xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision 2985bed6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/io.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/kexec.h>
40 #include <asm/perf_event.h>
41 #include <asm/mce.h>
42 #include <asm/mmu_context.h>
43 #include <asm/mshyperv.h>
44 #include <asm/spec-ctrl.h>
45 #include <asm/virtext.h>
46 #include <asm/vmx.h>
47 
48 #include "capabilities.h"
49 #include "cpuid.h"
50 #include "evmcs.h"
51 #include "irq.h"
52 #include "kvm_cache_regs.h"
53 #include "lapic.h"
54 #include "mmu.h"
55 #include "nested.h"
56 #include "ops.h"
57 #include "pmu.h"
58 #include "trace.h"
59 #include "vmcs.h"
60 #include "vmcs12.h"
61 #include "vmx.h"
62 #include "x86.h"
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 #ifdef MODULE
68 static const struct x86_cpu_id vmx_cpu_id[] = {
69 	X86_FEATURE_MATCH(X86_FEATURE_VMX),
70 	{}
71 };
72 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
73 #endif
74 
75 bool __read_mostly enable_vpid = 1;
76 module_param_named(vpid, enable_vpid, bool, 0444);
77 
78 static bool __read_mostly enable_vnmi = 1;
79 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
80 
81 bool __read_mostly flexpriority_enabled = 1;
82 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
83 
84 bool __read_mostly enable_ept = 1;
85 module_param_named(ept, enable_ept, bool, S_IRUGO);
86 
87 bool __read_mostly enable_unrestricted_guest = 1;
88 module_param_named(unrestricted_guest,
89 			enable_unrestricted_guest, bool, S_IRUGO);
90 
91 bool __read_mostly enable_ept_ad_bits = 1;
92 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
93 
94 static bool __read_mostly emulate_invalid_guest_state = true;
95 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
96 
97 static bool __read_mostly fasteoi = 1;
98 module_param(fasteoi, bool, S_IRUGO);
99 
100 bool __read_mostly enable_apicv = 1;
101 module_param(enable_apicv, bool, S_IRUGO);
102 
103 /*
104  * If nested=1, nested virtualization is supported, i.e., guests may use
105  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
106  * use VMX instructions.
107  */
108 static bool __read_mostly nested = 1;
109 module_param(nested, bool, S_IRUGO);
110 
111 bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
113 
114 static bool __read_mostly dump_invalid_vmcs = 0;
115 module_param(dump_invalid_vmcs, bool, 0644);
116 
117 #define MSR_BITMAP_MODE_X2APIC		1
118 #define MSR_BITMAP_MODE_X2APIC_APICV	2
119 
120 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
121 
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
125 #ifdef CONFIG_X86_64
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
127 #endif
128 
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON				\
132 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
133 	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS				      \
135 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
136 	 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
137 
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141 
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143 
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147 	RTIT_STATUS_BYTECNT))
148 
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150 	(~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151 
152 /*
153  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154  * ple_gap:    upper bound on the amount of time between two successive
155  *             executions of PAUSE in a loop. Also indicate if ple enabled.
156  *             According to test, this time is usually smaller than 128 cycles.
157  * ple_window: upper bound on the amount of time a guest is allowed to execute
158  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
159  *             less than 2^12 cycles
160  * Time is measured based on a counter that runs at the same rate as the TSC,
161  * refer SDM volume 3b section 21.6.13 & 22.1.3.
162  */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165 
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168 
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172 
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176 
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180 
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184 
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188 
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191 
192 static const struct {
193 	const char *option;
194 	bool for_parse;
195 } vmentry_l1d_param[] = {
196 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
197 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
198 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
199 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
200 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203 
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206 
207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209 	struct page *page;
210 	unsigned int i;
211 
212 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
213 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
214 		return 0;
215 	}
216 
217 	if (!enable_ept) {
218 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
219 		return 0;
220 	}
221 
222 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
223 		u64 msr;
224 
225 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
226 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
227 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
228 			return 0;
229 		}
230 	}
231 
232 	/* If set to auto use the default l1tf mitigation method */
233 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
234 		switch (l1tf_mitigation) {
235 		case L1TF_MITIGATION_OFF:
236 			l1tf = VMENTER_L1D_FLUSH_NEVER;
237 			break;
238 		case L1TF_MITIGATION_FLUSH_NOWARN:
239 		case L1TF_MITIGATION_FLUSH:
240 		case L1TF_MITIGATION_FLUSH_NOSMT:
241 			l1tf = VMENTER_L1D_FLUSH_COND;
242 			break;
243 		case L1TF_MITIGATION_FULL:
244 		case L1TF_MITIGATION_FULL_FORCE:
245 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
246 			break;
247 		}
248 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
249 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
250 	}
251 
252 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
253 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
254 		/*
255 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
256 		 * lifetime and so should not be charged to a memcg.
257 		 */
258 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
259 		if (!page)
260 			return -ENOMEM;
261 		vmx_l1d_flush_pages = page_address(page);
262 
263 		/*
264 		 * Initialize each page with a different pattern in
265 		 * order to protect against KSM in the nested
266 		 * virtualization case.
267 		 */
268 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
269 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
270 			       PAGE_SIZE);
271 		}
272 	}
273 
274 	l1tf_vmx_mitigation = l1tf;
275 
276 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
277 		static_branch_enable(&vmx_l1d_should_flush);
278 	else
279 		static_branch_disable(&vmx_l1d_should_flush);
280 
281 	if (l1tf == VMENTER_L1D_FLUSH_COND)
282 		static_branch_enable(&vmx_l1d_flush_cond);
283 	else
284 		static_branch_disable(&vmx_l1d_flush_cond);
285 	return 0;
286 }
287 
288 static int vmentry_l1d_flush_parse(const char *s)
289 {
290 	unsigned int i;
291 
292 	if (s) {
293 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
294 			if (vmentry_l1d_param[i].for_parse &&
295 			    sysfs_streq(s, vmentry_l1d_param[i].option))
296 				return i;
297 		}
298 	}
299 	return -EINVAL;
300 }
301 
302 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
303 {
304 	int l1tf, ret;
305 
306 	l1tf = vmentry_l1d_flush_parse(s);
307 	if (l1tf < 0)
308 		return l1tf;
309 
310 	if (!boot_cpu_has(X86_BUG_L1TF))
311 		return 0;
312 
313 	/*
314 	 * Has vmx_init() run already? If not then this is the pre init
315 	 * parameter parsing. In that case just store the value and let
316 	 * vmx_init() do the proper setup after enable_ept has been
317 	 * established.
318 	 */
319 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
320 		vmentry_l1d_flush_param = l1tf;
321 		return 0;
322 	}
323 
324 	mutex_lock(&vmx_l1d_flush_mutex);
325 	ret = vmx_setup_l1d_flush(l1tf);
326 	mutex_unlock(&vmx_l1d_flush_mutex);
327 	return ret;
328 }
329 
330 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
331 {
332 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
333 		return sprintf(s, "???\n");
334 
335 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
336 }
337 
338 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
339 	.set = vmentry_l1d_flush_set,
340 	.get = vmentry_l1d_flush_get,
341 };
342 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
343 
344 static bool guest_state_valid(struct kvm_vcpu *vcpu);
345 static u32 vmx_segment_access_rights(struct kvm_segment *var);
346 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
347 							  u32 msr, int type);
348 
349 void vmx_vmexit(void);
350 
351 #define vmx_insn_failed(fmt...)		\
352 do {					\
353 	WARN_ONCE(1, fmt);		\
354 	pr_warn_ratelimited(fmt);	\
355 } while (0)
356 
357 asmlinkage void vmread_error(unsigned long field, bool fault)
358 {
359 	if (fault)
360 		kvm_spurious_fault();
361 	else
362 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
363 }
364 
365 noinline void vmwrite_error(unsigned long field, unsigned long value)
366 {
367 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
368 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
369 }
370 
371 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
372 {
373 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
374 }
375 
376 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
377 {
378 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
379 }
380 
381 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
382 {
383 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
384 			ext, vpid, gva);
385 }
386 
387 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
388 {
389 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
390 			ext, eptp, gpa);
391 }
392 
393 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
394 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
395 /*
396  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
397  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
398  */
399 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
400 
401 /*
402  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
403  * can find which vCPU should be waken up.
404  */
405 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
406 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
407 
408 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
409 static DEFINE_SPINLOCK(vmx_vpid_lock);
410 
411 struct vmcs_config vmcs_config;
412 struct vmx_capability vmx_capability;
413 
414 #define VMX_SEGMENT_FIELD(seg)					\
415 	[VCPU_SREG_##seg] = {                                   \
416 		.selector = GUEST_##seg##_SELECTOR,		\
417 		.base = GUEST_##seg##_BASE,		   	\
418 		.limit = GUEST_##seg##_LIMIT,		   	\
419 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
420 	}
421 
422 static const struct kvm_vmx_segment_field {
423 	unsigned selector;
424 	unsigned base;
425 	unsigned limit;
426 	unsigned ar_bytes;
427 } kvm_vmx_segment_fields[] = {
428 	VMX_SEGMENT_FIELD(CS),
429 	VMX_SEGMENT_FIELD(DS),
430 	VMX_SEGMENT_FIELD(ES),
431 	VMX_SEGMENT_FIELD(FS),
432 	VMX_SEGMENT_FIELD(GS),
433 	VMX_SEGMENT_FIELD(SS),
434 	VMX_SEGMENT_FIELD(TR),
435 	VMX_SEGMENT_FIELD(LDTR),
436 };
437 
438 u64 host_efer;
439 static unsigned long host_idt_base;
440 
441 /*
442  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
443  * will emulate SYSCALL in legacy mode if the vendor string in guest
444  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
445  * support this emulation, IA32_STAR must always be included in
446  * vmx_msr_index[], even in i386 builds.
447  */
448 const u32 vmx_msr_index[] = {
449 #ifdef CONFIG_X86_64
450 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
451 #endif
452 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
453 	MSR_IA32_TSX_CTRL,
454 };
455 
456 #if IS_ENABLED(CONFIG_HYPERV)
457 static bool __read_mostly enlightened_vmcs = true;
458 module_param(enlightened_vmcs, bool, 0444);
459 
460 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
461 static void check_ept_pointer_match(struct kvm *kvm)
462 {
463 	struct kvm_vcpu *vcpu;
464 	u64 tmp_eptp = INVALID_PAGE;
465 	int i;
466 
467 	kvm_for_each_vcpu(i, vcpu, kvm) {
468 		if (!VALID_PAGE(tmp_eptp)) {
469 			tmp_eptp = to_vmx(vcpu)->ept_pointer;
470 		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
471 			to_kvm_vmx(kvm)->ept_pointers_match
472 				= EPT_POINTERS_MISMATCH;
473 			return;
474 		}
475 	}
476 
477 	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
478 }
479 
480 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
481 		void *data)
482 {
483 	struct kvm_tlb_range *range = data;
484 
485 	return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
486 			range->pages);
487 }
488 
489 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
490 		struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
491 {
492 	u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
493 
494 	/*
495 	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
496 	 * of the base of EPT PML4 table, strip off EPT configuration
497 	 * information.
498 	 */
499 	if (range)
500 		return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
501 				kvm_fill_hv_flush_list_func, (void *)range);
502 	else
503 		return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
504 }
505 
506 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
507 		struct kvm_tlb_range *range)
508 {
509 	struct kvm_vcpu *vcpu;
510 	int ret = 0, i;
511 
512 	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
513 
514 	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
515 		check_ept_pointer_match(kvm);
516 
517 	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
518 		kvm_for_each_vcpu(i, vcpu, kvm) {
519 			/* If ept_pointer is invalid pointer, bypass flush request. */
520 			if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
521 				ret |= __hv_remote_flush_tlb_with_range(
522 					kvm, vcpu, range);
523 		}
524 	} else {
525 		ret = __hv_remote_flush_tlb_with_range(kvm,
526 				kvm_get_vcpu(kvm, 0), range);
527 	}
528 
529 	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
530 	return ret;
531 }
532 static int hv_remote_flush_tlb(struct kvm *kvm)
533 {
534 	return hv_remote_flush_tlb_with_range(kvm, NULL);
535 }
536 
537 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
538 {
539 	struct hv_enlightened_vmcs *evmcs;
540 	struct hv_partition_assist_pg **p_hv_pa_pg =
541 			&vcpu->kvm->arch.hyperv.hv_pa_pg;
542 	/*
543 	 * Synthetic VM-Exit is not enabled in current code and so All
544 	 * evmcs in singe VM shares same assist page.
545 	 */
546 	if (!*p_hv_pa_pg)
547 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
548 
549 	if (!*p_hv_pa_pg)
550 		return -ENOMEM;
551 
552 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
553 
554 	evmcs->partition_assist_page =
555 		__pa(*p_hv_pa_pg);
556 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
557 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
558 
559 	return 0;
560 }
561 
562 #endif /* IS_ENABLED(CONFIG_HYPERV) */
563 
564 /*
565  * Comment's format: document - errata name - stepping - processor name.
566  * Refer from
567  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
568  */
569 static u32 vmx_preemption_cpu_tfms[] = {
570 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
571 0x000206E6,
572 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
573 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
574 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
575 0x00020652,
576 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
577 0x00020655,
578 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
579 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
580 /*
581  * 320767.pdf - AAP86  - B1 -
582  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
583  */
584 0x000106E5,
585 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
586 0x000106A0,
587 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
588 0x000106A1,
589 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
590 0x000106A4,
591  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
592  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
593  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
594 0x000106A5,
595  /* Xeon E3-1220 V2 */
596 0x000306A8,
597 };
598 
599 static inline bool cpu_has_broken_vmx_preemption_timer(void)
600 {
601 	u32 eax = cpuid_eax(0x00000001), i;
602 
603 	/* Clear the reserved bits */
604 	eax &= ~(0x3U << 14 | 0xfU << 28);
605 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
606 		if (eax == vmx_preemption_cpu_tfms[i])
607 			return true;
608 
609 	return false;
610 }
611 
612 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
613 {
614 	return flexpriority_enabled && lapic_in_kernel(vcpu);
615 }
616 
617 static inline bool report_flexpriority(void)
618 {
619 	return flexpriority_enabled;
620 }
621 
622 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
623 {
624 	int i;
625 
626 	for (i = 0; i < vmx->nmsrs; ++i)
627 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
628 			return i;
629 	return -1;
630 }
631 
632 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
633 {
634 	int i;
635 
636 	i = __find_msr_index(vmx, msr);
637 	if (i >= 0)
638 		return &vmx->guest_msrs[i];
639 	return NULL;
640 }
641 
642 static int vmx_set_guest_msr(struct vcpu_vmx *vmx, struct shared_msr_entry *msr, u64 data)
643 {
644 	int ret = 0;
645 
646 	u64 old_msr_data = msr->data;
647 	msr->data = data;
648 	if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
649 		preempt_disable();
650 		ret = kvm_set_shared_msr(msr->index, msr->data,
651 					 msr->mask);
652 		preempt_enable();
653 		if (ret)
654 			msr->data = old_msr_data;
655 	}
656 	return ret;
657 }
658 
659 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
660 {
661 	vmcs_clear(loaded_vmcs->vmcs);
662 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
663 		vmcs_clear(loaded_vmcs->shadow_vmcs);
664 	loaded_vmcs->cpu = -1;
665 	loaded_vmcs->launched = 0;
666 }
667 
668 #ifdef CONFIG_KEXEC_CORE
669 /*
670  * This bitmap is used to indicate whether the vmclear
671  * operation is enabled on all cpus. All disabled by
672  * default.
673  */
674 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
675 
676 static inline void crash_enable_local_vmclear(int cpu)
677 {
678 	cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
679 }
680 
681 static inline void crash_disable_local_vmclear(int cpu)
682 {
683 	cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
684 }
685 
686 static inline int crash_local_vmclear_enabled(int cpu)
687 {
688 	return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
689 }
690 
691 static void crash_vmclear_local_loaded_vmcss(void)
692 {
693 	int cpu = raw_smp_processor_id();
694 	struct loaded_vmcs *v;
695 
696 	if (!crash_local_vmclear_enabled(cpu))
697 		return;
698 
699 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
700 			    loaded_vmcss_on_cpu_link)
701 		vmcs_clear(v->vmcs);
702 }
703 #else
704 static inline void crash_enable_local_vmclear(int cpu) { }
705 static inline void crash_disable_local_vmclear(int cpu) { }
706 #endif /* CONFIG_KEXEC_CORE */
707 
708 static void __loaded_vmcs_clear(void *arg)
709 {
710 	struct loaded_vmcs *loaded_vmcs = arg;
711 	int cpu = raw_smp_processor_id();
712 
713 	if (loaded_vmcs->cpu != cpu)
714 		return; /* vcpu migration can race with cpu offline */
715 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
716 		per_cpu(current_vmcs, cpu) = NULL;
717 	crash_disable_local_vmclear(cpu);
718 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
719 
720 	/*
721 	 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
722 	 * is before setting loaded_vmcs->vcpu to -1 which is done in
723 	 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
724 	 * then adds the vmcs into percpu list before it is deleted.
725 	 */
726 	smp_wmb();
727 
728 	loaded_vmcs_init(loaded_vmcs);
729 	crash_enable_local_vmclear(cpu);
730 }
731 
732 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
733 {
734 	int cpu = loaded_vmcs->cpu;
735 
736 	if (cpu != -1)
737 		smp_call_function_single(cpu,
738 			 __loaded_vmcs_clear, loaded_vmcs, 1);
739 }
740 
741 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
742 				       unsigned field)
743 {
744 	bool ret;
745 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
746 
747 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
748 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
749 		vmx->segment_cache.bitmask = 0;
750 	}
751 	ret = vmx->segment_cache.bitmask & mask;
752 	vmx->segment_cache.bitmask |= mask;
753 	return ret;
754 }
755 
756 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
757 {
758 	u16 *p = &vmx->segment_cache.seg[seg].selector;
759 
760 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
761 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
762 	return *p;
763 }
764 
765 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
766 {
767 	ulong *p = &vmx->segment_cache.seg[seg].base;
768 
769 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
770 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
771 	return *p;
772 }
773 
774 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
775 {
776 	u32 *p = &vmx->segment_cache.seg[seg].limit;
777 
778 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
779 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
780 	return *p;
781 }
782 
783 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
784 {
785 	u32 *p = &vmx->segment_cache.seg[seg].ar;
786 
787 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
788 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
789 	return *p;
790 }
791 
792 void update_exception_bitmap(struct kvm_vcpu *vcpu)
793 {
794 	u32 eb;
795 
796 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
797 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
798 	/*
799 	 * Guest access to VMware backdoor ports could legitimately
800 	 * trigger #GP because of TSS I/O permission bitmap.
801 	 * We intercept those #GP and allow access to them anyway
802 	 * as VMware does.
803 	 */
804 	if (enable_vmware_backdoor)
805 		eb |= (1u << GP_VECTOR);
806 	if ((vcpu->guest_debug &
807 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
808 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
809 		eb |= 1u << BP_VECTOR;
810 	if (to_vmx(vcpu)->rmode.vm86_active)
811 		eb = ~0;
812 	if (enable_ept)
813 		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
814 
815 	/* When we are running a nested L2 guest and L1 specified for it a
816 	 * certain exception bitmap, we must trap the same exceptions and pass
817 	 * them to L1. When running L2, we will only handle the exceptions
818 	 * specified above if L1 did not want them.
819 	 */
820 	if (is_guest_mode(vcpu))
821 		eb |= get_vmcs12(vcpu)->exception_bitmap;
822 
823 	vmcs_write32(EXCEPTION_BITMAP, eb);
824 }
825 
826 /*
827  * Check if MSR is intercepted for currently loaded MSR bitmap.
828  */
829 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
830 {
831 	unsigned long *msr_bitmap;
832 	int f = sizeof(unsigned long);
833 
834 	if (!cpu_has_vmx_msr_bitmap())
835 		return true;
836 
837 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
838 
839 	if (msr <= 0x1fff) {
840 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
841 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
842 		msr &= 0x1fff;
843 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
844 	}
845 
846 	return true;
847 }
848 
849 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
850 		unsigned long entry, unsigned long exit)
851 {
852 	vm_entry_controls_clearbit(vmx, entry);
853 	vm_exit_controls_clearbit(vmx, exit);
854 }
855 
856 int vmx_find_msr_index(struct vmx_msrs *m, u32 msr)
857 {
858 	unsigned int i;
859 
860 	for (i = 0; i < m->nr; ++i) {
861 		if (m->val[i].index == msr)
862 			return i;
863 	}
864 	return -ENOENT;
865 }
866 
867 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
868 {
869 	int i;
870 	struct msr_autoload *m = &vmx->msr_autoload;
871 
872 	switch (msr) {
873 	case MSR_EFER:
874 		if (cpu_has_load_ia32_efer()) {
875 			clear_atomic_switch_msr_special(vmx,
876 					VM_ENTRY_LOAD_IA32_EFER,
877 					VM_EXIT_LOAD_IA32_EFER);
878 			return;
879 		}
880 		break;
881 	case MSR_CORE_PERF_GLOBAL_CTRL:
882 		if (cpu_has_load_perf_global_ctrl()) {
883 			clear_atomic_switch_msr_special(vmx,
884 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
885 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
886 			return;
887 		}
888 		break;
889 	}
890 	i = vmx_find_msr_index(&m->guest, msr);
891 	if (i < 0)
892 		goto skip_guest;
893 	--m->guest.nr;
894 	m->guest.val[i] = m->guest.val[m->guest.nr];
895 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
896 
897 skip_guest:
898 	i = vmx_find_msr_index(&m->host, msr);
899 	if (i < 0)
900 		return;
901 
902 	--m->host.nr;
903 	m->host.val[i] = m->host.val[m->host.nr];
904 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
905 }
906 
907 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
908 		unsigned long entry, unsigned long exit,
909 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
910 		u64 guest_val, u64 host_val)
911 {
912 	vmcs_write64(guest_val_vmcs, guest_val);
913 	if (host_val_vmcs != HOST_IA32_EFER)
914 		vmcs_write64(host_val_vmcs, host_val);
915 	vm_entry_controls_setbit(vmx, entry);
916 	vm_exit_controls_setbit(vmx, exit);
917 }
918 
919 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
920 				  u64 guest_val, u64 host_val, bool entry_only)
921 {
922 	int i, j = 0;
923 	struct msr_autoload *m = &vmx->msr_autoload;
924 
925 	switch (msr) {
926 	case MSR_EFER:
927 		if (cpu_has_load_ia32_efer()) {
928 			add_atomic_switch_msr_special(vmx,
929 					VM_ENTRY_LOAD_IA32_EFER,
930 					VM_EXIT_LOAD_IA32_EFER,
931 					GUEST_IA32_EFER,
932 					HOST_IA32_EFER,
933 					guest_val, host_val);
934 			return;
935 		}
936 		break;
937 	case MSR_CORE_PERF_GLOBAL_CTRL:
938 		if (cpu_has_load_perf_global_ctrl()) {
939 			add_atomic_switch_msr_special(vmx,
940 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
941 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
942 					GUEST_IA32_PERF_GLOBAL_CTRL,
943 					HOST_IA32_PERF_GLOBAL_CTRL,
944 					guest_val, host_val);
945 			return;
946 		}
947 		break;
948 	case MSR_IA32_PEBS_ENABLE:
949 		/* PEBS needs a quiescent period after being disabled (to write
950 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
951 		 * provide that period, so a CPU could write host's record into
952 		 * guest's memory.
953 		 */
954 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
955 	}
956 
957 	i = vmx_find_msr_index(&m->guest, msr);
958 	if (!entry_only)
959 		j = vmx_find_msr_index(&m->host, msr);
960 
961 	if ((i < 0 && m->guest.nr == NR_LOADSTORE_MSRS) ||
962 		(j < 0 &&  m->host.nr == NR_LOADSTORE_MSRS)) {
963 		printk_once(KERN_WARNING "Not enough msr switch entries. "
964 				"Can't add msr %x\n", msr);
965 		return;
966 	}
967 	if (i < 0) {
968 		i = m->guest.nr++;
969 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
970 	}
971 	m->guest.val[i].index = msr;
972 	m->guest.val[i].value = guest_val;
973 
974 	if (entry_only)
975 		return;
976 
977 	if (j < 0) {
978 		j = m->host.nr++;
979 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
980 	}
981 	m->host.val[j].index = msr;
982 	m->host.val[j].value = host_val;
983 }
984 
985 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
986 {
987 	u64 guest_efer = vmx->vcpu.arch.efer;
988 	u64 ignore_bits = 0;
989 
990 	/* Shadow paging assumes NX to be available.  */
991 	if (!enable_ept)
992 		guest_efer |= EFER_NX;
993 
994 	/*
995 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
996 	 */
997 	ignore_bits |= EFER_SCE;
998 #ifdef CONFIG_X86_64
999 	ignore_bits |= EFER_LMA | EFER_LME;
1000 	/* SCE is meaningful only in long mode on Intel */
1001 	if (guest_efer & EFER_LMA)
1002 		ignore_bits &= ~(u64)EFER_SCE;
1003 #endif
1004 
1005 	/*
1006 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1007 	 * On CPUs that support "load IA32_EFER", always switch EFER
1008 	 * atomically, since it's faster than switching it manually.
1009 	 */
1010 	if (cpu_has_load_ia32_efer() ||
1011 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1012 		if (!(guest_efer & EFER_LMA))
1013 			guest_efer &= ~EFER_LME;
1014 		if (guest_efer != host_efer)
1015 			add_atomic_switch_msr(vmx, MSR_EFER,
1016 					      guest_efer, host_efer, false);
1017 		else
1018 			clear_atomic_switch_msr(vmx, MSR_EFER);
1019 		return false;
1020 	} else {
1021 		clear_atomic_switch_msr(vmx, MSR_EFER);
1022 
1023 		guest_efer &= ~ignore_bits;
1024 		guest_efer |= host_efer & ignore_bits;
1025 
1026 		vmx->guest_msrs[efer_offset].data = guest_efer;
1027 		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1028 
1029 		return true;
1030 	}
1031 }
1032 
1033 #ifdef CONFIG_X86_32
1034 /*
1035  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1036  * VMCS rather than the segment table.  KVM uses this helper to figure
1037  * out the current bases to poke them into the VMCS before entry.
1038  */
1039 static unsigned long segment_base(u16 selector)
1040 {
1041 	struct desc_struct *table;
1042 	unsigned long v;
1043 
1044 	if (!(selector & ~SEGMENT_RPL_MASK))
1045 		return 0;
1046 
1047 	table = get_current_gdt_ro();
1048 
1049 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1050 		u16 ldt_selector = kvm_read_ldt();
1051 
1052 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1053 			return 0;
1054 
1055 		table = (struct desc_struct *)segment_base(ldt_selector);
1056 	}
1057 	v = get_desc_base(&table[selector >> 3]);
1058 	return v;
1059 }
1060 #endif
1061 
1062 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1063 {
1064 	return (pt_mode == PT_MODE_HOST_GUEST) &&
1065 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1066 }
1067 
1068 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1069 {
1070 	u32 i;
1071 
1072 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1073 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1074 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1075 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1076 	for (i = 0; i < addr_range; i++) {
1077 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1078 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1079 	}
1080 }
1081 
1082 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1083 {
1084 	u32 i;
1085 
1086 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1087 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1088 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1089 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1090 	for (i = 0; i < addr_range; i++) {
1091 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1092 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1093 	}
1094 }
1095 
1096 static void pt_guest_enter(struct vcpu_vmx *vmx)
1097 {
1098 	if (pt_mode == PT_MODE_SYSTEM)
1099 		return;
1100 
1101 	/*
1102 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1103 	 * Save host state before VM entry.
