1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <linux/highmem.h> 17 #include <linux/hrtimer.h> 18 #include <linux/kernel.h> 19 #include <linux/kvm_host.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mm.h> 24 #include <linux/objtool.h> 25 #include <linux/sched.h> 26 #include <linux/sched/smt.h> 27 #include <linux/slab.h> 28 #include <linux/tboot.h> 29 #include <linux/trace_events.h> 30 #include <linux/entry-kvm.h> 31 32 #include <asm/apic.h> 33 #include <asm/asm.h> 34 #include <asm/cpu.h> 35 #include <asm/cpu_device_id.h> 36 #include <asm/debugreg.h> 37 #include <asm/desc.h> 38 #include <asm/fpu/internal.h> 39 #include <asm/idtentry.h> 40 #include <asm/io.h> 41 #include <asm/irq_remapping.h> 42 #include <asm/kexec.h> 43 #include <asm/perf_event.h> 44 #include <asm/mmu_context.h> 45 #include <asm/mshyperv.h> 46 #include <asm/mwait.h> 47 #include <asm/spec-ctrl.h> 48 #include <asm/virtext.h> 49 #include <asm/vmx.h> 50 51 #include "capabilities.h" 52 #include "cpuid.h" 53 #include "evmcs.h" 54 #include "hyperv.h" 55 #include "kvm_onhyperv.h" 56 #include "irq.h" 57 #include "kvm_cache_regs.h" 58 #include "lapic.h" 59 #include "mmu.h" 60 #include "nested.h" 61 #include "pmu.h" 62 #include "sgx.h" 63 #include "trace.h" 64 #include "vmcs.h" 65 #include "vmcs12.h" 66 #include "vmx.h" 67 #include "x86.h" 68 69 MODULE_AUTHOR("Qumranet"); 70 MODULE_LICENSE("GPL"); 71 72 #ifdef MODULE 73 static const struct x86_cpu_id vmx_cpu_id[] = { 74 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 75 {} 76 }; 77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 78 #endif 79 80 bool __read_mostly enable_vpid = 1; 81 module_param_named(vpid, enable_vpid, bool, 0444); 82 83 static bool __read_mostly enable_vnmi = 1; 84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 85 86 bool __read_mostly flexpriority_enabled = 1; 87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 88 89 bool __read_mostly enable_ept = 1; 90 module_param_named(ept, enable_ept, bool, S_IRUGO); 91 92 bool __read_mostly enable_unrestricted_guest = 1; 93 module_param_named(unrestricted_guest, 94 enable_unrestricted_guest, bool, S_IRUGO); 95 96 bool __read_mostly enable_ept_ad_bits = 1; 97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 98 99 static bool __read_mostly emulate_invalid_guest_state = true; 100 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 101 102 static bool __read_mostly fasteoi = 1; 103 module_param(fasteoi, bool, S_IRUGO); 104 105 module_param(enable_apicv, bool, S_IRUGO); 106 107 /* 108 * If nested=1, nested virtualization is supported, i.e., guests may use 109 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 110 * use VMX instructions. 111 */ 112 static bool __read_mostly nested = 1; 113 module_param(nested, bool, S_IRUGO); 114 115 bool __read_mostly enable_pml = 1; 116 module_param_named(pml, enable_pml, bool, S_IRUGO); 117 118 static bool __read_mostly dump_invalid_vmcs = 0; 119 module_param(dump_invalid_vmcs, bool, 0644); 120 121 #define MSR_BITMAP_MODE_X2APIC 1 122 #define MSR_BITMAP_MODE_X2APIC_APICV 2 123 124 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 125 126 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 127 static int __read_mostly cpu_preemption_timer_multi; 128 static bool __read_mostly enable_preemption_timer = 1; 129 #ifdef CONFIG_X86_64 130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 131 #endif 132 133 extern bool __read_mostly allow_smaller_maxphyaddr; 134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 135 136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 138 #define KVM_VM_CR0_ALWAYS_ON \ 139 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 140 141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 144 145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 146 147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 148 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 149 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 150 RTIT_STATUS_BYTECNT)) 151 152 /* 153 * List of MSRs that can be directly passed to the guest. 154 * In addition to these x2apic and PT MSRs are handled specially. 155 */ 156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 157 MSR_IA32_SPEC_CTRL, 158 MSR_IA32_PRED_CMD, 159 MSR_IA32_TSC, 160 #ifdef CONFIG_X86_64 161 MSR_FS_BASE, 162 MSR_GS_BASE, 163 MSR_KERNEL_GS_BASE, 164 #endif 165 MSR_IA32_SYSENTER_CS, 166 MSR_IA32_SYSENTER_ESP, 167 MSR_IA32_SYSENTER_EIP, 168 MSR_CORE_C1_RES, 169 MSR_CORE_C3_RESIDENCY, 170 MSR_CORE_C6_RESIDENCY, 171 MSR_CORE_C7_RESIDENCY, 172 }; 173 174 /* 175 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 176 * ple_gap: upper bound on the amount of time between two successive 177 * executions of PAUSE in a loop. Also indicate if ple enabled. 178 * According to test, this time is usually smaller than 128 cycles. 179 * ple_window: upper bound on the amount of time a guest is allowed to execute 180 * in a PAUSE loop. Tests indicate that most spinlocks are held for 181 * less than 2^12 cycles 182 * Time is measured based on a counter that runs at the same rate as the TSC, 183 * refer SDM volume 3b section 21.6.13 & 22.1.3. 184 */ 185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 186 module_param(ple_gap, uint, 0444); 187 188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 189 module_param(ple_window, uint, 0444); 190 191 /* Default doubles per-vcpu window every exit. */ 192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 193 module_param(ple_window_grow, uint, 0444); 194 195 /* Default resets per-vcpu window every exit to ple_window. */ 196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 197 module_param(ple_window_shrink, uint, 0444); 198 199 /* Default is to compute the maximum so we can never overflow. */ 200 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 201 module_param(ple_window_max, uint, 0444); 202 203 /* Default is SYSTEM mode, 1 for host-guest mode */ 204 int __read_mostly pt_mode = PT_MODE_SYSTEM; 205 module_param(pt_mode, int, S_IRUGO); 206 207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 209 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 210 211 /* Storage for pre module init parameter parsing */ 212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 213 214 static const struct { 215 const char *option; 216 bool for_parse; 217 } vmentry_l1d_param[] = { 218 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 219 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 220 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 221 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 222 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 223 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 224 }; 225 226 #define L1D_CACHE_ORDER 4 227 static void *vmx_l1d_flush_pages; 228 229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 230 { 231 struct page *page; 232 unsigned int i; 233 234 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 235 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 236 return 0; 237 } 238 239 if (!enable_ept) { 240 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 241 return 0; 242 } 243 244 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 245 u64 msr; 246 247 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 248 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 249 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 250 return 0; 251 } 252 } 253 254 /* If set to auto use the default l1tf mitigation method */ 255 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 256 switch (l1tf_mitigation) { 257 case L1TF_MITIGATION_OFF: 258 l1tf = VMENTER_L1D_FLUSH_NEVER; 259 break; 260 case L1TF_MITIGATION_FLUSH_NOWARN: 261 case L1TF_MITIGATION_FLUSH: 262 case L1TF_MITIGATION_FLUSH_NOSMT: 263 l1tf = VMENTER_L1D_FLUSH_COND; 264 break; 265 case L1TF_MITIGATION_FULL: 266 case L1TF_MITIGATION_FULL_FORCE: 267 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 268 break; 269 } 270 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 271 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 272 } 273 274 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 275 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 276 /* 277 * This allocation for vmx_l1d_flush_pages is not tied to a VM 278 * lifetime and so should not be charged to a memcg. 279 */ 280 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 281 if (!page) 282 return -ENOMEM; 283 vmx_l1d_flush_pages = page_address(page); 284 285 /* 286 * Initialize each page with a different pattern in 287 * order to protect against KSM in the nested 288 * virtualization case. 289 */ 290 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 291 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 292 PAGE_SIZE); 293 } 294 } 295 296 l1tf_vmx_mitigation = l1tf; 297 298 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 299 static_branch_enable(&vmx_l1d_should_flush); 300 else 301 static_branch_disable(&vmx_l1d_should_flush); 302 303 if (l1tf == VMENTER_L1D_FLUSH_COND) 304 static_branch_enable(&vmx_l1d_flush_cond); 305 else 306 static_branch_disable(&vmx_l1d_flush_cond); 307 return 0; 308 } 309 310 static int vmentry_l1d_flush_parse(const char *s) 311 { 312 unsigned int i; 313 314 if (s) { 315 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 316 if (vmentry_l1d_param[i].for_parse && 317 sysfs_streq(s, vmentry_l1d_param[i].option)) 318 return i; 319 } 320 } 321 return -EINVAL; 322 } 323 324 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 325 { 326 int l1tf, ret; 327 328 l1tf = vmentry_l1d_flush_parse(s); 329 if (l1tf < 0) 330 return l1tf; 331 332 if (!boot_cpu_has(X86_BUG_L1TF)) 333 return 0; 334 335 /* 336 * Has vmx_init() run already? If not then this is the pre init 337 * parameter parsing. In that case just store the value and let 338 * vmx_init() do the proper setup after enable_ept has been 339 * established. 340 */ 341 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 342 vmentry_l1d_flush_param = l1tf; 343 return 0; 344 } 345 346 mutex_lock(&vmx_l1d_flush_mutex); 347 ret = vmx_setup_l1d_flush(l1tf); 348 mutex_unlock(&vmx_l1d_flush_mutex); 349 return ret; 350 } 351 352 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 353 { 354 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 355 return sprintf(s, "???\n"); 356 357 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 358 } 359 360 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 361 .set = vmentry_l1d_flush_set, 362 .get = vmentry_l1d_flush_get, 363 }; 364 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 365 366 static u32 vmx_segment_access_rights(struct kvm_segment *var); 367 368 void vmx_vmexit(void); 369 370 #define vmx_insn_failed(fmt...) \ 371 do { \ 372 WARN_ONCE(1, fmt); \ 373 pr_warn_ratelimited(fmt); \ 374 } while (0) 375 376 asmlinkage void vmread_error(unsigned long field, bool fault) 377 { 378 if (fault) 379 kvm_spurious_fault(); 380 else 381 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field); 382 } 383 384 noinline void vmwrite_error(unsigned long field, unsigned long value) 385 { 386 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n", 387 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 388 } 389 390 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 391 { 392 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr); 393 } 394 395 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 396 { 397 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr); 398 } 399 400 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 401 { 402 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 403 ext, vpid, gva); 404 } 405 406 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 407 { 408 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 409 ext, eptp, gpa); 410 } 411 412 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 413 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 414 /* 415 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 416 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 417 */ 418 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 419 420 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 421 static DEFINE_SPINLOCK(vmx_vpid_lock); 422 423 struct vmcs_config vmcs_config; 424 struct vmx_capability vmx_capability; 425 426 #define VMX_SEGMENT_FIELD(seg) \ 427 [VCPU_SREG_##seg] = { \ 428 .selector = GUEST_##seg##_SELECTOR, \ 429 .base = GUEST_##seg##_BASE, \ 430 .limit = GUEST_##seg##_LIMIT, \ 431 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 432 } 433 434 static const struct kvm_vmx_segment_field { 435 unsigned selector; 436 unsigned base; 437 unsigned limit; 438 unsigned ar_bytes; 439 } kvm_vmx_segment_fields[] = { 440 VMX_SEGMENT_FIELD(CS), 441 VMX_SEGMENT_FIELD(DS), 442 VMX_SEGMENT_FIELD(ES), 443 VMX_SEGMENT_FIELD(FS), 444 VMX_SEGMENT_FIELD(GS), 445 VMX_SEGMENT_FIELD(SS), 446 VMX_SEGMENT_FIELD(TR), 447 VMX_SEGMENT_FIELD(LDTR), 448 }; 449 450 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 451 { 452 vmx->segment_cache.bitmask = 0; 453 } 454 455 static unsigned long host_idt_base; 456 457 #if IS_ENABLED(CONFIG_HYPERV) 458 static bool __read_mostly enlightened_vmcs = true; 459 module_param(enlightened_vmcs, bool, 0444); 460 461 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu) 462 { 463 struct hv_enlightened_vmcs *evmcs; 464 struct hv_partition_assist_pg **p_hv_pa_pg = 465 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 466 /* 467 * Synthetic VM-Exit is not enabled in current code and so All 468 * evmcs in singe VM shares same assist page. 469 */ 470 if (!*p_hv_pa_pg) 471 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 472 473 if (!*p_hv_pa_pg) 474 return -ENOMEM; 475 476 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 477 478 evmcs->partition_assist_page = 479 __pa(*p_hv_pa_pg); 480 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 481 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 482 483 return 0; 484 } 485 486 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 487 488 /* 489 * Comment's format: document - errata name - stepping - processor name. 490 * Refer from 491 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 492 */ 493 static u32 vmx_preemption_cpu_tfms[] = { 494 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 495 0x000206E6, 496 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 497 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 498 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 499 0x00020652, 500 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 501 0x00020655, 502 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 503 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 504 /* 505 * 320767.pdf - AAP86 - B1 - 506 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 507 */ 508 0x000106E5, 509 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 510 0x000106A0, 511 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 512 0x000106A1, 513 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 514 0x000106A4, 515 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 516 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 517 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 518 0x000106A5, 519 /* Xeon E3-1220 V2 */ 520 0x000306A8, 521 }; 522 523 static inline bool cpu_has_broken_vmx_preemption_timer(void) 524 { 525 u32 eax = cpuid_eax(0x00000001), i; 526 527 /* Clear the reserved bits */ 528 eax &= ~(0x3U << 14 | 0xfU << 28); 529 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 530 if (eax == vmx_preemption_cpu_tfms[i]) 531 return true; 532 533 return false; 534 } 535 536 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 537 { 538 return flexpriority_enabled && lapic_in_kernel(vcpu); 539 } 540 541 static inline bool report_flexpriority(void) 542 { 543 return flexpriority_enabled; 544 } 545 546 static int possible_passthrough_msr_slot(u32 msr) 547 { 548 u32 i; 549 550 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 551 if (vmx_possible_passthrough_msrs[i] == msr) 552 return i; 553 554 return -ENOENT; 555 } 556 557 static bool is_valid_passthrough_msr(u32 msr) 558 { 559 bool r; 560 561 switch (msr) { 562 case 0x800 ... 0x8ff: 563 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 564 return true; 565 case MSR_IA32_RTIT_STATUS: 566 case MSR_IA32_RTIT_OUTPUT_BASE: 567 case MSR_IA32_RTIT_OUTPUT_MASK: 568 case MSR_IA32_RTIT_CR3_MATCH: 569 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 570 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 571 case MSR_LBR_SELECT: 572 case MSR_LBR_TOS: 573 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 574 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 575 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 576 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 577 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 578 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 579 return true; 580 } 581 582 r = possible_passthrough_msr_slot(msr) != -ENOENT; 583 584 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 585 586 return r; 587 } 588 589 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 590 { 591 int i; 592 593 i = kvm_find_user_return_msr(msr); 594 if (i >= 0) 595 return &vmx->guest_uret_msrs[i]; 596 return NULL; 597 } 598 599 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 600 struct vmx_uret_msr *msr, u64 data) 601 { 602 unsigned int slot = msr - vmx->guest_uret_msrs; 603 int ret = 0; 604 605 u64 old_msr_data = msr->data; 606 msr->data = data; 607 if (msr->load_into_hardware) { 608 preempt_disable(); 609 ret = kvm_set_user_return_msr(slot, msr->data, msr->mask); 610 preempt_enable(); 611 if (ret) 612 msr->data = old_msr_data; 613 } 614 return ret; 615 } 616 617 #ifdef CONFIG_KEXEC_CORE 618 static void crash_vmclear_local_loaded_vmcss(void) 619 { 620 int cpu = raw_smp_processor_id(); 621 struct loaded_vmcs *v; 622 623 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 624 loaded_vmcss_on_cpu_link) 625 vmcs_clear(v->vmcs); 626 } 627 #endif /* CONFIG_KEXEC_CORE */ 628 629 static void __loaded_vmcs_clear(void *arg) 630 { 631 struct loaded_vmcs *loaded_vmcs = arg; 632 int cpu = raw_smp_processor_id(); 633 634 if (loaded_vmcs->cpu != cpu) 635 return; /* vcpu migration can race with cpu offline */ 636 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 637 per_cpu(current_vmcs, cpu) = NULL; 638 639 vmcs_clear(loaded_vmcs->vmcs); 640 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 641 vmcs_clear(loaded_vmcs->shadow_vmcs); 642 643 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 644 645 /* 646 * Ensure all writes to loaded_vmcs, including deleting it from its 647 * current percpu list, complete before setting loaded_vmcs->vcpu to 648 * -1, otherwise a different cpu can see vcpu == -1 first and add 649 * loaded_vmcs to its percpu list before it's deleted from this cpu's 650 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 651 */ 652 smp_wmb(); 653 654 loaded_vmcs->cpu = -1; 655 loaded_vmcs->launched = 0; 656 } 657 658 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 659 { 660 int cpu = loaded_vmcs->cpu; 661 662 if (cpu != -1) 663 smp_call_function_single(cpu, 664 __loaded_vmcs_clear, loaded_vmcs, 1); 665 } 666 667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 668 unsigned field) 669 { 670 bool ret; 671 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 672 673 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 674 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 675 vmx->segment_cache.bitmask = 0; 676 } 677 ret = vmx->segment_cache.bitmask & mask; 678 vmx->segment_cache.bitmask |= mask; 679 return ret; 680 } 681 682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 683 { 684 u16 *p = &vmx->segment_cache.seg[seg].selector; 685 686 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 687 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 688 return *p; 689 } 690 691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 692 { 693 ulong *p = &vmx->segment_cache.seg[seg].base; 694 695 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 696 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 697 return *p; 698 } 699 700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 701 { 702 u32 *p = &vmx->segment_cache.seg[seg].limit; 703 704 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 705 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 706 return *p; 707 } 708 709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 710 { 711 u32 *p = &vmx->segment_cache.seg[seg].ar; 712 713 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 714 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 715 return *p; 716 } 717 718 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 719 { 720 u32 eb; 721 722 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 723 (1u << DB_VECTOR) | (1u << AC_VECTOR); 724 /* 725 * Guest access to VMware backdoor ports could legitimately 726 * trigger #GP because of TSS I/O permission bitmap. 