xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision 248ed9e227e6cf59acb1aaf3aa30d530a0232c1a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32 
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/idtentry.h>
42 #include <asm/io.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/kexec.h>
45 #include <asm/perf_event.h>
46 #include <asm/mmu_context.h>
47 #include <asm/mshyperv.h>
48 #include <asm/mwait.h>
49 #include <asm/spec-ctrl.h>
50 #include <asm/virtext.h>
51 #include <asm/vmx.h>
52 
53 #include "capabilities.h"
54 #include "cpuid.h"
55 #include "hyperv.h"
56 #include "kvm_onhyperv.h"
57 #include "irq.h"
58 #include "kvm_cache_regs.h"
59 #include "lapic.h"
60 #include "mmu.h"
61 #include "nested.h"
62 #include "pmu.h"
63 #include "sgx.h"
64 #include "trace.h"
65 #include "vmcs.h"
66 #include "vmcs12.h"
67 #include "vmx.h"
68 #include "x86.h"
69 #include "smm.h"
70 
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73 
74 #ifdef MODULE
75 static const struct x86_cpu_id vmx_cpu_id[] = {
76 	X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
77 	{}
78 };
79 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
80 #endif
81 
82 bool __read_mostly enable_vpid = 1;
83 module_param_named(vpid, enable_vpid, bool, 0444);
84 
85 static bool __read_mostly enable_vnmi = 1;
86 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
87 
88 bool __read_mostly flexpriority_enabled = 1;
89 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
90 
91 bool __read_mostly enable_ept = 1;
92 module_param_named(ept, enable_ept, bool, S_IRUGO);
93 
94 bool __read_mostly enable_unrestricted_guest = 1;
95 module_param_named(unrestricted_guest,
96 			enable_unrestricted_guest, bool, S_IRUGO);
97 
98 bool __read_mostly enable_ept_ad_bits = 1;
99 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
100 
101 static bool __read_mostly emulate_invalid_guest_state = true;
102 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
103 
104 static bool __read_mostly fasteoi = 1;
105 module_param(fasteoi, bool, S_IRUGO);
106 
107 module_param(enable_apicv, bool, S_IRUGO);
108 
109 bool __read_mostly enable_ipiv = true;
110 module_param(enable_ipiv, bool, 0444);
111 
112 /*
113  * If nested=1, nested virtualization is supported, i.e., guests may use
114  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
115  * use VMX instructions.
116  */
117 static bool __read_mostly nested = 1;
118 module_param(nested, bool, S_IRUGO);
119 
120 bool __read_mostly enable_pml = 1;
121 module_param_named(pml, enable_pml, bool, S_IRUGO);
122 
123 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
124 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
125 
126 static bool __read_mostly dump_invalid_vmcs = 0;
127 module_param(dump_invalid_vmcs, bool, 0644);
128 
129 #define MSR_BITMAP_MODE_X2APIC		1
130 #define MSR_BITMAP_MODE_X2APIC_APICV	2
131 
132 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
133 
134 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
135 static int __read_mostly cpu_preemption_timer_multi;
136 static bool __read_mostly enable_preemption_timer = 1;
137 #ifdef CONFIG_X86_64
138 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
139 #endif
140 
141 extern bool __read_mostly allow_smaller_maxphyaddr;
142 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
143 
144 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
145 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
146 #define KVM_VM_CR0_ALWAYS_ON				\
147 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
148 
149 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
150 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
151 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
152 
153 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
154 
155 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
156 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
157 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
158 	RTIT_STATUS_BYTECNT))
159 
160 /*
161  * List of MSRs that can be directly passed to the guest.
162  * In addition to these x2apic and PT MSRs are handled specially.
163  */
164 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
165 	MSR_IA32_SPEC_CTRL,
166 	MSR_IA32_PRED_CMD,
167 	MSR_IA32_TSC,
168 #ifdef CONFIG_X86_64
169 	MSR_FS_BASE,
170 	MSR_GS_BASE,
171 	MSR_KERNEL_GS_BASE,
172 	MSR_IA32_XFD,
173 	MSR_IA32_XFD_ERR,
174 #endif
175 	MSR_IA32_SYSENTER_CS,
176 	MSR_IA32_SYSENTER_ESP,
177 	MSR_IA32_SYSENTER_EIP,
178 	MSR_CORE_C1_RES,
179 	MSR_CORE_C3_RESIDENCY,
180 	MSR_CORE_C6_RESIDENCY,
181 	MSR_CORE_C7_RESIDENCY,
182 };
183 
184 /*
185  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
186  * ple_gap:    upper bound on the amount of time between two successive
187  *             executions of PAUSE in a loop. Also indicate if ple enabled.
188  *             According to test, this time is usually smaller than 128 cycles.
189  * ple_window: upper bound on the amount of time a guest is allowed to execute
190  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
191  *             less than 2^12 cycles
192  * Time is measured based on a counter that runs at the same rate as the TSC,
193  * refer SDM volume 3b section 21.6.13 & 22.1.3.
194  */
195 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
196 module_param(ple_gap, uint, 0444);
197 
198 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
199 module_param(ple_window, uint, 0444);
200 
201 /* Default doubles per-vcpu window every exit. */
202 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
203 module_param(ple_window_grow, uint, 0444);
204 
205 /* Default resets per-vcpu window every exit to ple_window. */
206 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
207 module_param(ple_window_shrink, uint, 0444);
208 
209 /* Default is to compute the maximum so we can never overflow. */
210 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
211 module_param(ple_window_max, uint, 0444);
212 
213 /* Default is SYSTEM mode, 1 for host-guest mode */
214 int __read_mostly pt_mode = PT_MODE_SYSTEM;
215 module_param(pt_mode, int, S_IRUGO);
216 
217 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
219 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
220 
221 /* Storage for pre module init parameter parsing */
222 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
223 
224 static const struct {
225 	const char *option;
226 	bool for_parse;
227 } vmentry_l1d_param[] = {
228 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
229 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
230 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
231 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
232 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
233 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
234 };
235 
236 #define L1D_CACHE_ORDER 4
237 static void *vmx_l1d_flush_pages;
238 
239 /* Control for disabling CPU Fill buffer clear */
240 static bool __read_mostly vmx_fb_clear_ctrl_available;
241 
242 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
243 {
244 	struct page *page;
245 	unsigned int i;
246 
247 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
248 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
249 		return 0;
250 	}
251 
252 	if (!enable_ept) {
253 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
254 		return 0;
255 	}
256 
257 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
258 		u64 msr;
259 
260 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
261 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
262 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
263 			return 0;
264 		}
265 	}
266 
267 	/* If set to auto use the default l1tf mitigation method */
268 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
269 		switch (l1tf_mitigation) {
270 		case L1TF_MITIGATION_OFF:
271 			l1tf = VMENTER_L1D_FLUSH_NEVER;
272 			break;
273 		case L1TF_MITIGATION_FLUSH_NOWARN:
274 		case L1TF_MITIGATION_FLUSH:
275 		case L1TF_MITIGATION_FLUSH_NOSMT:
276 			l1tf = VMENTER_L1D_FLUSH_COND;
277 			break;
278 		case L1TF_MITIGATION_FULL:
279 		case L1TF_MITIGATION_FULL_FORCE:
280 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
281 			break;
282 		}
283 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
284 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
285 	}
286 
287 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
288 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
289 		/*
290 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
291 		 * lifetime and so should not be charged to a memcg.
292 		 */
293 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
294 		if (!page)
295 			return -ENOMEM;
296 		vmx_l1d_flush_pages = page_address(page);
297 
298 		/*
299 		 * Initialize each page with a different pattern in
300 		 * order to protect against KSM in the nested
301 		 * virtualization case.
302 		 */
303 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
304 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
305 			       PAGE_SIZE);
306 		}
307 	}
308 
309 	l1tf_vmx_mitigation = l1tf;
310 
311 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
312 		static_branch_enable(&vmx_l1d_should_flush);
313 	else
314 		static_branch_disable(&vmx_l1d_should_flush);
315 
316 	if (l1tf == VMENTER_L1D_FLUSH_COND)
317 		static_branch_enable(&vmx_l1d_flush_cond);
318 	else
319 		static_branch_disable(&vmx_l1d_flush_cond);
320 	return 0;
321 }
322 
323 static int vmentry_l1d_flush_parse(const char *s)
324 {
325 	unsigned int i;
326 
327 	if (s) {
328 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
329 			if (vmentry_l1d_param[i].for_parse &&
330 			    sysfs_streq(s, vmentry_l1d_param[i].option))
331 				return i;
332 		}
333 	}
334 	return -EINVAL;
335 }
336 
337 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
338 {
339 	int l1tf, ret;
340 
341 	l1tf = vmentry_l1d_flush_parse(s);
342 	if (l1tf < 0)
343 		return l1tf;
344 
345 	if (!boot_cpu_has(X86_BUG_L1TF))
346 		return 0;
347 
348 	/*
349 	 * Has vmx_init() run already? If not then this is the pre init
350 	 * parameter parsing. In that case just store the value and let
351 	 * vmx_init() do the proper setup after enable_ept has been
352 	 * established.
353 	 */
354 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
355 		vmentry_l1d_flush_param = l1tf;
356 		return 0;
357 	}
358 
359 	mutex_lock(&vmx_l1d_flush_mutex);
360 	ret = vmx_setup_l1d_flush(l1tf);
361 	mutex_unlock(&vmx_l1d_flush_mutex);
362 	return ret;
363 }
364 
365 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
366 {
367 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
368 		return sprintf(s, "???\n");
369 
370 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
371 }
372 
373 static void vmx_setup_fb_clear_ctrl(void)
374 {
375 	u64 msr;
376 
377 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES) &&
378 	    !boot_cpu_has_bug(X86_BUG_MDS) &&
379 	    !boot_cpu_has_bug(X86_BUG_TAA)) {
380 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
381 		if (msr & ARCH_CAP_FB_CLEAR_CTRL)
382 			vmx_fb_clear_ctrl_available = true;
383 	}
384 }
385 
386 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
387 {
388 	u64 msr;
389 
390 	if (!vmx->disable_fb_clear)
391 		return;
392 
393 	msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
394 	msr |= FB_CLEAR_DIS;
395 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
396 	/* Cache the MSR value to avoid reading it later */
397 	vmx->msr_ia32_mcu_opt_ctrl = msr;
398 }
399 
400 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
401 {
402 	if (!vmx->disable_fb_clear)
403 		return;
404 
405 	vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
406 	native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
407 }
408 
409 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
410 {
411 	vmx->disable_fb_clear = vmx_fb_clear_ctrl_available;
412 
413 	/*
414 	 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
415 	 * at VMEntry. Skip the MSR read/write when a guest has no use case to
416 	 * execute VERW.
417 	 */
418 	if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
419 	   ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
420 	    (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
421 	    (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
422 	    (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
423 	    (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
424 		vmx->disable_fb_clear = false;
425 }
426 
427 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
428 	.set = vmentry_l1d_flush_set,
429 	.get = vmentry_l1d_flush_get,
430 };
431 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
432 
433 static u32 vmx_segment_access_rights(struct kvm_segment *var);
434 
435 void vmx_vmexit(void);
436 
437 #define vmx_insn_failed(fmt...)		\
438 do {					\
439 	WARN_ONCE(1, fmt);		\
440 	pr_warn_ratelimited(fmt);	\
441 } while (0)
442 
443 void vmread_error(unsigned long field, bool fault)
444 {
445 	if (fault)
446 		kvm_spurious_fault();
447 	else
448 		vmx_insn_failed("vmread failed: field=%lx\n", field);
449 }
450 
451 noinline void vmwrite_error(unsigned long field, unsigned long value)
452 {
453 	vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
454 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
455 }
456 
457 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
458 {
459 	vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
460 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
461 }
462 
463 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
464 {
465 	vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
466 			vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
467 }
468 
469 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
470 {
471 	vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
472 			ext, vpid, gva);
473 }
474 
475 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
476 {
477 	vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
478 			ext, eptp, gpa);
479 }
480 
481 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
482 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
483 /*
484  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
485  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
486  */
487 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
488 
489 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
490 static DEFINE_SPINLOCK(vmx_vpid_lock);
491 
492 struct vmcs_config vmcs_config __ro_after_init;
493 struct vmx_capability vmx_capability __ro_after_init;
494 
495 #define VMX_SEGMENT_FIELD(seg)					\
496 	[VCPU_SREG_##seg] = {                                   \
497 		.selector = GUEST_##seg##_SELECTOR,		\
498 		.base = GUEST_##seg##_BASE,		   	\
499 		.limit = GUEST_##seg##_LIMIT,		   	\
500 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
501 	}
502 
503 static const struct kvm_vmx_segment_field {
504 	unsigned selector;
505 	unsigned base;
506 	unsigned limit;
507 	unsigned ar_bytes;
508 } kvm_vmx_segment_fields[] = {
509 	VMX_SEGMENT_FIELD(CS),
510 	VMX_SEGMENT_FIELD(DS),
511 	VMX_SEGMENT_FIELD(ES),
512 	VMX_SEGMENT_FIELD(FS),
513 	VMX_SEGMENT_FIELD(GS),
514 	VMX_SEGMENT_FIELD(SS),
515 	VMX_SEGMENT_FIELD(TR),
516 	VMX_SEGMENT_FIELD(LDTR),
517 };
518 
519 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
520 {
521 	vmx->segment_cache.bitmask = 0;
522 }
523 
524 static unsigned long host_idt_base;
525 
526 #if IS_ENABLED(CONFIG_HYPERV)
527 static struct kvm_x86_ops vmx_x86_ops __initdata;
528 
529 static bool __read_mostly enlightened_vmcs = true;
530 module_param(enlightened_vmcs, bool, 0444);
531 
532 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
533 {
534 	struct hv_enlightened_vmcs *evmcs;
535 	struct hv_partition_assist_pg **p_hv_pa_pg =
536 			&to_kvm_hv(vcpu->kvm)->hv_pa_pg;
537 	/*
538 	 * Synthetic VM-Exit is not enabled in current code and so All
539 	 * evmcs in singe VM shares same assist page.
540 	 */
541 	if (!*p_hv_pa_pg)
542 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
543 
544 	if (!*p_hv_pa_pg)
545 		return -ENOMEM;
546 
547 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
548 
549 	evmcs->partition_assist_page =
550 		__pa(*p_hv_pa_pg);
551 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
552 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
553 
554 	return 0;
555 }
556 
557 static __init void hv_init_evmcs(void)
558 {
559 	int cpu;
560 
561 	if (!enlightened_vmcs)
562 		return;
563 
564 	/*
565 	 * Enlightened VMCS usage should be recommended and the host needs
566 	 * to support eVMCS v1 or above.
567 	 */
568 	if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
569 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
570 	     KVM_EVMCS_VERSION) {
571 
572 		/* Check that we have assist pages on all online CPUs */
573 		for_each_online_cpu(cpu) {
574 			if (!hv_get_vp_assist_page(cpu)) {
575 				enlightened_vmcs = false;
576 				break;
577 			}
578 		}
579 
580 		if (enlightened_vmcs) {
581 			pr_info("Using Hyper-V Enlightened VMCS\n");
582 			static_branch_enable(&enable_evmcs);
583 		}
584 
585 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
586 			vmx_x86_ops.enable_l2_tlb_flush
587 				= hv_enable_l2_tlb_flush;
588 
589 	} else {
590 		enlightened_vmcs = false;
591 	}
592 }
593 
594 static void hv_reset_evmcs(void)
595 {
596 	struct hv_vp_assist_page *vp_ap;
597 
598 	if (!static_branch_unlikely(&enable_evmcs))
599 		return;
600 
601 	/*
602 	 * KVM should enable eVMCS if and only if all CPUs have a VP assist
603 	 * page, and should reject CPU onlining if eVMCS is enabled the CPU
604 	 * doesn't have a VP assist page allocated.
605 	 */
606 	vp_ap = hv_get_vp_assist_page(smp_processor_id());
607 	if (WARN_ON_ONCE(!vp_ap))
608 		return;
609 
610 	/*
611 	 * Reset everything to support using non-enlightened VMCS access later
612 	 * (e.g. when we reload the module with enlightened_vmcs=0)
613 	 */
614 	vp_ap->nested_control.features.directhypercall = 0;
615 	vp_ap->current_nested_vmcs = 0;
616 	vp_ap->enlighten_vmentry = 0;
617 }
618 
619 #else /* IS_ENABLED(CONFIG_HYPERV) */
620 static void hv_init_evmcs(void) {}
621 static void hv_reset_evmcs(void) {}
622 #endif /* IS_ENABLED(CONFIG_HYPERV) */
623 
624 /*
625  * Comment's format: document - errata name - stepping - processor name.
626  * Refer from
627  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
628  */
629 static u32 vmx_preemption_cpu_tfms[] = {
630 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
631 0x000206E6,
632 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
633 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
634 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
635 0x00020652,
636 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
637 0x00020655,
638 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
639 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
640 /*
641  * 320767.pdf - AAP86  - B1 -
642  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
643  */
644 0x000106E5,
645 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
646 0x000106A0,
647 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
648 0x000106A1,
649 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
650 0x000106A4,
651  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
652  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
653  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
654 0x000106A5,
655  /* Xeon E3-1220 V2 */
656 0x000306A8,
657 };
658 
659 static inline bool cpu_has_broken_vmx_preemption_timer(void)
660 {
661 	u32 eax = cpuid_eax(0x00000001), i;
662 
663 	/* Clear the reserved bits */
664 	eax &= ~(0x3U << 14 | 0xfU << 28);
665 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
666 		if (eax == vmx_preemption_cpu_tfms[i])
667 			return true;
668 
669 	return false;
670 }
671 
672 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
673 {
674 	return flexpriority_enabled && lapic_in_kernel(vcpu);
675 }
676 
677 static int possible_passthrough_msr_slot(u32 msr)
678 {
679 	u32 i;
680 
681 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
682 		if (vmx_possible_passthrough_msrs[i] == msr)
683 			return i;
684 
685 	return -ENOENT;
686 }
687 
688 static bool is_valid_passthrough_msr(u32 msr)
689 {
690 	bool r;
691 
692 	switch (msr) {
693 	case 0x800 ... 0x8ff:
694 		/* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
695 		return true;
696 	case MSR_IA32_RTIT_STATUS:
697 	case MSR_IA32_RTIT_OUTPUT_BASE:
698 	case MSR_IA32_RTIT_OUTPUT_MASK:
699 	case MSR_IA32_RTIT_CR3_MATCH:
700 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
701 		/* PT MSRs. These are handled in pt_update_intercept_for_msr() */
702 	case MSR_LBR_SELECT:
703 	case MSR_LBR_TOS:
704 	case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
705 	case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
706 	case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
707 	case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
708 	case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
709 		/* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
710 		return true;
711 	}
712 
713 	r = possible_passthrough_msr_slot(msr) != -ENOENT;
714 
715 	WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
716 
717 	return r;
718 }
719 
720 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
721 {
722 	int i;
723 
724 	i = kvm_find_user_return_msr(msr);
725 	if (i >= 0)
726 		return &vmx->guest_uret_msrs[i];
727 	return NULL;
728 }
729 
730 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
731 				  struct vmx_uret_msr *msr, u64 data)
732 {
733 	unsigned int slot = msr - vmx->guest_uret_msrs;
734 	int ret = 0;
735 
736 	if (msr->load_into_hardware) {
737 		preempt_disable();
738 		ret = kvm_set_user_return_msr(slot, data, msr->mask);
739 		preempt_enable();
740 	}
741 	if (!ret)
742 		msr->data = data;
743 	return ret;
744 }
745 
746 #ifdef CONFIG_KEXEC_CORE
747 static void crash_vmclear_local_loaded_vmcss(void)
748 {
749 	int cpu = raw_smp_processor_id();
750 	struct loaded_vmcs *v;
751 
752 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
753 			    loaded_vmcss_on_cpu_link)
754 		vmcs_clear(v->vmcs);
755 }
756 #endif /* CONFIG_KEXEC_CORE */
757 
758 static void __loaded_vmcs_clear(void *arg)
759 {
760 	struct loaded_vmcs *loaded_vmcs = arg;
761 	int cpu = raw_smp_processor_id();
762 
763 	if (loaded_vmcs->cpu != cpu)
764 		return; /* vcpu migration can race with cpu offline */
765 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
766 		per_cpu(current_vmcs, cpu) = NULL;
767 
768 	vmcs_clear(loaded_vmcs->vmcs);
769 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
770 		vmcs_clear(loaded_vmcs->shadow_vmcs);
771 
772 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
773 
774 	/*
775 	 * Ensure all writes to loaded_vmcs, including deleting it from its
776 	 * current percpu list, complete before setting loaded_vmcs->cpu to
777 	 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
778 	 * and add loaded_vmcs to its percpu list before it's deleted from this
779 	 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
780 	 */
781 	smp_wmb();
782 
783 	loaded_vmcs->cpu = -1;
784 	loaded_vmcs->launched = 0;
785 }
786 
787 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
788 {
789 	int cpu = loaded_vmcs->cpu;
790 
791 	if (cpu != -1)
792 		smp_call_function_single(cpu,
793 			 __loaded_vmcs_clear, loaded_vmcs, 1);
794 }
795 
796 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
797 				       unsigned field)
798 {
799 	bool ret;
800 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
801 
802 	if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
803 		kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
804 		vmx->segment_cache.bitmask = 0;
805 	}
806 	ret = vmx->segment_cache.bitmask & mask;
807 	vmx->segment_cache.bitmask |= mask;
808 	return ret;
809 }
810 
811 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
812 {
813 	u16 *p = &vmx->segment_cache.seg[seg].selector;
814 
815 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
816 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
817 	return *p;
818 }
819 
820 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
821 {
822 	ulong *p = &vmx->segment_cache.seg[seg].base;
823 
824 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
825 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
826 	return *p;
827 }
828 
829 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
830 {
831 	u32 *p = &vmx->segment_cache.seg[seg].limit;
832 
833 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
834 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
835 	return *p;
836 }
837 
838 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
839 {
840 	u32 *p = &vmx->segment_cache.seg[seg].ar;
841 
842 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
843 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
844 	return *p;
845 }
846 
847 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
848 {
849 	u32 eb;
850 
851 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
852 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
853 	/*
854 	 * Guest access to VMware backdoor ports could legitimately
855 	 * trigger #GP because of TSS I/O permission bitmap.
856 	 * We intercept those #GP and allow access to them anyway
857 	 * as VMware does.
858 	 */
859 	if (enable_vmware_backdoor)
860 		eb |= (1u << GP_VECTOR);
861 	if ((vcpu->guest_debug &
862 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
863 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
864 		eb |= 1u << BP_VECTOR;
865 	if (to_vmx(vcpu)->rmode.vm86_active)
866 		eb = ~0;
867 	if (!vmx_need_pf_intercept(vcpu))
868 		eb &= ~(1u << PF_VECTOR);
869 
870 	/* When we are running a nested L2 guest and L1 specified for it a
871 	 * certain exception bitmap, we must trap the same exceptions and pass
872 	 * them to L1. When running L2, we will only handle the exceptions
873 	 * specified above if L1 did not want them.
874 	 */
875 	if (is_guest_mode(vcpu))
876 		eb |= get_vmcs12(vcpu)->exception_bitmap;
877 	else {
878 		int mask = 0, match = 0;
879 
880 		if (enable_ept && (eb & (1u << PF_VECTOR))) {
881 			/*
882 			 * If EPT is enabled, #PF is currently only intercepted
883 			 * if MAXPHYADDR is smaller on the guest than on the
884 			 * host.  In that case we only care about present,
885 			 * non-reserved faults.  For vmcs02, however, PFEC_MASK
886 			 * and PFEC_MATCH are set in prepare_vmcs02_rare.
887 			 */
888 			mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
889 			match = PFERR_PRESENT_MASK;
890 		}
891 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
892 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
893 	}
894 
895 	/*
896 	 * Disabling xfd interception indicates that dynamic xfeatures
897 	 * might be used in the guest. Always trap #NM in this case
898 	 * to save guest xfd_err timely.
899 	 */
900 	if (vcpu->arch.xfd_no_write_intercept)
901 		eb |= (1u << NM_VECTOR);
902 
903 	vmcs_write32(EXCEPTION_BITMAP, eb);
904 }
905 
906 /*
907  * Check if MSR is intercepted for currently loaded MSR bitmap.
908  */
909 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
910 {
911 	if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
912 		return true;
913 
914 	return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
915 }
916 
917 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
918 {
919 	unsigned int flags = 0;
920 
921 	if (vmx->loaded_vmcs->launched)
922 		flags |= VMX_RUN_VMRESUME;
923 
924 	/*
925 	 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
926 	 * to change it directly without causing a vmexit.  In that case read
927 	 * it after vmexit and store it in vmx->spec_ctrl.
928 	 */
929 	if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
930 		flags |= VMX_RUN_SAVE_SPEC_CTRL;
931 
932 	return flags;
933 }
934 
935 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
936 		unsigned long entry, unsigned long exit)
937 {
938 	vm_entry_controls_clearbit(vmx, entry);
939 	vm_exit_controls_clearbit(vmx, exit);
940 }
941 
942 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
943 {
944 	unsigned int i;
945 
946 	for (i = 0; i < m->nr; ++i) {
947 		if (m->val[i].index == msr)
948 			return i;
949 	}
950 	return -ENOENT;
951 }
952 
953 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
954 {
955 	int i;
956 	struct msr_autoload *m = &vmx->msr_autoload;
957 
958 	switch (msr) {
959 	case MSR_EFER:
960 		if (cpu_has_load_ia32_efer()) {
961 			clear_atomic_switch_msr_special(vmx,
962 					VM_ENTRY_LOAD_IA32_EFER,
963 					VM_EXIT_LOAD_IA32_EFER);
964 			return;
965 		}
966 		break;
967 	case MSR_CORE_PERF_GLOBAL_CTRL:
968 		if (cpu_has_load_perf_global_ctrl()) {
969 			clear_atomic_switch_msr_special(vmx,
970 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
971 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
972 			return;
973 		}
974 		break;
975 	}
976 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
977 	if (i < 0)
978 		goto skip_guest;
979 	--m->guest.nr;
980 	m->guest.val[i] = m->guest.val[m->guest.nr];
981 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
982 
983 skip_guest:
984 	i = vmx_find_loadstore_msr_slot(&m->host, msr);
985 	if (i < 0)
986 		return;
987 
988 	--m->host.nr;
989 	m->host.val[i] = m->host.val[m->host.nr];
990 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
991 }
992 
993 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
994 		unsigned long entry, unsigned long exit,
995 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
996 		u64 guest_val, u64 host_val)
997 {
998 	vmcs_write64(guest_val_vmcs, guest_val);
999 	if (host_val_vmcs != HOST_IA32_EFER)
1000 		vmcs_write64(host_val_vmcs, host_val);
1001 	vm_entry_controls_setbit(vmx, entry);
1002 	vm_exit_controls_setbit(vmx, exit);
1003 }
1004 
1005 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1006 				  u64 guest_val, u64 host_val, bool entry_only)
1007 {
1008 	int i, j = 0;
1009 	struct msr_autoload *m = &vmx->msr_autoload;
1010 
1011 	switch (msr) {
1012 	case MSR_EFER:
1013 		if (cpu_has_load_ia32_efer()) {
1014 			add_atomic_switch_msr_special(vmx,
1015 					VM_ENTRY_LOAD_IA32_EFER,
1016 					VM_EXIT_LOAD_IA32_EFER,
1017 					GUEST_IA32_EFER,
1018 					HOST_IA32_EFER,
1019 					guest_val, host_val);
1020 			return;
1021 		}
1022 		break;
1023 	case MSR_CORE_PERF_GLOBAL_CTRL:
1024 		if (cpu_has_load_perf_global_ctrl()) {
1025 			add_atomic_switch_msr_special(vmx,
1026 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1027 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1028 					GUEST_IA32_PERF_GLOBAL_CTRL,
1029 					HOST_IA32_PERF_GLOBAL_CTRL,
1030 					guest_val, host_val);
1031 			return;
1032 		}
1033 		break;
1034 	case MSR_IA32_PEBS_ENABLE:
1035 		/* PEBS needs a quiescent period after being disabled (to write
1036 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1037 		 * provide that period, so a CPU could write host's record into
1038 		 * guest's memory.
1039 		 */
1040 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1041 	}
1042 
1043 	i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1044 	if (!entry_only)
1045 		j = vmx_find_loadstore_msr_slot(&m->host, msr);
1046 
1047 	if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1048 	    (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1049 		printk_once(KERN_WARNING "Not enough msr switch entries. "
1050 				"Can't add msr %x\n", msr);
1051 		return;
1052 	}
1053 	if (i < 0) {
1054 		i = m->guest.nr++;
1055 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1056 	}
1057 	m->guest.val[i].index = msr;
1058 	m->guest.val[i].value = guest_val;
1059 
1060 	if (entry_only)
1061 		return;
1062 
1063 	if (j < 0) {
1064 		j = m->host.nr++;
1065 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1066 	}
1067 	m->host.val[j].index = msr;
1068 	m->host.val[j].value = host_val;
1069 }
1070 
1071 static bool update_transition_efer(struct vcpu_vmx *vmx)
1072 {
1073 	u64 guest_efer = vmx->vcpu.arch.efer;
1074 	u64 ignore_bits = 0;
1075 	int i;
1076 
1077 	/* Shadow paging assumes NX to be available.  */
1078 	if (!enable_ept)
1079 		guest_efer |= EFER_NX;
1080 
1081 	/*
1082 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1083 	 */
1084 	ignore_bits |= EFER_SCE;
1085 #ifdef CONFIG_X86_64
1086 	ignore_bits |= EFER_LMA | EFER_LME;
1087 	/* SCE is meaningful only in long mode on Intel */
1088 	if (guest_efer & EFER_LMA)
1089 		ignore_bits &= ~(u64)EFER_SCE;
1090 #endif
1091 
1092 	/*
1093 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1094 	 * On CPUs that support "load IA32_EFER", always switch EFER
1095 	 * atomically, since it's faster than switching it manually.
1096 	 */
1097 	if (cpu_has_load_ia32_efer() ||
1098 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1099 		if (!(guest_efer & EFER_LMA))
1100 			guest_efer &= ~EFER_LME;
1101 		if (guest_efer != host_efer)
1102 			add_atomic_switch_msr(vmx, MSR_EFER,
1103 					      guest_efer, host_efer, false);
1104 		else
1105 			clear_atomic_switch_msr(vmx, MSR_EFER);
1106 		return false;
1107 	}
1108 
1109 	i = kvm_find_user_return_msr(MSR_EFER);
1110 	if (i < 0)
1111 		return false;
1112 
1113 	clear_atomic_switch_msr(vmx, MSR_EFER);
1114 
1115 	guest_efer &= ~ignore_bits;
1116 	guest_efer |= host_efer & ignore_bits;
1117 
1118 	vmx->guest_uret_msrs[i].data = guest_efer;
1119 	vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1120 
1121 	return true;
1122 }
1123 
1124 #ifdef CONFIG_X86_32
1125 /*
1126  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1127  * VMCS rather than the segment table.  KVM uses this helper to figure
1128  * out the current bases to poke them into the VMCS before entry.
