void *gdt = get_current_gdt_ro(); 1290 1291 /* 1292 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1293 * TLB entries from its previous association with the vCPU. 1294 */ 1295 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1296 1297 /* 1298 * Linux uses per-cpu TSS and GDT, so set these when switching 1299 * processors. See 22.2.4. 1300 */ 1301 vmcs_writel(HOST_TR_BASE, 1302 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1303 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1304 1305 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1306 /* 22.2.3 */ 1307 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1308 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1309 } 1310 1311 vmx->loaded_vmcs->cpu = cpu; 1312 } 1313 } 1314 1315 /* 1316 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1317 * vcpu mutex is already taken. 1318 */ 1319 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1320 { 1321 struct vcpu_vmx *vmx = to_vmx(vcpu); 1322 1323 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1324 1325 vmx_vcpu_pi_load(vcpu, cpu); 1326 1327 vmx->host_debugctlmsr = get_debugctlmsr(); 1328 } 1329 1330 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1331 { 1332 vmx_vcpu_pi_put(vcpu); 1333 1334 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1335 } 1336 1337 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1338 { 1339 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1340 } 1341 1342 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1343 { 1344 struct vcpu_vmx *vmx = to_vmx(vcpu); 1345 unsigned long rflags, save_rflags; 1346 1347 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1348 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1349 rflags = vmcs_readl(GUEST_RFLAGS); 1350 if (vmx->rmode.vm86_active) { 1351 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1352 save_rflags = vmx->rmode.save_rflags; 1353 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1354 } 1355 vmx->rflags = rflags; 1356 } 1357 return vmx->rflags; 1358 } 1359 1360 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1361 { 1362 struct vcpu_vmx *vmx = to_vmx(vcpu); 1363 unsigned long old_rflags; 1364 1365 if (is_unrestricted_guest(vcpu)) { 1366 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1367 vmx->rflags = rflags; 1368 vmcs_writel(GUEST_RFLAGS, rflags); 1369 return; 1370 } 1371 1372 old_rflags = vmx_get_rflags(vcpu); 1373 vmx->rflags = rflags; 1374 if (vmx->rmode.vm86_active) { 1375 vmx->rmode.save_rflags = rflags; 1376 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1377 } 1378 vmcs_writel(GUEST_RFLAGS, rflags); 1379 1380 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1381 vmx->emulation_required = vmx_emulation_required(vcpu); 1382 } 1383 1384 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1385 { 1386 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1387 } 1388 1389 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1390 { 1391 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1392 int ret = 0; 1393 1394 if (interruptibility & GUEST_INTR_STATE_STI) 1395 ret |= KVM_X86_SHADOW_INT_STI; 1396 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1397 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1398 1399 return ret; 1400 } 1401 1402 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1403 { 1404 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1405 u32 interruptibility = interruptibility_old; 1406 1407 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1408 1409 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1410 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1411 else if (mask & KVM_X86_SHADOW_INT_STI) 1412 interruptibility |= GUEST_INTR_STATE_STI; 1413 1414 if ((interruptibility != interruptibility_old)) 1415 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1416 } 1417 1418 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1419 { 1420 struct vcpu_vmx *vmx = to_vmx(vcpu); 1421 unsigned long value; 1422 1423 /* 1424 * Any MSR write that attempts to change bits marked reserved will 1425 * case a #GP fault. 1426 */ 1427 if (data & vmx->pt_desc.ctl_bitmask) 1428 return 1; 1429 1430 /* 1431 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1432 * result in a #GP unless the same write also clears TraceEn. 1433 */ 1434 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1435 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1436 return 1; 1437 1438 /* 1439 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1440 * and FabricEn would cause #GP, if 1441 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1442 */ 1443 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1444 !(data & RTIT_CTL_FABRIC_EN) && 1445 !intel_pt_validate_cap(vmx->pt_desc.caps, 1446 PT_CAP_single_range_output)) 1447 return 1; 1448 1449 /* 1450 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1451 * utilize encodings marked reserved will cause a #GP fault. 1452 */ 1453 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1454 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1455 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1456 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1457 return 1; 1458 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1459 PT_CAP_cycle_thresholds); 1460 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1461 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1462 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1463 return 1; 1464 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1465 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1466 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1467 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1468 return 1; 1469 1470 /* 1471 * If ADDRx_CFG is reserved or the encodings is >2 will 1472 * cause a #GP fault. 1473 */ 1474 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1475 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1476 return 1; 1477 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1478 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1479 return 1; 1480 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1481 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1482 return 1; 1483 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1484 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1485 return 1; 1486 1487 return 0; 1488 } 1489 1490 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 1491 { 1492 /* 1493 * Emulation of instructions in SGX enclaves is impossible as RIP does 1494 * not point tthe failing instruction, and even if it did, the code 1495 * stream is inaccessible. Inject #UD instead of exiting to userspace 1496 * so that guest userspace can't DoS the guest simply by triggering 1497 * emulation (enclaves are CPL3 only). 1498 */ 1499 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1500 kvm_queue_exception(vcpu, UD_VECTOR); 1501 return false; 1502 } 1503 return true; 1504 } 1505 1506 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1507 { 1508 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1509 unsigned long rip, orig_rip; 1510 u32 instr_len; 1511 1512 /* 1513 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1514 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1515 * set when EPT misconfig occurs. In practice, real hardware updates 1516 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1517 * (namely Hyper-V) don't set it due to it being undefined behavior, 1518 * i.e. we end up advancing IP with some random value. 1519 */ 1520 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1521 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1522 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1523 1524 /* 1525 * Emulating an enclave's instructions isn't supported as KVM 1526 * cannot access the enclave's memory or its true RIP, e.g. the 1527 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1528 * the RIP that actually triggered the VM-Exit. But, because 1529 * most instructions that cause VM-Exit will #UD in an enclave, 1530 * most instruction-based VM-Exits simply do not occur. 1531 * 1532 * There are a few exceptions, notably the debug instructions 1533 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1534 * and generate #DB/#BP as expected, which KVM might intercept. 1535 * But again, the CPU does the dirty work and saves an instr 1536 * length of zero so VMMs don't shoot themselves in the foot. 1537 * WARN if KVM tries to skip a non-zero length instruction on 1538 * a VM-Exit from an enclave. 1539 */ 1540 if (!instr_len) 1541 goto rip_updated; 1542 1543 WARN(exit_reason.enclave_mode, 1544 "KVM: skipping instruction after SGX enclave VM-Exit"); 1545 1546 orig_rip = kvm_rip_read(vcpu); 1547 rip = orig_rip + instr_len; 1548 #ifdef CONFIG_X86_64 1549 /* 1550 * We need to mask out the high 32 bits of RIP if not in 64-bit 1551 * mode, but just finding out that we are in 64-bit mode is 1552 * quite expensive. Only do it if there was a carry. 1553 */ 1554 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1555 rip = (u32)rip; 1556 #endif 1557 kvm_rip_write(vcpu, rip); 1558 } else { 1559 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1560 return 0; 1561 } 1562 1563 rip_updated: 1564 /* skipping an emulated instruction also counts */ 1565 vmx_set_interrupt_shadow(vcpu, 0); 1566 1567 return 1; 1568 } 1569 1570 /* 1571 * Recognizes a pending MTF VM-exit and records the nested state for later 1572 * delivery. 1573 */ 1574 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1575 { 1576 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1577 struct vcpu_vmx *vmx = to_vmx(vcpu); 1578 1579 if (!is_guest_mode(vcpu)) 1580 return; 1581 1582 /* 1583 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1584 * T-bit traps. As instruction emulation is completed (i.e. at the 1585 * instruction boundary), any #DB exception pending delivery must be a 1586 * debug-trap. Record the pending MTF state to be delivered in 1587 * vmx_check_nested_events(). 1588 */ 1589 if (nested_cpu_has_mtf(vmcs12) && 1590 (!vcpu->arch.exception.pending || 1591 vcpu->arch.exception.nr == DB_VECTOR)) 1592 vmx->nested.mtf_pending = true; 1593 else 1594 vmx->nested.mtf_pending = false; 1595 } 1596 1597 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1598 { 1599 vmx_update_emulated_instruction(vcpu); 1600 return skip_emulated_instruction(vcpu); 1601 } 1602 1603 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1604 { 1605 /* 1606 * Ensure that we clear the HLT state in the VMCS. We don't need to 1607 * explicitly skip the instruction because if the HLT state is set, 1608 * then the instruction is already executing and RIP has already been 1609 * advanced. 1610 */ 1611 if (kvm_hlt_in_guest(vcpu->kvm) && 1612 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1613 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1614 } 1615 1616 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1617 { 1618 struct vcpu_vmx *vmx = to_vmx(vcpu); 1619 unsigned nr = vcpu->arch.exception.nr; 1620 bool has_error_code = vcpu->arch.exception.has_error_code; 1621 u32 error_code = vcpu->arch.exception.error_code; 1622 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1623 1624 kvm_deliver_exception_payload(vcpu); 1625 1626 if (has_error_code) { 1627 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1628 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1629 } 1630 1631 if (vmx->rmode.vm86_active) { 1632 int inc_eip = 0; 1633 if (kvm_exception_is_soft(nr)) 1634 inc_eip = vcpu->arch.event_exit_inst_len; 1635 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip); 1636 return; 1637 } 1638 1639 WARN_ON_ONCE(vmx->emulation_required); 1640 1641 if (kvm_exception_is_soft(nr)) { 1642 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1643 vmx->vcpu.arch.event_exit_inst_len); 1644 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1645 } else 1646 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1647 1648 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1649 1650 vmx_clear_hlt(vcpu); 1651 } 1652 1653 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1654 bool load_into_hardware) 1655 { 1656 struct vmx_uret_msr *uret_msr; 1657 1658 uret_msr = vmx_find_uret_msr(vmx, msr); 1659 if (!uret_msr) 1660 return; 1661 1662 uret_msr->load_into_hardware = load_into_hardware; 1663 } 1664 1665 /* 1666 * Configuring user return MSRs to automatically save, load, and restore MSRs 1667 * that need to be shoved into hardware when running the guest. Note, omitting 1668 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1669 * loaded into hardware when running the guest. 1670 */ 1671 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1672 { 1673 #ifdef CONFIG_X86_64 1674 bool load_syscall_msrs; 1675 1676 /* 1677 * The SYSCALL MSRs are only needed on long mode guests, and only 1678 * when EFER.SCE is set. 1679 */ 1680 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1681 (vmx->vcpu.arch.efer & EFER_SCE); 1682 1683 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1684 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1685 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1686 #endif 1687 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1688 1689 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1690 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1691 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1692 1693 /* 1694 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1695 * kernel and old userspace. If those guests run on a tsx=off host, do 1696 * allow guests to use TSX_CTRL, but don't change the value in hardware 1697 * so that TSX remains always disabled. 1698 */ 1699 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1700 1701 /* 1702 * The set of MSRs to load may have changed, reload MSRs before the 1703 * next VM-Enter. 1704 */ 1705 vmx->guest_uret_msrs_loaded = false; 1706 } 1707 1708 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1709 { 1710 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1711 1712 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1713 return vmcs12->tsc_offset; 1714 1715 return 0; 1716 } 1717 1718 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1719 { 1720 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1721 1722 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1723 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1724 return vmcs12->tsc_multiplier; 1725 1726 return kvm_default_tsc_scaling_ratio; 1727 } 1728 1729 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1730 { 1731 vmcs_write64(TSC_OFFSET, offset); 1732 } 1733 1734 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1735 { 1736 vmcs_write64(TSC_MULTIPLIER, multiplier); 1737 } 1738 1739 /* 1740 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1741 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1742 * all guests if the "nested" module option is off, and can also be disabled 1743 * for a single guest by disabling its VMX cpuid bit. 1744 */ 1745 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1746 { 1747 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1748 } 1749 1750 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1751 uint64_t val) 1752 { 1753 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1754 1755 return !(val & ~valid_bits); 1756 } 1757 1758 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1759 { 1760 switch (msr->index) { 1761 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1762 if (!nested) 1763 return 1; 1764 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1765 case MSR_IA32_PERF_CAPABILITIES: 1766 msr->data = vmx_get_perf_capabilities(); 1767 return 0; 1768 default: 1769 return KVM_MSR_RET_INVALID; 1770 } 1771 } 1772 1773 /* 1774 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 1775 * Returns 0 on success, non-0 otherwise. 1776 * Assumes vcpu_load() was already called. 1777 */ 1778 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1779 { 1780 struct vcpu_vmx *vmx = to_vmx(vcpu); 1781 struct vmx_uret_msr *msr; 1782 u32 index; 1783 1784 switch (msr_info->index) { 1785 #ifdef CONFIG_X86_64 1786 case MSR_FS_BASE: 1787 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1788 break; 1789 case MSR_GS_BASE: 1790 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1791 break; 1792 case MSR_KERNEL_GS_BASE: 1793 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1794 break; 1795 #endif 1796 case MSR_EFER: 1797 return kvm_get_msr_common(vcpu, msr_info); 1798 case MSR_IA32_TSX_CTRL: 1799 if (!msr_info->host_initiated && 1800 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1801 return 1; 1802 goto find_uret_msr; 1803 case MSR_IA32_UMWAIT_CONTROL: 1804 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 1805 return 1; 1806 1807 msr_info->data = vmx->msr_ia32_umwait_control; 1808 break; 1809 case MSR_IA32_SPEC_CTRL: 1810 if (!msr_info->host_initiated && 1811 !guest_has_spec_ctrl_msr(vcpu)) 1812 return 1; 1813 1814 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1815 break; 1816 case MSR_IA32_SYSENTER_CS: 1817 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1818 break; 1819 case MSR_IA32_SYSENTER_EIP: 1820 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1821 break; 1822 case MSR_IA32_SYSENTER_ESP: 1823 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1824 break; 1825 case MSR_IA32_BNDCFGS: 1826 if (!kvm_mpx_supported() || 1827 (!msr_info->host_initiated && 1828 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1829 return 1; 1830 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1831 break; 1832 case MSR_IA32_MCG_EXT_CTL: 1833 if (!msr_info->host_initiated && 1834 !(vmx->msr_ia32_feature_control & 1835 FEAT_CTL_LMCE_ENABLED)) 1836 return 1; 1837 msr_info->data = vcpu->arch.mcg_ext_ctl; 1838 break; 1839 case MSR_IA32_FEAT_CTL: 1840 msr_info->data = vmx->msr_ia32_feature_control; 1841 break; 1842 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 1843 if (!msr_info->host_initiated && 1844 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 1845 return 1; 1846 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 1847 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 1848 break; 1849 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1850 if (!nested_vmx_allowed(vcpu)) 1851 return 1; 1852 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1853 &msr_info->data)) 1854 return 1; 1855 /* 1856 * Enlightened VMCS v1 doesn't have certain VMCS fields but 1857 * instead of just ignoring the features, different Hyper-V 1858 * versions are either trying to use them and fail or do some 1859 * sanity checking and refuse to boot. Filter all unsupported 1860 * features out. 1861 */ 1862 if (!msr_info->host_initiated && 1863 vmx->nested.enlightened_vmcs_enabled) 1864 nested_evmcs_filter_control_msr(msr_info->index, 1865 &msr_info->data); 1866 break; 1867 case MSR_IA32_RTIT_CTL: 1868 if (!vmx_pt_mode_is_host_guest()) 1869 return 1; 1870 msr_info->data = vmx->pt_desc.guest.ctl; 1871 break; 1872 case MSR_IA32_RTIT_STATUS: 1873 if (!vmx_pt_mode_is_host_guest()) 1874 return 1; 1875 msr_info->data = vmx->pt_desc.guest.status; 1876 break; 1877 case MSR_IA32_RTIT_CR3_MATCH: 1878 if (!vmx_pt_mode_is_host_guest() || 1879 !intel_pt_validate_cap(vmx->pt_desc.caps, 1880 PT_CAP_cr3_filtering)) 1881 return 1; 1882 msr_info->data = vmx->pt_desc.guest.cr3_match; 1883 break; 1884 case MSR_IA32_RTIT_OUTPUT_BASE: 1885 if (!vmx_pt_mode_is_host_guest() || 1886 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1887 PT_CAP_topa_output) && 1888 !intel_pt_validate_cap(vmx->pt_desc.caps, 1889 PT_CAP_single_range_output))) 1890 return 1; 1891 msr_info->data = vmx->pt_desc.guest.output_base; 1892 break; 1893 case MSR_IA32_RTIT_OUTPUT_MASK: 1894 if (!vmx_pt_mode_is_host_guest() || 1895 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1896 PT_CAP_topa_output) && 1897 !intel_pt_validate_cap(vmx->pt_desc.caps, 1898 PT_CAP_single_range_output))) 1899 return 1; 1900 msr_info->data = vmx->pt_desc.guest.output_mask; 1901 break; 1902 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1903 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1904 if (!vmx_pt_mode_is_host_guest() || 1905 (index >= 2 * vmx->pt_desc.num_address_ranges)) 1906 return 1; 1907 if (index % 2) 1908 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1909 else 1910 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1911 break; 1912 case MSR_IA32_DEBUGCTLMSR: 1913 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 1914 break; 1915 default: 1916 find_uret_msr: 1917 msr = vmx_find_uret_msr(vmx, msr_info->index); 1918 if (msr) { 1919 msr_info->data = msr->data; 1920 break; 1921 } 1922 return kvm_get_msr_common(vcpu, msr_info); 1923 } 1924 1925 return 0; 1926 } 1927 1928 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 1929 u64 data) 1930 { 1931 #ifdef CONFIG_X86_64 1932 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1933 return (u32)data; 1934 #endif 1935 return (unsigned long)data; 1936 } 1937 1938 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu) 1939 { 1940 u64 debugctl = vmx_supported_debugctl(); 1941 1942 if (!intel_pmu_lbr_is_enabled(vcpu)) 1943 debugctl &= ~DEBUGCTLMSR_LBR_MASK; 1944 1945 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1946 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT; 1947 1948 return debugctl; 1949 } 1950 1951 /* 1952 * Writes msr value into the appropriate "register". 1953 * Returns 0 on success, non-0 otherwise. 1954 * Assumes vcpu_load() was already called. 1955 */ 1956 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1957 { 1958 struct vcpu_vmx *vmx = to_vmx(vcpu); 1959 struct vmx_uret_msr *msr; 1960 int ret = 0; 1961 u32 msr_index = msr_info->index; 1962 u64 data = msr_info->data; 1963 u32 index; 1964 1965 switch (msr_index) { 1966 case MSR_EFER: 1967 ret = kvm_set_msr_common(vcpu, msr_info); 1968 break; 1969 #ifdef CONFIG_X86_64 1970 case MSR_FS_BASE: 1971 vmx_segment_cache_clear(vmx); 1972 vmcs_writel(GUEST_FS_BASE, data); 1973 break; 1974 case MSR_GS_BASE: 1975 vmx_segment_cache_clear(vmx); 1976 vmcs_writel(GUEST_GS_BASE, data); 1977 break; 1978 case MSR_KERNEL_GS_BASE: 1979 vmx_write_guest_kernel_gs_base(vmx, data); 1980 break; 1981 case MSR_IA32_XFD: 1982 ret = kvm_set_msr_common(vcpu, msr_info); 1983 /* 1984 * Always intercepting WRMSR could incur non-negligible 1985 * overhead given xfd might be changed frequently in 1986 * guest context switch. Disable write interception 1987 * upon the first write with a non-zero value (indicating 1988 * potential usage on dynamic xfeatures). Also update 1989 * exception bitmap to trap #NM for proper virtualization 1990 * of guest xfd_err. 1991 */ 1992 if (!ret && data) { 1993 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 1994 MSR_TYPE_RW); 1995 vcpu->arch.xfd_no_write_intercept = true; 1996 vmx_update_exception_bitmap(vcpu); 1997 } 1998 break; 1999 #endif 2000 case MSR_IA32_SYSENTER_CS: 2001 if (is_guest_mode(vcpu)) 2002 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2003 vmcs_write32(GUEST_SYSENTER_CS, data); 2004 break; 2005 case MSR_IA32_SYSENTER_EIP: 2006 if (is_guest_mode(vcpu)) { 2007 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2008 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2009 } 2010 vmcs_writel(GUEST_SYSENTER_EIP, data); 2011 break; 2012 case MSR_IA32_SYSENTER_ESP: 2013 if (is_guest_mode(vcpu)) { 2014 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2015 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2016 } 2017 vmcs_writel(GUEST_SYSENTER_ESP, data); 2018 break; 2019 case MSR_IA32_DEBUGCTLMSR: { 2020 u64 invalid = data & ~vcpu_supported_debugctl(vcpu); 2021 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2022 if (report_ignored_msrs) 2023 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n", 2024 __func__, data); 2025 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2026 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2027 } 2028 2029 if (invalid) 2030 return 1; 2031 2032 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2033 VM_EXIT_SAVE_DEBUG_CONTROLS) 2034 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2035 2036 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2037 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2038 (data & DEBUGCTLMSR_LBR)) 2039 intel_pmu_create_guest_lbr_event(vcpu); 2040 return 0; 2041 } 2042 case MSR_IA32_BNDCFGS: 2043 if (!kvm_mpx_supported() || 2044 (!msr_info->host_initiated && 2045 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2046 return 1; 2047 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2048 (data & MSR_IA32_BNDCFGS_RSVD)) 2049 return 1; 2050 vmcs_write64(GUEST_BNDCFGS, data); 2051 break; 2052 case MSR_IA32_UMWAIT_CONTROL: 2053 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2054 return 1; 2055 2056 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2057 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2058 return 1; 2059 2060 vmx->msr_ia32_umwait_control = data; 2061 break; 2062 case MSR_IA32_SPEC_CTRL: 2063 if (!msr_info->host_initiated && 2064 !guest_has_spec_ctrl_msr(vcpu)) 2065 return 1; 2066 2067 if (kvm_spec_ctrl_test_value(data)) 2068 return 1; 2069 2070 vmx->spec_ctrl = data; 2071 if (!data) 2072 break; 2073 2074 /* 2075 * For non-nested: 2076 * When it's written (to non-zero) for the first time, pass 2077 * it through. 2078 * 2079 * For nested: 2080 * The handling of the MSR bitmap for L2 guests is done in 2081 * nested_vmx_prepare_msr_bitmap. We should not touch the 2082 * vmcs02.msr_bitmap here since it gets completely overwritten 2083 * in the merging. We update the vmcs01 here for L1 as well 2084 * since it will end up touching the MSR anyway now. 2085 */ 2086 vmx_disable_intercept_for_msr(vcpu, 2087 MSR_IA32_SPEC_CTRL, 2088 MSR_TYPE_RW); 2089 break; 2090 case MSR_IA32_TSX_CTRL: 2091 if (!msr_info->host_initiated && 2092 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2093 return 1; 2094 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2095 return 1; 2096 goto find_uret_msr; 2097 case MSR_IA32_PRED_CMD: 2098 if (!msr_info->host_initiated && 2099 !guest_has_pred_cmd_msr(vcpu)) 2100 return 1; 2101 2102 if (data & ~PRED_CMD_IBPB) 2103 return 1; 2104 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2105 return 1; 2106 if (!data) 2107 break; 2108 2109 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2110 2111 /* 2112 * For non-nested: 2113 * When it's written (to non-zero) for the first time, pass 2114 * it through. 2115 * 2116 * For nested: 2117 * The handling of the MSR bitmap for L2 guests is done in 2118 * nested_vmx_prepare_msr_bitmap. We should not touch the 2119 * vmcs02.msr_bitmap here since it gets completely overwritten 2120 * in the merging. 2121 */ 2122 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W); 2123 break; 2124 case MSR_IA32_CR_PAT: 2125 if (!kvm_pat_valid(data)) 2126 return 1; 2127 2128 if (is_guest_mode(vcpu) && 2129 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2130 get_vmcs12(vcpu)->guest_ia32_pat = data; 2131 2132 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2133 vmcs_write64(GUEST_IA32_PAT, data); 2134 vcpu->arch.pat = data; 2135 break; 2136 } 2137 ret = kvm_set_msr_common(vcpu, msr_info); 2138 break; 2139 case MSR_IA32_MCG_EXT_CTL: 2140 if ((!msr_info->host_initiated && 2141 !