xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision 28dce2c4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31 
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50 
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "hyperv.h"
55 #include "irq.h"
56 #include "kvm_cache_regs.h"
57 #include "lapic.h"
58 #include "mmu.h"
59 #include "nested.h"
60 #include "pmu.h"
61 #include "sgx.h"
62 #include "trace.h"
63 #include "vmcs.h"
64 #include "vmcs12.h"
65 #include "vmx.h"
66 #include "x86.h"
67 
68 MODULE_AUTHOR("Qumranet");
69 MODULE_LICENSE("GPL");
70 
71 #ifdef MODULE
72 static const struct x86_cpu_id vmx_cpu_id[] = {
73 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
74 	{}
75 };
76 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
77 #endif
78 
79 bool __read_mostly enable_vpid = 1;
80 module_param_named(vpid, enable_vpid, bool, 0444);
81 
82 static bool __read_mostly enable_vnmi = 1;
83 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
84 
85 bool __read_mostly flexpriority_enabled = 1;
86 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
87 
88 bool __read_mostly enable_ept = 1;
89 module_param_named(ept, enable_ept, bool, S_IRUGO);
90 
91 bool __read_mostly enable_unrestricted_guest = 1;
92 module_param_named(unrestricted_guest,
93 			enable_unrestricted_guest, bool, S_IRUGO);
94 
95 bool __read_mostly enable_ept_ad_bits = 1;
96 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
97 
98 static bool __read_mostly emulate_invalid_guest_state = true;
99 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
100 
101 static bool __read_mostly fasteoi = 1;
102 module_param(fasteoi, bool, S_IRUGO);
103 
104 bool __read_mostly enable_apicv = 1;
105 module_param(enable_apicv, bool, S_IRUGO);
106 
107 /*
108  * If nested=1, nested virtualization is supported, i.e., guests may use
109  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
110  * use VMX instructions.
111  */
112 static bool __read_mostly nested = 1;
113 module_param(nested, bool, S_IRUGO);
114 
115 bool __read_mostly enable_pml = 1;
116 module_param_named(pml, enable_pml, bool, S_IRUGO);
117 
118 static bool __read_mostly dump_invalid_vmcs = 0;
119 module_param(dump_invalid_vmcs, bool, 0644);
120 
121 #define MSR_BITMAP_MODE_X2APIC		1
122 #define MSR_BITMAP_MODE_X2APIC_APICV	2
123 
124 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
125 
126 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
127 static int __read_mostly cpu_preemption_timer_multi;
128 static bool __read_mostly enable_preemption_timer = 1;
129 #ifdef CONFIG_X86_64
130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
131 #endif
132 
133 extern bool __read_mostly allow_smaller_maxphyaddr;
134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
135 
136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
138 #define KVM_VM_CR0_ALWAYS_ON				\
139 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
140 	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
141 
142 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
143 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
144 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
145 
146 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
147 
148 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
149 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
150 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
151 	RTIT_STATUS_BYTECNT))
152 
153 /*
154  * List of MSRs that can be directly passed to the guest.
155  * In addition to these x2apic and PT MSRs are handled specially.
156  */
157 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
158 	MSR_IA32_SPEC_CTRL,
159 	MSR_IA32_PRED_CMD,
160 	MSR_IA32_TSC,
161 #ifdef CONFIG_X86_64
162 	MSR_FS_BASE,
163 	MSR_GS_BASE,
164 	MSR_KERNEL_GS_BASE,
165 #endif
166 	MSR_IA32_SYSENTER_CS,
167 	MSR_IA32_SYSENTER_ESP,
168 	MSR_IA32_SYSENTER_EIP,
169 	MSR_CORE_C1_RES,
170 	MSR_CORE_C3_RESIDENCY,
171 	MSR_CORE_C6_RESIDENCY,
172 	MSR_CORE_C7_RESIDENCY,
173 };
174 
175 /*
176  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
177  * ple_gap:    upper bound on the amount of time between two successive
178  *             executions of PAUSE in a loop. Also indicate if ple enabled.
179  *             According to test, this time is usually smaller than 128 cycles.
180  * ple_window: upper bound on the amount of time a guest is allowed to execute
181  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
182  *             less than 2^12 cycles
183  * Time is measured based on a counter that runs at the same rate as the TSC,
184  * refer SDM volume 3b section 21.6.13 & 22.1.3.
185  */
186 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
187 module_param(ple_gap, uint, 0444);
188 
189 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
190 module_param(ple_window, uint, 0444);
191 
192 /* Default doubles per-vcpu window every exit. */
193 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
194 module_param(ple_window_grow, uint, 0444);
195 
196 /* Default resets per-vcpu window every exit to ple_window. */
197 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
198 module_param(ple_window_shrink, uint, 0444);
199 
200 /* Default is to compute the maximum so we can never overflow. */
201 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
202 module_param(ple_window_max, uint, 0444);
203 
204 /* Default is SYSTEM mode, 1 for host-guest mode */
205 int __read_mostly pt_mode = PT_MODE_SYSTEM;
206 module_param(pt_mode, int, S_IRUGO);
207 
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
209 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
210 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
211 
212 /* Storage for pre module init parameter parsing */
213 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
214 
215 static const struct {
216 	const char *option;
217 	bool for_parse;
218 } vmentry_l1d_param[] = {
219 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
220 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
221 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
222 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
223 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
224 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
225 };
226 
227 #define L1D_CACHE_ORDER 4
228 static void *vmx_l1d_flush_pages;
229 
230 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
231 {
232 	struct page *page;
233 	unsigned int i;
234 
235 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
236 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
237 		return 0;
238 	}
239 
240 	if (!enable_ept) {
241 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
242 		return 0;
243 	}
244 
245 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
246 		u64 msr;
247 
248 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
249 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
250 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
251 			return 0;
252 		}
253 	}
254 
255 	/* If set to auto use the default l1tf mitigation method */
256 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
257 		switch (l1tf_mitigation) {
258 		case L1TF_MITIGATION_OFF:
259 			l1tf = VMENTER_L1D_FLUSH_NEVER;
260 			break;
261 		case L1TF_MITIGATION_FLUSH_NOWARN:
262 		case L1TF_MITIGATION_FLUSH:
263 		case L1TF_MITIGATION_FLUSH_NOSMT:
264 			l1tf = VMENTER_L1D_FLUSH_COND;
265 			break;
266 		case L1TF_MITIGATION_FULL:
267 		case L1TF_MITIGATION_FULL_FORCE:
268 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
269 			break;
270 		}
271 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
272 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
273 	}
274 
275 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
276 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
277 		/*
278 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
279 		 * lifetime and so should not be charged to a memcg.
280 		 */
281 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
282 		if (!page)
283 			return -ENOMEM;
284 		vmx_l1d_flush_pages = page_address(page);
285 
286 		/*
287 		 * Initialize each page with a different pattern in
288 		 * order to protect against KSM in the nested
289 		 * virtualization case.
290 		 */
291 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
292 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
293 			       PAGE_SIZE);
294 		}
295 	}
296 
297 	l1tf_vmx_mitigation = l1tf;
298 
299 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
300 		static_branch_enable(&vmx_l1d_should_flush);
301 	else
302 		static_branch_disable(&vmx_l1d_should_flush);
303 
304 	if (l1tf == VMENTER_L1D_FLUSH_COND)
305 		static_branch_enable(&vmx_l1d_flush_cond);
306 	else
307 		static_branch_disable(&vmx_l1d_flush_cond);
308 	return 0;
309 }
310 
311 static int vmentry_l1d_flush_parse(const char *s)
312 {
313 	unsigned int i;
314 
315 	if (s) {
316 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
317 			if (vmentry_l1d_param[i].for_parse &&
318 			    sysfs_streq(s, vmentry_l1d_param[i].option))
319 				return i;
320 		}
321 	}
322 	return -EINVAL;
323 }
324 
325 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
326 {
327 	int l1tf, ret;
328 
329 	l1tf = vmentry_l1d_flush_parse(s);
330 	if (l1tf < 0)
331 		return l1tf;
332 
333 	if (!boot_cpu_has(X86_BUG_L1TF))
334 		return 0;
335 
336 	/*
337 	 * Has vmx_init() run already? If not then this is the pre init
338 	 * parameter parsing. In that case just store the value and let
339 	 * vmx_init() do the proper setup after enable_ept has been
340 	 * established.
341 	 */
342 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
343 		vmentry_l1d_flush_param = l1tf;
344 		return 0;
345 	}
346 
347 	mutex_lock(&vmx_l1d_flush_mutex);
348 	ret = vmx_setup_l1d_flush(l1tf);
349 	mutex_unlock(&vmx_l1d_flush_mutex);
350 	return ret;
351 }
352 
353 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
354 {
355 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
356 		return sprintf(s, "???\n");
357 
358 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
359 }
360 
361 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
362 	.set = vmentry_l1d_flush_set,
363 	.get = vmentry_l1d_flush_get,
364 };
365 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
366 
367 static u32 vmx_segment_access_rights(struct kvm_segment *var);
368 
369 void vmx_vmexit(void);
370 
371 #define vmx_insn_failed(fmt...)		\
372 do {					\
373 	WARN_ONCE(1, fmt);		\
374 	pr_warn_ratelimited(fmt);	\
375 } while (0)
376 
377 asmlinkage void vmread_error(unsigned long field, bool fault)
378 {
379 	if (fault)
380 		kvm_spurious_fault();
381 	else
382 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
383 }
384 
385 noinline void vmwrite_error(unsigned long field, unsigned long value)
386 {
387 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
388 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
389 }
390 
391 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
392 {
393 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
394 }
395 
396 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
397 {
398 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
399 }
400 
401 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
402 {
403 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
404 			ext, vpid, gva);
405 }
406 
407 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
408 {
409 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
410 			ext, eptp, gpa);
411 }
412 
413 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
414 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
415 /*
416  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
417  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
418  */
419 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
420 
421 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
422 static DEFINE_SPINLOCK(vmx_vpid_lock);
423 
424 struct vmcs_config vmcs_config;
425 struct vmx_capability vmx_capability;
426 
427 #define VMX_SEGMENT_FIELD(seg)					\
428 	[VCPU_SREG_##seg] = {                                   \
429 		.selector = GUEST_##seg##_SELECTOR,		\
430 		.base = GUEST_##seg##_BASE,		   	\
431 		.limit = GUEST_##seg##_LIMIT,		   	\
432 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
433 	}
434 
435 static const struct kvm_vmx_segment_field {
436 	unsigned selector;
437 	unsigned base;
438 	unsigned limit;
439 	unsigned ar_bytes;
440 } kvm_vmx_segment_fields[] = {
441 	VMX_SEGMENT_FIELD(CS),
442 	VMX_SEGMENT_FIELD(DS),
443 	VMX_SEGMENT_FIELD(ES),
444 	VMX_SEGMENT_FIELD(FS),
445 	VMX_SEGMENT_FIELD(GS),
446 	VMX_SEGMENT_FIELD(SS),
447 	VMX_SEGMENT_FIELD(TR),
448 	VMX_SEGMENT_FIELD(LDTR),
449 };
450 
451 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
452 {
453 	vmx->segment_cache.bitmask = 0;
454 }
455 
456 static unsigned long host_idt_base;
457 
458 #if IS_ENABLED(CONFIG_HYPERV)
459 static bool __read_mostly enlightened_vmcs = true;
460 module_param(enlightened_vmcs, bool, 0444);
461 
462 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
463 		void *data)
464 {
465 	struct kvm_tlb_range *range = data;
466 
467 	return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
468 			range->pages);
469 }
470 
471 static inline int hv_remote_flush_root_ept(hpa_t root_ept,
472 					   struct kvm_tlb_range *range)
473 {
474 	if (range)
475 		return hyperv_flush_guest_mapping_range(root_ept,
476 				kvm_fill_hv_flush_list_func, (void *)range);
477 	else
478 		return hyperv_flush_guest_mapping(root_ept);
479 }
480 
481 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
482 		struct kvm_tlb_range *range)
483 {
484 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
485 	struct kvm_vcpu *vcpu;
486 	int ret = 0, i, nr_unique_valid_roots;
487 	hpa_t root;
488 
489 	spin_lock(&kvm_vmx->hv_root_ept_lock);
490 
491 	if (!VALID_PAGE(kvm_vmx->hv_root_ept)) {
492 		nr_unique_valid_roots = 0;
493 
494 		/*
495 		 * Flush all valid roots, and see if all vCPUs have converged
496 		 * on a common root, in which case future flushes can skip the
497 		 * loop and flush the common root.
498 		 */
499 		kvm_for_each_vcpu(i, vcpu, kvm) {
500 			root = to_vmx(vcpu)->hv_root_ept;
501 			if (!VALID_PAGE(root) || root == kvm_vmx->hv_root_ept)
502 				continue;
503 
504 			/*
505 			 * Set the tracked root to the first valid root.  Keep
506 			 * this root for the entirety of the loop even if more
507 			 * roots are encountered as a low effort optimization
508 			 * to avoid flushing the same (first) root again.
509 			 */
510 			if (++nr_unique_valid_roots == 1)
511 				kvm_vmx->hv_root_ept = root;
512 
513 			if (!ret)
514 				ret = hv_remote_flush_root_ept(root, range);
515 
516 			/*
517 			 * Stop processing roots if a failure occurred and
518 			 * multiple valid roots have already been detected.
519 			 */
520 			if (ret && nr_unique_valid_roots > 1)
521 				break;
522 		}
523 
524 		/*
525 		 * The optimized flush of a single root can't be used if there
526 		 * are multiple valid roots (obviously).
527 		 */
528 		if (nr_unique_valid_roots > 1)
529 			kvm_vmx->hv_root_ept = INVALID_PAGE;
530 	} else {
531 		ret = hv_remote_flush_root_ept(kvm_vmx->hv_root_ept, range);
532 	}
533 
534 	spin_unlock(&kvm_vmx->hv_root_ept_lock);
535 	return ret;
536 }
537 static int hv_remote_flush_tlb(struct kvm *kvm)
538 {
539 	return hv_remote_flush_tlb_with_range(kvm, NULL);
540 }
541 
542 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
543 {
544 	struct hv_enlightened_vmcs *evmcs;
545 	struct hv_partition_assist_pg **p_hv_pa_pg =
546 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
547 	/*
548 	 * Synthetic VM-Exit is not enabled in current code and so All
549 	 * evmcs in singe VM shares same assist page.
550 	 */
551 	if (!*p_hv_pa_pg)
552 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
553 
554 	if (!*p_hv_pa_pg)
555 		return -ENOMEM;
556 
557 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
558 
559 	evmcs->partition_assist_page =
560 		__pa(*p_hv_pa_pg);
561 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
562 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
563 
564 	return 0;
565 }
566 
567 #endif /* IS_ENABLED(CONFIG_HYPERV) */
568 
569 static void hv_track_root_ept(struct kvm_vcpu *vcpu, hpa_t root_ept)
570 {
571 #if IS_ENABLED(CONFIG_HYPERV)
572 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
573 
574 	if (kvm_x86_ops.tlb_remote_flush == hv_remote_flush_tlb) {
575 		spin_lock(&kvm_vmx->hv_root_ept_lock);
576 		to_vmx(vcpu)->hv_root_ept = root_ept;
577 		if (root_ept != kvm_vmx->hv_root_ept)
578 			kvm_vmx->hv_root_ept = INVALID_PAGE;
579 		spin_unlock(&kvm_vmx->hv_root_ept_lock);
580 	}
581 #endif
582 }
583 
584 /*
585  * Comment's format: document - errata name - stepping - processor name.
586  * Refer from
587  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
588  */
589 static u32 vmx_preemption_cpu_tfms[] = {
590 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
591 0x000206E6,
592 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
593 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
594 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
595 0x00020652,
596 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
597 0x00020655,
598 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
599 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
600 /*
601  * 320767.pdf - AAP86  - B1 -
602  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
603  */
604 0x000106E5,
605 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
606 0x000106A0,
607 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
608 0x000106A1,
609 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
610 0x000106A4,
611  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
612  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
613  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
614 0x000106A5,
615  /* Xeon E3-1220 V2 */
616 0x000306A8,
617 };
618 
619 static inline bool cpu_has_broken_vmx_preemption_timer(void)
620 {
621 	u32 eax = cpuid_eax(0x00000001), i;
622 
623 	/* Clear the reserved bits */
624 	eax &= ~(0x3U << 14 | 0xfU << 28);
625 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
626 		if (eax == vmx_preemption_cpu_tfms[i])
627 			return true;
628 
629 	return false;
630 }
631 
632 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
633 {
634 	return flexpriority_enabled && lapic_in_kernel(vcpu);
635 }
636 
637 static inline bool report_flexpriority(void)
638 {
639 	return flexpriority_enabled;
640 }
641 
642 static int possible_passthrough_msr_slot(u32 msr)
643 {
644 	u32 i;
645 
646 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
647 		if (vmx_possible_passthrough_msrs[i] == msr)
648 			return i;
649 
650 	return -ENOENT;
651 }
652 
653 static bool is_valid_passthrough_msr(u32 msr)
654 {
655 	bool r;
656 
657 	switch (msr) {
658 	case 0x800 ... 0x8ff:
659 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
660 		return true;
661 	case MSR_IA32_RTIT_STATUS:
662 	case MSR_IA32_RTIT_OUTPUT_BASE:
663 	case MSR_IA32_RTIT_OUTPUT_MASK:
664 	case MSR_IA32_RTIT_CR3_MATCH:
665 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
666 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
667 	case MSR_LBR_SELECT:
668 	case MSR_LBR_TOS:
669 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
670 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
671 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
672 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
673 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
674 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
675 		return true;
676 	}
677 
678 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
679 
680 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
681 
682 	return r;
683 }
684 
685 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
686 {
687 	int i;
688 
689 	i = kvm_find_user_return_msr(msr);
690 	if (i >= 0)
691 		return &vmx->guest_uret_msrs[i];
692 	return NULL;
693 }
694 
695 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
696 				  struct vmx_uret_msr *msr, u64 data)
697 {
698 	unsigned int slot = msr - vmx->guest_uret_msrs;
699 	int ret = 0;
700 
701 	u64 old_msr_data = msr->data;
702 	msr->data = data;
703 	if (msr->load_into_hardware) {
704 		preempt_disable();
705 		ret = kvm_set_user_return_msr(slot, msr->data, msr->mask);
706 		preempt_enable();
707 		if (ret)
708 			msr->data = old_msr_data;
709 	}
710 	return ret;
711 }
712 
713 #ifdef CONFIG_KEXEC_CORE
714 static void crash_vmclear_local_loaded_vmcss(void)
715 {
716 	int cpu = raw_smp_processor_id();
717 	struct loaded_vmcs *v;
718 
719 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
720 			    loaded_vmcss_on_cpu_link)
721 		vmcs_clear(v->vmcs);
722 }
723 #endif /* CONFIG_KEXEC_CORE */
724 
725 static void __loaded_vmcs_clear(void *arg)
726 {
727 	struct loaded_vmcs *loaded_vmcs = arg;
728 	int cpu = raw_smp_processor_id();
729 
730 	if (loaded_vmcs->cpu != cpu)
731 		return; /* vcpu migration can race with cpu offline */
732 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
733 		per_cpu(current_vmcs, cpu) = NULL;
734 
735 	vmcs_clear(loaded_vmcs->vmcs);
736 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
737 		vmcs_clear(loaded_vmcs->shadow_vmcs);
738 
739 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
740 
741 	/*
742 	 * Ensure all writes to loaded_vmcs, including deleting it from its
743 	 * current percpu list, complete before setting loaded_vmcs->vcpu to
744 	 * -1, otherwise a different cpu can see vcpu == -1 first and add
745 	 * loaded_vmcs to its percpu list before it's deleted from this cpu's
746 	 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
747 	 */
748 	smp_wmb();
749 
750 	loaded_vmcs->cpu = -1;
751 	loaded_vmcs->launched = 0;
752 }
753 
754 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
755 {
756 	int cpu = loaded_vmcs->cpu;
757 
758 	if (cpu != -1)
759 		smp_call_function_single(cpu,
760 			 __loaded_vmcs_clear, loaded_vmcs, 1);
761 }
762 
763 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
764 				       unsigned field)
765 {
766 	bool ret;
767 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
768 
769 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
770 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
771 		vmx->segment_cache.bitmask = 0;
772 	}
773 	ret = vmx->segment_cache.bitmask & mask;
774 	vmx->segment_cache.bitmask |= mask;
775 	return ret;
776 }
777 
778 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
779 {
780 	u16 *p = &vmx->segment_cache.seg[seg].selector;
781 
782 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
783 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
784 	return *p;
785 }
786 
787 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
788 {
789 	ulong *p = &vmx->segment_cache.seg[seg].base;
790 
791 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
792 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
793 	return *p;
794 }
795 
796 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
797 {
798 	u32 *p = &vmx->segment_cache.seg[seg].limit;
799 
800 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
801 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
802 	return *p;
803 }
804 
805 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
806 {
807 	u32 *p = &vmx->segment_cache.seg[seg].ar;
808 
809 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
810 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
811 	return *p;
812 }
813 
814 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
815 {
816 	u32 eb;
817 
818 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
819 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
820 	/*
821 	 * Guest access to VMware backdoor ports could legitimately
822 	 * trigger #GP because of TSS I/O permission bitmap.
823 	 * We intercept those #GP and allow access to them anyway
824 	 * as VMware does.
825 	 */
826 	if (enable_vmware_backdoor)
827 		eb |= (1u << GP_VECTOR);
828 	if ((vcpu->guest_debug &
829 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
830 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
831 		eb |= 1u << BP_VECTOR;
832 	if (to_vmx(vcpu)->rmode.vm86_active)
833 		eb = ~0;
834 	if (!vmx_need_pf_intercept(vcpu))
835 		eb &= ~(1u << PF_VECTOR);
836 
837 	/* When we are running a nested L2 guest and L1 specified for it a
838 	 * certain exception bitmap, we must trap the same exceptions and pass
839 	 * them to L1. When running L2, we will only handle the exceptions
840 	 * specified above if L1 did not want them.
841 	 */
842 	if (is_guest_mode(vcpu))
843 		eb |= get_vmcs12(vcpu)->exception_bitmap;
844         else {
845 		/*
846 		 * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched
847 		 * between guest and host.  In that case we only care about present
848 		 * faults.  For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in
849 		 * prepare_vmcs02_rare.
850 		 */
851 		bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR));
852 		int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0;
853 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
854 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask);
855 	}
856 
857 	vmcs_write32(EXCEPTION_BITMAP, eb);
858 }
859 
860 /*
861  * Check if MSR is intercepted for currently loaded MSR bitmap.
862  */
863 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
864 {
865 	unsigned long *msr_bitmap;
866 	int f = sizeof(unsigned long);
867 
868 	if (!cpu_has_vmx_msr_bitmap())
869 		return true;
870 
871 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
872 
873 	if (msr <= 0x1fff) {
874 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
875 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
876 		msr &= 0x1fff;
877 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
878 	}
879 
880 	return true;
881 }
882 
883 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
884 		unsigned long entry, unsigned long exit)
885 {
886 	vm_entry_controls_clearbit(vmx, entry);
887 	vm_exit_controls_clearbit(vmx, exit);
888 }
889 
890 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
891 {
892 	unsigned int i;
893 
894 	for (i = 0; i < m->nr; ++i) {
895 		if (m->val[i].index == msr)
896 			return i;
897 	}
898 	return -ENOENT;
899 }
900 
901 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
902 {
903 	int i;
904 	struct msr_autoload *m = &vmx->msr_autoload;
905 
906 	switch (msr) {
907 	case MSR_EFER:
908 		if (cpu_has_load_ia32_efer()) {
909 			clear_atomic_switch_msr_special(vmx,
910 					VM_ENTRY_LOAD_IA32_EFER,
911 					VM_EXIT_LOAD_IA32_EFER);
912 			return;
913 		}
914 		break;
915 	case MSR_CORE_PERF_GLOBAL_CTRL:
916 		if (cpu_has_load_perf_global_ctrl()) {
917 			clear_atomic_switch_msr_special(vmx,
918 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
919 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
920 			return;
921 		}
922 		break;
923 	}
924 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
925 	if (i < 0)
926 		goto skip_guest;
927 	--m->guest.nr;
928 	m->guest.val[i] = m->guest.val[m->guest.nr];
929 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
930 
931 skip_guest:
932 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
933 	if (i < 0)
934 		return;
935 
936 	--m->host.nr;
937 	m->host.val[i] = m->host.val[m->host.nr];
938 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
939 }
940 
941 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
942 		unsigned long entry, unsigned long exit,
943 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
944 		u64 guest_val, u64 host_val)
945 {
946 	vmcs_write64(guest_val_vmcs, guest_val);
947 	if (host_val_vmcs != HOST_IA32_EFER)
948 		vmcs_write64(host_val_vmcs, host_val);
949 	vm_entry_controls_setbit(vmx, entry);
950 	vm_exit_controls_setbit(vmx, exit);
951 }
952 
953 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
954 				  u64 guest_val, u64 host_val, bool entry_only)
955 {
956 	int i, j = 0;
957 	struct msr_autoload *m = &vmx->msr_autoload;
958 
959 	switch (msr) {
960 	case MSR_EFER:
961 		if (cpu_has_load_ia32_efer()) {
962 			add_atomic_switch_msr_special(vmx,
963 					VM_ENTRY_LOAD_IA32_EFER,
964 					VM_EXIT_LOAD_IA32_EFER,
965 					GUEST_IA32_EFER,
966 					HOST_IA32_EFER,
967 					guest_val, host_val);
968 			return;
969 		}
970 		break;
971 	case MSR_CORE_PERF_GLOBAL_CTRL:
972 		if (cpu_has_load_perf_global_ctrl()) {
973 			add_atomic_switch_msr_special(vmx,
974 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
975 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
976 					GUEST_IA32_PERF_GLOBAL_CTRL,
977 					HOST_IA32_PERF_GLOBAL_CTRL,
978 					guest_val, host_val);
979 			return;
980 		}
981 		break;
982 	case MSR_IA32_PEBS_ENABLE:
983 		/* PEBS needs a quiescent period after being disabled (to write
984 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
985 		 * provide that period, so a CPU could write host's record into
986 		 * guest's memory.
987 		 */
988 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
989 	}
990 
991 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
992 	if (!entry_only)
993 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
994 
995 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
996 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
997 		printk_once(KERN_WARNING "Not enough msr switch entries. "
998 				"Can't add msr %x\n", msr);
999 		return;
1000 	}
1001 	if (i < 0) {
1002 		i = m->guest.nr++;
1003 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1004 	}
1005 	m->guest.val[i].index = msr;
1006 	m->guest.val[i].value = guest_val;
1007 
1008 	if (entry_only)
1009 		return;
1010 
1011 	if (j < 0) {
1012 		j = m->host.nr++;
1013 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1014 	}
1015 	m->host.val[j].index = msr;
1016 	m->host.val[j].value = host_val;
1017 }
1018 
1019 static bool update_transition_efer(struct vcpu_vmx *vmx)
1020 {
1021 	u64 guest_efer = vmx->vcpu.arch.efer;
1022 	u64 ignore_bits = 0;
1023 	int i;
1024 
1025 	/* Shadow paging assumes NX to be available.  */
1026 	if (!enable_ept)
1027 		guest_efer |= EFER_NX;
1028 
1029 	/*
1030 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1031 	 */
1032 	ignore_bits |= EFER_SCE;
1033 #ifdef CONFIG_X86_64
1034 	ignore_bits |= EFER_LMA | EFER_LME;
1035 	/* SCE is meaningful only in long mode on Intel */
1036 	if (guest_efer & EFER_LMA)
1037 		ignore_bits &= ~(u64)EFER_SCE;
1038 #endif
1039 
1040 	/*
1041 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1042 	 * On CPUs that support "load IA32_EFER", always switch EFER
1043 	 * atomically, since it's faster than switching it manually.