1104 	 */
1105 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1106 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1107 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1108 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1109 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1110 	}
1111 }
1112 
1113 static void pt_guest_exit(struct vcpu_vmx *vmx)
1114 {
1115 	if (pt_mode == PT_MODE_SYSTEM)
1116 		return;
1117 
1118 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1119 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1120 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1121 	}
1122 
1123 	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1124 	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1125 }
1126 
1127 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1128 			unsigned long fs_base, unsigned long gs_base)
1129 {
1130 	if (unlikely(fs_sel != host->fs_sel)) {
1131 		if (!(fs_sel & 7))
1132 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1133 		else
1134 			vmcs_write16(HOST_FS_SELECTOR, 0);
1135 		host->fs_sel = fs_sel;
1136 	}
1137 	if (unlikely(gs_sel != host->gs_sel)) {
1138 		if (!(gs_sel & 7))
1139 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1140 		else
1141 			vmcs_write16(HOST_GS_SELECTOR, 0);
1142 		host->gs_sel = gs_sel;
1143 	}
1144 	if (unlikely(fs_base != host->fs_base)) {
1145 		vmcs_writel(HOST_FS_BASE, fs_base);
1146 		host->fs_base = fs_base;
1147 	}
1148 	if (unlikely(gs_base != host->gs_base)) {
1149 		vmcs_writel(HOST_GS_BASE, gs_base);
1150 		host->gs_base = gs_base;
1151 	}
1152 }
1153 
1154 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1155 {
1156 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1157 	struct vmcs_host_state *host_state;
1158 #ifdef CONFIG_X86_64
1159 	int cpu = raw_smp_processor_id();
1160 #endif
1161 	unsigned long fs_base, gs_base;
1162 	u16 fs_sel, gs_sel;
1163 	int i;
1164 
1165 	vmx->req_immediate_exit = false;
1166 
1167 	/*
1168 	 * Note that guest MSRs to be saved/restored can also be changed
1169 	 * when guest state is loaded. This happens when guest transitions
1170 	 * to/from long-mode by setting MSR_EFER.LMA.
1171 	 */
1172 	if (!vmx->guest_msrs_ready) {
1173 		vmx->guest_msrs_ready = true;
1174 		for (i = 0; i < vmx->save_nmsrs; ++i)
1175 			kvm_set_shared_msr(vmx->guest_msrs[i].index,
1176 					   vmx->guest_msrs[i].data,
1177 					   vmx->guest_msrs[i].mask);
1178 
1179 	}
1180 
1181     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1182 		nested_sync_vmcs12_to_shadow(vcpu);
1183 
1184 	if (vmx->guest_state_loaded)
1185 		return;
1186 
1187 	host_state = &vmx->loaded_vmcs->host_state;
1188 
1189 	/*
1190 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1191 	 * allow segment selectors with cpl > 0 or ti == 1.
1192 	 */
1193 	host_state->ldt_sel = kvm_read_ldt();
1194 
1195 #ifdef CONFIG_X86_64
1196 	savesegment(ds, host_state->ds_sel);
1197 	savesegment(es, host_state->es_sel);
1198 
1199 	gs_base = cpu_kernelmode_gs_base(cpu);
1200 	if (likely(is_64bit_mm(current->mm))) {
1201 		save_fsgs_for_kvm();
1202 		fs_sel = current->thread.fsindex;
1203 		gs_sel = current->thread.gsindex;
1204 		fs_base = current->thread.fsbase;
1205 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1206 	} else {
1207 		savesegment(fs, fs_sel);
1208 		savesegment(gs, gs_sel);
1209 		fs_base = read_msr(MSR_FS_BASE);
1210 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1211 	}
1212 
1213 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1214 #else
1215 	savesegment(fs, fs_sel);
1216 	savesegment(gs, gs_sel);
1217 	fs_base = segment_base(fs_sel);
1218 	gs_base = segment_base(gs_sel);
1219 #endif
1220 
1221 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1222 	vmx->guest_state_loaded = true;
1223 }
1224 
1225 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1226 {
1227 	struct vmcs_host_state *host_state;
1228 
1229 	if (!vmx->guest_state_loaded)
1230 		return;
1231 
1232 	host_state = &vmx->loaded_vmcs->host_state;
1233 
1234 	++vmx->vcpu.stat.host_state_reload;
1235 
1236 #ifdef CONFIG_X86_64
1237 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1238 #endif
1239 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1240 		kvm_load_ldt(host_state->ldt_sel);
1241 #ifdef CONFIG_X86_64
1242 		load_gs_index(host_state->gs_sel);
1243 #else
1244 		loadsegment(gs, host_state->gs_sel);
1245 #endif
1246 	}
1247 	if (host_state->fs_sel & 7)
1248 		loadsegment(fs, host_state->fs_sel);
1249 #ifdef CONFIG_X86_64
1250 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1251 		loadsegment(ds, host_state->ds_sel);
1252 		loadsegment(es, host_state->es_sel);
1253 	}
1254 #endif
1255 	invalidate_tss_limit();
1256 #ifdef CONFIG_X86_64
1257 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1258 #endif
1259 	load_fixmap_gdt(raw_smp_processor_id());
1260 	vmx->guest_state_loaded = false;
1261 	vmx->guest_msrs_ready = false;
1262 }
1263 
1264 #ifdef CONFIG_X86_64
1265 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1266 {
1267 	preempt_disable();
1268 	if (vmx->guest_state_loaded)
1269 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1270 	preempt_enable();
1271 	return vmx->msr_guest_kernel_gs_base;
1272 }
1273 
1274 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1275 {
1276 	preempt_disable();
1277 	if (vmx->guest_state_loaded)
1278 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1279 	preempt_enable();
1280 	vmx->msr_guest_kernel_gs_base = data;
1281 }
1282 #endif
1283 
1284 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1285 {
1286 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1287 	struct pi_desc old, new;
1288 	unsigned int dest;
1289 
1290 	/*
1291 	 * In case of hot-plug or hot-unplug, we may have to undo
1292 	 * vmx_vcpu_pi_put even if there is no assigned device.  And we
1293 	 * always keep PI.NDST up to date for simplicity: it makes the
1294 	 * code easier, and CPU migration is not a fast path.
1295 	 */
1296 	if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1297 		return;
1298 
1299 	/*
1300 	 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1301 	 * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1302 	 * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1303 	 * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1304 	 * correctly.
1305 	 */
1306 	if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1307 		pi_clear_sn(pi_desc);
1308 		goto after_clear_sn;
1309 	}
1310 
1311 	/* The full case.  */
1312 	do {
1313 		old.control = new.control = pi_desc->control;
1314 
1315 		dest = cpu_physical_id(cpu);
1316 
1317 		if (x2apic_enabled())
1318 			new.ndst = dest;
1319 		else
1320 			new.ndst = (dest << 8) & 0xFF00;
1321 
1322 		new.sn = 0;
1323 	} while (cmpxchg64(&pi_desc->control, old.control,
1324 			   new.control) != old.control);
1325 
1326 after_clear_sn:
1327 
1328 	/*
1329 	 * Clear SN before reading the bitmap.  The VT-d firmware
1330 	 * writes the bitmap and reads SN atomically (5.2.3 in the
1331 	 * spec), so it doesn't really have a memory barrier that
1332 	 * pairs with this, but we cannot do that and we need one.
1333 	 */
1334 	smp_mb__after_atomic();
1335 
1336 	if (!pi_is_pir_empty(pi_desc))
1337 		pi_set_on(pi_desc);
1338 }
1339 
1340 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1341 {
1342 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1343 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1344 
1345 	if (!already_loaded) {
1346 		loaded_vmcs_clear(vmx->loaded_vmcs);
1347 		local_irq_disable();
1348 		crash_disable_local_vmclear(cpu);
1349 
1350 		/*
1351 		 * Read loaded_vmcs->cpu should be before fetching
1352 		 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1353 		 * See the comments in __loaded_vmcs_clear().
1354 		 */
1355 		smp_rmb();
1356 
1357 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1358 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1359 		crash_enable_local_vmclear(cpu);
1360 		local_irq_enable();
1361 	}
1362 
1363 	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1364 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1365 		vmcs_load(vmx->loaded_vmcs->vmcs);
1366 		indirect_branch_prediction_barrier();
1367 	}
1368 
1369 	if (!already_loaded) {
1370 		void *gdt = get_current_gdt_ro();
1371 		unsigned long sysenter_esp;
1372 
1373 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1374 
1375 		/*
1376 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1377 		 * processors.  See 22.2.4.
1378 		 */
1379 		vmcs_writel(HOST_TR_BASE,
1380 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1381 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1382 
1383 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1384 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1385 
1386 		vmx->loaded_vmcs->cpu = cpu;
1387 	}
1388 
1389 	/* Setup TSC multiplier */
1390 	if (kvm_has_tsc_control &&
1391 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1392 		decache_tsc_multiplier(vmx);
1393 }
1394 
1395 /*
1396  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1397  * vcpu mutex is already taken.
1398  */
1399 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1400 {
1401 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1402 
1403 	vmx_vcpu_load_vmcs(vcpu, cpu);
1404 
1405 	vmx_vcpu_pi_load(vcpu, cpu);
1406 
1407 	vmx->host_pkru = read_pkru();
1408 	vmx->host_debugctlmsr = get_debugctlmsr();
1409 }
1410 
1411 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1412 {
1413 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1414 
1415 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1416 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
1417 		!kvm_vcpu_apicv_active(vcpu))
1418 		return;
1419 
1420 	/* Set SN when the vCPU is preempted */
1421 	if (vcpu->preempted)
1422 		pi_set_sn(pi_desc);
1423 }
1424 
1425 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1426 {
1427 	vmx_vcpu_pi_put(vcpu);
1428 
1429 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1430 }
1431 
1432 static bool emulation_required(struct kvm_vcpu *vcpu)
1433 {
1434 	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1435 }
1436 
1437 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1438 {
1439 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1440 	unsigned long rflags, save_rflags;
1441 
1442 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1443 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1444 		rflags = vmcs_readl(GUEST_RFLAGS);
1445 		if (vmx->rmode.vm86_active) {
1446 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1447 			save_rflags = vmx->rmode.save_rflags;
1448 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1449 		}
1450 		vmx->rflags = rflags;
1451 	}
1452 	return vmx->rflags;
1453 }
1454 
1455 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1456 {
1457 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1458 	unsigned long old_rflags;
1459 
1460 	if (enable_unrestricted_guest) {
1461 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1462 		vmx->rflags = rflags;
1463 		vmcs_writel(GUEST_RFLAGS, rflags);
1464 		return;
1465 	}
1466 
1467 	old_rflags = vmx_get_rflags(vcpu);
1468 	vmx->rflags = rflags;
1469 	if (vmx->rmode.vm86_active) {
1470 		vmx->rmode.save_rflags = rflags;
1471 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1472 	}
1473 	vmcs_writel(GUEST_RFLAGS, rflags);
1474 
1475 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1476 		vmx->emulation_required = emulation_required(vcpu);
1477 }
1478 
1479 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1480 {
1481 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1482 	int ret = 0;
1483 
1484 	if (interruptibility & GUEST_INTR_STATE_STI)
1485 		ret |= KVM_X86_SHADOW_INT_STI;
1486 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1487 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1488 
1489 	return ret;
1490 }
1491 
1492 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1493 {
1494 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1495 	u32 interruptibility = interruptibility_old;
1496 
1497 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1498 
1499 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1500 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1501 	else if (mask & KVM_X86_SHADOW_INT_STI)
1502 		interruptibility |= GUEST_INTR_STATE_STI;
1503 
1504 	if ((interruptibility != interruptibility_old))
1505 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1506 }
1507 
1508 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1509 {
1510 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1511 	unsigned long value;
1512 
1513 	/*
1514 	 * Any MSR write that attempts to change bits marked reserved will
1515 	 * case a #GP fault.
1516 	 */
1517 	if (data & vmx->pt_desc.ctl_bitmask)
1518 		return 1;
1519 
1520 	/*
1521 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1522 	 * result in a #GP unless the same write also clears TraceEn.
1523 	 */
1524 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1525 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1526 		return 1;
1527 
1528 	/*
1529 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1530 	 * and FabricEn would cause #GP, if
1531 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1532 	 */
1533 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1534 		!(data & RTIT_CTL_FABRIC_EN) &&
1535 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1536 					PT_CAP_single_range_output))
1537 		return 1;
1538 
1539 	/*
1540 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1541 	 * utilize encodings marked reserved will casue a #GP fault.
1542 	 */
1543 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1544 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1545 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1546 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1547 		return 1;
1548 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1549 						PT_CAP_cycle_thresholds);
1550 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1551 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1552 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1553 		return 1;
1554 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1555 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1556 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1557 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1558 		return 1;
1559 
1560 	/*
1561 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1562 	 * cause a #GP fault.
1563 	 */
1564 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1565 	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1566 		return 1;
1567 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1568 	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1569 		return 1;
1570 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1571 	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1572 		return 1;
1573 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1574 	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1575 		return 1;
1576 
1577 	return 0;
1578 }
1579 
1580 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1581 {
1582 	unsigned long rip;
1583 
1584 	/*
1585 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1586 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1587 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1588 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1589 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1590 	 * i.e. we end up advancing IP with some random value.
1591 	 */
1592 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1593 	    to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1594 		rip = kvm_rip_read(vcpu);
1595 		rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1596 		kvm_rip_write(vcpu, rip);
1597 	} else {
1598 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1599 			return 0;
1600 	}
1601 
1602 	/* skipping an emulated instruction also counts */
1603 	vmx_set_interrupt_shadow(vcpu, 0);
1604 
1605 	return 1;
1606 }
1607 
1608 
1609 /*
1610  * Recognizes a pending MTF VM-exit and records the nested state for later
1611  * delivery.
1612  */
1613 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1614 {
1615 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1616 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1617 
1618 	if (!is_guest_mode(vcpu))
1619 		return;
1620 
1621 	/*
1622 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1623 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1624 	 * instruction boundary), any #DB exception pending delivery must be a
1625 	 * debug-trap. Record the pending MTF state to be delivered in
1626 	 * vmx_check_nested_events().
1627 	 */
1628 	if (nested_cpu_has_mtf(vmcs12) &&
1629 	    (!vcpu->arch.exception.pending ||
1630 	     vcpu->arch.exception.nr == DB_VECTOR))
1631 		vmx->nested.mtf_pending = true;
1632 	else
1633 		vmx->nested.mtf_pending = false;
1634 }
1635 
1636 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1637 {
1638 	vmx_update_emulated_instruction(vcpu);
1639 	return skip_emulated_instruction(vcpu);
1640 }
1641 
1642 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1643 {
1644 	/*
1645 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1646 	 * explicitly skip the instruction because if the HLT state is set,
1647 	 * then the instruction is already executing and RIP has already been
1648 	 * advanced.
1649 	 */
1650 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1651 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1652 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1653 }
1654 
1655 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1656 {
1657 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1658 	unsigned nr = vcpu->arch.exception.nr;
1659 	bool has_error_code = vcpu->arch.exception.has_error_code;
1660 	u32 error_code = vcpu->arch.exception.error_code;
1661 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1662 
1663 	kvm_deliver_exception_payload(vcpu);
1664 
1665 	if (has_error_code) {
1666 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1667 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1668 	}
1669 
1670 	if (vmx->rmode.vm86_active) {
1671 		int inc_eip = 0;
1672 		if (kvm_exception_is_soft(nr))
1673 			inc_eip = vcpu->arch.event_exit_inst_len;
1674 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1675 		return;
1676 	}
1677 
1678 	WARN_ON_ONCE(vmx->emulation_required);
1679 
1680 	if (kvm_exception_is_soft(nr)) {
1681 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1682 			     vmx->vcpu.arch.event_exit_inst_len);
1683 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1684 	} else
1685 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1686 
1687 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1688 
1689 	vmx_clear_hlt(vcpu);
1690 }
1691 
1692 static bool vmx_rdtscp_supported(void)
1693 {
1694 	return cpu_has_vmx_rdtscp();
1695 }
1696 
1697 static bool vmx_invpcid_supported(void)
1698 {
1699 	return cpu_has_vmx_invpcid();
1700 }
1701 
1702 /*
1703  * Swap MSR entry in host/guest MSR entry array.
1704  */
1705 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1706 {
1707 	struct shared_msr_entry tmp;
1708 
1709 	tmp = vmx->guest_msrs[to];
1710 	vmx->guest_msrs[to] = vmx->guest_msrs[from];
1711 	vmx->guest_msrs[from] = tmp;
1712 }
1713 
1714 /*
1715  * Set up the vmcs to automatically save and restore system
1716  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1717  * mode, as fiddling with msrs is very expensive.
1718  */
1719 static void setup_msrs(struct vcpu_vmx *vmx)
1720 {
1721 	int save_nmsrs, index;
1722 
1723 	save_nmsrs = 0;
1724 #ifdef CONFIG_X86_64
1725 	/*
1726 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1727 	 * when EFER.SCE is set.
1728 	 */
1729 	if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1730 		index = __find_msr_index(vmx, MSR_STAR);
1731 		if (index >= 0)
1732 			move_msr_up(vmx, index, save_nmsrs++);
1733 		index = __find_msr_index(vmx, MSR_LSTAR);
1734 		if (index >= 0)
1735 			move_msr_up(vmx, index, save_nmsrs++);
1736 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1737 		if (index >= 0)
1738 			move_msr_up(vmx, index, save_nmsrs++);
1739 	}
1740 #endif
1741 	index = __find_msr_index(vmx, MSR_EFER);
1742 	if (index >= 0 && update_transition_efer(vmx, index))
1743 		move_msr_up(vmx, index, save_nmsrs++);
1744 	index = __find_msr_index(vmx, MSR_TSC_AUX);
1745 	if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1746 		move_msr_up(vmx, index, save_nmsrs++);
1747 	index = __find_msr_index(vmx, MSR_IA32_TSX_CTRL);
1748 	if (index >= 0)
1749 		move_msr_up(vmx, index, save_nmsrs++);
1750 
1751 	vmx->save_nmsrs = save_nmsrs;
1752 	vmx->guest_msrs_ready = false;
1753 
1754 	if (cpu_has_vmx_msr_bitmap())
1755 		vmx_update_msr_bitmap(&vmx->vcpu);
1756 }
1757 
1758 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1759 {
1760 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1761 
1762 	if (is_guest_mode(vcpu) &&
1763 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1764 		return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1765 
1766 	return vcpu->arch.tsc_offset;
1767 }
1768 
1769 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1770 {
1771 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1772 	u64 g_tsc_offset = 0;
1773 
1774 	/*
1775 	 * We're here if L1 chose not to trap WRMSR to TSC. According
1776 	 * to the spec, this should set L1's TSC; The offset that L1
1777 	 * set for L2 remains unchanged, and still needs to be added
1778 	 * to the newly set TSC to get L2's TSC.
1779 	 */
1780 	if (is_guest_mode(vcpu) &&
1781 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1782 		g_tsc_offset = vmcs12->tsc_offset;
1783 
1784 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1785 				   vcpu->arch.tsc_offset - g_tsc_offset,
1786 				   offset);
1787 	vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1788 	return offset + g_tsc_offset;
1789 }
1790 
1791 /*
1792  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1793  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1794  * all guests if the "nested" module option is off, and can also be disabled
1795  * for a single guest by disabling its VMX cpuid bit.
1796  */
1797 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1798 {
1799 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1800 }
1801 
1802 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1803 						 uint64_t val)
1804 {
1805 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1806 
1807 	return !(val & ~valid_bits);
1808 }
1809 
1810 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1811 {
1812 	switch (msr->index) {
1813 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1814 		if (!nested)
1815 			return 1;
1816 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1817 	default:
1818 		return 1;
1819 	}
1820 }
1821 
1822 /*
1823  * Reads an msr value (of 'msr_index') into 'pdata'.
1824  * Returns 0 on success, non-0 otherwise.
1825  * Assumes vcpu_load() was already called.
1826  */
1827 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1828 {
1829 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1830 	struct shared_msr_entry *msr;
1831 	u32 index;
1832 
1833 	switch (msr_info->index) {
1834 #ifdef CONFIG_X86_64
1835 	case MSR_FS_BASE:
1836 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1837 		break;
1838 	case MSR_GS_BASE:
1839 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1840 		break;
1841 	case MSR_KERNEL_GS_BASE:
1842 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1843 		break;
1844 #endif
1845 	case MSR_EFER:
1846 		return kvm_get_msr_common(vcpu, msr_info);
1847 	case MSR_IA32_TSX_CTRL:
1848 		if (!msr_info->host_initiated &&
1849 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1850 			return 1;
1851 		goto find_shared_msr;
1852 	case MSR_IA32_UMWAIT_CONTROL:
1853 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1854 			return 1;
1855 
1856 		msr_info->data = vmx->msr_ia32_umwait_control;
1857 		break;
1858 	case MSR_IA32_SPEC_CTRL:
1859 		if (!msr_info->host_initiated &&
1860 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1861 			return 1;
1862 
1863 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1864 		break;
1865 	case MSR_IA32_SYSENTER_CS:
1866 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1867 		break;
1868 	case MSR_IA32_SYSENTER_EIP:
1869 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1870 		break;
1871 	case MSR_IA32_SYSENTER_ESP:
1872 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1873 		break;
1874 	case MSR_IA32_BNDCFGS:
1875 		if (!kvm_mpx_supported() ||
1876 		    (!msr_info->host_initiated &&
1877 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1878 			return 1;
1879 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1880 		break;
1881 	case MSR_IA32_MCG_EXT_CTL:
1882 		if (!msr_info->host_initiated &&
1883 		    !(vmx->msr_ia32_feature_control &
1884 		      FEAT_CTL_LMCE_ENABLED))
1885 			return 1;
1886 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1887 		break;
1888 	case MSR_IA32_FEAT_CTL:
1889 		msr_info->data = vmx->msr_ia32_feature_control;
1890 		break;
1891 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1892 		if (!nested_vmx_allowed(vcpu))
1893 			return 1;
1894 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1895 				    &msr_info->data))
1896 			return 1;
1897 		/*
1898 		 * Enlightened VMCS v1 doesn't have certain fields, but buggy
1899 		 * Hyper-V versions are still trying to use corresponding
1900 		 * features when they are exposed. Filter out the essential
1901 		 * minimum.
1902 		 */
1903 		if (!msr_info->host_initiated &&
1904 		    vmx->nested.enlightened_vmcs_enabled)
1905 			nested_evmcs_filter_control_msr(msr_info->index,
1906 							&msr_info->data);
1907 		break;
1908 	case MSR_IA32_RTIT_CTL:
1909 		if (pt_mode != PT_MODE_HOST_GUEST)
1910 			return 1;
1911 		msr_info->data = vmx->pt_desc.guest.ctl;
1912 		break;
1913 	case MSR_IA32_RTIT_STATUS:
1914 		if (pt_mode != PT_MODE_HOST_GUEST)
1915 			return 1;
1916 		msr_info->data = vmx->pt_desc.guest.status;
1917 		break;
1918 	case MSR_IA32_RTIT_CR3_MATCH:
1919 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1920 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1921 						PT_CAP_cr3_filtering))
1922 			return 1;
1923 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1924 		break;
1925 	case MSR_IA32_RTIT_OUTPUT_BASE:
1926 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1927 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1928 					PT_CAP_topa_output) &&
1929 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1930 					PT_CAP_single_range_output)))
1931 			return 1;
1932 		msr_info->data = vmx->pt_desc.guest.output_base;
1933 		break;
1934 	case MSR_IA32_RTIT_OUTPUT_MASK:
1935 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1936 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1937 					PT_CAP_topa_output) &&
1938 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1939 					PT_CAP_single_range_output)))
1940 			return 1;
1941 		msr_info->data = vmx->pt_desc.guest.output_mask;
1942 		break;
1943 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1944 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1945 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1946 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1947 					PT_CAP_num_address_ranges)))
1948 			return 1;
1949 		if (index % 2)
1950 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1951 		else
1952 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1953 		break;
1954 	case MSR_TSC_AUX:
1955 		if (!msr_info->host_initiated &&
1956 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1957 			return 1;
1958 		goto find_shared_msr;
1959 	default:
1960 	find_shared_msr:
1961 		msr = find_msr_entry(vmx, msr_info->index);
1962 		if (msr) {
1963 			msr_info->data = msr->data;
1964 			break;
1965 		}
1966 		return kvm_get_msr_common(vcpu, msr_info);
1967 	}
1968 
1969 	return 0;
1970 }
1971 
1972 /*
1973  * Writes msr value into the appropriate "register".
1974  * Returns 0 on success, non-0 otherwise.
1975  * Assumes vcpu_load() was already called.
1976  */
1977 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1978 {
1979 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1980 	struct shared_msr_entry *msr;
1981 	int ret = 0;
1982 	u32 msr_index = msr_info->index;
1983 	u64 data = msr_info->data;
1984 	u32 index;
1985 
1986 	switch (msr_index) {
1987 	case MSR_EFER:
1988 		ret = kvm_set_msr_common(vcpu, msr_info);
1989 		break;
1990 #ifdef CONFIG_X86_64
1991 	case MSR_FS_BASE:
1992 		vmx_segment_cache_clear(vmx);
1993 		vmcs_writel(GUEST_FS_BASE, data);
1994 		break;
1995 	case MSR_GS_BASE:
1996 		vmx_segment_cache_clear(vmx);
1997 		vmcs_writel(GUEST_GS_BASE, data);
1998 		break;
1999 	case MSR_KERNEL_GS_BASE:
2000 		vmx_write_guest_kernel_gs_base(vmx, data);
2001 		break;
2002 #endif
2003 	case MSR_IA32_SYSENTER_CS:
2004 		if (is_guest_mode(vcpu))
2005 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2006 		vmcs_write32(GUEST_SYSENTER_CS, data);
2007 		break;
2008 	case MSR_IA32_SYSENTER_EIP:
2009 		if (is_guest_mode(vcpu))
2010 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2011 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2012 		break;
2013 	case MSR_IA32_SYSENTER_ESP:
2014 		if (is_guest_mode(vcpu))
2015 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2016 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2017 		break;
2018 	case MSR_IA32_DEBUGCTLMSR:
2019 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2020 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2021 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2022 
2023 		ret = kvm_set_msr_common(vcpu, msr_info);
2024 		break;
2025 
2026 	case MSR_IA32_BNDCFGS:
2027 		if (!kvm_mpx_supported() ||
2028 		    (!msr_info->host_initiated &&
2029 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2030 			return 1;
2031 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2032 		    (data & MSR_IA32_BNDCFGS_RSVD))
2033 			return 1;
2034 		vmcs_write64(GUEST_BNDCFGS, data);
2035 		break;
2036 	case MSR_IA32_UMWAIT_CONTROL:
2037 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2038 			return 1;
2039 
2040 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2041 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2042 			return 1;
2043 
2044 		vmx->msr_ia32_umwait_control = data;
2045 		break;
2046 	case MSR_IA32_SPEC_CTRL:
2047 		if (!msr_info->host_initiated &&
2048 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2049 			return 1;
2050 
2051 		if (data & ~kvm_spec_ctrl_valid_bits(vcpu))
2052 			return 1;
2053 
2054 		vmx->spec_ctrl = data;
2055 		if (!data)
2056 			break;
2057 
2058 		/*
2059 		 * For non-nested:
2060 		 * When it's written (to non-zero) for the first time, pass
2061 		 * it through.
2062 		 *
2063 		 * For nested:
2064 		 * The handling of the MSR bitmap for L2 guests is done in
2065 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2066 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2067 		 * in the merging. We update the vmcs01 here for L1 as well
2068 		 * since it will end up touching the MSR anyway now.
2069 		 */
2070 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2071 					      MSR_IA32_SPEC_CTRL,
2072 					      MSR_TYPE_RW);
2073 		break;
2074 	case MSR_IA32_TSX_CTRL:
2075 		if (!msr_info->host_initiated &&
2076 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2077 			return 1;
2078 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2079 			return 1;
2080 		goto find_shared_msr;
2081 	case MSR_IA32_PRED_CMD:
2082 		if (!msr_info->host_initiated &&
2083 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2084 			return 1;
2085 
2086 		if (data & ~PRED_CMD_IBPB)
2087 			return 1;
2088 		if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL))
2089 			return 1;
2090 		if (!data)
2091 			break;
2092 
2093 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2094 
2095 		/*
2096 		 * For non-nested:
2097 		 * When it's written (to non-zero) for the first time, pass
2098 		 * it through.
2099 		 *
2100 		 * For nested:
2101 		 * The handling of the MSR bitmap for L2 guests is done in
2102 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2103 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2104 		 * in the merging.