(to_vmx(vcpu)->msr_ia32_feature_control & 2142 FEAT_CTL_LMCE_ENABLED)) || 2143 (data & ~MCG_EXT_CTL_LMCE_EN)) 2144 return 1; 2145 vcpu->arch.mcg_ext_ctl = data; 2146 break; 2147 case MSR_IA32_FEAT_CTL: 2148 if (!vmx_feature_control_msr_valid(vcpu, data) || 2149 (to_vmx(vcpu)->msr_ia32_feature_control & 2150 FEAT_CTL_LOCKED && !msr_info->host_initiated)) 2151 return 1; 2152 vmx->msr_ia32_feature_control = data; 2153 if (msr_info->host_initiated && data == 0) 2154 vmx_leave_nested(vcpu); 2155 2156 /* SGX may be enabled/disabled by guest's firmware */ 2157 vmx_write_encls_bitmap(vcpu, NULL); 2158 break; 2159 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2160 /* 2161 * On real hardware, the LE hash MSRs are writable before 2162 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2163 * at which point SGX related bits in IA32_FEATURE_CONTROL 2164 * become writable. 2165 * 2166 * KVM does not emulate SGX activation for simplicity, so 2167 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2168 * is unlocked. This is technically not architectural 2169 * behavior, but it's close enough. 2170 */ 2171 if (!msr_info->host_initiated && 2172 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2173 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2174 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2175 return 1; 2176 vmx->msr_ia32_sgxlepubkeyhash 2177 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2178 break; 2179 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 2180 if (!msr_info->host_initiated) 2181 return 1; /* they are read-only */ 2182 if (!nested_vmx_allowed(vcpu)) 2183 return 1; 2184 return vmx_set_vmx_msr(vcpu, msr_index, data); 2185 case MSR_IA32_RTIT_CTL: 2186 if (!vmx_pt_mode_is_host_guest() || 2187 vmx_rtit_ctl_check(vcpu, data) || 2188 vmx->nested.vmxon) 2189 return 1; 2190 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2191 vmx->pt_desc.guest.ctl = data; 2192 pt_update_intercept_for_msr(vcpu); 2193 break; 2194 case MSR_IA32_RTIT_STATUS: 2195 if (!pt_can_write_msr(vmx)) 2196 return 1; 2197 if (data & MSR_IA32_RTIT_STATUS_MASK) 2198 return 1; 2199 vmx->pt_desc.guest.status = data; 2200 break; 2201 case MSR_IA32_RTIT_CR3_MATCH: 2202 if (!pt_can_write_msr(vmx)) 2203 return 1; 2204 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2205 PT_CAP_cr3_filtering)) 2206 return 1; 2207 vmx->pt_desc.guest.cr3_match = data; 2208 break; 2209 case MSR_IA32_RTIT_OUTPUT_BASE: 2210 if (!pt_can_write_msr(vmx)) 2211 return 1; 2212 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2213 PT_CAP_topa_output) && 2214 !intel_pt_validate_cap(vmx->pt_desc.caps, 2215 PT_CAP_single_range_output)) 2216 return 1; 2217 if (!pt_output_base_valid(vcpu, data)) 2218 return 1; 2219 vmx->pt_desc.guest.output_base = data; 2220 break; 2221 case MSR_IA32_RTIT_OUTPUT_MASK: 2222 if (!pt_can_write_msr(vmx)) 2223 return 1; 2224 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2225 PT_CAP_topa_output) && 2226 !intel_pt_validate_cap(vmx->pt_desc.caps, 2227 PT_CAP_single_range_output)) 2228 return 1; 2229 vmx->pt_desc.guest.output_mask = data; 2230 break; 2231 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2232 if (!pt_can_write_msr(vmx)) 2233 return 1; 2234 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2235 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2236 return 1; 2237 if (is_noncanonical_address(data, vcpu)) 2238 return 1; 2239 if (index % 2) 2240 vmx->pt_desc.guest.addr_b[index / 2] = data; 2241 else 2242 vmx->pt_desc.guest.addr_a[index / 2] = data; 2243 break; 2244 case MSR_IA32_PERF_CAPABILITIES: 2245 if (data && !vcpu_to_pmu(vcpu)->version) 2246 return 1; 2247 if (data & PMU_CAP_LBR_FMT) { 2248 if ((data & PMU_CAP_LBR_FMT) != 2249 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT)) 2250 return 1; 2251 if (!intel_pmu_lbr_is_compatible(vcpu)) 2252 return 1; 2253 } 2254 ret = kvm_set_msr_common(vcpu, msr_info); 2255 break; 2256 2257 default: 2258 find_uret_msr: 2259 msr = vmx_find_uret_msr(vmx, msr_index); 2260 if (msr) 2261 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2262 else 2263 ret = kvm_set_msr_common(vcpu, msr_info); 2264 } 2265 2266 return ret; 2267 } 2268 2269 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2270 { 2271 unsigned long guest_owned_bits; 2272 2273 kvm_register_mark_available(vcpu, reg); 2274 2275 switch (reg) { 2276 case VCPU_REGS_RSP: 2277 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2278 break; 2279 case VCPU_REGS_RIP: 2280 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2281 break; 2282 case VCPU_EXREG_PDPTR: 2283 if (enable_ept) 2284 ept_save_pdptrs(vcpu); 2285 break; 2286 case VCPU_EXREG_CR0: 2287 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2288 2289 vcpu->arch.cr0 &= ~guest_owned_bits; 2290 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2291 break; 2292 case VCPU_EXREG_CR3: 2293 /* 2294 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2295 * CR3 is loaded into hardware, not the guest's CR3. 2296 */ 2297 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2298 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2299 break; 2300 case VCPU_EXREG_CR4: 2301 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2302 2303 vcpu->arch.cr4 &= ~guest_owned_bits; 2304 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2305 break; 2306 default: 2307 KVM_BUG_ON(1, vcpu->kvm); 2308 break; 2309 } 2310 } 2311 2312 static __init int cpu_has_kvm_support(void) 2313 { 2314 return cpu_has_vmx(); 2315 } 2316 2317 static __init int vmx_disabled_by_bios(void) 2318 { 2319 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2320 !boot_cpu_has(X86_FEATURE_VMX); 2321 } 2322 2323 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2324 { 2325 u64 msr; 2326 2327 cr4_set_bits(X86_CR4_VMXE); 2328 2329 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2330 _ASM_EXTABLE(1b, %l[fault]) 2331 : : [vmxon_pointer] "m"(vmxon_pointer) 2332 : : fault); 2333 return 0; 2334 2335 fault: 2336 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2337 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2338 cr4_clear_bits(X86_CR4_VMXE); 2339 2340 return -EFAULT; 2341 } 2342 2343 static int hardware_enable(void) 2344 { 2345 int cpu = raw_smp_processor_id(); 2346 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2347 int r; 2348 2349 if (cr4_read_shadow() & X86_CR4_VMXE) 2350 return -EBUSY; 2351 2352 /* 2353 * This can happen if we hot-added a CPU but failed to allocate 2354 * VP assist page for it. 2355 */ 2356 if (static_branch_unlikely(&enable_evmcs) && 2357 !hv_get_vp_assist_page(cpu)) 2358 return -EFAULT; 2359 2360 intel_pt_handle_vmx(1); 2361 2362 r = kvm_cpu_vmxon(phys_addr); 2363 if (r) { 2364 intel_pt_handle_vmx(0); 2365 return r; 2366 } 2367 2368 if (enable_ept) 2369 ept_sync_global(); 2370 2371 return 0; 2372 } 2373 2374 static void vmclear_local_loaded_vmcss(void) 2375 { 2376 int cpu = raw_smp_processor_id(); 2377 struct loaded_vmcs *v, *n; 2378 2379 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2380 loaded_vmcss_on_cpu_link) 2381 __loaded_vmcs_clear(v); 2382 } 2383 2384 static void hardware_disable(void) 2385 { 2386 vmclear_local_loaded_vmcss(); 2387 2388 if (cpu_vmxoff()) 2389 kvm_spurious_fault(); 2390 2391 intel_pt_handle_vmx(0); 2392 } 2393 2394 /* 2395 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2396 * directly instead of going through cpu_has(), to ensure KVM is trapping 2397 * ENCLS whenever it's supported in hardware. It does not matter whether 2398 * the host OS supports or has enabled SGX. 2399 */ 2400 static bool cpu_has_sgx(void) 2401 { 2402 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2403 } 2404 2405 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2406 u32 msr, u32 *result) 2407 { 2408 u32 vmx_msr_low, vmx_msr_high; 2409 u32 ctl = ctl_min | ctl_opt; 2410 2411 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2412 2413 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2414 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2415 2416 /* Ensure minimum (required) set of control bits are supported. */ 2417 if (ctl_min & ~ctl) 2418 return -EIO; 2419 2420 *result = ctl; 2421 return 0; 2422 } 2423 2424 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2425 struct vmx_capability *vmx_cap) 2426 { 2427 u32 vmx_msr_low, vmx_msr_high; 2428 u32 min, opt, min2, opt2; 2429 u32 _pin_based_exec_control = 0; 2430 u32 _cpu_based_exec_control = 0; 2431 u32 _cpu_based_2nd_exec_control = 0; 2432 u32 _vmexit_control = 0; 2433 u32 _vmentry_control = 0; 2434 2435 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2436 min = CPU_BASED_HLT_EXITING | 2437 #ifdef CONFIG_X86_64 2438 CPU_BASED_CR8_LOAD_EXITING | 2439 CPU_BASED_CR8_STORE_EXITING | 2440 #endif 2441 CPU_BASED_CR3_LOAD_EXITING | 2442 CPU_BASED_CR3_STORE_EXITING | 2443 CPU_BASED_UNCOND_IO_EXITING | 2444 CPU_BASED_MOV_DR_EXITING | 2445 CPU_BASED_USE_TSC_OFFSETTING | 2446 CPU_BASED_MWAIT_EXITING | 2447 CPU_BASED_MONITOR_EXITING | 2448 CPU_BASED_INVLPG_EXITING | 2449 CPU_BASED_RDPMC_EXITING; 2450 2451 opt = CPU_BASED_TPR_SHADOW | 2452 CPU_BASED_USE_MSR_BITMAPS | 2453 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2454 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2455 &_cpu_based_exec_control) < 0) 2456 return -EIO; 2457 #ifdef CONFIG_X86_64 2458 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2459 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2460 ~CPU_BASED_CR8_STORE_EXITING; 2461 #endif 2462 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2463 min2 = 0; 2464 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2465 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2466 SECONDARY_EXEC_WBINVD_EXITING | 2467 SECONDARY_EXEC_ENABLE_VPID | 2468 SECONDARY_EXEC_ENABLE_EPT | 2469 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2470 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2471 SECONDARY_EXEC_DESC | 2472 SECONDARY_EXEC_ENABLE_RDTSCP | 2473 SECONDARY_EXEC_ENABLE_INVPCID | 2474 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2475 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2476 SECONDARY_EXEC_SHADOW_VMCS | 2477 SECONDARY_EXEC_XSAVES | 2478 SECONDARY_EXEC_RDSEED_EXITING | 2479 SECONDARY_EXEC_RDRAND_EXITING | 2480 SECONDARY_EXEC_ENABLE_PML | 2481 SECONDARY_EXEC_TSC_SCALING | 2482 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | 2483 SECONDARY_EXEC_PT_USE_GPA | 2484 SECONDARY_EXEC_PT_CONCEAL_VMX | 2485 SECONDARY_EXEC_ENABLE_VMFUNC | 2486 SECONDARY_EXEC_BUS_LOCK_DETECTION; 2487 if (cpu_has_sgx()) 2488 opt2 |= SECONDARY_EXEC_ENCLS_EXITING; 2489 if (adjust_vmx_controls(min2, opt2, 2490 MSR_IA32_VMX_PROCBASED_CTLS2, 2491 &_cpu_based_2nd_exec_control) < 0) 2492 return -EIO; 2493 } 2494 #ifndef CONFIG_X86_64 2495 if (!(_cpu_based_2nd_exec_control & 2496 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2497 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2498 #endif 2499 2500 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2501 _cpu_based_2nd_exec_control &= ~( 2502 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2503 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2504 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2505 2506 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2507 &vmx_cap->ept, &vmx_cap->vpid); 2508 2509 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2510 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2511 enabled */ 2512 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2513 CPU_BASED_CR3_STORE_EXITING | 2514 CPU_BASED_INVLPG_EXITING); 2515 } else if (vmx_cap->ept) { 2516 vmx_cap->ept = 0; 2517 pr_warn_once("EPT CAP should not exist if not support " 2518 "1-setting enable EPT VM-execution control\n"); 2519 } 2520 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2521 vmx_cap->vpid) { 2522 vmx_cap->vpid = 0; 2523 pr_warn_once("VPID CAP should not exist if not support " 2524 "1-setting enable VPID VM-execution control\n"); 2525 } 2526 2527 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2528 #ifdef CONFIG_X86_64 2529 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2530 #endif 2531 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2532 VM_EXIT_LOAD_IA32_PAT | 2533 VM_EXIT_LOAD_IA32_EFER | 2534 VM_EXIT_CLEAR_BNDCFGS | 2535 VM_EXIT_PT_CONCEAL_PIP | 2536 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2537 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2538 &_vmexit_control) < 0) 2539 return -EIO; 2540 2541 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2542 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2543 PIN_BASED_VMX_PREEMPTION_TIMER; 2544 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2545 &_pin_based_exec_control) < 0) 2546 return -EIO; 2547 2548 if (cpu_has_broken_vmx_preemption_timer()) 2549 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2550 if (!(_cpu_based_2nd_exec_control & 2551 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2552 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2553 2554 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2555 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2556 VM_ENTRY_LOAD_IA32_PAT | 2557 VM_ENTRY_LOAD_IA32_EFER | 2558 VM_ENTRY_LOAD_BNDCFGS | 2559 VM_ENTRY_PT_CONCEAL_PIP | 2560 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2561 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2562 &_vmentry_control) < 0) 2563 return -EIO; 2564 2565 /* 2566 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2567 * can't be used due to an errata where VM Exit may incorrectly clear 2568 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2569 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2570 */ 2571 if (boot_cpu_data.x86 == 0x6) { 2572 switch (boot_cpu_data.x86_model) { 2573 case 26: /* AAK155 */ 2574 case 30: /* AAP115 */ 2575 case 37: /* AAT100 */ 2576 case 44: /* BC86,AAY89,BD102 */ 2577 case 46: /* BA97 */ 2578 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2579 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2580 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2581 "does not work properly. Using workaround\n"); 2582 break; 2583 default: 2584 break; 2585 } 2586 } 2587 2588 2589 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2590 2591 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2592 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2593 return -EIO; 2594 2595 #ifdef CONFIG_X86_64 2596 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2597 if (vmx_msr_high & (1u<<16)) 2598 return -EIO; 2599 #endif 2600 2601 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2602 if (((vmx_msr_high >> 18) & 15) != 6) 2603 return -EIO; 2604 2605 vmcs_conf->size = vmx_msr_high & 0x1fff; 2606 vmcs_conf->order = get_order(vmcs_conf->size); 2607 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2608 2609 vmcs_conf->revision_id = vmx_msr_low; 2610 2611 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2612 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2613 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2614 vmcs_conf->vmexit_ctrl = _vmexit_control; 2615 vmcs_conf->vmentry_ctrl = _vmentry_control; 2616 2617 #if IS_ENABLED(CONFIG_HYPERV) 2618 if (enlightened_vmcs) 2619 evmcs_sanitize_exec_ctrls(vmcs_conf); 2620 #endif 2621 2622 return 0; 2623 } 2624 2625 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2626 { 2627 int node = cpu_to_node(cpu); 2628 struct page *pages; 2629 struct vmcs *vmcs; 2630 2631 pages = __alloc_pages_node(node, flags, vmcs_config.order); 2632 if (!pages) 2633 return NULL; 2634 vmcs = page_address(pages); 2635 memset(vmcs, 0, vmcs_config.size); 2636 2637 /* KVM supports Enlightened VMCS v1 only */ 2638 if (static_branch_unlikely(&enable_evmcs)) 2639 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2640 else 2641 vmcs->hdr.revision_id = vmcs_config.revision_id; 2642 2643 if (shadow) 2644 vmcs->hdr.shadow_vmcs = 1; 2645 return vmcs; 2646 } 2647 2648 void free_vmcs(struct vmcs *vmcs) 2649 { 2650 free_pages((unsigned long)vmcs, vmcs_config.order); 2651 } 2652 2653 /* 2654 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2655 */ 2656 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2657 { 2658 if (!loaded_vmcs->vmcs) 2659 return; 2660 loaded_vmcs_clear(loaded_vmcs); 2661 free_vmcs(loaded_vmcs->vmcs); 2662 loaded_vmcs->vmcs = NULL; 2663 if (loaded_vmcs->msr_bitmap) 2664 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2665 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2666 } 2667 2668 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2669 { 2670 loaded_vmcs->vmcs = alloc_vmcs(false); 2671 if (!loaded_vmcs->vmcs) 2672 return -ENOMEM; 2673 2674 vmcs_clear(loaded_vmcs->vmcs); 2675 2676 loaded_vmcs->shadow_vmcs = NULL; 2677 loaded_vmcs->hv_timer_soft_disabled = false; 2678 loaded_vmcs->cpu = -1; 2679 loaded_vmcs->launched = 0; 2680 2681 if (cpu_has_vmx_msr_bitmap()) { 2682 loaded_vmcs->msr_bitmap = (unsigned long *) 2683 __get_free_page(GFP_KERNEL_ACCOUNT); 2684 if (!loaded_vmcs->msr_bitmap) 2685 goto out_vmcs; 2686 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2687 } 2688 2689 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2690 memset(&loaded_vmcs->controls_shadow, 0, 2691 sizeof(struct vmcs_controls_shadow)); 2692 2693 return 0; 2694 2695 out_vmcs: 2696 free_loaded_vmcs(loaded_vmcs); 2697 return -ENOMEM; 2698 } 2699 2700 static void free_kvm_area(void) 2701 { 2702 int cpu; 2703 2704 for_each_possible_cpu(cpu) { 2705 free_vmcs(per_cpu(vmxarea, cpu)); 2706 per_cpu(vmxarea, cpu) = NULL; 2707 } 2708 } 2709 2710 static __init int alloc_kvm_area(void) 2711 { 2712 int cpu; 2713 2714 for_each_possible_cpu(cpu) { 2715 struct vmcs *vmcs; 2716 2717 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2718 if (!vmcs) { 2719 free_kvm_area(); 2720 return -ENOMEM; 2721 } 2722 2723 /* 2724 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2725 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2726 * revision_id reported by MSR_IA32_VMX_BASIC. 2727 * 2728 * However, even though not explicitly documented by 2729 * TLFS, VMXArea passed as VMXON argument should 2730 * still be marked with revision_id reported by 2731 * physical CPU. 2732 */ 2733 if (static_branch_unlikely(&enable_evmcs)) 2734 vmcs->hdr.revision_id = vmcs_config.revision_id; 2735 2736 per_cpu(vmxarea, cpu) = vmcs; 2737 } 2738 return 0; 2739 } 2740 2741 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2742 struct kvm_segment *save) 2743 { 2744 if (!emulate_invalid_guest_state) { 2745 /* 2746 * CS and SS RPL should be equal during guest entry according 2747 * to VMX spec, but in reality it is not always so. Since vcpu 2748 * is in the middle of the transition from real mode to 2749 * protected mode it is safe to assume that RPL 0 is a good 2750 * default value. 2751 */ 2752 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2753 save->selector &= ~SEGMENT_RPL_MASK; 2754 save->dpl = save->selector & SEGMENT_RPL_MASK; 2755 save->s = 1; 2756 } 2757 __vmx_set_segment(vcpu, save, seg); 2758 } 2759 2760 static void enter_pmode(struct kvm_vcpu *vcpu) 2761 { 2762 unsigned long flags; 2763 struct vcpu_vmx *vmx = to_vmx(vcpu); 2764 2765 /* 2766 * Update real mode segment cache. It may be not up-to-date if segment 2767 * register was written while vcpu was in a guest mode. 2768 */ 2769 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2770 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2771 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2772 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2773 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2774 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2775 2776 vmx->rmode.vm86_active = 0; 2777 2778 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2779 2780 flags = vmcs_readl(GUEST_RFLAGS); 2781 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2782 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2783 vmcs_writel(GUEST_RFLAGS, flags); 2784 2785 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2786 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2787 2788 vmx_update_exception_bitmap(vcpu); 2789 2790 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2791 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2792 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2793 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2794 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2795 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2796 } 2797 2798 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2799 { 2800 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2801 struct kvm_segment var = *save; 2802 2803 var.dpl = 0x3; 2804 if (seg == VCPU_SREG_CS) 2805 var.type = 0x3; 2806 2807 if (!emulate_invalid_guest_state) { 2808 var.selector = var.base >> 4; 2809 var.base = var.base & 0xffff0; 2810 var.limit = 0xffff; 2811 var.g = 0; 2812 var.db = 0; 2813 var.present = 1; 2814 var.s = 1; 2815 var.l = 0; 2816 var.unusable = 0; 2817 var.type = 0x3; 2818 var.avl = 0; 2819 if (save->base & 0xf) 2820 printk_once(KERN_WARNING "kvm: segment base is not " 2821 "paragraph aligned when entering " 2822 "protected mode (seg=%d)", seg); 2823 } 2824 2825 vmcs_write16(sf->selector, var.selector); 2826 vmcs_writel(sf->base, var.base); 2827 vmcs_write32(sf->limit, var.limit); 2828 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2829 } 2830 2831 static void enter_rmode(struct kvm_vcpu *vcpu) 2832 { 2833 unsigned long flags; 2834 struct vcpu_vmx *vmx = to_vmx(vcpu); 2835 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2836 2837 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2838 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2839 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2840 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2841 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2842 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2843 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2844 2845 vmx->rmode.vm86_active = 1; 2846 2847 /* 2848 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2849 * vcpu. Warn the user that an update is overdue. 2850 */ 2851 if (!kvm_vmx->tss_addr) 2852 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2853 "called before entering vcpu\n"); 2854 2855 vmx_segment_cache_clear(vmx); 2856 2857 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2858 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2859 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2860 2861 flags = vmcs_readl(GUEST_RFLAGS); 2862 vmx->rmode.save_rflags = flags; 2863 2864 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2865 2866 vmcs_writel(GUEST_RFLAGS, flags); 2867 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2868 vmx_update_exception_bitmap(vcpu); 2869 2870 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2871 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2872 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2873 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2874 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2875 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2876 } 2877 2878 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2879 { 2880 struct vcpu_vmx *vmx = to_vmx(vcpu); 2881 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER); 2882 2883 /* Nothing to do if hardware doesn't support EFER. */ 2884 if (!msr) 2885 return 0; 2886 2887 vcpu->arch.efer = efer; 2888 if (efer & EFER_LMA) { 2889 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2890 msr->data = efer; 2891 } else { 2892 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2893 2894 msr->data = efer & ~EFER_LME; 2895 } 2896 vmx_setup_uret_msrs(vmx); 2897 return 0; 2898 } 2899 2900 #ifdef CONFIG_X86_64 2901 2902 static void enter_lmode(struct kvm_vcpu *vcpu) 2903 { 2904 u32 guest_tr_ar; 2905 2906 vmx_segment_cache_clear(to_vmx(vcpu)); 2907 2908 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2909 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2910 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2911 __func__); 2912 vmcs_write32(GUEST_TR_AR_BYTES, 2913 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 2914 | VMX_AR_TYPE_BUSY_64_TSS); 2915 } 2916 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 2917 } 2918 2919 static void exit_lmode(struct kvm_vcpu *vcpu) 2920 { 2921 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2922 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 2923 } 2924 2925 #endif 2926 2927 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 2928 { 2929 struct vcpu_vmx *vmx = to_vmx(vcpu); 2930 2931 /* 2932 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 2933 * the CPU is not required to invalidate guest-physical mappings on 2934 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 2935 * associated with the root EPT structure and not any particular VPID 2936 * (INVVPID also isn't required to invalidate guest-physical mappings). 2937 */ 2938 if (enable_ept) { 2939 ept_sync_global(); 2940 } else if (enable_vpid) { 2941 if (cpu_has_vmx_invvpid_global()) { 2942 vpid_sync_vcpu_global(); 2943 } else { 2944 vpid_sync_vcpu_single(vmx->vpid); 2945 vpid_sync_vcpu_single(vmx->nested.vpid02); 2946 } 2947 } 2948 } 2949 2950 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 2951 { 2952 if (is_guest_mode(vcpu)) 2953 return nested_get_vpid02(vcpu); 2954 return to_vmx(vcpu)->vpid; 2955 } 2956 2957 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 2958 { 2959 struct kvm_mmu *mmu = vcpu->arch.mmu; 2960 u64 root_hpa = mmu->root_hpa; 2961 2962 /* No flush required if the current context is invalid. */ 2963 if (!VALID_PAGE(root_hpa)) 2964 return; 2965 2966 if (enable_ept) 2967 ept_sync_context(construct_eptp(vcpu, root_hpa, 2968 mmu->shadow_root_level)); 2969 else 2970 vpid_sync_context(vmx_get_current_vpid(vcpu)); 2971 } 2972 2973 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 2974 { 2975 /* 2976 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 2977 * vmx_flush_tlb_guest() for an explanation of why this is ok. 2978 */ 2979 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 2980 } 2981 2982 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 2983 { 2984 /* 2985 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 2986 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 2987 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 2988 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 2989 * i.e. no explicit INVVPID is necessary. 