1044 	 */
1045 	if (cpu_has_load_ia32_efer() ||
1046 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1047 		if (!(guest_efer & EFER_LMA))
1048 			guest_efer &= ~EFER_LME;
1049 		if (guest_efer != host_efer)
1050 			add_atomic_switch_msr(vmx, MSR_EFER,
1051 					      guest_efer, host_efer, false);
1052 		else
1053 			clear_atomic_switch_msr(vmx, MSR_EFER);
1054 		return false;
1055 	}
1056 
1057 	i = kvm_find_user_return_msr(MSR_EFER);
1058 	if (i < 0)
1059 		return false;
1060 
1061 	clear_atomic_switch_msr(vmx, MSR_EFER);
1062 
1063 	guest_efer &= ~ignore_bits;
1064 	guest_efer |= host_efer & ignore_bits;
1065 
1066 	vmx->guest_uret_msrs[i].data = guest_efer;
1067 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1068 
1069 	return true;
1070 }
1071 
1072 #ifdef CONFIG_X86_32
1073 /*
1074  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1075  * VMCS rather than the segment table.  KVM uses this helper to figure
1076  * out the current bases to poke them into the VMCS before entry.
1077  */
1078 static unsigned long segment_base(u16 selector)
1079 {
1080 	struct desc_struct *table;
1081 	unsigned long v;
1082 
1083 	if (!(selector & ~SEGMENT_RPL_MASK))
1084 		return 0;
1085 
1086 	table = get_current_gdt_ro();
1087 
1088 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1089 		u16 ldt_selector = kvm_read_ldt();
1090 
1091 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1092 			return 0;
1093 
1094 		table = (struct desc_struct *)segment_base(ldt_selector);
1095 	}
1096 	v = get_desc_base(&table[selector >> 3]);
1097 	return v;
1098 }
1099 #endif
1100 
1101 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1102 {
1103 	return vmx_pt_mode_is_host_guest() &&
1104 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1105 }
1106 
1107 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1108 {
1109 	/* The base must be 128-byte aligned and a legal physical address. */
1110 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1111 }
1112 
1113 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1114 {
1115 	u32 i;
1116 
1117 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1118 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1119 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1120 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1121 	for (i = 0; i < addr_range; i++) {
1122 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1123 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1124 	}
1125 }
1126 
1127 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1128 {
1129 	u32 i;
1130 
1131 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1132 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1133 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1134 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1135 	for (i = 0; i < addr_range; i++) {
1136 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1137 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1138 	}
1139 }
1140 
1141 static void pt_guest_enter(struct vcpu_vmx *vmx)
1142 {
1143 	if (vmx_pt_mode_is_system())
1144 		return;
1145 
1146 	/*
1147 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1148 	 * Save host state before VM entry.
1149 	 */
1150 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1151 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1152 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1153 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1154 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1155 	}
1156 }
1157 
1158 static void pt_guest_exit(struct vcpu_vmx *vmx)
1159 {
1160 	if (vmx_pt_mode_is_system())
1161 		return;
1162 
1163 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1164 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1165 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1166 	}
1167 
1168 	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1169 	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1170 }
1171 
1172 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1173 			unsigned long fs_base, unsigned long gs_base)
1174 {
1175 	if (unlikely(fs_sel != host->fs_sel)) {
1176 		if (!(fs_sel & 7))
1177 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1178 		else
1179 			vmcs_write16(HOST_FS_SELECTOR, 0);
1180 		host->fs_sel = fs_sel;
1181 	}
1182 	if (unlikely(gs_sel != host->gs_sel)) {
1183 		if (!(gs_sel & 7))
1184 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1185 		else
1186 			vmcs_write16(HOST_GS_SELECTOR, 0);
1187 		host->gs_sel = gs_sel;
1188 	}
1189 	if (unlikely(fs_base != host->fs_base)) {
1190 		vmcs_writel(HOST_FS_BASE, fs_base);
1191 		host->fs_base = fs_base;
1192 	}
1193 	if (unlikely(gs_base != host->gs_base)) {
1194 		vmcs_writel(HOST_GS_BASE, gs_base);
1195 		host->gs_base = gs_base;
1196 	}
1197 }
1198 
1199 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1200 {
1201 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1202 	struct vmcs_host_state *host_state;
1203 #ifdef CONFIG_X86_64
1204 	int cpu = raw_smp_processor_id();
1205 #endif
1206 	unsigned long fs_base, gs_base;
1207 	u16 fs_sel, gs_sel;
1208 	int i;
1209 
1210 	vmx->req_immediate_exit = false;
1211 
1212 	/*
1213 	 * Note that guest MSRs to be saved/restored can also be changed
1214 	 * when guest state is loaded. This happens when guest transitions
1215 	 * to/from long-mode by setting MSR_EFER.LMA.
1216 	 */
1217 	if (!vmx->guest_uret_msrs_loaded) {
1218 		vmx->guest_uret_msrs_loaded = true;
1219 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1220 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1221 				continue;
1222 
1223 			kvm_set_user_return_msr(i,
1224 						vmx->guest_uret_msrs[i].data,
1225 						vmx->guest_uret_msrs[i].mask);
1226 		}
1227 	}
1228 
1229     	if (vmx->nested.need_vmcs12_to_shadow_sync)
1230 		nested_sync_vmcs12_to_shadow(vcpu);
1231 
1232 	if (vmx->guest_state_loaded)
1233 		return;
1234 
1235 	host_state = &vmx->loaded_vmcs->host_state;
1236 
1237 	/*
1238 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1239 	 * allow segment selectors with cpl > 0 or ti == 1.
1240 	 */
1241 	host_state->ldt_sel = kvm_read_ldt();
1242 
1243 #ifdef CONFIG_X86_64
1244 	savesegment(ds, host_state->ds_sel);
1245 	savesegment(es, host_state->es_sel);
1246 
1247 	gs_base = cpu_kernelmode_gs_base(cpu);
1248 	if (likely(is_64bit_mm(current->mm))) {
1249 		current_save_fsgs();
1250 		fs_sel = current->thread.fsindex;
1251 		gs_sel = current->thread.gsindex;
1252 		fs_base = current->thread.fsbase;
1253 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1254 	} else {
1255 		savesegment(fs, fs_sel);
1256 		savesegment(gs, gs_sel);
1257 		fs_base = read_msr(MSR_FS_BASE);
1258 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1259 	}
1260 
1261 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1262 #else
1263 	savesegment(fs, fs_sel);
1264 	savesegment(gs, gs_sel);
1265 	fs_base = segment_base(fs_sel);
1266 	gs_base = segment_base(gs_sel);
1267 #endif
1268 
1269 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1270 	vmx->guest_state_loaded = true;
1271 }
1272 
1273 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1274 {
1275 	struct vmcs_host_state *host_state;
1276 
1277 	if (!vmx->guest_state_loaded)
1278 		return;
1279 
1280 	host_state = &vmx->loaded_vmcs->host_state;
1281 
1282 	++vmx->vcpu.stat.host_state_reload;
1283 
1284 #ifdef CONFIG_X86_64
1285 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1286 #endif
1287 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1288 		kvm_load_ldt(host_state->ldt_sel);
1289 #ifdef CONFIG_X86_64
1290 		load_gs_index(host_state->gs_sel);
1291 #else
1292 		loadsegment(gs, host_state->gs_sel);
1293 #endif
1294 	}
1295 	if (host_state->fs_sel & 7)
1296 		loadsegment(fs, host_state->fs_sel);
1297 #ifdef CONFIG_X86_64
1298 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1299 		loadsegment(ds, host_state->ds_sel);
1300 		loadsegment(es, host_state->es_sel);
1301 	}
1302 #endif
1303 	invalidate_tss_limit();
1304 #ifdef CONFIG_X86_64
1305 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1306 #endif
1307 	load_fixmap_gdt(raw_smp_processor_id());
1308 	vmx->guest_state_loaded = false;
1309 	vmx->guest_uret_msrs_loaded = false;
1310 }
1311 
1312 #ifdef CONFIG_X86_64
1313 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1314 {
1315 	preempt_disable();
1316 	if (vmx->guest_state_loaded)
1317 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1318 	preempt_enable();
1319 	return vmx->msr_guest_kernel_gs_base;
1320 }
1321 
1322 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1323 {
1324 	preempt_disable();
1325 	if (vmx->guest_state_loaded)
1326 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1327 	preempt_enable();
1328 	vmx->msr_guest_kernel_gs_base = data;
1329 }
1330 #endif
1331 
1332 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1333 			struct loaded_vmcs *buddy)
1334 {
1335 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1336 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1337 	struct vmcs *prev;
1338 
1339 	if (!already_loaded) {
1340 		loaded_vmcs_clear(vmx->loaded_vmcs);
1341 		local_irq_disable();
1342 
1343 		/*
1344 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1345 		 * this cpu's percpu list, otherwise it may not yet be deleted
1346 		 * from its previous cpu's percpu list.  Pairs with the
1347 		 * smb_wmb() in __loaded_vmcs_clear().
1348 		 */
1349 		smp_rmb();
1350 
1351 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1352 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1353 		local_irq_enable();
1354 	}
1355 
1356 	prev = per_cpu(current_vmcs, cpu);
1357 	if (prev != vmx->loaded_vmcs->vmcs) {
1358 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1359 		vmcs_load(vmx->loaded_vmcs->vmcs);
1360 
1361 		/*
1362 		 * No indirect branch prediction barrier needed when switching
1363 		 * the active VMCS within a guest, e.g. on nested VM-Enter.
1364 		 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1365 		 */
1366 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1367 			indirect_branch_prediction_barrier();
1368 	}
1369 
1370 	if (!already_loaded) {
1371 		void *gdt = get_current_gdt_ro();
1372 		unsigned long sysenter_esp;
1373 
1374 		/*
1375 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1376 		 * TLB entries from its previous association with the vCPU.
1377 		 */
1378 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1379 
1380 		/*
1381 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1382 		 * processors.  See 22.2.4.
1383 		 */
1384 		vmcs_writel(HOST_TR_BASE,
1385 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1386 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1387 
1388 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1389 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1390 
1391 		vmx->loaded_vmcs->cpu = cpu;
1392 	}
1393 
1394 	/* Setup TSC multiplier */
1395 	if (kvm_has_tsc_control &&
1396 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1397 		decache_tsc_multiplier(vmx);
1398 }
1399 
1400 /*
1401  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1402  * vcpu mutex is already taken.
1403  */
1404 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1405 {
1406 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1407 
1408 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1409 
1410 	vmx_vcpu_pi_load(vcpu, cpu);
1411 
1412 	vmx->host_debugctlmsr = get_debugctlmsr();
1413 }
1414 
1415 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1416 {
1417 	vmx_vcpu_pi_put(vcpu);
1418 
1419 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1420 }
1421 
1422 static bool emulation_required(struct kvm_vcpu *vcpu)
1423 {
1424 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1425 }
1426 
1427 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1428 {
1429 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1430 	unsigned long rflags, save_rflags;
1431 
1432 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1433 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1434 		rflags = vmcs_readl(GUEST_RFLAGS);
1435 		if (vmx->rmode.vm86_active) {
1436 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1437 			save_rflags = vmx->rmode.save_rflags;
1438 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1439 		}
1440 		vmx->rflags = rflags;
1441 	}
1442 	return vmx->rflags;
1443 }
1444 
1445 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1446 {
1447 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1448 	unsigned long old_rflags;
1449 
1450 	if (is_unrestricted_guest(vcpu)) {
1451 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1452 		vmx->rflags = rflags;
1453 		vmcs_writel(GUEST_RFLAGS, rflags);
1454 		return;
1455 	}
1456 
1457 	old_rflags = vmx_get_rflags(vcpu);
1458 	vmx->rflags = rflags;
1459 	if (vmx->rmode.vm86_active) {
1460 		vmx->rmode.save_rflags = rflags;
1461 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1462 	}
1463 	vmcs_writel(GUEST_RFLAGS, rflags);
1464 
1465 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1466 		vmx->emulation_required = emulation_required(vcpu);
1467 }
1468 
1469 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1470 {
1471 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1472 	int ret = 0;
1473 
1474 	if (interruptibility & GUEST_INTR_STATE_STI)
1475 		ret |= KVM_X86_SHADOW_INT_STI;
1476 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1477 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1478 
1479 	return ret;
1480 }
1481 
1482 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1483 {
1484 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1485 	u32 interruptibility = interruptibility_old;
1486 
1487 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1488 
1489 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1490 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1491 	else if (mask & KVM_X86_SHADOW_INT_STI)
1492 		interruptibility |= GUEST_INTR_STATE_STI;
1493 
1494 	if ((interruptibility != interruptibility_old))
1495 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1496 }
1497 
1498 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1499 {
1500 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1501 	unsigned long value;
1502 
1503 	/*
1504 	 * Any MSR write that attempts to change bits marked reserved will
1505 	 * case a #GP fault.
1506 	 */
1507 	if (data & vmx->pt_desc.ctl_bitmask)
1508 		return 1;
1509 
1510 	/*
1511 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1512 	 * result in a #GP unless the same write also clears TraceEn.
1513 	 */
1514 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1515 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1516 		return 1;
1517 
1518 	/*
1519 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1520 	 * and FabricEn would cause #GP, if
1521 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1522 	 */
1523 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1524 		!(data & RTIT_CTL_FABRIC_EN) &&
1525 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1526 					PT_CAP_single_range_output))
1527 		return 1;
1528 
1529 	/*
1530 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1531 	 * utilize encodings marked reserved will cause a #GP fault.
1532 	 */
1533 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1534 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1535 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1536 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1537 		return 1;
1538 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1539 						PT_CAP_cycle_thresholds);
1540 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1541 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1542 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1543 		return 1;
1544 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1545 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1546 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1547 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1548 		return 1;
1549 
1550 	/*
1551 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1552 	 * cause a #GP fault.
1553 	 */
1554 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1555 	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1556 		return 1;
1557 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1558 	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1559 		return 1;
1560 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1561 	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1562 		return 1;
1563 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1564 	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1565 		return 1;
1566 
1567 	return 0;
1568 }
1569 
1570 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1571 {
1572 	/*
1573 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1574 	 * not point  tthe failing instruction, and even if it did, the code
1575 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1576 	 * so that guest userspace can't DoS the guest simply by triggering
1577 	 * emulation (enclaves are CPL3 only).
1578 	 */
1579 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1580 		kvm_queue_exception(vcpu, UD_VECTOR);
1581 		return false;
1582 	}
1583 	return true;
1584 }
1585 
1586 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1587 {
1588 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1589 	unsigned long rip, orig_rip;
1590 	u32 instr_len;
1591 
1592 	/*
1593 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1594 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1595 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1596 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1597 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1598 	 * i.e. we end up advancing IP with some random value.
1599 	 */
1600 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1601 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1602 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1603 
1604 		/*
1605 		 * Emulating an enclave's instructions isn't supported as KVM
1606 		 * cannot access the enclave's memory or its true RIP, e.g. the
1607 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1608 		 * the RIP that actually triggered the VM-Exit.  But, because
1609 		 * most instructions that cause VM-Exit will #UD in an enclave,
1610 		 * most instruction-based VM-Exits simply do not occur.
1611 		 *
1612 		 * There are a few exceptions, notably the debug instructions
1613 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1614 		 * and generate #DB/#BP as expected, which KVM might intercept.
1615 		 * But again, the CPU does the dirty work and saves an instr
1616 		 * length of zero so VMMs don't shoot themselves in the foot.
1617 		 * WARN if KVM tries to skip a non-zero length instruction on
1618 		 * a VM-Exit from an enclave.
1619 		 */
1620 		if (!instr_len)
1621 			goto rip_updated;
1622 
1623 		WARN(exit_reason.enclave_mode,
1624 		     "KVM: skipping instruction after SGX enclave VM-Exit");
1625 
1626 		orig_rip = kvm_rip_read(vcpu);
1627 		rip = orig_rip + instr_len;
1628 #ifdef CONFIG_X86_64
1629 		/*
1630 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1631 		 * mode, but just finding out that we are in 64-bit mode is
1632 		 * quite expensive.  Only do it if there was a carry.
1633 		 */
1634 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1635 			rip = (u32)rip;
1636 #endif
1637 		kvm_rip_write(vcpu, rip);
1638 	} else {
1639 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1640 			return 0;
1641 	}
1642 
1643 rip_updated:
1644 	/* skipping an emulated instruction also counts */
1645 	vmx_set_interrupt_shadow(vcpu, 0);
1646 
1647 	return 1;
1648 }
1649 
1650 /*
1651  * Recognizes a pending MTF VM-exit and records the nested state for later
1652  * delivery.
1653  */
1654 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1655 {
1656 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1657 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1658 
1659 	if (!is_guest_mode(vcpu))
1660 		return;
1661 
1662 	/*
1663 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1664 	 * T-bit traps. As instruction emulation is completed (i.e. at the
1665 	 * instruction boundary), any #DB exception pending delivery must be a
1666 	 * debug-trap. Record the pending MTF state to be delivered in
1667 	 * vmx_check_nested_events().
1668 	 */
1669 	if (nested_cpu_has_mtf(vmcs12) &&
1670 	    (!vcpu->arch.exception.pending ||
1671 	     vcpu->arch.exception.nr == DB_VECTOR))
1672 		vmx->nested.mtf_pending = true;
1673 	else
1674 		vmx->nested.mtf_pending = false;
1675 }
1676 
1677 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1678 {
1679 	vmx_update_emulated_instruction(vcpu);
1680 	return skip_emulated_instruction(vcpu);
1681 }
1682 
1683 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1684 {
1685 	/*
1686 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1687 	 * explicitly skip the instruction because if the HLT state is set,
1688 	 * then the instruction is already executing and RIP has already been
1689 	 * advanced.
1690 	 */
1691 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1692 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1693 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1694 }
1695 
1696 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1697 {
1698 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1699 	unsigned nr = vcpu->arch.exception.nr;
1700 	bool has_error_code = vcpu->arch.exception.has_error_code;
1701 	u32 error_code = vcpu->arch.exception.error_code;
1702 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1703 
1704 	kvm_deliver_exception_payload(vcpu);
1705 
1706 	if (has_error_code) {
1707 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1708 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1709 	}
1710 
1711 	if (vmx->rmode.vm86_active) {
1712 		int inc_eip = 0;
1713 		if (kvm_exception_is_soft(nr))
1714 			inc_eip = vcpu->arch.event_exit_inst_len;
1715 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1716 		return;
1717 	}
1718 
1719 	WARN_ON_ONCE(vmx->emulation_required);
1720 
1721 	if (kvm_exception_is_soft(nr)) {
1722 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1723 			     vmx->vcpu.arch.event_exit_inst_len);
1724 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1725 	} else
1726 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1727 
1728 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1729 
1730 	vmx_clear_hlt(vcpu);
1731 }
1732 
1733 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1734 			       bool load_into_hardware)
1735 {
1736 	struct vmx_uret_msr *uret_msr;
1737 
1738 	uret_msr = vmx_find_uret_msr(vmx, msr);
1739 	if (!uret_msr)
1740 		return;
1741 
1742 	uret_msr->load_into_hardware = load_into_hardware;
1743 }
1744 
1745 /*
1746  * Set up the vmcs to automatically save and restore system
1747  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1748  * mode, as fiddling with msrs is very expensive.
1749  */
1750 static void setup_msrs(struct vcpu_vmx *vmx)
1751 {
1752 #ifdef CONFIG_X86_64
1753 	bool load_syscall_msrs;
1754 
1755 	/*
1756 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1757 	 * when EFER.SCE is set.
1758 	 */
1759 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1760 			    (vmx->vcpu.arch.efer & EFER_SCE);
1761 
1762 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1763 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1764 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1765 #endif
1766 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1767 
1768 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1769 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1770 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1771 
1772 	/*
1773 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1774 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1775 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1776 	 * so that TSX remains always disabled.
1777 	 */
1778 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1779 
1780 	if (cpu_has_vmx_msr_bitmap())
1781 		vmx_update_msr_bitmap(&vmx->vcpu);
1782 
1783 	/*
1784 	 * The set of MSRs to load may have changed, reload MSRs before the
1785 	 * next VM-Enter.
1786 	 */
1787 	vmx->guest_uret_msrs_loaded = false;
1788 }
1789 
1790 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1791 {
1792 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1793 	u64 g_tsc_offset = 0;
1794 
1795 	/*
1796 	 * We're here if L1 chose not to trap WRMSR to TSC. According
1797 	 * to the spec, this should set L1's TSC; The offset that L1
1798 	 * set for L2 remains unchanged, and still needs to be added
1799 	 * to the newly set TSC to get L2's TSC.
1800 	 */
1801 	if (is_guest_mode(vcpu) &&
1802 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1803 		g_tsc_offset = vmcs12->tsc_offset;
1804 
1805 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1806 				   vcpu->arch.tsc_offset - g_tsc_offset,
1807 				   offset);
1808 	vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1809 	return offset + g_tsc_offset;
1810 }
1811 
1812 /*
1813  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1814  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1815  * all guests if the "nested" module option is off, and can also be disabled
1816  * for a single guest by disabling its VMX cpuid bit.
1817  */
1818 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1819 {
1820 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1821 }
1822 
1823 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1824 						 uint64_t val)
1825 {
1826 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1827 
1828 	return !(val & ~valid_bits);
1829 }
1830 
1831 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1832 {
1833 	switch (msr->index) {
1834 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1835 		if (!nested)
1836 			return 1;
1837 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1838 	case MSR_IA32_PERF_CAPABILITIES:
1839 		msr->data = vmx_get_perf_capabilities();
1840 		return 0;
1841 	default:
1842 		return KVM_MSR_RET_INVALID;
1843 	}
1844 }
1845 
1846 /*
1847  * Reads an msr value (of 'msr_index') into 'pdata'.
1848  * Returns 0 on success, non-0 otherwise.
1849  * Assumes vcpu_load() was already called.
1850  */
1851 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1852 {
1853 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1854 	struct vmx_uret_msr *msr;
1855 	u32 index;
1856 
1857 	switch (msr_info->index) {
1858 #ifdef CONFIG_X86_64
1859 	case MSR_FS_BASE:
1860 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1861 		break;
1862 	case MSR_GS_BASE:
1863 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1864 		break;
1865 	case MSR_KERNEL_GS_BASE:
1866 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1867 		break;
1868 #endif
1869 	case MSR_EFER:
1870 		return kvm_get_msr_common(vcpu, msr_info);
1871 	case MSR_IA32_TSX_CTRL:
1872 		if (!msr_info->host_initiated &&
1873 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1874 			return 1;
1875 		goto find_uret_msr;
1876 	case MSR_IA32_UMWAIT_CONTROL:
1877 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1878 			return 1;
1879 
1880 		msr_info->data = vmx->msr_ia32_umwait_control;
1881 		break;
1882 	case MSR_IA32_SPEC_CTRL:
1883 		if (!msr_info->host_initiated &&
1884 		    !guest_has_spec_ctrl_msr(vcpu))
1885 			return 1;
1886 
1887 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1888 		break;
1889 	case MSR_IA32_SYSENTER_CS:
1890 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1891 		break;
1892 	case MSR_IA32_SYSENTER_EIP:
1893 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1894 		break;
1895 	case MSR_IA32_SYSENTER_ESP:
1896 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1897 		break;
1898 	case MSR_IA32_BNDCFGS:
1899 		if (!kvm_mpx_supported() ||
1900 		    (!msr_info->host_initiated &&
1901 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1902 			return 1;
1903 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1904 		break;
1905 	case MSR_IA32_MCG_EXT_CTL:
1906 		if (!msr_info->host_initiated &&
1907 		    !(vmx->msr_ia32_feature_control &
1908 		      FEAT_CTL_LMCE_ENABLED))
1909 			return 1;
1910 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1911 		break;
1912 	case MSR_IA32_FEAT_CTL:
1913 		msr_info->data = vmx->msr_ia32_feature_control;
1914 		break;
1915 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1916 		if (!msr_info->host_initiated &&
1917 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1918 			return 1;
1919 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1920 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1921 		break;
1922 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1923 		if (!nested_vmx_allowed(vcpu))
1924 			return 1;
1925 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1926 				    &msr_info->data))
1927 			return 1;
1928 		/*
1929 		 * Enlightened VMCS v1 doesn't have certain fields, but buggy
1930 		 * Hyper-V versions are still trying to use corresponding
1931 		 * features when they are exposed. Filter out the essential
1932 		 * minimum.
1933 		 */
1934 		if (!msr_info->host_initiated &&
1935 		    vmx->nested.enlightened_vmcs_enabled)
1936 			nested_evmcs_filter_control_msr(msr_info->index,
1937 							&msr_info->data);
1938 		break;
1939 	case MSR_IA32_RTIT_CTL:
1940 		if (!vmx_pt_mode_is_host_guest())
1941 			return 1;
1942 		msr_info->data = vmx->pt_desc.guest.ctl;
1943 		break;
1944 	case MSR_IA32_RTIT_STATUS:
1945 		if (!vmx_pt_mode_is_host_guest())
1946 			return 1;
1947 		msr_info->data = vmx->pt_desc.guest.status;
1948 		break;
1949 	case MSR_IA32_RTIT_CR3_MATCH:
1950 		if (!vmx_pt_mode_is_host_guest() ||
1951 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1952 						PT_CAP_cr3_filtering))
1953 			return 1;
1954 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1955 		break;
1956 	case MSR_IA32_RTIT_OUTPUT_BASE:
1957 		if (!vmx_pt_mode_is_host_guest() ||
1958 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1959 					PT_CAP_topa_output) &&
1960 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1961 					PT_CAP_single_range_output)))
1962 			return 1;
1963 		msr_info->data = vmx->pt_desc.guest.output_base;
1964 		break;
1965 	case MSR_IA32_RTIT_OUTPUT_MASK:
1966 		if (!vmx_pt_mode_is_host_guest() ||
1967 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1968 					PT_CAP_topa_output) &&
1969 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1970 					PT_CAP_single_range_output)))
1971 			return 1;
1972 		msr_info->data = vmx->pt_desc.guest.output_mask;
1973 		break;
1974 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1975 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1976 		if (!vmx_pt_mode_is_host_guest() ||
1977 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1978 					PT_CAP_num_address_ranges)))
1979 			return 1;
1980 		if (index % 2)
1981 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1982 		else
1983 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1984 		break;
1985 	case MSR_IA32_DEBUGCTLMSR:
1986 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1987 		break;
1988 	default:
1989 	find_uret_msr:
1990 		msr = vmx_find_uret_msr(vmx, msr_info->index);
1991 		if (msr) {
1992 			msr_info->data = msr->data;
1993 			break;
1994 		}
1995 		return kvm_get_msr_common(vcpu, msr_info);
1996 	}
1997 
1998 	return 0;
1999 }
2000 
2001 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2002 						    u64 data)
2003 {
2004 #ifdef CONFIG_X86_64
2005 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2006 		return (u32)data;
2007 #endif
2008 	return (unsigned long)data;
2009 }
2010 
2011 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
2012 {
2013 	u64 debugctl = vmx_supported_debugctl();
2014 
2015 	if (!intel_pmu_lbr_is_enabled(vcpu))
2016 		debugctl &= ~DEBUGCTLMSR_LBR_MASK;
2017 
2018 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
2019 		debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
2020 
2021 	return debugctl;
2022 }
2023 
2024 /*
2025  * Writes msr value into the appropriate "register".