2105 		 */
2106 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2107 					      MSR_TYPE_W);
2108 		break;
2109 	case MSR_IA32_CR_PAT:
2110 		if (!kvm_pat_valid(data))
2111 			return 1;
2112 
2113 		if (is_guest_mode(vcpu) &&
2114 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2115 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2116 
2117 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2118 			vmcs_write64(GUEST_IA32_PAT, data);
2119 			vcpu->arch.pat = data;
2120 			break;
2121 		}
2122 		ret = kvm_set_msr_common(vcpu, msr_info);
2123 		break;
2124 	case MSR_IA32_TSC_ADJUST:
2125 		ret = kvm_set_msr_common(vcpu, msr_info);
2126 		break;
2127 	case MSR_IA32_MCG_EXT_CTL:
2128 		if ((!msr_info->host_initiated &&
2129 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2130 		       FEAT_CTL_LMCE_ENABLED)) ||
2131 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2132 			return 1;
2133 		vcpu->arch.mcg_ext_ctl = data;
2134 		break;
2135 	case MSR_IA32_FEAT_CTL:
2136 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2137 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2138 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2139 			return 1;
2140 		vmx->msr_ia32_feature_control = data;
2141 		if (msr_info->host_initiated && data == 0)
2142 			vmx_leave_nested(vcpu);
2143 		break;
2144 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2145 		if (!msr_info->host_initiated)
2146 			return 1; /* they are read-only */
2147 		if (!nested_vmx_allowed(vcpu))
2148 			return 1;
2149 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2150 	case MSR_IA32_RTIT_CTL:
2151 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
2152 			vmx_rtit_ctl_check(vcpu, data) ||
2153 			vmx->nested.vmxon)
2154 			return 1;
2155 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2156 		vmx->pt_desc.guest.ctl = data;
2157 		pt_update_intercept_for_msr(vmx);
2158 		break;
2159 	case MSR_IA32_RTIT_STATUS:
2160 		if (!pt_can_write_msr(vmx))
2161 			return 1;
2162 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2163 			return 1;
2164 		vmx->pt_desc.guest.status = data;
2165 		break;
2166 	case MSR_IA32_RTIT_CR3_MATCH:
2167 		if (!pt_can_write_msr(vmx))
2168 			return 1;
2169 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2170 					   PT_CAP_cr3_filtering))
2171 			return 1;
2172 		vmx->pt_desc.guest.cr3_match = data;
2173 		break;
2174 	case MSR_IA32_RTIT_OUTPUT_BASE:
2175 		if (!pt_can_write_msr(vmx))
2176 			return 1;
2177 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2178 					   PT_CAP_topa_output) &&
2179 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2180 					   PT_CAP_single_range_output))
2181 			return 1;
2182 		if (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK)
2183 			return 1;
2184 		vmx->pt_desc.guest.output_base = data;
2185 		break;
2186 	case MSR_IA32_RTIT_OUTPUT_MASK:
2187 		if (!pt_can_write_msr(vmx))
2188 			return 1;
2189 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2190 					   PT_CAP_topa_output) &&
2191 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2192 					   PT_CAP_single_range_output))
2193 			return 1;
2194 		vmx->pt_desc.guest.output_mask = data;
2195 		break;
2196 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2197 		if (!pt_can_write_msr(vmx))
2198 			return 1;
2199 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2200 		if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2201 						       PT_CAP_num_address_ranges))
2202 			return 1;
2203 		if (is_noncanonical_address(data, vcpu))
2204 			return 1;
2205 		if (index % 2)
2206 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2207 		else
2208 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2209 		break;
2210 	case MSR_TSC_AUX:
2211 		if (!msr_info->host_initiated &&
2212 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2213 			return 1;
2214 		/* Check reserved bit, higher 32 bits should be zero */
2215 		if ((data >> 32) != 0)
2216 			return 1;
2217 		goto find_shared_msr;
2218 
2219 	default:
2220 	find_shared_msr:
2221 		msr = find_msr_entry(vmx, msr_index);
2222 		if (msr)
2223 			ret = vmx_set_guest_msr(vmx, msr, data);
2224 		else
2225 			ret = kvm_set_msr_common(vcpu, msr_info);
2226 	}
2227 
2228 	return ret;
2229 }
2230 
2231 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2232 {
2233 	kvm_register_mark_available(vcpu, reg);
2234 
2235 	switch (reg) {
2236 	case VCPU_REGS_RSP:
2237 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2238 		break;
2239 	case VCPU_REGS_RIP:
2240 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2241 		break;
2242 	case VCPU_EXREG_PDPTR:
2243 		if (enable_ept)
2244 			ept_save_pdptrs(vcpu);
2245 		break;
2246 	case VCPU_EXREG_CR3:
2247 		if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2248 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2249 		break;
2250 	default:
2251 		WARN_ON_ONCE(1);
2252 		break;
2253 	}
2254 }
2255 
2256 static __init int cpu_has_kvm_support(void)
2257 {
2258 	return cpu_has_vmx();
2259 }
2260 
2261 static __init int vmx_disabled_by_bios(void)
2262 {
2263 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2264 	       !boot_cpu_has(X86_FEATURE_VMX);
2265 }
2266 
2267 static void kvm_cpu_vmxon(u64 addr)
2268 {
2269 	cr4_set_bits(X86_CR4_VMXE);
2270 	intel_pt_handle_vmx(1);
2271 
2272 	asm volatile ("vmxon %0" : : "m"(addr));
2273 }
2274 
2275 static int hardware_enable(void)
2276 {
2277 	int cpu = raw_smp_processor_id();
2278 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2279 
2280 	if (cr4_read_shadow() & X86_CR4_VMXE)
2281 		return -EBUSY;
2282 
2283 	/*
2284 	 * This can happen if we hot-added a CPU but failed to allocate
2285 	 * VP assist page for it.
2286 	 */
2287 	if (static_branch_unlikely(&enable_evmcs) &&
2288 	    !hv_get_vp_assist_page(cpu))
2289 		return -EFAULT;
2290 
2291 	INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2292 	INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2293 	spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2294 
2295 	/*
2296 	 * Now we can enable the vmclear operation in kdump
2297 	 * since the loaded_vmcss_on_cpu list on this cpu
2298 	 * has been initialized.
2299 	 *
2300 	 * Though the cpu is not in VMX operation now, there
2301 	 * is no problem to enable the vmclear operation
2302 	 * for the loaded_vmcss_on_cpu list is empty!
2303 	 */
2304 	crash_enable_local_vmclear(cpu);
2305 
2306 	kvm_cpu_vmxon(phys_addr);
2307 	if (enable_ept)
2308 		ept_sync_global();
2309 
2310 	return 0;
2311 }
2312 
2313 static void vmclear_local_loaded_vmcss(void)
2314 {
2315 	int cpu = raw_smp_processor_id();
2316 	struct loaded_vmcs *v, *n;
2317 
2318 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2319 				 loaded_vmcss_on_cpu_link)
2320 		__loaded_vmcs_clear(v);
2321 }
2322 
2323 
2324 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2325  * tricks.
2326  */
2327 static void kvm_cpu_vmxoff(void)
2328 {
2329 	asm volatile (__ex("vmxoff"));
2330 
2331 	intel_pt_handle_vmx(0);
2332 	cr4_clear_bits(X86_CR4_VMXE);
2333 }
2334 
2335 static void hardware_disable(void)
2336 {
2337 	vmclear_local_loaded_vmcss();
2338 	kvm_cpu_vmxoff();
2339 }
2340 
2341 /*
2342  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2343  * directly instead of going through cpu_has(), to ensure KVM is trapping
2344  * ENCLS whenever it's supported in hardware.  It does not matter whether
2345  * the host OS supports or has enabled SGX.
2346  */
2347 static bool cpu_has_sgx(void)
2348 {
2349 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2350 }
2351 
2352 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2353 				      u32 msr, u32 *result)
2354 {
2355 	u32 vmx_msr_low, vmx_msr_high;
2356 	u32 ctl = ctl_min | ctl_opt;
2357 
2358 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2359 
2360 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2361 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2362 
2363 	/* Ensure minimum (required) set of control bits are supported. */
2364 	if (ctl_min & ~ctl)
2365 		return -EIO;
2366 
2367 	*result = ctl;
2368 	return 0;
2369 }
2370 
2371 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2372 				    struct vmx_capability *vmx_cap)
2373 {
2374 	u32 vmx_msr_low, vmx_msr_high;
2375 	u32 min, opt, min2, opt2;
2376 	u32 _pin_based_exec_control = 0;
2377 	u32 _cpu_based_exec_control = 0;
2378 	u32 _cpu_based_2nd_exec_control = 0;
2379 	u32 _vmexit_control = 0;
2380 	u32 _vmentry_control = 0;
2381 
2382 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2383 	min = CPU_BASED_HLT_EXITING |
2384 #ifdef CONFIG_X86_64
2385 	      CPU_BASED_CR8_LOAD_EXITING |
2386 	      CPU_BASED_CR8_STORE_EXITING |
2387 #endif
2388 	      CPU_BASED_CR3_LOAD_EXITING |
2389 	      CPU_BASED_CR3_STORE_EXITING |
2390 	      CPU_BASED_UNCOND_IO_EXITING |
2391 	      CPU_BASED_MOV_DR_EXITING |
2392 	      CPU_BASED_USE_TSC_OFFSETTING |
2393 	      CPU_BASED_MWAIT_EXITING |
2394 	      CPU_BASED_MONITOR_EXITING |
2395 	      CPU_BASED_INVLPG_EXITING |
2396 	      CPU_BASED_RDPMC_EXITING;
2397 
2398 	opt = CPU_BASED_TPR_SHADOW |
2399 	      CPU_BASED_USE_MSR_BITMAPS |
2400 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2401 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2402 				&_cpu_based_exec_control) < 0)
2403 		return -EIO;
2404 #ifdef CONFIG_X86_64
2405 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2406 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2407 					   ~CPU_BASED_CR8_STORE_EXITING;
2408 #endif
2409 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2410 		min2 = 0;
2411 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2412 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2413 			SECONDARY_EXEC_WBINVD_EXITING |
2414 			SECONDARY_EXEC_ENABLE_VPID |
2415 			SECONDARY_EXEC_ENABLE_EPT |
2416 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2417 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2418 			SECONDARY_EXEC_DESC |
2419 			SECONDARY_EXEC_RDTSCP |
2420 			SECONDARY_EXEC_ENABLE_INVPCID |
2421 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2422 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2423 			SECONDARY_EXEC_SHADOW_VMCS |
2424 			SECONDARY_EXEC_XSAVES |
2425 			SECONDARY_EXEC_RDSEED_EXITING |
2426 			SECONDARY_EXEC_RDRAND_EXITING |
2427 			SECONDARY_EXEC_ENABLE_PML |
2428 			SECONDARY_EXEC_TSC_SCALING |
2429 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2430 			SECONDARY_EXEC_PT_USE_GPA |
2431 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2432 			SECONDARY_EXEC_ENABLE_VMFUNC;
2433 		if (cpu_has_sgx())
2434 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2435 		if (adjust_vmx_controls(min2, opt2,
2436 					MSR_IA32_VMX_PROCBASED_CTLS2,
2437 					&_cpu_based_2nd_exec_control) < 0)
2438 			return -EIO;
2439 	}
2440 #ifndef CONFIG_X86_64
2441 	if (!(_cpu_based_2nd_exec_control &
2442 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2443 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2444 #endif
2445 
2446 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2447 		_cpu_based_2nd_exec_control &= ~(
2448 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2449 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2450 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2451 
2452 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2453 		&vmx_cap->ept, &vmx_cap->vpid);
2454 
2455 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2456 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2457 		   enabled */
2458 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2459 					     CPU_BASED_CR3_STORE_EXITING |
2460 					     CPU_BASED_INVLPG_EXITING);
2461 	} else if (vmx_cap->ept) {
2462 		vmx_cap->ept = 0;
2463 		pr_warn_once("EPT CAP should not exist if not support "
2464 				"1-setting enable EPT VM-execution control\n");
2465 	}
2466 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2467 		vmx_cap->vpid) {
2468 		vmx_cap->vpid = 0;
2469 		pr_warn_once("VPID CAP should not exist if not support "
2470 				"1-setting enable VPID VM-execution control\n");
2471 	}
2472 
2473 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2474 #ifdef CONFIG_X86_64
2475 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2476 #endif
2477 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2478 	      VM_EXIT_LOAD_IA32_PAT |
2479 	      VM_EXIT_LOAD_IA32_EFER |
2480 	      VM_EXIT_CLEAR_BNDCFGS |
2481 	      VM_EXIT_PT_CONCEAL_PIP |
2482 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2483 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2484 				&_vmexit_control) < 0)
2485 		return -EIO;
2486 
2487 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2488 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2489 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2490 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2491 				&_pin_based_exec_control) < 0)
2492 		return -EIO;
2493 
2494 	if (cpu_has_broken_vmx_preemption_timer())
2495 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2496 	if (!(_cpu_based_2nd_exec_control &
2497 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2498 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2499 
2500 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2501 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2502 	      VM_ENTRY_LOAD_IA32_PAT |
2503 	      VM_ENTRY_LOAD_IA32_EFER |
2504 	      VM_ENTRY_LOAD_BNDCFGS |
2505 	      VM_ENTRY_PT_CONCEAL_PIP |
2506 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2507 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2508 				&_vmentry_control) < 0)
2509 		return -EIO;
2510 
2511 	/*
2512 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2513 	 * can't be used due to an errata where VM Exit may incorrectly clear
2514 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2515 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2516 	 */
2517 	if (boot_cpu_data.x86 == 0x6) {
2518 		switch (boot_cpu_data.x86_model) {
2519 		case 26: /* AAK155 */
2520 		case 30: /* AAP115 */
2521 		case 37: /* AAT100 */
2522 		case 44: /* BC86,AAY89,BD102 */
2523 		case 46: /* BA97 */
2524 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2525 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2526 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2527 					"does not work properly. Using workaround\n");
2528 			break;
2529 		default:
2530 			break;
2531 		}
2532 	}
2533 
2534 
2535 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2536 
2537 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2538 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2539 		return -EIO;
2540 
2541 #ifdef CONFIG_X86_64
2542 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2543 	if (vmx_msr_high & (1u<<16))
2544 		return -EIO;
2545 #endif
2546 
2547 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2548 	if (((vmx_msr_high >> 18) & 15) != 6)
2549 		return -EIO;
2550 
2551 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2552 	vmcs_conf->order = get_order(vmcs_conf->size);
2553 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2554 
2555 	vmcs_conf->revision_id = vmx_msr_low;
2556 
2557 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2558 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2559 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2560 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2561 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2562 
2563 	if (static_branch_unlikely(&enable_evmcs))
2564 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2565 
2566 	return 0;
2567 }
2568 
2569 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2570 {
2571 	int node = cpu_to_node(cpu);
2572 	struct page *pages;
2573 	struct vmcs *vmcs;
2574 
2575 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2576 	if (!pages)
2577 		return NULL;
2578 	vmcs = page_address(pages);
2579 	memset(vmcs, 0, vmcs_config.size);
2580 
2581 	/* KVM supports Enlightened VMCS v1 only */
2582 	if (static_branch_unlikely(&enable_evmcs))
2583 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2584 	else
2585 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2586 
2587 	if (shadow)
2588 		vmcs->hdr.shadow_vmcs = 1;
2589 	return vmcs;
2590 }
2591 
2592 void free_vmcs(struct vmcs *vmcs)
2593 {
2594 	free_pages((unsigned long)vmcs, vmcs_config.order);
2595 }
2596 
2597 /*
2598  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2599  */
2600 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2601 {
2602 	if (!loaded_vmcs->vmcs)
2603 		return;
2604 	loaded_vmcs_clear(loaded_vmcs);
2605 	free_vmcs(loaded_vmcs->vmcs);
2606 	loaded_vmcs->vmcs = NULL;
2607 	if (loaded_vmcs->msr_bitmap)
2608 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2609 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2610 }
2611 
2612 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2613 {
2614 	loaded_vmcs->vmcs = alloc_vmcs(false);
2615 	if (!loaded_vmcs->vmcs)
2616 		return -ENOMEM;
2617 
2618 	loaded_vmcs->shadow_vmcs = NULL;
2619 	loaded_vmcs->hv_timer_soft_disabled = false;
2620 	loaded_vmcs_init(loaded_vmcs);
2621 
2622 	if (cpu_has_vmx_msr_bitmap()) {
2623 		loaded_vmcs->msr_bitmap = (unsigned long *)
2624 				__get_free_page(GFP_KERNEL_ACCOUNT);
2625 		if (!loaded_vmcs->msr_bitmap)
2626 			goto out_vmcs;
2627 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2628 
2629 		if (IS_ENABLED(CONFIG_HYPERV) &&
2630 		    static_branch_unlikely(&enable_evmcs) &&
2631 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2632 			struct hv_enlightened_vmcs *evmcs =
2633 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2634 
2635 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2636 		}
2637 	}
2638 
2639 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2640 	memset(&loaded_vmcs->controls_shadow, 0,
2641 		sizeof(struct vmcs_controls_shadow));
2642 
2643 	return 0;
2644 
2645 out_vmcs:
2646 	free_loaded_vmcs(loaded_vmcs);
2647 	return -ENOMEM;
2648 }
2649 
2650 static void free_kvm_area(void)
2651 {
2652 	int cpu;
2653 
2654 	for_each_possible_cpu(cpu) {
2655 		free_vmcs(per_cpu(vmxarea, cpu));
2656 		per_cpu(vmxarea, cpu) = NULL;
2657 	}
2658 }
2659 
2660 static __init int alloc_kvm_area(void)
2661 {
2662 	int cpu;
2663 
2664 	for_each_possible_cpu(cpu) {
2665 		struct vmcs *vmcs;
2666 
2667 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2668 		if (!vmcs) {
2669 			free_kvm_area();
2670 			return -ENOMEM;
2671 		}
2672 
2673 		/*
2674 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2675 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2676 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2677 		 *
2678 		 * However, even though not explicitly documented by
2679 		 * TLFS, VMXArea passed as VMXON argument should
2680 		 * still be marked with revision_id reported by
2681 		 * physical CPU.
2682 		 */
2683 		if (static_branch_unlikely(&enable_evmcs))
2684 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2685 
2686 		per_cpu(vmxarea, cpu) = vmcs;
2687 	}
2688 	return 0;
2689 }
2690 
2691 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2692 		struct kvm_segment *save)
2693 {
2694 	if (!emulate_invalid_guest_state) {
2695 		/*
2696 		 * CS and SS RPL should be equal during guest entry according
2697 		 * to VMX spec, but in reality it is not always so. Since vcpu
2698 		 * is in the middle of the transition from real mode to
2699 		 * protected mode it is safe to assume that RPL 0 is a good
2700 		 * default value.
2701 		 */
2702 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2703 			save->selector &= ~SEGMENT_RPL_MASK;
2704 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2705 		save->s = 1;
2706 	}
2707 	vmx_set_segment(vcpu, save, seg);
2708 }
2709 
2710 static void enter_pmode(struct kvm_vcpu *vcpu)
2711 {
2712 	unsigned long flags;
2713 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2714 
2715 	/*
2716 	 * Update real mode segment cache. It may be not up-to-date if sement
2717 	 * register was written while vcpu was in a guest mode.
2718 	 */
2719 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2720 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2721 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2722 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2723 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2724 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2725 
2726 	vmx->rmode.vm86_active = 0;
2727 
2728 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2729 
2730 	flags = vmcs_readl(GUEST_RFLAGS);
2731 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2732 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2733 	vmcs_writel(GUEST_RFLAGS, flags);
2734 
2735 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2736 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2737 
2738 	update_exception_bitmap(vcpu);
2739 
2740 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2741 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2742 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2743 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2744 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2745 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2746 }
2747 
2748 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2749 {
2750 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2751 	struct kvm_segment var = *save;
2752 
2753 	var.dpl = 0x3;
2754 	if (seg == VCPU_SREG_CS)
2755 		var.type = 0x3;
2756 
2757 	if (!emulate_invalid_guest_state) {
2758 		var.selector = var.base >> 4;
2759 		var.base = var.base & 0xffff0;
2760 		var.limit = 0xffff;
2761 		var.g = 0;
2762 		var.db = 0;
2763 		var.present = 1;
2764 		var.s = 1;
2765 		var.l = 0;
2766 		var.unusable = 0;
2767 		var.type = 0x3;
2768 		var.avl = 0;
2769 		if (save->base & 0xf)
2770 			printk_once(KERN_WARNING "kvm: segment base is not "
2771 					"paragraph aligned when entering "
2772 					"protected mode (seg=%d)", seg);
2773 	}
2774 
2775 	vmcs_write16(sf->selector, var.selector);
2776 	vmcs_writel(sf->base, var.base);
2777 	vmcs_write32(sf->limit, var.limit);
2778 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2779 }
2780 
2781 static void enter_rmode(struct kvm_vcpu *vcpu)
2782 {
2783 	unsigned long flags;
2784 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2785 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2786 
2787 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2788 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2789 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2790 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2791 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2792 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2793 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2794 
2795 	vmx->rmode.vm86_active = 1;
2796 
2797 	/*
2798 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2799 	 * vcpu. Warn the user that an update is overdue.
2800 	 */
2801 	if (!kvm_vmx->tss_addr)
2802 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2803 			     "called before entering vcpu\n");
2804 
2805 	vmx_segment_cache_clear(vmx);
2806 
2807 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2808 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2809 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2810 
2811 	flags = vmcs_readl(GUEST_RFLAGS);
2812 	vmx->rmode.save_rflags = flags;
2813 
2814 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2815 
2816 	vmcs_writel(GUEST_RFLAGS, flags);
2817 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2818 	update_exception_bitmap(vcpu);
2819 
2820 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2821 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2822 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2823 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2824 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2825 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2826 
2827 	kvm_mmu_reset_context(vcpu);
2828 }
2829 
2830 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2831 {
2832 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2833 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2834 
2835 	if (!msr)
2836 		return;
2837 
2838 	vcpu->arch.efer = efer;
2839 	if (efer & EFER_LMA) {
2840 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2841 		msr->data = efer;
2842 	} else {
2843 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2844 
2845 		msr->data = efer & ~EFER_LME;
2846 	}
2847 	setup_msrs(vmx);
2848 }
2849 
2850 #ifdef CONFIG_X86_64
2851 
2852 static void enter_lmode(struct kvm_vcpu *vcpu)
2853 {
2854 	u32 guest_tr_ar;
2855 
2856 	vmx_segment_cache_clear(to_vmx(vcpu));
2857 
2858 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2859 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2860 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2861 				     __func__);
2862 		vmcs_write32(GUEST_TR_AR_BYTES,
2863 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2864 			     | VMX_AR_TYPE_BUSY_64_TSS);
2865 	}
2866 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2867 }
2868 
2869 static void exit_lmode(struct kvm_vcpu *vcpu)
2870 {
2871 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2872 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2873 }
2874 
2875 #endif
2876 
2877 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2878 {
2879 	int vpid = to_vmx(vcpu)->vpid;
2880 
2881 	if (!vpid_sync_vcpu_addr(vpid, addr))
2882 		vpid_sync_context(vpid);
2883 
2884 	/*
2885 	 * If VPIDs are not supported or enabled, then the above is a no-op.
2886 	 * But we don't really need a TLB flush in that case anyway, because
2887 	 * each VM entry/exit includes an implicit flush when VPID is 0.
2888 	 */
2889 }
2890 
2891 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2892 {
2893 	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2894 
2895 	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2896 	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2897 }
2898 
2899 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2900 {
2901 	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2902 
2903 	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2904 	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2905 }
2906 
2907 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2908 {
2909 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2910 
2911 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2912 		return;
2913 
2914 	if (is_pae_paging(vcpu)) {
2915 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2916 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2917 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2918 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2919 	}
2920 }
2921 
2922 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2923 {
2924 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2925 
2926 	if (is_pae_paging(vcpu)) {
2927 		mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2928 		mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2929 		mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2930 		mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2931 	}
2932 
2933 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2934 }
2935 
2936 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2937 					unsigned long cr0,
2938 					struct kvm_vcpu *vcpu)
2939 {
2940 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2941 
2942 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
2943 		vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
2944 	if (!(cr0 & X86_CR0_PG)) {
2945 		/* From paging/starting to nonpaging */
2946 		exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2947 					  CPU_BASED_CR3_STORE_EXITING);
2948 		vcpu->arch.cr0 = cr0;
2949 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2950 	} else if (!is_paging(vcpu)) {
2951 		/* From nonpaging to paging */
2952 		exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2953 					    CPU_BASED_CR3_STORE_EXITING);
2954 		vcpu->arch.cr0 = cr0;
2955 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2956 	}
2957 
2958 	if (!(cr0 & X86_CR0_WP))
2959 		*hw_cr0 &= ~X86_CR0_WP;
2960 }
2961 
2962 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2963 {
2964 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2965 	unsigned long hw_cr0;
2966 
2967 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2968 	if (enable_unrestricted_guest)
2969 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2970 	else {
2971 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2972 
2973 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2974 			enter_pmode(vcpu);
2975 
2976 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2977 			enter_rmode(vcpu);
2978 	}
2979 
2980 #ifdef CONFIG_X86_64
2981 	if (vcpu->arch.efer & EFER_LME) {
2982 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2983 			enter_lmode(vcpu);
2984 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2985 			exit_lmode(vcpu);
2986 	}
2987 #endif
2988 
2989 	if (enable_ept && !enable_unrestricted_guest)
2990 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2991 
2992 	vmcs_writel(CR0_READ_SHADOW, cr0);
2993 	vmcs_writel(GUEST_CR0, hw_cr0);
2994 	vcpu->arch.cr0 = cr0;
2995 
2996 	/* depends on vcpu->arch.cr0 to be set to a new value */
2997 	vmx->emulation_required = emulation_required(vcpu);
2998 }
2999 
3000 static int get_ept_level(struct kvm_vcpu *vcpu)
3001 {
3002 	/* Nested EPT currently only supports 4-level walks. */
3003 	if (is_guest_mode(vcpu) && nested_cpu_has_ept(get_vmcs12(vcpu)))
3004 		return 4;
3005 	if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
3006 		return 5;
3007 	return 4;
3008 }
3009 
3010 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
3011 {
3012 	u64 eptp = VMX_EPTP_MT_WB;
3013 
3014 	eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3015 
3016 	if (enable_ept_ad_bits &&
3017 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3018 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3019 	eptp |= (root_hpa & PAGE_MASK);
3020 
3021 	return eptp;
3022 }
3023 
3024 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3025 {
3026 	struct kvm *kvm = vcpu->kvm;
3027 	bool update_guest_cr3 = true;
3028 	unsigned long guest_cr3;
3029 	u64 eptp;
3030 
3031 	guest_cr3 = cr3;
3032 	if (enable_ept) {
3033 		eptp = construct_eptp(vcpu, cr3);
3034 		vmcs_write64(EPT_POINTER, eptp);
3035 
3036 		if (kvm_x86_ops->tlb_remote_flush) {
3037 			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3038 			to_vmx(vcpu)->ept_pointer = eptp;
3039 			to_kvm_vmx(kvm)->ept_pointers_match
3040 				= EPT_POINTERS_CHECK;
3041 			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3042 		}
3043 
3044 		/* Loading vmcs02.GUEST_CR3 is handled by nested VM-Enter. */
3045 		if (is_guest_mode(vcpu))
3046 			update_guest_cr3 = false;
3047 		else if (!enable_unrestricted_guest && !is_paging(vcpu))
3048 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3049 		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3050 			guest_cr3 = vcpu->arch.cr3;
3051 		else /* vmcs01.GUEST_CR3 is already up-to-date. */
3052 			update_guest_cr3 = false;
3053 		ept_load_pdptrs(vcpu);
3054 	}
3055 
3056 	if (update_guest_cr3)
3057 		vmcs_writel(GUEST_CR3, guest_cr3);
3058 }
3059 
3060 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3061 {
3062 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3063 	/*
3064 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3065 	 * is in force while we are in guest mode.  Do not let guests control
3066 	 * this bit, even if host CR4.MCE == 0.
3067 	 */
3068 	unsigned long hw_cr4;
3069 
3070 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3071 	if (enable_unrestricted_guest)
3072 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3073 	else if (vmx->rmode.vm86_active)
3074 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3075 	else
3076 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3077 
3078 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3079 		if (cr4 & X86_CR4_UMIP) {
3080 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3081 			hw_cr4 &= ~X86_CR4_UMIP;
3082 		} else if (!is_guest_mode(vcpu) ||
3083 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3084 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3085 		}
3086 	}
3087 
3088 	if (cr4 & X86_CR4_VMXE) {
3089 		/*
3090 		 * To use VMXON (and later other VMX instructions), a guest
3091 		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3092 		 * So basically the check on whether to allow nested VMX
3093 		 * is here.  We operate under the default treatment of SMM,
3094 		 * so VMX cannot be enabled under SMM.