1129  */
1130 static unsigned long segment_base(u16 selector)
1131 {
1132 	struct desc_struct *table;
1133 	unsigned long v;
1134 
1135 	if (!(selector & ~SEGMENT_RPL_MASK))
1136 		return 0;
1137 
1138 	table = get_current_gdt_ro();
1139 
1140 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1141 		u16 ldt_selector = kvm_read_ldt();
1142 
1143 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1144 			return 0;
1145 
1146 		table = (struct desc_struct *)segment_base(ldt_selector);
1147 	}
1148 	v = get_desc_base(&table[selector >> 3]);
1149 	return v;
1150 }
1151 #endif
1152 
1153 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1154 {
1155 	return vmx_pt_mode_is_host_guest() &&
1156 	       !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1157 }
1158 
1159 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1160 {
1161 	/* The base must be 128-byte aligned and a legal physical address. */
1162 	return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1163 }
1164 
1165 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1166 {
1167 	u32 i;
1168 
1169 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1170 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1171 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1172 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1173 	for (i = 0; i < addr_range; i++) {
1174 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1175 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1176 	}
1177 }
1178 
1179 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1180 {
1181 	u32 i;
1182 
1183 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1184 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1185 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1186 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1187 	for (i = 0; i < addr_range; i++) {
1188 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1189 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1190 	}
1191 }
1192 
1193 static void pt_guest_enter(struct vcpu_vmx *vmx)
1194 {
1195 	if (vmx_pt_mode_is_system())
1196 		return;
1197 
1198 	/*
1199 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1200 	 * Save host state before VM entry.
1201 	 */
1202 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1203 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1204 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1205 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1206 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1207 	}
1208 }
1209 
1210 static void pt_guest_exit(struct vcpu_vmx *vmx)
1211 {
1212 	if (vmx_pt_mode_is_system())
1213 		return;
1214 
1215 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1216 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1217 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1218 	}
1219 
1220 	/*
1221 	 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1222 	 * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1223 	 */
1224 	if (vmx->pt_desc.host.ctl)
1225 		wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1226 }
1227 
1228 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1229 			unsigned long fs_base, unsigned long gs_base)
1230 {
1231 	if (unlikely(fs_sel != host->fs_sel)) {
1232 		if (!(fs_sel & 7))
1233 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1234 		else
1235 			vmcs_write16(HOST_FS_SELECTOR, 0);
1236 		host->fs_sel = fs_sel;
1237 	}
1238 	if (unlikely(gs_sel != host->gs_sel)) {
1239 		if (!(gs_sel & 7))
1240 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1241 		else
1242 			vmcs_write16(HOST_GS_SELECTOR, 0);
1243 		host->gs_sel = gs_sel;
1244 	}
1245 	if (unlikely(fs_base != host->fs_base)) {
1246 		vmcs_writel(HOST_FS_BASE, fs_base);
1247 		host->fs_base = fs_base;
1248 	}
1249 	if (unlikely(gs_base != host->gs_base)) {
1250 		vmcs_writel(HOST_GS_BASE, gs_base);
1251 		host->gs_base = gs_base;
1252 	}
1253 }
1254 
1255 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1256 {
1257 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1258 	struct vmcs_host_state *host_state;
1259 #ifdef CONFIG_X86_64
1260 	int cpu = raw_smp_processor_id();
1261 #endif
1262 	unsigned long fs_base, gs_base;
1263 	u16 fs_sel, gs_sel;
1264 	int i;
1265 
1266 	vmx->req_immediate_exit = false;
1267 
1268 	/*
1269 	 * Note that guest MSRs to be saved/restored can also be changed
1270 	 * when guest state is loaded. This happens when guest transitions
1271 	 * to/from long-mode by setting MSR_EFER.LMA.
1272 	 */
1273 	if (!vmx->guest_uret_msrs_loaded) {
1274 		vmx->guest_uret_msrs_loaded = true;
1275 		for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1276 			if (!vmx->guest_uret_msrs[i].load_into_hardware)
1277 				continue;
1278 
1279 			kvm_set_user_return_msr(i,
1280 						vmx->guest_uret_msrs[i].data,
1281 						vmx->guest_uret_msrs[i].mask);
1282 		}
1283 	}
1284 
1285 	if (vmx->nested.need_vmcs12_to_shadow_sync)
1286 		nested_sync_vmcs12_to_shadow(vcpu);
1287 
1288 	if (vmx->guest_state_loaded)
1289 		return;
1290 
1291 	host_state = &vmx->loaded_vmcs->host_state;
1292 
1293 	/*
1294 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1295 	 * allow segment selectors with cpl > 0 or ti == 1.
1296 	 */
1297 	host_state->ldt_sel = kvm_read_ldt();
1298 
1299 #ifdef CONFIG_X86_64
1300 	savesegment(ds, host_state->ds_sel);
1301 	savesegment(es, host_state->es_sel);
1302 
1303 	gs_base = cpu_kernelmode_gs_base(cpu);
1304 	if (likely(is_64bit_mm(current->mm))) {
1305 		current_save_fsgs();
1306 		fs_sel = current->thread.fsindex;
1307 		gs_sel = current->thread.gsindex;
1308 		fs_base = current->thread.fsbase;
1309 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1310 	} else {
1311 		savesegment(fs, fs_sel);
1312 		savesegment(gs, gs_sel);
1313 		fs_base = read_msr(MSR_FS_BASE);
1314 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1315 	}
1316 
1317 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1318 #else
1319 	savesegment(fs, fs_sel);
1320 	savesegment(gs, gs_sel);
1321 	fs_base = segment_base(fs_sel);
1322 	gs_base = segment_base(gs_sel);
1323 #endif
1324 
1325 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1326 	vmx->guest_state_loaded = true;
1327 }
1328 
1329 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1330 {
1331 	struct vmcs_host_state *host_state;
1332 
1333 	if (!vmx->guest_state_loaded)
1334 		return;
1335 
1336 	host_state = &vmx->loaded_vmcs->host_state;
1337 
1338 	++vmx->vcpu.stat.host_state_reload;
1339 
1340 #ifdef CONFIG_X86_64
1341 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1342 #endif
1343 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1344 		kvm_load_ldt(host_state->ldt_sel);
1345 #ifdef CONFIG_X86_64
1346 		load_gs_index(host_state->gs_sel);
1347 #else
1348 		loadsegment(gs, host_state->gs_sel);
1349 #endif
1350 	}
1351 	if (host_state->fs_sel & 7)
1352 		loadsegment(fs, host_state->fs_sel);
1353 #ifdef CONFIG_X86_64
1354 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1355 		loadsegment(ds, host_state->ds_sel);
1356 		loadsegment(es, host_state->es_sel);
1357 	}
1358 #endif
1359 	invalidate_tss_limit();
1360 #ifdef CONFIG_X86_64
1361 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1362 #endif
1363 	load_fixmap_gdt(raw_smp_processor_id());
1364 	vmx->guest_state_loaded = false;
1365 	vmx->guest_uret_msrs_loaded = false;
1366 }
1367 
1368 #ifdef CONFIG_X86_64
1369 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1370 {
1371 	preempt_disable();
1372 	if (vmx->guest_state_loaded)
1373 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1374 	preempt_enable();
1375 	return vmx->msr_guest_kernel_gs_base;
1376 }
1377 
1378 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1379 {
1380 	preempt_disable();
1381 	if (vmx->guest_state_loaded)
1382 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1383 	preempt_enable();
1384 	vmx->msr_guest_kernel_gs_base = data;
1385 }
1386 #endif
1387 
1388 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1389 			struct loaded_vmcs *buddy)
1390 {
1391 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1392 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1393 	struct vmcs *prev;
1394 
1395 	if (!already_loaded) {
1396 		loaded_vmcs_clear(vmx->loaded_vmcs);
1397 		local_irq_disable();
1398 
1399 		/*
1400 		 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1401 		 * this cpu's percpu list, otherwise it may not yet be deleted
1402 		 * from its previous cpu's percpu list.  Pairs with the
1403 		 * smb_wmb() in __loaded_vmcs_clear().
1404 		 */
1405 		smp_rmb();
1406 
1407 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1408 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1409 		local_irq_enable();
1410 	}
1411 
1412 	prev = per_cpu(current_vmcs, cpu);
1413 	if (prev != vmx->loaded_vmcs->vmcs) {
1414 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1415 		vmcs_load(vmx->loaded_vmcs->vmcs);
1416 
1417 		/*
1418 		 * No indirect branch prediction barrier needed when switching
1419 		 * the active VMCS within a vCPU, unless IBRS is advertised to
1420 		 * the vCPU.  To minimize the number of IBPBs executed, KVM
1421 		 * performs IBPB on nested VM-Exit (a single nested transition
1422 		 * may switch the active VMCS multiple times).
1423 		 */
1424 		if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1425 			indirect_branch_prediction_barrier();
1426 	}
1427 
1428 	if (!already_loaded) {
1429 		void *gdt = get_current_gdt_ro();
1430 
1431 		/*
1432 		 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1433 		 * TLB entries from its previous association with the vCPU.
1434 		 */
1435 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1436 
1437 		/*
1438 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1439 		 * processors.  See 22.2.4.
1440 		 */
1441 		vmcs_writel(HOST_TR_BASE,
1442 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1443 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1444 
1445 		if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1446 			/* 22.2.3 */
1447 			vmcs_writel(HOST_IA32_SYSENTER_ESP,
1448 				    (unsigned long)(cpu_entry_stack(cpu) + 1));
1449 		}
1450 
1451 		vmx->loaded_vmcs->cpu = cpu;
1452 	}
1453 }
1454 
1455 /*
1456  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1457  * vcpu mutex is already taken.
1458  */
1459 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1460 {
1461 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1462 
1463 	vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1464 
1465 	vmx_vcpu_pi_load(vcpu, cpu);
1466 
1467 	vmx->host_debugctlmsr = get_debugctlmsr();
1468 }
1469 
1470 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1471 {
1472 	vmx_vcpu_pi_put(vcpu);
1473 
1474 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1475 }
1476 
1477 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1478 {
1479 	return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1480 }
1481 
1482 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1483 {
1484 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1485 	unsigned long rflags, save_rflags;
1486 
1487 	if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1488 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1489 		rflags = vmcs_readl(GUEST_RFLAGS);
1490 		if (vmx->rmode.vm86_active) {
1491 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1492 			save_rflags = vmx->rmode.save_rflags;
1493 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1494 		}
1495 		vmx->rflags = rflags;
1496 	}
1497 	return vmx->rflags;
1498 }
1499 
1500 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1501 {
1502 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1503 	unsigned long old_rflags;
1504 
1505 	if (is_unrestricted_guest(vcpu)) {
1506 		kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1507 		vmx->rflags = rflags;
1508 		vmcs_writel(GUEST_RFLAGS, rflags);
1509 		return;
1510 	}
1511 
1512 	old_rflags = vmx_get_rflags(vcpu);
1513 	vmx->rflags = rflags;
1514 	if (vmx->rmode.vm86_active) {
1515 		vmx->rmode.save_rflags = rflags;
1516 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1517 	}
1518 	vmcs_writel(GUEST_RFLAGS, rflags);
1519 
1520 	if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1521 		vmx->emulation_required = vmx_emulation_required(vcpu);
1522 }
1523 
1524 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1525 {
1526 	return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1527 }
1528 
1529 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1530 {
1531 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1532 	int ret = 0;
1533 
1534 	if (interruptibility & GUEST_INTR_STATE_STI)
1535 		ret |= KVM_X86_SHADOW_INT_STI;
1536 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1537 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1538 
1539 	return ret;
1540 }
1541 
1542 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1543 {
1544 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1545 	u32 interruptibility = interruptibility_old;
1546 
1547 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1548 
1549 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1550 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1551 	else if (mask & KVM_X86_SHADOW_INT_STI)
1552 		interruptibility |= GUEST_INTR_STATE_STI;
1553 
1554 	if ((interruptibility != interruptibility_old))
1555 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1556 }
1557 
1558 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1559 {
1560 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1561 	unsigned long value;
1562 
1563 	/*
1564 	 * Any MSR write that attempts to change bits marked reserved will
1565 	 * case a #GP fault.
1566 	 */
1567 	if (data & vmx->pt_desc.ctl_bitmask)
1568 		return 1;
1569 
1570 	/*
1571 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1572 	 * result in a #GP unless the same write also clears TraceEn.
1573 	 */
1574 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1575 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1576 		return 1;
1577 
1578 	/*
1579 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1580 	 * and FabricEn would cause #GP, if
1581 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1582 	 */
1583 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1584 		!(data & RTIT_CTL_FABRIC_EN) &&
1585 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1586 					PT_CAP_single_range_output))
1587 		return 1;
1588 
1589 	/*
1590 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1591 	 * utilize encodings marked reserved will cause a #GP fault.
1592 	 */
1593 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1594 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1595 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1596 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1597 		return 1;
1598 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1599 						PT_CAP_cycle_thresholds);
1600 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1601 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1602 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1603 		return 1;
1604 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1605 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1606 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1607 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1608 		return 1;
1609 
1610 	/*
1611 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1612 	 * cause a #GP fault.
1613 	 */
1614 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1615 	if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1616 		return 1;
1617 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1618 	if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1619 		return 1;
1620 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1621 	if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1622 		return 1;
1623 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1624 	if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1625 		return 1;
1626 
1627 	return 0;
1628 }
1629 
1630 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1631 					void *insn, int insn_len)
1632 {
1633 	/*
1634 	 * Emulation of instructions in SGX enclaves is impossible as RIP does
1635 	 * not point at the failing instruction, and even if it did, the code
1636 	 * stream is inaccessible.  Inject #UD instead of exiting to userspace
1637 	 * so that guest userspace can't DoS the guest simply by triggering
1638 	 * emulation (enclaves are CPL3 only).
1639 	 */
1640 	if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1641 		kvm_queue_exception(vcpu, UD_VECTOR);
1642 		return false;
1643 	}
1644 	return true;
1645 }
1646 
1647 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1648 {
1649 	union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1650 	unsigned long rip, orig_rip;
1651 	u32 instr_len;
1652 
1653 	/*
1654 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1655 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1656 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1657 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1658 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1659 	 * i.e. we end up advancing IP with some random value.
1660 	 */
1661 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1662 	    exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1663 		instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1664 
1665 		/*
1666 		 * Emulating an enclave's instructions isn't supported as KVM
1667 		 * cannot access the enclave's memory or its true RIP, e.g. the
1668 		 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1669 		 * the RIP that actually triggered the VM-Exit.  But, because
1670 		 * most instructions that cause VM-Exit will #UD in an enclave,
1671 		 * most instruction-based VM-Exits simply do not occur.
1672 		 *
1673 		 * There are a few exceptions, notably the debug instructions
1674 		 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1675 		 * and generate #DB/#BP as expected, which KVM might intercept.
1676 		 * But again, the CPU does the dirty work and saves an instr
1677 		 * length of zero so VMMs don't shoot themselves in the foot.
1678 		 * WARN if KVM tries to skip a non-zero length instruction on
1679 		 * a VM-Exit from an enclave.
1680 		 */
1681 		if (!instr_len)
1682 			goto rip_updated;
1683 
1684 		WARN_ONCE(exit_reason.enclave_mode,
1685 			  "skipping instruction after SGX enclave VM-Exit");
1686 
1687 		orig_rip = kvm_rip_read(vcpu);
1688 		rip = orig_rip + instr_len;
1689 #ifdef CONFIG_X86_64
1690 		/*
1691 		 * We need to mask out the high 32 bits of RIP if not in 64-bit
1692 		 * mode, but just finding out that we are in 64-bit mode is
1693 		 * quite expensive.  Only do it if there was a carry.
1694 		 */
1695 		if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1696 			rip = (u32)rip;
1697 #endif
1698 		kvm_rip_write(vcpu, rip);
1699 	} else {
1700 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1701 			return 0;
1702 	}
1703 
1704 rip_updated:
1705 	/* skipping an emulated instruction also counts */
1706 	vmx_set_interrupt_shadow(vcpu, 0);
1707 
1708 	return 1;
1709 }
1710 
1711 /*
1712  * Recognizes a pending MTF VM-exit and records the nested state for later
1713  * delivery.
1714  */
1715 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1716 {
1717 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1718 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1719 
1720 	if (!is_guest_mode(vcpu))
1721 		return;
1722 
1723 	/*
1724 	 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1725 	 * TSS T-bit traps and ICEBP (INT1).  KVM doesn't emulate T-bit traps
1726 	 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1727 	 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1728 	 * as ICEBP is higher priority than both.  As instruction emulation is
1729 	 * completed at this point (i.e. KVM is at the instruction boundary),
1730 	 * any #DB exception pending delivery must be a debug-trap of lower
1731 	 * priority than MTF.  Record the pending MTF state to be delivered in
1732 	 * vmx_check_nested_events().
1733 	 */
1734 	if (nested_cpu_has_mtf(vmcs12) &&
1735 	    (!vcpu->arch.exception.pending ||
1736 	     vcpu->arch.exception.vector == DB_VECTOR) &&
1737 	    (!vcpu->arch.exception_vmexit.pending ||
1738 	     vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1739 		vmx->nested.mtf_pending = true;
1740 		kvm_make_request(KVM_REQ_EVENT, vcpu);
1741 	} else {
1742 		vmx->nested.mtf_pending = false;
1743 	}
1744 }
1745 
1746 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1747 {
1748 	vmx_update_emulated_instruction(vcpu);
1749 	return skip_emulated_instruction(vcpu);
1750 }
1751 
1752 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1753 {
1754 	/*
1755 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1756 	 * explicitly skip the instruction because if the HLT state is set,
1757 	 * then the instruction is already executing and RIP has already been
1758 	 * advanced.
1759 	 */
1760 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1761 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1762 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1763 }
1764 
1765 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1766 {
1767 	struct kvm_queued_exception *ex = &vcpu->arch.exception;
1768 	u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1769 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1770 
1771 	kvm_deliver_exception_payload(vcpu, ex);
1772 
1773 	if (ex->has_error_code) {
1774 		/*
1775 		 * Despite the error code being architecturally defined as 32
1776 		 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1777 		 * VMX don't actually supporting setting bits 31:16.  Hardware
1778 		 * will (should) never provide a bogus error code, but AMD CPUs
1779 		 * do generate error codes with bits 31:16 set, and so KVM's
1780 		 * ABI lets userspace shove in arbitrary 32-bit values.  Drop
1781 		 * the upper bits to avoid VM-Fail, losing information that
1782 		 * does't really exist is preferable to killing the VM.
1783 		 */
1784 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1785 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1786 	}
1787 
1788 	if (vmx->rmode.vm86_active) {
1789 		int inc_eip = 0;
1790 		if (kvm_exception_is_soft(ex->vector))
1791 			inc_eip = vcpu->arch.event_exit_inst_len;
1792 		kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1793 		return;
1794 	}
1795 
1796 	WARN_ON_ONCE(vmx->emulation_required);
1797 
1798 	if (kvm_exception_is_soft(ex->vector)) {
1799 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1800 			     vmx->vcpu.arch.event_exit_inst_len);
1801 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1802 	} else
1803 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1804 
1805 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1806 
1807 	vmx_clear_hlt(vcpu);
1808 }
1809 
1810 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1811 			       bool load_into_hardware)
1812 {
1813 	struct vmx_uret_msr *uret_msr;
1814 
1815 	uret_msr = vmx_find_uret_msr(vmx, msr);
1816 	if (!uret_msr)
1817 		return;
1818 
1819 	uret_msr->load_into_hardware = load_into_hardware;
1820 }
1821 
1822 /*
1823  * Configuring user return MSRs to automatically save, load, and restore MSRs
1824  * that need to be shoved into hardware when running the guest.  Note, omitting
1825  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1826  * loaded into hardware when running the guest.
1827  */
1828 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1829 {
1830 #ifdef CONFIG_X86_64
1831 	bool load_syscall_msrs;
1832 
1833 	/*
1834 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1835 	 * when EFER.SCE is set.
1836 	 */
1837 	load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1838 			    (vmx->vcpu.arch.efer & EFER_SCE);
1839 
1840 	vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1841 	vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1842 	vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1843 #endif
1844 	vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1845 
1846 	vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1847 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1848 			   guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1849 
1850 	/*
1851 	 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1852 	 * kernel and old userspace.  If those guests run on a tsx=off host, do
1853 	 * allow guests to use TSX_CTRL, but don't change the value in hardware
1854 	 * so that TSX remains always disabled.
1855 	 */
1856 	vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1857 
1858 	/*
1859 	 * The set of MSRs to load may have changed, reload MSRs before the
1860 	 * next VM-Enter.
1861 	 */
1862 	vmx->guest_uret_msrs_loaded = false;
1863 }
1864 
1865 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1866 {
1867 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1868 
1869 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1870 		return vmcs12->tsc_offset;
1871 
1872 	return 0;
1873 }
1874 
1875 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1876 {
1877 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1878 
1879 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1880 	    nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1881 		return vmcs12->tsc_multiplier;
1882 
1883 	return kvm_caps.default_tsc_scaling_ratio;
1884 }
1885 
1886 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1887 {
1888 	vmcs_write64(TSC_OFFSET, offset);
1889 }
1890 
1891 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1892 {
1893 	vmcs_write64(TSC_MULTIPLIER, multiplier);
1894 }
1895 
1896 /*
1897  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1898  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1899  * all guests if the "nested" module option is off, and can also be disabled
1900  * for a single guest by disabling its VMX cpuid bit.
1901  */
1902 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1903 {
1904 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1905 }
1906 
1907 /*
1908  * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1909  * guest CPUID.  Note, KVM allows userspace to set "VMX in SMX" to maintain
1910  * backwards compatibility even though KVM doesn't support emulating SMX.  And
1911  * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1912  * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1913  */
1914 #define KVM_SUPPORTED_FEATURE_CONTROL  (FEAT_CTL_LOCKED			 | \
1915 					FEAT_CTL_VMX_ENABLED_INSIDE_SMX	 | \
1916 					FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1917 					FEAT_CTL_SGX_LC_ENABLED		 | \
1918 					FEAT_CTL_SGX_ENABLED		 | \
1919 					FEAT_CTL_LMCE_ENABLED)
1920 
1921 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1922 						    struct msr_data *msr)
1923 {
1924 	uint64_t valid_bits;
1925 
1926 	/*
1927 	 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1928 	 * exposed to the guest.
1929 	 */
1930 	WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1931 		     ~KVM_SUPPORTED_FEATURE_CONTROL);
1932 
1933 	if (!msr->host_initiated &&
1934 	    (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1935 		return false;
1936 
1937 	if (msr->host_initiated)
1938 		valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1939 	else
1940 		valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1941 
1942 	return !(msr->data & ~valid_bits);
1943 }
1944 
1945 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1946 {
1947 	switch (msr->index) {
1948 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1949 		if (!nested)
1950 			return 1;
1951 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1952 	default:
1953 		return KVM_MSR_RET_INVALID;
1954 	}
1955 }
1956 
1957 /*
1958  * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1959  * Returns 0 on success, non-0 otherwise.
1960  * Assumes vcpu_load() was already called.
1961  */
1962 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1963 {
1964 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1965 	struct vmx_uret_msr *msr;
1966 	u32 index;
1967 
1968 	switch (msr_info->index) {
1969 #ifdef CONFIG_X86_64
1970 	case MSR_FS_BASE:
1971 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1972 		break;
1973 	case MSR_GS_BASE:
1974 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1975 		break;
1976 	case MSR_KERNEL_GS_BASE:
1977 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1978 		break;
1979 #endif
1980 	case MSR_EFER:
1981 		return kvm_get_msr_common(vcpu, msr_info);
1982 	case MSR_IA32_TSX_CTRL:
1983 		if (!msr_info->host_initiated &&
1984 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1985 			return 1;
1986 		goto find_uret_msr;
1987 	case MSR_IA32_UMWAIT_CONTROL:
1988 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1989 			return 1;
1990 
1991 		msr_info->data = vmx->msr_ia32_umwait_control;
1992 		break;
1993 	case MSR_IA32_SPEC_CTRL:
1994 		if (!msr_info->host_initiated &&
1995 		    !guest_has_spec_ctrl_msr(vcpu))
1996 			return 1;
1997 
1998 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1999 		break;
2000 	case MSR_IA32_SYSENTER_CS:
2001 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2002 		break;
2003 	case MSR_IA32_SYSENTER_EIP:
2004 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2005 		break;
2006 	case MSR_IA32_SYSENTER_ESP:
2007 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2008 		break;
2009 	case MSR_IA32_BNDCFGS:
2010 		if (!kvm_mpx_supported() ||
2011 		    (!msr_info->host_initiated &&
2012 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2013 			return 1;
2014 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2015 		break;
2016 	case MSR_IA32_MCG_EXT_CTL:
2017 		if (!msr_info->host_initiated &&
2018 		    !(vmx->msr_ia32_feature_control &
2019 		      FEAT_CTL_LMCE_ENABLED))
2020 			return 1;
2021 		msr_info->data = vcpu->arch.mcg_ext_ctl;
2022 		break;
2023 	case MSR_IA32_FEAT_CTL:
2024 		msr_info->data = vmx->msr_ia32_feature_control;
2025 		break;
2026 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2027 		if (!msr_info->host_initiated &&
2028 		    !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2029 			return 1;
2030 		msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2031 			[msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2032 		break;
2033 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2034 		if (!nested_vmx_allowed(vcpu))
2035 			return 1;
2036 		if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2037 				    &msr_info->data))
2038 			return 1;
2039 		/*
2040 		 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2041 		 * instead of just ignoring the features, different Hyper-V
2042 		 * versions are either trying to use them and fail or do some
2043 		 * sanity checking and refuse to boot. Filter all unsupported
2044 		 * features out.
2045 		 */
2046 		if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2047 			nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2048 							&msr_info->data);
2049 		break;
2050 	case MSR_IA32_RTIT_CTL:
2051 		if (!vmx_pt_mode_is_host_guest())
2052 			return 1;
2053 		msr_info->data = vmx->pt_desc.guest.ctl;
2054 		break;
2055 	case MSR_IA32_RTIT_STATUS:
2056 		if (!vmx_pt_mode_is_host_guest())
2057 			return 1;
2058 		msr_info->data = vmx->pt_desc.guest.status;
2059 		break;
2060 	case MSR_IA32_RTIT_CR3_MATCH:
2061 		if (!vmx_pt_mode_is_host_guest() ||
2062 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2063 						PT_CAP_cr3_filtering))
2064 			return 1;
2065 		msr_info->data = vmx->pt_desc.guest.cr3_match;
2066 		break;
2067 	case MSR_IA32_RTIT_OUTPUT_BASE:
2068 		if (!vmx_pt_mode_is_host_guest() ||
2069 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2070 					PT_CAP_topa_output) &&
2071 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2072 					PT_CAP_single_range_output)))
2073 			return 1;
2074 		msr_info->data = vmx->pt_desc.guest.output_base;
2075 		break;
2076 	case MSR_IA32_RTIT_OUTPUT_MASK:
2077 		if (!vmx_pt_mode_is_host_guest() ||
2078 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2079 					PT_CAP_topa_output) &&
2080 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2081 					PT_CAP_single_range_output)))
2082 			return 1;
2083 		msr_info->data = vmx->pt_desc.guest.output_mask;
2084 		break;
2085 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2086 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2087 		if (!vmx_pt_mode_is_host_guest() ||
2088 		    (index >= 2 * vmx->pt_desc.num_address_ranges))
2089 			return 1;
2090 		if (index % 2)
2091 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2092 		else
2093 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2094 		break;
2095 	case MSR_IA32_DEBUGCTLMSR:
2096 		msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2097 		break;
2098 	default:
2099 	find_uret_msr:
2100 		msr = vmx_find_uret_msr(vmx, msr_info->index);
2101 		if (msr) {
2102 			msr_info->data = msr->data;
2103 			break;
2104 		}
2105 		return kvm_get_msr_common(vcpu, msr_info);
2106 	}
2107 
2108 	return 0;
2109 }
2110 
2111 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2112 						    u64 data)
2113 {
2114 #ifdef CONFIG_X86_64
2115 	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2116 		return (u32)data;
2117 #endif
2118 	return (unsigned long)data;
2119 }
2120 
2121 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2122 {
2123 	u64 debugctl = 0;
2124 
2125 	if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2126 	    (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2127 		debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2128 
2129 	if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2130 	    (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2131 		debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2132 
2133 	return debugctl;
2134 }
2135 
2136 /*
2137  * Writes msr value into the appropriate "register".
2138  * Returns 0 on success, non-0 otherwise.
2139  * Assumes vcpu_load() was already called.
2140  */
2141 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2142 {
2143 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2144 	struct vmx_uret_msr *msr;
2145 	int ret = 0;
2146 	u32 msr_index = msr_info->index;
2147 	u64 data = msr_info->data;
2148 	u32 index;
2149 
2150 	switch (msr_index) {
2151 	case MSR_EFER:
2152 		ret = kvm_set_msr_common(vcpu, msr_info);
2153 		break;
2154 #ifdef CONFIG_X86_64
2155 	case MSR_FS_BASE:
2156 		vmx_segment_cache_clear(vmx);
2157 		vmcs_writel(GUEST_FS_BASE, data);
2158 		break;
2159 	case MSR_GS_BASE:
2160 		vmx_segment_cache_clear(vmx);
2161 		vmcs_writel(GUEST_GS_BASE, data);
2162 		break;
2163 	case MSR_KERNEL_GS_BASE:
2164 		vmx_write_guest_kernel_gs_base(vmx, data);
2165 		break;
2166 	case MSR_IA32_XFD:
2167 		ret = kvm_set_msr_common(vcpu, msr_info);
2168 		/*
2169 		 * Always intercepting WRMSR could incur non-negligible
2170 		 * overhead given xfd might be changed frequently in
2171 		 * guest context switch. Disable write interception
2172 		 * upon the first write with a non-zero value (indicating
2173 		 * potential usage on dynamic xfeatures). Also update
2174 		 * exception bitmap to trap #NM for proper virtualization
2175 		 * of guest xfd_err.