2026  * Returns 0 on success, non-0 otherwise.
2027  * Assumes vcpu_load() was already called.
2028  */
2029 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2030 {
2031 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2032 	struct vmx_uret_msr *msr;
2033 	int ret = 0;
2034 	u32 msr_index = msr_info->index;
2035 	u64 data = msr_info->data;
2036 	u32 index;
2037 
2038 	switch (msr_index) {
2039 	case MSR_EFER:
2040 		ret = kvm_set_msr_common(vcpu, msr_info);
2041 		break;
2042 #ifdef CONFIG_X86_64
2043 	case MSR_FS_BASE:
2044 		vmx_segment_cache_clear(vmx);
2045 		vmcs_writel(GUEST_FS_BASE, data);
2046 		break;
2047 	case MSR_GS_BASE:
2048 		vmx_segment_cache_clear(vmx);
2049 		vmcs_writel(GUEST_GS_BASE, data);
2050 		break;
2051 	case MSR_KERNEL_GS_BASE:
2052 		vmx_write_guest_kernel_gs_base(vmx, data);
2053 		break;
2054 #endif
2055 	case MSR_IA32_SYSENTER_CS:
2056 		if (is_guest_mode(vcpu))
2057 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2058 		vmcs_write32(GUEST_SYSENTER_CS, data);
2059 		break;
2060 	case MSR_IA32_SYSENTER_EIP:
2061 		if (is_guest_mode(vcpu)) {
2062 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2063 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2064 		}
2065 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2066 		break;
2067 	case MSR_IA32_SYSENTER_ESP:
2068 		if (is_guest_mode(vcpu)) {
2069 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2070 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2071 		}
2072 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2073 		break;
2074 	case MSR_IA32_DEBUGCTLMSR: {
2075 		u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
2076 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2077 			if (report_ignored_msrs)
2078 				vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
2079 					    __func__, data);
2080 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2081 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2082 		}
2083 
2084 		if (invalid)
2085 			return 1;
2086 
2087 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2088 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2089 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2090 
2091 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2092 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2093 		    (data & DEBUGCTLMSR_LBR))
2094 			intel_pmu_create_guest_lbr_event(vcpu);
2095 		return 0;
2096 	}
2097 	case MSR_IA32_BNDCFGS:
2098 		if (!kvm_mpx_supported() ||
2099 		    (!msr_info->host_initiated &&
2100 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2101 			return 1;
2102 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2103 		    (data & MSR_IA32_BNDCFGS_RSVD))
2104 			return 1;
2105 		vmcs_write64(GUEST_BNDCFGS, data);
2106 		break;
2107 	case MSR_IA32_UMWAIT_CONTROL:
2108 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2109 			return 1;
2110 
2111 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2112 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2113 			return 1;
2114 
2115 		vmx->msr_ia32_umwait_control = data;
2116 		break;
2117 	case MSR_IA32_SPEC_CTRL:
2118 		if (!msr_info->host_initiated &&
2119 		    !guest_has_spec_ctrl_msr(vcpu))
2120 			return 1;
2121 
2122 		if (kvm_spec_ctrl_test_value(data))
2123 			return 1;
2124 
2125 		vmx->spec_ctrl = data;
2126 		if (!data)
2127 			break;
2128 
2129 		/*
2130 		 * For non-nested:
2131 		 * When it's written (to non-zero) for the first time, pass
2132 		 * it through.
2133 		 *
2134 		 * For nested:
2135 		 * The handling of the MSR bitmap for L2 guests is done in
2136 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2137 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2138 		 * in the merging. We update the vmcs01 here for L1 as well
2139 		 * since it will end up touching the MSR anyway now.
2140 		 */
2141 		vmx_disable_intercept_for_msr(vcpu,
2142 					      MSR_IA32_SPEC_CTRL,
2143 					      MSR_TYPE_RW);
2144 		break;
2145 	case MSR_IA32_TSX_CTRL:
2146 		if (!msr_info->host_initiated &&
2147 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2148 			return 1;
2149 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2150 			return 1;
2151 		goto find_uret_msr;
2152 	case MSR_IA32_PRED_CMD:
2153 		if (!msr_info->host_initiated &&
2154 		    !guest_has_pred_cmd_msr(vcpu))
2155 			return 1;
2156 
2157 		if (data & ~PRED_CMD_IBPB)
2158 			return 1;
2159 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2160 			return 1;
2161 		if (!data)
2162 			break;
2163 
2164 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2165 
2166 		/*
2167 		 * For non-nested:
2168 		 * When it's written (to non-zero) for the first time, pass
2169 		 * it through.
2170 		 *
2171 		 * For nested:
2172 		 * The handling of the MSR bitmap for L2 guests is done in
2173 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2174 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2175 		 * in the merging.
2176 		 */
2177 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2178 		break;
2179 	case MSR_IA32_CR_PAT:
2180 		if (!kvm_pat_valid(data))
2181 			return 1;
2182 
2183 		if (is_guest_mode(vcpu) &&
2184 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2185 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2186 
2187 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2188 			vmcs_write64(GUEST_IA32_PAT, data);
2189 			vcpu->arch.pat = data;
2190 			break;
2191 		}
2192 		ret = kvm_set_msr_common(vcpu, msr_info);
2193 		break;
2194 	case MSR_IA32_TSC_ADJUST:
2195 		ret = kvm_set_msr_common(vcpu, msr_info);
2196 		break;
2197 	case MSR_IA32_MCG_EXT_CTL:
2198 		if ((!msr_info->host_initiated &&
2199 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2200 		       FEAT_CTL_LMCE_ENABLED)) ||
2201 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2202 			return 1;
2203 		vcpu->arch.mcg_ext_ctl = data;
2204 		break;
2205 	case MSR_IA32_FEAT_CTL:
2206 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2207 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2208 		     FEAT_CTL_LOCKED && !msr_info->host_initiated))
2209 			return 1;
2210 		vmx->msr_ia32_feature_control = data;
2211 		if (msr_info->host_initiated && data == 0)
2212 			vmx_leave_nested(vcpu);
2213 
2214 		/* SGX may be enabled/disabled by guest's firmware */
2215 		vmx_write_encls_bitmap(vcpu, NULL);
2216 		break;
2217 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2218 		/*
2219 		 * On real hardware, the LE hash MSRs are writable before
2220 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2221 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2222 		 * become writable.
2223 		 *
2224 		 * KVM does not emulate SGX activation for simplicity, so
2225 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2226 		 * is unlocked.  This is technically not architectural
2227 		 * behavior, but it's close enough.
2228 		 */
2229 		if (!msr_info->host_initiated &&
2230 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2231 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2232 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2233 			return 1;
2234 		vmx->msr_ia32_sgxlepubkeyhash
2235 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2236 		break;
2237 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2238 		if (!msr_info->host_initiated)
2239 			return 1; /* they are read-only */
2240 		if (!nested_vmx_allowed(vcpu))
2241 			return 1;
2242 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2243 	case MSR_IA32_RTIT_CTL:
2244 		if (!vmx_pt_mode_is_host_guest() ||
2245 			vmx_rtit_ctl_check(vcpu, data) ||
2246 			vmx->nested.vmxon)
2247 			return 1;
2248 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2249 		vmx->pt_desc.guest.ctl = data;
2250 		pt_update_intercept_for_msr(vcpu);
2251 		break;
2252 	case MSR_IA32_RTIT_STATUS:
2253 		if (!pt_can_write_msr(vmx))
2254 			return 1;
2255 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2256 			return 1;
2257 		vmx->pt_desc.guest.status = data;
2258 		break;
2259 	case MSR_IA32_RTIT_CR3_MATCH:
2260 		if (!pt_can_write_msr(vmx))
2261 			return 1;
2262 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2263 					   PT_CAP_cr3_filtering))
2264 			return 1;
2265 		vmx->pt_desc.guest.cr3_match = data;
2266 		break;
2267 	case MSR_IA32_RTIT_OUTPUT_BASE:
2268 		if (!pt_can_write_msr(vmx))
2269 			return 1;
2270 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2271 					   PT_CAP_topa_output) &&
2272 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2273 					   PT_CAP_single_range_output))
2274 			return 1;
2275 		if (!pt_output_base_valid(vcpu, data))
2276 			return 1;
2277 		vmx->pt_desc.guest.output_base = data;
2278 		break;
2279 	case MSR_IA32_RTIT_OUTPUT_MASK:
2280 		if (!pt_can_write_msr(vmx))
2281 			return 1;
2282 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2283 					   PT_CAP_topa_output) &&
2284 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2285 					   PT_CAP_single_range_output))
2286 			return 1;
2287 		vmx->pt_desc.guest.output_mask = data;
2288 		break;
2289 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2290 		if (!pt_can_write_msr(vmx))
2291 			return 1;
2292 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2293 		if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2294 						       PT_CAP_num_address_ranges))
2295 			return 1;
2296 		if (is_noncanonical_address(data, vcpu))
2297 			return 1;
2298 		if (index % 2)
2299 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2300 		else
2301 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2302 		break;
2303 	case MSR_IA32_PERF_CAPABILITIES:
2304 		if (data && !vcpu_to_pmu(vcpu)->version)
2305 			return 1;
2306 		if (data & PMU_CAP_LBR_FMT) {
2307 			if ((data & PMU_CAP_LBR_FMT) !=
2308 			    (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2309 				return 1;
2310 			if (!intel_pmu_lbr_is_compatible(vcpu))
2311 				return 1;
2312 		}
2313 		ret = kvm_set_msr_common(vcpu, msr_info);
2314 		break;
2315 
2316 	default:
2317 	find_uret_msr:
2318 		msr = vmx_find_uret_msr(vmx, msr_index);
2319 		if (msr)
2320 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2321 		else
2322 			ret = kvm_set_msr_common(vcpu, msr_info);
2323 	}
2324 
2325 	return ret;
2326 }
2327 
2328 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2329 {
2330 	unsigned long guest_owned_bits;
2331 
2332 	kvm_register_mark_available(vcpu, reg);
2333 
2334 	switch (reg) {
2335 	case VCPU_REGS_RSP:
2336 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2337 		break;
2338 	case VCPU_REGS_RIP:
2339 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2340 		break;
2341 	case VCPU_EXREG_PDPTR:
2342 		if (enable_ept)
2343 			ept_save_pdptrs(vcpu);
2344 		break;
2345 	case VCPU_EXREG_CR0:
2346 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2347 
2348 		vcpu->arch.cr0 &= ~guest_owned_bits;
2349 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2350 		break;
2351 	case VCPU_EXREG_CR3:
2352 		if (is_unrestricted_guest(vcpu) ||
2353 		    (enable_ept && is_paging(vcpu)))
2354 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2355 		break;
2356 	case VCPU_EXREG_CR4:
2357 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2358 
2359 		vcpu->arch.cr4 &= ~guest_owned_bits;
2360 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2361 		break;
2362 	default:
2363 		WARN_ON_ONCE(1);
2364 		break;
2365 	}
2366 }
2367 
2368 static __init int cpu_has_kvm_support(void)
2369 {
2370 	return cpu_has_vmx();
2371 }
2372 
2373 static __init int vmx_disabled_by_bios(void)
2374 {
2375 	return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2376 	       !boot_cpu_has(X86_FEATURE_VMX);
2377 }
2378 
2379 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2380 {
2381 	u64 msr;
2382 
2383 	cr4_set_bits(X86_CR4_VMXE);
2384 
2385 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2386 			  _ASM_EXTABLE(1b, %l[fault])
2387 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2388 			  : : fault);
2389 	return 0;
2390 
2391 fault:
2392 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2393 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2394 	cr4_clear_bits(X86_CR4_VMXE);
2395 
2396 	return -EFAULT;
2397 }
2398 
2399 static int hardware_enable(void)
2400 {
2401 	int cpu = raw_smp_processor_id();
2402 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2403 	int r;
2404 
2405 	if (cr4_read_shadow() & X86_CR4_VMXE)
2406 		return -EBUSY;
2407 
2408 	/*
2409 	 * This can happen if we hot-added a CPU but failed to allocate
2410 	 * VP assist page for it.
2411 	 */
2412 	if (static_branch_unlikely(&enable_evmcs) &&
2413 	    !hv_get_vp_assist_page(cpu))
2414 		return -EFAULT;
2415 
2416 	intel_pt_handle_vmx(1);
2417 
2418 	r = kvm_cpu_vmxon(phys_addr);
2419 	if (r) {
2420 		intel_pt_handle_vmx(0);
2421 		return r;
2422 	}
2423 
2424 	if (enable_ept)
2425 		ept_sync_global();
2426 
2427 	return 0;
2428 }
2429 
2430 static void vmclear_local_loaded_vmcss(void)
2431 {
2432 	int cpu = raw_smp_processor_id();
2433 	struct loaded_vmcs *v, *n;
2434 
2435 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2436 				 loaded_vmcss_on_cpu_link)
2437 		__loaded_vmcs_clear(v);
2438 }
2439 
2440 static void hardware_disable(void)
2441 {
2442 	vmclear_local_loaded_vmcss();
2443 
2444 	if (cpu_vmxoff())
2445 		kvm_spurious_fault();
2446 
2447 	intel_pt_handle_vmx(0);
2448 }
2449 
2450 /*
2451  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2452  * directly instead of going through cpu_has(), to ensure KVM is trapping
2453  * ENCLS whenever it's supported in hardware.  It does not matter whether
2454  * the host OS supports or has enabled SGX.
2455  */
2456 static bool cpu_has_sgx(void)
2457 {
2458 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2459 }
2460 
2461 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2462 				      u32 msr, u32 *result)
2463 {
2464 	u32 vmx_msr_low, vmx_msr_high;
2465 	u32 ctl = ctl_min | ctl_opt;
2466 
2467 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2468 
2469 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2470 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2471 
2472 	/* Ensure minimum (required) set of control bits are supported. */
2473 	if (ctl_min & ~ctl)
2474 		return -EIO;
2475 
2476 	*result = ctl;
2477 	return 0;
2478 }
2479 
2480 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2481 				    struct vmx_capability *vmx_cap)
2482 {
2483 	u32 vmx_msr_low, vmx_msr_high;
2484 	u32 min, opt, min2, opt2;
2485 	u32 _pin_based_exec_control = 0;
2486 	u32 _cpu_based_exec_control = 0;
2487 	u32 _cpu_based_2nd_exec_control = 0;
2488 	u32 _vmexit_control = 0;
2489 	u32 _vmentry_control = 0;
2490 
2491 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2492 	min = CPU_BASED_HLT_EXITING |
2493 #ifdef CONFIG_X86_64
2494 	      CPU_BASED_CR8_LOAD_EXITING |
2495 	      CPU_BASED_CR8_STORE_EXITING |
2496 #endif
2497 	      CPU_BASED_CR3_LOAD_EXITING |
2498 	      CPU_BASED_CR3_STORE_EXITING |
2499 	      CPU_BASED_UNCOND_IO_EXITING |
2500 	      CPU_BASED_MOV_DR_EXITING |
2501 	      CPU_BASED_USE_TSC_OFFSETTING |
2502 	      CPU_BASED_MWAIT_EXITING |
2503 	      CPU_BASED_MONITOR_EXITING |
2504 	      CPU_BASED_INVLPG_EXITING |
2505 	      CPU_BASED_RDPMC_EXITING;
2506 
2507 	opt = CPU_BASED_TPR_SHADOW |
2508 	      CPU_BASED_USE_MSR_BITMAPS |
2509 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2510 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2511 				&_cpu_based_exec_control) < 0)
2512 		return -EIO;
2513 #ifdef CONFIG_X86_64
2514 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2515 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2516 					   ~CPU_BASED_CR8_STORE_EXITING;
2517 #endif
2518 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2519 		min2 = 0;
2520 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2521 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2522 			SECONDARY_EXEC_WBINVD_EXITING |
2523 			SECONDARY_EXEC_ENABLE_VPID |
2524 			SECONDARY_EXEC_ENABLE_EPT |
2525 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2526 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2527 			SECONDARY_EXEC_DESC |
2528 			SECONDARY_EXEC_ENABLE_RDTSCP |
2529 			SECONDARY_EXEC_ENABLE_INVPCID |
2530 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2531 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2532 			SECONDARY_EXEC_SHADOW_VMCS |
2533 			SECONDARY_EXEC_XSAVES |
2534 			SECONDARY_EXEC_RDSEED_EXITING |
2535 			SECONDARY_EXEC_RDRAND_EXITING |
2536 			SECONDARY_EXEC_ENABLE_PML |
2537 			SECONDARY_EXEC_TSC_SCALING |
2538 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2539 			SECONDARY_EXEC_PT_USE_GPA |
2540 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2541 			SECONDARY_EXEC_ENABLE_VMFUNC |
2542 			SECONDARY_EXEC_BUS_LOCK_DETECTION;
2543 		if (cpu_has_sgx())
2544 			opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2545 		if (adjust_vmx_controls(min2, opt2,
2546 					MSR_IA32_VMX_PROCBASED_CTLS2,
2547 					&_cpu_based_2nd_exec_control) < 0)
2548 			return -EIO;
2549 	}
2550 #ifndef CONFIG_X86_64
2551 	if (!(_cpu_based_2nd_exec_control &
2552 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2553 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2554 #endif
2555 
2556 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2557 		_cpu_based_2nd_exec_control &= ~(
2558 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2559 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2560 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2561 
2562 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2563 		&vmx_cap->ept, &vmx_cap->vpid);
2564 
2565 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2566 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2567 		   enabled */
2568 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2569 					     CPU_BASED_CR3_STORE_EXITING |
2570 					     CPU_BASED_INVLPG_EXITING);
2571 	} else if (vmx_cap->ept) {
2572 		vmx_cap->ept = 0;
2573 		pr_warn_once("EPT CAP should not exist if not support "
2574 				"1-setting enable EPT VM-execution control\n");
2575 	}
2576 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2577 		vmx_cap->vpid) {
2578 		vmx_cap->vpid = 0;
2579 		pr_warn_once("VPID CAP should not exist if not support "
2580 				"1-setting enable VPID VM-execution control\n");
2581 	}
2582 
2583 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2584 #ifdef CONFIG_X86_64
2585 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2586 #endif
2587 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2588 	      VM_EXIT_LOAD_IA32_PAT |
2589 	      VM_EXIT_LOAD_IA32_EFER |
2590 	      VM_EXIT_CLEAR_BNDCFGS |
2591 	      VM_EXIT_PT_CONCEAL_PIP |
2592 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2593 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2594 				&_vmexit_control) < 0)
2595 		return -EIO;
2596 
2597 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2598 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2599 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2600 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2601 				&_pin_based_exec_control) < 0)
2602 		return -EIO;
2603 
2604 	if (cpu_has_broken_vmx_preemption_timer())
2605 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2606 	if (!(_cpu_based_2nd_exec_control &
2607 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2608 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2609 
2610 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2611 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2612 	      VM_ENTRY_LOAD_IA32_PAT |
2613 	      VM_ENTRY_LOAD_IA32_EFER |
2614 	      VM_ENTRY_LOAD_BNDCFGS |
2615 	      VM_ENTRY_PT_CONCEAL_PIP |
2616 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2617 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2618 				&_vmentry_control) < 0)
2619 		return -EIO;
2620 
2621 	/*
2622 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2623 	 * can't be used due to an errata where VM Exit may incorrectly clear
2624 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2625 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2626 	 */
2627 	if (boot_cpu_data.x86 == 0x6) {
2628 		switch (boot_cpu_data.x86_model) {
2629 		case 26: /* AAK155 */
2630 		case 30: /* AAP115 */
2631 		case 37: /* AAT100 */
2632 		case 44: /* BC86,AAY89,BD102 */
2633 		case 46: /* BA97 */
2634 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2635 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2636 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2637 					"does not work properly. Using workaround\n");
2638 			break;
2639 		default:
2640 			break;
2641 		}
2642 	}
2643 
2644 
2645 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2646 
2647 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2648 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2649 		return -EIO;
2650 
2651 #ifdef CONFIG_X86_64
2652 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2653 	if (vmx_msr_high & (1u<<16))
2654 		return -EIO;
2655 #endif
2656 
2657 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2658 	if (((vmx_msr_high >> 18) & 15) != 6)
2659 		return -EIO;
2660 
2661 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2662 	vmcs_conf->order = get_order(vmcs_conf->size);
2663 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2664 
2665 	vmcs_conf->revision_id = vmx_msr_low;
2666 
2667 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2668 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2669 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2670 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2671 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2672 
2673 #if IS_ENABLED(CONFIG_HYPERV)
2674 	if (enlightened_vmcs)
2675 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2676 #endif
2677 
2678 	return 0;
2679 }
2680 
2681 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2682 {
2683 	int node = cpu_to_node(cpu);
2684 	struct page *pages;
2685 	struct vmcs *vmcs;
2686 
2687 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2688 	if (!pages)
2689 		return NULL;
2690 	vmcs = page_address(pages);
2691 	memset(vmcs, 0, vmcs_config.size);
2692 
2693 	/* KVM supports Enlightened VMCS v1 only */
2694 	if (static_branch_unlikely(&enable_evmcs))
2695 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2696 	else
2697 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2698 
2699 	if (shadow)
2700 		vmcs->hdr.shadow_vmcs = 1;
2701 	return vmcs;
2702 }
2703 
2704 void free_vmcs(struct vmcs *vmcs)
2705 {
2706 	free_pages((unsigned long)vmcs, vmcs_config.order);
2707 }
2708 
2709 /*
2710  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2711  */
2712 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2713 {
2714 	if (!loaded_vmcs->vmcs)
2715 		return;
2716 	loaded_vmcs_clear(loaded_vmcs);
2717 	free_vmcs(loaded_vmcs->vmcs);
2718 	loaded_vmcs->vmcs = NULL;
2719 	if (loaded_vmcs->msr_bitmap)
2720 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2721 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2722 }
2723 
2724 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2725 {
2726 	loaded_vmcs->vmcs = alloc_vmcs(false);
2727 	if (!loaded_vmcs->vmcs)
2728 		return -ENOMEM;
2729 
2730 	vmcs_clear(loaded_vmcs->vmcs);
2731 
2732 	loaded_vmcs->shadow_vmcs = NULL;
2733 	loaded_vmcs->hv_timer_soft_disabled = false;
2734 	loaded_vmcs->cpu = -1;
2735 	loaded_vmcs->launched = 0;
2736 
2737 	if (cpu_has_vmx_msr_bitmap()) {
2738 		loaded_vmcs->msr_bitmap = (unsigned long *)
2739 				__get_free_page(GFP_KERNEL_ACCOUNT);
2740 		if (!loaded_vmcs->msr_bitmap)
2741 			goto out_vmcs;
2742 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2743 
2744 		if (IS_ENABLED(CONFIG_HYPERV) &&
2745 		    static_branch_unlikely(&enable_evmcs) &&
2746 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2747 			struct hv_enlightened_vmcs *evmcs =
2748 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2749 
2750 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2751 		}
2752 	}
2753 
2754 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2755 	memset(&loaded_vmcs->controls_shadow, 0,
2756 		sizeof(struct vmcs_controls_shadow));
2757 
2758 	return 0;
2759 
2760 out_vmcs:
2761 	free_loaded_vmcs(loaded_vmcs);
2762 	return -ENOMEM;
2763 }
2764 
2765 static void free_kvm_area(void)
2766 {
2767 	int cpu;
2768 
2769 	for_each_possible_cpu(cpu) {
2770 		free_vmcs(per_cpu(vmxarea, cpu));
2771 		per_cpu(vmxarea, cpu) = NULL;
2772 	}
2773 }
2774 
2775 static __init int alloc_kvm_area(void)
2776 {
2777 	int cpu;
2778 
2779 	for_each_possible_cpu(cpu) {
2780 		struct vmcs *vmcs;
2781 
2782 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2783 		if (!vmcs) {
2784 			free_kvm_area();
2785 			return -ENOMEM;
2786 		}
2787 
2788 		/*
2789 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2790 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2791 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2792 		 *
2793 		 * However, even though not explicitly documented by
2794 		 * TLFS, VMXArea passed as VMXON argument should
2795 		 * still be marked with revision_id reported by
2796 		 * physical CPU.
2797 		 */
2798 		if (static_branch_unlikely(&enable_evmcs))
2799 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2800 
2801 		per_cpu(vmxarea, cpu) = vmcs;
2802 	}
2803 	return 0;
2804 }
2805 
2806 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2807 		struct kvm_segment *save)
2808 {
2809 	if (!emulate_invalid_guest_state) {
2810 		/*
2811 		 * CS and SS RPL should be equal during guest entry according
2812 		 * to VMX spec, but in reality it is not always so. Since vcpu
2813 		 * is in the middle of the transition from real mode to
2814 		 * protected mode it is safe to assume that RPL 0 is a good
2815 		 * default value.
2816 		 */
2817 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2818 			save->selector &= ~SEGMENT_RPL_MASK;
2819 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2820 		save->s = 1;
2821 	}
2822 	vmx_set_segment(vcpu, save, seg);
2823 }
2824 
2825 static void enter_pmode(struct kvm_vcpu *vcpu)
2826 {
2827 	unsigned long flags;
2828 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2829 
2830 	/*
2831 	 * Update real mode segment cache. It may be not up-to-date if segment
2832 	 * register was written while vcpu was in a guest mode.
2833 	 */
2834 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2835 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2836 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2837 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2838 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2839 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2840 
2841 	vmx->rmode.vm86_active = 0;
2842 
2843 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2844 
2845 	flags = vmcs_readl(GUEST_RFLAGS);
2846 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2847 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2848 	vmcs_writel(GUEST_RFLAGS, flags);
2849 
2850 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2851 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2852 
2853 	vmx_update_exception_bitmap(vcpu);
2854 
2855 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2856 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2857 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2858 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2859 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2860 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2861 }
2862 
2863 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2864 {
2865 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2866 	struct kvm_segment var = *save;
2867 
2868 	var.dpl = 0x3;
2869 	if (seg == VCPU_SREG_CS)
2870 		var.type = 0x3;
2871 
2872 	if (!emulate_invalid_guest_state) {
2873 		var.selector = var.base >> 4;
2874 		var.base = var.base & 0xffff0;
2875 		var.limit = 0xffff;
2876 		var.g = 0;
2877 		var.db = 0;
2878 		var.present = 1;
2879 		var.s = 1;
2880 		var.l = 0;
2881 		var.unusable = 0;
2882 		var.type = 0x3;
2883 		var.avl = 0;
2884 		if (save->base & 0xf)
2885 			printk_once(KERN_WARNING "kvm: segment base is not "
2886 					"paragraph aligned when entering "
2887 					"protected mode (seg=%d)", seg);
2888 	}
2889 
2890 	vmcs_write16(sf->selector, var.selector);
2891 	vmcs_writel(sf->base, var.base);
2892 	vmcs_write32(sf->limit, var.limit);
2893 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2894 }
2895 
2896 static void enter_rmode(struct kvm_vcpu *vcpu)
2897 {
2898 	unsigned long flags;
2899 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2900 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2901 
2902 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2903 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2904 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2905 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2906 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2907 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2908 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2909 
2910 	vmx->rmode.vm86_active = 1;
2911 
2912 	/*
2913 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2914 	 * vcpu. Warn the user that an update is overdue.