727 * We intercept those #GP and allow access to them anyway 728 * as VMware does. 729 */ 730 if (enable_vmware_backdoor) 731 eb |= (1u << GP_VECTOR); 732 if ((vcpu->guest_debug & 733 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 734 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 735 eb |= 1u << BP_VECTOR; 736 if (to_vmx(vcpu)->rmode.vm86_active) 737 eb = ~0; 738 if (!vmx_need_pf_intercept(vcpu)) 739 eb &= ~(1u << PF_VECTOR); 740 741 /* When we are running a nested L2 guest and L1 specified for it a 742 * certain exception bitmap, we must trap the same exceptions and pass 743 * them to L1. When running L2, we will only handle the exceptions 744 * specified above if L1 did not want them. 745 */ 746 if (is_guest_mode(vcpu)) 747 eb |= get_vmcs12(vcpu)->exception_bitmap; 748 else { 749 int mask = 0, match = 0; 750 751 if (enable_ept && (eb & (1u << PF_VECTOR))) { 752 /* 753 * If EPT is enabled, #PF is currently only intercepted 754 * if MAXPHYADDR is smaller on the guest than on the 755 * host. In that case we only care about present, 756 * non-reserved faults. For vmcs02, however, PFEC_MASK 757 * and PFEC_MATCH are set in prepare_vmcs02_rare. 758 */ 759 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 760 match = PFERR_PRESENT_MASK; 761 } 762 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 763 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 764 } 765 766 vmcs_write32(EXCEPTION_BITMAP, eb); 767 } 768 769 /* 770 * Check if MSR is intercepted for currently loaded MSR bitmap. 771 */ 772 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 773 { 774 unsigned long *msr_bitmap; 775 int f = sizeof(unsigned long); 776 777 if (!cpu_has_vmx_msr_bitmap()) 778 return true; 779 780 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; 781 782 if (msr <= 0x1fff) { 783 return !!test_bit(msr, msr_bitmap + 0x800 / f); 784 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 785 msr &= 0x1fff; 786 return !!test_bit(msr, msr_bitmap + 0xc00 / f); 787 } 788 789 return true; 790 } 791 792 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 793 unsigned long entry, unsigned long exit) 794 { 795 vm_entry_controls_clearbit(vmx, entry); 796 vm_exit_controls_clearbit(vmx, exit); 797 } 798 799 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 800 { 801 unsigned int i; 802 803 for (i = 0; i < m->nr; ++i) { 804 if (m->val[i].index == msr) 805 return i; 806 } 807 return -ENOENT; 808 } 809 810 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 811 { 812 int i; 813 struct msr_autoload *m = &vmx->msr_autoload; 814 815 switch (msr) { 816 case MSR_EFER: 817 if (cpu_has_load_ia32_efer()) { 818 clear_atomic_switch_msr_special(vmx, 819 VM_ENTRY_LOAD_IA32_EFER, 820 VM_EXIT_LOAD_IA32_EFER); 821 return; 822 } 823 break; 824 case MSR_CORE_PERF_GLOBAL_CTRL: 825 if (cpu_has_load_perf_global_ctrl()) { 826 clear_atomic_switch_msr_special(vmx, 827 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 828 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 829 return; 830 } 831 break; 832 } 833 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 834 if (i < 0) 835 goto skip_guest; 836 --m->guest.nr; 837 m->guest.val[i] = m->guest.val[m->guest.nr]; 838 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 839 840 skip_guest: 841 i = vmx_find_loadstore_msr_slot(&m->host, msr); 842 if (i < 0) 843 return; 844 845 --m->host.nr; 846 m->host.val[i] = m->host.val[m->host.nr]; 847 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 848 } 849 850 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 851 unsigned long entry, unsigned long exit, 852 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 853 u64 guest_val, u64 host_val) 854 { 855 vmcs_write64(guest_val_vmcs, guest_val); 856 if (host_val_vmcs != HOST_IA32_EFER) 857 vmcs_write64(host_val_vmcs, host_val); 858 vm_entry_controls_setbit(vmx, entry); 859 vm_exit_controls_setbit(vmx, exit); 860 } 861 862 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 863 u64 guest_val, u64 host_val, bool entry_only) 864 { 865 int i, j = 0; 866 struct msr_autoload *m = &vmx->msr_autoload; 867 868 switch (msr) { 869 case MSR_EFER: 870 if (cpu_has_load_ia32_efer()) { 871 add_atomic_switch_msr_special(vmx, 872 VM_ENTRY_LOAD_IA32_EFER, 873 VM_EXIT_LOAD_IA32_EFER, 874 GUEST_IA32_EFER, 875 HOST_IA32_EFER, 876 guest_val, host_val); 877 return; 878 } 879 break; 880 case MSR_CORE_PERF_GLOBAL_CTRL: 881 if (cpu_has_load_perf_global_ctrl()) { 882 add_atomic_switch_msr_special(vmx, 883 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 884 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 885 GUEST_IA32_PERF_GLOBAL_CTRL, 886 HOST_IA32_PERF_GLOBAL_CTRL, 887 guest_val, host_val); 888 return; 889 } 890 break; 891 case MSR_IA32_PEBS_ENABLE: 892 /* PEBS needs a quiescent period after being disabled (to write 893 * a record). Disabling PEBS through VMX MSR swapping doesn't 894 * provide that period, so a CPU could write host's record into 895 * guest's memory. 896 */ 897 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 898 } 899 900 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 901 if (!entry_only) 902 j = vmx_find_loadstore_msr_slot(&m->host, msr); 903 904 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 905 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 906 printk_once(KERN_WARNING "Not enough msr switch entries. " 907 "Can't add msr %x\n", msr); 908 return; 909 } 910 if (i < 0) { 911 i = m->guest.nr++; 912 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 913 } 914 m->guest.val[i].index = msr; 915 m->guest.val[i].value = guest_val; 916 917 if (entry_only) 918 return; 919 920 if (j < 0) { 921 j = m->host.nr++; 922 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 923 } 924 m->host.val[j].index = msr; 925 m->host.val[j].value = host_val; 926 } 927 928 static bool update_transition_efer(struct vcpu_vmx *vmx) 929 { 930 u64 guest_efer = vmx->vcpu.arch.efer; 931 u64 ignore_bits = 0; 932 int i; 933 934 /* Shadow paging assumes NX to be available. */ 935 if (!enable_ept) 936 guest_efer |= EFER_NX; 937 938 /* 939 * LMA and LME handled by hardware; SCE meaningless outside long mode. 940 */ 941 ignore_bits |= EFER_SCE; 942 #ifdef CONFIG_X86_64 943 ignore_bits |= EFER_LMA | EFER_LME; 944 /* SCE is meaningful only in long mode on Intel */ 945 if (guest_efer & EFER_LMA) 946 ignore_bits &= ~(u64)EFER_SCE; 947 #endif 948 949 /* 950 * On EPT, we can't emulate NX, so we must switch EFER atomically. 951 * On CPUs that support "load IA32_EFER", always switch EFER 952 * atomically, since it's faster than switching it manually. 953 */ 954 if (cpu_has_load_ia32_efer() || 955 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 956 if (!(guest_efer & EFER_LMA)) 957 guest_efer &= ~EFER_LME; 958 if (guest_efer != host_efer) 959 add_atomic_switch_msr(vmx, MSR_EFER, 960 guest_efer, host_efer, false); 961 else 962 clear_atomic_switch_msr(vmx, MSR_EFER); 963 return false; 964 } 965 966 i = kvm_find_user_return_msr(MSR_EFER); 967 if (i < 0) 968 return false; 969 970 clear_atomic_switch_msr(vmx, MSR_EFER); 971 972 guest_efer &= ~ignore_bits; 973 guest_efer |= host_efer & ignore_bits; 974 975 vmx->guest_uret_msrs[i].data = guest_efer; 976 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 977 978 return true; 979 } 980 981 #ifdef CONFIG_X86_32 982 /* 983 * On 32-bit kernels, VM exits still load the FS and GS bases from the 984 * VMCS rather than the segment table. KVM uses this helper to figure 985 * out the current bases to poke them into the VMCS before entry. 986 */ 987 static unsigned long segment_base(u16 selector) 988 { 989 struct desc_struct *table; 990 unsigned long v; 991 992 if (!(selector & ~SEGMENT_RPL_MASK)) 993 return 0; 994 995 table = get_current_gdt_ro(); 996 997 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 998 u16 ldt_selector = kvm_read_ldt(); 999 1000 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1001 return 0; 1002 1003 table = (struct desc_struct *)segment_base(ldt_selector); 1004 } 1005 v = get_desc_base(&table[selector >> 3]); 1006 return v; 1007 } 1008 #endif 1009 1010 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1011 { 1012 return vmx_pt_mode_is_host_guest() && 1013 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1014 } 1015 1016 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1017 { 1018 /* The base must be 128-byte aligned and a legal physical address. */ 1019 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1020 } 1021 1022 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1023 { 1024 u32 i; 1025 1026 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1027 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1028 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1029 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1030 for (i = 0; i < addr_range; i++) { 1031 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1032 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1033 } 1034 } 1035 1036 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1037 { 1038 u32 i; 1039 1040 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1041 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1042 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1043 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1044 for (i = 0; i < addr_range; i++) { 1045 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1046 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1047 } 1048 } 1049 1050 static void pt_guest_enter(struct vcpu_vmx *vmx) 1051 { 1052 if (vmx_pt_mode_is_system()) 1053 return; 1054 1055 /* 1056 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1057 * Save host state before VM entry. 1058 */ 1059 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1060 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1061 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1062 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1063 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1064 } 1065 } 1066 1067 static void pt_guest_exit(struct vcpu_vmx *vmx) 1068 { 1069 if (vmx_pt_mode_is_system()) 1070 return; 1071 1072 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1073 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1074 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1075 } 1076 1077 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */ 1078 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1079 } 1080 1081 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1082 unsigned long fs_base, unsigned long gs_base) 1083 { 1084 if (unlikely(fs_sel != host->fs_sel)) { 1085 if (!(fs_sel & 7)) 1086 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1087 else 1088 vmcs_write16(HOST_FS_SELECTOR, 0); 1089 host->fs_sel = fs_sel; 1090 } 1091 if (unlikely(gs_sel != host->gs_sel)) { 1092 if (!(gs_sel & 7)) 1093 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1094 else 1095 vmcs_write16(HOST_GS_SELECTOR, 0); 1096 host->gs_sel = gs_sel; 1097 } 1098 if (unlikely(fs_base != host->fs_base)) { 1099 vmcs_writel(HOST_FS_BASE, fs_base); 1100 host->fs_base = fs_base; 1101 } 1102 if (unlikely(gs_base != host->gs_base)) { 1103 vmcs_writel(HOST_GS_BASE, gs_base); 1104 host->gs_base = gs_base; 1105 } 1106 } 1107 1108 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1109 { 1110 struct vcpu_vmx *vmx = to_vmx(vcpu); 1111 struct vmcs_host_state *host_state; 1112 #ifdef CONFIG_X86_64 1113 int cpu = raw_smp_processor_id(); 1114 #endif 1115 unsigned long fs_base, gs_base; 1116 u16 fs_sel, gs_sel; 1117 int i; 1118 1119 vmx->req_immediate_exit = false; 1120 1121 /* 1122 * Note that guest MSRs to be saved/restored can also be changed 1123 * when guest state is loaded. This happens when guest transitions 1124 * to/from long-mode by setting MSR_EFER.LMA. 1125 */ 1126 if (!vmx->guest_uret_msrs_loaded) { 1127 vmx->guest_uret_msrs_loaded = true; 1128 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1129 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1130 continue; 1131 1132 kvm_set_user_return_msr(i, 1133 vmx->guest_uret_msrs[i].data, 1134 vmx->guest_uret_msrs[i].mask); 1135 } 1136 } 1137 1138 if (vmx->nested.need_vmcs12_to_shadow_sync) 1139 nested_sync_vmcs12_to_shadow(vcpu); 1140 1141 if (vmx->guest_state_loaded) 1142 return; 1143 1144 host_state = &vmx->loaded_vmcs->host_state; 1145 1146 /* 1147 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1148 * allow segment selectors with cpl > 0 or ti == 1. 1149 */ 1150 host_state->ldt_sel = kvm_read_ldt(); 1151 1152 #ifdef CONFIG_X86_64 1153 savesegment(ds, host_state->ds_sel); 1154 savesegment(es, host_state->es_sel); 1155 1156 gs_base = cpu_kernelmode_gs_base(cpu); 1157 if (likely(is_64bit_mm(current->mm))) { 1158 current_save_fsgs(); 1159 fs_sel = current->thread.fsindex; 1160 gs_sel = current->thread.gsindex; 1161 fs_base = current->thread.fsbase; 1162 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1163 } else { 1164 savesegment(fs, fs_sel); 1165 savesegment(gs, gs_sel); 1166 fs_base = read_msr(MSR_FS_BASE); 1167 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1168 } 1169 1170 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1171 #else 1172 savesegment(fs, fs_sel); 1173 savesegment(gs, gs_sel); 1174 fs_base = segment_base(fs_sel); 1175 gs_base = segment_base(gs_sel); 1176 #endif 1177 1178 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1179 vmx->guest_state_loaded = true; 1180 } 1181 1182 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1183 { 1184 struct vmcs_host_state *host_state; 1185 1186 if (!vmx->guest_state_loaded) 1187 return; 1188 1189 host_state = &vmx->loaded_vmcs->host_state; 1190 1191 ++vmx->vcpu.stat.host_state_reload; 1192 1193 #ifdef CONFIG_X86_64 1194 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1195 #endif 1196 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1197 kvm_load_ldt(host_state->ldt_sel); 1198 #ifdef CONFIG_X86_64 1199 load_gs_index(host_state->gs_sel); 1200 #else 1201 loadsegment(gs, host_state->gs_sel); 1202 #endif 1203 } 1204 if (host_state->fs_sel & 7) 1205 loadsegment(fs, host_state->fs_sel); 1206 #ifdef CONFIG_X86_64 1207 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1208 loadsegment(ds, host_state->ds_sel); 1209 loadsegment(es, host_state->es_sel); 1210 } 1211 #endif 1212 invalidate_tss_limit(); 1213 #ifdef CONFIG_X86_64 1214 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1215 #endif 1216 load_fixmap_gdt(raw_smp_processor_id()); 1217 vmx->guest_state_loaded = false; 1218 vmx->guest_uret_msrs_loaded = false; 1219 } 1220 1221 #ifdef CONFIG_X86_64 1222 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1223 { 1224 preempt_disable(); 1225 if (vmx->guest_state_loaded) 1226 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1227 preempt_enable(); 1228 return vmx->msr_guest_kernel_gs_base; 1229 } 1230 1231 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1232 { 1233 preempt_disable(); 1234 if (vmx->guest_state_loaded) 1235 wrmsrl(MSR_KERNEL_GS_BASE, data); 1236 preempt_enable(); 1237 vmx->msr_guest_kernel_gs_base = data; 1238 } 1239 #endif 1240 1241 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1242 struct loaded_vmcs *buddy) 1243 { 1244 struct vcpu_vmx *vmx = to_vmx(vcpu); 1245 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1246 struct vmcs *prev; 1247 1248 if (!already_loaded) { 1249 loaded_vmcs_clear(vmx->loaded_vmcs); 1250 local_irq_disable(); 1251 1252 /* 1253 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1254 * this cpu's percpu list, otherwise it may not yet be deleted 1255 * from its previous cpu's percpu list. Pairs with the 1256 * smb_wmb() in __loaded_vmcs_clear(). 1257 */ 1258 smp_rmb(); 1259 1260 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1261 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1262 local_irq_enable(); 1263 } 1264 1265 prev = per_cpu(current_vmcs, cpu); 1266 if (prev != vmx->loaded_vmcs->vmcs) { 1267 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1268 vmcs_load(vmx->loaded_vmcs->vmcs); 1269 1270 /* 1271 * No indirect branch prediction barrier needed when switching 1272 * the active VMCS within a guest, e.g. on nested VM-Enter. 1273 * The L1 VMM can protect itself with retpolines, IBPB or IBRS. 1274 */ 1275 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1276 indirect_branch_prediction_barrier(); 1277 } 1278 1279 if (!already_loaded) { 1280 void *gdt = get_current_gdt_ro(); 1281 unsigned long sysenter_esp; 1282 1283 /* 1284 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1285 * TLB entries from its previous association with the vCPU. 1286 */ 1287 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1288 1289 /* 1290 * Linux uses per-cpu TSS and GDT, so set these when switching 1291 * processors. See 22.2.4. 1292 */ 1293 vmcs_writel(HOST_TR_BASE, 1294 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1295 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1296 1297 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); 1298 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ 1299 1300 vmx->loaded_vmcs->cpu = cpu; 1301 } 1302 } 1303 1304 /* 1305 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1306 * vcpu mutex is already taken. 