3095 		 */
3096 		if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3097 			return 1;
3098 	}
3099 
3100 	if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3101 		return 1;
3102 
3103 	vcpu->arch.cr4 = cr4;
3104 
3105 	if (!enable_unrestricted_guest) {
3106 		if (enable_ept) {
3107 			if (!is_paging(vcpu)) {
3108 				hw_cr4 &= ~X86_CR4_PAE;
3109 				hw_cr4 |= X86_CR4_PSE;
3110 			} else if (!(cr4 & X86_CR4_PAE)) {
3111 				hw_cr4 &= ~X86_CR4_PAE;
3112 			}
3113 		}
3114 
3115 		/*
3116 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3117 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3118 		 * to be manually disabled when guest switches to non-paging
3119 		 * mode.
3120 		 *
3121 		 * If !enable_unrestricted_guest, the CPU is always running
3122 		 * with CR0.PG=1 and CR4 needs to be modified.
3123 		 * If enable_unrestricted_guest, the CPU automatically
3124 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3125 		 */
3126 		if (!is_paging(vcpu))
3127 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3128 	}
3129 
3130 	vmcs_writel(CR4_READ_SHADOW, cr4);
3131 	vmcs_writel(GUEST_CR4, hw_cr4);
3132 	return 0;
3133 }
3134 
3135 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3136 {
3137 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3138 	u32 ar;
3139 
3140 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3141 		*var = vmx->rmode.segs[seg];
3142 		if (seg == VCPU_SREG_TR
3143 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3144 			return;
3145 		var->base = vmx_read_guest_seg_base(vmx, seg);
3146 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3147 		return;
3148 	}
3149 	var->base = vmx_read_guest_seg_base(vmx, seg);
3150 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3151 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3152 	ar = vmx_read_guest_seg_ar(vmx, seg);
3153 	var->unusable = (ar >> 16) & 1;
3154 	var->type = ar & 15;
3155 	var->s = (ar >> 4) & 1;
3156 	var->dpl = (ar >> 5) & 3;
3157 	/*
3158 	 * Some userspaces do not preserve unusable property. Since usable
3159 	 * segment has to be present according to VMX spec we can use present
3160 	 * property to amend userspace bug by making unusable segment always
3161 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3162 	 * segment as unusable.
3163 	 */
3164 	var->present = !var->unusable;
3165 	var->avl = (ar >> 12) & 1;
3166 	var->l = (ar >> 13) & 1;
3167 	var->db = (ar >> 14) & 1;
3168 	var->g = (ar >> 15) & 1;
3169 }
3170 
3171 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3172 {
3173 	struct kvm_segment s;
3174 
3175 	if (to_vmx(vcpu)->rmode.vm86_active) {
3176 		vmx_get_segment(vcpu, &s, seg);
3177 		return s.base;
3178 	}
3179 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3180 }
3181 
3182 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3183 {
3184 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3185 
3186 	if (unlikely(vmx->rmode.vm86_active))
3187 		return 0;
3188 	else {
3189 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3190 		return VMX_AR_DPL(ar);
3191 	}
3192 }
3193 
3194 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3195 {
3196 	u32 ar;
3197 
3198 	if (var->unusable || !var->present)
3199 		ar = 1 << 16;
3200 	else {
3201 		ar = var->type & 15;
3202 		ar |= (var->s & 1) << 4;
3203 		ar |= (var->dpl & 3) << 5;
3204 		ar |= (var->present & 1) << 7;
3205 		ar |= (var->avl & 1) << 12;
3206 		ar |= (var->l & 1) << 13;
3207 		ar |= (var->db & 1) << 14;
3208 		ar |= (var->g & 1) << 15;
3209 	}
3210 
3211 	return ar;
3212 }
3213 
3214 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3215 {
3216 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3217 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3218 
3219 	vmx_segment_cache_clear(vmx);
3220 
3221 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3222 		vmx->rmode.segs[seg] = *var;
3223 		if (seg == VCPU_SREG_TR)
3224 			vmcs_write16(sf->selector, var->selector);
3225 		else if (var->s)
3226 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3227 		goto out;
3228 	}
3229 
3230 	vmcs_writel(sf->base, var->base);
3231 	vmcs_write32(sf->limit, var->limit);
3232 	vmcs_write16(sf->selector, var->selector);
3233 
3234 	/*
3235 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3236 	 * qemu binaries.
3237 	 *   IA32 arch specifies that at the time of processor reset the
3238 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3239 	 * is setting it to 0 in the userland code. This causes invalid guest
3240 	 * state vmexit when "unrestricted guest" mode is turned on.
3241 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3242 	 * tree. Newer qemu binaries with that qemu fix would not need this
3243 	 * kvm hack.
3244 	 */
3245 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3246 		var->type |= 0x1; /* Accessed */
3247 
3248 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3249 
3250 out:
3251 	vmx->emulation_required = emulation_required(vcpu);
3252 }
3253 
3254 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3255 {
3256 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3257 
3258 	*db = (ar >> 14) & 1;
3259 	*l = (ar >> 13) & 1;
3260 }
3261 
3262 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3263 {
3264 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3265 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3266 }
3267 
3268 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3269 {
3270 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3271 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3272 }
3273 
3274 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3275 {
3276 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3277 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3278 }
3279 
3280 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3281 {
3282 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3283 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3284 }
3285 
3286 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3287 {
3288 	struct kvm_segment var;
3289 	u32 ar;
3290 
3291 	vmx_get_segment(vcpu, &var, seg);
3292 	var.dpl = 0x3;
3293 	if (seg == VCPU_SREG_CS)
3294 		var.type = 0x3;
3295 	ar = vmx_segment_access_rights(&var);
3296 
3297 	if (var.base != (var.selector << 4))
3298 		return false;
3299 	if (var.limit != 0xffff)
3300 		return false;
3301 	if (ar != 0xf3)
3302 		return false;
3303 
3304 	return true;
3305 }
3306 
3307 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3308 {
3309 	struct kvm_segment cs;
3310 	unsigned int cs_rpl;
3311 
3312 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3313 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3314 
3315 	if (cs.unusable)
3316 		return false;
3317 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3318 		return false;
3319 	if (!cs.s)
3320 		return false;
3321 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3322 		if (cs.dpl > cs_rpl)
3323 			return false;
3324 	} else {
3325 		if (cs.dpl != cs_rpl)
3326 			return false;
3327 	}
3328 	if (!cs.present)
3329 		return false;
3330 
3331 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3332 	return true;
3333 }
3334 
3335 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3336 {
3337 	struct kvm_segment ss;
3338 	unsigned int ss_rpl;
3339 
3340 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3341 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3342 
3343 	if (ss.unusable)
3344 		return true;
3345 	if (ss.type != 3 && ss.type != 7)
3346 		return false;
3347 	if (!ss.s)
3348 		return false;
3349 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3350 		return false;
3351 	if (!ss.present)
3352 		return false;
3353 
3354 	return true;
3355 }
3356 
3357 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3358 {
3359 	struct kvm_segment var;
3360 	unsigned int rpl;
3361 
3362 	vmx_get_segment(vcpu, &var, seg);
3363 	rpl = var.selector & SEGMENT_RPL_MASK;
3364 
3365 	if (var.unusable)
3366 		return true;
3367 	if (!var.s)
3368 		return false;
3369 	if (!var.present)
3370 		return false;
3371 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3372 		if (var.dpl < rpl) /* DPL < RPL */
3373 			return false;
3374 	}
3375 
3376 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3377 	 * rights flags
3378 	 */
3379 	return true;
3380 }
3381 
3382 static bool tr_valid(struct kvm_vcpu *vcpu)
3383 {
3384 	struct kvm_segment tr;
3385 
3386 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3387 
3388 	if (tr.unusable)
3389 		return false;
3390 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3391 		return false;
3392 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3393 		return false;
3394 	if (!tr.present)
3395 		return false;
3396 
3397 	return true;
3398 }
3399 
3400 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3401 {
3402 	struct kvm_segment ldtr;
3403 
3404 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3405 
3406 	if (ldtr.unusable)
3407 		return true;
3408 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3409 		return false;
3410 	if (ldtr.type != 2)
3411 		return false;
3412 	if (!ldtr.present)
3413 		return false;
3414 
3415 	return true;
3416 }
3417 
3418 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3419 {
3420 	struct kvm_segment cs, ss;
3421 
3422 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3423 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3424 
3425 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3426 		 (ss.selector & SEGMENT_RPL_MASK));
3427 }
3428 
3429 /*
3430  * Check if guest state is valid. Returns true if valid, false if
3431  * not.
3432  * We assume that registers are always usable
3433  */
3434 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3435 {
3436 	if (enable_unrestricted_guest)
3437 		return true;
3438 
3439 	/* real mode guest state checks */
3440 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3441 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3442 			return false;
3443 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3444 			return false;
3445 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3446 			return false;
3447 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3448 			return false;
3449 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3450 			return false;
3451 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3452 			return false;
3453 	} else {
3454 	/* protected mode guest state checks */
3455 		if (!cs_ss_rpl_check(vcpu))
3456 			return false;
3457 		if (!code_segment_valid(vcpu))
3458 			return false;
3459 		if (!stack_segment_valid(vcpu))
3460 			return false;
3461 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3462 			return false;
3463 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3464 			return false;
3465 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3466 			return false;
3467 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3468 			return false;
3469 		if (!tr_valid(vcpu))
3470 			return false;
3471 		if (!ldtr_valid(vcpu))
3472 			return false;
3473 	}
3474 	/* TODO:
3475 	 * - Add checks on RIP
3476 	 * - Add checks on RFLAGS
3477 	 */
3478 
3479 	return true;
3480 }
3481 
3482 static int init_rmode_tss(struct kvm *kvm)
3483 {
3484 	gfn_t fn;
3485 	u16 data = 0;
3486 	int idx, r;
3487 
3488 	idx = srcu_read_lock(&kvm->srcu);
3489 	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3490 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3491 	if (r < 0)
3492 		goto out;
3493 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3494 	r = kvm_write_guest_page(kvm, fn++, &data,
3495 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
3496 	if (r < 0)
3497 		goto out;
3498 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3499 	if (r < 0)
3500 		goto out;
3501 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3502 	if (r < 0)
3503 		goto out;
3504 	data = ~0;
3505 	r = kvm_write_guest_page(kvm, fn, &data,
3506 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3507 				 sizeof(u8));
3508 out:
3509 	srcu_read_unlock(&kvm->srcu, idx);
3510 	return r;
3511 }
3512 
3513 static int init_rmode_identity_map(struct kvm *kvm)
3514 {
3515 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3516 	int i, r = 0;
3517 	kvm_pfn_t identity_map_pfn;
3518 	u32 tmp;
3519 
3520 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3521 	mutex_lock(&kvm->slots_lock);
3522 
3523 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3524 		goto out;
3525 
3526 	if (!kvm_vmx->ept_identity_map_addr)
3527 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3528 	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3529 
3530 	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3531 				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3532 	if (r < 0)
3533 		goto out;
3534 
3535 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3536 	if (r < 0)
3537 		goto out;
3538 	/* Set up identity-mapping pagetable for EPT in real mode */
3539 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3540 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3541 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3542 		r = kvm_write_guest_page(kvm, identity_map_pfn,
3543 				&tmp, i * sizeof(tmp), sizeof(tmp));
3544 		if (r < 0)
3545 			goto out;
3546 	}
3547 	kvm_vmx->ept_identity_pagetable_done = true;
3548 
3549 out:
3550 	mutex_unlock(&kvm->slots_lock);
3551 	return r;
3552 }
3553 
3554 static void seg_setup(int seg)
3555 {
3556 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3557 	unsigned int ar;
3558 
3559 	vmcs_write16(sf->selector, 0);
3560 	vmcs_writel(sf->base, 0);
3561 	vmcs_write32(sf->limit, 0xffff);
3562 	ar = 0x93;
3563 	if (seg == VCPU_SREG_CS)
3564 		ar |= 0x08; /* code segment */
3565 
3566 	vmcs_write32(sf->ar_bytes, ar);
3567 }
3568 
3569 static int alloc_apic_access_page(struct kvm *kvm)
3570 {
3571 	struct page *page;
3572 	int r = 0;
3573 
3574 	mutex_lock(&kvm->slots_lock);
3575 	if (kvm->arch.apic_access_page_done)
3576 		goto out;
3577 	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3578 				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3579 	if (r)
3580 		goto out;
3581 
3582 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3583 	if (is_error_page(page)) {
3584 		r = -EFAULT;
3585 		goto out;
3586 	}
3587 
3588 	/*
3589 	 * Do not pin the page in memory, so that memory hot-unplug
3590 	 * is able to migrate it.
3591 	 */
3592 	put_page(page);
3593 	kvm->arch.apic_access_page_done = true;
3594 out:
3595 	mutex_unlock(&kvm->slots_lock);
3596 	return r;
3597 }
3598 
3599 int allocate_vpid(void)
3600 {
3601 	int vpid;
3602 
3603 	if (!enable_vpid)
3604 		return 0;
3605 	spin_lock(&vmx_vpid_lock);
3606 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3607 	if (vpid < VMX_NR_VPIDS)
3608 		__set_bit(vpid, vmx_vpid_bitmap);
3609 	else
3610 		vpid = 0;
3611 	spin_unlock(&vmx_vpid_lock);
3612 	return vpid;
3613 }
3614 
3615 void free_vpid(int vpid)
3616 {
3617 	if (!enable_vpid || vpid == 0)
3618 		return;
3619 	spin_lock(&vmx_vpid_lock);
3620 	__clear_bit(vpid, vmx_vpid_bitmap);
3621 	spin_unlock(&vmx_vpid_lock);
3622 }
3623 
3624 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3625 							  u32 msr, int type)
3626 {
3627 	int f = sizeof(unsigned long);
3628 
3629 	if (!cpu_has_vmx_msr_bitmap())
3630 		return;
3631 
3632 	if (static_branch_unlikely(&enable_evmcs))
3633 		evmcs_touch_msr_bitmap();
3634 
3635 	/*
3636 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3637 	 * have the write-low and read-high bitmap offsets the wrong way round.
3638 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3639 	 */
3640 	if (msr <= 0x1fff) {
3641 		if (type & MSR_TYPE_R)
3642 			/* read-low */
3643 			__clear_bit(msr, msr_bitmap + 0x000 / f);
3644 
3645 		if (type & MSR_TYPE_W)
3646 			/* write-low */
3647 			__clear_bit(msr, msr_bitmap + 0x800 / f);
3648 
3649 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3650 		msr &= 0x1fff;
3651 		if (type & MSR_TYPE_R)
3652 			/* read-high */
3653 			__clear_bit(msr, msr_bitmap + 0x400 / f);
3654 
3655 		if (type & MSR_TYPE_W)
3656 			/* write-high */
3657 			__clear_bit(msr, msr_bitmap + 0xc00 / f);
3658 
3659 	}
3660 }
3661 
3662 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3663 							 u32 msr, int type)
3664 {
3665 	int f = sizeof(unsigned long);
3666 
3667 	if (!cpu_has_vmx_msr_bitmap())
3668 		return;
3669 
3670 	if (static_branch_unlikely(&enable_evmcs))
3671 		evmcs_touch_msr_bitmap();
3672 
3673 	/*
3674 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3675 	 * have the write-low and read-high bitmap offsets the wrong way round.
3676 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3677 	 */
3678 	if (msr <= 0x1fff) {
3679 		if (type & MSR_TYPE_R)
3680 			/* read-low */
3681 			__set_bit(msr, msr_bitmap + 0x000 / f);
3682 
3683 		if (type & MSR_TYPE_W)
3684 			/* write-low */
3685 			__set_bit(msr, msr_bitmap + 0x800 / f);
3686 
3687 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3688 		msr &= 0x1fff;
3689 		if (type & MSR_TYPE_R)
3690 			/* read-high */
3691 			__set_bit(msr, msr_bitmap + 0x400 / f);
3692 
3693 		if (type & MSR_TYPE_W)
3694 			/* write-high */
3695 			__set_bit(msr, msr_bitmap + 0xc00 / f);
3696 
3697 	}
3698 }
3699 
3700 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3701 			     			      u32 msr, int type, bool value)
3702 {
3703 	if (value)
3704 		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3705 	else
3706 		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3707 }
3708 
3709 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3710 {
3711 	u8 mode = 0;
3712 
3713 	if (cpu_has_secondary_exec_ctrls() &&
3714 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
3715 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3716 		mode |= MSR_BITMAP_MODE_X2APIC;
3717 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3718 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3719 	}
3720 
3721 	return mode;
3722 }
3723 
3724 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3725 					 u8 mode)
3726 {
3727 	int msr;
3728 
3729 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3730 		unsigned word = msr / BITS_PER_LONG;
3731 		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3732 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3733 	}
3734 
3735 	if (mode & MSR_BITMAP_MODE_X2APIC) {
3736 		/*
3737 		 * TPR reads and writes can be virtualized even if virtual interrupt
3738 		 * delivery is not in use.
3739 		 */
3740 		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3741 		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3742 			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3743 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3744 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3745 		}
3746 	}
3747 }
3748 
3749 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3750 {
3751 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3752 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3753 	u8 mode = vmx_msr_bitmap_mode(vcpu);
3754 	u8 changed = mode ^ vmx->msr_bitmap_mode;
3755 
3756 	if (!changed)
3757 		return;
3758 
3759 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3760 		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3761 
3762 	vmx->msr_bitmap_mode = mode;
3763 }
3764 
3765 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3766 {
3767 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3768 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3769 	u32 i;
3770 
3771 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3772 							MSR_TYPE_RW, flag);
3773 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3774 							MSR_TYPE_RW, flag);
3775 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3776 							MSR_TYPE_RW, flag);
3777 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3778 							MSR_TYPE_RW, flag);
3779 	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3780 		vmx_set_intercept_for_msr(msr_bitmap,
3781 			MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3782 		vmx_set_intercept_for_msr(msr_bitmap,
3783 			MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3784 	}
3785 }
3786 
3787 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3788 {
3789 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3790 	void *vapic_page;
3791 	u32 vppr;
3792 	int rvi;
3793 
3794 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3795 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3796 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3797 		return false;
3798 
3799 	rvi = vmx_get_rvi();
3800 
3801 	vapic_page = vmx->nested.virtual_apic_map.hva;
3802 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3803 
3804 	return ((rvi & 0xf0) > (vppr & 0xf0));
3805 }
3806 
3807 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3808 						     bool nested)
3809 {
3810 #ifdef CONFIG_SMP
3811 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3812 
3813 	if (vcpu->mode == IN_GUEST_MODE) {
3814 		/*
3815 		 * The vector of interrupt to be delivered to vcpu had
3816 		 * been set in PIR before this function.
3817 		 *
3818 		 * Following cases will be reached in this block, and
3819 		 * we always send a notification event in all cases as
3820 		 * explained below.
3821 		 *
3822 		 * Case 1: vcpu keeps in non-root mode. Sending a
3823 		 * notification event posts the interrupt to vcpu.
3824 		 *
3825 		 * Case 2: vcpu exits to root mode and is still
3826 		 * runnable. PIR will be synced to vIRR before the
3827 		 * next vcpu entry. Sending a notification event in
3828 		 * this case has no effect, as vcpu is not in root
3829 		 * mode.
3830 		 *
3831 		 * Case 3: vcpu exits to root mode and is blocked.
3832 		 * vcpu_block() has already synced PIR to vIRR and
3833 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3834 		 * a blocked vcpu here does not wait for any requested
3835 		 * interrupts in PIR, and sending a notification event
3836 		 * which has no effect is safe here.
3837 		 */
3838 
3839 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3840 		return true;
3841 	}
3842 #endif
3843 	return false;
3844 }
3845 
3846 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3847 						int vector)
3848 {
3849 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3850 
3851 	if (is_guest_mode(vcpu) &&
3852 	    vector == vmx->nested.posted_intr_nv) {
3853 		/*
3854 		 * If a posted intr is not recognized by hardware,
3855 		 * we will accomplish it in the next vmentry.
3856 		 */
3857 		vmx->nested.pi_pending = true;
3858 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3859 		/* the PIR and ON have been set by L1. */
3860 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3861 			kvm_vcpu_kick(vcpu);
3862 		return 0;
3863 	}
3864 	return -1;
3865 }
3866 /*
3867  * Send interrupt to vcpu via posted interrupt way.
3868  * 1. If target vcpu is running(non-root mode), send posted interrupt
3869  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3870  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3871  * interrupt from PIR in next vmentry.
3872  */
3873 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3874 {
3875 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3876 	int r;
3877 
3878 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3879 	if (!r)
3880 		return 0;
3881 
3882 	if (!vcpu->arch.apicv_active)
3883 		return -1;
3884 
3885 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3886 		return 0;
3887 
3888 	/* If a previous notification has sent the IPI, nothing to do.  */
3889 	if (pi_test_and_set_on(&vmx->pi_desc))
3890 		return 0;
3891 
3892 	if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3893 		kvm_vcpu_kick(vcpu);
3894 
3895 	return 0;
3896 }
3897 
3898 /*
3899  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3900  * will not change in the lifetime of the guest.
3901  * Note that host-state that does change is set elsewhere. E.g., host-state
3902  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3903  */
3904 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3905 {
3906 	u32 low32, high32;
3907 	unsigned long tmpl;
3908 	unsigned long cr0, cr3, cr4;
3909 
3910 	cr0 = read_cr0();
3911 	WARN_ON(cr0 & X86_CR0_TS);
3912 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3913 
3914 	/*
3915 	 * Save the most likely value for this task's CR3 in the VMCS.
3916 	 * We can't use __get_current_cr3_fast() because we're not atomic.
3917 	 */
3918 	cr3 = __read_cr3();
3919 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
3920 	vmx->loaded_vmcs->host_state.cr3 = cr3;
3921 
3922 	/* Save the most likely value for this task's CR4 in the VMCS. */
3923 	cr4 = cr4_read_shadow();
3924 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
3925 	vmx->loaded_vmcs->host_state.cr4 = cr4;
3926 
3927 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3928 #ifdef CONFIG_X86_64
3929 	/*
3930 	 * Load null selectors, so we can avoid reloading them in
3931 	 * vmx_prepare_switch_to_host(), in case userspace uses
3932 	 * the null selectors too (the expected case).
3933 	 */
3934 	vmcs_write16(HOST_DS_SELECTOR, 0);
3935 	vmcs_write16(HOST_ES_SELECTOR, 0);
3936 #else
3937 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3938 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3939 #endif
3940 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3941 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3942 
3943 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3944 
3945 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3946 
3947 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3948 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3949 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3950 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3951 
3952 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3953 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
3954 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3955 	}
3956 
3957 	if (cpu_has_load_ia32_efer())
3958 		vmcs_write64(HOST_IA32_EFER, host_efer);
3959 }
3960 
3961 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3962 {
3963 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3964 	if (enable_ept)
3965 		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3966 	if (is_guest_mode(&vmx->vcpu))
3967 		vmx->vcpu.arch.cr4_guest_owned_bits &=
3968 			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3969 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3970 }
3971 
3972 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3973 {
3974 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3975 
3976 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3977 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3978 
3979 	if (!enable_vnmi)
3980 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3981 
3982 	if (!enable_preemption_timer)
3983 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3984 
3985 	return pin_based_exec_ctrl;
3986 }
3987 
3988 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3989 {
3990 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3991 
3992 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3993 	if (cpu_has_secondary_exec_ctrls()) {
3994 		if (kvm_vcpu_apicv_active(vcpu))
3995 			secondary_exec_controls_setbit(vmx,
3996 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
3997 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3998 		else
3999 			secondary_exec_controls_clearbit(vmx,
4000 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4001 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4002 	}
4003 
4004 	if (cpu_has_vmx_msr_bitmap())
4005 		vmx_update_msr_bitmap(vcpu);
4006 }
4007 
4008 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4009 {
4010 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4011 
4012 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4013 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4014 
4015 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4016 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4017 #ifdef CONFIG_X86_64
4018 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4019 				CPU_BASED_CR8_LOAD_EXITING;
4020 #endif
4021 	}
4022 	if (!enable_ept)
4023 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4024 				CPU_BASED_CR3_LOAD_EXITING  |
4025 				CPU_BASED_INVLPG_EXITING;
4026 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4027 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4028 				CPU_BASED_MONITOR_EXITING);
4029 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4030 		exec_control &= ~CPU_BASED_HLT_EXITING;
4031 	return exec_control;
4032 }
4033 
4034 
4035 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4036 {
4037 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4038 
4039 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4040 
4041 	if (pt_mode == PT_MODE_SYSTEM)
4042 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4043 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4044 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4045 	if (vmx->vpid == 0)
4046 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4047 	if (!enable_ept) {
4048 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4049 		enable_unrestricted_guest = 0;
4050 	}
4051 	if (!enable_unrestricted_guest)
4052 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4053 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4054 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4055 	if (!kvm_vcpu_apicv_active(vcpu))
4056 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4057 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4058 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4059 
4060 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4061 	 * in vmx_set_cr4.  */
4062 	exec_control &= ~SECONDARY_EXEC_DESC;
4063 
4064 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4065 	   (handle_vmptrld).
4066 	   We can NOT enable shadow_vmcs here because we don't have yet
4067 	   a current VMCS12
4068 	*/
4069 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4070 
4071 	if (!enable_pml)
4072 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4073 
4074 	if (vmx_xsaves_supported()) {
4075 		/* Exposing XSAVES only when XSAVE is exposed */
4076 		bool xsaves_enabled =
4077 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4078 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4079 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4080 
4081 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4082 
4083 		if (!xsaves_enabled)
4084 			exec_control &= ~SECONDARY_EXEC_XSAVES;
4085 
4086 		if (nested) {
4087 			if (xsaves_enabled)
4088 				vmx->nested.msrs.secondary_ctls_high |=
4089 					SECONDARY_EXEC_XSAVES;
4090 			else
4091 				vmx->nested.msrs.secondary_ctls_high &=
4092 					~SECONDARY_EXEC_XSAVES;
4093 		}
4094 	}
4095 
4096 	if (vmx_rdtscp_supported()) {
4097 		bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4098 		if (!rdtscp_enabled)
4099 			exec_control &= ~SECONDARY_EXEC_RDTSCP;
4100 
4101 		if (nested) {
4102 			if (rdtscp_enabled)
4103 				vmx->nested.msrs.secondary_ctls_high |=
4104 					SECONDARY_EXEC_RDTSCP;
4105 			else
4106 				vmx->nested.msrs.secondary_ctls_high &=
4107 					~SECONDARY_EXEC_RDTSCP;
4108 		}
4109 	}
4110 
4111 	if (vmx_invpcid_supported()) {
4112 		/* Exposing INVPCID only when PCID is exposed */
4113 		bool invpcid_enabled =
4114 			guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4115 			guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4116 
4117 		if (!invpcid_enabled) {
4118 			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4119 			guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4120 		}
4121 
4122 		if (nested) {
4123 			if (invpcid_enabled)
4124 				vmx->nested.msrs.secondary_ctls_high |=
4125 					SECONDARY_EXEC_ENABLE_INVPCID;
4126 			else
4127 				vmx->nested.msrs.secondary_ctls_high &=
4128 					~SECONDARY_EXEC_ENABLE_INVPCID;
4129 		}
4130 	}
4131 
4132 	if (vmx_rdrand_supported()) {
4133 		bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4134 		if (rdrand_enabled)
4135 			exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4136 
4137 		if (nested) {
4138 			if (rdrand_enabled)
4139 				vmx->nested.msrs.secondary_ctls_high |=
4140 					SECONDARY_EXEC_RDRAND_EXITING;
4141 			else
4142 				vmx->nested.msrs.secondary_ctls_high &=
4143 					~SECONDARY_EXEC_RDRAND_EXITING;
4144 		}
4145 	}
4146 
4147 	if (vmx_rdseed_supported()) {
4148 		bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4149 		if (rdseed_enabled)
4150 			exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4151 
4152 		if (nested) {
4153 			if (rdseed_enabled)
4154 				vmx->nested.msrs.secondary_ctls_high |=
4155 					SECONDARY_EXEC_RDSEED_EXITING;
4156 			else
4157 				vmx->nested.msrs.secondary_ctls_high &=
4158 					~SECONDARY_EXEC_RDSEED_EXITING;
4159 		}
4160 	}
4161 
4162 	if (vmx_waitpkg_supported()) {
4163 		bool waitpkg_enabled =
4164 			guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4165 
4166 		if (!waitpkg_enabled)
4167 			exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4168 
4169 		if (nested) {
4170 			if (waitpkg_enabled)
4171 				vmx->nested.msrs.secondary_ctls_high |=
4172 					SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4173 			else
4174 				vmx->nested.msrs.secondary_ctls_high &=
4175 					~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4176 		}
4177 	}
4178 
4179 	vmx->secondary_exec_control = exec_control;
4180 }
4181 
4182 static void ept_set_mmio_spte_mask(void)
4183 {
4184 	/*
4185 	 * EPT Misconfigurations can be generated if the value of bits 2:0
4186 	 * of an EPT paging-structure entry is 110b (write/execute).