2176 		 */
2177 		if (!ret && data) {
2178 			vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2179 						      MSR_TYPE_RW);
2180 			vcpu->arch.xfd_no_write_intercept = true;
2181 			vmx_update_exception_bitmap(vcpu);
2182 		}
2183 		break;
2184 #endif
2185 	case MSR_IA32_SYSENTER_CS:
2186 		if (is_guest_mode(vcpu))
2187 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
2188 		vmcs_write32(GUEST_SYSENTER_CS, data);
2189 		break;
2190 	case MSR_IA32_SYSENTER_EIP:
2191 		if (is_guest_mode(vcpu)) {
2192 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2193 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
2194 		}
2195 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2196 		break;
2197 	case MSR_IA32_SYSENTER_ESP:
2198 		if (is_guest_mode(vcpu)) {
2199 			data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2200 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
2201 		}
2202 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2203 		break;
2204 	case MSR_IA32_DEBUGCTLMSR: {
2205 		u64 invalid;
2206 
2207 		invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2208 		if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2209 			kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2210 			data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2211 			invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2212 		}
2213 
2214 		if (invalid)
2215 			return 1;
2216 
2217 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2218 						VM_EXIT_SAVE_DEBUG_CONTROLS)
2219 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2220 
2221 		vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2222 		if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2223 		    (data & DEBUGCTLMSR_LBR))
2224 			intel_pmu_create_guest_lbr_event(vcpu);
2225 		return 0;
2226 	}
2227 	case MSR_IA32_BNDCFGS:
2228 		if (!kvm_mpx_supported() ||
2229 		    (!msr_info->host_initiated &&
2230 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2231 			return 1;
2232 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2233 		    (data & MSR_IA32_BNDCFGS_RSVD))
2234 			return 1;
2235 
2236 		if (is_guest_mode(vcpu) &&
2237 		    ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2238 		     (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2239 			get_vmcs12(vcpu)->guest_bndcfgs = data;
2240 
2241 		vmcs_write64(GUEST_BNDCFGS, data);
2242 		break;
2243 	case MSR_IA32_UMWAIT_CONTROL:
2244 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2245 			return 1;
2246 
2247 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
2248 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2249 			return 1;
2250 
2251 		vmx->msr_ia32_umwait_control = data;
2252 		break;
2253 	case MSR_IA32_SPEC_CTRL:
2254 		if (!msr_info->host_initiated &&
2255 		    !guest_has_spec_ctrl_msr(vcpu))
2256 			return 1;
2257 
2258 		if (kvm_spec_ctrl_test_value(data))
2259 			return 1;
2260 
2261 		vmx->spec_ctrl = data;
2262 		if (!data)
2263 			break;
2264 
2265 		/*
2266 		 * For non-nested:
2267 		 * When it's written (to non-zero) for the first time, pass
2268 		 * it through.
2269 		 *
2270 		 * For nested:
2271 		 * The handling of the MSR bitmap for L2 guests is done in
2272 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2273 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2274 		 * in the merging. We update the vmcs01 here for L1 as well
2275 		 * since it will end up touching the MSR anyway now.
2276 		 */
2277 		vmx_disable_intercept_for_msr(vcpu,
2278 					      MSR_IA32_SPEC_CTRL,
2279 					      MSR_TYPE_RW);
2280 		break;
2281 	case MSR_IA32_TSX_CTRL:
2282 		if (!msr_info->host_initiated &&
2283 		    !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2284 			return 1;
2285 		if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2286 			return 1;
2287 		goto find_uret_msr;
2288 	case MSR_IA32_PRED_CMD:
2289 		if (!msr_info->host_initiated &&
2290 		    !guest_has_pred_cmd_msr(vcpu))
2291 			return 1;
2292 
2293 		if (data & ~PRED_CMD_IBPB)
2294 			return 1;
2295 		if (!boot_cpu_has(X86_FEATURE_IBPB))
2296 			return 1;
2297 		if (!data)
2298 			break;
2299 
2300 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2301 
2302 		/*
2303 		 * For non-nested:
2304 		 * When it's written (to non-zero) for the first time, pass
2305 		 * it through.
2306 		 *
2307 		 * For nested:
2308 		 * The handling of the MSR bitmap for L2 guests is done in
2309 		 * nested_vmx_prepare_msr_bitmap. We should not touch the
2310 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2311 		 * in the merging.
2312 		 */
2313 		vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2314 		break;
2315 	case MSR_IA32_CR_PAT:
2316 		if (!kvm_pat_valid(data))
2317 			return 1;
2318 
2319 		if (is_guest_mode(vcpu) &&
2320 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2321 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2322 
2323 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2324 			vmcs_write64(GUEST_IA32_PAT, data);
2325 			vcpu->arch.pat = data;
2326 			break;
2327 		}
2328 		ret = kvm_set_msr_common(vcpu, msr_info);
2329 		break;
2330 	case MSR_IA32_MCG_EXT_CTL:
2331 		if ((!msr_info->host_initiated &&
2332 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2333 		       FEAT_CTL_LMCE_ENABLED)) ||
2334 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2335 			return 1;
2336 		vcpu->arch.mcg_ext_ctl = data;
2337 		break;
2338 	case MSR_IA32_FEAT_CTL:
2339 		if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2340 			return 1;
2341 
2342 		vmx->msr_ia32_feature_control = data;
2343 		if (msr_info->host_initiated && data == 0)
2344 			vmx_leave_nested(vcpu);
2345 
2346 		/* SGX may be enabled/disabled by guest's firmware */
2347 		vmx_write_encls_bitmap(vcpu, NULL);
2348 		break;
2349 	case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2350 		/*
2351 		 * On real hardware, the LE hash MSRs are writable before
2352 		 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2353 		 * at which point SGX related bits in IA32_FEATURE_CONTROL
2354 		 * become writable.
2355 		 *
2356 		 * KVM does not emulate SGX activation for simplicity, so
2357 		 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2358 		 * is unlocked.  This is technically not architectural
2359 		 * behavior, but it's close enough.
2360 		 */
2361 		if (!msr_info->host_initiated &&
2362 		    (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2363 		    ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2364 		    !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2365 			return 1;
2366 		vmx->msr_ia32_sgxlepubkeyhash
2367 			[msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2368 		break;
2369 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2370 		if (!msr_info->host_initiated)
2371 			return 1; /* they are read-only */
2372 		if (!nested_vmx_allowed(vcpu))
2373 			return 1;
2374 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2375 	case MSR_IA32_RTIT_CTL:
2376 		if (!vmx_pt_mode_is_host_guest() ||
2377 			vmx_rtit_ctl_check(vcpu, data) ||
2378 			vmx->nested.vmxon)
2379 			return 1;
2380 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2381 		vmx->pt_desc.guest.ctl = data;
2382 		pt_update_intercept_for_msr(vcpu);
2383 		break;
2384 	case MSR_IA32_RTIT_STATUS:
2385 		if (!pt_can_write_msr(vmx))
2386 			return 1;
2387 		if (data & MSR_IA32_RTIT_STATUS_MASK)
2388 			return 1;
2389 		vmx->pt_desc.guest.status = data;
2390 		break;
2391 	case MSR_IA32_RTIT_CR3_MATCH:
2392 		if (!pt_can_write_msr(vmx))
2393 			return 1;
2394 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2395 					   PT_CAP_cr3_filtering))
2396 			return 1;
2397 		vmx->pt_desc.guest.cr3_match = data;
2398 		break;
2399 	case MSR_IA32_RTIT_OUTPUT_BASE:
2400 		if (!pt_can_write_msr(vmx))
2401 			return 1;
2402 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2403 					   PT_CAP_topa_output) &&
2404 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2405 					   PT_CAP_single_range_output))
2406 			return 1;
2407 		if (!pt_output_base_valid(vcpu, data))
2408 			return 1;
2409 		vmx->pt_desc.guest.output_base = data;
2410 		break;
2411 	case MSR_IA32_RTIT_OUTPUT_MASK:
2412 		if (!pt_can_write_msr(vmx))
2413 			return 1;
2414 		if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2415 					   PT_CAP_topa_output) &&
2416 		    !intel_pt_validate_cap(vmx->pt_desc.caps,
2417 					   PT_CAP_single_range_output))
2418 			return 1;
2419 		vmx->pt_desc.guest.output_mask = data;
2420 		break;
2421 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2422 		if (!pt_can_write_msr(vmx))
2423 			return 1;
2424 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2425 		if (index >= 2 * vmx->pt_desc.num_address_ranges)
2426 			return 1;
2427 		if (is_noncanonical_address(data, vcpu))
2428 			return 1;
2429 		if (index % 2)
2430 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2431 		else
2432 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2433 		break;
2434 	case MSR_IA32_PERF_CAPABILITIES:
2435 		if (data && !vcpu_to_pmu(vcpu)->version)
2436 			return 1;
2437 		if (data & PMU_CAP_LBR_FMT) {
2438 			if ((data & PMU_CAP_LBR_FMT) !=
2439 			    (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2440 				return 1;
2441 			if (!cpuid_model_is_consistent(vcpu))
2442 				return 1;
2443 		}
2444 		if (data & PERF_CAP_PEBS_FORMAT) {
2445 			if ((data & PERF_CAP_PEBS_MASK) !=
2446 			    (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2447 				return 1;
2448 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2449 				return 1;
2450 			if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2451 				return 1;
2452 			if (!cpuid_model_is_consistent(vcpu))
2453 				return 1;
2454 		}
2455 		ret = kvm_set_msr_common(vcpu, msr_info);
2456 		break;
2457 
2458 	default:
2459 	find_uret_msr:
2460 		msr = vmx_find_uret_msr(vmx, msr_index);
2461 		if (msr)
2462 			ret = vmx_set_guest_uret_msr(vmx, msr, data);
2463 		else
2464 			ret = kvm_set_msr_common(vcpu, msr_info);
2465 	}
2466 
2467 	/* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2468 	if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2469 		vmx_update_fb_clear_dis(vcpu, vmx);
2470 
2471 	return ret;
2472 }
2473 
2474 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2475 {
2476 	unsigned long guest_owned_bits;
2477 
2478 	kvm_register_mark_available(vcpu, reg);
2479 
2480 	switch (reg) {
2481 	case VCPU_REGS_RSP:
2482 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2483 		break;
2484 	case VCPU_REGS_RIP:
2485 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2486 		break;
2487 	case VCPU_EXREG_PDPTR:
2488 		if (enable_ept)
2489 			ept_save_pdptrs(vcpu);
2490 		break;
2491 	case VCPU_EXREG_CR0:
2492 		guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2493 
2494 		vcpu->arch.cr0 &= ~guest_owned_bits;
2495 		vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2496 		break;
2497 	case VCPU_EXREG_CR3:
2498 		/*
2499 		 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2500 		 * CR3 is loaded into hardware, not the guest's CR3.
2501 		 */
2502 		if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2503 			vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2504 		break;
2505 	case VCPU_EXREG_CR4:
2506 		guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2507 
2508 		vcpu->arch.cr4 &= ~guest_owned_bits;
2509 		vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2510 		break;
2511 	default:
2512 		KVM_BUG_ON(1, vcpu->kvm);
2513 		break;
2514 	}
2515 }
2516 
2517 /*
2518  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2519  * directly instead of going through cpu_has(), to ensure KVM is trapping
2520  * ENCLS whenever it's supported in hardware.  It does not matter whether
2521  * the host OS supports or has enabled SGX.
2522  */
2523 static bool cpu_has_sgx(void)
2524 {
2525 	return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2526 }
2527 
2528 /*
2529  * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2530  * can't be used due to errata where VM Exit may incorrectly clear
2531  * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2532  * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2533  */
2534 static bool cpu_has_perf_global_ctrl_bug(void)
2535 {
2536 	if (boot_cpu_data.x86 == 0x6) {
2537 		switch (boot_cpu_data.x86_model) {
2538 		case INTEL_FAM6_NEHALEM_EP:	/* AAK155 */
2539 		case INTEL_FAM6_NEHALEM:	/* AAP115 */
2540 		case INTEL_FAM6_WESTMERE:	/* AAT100 */
2541 		case INTEL_FAM6_WESTMERE_EP:	/* BC86,AAY89,BD102 */
2542 		case INTEL_FAM6_NEHALEM_EX:	/* BA97 */
2543 			return true;
2544 		default:
2545 			break;
2546 		}
2547 	}
2548 
2549 	return false;
2550 }
2551 
2552 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2553 {
2554 	u32 vmx_msr_low, vmx_msr_high;
2555 	u32 ctl = ctl_min | ctl_opt;
2556 
2557 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2558 
2559 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2560 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2561 
2562 	/* Ensure minimum (required) set of control bits are supported. */
2563 	if (ctl_min & ~ctl)
2564 		return -EIO;
2565 
2566 	*result = ctl;
2567 	return 0;
2568 }
2569 
2570 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2571 {
2572 	u64 allowed;
2573 
2574 	rdmsrl(msr, allowed);
2575 
2576 	return  ctl_opt & allowed;
2577 }
2578 
2579 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2580 			     struct vmx_capability *vmx_cap)
2581 {
2582 	u32 vmx_msr_low, vmx_msr_high;
2583 	u32 _pin_based_exec_control = 0;
2584 	u32 _cpu_based_exec_control = 0;
2585 	u32 _cpu_based_2nd_exec_control = 0;
2586 	u64 _cpu_based_3rd_exec_control = 0;
2587 	u32 _vmexit_control = 0;
2588 	u32 _vmentry_control = 0;
2589 	u64 misc_msr;
2590 	int i;
2591 
2592 	/*
2593 	 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2594 	 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2595 	 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2596 	 */
2597 	struct {
2598 		u32 entry_control;
2599 		u32 exit_control;
2600 	} const vmcs_entry_exit_pairs[] = {
2601 		{ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,	VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2602 		{ VM_ENTRY_LOAD_IA32_PAT,		VM_EXIT_LOAD_IA32_PAT },
2603 		{ VM_ENTRY_LOAD_IA32_EFER,		VM_EXIT_LOAD_IA32_EFER },
2604 		{ VM_ENTRY_LOAD_BNDCFGS,		VM_EXIT_CLEAR_BNDCFGS },
2605 		{ VM_ENTRY_LOAD_IA32_RTIT_CTL,		VM_EXIT_CLEAR_IA32_RTIT_CTL },
2606 	};
2607 
2608 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2609 
2610 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2611 				KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2612 				MSR_IA32_VMX_PROCBASED_CTLS,
2613 				&_cpu_based_exec_control))
2614 		return -EIO;
2615 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2616 		if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2617 					KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2618 					MSR_IA32_VMX_PROCBASED_CTLS2,
2619 					&_cpu_based_2nd_exec_control))
2620 			return -EIO;
2621 	}
2622 #ifndef CONFIG_X86_64
2623 	if (!(_cpu_based_2nd_exec_control &
2624 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2625 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2626 #endif
2627 
2628 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2629 		_cpu_based_2nd_exec_control &= ~(
2630 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2631 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2632 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2633 
2634 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2635 		&vmx_cap->ept, &vmx_cap->vpid);
2636 
2637 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2638 	    vmx_cap->ept) {
2639 		pr_warn_once("EPT CAP should not exist if not support "
2640 				"1-setting enable EPT VM-execution control\n");
2641 
2642 		if (error_on_inconsistent_vmcs_config)
2643 			return -EIO;
2644 
2645 		vmx_cap->ept = 0;
2646 	}
2647 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2648 	    vmx_cap->vpid) {
2649 		pr_warn_once("VPID CAP should not exist if not support "
2650 				"1-setting enable VPID VM-execution control\n");
2651 
2652 		if (error_on_inconsistent_vmcs_config)
2653 			return -EIO;
2654 
2655 		vmx_cap->vpid = 0;
2656 	}
2657 
2658 	if (!cpu_has_sgx())
2659 		_cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2660 
2661 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2662 		_cpu_based_3rd_exec_control =
2663 			adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2664 					      MSR_IA32_VMX_PROCBASED_CTLS3);
2665 
2666 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2667 				KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2668 				MSR_IA32_VMX_EXIT_CTLS,
2669 				&_vmexit_control))
2670 		return -EIO;
2671 
2672 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2673 				KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2674 				MSR_IA32_VMX_PINBASED_CTLS,
2675 				&_pin_based_exec_control))
2676 		return -EIO;
2677 
2678 	if (cpu_has_broken_vmx_preemption_timer())
2679 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2680 	if (!(_cpu_based_2nd_exec_control &
2681 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2682 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2683 
2684 	if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2685 				KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2686 				MSR_IA32_VMX_ENTRY_CTLS,
2687 				&_vmentry_control))
2688 		return -EIO;
2689 
2690 	for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2691 		u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2692 		u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2693 
2694 		if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2695 			continue;
2696 
2697 		pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2698 			     _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2699 
2700 		if (error_on_inconsistent_vmcs_config)
2701 			return -EIO;
2702 
2703 		_vmentry_control &= ~n_ctrl;
2704 		_vmexit_control &= ~x_ctrl;
2705 	}
2706 
2707 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2708 
2709 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2710 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2711 		return -EIO;
2712 
2713 #ifdef CONFIG_X86_64
2714 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2715 	if (vmx_msr_high & (1u<<16))
2716 		return -EIO;
2717 #endif
2718 
2719 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2720 	if (((vmx_msr_high >> 18) & 15) != 6)
2721 		return -EIO;
2722 
2723 	rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2724 
2725 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2726 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2727 
2728 	vmcs_conf->revision_id = vmx_msr_low;
2729 
2730 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2731 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2732 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2733 	vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2734 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2735 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2736 	vmcs_conf->misc	= misc_msr;
2737 
2738 #if IS_ENABLED(CONFIG_HYPERV)
2739 	if (enlightened_vmcs)
2740 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2741 #endif
2742 
2743 	return 0;
2744 }
2745 
2746 static bool kvm_is_vmx_supported(void)
2747 {
2748 	int cpu = raw_smp_processor_id();
2749 
2750 	if (!cpu_has_vmx()) {
2751 		pr_err("VMX not supported by CPU %d\n", cpu);
2752 		return false;
2753 	}
2754 
2755 	if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2756 	    !this_cpu_has(X86_FEATURE_VMX)) {
2757 		pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2758 		return false;
2759 	}
2760 
2761 	return true;
2762 }
2763 
2764 static int vmx_check_processor_compat(void)
2765 {
2766 	int cpu = raw_smp_processor_id();
2767 	struct vmcs_config vmcs_conf;
2768 	struct vmx_capability vmx_cap;
2769 
2770 	if (!kvm_is_vmx_supported())
2771 		return -EIO;
2772 
2773 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2774 		pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2775 		return -EIO;
2776 	}
2777 	if (nested)
2778 		nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2779 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2780 		pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2781 		return -EIO;
2782 	}
2783 	return 0;
2784 }
2785 
2786 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2787 {
2788 	u64 msr;
2789 
2790 	cr4_set_bits(X86_CR4_VMXE);
2791 
2792 	asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2793 			  _ASM_EXTABLE(1b, %l[fault])
2794 			  : : [vmxon_pointer] "m"(vmxon_pointer)
2795 			  : : fault);
2796 	return 0;
2797 
2798 fault:
2799 	WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2800 		  rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2801 	cr4_clear_bits(X86_CR4_VMXE);
2802 
2803 	return -EFAULT;
2804 }
2805 
2806 static int vmx_hardware_enable(void)
2807 {
2808 	int cpu = raw_smp_processor_id();
2809 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2810 	int r;
2811 
2812 	if (cr4_read_shadow() & X86_CR4_VMXE)
2813 		return -EBUSY;
2814 
2815 	/*
2816 	 * This can happen if we hot-added a CPU but failed to allocate
2817 	 * VP assist page for it.
2818 	 */
2819 	if (static_branch_unlikely(&enable_evmcs) &&
2820 	    !hv_get_vp_assist_page(cpu))
2821 		return -EFAULT;
2822 
2823 	intel_pt_handle_vmx(1);
2824 
2825 	r = kvm_cpu_vmxon(phys_addr);
2826 	if (r) {
2827 		intel_pt_handle_vmx(0);
2828 		return r;
2829 	}
2830 
2831 	if (enable_ept)
2832 		ept_sync_global();
2833 
2834 	return 0;
2835 }
2836 
2837 static void vmclear_local_loaded_vmcss(void)
2838 {
2839 	int cpu = raw_smp_processor_id();
2840 	struct loaded_vmcs *v, *n;
2841 
2842 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2843 				 loaded_vmcss_on_cpu_link)
2844 		__loaded_vmcs_clear(v);
2845 }
2846 
2847 static void vmx_hardware_disable(void)
2848 {
2849 	vmclear_local_loaded_vmcss();
2850 
2851 	if (cpu_vmxoff())
2852 		kvm_spurious_fault();
2853 
2854 	hv_reset_evmcs();
2855 
2856 	intel_pt_handle_vmx(0);
2857 }
2858 
2859 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2860 {
2861 	int node = cpu_to_node(cpu);
2862 	struct page *pages;
2863 	struct vmcs *vmcs;
2864 
2865 	pages = __alloc_pages_node(node, flags, 0);
2866 	if (!pages)
2867 		return NULL;
2868 	vmcs = page_address(pages);
2869 	memset(vmcs, 0, vmcs_config.size);
2870 
2871 	/* KVM supports Enlightened VMCS v1 only */
2872 	if (static_branch_unlikely(&enable_evmcs))
2873 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2874 	else
2875 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2876 
2877 	if (shadow)
2878 		vmcs->hdr.shadow_vmcs = 1;
2879 	return vmcs;
2880 }
2881 
2882 void free_vmcs(struct vmcs *vmcs)
2883 {
2884 	free_page((unsigned long)vmcs);
2885 }
2886 
2887 /*
2888  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2889  */
2890 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2891 {
2892 	if (!loaded_vmcs->vmcs)
2893 		return;
2894 	loaded_vmcs_clear(loaded_vmcs);
2895 	free_vmcs(loaded_vmcs->vmcs);
2896 	loaded_vmcs->vmcs = NULL;
2897 	if (loaded_vmcs->msr_bitmap)
2898 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2899 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2900 }
2901 
2902 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2903 {
2904 	loaded_vmcs->vmcs = alloc_vmcs(false);
2905 	if (!loaded_vmcs->vmcs)
2906 		return -ENOMEM;
2907 
2908 	vmcs_clear(loaded_vmcs->vmcs);
2909 
2910 	loaded_vmcs->shadow_vmcs = NULL;
2911 	loaded_vmcs->hv_timer_soft_disabled = false;
2912 	loaded_vmcs->cpu = -1;
2913 	loaded_vmcs->launched = 0;
2914 
2915 	if (cpu_has_vmx_msr_bitmap()) {
2916 		loaded_vmcs->msr_bitmap = (unsigned long *)
2917 				__get_free_page(GFP_KERNEL_ACCOUNT);
2918 		if (!loaded_vmcs->msr_bitmap)
2919 			goto out_vmcs;
2920 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2921 	}
2922 
2923 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2924 	memset(&loaded_vmcs->controls_shadow, 0,
2925 		sizeof(struct vmcs_controls_shadow));
2926 
2927 	return 0;
2928 
2929 out_vmcs:
2930 	free_loaded_vmcs(loaded_vmcs);
2931 	return -ENOMEM;
2932 }
2933 
2934 static void free_kvm_area(void)
2935 {
2936 	int cpu;
2937 
2938 	for_each_possible_cpu(cpu) {
2939 		free_vmcs(per_cpu(vmxarea, cpu));
2940 		per_cpu(vmxarea, cpu) = NULL;
2941 	}
2942 }
2943 
2944 static __init int alloc_kvm_area(void)
2945 {
2946 	int cpu;
2947 
2948 	for_each_possible_cpu(cpu) {
2949 		struct vmcs *vmcs;
2950 
2951 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2952 		if (!vmcs) {
2953 			free_kvm_area();
2954 			return -ENOMEM;
2955 		}
2956 
2957 		/*
2958 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2959 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2960 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2961 		 *
2962 		 * However, even though not explicitly documented by
2963 		 * TLFS, VMXArea passed as VMXON argument should
2964 		 * still be marked with revision_id reported by
2965 		 * physical CPU.
2966 		 */
2967 		if (static_branch_unlikely(&enable_evmcs))
2968 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2969 
2970 		per_cpu(vmxarea, cpu) = vmcs;
2971 	}
2972 	return 0;
2973 }
2974 
2975 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2976 		struct kvm_segment *save)
2977 {
2978 	if (!emulate_invalid_guest_state) {
2979 		/*
2980 		 * CS and SS RPL should be equal during guest entry according
2981 		 * to VMX spec, but in reality it is not always so. Since vcpu
2982 		 * is in the middle of the transition from real mode to
2983 		 * protected mode it is safe to assume that RPL 0 is a good
2984 		 * default value.
2985 		 */
2986 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2987 			save->selector &= ~SEGMENT_RPL_MASK;
2988 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2989 		save->s = 1;
2990 	}
2991 	__vmx_set_segment(vcpu, save, seg);
2992 }
2993 
2994 static void enter_pmode(struct kvm_vcpu *vcpu)
2995 {
2996 	unsigned long flags;
2997 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2998 
2999 	/*
3000 	 * Update real mode segment cache. It may be not up-to-date if segment
3001 	 * register was written while vcpu was in a guest mode.
3002 	 */
3003 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3004 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3005 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3006 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3007 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3008 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3009 
3010 	vmx->rmode.vm86_active = 0;
3011 
3012 	__vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3013 
3014 	flags = vmcs_readl(GUEST_RFLAGS);
3015 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3016 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3017 	vmcs_writel(GUEST_RFLAGS, flags);
3018 
3019 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3020 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3021 
3022 	vmx_update_exception_bitmap(vcpu);
3023 
3024 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3025 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3026 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3027 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3028 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3029 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3030 }
3031 
3032 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3033 {
3034 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3035 	struct kvm_segment var = *save;
3036 
3037 	var.dpl = 0x3;
3038 	if (seg == VCPU_SREG_CS)
3039 		var.type = 0x3;
3040 
3041 	if (!emulate_invalid_guest_state) {
3042 		var.selector = var.base >> 4;
3043 		var.base = var.base & 0xffff0;
3044 		var.limit = 0xffff;
3045 		var.g = 0;
3046 		var.db = 0;
3047 		var.present = 1;
3048 		var.s = 1;
3049 		var.l = 0;
3050 		var.unusable = 0;
3051 		var.type = 0x3;
3052 		var.avl = 0;
3053 		if (save->base & 0xf)
3054 			pr_warn_once("segment base is not paragraph aligned "
3055 				     "when entering protected mode (seg=%d)", seg);
3056 	}
3057 
3058 	vmcs_write16(sf->selector, var.selector);
3059 	vmcs_writel(sf->base, var.base);
3060 	vmcs_write32(sf->limit, var.limit);
3061 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3062 }
3063 
3064 static void enter_rmode(struct kvm_vcpu *vcpu)
3065 {
3066 	unsigned long flags;
3067 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3068 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3069 
3070 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3071 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3072 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3073 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3074 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3075 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3076 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3077 
3078 	vmx->rmode.vm86_active = 1;
3079 
3080 	/*
3081 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3082 	 * vcpu. Warn the user that an update is overdue.
3083 	 */
3084 	if (!kvm_vmx->tss_addr)
3085 		pr_warn_once("KVM_SET_TSS_ADDR needs to be called before running vCPU\n");
3086 
3087 	vmx_segment_cache_clear(vmx);
3088 
3089 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3090 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3091 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3092 
3093 	flags = vmcs_readl(GUEST_RFLAGS);
3094 	vmx->rmode.save_rflags = flags;
3095 
3096 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3097 
3098 	vmcs_writel(GUEST_RFLAGS, flags);
3099 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3100 	vmx_update_exception_bitmap(vcpu);
3101 
3102 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3103 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3104 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3105 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3106 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3107 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3108 }
3109 
3110 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3111 {
3112 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3113 
3114 	/* Nothing to do if hardware doesn't support EFER. */
3115 	if (!vmx_find_uret_msr(vmx, MSR_EFER))
3116 		return 0;
3117 
3118 	vcpu->arch.efer = efer;
3119 #ifdef CONFIG_X86_64
3120 	if (efer & EFER_LMA)
3121 		vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3122 	else
3123 		vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3124 #else
3125 	if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3126 		return 1;
3127 #endif
3128 
3129 	vmx_setup_uret_msrs(vmx);
3130 	return 0;
3131 }
3132 
3133 #ifdef CONFIG_X86_64
3134 
3135 static void enter_lmode(struct kvm_vcpu *vcpu)
3136 {
3137 	u32 guest_tr_ar;
3138 
3139 	vmx_segment_cache_clear(to_vmx(vcpu));
3140 
3141 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3142 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3143 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3144 				     __func__);
3145 		vmcs_write32(GUEST_TR_AR_BYTES,
3146 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3147 			     | VMX_AR_TYPE_BUSY_64_TSS);
3148 	}
3149 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3150 }
3151 
3152 static void exit_lmode(struct kvm_vcpu *vcpu)
3153 {
3154 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3155 }
3156 
3157 #endif
3158 
3159 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3160 {
3161 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3162 
3163 	/*
3164 	 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3165 	 * the CPU is not required to invalidate guest-physical mappings on
3166 	 * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
3167 	 * associated with the root EPT structure and not any particular VPID
3168 	 * (INVVPID also isn't required to invalidate guest-physical mappings).
3169 	 */
3170 	if (enable_ept) {
3171 		ept_sync_global();
3172 	} else if (enable_vpid) {
3173 		if (cpu_has_vmx_invvpid_global()) {
3174 			vpid_sync_vcpu_global();
3175 		} else {
3176 			vpid_sync_vcpu_single(vmx->vpid);
3177 			vpid_sync_vcpu_single(vmx->nested.vpid02);
3178 		}
3179 	}
3180 }
3181 
3182 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3183 {
3184 	if (is_guest_mode(vcpu))
3185 		return nested_get_vpid02(vcpu);
3186 	return to_vmx(vcpu)->vpid;
3187 }
3188 
3189 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3190 {
3191 	struct kvm_mmu *mmu = vcpu->arch.mmu;
3192 	u64 root_hpa = mmu->root.hpa;
3193 
3194 	/* No flush required if the current context is invalid. */
3195 	if (!VALID_PAGE(root_hpa))
3196 		return;
3197 
3198 	if (enable_ept)
3199 		ept_sync_context(construct_eptp(vcpu, root_hpa,
3200 						mmu->root_role.level));
3201 	else
3202 		vpid_sync_context(vmx_get_current_vpid(vcpu));
3203 }
3204 
3205 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3206 {
3207 	/*
3208 	 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3209 	 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3210 	 */
3211 	vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3212 }
3213 
3214 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3215 {
3216 	/*
3217 	 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3218 	 * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
3219 	 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3220 	 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3221 	 * i.e. no explicit INVVPID is necessary.