1307 */ 1308 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1309 { 1310 struct vcpu_vmx *vmx = to_vmx(vcpu); 1311 1312 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1313 1314 vmx_vcpu_pi_load(vcpu, cpu); 1315 1316 vmx->host_debugctlmsr = get_debugctlmsr(); 1317 } 1318 1319 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1320 { 1321 vmx_vcpu_pi_put(vcpu); 1322 1323 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1324 } 1325 1326 static bool emulation_required(struct kvm_vcpu *vcpu) 1327 { 1328 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1329 } 1330 1331 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1332 { 1333 struct vcpu_vmx *vmx = to_vmx(vcpu); 1334 unsigned long rflags, save_rflags; 1335 1336 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1337 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1338 rflags = vmcs_readl(GUEST_RFLAGS); 1339 if (vmx->rmode.vm86_active) { 1340 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1341 save_rflags = vmx->rmode.save_rflags; 1342 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1343 } 1344 vmx->rflags = rflags; 1345 } 1346 return vmx->rflags; 1347 } 1348 1349 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1350 { 1351 struct vcpu_vmx *vmx = to_vmx(vcpu); 1352 unsigned long old_rflags; 1353 1354 if (is_unrestricted_guest(vcpu)) { 1355 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1356 vmx->rflags = rflags; 1357 vmcs_writel(GUEST_RFLAGS, rflags); 1358 return; 1359 } 1360 1361 old_rflags = vmx_get_rflags(vcpu); 1362 vmx->rflags = rflags; 1363 if (vmx->rmode.vm86_active) { 1364 vmx->rmode.save_rflags = rflags; 1365 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1366 } 1367 vmcs_writel(GUEST_RFLAGS, rflags); 1368 1369 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1370 vmx->emulation_required = emulation_required(vcpu); 1371 } 1372 1373 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1374 { 1375 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1376 int ret = 0; 1377 1378 if (interruptibility & GUEST_INTR_STATE_STI) 1379 ret |= KVM_X86_SHADOW_INT_STI; 1380 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1381 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1382 1383 return ret; 1384 } 1385 1386 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1387 { 1388 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1389 u32 interruptibility = interruptibility_old; 1390 1391 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1392 1393 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1394 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1395 else if (mask & KVM_X86_SHADOW_INT_STI) 1396 interruptibility |= GUEST_INTR_STATE_STI; 1397 1398 if ((interruptibility != interruptibility_old)) 1399 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1400 } 1401 1402 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1403 { 1404 struct vcpu_vmx *vmx = to_vmx(vcpu); 1405 unsigned long value; 1406 1407 /* 1408 * Any MSR write that attempts to change bits marked reserved will 1409 * case a #GP fault. 1410 */ 1411 if (data & vmx->pt_desc.ctl_bitmask) 1412 return 1; 1413 1414 /* 1415 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1416 * result in a #GP unless the same write also clears TraceEn. 1417 */ 1418 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1419 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1420 return 1; 1421 1422 /* 1423 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1424 * and FabricEn would cause #GP, if 1425 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1426 */ 1427 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1428 !(data & RTIT_CTL_FABRIC_EN) && 1429 !intel_pt_validate_cap(vmx->pt_desc.caps, 1430 PT_CAP_single_range_output)) 1431 return 1; 1432 1433 /* 1434 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1435 * utilize encodings marked reserved will cause a #GP fault. 1436 */ 1437 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1438 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1439 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1440 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1441 return 1; 1442 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1443 PT_CAP_cycle_thresholds); 1444 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1445 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1446 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1447 return 1; 1448 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1449 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1450 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1451 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1452 return 1; 1453 1454 /* 1455 * If ADDRx_CFG is reserved or the encodings is >2 will 1456 * cause a #GP fault. 1457 */ 1458 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1459 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2)) 1460 return 1; 1461 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1462 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2)) 1463 return 1; 1464 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1465 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2)) 1466 return 1; 1467 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1468 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2)) 1469 return 1; 1470 1471 return 0; 1472 } 1473 1474 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 1475 { 1476 /* 1477 * Emulation of instructions in SGX enclaves is impossible as RIP does 1478 * not point tthe failing instruction, and even if it did, the code 1479 * stream is inaccessible. Inject #UD instead of exiting to userspace 1480 * so that guest userspace can't DoS the guest simply by triggering 1481 * emulation (enclaves are CPL3 only). 1482 */ 1483 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1484 kvm_queue_exception(vcpu, UD_VECTOR); 1485 return false; 1486 } 1487 return true; 1488 } 1489 1490 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1491 { 1492 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1493 unsigned long rip, orig_rip; 1494 u32 instr_len; 1495 1496 /* 1497 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1498 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1499 * set when EPT misconfig occurs. In practice, real hardware updates 1500 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1501 * (namely Hyper-V) don't set it due to it being undefined behavior, 1502 * i.e. we end up advancing IP with some random value. 1503 */ 1504 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1505 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1506 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1507 1508 /* 1509 * Emulating an enclave's instructions isn't supported as KVM 1510 * cannot access the enclave's memory or its true RIP, e.g. the 1511 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1512 * the RIP that actually triggered the VM-Exit. But, because 1513 * most instructions that cause VM-Exit will #UD in an enclave, 1514 * most instruction-based VM-Exits simply do not occur. 1515 * 1516 * There are a few exceptions, notably the debug instructions 1517 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1518 * and generate #DB/#BP as expected, which KVM might intercept. 1519 * But again, the CPU does the dirty work and saves an instr 1520 * length of zero so VMMs don't shoot themselves in the foot. 1521 * WARN if KVM tries to skip a non-zero length instruction on 1522 * a VM-Exit from an enclave. 1523 */ 1524 if (!instr_len) 1525 goto rip_updated; 1526 1527 WARN(exit_reason.enclave_mode, 1528 "KVM: skipping instruction after SGX enclave VM-Exit"); 1529 1530 orig_rip = kvm_rip_read(vcpu); 1531 rip = orig_rip + instr_len; 1532 #ifdef CONFIG_X86_64 1533 /* 1534 * We need to mask out the high 32 bits of RIP if not in 64-bit 1535 * mode, but just finding out that we are in 64-bit mode is 1536 * quite expensive. Only do it if there was a carry. 1537 */ 1538 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1539 rip = (u32)rip; 1540 #endif 1541 kvm_rip_write(vcpu, rip); 1542 } else { 1543 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1544 return 0; 1545 } 1546 1547 rip_updated: 1548 /* skipping an emulated instruction also counts */ 1549 vmx_set_interrupt_shadow(vcpu, 0); 1550 1551 return 1; 1552 } 1553 1554 /* 1555 * Recognizes a pending MTF VM-exit and records the nested state for later 1556 * delivery. 1557 */ 1558 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1559 { 1560 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1561 struct vcpu_vmx *vmx = to_vmx(vcpu); 1562 1563 if (!is_guest_mode(vcpu)) 1564 return; 1565 1566 /* 1567 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1568 * T-bit traps. As instruction emulation is completed (i.e. at the 1569 * instruction boundary), any #DB exception pending delivery must be a 1570 * debug-trap. Record the pending MTF state to be delivered in 1571 * vmx_check_nested_events(). 1572 */ 1573 if (nested_cpu_has_mtf(vmcs12) && 1574 (!vcpu->arch.exception.pending || 1575 vcpu->arch.exception.nr == DB_VECTOR)) 1576 vmx->nested.mtf_pending = true; 1577 else 1578 vmx->nested.mtf_pending = false; 1579 } 1580 1581 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1582 { 1583 vmx_update_emulated_instruction(vcpu); 1584 return skip_emulated_instruction(vcpu); 1585 } 1586 1587 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1588 { 1589 /* 1590 * Ensure that we clear the HLT state in the VMCS. We don't need to 1591 * explicitly skip the instruction because if the HLT state is set, 1592 * then the instruction is already executing and RIP has already been 1593 * advanced. 1594 */ 1595 if (kvm_hlt_in_guest(vcpu->kvm) && 1596 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1597 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1598 } 1599 1600 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1601 { 1602 struct vcpu_vmx *vmx = to_vmx(vcpu); 1603 unsigned nr = vcpu->arch.exception.nr; 1604 bool has_error_code = vcpu->arch.exception.has_error_code; 1605 u32 error_code = vcpu->arch.exception.error_code; 1606 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1607 1608 kvm_deliver_exception_payload(vcpu); 1609 1610 if (has_error_code) { 1611 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1612 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1613 } 1614 1615 if (vmx->rmode.vm86_active) { 1616 int inc_eip = 0; 1617 if (kvm_exception_is_soft(nr)) 1618 inc_eip = vcpu->arch.event_exit_inst_len; 1619 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip); 1620 return; 1621 } 1622 1623 WARN_ON_ONCE(vmx->emulation_required); 1624 1625 if (kvm_exception_is_soft(nr)) { 1626 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1627 vmx->vcpu.arch.event_exit_inst_len); 1628 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1629 } else 1630 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1631 1632 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1633 1634 vmx_clear_hlt(vcpu); 1635 } 1636 1637 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1638 bool load_into_hardware) 1639 { 1640 struct vmx_uret_msr *uret_msr; 1641 1642 uret_msr = vmx_find_uret_msr(vmx, msr); 1643 if (!uret_msr) 1644 return; 1645 1646 uret_msr->load_into_hardware = load_into_hardware; 1647 } 1648 1649 /* 1650 * Configuring user return MSRs to automatically save, load, and restore MSRs 1651 * that need to be shoved into hardware when running the guest. Note, omitting 1652 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1653 * loaded into hardware when running the guest. 1654 */ 1655 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1656 { 1657 #ifdef CONFIG_X86_64 1658 bool load_syscall_msrs; 1659 1660 /* 1661 * The SYSCALL MSRs are only needed on long mode guests, and only 1662 * when EFER.SCE is set. 1663 */ 1664 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1665 (vmx->vcpu.arch.efer & EFER_SCE); 1666 1667 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1668 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1669 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1670 #endif 1671 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1672 1673 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1674 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1675 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1676 1677 /* 1678 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1679 * kernel and old userspace. If those guests run on a tsx=off host, do 1680 * allow guests to use TSX_CTRL, but don't change the value in hardware 1681 * so that TSX remains always disabled. 1682 */ 1683 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1684 1685 /* 1686 * The set of MSRs to load may have changed, reload MSRs before the 1687 * next VM-Enter. 1688 */ 1689 vmx->guest_uret_msrs_loaded = false; 1690 } 1691 1692 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1693 { 1694 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1695 1696 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1697 return vmcs12->tsc_offset; 1698 1699 return 0; 1700 } 1701 1702 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1703 { 1704 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1705 1706 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1707 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1708 return vmcs12->tsc_multiplier; 1709 1710 return kvm_default_tsc_scaling_ratio; 1711 } 1712 1713 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1714 { 1715 vmcs_write64(TSC_OFFSET, offset); 1716 } 1717 1718 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1719 { 1720 vmcs_write64(TSC_MULTIPLIER, multiplier); 1721 } 1722 1723 /* 1724 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1725 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1726 * all guests if the "nested" module option is off, and can also be disabled 1727 * for a single guest by disabling its VMX cpuid bit. 1728 */ 1729 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1730 { 1731 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1732 } 1733 1734 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1735 uint64_t val) 1736 { 1737 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1738 1739 return !(val & ~valid_bits); 1740 } 1741 1742 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1743 { 1744 switch (msr->index) { 1745 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1746 if (!nested) 1747 return 1; 1748 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1749 case MSR_IA32_PERF_CAPABILITIES: 1750 msr->data = vmx_get_perf_capabilities(); 1751 return 0; 1752 default: 1753 return KVM_MSR_RET_INVALID; 1754 } 1755 } 1756 1757 /* 1758 * Reads an msr value (of 'msr_index') into 'pdata'. 1759 * Returns 0 on success, non-0 otherwise. 1760 * Assumes vcpu_load() was already called. 1761 */ 1762 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1763 { 1764 struct vcpu_vmx *vmx = to_vmx(vcpu); 1765 struct vmx_uret_msr *msr; 1766 u32 index; 1767 1768 switch (msr_info->index) { 1769 #ifdef CONFIG_X86_64 1770 case MSR_FS_BASE: 1771 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1772 break; 1773 case MSR_GS_BASE: 1774 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1775 break; 1776 case MSR_KERNEL_GS_BASE: 1777 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1778 break; 1779 #endif 1780 case MSR_EFER: 1781 return kvm_get_msr_common(vcpu, msr_info); 1782 case MSR_IA32_TSX_CTRL: 1783 if (!msr_info->host_initiated && 1784 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1785 return 1; 1786 goto find_uret_msr; 1787 case MSR_IA32_UMWAIT_CONTROL: 1788 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 1789 return 1; 1790 1791 msr_info->data = vmx->msr_ia32_umwait_control; 1792 break; 1793 case MSR_IA32_SPEC_CTRL: 1794 if (!msr_info->host_initiated && 1795 !guest_has_spec_ctrl_msr(vcpu)) 1796 return 1; 1797 1798 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1799 break; 1800 case MSR_IA32_SYSENTER_CS: 1801 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1802 break; 1803 case MSR_IA32_SYSENTER_EIP: 1804 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1805 break; 1806 case MSR_IA32_SYSENTER_ESP: 1807 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1808 break; 1809 case MSR_IA32_BNDCFGS: 1810 if (!kvm_mpx_supported() || 1811 (!msr_info->host_initiated && 1812 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1813 return 1; 1814 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1815 break; 1816 case MSR_IA32_MCG_EXT_CTL: 1817 if (!msr_info->host_initiated && 1818 !(vmx->msr_ia32_feature_control & 1819 FEAT_CTL_LMCE_ENABLED)) 1820 return 1; 1821 msr_info->data = vcpu->arch.mcg_ext_ctl; 1822 break; 1823 case MSR_IA32_FEAT_CTL: 1824 msr_info->data = vmx->msr_ia32_feature_control; 1825 break; 1826 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 1827 if (!msr_info->host_initiated && 1828 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 1829 return 1; 1830 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 1831 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 1832 break; 1833 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1834 if (!nested_vmx_allowed(vcpu)) 1835 return 1; 1836 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1837 &msr_info->data)) 1838 return 1; 1839 /* 1840 * Enlightened VMCS v1 doesn't have certain fields, but buggy 1841 * Hyper-V versions are still trying to use corresponding 1842 * features when they are exposed. Filter out the essential 1843 * minimum. 1844 */ 1845 if (!msr_info->host_initiated && 1846 vmx->nested.enlightened_vmcs_enabled) 1847 nested_evmcs_filter_control_msr(msr_info->index, 1848 &msr_info->data); 1849 break; 1850 case MSR_IA32_RTIT_CTL: 1851 if (!vmx_pt_mode_is_host_guest()) 1852 return 1; 1853 msr_info->data = vmx->pt_desc.guest.ctl; 1854 break; 1855 case MSR_IA32_RTIT_STATUS: 1856 if (!vmx_pt_mode_is_host_guest()) 1857 return 1; 1858 msr_info->data = vmx->pt_desc.guest.status; 1859 break; 1860 case MSR_IA32_RTIT_CR3_MATCH: 1861 if (!vmx_pt_mode_is_host_guest() || 1862 !intel_pt_validate_cap(vmx->pt_desc.caps, 1863 PT_CAP_cr3_filtering)) 1864 return 1; 1865 msr_info->data = vmx->pt_desc.guest.cr3_match; 1866 break; 1867 case MSR_IA32_RTIT_OUTPUT_BASE: 1868 if (!vmx_pt_mode_is_host_guest() || 1869 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1870 PT_CAP_topa_output) && 1871 !intel_pt_validate_cap(vmx->pt_desc.caps, 1872 PT_CAP_single_range_output))) 1873 return 1; 1874 msr_info->data = vmx->pt_desc.guest.output_base; 1875 break; 1876 case MSR_IA32_RTIT_OUTPUT_MASK: 1877 if (!vmx_pt_mode_is_host_guest() || 1878 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1879 PT_CAP_topa_output) && 1880 !intel_pt_validate_cap(vmx->pt_desc.caps, 1881 PT_CAP_single_range_output))) 1882 return 1; 1883 msr_info->data = vmx->pt_desc.guest.output_mask; 1884 break; 1885 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1886 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1887 if (!vmx_pt_mode_is_host_guest() || 1888 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 1889 PT_CAP_num_address_ranges))) 1890 return 1; 1891 if (index % 2) 1892 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1893 else 1894 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1895 break; 1896 case MSR_IA32_DEBUGCTLMSR: 1897 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 1898 break; 1899 default: 1900 find_uret_msr: 1901 msr = vmx_find_uret_msr(vmx, msr_info->index); 1902 if (msr) { 1903 msr_info->data = msr->data; 1904 break; 1905 } 1906 return kvm_get_msr_common(vcpu, msr_info); 1907 } 1908 1909 return 0; 1910 } 1911 1912 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 1913 u64 data) 1914 { 1915 #ifdef CONFIG_X86_64 1916 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 1917 return (u32)data; 1918 #endif 1919 return (unsigned long)data; 1920 } 1921 1922 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu) 1923 { 1924 u64 debugctl = vmx_supported_debugctl(); 1925 1926 if (!intel_pmu_lbr_is_enabled(vcpu)) 1927 debugctl &= ~DEBUGCTLMSR_LBR_MASK; 1928 1929 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) 1930 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT; 1931 1932 return debugctl; 1933 } 1934 1935 /* 1936 * Writes msr value into the appropriate "register". 