4187 	 */
4188 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4189 				   VMX_EPT_MISCONFIG_WX_VALUE, 0);
4190 }
4191 
4192 #define VMX_XSS_EXIT_BITMAP 0
4193 
4194 /*
4195  * Noting that the initialization of Guest-state Area of VMCS is in
4196  * vmx_vcpu_reset().
4197  */
4198 static void init_vmcs(struct vcpu_vmx *vmx)
4199 {
4200 	if (nested)
4201 		nested_vmx_set_vmcs_shadowing_bitmap();
4202 
4203 	if (cpu_has_vmx_msr_bitmap())
4204 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4205 
4206 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4207 
4208 	/* Control */
4209 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4210 
4211 	exec_controls_set(vmx, vmx_exec_control(vmx));
4212 
4213 	if (cpu_has_secondary_exec_ctrls()) {
4214 		vmx_compute_secondary_exec_control(vmx);
4215 		secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4216 	}
4217 
4218 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4219 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4220 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4221 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4222 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4223 
4224 		vmcs_write16(GUEST_INTR_STATUS, 0);
4225 
4226 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4227 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4228 	}
4229 
4230 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4231 		vmcs_write32(PLE_GAP, ple_gap);
4232 		vmx->ple_window = ple_window;
4233 		vmx->ple_window_dirty = true;
4234 	}
4235 
4236 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4237 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4238 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4239 
4240 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4241 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4242 	vmx_set_constant_host_state(vmx);
4243 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4244 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4245 
4246 	if (cpu_has_vmx_vmfunc())
4247 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4248 
4249 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4250 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4251 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4252 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4253 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4254 
4255 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4256 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4257 
4258 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4259 
4260 	/* 22.2.1, 20.8.1 */
4261 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4262 
4263 	vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4264 	vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4265 
4266 	set_cr4_guest_host_mask(vmx);
4267 
4268 	if (vmx->vpid != 0)
4269 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4270 
4271 	if (vmx_xsaves_supported())
4272 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4273 
4274 	if (enable_pml) {
4275 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4276 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4277 	}
4278 
4279 	if (cpu_has_vmx_encls_vmexit())
4280 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4281 
4282 	if (pt_mode == PT_MODE_HOST_GUEST) {
4283 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4284 		/* Bit[6~0] are forced to 1, writes are ignored. */
4285 		vmx->pt_desc.guest.output_mask = 0x7F;
4286 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4287 	}
4288 }
4289 
4290 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4291 {
4292 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4293 	struct msr_data apic_base_msr;
4294 	u64 cr0;
4295 
4296 	vmx->rmode.vm86_active = 0;
4297 	vmx->spec_ctrl = 0;
4298 
4299 	vmx->msr_ia32_umwait_control = 0;
4300 
4301 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4302 	vmx->hv_deadline_tsc = -1;
4303 	kvm_set_cr8(vcpu, 0);
4304 
4305 	if (!init_event) {
4306 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4307 				     MSR_IA32_APICBASE_ENABLE;
4308 		if (kvm_vcpu_is_reset_bsp(vcpu))
4309 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4310 		apic_base_msr.host_initiated = true;
4311 		kvm_set_apic_base(vcpu, &apic_base_msr);
4312 	}
4313 
4314 	vmx_segment_cache_clear(vmx);
4315 
4316 	seg_setup(VCPU_SREG_CS);
4317 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4318 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4319 
4320 	seg_setup(VCPU_SREG_DS);
4321 	seg_setup(VCPU_SREG_ES);
4322 	seg_setup(VCPU_SREG_FS);
4323 	seg_setup(VCPU_SREG_GS);
4324 	seg_setup(VCPU_SREG_SS);
4325 
4326 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4327 	vmcs_writel(GUEST_TR_BASE, 0);
4328 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4329 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4330 
4331 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4332 	vmcs_writel(GUEST_LDTR_BASE, 0);
4333 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4334 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4335 
4336 	if (!init_event) {
4337 		vmcs_write32(GUEST_SYSENTER_CS, 0);
4338 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
4339 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
4340 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4341 	}
4342 
4343 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4344 	kvm_rip_write(vcpu, 0xfff0);
4345 
4346 	vmcs_writel(GUEST_GDTR_BASE, 0);
4347 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4348 
4349 	vmcs_writel(GUEST_IDTR_BASE, 0);
4350 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4351 
4352 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4353 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4354 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4355 	if (kvm_mpx_supported())
4356 		vmcs_write64(GUEST_BNDCFGS, 0);
4357 
4358 	setup_msrs(vmx);
4359 
4360 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4361 
4362 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
4363 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4364 		if (cpu_need_tpr_shadow(vcpu))
4365 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4366 				     __pa(vcpu->arch.apic->regs));
4367 		vmcs_write32(TPR_THRESHOLD, 0);
4368 	}
4369 
4370 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4371 
4372 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4373 	vmx->vcpu.arch.cr0 = cr0;
4374 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
4375 	vmx_set_cr4(vcpu, 0);
4376 	vmx_set_efer(vcpu, 0);
4377 
4378 	update_exception_bitmap(vcpu);
4379 
4380 	vpid_sync_context(vmx->vpid);
4381 	if (init_event)
4382 		vmx_clear_hlt(vcpu);
4383 }
4384 
4385 static void enable_irq_window(struct kvm_vcpu *vcpu)
4386 {
4387 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4388 }
4389 
4390 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4391 {
4392 	if (!enable_vnmi ||
4393 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4394 		enable_irq_window(vcpu);
4395 		return;
4396 	}
4397 
4398 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4399 }
4400 
4401 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4402 {
4403 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4404 	uint32_t intr;
4405 	int irq = vcpu->arch.interrupt.nr;
4406 
4407 	trace_kvm_inj_virq(irq);
4408 
4409 	++vcpu->stat.irq_injections;
4410 	if (vmx->rmode.vm86_active) {
4411 		int inc_eip = 0;
4412 		if (vcpu->arch.interrupt.soft)
4413 			inc_eip = vcpu->arch.event_exit_inst_len;
4414 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4415 		return;
4416 	}
4417 	intr = irq | INTR_INFO_VALID_MASK;
4418 	if (vcpu->arch.interrupt.soft) {
4419 		intr |= INTR_TYPE_SOFT_INTR;
4420 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4421 			     vmx->vcpu.arch.event_exit_inst_len);
4422 	} else
4423 		intr |= INTR_TYPE_EXT_INTR;
4424 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4425 
4426 	vmx_clear_hlt(vcpu);
4427 }
4428 
4429 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4430 {
4431 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4432 
4433 	if (!enable_vnmi) {
4434 		/*
4435 		 * Tracking the NMI-blocked state in software is built upon
4436 		 * finding the next open IRQ window. This, in turn, depends on
4437 		 * well-behaving guests: They have to keep IRQs disabled at
4438 		 * least as long as the NMI handler runs. Otherwise we may
4439 		 * cause NMI nesting, maybe breaking the guest. But as this is
4440 		 * highly unlikely, we can live with the residual risk.
4441 		 */
4442 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4443 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4444 	}
4445 
4446 	++vcpu->stat.nmi_injections;
4447 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4448 
4449 	if (vmx->rmode.vm86_active) {
4450 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4451 		return;
4452 	}
4453 
4454 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4455 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4456 
4457 	vmx_clear_hlt(vcpu);
4458 }
4459 
4460 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4461 {
4462 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4463 	bool masked;
4464 
4465 	if (!enable_vnmi)
4466 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4467 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4468 		return false;
4469 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4470 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4471 	return masked;
4472 }
4473 
4474 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4475 {
4476 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4477 
4478 	if (!enable_vnmi) {
4479 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4480 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4481 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4482 		}
4483 	} else {
4484 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4485 		if (masked)
4486 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4487 				      GUEST_INTR_STATE_NMI);
4488 		else
4489 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4490 					GUEST_INTR_STATE_NMI);
4491 	}
4492 }
4493 
4494 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4495 {
4496 	if (to_vmx(vcpu)->nested.nested_run_pending)
4497 		return 0;
4498 
4499 	if (!enable_vnmi &&
4500 	    to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4501 		return 0;
4502 
4503 	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4504 		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4505 		   | GUEST_INTR_STATE_NMI));
4506 }
4507 
4508 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4509 {
4510 	return (!to_vmx(vcpu)->nested.nested_run_pending &&
4511 		vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4512 		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4513 			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4514 }
4515 
4516 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4517 {
4518 	int ret;
4519 
4520 	if (enable_unrestricted_guest)
4521 		return 0;
4522 
4523 	mutex_lock(&kvm->slots_lock);
4524 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4525 				      PAGE_SIZE * 3);
4526 	mutex_unlock(&kvm->slots_lock);
4527 
4528 	if (ret)
4529 		return ret;
4530 	to_kvm_vmx(kvm)->tss_addr = addr;
4531 	return init_rmode_tss(kvm);
4532 }
4533 
4534 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4535 {
4536 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4537 	return 0;
4538 }
4539 
4540 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4541 {
4542 	switch (vec) {
4543 	case BP_VECTOR:
4544 		/*
4545 		 * Update instruction length as we may reinject the exception
4546 		 * from user space while in guest debugging mode.
4547 		 */
4548 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4549 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4550 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4551 			return false;
4552 		/* fall through */
4553 	case DB_VECTOR:
4554 		if (vcpu->guest_debug &
4555 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4556 			return false;
4557 		/* fall through */
4558 	case DE_VECTOR:
4559 	case OF_VECTOR:
4560 	case BR_VECTOR:
4561 	case UD_VECTOR:
4562 	case DF_VECTOR:
4563 	case SS_VECTOR:
4564 	case GP_VECTOR:
4565 	case MF_VECTOR:
4566 		return true;
4567 	break;
4568 	}
4569 	return false;
4570 }
4571 
4572 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4573 				  int vec, u32 err_code)
4574 {
4575 	/*
4576 	 * Instruction with address size override prefix opcode 0x67
4577 	 * Cause the #SS fault with 0 error code in VM86 mode.
4578 	 */
4579 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4580 		if (kvm_emulate_instruction(vcpu, 0)) {
4581 			if (vcpu->arch.halt_request) {
4582 				vcpu->arch.halt_request = 0;
4583 				return kvm_vcpu_halt(vcpu);
4584 			}
4585 			return 1;
4586 		}
4587 		return 0;
4588 	}
4589 
4590 	/*
4591 	 * Forward all other exceptions that are valid in real mode.
4592 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4593 	 *        the required debugging infrastructure rework.
4594 	 */
4595 	kvm_queue_exception(vcpu, vec);
4596 	return 1;
4597 }
4598 
4599 /*
4600  * Trigger machine check on the host. We assume all the MSRs are already set up
4601  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4602  * We pass a fake environment to the machine check handler because we want
4603  * the guest to be always treated like user space, no matter what context
4604  * it used internally.
4605  */
4606 static void kvm_machine_check(void)
4607 {
4608 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4609 	struct pt_regs regs = {
4610 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
4611 		.flags = X86_EFLAGS_IF,
4612 	};
4613 
4614 	do_machine_check(&regs, 0);
4615 #endif
4616 }
4617 
4618 static int handle_machine_check(struct kvm_vcpu *vcpu)
4619 {
4620 	/* handled by vmx_vcpu_run() */
4621 	return 1;
4622 }
4623 
4624 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4625 {
4626 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4627 	struct kvm_run *kvm_run = vcpu->run;
4628 	u32 intr_info, ex_no, error_code;
4629 	unsigned long cr2, rip, dr6;
4630 	u32 vect_info;
4631 
4632 	vect_info = vmx->idt_vectoring_info;
4633 	intr_info = vmx->exit_intr_info;
4634 
4635 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4636 		return 1; /* handled by handle_exception_nmi_irqoff() */
4637 
4638 	if (is_invalid_opcode(intr_info))
4639 		return handle_ud(vcpu);
4640 
4641 	error_code = 0;
4642 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4643 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4644 
4645 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4646 		WARN_ON_ONCE(!enable_vmware_backdoor);
4647 
4648 		/*
4649 		 * VMware backdoor emulation on #GP interception only handles
4650 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4651 		 * error code on #GP.
4652 		 */
4653 		if (error_code) {
4654 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4655 			return 1;
4656 		}
4657 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4658 	}
4659 
4660 	/*
4661 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4662 	 * MMIO, it is better to report an internal error.
4663 	 * See the comments in vmx_handle_exit.
4664 	 */
4665 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4666 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4667 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4668 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4669 		vcpu->run->internal.ndata = 3;
4670 		vcpu->run->internal.data[0] = vect_info;
4671 		vcpu->run->internal.data[1] = intr_info;
4672 		vcpu->run->internal.data[2] = error_code;
4673 		return 0;
4674 	}
4675 
4676 	if (is_page_fault(intr_info)) {
4677 		cr2 = vmcs_readl(EXIT_QUALIFICATION);
4678 		/* EPT won't cause page fault directly */
4679 		WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4680 		return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4681 	}
4682 
4683 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4684 
4685 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4686 		return handle_rmode_exception(vcpu, ex_no, error_code);
4687 
4688 	switch (ex_no) {
4689 	case AC_VECTOR:
4690 		kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4691 		return 1;
4692 	case DB_VECTOR:
4693 		dr6 = vmcs_readl(EXIT_QUALIFICATION);
4694 		if (!(vcpu->guest_debug &
4695 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4696 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4697 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
4698 			if (is_icebp(intr_info))
4699 				WARN_ON(!skip_emulated_instruction(vcpu));
4700 
4701 			kvm_queue_exception(vcpu, DB_VECTOR);
4702 			return 1;
4703 		}
4704 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4705 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4706 		/* fall through */
4707 	case BP_VECTOR:
4708 		/*
4709 		 * Update instruction length as we may reinject #BP from
4710 		 * user space while in guest debugging mode. Reading it for
4711 		 * #DB as well causes no harm, it is not used in that case.
4712 		 */
4713 		vmx->vcpu.arch.event_exit_inst_len =
4714 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4715 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4716 		rip = kvm_rip_read(vcpu);
4717 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4718 		kvm_run->debug.arch.exception = ex_no;
4719 		break;
4720 	default:
4721 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4722 		kvm_run->ex.exception = ex_no;
4723 		kvm_run->ex.error_code = error_code;
4724 		break;
4725 	}
4726 	return 0;
4727 }
4728 
4729 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4730 {
4731 	++vcpu->stat.irq_exits;
4732 	return 1;
4733 }
4734 
4735 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4736 {
4737 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4738 	vcpu->mmio_needed = 0;
4739 	return 0;
4740 }
4741 
4742 static int handle_io(struct kvm_vcpu *vcpu)
4743 {
4744 	unsigned long exit_qualification;
4745 	int size, in, string;
4746 	unsigned port;
4747 
4748 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4749 	string = (exit_qualification & 16) != 0;
4750 
4751 	++vcpu->stat.io_exits;
4752 
4753 	if (string)
4754 		return kvm_emulate_instruction(vcpu, 0);
4755 
4756 	port = exit_qualification >> 16;
4757 	size = (exit_qualification & 7) + 1;
4758 	in = (exit_qualification & 8) != 0;
4759 
4760 	return kvm_fast_pio(vcpu, size, port, in);
4761 }
4762 
4763 static void
4764 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4765 {
4766 	/*
4767 	 * Patch in the VMCALL instruction:
4768 	 */
4769 	hypercall[0] = 0x0f;
4770 	hypercall[1] = 0x01;
4771 	hypercall[2] = 0xc1;
4772 }
4773 
4774 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4775 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4776 {
4777 	if (is_guest_mode(vcpu)) {
4778 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4779 		unsigned long orig_val = val;
4780 
4781 		/*
4782 		 * We get here when L2 changed cr0 in a way that did not change
4783 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4784 		 * but did change L0 shadowed bits. So we first calculate the
4785 		 * effective cr0 value that L1 would like to write into the
4786 		 * hardware. It consists of the L2-owned bits from the new
4787 		 * value combined with the L1-owned bits from L1's guest_cr0.
4788 		 */
4789 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4790 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4791 
4792 		if (!nested_guest_cr0_valid(vcpu, val))
4793 			return 1;
4794 
4795 		if (kvm_set_cr0(vcpu, val))
4796 			return 1;
4797 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4798 		return 0;
4799 	} else {
4800 		if (to_vmx(vcpu)->nested.vmxon &&
4801 		    !nested_host_cr0_valid(vcpu, val))
4802 			return 1;
4803 
4804 		return kvm_set_cr0(vcpu, val);
4805 	}
4806 }
4807 
4808 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4809 {
4810 	if (is_guest_mode(vcpu)) {
4811 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4812 		unsigned long orig_val = val;
4813 
4814 		/* analogously to handle_set_cr0 */
4815 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4816 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4817 		if (kvm_set_cr4(vcpu, val))
4818 			return 1;
4819 		vmcs_writel(CR4_READ_SHADOW, orig_val);
4820 		return 0;
4821 	} else
4822 		return kvm_set_cr4(vcpu, val);
4823 }
4824 
4825 static int handle_desc(struct kvm_vcpu *vcpu)
4826 {
4827 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4828 	return kvm_emulate_instruction(vcpu, 0);
4829 }
4830 
4831 static int handle_cr(struct kvm_vcpu *vcpu)
4832 {
4833 	unsigned long exit_qualification, val;
4834 	int cr;
4835 	int reg;
4836 	int err;
4837 	int ret;
4838 
4839 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4840 	cr = exit_qualification & 15;
4841 	reg = (exit_qualification >> 8) & 15;
4842 	switch ((exit_qualification >> 4) & 3) {
4843 	case 0: /* mov to cr */
4844 		val = kvm_register_readl(vcpu, reg);
4845 		trace_kvm_cr_write(cr, val);
4846 		switch (cr) {
4847 		case 0:
4848 			err = handle_set_cr0(vcpu, val);
4849 			return kvm_complete_insn_gp(vcpu, err);
4850 		case 3:
4851 			WARN_ON_ONCE(enable_unrestricted_guest);
4852 			err = kvm_set_cr3(vcpu, val);
4853 			return kvm_complete_insn_gp(vcpu, err);
4854 		case 4:
4855 			err = handle_set_cr4(vcpu, val);
4856 			return kvm_complete_insn_gp(vcpu, err);
4857 		case 8: {
4858 				u8 cr8_prev = kvm_get_cr8(vcpu);
4859 				u8 cr8 = (u8)val;
4860 				err = kvm_set_cr8(vcpu, cr8);
4861 				ret = kvm_complete_insn_gp(vcpu, err);
4862 				if (lapic_in_kernel(vcpu))
4863 					return ret;
4864 				if (cr8_prev <= cr8)
4865 					return ret;
4866 				/*
4867 				 * TODO: we might be squashing a
4868 				 * KVM_GUESTDBG_SINGLESTEP-triggered
4869 				 * KVM_EXIT_DEBUG here.
4870 				 */
4871 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4872 				return 0;
4873 			}
4874 		}
4875 		break;
4876 	case 2: /* clts */
4877 		WARN_ONCE(1, "Guest should always own CR0.TS");
4878 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4879 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4880 		return kvm_skip_emulated_instruction(vcpu);
4881 	case 1: /*mov from cr*/
4882 		switch (cr) {
4883 		case 3:
4884 			WARN_ON_ONCE(enable_unrestricted_guest);
4885 			val = kvm_read_cr3(vcpu);
4886 			kvm_register_write(vcpu, reg, val);
4887 			trace_kvm_cr_read(cr, val);
4888 			return kvm_skip_emulated_instruction(vcpu);
4889 		case 8:
4890 			val = kvm_get_cr8(vcpu);
4891 			kvm_register_write(vcpu, reg, val);
4892 			trace_kvm_cr_read(cr, val);
4893 			return kvm_skip_emulated_instruction(vcpu);
4894 		}
4895 		break;
4896 	case 3: /* lmsw */
4897 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4898 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4899 		kvm_lmsw(vcpu, val);
4900 
4901 		return kvm_skip_emulated_instruction(vcpu);
4902 	default:
4903 		break;
4904 	}
4905 	vcpu->run->exit_reason = 0;
4906 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4907 	       (int)(exit_qualification >> 4) & 3, cr);
4908 	return 0;
4909 }
4910 
4911 static int handle_dr(struct kvm_vcpu *vcpu)
4912 {
4913 	unsigned long exit_qualification;
4914 	int dr, dr7, reg;
4915 
4916 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4917 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4918 
4919 	/* First, if DR does not exist, trigger UD */
4920 	if (!kvm_require_dr(vcpu, dr))
4921 		return 1;
4922 
4923 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
4924 	if (!kvm_require_cpl(vcpu, 0))
4925 		return 1;
4926 	dr7 = vmcs_readl(GUEST_DR7);
4927 	if (dr7 & DR7_GD) {
4928 		/*
4929 		 * As the vm-exit takes precedence over the debug trap, we
4930 		 * need to emulate the latter, either for the host or the
4931 		 * guest debugging itself.
4932 		 */
4933 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4934 			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4935 			vcpu->run->debug.arch.dr7 = dr7;
4936 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4937 			vcpu->run->debug.arch.exception = DB_VECTOR;
4938 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4939 			return 0;
4940 		} else {
4941 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4942 			vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4943 			kvm_queue_exception(vcpu, DB_VECTOR);
4944 			return 1;
4945 		}
4946 	}
4947 
4948 	if (vcpu->guest_debug == 0) {
4949 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4950 
4951 		/*
4952 		 * No more DR vmexits; force a reload of the debug registers
4953 		 * and reenter on this instruction.  The next vmexit will
4954 		 * retrieve the full state of the debug registers.
4955 		 */
4956 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4957 		return 1;
4958 	}
4959 
4960 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4961 	if (exit_qualification & TYPE_MOV_FROM_DR) {
4962 		unsigned long val;
4963 
4964 		if (kvm_get_dr(vcpu, dr, &val))
4965 			return 1;
4966 		kvm_register_write(vcpu, reg, val);
4967 	} else
4968 		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4969 			return 1;
4970 
4971 	return kvm_skip_emulated_instruction(vcpu);
4972 }
4973 
4974 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4975 {
4976 	return vcpu->arch.dr6;
4977 }
4978 
4979 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4980 {
4981 }
4982 
4983 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4984 {
4985 	get_debugreg(vcpu->arch.db[0], 0);
4986 	get_debugreg(vcpu->arch.db[1], 1);
4987 	get_debugreg(vcpu->arch.db[2], 2);
4988 	get_debugreg(vcpu->arch.db[3], 3);
4989 	get_debugreg(vcpu->arch.dr6, 6);
4990 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4991 
4992 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4993 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4994 }
4995 
4996 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4997 {
4998 	vmcs_writel(GUEST_DR7, val);
4999 }
5000 
5001 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5002 {
5003 	kvm_apic_update_ppr(vcpu);
5004 	return 1;
5005 }
5006 
5007 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5008 {
5009 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5010 
5011 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5012 
5013 	++vcpu->stat.irq_window_exits;
5014 	return 1;
5015 }
5016 
5017 static int handle_vmcall(struct kvm_vcpu *vcpu)
5018 {
5019 	return kvm_emulate_hypercall(vcpu);
5020 }
5021 
5022 static int handle_invd(struct kvm_vcpu *vcpu)
5023 {
5024 	return kvm_emulate_instruction(vcpu, 0);
5025 }
5026 
5027 static int handle_invlpg(struct kvm_vcpu *vcpu)
5028 {
5029 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5030 
5031 	kvm_mmu_invlpg(vcpu, exit_qualification);
5032 	return kvm_skip_emulated_instruction(vcpu);
5033 }
5034 
5035 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5036 {
5037 	int err;
5038 
5039 	err = kvm_rdpmc(vcpu);
5040 	return kvm_complete_insn_gp(vcpu, err);
5041 }
5042 
5043 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5044 {
5045 	return kvm_emulate_wbinvd(vcpu);
5046 }
5047 
5048 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5049 {
5050 	u64 new_bv = kvm_read_edx_eax(vcpu);
5051 	u32 index = kvm_rcx_read(vcpu);
5052 
5053 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5054 		return kvm_skip_emulated_instruction(vcpu);
5055 	return 1;
5056 }
5057 
5058 static int handle_apic_access(struct kvm_vcpu *vcpu)
5059 {
5060 	if (likely(fasteoi)) {
5061 		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5062 		int access_type, offset;
5063 
5064 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5065 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5066 		/*
5067 		 * Sane guest uses MOV to write EOI, with written value
5068 		 * not cared. So make a short-circuit here by avoiding
5069 		 * heavy instruction emulation.
5070 		 */
5071 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5072 		    (offset == APIC_EOI)) {
5073 			kvm_lapic_set_eoi(vcpu);
5074 			return kvm_skip_emulated_instruction(vcpu);
5075 		}
5076 	}
5077 	return kvm_emulate_instruction(vcpu, 0);
5078 }
5079 
5080 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5081 {
5082 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5083 	int vector = exit_qualification & 0xff;
5084 
5085 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5086 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5087 	return 1;
5088 }
5089 
5090 static int handle_apic_write(struct kvm_vcpu *vcpu)
5091 {
5092 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5093 	u32 offset = exit_qualification & 0xfff;
5094 
5095 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5096 	kvm_apic_write_nodecode(vcpu, offset);
5097 	return 1;
5098 }
5099 
5100 static int handle_task_switch(struct kvm_vcpu *vcpu)
5101 {
5102 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5103 	unsigned long exit_qualification;
5104 	bool has_error_code = false;
5105 	u32 error_code = 0;
5106 	u16 tss_selector;
5107 	int reason, type, idt_v, idt_index;
5108 
5109 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5110 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5111 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5112 
5113 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5114 
5115 	reason = (u32)exit_qualification >> 30;
5116 	if (reason == TASK_SWITCH_GATE && idt_v) {
5117 		switch (type) {
5118 		case INTR_TYPE_NMI_INTR:
5119 			vcpu->arch.nmi_injected = false;
5120 			vmx_set_nmi_mask(vcpu, true);
5121 			break;
5122 		case INTR_TYPE_EXT_INTR:
5123 		case INTR_TYPE_SOFT_INTR:
5124 			kvm_clear_interrupt_queue(vcpu);
5125 			break;
5126 		case INTR_TYPE_HARD_EXCEPTION:
5127 			if (vmx->idt_vectoring_info &
5128 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5129 				has_error_code = true;
5130 				error_code =
5131 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5132 			}
5133 			/* fall through */
5134 		case INTR_TYPE_SOFT_EXCEPTION:
5135 			kvm_clear_exception_queue(vcpu);
5136 			break;
5137 		default:
5138 			break;
5139 		}
5140 	}
5141 	tss_selector = exit_qualification;
5142 
5143 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5144 		       type != INTR_TYPE_EXT_INTR &&
5145 		       type != INTR_TYPE_NMI_INTR))
5146 		WARN_ON(!skip_emulated_instruction(vcpu));
5147 
5148 	/*
5149 	 * TODO: What about debug traps on tss switch?
5150 	 *       Are we supposed to inject them and update dr6?
5151 	 */
5152 	return kvm_task_switch(vcpu, tss_selector,
5153 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5154 			       reason, has_error_code, error_code);
5155 }
5156 
5157 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5158 {
5159 	unsigned long exit_qualification;
5160 	gpa_t gpa;
5161 	u64 error_code;
5162 
5163 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5164 
5165 	/*
5166 	 * EPT violation happened while executing iret from NMI,
5167 	 * "blocked by NMI" bit has to be set before next VM entry.
5168 	 * There are errata that may cause this bit to not be set:
5169 	 * AAK134, BY25.