2915 	 */
2916 	if (!kvm_vmx->tss_addr)
2917 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2918 			     "called before entering vcpu\n");
2919 
2920 	vmx_segment_cache_clear(vmx);
2921 
2922 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2923 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2924 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2925 
2926 	flags = vmcs_readl(GUEST_RFLAGS);
2927 	vmx->rmode.save_rflags = flags;
2928 
2929 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2930 
2931 	vmcs_writel(GUEST_RFLAGS, flags);
2932 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2933 	vmx_update_exception_bitmap(vcpu);
2934 
2935 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2936 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2937 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2938 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2939 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2940 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2941 
2942 	kvm_mmu_reset_context(vcpu);
2943 }
2944 
2945 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2946 {
2947 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2948 	struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2949 
2950 	/* Nothing to do if hardware doesn't support EFER. */
2951 	if (!msr)
2952 		return 0;
2953 
2954 	vcpu->arch.efer = efer;
2955 	if (efer & EFER_LMA) {
2956 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2957 		msr->data = efer;
2958 	} else {
2959 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2960 
2961 		msr->data = efer & ~EFER_LME;
2962 	}
2963 	setup_msrs(vmx);
2964 	return 0;
2965 }
2966 
2967 #ifdef CONFIG_X86_64
2968 
2969 static void enter_lmode(struct kvm_vcpu *vcpu)
2970 {
2971 	u32 guest_tr_ar;
2972 
2973 	vmx_segment_cache_clear(to_vmx(vcpu));
2974 
2975 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2976 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2977 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2978 				     __func__);
2979 		vmcs_write32(GUEST_TR_AR_BYTES,
2980 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2981 			     | VMX_AR_TYPE_BUSY_64_TSS);
2982 	}
2983 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2984 }
2985 
2986 static void exit_lmode(struct kvm_vcpu *vcpu)
2987 {
2988 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2989 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2990 }
2991 
2992 #endif
2993 
2994 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2995 {
2996 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2997 
2998 	/*
2999 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3000 	 * the CPU is not required to invalidate guest-physical mappings on
3001 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3002 	 * associated with the root EPT structure and not any particular VPID
3003 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3004 	 */
3005 	if (enable_ept) {
3006 		ept_sync_global();
3007 	} else if (enable_vpid) {
3008 		if (cpu_has_vmx_invvpid_global()) {
3009 			vpid_sync_vcpu_global();
3010 		} else {
3011 			vpid_sync_vcpu_single(vmx->vpid);
3012 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3013 		}
3014 	}
3015 }
3016 
3017 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3018 {
3019 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3020 	u64 root_hpa = mmu->root_hpa;
3021 
3022 	/* No flush required if the current context is invalid. */
3023 	if (!VALID_PAGE(root_hpa))
3024 		return;
3025 
3026 	if (enable_ept)
3027 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3028 						mmu->shadow_root_level));
3029 	else if (!is_guest_mode(vcpu))
3030 		vpid_sync_context(to_vmx(vcpu)->vpid);
3031 	else
3032 		vpid_sync_context(nested_get_vpid02(vcpu));
3033 }
3034 
3035 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3036 {
3037 	/*
3038 	 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
3039 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3040 	 */
3041 	vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
3042 }
3043 
3044 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3045 {
3046 	/*
3047 	 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
3048 	 * or a vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit
3049 	 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3050 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3051 	 * i.e. no explicit INVVPID is necessary.
3052 	 */
3053 	vpid_sync_context(to_vmx(vcpu)->vpid);
3054 }
3055 
3056 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3057 {
3058 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3059 
3060 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3061 		return;
3062 
3063 	if (is_pae_paging(vcpu)) {
3064 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3065 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3066 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3067 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3068 	}
3069 }
3070 
3071 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3072 {
3073 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3074 
3075 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3076 		return;
3077 
3078 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3079 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3080 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3081 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3082 
3083 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
3084 }
3085 
3086 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3087 					unsigned long cr0,
3088 					struct kvm_vcpu *vcpu)
3089 {
3090 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3091 
3092 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3093 		vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3094 	if (!(cr0 & X86_CR0_PG)) {
3095 		/* From paging/starting to nonpaging */
3096 		exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3097 					  CPU_BASED_CR3_STORE_EXITING);
3098 		vcpu->arch.cr0 = cr0;
3099 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3100 	} else if (!is_paging(vcpu)) {
3101 		/* From nonpaging to paging */
3102 		exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
3103 					    CPU_BASED_CR3_STORE_EXITING);
3104 		vcpu->arch.cr0 = cr0;
3105 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3106 	}
3107 
3108 	if (!(cr0 & X86_CR0_WP))
3109 		*hw_cr0 &= ~X86_CR0_WP;
3110 }
3111 
3112 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3113 {
3114 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3115 	unsigned long hw_cr0;
3116 
3117 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3118 	if (is_unrestricted_guest(vcpu))
3119 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3120 	else {
3121 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3122 
3123 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3124 			enter_pmode(vcpu);
3125 
3126 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3127 			enter_rmode(vcpu);
3128 	}
3129 
3130 #ifdef CONFIG_X86_64
3131 	if (vcpu->arch.efer & EFER_LME) {
3132 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3133 			enter_lmode(vcpu);
3134 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3135 			exit_lmode(vcpu);
3136 	}
3137 #endif
3138 
3139 	if (enable_ept && !is_unrestricted_guest(vcpu))
3140 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3141 
3142 	vmcs_writel(CR0_READ_SHADOW, cr0);
3143 	vmcs_writel(GUEST_CR0, hw_cr0);
3144 	vcpu->arch.cr0 = cr0;
3145 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3146 
3147 	/* depends on vcpu->arch.cr0 to be set to a new value */
3148 	vmx->emulation_required = emulation_required(vcpu);
3149 }
3150 
3151 static int vmx_get_max_tdp_level(void)
3152 {
3153 	if (cpu_has_vmx_ept_5levels())
3154 		return 5;
3155 	return 4;
3156 }
3157 
3158 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3159 {
3160 	u64 eptp = VMX_EPTP_MT_WB;
3161 
3162 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3163 
3164 	if (enable_ept_ad_bits &&
3165 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3166 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3167 	eptp |= root_hpa;
3168 
3169 	return eptp;
3170 }
3171 
3172 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3173 			     int root_level)
3174 {
3175 	struct kvm *kvm = vcpu->kvm;
3176 	bool update_guest_cr3 = true;
3177 	unsigned long guest_cr3;
3178 	u64 eptp;
3179 
3180 	if (enable_ept) {
3181 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3182 		vmcs_write64(EPT_POINTER, eptp);
3183 
3184 		hv_track_root_ept(vcpu, root_hpa);
3185 
3186 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3187 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3188 		else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3189 			guest_cr3 = vcpu->arch.cr3;
3190 		else /* vmcs01.GUEST_CR3 is already up-to-date. */
3191 			update_guest_cr3 = false;
3192 		vmx_ept_load_pdptrs(vcpu);
3193 	} else {
3194 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3195 	}
3196 
3197 	if (update_guest_cr3)
3198 		vmcs_writel(GUEST_CR3, guest_cr3);
3199 }
3200 
3201 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3202 {
3203 	/*
3204 	 * We operate under the default treatment of SMM, so VMX cannot be
3205 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3206 	 * handled by kvm_is_valid_cr4().
3207 	 */
3208 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3209 		return false;
3210 
3211 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3212 		return false;
3213 
3214 	return true;
3215 }
3216 
3217 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3218 {
3219 	unsigned long old_cr4 = vcpu->arch.cr4;
3220 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3221 	/*
3222 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3223 	 * is in force while we are in guest mode.  Do not let guests control
3224 	 * this bit, even if host CR4.MCE == 0.
3225 	 */
3226 	unsigned long hw_cr4;
3227 
3228 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3229 	if (is_unrestricted_guest(vcpu))
3230 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3231 	else if (vmx->rmode.vm86_active)
3232 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3233 	else
3234 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3235 
3236 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3237 		if (cr4 & X86_CR4_UMIP) {
3238 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3239 			hw_cr4 &= ~X86_CR4_UMIP;
3240 		} else if (!is_guest_mode(vcpu) ||
3241 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3242 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3243 		}
3244 	}
3245 
3246 	vcpu->arch.cr4 = cr4;
3247 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3248 
3249 	if (!is_unrestricted_guest(vcpu)) {
3250 		if (enable_ept) {
3251 			if (!is_paging(vcpu)) {
3252 				hw_cr4 &= ~X86_CR4_PAE;
3253 				hw_cr4 |= X86_CR4_PSE;
3254 			} else if (!(cr4 & X86_CR4_PAE)) {
3255 				hw_cr4 &= ~X86_CR4_PAE;
3256 			}
3257 		}
3258 
3259 		/*
3260 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3261 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3262 		 * to be manually disabled when guest switches to non-paging
3263 		 * mode.
3264 		 *
3265 		 * If !enable_unrestricted_guest, the CPU is always running
3266 		 * with CR0.PG=1 and CR4 needs to be modified.
3267 		 * If enable_unrestricted_guest, the CPU automatically
3268 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3269 		 */
3270 		if (!is_paging(vcpu))
3271 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3272 	}
3273 
3274 	vmcs_writel(CR4_READ_SHADOW, cr4);
3275 	vmcs_writel(GUEST_CR4, hw_cr4);
3276 
3277 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3278 		kvm_update_cpuid_runtime(vcpu);
3279 }
3280 
3281 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3282 {
3283 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3284 	u32 ar;
3285 
3286 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3287 		*var = vmx->rmode.segs[seg];
3288 		if (seg == VCPU_SREG_TR
3289 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3290 			return;
3291 		var->base = vmx_read_guest_seg_base(vmx, seg);
3292 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3293 		return;
3294 	}
3295 	var->base = vmx_read_guest_seg_base(vmx, seg);
3296 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3297 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3298 	ar = vmx_read_guest_seg_ar(vmx, seg);
3299 	var->unusable = (ar >> 16) & 1;
3300 	var->type = ar & 15;
3301 	var->s = (ar >> 4) & 1;
3302 	var->dpl = (ar >> 5) & 3;
3303 	/*
3304 	 * Some userspaces do not preserve unusable property. Since usable
3305 	 * segment has to be present according to VMX spec we can use present
3306 	 * property to amend userspace bug by making unusable segment always
3307 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3308 	 * segment as unusable.
3309 	 */
3310 	var->present = !var->unusable;
3311 	var->avl = (ar >> 12) & 1;
3312 	var->l = (ar >> 13) & 1;
3313 	var->db = (ar >> 14) & 1;
3314 	var->g = (ar >> 15) & 1;
3315 }
3316 
3317 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3318 {
3319 	struct kvm_segment s;
3320 
3321 	if (to_vmx(vcpu)->rmode.vm86_active) {
3322 		vmx_get_segment(vcpu, &s, seg);
3323 		return s.base;
3324 	}
3325 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3326 }
3327 
3328 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3329 {
3330 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3331 
3332 	if (unlikely(vmx->rmode.vm86_active))
3333 		return 0;
3334 	else {
3335 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3336 		return VMX_AR_DPL(ar);
3337 	}
3338 }
3339 
3340 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3341 {
3342 	u32 ar;
3343 
3344 	if (var->unusable || !var->present)
3345 		ar = 1 << 16;
3346 	else {
3347 		ar = var->type & 15;
3348 		ar |= (var->s & 1) << 4;
3349 		ar |= (var->dpl & 3) << 5;
3350 		ar |= (var->present & 1) << 7;
3351 		ar |= (var->avl & 1) << 12;
3352 		ar |= (var->l & 1) << 13;
3353 		ar |= (var->db & 1) << 14;
3354 		ar |= (var->g & 1) << 15;
3355 	}
3356 
3357 	return ar;
3358 }
3359 
3360 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3361 {
3362 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3363 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3364 
3365 	vmx_segment_cache_clear(vmx);
3366 
3367 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3368 		vmx->rmode.segs[seg] = *var;
3369 		if (seg == VCPU_SREG_TR)
3370 			vmcs_write16(sf->selector, var->selector);
3371 		else if (var->s)
3372 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3373 		goto out;
3374 	}
3375 
3376 	vmcs_writel(sf->base, var->base);
3377 	vmcs_write32(sf->limit, var->limit);
3378 	vmcs_write16(sf->selector, var->selector);
3379 
3380 	/*
3381 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3382 	 * qemu binaries.
3383 	 *   IA32 arch specifies that at the time of processor reset the
3384 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3385 	 * is setting it to 0 in the userland code. This causes invalid guest
3386 	 * state vmexit when "unrestricted guest" mode is turned on.
3387 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3388 	 * tree. Newer qemu binaries with that qemu fix would not need this
3389 	 * kvm hack.
3390 	 */
3391 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3392 		var->type |= 0x1; /* Accessed */
3393 
3394 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3395 
3396 out:
3397 	vmx->emulation_required = emulation_required(vcpu);
3398 }
3399 
3400 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3401 {
3402 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3403 
3404 	*db = (ar >> 14) & 1;
3405 	*l = (ar >> 13) & 1;
3406 }
3407 
3408 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3409 {
3410 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3411 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3412 }
3413 
3414 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3415 {
3416 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3417 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3418 }
3419 
3420 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3421 {
3422 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3423 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3424 }
3425 
3426 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3427 {
3428 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3429 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3430 }
3431 
3432 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3433 {
3434 	struct kvm_segment var;
3435 	u32 ar;
3436 
3437 	vmx_get_segment(vcpu, &var, seg);
3438 	var.dpl = 0x3;
3439 	if (seg == VCPU_SREG_CS)
3440 		var.type = 0x3;
3441 	ar = vmx_segment_access_rights(&var);
3442 
3443 	if (var.base != (var.selector << 4))
3444 		return false;
3445 	if (var.limit != 0xffff)
3446 		return false;
3447 	if (ar != 0xf3)
3448 		return false;
3449 
3450 	return true;
3451 }
3452 
3453 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3454 {
3455 	struct kvm_segment cs;
3456 	unsigned int cs_rpl;
3457 
3458 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3459 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3460 
3461 	if (cs.unusable)
3462 		return false;
3463 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3464 		return false;
3465 	if (!cs.s)
3466 		return false;
3467 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3468 		if (cs.dpl > cs_rpl)
3469 			return false;
3470 	} else {
3471 		if (cs.dpl != cs_rpl)
3472 			return false;
3473 	}
3474 	if (!cs.present)
3475 		return false;
3476 
3477 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3478 	return true;
3479 }
3480 
3481 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3482 {
3483 	struct kvm_segment ss;
3484 	unsigned int ss_rpl;
3485 
3486 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3487 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3488 
3489 	if (ss.unusable)
3490 		return true;
3491 	if (ss.type != 3 && ss.type != 7)
3492 		return false;
3493 	if (!ss.s)
3494 		return false;
3495 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3496 		return false;
3497 	if (!ss.present)
3498 		return false;
3499 
3500 	return true;
3501 }
3502 
3503 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3504 {
3505 	struct kvm_segment var;
3506 	unsigned int rpl;
3507 
3508 	vmx_get_segment(vcpu, &var, seg);
3509 	rpl = var.selector & SEGMENT_RPL_MASK;
3510 
3511 	if (var.unusable)
3512 		return true;
3513 	if (!var.s)
3514 		return false;
3515 	if (!var.present)
3516 		return false;
3517 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3518 		if (var.dpl < rpl) /* DPL < RPL */
3519 			return false;
3520 	}
3521 
3522 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3523 	 * rights flags
3524 	 */
3525 	return true;
3526 }
3527 
3528 static bool tr_valid(struct kvm_vcpu *vcpu)
3529 {
3530 	struct kvm_segment tr;
3531 
3532 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3533 
3534 	if (tr.unusable)
3535 		return false;
3536 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3537 		return false;
3538 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3539 		return false;
3540 	if (!tr.present)
3541 		return false;
3542 
3543 	return true;
3544 }
3545 
3546 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3547 {
3548 	struct kvm_segment ldtr;
3549 
3550 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3551 
3552 	if (ldtr.unusable)
3553 		return true;
3554 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3555 		return false;
3556 	if (ldtr.type != 2)
3557 		return false;
3558 	if (!ldtr.present)
3559 		return false;
3560 
3561 	return true;
3562 }
3563 
3564 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3565 {
3566 	struct kvm_segment cs, ss;
3567 
3568 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3569 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3570 
3571 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3572 		 (ss.selector & SEGMENT_RPL_MASK));
3573 }
3574 
3575 /*
3576  * Check if guest state is valid. Returns true if valid, false if
3577  * not.
3578  * We assume that registers are always usable
3579  */
3580 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3581 {
3582 	/* real mode guest state checks */
3583 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3584 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3585 			return false;
3586 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3587 			return false;
3588 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3589 			return false;
3590 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3591 			return false;
3592 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3593 			return false;
3594 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3595 			return false;
3596 	} else {
3597 	/* protected mode guest state checks */
3598 		if (!cs_ss_rpl_check(vcpu))
3599 			return false;
3600 		if (!code_segment_valid(vcpu))
3601 			return false;
3602 		if (!stack_segment_valid(vcpu))
3603 			return false;
3604 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3605 			return false;
3606 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3607 			return false;
3608 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3609 			return false;
3610 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3611 			return false;
3612 		if (!tr_valid(vcpu))
3613 			return false;
3614 		if (!ldtr_valid(vcpu))
3615 			return false;
3616 	}
3617 	/* TODO:
3618 	 * - Add checks on RIP
3619 	 * - Add checks on RFLAGS
3620 	 */
3621 
3622 	return true;
3623 }
3624 
3625 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3626 {
3627 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3628 	u16 data;
3629 	int i;
3630 
3631 	for (i = 0; i < 3; i++) {
3632 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3633 			return -EFAULT;
3634 	}
3635 
3636 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3637 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3638 		return -EFAULT;
3639 
3640 	data = ~0;
3641 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3642 		return -EFAULT;
3643 
3644 	return 0;
3645 }
3646 
3647 static int init_rmode_identity_map(struct kvm *kvm)
3648 {
3649 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3650 	int i, r = 0;
3651 	void __user *uaddr;
3652 	u32 tmp;
3653 
3654 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3655 	mutex_lock(&kvm->slots_lock);
3656 
3657 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3658 		goto out;
3659 
3660 	if (!kvm_vmx->ept_identity_map_addr)
3661 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3662 
3663 	uaddr = __x86_set_memory_region(kvm,
3664 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3665 					kvm_vmx->ept_identity_map_addr,
3666 					PAGE_SIZE);
3667 	if (IS_ERR(uaddr)) {
3668 		r = PTR_ERR(uaddr);
3669 		goto out;
3670 	}
3671 
3672 	/* Set up identity-mapping pagetable for EPT in real mode */
3673 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3674 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3675 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3676 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3677 			r = -EFAULT;
3678 			goto out;
3679 		}
3680 	}
3681 	kvm_vmx->ept_identity_pagetable_done = true;
3682 
3683 out:
3684 	mutex_unlock(&kvm->slots_lock);
3685 	return r;
3686 }
3687 
3688 static void seg_setup(int seg)
3689 {
3690 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3691 	unsigned int ar;
3692 
3693 	vmcs_write16(sf->selector, 0);
3694 	vmcs_writel(sf->base, 0);
3695 	vmcs_write32(sf->limit, 0xffff);
3696 	ar = 0x93;
3697 	if (seg == VCPU_SREG_CS)
3698 		ar |= 0x08; /* code segment */
3699 
3700 	vmcs_write32(sf->ar_bytes, ar);
3701 }
3702 
3703 static int alloc_apic_access_page(struct kvm *kvm)
3704 {
3705 	struct page *page;
3706 	void __user *hva;
3707 	int ret = 0;
3708 
3709 	mutex_lock(&kvm->slots_lock);
3710 	if (kvm->arch.apic_access_page_done)
3711 		goto out;
3712 	hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3713 				      APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3714 	if (IS_ERR(hva)) {
3715 		ret = PTR_ERR(hva);
3716 		goto out;
3717 	}
3718 
3719 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3720 	if (is_error_page(page)) {
3721 		ret = -EFAULT;
3722 		goto out;
3723 	}
3724 
3725 	/*
3726 	 * Do not pin the page in memory, so that memory hot-unplug
3727 	 * is able to migrate it.
3728 	 */
3729 	put_page(page);
3730 	kvm->arch.apic_access_page_done = true;
3731 out:
3732 	mutex_unlock(&kvm->slots_lock);
3733 	return ret;
3734 }
3735 
3736 int allocate_vpid(void)
3737 {
3738 	int vpid;
3739 
3740 	if (!enable_vpid)
3741 		return 0;
3742 	spin_lock(&vmx_vpid_lock);
3743 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3744 	if (vpid < VMX_NR_VPIDS)
3745 		__set_bit(vpid, vmx_vpid_bitmap);
3746 	else
3747 		vpid = 0;
3748 	spin_unlock(&vmx_vpid_lock);
3749 	return vpid;
3750 }
3751 
3752 void free_vpid(int vpid)
3753 {
3754 	if (!enable_vpid || vpid == 0)
3755 		return;
3756 	spin_lock(&vmx_vpid_lock);
3757 	__clear_bit(vpid, vmx_vpid_bitmap);
3758 	spin_unlock(&vmx_vpid_lock);
3759 }
3760 
3761 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3762 {
3763 	int f = sizeof(unsigned long);
3764 
3765 	if (msr <= 0x1fff)
3766 		__clear_bit(msr, msr_bitmap + 0x000 / f);
3767 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3768 		__clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3769 }
3770 
3771 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3772 {
3773 	int f = sizeof(unsigned long);
3774 
3775 	if (msr <= 0x1fff)
3776 		__clear_bit(msr, msr_bitmap + 0x800 / f);
3777 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3778 		__clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3779 }
3780 
3781 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3782 {
3783 	int f = sizeof(unsigned long);
3784 
3785 	if (msr <= 0x1fff)
3786 		__set_bit(msr, msr_bitmap + 0x000 / f);
3787 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3788 		__set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3789 }
3790 
3791 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3792 {
3793 	int f = sizeof(unsigned long);
3794 
3795 	if (msr <= 0x1fff)
3796 		__set_bit(msr, msr_bitmap + 0x800 / f);
3797 	else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3798 		__set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3799 }
3800 
3801 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3802 {
3803 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3804 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3805 
3806 	if (!cpu_has_vmx_msr_bitmap())
3807 		return;
3808 
3809 	if (static_branch_unlikely(&enable_evmcs))
3810 		evmcs_touch_msr_bitmap();
3811 
3812 	/*
3813 	 * Mark the desired intercept state in shadow bitmap, this is needed
3814 	 * for resync when the MSR filters change.
3815 	*/
3816 	if (is_valid_passthrough_msr(msr)) {
3817 		int idx = possible_passthrough_msr_slot(msr);
3818 
3819 		if (idx != -ENOENT) {
3820 			if (type & MSR_TYPE_R)
3821 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3822 			if (type & MSR_TYPE_W)
3823 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3824 		}
3825 	}
3826 
3827 	if ((type & MSR_TYPE_R) &&
3828 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3829 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3830 		type &= ~MSR_TYPE_R;
3831 	}
3832 
3833 	if ((type & MSR_TYPE_W) &&
3834 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3835 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3836 		type &= ~MSR_TYPE_W;
3837 	}
3838 
3839 	if (type & MSR_TYPE_R)
3840 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3841 
3842 	if (type & MSR_TYPE_W)
3843 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3844 }
3845 
3846 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3847 {
3848 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3849 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3850 
3851 	if (!cpu_has_vmx_msr_bitmap())
3852 		return;
3853 
3854 	if (static_branch_unlikely(&enable_evmcs))
3855 		evmcs_touch_msr_bitmap();
3856 
3857 	/*
3858 	 * Mark the desired intercept state in shadow bitmap, this is needed
3859 	 * for resync when the MSR filter changes.
3860 	*/
3861 	if (is_valid_passthrough_msr(msr)) {
3862 		int idx = possible_passthrough_msr_slot(msr);
3863 
3864 		if (idx != -ENOENT) {
3865 			if (type & MSR_TYPE_R)
3866 				set_bit(idx, vmx->shadow_msr_intercept.read);
3867 			if (type & MSR_TYPE_W)
3868 				set_bit(idx, vmx->shadow_msr_intercept.write);
3869 		}
3870 	}
3871 
3872 	if (type & MSR_TYPE_R)
3873 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3874 
3875 	if (type & MSR_TYPE_W)
3876 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3877 }
3878 
3879 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3880 {
3881 	u8 mode = 0;
3882 
3883 	if (cpu_has_secondary_exec_ctrls() &&
3884 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
3885 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3886 		mode |= MSR_BITMAP_MODE_X2APIC;
3887 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3888 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3889 	}
3890 
3891 	return mode;
3892 }
3893 
3894 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3895 {
3896 	unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3897 	unsigned long read_intercept;
3898 	int msr;
3899 
3900 	read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3901 
3902 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3903 		unsigned int read_idx = msr / BITS_PER_LONG;
3904 		unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3905 
3906 		msr_bitmap[read_idx] = read_intercept;
3907 		msr_bitmap[write_idx] = ~0ul;
3908 	}
3909 }
3910 
3911 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3912 {
3913 	if (!cpu_has_vmx_msr_bitmap())
3914 		return;
3915 
3916 	vmx_reset_x2apic_msrs(vcpu, mode);
3917 
3918 	/*
3919 	 * TPR reads and writes can be virtualized even if virtual interrupt
3920 	 * delivery is not in use.
3921 	 */
3922 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3923 				  !(mode & MSR_BITMAP_MODE_X2APIC));
3924 
3925 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3926 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3927 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3928 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3929 	}
3930 }
3931 
3932 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3933 {
3934 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3935 	u8 mode = vmx_msr_bitmap_mode(vcpu);
3936 	u8 changed = mode ^ vmx->msr_bitmap_mode;
3937 
3938 	if (!changed)
3939 		return;
3940 
3941 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3942 		vmx_update_msr_bitmap_x2apic(vcpu, mode);
3943 
3944 	vmx->msr_bitmap_mode = mode;
3945 }
3946 
3947 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3948 {
3949 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3950 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3951 	u32 i;
3952 
3953 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3954 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3955 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3956 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3957 	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3958 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3959 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3960 	}
3961 }
3962 
3963 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3964 {
3965 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3966 	void *vapic_page;
3967 	u32 vppr;
3968 	int rvi;
3969 
3970 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3971 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3972 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3973 		return false;
3974 
3975 	rvi = vmx_get_rvi();
3976 
3977 	vapic_page = vmx->nested.virtual_apic_map.hva;
3978 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3979 
3980 	return ((rvi & 0xf0) > (vppr & 0xf0));
3981 }
3982 
3983 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3984 {
3985 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3986 	u32 i;
3987 
3988 	/*
3989 	 * Set intercept permissions for all potentially passed through MSRs
3990 	 * again. They will automatically get filtered through the MSR filter,
3991 	 * so we are back in sync after this.
3992 	 */
3993 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3994 		u32 msr = vmx_possible_passthrough_msrs[i];
3995 		bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3996 		bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3997 
3998 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3999 		vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
4000 	}
4001 
4002 	pt_update_intercept_for_msr(vcpu);
4003 	vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
4004 }
4005 
4006 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4007 						     bool nested)
4008 {
4009 #ifdef CONFIG_SMP
4010 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
4011 
4012 	if (vcpu->mode == IN_GUEST_MODE) {
4013 		/*
4014 		 * The vector of interrupt to be delivered to vcpu had
4015 		 * been set in PIR before this function.
4016 		 *
4017 		 * Following cases will be reached in this block, and
4018 		 * we always send a notification event in all cases as
4019 		 * explained below.
4020 		 *
4021 		 * Case 1: vcpu keeps in non-root mode. Sending a
4022 		 * notification event posts the interrupt to vcpu.
4023 		 *
4024 		 * Case 2: vcpu exits to root mode and is still
4025 		 * runnable. PIR will be synced to vIRR before the
4026 		 * next vcpu entry. Sending a notification event in
4027 		 * this case has no effect, as vcpu is not in root
4028 		 * mode.