1937 * Returns 0 on success, non-0 otherwise. 1938 * Assumes vcpu_load() was already called. 1939 */ 1940 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1941 { 1942 struct vcpu_vmx *vmx = to_vmx(vcpu); 1943 struct vmx_uret_msr *msr; 1944 int ret = 0; 1945 u32 msr_index = msr_info->index; 1946 u64 data = msr_info->data; 1947 u32 index; 1948 1949 switch (msr_index) { 1950 case MSR_EFER: 1951 ret = kvm_set_msr_common(vcpu, msr_info); 1952 break; 1953 #ifdef CONFIG_X86_64 1954 case MSR_FS_BASE: 1955 vmx_segment_cache_clear(vmx); 1956 vmcs_writel(GUEST_FS_BASE, data); 1957 break; 1958 case MSR_GS_BASE: 1959 vmx_segment_cache_clear(vmx); 1960 vmcs_writel(GUEST_GS_BASE, data); 1961 break; 1962 case MSR_KERNEL_GS_BASE: 1963 vmx_write_guest_kernel_gs_base(vmx, data); 1964 break; 1965 #endif 1966 case MSR_IA32_SYSENTER_CS: 1967 if (is_guest_mode(vcpu)) 1968 get_vmcs12(vcpu)->guest_sysenter_cs = data; 1969 vmcs_write32(GUEST_SYSENTER_CS, data); 1970 break; 1971 case MSR_IA32_SYSENTER_EIP: 1972 if (is_guest_mode(vcpu)) { 1973 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 1974 get_vmcs12(vcpu)->guest_sysenter_eip = data; 1975 } 1976 vmcs_writel(GUEST_SYSENTER_EIP, data); 1977 break; 1978 case MSR_IA32_SYSENTER_ESP: 1979 if (is_guest_mode(vcpu)) { 1980 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 1981 get_vmcs12(vcpu)->guest_sysenter_esp = data; 1982 } 1983 vmcs_writel(GUEST_SYSENTER_ESP, data); 1984 break; 1985 case MSR_IA32_DEBUGCTLMSR: { 1986 u64 invalid = data & ~vcpu_supported_debugctl(vcpu); 1987 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 1988 if (report_ignored_msrs) 1989 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n", 1990 __func__, data); 1991 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 1992 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 1993 } 1994 1995 if (invalid) 1996 return 1; 1997 1998 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 1999 VM_EXIT_SAVE_DEBUG_CONTROLS) 2000 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2001 2002 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2003 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2004 (data & DEBUGCTLMSR_LBR)) 2005 intel_pmu_create_guest_lbr_event(vcpu); 2006 return 0; 2007 } 2008 case MSR_IA32_BNDCFGS: 2009 if (!kvm_mpx_supported() || 2010 (!msr_info->host_initiated && 2011 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2012 return 1; 2013 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2014 (data & MSR_IA32_BNDCFGS_RSVD)) 2015 return 1; 2016 vmcs_write64(GUEST_BNDCFGS, data); 2017 break; 2018 case MSR_IA32_UMWAIT_CONTROL: 2019 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2020 return 1; 2021 2022 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2023 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2024 return 1; 2025 2026 vmx->msr_ia32_umwait_control = data; 2027 break; 2028 case MSR_IA32_SPEC_CTRL: 2029 if (!msr_info->host_initiated && 2030 !guest_has_spec_ctrl_msr(vcpu)) 2031 return 1; 2032 2033 if (kvm_spec_ctrl_test_value(data)) 2034 return 1; 2035 2036 vmx->spec_ctrl = data; 2037 if (!data) 2038 break; 2039 2040 /* 2041 * For non-nested: 2042 * When it's written (to non-zero) for the first time, pass 2043 * it through. 2044 * 2045 * For nested: 2046 * The handling of the MSR bitmap for L2 guests is done in 2047 * nested_vmx_prepare_msr_bitmap. We should not touch the 2048 * vmcs02.msr_bitmap here since it gets completely overwritten 2049 * in the merging. We update the vmcs01 here for L1 as well 2050 * since it will end up touching the MSR anyway now. 2051 */ 2052 vmx_disable_intercept_for_msr(vcpu, 2053 MSR_IA32_SPEC_CTRL, 2054 MSR_TYPE_RW); 2055 break; 2056 case MSR_IA32_TSX_CTRL: 2057 if (!msr_info->host_initiated && 2058 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2059 return 1; 2060 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2061 return 1; 2062 goto find_uret_msr; 2063 case MSR_IA32_PRED_CMD: 2064 if (!msr_info->host_initiated && 2065 !guest_has_pred_cmd_msr(vcpu)) 2066 return 1; 2067 2068 if (data & ~PRED_CMD_IBPB) 2069 return 1; 2070 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2071 return 1; 2072 if (!data) 2073 break; 2074 2075 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2076 2077 /* 2078 * For non-nested: 2079 * When it's written (to non-zero) for the first time, pass 2080 * it through. 2081 * 2082 * For nested: 2083 * The handling of the MSR bitmap for L2 guests is done in 2084 * nested_vmx_prepare_msr_bitmap. We should not touch the 2085 * vmcs02.msr_bitmap here since it gets completely overwritten 2086 * in the merging. 2087 */ 2088 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W); 2089 break; 2090 case MSR_IA32_CR_PAT: 2091 if (!kvm_pat_valid(data)) 2092 return 1; 2093 2094 if (is_guest_mode(vcpu) && 2095 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2096 get_vmcs12(vcpu)->guest_ia32_pat = data; 2097 2098 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2099 vmcs_write64(GUEST_IA32_PAT, data); 2100 vcpu->arch.pat = data; 2101 break; 2102 } 2103 ret = kvm_set_msr_common(vcpu, msr_info); 2104 break; 2105 case MSR_IA32_TSC_ADJUST: 2106 ret = kvm_set_msr_common(vcpu, msr_info); 2107 break; 2108 case MSR_IA32_MCG_EXT_CTL: 2109 if ((!msr_info->host_initiated && 2110 !(to_vmx(vcpu)->msr_ia32_feature_control & 2111 FEAT_CTL_LMCE_ENABLED)) || 2112 (data & ~MCG_EXT_CTL_LMCE_EN)) 2113 return 1; 2114 vcpu->arch.mcg_ext_ctl = data; 2115 break; 2116 case MSR_IA32_FEAT_CTL: 2117 if (!vmx_feature_control_msr_valid(vcpu, data) || 2118 (to_vmx(vcpu)->msr_ia32_feature_control & 2119 FEAT_CTL_LOCKED && !msr_info->host_initiated)) 2120 return 1; 2121 vmx->msr_ia32_feature_control = data; 2122 if (msr_info->host_initiated && data == 0) 2123 vmx_leave_nested(vcpu); 2124 2125 /* SGX may be enabled/disabled by guest's firmware */ 2126 vmx_write_encls_bitmap(vcpu, NULL); 2127 break; 2128 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2129 /* 2130 * On real hardware, the LE hash MSRs are writable before 2131 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2132 * at which point SGX related bits in IA32_FEATURE_CONTROL 2133 * become writable. 2134 * 2135 * KVM does not emulate SGX activation for simplicity, so 2136 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2137 * is unlocked. This is technically not architectural 2138 * behavior, but it's close enough. 2139 */ 2140 if (!msr_info->host_initiated && 2141 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2142 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2143 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2144 return 1; 2145 vmx->msr_ia32_sgxlepubkeyhash 2146 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2147 break; 2148 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 2149 if (!msr_info->host_initiated) 2150 return 1; /* they are read-only */ 2151 if (!nested_vmx_allowed(vcpu)) 2152 return 1; 2153 return vmx_set_vmx_msr(vcpu, msr_index, data); 2154 case MSR_IA32_RTIT_CTL: 2155 if (!vmx_pt_mode_is_host_guest() || 2156 vmx_rtit_ctl_check(vcpu, data) || 2157 vmx->nested.vmxon) 2158 return 1; 2159 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2160 vmx->pt_desc.guest.ctl = data; 2161 pt_update_intercept_for_msr(vcpu); 2162 break; 2163 case MSR_IA32_RTIT_STATUS: 2164 if (!pt_can_write_msr(vmx)) 2165 return 1; 2166 if (data & MSR_IA32_RTIT_STATUS_MASK) 2167 return 1; 2168 vmx->pt_desc.guest.status = data; 2169 break; 2170 case MSR_IA32_RTIT_CR3_MATCH: 2171 if (!pt_can_write_msr(vmx)) 2172 return 1; 2173 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2174 PT_CAP_cr3_filtering)) 2175 return 1; 2176 vmx->pt_desc.guest.cr3_match = data; 2177 break; 2178 case MSR_IA32_RTIT_OUTPUT_BASE: 2179 if (!pt_can_write_msr(vmx)) 2180 return 1; 2181 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2182 PT_CAP_topa_output) && 2183 !intel_pt_validate_cap(vmx->pt_desc.caps, 2184 PT_CAP_single_range_output)) 2185 return 1; 2186 if (!pt_output_base_valid(vcpu, data)) 2187 return 1; 2188 vmx->pt_desc.guest.output_base = data; 2189 break; 2190 case MSR_IA32_RTIT_OUTPUT_MASK: 2191 if (!pt_can_write_msr(vmx)) 2192 return 1; 2193 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2194 PT_CAP_topa_output) && 2195 !intel_pt_validate_cap(vmx->pt_desc.caps, 2196 PT_CAP_single_range_output)) 2197 return 1; 2198 vmx->pt_desc.guest.output_mask = data; 2199 break; 2200 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2201 if (!pt_can_write_msr(vmx)) 2202 return 1; 2203 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2204 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 2205 PT_CAP_num_address_ranges)) 2206 return 1; 2207 if (is_noncanonical_address(data, vcpu)) 2208 return 1; 2209 if (index % 2) 2210 vmx->pt_desc.guest.addr_b[index / 2] = data; 2211 else 2212 vmx->pt_desc.guest.addr_a[index / 2] = data; 2213 break; 2214 case MSR_IA32_PERF_CAPABILITIES: 2215 if (data && !vcpu_to_pmu(vcpu)->version) 2216 return 1; 2217 if (data & PMU_CAP_LBR_FMT) { 2218 if ((data & PMU_CAP_LBR_FMT) != 2219 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT)) 2220 return 1; 2221 if (!intel_pmu_lbr_is_compatible(vcpu)) 2222 return 1; 2223 } 2224 ret = kvm_set_msr_common(vcpu, msr_info); 2225 break; 2226 2227 default: 2228 find_uret_msr: 2229 msr = vmx_find_uret_msr(vmx, msr_index); 2230 if (msr) 2231 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2232 else 2233 ret = kvm_set_msr_common(vcpu, msr_info); 2234 } 2235 2236 return ret; 2237 } 2238 2239 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2240 { 2241 unsigned long guest_owned_bits; 2242 2243 kvm_register_mark_available(vcpu, reg); 2244 2245 switch (reg) { 2246 case VCPU_REGS_RSP: 2247 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2248 break; 2249 case VCPU_REGS_RIP: 2250 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2251 break; 2252 case VCPU_EXREG_PDPTR: 2253 if (enable_ept) 2254 ept_save_pdptrs(vcpu); 2255 break; 2256 case VCPU_EXREG_CR0: 2257 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2258 2259 vcpu->arch.cr0 &= ~guest_owned_bits; 2260 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2261 break; 2262 case VCPU_EXREG_CR3: 2263 /* 2264 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2265 * CR3 is loaded into hardware, not the guest's CR3. 2266 */ 2267 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2268 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2269 break; 2270 case VCPU_EXREG_CR4: 2271 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2272 2273 vcpu->arch.cr4 &= ~guest_owned_bits; 2274 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2275 break; 2276 default: 2277 KVM_BUG_ON(1, vcpu->kvm); 2278 break; 2279 } 2280 } 2281 2282 static __init int cpu_has_kvm_support(void) 2283 { 2284 return cpu_has_vmx(); 2285 } 2286 2287 static __init int vmx_disabled_by_bios(void) 2288 { 2289 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2290 !boot_cpu_has(X86_FEATURE_VMX); 2291 } 2292 2293 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2294 { 2295 u64 msr; 2296 2297 cr4_set_bits(X86_CR4_VMXE); 2298 2299 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2300 _ASM_EXTABLE(1b, %l[fault]) 2301 : : [vmxon_pointer] "m"(vmxon_pointer) 2302 : : fault); 2303 return 0; 2304 2305 fault: 2306 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2307 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2308 cr4_clear_bits(X86_CR4_VMXE); 2309 2310 return -EFAULT; 2311 } 2312 2313 static int hardware_enable(void) 2314 { 2315 int cpu = raw_smp_processor_id(); 2316 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2317 int r; 2318 2319 if (cr4_read_shadow() & X86_CR4_VMXE) 2320 return -EBUSY; 2321 2322 /* 2323 * This can happen if we hot-added a CPU but failed to allocate 2324 * VP assist page for it. 2325 */ 2326 if (static_branch_unlikely(&enable_evmcs) && 2327 !hv_get_vp_assist_page(cpu)) 2328 return -EFAULT; 2329 2330 intel_pt_handle_vmx(1); 2331 2332 r = kvm_cpu_vmxon(phys_addr); 2333 if (r) { 2334 intel_pt_handle_vmx(0); 2335 return r; 2336 } 2337 2338 if (enable_ept) 2339 ept_sync_global(); 2340 2341 return 0; 2342 } 2343 2344 static void vmclear_local_loaded_vmcss(void) 2345 { 2346 int cpu = raw_smp_processor_id(); 2347 struct loaded_vmcs *v, *n; 2348 2349 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2350 loaded_vmcss_on_cpu_link) 2351 __loaded_vmcs_clear(v); 2352 } 2353 2354 static void hardware_disable(void) 2355 { 2356 vmclear_local_loaded_vmcss(); 2357 2358 if (cpu_vmxoff()) 2359 kvm_spurious_fault(); 2360 2361 intel_pt_handle_vmx(0); 2362 } 2363 2364 /* 2365 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2366 * directly instead of going through cpu_has(), to ensure KVM is trapping 2367 * ENCLS whenever it's supported in hardware. It does not matter whether 2368 * the host OS supports or has enabled SGX. 2369 */ 2370 static bool cpu_has_sgx(void) 2371 { 2372 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2373 } 2374 2375 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2376 u32 msr, u32 *result) 2377 { 2378 u32 vmx_msr_low, vmx_msr_high; 2379 u32 ctl = ctl_min | ctl_opt; 2380 2381 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2382 2383 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2384 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2385 2386 /* Ensure minimum (required) set of control bits are supported. */ 2387 if (ctl_min & ~ctl) 2388 return -EIO; 2389 2390 *result = ctl; 2391 return 0; 2392 } 2393 2394 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2395 struct vmx_capability *vmx_cap) 2396 { 2397 u32 vmx_msr_low, vmx_msr_high; 2398 u32 min, opt, min2, opt2; 2399 u32 _pin_based_exec_control = 0; 2400 u32 _cpu_based_exec_control = 0; 2401 u32 _cpu_based_2nd_exec_control = 0; 2402 u32 _vmexit_control = 0; 2403 u32 _vmentry_control = 0; 2404 2405 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2406 min = CPU_BASED_HLT_EXITING | 2407 #ifdef CONFIG_X86_64 2408 CPU_BASED_CR8_LOAD_EXITING | 2409 CPU_BASED_CR8_STORE_EXITING | 2410 #endif 2411 CPU_BASED_CR3_LOAD_EXITING | 2412 CPU_BASED_CR3_STORE_EXITING | 2413 CPU_BASED_UNCOND_IO_EXITING | 2414 CPU_BASED_MOV_DR_EXITING | 2415 CPU_BASED_USE_TSC_OFFSETTING | 2416 CPU_BASED_MWAIT_EXITING | 2417 CPU_BASED_MONITOR_EXITING | 2418 CPU_BASED_INVLPG_EXITING | 2419 CPU_BASED_RDPMC_EXITING; 2420 2421 opt = CPU_BASED_TPR_SHADOW | 2422 CPU_BASED_USE_MSR_BITMAPS | 2423 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2424 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2425 &_cpu_based_exec_control) < 0) 2426 return -EIO; 2427 #ifdef CONFIG_X86_64 2428 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2429 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2430 ~CPU_BASED_CR8_STORE_EXITING; 2431 #endif 2432 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2433 min2 = 0; 2434 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2435 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2436 SECONDARY_EXEC_WBINVD_EXITING | 2437 SECONDARY_EXEC_ENABLE_VPID | 2438 SECONDARY_EXEC_ENABLE_EPT | 2439 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2440 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2441 SECONDARY_EXEC_DESC | 2442 SECONDARY_EXEC_ENABLE_RDTSCP | 2443 SECONDARY_EXEC_ENABLE_INVPCID | 2444 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2445 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2446 SECONDARY_EXEC_SHADOW_VMCS | 2447 SECONDARY_EXEC_XSAVES | 2448 SECONDARY_EXEC_RDSEED_EXITING | 2449 SECONDARY_EXEC_RDRAND_EXITING | 2450 SECONDARY_EXEC_ENABLE_PML | 2451 SECONDARY_EXEC_TSC_SCALING | 2452 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | 2453 SECONDARY_EXEC_PT_USE_GPA | 2454 SECONDARY_EXEC_PT_CONCEAL_VMX | 2455 SECONDARY_EXEC_ENABLE_VMFUNC | 2456 SECONDARY_EXEC_BUS_LOCK_DETECTION; 2457 if (cpu_has_sgx()) 2458 opt2 |= SECONDARY_EXEC_ENCLS_EXITING; 2459 if (adjust_vmx_controls(min2, opt2, 2460 MSR_IA32_VMX_PROCBASED_CTLS2, 2461 &_cpu_based_2nd_exec_control) < 0) 2462 return -EIO; 2463 } 2464 #ifndef CONFIG_X86_64 2465 if (!(_cpu_based_2nd_exec_control & 2466 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2467 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2468 #endif 2469 2470 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2471 _cpu_based_2nd_exec_control &= ~( 2472 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2473 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2474 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2475 2476 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2477 &vmx_cap->ept, &vmx_cap->vpid); 2478 2479 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2480 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2481 enabled */ 2482 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2483 CPU_BASED_CR3_STORE_EXITING | 2484 CPU_BASED_INVLPG_EXITING); 2485 } else if (vmx_cap->ept) { 2486 vmx_cap->ept = 0; 2487 pr_warn_once("EPT CAP should not exist if not support " 2488 "1-setting enable EPT VM-execution control\n"); 2489 } 2490 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2491 vmx_cap->vpid) { 2492 vmx_cap->vpid = 0; 2493 pr_warn_once("VPID CAP should not exist if not support " 2494 "1-setting enable VPID VM-execution control\n"); 2495 } 2496 2497 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2498 #ifdef CONFIG_X86_64 2499 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2500 #endif 2501 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2502 VM_EXIT_LOAD_IA32_PAT | 2503 VM_EXIT_LOAD_IA32_EFER | 2504 VM_EXIT_CLEAR_BNDCFGS | 2505 VM_EXIT_PT_CONCEAL_PIP | 2506 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2507 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2508 &_vmexit_control) < 0) 2509 return -EIO; 2510 2511 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2512 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2513 PIN_BASED_VMX_PREEMPTION_TIMER; 2514 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2515 &_pin_based_exec_control) < 0) 2516 return -EIO; 2517 2518 if (cpu_has_broken_vmx_preemption_timer()) 2519 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2520 if (!