5170 	 */
5171 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5172 			enable_vnmi &&
5173 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5174 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5175 
5176 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5177 	trace_kvm_page_fault(gpa, exit_qualification);
5178 
5179 	/* Is it a read fault? */
5180 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5181 		     ? PFERR_USER_MASK : 0;
5182 	/* Is it a write fault? */
5183 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5184 		      ? PFERR_WRITE_MASK : 0;
5185 	/* Is it a fetch fault? */
5186 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5187 		      ? PFERR_FETCH_MASK : 0;
5188 	/* ept page table entry is present? */
5189 	error_code |= (exit_qualification &
5190 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5191 			EPT_VIOLATION_EXECUTABLE))
5192 		      ? PFERR_PRESENT_MASK : 0;
5193 
5194 	error_code |= (exit_qualification & 0x100) != 0 ?
5195 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5196 
5197 	vcpu->arch.exit_qualification = exit_qualification;
5198 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5199 }
5200 
5201 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5202 {
5203 	gpa_t gpa;
5204 
5205 	/*
5206 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5207 	 * nGPA here instead of the required GPA.
5208 	 */
5209 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5210 	if (!is_guest_mode(vcpu) &&
5211 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5212 		trace_kvm_fast_mmio(gpa);
5213 		return kvm_skip_emulated_instruction(vcpu);
5214 	}
5215 
5216 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5217 }
5218 
5219 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5220 {
5221 	WARN_ON_ONCE(!enable_vnmi);
5222 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5223 	++vcpu->stat.nmi_window_exits;
5224 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5225 
5226 	return 1;
5227 }
5228 
5229 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5230 {
5231 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5232 	bool intr_window_requested;
5233 	unsigned count = 130;
5234 
5235 	/*
5236 	 * We should never reach the point where we are emulating L2
5237 	 * due to invalid guest state as that means we incorrectly
5238 	 * allowed a nested VMEntry with an invalid vmcs12.
5239 	 */
5240 	WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5241 
5242 	intr_window_requested = exec_controls_get(vmx) &
5243 				CPU_BASED_INTR_WINDOW_EXITING;
5244 
5245 	while (vmx->emulation_required && count-- != 0) {
5246 		if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5247 			return handle_interrupt_window(&vmx->vcpu);
5248 
5249 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5250 			return 1;
5251 
5252 		if (!kvm_emulate_instruction(vcpu, 0))
5253 			return 0;
5254 
5255 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5256 		    vcpu->arch.exception.pending) {
5257 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5258 			vcpu->run->internal.suberror =
5259 						KVM_INTERNAL_ERROR_EMULATION;
5260 			vcpu->run->internal.ndata = 0;
5261 			return 0;
5262 		}
5263 
5264 		if (vcpu->arch.halt_request) {
5265 			vcpu->arch.halt_request = 0;
5266 			return kvm_vcpu_halt(vcpu);
5267 		}
5268 
5269 		/*
5270 		 * Note, return 1 and not 0, vcpu_run() is responsible for
5271 		 * morphing the pending signal into the proper return code.
5272 		 */
5273 		if (signal_pending(current))
5274 			return 1;
5275 
5276 		if (need_resched())
5277 			schedule();
5278 	}
5279 
5280 	return 1;
5281 }
5282 
5283 static void grow_ple_window(struct kvm_vcpu *vcpu)
5284 {
5285 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5286 	unsigned int old = vmx->ple_window;
5287 
5288 	vmx->ple_window = __grow_ple_window(old, ple_window,
5289 					    ple_window_grow,
5290 					    ple_window_max);
5291 
5292 	if (vmx->ple_window != old) {
5293 		vmx->ple_window_dirty = true;
5294 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5295 					    vmx->ple_window, old);
5296 	}
5297 }
5298 
5299 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5300 {
5301 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5302 	unsigned int old = vmx->ple_window;
5303 
5304 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5305 					      ple_window_shrink,
5306 					      ple_window);
5307 
5308 	if (vmx->ple_window != old) {
5309 		vmx->ple_window_dirty = true;
5310 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5311 					    vmx->ple_window, old);
5312 	}
5313 }
5314 
5315 /*
5316  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5317  */
5318 static void wakeup_handler(void)
5319 {
5320 	struct kvm_vcpu *vcpu;
5321 	int cpu = smp_processor_id();
5322 
5323 	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5324 	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5325 			blocked_vcpu_list) {
5326 		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5327 
5328 		if (pi_test_on(pi_desc) == 1)
5329 			kvm_vcpu_kick(vcpu);
5330 	}
5331 	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5332 }
5333 
5334 static void vmx_enable_tdp(void)
5335 {
5336 	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5337 		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5338 		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5339 		0ull, VMX_EPT_EXECUTABLE_MASK,
5340 		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5341 		VMX_EPT_RWX_MASK, 0ull);
5342 
5343 	ept_set_mmio_spte_mask();
5344 	kvm_enable_tdp();
5345 }
5346 
5347 /*
5348  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5349  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5350  */
5351 static int handle_pause(struct kvm_vcpu *vcpu)
5352 {
5353 	if (!kvm_pause_in_guest(vcpu->kvm))
5354 		grow_ple_window(vcpu);
5355 
5356 	/*
5357 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5358 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5359 	 * never set PAUSE_EXITING and just set PLE if supported,
5360 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5361 	 */
5362 	kvm_vcpu_on_spin(vcpu, true);
5363 	return kvm_skip_emulated_instruction(vcpu);
5364 }
5365 
5366 static int handle_nop(struct kvm_vcpu *vcpu)
5367 {
5368 	return kvm_skip_emulated_instruction(vcpu);
5369 }
5370 
5371 static int handle_mwait(struct kvm_vcpu *vcpu)
5372 {
5373 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5374 	return handle_nop(vcpu);
5375 }
5376 
5377 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5378 {
5379 	kvm_queue_exception(vcpu, UD_VECTOR);
5380 	return 1;
5381 }
5382 
5383 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5384 {
5385 	return 1;
5386 }
5387 
5388 static int handle_monitor(struct kvm_vcpu *vcpu)
5389 {
5390 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5391 	return handle_nop(vcpu);
5392 }
5393 
5394 static int handle_invpcid(struct kvm_vcpu *vcpu)
5395 {
5396 	u32 vmx_instruction_info;
5397 	unsigned long type;
5398 	bool pcid_enabled;
5399 	gva_t gva;
5400 	struct x86_exception e;
5401 	unsigned i;
5402 	unsigned long roots_to_free = 0;
5403 	struct {
5404 		u64 pcid;
5405 		u64 gla;
5406 	} operand;
5407 
5408 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5409 		kvm_queue_exception(vcpu, UD_VECTOR);
5410 		return 1;
5411 	}
5412 
5413 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5414 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5415 
5416 	if (type > 3) {
5417 		kvm_inject_gp(vcpu, 0);
5418 		return 1;
5419 	}
5420 
5421 	/* According to the Intel instruction reference, the memory operand
5422 	 * is read even if it isn't needed (e.g., for type==all)
5423 	 */
5424 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5425 				vmx_instruction_info, false,
5426 				sizeof(operand), &gva))
5427 		return 1;
5428 
5429 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5430 		kvm_inject_page_fault(vcpu, &e);
5431 		return 1;
5432 	}
5433 
5434 	if (operand.pcid >> 12 != 0) {
5435 		kvm_inject_gp(vcpu, 0);
5436 		return 1;
5437 	}
5438 
5439 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5440 
5441 	switch (type) {
5442 	case INVPCID_TYPE_INDIV_ADDR:
5443 		if ((!pcid_enabled && (operand.pcid != 0)) ||
5444 		    is_noncanonical_address(operand.gla, vcpu)) {
5445 			kvm_inject_gp(vcpu, 0);
5446 			return 1;
5447 		}
5448 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5449 		return kvm_skip_emulated_instruction(vcpu);
5450 
5451 	case INVPCID_TYPE_SINGLE_CTXT:
5452 		if (!pcid_enabled && (operand.pcid != 0)) {
5453 			kvm_inject_gp(vcpu, 0);
5454 			return 1;
5455 		}
5456 
5457 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5458 			kvm_mmu_sync_roots(vcpu);
5459 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5460 		}
5461 
5462 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5463 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5464 			    == operand.pcid)
5465 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5466 
5467 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5468 		/*
5469 		 * If neither the current cr3 nor any of the prev_roots use the
5470 		 * given PCID, then nothing needs to be done here because a
5471 		 * resync will happen anyway before switching to any other CR3.
5472 		 */
5473 
5474 		return kvm_skip_emulated_instruction(vcpu);
5475 
5476 	case INVPCID_TYPE_ALL_NON_GLOBAL:
5477 		/*
5478 		 * Currently, KVM doesn't mark global entries in the shadow
5479 		 * page tables, so a non-global flush just degenerates to a
5480 		 * global flush. If needed, we could optimize this later by
5481 		 * keeping track of global entries in shadow page tables.
5482 		 */
5483 
5484 		/* fall-through */
5485 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
5486 		kvm_mmu_unload(vcpu);
5487 		return kvm_skip_emulated_instruction(vcpu);
5488 
5489 	default:
5490 		BUG(); /* We have already checked above that type <= 3 */
5491 	}
5492 }
5493 
5494 static int handle_pml_full(struct kvm_vcpu *vcpu)
5495 {
5496 	unsigned long exit_qualification;
5497 
5498 	trace_kvm_pml_full(vcpu->vcpu_id);
5499 
5500 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5501 
5502 	/*
5503 	 * PML buffer FULL happened while executing iret from NMI,
5504 	 * "blocked by NMI" bit has to be set before next VM entry.
5505 	 */
5506 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5507 			enable_vnmi &&
5508 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5509 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5510 				GUEST_INTR_STATE_NMI);
5511 
5512 	/*
5513 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5514 	 * here.., and there's no userspace involvement needed for PML.
5515 	 */
5516 	return 1;
5517 }
5518 
5519 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5520 {
5521 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5522 
5523 	if (!vmx->req_immediate_exit &&
5524 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5525 		kvm_lapic_expired_hv_timer(vcpu);
5526 
5527 	return 1;
5528 }
5529 
5530 /*
5531  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5532  * are overwritten by nested_vmx_setup() when nested=1.
5533  */
5534 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5535 {
5536 	kvm_queue_exception(vcpu, UD_VECTOR);
5537 	return 1;
5538 }
5539 
5540 static int handle_encls(struct kvm_vcpu *vcpu)
5541 {
5542 	/*
5543 	 * SGX virtualization is not yet supported.  There is no software
5544 	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5545 	 * to prevent the guest from executing ENCLS.
5546 	 */
5547 	kvm_queue_exception(vcpu, UD_VECTOR);
5548 	return 1;
5549 }
5550 
5551 /*
5552  * The exit handlers return 1 if the exit was handled fully and guest execution
5553  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5554  * to be done to userspace and return 0.
5555  */
5556 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5557 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5558 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5559 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5560 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5561 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5562 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5563 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5564 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5565 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5566 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5567 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5568 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5569 	[EXIT_REASON_INVD]		      = handle_invd,
5570 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5571 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
5572 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
5573 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5574 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5575 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5576 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5577 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5578 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5579 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5580 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5581 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5582 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5583 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5584 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5585 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5586 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
5587 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
5588 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5589 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5590 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5591 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5592 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5593 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5594 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5595 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
5596 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5597 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5598 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5599 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5600 	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
5601 	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
5602 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5603 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5604 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5605 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5606 	[EXIT_REASON_ENCLS]		      = handle_encls,
5607 };
5608 
5609 static const int kvm_vmx_max_exit_handlers =
5610 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5611 
5612 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5613 {
5614 	*info1 = vmcs_readl(EXIT_QUALIFICATION);
5615 	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5616 }
5617 
5618 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5619 {
5620 	if (vmx->pml_pg) {
5621 		__free_page(vmx->pml_pg);
5622 		vmx->pml_pg = NULL;
5623 	}
5624 }
5625 
5626 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5627 {
5628 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5629 	u64 *pml_buf;
5630 	u16 pml_idx;
5631 
5632 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5633 
5634 	/* Do nothing if PML buffer is empty */
5635 	if (pml_idx == (PML_ENTITY_NUM - 1))
5636 		return;
5637 
5638 	/* PML index always points to next available PML buffer entity */
5639 	if (pml_idx >= PML_ENTITY_NUM)
5640 		pml_idx = 0;
5641 	else
5642 		pml_idx++;
5643 
5644 	pml_buf = page_address(vmx->pml_pg);
5645 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5646 		u64 gpa;
5647 
5648 		gpa = pml_buf[pml_idx];
5649 		WARN_ON(gpa & (PAGE_SIZE - 1));
5650 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5651 	}
5652 
5653 	/* reset PML index */
5654 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5655 }
5656 
5657 /*
5658  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5659  * Called before reporting dirty_bitmap to userspace.
5660  */
5661 static void kvm_flush_pml_buffers(struct kvm *kvm)
5662 {
5663 	int i;
5664 	struct kvm_vcpu *vcpu;
5665 	/*
5666 	 * We only need to kick vcpu out of guest mode here, as PML buffer
5667 	 * is flushed at beginning of all VMEXITs, and it's obvious that only
5668 	 * vcpus running in guest are possible to have unflushed GPAs in PML
5669 	 * buffer.
5670 	 */
5671 	kvm_for_each_vcpu(i, vcpu, kvm)
5672 		kvm_vcpu_kick(vcpu);
5673 }
5674 
5675 static void vmx_dump_sel(char *name, uint32_t sel)
5676 {
5677 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5678 	       name, vmcs_read16(sel),
5679 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5680 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5681 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5682 }
5683 
5684 static void vmx_dump_dtsel(char *name, uint32_t limit)
5685 {
5686 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5687 	       name, vmcs_read32(limit),
5688 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5689 }
5690 
5691 void dump_vmcs(void)
5692 {
5693 	u32 vmentry_ctl, vmexit_ctl;
5694 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5695 	unsigned long cr4;
5696 	u64 efer;
5697 	int i, n;
5698 
5699 	if (!dump_invalid_vmcs) {
5700 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5701 		return;
5702 	}
5703 
5704 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5705 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5706 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5707 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5708 	cr4 = vmcs_readl(GUEST_CR4);
5709 	efer = vmcs_read64(GUEST_IA32_EFER);
5710 	secondary_exec_control = 0;
5711 	if (cpu_has_secondary_exec_ctrls())
5712 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5713 
5714 	pr_err("*** Guest State ***\n");
5715 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5716 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5717 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5718 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5719 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5720 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5721 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5722 	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5723 	{
5724 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5725 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5726 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5727 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5728 	}
5729 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5730 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5731 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5732 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5733 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5734 	       vmcs_readl(GUEST_SYSENTER_ESP),
5735 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5736 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5737 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5738 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5739 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5740 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5741 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5742 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5743 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5744 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5745 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5746 	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5747 	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5748 		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5749 		       efer, vmcs_read64(GUEST_IA32_PAT));
5750 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5751 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5752 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5753 	if (cpu_has_load_perf_global_ctrl() &&
5754 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5755 		pr_err("PerfGlobCtl = 0x%016llx\n",
5756 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5757 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5758 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5759 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5760 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5761 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5762 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5763 		pr_err("InterruptStatus = %04x\n",
5764 		       vmcs_read16(GUEST_INTR_STATUS));
5765 
5766 	pr_err("*** Host State ***\n");
5767 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5768 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5769 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5770 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5771 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5772 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5773 	       vmcs_read16(HOST_TR_SELECTOR));
5774 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5775 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5776 	       vmcs_readl(HOST_TR_BASE));
5777 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5778 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5779 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5780 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5781 	       vmcs_readl(HOST_CR4));
5782 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5783 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5784 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5785 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5786 	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5787 		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5788 		       vmcs_read64(HOST_IA32_EFER),
5789 		       vmcs_read64(HOST_IA32_PAT));
5790 	if (cpu_has_load_perf_global_ctrl() &&
5791 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5792 		pr_err("PerfGlobCtl = 0x%016llx\n",
5793 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5794 
5795 	pr_err("*** Control State ***\n");
5796 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5797 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5798 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5799 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5800 	       vmcs_read32(EXCEPTION_BITMAP),
5801 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5802 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5803 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5804 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5805 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5806 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5807 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5808 	       vmcs_read32(VM_EXIT_INTR_INFO),
5809 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5810 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5811 	pr_err("        reason=%08x qualification=%016lx\n",
5812 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5813 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5814 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5815 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5816 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5817 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5818 		pr_err("TSC Multiplier = 0x%016llx\n",
5819 		       vmcs_read64(TSC_MULTIPLIER));
5820 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5821 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5822 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5823 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5824 		}
5825 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5826 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5827 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5828 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5829 	}
5830 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5831 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5832 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5833 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5834 	n = vmcs_read32(CR3_TARGET_COUNT);
5835 	for (i = 0; i + 1 < n; i += 4)
5836 		pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5837 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5838 		       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5839 	if (i < n)
5840 		pr_err("CR3 target%u=%016lx\n",
5841 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5842 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5843 		pr_err("PLE Gap=%08x Window=%08x\n",
5844 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5845 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5846 		pr_err("Virtual processor ID = 0x%04x\n",
5847 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5848 }
5849 
5850 /*
5851  * The guest has exited.  See if we can fix it or if we need userspace
5852  * assistance.
5853  */
5854 static int vmx_handle_exit(struct kvm_vcpu *vcpu,
5855 	enum exit_fastpath_completion exit_fastpath)
5856 {
5857 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5858 	u32 exit_reason = vmx->exit_reason;
5859 	u32 vectoring_info = vmx->idt_vectoring_info;
5860 
5861 	trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5862 
5863 	/*
5864 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5865 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5866 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5867 	 * mode as if vcpus is in root mode, the PML buffer must has been
5868 	 * flushed already.
5869 	 */
5870 	if (enable_pml)
5871 		vmx_flush_pml_buffer(vcpu);
5872 
5873 	/* If guest state is invalid, start emulating */
5874 	if (vmx->emulation_required)
5875 		return handle_invalid_guest_state(vcpu);
5876 
5877 	if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5878 		return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5879 
5880 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5881 		dump_vmcs();
5882 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5883 		vcpu->run->fail_entry.hardware_entry_failure_reason
5884 			= exit_reason;
5885 		return 0;
5886 	}
5887 
5888 	if (unlikely(vmx->fail)) {
5889 		dump_vmcs();
5890 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5891 		vcpu->run->fail_entry.hardware_entry_failure_reason
5892 			= vmcs_read32(VM_INSTRUCTION_ERROR);
5893 		return 0;
5894 	}
5895 
5896 	/*
5897 	 * Note:
5898 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5899 	 * delivery event since it indicates guest is accessing MMIO.
5900 	 * The vm-exit can be triggered again after return to guest that
5901 	 * will cause infinite loop.
5902 	 */
5903 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5904 			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5905 			exit_reason != EXIT_REASON_EPT_VIOLATION &&
5906 			exit_reason != EXIT_REASON_PML_FULL &&
5907 			exit_reason != EXIT_REASON_TASK_SWITCH)) {
5908 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5909 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5910 		vcpu->run->internal.ndata = 3;
5911 		vcpu->run->internal.data[0] = vectoring_info;
5912 		vcpu->run->internal.data[1] = exit_reason;
5913 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5914 		if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5915 			vcpu->run->internal.ndata++;
5916 			vcpu->run->internal.data[3] =
5917 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5918 		}
5919 		return 0;
5920 	}
5921 
5922 	if (unlikely(!enable_vnmi &&
5923 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
5924 		if (vmx_interrupt_allowed(vcpu)) {
5925 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5926 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5927 			   vcpu->arch.nmi_pending) {
5928 			/*
5929 			 * This CPU don't support us in finding the end of an
5930 			 * NMI-blocked window if the guest runs with IRQs
5931 			 * disabled. So we pull the trigger after 1 s of
5932 			 * futile waiting, but inform the user about this.
5933 			 */
5934 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5935 			       "state on VCPU %d after 1 s timeout\n",
5936 			       __func__, vcpu->vcpu_id);
5937 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5938 		}
5939 	}
5940 
5941 	if (exit_fastpath == EXIT_FASTPATH_SKIP_EMUL_INS) {
5942 		kvm_skip_emulated_instruction(vcpu);
5943 		return 1;
5944 	}
5945 
5946 	if (exit_reason >= kvm_vmx_max_exit_handlers)
5947 		goto unexpected_vmexit;
5948 #ifdef CONFIG_RETPOLINE
5949 	if (exit_reason == EXIT_REASON_MSR_WRITE)
5950 		return kvm_emulate_wrmsr(vcpu);
5951 	else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
5952 		return handle_preemption_timer(vcpu);
5953 	else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
5954 		return handle_interrupt_window(vcpu);
5955 	else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
5956 		return handle_external_interrupt(vcpu);
5957 	else if (exit_reason == EXIT_REASON_HLT)
5958 		return kvm_emulate_halt(vcpu);
5959 	else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
5960 		return handle_ept_misconfig(vcpu);
5961 #endif
5962 
5963 	exit_reason = array_index_nospec(exit_reason,
5964 					 kvm_vmx_max_exit_handlers);
5965 	if (!kvm_vmx_exit_handlers[exit_reason])
5966 		goto unexpected_vmexit;
5967 
5968 	return kvm_vmx_exit_handlers[exit_reason](vcpu);
5969 
5970 unexpected_vmexit:
5971 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason);
5972 	dump_vmcs();
5973 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5974 	vcpu->run->internal.suberror =
5975 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5976 	vcpu->run->internal.ndata = 1;
5977 	vcpu->run->internal.data[0] = exit_reason;
5978 	return 0;
5979 }
5980 
5981 /*
5982  * Software based L1D cache flush which is used when microcode providing
5983  * the cache control MSR is not loaded.
5984  *
5985  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5986  * flush it is required to read in 64 KiB because the replacement algorithm
5987  * is not exactly LRU. This could be sized at runtime via topology
5988  * information but as all relevant affected CPUs have 32KiB L1D cache size
5989  * there is no point in doing so.
5990  */
5991 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5992 {
5993 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
5994 
5995 	/*
5996 	 * This code is only executed when the the flush mode is 'cond' or
5997 	 * 'always'
5998 	 */
5999 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6000 		bool flush_l1d;
6001 
6002 		/*
6003 		 * Clear the per-vcpu flush bit, it gets set again
6004 		 * either from vcpu_run() or from one of the unsafe
6005 		 * VMEXIT handlers.
6006 		 */
6007 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6008 		vcpu->arch.l1tf_flush_l1d = false;
6009 
6010 		/*
6011 		 * Clear the per-cpu flush bit, it gets set again from
6012 		 * the interrupt handlers.
6013 		 */
6014 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6015 		kvm_clear_cpu_l1tf_flush_l1d();
6016 
6017 		if (!flush_l1d)
6018 			return;
6019 	}
6020 
6021 	vcpu->stat.l1d_flush++;
6022 
6023 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6024 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6025 		return;
6026 	}
6027 
6028 	asm volatile(
6029 		/* First ensure the pages are in the TLB */
6030 		"xorl	%%eax, %%eax\n"
6031 		".Lpopulate_tlb:\n\t"
6032 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6033 		"addl	$4096, %%eax\n\t"
6034 		"cmpl	%%eax, %[size]\n\t"
6035 		"jne	.Lpopulate_tlb\n\t"
6036 		"xorl	%%eax, %%eax\n\t"
6037 		"cpuid\n\t"
6038 		/* Now fill the cache */
6039 		"xorl	%%eax, %%eax\n"
6040 		".Lfill_cache:\n"
6041 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6042 		"addl	$64, %%eax\n\t"
6043 		"cmpl	%%eax, %[size]\n\t"
6044 		"jne	.Lfill_cache\n\t"
6045 		"lfence\n"
6046 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6047 		    [size] "r" (size)
6048 		: "eax", "ebx", "ecx", "edx");
6049 }
6050 
6051 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6052 {
6053 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6054 	int tpr_threshold;
6055 
6056 	if (is_guest_mode(vcpu) &&
6057 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6058 		return;
6059 
6060 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6061 	if (is_guest_mode(vcpu))
6062 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6063 	else
6064 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6065 }
6066 
6067 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6068 {
6069 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6070 	u32 sec_exec_control;
6071 
6072 	if (!lapic_in_kernel(vcpu))
6073 		return;
6074 
6075 	if (!flexpriority_enabled &&
6076 	    !cpu_has_vmx_virtualize_x2apic_mode())
6077 		return;
6078 
6079 	/* Postpone execution until vmcs01 is the current VMCS. */
6080 	if (is_guest_mode(vcpu)) {
6081 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6082 		return;
6083 	}
6084 
6085 	sec_exec_control = secondary_exec_controls_get(vmx);
6086 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6087 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6088 
6089 	switch (kvm_get_apic_mode(vcpu)) {
6090 	case LAPIC_MODE_INVALID:
6091 		WARN_ONCE(true, "Invalid local APIC state");
6092 	case LAPIC_MODE_DISABLED:
6093 		break;
6094 	case LAPIC_MODE_XAPIC:
6095 		if (flexpriority_enabled) {
6096 			sec_exec_control |=
6097 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6098 			vmx_flush_tlb(vcpu, true);
6099 		}
6100 		break;
6101 	case LAPIC_MODE_X2APIC:
6102 		if (cpu_has_vmx_virtualize_x2apic_mode())
6103 			sec_exec_control |=
6104 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6105 		break;
6106 	}
6107 	secondary_exec_controls_set(vmx, sec_exec_control);
6108 
6109 	vmx_update_msr_bitmap(vcpu);
6110 }
6111 
6112 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6113 {
6114 	if (!is_guest_mode(vcpu)) {
6115 		vmcs_write64(APIC_ACCESS_ADDR, hpa);
6116 		vmx_flush_tlb(vcpu, true);
6117 	}
6118 }
6119 
6120 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6121 {
6122 	u16 status;
6123 	u8 old;
6124 
6125 	if (max_isr == -1)
6126 		max_isr = 0;
6127 
6128 	status = vmcs_read16(GUEST_INTR_STATUS);
6129 	old = status >> 8;
6130 	if (max_isr != old) {
6131 		status &= 0xff;
6132 		status |= max_isr << 8;
6133 		vmcs_write16(GUEST_INTR_STATUS, status);
6134 	}
6135 }
6136 
6137 static void vmx_set_rvi(int vector)
6138 {
6139 	u16 status;
6140 	u8 old;
6141 
6142 	if (vector == -1)
6143 		vector = 0;
6144 
6145 	status = vmcs_read16(GUEST_INTR_STATUS);
6146 	old = (u8)status & 0xff;
6147 	if ((u8)vector != old) {
6148 		status &= ~0xff;
6149 		status |= (u8)vector;
6150 		vmcs_write16(GUEST_INTR_STATUS, status);
6151 	}
6152 }
6153 
6154 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6155 {
6156 	/*
6157 	 * When running L2, updating RVI is only relevant when
6158 	 * vmcs12 virtual-interrupt-delivery enabled.
6159 	 * However, it can be enabled only when L1 also
6160 	 * intercepts external-interrupts and in that case
6161 	 * we should not update vmcs02 RVI but instead intercept
6162 	 * interrupt. Therefore, do nothing when running L2.
6163 	 */
6164 	if (!is_guest_mode(vcpu))
6165 		vmx_set_rvi(max_irr);
6166 }
6167 
6168 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6169 {
6170 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6171 	int max_irr;
6172 	bool max_irr_updated;
6173 
6174 	WARN_ON(!vcpu->arch.apicv_active);
6175 	if (pi_test_on(&vmx->pi_desc)) {
6176 		pi_clear_on(&vmx->pi_desc);
6177 		/*
6178 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6179 		 * But on x86 this is just a compiler barrier anyway.
6180 		 */
6181 		smp_mb__after_atomic();
6182 		max_irr_updated =
6183 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6184 
6185 		/*
6186 		 * If we are running L2 and L1 has a new pending interrupt
6187 		 * which can be injected, we should re-evaluate
6188 		 * what should be done with this new L1 interrupt.
6189 		 * If L1 intercepts external-interrupts, we should
6190 		 * exit from L2 to L1. Otherwise, interrupt should be
6191 		 * delivered directly to L2.