4029 		 *
4030 		 * Case 3: vcpu exits to root mode and is blocked.
4031 		 * vcpu_block() has already synced PIR to vIRR and
4032 		 * never blocks vcpu if vIRR is not cleared. Therefore,
4033 		 * a blocked vcpu here does not wait for any requested
4034 		 * interrupts in PIR, and sending a notification event
4035 		 * which has no effect is safe here.
4036 		 */
4037 
4038 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4039 		return true;
4040 	}
4041 #endif
4042 	return false;
4043 }
4044 
4045 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4046 						int vector)
4047 {
4048 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4049 
4050 	if (is_guest_mode(vcpu) &&
4051 	    vector == vmx->nested.posted_intr_nv) {
4052 		/*
4053 		 * If a posted intr is not recognized by hardware,
4054 		 * we will accomplish it in the next vmentry.
4055 		 */
4056 		vmx->nested.pi_pending = true;
4057 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4058 		/* the PIR and ON have been set by L1. */
4059 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
4060 			kvm_vcpu_kick(vcpu);
4061 		return 0;
4062 	}
4063 	return -1;
4064 }
4065 /*
4066  * Send interrupt to vcpu via posted interrupt way.
4067  * 1. If target vcpu is running(non-root mode), send posted interrupt
4068  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4069  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4070  * interrupt from PIR in next vmentry.
4071  */
4072 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4073 {
4074 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4075 	int r;
4076 
4077 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4078 	if (!r)
4079 		return 0;
4080 
4081 	if (!vcpu->arch.apicv_active)
4082 		return -1;
4083 
4084 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4085 		return 0;
4086 
4087 	/* If a previous notification has sent the IPI, nothing to do.  */
4088 	if (pi_test_and_set_on(&vmx->pi_desc))
4089 		return 0;
4090 
4091 	if (vcpu != kvm_get_running_vcpu() &&
4092 	    !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4093 		kvm_vcpu_kick(vcpu);
4094 
4095 	return 0;
4096 }
4097 
4098 /*
4099  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4100  * will not change in the lifetime of the guest.
4101  * Note that host-state that does change is set elsewhere. E.g., host-state
4102  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4103  */
4104 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4105 {
4106 	u32 low32, high32;
4107 	unsigned long tmpl;
4108 	unsigned long cr0, cr3, cr4;
4109 
4110 	cr0 = read_cr0();
4111 	WARN_ON(cr0 & X86_CR0_TS);
4112 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4113 
4114 	/*
4115 	 * Save the most likely value for this task's CR3 in the VMCS.
4116 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4117 	 */
4118 	cr3 = __read_cr3();
4119 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4120 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4121 
4122 	/* Save the most likely value for this task's CR4 in the VMCS. */
4123 	cr4 = cr4_read_shadow();
4124 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4125 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4126 
4127 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4128 #ifdef CONFIG_X86_64
4129 	/*
4130 	 * Load null selectors, so we can avoid reloading them in
4131 	 * vmx_prepare_switch_to_host(), in case userspace uses
4132 	 * the null selectors too (the expected case).
4133 	 */
4134 	vmcs_write16(HOST_DS_SELECTOR, 0);
4135 	vmcs_write16(HOST_ES_SELECTOR, 0);
4136 #else
4137 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4138 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4139 #endif
4140 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4141 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4142 
4143 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4144 
4145 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4146 
4147 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4148 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4149 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4150 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4151 
4152 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4153 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4154 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4155 	}
4156 
4157 	if (cpu_has_load_ia32_efer())
4158 		vmcs_write64(HOST_IA32_EFER, host_efer);
4159 }
4160 
4161 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4162 {
4163 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4164 
4165 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4166 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4167 	if (!enable_ept)
4168 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4169 	if (is_guest_mode(&vmx->vcpu))
4170 		vcpu->arch.cr4_guest_owned_bits &=
4171 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4172 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4173 }
4174 
4175 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4176 {
4177 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4178 
4179 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4180 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4181 
4182 	if (!enable_vnmi)
4183 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4184 
4185 	if (!enable_preemption_timer)
4186 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4187 
4188 	return pin_based_exec_ctrl;
4189 }
4190 
4191 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4192 {
4193 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4194 
4195 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4196 	if (cpu_has_secondary_exec_ctrls()) {
4197 		if (kvm_vcpu_apicv_active(vcpu))
4198 			secondary_exec_controls_setbit(vmx,
4199 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4200 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4201 		else
4202 			secondary_exec_controls_clearbit(vmx,
4203 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
4204 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4205 	}
4206 
4207 	if (cpu_has_vmx_msr_bitmap())
4208 		vmx_update_msr_bitmap(vcpu);
4209 }
4210 
4211 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4212 {
4213 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4214 
4215 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4216 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4217 
4218 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4219 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4220 #ifdef CONFIG_X86_64
4221 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4222 				CPU_BASED_CR8_LOAD_EXITING;
4223 #endif
4224 	}
4225 	if (!enable_ept)
4226 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
4227 				CPU_BASED_CR3_LOAD_EXITING  |
4228 				CPU_BASED_INVLPG_EXITING;
4229 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4230 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4231 				CPU_BASED_MONITOR_EXITING);
4232 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4233 		exec_control &= ~CPU_BASED_HLT_EXITING;
4234 	return exec_control;
4235 }
4236 
4237 /*
4238  * Adjust a single secondary execution control bit to intercept/allow an
4239  * instruction in the guest.  This is usually done based on whether or not a
4240  * feature has been exposed to the guest in order to correctly emulate faults.
4241  */
4242 static inline void
4243 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4244 				  u32 control, bool enabled, bool exiting)
4245 {
4246 	/*
4247 	 * If the control is for an opt-in feature, clear the control if the
4248 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4249 	 * control is opt-out, i.e. an exiting control, clear the control if
4250 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4251 	 * disabled for the associated instruction.  Note, the caller is
4252 	 * responsible presetting exec_control to set all supported bits.
4253 	 */
4254 	if (enabled == exiting)
4255 		*exec_control &= ~control;
4256 
4257 	/*
4258 	 * Update the nested MSR settings so that a nested VMM can/can't set
4259 	 * controls for features that are/aren't exposed to the guest.
4260 	 */
4261 	if (nested) {
4262 		if (enabled)
4263 			vmx->nested.msrs.secondary_ctls_high |= control;
4264 		else
4265 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4266 	}
4267 }
4268 
4269 /*
4270  * Wrapper macro for the common case of adjusting a secondary execution control
4271  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4272  * verifies that the control is actually supported by KVM and hardware.
4273  */
4274 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4275 ({									 \
4276 	bool __enabled;							 \
4277 									 \
4278 	if (cpu_has_vmx_##name()) {					 \
4279 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4280 					    X86_FEATURE_##feat_name);	 \
4281 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4282 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4283 	}								 \
4284 })
4285 
4286 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4287 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4288 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4289 
4290 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4291 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4292 
4293 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4294 {
4295 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4296 
4297 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4298 
4299 	if (vmx_pt_mode_is_system())
4300 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4301 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4302 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4303 	if (vmx->vpid == 0)
4304 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4305 	if (!enable_ept) {
4306 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4307 		enable_unrestricted_guest = 0;
4308 	}
4309 	if (!enable_unrestricted_guest)
4310 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4311 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4312 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4313 	if (!kvm_vcpu_apicv_active(vcpu))
4314 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4315 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4316 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4317 
4318 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4319 	 * in vmx_set_cr4.  */
4320 	exec_control &= ~SECONDARY_EXEC_DESC;
4321 
4322 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4323 	   (handle_vmptrld).
4324 	   We can NOT enable shadow_vmcs here because we don't have yet
4325 	   a current VMCS12
4326 	*/
4327 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4328 
4329 	/*
4330 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4331 	 * it needs to be set here when dirty logging is already active, e.g.
4332 	 * if this vCPU was created after dirty logging was enabled.
4333 	 */
4334 	if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4335 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4336 
4337 	if (cpu_has_vmx_xsaves()) {
4338 		/* Exposing XSAVES only when XSAVE is exposed */
4339 		bool xsaves_enabled =
4340 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4341 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4342 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4343 
4344 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4345 
4346 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4347 						  SECONDARY_EXEC_XSAVES,
4348 						  xsaves_enabled, false);
4349 	}
4350 
4351 	/*
4352 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4353 	 * feature is exposed to the guest.  This creates a virtualization hole
4354 	 * if both are supported in hardware but only one is exposed to the
4355 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4356 	 * is advertised is preferable to emulating the advertised instruction
4357 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4358 	 */
4359 	if (cpu_has_vmx_rdtscp()) {
4360 		bool rdpid_or_rdtscp_enabled =
4361 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4362 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4363 
4364 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4365 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4366 						  rdpid_or_rdtscp_enabled, false);
4367 	}
4368 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4369 
4370 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4371 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4372 
4373 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4374 				    ENABLE_USR_WAIT_PAUSE, false);
4375 
4376 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4377 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4378 
4379 	vmx->secondary_exec_control = exec_control;
4380 }
4381 
4382 #define VMX_XSS_EXIT_BITMAP 0
4383 
4384 /*
4385  * Noting that the initialization of Guest-state Area of VMCS is in
4386  * vmx_vcpu_reset().
4387  */
4388 static void init_vmcs(struct vcpu_vmx *vmx)
4389 {
4390 	if (nested)
4391 		nested_vmx_set_vmcs_shadowing_bitmap();
4392 
4393 	if (cpu_has_vmx_msr_bitmap())
4394 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4395 
4396 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4397 
4398 	/* Control */
4399 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4400 
4401 	exec_controls_set(vmx, vmx_exec_control(vmx));
4402 
4403 	if (cpu_has_secondary_exec_ctrls()) {
4404 		vmx_compute_secondary_exec_control(vmx);
4405 		secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4406 	}
4407 
4408 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4409 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4410 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4411 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4412 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4413 
4414 		vmcs_write16(GUEST_INTR_STATUS, 0);
4415 
4416 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4417 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4418 	}
4419 
4420 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4421 		vmcs_write32(PLE_GAP, ple_gap);
4422 		vmx->ple_window = ple_window;
4423 		vmx->ple_window_dirty = true;
4424 	}
4425 
4426 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4427 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4428 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4429 
4430 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4431 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4432 	vmx_set_constant_host_state(vmx);
4433 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4434 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4435 
4436 	if (cpu_has_vmx_vmfunc())
4437 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4438 
4439 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4440 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4441 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4442 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4443 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4444 
4445 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4446 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4447 
4448 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4449 
4450 	/* 22.2.1, 20.8.1 */
4451 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4452 
4453 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4454 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4455 
4456 	set_cr4_guest_host_mask(vmx);
4457 
4458 	if (vmx->vpid != 0)
4459 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4460 
4461 	if (cpu_has_vmx_xsaves())
4462 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4463 
4464 	if (enable_pml) {
4465 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4466 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4467 	}
4468 
4469 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4470 
4471 	if (vmx_pt_mode_is_host_guest()) {
4472 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4473 		/* Bit[6~0] are forced to 1, writes are ignored. */
4474 		vmx->pt_desc.guest.output_mask = 0x7F;
4475 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4476 	}
4477 }
4478 
4479 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4480 {
4481 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4482 	struct msr_data apic_base_msr;
4483 	u64 cr0;
4484 
4485 	vmx->rmode.vm86_active = 0;
4486 	vmx->spec_ctrl = 0;
4487 
4488 	vmx->msr_ia32_umwait_control = 0;
4489 
4490 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4491 	vmx->hv_deadline_tsc = -1;
4492 	kvm_set_cr8(vcpu, 0);
4493 
4494 	if (!init_event) {
4495 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4496 				     MSR_IA32_APICBASE_ENABLE;
4497 		if (kvm_vcpu_is_reset_bsp(vcpu))
4498 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4499 		apic_base_msr.host_initiated = true;
4500 		kvm_set_apic_base(vcpu, &apic_base_msr);
4501 	}
4502 
4503 	vmx_segment_cache_clear(vmx);
4504 
4505 	seg_setup(VCPU_SREG_CS);
4506 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4507 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4508 
4509 	seg_setup(VCPU_SREG_DS);
4510 	seg_setup(VCPU_SREG_ES);
4511 	seg_setup(VCPU_SREG_FS);
4512 	seg_setup(VCPU_SREG_GS);
4513 	seg_setup(VCPU_SREG_SS);
4514 
4515 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4516 	vmcs_writel(GUEST_TR_BASE, 0);
4517 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4518 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4519 
4520 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4521 	vmcs_writel(GUEST_LDTR_BASE, 0);
4522 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4523 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4524 
4525 	if (!init_event) {
4526 		vmcs_write32(GUEST_SYSENTER_CS, 0);
4527 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
4528 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
4529 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4530 	}
4531 
4532 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4533 	kvm_rip_write(vcpu, 0xfff0);
4534 
4535 	vmcs_writel(GUEST_GDTR_BASE, 0);
4536 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4537 
4538 	vmcs_writel(GUEST_IDTR_BASE, 0);
4539 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4540 
4541 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4542 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4543 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4544 	if (kvm_mpx_supported())
4545 		vmcs_write64(GUEST_BNDCFGS, 0);
4546 
4547 	setup_msrs(vmx);
4548 
4549 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4550 
4551 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
4552 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4553 		if (cpu_need_tpr_shadow(vcpu))
4554 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4555 				     __pa(vcpu->arch.apic->regs));
4556 		vmcs_write32(TPR_THRESHOLD, 0);
4557 	}
4558 
4559 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4560 
4561 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4562 	vmx->vcpu.arch.cr0 = cr0;
4563 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
4564 	vmx_set_cr4(vcpu, 0);
4565 	vmx_set_efer(vcpu, 0);
4566 
4567 	vmx_update_exception_bitmap(vcpu);
4568 
4569 	vpid_sync_context(vmx->vpid);
4570 	if (init_event)
4571 		vmx_clear_hlt(vcpu);
4572 }
4573 
4574 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4575 {
4576 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4577 }
4578 
4579 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4580 {
4581 	if (!enable_vnmi ||
4582 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4583 		vmx_enable_irq_window(vcpu);
4584 		return;
4585 	}
4586 
4587 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4588 }
4589 
4590 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4591 {
4592 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4593 	uint32_t intr;
4594 	int irq = vcpu->arch.interrupt.nr;
4595 
4596 	trace_kvm_inj_virq(irq);
4597 
4598 	++vcpu->stat.irq_injections;
4599 	if (vmx->rmode.vm86_active) {
4600 		int inc_eip = 0;
4601 		if (vcpu->arch.interrupt.soft)
4602 			inc_eip = vcpu->arch.event_exit_inst_len;
4603 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4604 		return;
4605 	}
4606 	intr = irq | INTR_INFO_VALID_MASK;
4607 	if (vcpu->arch.interrupt.soft) {
4608 		intr |= INTR_TYPE_SOFT_INTR;
4609 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4610 			     vmx->vcpu.arch.event_exit_inst_len);
4611 	} else
4612 		intr |= INTR_TYPE_EXT_INTR;
4613 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4614 
4615 	vmx_clear_hlt(vcpu);
4616 }
4617 
4618 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4619 {
4620 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4621 
4622 	if (!enable_vnmi) {
4623 		/*
4624 		 * Tracking the NMI-blocked state in software is built upon
4625 		 * finding the next open IRQ window. This, in turn, depends on
4626 		 * well-behaving guests: They have to keep IRQs disabled at
4627 		 * least as long as the NMI handler runs. Otherwise we may
4628 		 * cause NMI nesting, maybe breaking the guest. But as this is
4629 		 * highly unlikely, we can live with the residual risk.
4630 		 */
4631 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4632 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4633 	}
4634 
4635 	++vcpu->stat.nmi_injections;
4636 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4637 
4638 	if (vmx->rmode.vm86_active) {
4639 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4640 		return;
4641 	}
4642 
4643 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4644 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4645 
4646 	vmx_clear_hlt(vcpu);
4647 }
4648 
4649 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4650 {
4651 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4652 	bool masked;
4653 
4654 	if (!enable_vnmi)
4655 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4656 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4657 		return false;
4658 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4659 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4660 	return masked;
4661 }
4662 
4663 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4664 {
4665 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4666 
4667 	if (!enable_vnmi) {
4668 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4669 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4670 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4671 		}
4672 	} else {
4673 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4674 		if (masked)
4675 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4676 				      GUEST_INTR_STATE_NMI);
4677 		else
4678 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4679 					GUEST_INTR_STATE_NMI);
4680 	}
4681 }
4682 
4683 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4684 {
4685 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4686 		return false;
4687 
4688 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4689 		return true;
4690 
4691 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4692 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4693 		 GUEST_INTR_STATE_NMI));
4694 }
4695 
4696 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4697 {
4698 	if (to_vmx(vcpu)->nested.nested_run_pending)
4699 		return -EBUSY;
4700 
4701 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4702 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4703 		return -EBUSY;
4704 
4705 	return !vmx_nmi_blocked(vcpu);
4706 }
4707 
4708 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4709 {
4710 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4711 		return false;
4712 
4713 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4714 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4715 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4716 }
4717 
4718 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4719 {
4720 	if (to_vmx(vcpu)->nested.nested_run_pending)
4721 		return -EBUSY;
4722 
4723        /*
4724         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4725         * e.g. if the IRQ arrived asynchronously after checking nested events.
4726         */
4727 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4728 		return -EBUSY;
4729 
4730 	return !vmx_interrupt_blocked(vcpu);
4731 }
4732 
4733 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4734 {
4735 	void __user *ret;
4736 
4737 	if (enable_unrestricted_guest)
4738 		return 0;
4739 
4740 	mutex_lock(&kvm->slots_lock);
4741 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4742 				      PAGE_SIZE * 3);
4743 	mutex_unlock(&kvm->slots_lock);
4744 
4745 	if (IS_ERR(ret))
4746 		return PTR_ERR(ret);
4747 
4748 	to_kvm_vmx(kvm)->tss_addr = addr;
4749 
4750 	return init_rmode_tss(kvm, ret);
4751 }
4752 
4753 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4754 {
4755 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4756 	return 0;
4757 }
4758 
4759 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4760 {
4761 	switch (vec) {
4762 	case BP_VECTOR:
4763 		/*
4764 		 * Update instruction length as we may reinject the exception
4765 		 * from user space while in guest debugging mode.
4766 		 */
4767 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4768 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4769 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4770 			return false;
4771 		fallthrough;
4772 	case DB_VECTOR:
4773 		return !(vcpu->guest_debug &
4774 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4775 	case DE_VECTOR:
4776 	case OF_VECTOR:
4777 	case BR_VECTOR:
4778 	case UD_VECTOR:
4779 	case DF_VECTOR:
4780 	case SS_VECTOR:
4781 	case GP_VECTOR:
4782 	case MF_VECTOR:
4783 		return true;
4784 	}
4785 	return false;
4786 }
4787 
4788 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4789 				  int vec, u32 err_code)
4790 {
4791 	/*
4792 	 * Instruction with address size override prefix opcode 0x67
4793 	 * Cause the #SS fault with 0 error code in VM86 mode.
4794 	 */
4795 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4796 		if (kvm_emulate_instruction(vcpu, 0)) {
4797 			if (vcpu->arch.halt_request) {
4798 				vcpu->arch.halt_request = 0;
4799 				return kvm_vcpu_halt(vcpu);
4800 			}
4801 			return 1;
4802 		}
4803 		return 0;
4804 	}
4805 
4806 	/*
4807 	 * Forward all other exceptions that are valid in real mode.
4808 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4809 	 *        the required debugging infrastructure rework.
4810 	 */
4811 	kvm_queue_exception(vcpu, vec);
4812 	return 1;
4813 }
4814 
4815 static int handle_machine_check(struct kvm_vcpu *vcpu)
4816 {
4817 	/* handled by vmx_vcpu_run() */
4818 	return 1;
4819 }
4820 
4821 /*
4822  * If the host has split lock detection disabled, then #AC is
4823  * unconditionally injected into the guest, which is the pre split lock
4824  * detection behaviour.
4825  *
4826  * If the host has split lock detection enabled then #AC is
4827  * only injected into the guest when:
4828  *  - Guest CPL == 3 (user mode)
4829  *  - Guest has #AC detection enabled in CR0
4830  *  - Guest EFLAGS has AC bit set
4831  */
4832 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4833 {
4834 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4835 		return true;
4836 
4837 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4838 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4839 }
4840 
4841 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4842 {
4843 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4844 	struct kvm_run *kvm_run = vcpu->run;
4845 	u32 intr_info, ex_no, error_code;
4846 	unsigned long cr2, rip, dr6;
4847 	u32 vect_info;
4848 
4849 	vect_info = vmx->idt_vectoring_info;
4850 	intr_info = vmx_get_intr_info(vcpu);
4851 
4852 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4853 		return 1; /* handled by handle_exception_nmi_irqoff() */
4854 
4855 	if (is_invalid_opcode(intr_info))
4856 		return handle_ud(vcpu);
4857 
4858 	error_code = 0;
4859 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4860 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4861 
4862 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4863 		WARN_ON_ONCE(!enable_vmware_backdoor);
4864 
4865 		/*
4866 		 * VMware backdoor emulation on #GP interception only handles
4867 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4868 		 * error code on #GP.
4869 		 */
4870 		if (error_code) {
4871 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4872 			return 1;
4873 		}
4874 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4875 	}
4876 
4877 	/*
4878 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4879 	 * MMIO, it is better to report an internal error.
4880 	 * See the comments in vmx_handle_exit.
4881 	 */
4882 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4883 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4884 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4885 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4886 		vcpu->run->internal.ndata = 4;
4887 		vcpu->run->internal.data[0] = vect_info;
4888 		vcpu->run->internal.data[1] = intr_info;
4889 		vcpu->run->internal.data[2] = error_code;
4890 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4891 		return 0;
4892 	}
4893 
4894 	if (is_page_fault(intr_info)) {
4895 		cr2 = vmx_get_exit_qual(vcpu);
4896 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4897 			/*
4898 			 * EPT will cause page fault only if we need to
4899 			 * detect illegal GPAs.
4900 			 */
4901 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4902 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4903 			return 1;
4904 		} else
4905 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4906 	}
4907 
4908 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4909 
4910 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4911 		return handle_rmode_exception(vcpu, ex_no, error_code);
4912 
4913 	switch (ex_no) {
4914 	case DB_VECTOR:
4915 		dr6 = vmx_get_exit_qual(vcpu);
4916 		if (!(vcpu->guest_debug &
4917 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4918 			if (is_icebp(intr_info))
4919 				WARN_ON(!skip_emulated_instruction(vcpu));
4920 
4921 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4922 			return 1;
4923 		}
4924 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4925 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4926 		fallthrough;
4927 	case BP_VECTOR:
4928 		/*
4929 		 * Update instruction length as we may reinject #BP from
4930 		 * user space while in guest debugging mode. Reading it for
4931 		 * #DB as well causes no harm, it is not used in that case.
4932 		 */
4933 		vmx->vcpu.arch.event_exit_inst_len =
4934 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4935 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4936 		rip = kvm_rip_read(vcpu);
4937 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4938 		kvm_run->debug.arch.exception = ex_no;
4939 		break;
4940 	case AC_VECTOR:
4941 		if (guest_inject_ac(vcpu)) {
4942 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4943 			return 1;
4944 		}
4945 
4946 		/*
4947 		 * Handle split lock. Depending on detection mode this will
4948 		 * either warn and disable split lock detection for this
4949 		 * task or force SIGBUS on it.
4950 		 */
4951 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4952 			return 1;
4953 		fallthrough;
4954 	default:
4955 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4956 		kvm_run->ex.exception = ex_no;
4957 		kvm_run->ex.error_code = error_code;
4958 		break;
4959 	}
4960 	return 0;
4961 }
4962 
4963 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4964 {
4965 	++vcpu->stat.irq_exits;
4966 	return 1;
4967 }
4968 
4969 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4970 {
4971 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4972 	vcpu->mmio_needed = 0;
4973 	return 0;
4974 }
4975 
4976 static int handle_io(struct kvm_vcpu *vcpu)
4977 {
4978 	unsigned long exit_qualification;
4979 	int size, in, string;
4980 	unsigned port;
4981 
4982 	exit_qualification = vmx_get_exit_qual(vcpu);
4983 	string = (exit_qualification & 16) != 0;
4984 
4985 	++vcpu->stat.io_exits;
4986 
4987 	if (string)
4988 		return kvm_emulate_instruction(vcpu, 0);
4989 
4990 	port = exit_qualification >> 16;
4991 	size = (exit_qualification & 7) + 1;
4992 	in = (exit_qualification & 8) != 0;
4993 
4994 	return kvm_fast_pio(vcpu, size, port, in);
4995 }
4996 
4997 static void
4998 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4999 {
5000 	/*
5001 	 * Patch in the VMCALL instruction:
5002 	 */
5003 	hypercall[0] = 0x0f;
5004 	hypercall[1] = 0x01;
5005 	hypercall[2] = 0xc1;
5006 }
5007 
5008 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5009 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5010 {
5011 	if (is_guest_mode(vcpu)) {
5012 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5013 		unsigned long orig_val = val;
5014 
5015 		/*
5016 		 * We get here when L2 changed cr0 in a way that did not change
5017 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5018 		 * but did change L0 shadowed bits. So we first calculate the
5019 		 * effective cr0 value that L1 would like to write into the
5020 		 * hardware. It consists of the L2-owned bits from the new
5021 		 * value combined with the L1-owned bits from L1's guest_cr0.
5022 		 */
5023 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5024 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5025 
5026 		if (!nested_guest_cr0_valid(vcpu, val))
5027 			return 1;
5028 
5029 		if (kvm_set_cr0(vcpu, val))
5030 			return 1;
5031 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5032 		return 0;
5033 	} else {
5034 		if (to_vmx(vcpu)->nested.vmxon &&
5035 		    !nested_host_cr0_valid(vcpu, val))
5036 			return 1;
5037 
5038 		return kvm_set_cr0(vcpu, val);
5039 	}
5040 }
5041 
5042 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5043 {
5044 	if (is_guest_mode(vcpu)) {
5045 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5046 		unsigned long orig_val = val;
5047 
5048 		/* analogously to handle_set_cr0 */
5049 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5050 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5051 		if (kvm_set_cr4(vcpu, val))
5052 			return 1;
5053 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5054 		return 0;
5055 	} else
5056 		return kvm_set_cr4(vcpu, val);
5057 }
5058 
5059 static int handle_desc(struct kvm_vcpu *vcpu)
5060 {
5061 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5062 	return kvm_emulate_instruction(vcpu, 0);
5063 }
5064 
5065 static int handle_cr(struct kvm_vcpu *vcpu)
5066 {
5067 	unsigned long exit_qualification, val;
5068 	int cr;
5069 	int reg;
5070 	int err;
5071 	int ret;
5072 
5073 	exit_qualification = vmx_get_exit_qual(vcpu);
5074 	cr = exit_qualification & 15;
5075 	reg = (exit_qualification >> 8) & 15;
5076 	switch ((exit_qualification >> 4) & 3) {
5077 	case 0: /* mov to cr */
5078 		val = kvm_register_read(vcpu, reg);
5079 		trace_kvm_cr_write(cr, val);
5080 		switch (cr) {
5081 		case 0:
5082 			err = handle_set_cr0(vcpu, val);
5083 			return kvm_complete_insn_gp(vcpu, err);
5084 		case 3:
5085 			WARN_ON_ONCE(enable_unrestricted_guest);
5086 			err = kvm_set_cr3(vcpu, val);
5087 			return kvm_complete_insn_gp(vcpu, err);
5088 		case 4:
5089 			err = handle_set_cr4(vcpu, val);
5090 			return kvm_complete_insn_gp(vcpu, err);
5091 		case 8: {
5092 				u8 cr8_prev = kvm_get_cr8(vcpu);
5093 				u8 cr8 = (u8)val;
5094 				err = kvm_set_cr8(vcpu, cr8);
5095 				ret = kvm_complete_insn_gp(vcpu, err);
5096 				if (lapic_in_kernel(vcpu))
5097 					return ret;
5098 				if (cr8_prev <= cr8)
5099 					return ret;
5100 				/*
5101 				 * TODO: we might be squashing a
5102 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5103 				 * KVM_EXIT_DEBUG here.