3222 	 */
3223 	vpid_sync_context(vmx_get_current_vpid(vcpu));
3224 }
3225 
3226 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3227 {
3228 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3229 
3230 	if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3231 		return;
3232 
3233 	if (is_pae_paging(vcpu)) {
3234 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3235 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3236 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3237 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3238 	}
3239 }
3240 
3241 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3242 {
3243 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3244 
3245 	if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3246 		return;
3247 
3248 	mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3249 	mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3250 	mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3251 	mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3252 
3253 	kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3254 }
3255 
3256 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3257 			  CPU_BASED_CR3_STORE_EXITING)
3258 
3259 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3260 {
3261 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3262 	unsigned long hw_cr0, old_cr0_pg;
3263 	u32 tmp;
3264 
3265 	old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3266 
3267 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3268 	if (is_unrestricted_guest(vcpu))
3269 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3270 	else {
3271 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3272 		if (!enable_ept)
3273 			hw_cr0 |= X86_CR0_WP;
3274 
3275 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3276 			enter_pmode(vcpu);
3277 
3278 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3279 			enter_rmode(vcpu);
3280 	}
3281 
3282 	vmcs_writel(CR0_READ_SHADOW, cr0);
3283 	vmcs_writel(GUEST_CR0, hw_cr0);
3284 	vcpu->arch.cr0 = cr0;
3285 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3286 
3287 #ifdef CONFIG_X86_64
3288 	if (vcpu->arch.efer & EFER_LME) {
3289 		if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3290 			enter_lmode(vcpu);
3291 		else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3292 			exit_lmode(vcpu);
3293 	}
3294 #endif
3295 
3296 	if (enable_ept && !is_unrestricted_guest(vcpu)) {
3297 		/*
3298 		 * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3299 		 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3300 		 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3301 		 * KVM's CR3 is installed.
3302 		 */
3303 		if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3304 			vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3305 
3306 		/*
3307 		 * When running with EPT but not unrestricted guest, KVM must
3308 		 * intercept CR3 accesses when paging is _disabled_.  This is
3309 		 * necessary because restricted guests can't actually run with
3310 		 * paging disabled, and so KVM stuffs its own CR3 in order to
3311 		 * run the guest when identity mapped page tables.
3312 		 *
3313 		 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3314 		 * update, it may be stale with respect to CR3 interception,
3315 		 * e.g. after nested VM-Enter.
3316 		 *
3317 		 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3318 		 * stores to forward them to L1, even if KVM does not need to
3319 		 * intercept them to preserve its identity mapped page tables.
3320 		 */
3321 		if (!(cr0 & X86_CR0_PG)) {
3322 			exec_controls_setbit(vmx, CR3_EXITING_BITS);
3323 		} else if (!is_guest_mode(vcpu)) {
3324 			exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3325 		} else {
3326 			tmp = exec_controls_get(vmx);
3327 			tmp &= ~CR3_EXITING_BITS;
3328 			tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3329 			exec_controls_set(vmx, tmp);
3330 		}
3331 
3332 		/* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3333 		if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3334 			vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3335 
3336 		/*
3337 		 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3338 		 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3339 		 */
3340 		if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3341 			kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3342 	}
3343 
3344 	/* depends on vcpu->arch.cr0 to be set to a new value */
3345 	vmx->emulation_required = vmx_emulation_required(vcpu);
3346 }
3347 
3348 static int vmx_get_max_tdp_level(void)
3349 {
3350 	if (cpu_has_vmx_ept_5levels())
3351 		return 5;
3352 	return 4;
3353 }
3354 
3355 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3356 {
3357 	u64 eptp = VMX_EPTP_MT_WB;
3358 
3359 	eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3360 
3361 	if (enable_ept_ad_bits &&
3362 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3363 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
3364 	eptp |= root_hpa;
3365 
3366 	return eptp;
3367 }
3368 
3369 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3370 			     int root_level)
3371 {
3372 	struct kvm *kvm = vcpu->kvm;
3373 	bool update_guest_cr3 = true;
3374 	unsigned long guest_cr3;
3375 	u64 eptp;
3376 
3377 	if (enable_ept) {
3378 		eptp = construct_eptp(vcpu, root_hpa, root_level);
3379 		vmcs_write64(EPT_POINTER, eptp);
3380 
3381 		hv_track_root_tdp(vcpu, root_hpa);
3382 
3383 		if (!enable_unrestricted_guest && !is_paging(vcpu))
3384 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3385 		else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3386 			guest_cr3 = vcpu->arch.cr3;
3387 		else /* vmcs.GUEST_CR3 is already up-to-date. */
3388 			update_guest_cr3 = false;
3389 		vmx_ept_load_pdptrs(vcpu);
3390 	} else {
3391 		guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3392 	}
3393 
3394 	if (update_guest_cr3)
3395 		vmcs_writel(GUEST_CR3, guest_cr3);
3396 }
3397 
3398 
3399 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3400 {
3401 	/*
3402 	 * We operate under the default treatment of SMM, so VMX cannot be
3403 	 * enabled under SMM.  Note, whether or not VMXE is allowed at all,
3404 	 * i.e. is a reserved bit, is handled by common x86 code.
3405 	 */
3406 	if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3407 		return false;
3408 
3409 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3410 		return false;
3411 
3412 	return true;
3413 }
3414 
3415 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3416 {
3417 	unsigned long old_cr4 = vcpu->arch.cr4;
3418 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3419 	/*
3420 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3421 	 * is in force while we are in guest mode.  Do not let guests control
3422 	 * this bit, even if host CR4.MCE == 0.
3423 	 */
3424 	unsigned long hw_cr4;
3425 
3426 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3427 	if (is_unrestricted_guest(vcpu))
3428 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3429 	else if (vmx->rmode.vm86_active)
3430 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3431 	else
3432 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3433 
3434 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3435 		if (cr4 & X86_CR4_UMIP) {
3436 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3437 			hw_cr4 &= ~X86_CR4_UMIP;
3438 		} else if (!is_guest_mode(vcpu) ||
3439 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3440 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3441 		}
3442 	}
3443 
3444 	vcpu->arch.cr4 = cr4;
3445 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3446 
3447 	if (!is_unrestricted_guest(vcpu)) {
3448 		if (enable_ept) {
3449 			if (!is_paging(vcpu)) {
3450 				hw_cr4 &= ~X86_CR4_PAE;
3451 				hw_cr4 |= X86_CR4_PSE;
3452 			} else if (!(cr4 & X86_CR4_PAE)) {
3453 				hw_cr4 &= ~X86_CR4_PAE;
3454 			}
3455 		}
3456 
3457 		/*
3458 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3459 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3460 		 * to be manually disabled when guest switches to non-paging
3461 		 * mode.
3462 		 *
3463 		 * If !enable_unrestricted_guest, the CPU is always running
3464 		 * with CR0.PG=1 and CR4 needs to be modified.
3465 		 * If enable_unrestricted_guest, the CPU automatically
3466 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3467 		 */
3468 		if (!is_paging(vcpu))
3469 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3470 	}
3471 
3472 	vmcs_writel(CR4_READ_SHADOW, cr4);
3473 	vmcs_writel(GUEST_CR4, hw_cr4);
3474 
3475 	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3476 		kvm_update_cpuid_runtime(vcpu);
3477 }
3478 
3479 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3480 {
3481 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3482 	u32 ar;
3483 
3484 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3485 		*var = vmx->rmode.segs[seg];
3486 		if (seg == VCPU_SREG_TR
3487 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3488 			return;
3489 		var->base = vmx_read_guest_seg_base(vmx, seg);
3490 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3491 		return;
3492 	}
3493 	var->base = vmx_read_guest_seg_base(vmx, seg);
3494 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3495 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3496 	ar = vmx_read_guest_seg_ar(vmx, seg);
3497 	var->unusable = (ar >> 16) & 1;
3498 	var->type = ar & 15;
3499 	var->s = (ar >> 4) & 1;
3500 	var->dpl = (ar >> 5) & 3;
3501 	/*
3502 	 * Some userspaces do not preserve unusable property. Since usable
3503 	 * segment has to be present according to VMX spec we can use present
3504 	 * property to amend userspace bug by making unusable segment always
3505 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3506 	 * segment as unusable.
3507 	 */
3508 	var->present = !var->unusable;
3509 	var->avl = (ar >> 12) & 1;
3510 	var->l = (ar >> 13) & 1;
3511 	var->db = (ar >> 14) & 1;
3512 	var->g = (ar >> 15) & 1;
3513 }
3514 
3515 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3516 {
3517 	struct kvm_segment s;
3518 
3519 	if (to_vmx(vcpu)->rmode.vm86_active) {
3520 		vmx_get_segment(vcpu, &s, seg);
3521 		return s.base;
3522 	}
3523 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3524 }
3525 
3526 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3527 {
3528 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3529 
3530 	if (unlikely(vmx->rmode.vm86_active))
3531 		return 0;
3532 	else {
3533 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3534 		return VMX_AR_DPL(ar);
3535 	}
3536 }
3537 
3538 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3539 {
3540 	u32 ar;
3541 
3542 	ar = var->type & 15;
3543 	ar |= (var->s & 1) << 4;
3544 	ar |= (var->dpl & 3) << 5;
3545 	ar |= (var->present & 1) << 7;
3546 	ar |= (var->avl & 1) << 12;
3547 	ar |= (var->l & 1) << 13;
3548 	ar |= (var->db & 1) << 14;
3549 	ar |= (var->g & 1) << 15;
3550 	ar |= (var->unusable || !var->present) << 16;
3551 
3552 	return ar;
3553 }
3554 
3555 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3556 {
3557 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3558 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3559 
3560 	vmx_segment_cache_clear(vmx);
3561 
3562 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3563 		vmx->rmode.segs[seg] = *var;
3564 		if (seg == VCPU_SREG_TR)
3565 			vmcs_write16(sf->selector, var->selector);
3566 		else if (var->s)
3567 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3568 		return;
3569 	}
3570 
3571 	vmcs_writel(sf->base, var->base);
3572 	vmcs_write32(sf->limit, var->limit);
3573 	vmcs_write16(sf->selector, var->selector);
3574 
3575 	/*
3576 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3577 	 * qemu binaries.
3578 	 *   IA32 arch specifies that at the time of processor reset the
3579 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3580 	 * is setting it to 0 in the userland code. This causes invalid guest
3581 	 * state vmexit when "unrestricted guest" mode is turned on.
3582 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3583 	 * tree. Newer qemu binaries with that qemu fix would not need this
3584 	 * kvm hack.
3585 	 */
3586 	if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3587 		var->type |= 0x1; /* Accessed */
3588 
3589 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3590 }
3591 
3592 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3593 {
3594 	__vmx_set_segment(vcpu, var, seg);
3595 
3596 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3597 }
3598 
3599 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3600 {
3601 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3602 
3603 	*db = (ar >> 14) & 1;
3604 	*l = (ar >> 13) & 1;
3605 }
3606 
3607 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3608 {
3609 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3610 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3611 }
3612 
3613 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3614 {
3615 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3616 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3617 }
3618 
3619 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3620 {
3621 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3622 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3623 }
3624 
3625 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3626 {
3627 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3628 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3629 }
3630 
3631 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3632 {
3633 	struct kvm_segment var;
3634 	u32 ar;
3635 
3636 	vmx_get_segment(vcpu, &var, seg);
3637 	var.dpl = 0x3;
3638 	if (seg == VCPU_SREG_CS)
3639 		var.type = 0x3;
3640 	ar = vmx_segment_access_rights(&var);
3641 
3642 	if (var.base != (var.selector << 4))
3643 		return false;
3644 	if (var.limit != 0xffff)
3645 		return false;
3646 	if (ar != 0xf3)
3647 		return false;
3648 
3649 	return true;
3650 }
3651 
3652 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3653 {
3654 	struct kvm_segment cs;
3655 	unsigned int cs_rpl;
3656 
3657 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3658 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3659 
3660 	if (cs.unusable)
3661 		return false;
3662 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3663 		return false;
3664 	if (!cs.s)
3665 		return false;
3666 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3667 		if (cs.dpl > cs_rpl)
3668 			return false;
3669 	} else {
3670 		if (cs.dpl != cs_rpl)
3671 			return false;
3672 	}
3673 	if (!cs.present)
3674 		return false;
3675 
3676 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3677 	return true;
3678 }
3679 
3680 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3681 {
3682 	struct kvm_segment ss;
3683 	unsigned int ss_rpl;
3684 
3685 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3686 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3687 
3688 	if (ss.unusable)
3689 		return true;
3690 	if (ss.type != 3 && ss.type != 7)
3691 		return false;
3692 	if (!ss.s)
3693 		return false;
3694 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3695 		return false;
3696 	if (!ss.present)
3697 		return false;
3698 
3699 	return true;
3700 }
3701 
3702 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3703 {
3704 	struct kvm_segment var;
3705 	unsigned int rpl;
3706 
3707 	vmx_get_segment(vcpu, &var, seg);
3708 	rpl = var.selector & SEGMENT_RPL_MASK;
3709 
3710 	if (var.unusable)
3711 		return true;
3712 	if (!var.s)
3713 		return false;
3714 	if (!var.present)
3715 		return false;
3716 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3717 		if (var.dpl < rpl) /* DPL < RPL */
3718 			return false;
3719 	}
3720 
3721 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3722 	 * rights flags
3723 	 */
3724 	return true;
3725 }
3726 
3727 static bool tr_valid(struct kvm_vcpu *vcpu)
3728 {
3729 	struct kvm_segment tr;
3730 
3731 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3732 
3733 	if (tr.unusable)
3734 		return false;
3735 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3736 		return false;
3737 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3738 		return false;
3739 	if (!tr.present)
3740 		return false;
3741 
3742 	return true;
3743 }
3744 
3745 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3746 {
3747 	struct kvm_segment ldtr;
3748 
3749 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3750 
3751 	if (ldtr.unusable)
3752 		return true;
3753 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3754 		return false;
3755 	if (ldtr.type != 2)
3756 		return false;
3757 	if (!ldtr.present)
3758 		return false;
3759 
3760 	return true;
3761 }
3762 
3763 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3764 {
3765 	struct kvm_segment cs, ss;
3766 
3767 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3768 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3769 
3770 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3771 		 (ss.selector & SEGMENT_RPL_MASK));
3772 }
3773 
3774 /*
3775  * Check if guest state is valid. Returns true if valid, false if
3776  * not.
3777  * We assume that registers are always usable
3778  */
3779 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3780 {
3781 	/* real mode guest state checks */
3782 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3783 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3784 			return false;
3785 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3786 			return false;
3787 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3788 			return false;
3789 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3790 			return false;
3791 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3792 			return false;
3793 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3794 			return false;
3795 	} else {
3796 	/* protected mode guest state checks */
3797 		if (!cs_ss_rpl_check(vcpu))
3798 			return false;
3799 		if (!code_segment_valid(vcpu))
3800 			return false;
3801 		if (!stack_segment_valid(vcpu))
3802 			return false;
3803 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3804 			return false;
3805 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3806 			return false;
3807 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3808 			return false;
3809 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3810 			return false;
3811 		if (!tr_valid(vcpu))
3812 			return false;
3813 		if (!ldtr_valid(vcpu))
3814 			return false;
3815 	}
3816 	/* TODO:
3817 	 * - Add checks on RIP
3818 	 * - Add checks on RFLAGS
3819 	 */
3820 
3821 	return true;
3822 }
3823 
3824 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3825 {
3826 	const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3827 	u16 data;
3828 	int i;
3829 
3830 	for (i = 0; i < 3; i++) {
3831 		if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3832 			return -EFAULT;
3833 	}
3834 
3835 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3836 	if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3837 		return -EFAULT;
3838 
3839 	data = ~0;
3840 	if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3841 		return -EFAULT;
3842 
3843 	return 0;
3844 }
3845 
3846 static int init_rmode_identity_map(struct kvm *kvm)
3847 {
3848 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3849 	int i, r = 0;
3850 	void __user *uaddr;
3851 	u32 tmp;
3852 
3853 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3854 	mutex_lock(&kvm->slots_lock);
3855 
3856 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3857 		goto out;
3858 
3859 	if (!kvm_vmx->ept_identity_map_addr)
3860 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3861 
3862 	uaddr = __x86_set_memory_region(kvm,
3863 					IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3864 					kvm_vmx->ept_identity_map_addr,
3865 					PAGE_SIZE);
3866 	if (IS_ERR(uaddr)) {
3867 		r = PTR_ERR(uaddr);
3868 		goto out;
3869 	}
3870 
3871 	/* Set up identity-mapping pagetable for EPT in real mode */
3872 	for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3873 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3874 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3875 		if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3876 			r = -EFAULT;
3877 			goto out;
3878 		}
3879 	}
3880 	kvm_vmx->ept_identity_pagetable_done = true;
3881 
3882 out:
3883 	mutex_unlock(&kvm->slots_lock);
3884 	return r;
3885 }
3886 
3887 static void seg_setup(int seg)
3888 {
3889 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3890 	unsigned int ar;
3891 
3892 	vmcs_write16(sf->selector, 0);
3893 	vmcs_writel(sf->base, 0);
3894 	vmcs_write32(sf->limit, 0xffff);
3895 	ar = 0x93;
3896 	if (seg == VCPU_SREG_CS)
3897 		ar |= 0x08; /* code segment */
3898 
3899 	vmcs_write32(sf->ar_bytes, ar);
3900 }
3901 
3902 int allocate_vpid(void)
3903 {
3904 	int vpid;
3905 
3906 	if (!enable_vpid)
3907 		return 0;
3908 	spin_lock(&vmx_vpid_lock);
3909 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3910 	if (vpid < VMX_NR_VPIDS)
3911 		__set_bit(vpid, vmx_vpid_bitmap);
3912 	else
3913 		vpid = 0;
3914 	spin_unlock(&vmx_vpid_lock);
3915 	return vpid;
3916 }
3917 
3918 void free_vpid(int vpid)
3919 {
3920 	if (!enable_vpid || vpid == 0)
3921 		return;
3922 	spin_lock(&vmx_vpid_lock);
3923 	__clear_bit(vpid, vmx_vpid_bitmap);
3924 	spin_unlock(&vmx_vpid_lock);
3925 }
3926 
3927 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3928 {
3929 	/*
3930 	 * When KVM is a nested hypervisor on top of Hyper-V and uses
3931 	 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3932 	 * bitmap has changed.
3933 	 */
3934 	if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs)) {
3935 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3936 
3937 		if (evmcs->hv_enlightenments_control.msr_bitmap)
3938 			evmcs->hv_clean_fields &=
3939 				~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3940 	}
3941 
3942 	vmx->nested.force_msr_bitmap_recalc = true;
3943 }
3944 
3945 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3946 {
3947 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3948 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3949 
3950 	if (!cpu_has_vmx_msr_bitmap())
3951 		return;
3952 
3953 	vmx_msr_bitmap_l01_changed(vmx);
3954 
3955 	/*
3956 	 * Mark the desired intercept state in shadow bitmap, this is needed
3957 	 * for resync when the MSR filters change.
3958 	*/
3959 	if (is_valid_passthrough_msr(msr)) {
3960 		int idx = possible_passthrough_msr_slot(msr);
3961 
3962 		if (idx != -ENOENT) {
3963 			if (type & MSR_TYPE_R)
3964 				clear_bit(idx, vmx->shadow_msr_intercept.read);
3965 			if (type & MSR_TYPE_W)
3966 				clear_bit(idx, vmx->shadow_msr_intercept.write);
3967 		}
3968 	}
3969 
3970 	if ((type & MSR_TYPE_R) &&
3971 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3972 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
3973 		type &= ~MSR_TYPE_R;
3974 	}
3975 
3976 	if ((type & MSR_TYPE_W) &&
3977 	    !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3978 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
3979 		type &= ~MSR_TYPE_W;
3980 	}
3981 
3982 	if (type & MSR_TYPE_R)
3983 		vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3984 
3985 	if (type & MSR_TYPE_W)
3986 		vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3987 }
3988 
3989 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3990 {
3991 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3992 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3993 
3994 	if (!cpu_has_vmx_msr_bitmap())
3995 		return;
3996 
3997 	vmx_msr_bitmap_l01_changed(vmx);
3998 
3999 	/*
4000 	 * Mark the desired intercept state in shadow bitmap, this is needed
4001 	 * for resync when the MSR filter changes.
4002 	*/
4003 	if (is_valid_passthrough_msr(msr)) {
4004 		int idx = possible_passthrough_msr_slot(msr);
4005 
4006 		if (idx != -ENOENT) {
4007 			if (type & MSR_TYPE_R)
4008 				set_bit(idx, vmx->shadow_msr_intercept.read);
4009 			if (type & MSR_TYPE_W)
4010 				set_bit(idx, vmx->shadow_msr_intercept.write);
4011 		}
4012 	}
4013 
4014 	if (type & MSR_TYPE_R)
4015 		vmx_set_msr_bitmap_read(msr_bitmap, msr);
4016 
4017 	if (type & MSR_TYPE_W)
4018 		vmx_set_msr_bitmap_write(msr_bitmap, msr);
4019 }
4020 
4021 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4022 {
4023 	/*
4024 	 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4025 	 * of the MSR bitmap.  KVM emulates APIC registers up through 0x3f0,
4026 	 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4027 	 */
4028 	const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4029 	const int write_idx = read_idx + (0x800 / sizeof(u64));
4030 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4031 	u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4032 	u8 mode;
4033 
4034 	if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4035 		return;
4036 
4037 	if (cpu_has_secondary_exec_ctrls() &&
4038 	    (secondary_exec_controls_get(vmx) &
4039 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4040 		mode = MSR_BITMAP_MODE_X2APIC;
4041 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4042 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4043 	} else {
4044 		mode = 0;
4045 	}
4046 
4047 	if (mode == vmx->x2apic_msr_bitmap_mode)
4048 		return;
4049 
4050 	vmx->x2apic_msr_bitmap_mode = mode;
4051 
4052 	/*
4053 	 * Reset the bitmap for MSRs 0x800 - 0x83f.  Leave AMD's uber-extended
4054 	 * registers (0x840 and above) intercepted, KVM doesn't support them.
4055 	 * Intercept all writes by default and poke holes as needed.  Pass
4056 	 * through reads for all valid registers by default in x2APIC+APICv
4057 	 * mode, only the current timer count needs on-demand emulation by KVM.
4058 	 */
4059 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4060 		msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4061 	else
4062 		msr_bitmap[read_idx] = ~0ull;
4063 	msr_bitmap[write_idx] = ~0ull;
4064 
4065 	/*
4066 	 * TPR reads and writes can be virtualized even if virtual interrupt
4067 	 * delivery is not in use.
4068 	 */
4069 	vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4070 				  !(mode & MSR_BITMAP_MODE_X2APIC));
4071 
4072 	if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4073 		vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4074 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4075 		vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4076 		if (enable_ipiv)
4077 			vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4078 	}
4079 }
4080 
4081 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4082 {
4083 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4084 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4085 	u32 i;
4086 
4087 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4088 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4089 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4090 	vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4091 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4092 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4093 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4094 	}
4095 }
4096 
4097 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4098 {
4099 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4100 	void *vapic_page;
4101 	u32 vppr;
4102 	int rvi;
4103 
4104 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4105 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4106 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4107 		return false;
4108 
4109 	rvi = vmx_get_rvi();
4110 
4111 	vapic_page = vmx->nested.virtual_apic_map.hva;
4112 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4113 
4114 	return ((rvi & 0xf0) > (vppr & 0xf0));
4115 }
4116 
4117 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4118 {
4119 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4120 	u32 i;
4121 
4122 	/*
4123 	 * Redo intercept permissions for MSRs that KVM is passing through to
4124 	 * the guest.  Disabling interception will check the new MSR filter and
4125 	 * ensure that KVM enables interception if usersepace wants to filter
4126 	 * the MSR.  MSRs that KVM is already intercepting don't need to be
4127 	 * refreshed since KVM is going to intercept them regardless of what
4128 	 * userspace wants.
4129 	 */
4130 	for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4131 		u32 msr = vmx_possible_passthrough_msrs[i];
4132 
4133 		if (!test_bit(i, vmx->shadow_msr_intercept.read))
4134 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4135 
4136 		if (!test_bit(i, vmx->shadow_msr_intercept.write))
4137 			vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4138 	}
4139 
4140 	/* PT MSRs can be passed through iff PT is exposed to the guest. */
4141 	if (vmx_pt_mode_is_host_guest())
4142 		pt_update_intercept_for_msr(vcpu);
4143 }
4144 
4145 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4146 						     int pi_vec)
4147 {
4148 #ifdef CONFIG_SMP
4149 	if (vcpu->mode == IN_GUEST_MODE) {
4150 		/*
4151 		 * The vector of the virtual has already been set in the PIR.
4152 		 * Send a notification event to deliver the virtual interrupt
4153 		 * unless the vCPU is the currently running vCPU, i.e. the
4154 		 * event is being sent from a fastpath VM-Exit handler, in
4155 		 * which case the PIR will be synced to the vIRR before
4156 		 * re-entering the guest.
4157 		 *
4158 		 * When the target is not the running vCPU, the following
4159 		 * possibilities emerge:
4160 		 *
4161 		 * Case 1: vCPU stays in non-root mode. Sending a notification
4162 		 * event posts the interrupt to the vCPU.
4163 		 *
4164 		 * Case 2: vCPU exits to root mode and is still runnable. The
4165 		 * PIR will be synced to the vIRR before re-entering the guest.
4166 		 * Sending a notification event is ok as the host IRQ handler
4167 		 * will ignore the spurious event.
4168 		 *
4169 		 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4170 		 * has already synced PIR to vIRR and never blocks the vCPU if
4171 		 * the vIRR is not empty. Therefore, a blocked vCPU here does
4172 		 * not wait for any requested interrupts in PIR, and sending a
4173 		 * notification event also results in a benign, spurious event.
4174 		 */
4175 
4176 		if (vcpu != kvm_get_running_vcpu())
4177 			apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4178 		return;
4179 	}
4180 #endif
4181 	/*
4182 	 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4183 	 * otherwise do nothing as KVM will grab the highest priority pending
4184 	 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4185 	 */
4186 	kvm_vcpu_wake_up(vcpu);
4187 }
4188 
4189 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4190 						int vector)
4191 {
4192 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4193 
4194 	if (is_guest_mode(vcpu) &&
4195 	    vector == vmx->nested.posted_intr_nv) {
4196 		/*
4197 		 * If a posted intr is not recognized by hardware,
4198 		 * we will accomplish it in the next vmentry.
4199 		 */
4200 		vmx->nested.pi_pending = true;
4201 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4202 
4203 		/*
4204 		 * This pairs with the smp_mb_*() after setting vcpu->mode in
4205 		 * vcpu_enter_guest() to guarantee the vCPU sees the event
4206 		 * request if triggering a posted interrupt "fails" because
4207 		 * vcpu->mode != IN_GUEST_MODE.  The extra barrier is needed as
4208 		 * the smb_wmb() in kvm_make_request() only ensures everything
4209 		 * done before making the request is visible when the request
4210 		 * is visible, it doesn't ensure ordering between the store to
4211 		 * vcpu->requests and the load from vcpu->mode.
4212 		 */
4213 		smp_mb__after_atomic();
4214 
4215 		/* the PIR and ON have been set by L1. */
4216 		kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4217 		return 0;
4218 	}
4219 	return -1;
4220 }
4221 /*
4222  * Send interrupt to vcpu via posted interrupt way.
4223  * 1. If target vcpu is running(non-root mode), send posted interrupt
4224  * notification to vcpu and hardware will sync PIR to vIRR atomically.
4225  * 2. If target vcpu isn't running(root mode), kick it to pick up the
4226  * interrupt from PIR in next vmentry.
4227  */
4228 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4229 {
4230 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4231 	int r;
4232 
4233 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4234 	if (!r)
4235 		return 0;
4236 
4237 	/* Note, this is called iff the local APIC is in-kernel. */
4238 	if (!vcpu->arch.apic->apicv_active)
4239 		return -1;
4240 
4241 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4242 		return 0;
4243 
4244 	/* If a previous notification has sent the IPI, nothing to do.  */
4245 	if (pi_test_and_set_on(&vmx->pi_desc))
4246 		return 0;
4247 
4248 	/*
4249 	 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4250 	 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4251 	 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4252 	 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4253 	 */
4254 	kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4255 	return 0;
4256 }
4257 
4258 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4259 				  int trig_mode, int vector)
4260 {
4261 	struct kvm_vcpu *vcpu = apic->vcpu;
4262 
4263 	if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4264 		kvm_lapic_set_irr(vector, apic);
4265 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4266 		kvm_vcpu_kick(vcpu);
4267 	} else {
4268 		trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4269 					   trig_mode, vector);
4270 	}
4271 }
4272 
4273 /*
4274  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4275  * will not change in the lifetime of the guest.
4276  * Note that host-state that does change is set elsewhere. E.g., host-state
4277  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4278  */
4279 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4280 {
4281 	u32 low32, high32;
4282 	unsigned long tmpl;
4283 	unsigned long cr0, cr3, cr4;
4284 
4285 	cr0 = read_cr0();
4286 	WARN_ON(cr0 & X86_CR0_TS);
4287 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
4288 
4289 	/*
4290 	 * Save the most likely value for this task's CR3 in the VMCS.
4291 	 * We can't use __get_current_cr3_fast() because we're not atomic.
4292 	 */
4293 	cr3 = __read_cr3();
4294 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
4295 	vmx->loaded_vmcs->host_state.cr3 = cr3;
4296 
4297 	/* Save the most likely value for this task's CR4 in the VMCS. */
4298 	cr4 = cr4_read_shadow();
4299 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
4300 	vmx->loaded_vmcs->host_state.cr4 = cr4;
4301 
4302 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4303 #ifdef CONFIG_X86_64
4304 	/*
4305 	 * Load null selectors, so we can avoid reloading them in
4306 	 * vmx_prepare_switch_to_host(), in case userspace uses
4307 	 * the null selectors too (the expected case).
4308 	 */
4309 	vmcs_write16(HOST_DS_SELECTOR, 0);
4310 	vmcs_write16(HOST_ES_SELECTOR, 0);
4311 #else
4312 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4313 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4314 #endif
4315 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4316 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4317 
4318 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4319 
4320 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4321 
4322 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4323 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4324 
4325 	/*
4326 	 * SYSENTER is used for 32-bit system calls on either 32-bit or
4327 	 * 64-bit kernels.  It is always zero If neither is allowed, otherwise
4328 	 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4329 	 * have already done so!).