6192 		 */
6193 		if (is_guest_mode(vcpu) && max_irr_updated) {
6194 			if (nested_exit_on_intr(vcpu))
6195 				kvm_vcpu_exiting_guest_mode(vcpu);
6196 			else
6197 				kvm_make_request(KVM_REQ_EVENT, vcpu);
6198 		}
6199 	} else {
6200 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6201 	}
6202 	vmx_hwapic_irr_update(vcpu, max_irr);
6203 	return max_irr;
6204 }
6205 
6206 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6207 {
6208 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6209 
6210 	return pi_test_on(pi_desc) ||
6211 		(pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6212 }
6213 
6214 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6215 {
6216 	if (!kvm_vcpu_apicv_active(vcpu))
6217 		return;
6218 
6219 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6220 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6221 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6222 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6223 }
6224 
6225 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6226 {
6227 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6228 
6229 	pi_clear_on(&vmx->pi_desc);
6230 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6231 }
6232 
6233 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6234 {
6235 	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6236 
6237 	/* if exit due to PF check for async PF */
6238 	if (is_page_fault(vmx->exit_intr_info))
6239 		vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6240 
6241 	/* Handle machine checks before interrupts are enabled */
6242 	if (is_machine_check(vmx->exit_intr_info))
6243 		kvm_machine_check();
6244 
6245 	/* We need to handle NMIs before interrupts are enabled */
6246 	if (is_nmi(vmx->exit_intr_info)) {
6247 		kvm_before_interrupt(&vmx->vcpu);
6248 		asm("int $2");
6249 		kvm_after_interrupt(&vmx->vcpu);
6250 	}
6251 }
6252 
6253 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6254 {
6255 	unsigned int vector;
6256 	unsigned long entry;
6257 #ifdef CONFIG_X86_64
6258 	unsigned long tmp;
6259 #endif
6260 	gate_desc *desc;
6261 	u32 intr_info;
6262 
6263 	intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6264 	if (WARN_ONCE(!is_external_intr(intr_info),
6265 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6266 		return;
6267 
6268 	vector = intr_info & INTR_INFO_VECTOR_MASK;
6269 	desc = (gate_desc *)host_idt_base + vector;
6270 	entry = gate_offset(desc);
6271 
6272 	kvm_before_interrupt(vcpu);
6273 
6274 	asm volatile(
6275 #ifdef CONFIG_X86_64
6276 		"mov %%" _ASM_SP ", %[sp]\n\t"
6277 		"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6278 		"push $%c[ss]\n\t"
6279 		"push %[sp]\n\t"
6280 #endif
6281 		"pushf\n\t"
6282 		__ASM_SIZE(push) " $%c[cs]\n\t"
6283 		CALL_NOSPEC
6284 		:
6285 #ifdef CONFIG_X86_64
6286 		[sp]"=&r"(tmp),
6287 #endif
6288 		ASM_CALL_CONSTRAINT
6289 		:
6290 		THUNK_TARGET(entry),
6291 		[ss]"i"(__KERNEL_DS),
6292 		[cs]"i"(__KERNEL_CS)
6293 	);
6294 
6295 	kvm_after_interrupt(vcpu);
6296 }
6297 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6298 
6299 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu,
6300 	enum exit_fastpath_completion *exit_fastpath)
6301 {
6302 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6303 
6304 	if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6305 		handle_external_interrupt_irqoff(vcpu);
6306 	else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6307 		handle_exception_nmi_irqoff(vmx);
6308 	else if (!is_guest_mode(vcpu) &&
6309 		vmx->exit_reason == EXIT_REASON_MSR_WRITE)
6310 		*exit_fastpath = handle_fastpath_set_msr_irqoff(vcpu);
6311 }
6312 
6313 static bool vmx_has_emulated_msr(int index)
6314 {
6315 	switch (index) {
6316 	case MSR_IA32_SMBASE:
6317 		/*
6318 		 * We cannot do SMM unless we can run the guest in big
6319 		 * real mode.
6320 		 */
6321 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6322 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6323 		return nested;
6324 	case MSR_AMD64_VIRT_SPEC_CTRL:
6325 		/* This is AMD only.  */
6326 		return false;
6327 	default:
6328 		return true;
6329 	}
6330 }
6331 
6332 static bool vmx_pt_supported(void)
6333 {
6334 	return pt_mode == PT_MODE_HOST_GUEST;
6335 }
6336 
6337 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6338 {
6339 	u32 exit_intr_info;
6340 	bool unblock_nmi;
6341 	u8 vector;
6342 	bool idtv_info_valid;
6343 
6344 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6345 
6346 	if (enable_vnmi) {
6347 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6348 			return;
6349 		/*
6350 		 * Can't use vmx->exit_intr_info since we're not sure what
6351 		 * the exit reason is.
6352 		 */
6353 		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6354 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6355 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6356 		/*
6357 		 * SDM 3: 27.7.1.2 (September 2008)
6358 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6359 		 * a guest IRET fault.
6360 		 * SDM 3: 23.2.2 (September 2008)
6361 		 * Bit 12 is undefined in any of the following cases:
6362 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6363 		 *   information field.
6364 		 *  If the VM exit is due to a double fault.
6365 		 */
6366 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6367 		    vector != DF_VECTOR && !idtv_info_valid)
6368 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6369 				      GUEST_INTR_STATE_NMI);
6370 		else
6371 			vmx->loaded_vmcs->nmi_known_unmasked =
6372 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6373 				  & GUEST_INTR_STATE_NMI);
6374 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6375 		vmx->loaded_vmcs->vnmi_blocked_time +=
6376 			ktime_to_ns(ktime_sub(ktime_get(),
6377 					      vmx->loaded_vmcs->entry_time));
6378 }
6379 
6380 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6381 				      u32 idt_vectoring_info,
6382 				      int instr_len_field,
6383 				      int error_code_field)
6384 {
6385 	u8 vector;
6386 	int type;
6387 	bool idtv_info_valid;
6388 
6389 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6390 
6391 	vcpu->arch.nmi_injected = false;
6392 	kvm_clear_exception_queue(vcpu);
6393 	kvm_clear_interrupt_queue(vcpu);
6394 
6395 	if (!idtv_info_valid)
6396 		return;
6397 
6398 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6399 
6400 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6401 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6402 
6403 	switch (type) {
6404 	case INTR_TYPE_NMI_INTR:
6405 		vcpu->arch.nmi_injected = true;
6406 		/*
6407 		 * SDM 3: 27.7.1.2 (September 2008)
6408 		 * Clear bit "block by NMI" before VM entry if a NMI
6409 		 * delivery faulted.
6410 		 */
6411 		vmx_set_nmi_mask(vcpu, false);
6412 		break;
6413 	case INTR_TYPE_SOFT_EXCEPTION:
6414 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6415 		/* fall through */
6416 	case INTR_TYPE_HARD_EXCEPTION:
6417 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6418 			u32 err = vmcs_read32(error_code_field);
6419 			kvm_requeue_exception_e(vcpu, vector, err);
6420 		} else
6421 			kvm_requeue_exception(vcpu, vector);
6422 		break;
6423 	case INTR_TYPE_SOFT_INTR:
6424 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6425 		/* fall through */
6426 	case INTR_TYPE_EXT_INTR:
6427 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6428 		break;
6429 	default:
6430 		break;
6431 	}
6432 }
6433 
6434 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6435 {
6436 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6437 				  VM_EXIT_INSTRUCTION_LEN,
6438 				  IDT_VECTORING_ERROR_CODE);
6439 }
6440 
6441 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6442 {
6443 	__vmx_complete_interrupts(vcpu,
6444 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6445 				  VM_ENTRY_INSTRUCTION_LEN,
6446 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6447 
6448 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6449 }
6450 
6451 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6452 {
6453 	int i, nr_msrs;
6454 	struct perf_guest_switch_msr *msrs;
6455 
6456 	msrs = perf_guest_get_msrs(&nr_msrs);
6457 
6458 	if (!msrs)
6459 		return;
6460 
6461 	for (i = 0; i < nr_msrs; i++)
6462 		if (msrs[i].host == msrs[i].guest)
6463 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6464 		else
6465 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6466 					msrs[i].host, false);
6467 }
6468 
6469 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6470 {
6471 	u32 host_umwait_control;
6472 
6473 	if (!vmx_has_waitpkg(vmx))
6474 		return;
6475 
6476 	host_umwait_control = get_umwait_control_msr();
6477 
6478 	if (vmx->msr_ia32_umwait_control != host_umwait_control)
6479 		add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6480 			vmx->msr_ia32_umwait_control,
6481 			host_umwait_control, false);
6482 	else
6483 		clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6484 }
6485 
6486 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6487 {
6488 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6489 	u64 tscl;
6490 	u32 delta_tsc;
6491 
6492 	if (vmx->req_immediate_exit) {
6493 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6494 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6495 	} else if (vmx->hv_deadline_tsc != -1) {
6496 		tscl = rdtsc();
6497 		if (vmx->hv_deadline_tsc > tscl)
6498 			/* set_hv_timer ensures the delta fits in 32-bits */
6499 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6500 				cpu_preemption_timer_multi);
6501 		else
6502 			delta_tsc = 0;
6503 
6504 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6505 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6506 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6507 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6508 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6509 	}
6510 }
6511 
6512 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6513 {
6514 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6515 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6516 		vmcs_writel(HOST_RSP, host_rsp);
6517 	}
6518 }
6519 
6520 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6521 
6522 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6523 {
6524 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6525 	unsigned long cr3, cr4;
6526 
6527 	/* Record the guest's net vcpu time for enforced NMI injections. */
6528 	if (unlikely(!enable_vnmi &&
6529 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6530 		vmx->loaded_vmcs->entry_time = ktime_get();
6531 
6532 	/* Don't enter VMX if guest state is invalid, let the exit handler
6533 	   start emulation until we arrive back to a valid state */
6534 	if (vmx->emulation_required)
6535 		return;
6536 
6537 	if (vmx->ple_window_dirty) {
6538 		vmx->ple_window_dirty = false;
6539 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6540 	}
6541 
6542 	/*
6543 	 * We did this in prepare_switch_to_guest, because it needs to
6544 	 * be within srcu_read_lock.
6545 	 */
6546 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6547 
6548 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6549 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6550 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6551 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6552 
6553 	cr3 = __get_current_cr3_fast();
6554 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6555 		vmcs_writel(HOST_CR3, cr3);
6556 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6557 	}
6558 
6559 	cr4 = cr4_read_shadow();
6560 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6561 		vmcs_writel(HOST_CR4, cr4);
6562 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6563 	}
6564 
6565 	/* When single-stepping over STI and MOV SS, we must clear the
6566 	 * corresponding interruptibility bits in the guest state. Otherwise
6567 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6568 	 * exceptions being set, but that's not correct for the guest debugging
6569 	 * case. */
6570 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6571 		vmx_set_interrupt_shadow(vcpu, 0);
6572 
6573 	kvm_load_guest_xsave_state(vcpu);
6574 
6575 	if (static_cpu_has(X86_FEATURE_PKU) &&
6576 	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6577 	    vcpu->arch.pkru != vmx->host_pkru)
6578 		__write_pkru(vcpu->arch.pkru);
6579 
6580 	pt_guest_enter(vmx);
6581 
6582 	atomic_switch_perf_msrs(vmx);
6583 	atomic_switch_umwait_control_msr(vmx);
6584 
6585 	if (enable_preemption_timer)
6586 		vmx_update_hv_timer(vcpu);
6587 
6588 	if (lapic_in_kernel(vcpu) &&
6589 		vcpu->arch.apic->lapic_timer.timer_advance_ns)
6590 		kvm_wait_lapic_expire(vcpu);
6591 
6592 	/*
6593 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6594 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6595 	 * is no need to worry about the conditional branch over the wrmsr
6596 	 * being speculatively taken.
6597 	 */
6598 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6599 
6600 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6601 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6602 		vmx_l1d_flush(vcpu);
6603 	else if (static_branch_unlikely(&mds_user_clear))
6604 		mds_clear_cpu_buffers();
6605 
6606 	if (vcpu->arch.cr2 != read_cr2())
6607 		write_cr2(vcpu->arch.cr2);
6608 
6609 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6610 				   vmx->loaded_vmcs->launched);
6611 
6612 	vcpu->arch.cr2 = read_cr2();
6613 
6614 	/*
6615 	 * We do not use IBRS in the kernel. If this vCPU has used the
6616 	 * SPEC_CTRL MSR it may have left it on; save the value and
6617 	 * turn it off. This is much more efficient than blindly adding
6618 	 * it to the atomic save/restore list. Especially as the former
6619 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6620 	 *
6621 	 * For non-nested case:
6622 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6623 	 * save it.
6624 	 *
6625 	 * For nested case:
6626 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6627 	 * save it.
6628 	 */
6629 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6630 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6631 
6632 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6633 
6634 	/* All fields are clean at this point */
6635 	if (static_branch_unlikely(&enable_evmcs))
6636 		current_evmcs->hv_clean_fields |=
6637 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6638 
6639 	if (static_branch_unlikely(&enable_evmcs))
6640 		current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6641 
6642 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6643 	if (vmx->host_debugctlmsr)
6644 		update_debugctlmsr(vmx->host_debugctlmsr);
6645 
6646 #ifndef CONFIG_X86_64
6647 	/*
6648 	 * The sysexit path does not restore ds/es, so we must set them to
6649 	 * a reasonable value ourselves.
6650 	 *
6651 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6652 	 * function may be executed in interrupt context, which saves and
6653 	 * restore segments around it, nullifying its effect.
6654 	 */
6655 	loadsegment(ds, __USER_DS);
6656 	loadsegment(es, __USER_DS);
6657 #endif
6658 
6659 	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6660 				  | (1 << VCPU_EXREG_RFLAGS)
6661 				  | (1 << VCPU_EXREG_PDPTR)
6662 				  | (1 << VCPU_EXREG_SEGMENTS)
6663 				  | (1 << VCPU_EXREG_CR3));
6664 	vcpu->arch.regs_dirty = 0;
6665 
6666 	pt_guest_exit(vmx);
6667 
6668 	/*
6669 	 * eager fpu is enabled if PKEY is supported and CR4 is switched
6670 	 * back on host, so it is safe to read guest PKRU from current
6671 	 * XSAVE.
6672 	 */
6673 	if (static_cpu_has(X86_FEATURE_PKU) &&
6674 	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6675 		vcpu->arch.pkru = rdpkru();
6676 		if (vcpu->arch.pkru != vmx->host_pkru)
6677 			__write_pkru(vmx->host_pkru);
6678 	}
6679 
6680 	kvm_load_host_xsave_state(vcpu);
6681 
6682 	vmx->nested.nested_run_pending = 0;
6683 	vmx->idt_vectoring_info = 0;
6684 
6685 	vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6686 	if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6687 		kvm_machine_check();
6688 
6689 	if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6690 		return;
6691 
6692 	vmx->loaded_vmcs->launched = 1;
6693 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6694 
6695 	vmx_recover_nmi_blocking(vmx);
6696 	vmx_complete_interrupts(vmx);
6697 }
6698 
6699 static struct kvm *vmx_vm_alloc(void)
6700 {
6701 	struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6702 					    GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6703 					    PAGE_KERNEL);
6704 	return &kvm_vmx->kvm;
6705 }
6706 
6707 static void vmx_vm_free(struct kvm *kvm)
6708 {
6709 	kfree(kvm->arch.hyperv.hv_pa_pg);
6710 	vfree(to_kvm_vmx(kvm));
6711 }
6712 
6713 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6714 {
6715 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6716 
6717 	if (enable_pml)
6718 		vmx_destroy_pml_buffer(vmx);
6719 	free_vpid(vmx->vpid);
6720 	nested_vmx_free_vcpu(vcpu);
6721 	free_loaded_vmcs(vmx->loaded_vmcs);
6722 }
6723 
6724 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6725 {
6726 	struct vcpu_vmx *vmx;
6727 	unsigned long *msr_bitmap;
6728 	int i, cpu, err;
6729 
6730 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6731 	vmx = to_vmx(vcpu);
6732 
6733 	err = -ENOMEM;
6734 
6735 	vmx->vpid = allocate_vpid();
6736 
6737 	/*
6738 	 * If PML is turned on, failure on enabling PML just results in failure
6739 	 * of creating the vcpu, therefore we can simplify PML logic (by
6740 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6741 	 * for the guest), etc.
6742 	 */
6743 	if (enable_pml) {
6744 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6745 		if (!vmx->pml_pg)
6746 			goto free_vpid;
6747 	}
6748 
6749 	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) != NR_SHARED_MSRS);
6750 
6751 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6752 		u32 index = vmx_msr_index[i];
6753 		u32 data_low, data_high;
6754 		int j = vmx->nmsrs;
6755 
6756 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
6757 			continue;
6758 		if (wrmsr_safe(index, data_low, data_high) < 0)
6759 			continue;
6760 
6761 		vmx->guest_msrs[j].index = i;
6762 		vmx->guest_msrs[j].data = 0;
6763 		switch (index) {
6764 		case MSR_IA32_TSX_CTRL:
6765 			/*
6766 			 * No need to pass TSX_CTRL_CPUID_CLEAR through, so
6767 			 * let's avoid changing CPUID bits under the host
6768 			 * kernel's feet.
6769 			 */
6770 			vmx->guest_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6771 			break;
6772 		default:
6773 			vmx->guest_msrs[j].mask = -1ull;
6774 			break;
6775 		}
6776 		++vmx->nmsrs;
6777 	}
6778 
6779 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6780 	if (err < 0)
6781 		goto free_pml;
6782 
6783 	msr_bitmap = vmx->vmcs01.msr_bitmap;
6784 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6785 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6786 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6787 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6788 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6789 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6790 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6791 	if (kvm_cstate_in_guest(vcpu->kvm)) {
6792 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6793 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6794 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6795 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6796 	}
6797 	vmx->msr_bitmap_mode = 0;
6798 
6799 	vmx->loaded_vmcs = &vmx->vmcs01;
6800 	cpu = get_cpu();
6801 	vmx_vcpu_load(vcpu, cpu);
6802 	vcpu->cpu = cpu;
6803 	init_vmcs(vmx);
6804 	vmx_vcpu_put(vcpu);
6805 	put_cpu();
6806 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
6807 		err = alloc_apic_access_page(vcpu->kvm);
6808 		if (err)
6809 			goto free_vmcs;
6810 	}
6811 
6812 	if (enable_ept && !enable_unrestricted_guest) {
6813 		err = init_rmode_identity_map(vcpu->kvm);
6814 		if (err)
6815 			goto free_vmcs;
6816 	}
6817 
6818 	if (nested)
6819 		nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6820 					   vmx_capability.ept);
6821 	else
6822 		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6823 
6824 	vmx->nested.posted_intr_nv = -1;
6825 	vmx->nested.current_vmptr = -1ull;
6826 
6827 	vcpu->arch.microcode_version = 0x100000000ULL;
6828 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6829 
6830 	/*
6831 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6832 	 * or POSTED_INTR_WAKEUP_VECTOR.
6833 	 */
6834 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6835 	vmx->pi_desc.sn = 1;
6836 
6837 	vmx->ept_pointer = INVALID_PAGE;
6838 
6839 	return 0;
6840 
6841 free_vmcs:
6842 	free_loaded_vmcs(vmx->loaded_vmcs);
6843 free_pml:
6844 	vmx_destroy_pml_buffer(vmx);
6845 free_vpid:
6846 	free_vpid(vmx->vpid);
6847 	return err;
6848 }
6849 
6850 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6851 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6852 
6853 static int vmx_vm_init(struct kvm *kvm)
6854 {
6855 	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6856 
6857 	if (!ple_gap)
6858 		kvm->arch.pause_in_guest = true;
6859 
6860 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6861 		switch (l1tf_mitigation) {
6862 		case L1TF_MITIGATION_OFF:
6863 		case L1TF_MITIGATION_FLUSH_NOWARN:
6864 			/* 'I explicitly don't care' is set */
6865 			break;
6866 		case L1TF_MITIGATION_FLUSH:
6867 		case L1TF_MITIGATION_FLUSH_NOSMT:
6868 		case L1TF_MITIGATION_FULL:
6869 			/*
6870 			 * Warn upon starting the first VM in a potentially
6871 			 * insecure environment.
6872 			 */
6873 			if (sched_smt_active())
6874 				pr_warn_once(L1TF_MSG_SMT);
6875 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6876 				pr_warn_once(L1TF_MSG_L1D);
6877 			break;
6878 		case L1TF_MITIGATION_FULL_FORCE:
6879 			/* Flush is enforced */
6880 			break;
6881 		}
6882 	}
6883 	kvm_apicv_init(kvm, enable_apicv);
6884 	return 0;
6885 }
6886 
6887 static int __init vmx_check_processor_compat(void)
6888 {
6889 	struct vmcs_config vmcs_conf;
6890 	struct vmx_capability vmx_cap;
6891 
6892 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6893 	    !this_cpu_has(X86_FEATURE_VMX)) {
6894 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6895 		return -EIO;
6896 	}
6897 
6898 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6899 		return -EIO;
6900 	if (nested)
6901 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6902 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6903 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6904 				smp_processor_id());
6905 		return -EIO;
6906 	}
6907 	return 0;
6908 }
6909 
6910 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6911 {
6912 	u8 cache;
6913 	u64 ipat = 0;
6914 
6915 	/* For VT-d and EPT combination
6916 	 * 1. MMIO: always map as UC
6917 	 * 2. EPT with VT-d:
6918 	 *   a. VT-d without snooping control feature: can't guarantee the
6919 	 *	result, try to trust guest.
6920 	 *   b. VT-d with snooping control feature: snooping control feature of
6921 	 *	VT-d engine can guarantee the cache correctness. Just set it
6922 	 *	to WB to keep consistent with host. So the same as item 3.
6923 	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6924 	 *    consistent with host MTRR
6925 	 */
6926 	if (is_mmio) {
6927 		cache = MTRR_TYPE_UNCACHABLE;
6928 		goto exit;
6929 	}
6930 
6931 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6932 		ipat = VMX_EPT_IPAT_BIT;
6933 		cache = MTRR_TYPE_WRBACK;
6934 		goto exit;
6935 	}
6936 
6937 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6938 		ipat = VMX_EPT_IPAT_BIT;
6939 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6940 			cache = MTRR_TYPE_WRBACK;
6941 		else
6942 			cache = MTRR_TYPE_UNCACHABLE;
6943 		goto exit;
6944 	}
6945 
6946 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6947 
6948 exit:
6949 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6950 }
6951 
6952 static int vmx_get_lpage_level(void)
6953 {
6954 	if (enable_ept && !cpu_has_vmx_ept_1g_page())
6955 		return PT_DIRECTORY_LEVEL;
6956 	else
6957 		/* For shadow and EPT supported 1GB page */
6958 		return PT_PDPE_LEVEL;
6959 }
6960 
6961 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6962 {
6963 	/*
6964 	 * These bits in the secondary execution controls field
6965 	 * are dynamic, the others are mostly based on the hypervisor
6966 	 * architecture and the guest's CPUID.  Do not touch the
6967 	 * dynamic bits.
6968 	 */
6969 	u32 mask =
6970 		SECONDARY_EXEC_SHADOW_VMCS |
6971 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6972 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6973 		SECONDARY_EXEC_DESC;
6974 
6975 	u32 new_ctl = vmx->secondary_exec_control;
6976 	u32 cur_ctl = secondary_exec_controls_get(vmx);
6977 
6978 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6979 }
6980 
6981 /*
6982  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6983  * (indicating "allowed-1") if they are supported in the guest's CPUID.
6984  */
6985 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6986 {
6987 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6988 	struct kvm_cpuid_entry2 *entry;
6989 
6990 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6991 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6992 
6993 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
6994 	if (entry && (entry->_reg & (_cpuid_mask)))			\
6995 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
6996 } while (0)
6997 
6998 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6999 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7000 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7001 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7002 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7003 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7004 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7005 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7006 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7007 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7008 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7009 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7010 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7011 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7012 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7013 
7014 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7015 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7016 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7017 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7018 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7019 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7020 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7021 
7022 #undef cr4_fixed1_update
7023 }
7024 
7025 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7026 {
7027 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7028 
7029 	if (kvm_mpx_supported()) {
7030 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7031 
7032 		if (mpx_enabled) {
7033 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7034 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7035 		} else {
7036 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7037 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7038 		}
7039 	}
7040 }
7041 
7042 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7043 {
7044 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7045 	struct kvm_cpuid_entry2 *best = NULL;
7046 	int i;
7047 
7048 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7049 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7050 		if (!best)
7051 			return;
7052 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7053 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7054 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7055 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7056 	}
7057 
7058 	/* Get the number of configurable Address Ranges for filtering */
7059 	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7060 						PT_CAP_num_address_ranges);
7061 
7062 	/* Initialize and clear the no dependency bits */
7063 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7064 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7065 
7066 	/*
7067 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7068 	 * will inject an #GP
7069 	 */
7070 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7071 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7072 
7073 	/*
7074 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7075 	 * PSBFreq can be set
7076 	 */
7077 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7078 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7079 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7080 
7081 	/*
7082 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7083 	 * MTCFreq can be set
7084 	 */
7085 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7086 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7087 				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7088 
7089 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7090 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7091 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7092 							RTIT_CTL_PTW_EN);
7093 
7094 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7095 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7096 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7097 
7098 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7099 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7100 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7101 
7102 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7103 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7104 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7105 
7106 	/* unmask address range configure area */
7107 	for (i = 0; i < vmx->pt_desc.addr_range; i++)
7108 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7109 }
7110 
7111 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7112 {
7113 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7114 
7115 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7116 	vcpu->arch.xsaves_enabled = false;
7117 
7118 	if (cpu_has_secondary_exec_ctrls()) {
7119 		vmx_compute_secondary_exec_control(vmx);
7120 		vmcs_set_secondary_exec_control(vmx);
7121 	}
7122 
7123 	if (nested_vmx_allowed(vcpu))
7124 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7125 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7126 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7127 	else
7128 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7129 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7130 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7131 
7132 	if (nested_vmx_allowed(vcpu)) {
7133 		nested_vmx_cr_fixed1_bits_update(vcpu);
7134 		nested_vmx_entry_exit_ctls_update(vcpu);
7135 	}
7136 
7137 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7138 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7139 		update_intel_pt_cfg(vcpu);
7140 
7141 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7142 		struct shared_msr_entry *msr;
7143 		msr = find_msr_entry(vmx, MSR_IA32_TSX_CTRL);
7144 		if (msr) {
7145 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7146 			vmx_set_guest_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7147 		}
7148 	}
7149 }
7150 
7151 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7152 {
7153 	if (func == 1 && nested)
7154 		entry->ecx |= feature_bit(VMX);
7155 }
7156 
7157 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7158 {
7159 	to_vmx(vcpu)->req_immediate_exit = true;
7160 }
7161 
7162 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7163 				  struct x86_instruction_info *info)
7164 {
7165 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7166 	unsigned short port;
7167 	bool intercept;
7168 	int size;
7169 
7170 	if (info->intercept == x86_intercept_in ||
7171 	    info->intercept == x86_intercept_ins) {
7172 		port = info->src_val;
7173 		size = info->dst_bytes;
7174 	} else {
7175 		port = info->dst_val;
7176 		size = info->src_bytes;
7177 	}
7178 
7179 	/*
7180 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7181 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7182 	 * control.
7183 	 *
7184 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7185 	 */
7186 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7187 		intercept = nested_cpu_has(vmcs12,
7188 					   CPU_BASED_UNCOND_IO_EXITING);
7189 	else
7190 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7191 
7192 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7193 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7194 }
7195 
7196 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7197 			       struct x86_instruction_info *info,
7198 			       enum x86_intercept_stage stage)
7199 {
7200 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7201 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7202 
7203 	switch (info->intercept) {
7204 	/*
7205 	 * RDPID causes #UD if disabled through secondary execution controls.