5104 				 */
5105 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5106 				return 0;
5107 			}
5108 		}
5109 		break;
5110 	case 2: /* clts */
5111 		WARN_ONCE(1, "Guest should always own CR0.TS");
5112 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5113 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5114 		return kvm_skip_emulated_instruction(vcpu);
5115 	case 1: /*mov from cr*/
5116 		switch (cr) {
5117 		case 3:
5118 			WARN_ON_ONCE(enable_unrestricted_guest);
5119 			val = kvm_read_cr3(vcpu);
5120 			kvm_register_write(vcpu, reg, val);
5121 			trace_kvm_cr_read(cr, val);
5122 			return kvm_skip_emulated_instruction(vcpu);
5123 		case 8:
5124 			val = kvm_get_cr8(vcpu);
5125 			kvm_register_write(vcpu, reg, val);
5126 			trace_kvm_cr_read(cr, val);
5127 			return kvm_skip_emulated_instruction(vcpu);
5128 		}
5129 		break;
5130 	case 3: /* lmsw */
5131 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5132 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5133 		kvm_lmsw(vcpu, val);
5134 
5135 		return kvm_skip_emulated_instruction(vcpu);
5136 	default:
5137 		break;
5138 	}
5139 	vcpu->run->exit_reason = 0;
5140 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5141 	       (int)(exit_qualification >> 4) & 3, cr);
5142 	return 0;
5143 }
5144 
5145 static int handle_dr(struct kvm_vcpu *vcpu)
5146 {
5147 	unsigned long exit_qualification;
5148 	int dr, dr7, reg;
5149 	int err = 1;
5150 
5151 	exit_qualification = vmx_get_exit_qual(vcpu);
5152 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5153 
5154 	/* First, if DR does not exist, trigger UD */
5155 	if (!kvm_require_dr(vcpu, dr))
5156 		return 1;
5157 
5158 	if (kvm_x86_ops.get_cpl(vcpu) > 0)
5159 		goto out;
5160 
5161 	dr7 = vmcs_readl(GUEST_DR7);
5162 	if (dr7 & DR7_GD) {
5163 		/*
5164 		 * As the vm-exit takes precedence over the debug trap, we
5165 		 * need to emulate the latter, either for the host or the
5166 		 * guest debugging itself.
5167 		 */
5168 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5169 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5170 			vcpu->run->debug.arch.dr7 = dr7;
5171 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5172 			vcpu->run->debug.arch.exception = DB_VECTOR;
5173 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5174 			return 0;
5175 		} else {
5176 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5177 			return 1;
5178 		}
5179 	}
5180 
5181 	if (vcpu->guest_debug == 0) {
5182 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5183 
5184 		/*
5185 		 * No more DR vmexits; force a reload of the debug registers
5186 		 * and reenter on this instruction.  The next vmexit will
5187 		 * retrieve the full state of the debug registers.
5188 		 */
5189 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5190 		return 1;
5191 	}
5192 
5193 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5194 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5195 		unsigned long val;
5196 
5197 		kvm_get_dr(vcpu, dr, &val);
5198 		kvm_register_write(vcpu, reg, val);
5199 		err = 0;
5200 	} else {
5201 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5202 	}
5203 
5204 out:
5205 	return kvm_complete_insn_gp(vcpu, err);
5206 }
5207 
5208 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5209 {
5210 	get_debugreg(vcpu->arch.db[0], 0);
5211 	get_debugreg(vcpu->arch.db[1], 1);
5212 	get_debugreg(vcpu->arch.db[2], 2);
5213 	get_debugreg(vcpu->arch.db[3], 3);
5214 	get_debugreg(vcpu->arch.dr6, 6);
5215 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5216 
5217 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5218 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5219 }
5220 
5221 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5222 {
5223 	vmcs_writel(GUEST_DR7, val);
5224 }
5225 
5226 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5227 {
5228 	kvm_apic_update_ppr(vcpu);
5229 	return 1;
5230 }
5231 
5232 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5233 {
5234 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5235 
5236 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5237 
5238 	++vcpu->stat.irq_window_exits;
5239 	return 1;
5240 }
5241 
5242 static int handle_invlpg(struct kvm_vcpu *vcpu)
5243 {
5244 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5245 
5246 	kvm_mmu_invlpg(vcpu, exit_qualification);
5247 	return kvm_skip_emulated_instruction(vcpu);
5248 }
5249 
5250 static int handle_apic_access(struct kvm_vcpu *vcpu)
5251 {
5252 	if (likely(fasteoi)) {
5253 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5254 		int access_type, offset;
5255 
5256 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5257 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5258 		/*
5259 		 * Sane guest uses MOV to write EOI, with written value
5260 		 * not cared. So make a short-circuit here by avoiding
5261 		 * heavy instruction emulation.
5262 		 */
5263 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5264 		    (offset == APIC_EOI)) {
5265 			kvm_lapic_set_eoi(vcpu);
5266 			return kvm_skip_emulated_instruction(vcpu);
5267 		}
5268 	}
5269 	return kvm_emulate_instruction(vcpu, 0);
5270 }
5271 
5272 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5273 {
5274 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5275 	int vector = exit_qualification & 0xff;
5276 
5277 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5278 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5279 	return 1;
5280 }
5281 
5282 static int handle_apic_write(struct kvm_vcpu *vcpu)
5283 {
5284 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5285 	u32 offset = exit_qualification & 0xfff;
5286 
5287 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5288 	kvm_apic_write_nodecode(vcpu, offset);
5289 	return 1;
5290 }
5291 
5292 static int handle_task_switch(struct kvm_vcpu *vcpu)
5293 {
5294 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5295 	unsigned long exit_qualification;
5296 	bool has_error_code = false;
5297 	u32 error_code = 0;
5298 	u16 tss_selector;
5299 	int reason, type, idt_v, idt_index;
5300 
5301 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5302 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5303 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5304 
5305 	exit_qualification = vmx_get_exit_qual(vcpu);
5306 
5307 	reason = (u32)exit_qualification >> 30;
5308 	if (reason == TASK_SWITCH_GATE && idt_v) {
5309 		switch (type) {
5310 		case INTR_TYPE_NMI_INTR:
5311 			vcpu->arch.nmi_injected = false;
5312 			vmx_set_nmi_mask(vcpu, true);
5313 			break;
5314 		case INTR_TYPE_EXT_INTR:
5315 		case INTR_TYPE_SOFT_INTR:
5316 			kvm_clear_interrupt_queue(vcpu);
5317 			break;
5318 		case INTR_TYPE_HARD_EXCEPTION:
5319 			if (vmx->idt_vectoring_info &
5320 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5321 				has_error_code = true;
5322 				error_code =
5323 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5324 			}
5325 			fallthrough;
5326 		case INTR_TYPE_SOFT_EXCEPTION:
5327 			kvm_clear_exception_queue(vcpu);
5328 			break;
5329 		default:
5330 			break;
5331 		}
5332 	}
5333 	tss_selector = exit_qualification;
5334 
5335 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5336 		       type != INTR_TYPE_EXT_INTR &&
5337 		       type != INTR_TYPE_NMI_INTR))
5338 		WARN_ON(!skip_emulated_instruction(vcpu));
5339 
5340 	/*
5341 	 * TODO: What about debug traps on tss switch?
5342 	 *       Are we supposed to inject them and update dr6?
5343 	 */
5344 	return kvm_task_switch(vcpu, tss_selector,
5345 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5346 			       reason, has_error_code, error_code);
5347 }
5348 
5349 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5350 {
5351 	unsigned long exit_qualification;
5352 	gpa_t gpa;
5353 	u64 error_code;
5354 
5355 	exit_qualification = vmx_get_exit_qual(vcpu);
5356 
5357 	/*
5358 	 * EPT violation happened while executing iret from NMI,
5359 	 * "blocked by NMI" bit has to be set before next VM entry.
5360 	 * There are errata that may cause this bit to not be set:
5361 	 * AAK134, BY25.
5362 	 */
5363 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5364 			enable_vnmi &&
5365 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5366 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5367 
5368 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5369 	trace_kvm_page_fault(gpa, exit_qualification);
5370 
5371 	/* Is it a read fault? */
5372 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5373 		     ? PFERR_USER_MASK : 0;
5374 	/* Is it a write fault? */
5375 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5376 		      ? PFERR_WRITE_MASK : 0;
5377 	/* Is it a fetch fault? */
5378 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5379 		      ? PFERR_FETCH_MASK : 0;
5380 	/* ept page table entry is present? */
5381 	error_code |= (exit_qualification &
5382 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5383 			EPT_VIOLATION_EXECUTABLE))
5384 		      ? PFERR_PRESENT_MASK : 0;
5385 
5386 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5387 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5388 
5389 	vcpu->arch.exit_qualification = exit_qualification;
5390 
5391 	/*
5392 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5393 	 * a guest page fault.  We have to emulate the instruction here, because
5394 	 * if the illegal address is that of a paging structure, then
5395 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5396 	 * would also use advanced VM-exit information for EPT violations to
5397 	 * reconstruct the page fault error code.
5398 	 */
5399 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5400 		return kvm_emulate_instruction(vcpu, 0);
5401 
5402 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5403 }
5404 
5405 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5406 {
5407 	gpa_t gpa;
5408 
5409 	if (!vmx_can_emulate_instruction(vcpu, NULL, 0))
5410 		return 1;
5411 
5412 	/*
5413 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5414 	 * nGPA here instead of the required GPA.
5415 	 */
5416 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5417 	if (!is_guest_mode(vcpu) &&
5418 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5419 		trace_kvm_fast_mmio(gpa);
5420 		return kvm_skip_emulated_instruction(vcpu);
5421 	}
5422 
5423 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5424 }
5425 
5426 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5427 {
5428 	WARN_ON_ONCE(!enable_vnmi);
5429 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5430 	++vcpu->stat.nmi_window_exits;
5431 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5432 
5433 	return 1;
5434 }
5435 
5436 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5437 {
5438 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5439 	bool intr_window_requested;
5440 	unsigned count = 130;
5441 
5442 	intr_window_requested = exec_controls_get(vmx) &
5443 				CPU_BASED_INTR_WINDOW_EXITING;
5444 
5445 	while (vmx->emulation_required && count-- != 0) {
5446 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5447 			return handle_interrupt_window(&vmx->vcpu);
5448 
5449 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5450 			return 1;
5451 
5452 		if (!kvm_emulate_instruction(vcpu, 0))
5453 			return 0;
5454 
5455 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5456 		    vcpu->arch.exception.pending) {
5457 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5458 			vcpu->run->internal.suberror =
5459 						KVM_INTERNAL_ERROR_EMULATION;
5460 			vcpu->run->internal.ndata = 0;
5461 			return 0;
5462 		}
5463 
5464 		if (vcpu->arch.halt_request) {
5465 			vcpu->arch.halt_request = 0;
5466 			return kvm_vcpu_halt(vcpu);
5467 		}
5468 
5469 		/*
5470 		 * Note, return 1 and not 0, vcpu_run() will invoke
5471 		 * xfer_to_guest_mode() which will create a proper return
5472 		 * code.
5473 		 */
5474 		if (__xfer_to_guest_mode_work_pending())
5475 			return 1;
5476 	}
5477 
5478 	return 1;
5479 }
5480 
5481 static void grow_ple_window(struct kvm_vcpu *vcpu)
5482 {
5483 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5484 	unsigned int old = vmx->ple_window;
5485 
5486 	vmx->ple_window = __grow_ple_window(old, ple_window,
5487 					    ple_window_grow,
5488 					    ple_window_max);
5489 
5490 	if (vmx->ple_window != old) {
5491 		vmx->ple_window_dirty = true;
5492 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5493 					    vmx->ple_window, old);
5494 	}
5495 }
5496 
5497 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5498 {
5499 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5500 	unsigned int old = vmx->ple_window;
5501 
5502 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5503 					      ple_window_shrink,
5504 					      ple_window);
5505 
5506 	if (vmx->ple_window != old) {
5507 		vmx->ple_window_dirty = true;
5508 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5509 					    vmx->ple_window, old);
5510 	}
5511 }
5512 
5513 /*
5514  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5515  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5516  */
5517 static int handle_pause(struct kvm_vcpu *vcpu)
5518 {
5519 	if (!kvm_pause_in_guest(vcpu->kvm))
5520 		grow_ple_window(vcpu);
5521 
5522 	/*
5523 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5524 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5525 	 * never set PAUSE_EXITING and just set PLE if supported,
5526 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5527 	 */
5528 	kvm_vcpu_on_spin(vcpu, true);
5529 	return kvm_skip_emulated_instruction(vcpu);
5530 }
5531 
5532 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5533 {
5534 	return 1;
5535 }
5536 
5537 static int handle_invpcid(struct kvm_vcpu *vcpu)
5538 {
5539 	u32 vmx_instruction_info;
5540 	unsigned long type;
5541 	gva_t gva;
5542 	struct {
5543 		u64 pcid;
5544 		u64 gla;
5545 	} operand;
5546 
5547 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5548 		kvm_queue_exception(vcpu, UD_VECTOR);
5549 		return 1;
5550 	}
5551 
5552 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5553 	type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5554 
5555 	if (type > 3) {
5556 		kvm_inject_gp(vcpu, 0);
5557 		return 1;
5558 	}
5559 
5560 	/* According to the Intel instruction reference, the memory operand
5561 	 * is read even if it isn't needed (e.g., for type==all)
5562 	 */
5563 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5564 				vmx_instruction_info, false,
5565 				sizeof(operand), &gva))
5566 		return 1;
5567 
5568 	return kvm_handle_invpcid(vcpu, type, gva);
5569 }
5570 
5571 static int handle_pml_full(struct kvm_vcpu *vcpu)
5572 {
5573 	unsigned long exit_qualification;
5574 
5575 	trace_kvm_pml_full(vcpu->vcpu_id);
5576 
5577 	exit_qualification = vmx_get_exit_qual(vcpu);
5578 
5579 	/*
5580 	 * PML buffer FULL happened while executing iret from NMI,
5581 	 * "blocked by NMI" bit has to be set before next VM entry.
5582 	 */
5583 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5584 			enable_vnmi &&
5585 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5586 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5587 				GUEST_INTR_STATE_NMI);
5588 
5589 	/*
5590 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5591 	 * here.., and there's no userspace involvement needed for PML.
5592 	 */
5593 	return 1;
5594 }
5595 
5596 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5597 {
5598 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5599 
5600 	if (!vmx->req_immediate_exit &&
5601 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5602 		kvm_lapic_expired_hv_timer(vcpu);
5603 		return EXIT_FASTPATH_REENTER_GUEST;
5604 	}
5605 
5606 	return EXIT_FASTPATH_NONE;
5607 }
5608 
5609 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5610 {
5611 	handle_fastpath_preemption_timer(vcpu);
5612 	return 1;
5613 }
5614 
5615 /*
5616  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5617  * are overwritten by nested_vmx_setup() when nested=1.
5618  */
5619 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5620 {
5621 	kvm_queue_exception(vcpu, UD_VECTOR);
5622 	return 1;
5623 }
5624 
5625 #ifndef CONFIG_X86_SGX_KVM
5626 static int handle_encls(struct kvm_vcpu *vcpu)
5627 {
5628 	/*
5629 	 * SGX virtualization is disabled.  There is no software enable bit for
5630 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5631 	 * the guest from executing ENCLS (when SGX is supported by hardware).
5632 	 */
5633 	kvm_queue_exception(vcpu, UD_VECTOR);
5634 	return 1;
5635 }
5636 #endif /* CONFIG_X86_SGX_KVM */
5637 
5638 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5639 {
5640 	vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
5641 	vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
5642 	return 0;
5643 }
5644 
5645 /*
5646  * The exit handlers return 1 if the exit was handled fully and guest execution
5647  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5648  * to be done to userspace and return 0.
5649  */
5650 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5651 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5652 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5653 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5654 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5655 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5656 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5657 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5658 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5659 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5660 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5661 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5662 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
5663 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
5664 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5665 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5666 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5667 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5668 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5669 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5670 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5671 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5672 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5673 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5674 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5675 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5676 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5677 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5678 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5679 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5680 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5681 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5682 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5683 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5684 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5685 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5686 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5687 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5688 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5689 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
5690 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5691 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
5692 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5693 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5694 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
5695 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
5696 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5697 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5698 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5699 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5700 	[EXIT_REASON_ENCLS]		      = handle_encls,
5701 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5702 };
5703 
5704 static const int kvm_vmx_max_exit_handlers =
5705 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5706 
5707 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5708 			      u32 *intr_info, u32 *error_code)
5709 {
5710 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5711 
5712 	*info1 = vmx_get_exit_qual(vcpu);
5713 	if (!(vmx->exit_reason.failed_vmentry)) {
5714 		*info2 = vmx->idt_vectoring_info;
5715 		*intr_info = vmx_get_intr_info(vcpu);
5716 		if (is_exception_with_error_code(*intr_info))
5717 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5718 		else
5719 			*error_code = 0;
5720 	} else {
5721 		*info2 = 0;
5722 		*intr_info = 0;
5723 		*error_code = 0;
5724 	}
5725 }
5726 
5727 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5728 {
5729 	if (vmx->pml_pg) {
5730 		__free_page(vmx->pml_pg);
5731 		vmx->pml_pg = NULL;
5732 	}
5733 }
5734 
5735 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5736 {
5737 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5738 	u64 *pml_buf;
5739 	u16 pml_idx;
5740 
5741 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5742 
5743 	/* Do nothing if PML buffer is empty */
5744 	if (pml_idx == (PML_ENTITY_NUM - 1))
5745 		return;
5746 
5747 	/* PML index always points to next available PML buffer entity */
5748 	if (pml_idx >= PML_ENTITY_NUM)
5749 		pml_idx = 0;
5750 	else
5751 		pml_idx++;
5752 
5753 	pml_buf = page_address(vmx->pml_pg);
5754 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5755 		u64 gpa;
5756 
5757 		gpa = pml_buf[pml_idx];
5758 		WARN_ON(gpa & (PAGE_SIZE - 1));
5759 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5760 	}
5761 
5762 	/* reset PML index */
5763 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5764 }
5765 
5766 static void vmx_dump_sel(char *name, uint32_t sel)
5767 {
5768 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5769 	       name, vmcs_read16(sel),
5770 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5771 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5772 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5773 }
5774 
5775 static void vmx_dump_dtsel(char *name, uint32_t limit)
5776 {
5777 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5778 	       name, vmcs_read32(limit),
5779 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5780 }
5781 
5782 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5783 {
5784 	unsigned int i;
5785 	struct vmx_msr_entry *e;
5786 
5787 	pr_err("MSR %s:\n", name);
5788 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5789 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5790 }
5791 
5792 void dump_vmcs(struct kvm_vcpu *vcpu)
5793 {
5794 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5795 	u32 vmentry_ctl, vmexit_ctl;
5796 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5797 	unsigned long cr4;
5798 	int efer_slot;
5799 
5800 	if (!dump_invalid_vmcs) {
5801 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5802 		return;
5803 	}
5804 
5805 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5806 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5807 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5808 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5809 	cr4 = vmcs_readl(GUEST_CR4);
5810 	secondary_exec_control = 0;
5811 	if (cpu_has_secondary_exec_ctrls())
5812 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5813 
5814 	pr_err("*** Guest State ***\n");
5815 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5816 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5817 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5818 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5819 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5820 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5821 	if (cpu_has_vmx_ept()) {
5822 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5823 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5824 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5825 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5826 	}
5827 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5828 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5829 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5830 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5831 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5832 	       vmcs_readl(GUEST_SYSENTER_ESP),
5833 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5834 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5835 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5836 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5837 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5838 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5839 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5840 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5841 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5842 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5843 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5844 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5845 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5846 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5847 	else if (efer_slot >= 0)
5848 		pr_err("EFER= 0x%016llx (autoload)\n",
5849 		       vmx->msr_autoload.guest.val[efer_slot].value);
5850 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5851 		pr_err("EFER= 0x%016llx (effective)\n",
5852 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
5853 	else
5854 		pr_err("EFER= 0x%016llx (effective)\n",
5855 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5856 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5857 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5858 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5859 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5860 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5861 	if (cpu_has_load_perf_global_ctrl() &&
5862 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5863 		pr_err("PerfGlobCtl = 0x%016llx\n",
5864 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5865 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5866 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5867 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5868 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5869 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5870 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5871 		pr_err("InterruptStatus = %04x\n",
5872 		       vmcs_read16(GUEST_INTR_STATUS));
5873 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5874 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5875 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5876 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5877 
5878 	pr_err("*** Host State ***\n");
5879 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5880 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5881 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5882 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5883 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5884 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5885 	       vmcs_read16(HOST_TR_SELECTOR));
5886 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5887 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5888 	       vmcs_readl(HOST_TR_BASE));
5889 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5890 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5891 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5892 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5893 	       vmcs_readl(HOST_CR4));
5894 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5895 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5896 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5897 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5898 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
5899 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
5900 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
5901 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
5902 	if (cpu_has_load_perf_global_ctrl() &&
5903 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5904 		pr_err("PerfGlobCtl = 0x%016llx\n",
5905 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5906 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
5907 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
5908 
5909 	pr_err("*** Control State ***\n");
5910 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5911 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5912 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5913 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5914 	       vmcs_read32(EXCEPTION_BITMAP),
5915 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5916 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5917 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5918 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5919 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5920 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5921 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5922 	       vmcs_read32(VM_EXIT_INTR_INFO),
5923 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5924 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5925 	pr_err("        reason=%08x qualification=%016lx\n",
5926 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5927 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5928 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5929 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5930 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5931 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5932 		pr_err("TSC Multiplier = 0x%016llx\n",
5933 		       vmcs_read64(TSC_MULTIPLIER));
5934 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5935 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5936 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5937 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5938 		}
5939 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5940 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5941 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5942 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5943 	}
5944 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5945 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5946 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5947 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5948 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5949 		pr_err("PLE Gap=%08x Window=%08x\n",
5950 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5951 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5952 		pr_err("Virtual processor ID = 0x%04x\n",
5953 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5954 }
5955 
5956 /*
5957  * The guest has exited.  See if we can fix it or if we need userspace
5958  * assistance.
5959  */
5960 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5961 {
5962 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5963 	union vmx_exit_reason exit_reason = vmx->exit_reason;
5964 	u32 vectoring_info = vmx->idt_vectoring_info;
5965 	u16 exit_handler_index;
5966 
5967 	/*
5968 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5969 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5970 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5971 	 * mode as if vcpus is in root mode, the PML buffer must has been
5972 	 * flushed already.  Note, PML is never enabled in hardware while
5973 	 * running L2.
5974 	 */
5975 	if (enable_pml && !is_guest_mode(vcpu))
5976 		vmx_flush_pml_buffer(vcpu);
5977 
5978 	/*
5979 	 * We should never reach this point with a pending nested VM-Enter, and
5980 	 * more specifically emulation of L2 due to invalid guest state (see
5981 	 * below) should never happen as that means we incorrectly allowed a
5982 	 * nested VM-Enter with an invalid vmcs12.
5983 	 */
5984 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
5985 
5986 	/* If guest state is invalid, start emulating */
5987 	if (vmx->emulation_required)
5988 		return handle_invalid_guest_state(vcpu);
5989 
5990 	if (is_guest_mode(vcpu)) {
5991 		/*
5992 		 * PML is never enabled when running L2, bail immediately if a
5993 		 * PML full exit occurs as something is horribly wrong.
5994 		 */
5995 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
5996 			goto unexpected_vmexit;
5997 
5998 		/*
5999 		 * The host physical addresses of some pages of guest memory
6000 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6001 		 * Page). The CPU may write to these pages via their host
6002 		 * physical address while L2 is running, bypassing any
6003 		 * address-translation-based dirty tracking (e.g. EPT write
6004 		 * protection).
6005 		 *
6006 		 * Mark them dirty on every exit from L2 to prevent them from
6007 		 * getting out of sync with dirty tracking.
6008 		 */
6009 		nested_mark_vmcs12_pages_dirty(vcpu);
6010 
6011 		if (nested_vmx_reflect_vmexit(vcpu))
6012 			return 1;
6013 	}
6014 
6015 	if (exit_reason.failed_vmentry) {
6016 		dump_vmcs(vcpu);
6017 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6018 		vcpu->run->fail_entry.hardware_entry_failure_reason
6019 			= exit_reason.full;
6020 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6021 		return 0;
6022 	}
6023 
6024 	if (unlikely(vmx->fail)) {
6025 		dump_vmcs(vcpu);
6026 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6027 		vcpu->run->fail_entry.hardware_entry_failure_reason
6028 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6029 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6030 		return 0;
6031 	}
6032 
6033 	/*
6034 	 * Note:
6035 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6036 	 * delivery event since it indicates guest is accessing MMIO.
6037 	 * The vm-exit can be triggered again after return to guest that
6038 	 * will cause infinite loop.
6039 	 */
6040 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6041 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6042 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6043 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6044 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6045 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
6046 		int ndata = 3;
6047 
6048 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6049 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6050 		vcpu->run->internal.data[0] = vectoring_info;
6051 		vcpu->run->internal.data[1] = exit_reason.full;
6052 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6053 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6054 			vcpu->run->internal.data[ndata++] =
6055 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6056 		}
6057 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6058 		vcpu->run->internal.ndata = ndata;
6059 		return 0;
6060 	}
6061 
6062 	if (unlikely(!enable_vnmi &&
6063 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6064 		if (!vmx_interrupt_blocked(vcpu)) {
6065 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6066 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6067 			   vcpu->arch.nmi_pending) {
6068 			/*
6069 			 * This CPU don't support us in finding the end of an
6070 			 * NMI-blocked window if the guest runs with IRQs
6071 			 * disabled. So we pull the trigger after 1 s of
6072 			 * futile waiting, but inform the user about this.
6073 			 */
6074 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6075 			       "state on VCPU %d after 1 s timeout\n",
6076 			       __func__, vcpu->vcpu_id);
6077 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6078 		}
6079 	}
6080 
6081 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6082 		return 1;
6083 
6084 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6085 		goto unexpected_vmexit;
6086 #ifdef CONFIG_RETPOLINE
6087 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6088 		return kvm_emulate_wrmsr(vcpu);
6089 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6090 		return handle_preemption_timer(vcpu);
6091 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6092 		return handle_interrupt_window(vcpu);
6093 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6094 		return handle_external_interrupt(vcpu);
6095 	else if (exit_reason.basic == EXIT_REASON_HLT)
6096 		return kvm_emulate_halt(vcpu);
6097 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6098 		return handle_ept_misconfig(vcpu);
6099 #endif
6100 
6101 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6102 						kvm_vmx_max_exit_handlers);
6103 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6104 		goto unexpected_vmexit;
6105 
6106 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6107 
6108 unexpected_vmexit:
6109 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6110 		    exit_reason.full);
6111 	dump_vmcs(vcpu);
6112 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6113 	vcpu->run->internal.suberror =
6114 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6115 	vcpu->run->internal.ndata = 2;
6116 	vcpu->run->internal.data[0] = exit_reason.full;
6117 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6118 	return 0;
6119 }
6120 
6121 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6122 {
6123 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6124 
6125 	/*
6126 	 * Even when current exit reason is handled by KVM internally, we
6127 	 * still need to exit to user space when bus lock detected to inform
6128 	 * that there is a bus lock in guest.