(_cpu_based_2nd_exec_control & 2521 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2522 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2523 2524 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2525 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2526 VM_ENTRY_LOAD_IA32_PAT | 2527 VM_ENTRY_LOAD_IA32_EFER | 2528 VM_ENTRY_LOAD_BNDCFGS | 2529 VM_ENTRY_PT_CONCEAL_PIP | 2530 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2531 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2532 &_vmentry_control) < 0) 2533 return -EIO; 2534 2535 /* 2536 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2537 * can't be used due to an errata where VM Exit may incorrectly clear 2538 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2539 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2540 */ 2541 if (boot_cpu_data.x86 == 0x6) { 2542 switch (boot_cpu_data.x86_model) { 2543 case 26: /* AAK155 */ 2544 case 30: /* AAP115 */ 2545 case 37: /* AAT100 */ 2546 case 44: /* BC86,AAY89,BD102 */ 2547 case 46: /* BA97 */ 2548 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2549 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2550 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2551 "does not work properly. Using workaround\n"); 2552 break; 2553 default: 2554 break; 2555 } 2556 } 2557 2558 2559 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2560 2561 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2562 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2563 return -EIO; 2564 2565 #ifdef CONFIG_X86_64 2566 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2567 if (vmx_msr_high & (1u<<16)) 2568 return -EIO; 2569 #endif 2570 2571 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2572 if (((vmx_msr_high >> 18) & 15) != 6) 2573 return -EIO; 2574 2575 vmcs_conf->size = vmx_msr_high & 0x1fff; 2576 vmcs_conf->order = get_order(vmcs_conf->size); 2577 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2578 2579 vmcs_conf->revision_id = vmx_msr_low; 2580 2581 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2582 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2583 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2584 vmcs_conf->vmexit_ctrl = _vmexit_control; 2585 vmcs_conf->vmentry_ctrl = _vmentry_control; 2586 2587 #if IS_ENABLED(CONFIG_HYPERV) 2588 if (enlightened_vmcs) 2589 evmcs_sanitize_exec_ctrls(vmcs_conf); 2590 #endif 2591 2592 return 0; 2593 } 2594 2595 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2596 { 2597 int node = cpu_to_node(cpu); 2598 struct page *pages; 2599 struct vmcs *vmcs; 2600 2601 pages = __alloc_pages_node(node, flags, vmcs_config.order); 2602 if (!pages) 2603 return NULL; 2604 vmcs = page_address(pages); 2605 memset(vmcs, 0, vmcs_config.size); 2606 2607 /* KVM supports Enlightened VMCS v1 only */ 2608 if (static_branch_unlikely(&enable_evmcs)) 2609 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2610 else 2611 vmcs->hdr.revision_id = vmcs_config.revision_id; 2612 2613 if (shadow) 2614 vmcs->hdr.shadow_vmcs = 1; 2615 return vmcs; 2616 } 2617 2618 void free_vmcs(struct vmcs *vmcs) 2619 { 2620 free_pages((unsigned long)vmcs, vmcs_config.order); 2621 } 2622 2623 /* 2624 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2625 */ 2626 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2627 { 2628 if (!loaded_vmcs->vmcs) 2629 return; 2630 loaded_vmcs_clear(loaded_vmcs); 2631 free_vmcs(loaded_vmcs->vmcs); 2632 loaded_vmcs->vmcs = NULL; 2633 if (loaded_vmcs->msr_bitmap) 2634 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2635 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2636 } 2637 2638 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2639 { 2640 loaded_vmcs->vmcs = alloc_vmcs(false); 2641 if (!loaded_vmcs->vmcs) 2642 return -ENOMEM; 2643 2644 vmcs_clear(loaded_vmcs->vmcs); 2645 2646 loaded_vmcs->shadow_vmcs = NULL; 2647 loaded_vmcs->hv_timer_soft_disabled = false; 2648 loaded_vmcs->cpu = -1; 2649 loaded_vmcs->launched = 0; 2650 2651 if (cpu_has_vmx_msr_bitmap()) { 2652 loaded_vmcs->msr_bitmap = (unsigned long *) 2653 __get_free_page(GFP_KERNEL_ACCOUNT); 2654 if (!loaded_vmcs->msr_bitmap) 2655 goto out_vmcs; 2656 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2657 2658 if (IS_ENABLED(CONFIG_HYPERV) && 2659 static_branch_unlikely(&enable_evmcs) && 2660 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 2661 struct hv_enlightened_vmcs *evmcs = 2662 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; 2663 2664 evmcs->hv_enlightenments_control.msr_bitmap = 1; 2665 } 2666 } 2667 2668 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2669 memset(&loaded_vmcs->controls_shadow, 0, 2670 sizeof(struct vmcs_controls_shadow)); 2671 2672 return 0; 2673 2674 out_vmcs: 2675 free_loaded_vmcs(loaded_vmcs); 2676 return -ENOMEM; 2677 } 2678 2679 static void free_kvm_area(void) 2680 { 2681 int cpu; 2682 2683 for_each_possible_cpu(cpu) { 2684 free_vmcs(per_cpu(vmxarea, cpu)); 2685 per_cpu(vmxarea, cpu) = NULL; 2686 } 2687 } 2688 2689 static __init int alloc_kvm_area(void) 2690 { 2691 int cpu; 2692 2693 for_each_possible_cpu(cpu) { 2694 struct vmcs *vmcs; 2695 2696 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2697 if (!vmcs) { 2698 free_kvm_area(); 2699 return -ENOMEM; 2700 } 2701 2702 /* 2703 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2704 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2705 * revision_id reported by MSR_IA32_VMX_BASIC. 2706 * 2707 * However, even though not explicitly documented by 2708 * TLFS, VMXArea passed as VMXON argument should 2709 * still be marked with revision_id reported by 2710 * physical CPU. 2711 */ 2712 if (static_branch_unlikely(&enable_evmcs)) 2713 vmcs->hdr.revision_id = vmcs_config.revision_id; 2714 2715 per_cpu(vmxarea, cpu) = vmcs; 2716 } 2717 return 0; 2718 } 2719 2720 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2721 struct kvm_segment *save) 2722 { 2723 if (!emulate_invalid_guest_state) { 2724 /* 2725 * CS and SS RPL should be equal during guest entry according 2726 * to VMX spec, but in reality it is not always so. Since vcpu 2727 * is in the middle of the transition from real mode to 2728 * protected mode it is safe to assume that RPL 0 is a good 2729 * default value. 2730 */ 2731 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2732 save->selector &= ~SEGMENT_RPL_MASK; 2733 save->dpl = save->selector & SEGMENT_RPL_MASK; 2734 save->s = 1; 2735 } 2736 __vmx_set_segment(vcpu, save, seg); 2737 } 2738 2739 static void enter_pmode(struct kvm_vcpu *vcpu) 2740 { 2741 unsigned long flags; 2742 struct vcpu_vmx *vmx = to_vmx(vcpu); 2743 2744 /* 2745 * Update real mode segment cache. It may be not up-to-date if segment 2746 * register was written while vcpu was in a guest mode. 2747 */ 2748 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2749 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2750 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2751 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2752 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2753 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2754 2755 vmx->rmode.vm86_active = 0; 2756 2757 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2758 2759 flags = vmcs_readl(GUEST_RFLAGS); 2760 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2761 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2762 vmcs_writel(GUEST_RFLAGS, flags); 2763 2764 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2765 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2766 2767 vmx_update_exception_bitmap(vcpu); 2768 2769 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2770 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2771 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2772 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2773 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2774 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2775 } 2776 2777 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2778 { 2779 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2780 struct kvm_segment var = *save; 2781 2782 var.dpl = 0x3; 2783 if (seg == VCPU_SREG_CS) 2784 var.type = 0x3; 2785 2786 if (!emulate_invalid_guest_state) { 2787 var.selector = var.base >> 4; 2788 var.base = var.base & 0xffff0; 2789 var.limit = 0xffff; 2790 var.g = 0; 2791 var.db = 0; 2792 var.present = 1; 2793 var.s = 1; 2794 var.l = 0; 2795 var.unusable = 0; 2796 var.type = 0x3; 2797 var.avl = 0; 2798 if (save->base & 0xf) 2799 printk_once(KERN_WARNING "kvm: segment base is not " 2800 "paragraph aligned when entering " 2801 "protected mode (seg=%d)", seg); 2802 } 2803 2804 vmcs_write16(sf->selector, var.selector); 2805 vmcs_writel(sf->base, var.base); 2806 vmcs_write32(sf->limit, var.limit); 2807 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2808 } 2809 2810 static void enter_rmode(struct kvm_vcpu *vcpu) 2811 { 2812 unsigned long flags; 2813 struct vcpu_vmx *vmx = to_vmx(vcpu); 2814 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2815 2816 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2817 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2818 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2819 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2820 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2821 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2822 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2823 2824 vmx->rmode.vm86_active = 1; 2825 2826 /* 2827 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2828 * vcpu. Warn the user that an update is overdue. 2829 */ 2830 if (!kvm_vmx->tss_addr) 2831 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2832 "called before entering vcpu\n"); 2833 2834 vmx_segment_cache_clear(vmx); 2835 2836 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2837 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2838 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2839 2840 flags = vmcs_readl(GUEST_RFLAGS); 2841 vmx->rmode.save_rflags = flags; 2842 2843 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2844 2845 vmcs_writel(GUEST_RFLAGS, flags); 2846 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2847 vmx_update_exception_bitmap(vcpu); 2848 2849 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2850 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2851 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2852 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2853 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2854 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2855 } 2856 2857 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2858 { 2859 struct vcpu_vmx *vmx = to_vmx(vcpu); 2860 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER); 2861 2862 /* Nothing to do if hardware doesn't support EFER. */ 2863 if (!msr) 2864 return 0; 2865 2866 vcpu->arch.efer = efer; 2867 if (efer & EFER_LMA) { 2868 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2869 msr->data = efer; 2870 } else { 2871 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2872 2873 msr->data = efer & ~EFER_LME; 2874 } 2875 vmx_setup_uret_msrs(vmx); 2876 return 0; 2877 } 2878 2879 #ifdef CONFIG_X86_64 2880 2881 static void enter_lmode(struct kvm_vcpu *vcpu) 2882 { 2883 u32 guest_tr_ar; 2884 2885 vmx_segment_cache_clear(to_vmx(vcpu)); 2886 2887 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2888 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2889 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2890 __func__); 2891 vmcs_write32(GUEST_TR_AR_BYTES, 2892 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 2893 | VMX_AR_TYPE_BUSY_64_TSS); 2894 } 2895 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 2896 } 2897 2898 static void exit_lmode(struct kvm_vcpu *vcpu) 2899 { 2900 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2901 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 2902 } 2903 2904 #endif 2905 2906 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 2907 { 2908 struct vcpu_vmx *vmx = to_vmx(vcpu); 2909 2910 /* 2911 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 2912 * the CPU is not required to invalidate guest-physical mappings on 2913 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 2914 * associated with the root EPT structure and not any particular VPID 2915 * (INVVPID also isn't required to invalidate guest-physical mappings). 2916 */ 2917 if (enable_ept) { 2918 ept_sync_global(); 2919 } else if (enable_vpid) { 2920 if (cpu_has_vmx_invvpid_global()) { 2921 vpid_sync_vcpu_global(); 2922 } else { 2923 vpid_sync_vcpu_single(vmx->vpid); 2924 vpid_sync_vcpu_single(vmx->nested.vpid02); 2925 } 2926 } 2927 } 2928 2929 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 2930 { 2931 struct kvm_mmu *mmu = vcpu->arch.mmu; 2932 u64 root_hpa = mmu->root_hpa; 2933 2934 /* No flush required if the current context is invalid. */ 2935 if (!VALID_PAGE(root_hpa)) 2936 return; 2937 2938 if (enable_ept) 2939 ept_sync_context(construct_eptp(vcpu, root_hpa, 2940 mmu->shadow_root_level)); 2941 else if (!is_guest_mode(vcpu)) 2942 vpid_sync_context(to_vmx(vcpu)->vpid); 2943 else 2944 vpid_sync_context(nested_get_vpid02(vcpu)); 2945 } 2946 2947 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 2948 { 2949 /* 2950 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in 2951 * vmx_flush_tlb_guest() for an explanation of why this is ok. 2952 */ 2953 vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr); 2954 } 2955 2956 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 2957 { 2958 /* 2959 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0 2960 * or a vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit 2961 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is 2962 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 2963 * i.e. no explicit INVVPID is necessary. 2964 */ 2965 vpid_sync_context(to_vmx(vcpu)->vpid); 2966 } 2967 2968 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 2969 { 2970 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2971 2972 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 2973 return; 2974 2975 if (is_pae_paging(vcpu)) { 2976 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 2977 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 2978 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 2979 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 2980 } 2981 } 2982 2983 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 2984 { 2985 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 2986 2987 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 2988 return; 2989 2990 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 2991 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 2992 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 2993 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 2994 2995 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 2996 } 2997 2998 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 2999 CPU_BASED_CR3_STORE_EXITING) 3000 3001 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3002 { 3003 struct vcpu_vmx *vmx = to_vmx(vcpu); 3004 unsigned long hw_cr0, old_cr0_pg; 3005 u32 tmp; 3006 3007 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3008 3009 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3010 if (is_unrestricted_guest(vcpu)) 3011 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3012 else { 3013 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3014 if (!enable_ept) 3015 hw_cr0 |= X86_CR0_WP; 3016 3017 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3018 enter_pmode(vcpu); 3019 3020 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3021 enter_rmode(vcpu); 3022 } 3023 3024 vmcs_writel(CR0_READ_SHADOW, cr0); 3025 vmcs_writel(GUEST_CR0, hw_cr0); 3026 vcpu->arch.cr0 = cr0; 3027 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3028 3029 #ifdef CONFIG_X86_64 3030 if (vcpu->arch.efer & EFER_LME) { 3031 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3032 enter_lmode(vcpu); 3033 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3034 exit_lmode(vcpu); 3035 } 3036 #endif 3037 3038 if (enable_ept && !is_unrestricted_guest(vcpu)) { 3039 /* 3040 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3041 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3042 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3043 * KVM's CR3 is installed. 3044 */ 3045 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3046 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3047 3048 /* 3049 * When running with EPT but not unrestricted guest, KVM must 3050 * intercept CR3 accesses when paging is _disabled_. This is 3051 * necessary because restricted guests can't actually run with 3052 * paging disabled, and so KVM stuffs its own CR3 in order to 3053 * run the guest when identity mapped page tables. 3054 * 3055 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3056 * update, it may be stale with respect to CR3 interception, 3057 * e.g. after nested VM-Enter. 3058 * 3059 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3060 * stores to forward them to L1, even if KVM does not need to 3061 * intercept them to preserve its identity mapped page tables. 3062 */ 3063 if (!(cr0 & X86_CR0_PG)) { 3064 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3065 } else if (!is_guest_mode(vcpu)) { 3066 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3067 } else { 3068 tmp = exec_controls_get(vmx); 3069 tmp &= ~CR3_EXITING_BITS; 3070 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3071 exec_controls_set(vmx, tmp); 3072 } 3073 3074 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3075 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3076 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3077 } 3078 3079 /* depends on vcpu->arch.cr0 to be set to a new value */ 3080 vmx->emulation_required = emulation_required(vcpu); 3081 } 3082 3083 static int vmx_get_max_tdp_level(void) 3084 { 3085 if (cpu_has_vmx_ept_5levels()) 3086 return 5; 3087 return 4; 3088 } 3089 3090 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3091 { 3092 u64 eptp = VMX_EPTP_MT_WB; 3093 3094 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3095 3096 if (enable_ept_ad_bits && 3097 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3098 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3099 eptp |= root_hpa; 3100 3101 return eptp; 3102 } 3103 3104 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3105 int root_level) 3106 { 3107 struct kvm *kvm = vcpu->kvm; 3108 bool update_guest_cr3 = true; 3109 unsigned long guest_cr3; 3110 u64 eptp; 3111 3112 if (enable_ept) { 3113 eptp = construct_eptp(vcpu, root_hpa, root_level); 3114 vmcs_write64(EPT_POINTER, eptp); 3115 3116 hv_track_root_tdp(vcpu, root_hpa); 3117 3118 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3119 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3120 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3121 guest_cr3 = vcpu->arch.cr3; 3122 else /* vmcs01.GUEST_CR3 is already up-to-date. */ 3123 update_guest_cr3 = false; 3124 vmx_ept_load_pdptrs(vcpu); 3125 } else { 3126 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3127 } 3128 3129 if (update_guest_cr3) 3130 vmcs_writel(GUEST_CR3, guest_cr3); 3131 } 3132 3133 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3134 { 3135 /* 3136 * We operate under the default treatment of SMM, so VMX cannot be 3137 * enabled under SMM. Note, whether or not VMXE is allowed at all is 3138 * handled by kvm_is_valid_cr4(). 