2990 */ 2991 vpid_sync_context(vmx_get_current_vpid(vcpu)); 2992 } 2993 2994 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 2995 { 2996 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2997 2998 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 2999 return; 3000 3001 if (is_pae_paging(vcpu)) { 3002 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3003 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3004 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3005 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3006 } 3007 } 3008 3009 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3010 { 3011 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3012 3013 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3014 return; 3015 3016 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3017 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3018 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3019 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3020 3021 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3022 } 3023 3024 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3025 CPU_BASED_CR3_STORE_EXITING) 3026 3027 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3028 { 3029 struct vcpu_vmx *vmx = to_vmx(vcpu); 3030 unsigned long hw_cr0, old_cr0_pg; 3031 u32 tmp; 3032 3033 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3034 3035 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3036 if (is_unrestricted_guest(vcpu)) 3037 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3038 else { 3039 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3040 if (!enable_ept) 3041 hw_cr0 |= X86_CR0_WP; 3042 3043 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3044 enter_pmode(vcpu); 3045 3046 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3047 enter_rmode(vcpu); 3048 } 3049 3050 vmcs_writel(CR0_READ_SHADOW, cr0); 3051 vmcs_writel(GUEST_CR0, hw_cr0); 3052 vcpu->arch.cr0 = cr0; 3053 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3054 3055 #ifdef CONFIG_X86_64 3056 if (vcpu->arch.efer & EFER_LME) { 3057 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3058 enter_lmode(vcpu); 3059 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3060 exit_lmode(vcpu); 3061 } 3062 #endif 3063 3064 if (enable_ept && !is_unrestricted_guest(vcpu)) { 3065 /* 3066 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3067 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3068 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3069 * KVM's CR3 is installed. 3070 */ 3071 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3072 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3073 3074 /* 3075 * When running with EPT but not unrestricted guest, KVM must 3076 * intercept CR3 accesses when paging is _disabled_. This is 3077 * necessary because restricted guests can't actually run with 3078 * paging disabled, and so KVM stuffs its own CR3 in order to 3079 * run the guest when identity mapped page tables. 3080 * 3081 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3082 * update, it may be stale with respect to CR3 interception, 3083 * e.g. after nested VM-Enter. 3084 * 3085 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3086 * stores to forward them to L1, even if KVM does not need to 3087 * intercept them to preserve its identity mapped page tables. 3088 */ 3089 if (!(cr0 & X86_CR0_PG)) { 3090 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3091 } else if (!is_guest_mode(vcpu)) { 3092 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3093 } else { 3094 tmp = exec_controls_get(vmx); 3095 tmp &= ~CR3_EXITING_BITS; 3096 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3097 exec_controls_set(vmx, tmp); 3098 } 3099 3100 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3101 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3102 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3103 3104 /* 3105 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3106 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3107 */ 3108 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3109 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3110 } 3111 3112 /* depends on vcpu->arch.cr0 to be set to a new value */ 3113 vmx->emulation_required = vmx_emulation_required(vcpu); 3114 } 3115 3116 static int vmx_get_max_tdp_level(void) 3117 { 3118 if (cpu_has_vmx_ept_5levels()) 3119 return 5; 3120 return 4; 3121 } 3122 3123 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3124 { 3125 u64 eptp = VMX_EPTP_MT_WB; 3126 3127 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3128 3129 if (enable_ept_ad_bits && 3130 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3131 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3132 eptp |= root_hpa; 3133 3134 return eptp; 3135 } 3136 3137 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3138 int root_level) 3139 { 3140 struct kvm *kvm = vcpu->kvm; 3141 bool update_guest_cr3 = true; 3142 unsigned long guest_cr3; 3143 u64 eptp; 3144 3145 if (enable_ept) { 3146 eptp = construct_eptp(vcpu, root_hpa, root_level); 3147 vmcs_write64(EPT_POINTER, eptp); 3148 3149 hv_track_root_tdp(vcpu, root_hpa); 3150 3151 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3152 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3153 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3154 guest_cr3 = vcpu->arch.cr3; 3155 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3156 update_guest_cr3 = false; 3157 vmx_ept_load_pdptrs(vcpu); 3158 } else { 3159 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3160 } 3161 3162 if (update_guest_cr3) 3163 vmcs_writel(GUEST_CR3, guest_cr3); 3164 } 3165 3166 3167 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3168 { 3169 /* 3170 * We operate under the default treatment of SMM, so VMX cannot be 3171 * enabled under SMM. Note, whether or not VMXE is allowed at all is 3172 * handled by kvm_is_valid_cr4(). 3173 */ 3174 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3175 return false; 3176 3177 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3178 return false; 3179 3180 return true; 3181 } 3182 3183 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3184 { 3185 unsigned long old_cr4 = vcpu->arch.cr4; 3186 struct vcpu_vmx *vmx = to_vmx(vcpu); 3187 /* 3188 * Pass through host's Machine Check Enable value to hw_cr4, which 3189 * is in force while we are in guest mode. Do not let guests control 3190 * this bit, even if host CR4.MCE == 0. 3191 */ 3192 unsigned long hw_cr4; 3193 3194 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3195 if (is_unrestricted_guest(vcpu)) 3196 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3197 else if (vmx->rmode.vm86_active) 3198 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3199 else 3200 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3201 3202 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 3203 if (cr4 & X86_CR4_UMIP) { 3204 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3205 hw_cr4 &= ~X86_CR4_UMIP; 3206 } else if (!is_guest_mode(vcpu) || 3207 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3208 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3209 } 3210 } 3211 3212 vcpu->arch.cr4 = cr4; 3213 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3214 3215 if (!is_unrestricted_guest(vcpu)) { 3216 if (enable_ept) { 3217 if (!is_paging(vcpu)) { 3218 hw_cr4 &= ~X86_CR4_PAE; 3219 hw_cr4 |= X86_CR4_PSE; 3220 } else if (!(cr4 & X86_CR4_PAE)) { 3221 hw_cr4 &= ~X86_CR4_PAE; 3222 } 3223 } 3224 3225 /* 3226 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3227 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3228 * to be manually disabled when guest switches to non-paging 3229 * mode. 3230 * 3231 * If !enable_unrestricted_guest, the CPU is always running 3232 * with CR0.PG=1 and CR4 needs to be modified. 3233 * If enable_unrestricted_guest, the CPU automatically 3234 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3235 */ 3236 if (!is_paging(vcpu)) 3237 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3238 } 3239 3240 vmcs_writel(CR4_READ_SHADOW, cr4); 3241 vmcs_writel(GUEST_CR4, hw_cr4); 3242 3243 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3244 kvm_update_cpuid_runtime(vcpu); 3245 } 3246 3247 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3248 { 3249 struct vcpu_vmx *vmx = to_vmx(vcpu); 3250 u32 ar; 3251 3252 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3253 *var = vmx->rmode.segs[seg]; 3254 if (seg == VCPU_SREG_TR 3255 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3256 return; 3257 var->base = vmx_read_guest_seg_base(vmx, seg); 3258 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3259 return; 3260 } 3261 var->base = vmx_read_guest_seg_base(vmx, seg); 3262 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3263 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3264 ar = vmx_read_guest_seg_ar(vmx, seg); 3265 var->unusable = (ar >> 16) & 1; 3266 var->type = ar & 15; 3267 var->s = (ar >> 4) & 1; 3268 var->dpl = (ar >> 5) & 3; 3269 /* 3270 * Some userspaces do not preserve unusable property. Since usable 3271 * segment has to be present according to VMX spec we can use present 3272 * property to amend userspace bug by making unusable segment always 3273 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3274 * segment as unusable. 3275 */ 3276 var->present = !var->unusable; 3277 var->avl = (ar >> 12) & 1; 3278 var->l = (ar >> 13) & 1; 3279 var->db = (ar >> 14) & 1; 3280 var->g = (ar >> 15) & 1; 3281 } 3282 3283 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3284 { 3285 struct kvm_segment s; 3286 3287 if (to_vmx(vcpu)->rmode.vm86_active) { 3288 vmx_get_segment(vcpu, &s, seg); 3289 return s.base; 3290 } 3291 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3292 } 3293 3294 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3295 { 3296 struct vcpu_vmx *vmx = to_vmx(vcpu); 3297 3298 if (unlikely(vmx->rmode.vm86_active)) 3299 return 0; 3300 else { 3301 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3302 return VMX_AR_DPL(ar); 3303 } 3304 } 3305 3306 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3307 { 3308 u32 ar; 3309 3310 if (var->unusable || !var->present) 3311 ar = 1 << 16; 3312 else { 3313 ar = var->type & 15; 3314 ar |= (var->s & 1) << 4; 3315 ar |= (var->dpl & 3) << 5; 3316 ar |= (var->present & 1) << 7; 3317 ar |= (var->avl & 1) << 12; 3318 ar |= (var->l & 1) << 13; 3319 ar |= (var->db & 1) << 14; 3320 ar |= (var->g & 1) << 15; 3321 } 3322 3323 return ar; 3324 } 3325 3326 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3327 { 3328 struct vcpu_vmx *vmx = to_vmx(vcpu); 3329 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3330 3331 vmx_segment_cache_clear(vmx); 3332 3333 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3334 vmx->rmode.segs[seg] = *var; 3335 if (seg == VCPU_SREG_TR) 3336 vmcs_write16(sf->selector, var->selector); 3337 else if (var->s) 3338 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3339 return; 3340 } 3341 3342 vmcs_writel(sf->base, var->base); 3343 vmcs_write32(sf->limit, var->limit); 3344 vmcs_write16(sf->selector, var->selector); 3345 3346 /* 3347 * Fix the "Accessed" bit in AR field of segment registers for older 3348 * qemu binaries. 3349 * IA32 arch specifies that at the time of processor reset the 3350 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3351 * is setting it to 0 in the userland code. This causes invalid guest 3352 * state vmexit when "unrestricted guest" mode is turned on. 3353 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3354 * tree. Newer qemu binaries with that qemu fix would not need this 3355 * kvm hack. 3356 */ 3357 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3358 var->type |= 0x1; /* Accessed */ 3359 3360 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3361 } 3362 3363 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3364 { 3365 __vmx_set_segment(vcpu, var, seg); 3366 3367 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3368 } 3369 3370 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3371 { 3372 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3373 3374 *db = (ar >> 14) & 1; 3375 *l = (ar >> 13) & 1; 3376 } 3377 3378 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3379 { 3380 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3381 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3382 } 3383 3384 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3385 { 3386 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3387 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3388 } 3389 3390 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3391 { 3392 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3393 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3394 } 3395 3396 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3397 { 3398 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3399 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3400 } 3401 3402 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3403 { 3404 struct kvm_segment var; 3405 u32 ar; 3406 3407 vmx_get_segment(vcpu, &var, seg); 3408 var.dpl = 0x3; 3409 if (seg == VCPU_SREG_CS) 3410 var.type = 0x3; 3411 ar = vmx_segment_access_rights(&var); 3412 3413 if (var.base != (var.selector << 4)) 3414 return false; 3415 if (var.limit != 0xffff) 3416 return false; 3417 if (ar != 0xf3) 3418 return false; 3419 3420 return true; 3421 } 3422 3423 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3424 { 3425 struct kvm_segment cs; 3426 unsigned int cs_rpl; 3427 3428 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3429 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3430 3431 if (cs.unusable) 3432 return false; 3433 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3434 return false; 3435 if (!cs.s) 3436 return false; 3437 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3438 if (cs.dpl > cs_rpl) 3439 return false; 3440 } else { 3441 if (cs.dpl != cs_rpl) 3442 return false; 3443 } 3444 if (!cs.present) 3445 return false; 3446 3447 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3448 return true; 3449 } 3450 3451 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3452 { 3453 struct kvm_segment ss; 3454 unsigned int ss_rpl; 3455 3456 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3457 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3458 3459 if (ss.unusable) 3460 return true; 3461 if (ss.type != 3 && ss.type != 7) 3462 return false; 3463 if (!ss.s) 3464 return false; 3465 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3466 return false; 3467 if (!ss.present) 3468 return false; 3469 3470 return true; 3471 } 3472 3473 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3474 { 3475 struct kvm_segment var; 3476 unsigned int rpl; 3477 3478 vmx_get_segment(vcpu, &var, seg); 3479 rpl = var.selector & SEGMENT_RPL_MASK; 3480 3481 if (var.unusable) 3482 return true; 3483 if (!var.s) 3484 return false; 3485 if (!var.present) 3486 return false; 3487 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3488 if (var.dpl < rpl) /* DPL < RPL */ 3489 return false; 3490 } 3491 3492 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3493 * rights flags 3494 */ 3495 return true; 3496 } 3497 3498 static bool tr_valid(struct kvm_vcpu *vcpu) 3499 { 3500 struct kvm_segment tr; 3501 3502 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3503 3504 if (tr.unusable) 3505 return false; 3506 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3507 return false; 3508 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3509 return false; 3510 if (!tr.present) 3511 return false; 3512 3513 return true; 3514 } 3515 3516 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3517 { 3518 struct kvm_segment ldtr; 3519 3520 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3521 3522 if (ldtr.unusable) 3523 return true; 3524 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3525 return false; 3526 if (ldtr.type != 2) 3527 return false; 3528 if (!ldtr.present) 3529 return false; 3530 3531 return true; 3532 } 3533 3534 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3535 { 3536 struct kvm_segment cs, ss; 3537 3538 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3539 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3540 3541 return ((cs.selector & SEGMENT_RPL_MASK) == 3542 (ss.selector & SEGMENT_RPL_MASK)); 3543 } 3544 3545 /* 3546 * Check if guest state is valid. Returns true if valid, false if 3547 * not. 3548 * We assume that registers are always usable 3549 */ 3550 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3551 { 3552 /* real mode guest state checks */ 3553 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3554 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3555 return false; 3556 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3557 return false; 3558 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3559 return false; 3560 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3561 return false; 3562 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3563 return false; 3564 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3565 return false; 3566 } else { 3567 /* protected mode guest state checks */ 3568 if (!cs_ss_rpl_check(vcpu)) 3569 return false; 3570 if (!code_segment_valid(vcpu)) 3571 return false; 3572 if (!stack_segment_valid(vcpu)) 3573 return false; 3574 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3575 return false; 3576 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3577 return false; 3578 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3579 return false; 3580 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3581 return false; 3582 if (!tr_valid(vcpu)) 3583 return false; 3584 if (!ldtr_valid(vcpu)) 3585 return false; 3586 } 3587 /* TODO: 3588 * - Add checks on RIP 3589 * - Add checks on RFLAGS 3590 */ 3591 3592 return true; 3593 } 3594 3595 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3596 { 3597 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3598 u16 data; 3599 int i; 3600 3601 for (i = 0; i < 3; i++) { 3602 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3603 return -EFAULT; 3604 } 3605 3606 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3607 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3608 return -EFAULT; 3609 3610 data = ~0; 3611 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3612 return -EFAULT; 3613 3614 return 0; 3615 } 3616 3617 static int init_rmode_identity_map(struct kvm *kvm) 3618 { 3619 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3620 int i, r = 0; 3621 void __user *uaddr; 3622 u32 tmp; 3623 3624 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3625 mutex_lock(&kvm->slots_lock); 3626 3627 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3628 goto out; 3629 3630 if (!kvm_vmx->ept_identity_map_addr) 3631 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3632 3633 uaddr = __x86_set_memory_region(kvm, 3634 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3635 kvm_vmx->ept_identity_map_addr, 3636 PAGE_SIZE); 3637 if (IS_ERR(uaddr)) { 3638 r = PTR_ERR(uaddr); 3639 goto out; 3640 } 3641 3642 /* Set up identity-mapping pagetable for EPT in real mode */ 3643 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3644 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3645 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3646 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3647 r = -EFAULT; 3648 goto out; 3649 } 3650 } 3651 kvm_vmx->ept_identity_pagetable_done = true; 3652 3653 out: 3654 mutex_unlock(&kvm->slots_lock); 3655 return r; 3656 } 3657 3658 static void seg_setup(int seg) 3659 { 3660 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3661 unsigned int ar; 3662 3663 vmcs_write16(sf->selector, 0); 3664 vmcs_writel(sf->base, 0); 3665 vmcs_write32(sf->limit, 0xffff); 3666 ar = 0x93; 3667 if (seg == VCPU_SREG_CS) 3668 ar |= 0x08; /* code segment */ 3669 3670 vmcs_write32(sf->ar_bytes, ar); 3671 } 3672 3673 static int alloc_apic_access_page(struct kvm *kvm) 3674 { 3675 struct page *page; 3676 void __user *hva; 3677 int ret = 0; 3678 3679 mutex_lock(&kvm->slots_lock); 3680 if (kvm->arch.apic_access_memslot_enabled) 3681 goto out; 3682 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3683 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3684 if (IS_ERR(hva)) { 3685 ret = PTR_ERR(hva); 3686 goto out; 3687 } 3688 3689 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3690 if (is_error_page(page)) { 3691 ret = -EFAULT; 3692 goto out; 3693 } 3694 3695 /* 3696 * Do not pin the page in memory, so that memory hot-unplug 3697 * is able to migrate it. 3698 */ 3699 put_page(page); 3700 kvm->arch.apic_access_memslot_enabled = true; 3701 out: 3702 mutex_unlock(&kvm->slots_lock); 3703 return ret; 3704 } 3705 3706 int allocate_vpid(void) 3707 { 3708 int vpid; 3709 3710 if (!enable_vpid) 3711 return 0; 3712 spin_lock(&vmx_vpid_lock); 3713 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3714 if (vpid < VMX_NR_VPIDS) 3715 __set_bit(vpid, vmx_vpid_bitmap); 3716 else 3717 vpid = 0; 3718 spin_unlock(&vmx_vpid_lock); 3719 return vpid; 3720 } 3721 3722 void free_vpid(int vpid) 3723 { 3724 if (!enable_vpid || vpid == 0) 3725 return; 3726 spin_lock(&vmx_vpid_lock); 3727 __clear_bit(vpid, vmx_vpid_bitmap); 3728 spin_unlock(&vmx_vpid_lock); 3729 } 3730 3731 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3732 { 3733 /* 3734 * When KVM is a nested hypervisor on top of Hyper-V and uses 3735 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3736 * bitmap has changed. 3737 */ 3738 if (static_branch_unlikely(&enable_evmcs)) 3739 evmcs_touch_msr_bitmap(); 3740 3741 vmx->nested.force_msr_bitmap_recalc = true; 3742 } 3743 3744 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3745 { 3746 struct vcpu_vmx *vmx = to_vmx(vcpu); 3747 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3748 3749 if (!cpu_has_vmx_msr_bitmap()) 3750 return; 3751 3752 vmx_msr_bitmap_l01_changed(vmx); 3753 3754 /* 3755 * Mark the desired intercept state in shadow bitmap, this is needed 3756 * for resync when the MSR filters change. 3757 */ 3758 if (is_valid_passthrough_msr(msr)) { 3759 int idx = possible_passthrough_msr_slot(msr); 3760 3761 if (idx != -ENOENT) { 3762 if (type & MSR_TYPE_R) 3763 clear_bit(idx, vmx->shadow_msr_intercept.read); 3764 if (type & MSR_TYPE_W) 3765 clear_bit(idx, vmx->shadow_msr_intercept.write); 3766 } 3767 } 3768 3769 if ((type & MSR_TYPE_R) && 3770 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3771 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3772 type &= ~MSR_TYPE_R; 3773 } 3774 3775 if ((type & MSR_TYPE_W) && 3776 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3777 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3778 type &= ~MSR_TYPE_W; 3779 } 3780 3781 if (type & MSR_TYPE_R) 3782 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3783 3784 if (type & MSR_TYPE_W) 3785 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3786 } 3787 3788 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3789 { 3790 struct vcpu_vmx *vmx = to_vmx(vcpu); 3791 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3792 3793 if (!cpu_has_vmx_msr_bitmap()) 3794 return; 3795 3796 vmx_msr_bitmap_l01_changed(vmx); 3797 3798 /* 3799 * Mark the desired intercept state in shadow bitmap, this is needed 3800 * for resync when the MSR filter changes. 3801 */ 3802 if (is_valid_passthrough_msr(msr)) { 3803 int idx = possible_passthrough_msr_slot(msr); 3804 3805 if (idx != -ENOENT) { 3806 if (type & MSR_TYPE_R) 3807 set_bit(idx, vmx->shadow_msr_intercept.read); 3808 if (type & MSR_TYPE_W) 3809 set_bit(idx, vmx->shadow_msr_intercept.write); 3810 } 3811 } 3812 3813 if (type & MSR_TYPE_R) 3814 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3815 3816 if (type & MSR_TYPE_W) 3817 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3818 } 3819 3820 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode) 3821 { 3822 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; 3823 unsigned long read_intercept; 3824 int msr; 3825 3826 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3827 3828 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3829 unsigned int read_idx = msr / BITS_PER_LONG; 3830 unsigned int write_idx = read_idx + (0x800 / sizeof(long)); 3831 3832 msr_bitmap[read_idx] = read_intercept; 3833 msr_bitmap[write_idx] = ~0ul; 3834 } 3835 } 3836 3837 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 3838 { 3839 struct vcpu_vmx *vmx = to_vmx(vcpu); 3840 u8 mode; 3841 3842 if (!cpu_has_vmx_msr_bitmap()) 3843 return; 3844 3845 if (cpu_has_secondary_exec_ctrls() && 3846 (secondary_exec_controls_get(vmx) & 3847 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3848 mode = MSR_BITMAP_MODE_X2APIC; 3849 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3850 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3851 } else { 3852 mode = 0; 3853 } 3854 3855 if (mode == vmx->x2apic_msr_bitmap_mode) 3856 return; 3857 3858 vmx->x2apic_msr_bitmap_mode = mode; 3859 3860 vmx_reset_x2apic_msrs(vcpu, mode); 3861 3862 /* 3863 * TPR reads and writes can be virtualized even if virtual interrupt 3864 * delivery is not in use. 3865 */ 3866 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 3867 !(mode & MSR_BITMAP_MODE_X2APIC)); 3868 3869 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3870 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 3871 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3872 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3873 } 3874 } 3875 3876 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 3877 { 3878 struct vcpu_vmx *vmx = to_vmx(vcpu); 3879 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3880 u32 i; 3881 3882 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 3883 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 3884 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 3885 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 3886 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 3887 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3888 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3889 } 3890 } 3891 3892 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3893 { 3894 struct vcpu_vmx *vmx = to_vmx(vcpu); 3895 void *vapic_page; 3896 u32 vppr; 3897 int rvi; 3898 3899 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3900 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3901 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3902 return false; 3903 3904 rvi = vmx_get_rvi(); 3905 3906 vapic_page = vmx->nested.virtual_apic_map.hva; 3907 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 3908 3909 return ((rvi & 0xf0) > (vppr & 0xf0)); 3910 } 3911 3912 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 3913 { 3914 struct vcpu_vmx *vmx = to_vmx(vcpu); 3915 u32 i; 3916 3917 /* 3918 * Set intercept permissions for all potentially passed through MSRs 3919 * again. They will automatically get filtered through the MSR filter, 3920 * so we are back in sync after this. 3921 */ 3922 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 3923 u32 msr = vmx_possible_passthrough_msrs[i]; 3924 bool read = test_bit(i, vmx->shadow_msr_intercept.read); 3925 bool write = test_bit(i, vmx->shadow_msr_intercept.write); 3926 3927 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read); 3928 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write); 3929 } 3930 3931 pt_update_intercept_for_msr(vcpu); 3932 } 3933 3934 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 3935 bool nested) 3936 { 3937 #ifdef CONFIG_SMP 3938 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; 3939 3940 if (vcpu->mode == IN_GUEST_MODE) { 3941 /* 3942 * The vector of interrupt to be delivered to vcpu had 3943 * been set in PIR before this function. 3944 * 3945 * Following cases will be reached in this block, and 3946 * we always send a notification event in all cases as 3947 * explained below. 3948 * 3949 * Case 1: vcpu keeps in non-root mode. Sending a 3950 * notification event posts the interrupt to vcpu. 3951 * 3952 * Case 2: vcpu exits to root mode and is still 3953 * runnable. PIR will be synced to vIRR before the 3954 * next vcpu entry. Sending a notification event in 3955 * this case has no effect, as vcpu is not in root 3956 * mode. 3957 * 3958 * Case 3: vcpu exits to root mode and is blocked. 