4330 	 */
4331 	if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4332 		vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4333 
4334 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4335 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4336 
4337 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4338 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
4339 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4340 	}
4341 
4342 	if (cpu_has_load_ia32_efer())
4343 		vmcs_write64(HOST_IA32_EFER, host_efer);
4344 }
4345 
4346 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4347 {
4348 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4349 
4350 	vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4351 					  ~vcpu->arch.cr4_guest_rsvd_bits;
4352 	if (!enable_ept) {
4353 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4354 		vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4355 	}
4356 	if (is_guest_mode(&vmx->vcpu))
4357 		vcpu->arch.cr4_guest_owned_bits &=
4358 			~get_vmcs12(vcpu)->cr4_guest_host_mask;
4359 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4360 }
4361 
4362 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4363 {
4364 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4365 
4366 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4367 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4368 
4369 	if (!enable_vnmi)
4370 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4371 
4372 	if (!enable_preemption_timer)
4373 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4374 
4375 	return pin_based_exec_ctrl;
4376 }
4377 
4378 static u32 vmx_vmentry_ctrl(void)
4379 {
4380 	u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4381 
4382 	if (vmx_pt_mode_is_system())
4383 		vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4384 				  VM_ENTRY_LOAD_IA32_RTIT_CTL);
4385 	/*
4386 	 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4387 	 */
4388 	vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4389 			  VM_ENTRY_LOAD_IA32_EFER |
4390 			  VM_ENTRY_IA32E_MODE);
4391 
4392 	if (cpu_has_perf_global_ctrl_bug())
4393 		vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4394 
4395 	return vmentry_ctrl;
4396 }
4397 
4398 static u32 vmx_vmexit_ctrl(void)
4399 {
4400 	u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4401 
4402 	/*
4403 	 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4404 	 * nested virtualization and thus allowed to be set in vmcs12.
4405 	 */
4406 	vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4407 			 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4408 
4409 	if (vmx_pt_mode_is_system())
4410 		vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4411 				 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4412 
4413 	if (cpu_has_perf_global_ctrl_bug())
4414 		vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4415 
4416 	/* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4417 	return vmexit_ctrl &
4418 		~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4419 }
4420 
4421 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4422 {
4423 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4424 
4425 	if (is_guest_mode(vcpu)) {
4426 		vmx->nested.update_vmcs01_apicv_status = true;
4427 		return;
4428 	}
4429 
4430 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4431 
4432 	if (kvm_vcpu_apicv_active(vcpu)) {
4433 		secondary_exec_controls_setbit(vmx,
4434 					       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4435 					       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4436 		if (enable_ipiv)
4437 			tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4438 	} else {
4439 		secondary_exec_controls_clearbit(vmx,
4440 						 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4441 						 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4442 		if (enable_ipiv)
4443 			tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4444 	}
4445 
4446 	vmx_update_msr_bitmap_x2apic(vcpu);
4447 }
4448 
4449 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4450 {
4451 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4452 
4453 	/*
4454 	 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4455 	 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4456 	 */
4457 	exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4458 			  CPU_BASED_USE_IO_BITMAPS |
4459 			  CPU_BASED_MONITOR_TRAP_FLAG |
4460 			  CPU_BASED_PAUSE_EXITING);
4461 
4462 	/* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4463 	exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4464 			  CPU_BASED_NMI_WINDOW_EXITING);
4465 
4466 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4467 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4468 
4469 	if (!cpu_need_tpr_shadow(&vmx->vcpu))
4470 		exec_control &= ~CPU_BASED_TPR_SHADOW;
4471 
4472 #ifdef CONFIG_X86_64
4473 	if (exec_control & CPU_BASED_TPR_SHADOW)
4474 		exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4475 				  CPU_BASED_CR8_STORE_EXITING);
4476 	else
4477 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
4478 				CPU_BASED_CR8_LOAD_EXITING;
4479 #endif
4480 	/* No need to intercept CR3 access or INVPLG when using EPT. */
4481 	if (enable_ept)
4482 		exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4483 				  CPU_BASED_CR3_STORE_EXITING |
4484 				  CPU_BASED_INVLPG_EXITING);
4485 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4486 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4487 				CPU_BASED_MONITOR_EXITING);
4488 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4489 		exec_control &= ~CPU_BASED_HLT_EXITING;
4490 	return exec_control;
4491 }
4492 
4493 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4494 {
4495 	u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4496 
4497 	/*
4498 	 * IPI virtualization relies on APICv. Disable IPI virtualization if
4499 	 * APICv is inhibited.
4500 	 */
4501 	if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4502 		exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4503 
4504 	return exec_control;
4505 }
4506 
4507 /*
4508  * Adjust a single secondary execution control bit to intercept/allow an
4509  * instruction in the guest.  This is usually done based on whether or not a
4510  * feature has been exposed to the guest in order to correctly emulate faults.
4511  */
4512 static inline void
4513 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4514 				  u32 control, bool enabled, bool exiting)
4515 {
4516 	/*
4517 	 * If the control is for an opt-in feature, clear the control if the
4518 	 * feature is not exposed to the guest, i.e. not enabled.  If the
4519 	 * control is opt-out, i.e. an exiting control, clear the control if
4520 	 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4521 	 * disabled for the associated instruction.  Note, the caller is
4522 	 * responsible presetting exec_control to set all supported bits.
4523 	 */
4524 	if (enabled == exiting)
4525 		*exec_control &= ~control;
4526 
4527 	/*
4528 	 * Update the nested MSR settings so that a nested VMM can/can't set
4529 	 * controls for features that are/aren't exposed to the guest.
4530 	 */
4531 	if (nested) {
4532 		/*
4533 		 * All features that can be added or removed to VMX MSRs must
4534 		 * be supported in the first place for nested virtualization.
4535 		 */
4536 		if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4537 			enabled = false;
4538 
4539 		if (enabled)
4540 			vmx->nested.msrs.secondary_ctls_high |= control;
4541 		else
4542 			vmx->nested.msrs.secondary_ctls_high &= ~control;
4543 	}
4544 }
4545 
4546 /*
4547  * Wrapper macro for the common case of adjusting a secondary execution control
4548  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4549  * verifies that the control is actually supported by KVM and hardware.
4550  */
4551 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4552 ({									 \
4553 	bool __enabled;							 \
4554 									 \
4555 	if (cpu_has_vmx_##name()) {					 \
4556 		__enabled = guest_cpuid_has(&(vmx)->vcpu,		 \
4557 					    X86_FEATURE_##feat_name);	 \
4558 		vmx_adjust_secondary_exec_control(vmx, exec_control,	 \
4559 			SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4560 	}								 \
4561 })
4562 
4563 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4564 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4565 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4566 
4567 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4568 	vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4569 
4570 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4571 {
4572 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4573 
4574 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4575 
4576 	if (vmx_pt_mode_is_system())
4577 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4578 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4579 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4580 	if (vmx->vpid == 0)
4581 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4582 	if (!enable_ept) {
4583 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4584 		enable_unrestricted_guest = 0;
4585 	}
4586 	if (!enable_unrestricted_guest)
4587 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4588 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4589 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4590 	if (!kvm_vcpu_apicv_active(vcpu))
4591 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4592 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4593 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4594 
4595 	/*
4596 	 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4597 	 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4598 	 */
4599 	exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4600 
4601 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4602 	 * in vmx_set_cr4.  */
4603 	exec_control &= ~SECONDARY_EXEC_DESC;
4604 
4605 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4606 	   (handle_vmptrld).
4607 	   We can NOT enable shadow_vmcs here because we don't have yet
4608 	   a current VMCS12
4609 	*/
4610 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4611 
4612 	/*
4613 	 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4614 	 * it needs to be set here when dirty logging is already active, e.g.
4615 	 * if this vCPU was created after dirty logging was enabled.
4616 	 */
4617 	if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4618 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4619 
4620 	if (cpu_has_vmx_xsaves()) {
4621 		/* Exposing XSAVES only when XSAVE is exposed */
4622 		bool xsaves_enabled =
4623 			boot_cpu_has(X86_FEATURE_XSAVE) &&
4624 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4625 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4626 
4627 		vcpu->arch.xsaves_enabled = xsaves_enabled;
4628 
4629 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4630 						  SECONDARY_EXEC_XSAVES,
4631 						  xsaves_enabled, false);
4632 	}
4633 
4634 	/*
4635 	 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4636 	 * feature is exposed to the guest.  This creates a virtualization hole
4637 	 * if both are supported in hardware but only one is exposed to the
4638 	 * guest, but letting the guest execute RDTSCP or RDPID when either one
4639 	 * is advertised is preferable to emulating the advertised instruction
4640 	 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4641 	 */
4642 	if (cpu_has_vmx_rdtscp()) {
4643 		bool rdpid_or_rdtscp_enabled =
4644 			guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4645 			guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4646 
4647 		vmx_adjust_secondary_exec_control(vmx, &exec_control,
4648 						  SECONDARY_EXEC_ENABLE_RDTSCP,
4649 						  rdpid_or_rdtscp_enabled, false);
4650 	}
4651 	vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4652 
4653 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4654 	vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4655 
4656 	vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4657 				    ENABLE_USR_WAIT_PAUSE, false);
4658 
4659 	if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4660 		exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4661 
4662 	if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4663 		exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4664 
4665 	return exec_control;
4666 }
4667 
4668 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4669 {
4670 	return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4671 }
4672 
4673 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4674 {
4675 	struct page *pages;
4676 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4677 
4678 	if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4679 		return 0;
4680 
4681 	if (kvm_vmx->pid_table)
4682 		return 0;
4683 
4684 	pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, vmx_get_pid_table_order(kvm));
4685 	if (!pages)
4686 		return -ENOMEM;
4687 
4688 	kvm_vmx->pid_table = (void *)page_address(pages);
4689 	return 0;
4690 }
4691 
4692 static int vmx_vcpu_precreate(struct kvm *kvm)
4693 {
4694 	return vmx_alloc_ipiv_pid_table(kvm);
4695 }
4696 
4697 #define VMX_XSS_EXIT_BITMAP 0
4698 
4699 static void init_vmcs(struct vcpu_vmx *vmx)
4700 {
4701 	struct kvm *kvm = vmx->vcpu.kvm;
4702 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4703 
4704 	if (nested)
4705 		nested_vmx_set_vmcs_shadowing_bitmap();
4706 
4707 	if (cpu_has_vmx_msr_bitmap())
4708 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4709 
4710 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4711 
4712 	/* Control */
4713 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4714 
4715 	exec_controls_set(vmx, vmx_exec_control(vmx));
4716 
4717 	if (cpu_has_secondary_exec_ctrls())
4718 		secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4719 
4720 	if (cpu_has_tertiary_exec_ctrls())
4721 		tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4722 
4723 	if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4724 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4725 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4726 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4727 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4728 
4729 		vmcs_write16(GUEST_INTR_STATUS, 0);
4730 
4731 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4732 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4733 	}
4734 
4735 	if (vmx_can_use_ipiv(&vmx->vcpu)) {
4736 		vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4737 		vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4738 	}
4739 
4740 	if (!kvm_pause_in_guest(kvm)) {
4741 		vmcs_write32(PLE_GAP, ple_gap);
4742 		vmx->ple_window = ple_window;
4743 		vmx->ple_window_dirty = true;
4744 	}
4745 
4746 	if (kvm_notify_vmexit_enabled(kvm))
4747 		vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4748 
4749 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4750 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4751 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4752 
4753 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4754 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4755 	vmx_set_constant_host_state(vmx);
4756 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4757 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4758 
4759 	if (cpu_has_vmx_vmfunc())
4760 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4761 
4762 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4763 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4764 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4765 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4766 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4767 
4768 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4769 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4770 
4771 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4772 
4773 	/* 22.2.1, 20.8.1 */
4774 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4775 
4776 	vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4777 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4778 
4779 	set_cr4_guest_host_mask(vmx);
4780 
4781 	if (vmx->vpid != 0)
4782 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4783 
4784 	if (cpu_has_vmx_xsaves())
4785 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4786 
4787 	if (enable_pml) {
4788 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4789 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4790 	}
4791 
4792 	vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4793 
4794 	if (vmx_pt_mode_is_host_guest()) {
4795 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4796 		/* Bit[6~0] are forced to 1, writes are ignored. */
4797 		vmx->pt_desc.guest.output_mask = 0x7F;
4798 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4799 	}
4800 
4801 	vmcs_write32(GUEST_SYSENTER_CS, 0);
4802 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
4803 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
4804 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4805 
4806 	if (cpu_has_vmx_tpr_shadow()) {
4807 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4808 		if (cpu_need_tpr_shadow(&vmx->vcpu))
4809 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4810 				     __pa(vmx->vcpu.arch.apic->regs));
4811 		vmcs_write32(TPR_THRESHOLD, 0);
4812 	}
4813 
4814 	vmx_setup_uret_msrs(vmx);
4815 }
4816 
4817 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4818 {
4819 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4820 
4821 	init_vmcs(vmx);
4822 
4823 	if (nested)
4824 		memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4825 
4826 	vcpu_setup_sgx_lepubkeyhash(vcpu);
4827 
4828 	vmx->nested.posted_intr_nv = -1;
4829 	vmx->nested.vmxon_ptr = INVALID_GPA;
4830 	vmx->nested.current_vmptr = INVALID_GPA;
4831 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4832 
4833 	vcpu->arch.microcode_version = 0x100000000ULL;
4834 	vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4835 
4836 	/*
4837 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4838 	 * or POSTED_INTR_WAKEUP_VECTOR.
4839 	 */
4840 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4841 	vmx->pi_desc.sn = 1;
4842 }
4843 
4844 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4845 {
4846 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4847 
4848 	if (!init_event)
4849 		__vmx_vcpu_reset(vcpu);
4850 
4851 	vmx->rmode.vm86_active = 0;
4852 	vmx->spec_ctrl = 0;
4853 
4854 	vmx->msr_ia32_umwait_control = 0;
4855 
4856 	vmx->hv_deadline_tsc = -1;
4857 	kvm_set_cr8(vcpu, 0);
4858 
4859 	vmx_segment_cache_clear(vmx);
4860 	kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4861 
4862 	seg_setup(VCPU_SREG_CS);
4863 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4864 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4865 
4866 	seg_setup(VCPU_SREG_DS);
4867 	seg_setup(VCPU_SREG_ES);
4868 	seg_setup(VCPU_SREG_FS);
4869 	seg_setup(VCPU_SREG_GS);
4870 	seg_setup(VCPU_SREG_SS);
4871 
4872 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4873 	vmcs_writel(GUEST_TR_BASE, 0);
4874 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4875 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4876 
4877 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4878 	vmcs_writel(GUEST_LDTR_BASE, 0);
4879 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4880 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4881 
4882 	vmcs_writel(GUEST_GDTR_BASE, 0);
4883 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4884 
4885 	vmcs_writel(GUEST_IDTR_BASE, 0);
4886 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4887 
4888 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4889 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4890 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4891 	if (kvm_mpx_supported())
4892 		vmcs_write64(GUEST_BNDCFGS, 0);
4893 
4894 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4895 
4896 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4897 
4898 	vpid_sync_context(vmx->vpid);
4899 
4900 	vmx_update_fb_clear_dis(vcpu, vmx);
4901 }
4902 
4903 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4904 {
4905 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4906 }
4907 
4908 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4909 {
4910 	if (!enable_vnmi ||
4911 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4912 		vmx_enable_irq_window(vcpu);
4913 		return;
4914 	}
4915 
4916 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4917 }
4918 
4919 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4920 {
4921 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4922 	uint32_t intr;
4923 	int irq = vcpu->arch.interrupt.nr;
4924 
4925 	trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4926 
4927 	++vcpu->stat.irq_injections;
4928 	if (vmx->rmode.vm86_active) {
4929 		int inc_eip = 0;
4930 		if (vcpu->arch.interrupt.soft)
4931 			inc_eip = vcpu->arch.event_exit_inst_len;
4932 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4933 		return;
4934 	}
4935 	intr = irq | INTR_INFO_VALID_MASK;
4936 	if (vcpu->arch.interrupt.soft) {
4937 		intr |= INTR_TYPE_SOFT_INTR;
4938 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4939 			     vmx->vcpu.arch.event_exit_inst_len);
4940 	} else
4941 		intr |= INTR_TYPE_EXT_INTR;
4942 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4943 
4944 	vmx_clear_hlt(vcpu);
4945 }
4946 
4947 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4948 {
4949 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4950 
4951 	if (!enable_vnmi) {
4952 		/*
4953 		 * Tracking the NMI-blocked state in software is built upon
4954 		 * finding the next open IRQ window. This, in turn, depends on
4955 		 * well-behaving guests: They have to keep IRQs disabled at
4956 		 * least as long as the NMI handler runs. Otherwise we may
4957 		 * cause NMI nesting, maybe breaking the guest. But as this is
4958 		 * highly unlikely, we can live with the residual risk.
4959 		 */
4960 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4961 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4962 	}
4963 
4964 	++vcpu->stat.nmi_injections;
4965 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4966 
4967 	if (vmx->rmode.vm86_active) {
4968 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4969 		return;
4970 	}
4971 
4972 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4973 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4974 
4975 	vmx_clear_hlt(vcpu);
4976 }
4977 
4978 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4979 {
4980 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4981 	bool masked;
4982 
4983 	if (!enable_vnmi)
4984 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4985 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4986 		return false;
4987 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4988 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4989 	return masked;
4990 }
4991 
4992 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4993 {
4994 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4995 
4996 	if (!enable_vnmi) {
4997 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4998 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4999 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
5000 		}
5001 	} else {
5002 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5003 		if (masked)
5004 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5005 				      GUEST_INTR_STATE_NMI);
5006 		else
5007 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5008 					GUEST_INTR_STATE_NMI);
5009 	}
5010 }
5011 
5012 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5013 {
5014 	if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5015 		return false;
5016 
5017 	if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5018 		return true;
5019 
5020 	return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5021 		(GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5022 		 GUEST_INTR_STATE_NMI));
5023 }
5024 
5025 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5026 {
5027 	if (to_vmx(vcpu)->nested.nested_run_pending)
5028 		return -EBUSY;
5029 
5030 	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
5031 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5032 		return -EBUSY;
5033 
5034 	return !vmx_nmi_blocked(vcpu);
5035 }
5036 
5037 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5038 {
5039 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5040 		return false;
5041 
5042 	return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5043 	       (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5044 		(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5045 }
5046 
5047 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5048 {
5049 	if (to_vmx(vcpu)->nested.nested_run_pending)
5050 		return -EBUSY;
5051 
5052 	/*
5053 	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5054 	 * e.g. if the IRQ arrived asynchronously after checking nested events.
5055 	 */
5056 	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5057 		return -EBUSY;
5058 
5059 	return !vmx_interrupt_blocked(vcpu);
5060 }
5061 
5062 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5063 {
5064 	void __user *ret;
5065 
5066 	if (enable_unrestricted_guest)
5067 		return 0;
5068 
5069 	mutex_lock(&kvm->slots_lock);
5070 	ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5071 				      PAGE_SIZE * 3);
5072 	mutex_unlock(&kvm->slots_lock);
5073 
5074 	if (IS_ERR(ret))
5075 		return PTR_ERR(ret);
5076 
5077 	to_kvm_vmx(kvm)->tss_addr = addr;
5078 
5079 	return init_rmode_tss(kvm, ret);
5080 }
5081 
5082 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5083 {
5084 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5085 	return 0;
5086 }
5087 
5088 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5089 {
5090 	switch (vec) {
5091 	case BP_VECTOR:
5092 		/*
5093 		 * Update instruction length as we may reinject the exception
5094 		 * from user space while in guest debugging mode.
5095 		 */
5096 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5097 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5098 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5099 			return false;
5100 		fallthrough;
5101 	case DB_VECTOR:
5102 		return !(vcpu->guest_debug &
5103 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5104 	case DE_VECTOR:
5105 	case OF_VECTOR:
5106 	case BR_VECTOR:
5107 	case UD_VECTOR:
5108 	case DF_VECTOR:
5109 	case SS_VECTOR:
5110 	case GP_VECTOR:
5111 	case MF_VECTOR:
5112 		return true;
5113 	}
5114 	return false;
5115 }
5116 
5117 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5118 				  int vec, u32 err_code)
5119 {
5120 	/*
5121 	 * Instruction with address size override prefix opcode 0x67
5122 	 * Cause the #SS fault with 0 error code in VM86 mode.
5123 	 */
5124 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5125 		if (kvm_emulate_instruction(vcpu, 0)) {
5126 			if (vcpu->arch.halt_request) {
5127 				vcpu->arch.halt_request = 0;
5128 				return kvm_emulate_halt_noskip(vcpu);
5129 			}
5130 			return 1;
5131 		}
5132 		return 0;
5133 	}
5134 
5135 	/*
5136 	 * Forward all other exceptions that are valid in real mode.
5137 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5138 	 *        the required debugging infrastructure rework.
5139 	 */
5140 	kvm_queue_exception(vcpu, vec);
5141 	return 1;
5142 }
5143 
5144 static int handle_machine_check(struct kvm_vcpu *vcpu)
5145 {
5146 	/* handled by vmx_vcpu_run() */
5147 	return 1;
5148 }
5149 
5150 /*
5151  * If the host has split lock detection disabled, then #AC is
5152  * unconditionally injected into the guest, which is the pre split lock
5153  * detection behaviour.
5154  *
5155  * If the host has split lock detection enabled then #AC is
5156  * only injected into the guest when:
5157  *  - Guest CPL == 3 (user mode)
5158  *  - Guest has #AC detection enabled in CR0
5159  *  - Guest EFLAGS has AC bit set
5160  */
5161 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5162 {
5163 	if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5164 		return true;
5165 
5166 	return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
5167 	       (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5168 }
5169 
5170 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5171 {
5172 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5173 	struct kvm_run *kvm_run = vcpu->run;
5174 	u32 intr_info, ex_no, error_code;
5175 	unsigned long cr2, dr6;
5176 	u32 vect_info;
5177 
5178 	vect_info = vmx->idt_vectoring_info;
5179 	intr_info = vmx_get_intr_info(vcpu);
5180 
5181 	/*
5182 	 * Machine checks are handled by handle_exception_irqoff(), or by
5183 	 * vmx_vcpu_run() if a #MC occurs on VM-Entry.  NMIs are handled by
5184 	 * vmx_vcpu_enter_exit().
5185 	 */
5186 	if (is_machine_check(intr_info) || is_nmi(intr_info))
5187 		return 1;
5188 
5189 	/*
5190 	 * Queue the exception here instead of in handle_nm_fault_irqoff().
5191 	 * This ensures the nested_vmx check is not skipped so vmexit can
5192 	 * be reflected to L1 (when it intercepts #NM) before reaching this
5193 	 * point.
5194 	 */
5195 	if (is_nm_fault(intr_info)) {
5196 		kvm_queue_exception(vcpu, NM_VECTOR);
5197 		return 1;
5198 	}
5199 
5200 	if (is_invalid_opcode(intr_info))
5201 		return handle_ud(vcpu);
5202 
5203 	error_code = 0;
5204 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5205 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5206 
5207 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5208 		WARN_ON_ONCE(!enable_vmware_backdoor);
5209 
5210 		/*
5211 		 * VMware backdoor emulation on #GP interception only handles
5212 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5213 		 * error code on #GP.
5214 		 */
5215 		if (error_code) {
5216 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5217 			return 1;
5218 		}
5219 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5220 	}
5221 
5222 	/*
5223 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5224 	 * MMIO, it is better to report an internal error.
5225 	 * See the comments in vmx_handle_exit.
5226 	 */
5227 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5228 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5229 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5230 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5231 		vcpu->run->internal.ndata = 4;
5232 		vcpu->run->internal.data[0] = vect_info;
5233 		vcpu->run->internal.data[1] = intr_info;
5234 		vcpu->run->internal.data[2] = error_code;
5235 		vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5236 		return 0;
5237 	}
5238 
5239 	if (is_page_fault(intr_info)) {
5240 		cr2 = vmx_get_exit_qual(vcpu);
5241 		if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5242 			/*
5243 			 * EPT will cause page fault only if we need to
5244 			 * detect illegal GPAs.
5245 			 */
5246 			WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5247 			kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5248 			return 1;
5249 		} else
5250 			return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5251 	}
5252 
5253 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5254 
5255 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5256 		return handle_rmode_exception(vcpu, ex_no, error_code);
5257 
5258 	switch (ex_no) {
5259 	case DB_VECTOR:
5260 		dr6 = vmx_get_exit_qual(vcpu);
5261 		if (!(vcpu->guest_debug &
5262 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5263 			/*
5264 			 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5265 			 * instruction.  ICEBP generates a trap-like #DB, but
5266 			 * despite its interception control being tied to #DB,
5267 			 * is an instruction intercept, i.e. the VM-Exit occurs
5268 			 * on the ICEBP itself.  Use the inner "skip" helper to
5269 			 * avoid single-step #DB and MTF updates, as ICEBP is
5270 			 * higher priority.  Note, skipping ICEBP still clears
5271 			 * STI and MOVSS blocking.
5272 			 *
5273 			 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5274 			 * if single-step is enabled in RFLAGS and STI or MOVSS
5275 			 * blocking is active, as the CPU doesn't set the bit
5276 			 * on VM-Exit due to #DB interception.  VM-Entry has a
5277 			 * consistency check that a single-step #DB is pending
5278 			 * in this scenario as the previous instruction cannot
5279 			 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5280 			 * don't modify RFLAGS), therefore the one instruction
5281 			 * delay when activating single-step breakpoints must
5282 			 * have already expired.  Note, the CPU sets/clears BS
5283 			 * as appropriate for all other VM-Exits types.
5284 			 */
5285 			if (is_icebp(intr_info))
5286 				WARN_ON(!skip_emulated_instruction(vcpu));
5287 			else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5288 				 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5289 				  (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5290 				vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5291 					    vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5292 
5293 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5294 			return 1;
5295 		}
5296 		kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5297 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5298 		fallthrough;
5299 	case BP_VECTOR:
5300 		/*
5301 		 * Update instruction length as we may reinject #BP from
5302 		 * user space while in guest debugging mode. Reading it for
5303 		 * #DB as well causes no harm, it is not used in that case.
5304 		 */
5305 		vmx->vcpu.arch.event_exit_inst_len =
5306 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5307 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
5308 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5309 		kvm_run->debug.arch.exception = ex_no;
5310 		break;
5311 	case AC_VECTOR:
5312 		if (vmx_guest_inject_ac(vcpu)) {
5313 			kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5314 			return 1;
5315 		}
5316 
5317 		/*
5318 		 * Handle split lock. Depending on detection mode this will
5319 		 * either warn and disable split lock detection for this
5320 		 * task or force SIGBUS on it.
5321 		 */
5322 		if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5323 			return 1;
5324 		fallthrough;
5325 	default:
5326 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5327 		kvm_run->ex.exception = ex_no;
5328 		kvm_run->ex.error_code = error_code;
5329 		break;
5330 	}
5331 	return 0;
5332 }
5333 
5334 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5335 {
5336 	++vcpu->stat.irq_exits;
5337 	return 1;
5338 }
5339 
5340 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5341 {
5342 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5343 	vcpu->mmio_needed = 0;
5344 	return 0;
5345 }
5346 
5347 static int handle_io(struct kvm_vcpu *vcpu)
5348 {
5349 	unsigned long exit_qualification;
5350 	int size, in, string;
5351 	unsigned port;
5352 
5353 	exit_qualification = vmx_get_exit_qual(vcpu);
5354 	string = (exit_qualification & 16) != 0;
5355 
5356 	++vcpu->stat.io_exits;
5357 
5358 	if (string)
5359 		return kvm_emulate_instruction(vcpu, 0);
5360 
5361 	port = exit_qualification >> 16;
5362 	size = (exit_qualification & 7) + 1;
5363 	in = (exit_qualification & 8) != 0;
5364 
5365 	return kvm_fast_pio(vcpu, size, port, in);
5366 }
5367 
5368 static void
5369 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5370 {
5371 	/*
5372 	 * Patch in the VMCALL instruction:
5373 	 */
5374 	hypercall[0] = 0x0f;
5375 	hypercall[1] = 0x01;
5376 	hypercall[2] = 0xc1;
5377 }
5378 
5379 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5380 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5381 {
5382 	if (is_guest_mode(vcpu)) {
5383 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5384 		unsigned long orig_val = val;
5385 
5386 		/*
5387 		 * We get here when L2 changed cr0 in a way that did not change
5388 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5389 		 * but did change L0 shadowed bits. So we first calculate the
5390 		 * effective cr0 value that L1 would like to write into the
5391 		 * hardware. It consists of the L2-owned bits from the new
5392 		 * value combined with the L1-owned bits from L1's guest_cr0.
5393 		 */
5394 		val = (val & ~vmcs12->cr0_guest_host_mask) |
5395 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5396 
5397 		if (!nested_guest_cr0_valid(vcpu, val))
5398 			return 1;
5399 
5400 		if (kvm_set_cr0(vcpu, val))
5401 			return 1;
5402 		vmcs_writel(CR0_READ_SHADOW, orig_val);
5403 		return 0;
5404 	} else {
5405 		if (to_vmx(vcpu)->nested.vmxon &&
5406 		    !nested_host_cr0_valid(vcpu, val))
5407 			return 1;
5408 
5409 		return kvm_set_cr0(vcpu, val);
5410 	}
5411 }
5412 
5413 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5414 {
5415 	if (is_guest_mode(vcpu)) {
5416 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5417 		unsigned long orig_val = val;
5418 
5419 		/* analogously to handle_set_cr0 */
5420 		val = (val & ~vmcs12->cr4_guest_host_mask) |
5421 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5422 		if (kvm_set_cr4(vcpu, val))
5423 			return 1;
5424 		vmcs_writel(CR4_READ_SHADOW, orig_val);
5425 		return 0;
5426 	} else
5427 		return kvm_set_cr4(vcpu, val);
5428 }
5429 
5430 static int handle_desc(struct kvm_vcpu *vcpu)
5431 {
5432 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
5433 	return kvm_emulate_instruction(vcpu, 0);
5434 }
5435 
5436 static int handle_cr(struct kvm_vcpu *vcpu)
5437 {
5438 	unsigned long exit_qualification, val;
5439 	int cr;
5440 	int reg;
5441 	int err;
5442 	int ret;
5443 
5444 	exit_qualification = vmx_get_exit_qual(vcpu);
5445 	cr = exit_qualification & 15;
5446 	reg = (exit_qualification >> 8) & 15;
5447 	switch ((exit_qualification >> 4) & 3) {
5448 	case 0: /* mov to cr */
5449 		val = kvm_register_read(vcpu, reg);
5450 		trace_kvm_cr_write(cr, val);
5451 		switch (cr) {
5452 		case 0:
5453 			err = handle_set_cr0(vcpu, val);
5454 			return kvm_complete_insn_gp(vcpu, err);
5455 		case 3:
5456 			WARN_ON_ONCE(enable_unrestricted_guest);
5457 
5458 			err = kvm_set_cr3(vcpu, val);
5459 			return kvm_complete_insn_gp(vcpu, err);
5460 		case 4:
5461 			err = handle_set_cr4(vcpu, val);
5462 			return kvm_complete_insn_gp(vcpu, err);
5463 		case 8: {
5464 				u8 cr8_prev = kvm_get_cr8(vcpu);
5465 				u8 cr8 = (u8)val;
5466 				err = kvm_set_cr8(vcpu, cr8);
5467 				ret = kvm_complete_insn_gp(vcpu, err);
5468 				if (lapic_in_kernel(vcpu))
5469 					return ret;
5470 				if (cr8_prev <= cr8)
5471 					return ret;
5472 				/*
5473 				 * TODO: we might be squashing a
5474 				 * KVM_GUESTDBG_SINGLESTEP-triggered
5475 				 * KVM_EXIT_DEBUG here.