6129 	 */
6130 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6131 		if (ret > 0)
6132 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6133 
6134 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6135 		return 0;
6136 	}
6137 	return ret;
6138 }
6139 
6140 /*
6141  * Software based L1D cache flush which is used when microcode providing
6142  * the cache control MSR is not loaded.
6143  *
6144  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6145  * flush it is required to read in 64 KiB because the replacement algorithm
6146  * is not exactly LRU. This could be sized at runtime via topology
6147  * information but as all relevant affected CPUs have 32KiB L1D cache size
6148  * there is no point in doing so.
6149  */
6150 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6151 {
6152 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6153 
6154 	/*
6155 	 * This code is only executed when the the flush mode is 'cond' or
6156 	 * 'always'
6157 	 */
6158 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6159 		bool flush_l1d;
6160 
6161 		/*
6162 		 * Clear the per-vcpu flush bit, it gets set again
6163 		 * either from vcpu_run() or from one of the unsafe
6164 		 * VMEXIT handlers.
6165 		 */
6166 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6167 		vcpu->arch.l1tf_flush_l1d = false;
6168 
6169 		/*
6170 		 * Clear the per-cpu flush bit, it gets set again from
6171 		 * the interrupt handlers.
6172 		 */
6173 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6174 		kvm_clear_cpu_l1tf_flush_l1d();
6175 
6176 		if (!flush_l1d)
6177 			return;
6178 	}
6179 
6180 	vcpu->stat.l1d_flush++;
6181 
6182 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6183 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6184 		return;
6185 	}
6186 
6187 	asm volatile(
6188 		/* First ensure the pages are in the TLB */
6189 		"xorl	%%eax, %%eax\n"
6190 		".Lpopulate_tlb:\n\t"
6191 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6192 		"addl	$4096, %%eax\n\t"
6193 		"cmpl	%%eax, %[size]\n\t"
6194 		"jne	.Lpopulate_tlb\n\t"
6195 		"xorl	%%eax, %%eax\n\t"
6196 		"cpuid\n\t"
6197 		/* Now fill the cache */
6198 		"xorl	%%eax, %%eax\n"
6199 		".Lfill_cache:\n"
6200 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6201 		"addl	$64, %%eax\n\t"
6202 		"cmpl	%%eax, %[size]\n\t"
6203 		"jne	.Lfill_cache\n\t"
6204 		"lfence\n"
6205 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6206 		    [size] "r" (size)
6207 		: "eax", "ebx", "ecx", "edx");
6208 }
6209 
6210 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6211 {
6212 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6213 	int tpr_threshold;
6214 
6215 	if (is_guest_mode(vcpu) &&
6216 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6217 		return;
6218 
6219 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6220 	if (is_guest_mode(vcpu))
6221 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6222 	else
6223 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6224 }
6225 
6226 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6227 {
6228 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6229 	u32 sec_exec_control;
6230 
6231 	if (!lapic_in_kernel(vcpu))
6232 		return;
6233 
6234 	if (!flexpriority_enabled &&
6235 	    !cpu_has_vmx_virtualize_x2apic_mode())
6236 		return;
6237 
6238 	/* Postpone execution until vmcs01 is the current VMCS. */
6239 	if (is_guest_mode(vcpu)) {
6240 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6241 		return;
6242 	}
6243 
6244 	sec_exec_control = secondary_exec_controls_get(vmx);
6245 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6246 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6247 
6248 	switch (kvm_get_apic_mode(vcpu)) {
6249 	case LAPIC_MODE_INVALID:
6250 		WARN_ONCE(true, "Invalid local APIC state");
6251 	case LAPIC_MODE_DISABLED:
6252 		break;
6253 	case LAPIC_MODE_XAPIC:
6254 		if (flexpriority_enabled) {
6255 			sec_exec_control |=
6256 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6257 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6258 
6259 			/*
6260 			 * Flush the TLB, reloading the APIC access page will
6261 			 * only do so if its physical address has changed, but
6262 			 * the guest may have inserted a non-APIC mapping into
6263 			 * the TLB while the APIC access page was disabled.
6264 			 */
6265 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6266 		}
6267 		break;
6268 	case LAPIC_MODE_X2APIC:
6269 		if (cpu_has_vmx_virtualize_x2apic_mode())
6270 			sec_exec_control |=
6271 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6272 		break;
6273 	}
6274 	secondary_exec_controls_set(vmx, sec_exec_control);
6275 
6276 	vmx_update_msr_bitmap(vcpu);
6277 }
6278 
6279 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6280 {
6281 	struct page *page;
6282 
6283 	/* Defer reload until vmcs01 is the current VMCS. */
6284 	if (is_guest_mode(vcpu)) {
6285 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6286 		return;
6287 	}
6288 
6289 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6290 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6291 		return;
6292 
6293 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6294 	if (is_error_page(page))
6295 		return;
6296 
6297 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6298 	vmx_flush_tlb_current(vcpu);
6299 
6300 	/*
6301 	 * Do not pin apic access page in memory, the MMU notifier
6302 	 * will call us again if it is migrated or swapped out.
6303 	 */
6304 	put_page(page);
6305 }
6306 
6307 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6308 {
6309 	u16 status;
6310 	u8 old;
6311 
6312 	if (max_isr == -1)
6313 		max_isr = 0;
6314 
6315 	status = vmcs_read16(GUEST_INTR_STATUS);
6316 	old = status >> 8;
6317 	if (max_isr != old) {
6318 		status &= 0xff;
6319 		status |= max_isr << 8;
6320 		vmcs_write16(GUEST_INTR_STATUS, status);
6321 	}
6322 }
6323 
6324 static void vmx_set_rvi(int vector)
6325 {
6326 	u16 status;
6327 	u8 old;
6328 
6329 	if (vector == -1)
6330 		vector = 0;
6331 
6332 	status = vmcs_read16(GUEST_INTR_STATUS);
6333 	old = (u8)status & 0xff;
6334 	if ((u8)vector != old) {
6335 		status &= ~0xff;
6336 		status |= (u8)vector;
6337 		vmcs_write16(GUEST_INTR_STATUS, status);
6338 	}
6339 }
6340 
6341 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6342 {
6343 	/*
6344 	 * When running L2, updating RVI is only relevant when
6345 	 * vmcs12 virtual-interrupt-delivery enabled.
6346 	 * However, it can be enabled only when L1 also
6347 	 * intercepts external-interrupts and in that case
6348 	 * we should not update vmcs02 RVI but instead intercept
6349 	 * interrupt. Therefore, do nothing when running L2.
6350 	 */
6351 	if (!is_guest_mode(vcpu))
6352 		vmx_set_rvi(max_irr);
6353 }
6354 
6355 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6356 {
6357 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6358 	int max_irr;
6359 	bool max_irr_updated;
6360 
6361 	WARN_ON(!vcpu->arch.apicv_active);
6362 	if (pi_test_on(&vmx->pi_desc)) {
6363 		pi_clear_on(&vmx->pi_desc);
6364 		/*
6365 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6366 		 * But on x86 this is just a compiler barrier anyway.
6367 		 */
6368 		smp_mb__after_atomic();
6369 		max_irr_updated =
6370 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6371 
6372 		/*
6373 		 * If we are running L2 and L1 has a new pending interrupt
6374 		 * which can be injected, we should re-evaluate
6375 		 * what should be done with this new L1 interrupt.
6376 		 * If L1 intercepts external-interrupts, we should
6377 		 * exit from L2 to L1. Otherwise, interrupt should be
6378 		 * delivered directly to L2.
6379 		 */
6380 		if (is_guest_mode(vcpu) && max_irr_updated) {
6381 			if (nested_exit_on_intr(vcpu))
6382 				kvm_vcpu_exiting_guest_mode(vcpu);
6383 			else
6384 				kvm_make_request(KVM_REQ_EVENT, vcpu);
6385 		}
6386 	} else {
6387 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6388 	}
6389 	vmx_hwapic_irr_update(vcpu, max_irr);
6390 	return max_irr;
6391 }
6392 
6393 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6394 {
6395 	if (!kvm_vcpu_apicv_active(vcpu))
6396 		return;
6397 
6398 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6399 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6400 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6401 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6402 }
6403 
6404 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6405 {
6406 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6407 
6408 	pi_clear_on(&vmx->pi_desc);
6409 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6410 }
6411 
6412 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6413 
6414 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6415 					unsigned long entry)
6416 {
6417 	kvm_before_interrupt(vcpu);
6418 	vmx_do_interrupt_nmi_irqoff(entry);
6419 	kvm_after_interrupt(vcpu);
6420 }
6421 
6422 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6423 {
6424 	const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6425 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6426 
6427 	/* if exit due to PF check for async PF */
6428 	if (is_page_fault(intr_info))
6429 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6430 	/* Handle machine checks before interrupts are enabled */
6431 	else if (is_machine_check(intr_info))
6432 		kvm_machine_check();
6433 	/* We need to handle NMIs before interrupts are enabled */
6434 	else if (is_nmi(intr_info))
6435 		handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6436 }
6437 
6438 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6439 {
6440 	u32 intr_info = vmx_get_intr_info(vcpu);
6441 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6442 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6443 
6444 	if (WARN_ONCE(!is_external_intr(intr_info),
6445 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6446 		return;
6447 
6448 	handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6449 }
6450 
6451 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6452 {
6453 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6454 
6455 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6456 		handle_external_interrupt_irqoff(vcpu);
6457 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6458 		handle_exception_nmi_irqoff(vmx);
6459 }
6460 
6461 /*
6462  * The kvm parameter can be NULL (module initialization, or invocation before
6463  * VM creation). Be sure to check the kvm parameter before using it.
6464  */
6465 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6466 {
6467 	switch (index) {
6468 	case MSR_IA32_SMBASE:
6469 		/*
6470 		 * We cannot do SMM unless we can run the guest in big
6471 		 * real mode.
6472 		 */
6473 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6474 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6475 		return nested;
6476 	case MSR_AMD64_VIRT_SPEC_CTRL:
6477 		/* This is AMD only.  */
6478 		return false;
6479 	default:
6480 		return true;
6481 	}
6482 }
6483 
6484 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6485 {
6486 	u32 exit_intr_info;
6487 	bool unblock_nmi;
6488 	u8 vector;
6489 	bool idtv_info_valid;
6490 
6491 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6492 
6493 	if (enable_vnmi) {
6494 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6495 			return;
6496 
6497 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6498 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6499 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6500 		/*
6501 		 * SDM 3: 27.7.1.2 (September 2008)
6502 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6503 		 * a guest IRET fault.
6504 		 * SDM 3: 23.2.2 (September 2008)
6505 		 * Bit 12 is undefined in any of the following cases:
6506 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6507 		 *   information field.
6508 		 *  If the VM exit is due to a double fault.
6509 		 */
6510 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6511 		    vector != DF_VECTOR && !idtv_info_valid)
6512 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6513 				      GUEST_INTR_STATE_NMI);
6514 		else
6515 			vmx->loaded_vmcs->nmi_known_unmasked =
6516 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6517 				  & GUEST_INTR_STATE_NMI);
6518 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6519 		vmx->loaded_vmcs->vnmi_blocked_time +=
6520 			ktime_to_ns(ktime_sub(ktime_get(),
6521 					      vmx->loaded_vmcs->entry_time));
6522 }
6523 
6524 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6525 				      u32 idt_vectoring_info,
6526 				      int instr_len_field,
6527 				      int error_code_field)
6528 {
6529 	u8 vector;
6530 	int type;
6531 	bool idtv_info_valid;
6532 
6533 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6534 
6535 	vcpu->arch.nmi_injected = false;
6536 	kvm_clear_exception_queue(vcpu);
6537 	kvm_clear_interrupt_queue(vcpu);
6538 
6539 	if (!idtv_info_valid)
6540 		return;
6541 
6542 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6543 
6544 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6545 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6546 
6547 	switch (type) {
6548 	case INTR_TYPE_NMI_INTR:
6549 		vcpu->arch.nmi_injected = true;
6550 		/*
6551 		 * SDM 3: 27.7.1.2 (September 2008)
6552 		 * Clear bit "block by NMI" before VM entry if a NMI
6553 		 * delivery faulted.
6554 		 */
6555 		vmx_set_nmi_mask(vcpu, false);
6556 		break;
6557 	case INTR_TYPE_SOFT_EXCEPTION:
6558 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6559 		fallthrough;
6560 	case INTR_TYPE_HARD_EXCEPTION:
6561 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6562 			u32 err = vmcs_read32(error_code_field);
6563 			kvm_requeue_exception_e(vcpu, vector, err);
6564 		} else
6565 			kvm_requeue_exception(vcpu, vector);
6566 		break;
6567 	case INTR_TYPE_SOFT_INTR:
6568 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6569 		fallthrough;
6570 	case INTR_TYPE_EXT_INTR:
6571 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6572 		break;
6573 	default:
6574 		break;
6575 	}
6576 }
6577 
6578 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6579 {
6580 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6581 				  VM_EXIT_INSTRUCTION_LEN,
6582 				  IDT_VECTORING_ERROR_CODE);
6583 }
6584 
6585 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6586 {
6587 	__vmx_complete_interrupts(vcpu,
6588 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6589 				  VM_ENTRY_INSTRUCTION_LEN,
6590 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6591 
6592 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6593 }
6594 
6595 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6596 {
6597 	int i, nr_msrs;
6598 	struct perf_guest_switch_msr *msrs;
6599 
6600 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6601 	msrs = perf_guest_get_msrs(&nr_msrs);
6602 	if (!msrs)
6603 		return;
6604 
6605 	for (i = 0; i < nr_msrs; i++)
6606 		if (msrs[i].host == msrs[i].guest)
6607 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6608 		else
6609 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6610 					msrs[i].host, false);
6611 }
6612 
6613 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6614 {
6615 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6616 	u64 tscl;
6617 	u32 delta_tsc;
6618 
6619 	if (vmx->req_immediate_exit) {
6620 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6621 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6622 	} else if (vmx->hv_deadline_tsc != -1) {
6623 		tscl = rdtsc();
6624 		if (vmx->hv_deadline_tsc > tscl)
6625 			/* set_hv_timer ensures the delta fits in 32-bits */
6626 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6627 				cpu_preemption_timer_multi);
6628 		else
6629 			delta_tsc = 0;
6630 
6631 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6632 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6633 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6634 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6635 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6636 	}
6637 }
6638 
6639 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6640 {
6641 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6642 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6643 		vmcs_writel(HOST_RSP, host_rsp);
6644 	}
6645 }
6646 
6647 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6648 {
6649 	switch (to_vmx(vcpu)->exit_reason.basic) {
6650 	case EXIT_REASON_MSR_WRITE:
6651 		return handle_fastpath_set_msr_irqoff(vcpu);
6652 	case EXIT_REASON_PREEMPTION_TIMER:
6653 		return handle_fastpath_preemption_timer(vcpu);
6654 	default:
6655 		return EXIT_FASTPATH_NONE;
6656 	}
6657 }
6658 
6659 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6660 					struct vcpu_vmx *vmx)
6661 {
6662 	kvm_guest_enter_irqoff();
6663 
6664 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6665 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6666 		vmx_l1d_flush(vcpu);
6667 	else if (static_branch_unlikely(&mds_user_clear))
6668 		mds_clear_cpu_buffers();
6669 
6670 	if (vcpu->arch.cr2 != native_read_cr2())
6671 		native_write_cr2(vcpu->arch.cr2);
6672 
6673 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6674 				   vmx->loaded_vmcs->launched);
6675 
6676 	vcpu->arch.cr2 = native_read_cr2();
6677 
6678 	kvm_guest_exit_irqoff();
6679 }
6680 
6681 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6682 {
6683 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6684 	unsigned long cr3, cr4;
6685 
6686 	/* Record the guest's net vcpu time for enforced NMI injections. */
6687 	if (unlikely(!enable_vnmi &&
6688 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6689 		vmx->loaded_vmcs->entry_time = ktime_get();
6690 
6691 	/* Don't enter VMX if guest state is invalid, let the exit handler
6692 	   start emulation until we arrive back to a valid state */
6693 	if (vmx->emulation_required)
6694 		return EXIT_FASTPATH_NONE;
6695 
6696 	trace_kvm_entry(vcpu);
6697 
6698 	if (vmx->ple_window_dirty) {
6699 		vmx->ple_window_dirty = false;
6700 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6701 	}
6702 
6703 	/*
6704 	 * We did this in prepare_switch_to_guest, because it needs to
6705 	 * be within srcu_read_lock.
6706 	 */
6707 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6708 
6709 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6710 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6711 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6712 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6713 
6714 	cr3 = __get_current_cr3_fast();
6715 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6716 		vmcs_writel(HOST_CR3, cr3);
6717 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6718 	}
6719 
6720 	cr4 = cr4_read_shadow();
6721 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6722 		vmcs_writel(HOST_CR4, cr4);
6723 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6724 	}
6725 
6726 	/* When single-stepping over STI and MOV SS, we must clear the
6727 	 * corresponding interruptibility bits in the guest state. Otherwise
6728 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6729 	 * exceptions being set, but that's not correct for the guest debugging
6730 	 * case. */
6731 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6732 		vmx_set_interrupt_shadow(vcpu, 0);
6733 
6734 	kvm_load_guest_xsave_state(vcpu);
6735 
6736 	pt_guest_enter(vmx);
6737 
6738 	atomic_switch_perf_msrs(vmx);
6739 	if (intel_pmu_lbr_is_enabled(vcpu))
6740 		vmx_passthrough_lbr_msrs(vcpu);
6741 
6742 	if (enable_preemption_timer)
6743 		vmx_update_hv_timer(vcpu);
6744 
6745 	kvm_wait_lapic_expire(vcpu);
6746 
6747 	/*
6748 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6749 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6750 	 * is no need to worry about the conditional branch over the wrmsr
6751 	 * being speculatively taken.
6752 	 */
6753 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6754 
6755 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
6756 	vmx_vcpu_enter_exit(vcpu, vmx);
6757 
6758 	/*
6759 	 * We do not use IBRS in the kernel. If this vCPU has used the
6760 	 * SPEC_CTRL MSR it may have left it on; save the value and
6761 	 * turn it off. This is much more efficient than blindly adding
6762 	 * it to the atomic save/restore list. Especially as the former
6763 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6764 	 *
6765 	 * For non-nested case:
6766 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6767 	 * save it.
6768 	 *
6769 	 * For nested case:
6770 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6771 	 * save it.
6772 	 */
6773 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6774 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6775 
6776 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6777 
6778 	/* All fields are clean at this point */
6779 	if (static_branch_unlikely(&enable_evmcs)) {
6780 		current_evmcs->hv_clean_fields |=
6781 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6782 
6783 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6784 	}
6785 
6786 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6787 	if (vmx->host_debugctlmsr)
6788 		update_debugctlmsr(vmx->host_debugctlmsr);
6789 
6790 #ifndef CONFIG_X86_64
6791 	/*
6792 	 * The sysexit path does not restore ds/es, so we must set them to
6793 	 * a reasonable value ourselves.
6794 	 *
6795 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6796 	 * function may be executed in interrupt context, which saves and
6797 	 * restore segments around it, nullifying its effect.
6798 	 */
6799 	loadsegment(ds, __USER_DS);
6800 	loadsegment(es, __USER_DS);
6801 #endif
6802 
6803 	vmx_register_cache_reset(vcpu);
6804 
6805 	pt_guest_exit(vmx);
6806 
6807 	kvm_load_host_xsave_state(vcpu);
6808 
6809 	vmx->nested.nested_run_pending = 0;
6810 	vmx->idt_vectoring_info = 0;
6811 
6812 	if (unlikely(vmx->fail)) {
6813 		vmx->exit_reason.full = 0xdead;
6814 		return EXIT_FASTPATH_NONE;
6815 	}
6816 
6817 	vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6818 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6819 		kvm_machine_check();
6820 
6821 	if (likely(!vmx->exit_reason.failed_vmentry))
6822 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6823 
6824 	trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX);
6825 
6826 	if (unlikely(vmx->exit_reason.failed_vmentry))
6827 		return EXIT_FASTPATH_NONE;
6828 
6829 	vmx->loaded_vmcs->launched = 1;
6830 
6831 	vmx_recover_nmi_blocking(vmx);
6832 	vmx_complete_interrupts(vmx);
6833 
6834 	if (is_guest_mode(vcpu))
6835 		return EXIT_FASTPATH_NONE;
6836 
6837 	return vmx_exit_handlers_fastpath(vcpu);
6838 }
6839 
6840 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6841 {
6842 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6843 
6844 	if (enable_pml)
6845 		vmx_destroy_pml_buffer(vmx);
6846 	free_vpid(vmx->vpid);
6847 	nested_vmx_free_vcpu(vcpu);
6848 	free_loaded_vmcs(vmx->loaded_vmcs);
6849 }
6850 
6851 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6852 {
6853 	struct vmx_uret_msr *tsx_ctrl;
6854 	struct vcpu_vmx *vmx;
6855 	int i, cpu, err;
6856 
6857 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6858 	vmx = to_vmx(vcpu);
6859 
6860 	err = -ENOMEM;
6861 
6862 	vmx->vpid = allocate_vpid();
6863 
6864 	/*
6865 	 * If PML is turned on, failure on enabling PML just results in failure
6866 	 * of creating the vcpu, therefore we can simplify PML logic (by
6867 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6868 	 * for the guest), etc.
6869 	 */
6870 	if (enable_pml) {
6871 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6872 		if (!vmx->pml_pg)
6873 			goto free_vpid;
6874 	}
6875 
6876 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
6877 		vmx->guest_uret_msrs[i].data = 0;
6878 		vmx->guest_uret_msrs[i].mask = -1ull;
6879 	}
6880 	if (boot_cpu_has(X86_FEATURE_RTM)) {
6881 		/*
6882 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
6883 		 * Keep the host value unchanged to avoid changing CPUID bits
6884 		 * under the host kernel's feet.
6885 		 */
6886 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
6887 		if (tsx_ctrl)
6888 			vmx->guest_uret_msrs[i].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6889 	}
6890 
6891 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6892 	if (err < 0)
6893 		goto free_pml;
6894 
6895 	/* The MSR bitmap starts with all ones */
6896 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6897 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6898 
6899 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6900 #ifdef CONFIG_X86_64
6901 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6902 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6903 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6904 #endif
6905 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6906 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6907 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6908 	if (kvm_cstate_in_guest(vcpu->kvm)) {
6909 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6910 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6911 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6912 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6913 	}
6914 	vmx->msr_bitmap_mode = 0;
6915 
6916 	vmx->loaded_vmcs = &vmx->vmcs01;
6917 	cpu = get_cpu();
6918 	vmx_vcpu_load(vcpu, cpu);
6919 	vcpu->cpu = cpu;
6920 	init_vmcs(vmx);
6921 	vmx_vcpu_put(vcpu);
6922 	put_cpu();
6923 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
6924 		err = alloc_apic_access_page(vcpu->kvm);
6925 		if (err)
6926 			goto free_vmcs;
6927 	}
6928 
6929 	if (enable_ept && !enable_unrestricted_guest) {
6930 		err = init_rmode_identity_map(vcpu->kvm);
6931 		if (err)
6932 			goto free_vmcs;
6933 	}
6934 
6935 	if (nested)
6936 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
6937 	else
6938 		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6939 
6940 	vcpu_setup_sgx_lepubkeyhash(vcpu);
6941 
6942 	vmx->nested.posted_intr_nv = -1;
6943 	vmx->nested.current_vmptr = -1ull;
6944 
6945 	vcpu->arch.microcode_version = 0x100000000ULL;
6946 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6947 
6948 	/*
6949 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6950 	 * or POSTED_INTR_WAKEUP_VECTOR.
6951 	 */
6952 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6953 	vmx->pi_desc.sn = 1;
6954 
6955 #if IS_ENABLED(CONFIG_HYPERV)
6956 	vmx->hv_root_ept = INVALID_PAGE;
6957 #endif
6958 	return 0;
6959 
6960 free_vmcs:
6961 	free_loaded_vmcs(vmx->loaded_vmcs);
6962 free_pml:
6963 	vmx_destroy_pml_buffer(vmx);
6964 free_vpid:
6965 	free_vpid(vmx->vpid);
6966 	return err;
6967 }
6968 
6969 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6970 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6971 
6972 static int vmx_vm_init(struct kvm *kvm)
6973 {
6974 #if IS_ENABLED(CONFIG_HYPERV)
6975 	spin_lock_init(&to_kvm_vmx(kvm)->hv_root_ept_lock);
6976 #endif
6977 
6978 	if (!ple_gap)
6979 		kvm->arch.pause_in_guest = true;
6980 
6981 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6982 		switch (l1tf_mitigation) {
6983 		case L1TF_MITIGATION_OFF:
6984 		case L1TF_MITIGATION_FLUSH_NOWARN:
6985 			/* 'I explicitly don't care' is set */
6986 			break;
6987 		case L1TF_MITIGATION_FLUSH:
6988 		case L1TF_MITIGATION_FLUSH_NOSMT:
6989 		case L1TF_MITIGATION_FULL:
6990 			/*
6991 			 * Warn upon starting the first VM in a potentially
6992 			 * insecure environment.
6993 			 */
6994 			if (sched_smt_active())
6995 				pr_warn_once(L1TF_MSG_SMT);
6996 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6997 				pr_warn_once(L1TF_MSG_L1D);
6998 			break;
6999 		case L1TF_MITIGATION_FULL_FORCE:
7000 			/* Flush is enforced */
7001 			break;
7002 		}
7003 	}
7004 	kvm_apicv_init(kvm, enable_apicv);
7005 	return 0;
7006 }
7007 
7008 static int __init vmx_check_processor_compat(void)
7009 {
7010 	struct vmcs_config vmcs_conf;
7011 	struct vmx_capability vmx_cap;
7012 
7013 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7014 	    !this_cpu_has(X86_FEATURE_VMX)) {
7015 		pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7016 		return -EIO;
7017 	}
7018 
7019 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7020 		return -EIO;
7021 	if (nested)
7022 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7023 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7024 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7025 				smp_processor_id());
7026 		return -EIO;
7027 	}
7028 	return 0;
7029 }
7030 
7031 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7032 {
7033 	u8 cache;
7034 	u64 ipat = 0;
7035 
7036 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7037 	 * memory aliases with conflicting memory types and sometimes MCEs.
7038 	 * We have to be careful as to what are honored and when.
7039 	 *
7040 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7041 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7042 	 * This was historically the source of MCEs and we want to be
7043 	 * conservative.
7044 	 *
7045 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7046 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7047 	 * EPT memory type is set to WB.  The effective memory type is forced
7048 	 * WB.
7049 	 *
7050 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7051 	 * EPT memory type is used to emulate guest CD/MTRR.
7052 	 */
7053 
7054 	if (is_mmio) {
7055 		cache = MTRR_TYPE_UNCACHABLE;
7056 		goto exit;
7057 	}
7058 
7059 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7060 		ipat = VMX_EPT_IPAT_BIT;
7061 		cache = MTRR_TYPE_WRBACK;
7062 		goto exit;
7063 	}
7064 
7065 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7066 		ipat = VMX_EPT_IPAT_BIT;
7067 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7068 			cache = MTRR_TYPE_WRBACK;
7069 		else
7070 			cache = MTRR_TYPE_UNCACHABLE;
7071 		goto exit;
7072 	}
7073 
7074 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7075 
7076 exit:
7077 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7078 }
7079 
7080 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7081 {
7082 	/*
7083 	 * These bits in the secondary execution controls field
7084 	 * are dynamic, the others are mostly based on the hypervisor
7085 	 * architecture and the guest's CPUID.  Do not touch the
7086 	 * dynamic bits.