3959 * vcpu_block() has already synced PIR to vIRR and 3960 * never blocks vcpu if vIRR is not cleared. Therefore, 3961 * a blocked vcpu here does not wait for any requested 3962 * interrupts in PIR, and sending a notification event 3963 * which has no effect is safe here. 3964 */ 3965 3966 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 3967 return true; 3968 } 3969 #endif 3970 return false; 3971 } 3972 3973 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 3974 int vector) 3975 { 3976 struct vcpu_vmx *vmx = to_vmx(vcpu); 3977 3978 if (is_guest_mode(vcpu) && 3979 vector == vmx->nested.posted_intr_nv) { 3980 /* 3981 * If a posted intr is not recognized by hardware, 3982 * we will accomplish it in the next vmentry. 3983 */ 3984 vmx->nested.pi_pending = true; 3985 kvm_make_request(KVM_REQ_EVENT, vcpu); 3986 3987 /* 3988 * This pairs with the smp_mb_*() after setting vcpu->mode in 3989 * vcpu_enter_guest() to guarantee the vCPU sees the event 3990 * request if triggering a posted interrupt "fails" because 3991 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 3992 * the smb_wmb() in kvm_make_request() only ensures everything 3993 * done before making the request is visible when the request 3994 * is visible, it doesn't ensure ordering between the store to 3995 * vcpu->requests and the load from vcpu->mode. 3996 */ 3997 smp_mb__after_atomic(); 3998 3999 /* the PIR and ON have been set by L1. */ 4000 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) 4001 kvm_vcpu_kick(vcpu); 4002 return 0; 4003 } 4004 return -1; 4005 } 4006 /* 4007 * Send interrupt to vcpu via posted interrupt way. 4008 * 1. If target vcpu is running(non-root mode), send posted interrupt 4009 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4010 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4011 * interrupt from PIR in next vmentry. 4012 */ 4013 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4014 { 4015 struct vcpu_vmx *vmx = to_vmx(vcpu); 4016 int r; 4017 4018 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4019 if (!r) 4020 return 0; 4021 4022 if (!vcpu->arch.apicv_active) 4023 return -1; 4024 4025 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4026 return 0; 4027 4028 /* If a previous notification has sent the IPI, nothing to do. */ 4029 if (pi_test_and_set_on(&vmx->pi_desc)) 4030 return 0; 4031 4032 /* 4033 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() 4034 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is 4035 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a 4036 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. 4037 */ 4038 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false)) 4039 kvm_vcpu_kick(vcpu); 4040 4041 return 0; 4042 } 4043 4044 /* 4045 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4046 * will not change in the lifetime of the guest. 4047 * Note that host-state that does change is set elsewhere. E.g., host-state 4048 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4049 */ 4050 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4051 { 4052 u32 low32, high32; 4053 unsigned long tmpl; 4054 unsigned long cr0, cr3, cr4; 4055 4056 cr0 = read_cr0(); 4057 WARN_ON(cr0 & X86_CR0_TS); 4058 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4059 4060 /* 4061 * Save the most likely value for this task's CR3 in the VMCS. 4062 * We can't use __get_current_cr3_fast() because we're not atomic. 4063 */ 4064 cr3 = __read_cr3(); 4065 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4066 vmx->loaded_vmcs->host_state.cr3 = cr3; 4067 4068 /* Save the most likely value for this task's CR4 in the VMCS. */ 4069 cr4 = cr4_read_shadow(); 4070 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4071 vmx->loaded_vmcs->host_state.cr4 = cr4; 4072 4073 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4074 #ifdef CONFIG_X86_64 4075 /* 4076 * Load null selectors, so we can avoid reloading them in 4077 * vmx_prepare_switch_to_host(), in case userspace uses 4078 * the null selectors too (the expected case). 4079 */ 4080 vmcs_write16(HOST_DS_SELECTOR, 0); 4081 vmcs_write16(HOST_ES_SELECTOR, 0); 4082 #else 4083 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4084 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4085 #endif 4086 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4087 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4088 4089 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4090 4091 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4092 4093 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4094 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4095 4096 /* 4097 * If 32-bit syscall is enabled, vmx_vcpu_load_vcms rewrites 4098 * HOST_IA32_SYSENTER_ESP. 4099 */ 4100 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4101 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4102 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4103 4104 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4105 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4106 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4107 } 4108 4109 if (cpu_has_load_ia32_efer()) 4110 vmcs_write64(HOST_IA32_EFER, host_efer); 4111 } 4112 4113 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4114 { 4115 struct kvm_vcpu *vcpu = &vmx->vcpu; 4116 4117 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4118 ~vcpu->arch.cr4_guest_rsvd_bits; 4119 if (!enable_ept) { 4120 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4121 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4122 } 4123 if (is_guest_mode(&vmx->vcpu)) 4124 vcpu->arch.cr4_guest_owned_bits &= 4125 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4126 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4127 } 4128 4129 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4130 { 4131 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4132 4133 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4134 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4135 4136 if (!enable_vnmi) 4137 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4138 4139 if (!enable_preemption_timer) 4140 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4141 4142 return pin_based_exec_ctrl; 4143 } 4144 4145 static u32 vmx_vmentry_ctrl(void) 4146 { 4147 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4148 4149 if (vmx_pt_mode_is_system()) 4150 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4151 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4152 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4153 return vmentry_ctrl & 4154 ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER); 4155 } 4156 4157 static u32 vmx_vmexit_ctrl(void) 4158 { 4159 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4160 4161 if (vmx_pt_mode_is_system()) 4162 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4163 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4164 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4165 return vmexit_ctrl & 4166 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4167 } 4168 4169 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4170 { 4171 struct vcpu_vmx *vmx = to_vmx(vcpu); 4172 4173 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4174 if (cpu_has_secondary_exec_ctrls()) { 4175 if (kvm_vcpu_apicv_active(vcpu)) 4176 secondary_exec_controls_setbit(vmx, 4177 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4178 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4179 else 4180 secondary_exec_controls_clearbit(vmx, 4181 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4182 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4183 } 4184 4185 vmx_update_msr_bitmap_x2apic(vcpu); 4186 } 4187 4188 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4189 { 4190 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4191 4192 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4193 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4194 4195 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 4196 exec_control &= ~CPU_BASED_TPR_SHADOW; 4197 #ifdef CONFIG_X86_64 4198 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4199 CPU_BASED_CR8_LOAD_EXITING; 4200 #endif 4201 } 4202 if (!enable_ept) 4203 exec_control |= CPU_BASED_CR3_STORE_EXITING | 4204 CPU_BASED_CR3_LOAD_EXITING | 4205 CPU_BASED_INVLPG_EXITING; 4206 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4207 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4208 CPU_BASED_MONITOR_EXITING); 4209 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4210 exec_control &= ~CPU_BASED_HLT_EXITING; 4211 return exec_control; 4212 } 4213 4214 /* 4215 * Adjust a single secondary execution control bit to intercept/allow an 4216 * instruction in the guest. This is usually done based on whether or not a 4217 * feature has been exposed to the guest in order to correctly emulate faults. 4218 */ 4219 static inline void 4220 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4221 u32 control, bool enabled, bool exiting) 4222 { 4223 /* 4224 * If the control is for an opt-in feature, clear the control if the 4225 * feature is not exposed to the guest, i.e. not enabled. If the 4226 * control is opt-out, i.e. an exiting control, clear the control if 4227 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4228 * disabled for the associated instruction. Note, the caller is 4229 * responsible presetting exec_control to set all supported bits. 4230 */ 4231 if (enabled == exiting) 4232 *exec_control &= ~control; 4233 4234 /* 4235 * Update the nested MSR settings so that a nested VMM can/can't set 4236 * controls for features that are/aren't exposed to the guest. 4237 */ 4238 if (nested) { 4239 if (enabled) 4240 vmx->nested.msrs.secondary_ctls_high |= control; 4241 else 4242 vmx->nested.msrs.secondary_ctls_high &= ~control; 4243 } 4244 } 4245 4246 /* 4247 * Wrapper macro for the common case of adjusting a secondary execution control 4248 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4249 * verifies that the control is actually supported by KVM and hardware. 4250 */ 4251 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4252 ({ \ 4253 bool __enabled; \ 4254 \ 4255 if (cpu_has_vmx_##name()) { \ 4256 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4257 X86_FEATURE_##feat_name); \ 4258 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4259 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4260 } \ 4261 }) 4262 4263 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4264 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4265 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4266 4267 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4268 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4269 4270 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4271 { 4272 struct kvm_vcpu *vcpu = &vmx->vcpu; 4273 4274 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4275 4276 if (vmx_pt_mode_is_system()) 4277 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4278 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4279 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4280 if (vmx->vpid == 0) 4281 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4282 if (!enable_ept) { 4283 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4284 enable_unrestricted_guest = 0; 4285 } 4286 if (!enable_unrestricted_guest) 4287 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4288 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4289 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4290 if (!kvm_vcpu_apicv_active(vcpu)) 4291 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4292 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4293 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4294 4295 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4296 * in vmx_set_cr4. */ 4297 exec_control &= ~SECONDARY_EXEC_DESC; 4298 4299 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4300 (handle_vmptrld). 4301 We can NOT enable shadow_vmcs here because we don't have yet 4302 a current VMCS12 4303 */ 4304 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4305 4306 /* 4307 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4308 * it needs to be set here when dirty logging is already active, e.g. 4309 * if this vCPU was created after dirty logging was enabled. 4310 */ 4311 if (!vcpu->kvm->arch.cpu_dirty_logging_count) 4312 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4313 4314 if (cpu_has_vmx_xsaves()) { 4315 /* Exposing XSAVES only when XSAVE is exposed */ 4316 bool xsaves_enabled = 4317 boot_cpu_has(X86_FEATURE_XSAVE) && 4318 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4319 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4320 4321 vcpu->arch.xsaves_enabled = xsaves_enabled; 4322 4323 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4324 SECONDARY_EXEC_XSAVES, 4325 xsaves_enabled, false); 4326 } 4327 4328 /* 4329 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4330 * feature is exposed to the guest. This creates a virtualization hole 4331 * if both are supported in hardware but only one is exposed to the 4332 * guest, but letting the guest execute RDTSCP or RDPID when either one 4333 * is advertised is preferable to emulating the advertised instruction 4334 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4335 */ 4336 if (cpu_has_vmx_rdtscp()) { 4337 bool rdpid_or_rdtscp_enabled = 4338 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4339 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4340 4341 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4342 SECONDARY_EXEC_ENABLE_RDTSCP, 4343 rdpid_or_rdtscp_enabled, false); 4344 } 4345 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4346 4347 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4348 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4349 4350 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4351 ENABLE_USR_WAIT_PAUSE, false); 4352 4353 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4354 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4355 4356 return exec_control; 4357 } 4358 4359 #define VMX_XSS_EXIT_BITMAP 0 4360 4361 static void init_vmcs(struct vcpu_vmx *vmx) 4362 { 4363 if (nested) 4364 nested_vmx_set_vmcs_shadowing_bitmap(); 4365 4366 if (cpu_has_vmx_msr_bitmap()) 4367 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4368 4369 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4370 4371 /* Control */ 4372 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4373 4374 exec_controls_set(vmx, vmx_exec_control(vmx)); 4375 4376 if (cpu_has_secondary_exec_ctrls()) 4377 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4378 4379 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4380 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4381 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4382 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4383 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4384 4385 vmcs_write16(GUEST_INTR_STATUS, 0); 4386 4387 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4388 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4389 } 4390 4391 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4392 vmcs_write32(PLE_GAP, ple_gap); 4393 vmx->ple_window = ple_window; 4394 vmx->ple_window_dirty = true; 4395 } 4396 4397 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4398 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4399 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4400 4401 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4402 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4403 vmx_set_constant_host_state(vmx); 4404 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4405 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4406 4407 if (cpu_has_vmx_vmfunc()) 4408 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4409 4410 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4411 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4412 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4413 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4414 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4415 4416 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4417 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4418 4419 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4420 4421 /* 22.2.1, 20.8.1 */ 4422 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4423 4424 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS; 4425 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4426 4427 set_cr4_guest_host_mask(vmx); 4428 4429 if (vmx->vpid != 0) 4430 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4431 4432 if (cpu_has_vmx_xsaves()) 4433 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4434 4435 if (enable_pml) { 4436 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4437 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4438 } 4439 4440 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4441 4442 if (vmx_pt_mode_is_host_guest()) { 4443 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4444 /* Bit[6~0] are forced to 1, writes are ignored. */ 4445 vmx->pt_desc.guest.output_mask = 0x7F; 4446 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4447 } 4448 4449 vmcs_write32(GUEST_SYSENTER_CS, 0); 4450 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4451 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4452 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4453 4454 if (cpu_has_vmx_tpr_shadow()) { 4455 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4456 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4457 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4458 __pa(vmx->vcpu.arch.apic->regs)); 4459 vmcs_write32(TPR_THRESHOLD, 0); 4460 } 4461 4462 vmx_setup_uret_msrs(vmx); 4463 } 4464 4465 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4466 { 4467 struct vcpu_vmx *vmx = to_vmx(vcpu); 4468 4469 init_vmcs(vmx); 4470 4471 if (nested) 4472 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4473 4474 vcpu_setup_sgx_lepubkeyhash(vcpu); 4475 4476 vmx->nested.posted_intr_nv = -1; 4477 vmx->nested.vmxon_ptr = INVALID_GPA; 4478 vmx->nested.current_vmptr = INVALID_GPA; 4479 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4480 4481 vcpu->arch.microcode_version = 0x100000000ULL; 4482 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4483 4484 /* 4485 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4486 * or POSTED_INTR_WAKEUP_VECTOR. 4487 */ 4488 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4489 vmx->pi_desc.sn = 1; 4490 } 4491 4492 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4493 { 4494 struct vcpu_vmx *vmx = to_vmx(vcpu); 4495 4496 if (!init_event) 4497 __vmx_vcpu_reset(vcpu); 4498 4499 vmx->rmode.vm86_active = 0; 4500 vmx->spec_ctrl = 0; 4501 4502 vmx->msr_ia32_umwait_control = 0; 4503 4504 vmx->hv_deadline_tsc = -1; 4505 kvm_set_cr8(vcpu, 0); 4506 4507 vmx_segment_cache_clear(vmx); 4508 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4509 4510 seg_setup(VCPU_SREG_CS); 4511 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4512 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4513 4514 seg_setup(VCPU_SREG_DS); 4515 seg_setup(VCPU_SREG_ES); 4516 seg_setup(VCPU_SREG_FS); 4517 seg_setup(VCPU_SREG_GS); 4518 seg_setup(VCPU_SREG_SS); 4519 4520 vmcs_write16(GUEST_TR_SELECTOR, 0); 4521 vmcs_writel(GUEST_TR_BASE, 0); 4522 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4523 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4524 4525 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4526 vmcs_writel(GUEST_LDTR_BASE, 0); 4527 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4528 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4529 4530 vmcs_writel(GUEST_GDTR_BASE, 0); 4531 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4532 4533 vmcs_writel(GUEST_IDTR_BASE, 0); 4534 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4535 4536 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4537 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4538 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4539 if (kvm_mpx_supported()) 4540 vmcs_write64(GUEST_BNDCFGS, 0); 4541 4542 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4543 4544 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4545 4546 vpid_sync_context(vmx->vpid); 4547 } 4548 4549 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4550 { 4551 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4552 } 4553 4554 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4555 { 4556 if (!enable_vnmi || 4557 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4558 vmx_enable_irq_window(vcpu); 4559 return; 4560 } 4561 4562 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4563 } 4564 4565 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4566 { 4567 struct vcpu_vmx *vmx = to_vmx(vcpu); 4568 uint32_t intr; 4569 int irq = vcpu->arch.interrupt.nr; 4570 4571 trace_kvm_inj_virq(irq); 4572 4573 ++vcpu->stat.irq_injections; 4574 if (vmx->rmode.vm86_active) { 4575 int inc_eip = 0; 4576 if (vcpu->arch.interrupt.soft) 4577 inc_eip = vcpu->arch.event_exit_inst_len; 4578 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4579 return; 4580 } 4581 intr = irq | INTR_INFO_VALID_MASK; 4582 if (vcpu->arch.interrupt.soft) { 4583 intr |= INTR_TYPE_SOFT_INTR; 4584 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4585 vmx->vcpu.arch.event_exit_inst_len); 4586 } else 4587 intr |= INTR_TYPE_EXT_INTR; 4588 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4589 4590 vmx_clear_hlt(vcpu); 4591 } 4592 4593 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4594 { 4595 struct vcpu_vmx *vmx = to_vmx(vcpu); 4596 4597 if (!enable_vnmi) { 4598 /* 4599 * Tracking the NMI-blocked state in software is built upon 4600 * finding the next open IRQ window. This, in turn, depends on 4601 * well-behaving guests: They have to keep IRQs disabled at 4602 * least as long as the NMI handler runs. Otherwise we may 4603 * cause NMI nesting, maybe breaking the guest. But as this is 4604 * highly unlikely, we can live with the residual risk. 4605 */ 4606 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4607 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4608 } 4609 4610 ++vcpu->stat.nmi_injections; 4611 vmx->loaded_vmcs->nmi_known_unmasked = false; 4612 4613 if (vmx->rmode.vm86_active) { 4614 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4615 return; 4616 } 4617 4618 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4619 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4620 4621 vmx_clear_hlt(vcpu); 4622 } 4623 4624 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4625 { 4626 struct vcpu_vmx *vmx = to_vmx(vcpu); 4627 bool masked; 4628 4629 if (!enable_vnmi) 4630 return vmx->loaded_vmcs->soft_vnmi_blocked; 4631 if (vmx->loaded_vmcs->nmi_known_unmasked) 4632 return false; 4633 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4634 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4635 return masked; 4636 } 4637 4638 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4639 { 4640 struct vcpu_vmx *vmx = to_vmx(vcpu); 4641 4642 if (!enable_vnmi) { 4643 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4644 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4645 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4646 } 4647 } else { 4648 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4649 if (masked) 4650 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4651 GUEST_INTR_STATE_NMI); 4652 else 4653 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4654 GUEST_INTR_STATE_NMI); 4655 } 4656 } 4657 4658 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 4659 { 4660 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4661 return false; 4662 4663 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4664 return true; 4665 4666 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4667 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 4668 GUEST_INTR_STATE_NMI)); 4669 } 4670 4671 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4672 { 4673 if (to_vmx(vcpu)->nested.nested_run_pending) 4674 return -EBUSY; 4675 4676 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 4677 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4678 return -EBUSY; 4679 4680 return !vmx_nmi_blocked(vcpu); 4681 } 4682 4683 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 4684 { 4685 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4686 return false; 4687 4688 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 4689 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4690 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4691 } 4692 4693 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4694 { 4695 if (to_vmx(vcpu)->nested.nested_run_pending) 4696 return -EBUSY; 4697 4698 /* 4699 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 4700 * e.g. if the IRQ arrived asynchronously after checking nested events. 4701 */ 4702 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4703 return -EBUSY; 4704 4705 return !vmx_interrupt_blocked(vcpu); 4706 } 4707 4708 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4709 { 4710 void __user *ret; 4711 4712 if (enable_unrestricted_guest) 4713 return 0; 4714 4715 mutex_lock(&kvm->slots_lock); 4716 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4717 PAGE_SIZE * 3); 4718 mutex_unlock(&kvm->slots_lock); 4719 4720 if (IS_ERR(ret)) 4721 return PTR_ERR(ret); 4722 4723 to_kvm_vmx(kvm)->tss_addr = addr; 4724 4725 return init_rmode_tss(kvm, ret); 4726 } 4727 4728 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4729 { 4730 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4731 return 0; 4732 } 4733 4734 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4735 { 4736 switch (vec) { 4737 case BP_VECTOR: 4738 /* 4739 * Update instruction length as we may reinject the exception 4740 * from user space while in guest debugging mode. 4741 */ 4742 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4743 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4744 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4745 return false; 4746 fallthrough; 4747 case DB_VECTOR: 4748 return !(vcpu->guest_debug & 4749 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 4750 case DE_VECTOR: 4751 case OF_VECTOR: 4752 case BR_VECTOR: 4753 case UD_VECTOR: 4754 case DF_VECTOR: 4755 case SS_VECTOR: 4756 case GP_VECTOR: 4757 case MF_VECTOR: 4758 return true; 4759 } 4760 return false; 4761 } 4762 4763 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4764 int vec, u32 err_code) 4765 { 4766 /* 4767 * Instruction with address size override prefix opcode 0x67 4768 * Cause the #SS fault with 0 error code in VM86 mode. 4769 */ 4770 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4771 if (kvm_emulate_instruction(vcpu, 0)) { 4772 if (vcpu->arch.halt_request) { 4773 vcpu->arch.halt_request = 0; 4774 return kvm_emulate_halt_noskip(vcpu); 4775 } 4776 return 1; 4777 } 4778 return 0; 4779 } 4780 4781 /* 4782 * Forward all other exceptions that are valid in real mode. 4783 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4784 * the required debugging infrastructure rework. 