5476 				 */
5477 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5478 				return 0;
5479 			}
5480 		}
5481 		break;
5482 	case 2: /* clts */
5483 		KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5484 		return -EIO;
5485 	case 1: /*mov from cr*/
5486 		switch (cr) {
5487 		case 3:
5488 			WARN_ON_ONCE(enable_unrestricted_guest);
5489 
5490 			val = kvm_read_cr3(vcpu);
5491 			kvm_register_write(vcpu, reg, val);
5492 			trace_kvm_cr_read(cr, val);
5493 			return kvm_skip_emulated_instruction(vcpu);
5494 		case 8:
5495 			val = kvm_get_cr8(vcpu);
5496 			kvm_register_write(vcpu, reg, val);
5497 			trace_kvm_cr_read(cr, val);
5498 			return kvm_skip_emulated_instruction(vcpu);
5499 		}
5500 		break;
5501 	case 3: /* lmsw */
5502 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5503 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5504 		kvm_lmsw(vcpu, val);
5505 
5506 		return kvm_skip_emulated_instruction(vcpu);
5507 	default:
5508 		break;
5509 	}
5510 	vcpu->run->exit_reason = 0;
5511 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5512 	       (int)(exit_qualification >> 4) & 3, cr);
5513 	return 0;
5514 }
5515 
5516 static int handle_dr(struct kvm_vcpu *vcpu)
5517 {
5518 	unsigned long exit_qualification;
5519 	int dr, dr7, reg;
5520 	int err = 1;
5521 
5522 	exit_qualification = vmx_get_exit_qual(vcpu);
5523 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5524 
5525 	/* First, if DR does not exist, trigger UD */
5526 	if (!kvm_require_dr(vcpu, dr))
5527 		return 1;
5528 
5529 	if (vmx_get_cpl(vcpu) > 0)
5530 		goto out;
5531 
5532 	dr7 = vmcs_readl(GUEST_DR7);
5533 	if (dr7 & DR7_GD) {
5534 		/*
5535 		 * As the vm-exit takes precedence over the debug trap, we
5536 		 * need to emulate the latter, either for the host or the
5537 		 * guest debugging itself.
5538 		 */
5539 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5540 			vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5541 			vcpu->run->debug.arch.dr7 = dr7;
5542 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5543 			vcpu->run->debug.arch.exception = DB_VECTOR;
5544 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5545 			return 0;
5546 		} else {
5547 			kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5548 			return 1;
5549 		}
5550 	}
5551 
5552 	if (vcpu->guest_debug == 0) {
5553 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5554 
5555 		/*
5556 		 * No more DR vmexits; force a reload of the debug registers
5557 		 * and reenter on this instruction.  The next vmexit will
5558 		 * retrieve the full state of the debug registers.
5559 		 */
5560 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5561 		return 1;
5562 	}
5563 
5564 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5565 	if (exit_qualification & TYPE_MOV_FROM_DR) {
5566 		unsigned long val;
5567 
5568 		kvm_get_dr(vcpu, dr, &val);
5569 		kvm_register_write(vcpu, reg, val);
5570 		err = 0;
5571 	} else {
5572 		err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5573 	}
5574 
5575 out:
5576 	return kvm_complete_insn_gp(vcpu, err);
5577 }
5578 
5579 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5580 {
5581 	get_debugreg(vcpu->arch.db[0], 0);
5582 	get_debugreg(vcpu->arch.db[1], 1);
5583 	get_debugreg(vcpu->arch.db[2], 2);
5584 	get_debugreg(vcpu->arch.db[3], 3);
5585 	get_debugreg(vcpu->arch.dr6, 6);
5586 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5587 
5588 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5589 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5590 
5591 	/*
5592 	 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5593 	 * a stale dr6 from the guest.
5594 	 */
5595 	set_debugreg(DR6_RESERVED, 6);
5596 }
5597 
5598 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5599 {
5600 	vmcs_writel(GUEST_DR7, val);
5601 }
5602 
5603 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5604 {
5605 	kvm_apic_update_ppr(vcpu);
5606 	return 1;
5607 }
5608 
5609 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5610 {
5611 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5612 
5613 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5614 
5615 	++vcpu->stat.irq_window_exits;
5616 	return 1;
5617 }
5618 
5619 static int handle_invlpg(struct kvm_vcpu *vcpu)
5620 {
5621 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5622 
5623 	kvm_mmu_invlpg(vcpu, exit_qualification);
5624 	return kvm_skip_emulated_instruction(vcpu);
5625 }
5626 
5627 static int handle_apic_access(struct kvm_vcpu *vcpu)
5628 {
5629 	if (likely(fasteoi)) {
5630 		unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5631 		int access_type, offset;
5632 
5633 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5634 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5635 		/*
5636 		 * Sane guest uses MOV to write EOI, with written value
5637 		 * not cared. So make a short-circuit here by avoiding
5638 		 * heavy instruction emulation.
5639 		 */
5640 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5641 		    (offset == APIC_EOI)) {
5642 			kvm_lapic_set_eoi(vcpu);
5643 			return kvm_skip_emulated_instruction(vcpu);
5644 		}
5645 	}
5646 	return kvm_emulate_instruction(vcpu, 0);
5647 }
5648 
5649 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5650 {
5651 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5652 	int vector = exit_qualification & 0xff;
5653 
5654 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5655 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5656 	return 1;
5657 }
5658 
5659 static int handle_apic_write(struct kvm_vcpu *vcpu)
5660 {
5661 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5662 
5663 	/*
5664 	 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5665 	 * hardware has done any necessary aliasing, offset adjustments, etc...
5666 	 * for the access.  I.e. the correct value has already been  written to
5667 	 * the vAPIC page for the correct 16-byte chunk.  KVM needs only to
5668 	 * retrieve the register value and emulate the access.
5669 	 */
5670 	u32 offset = exit_qualification & 0xff0;
5671 
5672 	kvm_apic_write_nodecode(vcpu, offset);
5673 	return 1;
5674 }
5675 
5676 static int handle_task_switch(struct kvm_vcpu *vcpu)
5677 {
5678 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5679 	unsigned long exit_qualification;
5680 	bool has_error_code = false;
5681 	u32 error_code = 0;
5682 	u16 tss_selector;
5683 	int reason, type, idt_v, idt_index;
5684 
5685 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5686 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5687 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5688 
5689 	exit_qualification = vmx_get_exit_qual(vcpu);
5690 
5691 	reason = (u32)exit_qualification >> 30;
5692 	if (reason == TASK_SWITCH_GATE && idt_v) {
5693 		switch (type) {
5694 		case INTR_TYPE_NMI_INTR:
5695 			vcpu->arch.nmi_injected = false;
5696 			vmx_set_nmi_mask(vcpu, true);
5697 			break;
5698 		case INTR_TYPE_EXT_INTR:
5699 		case INTR_TYPE_SOFT_INTR:
5700 			kvm_clear_interrupt_queue(vcpu);
5701 			break;
5702 		case INTR_TYPE_HARD_EXCEPTION:
5703 			if (vmx->idt_vectoring_info &
5704 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5705 				has_error_code = true;
5706 				error_code =
5707 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5708 			}
5709 			fallthrough;
5710 		case INTR_TYPE_SOFT_EXCEPTION:
5711 			kvm_clear_exception_queue(vcpu);
5712 			break;
5713 		default:
5714 			break;
5715 		}
5716 	}
5717 	tss_selector = exit_qualification;
5718 
5719 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5720 		       type != INTR_TYPE_EXT_INTR &&
5721 		       type != INTR_TYPE_NMI_INTR))
5722 		WARN_ON(!skip_emulated_instruction(vcpu));
5723 
5724 	/*
5725 	 * TODO: What about debug traps on tss switch?
5726 	 *       Are we supposed to inject them and update dr6?
5727 	 */
5728 	return kvm_task_switch(vcpu, tss_selector,
5729 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5730 			       reason, has_error_code, error_code);
5731 }
5732 
5733 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5734 {
5735 	unsigned long exit_qualification;
5736 	gpa_t gpa;
5737 	u64 error_code;
5738 
5739 	exit_qualification = vmx_get_exit_qual(vcpu);
5740 
5741 	/*
5742 	 * EPT violation happened while executing iret from NMI,
5743 	 * "blocked by NMI" bit has to be set before next VM entry.
5744 	 * There are errata that may cause this bit to not be set:
5745 	 * AAK134, BY25.
5746 	 */
5747 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5748 			enable_vnmi &&
5749 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5750 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5751 
5752 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5753 	trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5754 
5755 	/* Is it a read fault? */
5756 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5757 		     ? PFERR_USER_MASK : 0;
5758 	/* Is it a write fault? */
5759 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5760 		      ? PFERR_WRITE_MASK : 0;
5761 	/* Is it a fetch fault? */
5762 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5763 		      ? PFERR_FETCH_MASK : 0;
5764 	/* ept page table entry is present? */
5765 	error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5766 		      ? PFERR_PRESENT_MASK : 0;
5767 
5768 	error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5769 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5770 
5771 	vcpu->arch.exit_qualification = exit_qualification;
5772 
5773 	/*
5774 	 * Check that the GPA doesn't exceed physical memory limits, as that is
5775 	 * a guest page fault.  We have to emulate the instruction here, because
5776 	 * if the illegal address is that of a paging structure, then
5777 	 * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5778 	 * would also use advanced VM-exit information for EPT violations to
5779 	 * reconstruct the page fault error code.
5780 	 */
5781 	if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5782 		return kvm_emulate_instruction(vcpu, 0);
5783 
5784 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5785 }
5786 
5787 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5788 {
5789 	gpa_t gpa;
5790 
5791 	if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5792 		return 1;
5793 
5794 	/*
5795 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5796 	 * nGPA here instead of the required GPA.
5797 	 */
5798 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5799 	if (!is_guest_mode(vcpu) &&
5800 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5801 		trace_kvm_fast_mmio(gpa);
5802 		return kvm_skip_emulated_instruction(vcpu);
5803 	}
5804 
5805 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5806 }
5807 
5808 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5809 {
5810 	if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5811 		return -EIO;
5812 
5813 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5814 	++vcpu->stat.nmi_window_exits;
5815 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5816 
5817 	return 1;
5818 }
5819 
5820 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5821 {
5822 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5823 
5824 	return vmx->emulation_required && !vmx->rmode.vm86_active &&
5825 	       (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5826 }
5827 
5828 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5829 {
5830 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5831 	bool intr_window_requested;
5832 	unsigned count = 130;
5833 
5834 	intr_window_requested = exec_controls_get(vmx) &
5835 				CPU_BASED_INTR_WINDOW_EXITING;
5836 
5837 	while (vmx->emulation_required && count-- != 0) {
5838 		if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5839 			return handle_interrupt_window(&vmx->vcpu);
5840 
5841 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5842 			return 1;
5843 
5844 		if (!kvm_emulate_instruction(vcpu, 0))
5845 			return 0;
5846 
5847 		if (vmx_emulation_required_with_pending_exception(vcpu)) {
5848 			kvm_prepare_emulation_failure_exit(vcpu);
5849 			return 0;
5850 		}
5851 
5852 		if (vcpu->arch.halt_request) {
5853 			vcpu->arch.halt_request = 0;
5854 			return kvm_emulate_halt_noskip(vcpu);
5855 		}
5856 
5857 		/*
5858 		 * Note, return 1 and not 0, vcpu_run() will invoke
5859 		 * xfer_to_guest_mode() which will create a proper return
5860 		 * code.
5861 		 */
5862 		if (__xfer_to_guest_mode_work_pending())
5863 			return 1;
5864 	}
5865 
5866 	return 1;
5867 }
5868 
5869 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5870 {
5871 	if (vmx_emulation_required_with_pending_exception(vcpu)) {
5872 		kvm_prepare_emulation_failure_exit(vcpu);
5873 		return 0;
5874 	}
5875 
5876 	return 1;
5877 }
5878 
5879 static void grow_ple_window(struct kvm_vcpu *vcpu)
5880 {
5881 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5882 	unsigned int old = vmx->ple_window;
5883 
5884 	vmx->ple_window = __grow_ple_window(old, ple_window,
5885 					    ple_window_grow,
5886 					    ple_window_max);
5887 
5888 	if (vmx->ple_window != old) {
5889 		vmx->ple_window_dirty = true;
5890 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5891 					    vmx->ple_window, old);
5892 	}
5893 }
5894 
5895 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5896 {
5897 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5898 	unsigned int old = vmx->ple_window;
5899 
5900 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5901 					      ple_window_shrink,
5902 					      ple_window);
5903 
5904 	if (vmx->ple_window != old) {
5905 		vmx->ple_window_dirty = true;
5906 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5907 					    vmx->ple_window, old);
5908 	}
5909 }
5910 
5911 /*
5912  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5913  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5914  */
5915 static int handle_pause(struct kvm_vcpu *vcpu)
5916 {
5917 	if (!kvm_pause_in_guest(vcpu->kvm))
5918 		grow_ple_window(vcpu);
5919 
5920 	/*
5921 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5922 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5923 	 * never set PAUSE_EXITING and just set PLE if supported,
5924 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5925 	 */
5926 	kvm_vcpu_on_spin(vcpu, true);
5927 	return kvm_skip_emulated_instruction(vcpu);
5928 }
5929 
5930 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5931 {
5932 	return 1;
5933 }
5934 
5935 static int handle_invpcid(struct kvm_vcpu *vcpu)
5936 {
5937 	u32 vmx_instruction_info;
5938 	unsigned long type;
5939 	gva_t gva;
5940 	struct {
5941 		u64 pcid;
5942 		u64 gla;
5943 	} operand;
5944 	int gpr_index;
5945 
5946 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5947 		kvm_queue_exception(vcpu, UD_VECTOR);
5948 		return 1;
5949 	}
5950 
5951 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5952 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5953 	type = kvm_register_read(vcpu, gpr_index);
5954 
5955 	/* According to the Intel instruction reference, the memory operand
5956 	 * is read even if it isn't needed (e.g., for type==all)
5957 	 */
5958 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5959 				vmx_instruction_info, false,
5960 				sizeof(operand), &gva))
5961 		return 1;
5962 
5963 	return kvm_handle_invpcid(vcpu, type, gva);
5964 }
5965 
5966 static int handle_pml_full(struct kvm_vcpu *vcpu)
5967 {
5968 	unsigned long exit_qualification;
5969 
5970 	trace_kvm_pml_full(vcpu->vcpu_id);
5971 
5972 	exit_qualification = vmx_get_exit_qual(vcpu);
5973 
5974 	/*
5975 	 * PML buffer FULL happened while executing iret from NMI,
5976 	 * "blocked by NMI" bit has to be set before next VM entry.
5977 	 */
5978 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5979 			enable_vnmi &&
5980 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5981 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5982 				GUEST_INTR_STATE_NMI);
5983 
5984 	/*
5985 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5986 	 * here.., and there's no userspace involvement needed for PML.
5987 	 */
5988 	return 1;
5989 }
5990 
5991 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5992 {
5993 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5994 
5995 	if (!vmx->req_immediate_exit &&
5996 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5997 		kvm_lapic_expired_hv_timer(vcpu);
5998 		return EXIT_FASTPATH_REENTER_GUEST;
5999 	}
6000 
6001 	return EXIT_FASTPATH_NONE;
6002 }
6003 
6004 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6005 {
6006 	handle_fastpath_preemption_timer(vcpu);
6007 	return 1;
6008 }
6009 
6010 /*
6011  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
6012  * are overwritten by nested_vmx_setup() when nested=1.
6013  */
6014 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6015 {
6016 	kvm_queue_exception(vcpu, UD_VECTOR);
6017 	return 1;
6018 }
6019 
6020 #ifndef CONFIG_X86_SGX_KVM
6021 static int handle_encls(struct kvm_vcpu *vcpu)
6022 {
6023 	/*
6024 	 * SGX virtualization is disabled.  There is no software enable bit for
6025 	 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6026 	 * the guest from executing ENCLS (when SGX is supported by hardware).
6027 	 */
6028 	kvm_queue_exception(vcpu, UD_VECTOR);
6029 	return 1;
6030 }
6031 #endif /* CONFIG_X86_SGX_KVM */
6032 
6033 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6034 {
6035 	/*
6036 	 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6037 	 * VM-Exits. Unconditionally set the flag here and leave the handling to
6038 	 * vmx_handle_exit().
6039 	 */
6040 	to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6041 	return 1;
6042 }
6043 
6044 static int handle_notify(struct kvm_vcpu *vcpu)
6045 {
6046 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6047 	bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6048 
6049 	++vcpu->stat.notify_window_exits;
6050 
6051 	/*
6052 	 * Notify VM exit happened while executing iret from NMI,
6053 	 * "blocked by NMI" bit has to be set before next VM entry.
6054 	 */
6055 	if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6056 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6057 			      GUEST_INTR_STATE_NMI);
6058 
6059 	if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6060 	    context_invalid) {
6061 		vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6062 		vcpu->run->notify.flags = context_invalid ?
6063 					  KVM_NOTIFY_CONTEXT_INVALID : 0;
6064 		return 0;
6065 	}
6066 
6067 	return 1;
6068 }
6069 
6070 /*
6071  * The exit handlers return 1 if the exit was handled fully and guest execution
6072  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6073  * to be done to userspace and return 0.
6074  */
6075 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6076 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
6077 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6078 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6079 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
6080 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6081 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
6082 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
6083 	[EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
6084 	[EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
6085 	[EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
6086 	[EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
6087 	[EXIT_REASON_HLT]                     = kvm_emulate_halt,
6088 	[EXIT_REASON_INVD]		      = kvm_emulate_invd,
6089 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
6090 	[EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
6091 	[EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
6092 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
6093 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
6094 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
6095 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
6096 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
6097 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
6098 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
6099 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
6100 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
6101 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6102 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6103 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6104 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6105 	[EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
6106 	[EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
6107 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6108 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6109 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
6110 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
6111 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
6112 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6113 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6114 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = kvm_emulate_mwait,
6115 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
6116 	[EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
6117 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
6118 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
6119 	[EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
6120 	[EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
6121 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
6122 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
6123 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
6124 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
6125 	[EXIT_REASON_ENCLS]		      = handle_encls,
6126 	[EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
6127 	[EXIT_REASON_NOTIFY]		      = handle_notify,
6128 };
6129 
6130 static const int kvm_vmx_max_exit_handlers =
6131 	ARRAY_SIZE(kvm_vmx_exit_handlers);
6132 
6133 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6134 			      u64 *info1, u64 *info2,
6135 			      u32 *intr_info, u32 *error_code)
6136 {
6137 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6138 
6139 	*reason = vmx->exit_reason.full;
6140 	*info1 = vmx_get_exit_qual(vcpu);
6141 	if (!(vmx->exit_reason.failed_vmentry)) {
6142 		*info2 = vmx->idt_vectoring_info;
6143 		*intr_info = vmx_get_intr_info(vcpu);
6144 		if (is_exception_with_error_code(*intr_info))
6145 			*error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6146 		else
6147 			*error_code = 0;
6148 	} else {
6149 		*info2 = 0;
6150 		*intr_info = 0;
6151 		*error_code = 0;
6152 	}
6153 }
6154 
6155 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6156 {
6157 	if (vmx->pml_pg) {
6158 		__free_page(vmx->pml_pg);
6159 		vmx->pml_pg = NULL;
6160 	}
6161 }
6162 
6163 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6164 {
6165 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6166 	u64 *pml_buf;
6167 	u16 pml_idx;
6168 
6169 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
6170 
6171 	/* Do nothing if PML buffer is empty */
6172 	if (pml_idx == (PML_ENTITY_NUM - 1))
6173 		return;
6174 
6175 	/* PML index always points to next available PML buffer entity */
6176 	if (pml_idx >= PML_ENTITY_NUM)
6177 		pml_idx = 0;
6178 	else
6179 		pml_idx++;
6180 
6181 	pml_buf = page_address(vmx->pml_pg);
6182 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6183 		u64 gpa;
6184 
6185 		gpa = pml_buf[pml_idx];
6186 		WARN_ON(gpa & (PAGE_SIZE - 1));
6187 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6188 	}
6189 
6190 	/* reset PML index */
6191 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6192 }
6193 
6194 static void vmx_dump_sel(char *name, uint32_t sel)
6195 {
6196 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6197 	       name, vmcs_read16(sel),
6198 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6199 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6200 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6201 }
6202 
6203 static void vmx_dump_dtsel(char *name, uint32_t limit)
6204 {
6205 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
6206 	       name, vmcs_read32(limit),
6207 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6208 }
6209 
6210 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6211 {
6212 	unsigned int i;
6213 	struct vmx_msr_entry *e;
6214 
6215 	pr_err("MSR %s:\n", name);
6216 	for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6217 		pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6218 }
6219 
6220 void dump_vmcs(struct kvm_vcpu *vcpu)
6221 {
6222 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6223 	u32 vmentry_ctl, vmexit_ctl;
6224 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6225 	u64 tertiary_exec_control;
6226 	unsigned long cr4;
6227 	int efer_slot;
6228 
6229 	if (!dump_invalid_vmcs) {
6230 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6231 		return;
6232 	}
6233 
6234 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6235 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6236 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6237 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6238 	cr4 = vmcs_readl(GUEST_CR4);
6239 
6240 	if (cpu_has_secondary_exec_ctrls())
6241 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6242 	else
6243 		secondary_exec_control = 0;
6244 
6245 	if (cpu_has_tertiary_exec_ctrls())
6246 		tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6247 	else
6248 		tertiary_exec_control = 0;
6249 
6250 	pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6251 	       vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6252 	pr_err("*** Guest State ***\n");
6253 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6254 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6255 	       vmcs_readl(CR0_GUEST_HOST_MASK));
6256 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6257 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6258 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6259 	if (cpu_has_vmx_ept()) {
6260 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
6261 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6262 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
6263 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6264 	}
6265 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
6266 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6267 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
6268 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6269 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6270 	       vmcs_readl(GUEST_SYSENTER_ESP),
6271 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6272 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
6273 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
6274 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
6275 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
6276 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
6277 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
6278 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6279 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6280 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6281 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
6282 	efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6283 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6284 		pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6285 	else if (efer_slot >= 0)
6286 		pr_err("EFER= 0x%016llx (autoload)\n",
6287 		       vmx->msr_autoload.guest.val[efer_slot].value);
6288 	else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6289 		pr_err("EFER= 0x%016llx (effective)\n",
6290 		       vcpu->arch.efer | (EFER_LMA | EFER_LME));
6291 	else
6292 		pr_err("EFER= 0x%016llx (effective)\n",
6293 		       vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6294 	if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6295 		pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6296 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
6297 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
6298 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6299 	if (cpu_has_load_perf_global_ctrl() &&
6300 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6301 		pr_err("PerfGlobCtl = 0x%016llx\n",
6302 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6303 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6304 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6305 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
6306 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6307 	       vmcs_read32(GUEST_ACTIVITY_STATE));
6308 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6309 		pr_err("InterruptStatus = %04x\n",
6310 		       vmcs_read16(GUEST_INTR_STATUS));
6311 	if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6312 		vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6313 	if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6314 		vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6315 
6316 	pr_err("*** Host State ***\n");
6317 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
6318 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6319 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6320 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6321 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6322 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6323 	       vmcs_read16(HOST_TR_SELECTOR));
6324 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6325 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6326 	       vmcs_readl(HOST_TR_BASE));
6327 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6328 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6329 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6330 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6331 	       vmcs_readl(HOST_CR4));
6332 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6333 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
6334 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
6335 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
6336 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6337 		pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6338 	if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6339 		pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6340 	if (cpu_has_load_perf_global_ctrl() &&
6341 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6342 		pr_err("PerfGlobCtl = 0x%016llx\n",
6343 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6344 	if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6345 		vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6346 
6347 	pr_err("*** Control State ***\n");
6348 	pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6349 	       cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6350 	pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6351 	       pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6352 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6353 	       vmcs_read32(EXCEPTION_BITMAP),
6354 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6355 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6356 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6357 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6358 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6359 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6360 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6361 	       vmcs_read32(VM_EXIT_INTR_INFO),
6362 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6363 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6364 	pr_err("        reason=%08x qualification=%016lx\n",
6365 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6366 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6367 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
6368 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
6369 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6370 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6371 		pr_err("TSC Multiplier = 0x%016llx\n",
6372 		       vmcs_read64(TSC_MULTIPLIER));
6373 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6374 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6375 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
6376 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6377 		}
6378 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6379 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6380 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6381 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6382 	}
6383 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6384 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6385 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6386 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6387 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6388 		pr_err("PLE Gap=%08x Window=%08x\n",
6389 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6390 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6391 		pr_err("Virtual processor ID = 0x%04x\n",
6392 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
6393 }
6394 
6395 /*
6396  * The guest has exited.  See if we can fix it or if we need userspace
6397  * assistance.
6398  */
6399 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6400 {
6401 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6402 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6403 	u32 vectoring_info = vmx->idt_vectoring_info;
6404 	u16 exit_handler_index;
6405 
6406 	/*
6407 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6408 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6409 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6410 	 * mode as if vcpus is in root mode, the PML buffer must has been
6411 	 * flushed already.  Note, PML is never enabled in hardware while
6412 	 * running L2.
6413 	 */
6414 	if (enable_pml && !is_guest_mode(vcpu))
6415 		vmx_flush_pml_buffer(vcpu);
6416 
6417 	/*
6418 	 * KVM should never reach this point with a pending nested VM-Enter.
6419 	 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6420 	 * invalid guest state should never happen as that means KVM knowingly
6421 	 * allowed a nested VM-Enter with an invalid vmcs12.  More below.
6422 	 */
6423 	if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6424 		return -EIO;
6425 
6426 	if (is_guest_mode(vcpu)) {
6427 		/*
6428 		 * PML is never enabled when running L2, bail immediately if a
6429 		 * PML full exit occurs as something is horribly wrong.
6430 		 */
6431 		if (exit_reason.basic == EXIT_REASON_PML_FULL)
6432 			goto unexpected_vmexit;
6433 
6434 		/*
6435 		 * The host physical addresses of some pages of guest memory
6436 		 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6437 		 * Page). The CPU may write to these pages via their host
6438 		 * physical address while L2 is running, bypassing any
6439 		 * address-translation-based dirty tracking (e.g. EPT write
6440 		 * protection).
6441 		 *
6442 		 * Mark them dirty on every exit from L2 to prevent them from
6443 		 * getting out of sync with dirty tracking.
6444 		 */
6445 		nested_mark_vmcs12_pages_dirty(vcpu);
6446 
6447 		/*
6448 		 * Synthesize a triple fault if L2 state is invalid.  In normal
6449 		 * operation, nested VM-Enter rejects any attempt to enter L2
6450 		 * with invalid state.  However, those checks are skipped if
6451 		 * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
6452 		 * L2 state is invalid, it means either L1 modified SMRAM state
6453 		 * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
6454 		 * doing so is architecturally allowed in the RSM case, and is
6455 		 * the least awful solution for the userspace case without
6456 		 * risking false positives.
6457 		 */
6458 		if (vmx->emulation_required) {
6459 			nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6460 			return 1;
6461 		}
6462 
6463 		if (nested_vmx_reflect_vmexit(vcpu))
6464 			return 1;
6465 	}
6466 
6467 	/* If guest state is invalid, start emulating.  L2 is handled above. */
6468 	if (vmx->emulation_required)
6469 		return handle_invalid_guest_state(vcpu);
6470 
6471 	if (exit_reason.failed_vmentry) {
6472 		dump_vmcs(vcpu);
6473 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6474 		vcpu->run->fail_entry.hardware_entry_failure_reason
6475 			= exit_reason.full;
6476 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6477 		return 0;
6478 	}
6479 
6480 	if (unlikely(vmx->fail)) {
6481 		dump_vmcs(vcpu);
6482 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6483 		vcpu->run->fail_entry.hardware_entry_failure_reason
6484 			= vmcs_read32(VM_INSTRUCTION_ERROR);
6485 		vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6486 		return 0;
6487 	}
6488 
6489 	/*
6490 	 * Note:
6491 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6492 	 * delivery event since it indicates guest is accessing MMIO.
6493 	 * The vm-exit can be triggered again after return to guest that
6494 	 * will cause infinite loop.
6495 	 */
6496 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6497 	    (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6498 	     exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6499 	     exit_reason.basic != EXIT_REASON_PML_FULL &&
6500 	     exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6501 	     exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6502 	     exit_reason.basic != EXIT_REASON_NOTIFY)) {
6503 		int ndata = 3;
6504 
6505 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6506 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6507 		vcpu->run->internal.data[0] = vectoring_info;
6508 		vcpu->run->internal.data[1] = exit_reason.full;
6509 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6510 		if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6511 			vcpu->run->internal.data[ndata++] =
6512 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6513 		}
6514 		vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6515 		vcpu->run->internal.ndata = ndata;
6516 		return 0;
6517 	}
6518 
6519 	if (unlikely(!enable_vnmi &&
6520 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
6521 		if (!vmx_interrupt_blocked(vcpu)) {
6522 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6523 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6524 			   vcpu->arch.nmi_pending) {
6525 			/*
6526 			 * This CPU don't support us in finding the end of an
6527 			 * NMI-blocked window if the guest runs with IRQs
6528 			 * disabled. So we pull the trigger after 1 s of
6529 			 * futile waiting, but inform the user about this.