7087 	 */
7088 	u32 mask =
7089 		SECONDARY_EXEC_SHADOW_VMCS |
7090 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7091 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7092 		SECONDARY_EXEC_DESC;
7093 
7094 	u32 new_ctl = vmx->secondary_exec_control;
7095 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7096 
7097 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7098 }
7099 
7100 /*
7101  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7102  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7103  */
7104 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7105 {
7106 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7107 	struct kvm_cpuid_entry2 *entry;
7108 
7109 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7110 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7111 
7112 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7113 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7114 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7115 } while (0)
7116 
7117 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7118 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7119 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7120 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7121 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7122 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7123 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7124 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7125 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7126 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7127 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7128 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7129 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7130 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7131 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7132 
7133 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7134 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7135 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7136 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7137 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7138 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7139 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7140 
7141 #undef cr4_fixed1_update
7142 }
7143 
7144 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7145 {
7146 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7147 
7148 	if (kvm_mpx_supported()) {
7149 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7150 
7151 		if (mpx_enabled) {
7152 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7153 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7154 		} else {
7155 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7156 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7157 		}
7158 	}
7159 }
7160 
7161 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7162 {
7163 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7164 	struct kvm_cpuid_entry2 *best = NULL;
7165 	int i;
7166 
7167 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7168 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7169 		if (!best)
7170 			return;
7171 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7172 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7173 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7174 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7175 	}
7176 
7177 	/* Get the number of configurable Address Ranges for filtering */
7178 	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7179 						PT_CAP_num_address_ranges);
7180 
7181 	/* Initialize and clear the no dependency bits */
7182 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7183 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7184 
7185 	/*
7186 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7187 	 * will inject an #GP
7188 	 */
7189 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7190 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7191 
7192 	/*
7193 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7194 	 * PSBFreq can be set
7195 	 */
7196 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7197 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7198 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7199 
7200 	/*
7201 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7202 	 * MTCFreq can be set
7203 	 */
7204 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7205 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7206 				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7207 
7208 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7209 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7210 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7211 							RTIT_CTL_PTW_EN);
7212 
7213 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7214 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7215 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7216 
7217 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7218 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7219 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7220 
7221 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7222 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7223 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7224 
7225 	/* unmask address range configure area */
7226 	for (i = 0; i < vmx->pt_desc.addr_range; i++)
7227 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7228 }
7229 
7230 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7231 {
7232 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7233 
7234 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7235 	vcpu->arch.xsaves_enabled = false;
7236 
7237 	if (cpu_has_secondary_exec_ctrls()) {
7238 		vmx_compute_secondary_exec_control(vmx);
7239 		vmcs_set_secondary_exec_control(vmx);
7240 	}
7241 
7242 	if (nested_vmx_allowed(vcpu))
7243 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7244 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7245 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7246 	else
7247 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7248 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7249 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7250 
7251 	if (nested_vmx_allowed(vcpu)) {
7252 		nested_vmx_cr_fixed1_bits_update(vcpu);
7253 		nested_vmx_entry_exit_ctls_update(vcpu);
7254 	}
7255 
7256 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7257 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7258 		update_intel_pt_cfg(vcpu);
7259 
7260 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7261 		struct vmx_uret_msr *msr;
7262 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7263 		if (msr) {
7264 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7265 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7266 		}
7267 	}
7268 
7269 	set_cr4_guest_host_mask(vmx);
7270 
7271 	vmx_write_encls_bitmap(vcpu, NULL);
7272 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7273 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7274 	else
7275 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7276 
7277 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7278 		vmx->msr_ia32_feature_control_valid_bits |=
7279 			FEAT_CTL_SGX_LC_ENABLED;
7280 	else
7281 		vmx->msr_ia32_feature_control_valid_bits &=
7282 			~FEAT_CTL_SGX_LC_ENABLED;
7283 
7284 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7285 	vmx_update_exception_bitmap(vcpu);
7286 }
7287 
7288 static __init void vmx_set_cpu_caps(void)
7289 {
7290 	kvm_set_cpu_caps();
7291 
7292 	/* CPUID 0x1 */
7293 	if (nested)
7294 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7295 
7296 	/* CPUID 0x7 */
7297 	if (kvm_mpx_supported())
7298 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7299 	if (!cpu_has_vmx_invpcid())
7300 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7301 	if (vmx_pt_mode_is_host_guest())
7302 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7303 
7304 	if (!enable_sgx) {
7305 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7306 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7307 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7308 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7309 	}
7310 
7311 	if (vmx_umip_emulated())
7312 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7313 
7314 	/* CPUID 0xD.1 */
7315 	supported_xss = 0;
7316 	if (!cpu_has_vmx_xsaves())
7317 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7318 
7319 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7320 	if (!cpu_has_vmx_rdtscp()) {
7321 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7322 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7323 	}
7324 
7325 	if (cpu_has_vmx_waitpkg())
7326 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7327 }
7328 
7329 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7330 {
7331 	to_vmx(vcpu)->req_immediate_exit = true;
7332 }
7333 
7334 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7335 				  struct x86_instruction_info *info)
7336 {
7337 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7338 	unsigned short port;
7339 	bool intercept;
7340 	int size;
7341 
7342 	if (info->intercept == x86_intercept_in ||
7343 	    info->intercept == x86_intercept_ins) {
7344 		port = info->src_val;
7345 		size = info->dst_bytes;
7346 	} else {
7347 		port = info->dst_val;
7348 		size = info->src_bytes;
7349 	}
7350 
7351 	/*
7352 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7353 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7354 	 * control.
7355 	 *
7356 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7357 	 */
7358 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7359 		intercept = nested_cpu_has(vmcs12,
7360 					   CPU_BASED_UNCOND_IO_EXITING);
7361 	else
7362 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7363 
7364 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7365 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7366 }
7367 
7368 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7369 			       struct x86_instruction_info *info,
7370 			       enum x86_intercept_stage stage,
7371 			       struct x86_exception *exception)
7372 {
7373 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7374 
7375 	switch (info->intercept) {
7376 	/*
7377 	 * RDPID causes #UD if disabled through secondary execution controls.
7378 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7379 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7380 	 */
7381 	case x86_intercept_rdpid:
7382 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7383 			exception->vector = UD_VECTOR;
7384 			exception->error_code_valid = false;
7385 			return X86EMUL_PROPAGATE_FAULT;
7386 		}
7387 		break;
7388 
7389 	case x86_intercept_in:
7390 	case x86_intercept_ins:
7391 	case x86_intercept_out:
7392 	case x86_intercept_outs:
7393 		return vmx_check_intercept_io(vcpu, info);
7394 
7395 	case x86_intercept_lgdt:
7396 	case x86_intercept_lidt:
7397 	case x86_intercept_lldt:
7398 	case x86_intercept_ltr:
7399 	case x86_intercept_sgdt:
7400 	case x86_intercept_sidt:
7401 	case x86_intercept_sldt:
7402 	case x86_intercept_str:
7403 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7404 			return X86EMUL_CONTINUE;
7405 
7406 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7407 		break;
7408 
7409 	/* TODO: check more intercepts... */
7410 	default:
7411 		break;
7412 	}
7413 
7414 	return X86EMUL_UNHANDLEABLE;
7415 }
7416 
7417 #ifdef CONFIG_X86_64
7418 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7419 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7420 				  u64 divisor, u64 *result)
7421 {
7422 	u64 low = a << shift, high = a >> (64 - shift);
7423 
7424 	/* To avoid the overflow on divq */
7425 	if (high >= divisor)
7426 		return 1;
7427 
7428 	/* Low hold the result, high hold rem which is discarded */
7429 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7430 	    "rm" (divisor), "0" (low), "1" (high));
7431 	*result = low;
7432 
7433 	return 0;
7434 }
7435 
7436 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7437 			    bool *expired)
7438 {
7439 	struct vcpu_vmx *vmx;
7440 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7441 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7442 
7443 	vmx = to_vmx(vcpu);
7444 	tscl = rdtsc();
7445 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7446 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7447 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7448 						    ktimer->timer_advance_ns);
7449 
7450 	if (delta_tsc > lapic_timer_advance_cycles)
7451 		delta_tsc -= lapic_timer_advance_cycles;
7452 	else
7453 		delta_tsc = 0;
7454 
7455 	/* Convert to host delta tsc if tsc scaling is enabled */
7456 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7457 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7458 				kvm_tsc_scaling_ratio_frac_bits,
7459 				vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7460 		return -ERANGE;
7461 
7462 	/*
7463 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7464 	 * we can't use the preemption timer.
7465 	 * It's possible that it fits on later vmentries, but checking
7466 	 * on every vmentry is costly so we just use an hrtimer.
7467 	 */
7468 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7469 		return -ERANGE;
7470 
7471 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7472 	*expired = !delta_tsc;
7473 	return 0;
7474 }
7475 
7476 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7477 {
7478 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7479 }
7480 #endif
7481 
7482 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7483 {
7484 	if (!kvm_pause_in_guest(vcpu->kvm))
7485 		shrink_ple_window(vcpu);
7486 }
7487 
7488 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7489 {
7490 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7491 
7492 	if (is_guest_mode(vcpu)) {
7493 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7494 		return;
7495 	}
7496 
7497 	/*
7498 	 * Note, cpu_dirty_logging_count can be changed concurrent with this
7499 	 * code, but in that case another update request will be made and so
7500 	 * the guest will never run with a stale PML value.
7501 	 */
7502 	if (vcpu->kvm->arch.cpu_dirty_logging_count)
7503 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7504 	else
7505 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7506 }
7507 
7508 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7509 {
7510 	if (pi_pre_block(vcpu))
7511 		return 1;
7512 
7513 	if (kvm_lapic_hv_timer_in_use(vcpu))
7514 		kvm_lapic_switch_to_sw_timer(vcpu);
7515 
7516 	return 0;
7517 }
7518 
7519 static void vmx_post_block(struct kvm_vcpu *vcpu)
7520 {
7521 	if (kvm_x86_ops.set_hv_timer)
7522 		kvm_lapic_switch_to_hv_timer(vcpu);
7523 
7524 	pi_post_block(vcpu);
7525 }
7526 
7527 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7528 {
7529 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7530 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7531 			FEAT_CTL_LMCE_ENABLED;
7532 	else
7533 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7534 			~FEAT_CTL_LMCE_ENABLED;
7535 }
7536 
7537 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7538 {
7539 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7540 	if (to_vmx(vcpu)->nested.nested_run_pending)
7541 		return -EBUSY;
7542 	return !is_smm(vcpu);
7543 }
7544 
7545 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7546 {
7547 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7548 
7549 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7550 	if (vmx->nested.smm.guest_mode)
7551 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7552 
7553 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7554 	vmx->nested.vmxon = false;
7555 	vmx_clear_hlt(vcpu);
7556 	return 0;
7557 }
7558 
7559 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7560 {
7561 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7562 	int ret;
7563 
7564 	if (vmx->nested.smm.vmxon) {
7565 		vmx->nested.vmxon = true;
7566 		vmx->nested.smm.vmxon = false;
7567 	}
7568 
7569 	if (vmx->nested.smm.guest_mode) {
7570 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7571 		if (ret)
7572 			return ret;
7573 
7574 		vmx->nested.smm.guest_mode = false;
7575 	}
7576 	return 0;
7577 }
7578 
7579 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7580 {
7581 	/* RSM will cause a vmexit anyway.  */
7582 }
7583 
7584 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7585 {
7586 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7587 }
7588 
7589 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7590 {
7591 	if (is_guest_mode(vcpu)) {
7592 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7593 
7594 		if (hrtimer_try_to_cancel(timer) == 1)
7595 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7596 	}
7597 }
7598 
7599 static void hardware_unsetup(void)
7600 {
7601 	if (nested)
7602 		nested_vmx_hardware_unsetup();
7603 
7604 	free_kvm_area();
7605 }
7606 
7607 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7608 {
7609 	ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7610 			  BIT(APICV_INHIBIT_REASON_HYPERV);
7611 
7612 	return supported & BIT(bit);
7613 }
7614 
7615 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7616 	.hardware_unsetup = hardware_unsetup,
7617 
7618 	.hardware_enable = hardware_enable,
7619 	.hardware_disable = hardware_disable,
7620 	.cpu_has_accelerated_tpr = report_flexpriority,
7621 	.has_emulated_msr = vmx_has_emulated_msr,
7622 
7623 	.vm_size = sizeof(struct kvm_vmx),
7624 	.vm_init = vmx_vm_init,
7625 
7626 	.vcpu_create = vmx_create_vcpu,
7627 	.vcpu_free = vmx_free_vcpu,
7628 	.vcpu_reset = vmx_vcpu_reset,
7629 
7630 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7631 	.vcpu_load = vmx_vcpu_load,
7632 	.vcpu_put = vmx_vcpu_put,
7633 
7634 	.update_exception_bitmap = vmx_update_exception_bitmap,
7635 	.get_msr_feature = vmx_get_msr_feature,
7636 	.get_msr = vmx_get_msr,
7637 	.set_msr = vmx_set_msr,
7638 	.get_segment_base = vmx_get_segment_base,
7639 	.get_segment = vmx_get_segment,
7640 	.set_segment = vmx_set_segment,
7641 	.get_cpl = vmx_get_cpl,
7642 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7643 	.set_cr0 = vmx_set_cr0,
7644 	.is_valid_cr4 = vmx_is_valid_cr4,
7645 	.set_cr4 = vmx_set_cr4,
7646 	.set_efer = vmx_set_efer,
7647 	.get_idt = vmx_get_idt,
7648 	.set_idt = vmx_set_idt,
7649 	.get_gdt = vmx_get_gdt,
7650 	.set_gdt = vmx_set_gdt,
7651 	.set_dr7 = vmx_set_dr7,
7652 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7653 	.cache_reg = vmx_cache_reg,
7654 	.get_rflags = vmx_get_rflags,
7655 	.set_rflags = vmx_set_rflags,
7656 
7657 	.tlb_flush_all = vmx_flush_tlb_all,
7658 	.tlb_flush_current = vmx_flush_tlb_current,
7659 	.tlb_flush_gva = vmx_flush_tlb_gva,
7660 	.tlb_flush_guest = vmx_flush_tlb_guest,
7661 
7662 	.run = vmx_vcpu_run,
7663 	.handle_exit = vmx_handle_exit,
7664 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
7665 	.update_emulated_instruction = vmx_update_emulated_instruction,
7666 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7667 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7668 	.patch_hypercall = vmx_patch_hypercall,
7669 	.set_irq = vmx_inject_irq,
7670 	.set_nmi = vmx_inject_nmi,
7671 	.queue_exception = vmx_queue_exception,
7672 	.cancel_injection = vmx_cancel_injection,
7673 	.interrupt_allowed = vmx_interrupt_allowed,
7674 	.nmi_allowed = vmx_nmi_allowed,
7675 	.get_nmi_mask = vmx_get_nmi_mask,
7676 	.set_nmi_mask = vmx_set_nmi_mask,
7677 	.enable_nmi_window = vmx_enable_nmi_window,
7678 	.enable_irq_window = vmx_enable_irq_window,
7679 	.update_cr8_intercept = vmx_update_cr8_intercept,
7680 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7681 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7682 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7683 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7684 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7685 	.check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7686 	.hwapic_irr_update = vmx_hwapic_irr_update,
7687 	.hwapic_isr_update = vmx_hwapic_isr_update,
7688 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7689 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7690 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7691 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7692 
7693 	.set_tss_addr = vmx_set_tss_addr,
7694 	.set_identity_map_addr = vmx_set_identity_map_addr,
7695 	.get_mt_mask = vmx_get_mt_mask,
7696 
7697 	.get_exit_info = vmx_get_exit_info,
7698 
7699 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7700 
7701 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7702 
7703 	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7704 
7705 	.load_mmu_pgd = vmx_load_mmu_pgd,
7706 
7707 	.check_intercept = vmx_check_intercept,
7708 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7709 
7710 	.request_immediate_exit = vmx_request_immediate_exit,
7711 
7712 	.sched_in = vmx_sched_in,
7713 
7714 	.cpu_dirty_log_size = PML_ENTITY_NUM,
7715 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7716 
7717 	.pre_block = vmx_pre_block,
7718 	.post_block = vmx_post_block,
7719 
7720 	.pmu_ops = &intel_pmu_ops,
7721 	.nested_ops = &vmx_nested_ops,
7722 
7723 	.update_pi_irte = pi_update_irte,
7724 
7725 #ifdef CONFIG_X86_64
7726 	.set_hv_timer = vmx_set_hv_timer,
7727 	.cancel_hv_timer = vmx_cancel_hv_timer,
7728 #endif
7729 
7730 	.setup_mce = vmx_setup_mce,
7731 
7732 	.smi_allowed = vmx_smi_allowed,
7733 	.pre_enter_smm = vmx_pre_enter_smm,
7734 	.pre_leave_smm = vmx_pre_leave_smm,
7735 	.enable_smi_window = vmx_enable_smi_window,
7736 
7737 	.can_emulate_instruction = vmx_can_emulate_instruction,
7738 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7739 	.migrate_timers = vmx_migrate_timers,
7740 
7741 	.msr_filter_changed = vmx_msr_filter_changed,
7742 	.complete_emulated_msr = kvm_complete_insn_gp,
7743 
7744 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7745 };
7746 
7747 static __init void vmx_setup_user_return_msrs(void)
7748 {
7749 
7750 	/*
7751 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7752 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
7753 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7754 	 * support this emulation, MSR_STAR is included in the list for i386,
7755 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
7756 	 * into hardware and is here purely for emulation purposes.
7757 	 */
7758 	const u32 vmx_uret_msrs_list[] = {
7759 	#ifdef CONFIG_X86_64
7760 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7761 	#endif
7762 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7763 		MSR_IA32_TSX_CTRL,
7764 	};
7765 	int i;
7766 
7767 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7768 
7769 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7770 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7771 }
7772 
7773 static __init int hardware_setup(void)
7774 {
7775 	unsigned long host_bndcfgs;
7776 	struct desc_ptr dt;
7777 	int r, ept_lpage_level;
7778 
7779 	store_idt(&dt);
7780 	host_idt_base = dt.address;
7781 
7782 	vmx_setup_user_return_msrs();
7783 
7784 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7785 		return -EIO;
7786 
7787 	if (boot_cpu_has(X86_FEATURE_NX))
7788 		kvm_enable_efer_bits(EFER_NX);
7789 
7790 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7791 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7792 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7793 	}
7794 
7795 	if (!cpu_has_vmx_mpx())
7796 		supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7797 				    XFEATURE_MASK_BNDCSR);
7798 
7799 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7800 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7801 		enable_vpid = 0;
7802 
7803 	if (!cpu_has_vmx_ept() ||
7804 	    !cpu_has_vmx_ept_4levels() ||
7805 	    !cpu_has_vmx_ept_mt_wb() ||
7806 	    !cpu_has_vmx_invept_global())
7807 		enable_ept = 0;
7808 
7809 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7810 		enable_ept_ad_bits = 0;
7811 
7812 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7813 		enable_unrestricted_guest = 0;
7814 
7815 	if (!cpu_has_vmx_flexpriority())
7816 		flexpriority_enabled = 0;
7817 
7818 	if (!cpu_has_virtual_nmis())
7819 		enable_vnmi = 0;
7820 
7821 	/*
7822 	 * set_apic_access_page_addr() is used to reload apic access
7823 	 * page upon invalidation.  No need to do anything if not
7824 	 * using the APIC_ACCESS_ADDR VMCS field.
7825 	 */
7826 	if (!flexpriority_enabled)
7827 		vmx_x86_ops.set_apic_access_page_addr = NULL;
7828 
7829 	if (!cpu_has_vmx_tpr_shadow())
7830 		vmx_x86_ops.update_cr8_intercept = NULL;
7831 
7832 #if IS_ENABLED(CONFIG_HYPERV)
7833 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7834 	    && enable_ept) {
7835 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7836 		vmx_x86_ops.tlb_remote_flush_with_range =
7837 				hv_remote_flush_tlb_with_range;
7838 	}
7839 #endif
7840 
7841 	if (!cpu_has_vmx_ple()) {
7842 		ple_gap = 0;
7843 		ple_window = 0;
7844 		ple_window_grow = 0;
7845 		ple_window_max = 0;
7846 		ple_window_shrink = 0;
7847 	}
7848 
7849 	if (!cpu_has_vmx_apicv()) {
7850 		enable_apicv = 0;
7851 		vmx_x86_ops.sync_pir_to_irr = NULL;
7852 	}
7853 
7854 	if (cpu_has_vmx_tsc_scaling()) {
7855 		kvm_has_tsc_control = true;
7856 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7857 		kvm_tsc_scaling_ratio_frac_bits = 48;
7858 	}
7859 
7860 	kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7861 
7862 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7863 
7864 	if (enable_ept)
7865 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
7866 				      cpu_has_vmx_ept_execute_only());
7867 
7868 	if (!enable_ept)
7869 		ept_lpage_level = 0;
7870 	else if (cpu_has_vmx_ept_1g_page())
7871 		ept_lpage_level = PG_LEVEL_1G;
7872 	else if (cpu_has_vmx_ept_2m_page())
7873 		ept_lpage_level = PG_LEVEL_2M;
7874 	else
7875 		ept_lpage_level = PG_LEVEL_4K;
7876 	kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
7877 
7878 	/*
7879 	 * Only enable PML when hardware supports PML feature, and both EPT
7880 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7881 	 */
7882 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7883 		enable_pml = 0;
7884 
7885 	if (!enable_pml)
7886 		vmx_x86_ops.cpu_dirty_log_size = 0;
7887 
7888 	if (!cpu_has_vmx_preemption_timer())
7889 		enable_preemption_timer = false;
7890 
7891 	if (enable_preemption_timer) {
7892 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
7893 		u64 vmx_msr;
7894 
7895 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7896 		cpu_preemption_timer_multi =
7897 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7898 
7899 		if (tsc_khz)
7900 			use_timer_freq = (u64)tsc_khz * 1000;
7901 		use_timer_freq >>= cpu_preemption_timer_multi;
7902 
7903 		/*
7904 		 * KVM "disables" the preemption timer by setting it to its max
7905 		 * value.  Don't use the timer if it might cause spurious exits
7906 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7907 		 */
7908 		if (use_timer_freq > 0xffffffffu / 10)
7909 			enable_preemption_timer = false;
7910 	}
7911 
7912 	if (!enable_preemption_timer) {
7913 		vmx_x86_ops.set_hv_timer = NULL;
7914 		vmx_x86_ops.cancel_hv_timer = NULL;
7915 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7916 	}
7917 
7918 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7919 
7920 	kvm_mce_cap_supported |= MCG_LMCE_P;
7921 
7922 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7923 		return -EINVAL;
7924 	if (!enable_ept || !cpu_has_vmx_intel_pt())
7925 		pt_mode = PT_MODE_SYSTEM;
7926 
7927 	setup_default_sgx_lepubkeyhash();
7928 
7929 	if (nested) {
7930 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7931 					   vmx_capability.ept);
7932 
7933 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7934 		if (r)
7935 			return r;
7936 	}
7937 
7938 	vmx_set_cpu_caps();
7939 
7940 	r = alloc_kvm_area();
7941 	if (r)
7942 		nested_vmx_hardware_unsetup();
7943 	return r;
7944 }
7945 
7946 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7947 	.cpu_has_kvm_support = cpu_has_kvm_support,
7948 	.disabled_by_bios = vmx_disabled_by_bios,
7949 	.check_processor_compatibility = vmx_check_processor_compat,
7950 	.hardware_setup = hardware_setup,
7951 
7952 	.runtime_ops = &vmx_x86_ops,
7953 };
7954 
7955 static void vmx_cleanup_l1d_flush(void)
7956 {
7957 	if (vmx_l1d_flush_pages) {
7958 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7959 		vmx_l1d_flush_pages = NULL;
7960 	}
7961 	/* Restore state so sysfs ignores VMX */
7962 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7963 }
7964 
7965 static void vmx_exit(void)
7966 {
7967 #ifdef CONFIG_KEXEC_CORE
7968 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7969 	synchronize_rcu();
7970 #endif
7971 
7972 	kvm_exit();
7973 
7974 #if IS_ENABLED(CONFIG_HYPERV)
7975 	if (static_branch_unlikely(&enable_evmcs)) {
7976 		int cpu;
7977 		struct hv_vp_assist_page *vp_ap;
7978 		/*
7979 		 * Reset everything to support using non-enlightened VMCS
7980 		 * access later (e.g. when we reload the module with
7981 		 * enlightened_vmcs=0)
7982 		 */
7983 		for_each_online_cpu(cpu) {
7984 			vp_ap =	hv_get_vp_assist_page(cpu);
7985 
7986 			if (!vp_ap)
7987 				continue;
7988 
7989 			vp_ap->nested_control.features.directhypercall = 0;
7990 			vp_ap->current_nested_vmcs = 0;
7991 			vp_ap->enlighten_vmentry = 0;
7992 		}
7993 
7994 		static_branch_disable(&enable_evmcs);
7995 	}
7996 #endif
7997 	vmx_cleanup_l1d_flush();
7998 }
7999 module_exit(vmx_exit);
8000 
8001 static int __init vmx_init(void)
8002 {
8003 	int r, cpu;
8004 
8005 #if IS_ENABLED(CONFIG_HYPERV)
8006 	/*
8007 	 * Enlightened VMCS usage should be recommended and the host needs
8008 	 * to support eVMCS v1 or above. We can also disable eVMCS support
8009 	 * with module parameter.
8010 	 */
8011 	if (enlightened_vmcs &&
8012 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
8013 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
8014 	    KVM_EVMCS_VERSION) {
8015 		int cpu;
8016 
8017 		/* Check that we have assist pages on all online CPUs */
8018 		for_each_online_cpu(cpu) {
8019 			if (!hv_get_vp_assist_page(cpu)) {
8020 				enlightened_vmcs = false;
8021 				break;
8022 			}
8023 		}
8024 
8025 		if (enlightened_vmcs) {
8026 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
8027 			static_branch_enable(&enable_evmcs);
8028 		}
8029 
8030 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
8031 			vmx_x86_ops.enable_direct_tlbflush
8032 				= hv_enable_direct_tlbflush;
8033 
8034 	} else {
8035 		enlightened_vmcs = false;
8036 	}
8037 #endif
8038 
8039 	r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
8040 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
8041 	if (r)
8042 		return r;
8043 
8044 	/*
8045 	 * Must be called after kvm_init() so enable_ept is properly set
8046 	 * up. Hand the parameter mitigation value in which was stored in
8047 	 * the pre module init parser. If no parameter was given, it will
8048 	 * contain 'auto' which will be turned into the default 'cond'
8049 	 * mitigation mode.
8050 	 */
8051 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8052 	if (r) {
8053 		vmx_exit();
8054 		return r;
8055 	}
8056 
8057 	for_each_possible_cpu(cpu) {
8058 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8059 
8060 		pi_init_cpu(cpu);
8061 	}
8062 
8063 #ifdef CONFIG_KEXEC_CORE
8064 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8065 			   crash_vmclear_local_loaded_vmcss);
8066 #endif
8067 	vmx_check_vmcs12_offsets();
8068 
8069 	/*
8070 	 * Shadow paging doesn't have a (further) performance penalty
8071 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8072 	 * by default
8073 	 */
8074 	if (!enable_ept)
8075 		allow_smaller_maxphyaddr = true;
8076 
8077 	return 0;
8078 }
8079 module_init(vmx_init);
8080