4785 */ 4786 kvm_queue_exception(vcpu, vec); 4787 return 1; 4788 } 4789 4790 static int handle_machine_check(struct kvm_vcpu *vcpu) 4791 { 4792 /* handled by vmx_vcpu_run() */ 4793 return 1; 4794 } 4795 4796 /* 4797 * If the host has split lock detection disabled, then #AC is 4798 * unconditionally injected into the guest, which is the pre split lock 4799 * detection behaviour. 4800 * 4801 * If the host has split lock detection enabled then #AC is 4802 * only injected into the guest when: 4803 * - Guest CPL == 3 (user mode) 4804 * - Guest has #AC detection enabled in CR0 4805 * - Guest EFLAGS has AC bit set 4806 */ 4807 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 4808 { 4809 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 4810 return true; 4811 4812 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) && 4813 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 4814 } 4815 4816 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 4817 { 4818 struct vcpu_vmx *vmx = to_vmx(vcpu); 4819 struct kvm_run *kvm_run = vcpu->run; 4820 u32 intr_info, ex_no, error_code; 4821 unsigned long cr2, dr6; 4822 u32 vect_info; 4823 4824 vect_info = vmx->idt_vectoring_info; 4825 intr_info = vmx_get_intr_info(vcpu); 4826 4827 if (is_machine_check(intr_info) || is_nmi(intr_info)) 4828 return 1; /* handled by handle_exception_nmi_irqoff() */ 4829 4830 /* 4831 * Queue the exception here instead of in handle_nm_fault_irqoff(). 4832 * This ensures the nested_vmx check is not skipped so vmexit can 4833 * be reflected to L1 (when it intercepts #NM) before reaching this 4834 * point. 4835 */ 4836 if (is_nm_fault(intr_info)) { 4837 kvm_queue_exception(vcpu, NM_VECTOR); 4838 return 1; 4839 } 4840 4841 if (is_invalid_opcode(intr_info)) 4842 return handle_ud(vcpu); 4843 4844 error_code = 0; 4845 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4846 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4847 4848 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4849 WARN_ON_ONCE(!enable_vmware_backdoor); 4850 4851 /* 4852 * VMware backdoor emulation on #GP interception only handles 4853 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 4854 * error code on #GP. 4855 */ 4856 if (error_code) { 4857 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4858 return 1; 4859 } 4860 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 4861 } 4862 4863 /* 4864 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4865 * MMIO, it is better to report an internal error. 4866 * See the comments in vmx_handle_exit. 4867 */ 4868 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4869 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4870 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4871 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4872 vcpu->run->internal.ndata = 4; 4873 vcpu->run->internal.data[0] = vect_info; 4874 vcpu->run->internal.data[1] = intr_info; 4875 vcpu->run->internal.data[2] = error_code; 4876 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 4877 return 0; 4878 } 4879 4880 if (is_page_fault(intr_info)) { 4881 cr2 = vmx_get_exit_qual(vcpu); 4882 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 4883 /* 4884 * EPT will cause page fault only if we need to 4885 * detect illegal GPAs. 4886 */ 4887 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 4888 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 4889 return 1; 4890 } else 4891 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4892 } 4893 4894 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4895 4896 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4897 return handle_rmode_exception(vcpu, ex_no, error_code); 4898 4899 switch (ex_no) { 4900 case DB_VECTOR: 4901 dr6 = vmx_get_exit_qual(vcpu); 4902 if (!(vcpu->guest_debug & 4903 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4904 if (is_icebp(intr_info)) 4905 WARN_ON(!skip_emulated_instruction(vcpu)); 4906 4907 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 4908 return 1; 4909 } 4910 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 4911 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4912 fallthrough; 4913 case BP_VECTOR: 4914 /* 4915 * Update instruction length as we may reinject #BP from 4916 * user space while in guest debugging mode. Reading it for 4917 * #DB as well causes no harm, it is not used in that case. 4918 */ 4919 vmx->vcpu.arch.event_exit_inst_len = 4920 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4921 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4922 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 4923 kvm_run->debug.arch.exception = ex_no; 4924 break; 4925 case AC_VECTOR: 4926 if (vmx_guest_inject_ac(vcpu)) { 4927 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4928 return 1; 4929 } 4930 4931 /* 4932 * Handle split lock. Depending on detection mode this will 4933 * either warn and disable split lock detection for this 4934 * task or force SIGBUS on it. 4935 */ 4936 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 4937 return 1; 4938 fallthrough; 4939 default: 4940 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4941 kvm_run->ex.exception = ex_no; 4942 kvm_run->ex.error_code = error_code; 4943 break; 4944 } 4945 return 0; 4946 } 4947 4948 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 4949 { 4950 ++vcpu->stat.irq_exits; 4951 return 1; 4952 } 4953 4954 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4955 { 4956 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 4957 vcpu->mmio_needed = 0; 4958 return 0; 4959 } 4960 4961 static int handle_io(struct kvm_vcpu *vcpu) 4962 { 4963 unsigned long exit_qualification; 4964 int size, in, string; 4965 unsigned port; 4966 4967 exit_qualification = vmx_get_exit_qual(vcpu); 4968 string = (exit_qualification & 16) != 0; 4969 4970 ++vcpu->stat.io_exits; 4971 4972 if (string) 4973 return kvm_emulate_instruction(vcpu, 0); 4974 4975 port = exit_qualification >> 16; 4976 size = (exit_qualification & 7) + 1; 4977 in = (exit_qualification & 8) != 0; 4978 4979 return kvm_fast_pio(vcpu, size, port, in); 4980 } 4981 4982 static void 4983 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4984 { 4985 /* 4986 * Patch in the VMCALL instruction: 4987 */ 4988 hypercall[0] = 0x0f; 4989 hypercall[1] = 0x01; 4990 hypercall[2] = 0xc1; 4991 } 4992 4993 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 4994 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 4995 { 4996 if (is_guest_mode(vcpu)) { 4997 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4998 unsigned long orig_val = val; 4999 5000 /* 5001 * We get here when L2 changed cr0 in a way that did not change 5002 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5003 * but did change L0 shadowed bits. So we first calculate the 5004 * effective cr0 value that L1 would like to write into the 5005 * hardware. It consists of the L2-owned bits from the new 5006 * value combined with the L1-owned bits from L1's guest_cr0. 5007 */ 5008 val = (val & ~vmcs12->cr0_guest_host_mask) | 5009 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5010 5011 if (!nested_guest_cr0_valid(vcpu, val)) 5012 return 1; 5013 5014 if (kvm_set_cr0(vcpu, val)) 5015 return 1; 5016 vmcs_writel(CR0_READ_SHADOW, orig_val); 5017 return 0; 5018 } else { 5019 if (to_vmx(vcpu)->nested.vmxon && 5020 !nested_host_cr0_valid(vcpu, val)) 5021 return 1; 5022 5023 return kvm_set_cr0(vcpu, val); 5024 } 5025 } 5026 5027 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5028 { 5029 if (is_guest_mode(vcpu)) { 5030 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5031 unsigned long orig_val = val; 5032 5033 /* analogously to handle_set_cr0 */ 5034 val = (val & ~vmcs12->cr4_guest_host_mask) | 5035 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5036 if (kvm_set_cr4(vcpu, val)) 5037 return 1; 5038 vmcs_writel(CR4_READ_SHADOW, orig_val); 5039 return 0; 5040 } else 5041 return kvm_set_cr4(vcpu, val); 5042 } 5043 5044 static int handle_desc(struct kvm_vcpu *vcpu) 5045 { 5046 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 5047 return kvm_emulate_instruction(vcpu, 0); 5048 } 5049 5050 static int handle_cr(struct kvm_vcpu *vcpu) 5051 { 5052 unsigned long exit_qualification, val; 5053 int cr; 5054 int reg; 5055 int err; 5056 int ret; 5057 5058 exit_qualification = vmx_get_exit_qual(vcpu); 5059 cr = exit_qualification & 15; 5060 reg = (exit_qualification >> 8) & 15; 5061 switch ((exit_qualification >> 4) & 3) { 5062 case 0: /* mov to cr */ 5063 val = kvm_register_read(vcpu, reg); 5064 trace_kvm_cr_write(cr, val); 5065 switch (cr) { 5066 case 0: 5067 err = handle_set_cr0(vcpu, val); 5068 return kvm_complete_insn_gp(vcpu, err); 5069 case 3: 5070 WARN_ON_ONCE(enable_unrestricted_guest); 5071 5072 err = kvm_set_cr3(vcpu, val); 5073 return kvm_complete_insn_gp(vcpu, err); 5074 case 4: 5075 err = handle_set_cr4(vcpu, val); 5076 return kvm_complete_insn_gp(vcpu, err); 5077 case 8: { 5078 u8 cr8_prev = kvm_get_cr8(vcpu); 5079 u8 cr8 = (u8)val; 5080 err = kvm_set_cr8(vcpu, cr8); 5081 ret = kvm_complete_insn_gp(vcpu, err); 5082 if (lapic_in_kernel(vcpu)) 5083 return ret; 5084 if (cr8_prev <= cr8) 5085 return ret; 5086 /* 5087 * TODO: we might be squashing a 5088 * KVM_GUESTDBG_SINGLESTEP-triggered 5089 * KVM_EXIT_DEBUG here. 5090 */ 5091 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5092 return 0; 5093 } 5094 } 5095 break; 5096 case 2: /* clts */ 5097 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5098 return -EIO; 5099 case 1: /*mov from cr*/ 5100 switch (cr) { 5101 case 3: 5102 WARN_ON_ONCE(enable_unrestricted_guest); 5103 5104 val = kvm_read_cr3(vcpu); 5105 kvm_register_write(vcpu, reg, val); 5106 trace_kvm_cr_read(cr, val); 5107 return kvm_skip_emulated_instruction(vcpu); 5108 case 8: 5109 val = kvm_get_cr8(vcpu); 5110 kvm_register_write(vcpu, reg, val); 5111 trace_kvm_cr_read(cr, val); 5112 return kvm_skip_emulated_instruction(vcpu); 5113 } 5114 break; 5115 case 3: /* lmsw */ 5116 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5117 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 5118 kvm_lmsw(vcpu, val); 5119 5120 return kvm_skip_emulated_instruction(vcpu); 5121 default: 5122 break; 5123 } 5124 vcpu->run->exit_reason = 0; 5125 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5126 (int)(exit_qualification >> 4) & 3, cr); 5127 return 0; 5128 } 5129 5130 static int handle_dr(struct kvm_vcpu *vcpu) 5131 { 5132 unsigned long exit_qualification; 5133 int dr, dr7, reg; 5134 int err = 1; 5135 5136 exit_qualification = vmx_get_exit_qual(vcpu); 5137 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5138 5139 /* First, if DR does not exist, trigger UD */ 5140 if (!kvm_require_dr(vcpu, dr)) 5141 return 1; 5142 5143 if (kvm_x86_ops.get_cpl(vcpu) > 0) 5144 goto out; 5145 5146 dr7 = vmcs_readl(GUEST_DR7); 5147 if (dr7 & DR7_GD) { 5148 /* 5149 * As the vm-exit takes precedence over the debug trap, we 5150 * need to emulate the latter, either for the host or the 5151 * guest debugging itself. 5152 */ 5153 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5154 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5155 vcpu->run->debug.arch.dr7 = dr7; 5156 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5157 vcpu->run->debug.arch.exception = DB_VECTOR; 5158 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5159 return 0; 5160 } else { 5161 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5162 return 1; 5163 } 5164 } 5165 5166 if (vcpu->guest_debug == 0) { 5167 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5168 5169 /* 5170 * No more DR vmexits; force a reload of the debug registers 5171 * and reenter on this instruction. The next vmexit will 5172 * retrieve the full state of the debug registers. 5173 */ 5174 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5175 return 1; 5176 } 5177 5178 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5179 if (exit_qualification & TYPE_MOV_FROM_DR) { 5180 unsigned long val; 5181 5182 kvm_get_dr(vcpu, dr, &val); 5183 kvm_register_write(vcpu, reg, val); 5184 err = 0; 5185 } else { 5186 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5187 } 5188 5189 out: 5190 return kvm_complete_insn_gp(vcpu, err); 5191 } 5192 5193 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5194 { 5195 get_debugreg(vcpu->arch.db[0], 0); 5196 get_debugreg(vcpu->arch.db[1], 1); 5197 get_debugreg(vcpu->arch.db[2], 2); 5198 get_debugreg(vcpu->arch.db[3], 3); 5199 get_debugreg(vcpu->arch.dr6, 6); 5200 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5201 5202 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5203 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5204 5205 /* 5206 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5207 * a stale dr6 from the guest. 5208 */ 5209 set_debugreg(DR6_RESERVED, 6); 5210 } 5211 5212 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5213 { 5214 vmcs_writel(GUEST_DR7, val); 5215 } 5216 5217 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5218 { 5219 kvm_apic_update_ppr(vcpu); 5220 return 1; 5221 } 5222 5223 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5224 { 5225 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5226 5227 kvm_make_request(KVM_REQ_EVENT, vcpu); 5228 5229 ++vcpu->stat.irq_window_exits; 5230 return 1; 5231 } 5232 5233 static int handle_invlpg(struct kvm_vcpu *vcpu) 5234 { 5235 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5236 5237 kvm_mmu_invlpg(vcpu, exit_qualification); 5238 return kvm_skip_emulated_instruction(vcpu); 5239 } 5240 5241 static int handle_apic_access(struct kvm_vcpu *vcpu) 5242 { 5243 if (likely(fasteoi)) { 5244 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5245 int access_type, offset; 5246 5247 access_type = exit_qualification & APIC_ACCESS_TYPE; 5248 offset = exit_qualification & APIC_ACCESS_OFFSET; 5249 /* 5250 * Sane guest uses MOV to write EOI, with written value 5251 * not cared. So make a short-circuit here by avoiding 5252 * heavy instruction emulation. 5253 */ 5254 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5255 (offset == APIC_EOI)) { 5256 kvm_lapic_set_eoi(vcpu); 5257 return kvm_skip_emulated_instruction(vcpu); 5258 } 5259 } 5260 return kvm_emulate_instruction(vcpu, 0); 5261 } 5262 5263 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5264 { 5265 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5266 int vector = exit_qualification & 0xff; 5267 5268 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5269 kvm_apic_set_eoi_accelerated(vcpu, vector); 5270 return 1; 5271 } 5272 5273 static int handle_apic_write(struct kvm_vcpu *vcpu) 5274 { 5275 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5276 u32 offset = exit_qualification & 0xfff; 5277 5278 /* APIC-write VM exit is trap-like and thus no need to adjust IP */ 5279 kvm_apic_write_nodecode(vcpu, offset); 5280 return 1; 5281 } 5282 5283 static int handle_task_switch(struct kvm_vcpu *vcpu) 5284 { 5285 struct vcpu_vmx *vmx = to_vmx(vcpu); 5286 unsigned long exit_qualification; 5287 bool has_error_code = false; 5288 u32 error_code = 0; 5289 u16 tss_selector; 5290 int reason, type, idt_v, idt_index; 5291 5292 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5293 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5294 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5295 5296 exit_qualification = vmx_get_exit_qual(vcpu); 5297 5298 reason = (u32)exit_qualification >> 30; 5299 if (reason == TASK_SWITCH_GATE && idt_v) { 5300 switch (type) { 5301 case INTR_TYPE_NMI_INTR: 5302 vcpu->arch.nmi_injected = false; 5303 vmx_set_nmi_mask(vcpu, true); 5304 break; 5305 case INTR_TYPE_EXT_INTR: 5306 case INTR_TYPE_SOFT_INTR: 5307 kvm_clear_interrupt_queue(vcpu); 5308 break; 5309 case INTR_TYPE_HARD_EXCEPTION: 5310 if (vmx->idt_vectoring_info & 5311 VECTORING_INFO_DELIVER_CODE_MASK) { 5312 has_error_code = true; 5313 error_code = 5314 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5315 } 5316 fallthrough; 5317 case INTR_TYPE_SOFT_EXCEPTION: 5318 kvm_clear_exception_queue(vcpu); 5319 break; 5320 default: 5321 break; 5322 } 5323 } 5324 tss_selector = exit_qualification; 5325 5326 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5327 type != INTR_TYPE_EXT_INTR && 5328 type != INTR_TYPE_NMI_INTR)) 5329 WARN_ON(!skip_emulated_instruction(vcpu)); 5330 5331 /* 5332 * TODO: What about debug traps on tss switch? 5333 * Are we supposed to inject them and update dr6? 5334 */ 5335 return kvm_task_switch(vcpu, tss_selector, 5336 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5337 reason, has_error_code, error_code); 5338 } 5339 5340 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5341 { 5342 unsigned long exit_qualification; 5343 gpa_t gpa; 5344 u64 error_code; 5345 5346 exit_qualification = vmx_get_exit_qual(vcpu); 5347 5348 /* 5349 * EPT violation happened while executing iret from NMI, 5350 * "blocked by NMI" bit has to be set before next VM entry. 5351 * There are errata that may cause this bit to not be set: 5352 * AAK134, BY25. 5353 */ 5354 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5355 enable_vnmi && 5356 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5357 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5358 5359 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5360 trace_kvm_page_fault(gpa, exit_qualification); 5361 5362 /* Is it a read fault? */ 5363 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5364 ? PFERR_USER_MASK : 0; 5365 /* Is it a write fault? */ 5366 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5367 ? PFERR_WRITE_MASK : 0; 5368 /* Is it a fetch fault? */ 5369 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5370 ? PFERR_FETCH_MASK : 0; 5371 /* ept page table entry is present? */ 5372 error_code |= (exit_qualification & 5373 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5374 EPT_VIOLATION_EXECUTABLE)) 5375 ? PFERR_PRESENT_MASK : 0; 5376 5377 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5378 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5379 5380 vcpu->arch.exit_qualification = exit_qualification; 5381 5382 /* 5383 * Check that the GPA doesn't exceed physical memory limits, as that is 5384 * a guest page fault. We have to emulate the instruction here, because 5385 * if the illegal address is that of a paging structure, then 5386 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5387 * would also use advanced VM-exit information for EPT violations to 5388 * reconstruct the page fault error code. 5389 */ 5390 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5391 return kvm_emulate_instruction(vcpu, 0); 5392 5393 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5394 } 5395 5396 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5397 { 5398 gpa_t gpa; 5399 5400 if (!vmx_can_emulate_instruction(vcpu, NULL, 0)) 5401 return 1; 5402 5403 /* 5404 * A nested guest cannot optimize MMIO vmexits, because we have an 5405 * nGPA here instead of the required GPA. 5406 */ 5407 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5408 if (!is_guest_mode(vcpu) && 5409 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5410 trace_kvm_fast_mmio(gpa); 5411 return kvm_skip_emulated_instruction(vcpu); 5412 } 5413 5414 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5415 } 5416 5417 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5418 { 5419 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5420 return -EIO; 5421 5422 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5423 ++vcpu->stat.nmi_window_exits; 5424 kvm_make_request(KVM_REQ_EVENT, vcpu); 5425 5426 return 1; 5427 } 5428 5429 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5430 { 5431 struct vcpu_vmx *vmx = to_vmx(vcpu); 5432 bool intr_window_requested; 5433 unsigned count = 130; 5434 5435 intr_window_requested = exec_controls_get(vmx) & 5436 CPU_BASED_INTR_WINDOW_EXITING; 5437 5438 while (vmx->emulation_required && count-- != 0) { 5439 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5440 return handle_interrupt_window(&vmx->vcpu); 5441 5442 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5443 return 1; 5444 5445 if (!kvm_emulate_instruction(vcpu, 0)) 5446 return 0; 5447 5448 if (vmx->emulation_required && !vmx->rmode.vm86_active && 5449 vcpu->arch.exception.pending) { 5450 kvm_prepare_emulation_failure_exit(vcpu); 5451 return 0; 5452 } 5453 5454 if (vcpu->arch.halt_request) { 5455 vcpu->arch.halt_request = 0; 5456 return kvm_emulate_halt_noskip(vcpu); 5457 } 5458 5459 /* 5460 * Note, return 1 and not 0, vcpu_run() will invoke 5461 * xfer_to_guest_mode() which will create a proper return 5462 * code. 5463 */ 5464 if (__xfer_to_guest_mode_work_pending()) 5465 return 1; 5466 } 5467 5468 return 1; 5469 } 5470 5471 static void grow_ple_window(struct kvm_vcpu *vcpu) 5472 { 5473 struct vcpu_vmx *vmx = to_vmx(vcpu); 5474 unsigned int old = vmx->ple_window; 5475 5476 vmx->ple_window = __grow_ple_window(old, ple_window, 5477 ple_window_grow, 5478 ple_window_max); 5479 5480 if (vmx->ple_window != old) { 5481 vmx->ple_window_dirty = true; 5482 trace_kvm_ple_window_update(vcpu->vcpu_id, 5483 vmx->ple_window, old); 5484 } 5485 } 5486 5487 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5488 { 5489 struct vcpu_vmx *vmx = to_vmx(vcpu); 5490 unsigned int old = vmx->ple_window; 5491 5492 vmx->ple_window = __shrink_ple_window(old, ple_window, 5493 ple_window_shrink, 5494 ple_window); 5495 5496 if (vmx->ple_window != old) { 5497 vmx->ple_window_dirty = true; 5498 trace_kvm_ple_window_update(vcpu->vcpu_id, 5499 vmx->ple_window, old); 5500 } 5501 } 5502 5503 /* 5504 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5505 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5506 */ 5507 static int handle_pause(struct kvm_vcpu *vcpu) 5508 { 5509 if (!kvm_pause_in_guest(vcpu->kvm)) 5510 grow_ple_window(vcpu); 5511 5512 /* 5513 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5514 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5515 * never set PAUSE_EXITING and just set PLE if supported, 5516 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5517 */ 5518 kvm_vcpu_on_spin(vcpu, true); 5519 return kvm_skip_emulated_instruction(vcpu); 5520 } 5521 5522 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5523 { 5524 return 1; 5525 } 5526 5527 static int handle_invpcid(struct kvm_vcpu *vcpu) 5528 { 5529 u32 vmx_instruction_info; 5530 unsigned long type; 5531 gva_t gva; 5532 struct { 5533 u64 pcid; 5534 u64 gla; 5535 } operand; 5536 int gpr_index; 5537 5538 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5539 kvm_queue_exception(vcpu, UD_VECTOR); 5540 return 1; 5541 } 5542 5543 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5544 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5545 type = kvm_register_read(vcpu, gpr_index); 5546 5547 /* According to the Intel instruction reference, the memory operand 5548 * is read even if it isn't needed (e.g., for type==all) 5549 */ 5550 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5551 vmx_instruction_info, false, 5552 sizeof(operand), &gva)) 5553 return 1; 5554 5555 return kvm_handle_invpcid(vcpu, type, gva); 5556 } 5557 5558 static int handle_pml_full(struct kvm_vcpu *vcpu) 5559 { 5560 unsigned long exit_qualification; 5561 5562 trace_kvm_pml_full(vcpu->vcpu_id); 5563 5564 exit_qualification = vmx_get_exit_qual(vcpu); 5565 5566 /* 5567 * PML buffer FULL happened while executing iret from NMI, 5568 * "blocked by NMI" bit has to be set before next VM entry. 5569 */ 5570 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5571 enable_vnmi && 5572 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5573 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5574 GUEST_INTR_STATE_NMI); 5575 5576 /* 5577 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5578 * here.., and there's no userspace involvement needed for PML. 5579 */ 5580 return 1; 5581 } 5582 5583 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5584 { 5585 struct vcpu_vmx *vmx = to_vmx(vcpu); 5586 5587 if (!vmx->req_immediate_exit && 5588 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 5589 kvm_lapic_expired_hv_timer(vcpu); 5590 return EXIT_FASTPATH_REENTER_GUEST; 5591 } 5592 5593 return EXIT_FASTPATH_NONE; 5594 } 5595 5596 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5597 { 5598 handle_fastpath_preemption_timer(vcpu); 5599 return 1; 5600 } 5601 5602 /* 5603 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5604 * are overwritten by nested_vmx_setup() when nested=1. 5605 */ 5606 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5607 { 5608 kvm_queue_exception(vcpu, UD_VECTOR); 5609 return 1; 5610 } 5611 5612 #ifndef CONFIG_X86_SGX_KVM 5613 static int handle_encls(struct kvm_vcpu *vcpu) 5614 { 5615 /* 5616 * SGX virtualization is disabled. There is no software enable bit for 5617 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 5618 * the guest from executing ENCLS (when SGX is supported by hardware). 5619 */ 5620 kvm_queue_exception(vcpu, UD_VECTOR); 5621 return 1; 5622 } 5623 #endif /* CONFIG_X86_SGX_KVM */ 5624 5625 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 5626 { 5627 /* 5628 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 5629 * VM-Exits. Unconditionally set the flag here and leave the handling to 5630 * vmx_handle_exit(). 5631 */ 5632 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 5633 return 1; 5634 } 5635 5636 /* 5637 * The exit handlers return 1 if the exit was handled fully and guest execution 5638 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5639 * to be done to userspace and return 0. 5640 */ 5641 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5642 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 5643 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5644 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5645 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5646 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5647 [EXIT_REASON_CR_ACCESS] = handle_cr, 5648 [EXIT_REASON_DR_ACCESS] = handle_dr, 5649 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 5650 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 5651 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 5652 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 5653 [EXIT_REASON_HLT] = kvm_emulate_halt, 5654 [EXIT_REASON_INVD] = kvm_emulate_invd, 5655 [EXIT_REASON_INVLPG] = handle_invlpg, 5656 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 5657 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 5658 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5659 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5660 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5661 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5662 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5663 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5664 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5665 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5666 [EXIT_REASON_VMON] = handle_vmx_instruction, 5667 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5668 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5669 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5670 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5671 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 5672 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 5673 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5674 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5675 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5676 [EXIT_REASON_LDTR_TR] = handle_desc, 5677 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5678 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5679 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5680 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 5681 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5682 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 5683 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5684 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5685 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 5686 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 5687 [EXIT_REASON_PML_FULL] = handle_pml_full, 5688 [EXIT_REASON_INVPCID] = handle_invpcid, 5689 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5690 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5691 [EXIT_REASON_ENCLS] = handle_encls, 5692 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 5693 }; 5694 5695 static const int kvm_vmx_max_exit_handlers = 5696 ARRAY_SIZE(kvm_vmx_exit_handlers); 5697 5698 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 5699 u64 *info1, u64 *info2, 5700 u32 *intr_info, u32 *error_code) 5701 { 5702 struct vcpu_vmx *vmx = to_vmx(vcpu); 5703 5704 *reason = vmx->exit_reason.full; 5705 *info1 = vmx_get_exit_qual(vcpu); 5706 if (!