6530 			 */
6531 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6532 			       "state on VCPU %d after 1 s timeout\n",
6533 			       __func__, vcpu->vcpu_id);
6534 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6535 		}
6536 	}
6537 
6538 	if (exit_fastpath != EXIT_FASTPATH_NONE)
6539 		return 1;
6540 
6541 	if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6542 		goto unexpected_vmexit;
6543 #ifdef CONFIG_RETPOLINE
6544 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6545 		return kvm_emulate_wrmsr(vcpu);
6546 	else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6547 		return handle_preemption_timer(vcpu);
6548 	else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6549 		return handle_interrupt_window(vcpu);
6550 	else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6551 		return handle_external_interrupt(vcpu);
6552 	else if (exit_reason.basic == EXIT_REASON_HLT)
6553 		return kvm_emulate_halt(vcpu);
6554 	else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6555 		return handle_ept_misconfig(vcpu);
6556 #endif
6557 
6558 	exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6559 						kvm_vmx_max_exit_handlers);
6560 	if (!kvm_vmx_exit_handlers[exit_handler_index])
6561 		goto unexpected_vmexit;
6562 
6563 	return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6564 
6565 unexpected_vmexit:
6566 	vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6567 		    exit_reason.full);
6568 	dump_vmcs(vcpu);
6569 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6570 	vcpu->run->internal.suberror =
6571 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6572 	vcpu->run->internal.ndata = 2;
6573 	vcpu->run->internal.data[0] = exit_reason.full;
6574 	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6575 	return 0;
6576 }
6577 
6578 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6579 {
6580 	int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6581 
6582 	/*
6583 	 * Exit to user space when bus lock detected to inform that there is
6584 	 * a bus lock in guest.
6585 	 */
6586 	if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6587 		if (ret > 0)
6588 			vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6589 
6590 		vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6591 		return 0;
6592 	}
6593 	return ret;
6594 }
6595 
6596 /*
6597  * Software based L1D cache flush which is used when microcode providing
6598  * the cache control MSR is not loaded.
6599  *
6600  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6601  * flush it is required to read in 64 KiB because the replacement algorithm
6602  * is not exactly LRU. This could be sized at runtime via topology
6603  * information but as all relevant affected CPUs have 32KiB L1D cache size
6604  * there is no point in doing so.
6605  */
6606 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6607 {
6608 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
6609 
6610 	/*
6611 	 * This code is only executed when the flush mode is 'cond' or
6612 	 * 'always'
6613 	 */
6614 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
6615 		bool flush_l1d;
6616 
6617 		/*
6618 		 * Clear the per-vcpu flush bit, it gets set again
6619 		 * either from vcpu_run() or from one of the unsafe
6620 		 * VMEXIT handlers.
6621 		 */
6622 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
6623 		vcpu->arch.l1tf_flush_l1d = false;
6624 
6625 		/*
6626 		 * Clear the per-cpu flush bit, it gets set again from
6627 		 * the interrupt handlers.
6628 		 */
6629 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6630 		kvm_clear_cpu_l1tf_flush_l1d();
6631 
6632 		if (!flush_l1d)
6633 			return;
6634 	}
6635 
6636 	vcpu->stat.l1d_flush++;
6637 
6638 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6639 		native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6640 		return;
6641 	}
6642 
6643 	asm volatile(
6644 		/* First ensure the pages are in the TLB */
6645 		"xorl	%%eax, %%eax\n"
6646 		".Lpopulate_tlb:\n\t"
6647 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6648 		"addl	$4096, %%eax\n\t"
6649 		"cmpl	%%eax, %[size]\n\t"
6650 		"jne	.Lpopulate_tlb\n\t"
6651 		"xorl	%%eax, %%eax\n\t"
6652 		"cpuid\n\t"
6653 		/* Now fill the cache */
6654 		"xorl	%%eax, %%eax\n"
6655 		".Lfill_cache:\n"
6656 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6657 		"addl	$64, %%eax\n\t"
6658 		"cmpl	%%eax, %[size]\n\t"
6659 		"jne	.Lfill_cache\n\t"
6660 		"lfence\n"
6661 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6662 		    [size] "r" (size)
6663 		: "eax", "ebx", "ecx", "edx");
6664 }
6665 
6666 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6667 {
6668 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6669 	int tpr_threshold;
6670 
6671 	if (is_guest_mode(vcpu) &&
6672 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6673 		return;
6674 
6675 	tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6676 	if (is_guest_mode(vcpu))
6677 		to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6678 	else
6679 		vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6680 }
6681 
6682 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6683 {
6684 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6685 	u32 sec_exec_control;
6686 
6687 	if (!lapic_in_kernel(vcpu))
6688 		return;
6689 
6690 	if (!flexpriority_enabled &&
6691 	    !cpu_has_vmx_virtualize_x2apic_mode())
6692 		return;
6693 
6694 	/* Postpone execution until vmcs01 is the current VMCS. */
6695 	if (is_guest_mode(vcpu)) {
6696 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6697 		return;
6698 	}
6699 
6700 	sec_exec_control = secondary_exec_controls_get(vmx);
6701 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6702 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6703 
6704 	switch (kvm_get_apic_mode(vcpu)) {
6705 	case LAPIC_MODE_INVALID:
6706 		WARN_ONCE(true, "Invalid local APIC state");
6707 		break;
6708 	case LAPIC_MODE_DISABLED:
6709 		break;
6710 	case LAPIC_MODE_XAPIC:
6711 		if (flexpriority_enabled) {
6712 			sec_exec_control |=
6713 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6714 			kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6715 
6716 			/*
6717 			 * Flush the TLB, reloading the APIC access page will
6718 			 * only do so if its physical address has changed, but
6719 			 * the guest may have inserted a non-APIC mapping into
6720 			 * the TLB while the APIC access page was disabled.
6721 			 */
6722 			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6723 		}
6724 		break;
6725 	case LAPIC_MODE_X2APIC:
6726 		if (cpu_has_vmx_virtualize_x2apic_mode())
6727 			sec_exec_control |=
6728 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6729 		break;
6730 	}
6731 	secondary_exec_controls_set(vmx, sec_exec_control);
6732 
6733 	vmx_update_msr_bitmap_x2apic(vcpu);
6734 }
6735 
6736 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6737 {
6738 	struct page *page;
6739 
6740 	/* Defer reload until vmcs01 is the current VMCS. */
6741 	if (is_guest_mode(vcpu)) {
6742 		to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6743 		return;
6744 	}
6745 
6746 	if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6747 	    SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6748 		return;
6749 
6750 	page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6751 	if (is_error_page(page))
6752 		return;
6753 
6754 	vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6755 	vmx_flush_tlb_current(vcpu);
6756 
6757 	/*
6758 	 * Do not pin apic access page in memory, the MMU notifier
6759 	 * will call us again if it is migrated or swapped out.
6760 	 */
6761 	put_page(page);
6762 }
6763 
6764 static void vmx_hwapic_isr_update(int max_isr)
6765 {
6766 	u16 status;
6767 	u8 old;
6768 
6769 	if (max_isr == -1)
6770 		max_isr = 0;
6771 
6772 	status = vmcs_read16(GUEST_INTR_STATUS);
6773 	old = status >> 8;
6774 	if (max_isr != old) {
6775 		status &= 0xff;
6776 		status |= max_isr << 8;
6777 		vmcs_write16(GUEST_INTR_STATUS, status);
6778 	}
6779 }
6780 
6781 static void vmx_set_rvi(int vector)
6782 {
6783 	u16 status;
6784 	u8 old;
6785 
6786 	if (vector == -1)
6787 		vector = 0;
6788 
6789 	status = vmcs_read16(GUEST_INTR_STATUS);
6790 	old = (u8)status & 0xff;
6791 	if ((u8)vector != old) {
6792 		status &= ~0xff;
6793 		status |= (u8)vector;
6794 		vmcs_write16(GUEST_INTR_STATUS, status);
6795 	}
6796 }
6797 
6798 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6799 {
6800 	/*
6801 	 * When running L2, updating RVI is only relevant when
6802 	 * vmcs12 virtual-interrupt-delivery enabled.
6803 	 * However, it can be enabled only when L1 also
6804 	 * intercepts external-interrupts and in that case
6805 	 * we should not update vmcs02 RVI but instead intercept
6806 	 * interrupt. Therefore, do nothing when running L2.
6807 	 */
6808 	if (!is_guest_mode(vcpu))
6809 		vmx_set_rvi(max_irr);
6810 }
6811 
6812 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6813 {
6814 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6815 	int max_irr;
6816 	bool got_posted_interrupt;
6817 
6818 	if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6819 		return -EIO;
6820 
6821 	if (pi_test_on(&vmx->pi_desc)) {
6822 		pi_clear_on(&vmx->pi_desc);
6823 		/*
6824 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6825 		 * But on x86 this is just a compiler barrier anyway.
6826 		 */
6827 		smp_mb__after_atomic();
6828 		got_posted_interrupt =
6829 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6830 	} else {
6831 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6832 		got_posted_interrupt = false;
6833 	}
6834 
6835 	/*
6836 	 * Newly recognized interrupts are injected via either virtual interrupt
6837 	 * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6838 	 * disabled in two cases:
6839 	 *
6840 	 * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6841 	 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6842 	 * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6843 	 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6844 	 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6845 	 *
6846 	 * 2) If APICv is disabled for this vCPU, assigned devices may still
6847 	 * attempt to post interrupts.  The posted interrupt vector will cause
6848 	 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6849 	 */
6850 	if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6851 		vmx_set_rvi(max_irr);
6852 	else if (got_posted_interrupt)
6853 		kvm_make_request(KVM_REQ_EVENT, vcpu);
6854 
6855 	return max_irr;
6856 }
6857 
6858 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6859 {
6860 	if (!kvm_vcpu_apicv_active(vcpu))
6861 		return;
6862 
6863 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6864 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6865 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6866 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6867 }
6868 
6869 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6870 {
6871 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6872 
6873 	pi_clear_on(&vmx->pi_desc);
6874 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6875 }
6876 
6877 void vmx_do_interrupt_irqoff(unsigned long entry);
6878 void vmx_do_nmi_irqoff(void);
6879 
6880 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6881 {
6882 	/*
6883 	 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6884 	 * MSR value is not clobbered by the host activity before the guest
6885 	 * has chance to consume it.
6886 	 *
6887 	 * Do not blindly read xfd_err here, since this exception might
6888 	 * be caused by L1 interception on a platform which doesn't
6889 	 * support xfd at all.
6890 	 *
6891 	 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6892 	 * only when xfd contains a non-zero value.
6893 	 *
6894 	 * Queuing exception is done in vmx_handle_exit. See comment there.
6895 	 */
6896 	if (vcpu->arch.guest_fpu.fpstate->xfd)
6897 		rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6898 }
6899 
6900 static void handle_exception_irqoff(struct vcpu_vmx *vmx)
6901 {
6902 	u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6903 
6904 	/* if exit due to PF check for async PF */
6905 	if (is_page_fault(intr_info))
6906 		vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6907 	/* if exit due to NM, handle before interrupts are enabled */
6908 	else if (is_nm_fault(intr_info))
6909 		handle_nm_fault_irqoff(&vmx->vcpu);
6910 	/* Handle machine checks before interrupts are enabled */
6911 	else if (is_machine_check(intr_info))
6912 		kvm_machine_check();
6913 }
6914 
6915 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6916 {
6917 	u32 intr_info = vmx_get_intr_info(vcpu);
6918 	unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6919 	gate_desc *desc = (gate_desc *)host_idt_base + vector;
6920 
6921 	if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6922 	    "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6923 		return;
6924 
6925 	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6926 	vmx_do_interrupt_irqoff(gate_offset(desc));
6927 	kvm_after_interrupt(vcpu);
6928 
6929 	vcpu->arch.at_instruction_boundary = true;
6930 }
6931 
6932 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6933 {
6934 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6935 
6936 	if (vmx->emulation_required)
6937 		return;
6938 
6939 	if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6940 		handle_external_interrupt_irqoff(vcpu);
6941 	else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6942 		handle_exception_irqoff(vmx);
6943 }
6944 
6945 /*
6946  * The kvm parameter can be NULL (module initialization, or invocation before
6947  * VM creation). Be sure to check the kvm parameter before using it.
6948  */
6949 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6950 {
6951 	switch (index) {
6952 	case MSR_IA32_SMBASE:
6953 		if (!IS_ENABLED(CONFIG_KVM_SMM))
6954 			return false;
6955 		/*
6956 		 * We cannot do SMM unless we can run the guest in big
6957 		 * real mode.
6958 		 */
6959 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6960 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6961 		return nested;
6962 	case MSR_AMD64_VIRT_SPEC_CTRL:
6963 	case MSR_AMD64_TSC_RATIO:
6964 		/* This is AMD only.  */
6965 		return false;
6966 	default:
6967 		return true;
6968 	}
6969 }
6970 
6971 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6972 {
6973 	u32 exit_intr_info;
6974 	bool unblock_nmi;
6975 	u8 vector;
6976 	bool idtv_info_valid;
6977 
6978 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6979 
6980 	if (enable_vnmi) {
6981 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6982 			return;
6983 
6984 		exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6985 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6986 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6987 		/*
6988 		 * SDM 3: 27.7.1.2 (September 2008)
6989 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6990 		 * a guest IRET fault.
6991 		 * SDM 3: 23.2.2 (September 2008)
6992 		 * Bit 12 is undefined in any of the following cases:
6993 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6994 		 *   information field.
6995 		 *  If the VM exit is due to a double fault.
6996 		 */
6997 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6998 		    vector != DF_VECTOR && !idtv_info_valid)
6999 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7000 				      GUEST_INTR_STATE_NMI);
7001 		else
7002 			vmx->loaded_vmcs->nmi_known_unmasked =
7003 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7004 				  & GUEST_INTR_STATE_NMI);
7005 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7006 		vmx->loaded_vmcs->vnmi_blocked_time +=
7007 			ktime_to_ns(ktime_sub(ktime_get(),
7008 					      vmx->loaded_vmcs->entry_time));
7009 }
7010 
7011 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7012 				      u32 idt_vectoring_info,
7013 				      int instr_len_field,
7014 				      int error_code_field)
7015 {
7016 	u8 vector;
7017 	int type;
7018 	bool idtv_info_valid;
7019 
7020 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7021 
7022 	vcpu->arch.nmi_injected = false;
7023 	kvm_clear_exception_queue(vcpu);
7024 	kvm_clear_interrupt_queue(vcpu);
7025 
7026 	if (!idtv_info_valid)
7027 		return;
7028 
7029 	kvm_make_request(KVM_REQ_EVENT, vcpu);
7030 
7031 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7032 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7033 
7034 	switch (type) {
7035 	case INTR_TYPE_NMI_INTR:
7036 		vcpu->arch.nmi_injected = true;
7037 		/*
7038 		 * SDM 3: 27.7.1.2 (September 2008)
7039 		 * Clear bit "block by NMI" before VM entry if a NMI
7040 		 * delivery faulted.
7041 		 */
7042 		vmx_set_nmi_mask(vcpu, false);
7043 		break;
7044 	case INTR_TYPE_SOFT_EXCEPTION:
7045 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7046 		fallthrough;
7047 	case INTR_TYPE_HARD_EXCEPTION:
7048 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7049 			u32 err = vmcs_read32(error_code_field);
7050 			kvm_requeue_exception_e(vcpu, vector, err);
7051 		} else
7052 			kvm_requeue_exception(vcpu, vector);
7053 		break;
7054 	case INTR_TYPE_SOFT_INTR:
7055 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7056 		fallthrough;
7057 	case INTR_TYPE_EXT_INTR:
7058 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7059 		break;
7060 	default:
7061 		break;
7062 	}
7063 }
7064 
7065 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7066 {
7067 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7068 				  VM_EXIT_INSTRUCTION_LEN,
7069 				  IDT_VECTORING_ERROR_CODE);
7070 }
7071 
7072 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7073 {
7074 	__vmx_complete_interrupts(vcpu,
7075 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7076 				  VM_ENTRY_INSTRUCTION_LEN,
7077 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
7078 
7079 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7080 }
7081 
7082 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7083 {
7084 	int i, nr_msrs;
7085 	struct perf_guest_switch_msr *msrs;
7086 	struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7087 
7088 	pmu->host_cross_mapped_mask = 0;
7089 	if (pmu->pebs_enable & pmu->global_ctrl)
7090 		intel_pmu_cross_mapped_check(pmu);
7091 
7092 	/* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7093 	msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7094 	if (!msrs)
7095 		return;
7096 
7097 	for (i = 0; i < nr_msrs; i++)
7098 		if (msrs[i].host == msrs[i].guest)
7099 			clear_atomic_switch_msr(vmx, msrs[i].msr);
7100 		else
7101 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7102 					msrs[i].host, false);
7103 }
7104 
7105 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
7106 {
7107 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7108 	u64 tscl;
7109 	u32 delta_tsc;
7110 
7111 	if (vmx->req_immediate_exit) {
7112 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7113 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7114 	} else if (vmx->hv_deadline_tsc != -1) {
7115 		tscl = rdtsc();
7116 		if (vmx->hv_deadline_tsc > tscl)
7117 			/* set_hv_timer ensures the delta fits in 32-bits */
7118 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7119 				cpu_preemption_timer_multi);
7120 		else
7121 			delta_tsc = 0;
7122 
7123 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7124 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7125 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7126 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7127 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7128 	}
7129 }
7130 
7131 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7132 {
7133 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7134 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
7135 		vmcs_writel(HOST_RSP, host_rsp);
7136 	}
7137 }
7138 
7139 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7140 					unsigned int flags)
7141 {
7142 	u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7143 
7144 	if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7145 		return;
7146 
7147 	if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7148 		vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7149 
7150 	/*
7151 	 * If the guest/host SPEC_CTRL values differ, restore the host value.
7152 	 *
7153 	 * For legacy IBRS, the IBRS bit always needs to be written after
7154 	 * transitioning from a less privileged predictor mode, regardless of
7155 	 * whether the guest/host values differ.
7156 	 */
7157 	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7158 	    vmx->spec_ctrl != hostval)
7159 		native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7160 
7161 	barrier_nospec();
7162 }
7163 
7164 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7165 {
7166 	switch (to_vmx(vcpu)->exit_reason.basic) {
7167 	case EXIT_REASON_MSR_WRITE:
7168 		return handle_fastpath_set_msr_irqoff(vcpu);
7169 	case EXIT_REASON_PREEMPTION_TIMER:
7170 		return handle_fastpath_preemption_timer(vcpu);
7171 	default:
7172 		return EXIT_FASTPATH_NONE;
7173 	}
7174 }
7175 
7176 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7177 					unsigned int flags)
7178 {
7179 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7180 
7181 	guest_state_enter_irqoff();
7182 
7183 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
7184 	if (static_branch_unlikely(&vmx_l1d_should_flush))
7185 		vmx_l1d_flush(vcpu);
7186 	else if (static_branch_unlikely(&mds_user_clear))
7187 		mds_clear_cpu_buffers();
7188 	else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7189 		 kvm_arch_has_assigned_device(vcpu->kvm))
7190 		mds_clear_cpu_buffers();
7191 
7192 	vmx_disable_fb_clear(vmx);
7193 
7194 	if (vcpu->arch.cr2 != native_read_cr2())
7195 		native_write_cr2(vcpu->arch.cr2);
7196 
7197 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7198 				   flags);
7199 
7200 	vcpu->arch.cr2 = native_read_cr2();
7201 
7202 	vmx_enable_fb_clear(vmx);
7203 
7204 	if (unlikely(vmx->fail))
7205 		vmx->exit_reason.full = 0xdead;
7206 	else
7207 		vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7208 
7209 	if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7210 	    is_nmi(vmx_get_intr_info(vcpu))) {
7211 		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7212 		vmx_do_nmi_irqoff();
7213 		kvm_after_interrupt(vcpu);
7214 	}
7215 
7216 	guest_state_exit_irqoff();
7217 }
7218 
7219 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7220 {
7221 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7222 	unsigned long cr3, cr4;
7223 
7224 	/* Record the guest's net vcpu time for enforced NMI injections. */
7225 	if (unlikely(!enable_vnmi &&
7226 		     vmx->loaded_vmcs->soft_vnmi_blocked))
7227 		vmx->loaded_vmcs->entry_time = ktime_get();
7228 
7229 	/*
7230 	 * Don't enter VMX if guest state is invalid, let the exit handler
7231 	 * start emulation until we arrive back to a valid state.  Synthesize a
7232 	 * consistency check VM-Exit due to invalid guest state and bail.
7233 	 */
7234 	if (unlikely(vmx->emulation_required)) {
7235 		vmx->fail = 0;
7236 
7237 		vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7238 		vmx->exit_reason.failed_vmentry = 1;
7239 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7240 		vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7241 		kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7242 		vmx->exit_intr_info = 0;
7243 		return EXIT_FASTPATH_NONE;
7244 	}
7245 
7246 	trace_kvm_entry(vcpu);
7247 
7248 	if (vmx->ple_window_dirty) {
7249 		vmx->ple_window_dirty = false;
7250 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
7251 	}
7252 
7253 	/*
7254 	 * We did this in prepare_switch_to_guest, because it needs to
7255 	 * be within srcu_read_lock.
7256 	 */
7257 	WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7258 
7259 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7260 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7261 	if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7262 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7263 	vcpu->arch.regs_dirty = 0;
7264 
7265 	/*
7266 	 * Refresh vmcs.HOST_CR3 if necessary.  This must be done immediately
7267 	 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7268 	 * it switches back to the current->mm, which can occur in KVM context
7269 	 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7270 	 * toggles a static key while handling a VM-Exit.
7271 	 */
7272 	cr3 = __get_current_cr3_fast();
7273 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7274 		vmcs_writel(HOST_CR3, cr3);
7275 		vmx->loaded_vmcs->host_state.cr3 = cr3;
7276 	}
7277 
7278 	cr4 = cr4_read_shadow();
7279 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7280 		vmcs_writel(HOST_CR4, cr4);
7281 		vmx->loaded_vmcs->host_state.cr4 = cr4;
7282 	}
7283 
7284 	/* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7285 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7286 		set_debugreg(vcpu->arch.dr6, 6);
7287 
7288 	/* When single-stepping over STI and MOV SS, we must clear the
7289 	 * corresponding interruptibility bits in the guest state. Otherwise
7290 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
7291 	 * exceptions being set, but that's not correct for the guest debugging
7292 	 * case. */
7293 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7294 		vmx_set_interrupt_shadow(vcpu, 0);
7295 
7296 	kvm_load_guest_xsave_state(vcpu);
7297 
7298 	pt_guest_enter(vmx);
7299 
7300 	atomic_switch_perf_msrs(vmx);
7301 	if (intel_pmu_lbr_is_enabled(vcpu))
7302 		vmx_passthrough_lbr_msrs(vcpu);
7303 
7304 	if (enable_preemption_timer)
7305 		vmx_update_hv_timer(vcpu);
7306 
7307 	kvm_wait_lapic_expire(vcpu);
7308 
7309 	/* The actual VMENTER/EXIT is in the .noinstr.text section. */
7310 	vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7311 
7312 	/* All fields are clean at this point */
7313 	if (static_branch_unlikely(&enable_evmcs)) {
7314 		current_evmcs->hv_clean_fields |=
7315 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7316 
7317 		current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7318 	}
7319 
7320 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7321 	if (vmx->host_debugctlmsr)
7322 		update_debugctlmsr(vmx->host_debugctlmsr);
7323 
7324 #ifndef CONFIG_X86_64
7325 	/*
7326 	 * The sysexit path does not restore ds/es, so we must set them to
7327 	 * a reasonable value ourselves.
7328 	 *
7329 	 * We can't defer this to vmx_prepare_switch_to_host() since that
7330 	 * function may be executed in interrupt context, which saves and
7331 	 * restore segments around it, nullifying its effect.
7332 	 */
7333 	loadsegment(ds, __USER_DS);
7334 	loadsegment(es, __USER_DS);
7335 #endif
7336 
7337 	vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7338 
7339 	pt_guest_exit(vmx);
7340 
7341 	kvm_load_host_xsave_state(vcpu);
7342 
7343 	if (is_guest_mode(vcpu)) {
7344 		/*
7345 		 * Track VMLAUNCH/VMRESUME that have made past guest state
7346 		 * checking.
7347 		 */
7348 		if (vmx->nested.nested_run_pending &&
7349 		    !vmx->exit_reason.failed_vmentry)
7350 			++vcpu->stat.nested_run;
7351 
7352 		vmx->nested.nested_run_pending = 0;
7353 	}
7354 
7355 	vmx->idt_vectoring_info = 0;
7356 
7357 	if (unlikely(vmx->fail))
7358 		return EXIT_FASTPATH_NONE;
7359 
7360 	if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7361 		kvm_machine_check();
7362 
7363 	if (likely(!vmx->exit_reason.failed_vmentry))
7364 		vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7365 
7366 	trace_kvm_exit(vcpu, KVM_ISA_VMX);
7367 
7368 	if (unlikely(vmx->exit_reason.failed_vmentry))
7369 		return EXIT_FASTPATH_NONE;
7370 
7371 	vmx->loaded_vmcs->launched = 1;
7372 
7373 	vmx_recover_nmi_blocking(vmx);
7374 	vmx_complete_interrupts(vmx);
7375 
7376 	if (is_guest_mode(vcpu))
7377 		return EXIT_FASTPATH_NONE;
7378 
7379 	return vmx_exit_handlers_fastpath(vcpu);
7380 }
7381 
7382 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7383 {
7384 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7385 
7386 	if (enable_pml)
7387 		vmx_destroy_pml_buffer(vmx);
7388 	free_vpid(vmx->vpid);
7389 	nested_vmx_free_vcpu(vcpu);
7390 	free_loaded_vmcs(vmx->loaded_vmcs);
7391 }
7392 
7393 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7394 {
7395 	struct vmx_uret_msr *tsx_ctrl;
7396 	struct vcpu_vmx *vmx;
7397 	int i, err;
7398 
7399 	BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7400 	vmx = to_vmx(vcpu);
7401 
7402 	INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7403 
7404 	err = -ENOMEM;
7405 
7406 	vmx->vpid = allocate_vpid();
7407 
7408 	/*
7409 	 * If PML is turned on, failure on enabling PML just results in failure
7410 	 * of creating the vcpu, therefore we can simplify PML logic (by
7411 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
7412 	 * for the guest), etc.
7413 	 */
7414 	if (enable_pml) {
7415 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7416 		if (!vmx->pml_pg)
7417 			goto free_vpid;
7418 	}
7419 
7420 	for (i = 0; i < kvm_nr_uret_msrs; ++i)
7421 		vmx->guest_uret_msrs[i].mask = -1ull;
7422 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7423 		/*
7424 		 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7425 		 * Keep the host value unchanged to avoid changing CPUID bits
7426 		 * under the host kernel's feet.
7427 		 */
7428 		tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7429 		if (tsx_ctrl)
7430 			tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7431 	}
7432 
7433 	err = alloc_loaded_vmcs(&vmx->vmcs01);
7434 	if (err < 0)
7435 		goto free_pml;
7436 
7437 	/*
7438 	 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7439 	 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7440 	 * feature only for vmcs01, KVM currently isn't equipped to realize any
7441 	 * performance benefits from enabling it for vmcs02.
7442 	 */
7443 	if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) &&
7444 	    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7445 		struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7446 
7447 		evmcs->hv_enlightenments_control.msr_bitmap = 1;
7448 	}
7449 
7450 	/* The MSR bitmap starts with all ones */
7451 	bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7452 	bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7453 
7454 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7455 #ifdef CONFIG_X86_64
7456 	vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7457 	vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7458 	vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7459 #endif
7460 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7461 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7462 	vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7463 	if (kvm_cstate_in_guest(vcpu->kvm)) {
7464 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7465 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7466 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7467 		vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7468 	}
7469 
7470 	vmx->loaded_vmcs = &vmx->vmcs01;
7471 
7472 	if (cpu_need_virtualize_apic_accesses(vcpu)) {
7473 		err = kvm_alloc_apic_access_page(vcpu->kvm);
7474 		if (err)
7475 			goto free_vmcs;
7476 	}
7477 
7478 	if (enable_ept && !enable_unrestricted_guest) {
7479 		err = init_rmode_identity_map(vcpu->kvm);
7480 		if (err)
7481 			goto free_vmcs;
7482 	}
7483 
7484 	if (vmx_can_use_ipiv(vcpu))
7485 		WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7486 			   __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7487 
7488 	return 0;
7489 
7490 free_vmcs:
7491 	free_loaded_vmcs(vmx->loaded_vmcs);
7492 free_pml:
7493 	vmx_destroy_pml_buffer(vmx);
7494 free_vpid:
7495 	free_vpid(vmx->vpid);
7496 	return err;
7497 }
7498 
7499 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7500 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7501 
7502 static int vmx_vm_init(struct kvm *kvm)
7503 {
7504 	if (!ple_gap)
7505 		kvm->arch.pause_in_guest = true;
7506 
7507 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7508 		switch (l1tf_mitigation) {
7509 		case L1TF_MITIGATION_OFF:
7510 		case L1TF_MITIGATION_FLUSH_NOWARN:
7511 			/* 'I explicitly don't care' is set */
7512 			break;
7513 		case L1TF_MITIGATION_FLUSH:
7514 		case L1TF_MITIGATION_FLUSH_NOSMT:
7515 		case L1TF_MITIGATION_FULL:
7516 			/*
7517 			 * Warn upon starting the first VM in a potentially
7518 			 * insecure environment.
7519 			 */
7520 			if (sched_smt_active())
7521 				pr_warn_once(L1TF_MSG_SMT);
7522 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7523 				pr_warn_once(L1TF_MSG_L1D);
7524 			break;
7525 		case L1TF_MITIGATION_FULL_FORCE:
7526 			/* Flush is enforced */
7527 			break;
7528 		}
7529 	}
7530 	return 0;
7531 }
7532 
7533 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7534 {
7535 	u8 cache;
7536 
7537 	/* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7538 	 * memory aliases with conflicting memory types and sometimes MCEs.
7539 	 * We have to be careful as to what are honored and when.
7540 	 *
7541 	 * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
7542 	 * UC.  The effective memory type is UC or WC depending on guest PAT.
7543 	 * This was historically the source of MCEs and we want to be
7544 	 * conservative.
7545 	 *
7546 	 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7547 	 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
7548 	 * EPT memory type is set to WB.  The effective memory type is forced
7549 	 * WB.
7550 	 *
7551 	 * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
7552 	 * EPT memory type is used to emulate guest CD/MTRR.
7553 	 */
7554 
7555 	if (is_mmio)
7556 		return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7557 
7558 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7559 		return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7560 
7561 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7562 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7563 			cache = MTRR_TYPE_WRBACK;
7564 		else
7565 			cache = MTRR_TYPE_UNCACHABLE;
7566 
7567 		return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7568 	}
7569 
7570 	return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7571 }
7572 
7573 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7574 {
7575 	/*
7576 	 * These bits in the secondary execution controls field
7577 	 * are dynamic, the others are mostly based on the hypervisor
7578 	 * architecture and the guest's CPUID.  Do not touch the
7579 	 * dynamic bits.