3139 */ 3140 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3141 return false; 3142 3143 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3144 return false; 3145 3146 return true; 3147 } 3148 3149 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3150 { 3151 unsigned long old_cr4 = vcpu->arch.cr4; 3152 struct vcpu_vmx *vmx = to_vmx(vcpu); 3153 /* 3154 * Pass through host's Machine Check Enable value to hw_cr4, which 3155 * is in force while we are in guest mode. Do not let guests control 3156 * this bit, even if host CR4.MCE == 0. 3157 */ 3158 unsigned long hw_cr4; 3159 3160 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3161 if (is_unrestricted_guest(vcpu)) 3162 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3163 else if (vmx->rmode.vm86_active) 3164 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3165 else 3166 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3167 3168 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 3169 if (cr4 & X86_CR4_UMIP) { 3170 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3171 hw_cr4 &= ~X86_CR4_UMIP; 3172 } else if (!is_guest_mode(vcpu) || 3173 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3174 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3175 } 3176 } 3177 3178 vcpu->arch.cr4 = cr4; 3179 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3180 3181 if (!is_unrestricted_guest(vcpu)) { 3182 if (enable_ept) { 3183 if (!is_paging(vcpu)) { 3184 hw_cr4 &= ~X86_CR4_PAE; 3185 hw_cr4 |= X86_CR4_PSE; 3186 } else if (!(cr4 & X86_CR4_PAE)) { 3187 hw_cr4 &= ~X86_CR4_PAE; 3188 } 3189 } 3190 3191 /* 3192 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3193 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3194 * to be manually disabled when guest switches to non-paging 3195 * mode. 3196 * 3197 * If !enable_unrestricted_guest, the CPU is always running 3198 * with CR0.PG=1 and CR4 needs to be modified. 3199 * If enable_unrestricted_guest, the CPU automatically 3200 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3201 */ 3202 if (!is_paging(vcpu)) 3203 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3204 } 3205 3206 vmcs_writel(CR4_READ_SHADOW, cr4); 3207 vmcs_writel(GUEST_CR4, hw_cr4); 3208 3209 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3210 kvm_update_cpuid_runtime(vcpu); 3211 } 3212 3213 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3214 { 3215 struct vcpu_vmx *vmx = to_vmx(vcpu); 3216 u32 ar; 3217 3218 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3219 *var = vmx->rmode.segs[seg]; 3220 if (seg == VCPU_SREG_TR 3221 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3222 return; 3223 var->base = vmx_read_guest_seg_base(vmx, seg); 3224 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3225 return; 3226 } 3227 var->base = vmx_read_guest_seg_base(vmx, seg); 3228 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3229 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3230 ar = vmx_read_guest_seg_ar(vmx, seg); 3231 var->unusable = (ar >> 16) & 1; 3232 var->type = ar & 15; 3233 var->s = (ar >> 4) & 1; 3234 var->dpl = (ar >> 5) & 3; 3235 /* 3236 * Some userspaces do not preserve unusable property. Since usable 3237 * segment has to be present according to VMX spec we can use present 3238 * property to amend userspace bug by making unusable segment always 3239 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3240 * segment as unusable. 3241 */ 3242 var->present = !var->unusable; 3243 var->avl = (ar >> 12) & 1; 3244 var->l = (ar >> 13) & 1; 3245 var->db = (ar >> 14) & 1; 3246 var->g = (ar >> 15) & 1; 3247 } 3248 3249 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3250 { 3251 struct kvm_segment s; 3252 3253 if (to_vmx(vcpu)->rmode.vm86_active) { 3254 vmx_get_segment(vcpu, &s, seg); 3255 return s.base; 3256 } 3257 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3258 } 3259 3260 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3261 { 3262 struct vcpu_vmx *vmx = to_vmx(vcpu); 3263 3264 if (unlikely(vmx->rmode.vm86_active)) 3265 return 0; 3266 else { 3267 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3268 return VMX_AR_DPL(ar); 3269 } 3270 } 3271 3272 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3273 { 3274 u32 ar; 3275 3276 if (var->unusable || !var->present) 3277 ar = 1 << 16; 3278 else { 3279 ar = var->type & 15; 3280 ar |= (var->s & 1) << 4; 3281 ar |= (var->dpl & 3) << 5; 3282 ar |= (var->present & 1) << 7; 3283 ar |= (var->avl & 1) << 12; 3284 ar |= (var->l & 1) << 13; 3285 ar |= (var->db & 1) << 14; 3286 ar |= (var->g & 1) << 15; 3287 } 3288 3289 return ar; 3290 } 3291 3292 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3293 { 3294 struct vcpu_vmx *vmx = to_vmx(vcpu); 3295 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3296 3297 vmx_segment_cache_clear(vmx); 3298 3299 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3300 vmx->rmode.segs[seg] = *var; 3301 if (seg == VCPU_SREG_TR) 3302 vmcs_write16(sf->selector, var->selector); 3303 else if (var->s) 3304 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3305 return; 3306 } 3307 3308 vmcs_writel(sf->base, var->base); 3309 vmcs_write32(sf->limit, var->limit); 3310 vmcs_write16(sf->selector, var->selector); 3311 3312 /* 3313 * Fix the "Accessed" bit in AR field of segment registers for older 3314 * qemu binaries. 3315 * IA32 arch specifies that at the time of processor reset the 3316 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3317 * is setting it to 0 in the userland code. This causes invalid guest 3318 * state vmexit when "unrestricted guest" mode is turned on. 3319 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3320 * tree. Newer qemu binaries with that qemu fix would not need this 3321 * kvm hack. 3322 */ 3323 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3324 var->type |= 0x1; /* Accessed */ 3325 3326 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3327 } 3328 3329 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3330 { 3331 __vmx_set_segment(vcpu, var, seg); 3332 3333 to_vmx(vcpu)->emulation_required = emulation_required(vcpu); 3334 } 3335 3336 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3337 { 3338 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3339 3340 *db = (ar >> 14) & 1; 3341 *l = (ar >> 13) & 1; 3342 } 3343 3344 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3345 { 3346 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3347 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3348 } 3349 3350 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3351 { 3352 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3353 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3354 } 3355 3356 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3357 { 3358 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3359 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3360 } 3361 3362 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3363 { 3364 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3365 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3366 } 3367 3368 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3369 { 3370 struct kvm_segment var; 3371 u32 ar; 3372 3373 vmx_get_segment(vcpu, &var, seg); 3374 var.dpl = 0x3; 3375 if (seg == VCPU_SREG_CS) 3376 var.type = 0x3; 3377 ar = vmx_segment_access_rights(&var); 3378 3379 if (var.base != (var.selector << 4)) 3380 return false; 3381 if (var.limit != 0xffff) 3382 return false; 3383 if (ar != 0xf3) 3384 return false; 3385 3386 return true; 3387 } 3388 3389 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3390 { 3391 struct kvm_segment cs; 3392 unsigned int cs_rpl; 3393 3394 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3395 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3396 3397 if (cs.unusable) 3398 return false; 3399 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3400 return false; 3401 if (!cs.s) 3402 return false; 3403 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3404 if (cs.dpl > cs_rpl) 3405 return false; 3406 } else { 3407 if (cs.dpl != cs_rpl) 3408 return false; 3409 } 3410 if (!cs.present) 3411 return false; 3412 3413 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3414 return true; 3415 } 3416 3417 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3418 { 3419 struct kvm_segment ss; 3420 unsigned int ss_rpl; 3421 3422 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3423 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3424 3425 if (ss.unusable) 3426 return true; 3427 if (ss.type != 3 && ss.type != 7) 3428 return false; 3429 if (!ss.s) 3430 return false; 3431 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3432 return false; 3433 if (!ss.present) 3434 return false; 3435 3436 return true; 3437 } 3438 3439 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3440 { 3441 struct kvm_segment var; 3442 unsigned int rpl; 3443 3444 vmx_get_segment(vcpu, &var, seg); 3445 rpl = var.selector & SEGMENT_RPL_MASK; 3446 3447 if (var.unusable) 3448 return true; 3449 if (!var.s) 3450 return false; 3451 if (!var.present) 3452 return false; 3453 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3454 if (var.dpl < rpl) /* DPL < RPL */ 3455 return false; 3456 } 3457 3458 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3459 * rights flags 3460 */ 3461 return true; 3462 } 3463 3464 static bool tr_valid(struct kvm_vcpu *vcpu) 3465 { 3466 struct kvm_segment tr; 3467 3468 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3469 3470 if (tr.unusable) 3471 return false; 3472 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3473 return false; 3474 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3475 return false; 3476 if (!tr.present) 3477 return false; 3478 3479 return true; 3480 } 3481 3482 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3483 { 3484 struct kvm_segment ldtr; 3485 3486 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3487 3488 if (ldtr.unusable) 3489 return true; 3490 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3491 return false; 3492 if (ldtr.type != 2) 3493 return false; 3494 if (!ldtr.present) 3495 return false; 3496 3497 return true; 3498 } 3499 3500 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3501 { 3502 struct kvm_segment cs, ss; 3503 3504 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3505 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3506 3507 return ((cs.selector & SEGMENT_RPL_MASK) == 3508 (ss.selector & SEGMENT_RPL_MASK)); 3509 } 3510 3511 /* 3512 * Check if guest state is valid. Returns true if valid, false if 3513 * not. 3514 * We assume that registers are always usable 3515 */ 3516 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3517 { 3518 /* real mode guest state checks */ 3519 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3520 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3521 return false; 3522 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3523 return false; 3524 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3525 return false; 3526 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3527 return false; 3528 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3529 return false; 3530 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3531 return false; 3532 } else { 3533 /* protected mode guest state checks */ 3534 if (!cs_ss_rpl_check(vcpu)) 3535 return false; 3536 if (!code_segment_valid(vcpu)) 3537 return false; 3538 if (!stack_segment_valid(vcpu)) 3539 return false; 3540 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3541 return false; 3542 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3543 return false; 3544 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3545 return false; 3546 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3547 return false; 3548 if (!tr_valid(vcpu)) 3549 return false; 3550 if (!ldtr_valid(vcpu)) 3551 return false; 3552 } 3553 /* TODO: 3554 * - Add checks on RIP 3555 * - Add checks on RFLAGS 3556 */ 3557 3558 return true; 3559 } 3560 3561 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3562 { 3563 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3564 u16 data; 3565 int i; 3566 3567 for (i = 0; i < 3; i++) { 3568 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3569 return -EFAULT; 3570 } 3571 3572 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3573 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3574 return -EFAULT; 3575 3576 data = ~0; 3577 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3578 return -EFAULT; 3579 3580 return 0; 3581 } 3582 3583 static int init_rmode_identity_map(struct kvm *kvm) 3584 { 3585 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3586 int i, r = 0; 3587 void __user *uaddr; 3588 u32 tmp; 3589 3590 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3591 mutex_lock(&kvm->slots_lock); 3592 3593 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3594 goto out; 3595 3596 if (!kvm_vmx->ept_identity_map_addr) 3597 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3598 3599 uaddr = __x86_set_memory_region(kvm, 3600 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3601 kvm_vmx->ept_identity_map_addr, 3602 PAGE_SIZE); 3603 if (IS_ERR(uaddr)) { 3604 r = PTR_ERR(uaddr); 3605 goto out; 3606 } 3607 3608 /* Set up identity-mapping pagetable for EPT in real mode */ 3609 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3610 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3611 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3612 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3613 r = -EFAULT; 3614 goto out; 3615 } 3616 } 3617 kvm_vmx->ept_identity_pagetable_done = true; 3618 3619 out: 3620 mutex_unlock(&kvm->slots_lock); 3621 return r; 3622 } 3623 3624 static void seg_setup(int seg) 3625 { 3626 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3627 unsigned int ar; 3628 3629 vmcs_write16(sf->selector, 0); 3630 vmcs_writel(sf->base, 0); 3631 vmcs_write32(sf->limit, 0xffff); 3632 ar = 0x93; 3633 if (seg == VCPU_SREG_CS) 3634 ar |= 0x08; /* code segment */ 3635 3636 vmcs_write32(sf->ar_bytes, ar); 3637 } 3638 3639 static int alloc_apic_access_page(struct kvm *kvm) 3640 { 3641 struct page *page; 3642 void __user *hva; 3643 int ret = 0; 3644 3645 mutex_lock(&kvm->slots_lock); 3646 if (kvm->arch.apic_access_memslot_enabled) 3647 goto out; 3648 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3649 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3650 if (IS_ERR(hva)) { 3651 ret = PTR_ERR(hva); 3652 goto out; 3653 } 3654 3655 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3656 if (is_error_page(page)) { 3657 ret = -EFAULT; 3658 goto out; 3659 } 3660 3661 /* 3662 * Do not pin the page in memory, so that memory hot-unplug 3663 * is able to migrate it. 3664 */ 3665 put_page(page); 3666 kvm->arch.apic_access_memslot_enabled = true; 3667 out: 3668 mutex_unlock(&kvm->slots_lock); 3669 return ret; 3670 } 3671 3672 int allocate_vpid(void) 3673 { 3674 int vpid; 3675 3676 if (!enable_vpid) 3677 return 0; 3678 spin_lock(&vmx_vpid_lock); 3679 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3680 if (vpid < VMX_NR_VPIDS) 3681 __set_bit(vpid, vmx_vpid_bitmap); 3682 else 3683 vpid = 0; 3684 spin_unlock(&vmx_vpid_lock); 3685 return vpid; 3686 } 3687 3688 void free_vpid(int vpid) 3689 { 3690 if (!enable_vpid || vpid == 0) 3691 return; 3692 spin_lock(&vmx_vpid_lock); 3693 __clear_bit(vpid, vmx_vpid_bitmap); 3694 spin_unlock(&vmx_vpid_lock); 3695 } 3696 3697 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr) 3698 { 3699 int f = sizeof(unsigned long); 3700 3701 if (msr <= 0x1fff) 3702 __clear_bit(msr, msr_bitmap + 0x000 / f); 3703 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3704 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f); 3705 } 3706 3707 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr) 3708 { 3709 int f = sizeof(unsigned long); 3710 3711 if (msr <= 0x1fff) 3712 __clear_bit(msr, msr_bitmap + 0x800 / f); 3713 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3714 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f); 3715 } 3716 3717 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr) 3718 { 3719 int f = sizeof(unsigned long); 3720 3721 if (msr <= 0x1fff) 3722 __set_bit(msr, msr_bitmap + 0x000 / f); 3723 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3724 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f); 3725 } 3726 3727 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr) 3728 { 3729 int f = sizeof(unsigned long); 3730 3731 if (msr <= 0x1fff) 3732 __set_bit(msr, msr_bitmap + 0x800 / f); 3733 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3734 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f); 3735 } 3736 3737 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3738 { 3739 struct vcpu_vmx *vmx = to_vmx(vcpu); 3740 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3741 3742 if (!cpu_has_vmx_msr_bitmap()) 3743 return; 3744 3745 if (static_branch_unlikely(&enable_evmcs)) 3746 evmcs_touch_msr_bitmap(); 3747 3748 /* 3749 * Mark the desired intercept state in shadow bitmap, this is needed 3750 * for resync when the MSR filters change. 3751 */ 3752 if (is_valid_passthrough_msr(msr)) { 3753 int idx = possible_passthrough_msr_slot(msr); 3754 3755 if (idx != -ENOENT) { 3756 if (type & MSR_TYPE_R) 3757 clear_bit(idx, vmx->shadow_msr_intercept.read); 3758 if (type & MSR_TYPE_W) 3759 clear_bit(idx, vmx->shadow_msr_intercept.write); 3760 } 3761 } 3762 3763 if ((type & MSR_TYPE_R) && 3764 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3765 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3766 type &= ~MSR_TYPE_R; 3767 } 3768 3769 if ((type & MSR_TYPE_W) && 3770 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3771 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3772 type &= ~MSR_TYPE_W; 3773 } 3774 3775 if (type & MSR_TYPE_R) 3776 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3777 3778 if (type & MSR_TYPE_W) 3779 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3780 } 3781 3782 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3783 { 3784 struct vcpu_vmx *vmx = to_vmx(vcpu); 3785 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3786 3787 if (!cpu_has_vmx_msr_bitmap()) 3788 return; 3789 3790 if (static_branch_unlikely(&enable_evmcs)) 3791 evmcs_touch_msr_bitmap(); 3792 3793 /* 3794 * Mark the desired intercept state in shadow bitmap, this is needed 3795 * for resync when the MSR filter changes. 3796 */ 3797 if (is_valid_passthrough_msr(msr)) { 3798 int idx = possible_passthrough_msr_slot(msr); 3799 3800 if (idx != -ENOENT) { 3801 if (type & MSR_TYPE_R) 3802 set_bit(idx, vmx->shadow_msr_intercept.read); 3803 if (type & MSR_TYPE_W) 3804 set_bit(idx, vmx->shadow_msr_intercept.write); 3805 } 3806 } 3807 3808 if (type & MSR_TYPE_R) 3809 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3810 3811 if (type & MSR_TYPE_W) 3812 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3813 } 3814 3815 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode) 3816 { 3817 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; 3818 unsigned long read_intercept; 3819 int msr; 3820 3821 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3822 3823 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3824 unsigned int read_idx = msr / BITS_PER_LONG; 3825 unsigned int write_idx = read_idx + (0x800 / sizeof(long)); 3826 3827 msr_bitmap[read_idx] = read_intercept; 3828 msr_bitmap[write_idx] = ~0ul; 3829 } 3830 } 3831 3832 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 3833 { 3834 struct vcpu_vmx *vmx = to_vmx(vcpu); 3835 u8 mode; 3836 3837 if (!cpu_has_vmx_msr_bitmap()) 3838 return; 3839 3840 if (cpu_has_secondary_exec_ctrls() && 3841 (secondary_exec_controls_get(vmx) & 3842 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3843 mode = MSR_BITMAP_MODE_X2APIC; 3844 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3845 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3846 } else { 3847 mode = 0; 3848 } 3849 3850 if (mode == vmx->x2apic_msr_bitmap_mode) 3851 return; 3852 3853 vmx->x2apic_msr_bitmap_mode = mode; 3854 3855 vmx_reset_x2apic_msrs(vcpu, mode); 3856 3857 /* 3858 * TPR reads and writes can be virtualized even if virtual interrupt 3859 * delivery is not in use. 3860 */ 3861 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 3862 !