7206 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7207 	 */
7208 	case x86_intercept_rdtscp:
7209 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7210 			ctxt->exception.vector = UD_VECTOR;
7211 			ctxt->exception.error_code_valid = false;
7212 			return X86EMUL_PROPAGATE_FAULT;
7213 		}
7214 		break;
7215 
7216 	case x86_intercept_in:
7217 	case x86_intercept_ins:
7218 	case x86_intercept_out:
7219 	case x86_intercept_outs:
7220 		return vmx_check_intercept_io(vcpu, info);
7221 
7222 	case x86_intercept_lgdt:
7223 	case x86_intercept_lidt:
7224 	case x86_intercept_lldt:
7225 	case x86_intercept_ltr:
7226 	case x86_intercept_sgdt:
7227 	case x86_intercept_sidt:
7228 	case x86_intercept_sldt:
7229 	case x86_intercept_str:
7230 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7231 			return X86EMUL_CONTINUE;
7232 
7233 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7234 		break;
7235 
7236 	/* TODO: check more intercepts... */
7237 	default:
7238 		break;
7239 	}
7240 
7241 	return X86EMUL_UNHANDLEABLE;
7242 }
7243 
7244 #ifdef CONFIG_X86_64
7245 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7246 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7247 				  u64 divisor, u64 *result)
7248 {
7249 	u64 low = a << shift, high = a >> (64 - shift);
7250 
7251 	/* To avoid the overflow on divq */
7252 	if (high >= divisor)
7253 		return 1;
7254 
7255 	/* Low hold the result, high hold rem which is discarded */
7256 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7257 	    "rm" (divisor), "0" (low), "1" (high));
7258 	*result = low;
7259 
7260 	return 0;
7261 }
7262 
7263 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7264 			    bool *expired)
7265 {
7266 	struct vcpu_vmx *vmx;
7267 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7268 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7269 
7270 	if (kvm_mwait_in_guest(vcpu->kvm) ||
7271 		kvm_can_post_timer_interrupt(vcpu))
7272 		return -EOPNOTSUPP;
7273 
7274 	vmx = to_vmx(vcpu);
7275 	tscl = rdtsc();
7276 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7277 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7278 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7279 						    ktimer->timer_advance_ns);
7280 
7281 	if (delta_tsc > lapic_timer_advance_cycles)
7282 		delta_tsc -= lapic_timer_advance_cycles;
7283 	else
7284 		delta_tsc = 0;
7285 
7286 	/* Convert to host delta tsc if tsc scaling is enabled */
7287 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7288 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7289 				kvm_tsc_scaling_ratio_frac_bits,
7290 				vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7291 		return -ERANGE;
7292 
7293 	/*
7294 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7295 	 * we can't use the preemption timer.
7296 	 * It's possible that it fits on later vmentries, but checking
7297 	 * on every vmentry is costly so we just use an hrtimer.
7298 	 */
7299 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7300 		return -ERANGE;
7301 
7302 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7303 	*expired = !delta_tsc;
7304 	return 0;
7305 }
7306 
7307 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7308 {
7309 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7310 }
7311 #endif
7312 
7313 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7314 {
7315 	if (!kvm_pause_in_guest(vcpu->kvm))
7316 		shrink_ple_window(vcpu);
7317 }
7318 
7319 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7320 				     struct kvm_memory_slot *slot)
7321 {
7322 	kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7323 	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7324 }
7325 
7326 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7327 				       struct kvm_memory_slot *slot)
7328 {
7329 	kvm_mmu_slot_set_dirty(kvm, slot);
7330 }
7331 
7332 static void vmx_flush_log_dirty(struct kvm *kvm)
7333 {
7334 	kvm_flush_pml_buffers(kvm);
7335 }
7336 
7337 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7338 {
7339 	struct vmcs12 *vmcs12;
7340 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7341 	gpa_t gpa, dst;
7342 
7343 	if (is_guest_mode(vcpu)) {
7344 		WARN_ON_ONCE(vmx->nested.pml_full);
7345 
7346 		/*
7347 		 * Check if PML is enabled for the nested guest.
7348 		 * Whether eptp bit 6 is set is already checked
7349 		 * as part of A/D emulation.
7350 		 */
7351 		vmcs12 = get_vmcs12(vcpu);
7352 		if (!nested_cpu_has_pml(vmcs12))
7353 			return 0;
7354 
7355 		if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7356 			vmx->nested.pml_full = true;
7357 			return 1;
7358 		}
7359 
7360 		gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7361 		dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7362 
7363 		if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7364 					 offset_in_page(dst), sizeof(gpa)))
7365 			return 0;
7366 
7367 		vmcs12->guest_pml_index--;
7368 	}
7369 
7370 	return 0;
7371 }
7372 
7373 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7374 					   struct kvm_memory_slot *memslot,
7375 					   gfn_t offset, unsigned long mask)
7376 {
7377 	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7378 }
7379 
7380 static void __pi_post_block(struct kvm_vcpu *vcpu)
7381 {
7382 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7383 	struct pi_desc old, new;
7384 	unsigned int dest;
7385 
7386 	do {
7387 		old.control = new.control = pi_desc->control;
7388 		WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7389 		     "Wakeup handler not enabled while the VCPU is blocked\n");
7390 
7391 		dest = cpu_physical_id(vcpu->cpu);
7392 
7393 		if (x2apic_enabled())
7394 			new.ndst = dest;
7395 		else
7396 			new.ndst = (dest << 8) & 0xFF00;
7397 
7398 		/* set 'NV' to 'notification vector' */
7399 		new.nv = POSTED_INTR_VECTOR;
7400 	} while (cmpxchg64(&pi_desc->control, old.control,
7401 			   new.control) != old.control);
7402 
7403 	if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7404 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7405 		list_del(&vcpu->blocked_vcpu_list);
7406 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7407 		vcpu->pre_pcpu = -1;
7408 	}
7409 }
7410 
7411 /*
7412  * This routine does the following things for vCPU which is going
7413  * to be blocked if VT-d PI is enabled.
7414  * - Store the vCPU to the wakeup list, so when interrupts happen
7415  *   we can find the right vCPU to wake up.
7416  * - Change the Posted-interrupt descriptor as below:
7417  *      'NDST' <-- vcpu->pre_pcpu
7418  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7419  * - If 'ON' is set during this process, which means at least one
7420  *   interrupt is posted for this vCPU, we cannot block it, in
7421  *   this case, return 1, otherwise, return 0.
7422  *
7423  */
7424 static int pi_pre_block(struct kvm_vcpu *vcpu)
7425 {
7426 	unsigned int dest;
7427 	struct pi_desc old, new;
7428 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7429 
7430 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7431 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
7432 		!kvm_vcpu_apicv_active(vcpu))
7433 		return 0;
7434 
7435 	WARN_ON(irqs_disabled());
7436 	local_irq_disable();
7437 	if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7438 		vcpu->pre_pcpu = vcpu->cpu;
7439 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7440 		list_add_tail(&vcpu->blocked_vcpu_list,
7441 			      &per_cpu(blocked_vcpu_on_cpu,
7442 				       vcpu->pre_pcpu));
7443 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7444 	}
7445 
7446 	do {
7447 		old.control = new.control = pi_desc->control;
7448 
7449 		WARN((pi_desc->sn == 1),
7450 		     "Warning: SN field of posted-interrupts "
7451 		     "is set before blocking\n");
7452 
7453 		/*
7454 		 * Since vCPU can be preempted during this process,
7455 		 * vcpu->cpu could be different with pre_pcpu, we
7456 		 * need to set pre_pcpu as the destination of wakeup
7457 		 * notification event, then we can find the right vCPU
7458 		 * to wakeup in wakeup handler if interrupts happen
7459 		 * when the vCPU is in blocked state.
7460 		 */
7461 		dest = cpu_physical_id(vcpu->pre_pcpu);
7462 
7463 		if (x2apic_enabled())
7464 			new.ndst = dest;
7465 		else
7466 			new.ndst = (dest << 8) & 0xFF00;
7467 
7468 		/* set 'NV' to 'wakeup vector' */
7469 		new.nv = POSTED_INTR_WAKEUP_VECTOR;
7470 	} while (cmpxchg64(&pi_desc->control, old.control,
7471 			   new.control) != old.control);
7472 
7473 	/* We should not block the vCPU if an interrupt is posted for it.  */
7474 	if (pi_test_on(pi_desc) == 1)
7475 		__pi_post_block(vcpu);
7476 
7477 	local_irq_enable();
7478 	return (vcpu->pre_pcpu == -1);
7479 }
7480 
7481 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7482 {
7483 	if (pi_pre_block(vcpu))
7484 		return 1;
7485 
7486 	if (kvm_lapic_hv_timer_in_use(vcpu))
7487 		kvm_lapic_switch_to_sw_timer(vcpu);
7488 
7489 	return 0;
7490 }
7491 
7492 static void pi_post_block(struct kvm_vcpu *vcpu)
7493 {
7494 	if (vcpu->pre_pcpu == -1)
7495 		return;
7496 
7497 	WARN_ON(irqs_disabled());
7498 	local_irq_disable();
7499 	__pi_post_block(vcpu);
7500 	local_irq_enable();
7501 }
7502 
7503 static void vmx_post_block(struct kvm_vcpu *vcpu)
7504 {
7505 	if (kvm_x86_ops->set_hv_timer)
7506 		kvm_lapic_switch_to_hv_timer(vcpu);
7507 
7508 	pi_post_block(vcpu);
7509 }
7510 
7511 /*
7512  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7513  *
7514  * @kvm: kvm
7515  * @host_irq: host irq of the interrupt
7516  * @guest_irq: gsi of the interrupt
7517  * @set: set or unset PI
7518  * returns 0 on success, < 0 on failure
7519  */
7520 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7521 			      uint32_t guest_irq, bool set)
7522 {
7523 	struct kvm_kernel_irq_routing_entry *e;
7524 	struct kvm_irq_routing_table *irq_rt;
7525 	struct kvm_lapic_irq irq;
7526 	struct kvm_vcpu *vcpu;
7527 	struct vcpu_data vcpu_info;
7528 	int idx, ret = 0;
7529 
7530 	if (!kvm_arch_has_assigned_device(kvm) ||
7531 		!irq_remapping_cap(IRQ_POSTING_CAP) ||
7532 		!kvm_vcpu_apicv_active(kvm->vcpus[0]))
7533 		return 0;
7534 
7535 	idx = srcu_read_lock(&kvm->irq_srcu);
7536 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7537 	if (guest_irq >= irq_rt->nr_rt_entries ||
7538 	    hlist_empty(&irq_rt->map[guest_irq])) {
7539 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7540 			     guest_irq, irq_rt->nr_rt_entries);
7541 		goto out;
7542 	}
7543 
7544 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7545 		if (e->type != KVM_IRQ_ROUTING_MSI)
7546 			continue;
7547 		/*
7548 		 * VT-d PI cannot support posting multicast/broadcast
7549 		 * interrupts to a vCPU, we still use interrupt remapping
7550 		 * for these kind of interrupts.
7551 		 *
7552 		 * For lowest-priority interrupts, we only support
7553 		 * those with single CPU as the destination, e.g. user
7554 		 * configures the interrupts via /proc/irq or uses
7555 		 * irqbalance to make the interrupts single-CPU.
7556 		 *
7557 		 * We will support full lowest-priority interrupt later.
7558 		 *
7559 		 * In addition, we can only inject generic interrupts using
7560 		 * the PI mechanism, refuse to route others through it.
7561 		 */
7562 
7563 		kvm_set_msi_irq(kvm, e, &irq);
7564 		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7565 		    !kvm_irq_is_postable(&irq)) {
7566 			/*
7567 			 * Make sure the IRTE is in remapped mode if
7568 			 * we don't handle it in posted mode.
7569 			 */
7570 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7571 			if (ret < 0) {
7572 				printk(KERN_INFO
7573 				   "failed to back to remapped mode, irq: %u\n",
7574 				   host_irq);
7575 				goto out;
7576 			}
7577 
7578 			continue;
7579 		}
7580 
7581 		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7582 		vcpu_info.vector = irq.vector;
7583 
7584 		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7585 				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7586 
7587 		if (set)
7588 			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7589 		else
7590 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7591 
7592 		if (ret < 0) {
7593 			printk(KERN_INFO "%s: failed to update PI IRTE\n",
7594 					__func__);
7595 			goto out;
7596 		}
7597 	}
7598 
7599 	ret = 0;
7600 out:
7601 	srcu_read_unlock(&kvm->irq_srcu, idx);
7602 	return ret;
7603 }
7604 
7605 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7606 {
7607 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7608 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7609 			FEAT_CTL_LMCE_ENABLED;
7610 	else
7611 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7612 			~FEAT_CTL_LMCE_ENABLED;
7613 }
7614 
7615 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7616 {
7617 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7618 	if (to_vmx(vcpu)->nested.nested_run_pending)
7619 		return 0;
7620 	return 1;
7621 }
7622 
7623 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7624 {
7625 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7626 
7627 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7628 	if (vmx->nested.smm.guest_mode)
7629 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7630 
7631 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7632 	vmx->nested.vmxon = false;
7633 	vmx_clear_hlt(vcpu);
7634 	return 0;
7635 }
7636 
7637 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7638 {
7639 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7640 	int ret;
7641 
7642 	if (vmx->nested.smm.vmxon) {
7643 		vmx->nested.vmxon = true;
7644 		vmx->nested.smm.vmxon = false;
7645 	}
7646 
7647 	if (vmx->nested.smm.guest_mode) {
7648 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7649 		if (ret)
7650 			return ret;
7651 
7652 		vmx->nested.smm.guest_mode = false;
7653 	}
7654 	return 0;
7655 }
7656 
7657 static int enable_smi_window(struct kvm_vcpu *vcpu)
7658 {
7659 	return 0;
7660 }
7661 
7662 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7663 {
7664 	return false;
7665 }
7666 
7667 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7668 {
7669 	return to_vmx(vcpu)->nested.vmxon;
7670 }
7671 
7672 static __init int hardware_setup(void)
7673 {
7674 	unsigned long host_bndcfgs;
7675 	struct desc_ptr dt;
7676 	int r, i;
7677 
7678 	rdmsrl_safe(MSR_EFER, &host_efer);
7679 
7680 	store_idt(&dt);
7681 	host_idt_base = dt.address;
7682 
7683 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7684 		kvm_define_shared_msr(i, vmx_msr_index[i]);
7685 
7686 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7687 		return -EIO;
7688 
7689 	if (boot_cpu_has(X86_FEATURE_NX))
7690 		kvm_enable_efer_bits(EFER_NX);
7691 
7692 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7693 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7694 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7695 	}
7696 
7697 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7698 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7699 		enable_vpid = 0;
7700 
7701 	if (!cpu_has_vmx_ept() ||
7702 	    !cpu_has_vmx_ept_4levels() ||
7703 	    !cpu_has_vmx_ept_mt_wb() ||
7704 	    !cpu_has_vmx_invept_global())
7705 		enable_ept = 0;
7706 
7707 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7708 		enable_ept_ad_bits = 0;
7709 
7710 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7711 		enable_unrestricted_guest = 0;
7712 
7713 	if (!cpu_has_vmx_flexpriority())
7714 		flexpriority_enabled = 0;
7715 
7716 	if (!cpu_has_virtual_nmis())
7717 		enable_vnmi = 0;
7718 
7719 	/*
7720 	 * set_apic_access_page_addr() is used to reload apic access
7721 	 * page upon invalidation.  No need to do anything if not
7722 	 * using the APIC_ACCESS_ADDR VMCS field.
7723 	 */
7724 	if (!flexpriority_enabled)
7725 		kvm_x86_ops->set_apic_access_page_addr = NULL;
7726 
7727 	if (!cpu_has_vmx_tpr_shadow())
7728 		kvm_x86_ops->update_cr8_intercept = NULL;
7729 
7730 	if (enable_ept && !cpu_has_vmx_ept_2m_page())
7731 		kvm_disable_largepages();
7732 
7733 #if IS_ENABLED(CONFIG_HYPERV)
7734 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7735 	    && enable_ept) {
7736 		kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7737 		kvm_x86_ops->tlb_remote_flush_with_range =
7738 				hv_remote_flush_tlb_with_range;
7739 	}
7740 #endif
7741 
7742 	if (!cpu_has_vmx_ple()) {
7743 		ple_gap = 0;
7744 		ple_window = 0;
7745 		ple_window_grow = 0;
7746 		ple_window_max = 0;
7747 		ple_window_shrink = 0;
7748 	}
7749 
7750 	if (!cpu_has_vmx_apicv()) {
7751 		enable_apicv = 0;
7752 		kvm_x86_ops->sync_pir_to_irr = NULL;
7753 	}
7754 
7755 	if (cpu_has_vmx_tsc_scaling()) {
7756 		kvm_has_tsc_control = true;
7757 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7758 		kvm_tsc_scaling_ratio_frac_bits = 48;
7759 	}
7760 
7761 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7762 
7763 	if (enable_ept)
7764 		vmx_enable_tdp();
7765 	else
7766 		kvm_disable_tdp();
7767 
7768 	/*
7769 	 * Only enable PML when hardware supports PML feature, and both EPT
7770 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7771 	 */
7772 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7773 		enable_pml = 0;
7774 
7775 	if (!enable_pml) {
7776 		kvm_x86_ops->slot_enable_log_dirty = NULL;
7777 		kvm_x86_ops->slot_disable_log_dirty = NULL;
7778 		kvm_x86_ops->flush_log_dirty = NULL;
7779 		kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7780 	}
7781 
7782 	if (!cpu_has_vmx_preemption_timer())
7783 		enable_preemption_timer = false;
7784 
7785 	if (enable_preemption_timer) {
7786 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
7787 		u64 vmx_msr;
7788 
7789 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7790 		cpu_preemption_timer_multi =
7791 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7792 
7793 		if (tsc_khz)
7794 			use_timer_freq = (u64)tsc_khz * 1000;
7795 		use_timer_freq >>= cpu_preemption_timer_multi;
7796 
7797 		/*
7798 		 * KVM "disables" the preemption timer by setting it to its max
7799 		 * value.  Don't use the timer if it might cause spurious exits
7800 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7801 		 */
7802 		if (use_timer_freq > 0xffffffffu / 10)
7803 			enable_preemption_timer = false;
7804 	}
7805 
7806 	if (!enable_preemption_timer) {
7807 		kvm_x86_ops->set_hv_timer = NULL;
7808 		kvm_x86_ops->cancel_hv_timer = NULL;
7809 		kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7810 	}
7811 
7812 	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7813 
7814 	kvm_mce_cap_supported |= MCG_LMCE_P;
7815 
7816 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7817 		return -EINVAL;
7818 	if (!enable_ept || !cpu_has_vmx_intel_pt())
7819 		pt_mode = PT_MODE_SYSTEM;
7820 
7821 	if (nested) {
7822 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7823 					   vmx_capability.ept);
7824 
7825 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7826 		if (r)
7827 			return r;
7828 	}
7829 
7830 	r = alloc_kvm_area();
7831 	if (r)
7832 		nested_vmx_hardware_unsetup();
7833 	return r;
7834 }
7835 
7836 static __exit void hardware_unsetup(void)
7837 {
7838 	if (nested)
7839 		nested_vmx_hardware_unsetup();
7840 
7841 	free_kvm_area();
7842 }
7843 
7844 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7845 {
7846 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7847 			  BIT(APICV_INHIBIT_REASON_HYPERV);
7848 
7849 	return supported & BIT(bit);
7850 }
7851 
7852 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7853 	.cpu_has_kvm_support = cpu_has_kvm_support,
7854 	.disabled_by_bios = vmx_disabled_by_bios,
7855 	.hardware_setup = hardware_setup,
7856 	.hardware_unsetup = hardware_unsetup,
7857 	.check_processor_compatibility = vmx_check_processor_compat,
7858 	.hardware_enable = hardware_enable,
7859 	.hardware_disable = hardware_disable,
7860 	.cpu_has_accelerated_tpr = report_flexpriority,
7861 	.has_emulated_msr = vmx_has_emulated_msr,
7862 
7863 	.vm_init = vmx_vm_init,
7864 	.vm_alloc = vmx_vm_alloc,
7865 	.vm_free = vmx_vm_free,
7866 
7867 	.vcpu_create = vmx_create_vcpu,
7868 	.vcpu_free = vmx_free_vcpu,
7869 	.vcpu_reset = vmx_vcpu_reset,
7870 
7871 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7872 	.vcpu_load = vmx_vcpu_load,
7873 	.vcpu_put = vmx_vcpu_put,
7874 
7875 	.update_bp_intercept = update_exception_bitmap,
7876 	.get_msr_feature = vmx_get_msr_feature,
7877 	.get_msr = vmx_get_msr,
7878 	.set_msr = vmx_set_msr,
7879 	.get_segment_base = vmx_get_segment_base,
7880 	.get_segment = vmx_get_segment,
7881 	.set_segment = vmx_set_segment,
7882 	.get_cpl = vmx_get_cpl,
7883 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7884 	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7885 	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7886 	.set_cr0 = vmx_set_cr0,
7887 	.set_cr3 = vmx_set_cr3,
7888 	.set_cr4 = vmx_set_cr4,
7889 	.set_efer = vmx_set_efer,
7890 	.get_idt = vmx_get_idt,
7891 	.set_idt = vmx_set_idt,
7892 	.get_gdt = vmx_get_gdt,
7893 	.set_gdt = vmx_set_gdt,
7894 	.get_dr6 = vmx_get_dr6,
7895 	.set_dr6 = vmx_set_dr6,
7896 	.set_dr7 = vmx_set_dr7,
7897 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7898 	.cache_reg = vmx_cache_reg,
7899 	.get_rflags = vmx_get_rflags,
7900 	.set_rflags = vmx_set_rflags,
7901 
7902 	.tlb_flush = vmx_flush_tlb,
7903 	.tlb_flush_gva = vmx_flush_tlb_gva,
7904 
7905 	.run = vmx_vcpu_run,
7906 	.handle_exit = vmx_handle_exit,
7907 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7908 	.update_emulated_instruction = vmx_update_emulated_instruction,
7909 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7910 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7911 	.patch_hypercall = vmx_patch_hypercall,
7912 	.set_irq = vmx_inject_irq,
7913 	.set_nmi = vmx_inject_nmi,
7914 	.queue_exception = vmx_queue_exception,
7915 	.cancel_injection = vmx_cancel_injection,
7916 	.interrupt_allowed = vmx_interrupt_allowed,
7917 	.nmi_allowed = vmx_nmi_allowed,
7918 	.get_nmi_mask = vmx_get_nmi_mask,
7919 	.set_nmi_mask = vmx_set_nmi_mask,
7920 	.enable_nmi_window = enable_nmi_window,
7921 	.enable_irq_window = enable_irq_window,
7922 	.update_cr8_intercept = update_cr8_intercept,
7923 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7924 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7925 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7926 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7927 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7928 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7929 	.hwapic_irr_update = vmx_hwapic_irr_update,
7930 	.hwapic_isr_update = vmx_hwapic_isr_update,
7931 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7932 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7933 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7934 	.dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7935 
7936 	.set_tss_addr = vmx_set_tss_addr,
7937 	.set_identity_map_addr = vmx_set_identity_map_addr,
7938 	.get_tdp_level = get_ept_level,
7939 	.get_mt_mask = vmx_get_mt_mask,
7940 
7941 	.get_exit_info = vmx_get_exit_info,
7942 
7943 	.get_lpage_level = vmx_get_lpage_level,
7944 
7945 	.cpuid_update = vmx_cpuid_update,
7946 
7947 	.rdtscp_supported = vmx_rdtscp_supported,
7948 	.invpcid_supported = vmx_invpcid_supported,
7949 
7950 	.set_supported_cpuid = vmx_set_supported_cpuid,
7951 
7952 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7953 
7954 	.read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7955 	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7956 
7957 	.set_tdp_cr3 = vmx_set_cr3,
7958 
7959 	.check_intercept = vmx_check_intercept,
7960 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7961 	.mpx_supported = vmx_mpx_supported,
7962 	.xsaves_supported = vmx_xsaves_supported,
7963 	.umip_emulated = vmx_umip_emulated,
7964 	.pt_supported = vmx_pt_supported,
7965 	.pku_supported = vmx_pku_supported,
7966 
7967 	.request_immediate_exit = vmx_request_immediate_exit,
7968 
7969 	.sched_in = vmx_sched_in,
7970 
7971 	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7972 	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7973 	.flush_log_dirty = vmx_flush_log_dirty,
7974 	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7975 	.write_log_dirty = vmx_write_pml_buffer,
7976 
7977 	.pre_block = vmx_pre_block,
7978 	.post_block = vmx_post_block,
7979 
7980 	.pmu_ops = &intel_pmu_ops,
7981 
7982 	.update_pi_irte = vmx_update_pi_irte,
7983 
7984 #ifdef CONFIG_X86_64
7985 	.set_hv_timer = vmx_set_hv_timer,
7986 	.cancel_hv_timer = vmx_cancel_hv_timer,
7987 #endif
7988 
7989 	.setup_mce = vmx_setup_mce,
7990 
7991 	.smi_allowed = vmx_smi_allowed,
7992 	.pre_enter_smm = vmx_pre_enter_smm,
7993 	.pre_leave_smm = vmx_pre_leave_smm,
7994 	.enable_smi_window = enable_smi_window,
7995 
7996 	.check_nested_events = NULL,
7997 	.get_nested_state = NULL,
7998 	.set_nested_state = NULL,
7999 	.get_vmcs12_pages = NULL,
8000 	.nested_enable_evmcs = NULL,
8001 	.nested_get_evmcs_version = NULL,
8002 	.need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
8003 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8004 };
8005 
8006 static void vmx_cleanup_l1d_flush(void)
8007 {
8008 	if (vmx_l1d_flush_pages) {
8009 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8010 		vmx_l1d_flush_pages = NULL;
8011 	}
8012 	/* Restore state so sysfs ignores VMX */
8013 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8014 }
8015 
8016 static void vmx_exit(void)
8017 {
8018 #ifdef CONFIG_KEXEC_CORE
8019 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8020 	synchronize_rcu();
8021 #endif
8022 
8023 	kvm_exit();
8024 
8025 #if IS_ENABLED(CONFIG_HYPERV)
8026 	if (static_branch_unlikely(&enable_evmcs)) {
8027 		int cpu;
8028 		struct hv_vp_assist_page *vp_ap;
8029 		/*
8030 		 * Reset everything to support using non-enlightened VMCS
8031 		 * access later (e.g. when we reload the module with
8032 		 * enlightened_vmcs=0)
8033 		 */
8034 		for_each_online_cpu(cpu) {
8035 			vp_ap =	hv_get_vp_assist_page(cpu);
8036 
8037 			if (!vp_ap)
8038 				continue;
8039 
8040 			vp_ap->nested_control.features.directhypercall = 0;
8041 			vp_ap->current_nested_vmcs = 0;
8042 			vp_ap->enlighten_vmentry = 0;
8043 		}
8044 
8045 		static_branch_disable(&enable_evmcs);
8046 	}
8047 #endif
8048 	vmx_cleanup_l1d_flush();
8049 }
8050 module_exit(vmx_exit);
8051 
8052 static int __init vmx_init(void)
8053 {
8054 	int r;
8055 
8056 #if IS_ENABLED(CONFIG_HYPERV)
8057 	/*
8058 	 * Enlightened VMCS usage should be recommended and the host needs
8059 	 * to support eVMCS v1 or above. We can also disable eVMCS support
8060 	 * with module parameter.
8061 	 */
8062 	if (enlightened_vmcs &&
8063 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8064 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8065 	    KVM_EVMCS_VERSION) {
8066 		int cpu;
8067 
8068 		/* Check that we have assist pages on all online CPUs */
8069 		for_each_online_cpu(cpu) {
8070 			if (!hv_get_vp_assist_page(cpu)) {
8071 				enlightened_vmcs = false;
8072 				break;
8073 			}
8074 		}
8075 
8076 		if (enlightened_vmcs) {
8077 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8078 			static_branch_enable(&enable_evmcs);
8079 		}
8080 
8081 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8082 			vmx_x86_ops.enable_direct_tlbflush
8083 				= hv_enable_direct_tlbflush;
8084 
8085 	} else {
8086 		enlightened_vmcs = false;
8087 	}
8088 #endif
8089 
8090 	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8091 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8092 	if (r)
8093 		return r;
8094 
8095 	/*
8096 	 * Must be called after kvm_init() so enable_ept is properly set
8097 	 * up. Hand the parameter mitigation value in which was stored in
8098 	 * the pre module init parser. If no parameter was given, it will
8099 	 * contain 'auto' which will be turned into the default 'cond'
8100 	 * mitigation mode.
8101 	 */
8102 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8103 	if (r) {
8104 		vmx_exit();
8105 		return r;
8106 	}
8107 
8108 #ifdef CONFIG_KEXEC_CORE
8109 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8110 			   crash_vmclear_local_loaded_vmcss);
8111 #endif
8112 	vmx_check_vmcs12_offsets();
8113 
8114 	return 0;
8115 }
8116 module_init(vmx_init);
8117