(vmx->exit_reason.failed_vmentry)) { 5707 *info2 = vmx->idt_vectoring_info; 5708 *intr_info = vmx_get_intr_info(vcpu); 5709 if (is_exception_with_error_code(*intr_info)) 5710 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5711 else 5712 *error_code = 0; 5713 } else { 5714 *info2 = 0; 5715 *intr_info = 0; 5716 *error_code = 0; 5717 } 5718 } 5719 5720 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5721 { 5722 if (vmx->pml_pg) { 5723 __free_page(vmx->pml_pg); 5724 vmx->pml_pg = NULL; 5725 } 5726 } 5727 5728 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5729 { 5730 struct vcpu_vmx *vmx = to_vmx(vcpu); 5731 u64 *pml_buf; 5732 u16 pml_idx; 5733 5734 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5735 5736 /* Do nothing if PML buffer is empty */ 5737 if (pml_idx == (PML_ENTITY_NUM - 1)) 5738 return; 5739 5740 /* PML index always points to next available PML buffer entity */ 5741 if (pml_idx >= PML_ENTITY_NUM) 5742 pml_idx = 0; 5743 else 5744 pml_idx++; 5745 5746 pml_buf = page_address(vmx->pml_pg); 5747 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5748 u64 gpa; 5749 5750 gpa = pml_buf[pml_idx]; 5751 WARN_ON(gpa & (PAGE_SIZE - 1)); 5752 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5753 } 5754 5755 /* reset PML index */ 5756 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5757 } 5758 5759 static void vmx_dump_sel(char *name, uint32_t sel) 5760 { 5761 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5762 name, vmcs_read16(sel), 5763 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5764 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5765 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5766 } 5767 5768 static void vmx_dump_dtsel(char *name, uint32_t limit) 5769 { 5770 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5771 name, vmcs_read32(limit), 5772 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5773 } 5774 5775 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 5776 { 5777 unsigned int i; 5778 struct vmx_msr_entry *e; 5779 5780 pr_err("MSR %s:\n", name); 5781 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 5782 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 5783 } 5784 5785 void dump_vmcs(struct kvm_vcpu *vcpu) 5786 { 5787 struct vcpu_vmx *vmx = to_vmx(vcpu); 5788 u32 vmentry_ctl, vmexit_ctl; 5789 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 5790 unsigned long cr4; 5791 int efer_slot; 5792 5793 if (!dump_invalid_vmcs) { 5794 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 5795 return; 5796 } 5797 5798 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5799 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5800 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5801 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5802 cr4 = vmcs_readl(GUEST_CR4); 5803 secondary_exec_control = 0; 5804 if (cpu_has_secondary_exec_ctrls()) 5805 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5806 5807 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 5808 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 5809 pr_err("*** Guest State ***\n"); 5810 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5811 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5812 vmcs_readl(CR0_GUEST_HOST_MASK)); 5813 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5814 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5815 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5816 if (cpu_has_vmx_ept()) { 5817 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5818 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5819 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5820 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5821 } 5822 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5823 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5824 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5825 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5826 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5827 vmcs_readl(GUEST_SYSENTER_ESP), 5828 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5829 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5830 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5831 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5832 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5833 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5834 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5835 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5836 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5837 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5838 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5839 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 5840 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 5841 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 5842 else if (efer_slot >= 0) 5843 pr_err("EFER= 0x%016llx (autoload)\n", 5844 vmx->msr_autoload.guest.val[efer_slot].value); 5845 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 5846 pr_err("EFER= 0x%016llx (effective)\n", 5847 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 5848 else 5849 pr_err("EFER= 0x%016llx (effective)\n", 5850 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 5851 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 5852 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 5853 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5854 vmcs_read64(GUEST_IA32_DEBUGCTL), 5855 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5856 if (cpu_has_load_perf_global_ctrl() && 5857 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5858 pr_err("PerfGlobCtl = 0x%016llx\n", 5859 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5860 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5861 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5862 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5863 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5864 vmcs_read32(GUEST_ACTIVITY_STATE)); 5865 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5866 pr_err("InterruptStatus = %04x\n", 5867 vmcs_read16(GUEST_INTR_STATUS)); 5868 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 5869 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 5870 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 5871 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 5872 5873 pr_err("*** Host State ***\n"); 5874 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5875 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5876 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5877 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5878 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5879 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5880 vmcs_read16(HOST_TR_SELECTOR)); 5881 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5882 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5883 vmcs_readl(HOST_TR_BASE)); 5884 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5885 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5886 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5887 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5888 vmcs_readl(HOST_CR4)); 5889 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5890 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5891 vmcs_read32(HOST_IA32_SYSENTER_CS), 5892 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5893 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 5894 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 5895 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 5896 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 5897 if (cpu_has_load_perf_global_ctrl() && 5898 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5899 pr_err("PerfGlobCtl = 0x%016llx\n", 5900 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5901 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 5902 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 5903 5904 pr_err("*** Control State ***\n"); 5905 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5906 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5907 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5908 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5909 vmcs_read32(EXCEPTION_BITMAP), 5910 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5911 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5912 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5913 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5914 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5915 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5916 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5917 vmcs_read32(VM_EXIT_INTR_INFO), 5918 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5919 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5920 pr_err(" reason=%08x qualification=%016lx\n", 5921 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5922 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5923 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5924 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5925 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5926 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5927 pr_err("TSC Multiplier = 0x%016llx\n", 5928 vmcs_read64(TSC_MULTIPLIER)); 5929 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5930 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5931 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5932 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5933 } 5934 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5935 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5936 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5937 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5938 } 5939 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 5940 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 5941 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 5942 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 5943 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 5944 pr_err("PLE Gap=%08x Window=%08x\n", 5945 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 5946 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 5947 pr_err("Virtual processor ID = 0x%04x\n", 5948 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 5949 } 5950 5951 /* 5952 * The guest has exited. See if we can fix it or if we need userspace 5953 * assistance. 5954 */ 5955 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 5956 { 5957 struct vcpu_vmx *vmx = to_vmx(vcpu); 5958 union vmx_exit_reason exit_reason = vmx->exit_reason; 5959 u32 vectoring_info = vmx->idt_vectoring_info; 5960 u16 exit_handler_index; 5961 5962 /* 5963 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 5964 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 5965 * querying dirty_bitmap, we only need to kick all vcpus out of guest 5966 * mode as if vcpus is in root mode, the PML buffer must has been 5967 * flushed already. Note, PML is never enabled in hardware while 5968 * running L2. 5969 */ 5970 if (enable_pml && !is_guest_mode(vcpu)) 5971 vmx_flush_pml_buffer(vcpu); 5972 5973 /* 5974 * KVM should never reach this point with a pending nested VM-Enter. 5975 * More specifically, short-circuiting VM-Entry to emulate L2 due to 5976 * invalid guest state should never happen as that means KVM knowingly 5977 * allowed a nested VM-Enter with an invalid vmcs12. More below. 5978 */ 5979 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 5980 return -EIO; 5981 5982 if (is_guest_mode(vcpu)) { 5983 /* 5984 * PML is never enabled when running L2, bail immediately if a 5985 * PML full exit occurs as something is horribly wrong. 5986 */ 5987 if (exit_reason.basic == EXIT_REASON_PML_FULL) 5988 goto unexpected_vmexit; 5989 5990 /* 5991 * The host physical addresses of some pages of guest memory 5992 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 5993 * Page). The CPU may write to these pages via their host 5994 * physical address while L2 is running, bypassing any 5995 * address-translation-based dirty tracking (e.g. EPT write 5996 * protection). 5997 * 5998 * Mark them dirty on every exit from L2 to prevent them from 5999 * getting out of sync with dirty tracking. 6000 */ 6001 nested_mark_vmcs12_pages_dirty(vcpu); 6002 6003 /* 6004 * Synthesize a triple fault if L2 state is invalid. In normal 6005 * operation, nested VM-Enter rejects any attempt to enter L2 6006 * with invalid state. However, those checks are skipped if 6007 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6008 * L2 state is invalid, it means either L1 modified SMRAM state 6009 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6010 * doing so is architecturally allowed in the RSM case, and is 6011 * the least awful solution for the userspace case without 6012 * risking false positives. 6013 */ 6014 if (vmx->emulation_required) { 6015 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6016 return 1; 6017 } 6018 6019 if (nested_vmx_reflect_vmexit(vcpu)) 6020 return 1; 6021 } 6022 6023 /* If guest state is invalid, start emulating. L2 is handled above. */ 6024 if (vmx->emulation_required) 6025 return handle_invalid_guest_state(vcpu); 6026 6027 if (exit_reason.failed_vmentry) { 6028 dump_vmcs(vcpu); 6029 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6030 vcpu->run->fail_entry.hardware_entry_failure_reason 6031 = exit_reason.full; 6032 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6033 return 0; 6034 } 6035 6036 if (unlikely(vmx->fail)) { 6037 dump_vmcs(vcpu); 6038 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6039 vcpu->run->fail_entry.hardware_entry_failure_reason 6040 = vmcs_read32(VM_INSTRUCTION_ERROR); 6041 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6042 return 0; 6043 } 6044 6045 /* 6046 * Note: 6047 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6048 * delivery event since it indicates guest is accessing MMIO. 6049 * The vm-exit can be triggered again after return to guest that 6050 * will cause infinite loop. 6051 */ 6052 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6053 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6054 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6055 exit_reason.basic != EXIT_REASON_PML_FULL && 6056 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6057 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) { 6058 int ndata = 3; 6059 6060 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6061 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6062 vcpu->run->internal.data[0] = vectoring_info; 6063 vcpu->run->internal.data[1] = exit_reason.full; 6064 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 6065 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6066 vcpu->run->internal.data[ndata++] = 6067 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6068 } 6069 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6070 vcpu->run->internal.ndata = ndata; 6071 return 0; 6072 } 6073 6074 if (unlikely(!enable_vnmi && 6075 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6076 if (!vmx_interrupt_blocked(vcpu)) { 6077 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6078 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6079 vcpu->arch.nmi_pending) { 6080 /* 6081 * This CPU don't support us in finding the end of an 6082 * NMI-blocked window if the guest runs with IRQs 6083 * disabled. So we pull the trigger after 1 s of 6084 * futile waiting, but inform the user about this. 6085 */ 6086 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6087 "state on VCPU %d after 1 s timeout\n", 6088 __func__, vcpu->vcpu_id); 6089 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6090 } 6091 } 6092 6093 if (exit_fastpath != EXIT_FASTPATH_NONE) 6094 return 1; 6095 6096 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6097 goto unexpected_vmexit; 6098 #ifdef CONFIG_RETPOLINE 6099 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6100 return kvm_emulate_wrmsr(vcpu); 6101 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6102 return handle_preemption_timer(vcpu); 6103 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6104 return handle_interrupt_window(vcpu); 6105 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6106 return handle_external_interrupt(vcpu); 6107 else if (exit_reason.basic == EXIT_REASON_HLT) 6108 return kvm_emulate_halt(vcpu); 6109 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6110 return handle_ept_misconfig(vcpu); 6111 #endif 6112 6113 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6114 kvm_vmx_max_exit_handlers); 6115 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6116 goto unexpected_vmexit; 6117 6118 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6119 6120 unexpected_vmexit: 6121 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6122 exit_reason.full); 6123 dump_vmcs(vcpu); 6124 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6125 vcpu->run->internal.suberror = 6126 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6127 vcpu->run->internal.ndata = 2; 6128 vcpu->run->internal.data[0] = exit_reason.full; 6129 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6130 return 0; 6131 } 6132 6133 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6134 { 6135 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6136 6137 /* 6138 * Exit to user space when bus lock detected to inform that there is 6139 * a bus lock in guest. 6140 */ 6141 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6142 if (ret > 0) 6143 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6144 6145 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6146 return 0; 6147 } 6148 return ret; 6149 } 6150 6151 /* 6152 * Software based L1D cache flush which is used when microcode providing 6153 * the cache control MSR is not loaded. 6154 * 6155 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6156 * flush it is required to read in 64 KiB because the replacement algorithm 6157 * is not exactly LRU. This could be sized at runtime via topology 6158 * information but as all relevant affected CPUs have 32KiB L1D cache size 6159 * there is no point in doing so. 6160 */ 6161 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6162 { 6163 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6164 6165 /* 6166 * This code is only executed when the the flush mode is 'cond' or 6167 * 'always' 6168 */ 6169 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6170 bool flush_l1d; 6171 6172 /* 6173 * Clear the per-vcpu flush bit, it gets set again 6174 * either from vcpu_run() or from one of the unsafe 6175 * VMEXIT handlers. 6176 */ 6177 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6178 vcpu->arch.l1tf_flush_l1d = false; 6179 6180 /* 6181 * Clear the per-cpu flush bit, it gets set again from 6182 * the interrupt handlers. 6183 */ 6184 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6185 kvm_clear_cpu_l1tf_flush_l1d(); 6186 6187 if (!flush_l1d) 6188 return; 6189 } 6190 6191 vcpu->stat.l1d_flush++; 6192 6193 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6194 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6195 return; 6196 } 6197 6198 asm volatile( 6199 /* First ensure the pages are in the TLB */ 6200 "xorl %%eax, %%eax\n" 6201 ".Lpopulate_tlb:\n\t" 6202 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6203 "addl $4096, %%eax\n\t" 6204 "cmpl %%eax, %[size]\n\t" 6205 "jne .Lpopulate_tlb\n\t" 6206 "xorl %%eax, %%eax\n\t" 6207 "cpuid\n\t" 6208 /* Now fill the cache */ 6209 "xorl %%eax, %%eax\n" 6210 ".Lfill_cache:\n" 6211 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6212 "addl $64, %%eax\n\t" 6213 "cmpl %%eax, %[size]\n\t" 6214 "jne .Lfill_cache\n\t" 6215 "lfence\n" 6216 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6217 [size] "r" (size) 6218 : "eax", "ebx", "ecx", "edx"); 6219 } 6220 6221 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6222 { 6223 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6224 int tpr_threshold; 6225 6226 if (is_guest_mode(vcpu) && 6227 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6228 return; 6229 6230 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6231 if (is_guest_mode(vcpu)) 6232 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6233 else 6234 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6235 } 6236 6237 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6238 { 6239 struct vcpu_vmx *vmx = to_vmx(vcpu); 6240 u32 sec_exec_control; 6241 6242 if (!lapic_in_kernel(vcpu)) 6243 return; 6244 6245 if (!flexpriority_enabled && 6246 !cpu_has_vmx_virtualize_x2apic_mode()) 6247 return; 6248 6249 /* Postpone execution until vmcs01 is the current VMCS. */ 6250 if (is_guest_mode(vcpu)) { 6251 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6252 return; 6253 } 6254 6255 sec_exec_control = secondary_exec_controls_get(vmx); 6256 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6257 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6258 6259 switch (kvm_get_apic_mode(vcpu)) { 6260 case LAPIC_MODE_INVALID: 6261 WARN_ONCE(true, "Invalid local APIC state"); 6262 break; 6263 case LAPIC_MODE_DISABLED: 6264 break; 6265 case LAPIC_MODE_XAPIC: 6266 if (flexpriority_enabled) { 6267 sec_exec_control |= 6268 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6269 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6270 6271 /* 6272 * Flush the TLB, reloading the APIC access page will 6273 * only do so if its physical address has changed, but 6274 * the guest may have inserted a non-APIC mapping into 6275 * the TLB while the APIC access page was disabled. 6276 */ 6277 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6278 } 6279 break; 6280 case LAPIC_MODE_X2APIC: 6281 if (cpu_has_vmx_virtualize_x2apic_mode()) 6282 sec_exec_control |= 6283 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6284 break; 6285 } 6286 secondary_exec_controls_set(vmx, sec_exec_control); 6287 6288 vmx_update_msr_bitmap_x2apic(vcpu); 6289 } 6290 6291 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6292 { 6293 struct page *page; 6294 6295 /* Defer reload until vmcs01 is the current VMCS. */ 6296 if (is_guest_mode(vcpu)) { 6297 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6298 return; 6299 } 6300 6301 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6302 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6303 return; 6304 6305 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6306 if (is_error_page(page)) 6307 return; 6308 6309 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page)); 6310 vmx_flush_tlb_current(vcpu); 6311 6312 /* 6313 * Do not pin apic access page in memory, the MMU notifier 6314 * will call us again if it is migrated or swapped out. 6315 */ 6316 put_page(page); 6317 } 6318 6319 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6320 { 6321 u16 status; 6322 u8 old; 6323 6324 if (max_isr == -1) 6325 max_isr = 0; 6326 6327 status = vmcs_read16(GUEST_INTR_STATUS); 6328 old = status >> 8; 6329 if (max_isr != old) { 6330 status &= 0xff; 6331 status |= max_isr << 8; 6332 vmcs_write16(GUEST_INTR_STATUS, status); 6333 } 6334 } 6335 6336 static void vmx_set_rvi(int vector) 6337 { 6338 u16 status; 6339 u8 old; 6340 6341 if (vector == -1) 6342 vector = 0; 6343 6344 status = vmcs_read16(GUEST_INTR_STATUS); 6345 old = (u8)status & 0xff; 6346 if ((u8)vector != old) { 6347 status &= ~0xff; 6348 status |= (u8)vector; 6349 vmcs_write16(GUEST_INTR_STATUS, status); 6350 } 6351 } 6352 6353 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6354 { 6355 /* 6356 * When running L2, updating RVI is only relevant when 6357 * vmcs12 virtual-interrupt-delivery enabled. 6358 * However, it can be enabled only when L1 also 6359 * intercepts external-interrupts and in that case 6360 * we should not update vmcs02 RVI but instead intercept 6361 * interrupt. Therefore, do nothing when running L2. 6362 */ 6363 if (!is_guest_mode(vcpu)) 6364 vmx_set_rvi(max_irr); 6365 } 6366 6367 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6368 { 6369 struct vcpu_vmx *vmx = to_vmx(vcpu); 6370 int max_irr; 6371 bool got_posted_interrupt; 6372 6373 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6374 return -EIO; 6375 6376 if (pi_test_on(&vmx->pi_desc)) { 6377 pi_clear_on(&vmx->pi_desc); 6378 /* 6379 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6380 * But on x86 this is just a compiler barrier anyway. 6381 */ 6382 smp_mb__after_atomic(); 6383 got_posted_interrupt = 6384 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6385 } else { 6386 max_irr = kvm_lapic_find_highest_irr(vcpu); 6387 got_posted_interrupt = false; 6388 } 6389 6390 /* 6391 * Newly recognized interrupts are injected via either virtual interrupt 6392 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6393 * disabled in two cases: 6394 * 6395 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6396 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6397 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6398 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6399 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6400 * 6401 * 2) If APICv is disabled for this vCPU, assigned devices may still 6402 * attempt to post interrupts. The posted interrupt vector will cause 6403 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6404 */ 6405 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6406 vmx_set_rvi(max_irr); 6407 else if (got_posted_interrupt) 6408 kvm_make_request(KVM_REQ_EVENT, vcpu); 6409 6410 return max_irr; 6411 } 6412 6413 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6414 { 6415 if (!kvm_vcpu_apicv_active(vcpu)) 6416 return; 6417 6418 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6419 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6420 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6421 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6422 } 6423 6424 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6425 { 6426 struct vcpu_vmx *vmx = to_vmx(vcpu); 6427 6428 pi_clear_on(&vmx->pi_desc); 6429 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6430 } 6431 6432 void vmx_do_interrupt_nmi_irqoff(unsigned long entry); 6433 6434 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, 6435 unsigned long entry) 6436 { 6437 bool is_nmi = entry == (unsigned long)asm_exc_nmi_noist; 6438 6439 kvm_before_interrupt(vcpu, is_nmi ? KVM_HANDLING_NMI : KVM_HANDLING_IRQ); 6440 vmx_do_interrupt_nmi_irqoff(entry); 6441 kvm_after_interrupt(vcpu); 6442 } 6443 6444 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6445 { 6446 /* 6447 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6448 * MSR value is not clobbered by the host activity before the guest 6449 * has chance to consume it. 6450 * 6451 * Do not blindly read xfd_err here, since this exception might 6452 * be caused by L1 interception on a platform which doesn't 6453 * support xfd at all. 6454 * 6455 * Do it conditionally upon guest_fpu::xfd. xfd_err matters 6456 * only when xfd contains a non-zero value. 