(mode & MSR_BITMAP_MODE_X2APIC)); 3863 3864 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3865 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 3866 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3867 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3868 } 3869 } 3870 3871 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 3872 { 3873 struct vcpu_vmx *vmx = to_vmx(vcpu); 3874 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3875 u32 i; 3876 3877 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 3878 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 3879 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 3880 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 3881 for (i = 0; i < vmx->pt_desc.addr_range; i++) { 3882 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3883 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3884 } 3885 } 3886 3887 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3888 { 3889 struct vcpu_vmx *vmx = to_vmx(vcpu); 3890 void *vapic_page; 3891 u32 vppr; 3892 int rvi; 3893 3894 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3895 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3896 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3897 return false; 3898 3899 rvi = vmx_get_rvi(); 3900 3901 vapic_page = vmx->nested.virtual_apic_map.hva; 3902 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 3903 3904 return ((rvi & 0xf0) > (vppr & 0xf0)); 3905 } 3906 3907 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 3908 { 3909 struct vcpu_vmx *vmx = to_vmx(vcpu); 3910 u32 i; 3911 3912 /* 3913 * Set intercept permissions for all potentially passed through MSRs 3914 * again. They will automatically get filtered through the MSR filter, 3915 * so we are back in sync after this. 3916 */ 3917 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 3918 u32 msr = vmx_possible_passthrough_msrs[i]; 3919 bool read = test_bit(i, vmx->shadow_msr_intercept.read); 3920 bool write = test_bit(i, vmx->shadow_msr_intercept.write); 3921 3922 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read); 3923 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write); 3924 } 3925 3926 pt_update_intercept_for_msr(vcpu); 3927 } 3928 3929 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 3930 bool nested) 3931 { 3932 #ifdef CONFIG_SMP 3933 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; 3934 3935 if (vcpu->mode == IN_GUEST_MODE) { 3936 /* 3937 * The vector of interrupt to be delivered to vcpu had 3938 * been set in PIR before this function. 3939 * 3940 * Following cases will be reached in this block, and 3941 * we always send a notification event in all cases as 3942 * explained below. 3943 * 3944 * Case 1: vcpu keeps in non-root mode. Sending a 3945 * notification event posts the interrupt to vcpu. 3946 * 3947 * Case 2: vcpu exits to root mode and is still 3948 * runnable. PIR will be synced to vIRR before the 3949 * next vcpu entry. Sending a notification event in 3950 * this case has no effect, as vcpu is not in root 3951 * mode. 3952 * 3953 * Case 3: vcpu exits to root mode and is blocked. 3954 * vcpu_block() has already synced PIR to vIRR and 3955 * never blocks vcpu if vIRR is not cleared. Therefore, 3956 * a blocked vcpu here does not wait for any requested 3957 * interrupts in PIR, and sending a notification event 3958 * which has no effect is safe here. 3959 */ 3960 3961 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 3962 return true; 3963 } 3964 #endif 3965 return false; 3966 } 3967 3968 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 3969 int vector) 3970 { 3971 struct vcpu_vmx *vmx = to_vmx(vcpu); 3972 3973 if (is_guest_mode(vcpu) && 3974 vector == vmx->nested.posted_intr_nv) { 3975 /* 3976 * If a posted intr is not recognized by hardware, 3977 * we will accomplish it in the next vmentry. 3978 */ 3979 vmx->nested.pi_pending = true; 3980 kvm_make_request(KVM_REQ_EVENT, vcpu); 3981 /* the PIR and ON have been set by L1. */ 3982 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) 3983 kvm_vcpu_kick(vcpu); 3984 return 0; 3985 } 3986 return -1; 3987 } 3988 /* 3989 * Send interrupt to vcpu via posted interrupt way. 3990 * 1. If target vcpu is running(non-root mode), send posted interrupt 3991 * notification to vcpu and hardware will sync PIR to vIRR atomically. 3992 * 2. If target vcpu isn't running(root mode), kick it to pick up the 3993 * interrupt from PIR in next vmentry. 3994 */ 3995 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 3996 { 3997 struct vcpu_vmx *vmx = to_vmx(vcpu); 3998 int r; 3999 4000 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4001 if (!r) 4002 return 0; 4003 4004 if (!vcpu->arch.apicv_active) 4005 return -1; 4006 4007 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4008 return 0; 4009 4010 /* If a previous notification has sent the IPI, nothing to do. */ 4011 if (pi_test_and_set_on(&vmx->pi_desc)) 4012 return 0; 4013 4014 if (vcpu != kvm_get_running_vcpu() && 4015 !kvm_vcpu_trigger_posted_interrupt(vcpu, false)) 4016 kvm_vcpu_kick(vcpu); 4017 4018 return 0; 4019 } 4020 4021 /* 4022 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4023 * will not change in the lifetime of the guest. 4024 * Note that host-state that does change is set elsewhere. E.g., host-state 4025 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4026 */ 4027 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4028 { 4029 u32 low32, high32; 4030 unsigned long tmpl; 4031 unsigned long cr0, cr3, cr4; 4032 4033 cr0 = read_cr0(); 4034 WARN_ON(cr0 & X86_CR0_TS); 4035 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4036 4037 /* 4038 * Save the most likely value for this task's CR3 in the VMCS. 4039 * We can't use __get_current_cr3_fast() because we're not atomic. 4040 */ 4041 cr3 = __read_cr3(); 4042 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4043 vmx->loaded_vmcs->host_state.cr3 = cr3; 4044 4045 /* Save the most likely value for this task's CR4 in the VMCS. */ 4046 cr4 = cr4_read_shadow(); 4047 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4048 vmx->loaded_vmcs->host_state.cr4 = cr4; 4049 4050 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4051 #ifdef CONFIG_X86_64 4052 /* 4053 * Load null selectors, so we can avoid reloading them in 4054 * vmx_prepare_switch_to_host(), in case userspace uses 4055 * the null selectors too (the expected case). 4056 */ 4057 vmcs_write16(HOST_DS_SELECTOR, 0); 4058 vmcs_write16(HOST_ES_SELECTOR, 0); 4059 #else 4060 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4061 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4062 #endif 4063 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4064 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4065 4066 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4067 4068 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4069 4070 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4071 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4072 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4073 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4074 4075 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4076 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4077 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4078 } 4079 4080 if (cpu_has_load_ia32_efer()) 4081 vmcs_write64(HOST_IA32_EFER, host_efer); 4082 } 4083 4084 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4085 { 4086 struct kvm_vcpu *vcpu = &vmx->vcpu; 4087 4088 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4089 ~vcpu->arch.cr4_guest_rsvd_bits; 4090 if (!enable_ept) 4091 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE; 4092 if (is_guest_mode(&vmx->vcpu)) 4093 vcpu->arch.cr4_guest_owned_bits &= 4094 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4095 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4096 } 4097 4098 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4099 { 4100 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4101 4102 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4103 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4104 4105 if (!enable_vnmi) 4106 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4107 4108 if (!enable_preemption_timer) 4109 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4110 4111 return pin_based_exec_ctrl; 4112 } 4113 4114 static u32 vmx_vmentry_ctrl(void) 4115 { 4116 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4117 4118 if (vmx_pt_mode_is_system()) 4119 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4120 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4121 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4122 return vmentry_ctrl & 4123 ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER); 4124 } 4125 4126 static u32 vmx_vmexit_ctrl(void) 4127 { 4128 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4129 4130 if (vmx_pt_mode_is_system()) 4131 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4132 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4133 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4134 return vmexit_ctrl & 4135 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4136 } 4137 4138 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4139 { 4140 struct vcpu_vmx *vmx = to_vmx(vcpu); 4141 4142 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4143 if (cpu_has_secondary_exec_ctrls()) { 4144 if (kvm_vcpu_apicv_active(vcpu)) 4145 secondary_exec_controls_setbit(vmx, 4146 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4147 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4148 else 4149 secondary_exec_controls_clearbit(vmx, 4150 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4151 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4152 } 4153 4154 vmx_update_msr_bitmap_x2apic(vcpu); 4155 } 4156 4157 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4158 { 4159 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4160 4161 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4162 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4163 4164 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 4165 exec_control &= ~CPU_BASED_TPR_SHADOW; 4166 #ifdef CONFIG_X86_64 4167 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4168 CPU_BASED_CR8_LOAD_EXITING; 4169 #endif 4170 } 4171 if (!enable_ept) 4172 exec_control |= CPU_BASED_CR3_STORE_EXITING | 4173 CPU_BASED_CR3_LOAD_EXITING | 4174 CPU_BASED_INVLPG_EXITING; 4175 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4176 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4177 CPU_BASED_MONITOR_EXITING); 4178 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4179 exec_control &= ~CPU_BASED_HLT_EXITING; 4180 return exec_control; 4181 } 4182 4183 /* 4184 * Adjust a single secondary execution control bit to intercept/allow an 4185 * instruction in the guest. This is usually done based on whether or not a 4186 * feature has been exposed to the guest in order to correctly emulate faults. 4187 */ 4188 static inline void 4189 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4190 u32 control, bool enabled, bool exiting) 4191 { 4192 /* 4193 * If the control is for an opt-in feature, clear the control if the 4194 * feature is not exposed to the guest, i.e. not enabled. If the 4195 * control is opt-out, i.e. an exiting control, clear the control if 4196 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4197 * disabled for the associated instruction. Note, the caller is 4198 * responsible presetting exec_control to set all supported bits. 4199 */ 4200 if (enabled == exiting) 4201 *exec_control &= ~control; 4202 4203 /* 4204 * Update the nested MSR settings so that a nested VMM can/can't set 4205 * controls for features that are/aren't exposed to the guest. 4206 */ 4207 if (nested) { 4208 if (enabled) 4209 vmx->nested.msrs.secondary_ctls_high |= control; 4210 else 4211 vmx->nested.msrs.secondary_ctls_high &= ~control; 4212 } 4213 } 4214 4215 /* 4216 * Wrapper macro for the common case of adjusting a secondary execution control 4217 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4218 * verifies that the control is actually supported by KVM and hardware. 4219 */ 4220 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4221 ({ \ 4222 bool __enabled; \ 4223 \ 4224 if (cpu_has_vmx_##name()) { \ 4225 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4226 X86_FEATURE_##feat_name); \ 4227 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4228 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4229 } \ 4230 }) 4231 4232 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4233 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4234 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4235 4236 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4237 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4238 4239 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4240 { 4241 struct kvm_vcpu *vcpu = &vmx->vcpu; 4242 4243 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4244 4245 if (vmx_pt_mode_is_system()) 4246 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4247 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4248 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4249 if (vmx->vpid == 0) 4250 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4251 if (!enable_ept) { 4252 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4253 enable_unrestricted_guest = 0; 4254 } 4255 if (!enable_unrestricted_guest) 4256 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4257 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4258 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4259 if (!kvm_vcpu_apicv_active(vcpu)) 4260 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4261 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4262 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4263 4264 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4265 * in vmx_set_cr4. */ 4266 exec_control &= ~SECONDARY_EXEC_DESC; 4267 4268 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4269 (handle_vmptrld). 4270 We can NOT enable shadow_vmcs here because we don't have yet 4271 a current VMCS12 4272 */ 4273 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4274 4275 /* 4276 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4277 * it needs to be set here when dirty logging is already active, e.g. 4278 * if this vCPU was created after dirty logging was enabled. 4279 */ 4280 if (!vcpu->kvm->arch.cpu_dirty_logging_count) 4281 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4282 4283 if (cpu_has_vmx_xsaves()) { 4284 /* Exposing XSAVES only when XSAVE is exposed */ 4285 bool xsaves_enabled = 4286 boot_cpu_has(X86_FEATURE_XSAVE) && 4287 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4288 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4289 4290 vcpu->arch.xsaves_enabled = xsaves_enabled; 4291 4292 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4293 SECONDARY_EXEC_XSAVES, 4294 xsaves_enabled, false); 4295 } 4296 4297 /* 4298 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4299 * feature is exposed to the guest. This creates a virtualization hole 4300 * if both are supported in hardware but only one is exposed to the 4301 * guest, but letting the guest execute RDTSCP or RDPID when either one 4302 * is advertised is preferable to emulating the advertised instruction 4303 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4304 */ 4305 if (cpu_has_vmx_rdtscp()) { 4306 bool rdpid_or_rdtscp_enabled = 4307 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4308 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4309 4310 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4311 SECONDARY_EXEC_ENABLE_RDTSCP, 4312 rdpid_or_rdtscp_enabled, false); 4313 } 4314 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4315 4316 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4317 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4318 4319 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4320 ENABLE_USR_WAIT_PAUSE, false); 4321 4322 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4323 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4324 4325 return exec_control; 4326 } 4327 4328 #define VMX_XSS_EXIT_BITMAP 0 4329 4330 /* 4331 * Noting that the initialization of Guest-state Area of VMCS is in 4332 * vmx_vcpu_reset(). 