7580 	 */
7581 	u32 mask =
7582 		SECONDARY_EXEC_SHADOW_VMCS |
7583 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7584 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7585 		SECONDARY_EXEC_DESC;
7586 
7587 	u32 cur_ctl = secondary_exec_controls_get(vmx);
7588 
7589 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7590 }
7591 
7592 /*
7593  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7594  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7595  */
7596 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7597 {
7598 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7599 	struct kvm_cpuid_entry2 *entry;
7600 
7601 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7602 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7603 
7604 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
7605 	if (entry && (entry->_reg & (_cpuid_mask)))			\
7606 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
7607 } while (0)
7608 
7609 	entry = kvm_find_cpuid_entry(vcpu, 0x1);
7610 	cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7611 	cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7612 	cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7613 	cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7614 	cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7615 	cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7616 	cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7617 	cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7618 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7619 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7620 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7621 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7622 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7623 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7624 
7625 	entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7626 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7627 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7628 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7629 	cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7630 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7631 	cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7632 
7633 #undef cr4_fixed1_update
7634 }
7635 
7636 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7637 {
7638 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7639 	struct kvm_cpuid_entry2 *best = NULL;
7640 	int i;
7641 
7642 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7643 		best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7644 		if (!best)
7645 			return;
7646 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7647 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7648 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7649 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7650 	}
7651 
7652 	/* Get the number of configurable Address Ranges for filtering */
7653 	vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7654 						PT_CAP_num_address_ranges);
7655 
7656 	/* Initialize and clear the no dependency bits */
7657 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7658 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7659 			RTIT_CTL_BRANCH_EN);
7660 
7661 	/*
7662 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7663 	 * will inject an #GP
7664 	 */
7665 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7666 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7667 
7668 	/*
7669 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7670 	 * PSBFreq can be set
7671 	 */
7672 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7673 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7674 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7675 
7676 	/*
7677 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7678 	 */
7679 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7680 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7681 					      RTIT_CTL_MTC_RANGE);
7682 
7683 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7684 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7685 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7686 							RTIT_CTL_PTW_EN);
7687 
7688 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7689 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7690 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7691 
7692 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7693 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7694 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7695 
7696 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7697 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7698 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7699 
7700 	/* unmask address range configure area */
7701 	for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7702 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7703 }
7704 
7705 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7706 {
7707 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7708 
7709 	/* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7710 	vcpu->arch.xsaves_enabled = false;
7711 
7712 	vmx_setup_uret_msrs(vmx);
7713 
7714 	if (cpu_has_secondary_exec_ctrls())
7715 		vmcs_set_secondary_exec_control(vmx,
7716 						vmx_secondary_exec_control(vmx));
7717 
7718 	if (nested_vmx_allowed(vcpu))
7719 		vmx->msr_ia32_feature_control_valid_bits |=
7720 			FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7721 			FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7722 	else
7723 		vmx->msr_ia32_feature_control_valid_bits &=
7724 			~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7725 			  FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7726 
7727 	if (nested_vmx_allowed(vcpu))
7728 		nested_vmx_cr_fixed1_bits_update(vcpu);
7729 
7730 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7731 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7732 		update_intel_pt_cfg(vcpu);
7733 
7734 	if (boot_cpu_has(X86_FEATURE_RTM)) {
7735 		struct vmx_uret_msr *msr;
7736 		msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7737 		if (msr) {
7738 			bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7739 			vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7740 		}
7741 	}
7742 
7743 	if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7744 		vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7745 					  !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7746 
7747 
7748 	set_cr4_guest_host_mask(vmx);
7749 
7750 	vmx_write_encls_bitmap(vcpu, NULL);
7751 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7752 		vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7753 	else
7754 		vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7755 
7756 	if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7757 		vmx->msr_ia32_feature_control_valid_bits |=
7758 			FEAT_CTL_SGX_LC_ENABLED;
7759 	else
7760 		vmx->msr_ia32_feature_control_valid_bits &=
7761 			~FEAT_CTL_SGX_LC_ENABLED;
7762 
7763 	/* Refresh #PF interception to account for MAXPHYADDR changes. */
7764 	vmx_update_exception_bitmap(vcpu);
7765 }
7766 
7767 static u64 vmx_get_perf_capabilities(void)
7768 {
7769 	u64 perf_cap = PMU_CAP_FW_WRITES;
7770 	struct x86_pmu_lbr lbr;
7771 	u64 host_perf_cap = 0;
7772 
7773 	if (!enable_pmu)
7774 		return 0;
7775 
7776 	if (boot_cpu_has(X86_FEATURE_PDCM))
7777 		rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7778 
7779 	x86_perf_get_lbr(&lbr);
7780 	if (lbr.nr)
7781 		perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7782 
7783 	if (vmx_pebs_supported()) {
7784 		perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7785 		if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4)
7786 			perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7787 	}
7788 
7789 	return perf_cap;
7790 }
7791 
7792 static __init void vmx_set_cpu_caps(void)
7793 {
7794 	kvm_set_cpu_caps();
7795 
7796 	/* CPUID 0x1 */
7797 	if (nested)
7798 		kvm_cpu_cap_set(X86_FEATURE_VMX);
7799 
7800 	/* CPUID 0x7 */
7801 	if (kvm_mpx_supported())
7802 		kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7803 	if (!cpu_has_vmx_invpcid())
7804 		kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7805 	if (vmx_pt_mode_is_host_guest())
7806 		kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7807 	if (vmx_pebs_supported()) {
7808 		kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7809 		kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7810 	}
7811 
7812 	if (!enable_pmu)
7813 		kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7814 	kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7815 
7816 	if (!enable_sgx) {
7817 		kvm_cpu_cap_clear(X86_FEATURE_SGX);
7818 		kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7819 		kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7820 		kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7821 	}
7822 
7823 	if (vmx_umip_emulated())
7824 		kvm_cpu_cap_set(X86_FEATURE_UMIP);
7825 
7826 	/* CPUID 0xD.1 */
7827 	kvm_caps.supported_xss = 0;
7828 	if (!cpu_has_vmx_xsaves())
7829 		kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7830 
7831 	/* CPUID 0x80000001 and 0x7 (RDPID) */
7832 	if (!cpu_has_vmx_rdtscp()) {
7833 		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7834 		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7835 	}
7836 
7837 	if (cpu_has_vmx_waitpkg())
7838 		kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7839 }
7840 
7841 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7842 {
7843 	to_vmx(vcpu)->req_immediate_exit = true;
7844 }
7845 
7846 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7847 				  struct x86_instruction_info *info)
7848 {
7849 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7850 	unsigned short port;
7851 	bool intercept;
7852 	int size;
7853 
7854 	if (info->intercept == x86_intercept_in ||
7855 	    info->intercept == x86_intercept_ins) {
7856 		port = info->src_val;
7857 		size = info->dst_bytes;
7858 	} else {
7859 		port = info->dst_val;
7860 		size = info->src_bytes;
7861 	}
7862 
7863 	/*
7864 	 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7865 	 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7866 	 * control.
7867 	 *
7868 	 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7869 	 */
7870 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7871 		intercept = nested_cpu_has(vmcs12,
7872 					   CPU_BASED_UNCOND_IO_EXITING);
7873 	else
7874 		intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7875 
7876 	/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7877 	return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7878 }
7879 
7880 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7881 			       struct x86_instruction_info *info,
7882 			       enum x86_intercept_stage stage,
7883 			       struct x86_exception *exception)
7884 {
7885 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7886 
7887 	switch (info->intercept) {
7888 	/*
7889 	 * RDPID causes #UD if disabled through secondary execution controls.
7890 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7891 	 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7892 	 */
7893 	case x86_intercept_rdpid:
7894 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7895 			exception->vector = UD_VECTOR;
7896 			exception->error_code_valid = false;
7897 			return X86EMUL_PROPAGATE_FAULT;
7898 		}
7899 		break;
7900 
7901 	case x86_intercept_in:
7902 	case x86_intercept_ins:
7903 	case x86_intercept_out:
7904 	case x86_intercept_outs:
7905 		return vmx_check_intercept_io(vcpu, info);
7906 
7907 	case x86_intercept_lgdt:
7908 	case x86_intercept_lidt:
7909 	case x86_intercept_lldt:
7910 	case x86_intercept_ltr:
7911 	case x86_intercept_sgdt:
7912 	case x86_intercept_sidt:
7913 	case x86_intercept_sldt:
7914 	case x86_intercept_str:
7915 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7916 			return X86EMUL_CONTINUE;
7917 
7918 		/* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7919 		break;
7920 
7921 	/* TODO: check more intercepts... */
7922 	default:
7923 		break;
7924 	}
7925 
7926 	return X86EMUL_UNHANDLEABLE;
7927 }
7928 
7929 #ifdef CONFIG_X86_64
7930 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7931 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7932 				  u64 divisor, u64 *result)
7933 {
7934 	u64 low = a << shift, high = a >> (64 - shift);
7935 
7936 	/* To avoid the overflow on divq */
7937 	if (high >= divisor)
7938 		return 1;
7939 
7940 	/* Low hold the result, high hold rem which is discarded */
7941 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7942 	    "rm" (divisor), "0" (low), "1" (high));
7943 	*result = low;
7944 
7945 	return 0;
7946 }
7947 
7948 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7949 			    bool *expired)
7950 {
7951 	struct vcpu_vmx *vmx;
7952 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7953 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7954 
7955 	vmx = to_vmx(vcpu);
7956 	tscl = rdtsc();
7957 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7958 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7959 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7960 						    ktimer->timer_advance_ns);
7961 
7962 	if (delta_tsc > lapic_timer_advance_cycles)
7963 		delta_tsc -= lapic_timer_advance_cycles;
7964 	else
7965 		delta_tsc = 0;
7966 
7967 	/* Convert to host delta tsc if tsc scaling is enabled */
7968 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
7969 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7970 				kvm_caps.tsc_scaling_ratio_frac_bits,
7971 				vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7972 		return -ERANGE;
7973 
7974 	/*
7975 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7976 	 * we can't use the preemption timer.
7977 	 * It's possible that it fits on later vmentries, but checking
7978 	 * on every vmentry is costly so we just use an hrtimer.
7979 	 */
7980 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7981 		return -ERANGE;
7982 
7983 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7984 	*expired = !delta_tsc;
7985 	return 0;
7986 }
7987 
7988 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7989 {
7990 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7991 }
7992 #endif
7993 
7994 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7995 {
7996 	if (!kvm_pause_in_guest(vcpu->kvm))
7997 		shrink_ple_window(vcpu);
7998 }
7999 
8000 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8001 {
8002 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8003 
8004 	if (WARN_ON_ONCE(!enable_pml))
8005 		return;
8006 
8007 	if (is_guest_mode(vcpu)) {
8008 		vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8009 		return;
8010 	}
8011 
8012 	/*
8013 	 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8014 	 * code, but in that case another update request will be made and so
8015 	 * the guest will never run with a stale PML value.
8016 	 */
8017 	if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8018 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8019 	else
8020 		secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8021 }
8022 
8023 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
8024 {
8025 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8026 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8027 			FEAT_CTL_LMCE_ENABLED;
8028 	else
8029 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8030 			~FEAT_CTL_LMCE_ENABLED;
8031 }
8032 
8033 #ifdef CONFIG_KVM_SMM
8034 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8035 {
8036 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
8037 	if (to_vmx(vcpu)->nested.nested_run_pending)
8038 		return -EBUSY;
8039 	return !is_smm(vcpu);
8040 }
8041 
8042 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8043 {
8044 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8045 
8046 	/*
8047 	 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8048 	 * SMI and RSM.  Using the common VM-Exit + VM-Enter routines is wrong
8049 	 * SMI and RSM only modify state that is saved and restored via SMRAM.
8050 	 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8051 	 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8052 	 */
8053 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8054 	if (vmx->nested.smm.guest_mode)
8055 		nested_vmx_vmexit(vcpu, -1, 0, 0);
8056 
8057 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
8058 	vmx->nested.vmxon = false;
8059 	vmx_clear_hlt(vcpu);
8060 	return 0;
8061 }
8062 
8063 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8064 {
8065 	struct vcpu_vmx *vmx = to_vmx(vcpu);
8066 	int ret;
8067 
8068 	if (vmx->nested.smm.vmxon) {
8069 		vmx->nested.vmxon = true;
8070 		vmx->nested.smm.vmxon = false;
8071 	}
8072 
8073 	if (vmx->nested.smm.guest_mode) {
8074 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
8075 		if (ret)
8076 			return ret;
8077 
8078 		vmx->nested.nested_run_pending = 1;
8079 		vmx->nested.smm.guest_mode = false;
8080 	}
8081 	return 0;
8082 }
8083 
8084 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8085 {
8086 	/* RSM will cause a vmexit anyway.  */
8087 }
8088 #endif
8089 
8090 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8091 {
8092 	return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8093 }
8094 
8095 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8096 {
8097 	if (is_guest_mode(vcpu)) {
8098 		struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8099 
8100 		if (hrtimer_try_to_cancel(timer) == 1)
8101 			hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8102 	}
8103 }
8104 
8105 static void vmx_hardware_unsetup(void)
8106 {
8107 	kvm_set_posted_intr_wakeup_handler(NULL);
8108 
8109 	if (nested)
8110 		nested_vmx_hardware_unsetup();
8111 
8112 	free_kvm_area();
8113 }
8114 
8115 #define VMX_REQUIRED_APICV_INHIBITS			\
8116 (							\
8117 	BIT(APICV_INHIBIT_REASON_DISABLE)|		\
8118 	BIT(APICV_INHIBIT_REASON_ABSENT) |		\
8119 	BIT(APICV_INHIBIT_REASON_HYPERV) |		\
8120 	BIT(APICV_INHIBIT_REASON_BLOCKIRQ) |		\
8121 	BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) |	\
8122 	BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) |	\
8123 	BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED)	\
8124 )
8125 
8126 static void vmx_vm_destroy(struct kvm *kvm)
8127 {
8128 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8129 
8130 	free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8131 }
8132 
8133 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8134 	.name = KBUILD_MODNAME,
8135 
8136 	.check_processor_compatibility = vmx_check_processor_compat,
8137 
8138 	.hardware_unsetup = vmx_hardware_unsetup,
8139 
8140 	.hardware_enable = vmx_hardware_enable,
8141 	.hardware_disable = vmx_hardware_disable,
8142 	.has_emulated_msr = vmx_has_emulated_msr,
8143 
8144 	.vm_size = sizeof(struct kvm_vmx),
8145 	.vm_init = vmx_vm_init,
8146 	.vm_destroy = vmx_vm_destroy,
8147 
8148 	.vcpu_precreate = vmx_vcpu_precreate,
8149 	.vcpu_create = vmx_vcpu_create,
8150 	.vcpu_free = vmx_vcpu_free,
8151 	.vcpu_reset = vmx_vcpu_reset,
8152 
8153 	.prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8154 	.vcpu_load = vmx_vcpu_load,
8155 	.vcpu_put = vmx_vcpu_put,
8156 
8157 	.update_exception_bitmap = vmx_update_exception_bitmap,
8158 	.get_msr_feature = vmx_get_msr_feature,
8159 	.get_msr = vmx_get_msr,
8160 	.set_msr = vmx_set_msr,
8161 	.get_segment_base = vmx_get_segment_base,
8162 	.get_segment = vmx_get_segment,
8163 	.set_segment = vmx_set_segment,
8164 	.get_cpl = vmx_get_cpl,
8165 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8166 	.set_cr0 = vmx_set_cr0,
8167 	.is_valid_cr4 = vmx_is_valid_cr4,
8168 	.set_cr4 = vmx_set_cr4,
8169 	.set_efer = vmx_set_efer,
8170 	.get_idt = vmx_get_idt,
8171 	.set_idt = vmx_set_idt,
8172 	.get_gdt = vmx_get_gdt,
8173 	.set_gdt = vmx_set_gdt,
8174 	.set_dr7 = vmx_set_dr7,
8175 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8176 	.cache_reg = vmx_cache_reg,
8177 	.get_rflags = vmx_get_rflags,
8178 	.set_rflags = vmx_set_rflags,
8179 	.get_if_flag = vmx_get_if_flag,
8180 
8181 	.flush_tlb_all = vmx_flush_tlb_all,
8182 	.flush_tlb_current = vmx_flush_tlb_current,
8183 	.flush_tlb_gva = vmx_flush_tlb_gva,
8184 	.flush_tlb_guest = vmx_flush_tlb_guest,
8185 
8186 	.vcpu_pre_run = vmx_vcpu_pre_run,
8187 	.vcpu_run = vmx_vcpu_run,
8188 	.handle_exit = vmx_handle_exit,
8189 	.skip_emulated_instruction = vmx_skip_emulated_instruction,
8190 	.update_emulated_instruction = vmx_update_emulated_instruction,
8191 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
8192 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
8193 	.patch_hypercall = vmx_patch_hypercall,
8194 	.inject_irq = vmx_inject_irq,
8195 	.inject_nmi = vmx_inject_nmi,
8196 	.inject_exception = vmx_inject_exception,
8197 	.cancel_injection = vmx_cancel_injection,
8198 	.interrupt_allowed = vmx_interrupt_allowed,
8199 	.nmi_allowed = vmx_nmi_allowed,
8200 	.get_nmi_mask = vmx_get_nmi_mask,
8201 	.set_nmi_mask = vmx_set_nmi_mask,
8202 	.enable_nmi_window = vmx_enable_nmi_window,
8203 	.enable_irq_window = vmx_enable_irq_window,
8204 	.update_cr8_intercept = vmx_update_cr8_intercept,
8205 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8206 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8207 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8208 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
8209 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
8210 	.required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
8211 	.hwapic_irr_update = vmx_hwapic_irr_update,
8212 	.hwapic_isr_update = vmx_hwapic_isr_update,
8213 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8214 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
8215 	.deliver_interrupt = vmx_deliver_interrupt,
8216 	.dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8217 
8218 	.set_tss_addr = vmx_set_tss_addr,
8219 	.set_identity_map_addr = vmx_set_identity_map_addr,
8220 	.get_mt_mask = vmx_get_mt_mask,
8221 
8222 	.get_exit_info = vmx_get_exit_info,
8223 
8224 	.vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8225 
8226 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8227 
8228 	.get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8229 	.get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8230 	.write_tsc_offset = vmx_write_tsc_offset,
8231 	.write_tsc_multiplier = vmx_write_tsc_multiplier,
8232 
8233 	.load_mmu_pgd = vmx_load_mmu_pgd,
8234 
8235 	.check_intercept = vmx_check_intercept,
8236 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
8237 
8238 	.request_immediate_exit = vmx_request_immediate_exit,
8239 
8240 	.sched_in = vmx_sched_in,
8241 
8242 	.cpu_dirty_log_size = PML_ENTITY_NUM,
8243 	.update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8244 
8245 	.nested_ops = &vmx_nested_ops,
8246 
8247 	.pi_update_irte = vmx_pi_update_irte,
8248 	.pi_start_assignment = vmx_pi_start_assignment,
8249 
8250 #ifdef CONFIG_X86_64
8251 	.set_hv_timer = vmx_set_hv_timer,
8252 	.cancel_hv_timer = vmx_cancel_hv_timer,
8253 #endif
8254 
8255 	.setup_mce = vmx_setup_mce,
8256 
8257 #ifdef CONFIG_KVM_SMM
8258 	.smi_allowed = vmx_smi_allowed,
8259 	.enter_smm = vmx_enter_smm,
8260 	.leave_smm = vmx_leave_smm,
8261 	.enable_smi_window = vmx_enable_smi_window,
8262 #endif
8263 
8264 	.can_emulate_instruction = vmx_can_emulate_instruction,
8265 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8266 	.migrate_timers = vmx_migrate_timers,
8267 
8268 	.msr_filter_changed = vmx_msr_filter_changed,
8269 	.complete_emulated_msr = kvm_complete_insn_gp,
8270 
8271 	.vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8272 };
8273 
8274 static unsigned int vmx_handle_intel_pt_intr(void)
8275 {
8276 	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8277 
8278 	/* '0' on failure so that the !PT case can use a RET0 static call. */
8279 	if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8280 		return 0;
8281 
8282 	kvm_make_request(KVM_REQ_PMI, vcpu);
8283 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8284 		  (unsigned long *)&vcpu->arch.pmu.global_status);
8285 	return 1;
8286 }
8287 
8288 static __init void vmx_setup_user_return_msrs(void)
8289 {
8290 
8291 	/*
8292 	 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8293 	 * will emulate SYSCALL in legacy mode if the vendor string in guest
8294 	 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8295 	 * support this emulation, MSR_STAR is included in the list for i386,
8296 	 * but is never loaded into hardware.  MSR_CSTAR is also never loaded
8297 	 * into hardware and is here purely for emulation purposes.
8298 	 */
8299 	const u32 vmx_uret_msrs_list[] = {
8300 	#ifdef CONFIG_X86_64
8301 		MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8302 	#endif
8303 		MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8304 		MSR_IA32_TSX_CTRL,
8305 	};
8306 	int i;
8307 
8308 	BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8309 
8310 	for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8311 		kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8312 }
8313 
8314 static void __init vmx_setup_me_spte_mask(void)
8315 {
8316 	u64 me_mask = 0;
8317 
8318 	/*
8319 	 * kvm_get_shadow_phys_bits() returns shadow_phys_bits.  Use
8320 	 * the former to avoid exposing shadow_phys_bits.
8321 	 *
8322 	 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8323 	 * shadow_phys_bits.  On MKTME and/or TDX capable systems,
8324 	 * boot_cpu_data.x86_phys_bits holds the actual physical address
8325 	 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8326 	 * reported by CPUID.  Those bits between are KeyID bits.
8327 	 */
8328 	if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8329 		me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8330 			kvm_get_shadow_phys_bits() - 1);
8331 	/*
8332 	 * Unlike SME, host kernel doesn't support setting up any
8333 	 * MKTME KeyID on Intel platforms.  No memory encryption
8334 	 * bits should be included into the SPTE.
8335 	 */
8336 	kvm_mmu_set_me_spte_mask(0, me_mask);
8337 }
8338 
8339 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8340 
8341 static __init int hardware_setup(void)
8342 {
8343 	unsigned long host_bndcfgs;
8344 	struct desc_ptr dt;
8345 	int r;
8346 
8347 	store_idt(&dt);
8348 	host_idt_base = dt.address;
8349 
8350 	vmx_setup_user_return_msrs();
8351 
8352 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8353 		return -EIO;
8354 
8355 	if (cpu_has_perf_global_ctrl_bug())
8356 		pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8357 			     "does not work properly. Using workaround\n");
8358 
8359 	if (boot_cpu_has(X86_FEATURE_NX))
8360 		kvm_enable_efer_bits(EFER_NX);
8361 
8362 	if (boot_cpu_has(X86_FEATURE_MPX)) {
8363 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8364 		WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8365 	}
8366 
8367 	if (!cpu_has_vmx_mpx())
8368 		kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8369 					     XFEATURE_MASK_BNDCSR);
8370 
8371 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8372 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8373 		enable_vpid = 0;
8374 
8375 	if (!cpu_has_vmx_ept() ||
8376 	    !cpu_has_vmx_ept_4levels() ||
8377 	    !cpu_has_vmx_ept_mt_wb() ||
8378 	    !cpu_has_vmx_invept_global())
8379 		enable_ept = 0;
8380 
8381 	/* NX support is required for shadow paging. */
8382 	if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8383 		pr_err_ratelimited("NX (Execute Disable) not supported\n");
8384 		return -EOPNOTSUPP;
8385 	}
8386 
8387 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8388 		enable_ept_ad_bits = 0;
8389 
8390 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8391 		enable_unrestricted_guest = 0;
8392 
8393 	if (!cpu_has_vmx_flexpriority())
8394 		flexpriority_enabled = 0;
8395 
8396 	if (!cpu_has_virtual_nmis())
8397 		enable_vnmi = 0;
8398 
8399 #ifdef CONFIG_X86_SGX_KVM
8400 	if (!cpu_has_vmx_encls_vmexit())
8401 		enable_sgx = false;
8402 #endif
8403 
8404 	/*
8405 	 * set_apic_access_page_addr() is used to reload apic access
8406 	 * page upon invalidation.  No need to do anything if not
8407 	 * using the APIC_ACCESS_ADDR VMCS field.
8408 	 */
8409 	if (!flexpriority_enabled)
8410 		vmx_x86_ops.set_apic_access_page_addr = NULL;
8411 
8412 	if (!cpu_has_vmx_tpr_shadow())
8413 		vmx_x86_ops.update_cr8_intercept = NULL;
8414 
8415 #if IS_ENABLED(CONFIG_HYPERV)
8416 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8417 	    && enable_ept) {
8418 		vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
8419 		vmx_x86_ops.tlb_remote_flush_with_range =
8420 				hv_remote_flush_tlb_with_range;
8421 	}
8422 #endif
8423 
8424 	if (!cpu_has_vmx_ple()) {
8425 		ple_gap = 0;
8426 		ple_window = 0;
8427 		ple_window_grow = 0;
8428 		ple_window_max = 0;
8429 		ple_window_shrink = 0;
8430 	}
8431 
8432 	if (!cpu_has_vmx_apicv())
8433 		enable_apicv = 0;
8434 	if (!enable_apicv)
8435 		vmx_x86_ops.sync_pir_to_irr = NULL;
8436 
8437 	if (!enable_apicv || !cpu_has_vmx_ipiv())
8438 		enable_ipiv = false;
8439 
8440 	if (cpu_has_vmx_tsc_scaling())
8441 		kvm_caps.has_tsc_control = true;
8442 
8443 	kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8444 	kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8445 	kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8446 	kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8447 
8448 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8449 
8450 	if (enable_ept)
8451 		kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8452 				      cpu_has_vmx_ept_execute_only());
8453 
8454 	/*
8455 	 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8456 	 * bits to shadow_zero_check.
8457 	 */
8458 	vmx_setup_me_spte_mask();
8459 
8460 	kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
8461 			  ept_caps_to_lpage_level(vmx_capability.ept));
8462 
8463 	/*
8464 	 * Only enable PML when hardware supports PML feature, and both EPT
8465 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
8466 	 */
8467 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8468 		enable_pml = 0;
8469 
8470 	if (!enable_pml)
8471 		vmx_x86_ops.cpu_dirty_log_size = 0;
8472 
8473 	if (!cpu_has_vmx_preemption_timer())
8474 		enable_preemption_timer = false;
8475 
8476 	if (enable_preemption_timer) {
8477 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
8478 
8479 		cpu_preemption_timer_multi =
8480 			vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8481 
8482 		if (tsc_khz)
8483 			use_timer_freq = (u64)tsc_khz * 1000;
8484 		use_timer_freq >>= cpu_preemption_timer_multi;
8485 
8486 		/*
8487 		 * KVM "disables" the preemption timer by setting it to its max
8488 		 * value.  Don't use the timer if it might cause spurious exits
8489 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8490 		 */
8491 		if (use_timer_freq > 0xffffffffu / 10)
8492 			enable_preemption_timer = false;
8493 	}
8494 
8495 	if (!enable_preemption_timer) {
8496 		vmx_x86_ops.set_hv_timer = NULL;
8497 		vmx_x86_ops.cancel_hv_timer = NULL;
8498 		vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8499 	}
8500 
8501 	kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8502 	kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8503 
8504 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8505 		return -EINVAL;
8506 	if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8507 		pt_mode = PT_MODE_SYSTEM;
8508 	if (pt_mode == PT_MODE_HOST_GUEST)
8509 		vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8510 	else
8511 		vmx_init_ops.handle_intel_pt_intr = NULL;
8512 
8513 	setup_default_sgx_lepubkeyhash();
8514 
8515 	if (nested) {
8516 		nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8517 
8518 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8519 		if (r)
8520 			return r;
8521 	}
8522 
8523 	vmx_set_cpu_caps();
8524 
8525 	r = alloc_kvm_area();
8526 	if (r && nested)
8527 		nested_vmx_hardware_unsetup();
8528 
8529 	kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8530 
8531 	return r;
8532 }
8533 
8534 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8535 	.hardware_setup = hardware_setup,
8536 	.handle_intel_pt_intr = NULL,
8537 
8538 	.runtime_ops = &vmx_x86_ops,
8539 	.pmu_ops = &intel_pmu_ops,
8540 };
8541 
8542 static void vmx_cleanup_l1d_flush(void)
8543 {
8544 	if (vmx_l1d_flush_pages) {
8545 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8546 		vmx_l1d_flush_pages = NULL;
8547 	}
8548 	/* Restore state so sysfs ignores VMX */
8549 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8550 }
8551 
8552 static void __vmx_exit(void)
8553 {
8554 	allow_smaller_maxphyaddr = false;
8555 
8556 #ifdef CONFIG_KEXEC_CORE
8557 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8558 	synchronize_rcu();
8559 #endif
8560 	vmx_cleanup_l1d_flush();
8561 }
8562 
8563 static void vmx_exit(void)
8564 {
8565 	kvm_exit();
8566 	kvm_x86_vendor_exit();
8567 
8568 	__vmx_exit();
8569 }
8570 module_exit(vmx_exit);
8571 
8572 static int __init vmx_init(void)
8573 {
8574 	int r, cpu;
8575 
8576 	if (!kvm_is_vmx_supported())
8577 		return -EOPNOTSUPP;
8578 
8579 	/*
8580 	 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8581 	 * to unwind if a later step fails.
8582 	 */
8583 	hv_init_evmcs();
8584 
8585 	r = kvm_x86_vendor_init(&vmx_init_ops);
8586 	if (r)
8587 		return r;
8588 
8589 	/*
8590 	 * Must be called after common x86 init so enable_ept is properly set
8591 	 * up. Hand the parameter mitigation value in which was stored in
8592 	 * the pre module init parser. If no parameter was given, it will
8593 	 * contain 'auto' which will be turned into the default 'cond'
8594 	 * mitigation mode.
8595 	 */
8596 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8597 	if (r)
8598 		goto err_l1d_flush;
8599 
8600 	vmx_setup_fb_clear_ctrl();
8601 
8602 	for_each_possible_cpu(cpu) {
8603 		INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8604 
8605 		pi_init_cpu(cpu);
8606 	}
8607 
8608 #ifdef CONFIG_KEXEC_CORE
8609 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8610 			   crash_vmclear_local_loaded_vmcss);
8611 #endif
8612 	vmx_check_vmcs12_offsets();
8613 
8614 	/*
8615 	 * Shadow paging doesn't have a (further) performance penalty
8616 	 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8617 	 * by default
8618 	 */
8619 	if (!enable_ept)
8620 		allow_smaller_maxphyaddr = true;
8621 
8622 	/*
8623 	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8624 	 * exposed to userspace!
8625 	 */
8626 	r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8627 		     THIS_MODULE);
8628 	if (r)
8629 		goto err_kvm_init;
8630 
8631 	return 0;
8632 
8633 err_kvm_init:
8634 	__vmx_exit();
8635 err_l1d_flush:
8636 	kvm_x86_vendor_exit();
8637 	return r;
8638 }
8639 module_init(vmx_init);
8640