6457 * 6458 * Queuing exception is done in vmx_handle_exit. See comment there. 6459 */ 6460 if (vcpu->arch.guest_fpu.fpstate->xfd) 6461 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 6462 } 6463 6464 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) 6465 { 6466 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist; 6467 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6468 6469 /* if exit due to PF check for async PF */ 6470 if (is_page_fault(intr_info)) 6471 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6472 /* if exit due to NM, handle before interrupts are enabled */ 6473 else if (is_nm_fault(intr_info)) 6474 handle_nm_fault_irqoff(&vmx->vcpu); 6475 /* Handle machine checks before interrupts are enabled */ 6476 else if (is_machine_check(intr_info)) 6477 kvm_machine_check(); 6478 /* We need to handle NMIs before interrupts are enabled */ 6479 else if (is_nmi(intr_info)) 6480 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry); 6481 } 6482 6483 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6484 { 6485 u32 intr_info = vmx_get_intr_info(vcpu); 6486 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6487 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6488 6489 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6490 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6491 return; 6492 6493 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc)); 6494 } 6495 6496 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6497 { 6498 struct vcpu_vmx *vmx = to_vmx(vcpu); 6499 6500 if (vmx->emulation_required) 6501 return; 6502 6503 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6504 handle_external_interrupt_irqoff(vcpu); 6505 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6506 handle_exception_nmi_irqoff(vmx); 6507 } 6508 6509 /* 6510 * The kvm parameter can be NULL (module initialization, or invocation before 6511 * VM creation). Be sure to check the kvm parameter before using it. 6512 */ 6513 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6514 { 6515 switch (index) { 6516 case MSR_IA32_SMBASE: 6517 /* 6518 * We cannot do SMM unless we can run the guest in big 6519 * real mode. 6520 */ 6521 return enable_unrestricted_guest || emulate_invalid_guest_state; 6522 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 6523 return nested; 6524 case MSR_AMD64_VIRT_SPEC_CTRL: 6525 case MSR_AMD64_TSC_RATIO: 6526 /* This is AMD only. */ 6527 return false; 6528 default: 6529 return true; 6530 } 6531 } 6532 6533 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6534 { 6535 u32 exit_intr_info; 6536 bool unblock_nmi; 6537 u8 vector; 6538 bool idtv_info_valid; 6539 6540 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6541 6542 if (enable_vnmi) { 6543 if (vmx->loaded_vmcs->nmi_known_unmasked) 6544 return; 6545 6546 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 6547 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6548 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6549 /* 6550 * SDM 3: 27.7.1.2 (September 2008) 6551 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6552 * a guest IRET fault. 6553 * SDM 3: 23.2.2 (September 2008) 6554 * Bit 12 is undefined in any of the following cases: 6555 * If the VM exit sets the valid bit in the IDT-vectoring 6556 * information field. 6557 * If the VM exit is due to a double fault. 6558 */ 6559 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6560 vector != DF_VECTOR && !idtv_info_valid) 6561 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6562 GUEST_INTR_STATE_NMI); 6563 else 6564 vmx->loaded_vmcs->nmi_known_unmasked = 6565 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6566 & GUEST_INTR_STATE_NMI); 6567 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6568 vmx->loaded_vmcs->vnmi_blocked_time += 6569 ktime_to_ns(ktime_sub(ktime_get(), 6570 vmx->loaded_vmcs->entry_time)); 6571 } 6572 6573 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6574 u32 idt_vectoring_info, 6575 int instr_len_field, 6576 int error_code_field) 6577 { 6578 u8 vector; 6579 int type; 6580 bool idtv_info_valid; 6581 6582 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6583 6584 vcpu->arch.nmi_injected = false; 6585 kvm_clear_exception_queue(vcpu); 6586 kvm_clear_interrupt_queue(vcpu); 6587 6588 if (!idtv_info_valid) 6589 return; 6590 6591 kvm_make_request(KVM_REQ_EVENT, vcpu); 6592 6593 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6594 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6595 6596 switch (type) { 6597 case INTR_TYPE_NMI_INTR: 6598 vcpu->arch.nmi_injected = true; 6599 /* 6600 * SDM 3: 27.7.1.2 (September 2008) 6601 * Clear bit "block by NMI" before VM entry if a NMI 6602 * delivery faulted. 6603 */ 6604 vmx_set_nmi_mask(vcpu, false); 6605 break; 6606 case INTR_TYPE_SOFT_EXCEPTION: 6607 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6608 fallthrough; 6609 case INTR_TYPE_HARD_EXCEPTION: 6610 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6611 u32 err = vmcs_read32(error_code_field); 6612 kvm_requeue_exception_e(vcpu, vector, err); 6613 } else 6614 kvm_requeue_exception(vcpu, vector); 6615 break; 6616 case INTR_TYPE_SOFT_INTR: 6617 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6618 fallthrough; 6619 case INTR_TYPE_EXT_INTR: 6620 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6621 break; 6622 default: 6623 break; 6624 } 6625 } 6626 6627 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6628 { 6629 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6630 VM_EXIT_INSTRUCTION_LEN, 6631 IDT_VECTORING_ERROR_CODE); 6632 } 6633 6634 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6635 { 6636 __vmx_complete_interrupts(vcpu, 6637 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6638 VM_ENTRY_INSTRUCTION_LEN, 6639 VM_ENTRY_EXCEPTION_ERROR_CODE); 6640 6641 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6642 } 6643 6644 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6645 { 6646 int i, nr_msrs; 6647 struct perf_guest_switch_msr *msrs; 6648 6649 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 6650 msrs = perf_guest_get_msrs(&nr_msrs); 6651 if (!msrs) 6652 return; 6653 6654 for (i = 0; i < nr_msrs; i++) 6655 if (msrs[i].host == msrs[i].guest) 6656 clear_atomic_switch_msr(vmx, msrs[i].msr); 6657 else 6658 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6659 msrs[i].host, false); 6660 } 6661 6662 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6663 { 6664 struct vcpu_vmx *vmx = to_vmx(vcpu); 6665 u64 tscl; 6666 u32 delta_tsc; 6667 6668 if (vmx->req_immediate_exit) { 6669 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 6670 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6671 } else if (vmx->hv_deadline_tsc != -1) { 6672 tscl = rdtsc(); 6673 if (vmx->hv_deadline_tsc > tscl) 6674 /* set_hv_timer ensures the delta fits in 32-bits */ 6675 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6676 cpu_preemption_timer_multi); 6677 else 6678 delta_tsc = 0; 6679 6680 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 6681 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6682 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 6683 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 6684 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 6685 } 6686 } 6687 6688 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6689 { 6690 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6691 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6692 vmcs_writel(HOST_RSP, host_rsp); 6693 } 6694 } 6695 6696 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 6697 { 6698 switch (to_vmx(vcpu)->exit_reason.basic) { 6699 case EXIT_REASON_MSR_WRITE: 6700 return handle_fastpath_set_msr_irqoff(vcpu); 6701 case EXIT_REASON_PREEMPTION_TIMER: 6702 return handle_fastpath_preemption_timer(vcpu); 6703 default: 6704 return EXIT_FASTPATH_NONE; 6705 } 6706 } 6707 6708 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 6709 struct vcpu_vmx *vmx) 6710 { 6711 kvm_guest_enter_irqoff(); 6712 6713 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6714 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6715 vmx_l1d_flush(vcpu); 6716 else if (static_branch_unlikely(&mds_user_clear)) 6717 mds_clear_cpu_buffers(); 6718 6719 if (vcpu->arch.cr2 != native_read_cr2()) 6720 native_write_cr2(vcpu->arch.cr2); 6721 6722 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6723 vmx->loaded_vmcs->launched); 6724 6725 vcpu->arch.cr2 = native_read_cr2(); 6726 6727 kvm_guest_exit_irqoff(); 6728 } 6729 6730 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 6731 { 6732 struct vcpu_vmx *vmx = to_vmx(vcpu); 6733 unsigned long cr4; 6734 6735 /* Record the guest's net vcpu time for enforced NMI injections. */ 6736 if (unlikely(!enable_vnmi && 6737 vmx->loaded_vmcs->soft_vnmi_blocked)) 6738 vmx->loaded_vmcs->entry_time = ktime_get(); 6739 6740 /* 6741 * Don't enter VMX if guest state is invalid, let the exit handler 6742 * start emulation until we arrive back to a valid state. Synthesize a 6743 * consistency check VM-Exit due to invalid guest state and bail. 6744 */ 6745 if (unlikely(vmx->emulation_required)) { 6746 vmx->fail = 0; 6747 6748 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 6749 vmx->exit_reason.failed_vmentry = 1; 6750 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 6751 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 6752 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 6753 vmx->exit_intr_info = 0; 6754 return EXIT_FASTPATH_NONE; 6755 } 6756 6757 trace_kvm_entry(vcpu); 6758 6759 if (vmx->ple_window_dirty) { 6760 vmx->ple_window_dirty = false; 6761 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6762 } 6763 6764 /* 6765 * We did this in prepare_switch_to_guest, because it needs to 6766 * be within srcu_read_lock. 6767 */ 6768 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 6769 6770 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 6771 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6772 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 6773 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6774 vcpu->arch.regs_dirty = 0; 6775 6776 cr4 = cr4_read_shadow(); 6777 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6778 vmcs_writel(HOST_CR4, cr4); 6779 vmx->loaded_vmcs->host_state.cr4 = cr4; 6780 } 6781 6782 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 6783 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 6784 set_debugreg(vcpu->arch.dr6, 6); 6785 6786 /* When single-stepping over STI and MOV SS, we must clear the 6787 * corresponding interruptibility bits in the guest state. Otherwise 6788 * vmentry fails as it then expects bit 14 (BS) in pending debug 6789 * exceptions being set, but that's not correct for the guest debugging 6790 * case. */ 6791 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6792 vmx_set_interrupt_shadow(vcpu, 0); 6793 6794 kvm_load_guest_xsave_state(vcpu); 6795 6796 pt_guest_enter(vmx); 6797 6798 atomic_switch_perf_msrs(vmx); 6799 if (intel_pmu_lbr_is_enabled(vcpu)) 6800 vmx_passthrough_lbr_msrs(vcpu); 6801 6802 if (enable_preemption_timer) 6803 vmx_update_hv_timer(vcpu); 6804 6805 kvm_wait_lapic_expire(vcpu); 6806 6807 /* 6808 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6809 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6810 * is no need to worry about the conditional branch over the wrmsr 6811 * being speculatively taken. 6812 */ 6813 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6814 6815 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 6816 vmx_vcpu_enter_exit(vcpu, vmx); 6817 6818 /* 6819 * We do not use IBRS in the kernel. If this vCPU has used the 6820 * SPEC_CTRL MSR it may have left it on; save the value and 6821 * turn it off. This is much more efficient than blindly adding 6822 * it to the atomic save/restore list. Especially as the former 6823 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6824 * 6825 * For non-nested case: 6826 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6827 * save it. 6828 * 6829 * For nested case: 6830 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6831 * save it. 6832 */ 6833 if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))) 6834 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6835 6836 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6837 6838 /* All fields are clean at this point */ 6839 if (static_branch_unlikely(&enable_evmcs)) { 6840 current_evmcs->hv_clean_fields |= 6841 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6842 6843 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 6844 } 6845 6846 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6847 if (vmx->host_debugctlmsr) 6848 update_debugctlmsr(vmx->host_debugctlmsr); 6849 6850 #ifndef CONFIG_X86_64 6851 /* 6852 * The sysexit path does not restore ds/es, so we must set them to 6853 * a reasonable value ourselves. 6854 * 6855 * We can't defer this to vmx_prepare_switch_to_host() since that 6856 * function may be executed in interrupt context, which saves and 6857 * restore segments around it, nullifying its effect. 6858 */ 6859 loadsegment(ds, __USER_DS); 6860 loadsegment(es, __USER_DS); 6861 #endif 6862 6863 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 6864 6865 pt_guest_exit(vmx); 6866 6867 kvm_load_host_xsave_state(vcpu); 6868 6869 if (is_guest_mode(vcpu)) { 6870 /* 6871 * Track VMLAUNCH/VMRESUME that have made past guest state 6872 * checking. 6873 */ 6874 if (vmx->nested.nested_run_pending && 6875 !vmx->exit_reason.failed_vmentry) 6876 ++vcpu->stat.nested_run; 6877 6878 vmx->nested.nested_run_pending = 0; 6879 } 6880 6881 vmx->idt_vectoring_info = 0; 6882 6883 if (unlikely(vmx->fail)) { 6884 vmx->exit_reason.full = 0xdead; 6885 return EXIT_FASTPATH_NONE; 6886 } 6887 6888 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 6889 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 6890 kvm_machine_check(); 6891 6892 if (likely(!vmx->exit_reason.failed_vmentry)) 6893 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6894 6895 trace_kvm_exit(vcpu, KVM_ISA_VMX); 6896 6897 if (unlikely(vmx->exit_reason.failed_vmentry)) 6898 return EXIT_FASTPATH_NONE; 6899 6900 vmx->loaded_vmcs->launched = 1; 6901 6902 vmx_recover_nmi_blocking(vmx); 6903 vmx_complete_interrupts(vmx); 6904 6905 if (is_guest_mode(vcpu)) 6906 return EXIT_FASTPATH_NONE; 6907 6908 return vmx_exit_handlers_fastpath(vcpu); 6909 } 6910 6911 static void vmx_free_vcpu(struct kvm_vcpu *vcpu) 6912 { 6913 struct vcpu_vmx *vmx = to_vmx(vcpu); 6914 6915 if (enable_pml) 6916 vmx_destroy_pml_buffer(vmx); 6917 free_vpid(vmx->vpid); 6918 nested_vmx_free_vcpu(vcpu); 6919 free_loaded_vmcs(vmx->loaded_vmcs); 6920 } 6921 6922 static int vmx_create_vcpu(struct kvm_vcpu *vcpu) 6923 { 6924 struct vmx_uret_msr *tsx_ctrl; 6925 struct vcpu_vmx *vmx; 6926 int i, err; 6927 6928 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 6929 vmx = to_vmx(vcpu); 6930 6931 err = -ENOMEM; 6932 6933 vmx->vpid = allocate_vpid(); 6934 6935 /* 6936 * If PML is turned on, failure on enabling PML just results in failure 6937 * of creating the vcpu, therefore we can simplify PML logic (by 6938 * avoiding dealing with cases, such as enabling PML partially on vcpus 6939 * for the guest), etc. 6940 */ 6941 if (enable_pml) { 6942 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 6943 if (!vmx->pml_pg) 6944 goto free_vpid; 6945 } 6946 6947 for (i = 0; i < kvm_nr_uret_msrs; ++i) 6948 vmx->guest_uret_msrs[i].mask = -1ull; 6949 if (boot_cpu_has(X86_FEATURE_RTM)) { 6950 /* 6951 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 6952 * Keep the host value unchanged to avoid changing CPUID bits 6953 * under the host kernel's feet. 6954 */ 6955 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 6956 if (tsx_ctrl) 6957 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 6958 } 6959 6960 err = alloc_loaded_vmcs(&vmx->vmcs01); 6961 if (err < 0) 6962 goto free_pml; 6963 6964 /* 6965 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 6966 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 6967 * feature only for vmcs01, KVM currently isn't equipped to realize any 6968 * performance benefits from enabling it for vmcs02. 6969 */ 6970 if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) && 6971 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 6972 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 6973 6974 evmcs->hv_enlightenments_control.msr_bitmap = 1; 6975 } 6976 6977 /* The MSR bitmap starts with all ones */ 6978 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6979 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6980 6981 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 6982 #ifdef CONFIG_X86_64 6983 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 6984 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 6985 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 6986 #endif 6987 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 6988 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 6989 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 6990 if (kvm_cstate_in_guest(vcpu->kvm)) { 6991 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 6992 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 6993 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 6994 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 6995 } 6996 6997 vmx->loaded_vmcs = &vmx->vmcs01; 6998 6999 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7000 err = alloc_apic_access_page(vcpu->kvm); 7001 if (err) 7002 goto free_vmcs; 7003 } 7004 7005 if (enable_ept && !enable_unrestricted_guest) { 7006 err = init_rmode_identity_map(vcpu->kvm); 7007 if (err) 7008 goto free_vmcs; 7009 } 7010 7011 return 0; 7012 7013 free_vmcs: 7014 free_loaded_vmcs(vmx->loaded_vmcs); 7015 free_pml: 7016 vmx_destroy_pml_buffer(vmx); 7017 free_vpid: 7018 free_vpid(vmx->vpid); 7019 return err; 7020 } 7021 7022 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7023 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7024 7025 static int vmx_vm_init(struct kvm *kvm) 7026 { 7027 if (!ple_gap) 7028 kvm->arch.pause_in_guest = true; 7029 7030 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7031 switch (l1tf_mitigation) { 7032 case L1TF_MITIGATION_OFF: 7033 case L1TF_MITIGATION_FLUSH_NOWARN: 7034 /* 'I explicitly don't care' is set */ 7035 break; 7036 case L1TF_MITIGATION_FLUSH: 7037 case L1TF_MITIGATION_FLUSH_NOSMT: 7038 case L1TF_MITIGATION_FULL: 7039 /* 7040 * Warn upon starting the first VM in a potentially 7041 * insecure environment. 7042 */ 7043 if (sched_smt_active()) 7044 pr_warn_once(L1TF_MSG_SMT); 7045 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7046 pr_warn_once(L1TF_MSG_L1D); 7047 break; 7048 case L1TF_MITIGATION_FULL_FORCE: 7049 /* Flush is enforced */ 7050 break; 7051 } 7052 } 7053 return 0; 7054 } 7055 7056 static int __init vmx_check_processor_compat(void) 7057 { 7058 struct vmcs_config vmcs_conf; 7059 struct vmx_capability vmx_cap; 7060 7061 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 7062 !this_cpu_has(X86_FEATURE_VMX)) { 7063 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id()); 7064 return -EIO; 7065 } 7066 7067 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 7068 return -EIO; 7069 if (nested) 7070 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept); 7071 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 7072 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 7073 smp_processor_id()); 7074 return -EIO; 7075 } 7076 return 0; 7077 } 7078 7079 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7080 { 7081 u8 cache; 7082 7083 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 7084 * memory aliases with conflicting memory types and sometimes MCEs. 7085 * We have to be careful as to what are honored and when. 7086 * 7087 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 7088 * UC. The effective memory type is UC or WC depending on guest PAT. 7089 * This was historically the source of MCEs and we want to be 7090 * conservative. 7091 * 7092 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7093 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7094 * EPT memory type is set to WB. The effective memory type is forced 7095 * WB. 7096 * 7097 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7098 * EPT memory type is used to emulate guest CD/MTRR. 7099 */ 7100 7101 if (is_mmio) 7102 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7103 7104 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) 7105 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7106 7107 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 7108 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7109 cache = MTRR_TYPE_WRBACK; 7110 else 7111 cache = MTRR_TYPE_UNCACHABLE; 7112 7113 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7114 } 7115 7116 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT; 7117 } 7118 7119 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7120 { 7121 /* 7122 * These bits in the secondary execution controls field 7123 * are dynamic, the others are mostly based on the hypervisor 7124 * architecture and the guest's CPUID. Do not touch the 7125 * dynamic bits. 7126 */ 7127 u32 mask = 7128 SECONDARY_EXEC_SHADOW_VMCS | 7129 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7130 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7131 SECONDARY_EXEC_DESC; 7132 7133 u32 cur_ctl = secondary_exec_controls_get(vmx); 7134 7135 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7136 } 7137 7138 /* 7139 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7140 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7141 */ 7142 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7143 { 7144 struct vcpu_vmx *vmx = to_vmx(vcpu); 7145 struct kvm_cpuid_entry2 *entry; 7146 7147 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7148 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7149 7150 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7151 if (entry && (entry->_reg & (_cpuid_mask))) \ 7152 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7153 } while (0) 7154 7155 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 7156 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7157 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7158 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7159 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7160 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7161 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7162 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7163 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7164 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7165 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7166 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7167 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7168 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7169 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7170 7171 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 7172 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7173 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7174 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7175 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7176 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7177 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7178 7179 #undef cr4_fixed1_update 7180 } 7181 7182 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 7183 { 7184 struct vcpu_vmx *vmx = to_vmx(vcpu); 7185 7186 if (kvm_mpx_supported()) { 7187 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 7188 7189 if (mpx_enabled) { 7190 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 7191 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 7192 } else { 7193 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 7194 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 7195 } 7196 } 7197 } 7198 7199 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7200 { 7201 struct vcpu_vmx *vmx = to_vmx(vcpu); 7202 struct kvm_cpuid_entry2 *best = NULL; 7203 int i; 7204 7205 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7206 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 7207 if (!best) 7208 return; 7209 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7210 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7211 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7212 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7213 } 7214 7215 /* Get the number of configurable Address Ranges for filtering */ 7216 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7217 PT_CAP_num_address_ranges); 7218 7219 /* Initialize and clear the no dependency bits */ 7220 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7221 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7222 RTIT_CTL_BRANCH_EN); 7223 7224 /* 7225 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7226 * will inject an #GP 7227 */ 7228 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7229 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7230 7231 /* 7232 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7233 * PSBFreq can be set 7234 */ 7235 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7236 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7237 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7238 7239 /* 7240 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7241 */ 7242 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7243 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7244 RTIT_CTL_MTC_RANGE); 7245 7246 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7247 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7248 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7249 RTIT_CTL_PTW_EN); 7250 7251 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7252 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7253 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7254 7255 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7256 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7257 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7258 7259 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7260 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7261 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7262 7263 /* unmask address range configure area */ 7264 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7265 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7266 } 7267 7268 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7269 { 7270 struct vcpu_vmx *vmx = to_vmx(vcpu); 7271 7272 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7273 vcpu->arch.xsaves_enabled = false; 7274 7275 vmx_setup_uret_msrs(vmx); 7276 7277 if (cpu_has_secondary_exec_ctrls()) 7278 vmcs_set_secondary_exec_control(vmx, 7279 vmx_secondary_exec_control(vmx)); 7280 7281 if (nested_vmx_allowed(vcpu)) 7282 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7283 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7284 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7285 else 7286 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7287 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7288 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7289 7290 if (nested_vmx_allowed(vcpu)) { 7291 nested_vmx_cr_fixed1_bits_update(vcpu); 7292 nested_vmx_entry_exit_ctls_update(vcpu); 7293 } 7294 7295 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7296 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7297 update_intel_pt_cfg(vcpu); 7298 7299 if (boot_cpu_has(X86_FEATURE_RTM)) { 7300 struct vmx_uret_msr *msr; 7301 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7302 if (msr) { 7303 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7304 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7305 } 7306 } 7307 7308 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 7309 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 7310 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); 7311 7312 7313 set_cr4_guest_host_mask(vmx); 7314 7315 vmx_write_encls_bitmap(vcpu, NULL); 7316 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7317 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7318 else 7319 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7320 7321 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7322 vmx->msr_ia32_feature_control_valid_bits |= 7323 FEAT_CTL_SGX_LC_ENABLED; 7324 else 7325 vmx->msr_ia32_feature_control_valid_bits &= 7326 ~FEAT_CTL_SGX_LC_ENABLED; 7327 7328 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7329 vmx_update_exception_bitmap(vcpu); 7330 } 7331 7332 static __init void vmx_set_cpu_caps(void) 7333 { 7334 kvm_set_cpu_caps(); 7335 7336 /* CPUID 0x1 */ 7337 if (nested) 7338 kvm_cpu_cap_set(X86_FEATURE_VMX); 7339 7340 /* CPUID 0x7 */ 7341 if (kvm_mpx_supported()) 7342 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7343 if (!cpu_has_vmx_invpcid()) 7344 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7345 if (vmx_pt_mode_is_host_guest()) 7346 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7347 7348 if (!enable_sgx) { 7349 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7350 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7351 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7352 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7353 } 7354 7355 if (vmx_umip_emulated()) 7356 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7357 7358 /* CPUID 0xD.1 */ 7359 supported_xss = 0; 7360 if (!cpu_has_vmx_xsaves()) 7361 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7362 7363 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7364 if (!cpu_has_vmx_rdtscp()) { 7365 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7366 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7367 } 7368 7369 if (cpu_has_vmx_waitpkg()) 7370 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7371 } 7372 7373 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7374 { 7375 to_vmx(vcpu)->req_immediate_exit = true; 7376 } 7377 7378 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7379 struct x86_instruction_info *info) 7380 { 7381 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7382 unsigned short port; 7383 bool intercept; 7384 int size; 7385 7386 if (info->intercept == x86_intercept_in || 7387 info->intercept == x86_intercept_ins) { 7388 port = info->src_val; 7389 size = info->dst_bytes; 7390 } else { 7391 port = info->dst_val; 7392 size = info->src_bytes; 7393 } 7394 7395 /* 7396 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7397 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7398 * control. 7399 * 7400 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7401 */ 7402 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7403 intercept = nested_cpu_has(vmcs12, 7404 CPU_BASED_UNCOND_IO_EXITING); 7405 else 7406 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7407 7408 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7409 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7410 } 7411 7412 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7413 struct x86_instruction_info *info, 7414 enum x86_intercept_stage stage, 7415 struct x86_exception *exception) 7416 { 7417 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7418 7419 switch (info->intercept) { 7420 /* 7421 * RDPID causes #UD if disabled through secondary execution controls. 7422 * Because it is marked as EmulateOnUD, we need to intercept it here. 7423 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7424 */ 7425 case x86_intercept_rdpid: 7426 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7427 exception->vector = UD_VECTOR; 7428 exception->error_code_valid = false; 7429 return X86EMUL_PROPAGATE_FAULT; 7430 } 7431 break; 7432 7433 case x86_intercept_in: 7434 case x86_intercept_ins: 7435 case x86_intercept_out: 7436 case x86_intercept_outs: 7437 return vmx_check_intercept_io(vcpu, info); 7438 7439 case x86_intercept_lgdt: 7440 case x86_intercept_lidt: 7441 case x86_intercept_lldt: 7442 case x86_intercept_ltr: 7443 case x86_intercept_sgdt: 7444 case x86_intercept_sidt: 7445 case x86_intercept_sldt: 7446 case x86_intercept_str: 7447 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7448 return X86EMUL_CONTINUE; 7449 7450 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7451 break; 7452 7453 /* TODO: check more intercepts... */ 7454 default: 7455 break; 7456 } 7457 7458 return X86EMUL_UNHANDLEABLE; 7459 } 7460 7461 #ifdef CONFIG_X86_64 7462 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7463 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7464 u64 divisor, u64 *result) 7465 { 7466 u64 low = a << shift, high = a >> (64 - shift); 7467 7468 /* To avoid the overflow on divq */ 7469 if (high >= divisor) 7470 return 1; 7471 7472 /* Low hold the result, high hold rem which is discarded */ 7473 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7474 "rm" (divisor), "0" (low), "1" (high)); 7475 *result = low; 7476 7477 return 0; 7478 } 7479 7480 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7481 bool *expired) 7482 { 7483 struct vcpu_vmx *vmx; 7484 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7485 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7486 7487 vmx = to_vmx(vcpu); 7488 tscl = rdtsc(); 7489 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7490 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7491 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7492 ktimer->timer_advance_ns); 7493 7494 if (delta_tsc > lapic_timer_advance_cycles) 7495 delta_tsc -= lapic_timer_advance_cycles; 7496 else 7497 delta_tsc = 0; 7498 7499 /* Convert to host delta tsc if tsc scaling is enabled */ 7500 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7501 delta_tsc && u64_shl_div_u64(delta_tsc, 7502 kvm_tsc_scaling_ratio_frac_bits, 7503 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 7504 return -ERANGE; 7505 7506 /* 7507 * If the delta tsc can't fit in the 32 bit after the multi shift, 7508 * we can't use the preemption timer. 7509 * It's possible that it fits on later vmentries, but checking 7510 * on every vmentry is costly so we just use an hrtimer. 7511 */ 7512 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7513 return -ERANGE; 7514 7515 vmx->hv_deadline_tsc = tscl + delta_tsc; 7516 *expired = !delta_tsc; 7517 return 0; 7518 } 7519 7520 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7521 { 7522 to_vmx(vcpu)->hv_deadline_tsc = -1; 7523 } 7524 #endif 7525 7526 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7527 { 7528 if (!kvm_pause_in_guest(vcpu->kvm)) 7529 shrink_ple_window(vcpu); 7530 } 7531 7532 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 7533 { 7534 struct vcpu_vmx *vmx = to_vmx(vcpu); 7535 7536 if (is_guest_mode(vcpu)) { 7537 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 7538 return; 7539 } 7540 7541 /* 7542 * Note, cpu_dirty_logging_count can be changed concurrent with this 7543 * code, but in that case another update request will be made and so 7544 * the guest will never run with a stale PML value. 7545 */ 7546 if (vcpu->kvm->arch.cpu_dirty_logging_count) 7547 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7548 else 7549 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7550 } 7551 7552 static int vmx_pre_block(struct kvm_vcpu *vcpu) 7553 { 7554 if (pi_pre_block(vcpu)) 7555 return 1; 7556 7557 if (kvm_lapic_hv_timer_in_use(vcpu)) 7558 kvm_lapic_switch_to_sw_timer(vcpu); 7559 7560 return 0; 7561 } 7562 7563 static void vmx_post_block(struct kvm_vcpu *vcpu) 7564 { 7565 if (kvm_x86_ops.set_hv_timer) 7566 kvm_lapic_switch_to_hv_timer(vcpu); 7567 7568 pi_post_block(vcpu); 7569 } 7570 7571 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7572 { 7573 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7574 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7575 FEAT_CTL_LMCE_ENABLED; 7576 else 7577 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7578 ~FEAT_CTL_LMCE_ENABLED; 7579 } 7580 7581 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 7582 { 7583 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7584 if (to_vmx(vcpu)->nested.nested_run_pending) 7585 return -EBUSY; 7586 return !is_smm(vcpu); 7587 } 7588 7589 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7590 { 7591 struct vcpu_vmx *vmx = to_vmx(vcpu); 7592 7593 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7594 if (vmx->nested.smm.guest_mode) 7595 nested_vmx_vmexit(vcpu, -1, 0, 0); 7596 7597 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7598 vmx->nested.vmxon = false; 7599 vmx_clear_hlt(vcpu); 7600 return 0; 7601 } 7602 7603 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7604 { 7605 struct vcpu_vmx *vmx = to_vmx(vcpu); 7606 int ret; 7607 7608 if (vmx->nested.smm.vmxon) { 7609 vmx->nested.vmxon = true; 7610 vmx->nested.smm.vmxon = false; 7611 } 7612 7613 if (vmx->nested.smm.guest_mode) { 7614 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7615 if (ret) 7616 return ret; 7617 7618 vmx->nested.smm.guest_mode = false; 7619 } 7620 return 0; 7621 } 7622 7623 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 7624 { 7625 /* RSM will cause a vmexit anyway. */ 7626 } 7627 7628 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 7629 { 7630 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 7631 } 7632 7633 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 7634 { 7635 if (is_guest_mode(vcpu)) { 7636 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 7637 7638 if (hrtimer_try_to_cancel(timer) == 1) 7639 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 7640 } 7641 } 7642 7643 static void hardware_unsetup(void) 7644 { 7645 kvm_set_posted_intr_wakeup_handler(NULL); 7646 7647 if (nested) 7648 nested_vmx_hardware_unsetup(); 7649 7650 free_kvm_area(); 7651 } 7652 7653 static bool vmx_check_apicv_inhibit_reasons(ulong bit) 7654 { 7655 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 7656 BIT(APICV_INHIBIT_REASON_ABSENT) | 7657 BIT(APICV_INHIBIT_REASON_HYPERV) | 7658 BIT(APICV_INHIBIT_REASON_BLOCKIRQ); 7659 7660 return supported & BIT(bit); 7661 } 7662 7663 static struct kvm_x86_ops vmx_x86_ops __initdata = { 7664 .name = "kvm_intel", 7665 7666 .hardware_unsetup = hardware_unsetup, 7667 7668 .hardware_enable = hardware_enable, 7669 .hardware_disable = hardware_disable, 7670 .cpu_has_accelerated_tpr = report_flexpriority, 7671 .has_emulated_msr = vmx_has_emulated_msr, 7672 7673 .vm_size = sizeof(struct kvm_vmx), 7674 .vm_init = vmx_vm_init, 7675 7676 .vcpu_create = vmx_create_vcpu, 7677 .vcpu_free = vmx_free_vcpu, 7678 .vcpu_reset = vmx_vcpu_reset, 7679 7680 .prepare_guest_switch = vmx_prepare_switch_to_guest, 7681 .vcpu_load = vmx_vcpu_load, 7682 .vcpu_put = vmx_vcpu_put, 7683 7684 .update_exception_bitmap = vmx_update_exception_bitmap, 7685 .get_msr_feature = vmx_get_msr_feature, 7686 .get_msr = vmx_get_msr, 7687 .set_msr = vmx_set_msr, 7688 .get_segment_base = vmx_get_segment_base, 7689 .get_segment = vmx_get_segment, 7690 .set_segment = vmx_set_segment, 7691 .get_cpl = vmx_get_cpl, 7692 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7693 .set_cr0 = vmx_set_cr0, 7694 .is_valid_cr4 = vmx_is_valid_cr4, 7695 .set_cr4 = vmx_set_cr4, 7696 .set_efer = vmx_set_efer, 7697 .get_idt = vmx_get_idt, 7698 .set_idt = vmx_set_idt, 7699 .get_gdt = vmx_get_gdt, 7700 .set_gdt = vmx_set_gdt, 7701 .set_dr7 = vmx_set_dr7, 7702 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7703 .cache_reg = vmx_cache_reg, 7704 .get_rflags = vmx_get_rflags, 7705 .set_rflags = vmx_set_rflags, 7706 .get_if_flag = vmx_get_if_flag, 7707 7708 .tlb_flush_all = vmx_flush_tlb_all, 7709 .tlb_flush_current = vmx_flush_tlb_current, 7710 .tlb_flush_gva = vmx_flush_tlb_gva, 7711 .tlb_flush_guest = vmx_flush_tlb_guest, 7712 7713 .run = vmx_vcpu_run, 7714 .handle_exit = vmx_handle_exit, 7715 .skip_emulated_instruction = vmx_skip_emulated_instruction, 7716 .update_emulated_instruction = vmx_update_emulated_instruction, 7717 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7718 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7719 .patch_hypercall = vmx_patch_hypercall, 7720 .set_irq = vmx_inject_irq, 7721 .set_nmi = vmx_inject_nmi, 7722 .queue_exception = vmx_queue_exception, 7723 .cancel_injection = vmx_cancel_injection, 7724 .interrupt_allowed = vmx_interrupt_allowed, 7725 .nmi_allowed = vmx_nmi_allowed, 7726 .get_nmi_mask = vmx_get_nmi_mask, 7727 .set_nmi_mask = vmx_set_nmi_mask, 7728 .enable_nmi_window = vmx_enable_nmi_window, 7729 .enable_irq_window = vmx_enable_irq_window, 7730 .update_cr8_intercept = vmx_update_cr8_intercept, 7731 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7732 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7733 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7734 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7735 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7736 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons, 7737 .hwapic_irr_update = vmx_hwapic_irr_update, 7738 .hwapic_isr_update = vmx_hwapic_isr_update, 7739 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7740 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7741 .deliver_posted_interrupt = vmx_deliver_posted_interrupt, 7742 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 7743 7744 .set_tss_addr = vmx_set_tss_addr, 7745 .set_identity_map_addr = vmx_set_identity_map_addr, 7746 .get_mt_mask = vmx_get_mt_mask, 7747 7748 .get_exit_info = vmx_get_exit_info, 7749 7750 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 7751 7752 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7753 7754 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 7755 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 7756 .write_tsc_offset = vmx_write_tsc_offset, 7757 .write_tsc_multiplier = vmx_write_tsc_multiplier, 7758 7759 .load_mmu_pgd = vmx_load_mmu_pgd, 7760 7761 .check_intercept = vmx_check_intercept, 7762 .handle_exit_irqoff = vmx_handle_exit_irqoff, 7763 7764 .request_immediate_exit = vmx_request_immediate_exit, 7765 7766 .sched_in = vmx_sched_in, 7767 7768 .cpu_dirty_log_size = PML_ENTITY_NUM, 7769 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 7770 7771 .pre_block = vmx_pre_block, 7772 .post_block = vmx_post_block, 7773 7774 .pmu_ops = &intel_pmu_ops, 7775 .nested_ops = &vmx_nested_ops, 7776 7777 .update_pi_irte = pi_update_irte, 7778 .start_assignment = vmx_pi_start_assignment, 7779 7780 #ifdef CONFIG_X86_64 7781 .set_hv_timer = vmx_set_hv_timer, 7782 .cancel_hv_timer = vmx_cancel_hv_timer, 7783 #endif 7784 7785 .setup_mce = vmx_setup_mce, 7786 7787 .smi_allowed = vmx_smi_allowed, 7788 .enter_smm = vmx_enter_smm, 7789 .leave_smm = vmx_leave_smm, 7790 .enable_smi_window = vmx_enable_smi_window, 7791 7792 .can_emulate_instruction = vmx_can_emulate_instruction, 7793 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 7794 .migrate_timers = vmx_migrate_timers, 7795 7796 .msr_filter_changed = vmx_msr_filter_changed, 7797 .complete_emulated_msr = kvm_complete_insn_gp, 7798 7799 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 7800 }; 7801 7802 static unsigned int vmx_handle_intel_pt_intr(void) 7803 { 7804 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 7805 7806 /* '0' on failure so that the !PT case can use a RET0 static call. */ 7807 if (!kvm_arch_pmi_in_guest(vcpu)) 7808 return 0; 7809 7810 kvm_make_request(KVM_REQ_PMI, vcpu); 7811 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 7812 (unsigned long *)&vcpu->arch.pmu.global_status); 7813 return 1; 7814 } 7815 7816 static __init void vmx_setup_user_return_msrs(void) 7817 { 7818 7819 /* 7820 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 7821 * will emulate SYSCALL in legacy mode if the vendor string in guest 7822 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 7823 * support this emulation, MSR_STAR is included in the list for i386, 7824 * but is never loaded into hardware. MSR_CSTAR is also never loaded 7825 * into hardware and is here purely for emulation purposes. 7826 */ 7827 const u32 vmx_uret_msrs_list[] = { 7828 #ifdef CONFIG_X86_64 7829 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 7830 #endif 7831 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 7832 MSR_IA32_TSX_CTRL, 7833 }; 7834 int i; 7835 7836 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 7837 7838 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 7839 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 7840 } 7841 7842 static struct kvm_x86_init_ops vmx_init_ops __initdata; 7843 7844 static __init int hardware_setup(void) 7845 { 7846 unsigned long host_bndcfgs; 7847 struct desc_ptr dt; 7848 int r; 7849 7850 store_idt(&dt); 7851 host_idt_base = dt.address; 7852 7853 vmx_setup_user_return_msrs(); 7854 7855 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7856 return -EIO; 7857 7858 if (boot_cpu_has(X86_FEATURE_NX)) 7859 kvm_enable_efer_bits(EFER_NX); 7860 7861 if (boot_cpu_has(X86_FEATURE_MPX)) { 7862 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7863 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7864 } 7865 7866 if (!cpu_has_vmx_mpx()) 7867 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 7868 XFEATURE_MASK_BNDCSR); 7869 7870 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7871 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7872 enable_vpid = 0; 7873 7874 if (!cpu_has_vmx_ept() || 7875 !cpu_has_vmx_ept_4levels() || 7876 !cpu_has_vmx_ept_mt_wb() || 7877 !cpu_has_vmx_invept_global()) 7878 enable_ept = 0; 7879 7880 /* NX support is required for shadow paging. */ 7881 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 7882 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n"); 7883 return -EOPNOTSUPP; 7884 } 7885 7886 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7887 enable_ept_ad_bits = 0; 7888 7889 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7890 enable_unrestricted_guest = 0; 7891 7892 if (!cpu_has_vmx_flexpriority()) 7893 flexpriority_enabled = 0; 7894 7895 if (!cpu_has_virtual_nmis()) 7896 enable_vnmi = 0; 7897 7898 /* 7899 * set_apic_access_page_addr() is used to reload apic access 7900 * page upon invalidation. No need to do anything if not 7901 * using the APIC_ACCESS_ADDR VMCS field. 7902 */ 7903 if (!flexpriority_enabled) 7904 vmx_x86_ops.set_apic_access_page_addr = NULL; 7905 7906 if (!cpu_has_vmx_tpr_shadow()) 7907 vmx_x86_ops.update_cr8_intercept = NULL; 7908 7909 #if IS_ENABLED(CONFIG_HYPERV) 7910 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7911 && enable_ept) { 7912 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb; 7913 vmx_x86_ops.tlb_remote_flush_with_range = 7914 hv_remote_flush_tlb_with_range; 7915 } 7916 #endif 7917 7918 if (!cpu_has_vmx_ple()) { 7919 ple_gap = 0; 7920 ple_window = 0; 7921 ple_window_grow = 0; 7922 ple_window_max = 0; 7923 ple_window_shrink = 0; 7924 } 7925 7926 if (!cpu_has_vmx_apicv()) 7927 enable_apicv = 0; 7928 if (!enable_apicv) 7929 vmx_x86_ops.sync_pir_to_irr = NULL; 7930 7931 if (cpu_has_vmx_tsc_scaling()) { 7932 kvm_has_tsc_control = true; 7933 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7934 kvm_tsc_scaling_ratio_frac_bits = 48; 7935 } 7936 7937 kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 7938 7939 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7940 7941 if (enable_ept) 7942 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 7943 cpu_has_vmx_ept_execute_only()); 7944 7945 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(), 7946 ept_caps_to_lpage_level(vmx_capability.ept)); 7947 7948 /* 7949 * Only enable PML when hardware supports PML feature, and both EPT 7950 * and EPT A/D bit features are enabled -- PML depends on them to work. 7951 */ 7952 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 7953 enable_pml = 0; 7954 7955 if (!enable_pml) 7956 vmx_x86_ops.cpu_dirty_log_size = 0; 7957 7958 if (!cpu_has_vmx_preemption_timer()) 7959 enable_preemption_timer = false; 7960 7961 if (enable_preemption_timer) { 7962 u64 use_timer_freq = 5000ULL * 1000 * 1000; 7963 u64 vmx_msr; 7964 7965 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 7966 cpu_preemption_timer_multi = 7967 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 7968 7969 if (tsc_khz) 7970 use_timer_freq = (u64)tsc_khz * 1000; 7971 use_timer_freq >>= cpu_preemption_timer_multi; 7972 7973 /* 7974 * KVM "disables" the preemption timer by setting it to its max 7975 * value. Don't use the timer if it might cause spurious exits 7976 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 7977 */ 7978 if (use_timer_freq > 0xffffffffu / 10) 7979 enable_preemption_timer = false; 7980 } 7981 7982 if (!enable_preemption_timer) { 7983 vmx_x86_ops.set_hv_timer = NULL; 7984 vmx_x86_ops.cancel_hv_timer = NULL; 7985 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 7986 } 7987 7988 kvm_mce_cap_supported |= MCG_LMCE_P; 7989 7990 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 7991 return -EINVAL; 7992 if (!enable_ept || !cpu_has_vmx_intel_pt()) 7993 pt_mode = PT_MODE_SYSTEM; 7994 if (pt_mode == PT_MODE_HOST_GUEST) 7995 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 7996 else 7997 vmx_init_ops.handle_intel_pt_intr = NULL; 7998 7999 setup_default_sgx_lepubkeyhash(); 8000 8001 if (nested) { 8002 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 8003 vmx_capability.ept); 8004 8005 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8006 if (r) 8007 return r; 8008 } 8009 8010 vmx_set_cpu_caps(); 8011 8012 r = alloc_kvm_area(); 8013 if (r) 8014 nested_vmx_hardware_unsetup(); 8015 8016 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8017 8018 return r; 8019 } 8020 8021 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 8022 .cpu_has_kvm_support = cpu_has_kvm_support, 8023 .disabled_by_bios = vmx_disabled_by_bios, 8024 .check_processor_compatibility = vmx_check_processor_compat, 8025 .hardware_setup = hardware_setup, 8026 .handle_intel_pt_intr = NULL, 8027 8028 .runtime_ops = &vmx_x86_ops, 8029 }; 8030 8031 static void vmx_cleanup_l1d_flush(void) 8032 { 8033 if (vmx_l1d_flush_pages) { 8034 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8035 vmx_l1d_flush_pages = NULL; 8036 } 8037 /* Restore state so sysfs ignores VMX */ 8038 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8039 } 8040 8041 static void vmx_exit(void) 8042 { 8043 #ifdef CONFIG_KEXEC_CORE 8044 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 8045 synchronize_rcu(); 8046 #endif 8047 8048 kvm_exit(); 8049 8050 #if IS_ENABLED(CONFIG_HYPERV) 8051 if (static_branch_unlikely(&enable_evmcs)) { 8052 int cpu; 8053 struct hv_vp_assist_page *vp_ap; 8054 /* 8055 * Reset everything to support using non-enlightened VMCS 8056 * access later (e.g. when we reload the module with 8057 * enlightened_vmcs=0) 8058 */ 8059 for_each_online_cpu(cpu) { 8060 vp_ap = hv_get_vp_assist_page(cpu); 8061 8062 if (!vp_ap) 8063 continue; 8064 8065 vp_ap->nested_control.features.directhypercall = 0; 8066 vp_ap->current_nested_vmcs = 0; 8067 vp_ap->enlighten_vmentry = 0; 8068 } 8069 8070 static_branch_disable(&enable_evmcs); 8071 } 8072 #endif 8073 vmx_cleanup_l1d_flush(); 8074 8075 allow_smaller_maxphyaddr = false; 8076 } 8077 module_exit(vmx_exit); 8078 8079 static int __init vmx_init(void) 8080 { 8081 int r, cpu; 8082 8083 #if IS_ENABLED(CONFIG_HYPERV) 8084 /* 8085 * Enlightened VMCS usage should be recommended and the host needs 8086 * to support eVMCS v1 or above. We can also disable eVMCS support 8087 * with module parameter. 8088 */ 8089 if (enlightened_vmcs && 8090 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 8091 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 8092 KVM_EVMCS_VERSION) { 8093 int cpu; 8094 8095 /* Check that we have assist pages on all online CPUs */ 8096 for_each_online_cpu(cpu) { 8097 if (!hv_get_vp_assist_page(cpu)) { 8098 enlightened_vmcs = false; 8099 break; 8100 } 8101 } 8102 8103 if (enlightened_vmcs) { 8104 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 8105 static_branch_enable(&enable_evmcs); 8106 } 8107 8108 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 8109 vmx_x86_ops.enable_direct_tlbflush 8110 = hv_enable_direct_tlbflush; 8111 8112 } else { 8113 enlightened_vmcs = false; 8114 } 8115 #endif 8116 8117 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx), 8118 __alignof__(struct vcpu_vmx), THIS_MODULE); 8119 if (r) 8120 return r; 8121 8122 /* 8123 * Must be called after kvm_init() so enable_ept is properly set 8124 * up. Hand the parameter mitigation value in which was stored in 8125 * the pre module init parser. If no parameter was given, it will 8126 * contain 'auto' which will be turned into the default 'cond' 8127 * mitigation mode. 8128 */ 8129 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8130 if (r) { 8131 vmx_exit(); 8132 return r; 8133 } 8134 8135 for_each_possible_cpu(cpu) { 8136 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8137 8138 pi_init_cpu(cpu); 8139 } 8140 8141 #ifdef CONFIG_KEXEC_CORE 8142 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 8143 crash_vmclear_local_loaded_vmcss); 8144 #endif 8145 vmx_check_vmcs12_offsets(); 8146 8147 /* 8148 * Shadow paging doesn't have a (further) performance penalty 8149 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8150 * by default 8151 */ 8152 if (!enable_ept) 8153 allow_smaller_maxphyaddr = true; 8154 8155 return 0; 8156 } 8157 module_init(vmx_init); 8158