4333 */ 4334 static void init_vmcs(struct vcpu_vmx *vmx) 4335 { 4336 if (nested) 4337 nested_vmx_set_vmcs_shadowing_bitmap(); 4338 4339 if (cpu_has_vmx_msr_bitmap()) 4340 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4341 4342 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ 4343 4344 /* Control */ 4345 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4346 4347 exec_controls_set(vmx, vmx_exec_control(vmx)); 4348 4349 if (cpu_has_secondary_exec_ctrls()) 4350 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4351 4352 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4353 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4354 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4355 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4356 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4357 4358 vmcs_write16(GUEST_INTR_STATUS, 0); 4359 4360 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4361 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4362 } 4363 4364 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4365 vmcs_write32(PLE_GAP, ple_gap); 4366 vmx->ple_window = ple_window; 4367 vmx->ple_window_dirty = true; 4368 } 4369 4370 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4371 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4372 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4373 4374 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4375 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4376 vmx_set_constant_host_state(vmx); 4377 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4378 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4379 4380 if (cpu_has_vmx_vmfunc()) 4381 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4382 4383 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4384 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4385 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4386 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4387 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4388 4389 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4390 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4391 4392 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4393 4394 /* 22.2.1, 20.8.1 */ 4395 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4396 4397 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS; 4398 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4399 4400 set_cr4_guest_host_mask(vmx); 4401 4402 if (vmx->vpid != 0) 4403 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4404 4405 if (cpu_has_vmx_xsaves()) 4406 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4407 4408 if (enable_pml) { 4409 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4410 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4411 } 4412 4413 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4414 4415 if (vmx_pt_mode_is_host_guest()) { 4416 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4417 /* Bit[6~0] are forced to 1, writes are ignored. */ 4418 vmx->pt_desc.guest.output_mask = 0x7F; 4419 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4420 } 4421 4422 vmcs_write32(GUEST_SYSENTER_CS, 0); 4423 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4424 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4425 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4426 4427 if (cpu_has_vmx_tpr_shadow()) { 4428 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4429 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4430 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4431 __pa(vmx->vcpu.arch.apic->regs)); 4432 vmcs_write32(TPR_THRESHOLD, 0); 4433 } 4434 4435 vmx_setup_uret_msrs(vmx); 4436 } 4437 4438 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4439 { 4440 struct vcpu_vmx *vmx = to_vmx(vcpu); 4441 4442 vmx->rmode.vm86_active = 0; 4443 vmx->spec_ctrl = 0; 4444 4445 vmx->msr_ia32_umwait_control = 0; 4446 4447 vmx->hv_deadline_tsc = -1; 4448 kvm_set_cr8(vcpu, 0); 4449 4450 vmx_segment_cache_clear(vmx); 4451 4452 seg_setup(VCPU_SREG_CS); 4453 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4454 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4455 4456 seg_setup(VCPU_SREG_DS); 4457 seg_setup(VCPU_SREG_ES); 4458 seg_setup(VCPU_SREG_FS); 4459 seg_setup(VCPU_SREG_GS); 4460 seg_setup(VCPU_SREG_SS); 4461 4462 vmcs_write16(GUEST_TR_SELECTOR, 0); 4463 vmcs_writel(GUEST_TR_BASE, 0); 4464 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4465 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4466 4467 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4468 vmcs_writel(GUEST_LDTR_BASE, 0); 4469 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4470 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4471 4472 vmcs_writel(GUEST_GDTR_BASE, 0); 4473 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4474 4475 vmcs_writel(GUEST_IDTR_BASE, 0); 4476 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4477 4478 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4479 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4480 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4481 if (kvm_mpx_supported()) 4482 vmcs_write64(GUEST_BNDCFGS, 0); 4483 4484 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4485 4486 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4487 4488 vpid_sync_context(vmx->vpid); 4489 } 4490 4491 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4492 { 4493 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4494 } 4495 4496 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4497 { 4498 if (!enable_vnmi || 4499 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4500 vmx_enable_irq_window(vcpu); 4501 return; 4502 } 4503 4504 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4505 } 4506 4507 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4508 { 4509 struct vcpu_vmx *vmx = to_vmx(vcpu); 4510 uint32_t intr; 4511 int irq = vcpu->arch.interrupt.nr; 4512 4513 trace_kvm_inj_virq(irq); 4514 4515 ++vcpu->stat.irq_injections; 4516 if (vmx->rmode.vm86_active) { 4517 int inc_eip = 0; 4518 if (vcpu->arch.interrupt.soft) 4519 inc_eip = vcpu->arch.event_exit_inst_len; 4520 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4521 return; 4522 } 4523 intr = irq | INTR_INFO_VALID_MASK; 4524 if (vcpu->arch.interrupt.soft) { 4525 intr |= INTR_TYPE_SOFT_INTR; 4526 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4527 vmx->vcpu.arch.event_exit_inst_len); 4528 } else 4529 intr |= INTR_TYPE_EXT_INTR; 4530 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4531 4532 vmx_clear_hlt(vcpu); 4533 } 4534 4535 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4536 { 4537 struct vcpu_vmx *vmx = to_vmx(vcpu); 4538 4539 if (!enable_vnmi) { 4540 /* 4541 * Tracking the NMI-blocked state in software is built upon 4542 * finding the next open IRQ window. This, in turn, depends on 4543 * well-behaving guests: They have to keep IRQs disabled at 4544 * least as long as the NMI handler runs. Otherwise we may 4545 * cause NMI nesting, maybe breaking the guest. But as this is 4546 * highly unlikely, we can live with the residual risk. 4547 */ 4548 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4549 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4550 } 4551 4552 ++vcpu->stat.nmi_injections; 4553 vmx->loaded_vmcs->nmi_known_unmasked = false; 4554 4555 if (vmx->rmode.vm86_active) { 4556 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4557 return; 4558 } 4559 4560 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4561 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4562 4563 vmx_clear_hlt(vcpu); 4564 } 4565 4566 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4567 { 4568 struct vcpu_vmx *vmx = to_vmx(vcpu); 4569 bool masked; 4570 4571 if (!enable_vnmi) 4572 return vmx->loaded_vmcs->soft_vnmi_blocked; 4573 if (vmx->loaded_vmcs->nmi_known_unmasked) 4574 return false; 4575 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4576 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4577 return masked; 4578 } 4579 4580 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4581 { 4582 struct vcpu_vmx *vmx = to_vmx(vcpu); 4583 4584 if (!enable_vnmi) { 4585 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4586 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4587 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4588 } 4589 } else { 4590 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4591 if (masked) 4592 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4593 GUEST_INTR_STATE_NMI); 4594 else 4595 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4596 GUEST_INTR_STATE_NMI); 4597 } 4598 } 4599 4600 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 4601 { 4602 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4603 return false; 4604 4605 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4606 return true; 4607 4608 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4609 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 4610 GUEST_INTR_STATE_NMI)); 4611 } 4612 4613 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4614 { 4615 if (to_vmx(vcpu)->nested.nested_run_pending) 4616 return -EBUSY; 4617 4618 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 4619 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4620 return -EBUSY; 4621 4622 return !vmx_nmi_blocked(vcpu); 4623 } 4624 4625 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 4626 { 4627 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4628 return false; 4629 4630 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 4631 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4632 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4633 } 4634 4635 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4636 { 4637 if (to_vmx(vcpu)->nested.nested_run_pending) 4638 return -EBUSY; 4639 4640 /* 4641 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 4642 * e.g. if the IRQ arrived asynchronously after checking nested events. 4643 */ 4644 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4645 return -EBUSY; 4646 4647 return !vmx_interrupt_blocked(vcpu); 4648 } 4649 4650 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4651 { 4652 void __user *ret; 4653 4654 if (enable_unrestricted_guest) 4655 return 0; 4656 4657 mutex_lock(&kvm->slots_lock); 4658 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4659 PAGE_SIZE * 3); 4660 mutex_unlock(&kvm->slots_lock); 4661 4662 if (IS_ERR(ret)) 4663 return PTR_ERR(ret); 4664 4665 to_kvm_vmx(kvm)->tss_addr = addr; 4666 4667 return init_rmode_tss(kvm, ret); 4668 } 4669 4670 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4671 { 4672 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4673 return 0; 4674 } 4675 4676 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4677 { 4678 switch (vec) { 4679 case BP_VECTOR: 4680 /* 4681 * Update instruction length as we may reinject the exception 4682 * from user space while in guest debugging mode. 4683 */ 4684 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4685 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4686 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4687 return false; 4688 fallthrough; 4689 case DB_VECTOR: 4690 return !(vcpu->guest_debug & 4691 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 4692 case DE_VECTOR: 4693 case OF_VECTOR: 4694 case BR_VECTOR: 4695 case UD_VECTOR: 4696 case DF_VECTOR: 4697 case SS_VECTOR: 4698 case GP_VECTOR: 4699 case MF_VECTOR: 4700 return true; 4701 } 4702 return false; 4703 } 4704 4705 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4706 int vec, u32 err_code) 4707 { 4708 /* 4709 * Instruction with address size override prefix opcode 0x67 4710 * Cause the #SS fault with 0 error code in VM86 mode. 4711 */ 4712 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4713 if (kvm_emulate_instruction(vcpu, 0)) { 4714 if (vcpu->arch.halt_request) { 4715 vcpu->arch.halt_request = 0; 4716 return kvm_vcpu_halt(vcpu); 4717 } 4718 return 1; 4719 } 4720 return 0; 4721 } 4722 4723 /* 4724 * Forward all other exceptions that are valid in real mode. 4725 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4726 * the required debugging infrastructure rework. 4727 */ 4728 kvm_queue_exception(vcpu, vec); 4729 return 1; 4730 } 4731 4732 static int handle_machine_check(struct kvm_vcpu *vcpu) 4733 { 4734 /* handled by vmx_vcpu_run() */ 4735 return 1; 4736 } 4737 4738 /* 4739 * If the host has split lock detection disabled, then #AC is 4740 * unconditionally injected into the guest, which is the pre split lock 4741 * detection behaviour. 4742 * 4743 * If the host has split lock detection enabled then #AC is 4744 * only injected into the guest when: 4745 * - Guest CPL == 3 (user mode) 4746 * - Guest has #AC detection enabled in CR0 4747 * - Guest EFLAGS has AC bit set 4748 */ 4749 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 4750 { 4751 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 4752 return true; 4753 4754 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) && 4755 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 4756 } 4757 4758 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 4759 { 4760 struct vcpu_vmx *vmx = to_vmx(vcpu); 4761 struct kvm_run *kvm_run = vcpu->run; 4762 u32 intr_info, ex_no, error_code; 4763 unsigned long cr2, dr6; 4764 u32 vect_info; 4765 4766 vect_info = vmx->idt_vectoring_info; 4767 intr_info = vmx_get_intr_info(vcpu); 4768 4769 if (is_machine_check(intr_info) || is_nmi(intr_info)) 4770 return 1; /* handled by handle_exception_nmi_irqoff() */ 4771 4772 if (is_invalid_opcode(intr_info)) 4773 return handle_ud(vcpu); 4774 4775 error_code = 0; 4776 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4777 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4778 4779 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4780 WARN_ON_ONCE(!enable_vmware_backdoor); 4781 4782 /* 4783 * VMware backdoor emulation on #GP interception only handles 4784 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 4785 * error code on #GP. 4786 */ 4787 if (error_code) { 4788 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4789 return 1; 4790 } 4791 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 4792 } 4793 4794 /* 4795 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4796 * MMIO, it is better to report an internal error. 4797 * See the comments in vmx_handle_exit. 4798 */ 4799 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4800 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4801 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4802 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4803 vcpu->run->internal.ndata = 4; 4804 vcpu->run->internal.data[0] = vect_info; 4805 vcpu->run->internal.data[1] = intr_info; 4806 vcpu->run->internal.data[2] = error_code; 4807 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 4808 return 0; 4809 } 4810 4811 if (is_page_fault(intr_info)) { 4812 cr2 = vmx_get_exit_qual(vcpu); 4813 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 4814 /* 4815 * EPT will cause page fault only if we need to 4816 * detect illegal GPAs. 4817 */ 4818 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 4819 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 4820 return 1; 4821 } else 4822 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4823 } 4824 4825 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4826 4827 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4828 return handle_rmode_exception(vcpu, ex_no, error_code); 4829 4830 switch (ex_no) { 4831 case DB_VECTOR: 4832 dr6 = vmx_get_exit_qual(vcpu); 4833 if (!(vcpu->guest_debug & 4834 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4835 if (is_icebp(intr_info)) 4836 WARN_ON(!skip_emulated_instruction(vcpu)); 4837 4838 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 4839 return 1; 4840 } 4841 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 4842 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4843 fallthrough; 4844 case BP_VECTOR: 4845 /* 4846 * Update instruction length as we may reinject #BP from 4847 * user space while in guest debugging mode. Reading it for 4848 * #DB as well causes no harm, it is not used in that case. 4849 */ 4850 vmx->vcpu.arch.event_exit_inst_len = 4851 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4852 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4853 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 4854 kvm_run->debug.arch.exception = ex_no; 4855 break; 4856 case AC_VECTOR: 4857 if (vmx_guest_inject_ac(vcpu)) { 4858 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4859 return 1; 4860 } 4861 4862 /* 4863 * Handle split lock. Depending on detection mode this will 4864 * either warn and disable split lock detection for this 4865 * task or force SIGBUS on it. 4866 */ 4867 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 4868 return 1; 4869 fallthrough; 4870 default: 4871 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4872 kvm_run->ex.exception = ex_no; 4873 kvm_run->ex.error_code = error_code; 4874 break; 4875 } 4876 return 0; 4877 } 4878 4879 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 4880 { 4881 ++vcpu->stat.irq_exits; 4882 return 1; 4883 } 4884 4885 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4886 { 4887 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 4888 vcpu->mmio_needed = 0; 4889 return 0; 4890 } 4891 4892 static int handle_io(struct kvm_vcpu *vcpu) 4893 { 4894 unsigned long exit_qualification; 4895 int size, in, string; 4896 unsigned port; 4897 4898 exit_qualification = vmx_get_exit_qual(vcpu); 4899 string = (exit_qualification & 16) != 0; 4900 4901 ++vcpu->stat.io_exits; 4902 4903 if (string) 4904 return kvm_emulate_instruction(vcpu, 0); 4905 4906 port = exit_qualification >> 16; 4907 size = (exit_qualification & 7) + 1; 4908 in = (exit_qualification & 8) != 0; 4909 4910 return kvm_fast_pio(vcpu, size, port, in); 4911 } 4912 4913 static void 4914 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 4915 { 4916 /* 4917 * Patch in the VMCALL instruction: 4918 */ 4919 hypercall[0] = 0x0f; 4920 hypercall[1] = 0x01; 4921 hypercall[2] = 0xc1; 4922 } 4923 4924 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 4925 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 4926 { 4927 if (is_guest_mode(vcpu)) { 4928 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4929 unsigned long orig_val = val; 4930 4931 /* 4932 * We get here when L2 changed cr0 in a way that did not change 4933 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 4934 * but did change L0 shadowed bits. So we first calculate the 4935 * effective cr0 value that L1 would like to write into the 4936 * hardware. It consists of the L2-owned bits from the new 4937 * value combined with the L1-owned bits from L1's guest_cr0. 4938 */ 4939 val = (val & ~vmcs12->cr0_guest_host_mask) | 4940 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 4941 4942 if (!nested_guest_cr0_valid(vcpu, val)) 4943 return 1; 4944 4945 if (kvm_set_cr0(vcpu, val)) 4946 return 1; 4947 vmcs_writel(CR0_READ_SHADOW, orig_val); 4948 return 0; 4949 } else { 4950 if (to_vmx(vcpu)->nested.vmxon && 4951 !nested_host_cr0_valid(vcpu, val)) 4952 return 1; 4953 4954 return kvm_set_cr0(vcpu, val); 4955 } 4956 } 4957 4958 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 4959 { 4960 if (is_guest_mode(vcpu)) { 4961 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 4962 unsigned long orig_val = val; 4963 4964 /* analogously to handle_set_cr0 */ 4965 val = (val & ~vmcs12->cr4_guest_host_mask) | 4966 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 4967 if (kvm_set_cr4(vcpu, val)) 4968 return 1; 4969 vmcs_writel(CR4_READ_SHADOW, orig_val); 4970 return 0; 4971 } else 4972 return kvm_set_cr4(vcpu, val); 4973 } 4974 4975 static int handle_desc(struct kvm_vcpu *vcpu) 4976 { 4977 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 4978 return kvm_emulate_instruction(vcpu, 0); 4979 } 4980 4981 static int handle_cr(struct kvm_vcpu *vcpu) 4982 { 4983 unsigned long exit_qualification, val; 4984 int cr; 4985 int reg; 4986 int err; 4987 int ret; 4988 4989 exit_qualification = vmx_get_exit_qual(vcpu); 4990 cr = exit_qualification & 15; 4991 reg = (exit_qualification >> 8) & 15; 4992 switch ((exit_qualification >> 4) & 3) { 4993 case 0: /* mov to cr */ 4994 val = kvm_register_read(vcpu, reg); 4995 trace_kvm_cr_write(cr, val); 4996 switch (cr) { 4997 case 0: 4998 err = handle_set_cr0(vcpu, val); 4999 return kvm_complete_insn_gp(vcpu, err); 5000 case 3: 5001 WARN_ON_ONCE(enable_unrestricted_guest); 5002 5003 err = kvm_set_cr3(vcpu, val); 5004 return kvm_complete_insn_gp(vcpu, err); 5005 case 4: 5006 err = handle_set_cr4(vcpu, val); 5007 return kvm_complete_insn_gp(vcpu, err); 5008 case 8: { 5009 u8 cr8_prev = kvm_get_cr8(vcpu); 5010 u8 cr8 = (u8)val; 5011 err = kvm_set_cr8(vcpu, cr8); 5012 ret = kvm_complete_insn_gp(vcpu, err); 5013 if (lapic_in_kernel(vcpu)) 5014 return ret; 5015 if (cr8_prev <= cr8) 5016 return ret; 5017 /* 5018 * TODO: we might be squashing a 5019 * KVM_GUESTDBG_SINGLESTEP-triggered 5020 * KVM_EXIT_DEBUG here. 5021 */ 5022 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5023 return 0; 5024 } 5025 } 5026 break; 5027 case 2: /* clts */ 5028 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5029 return -EIO; 5030 case 1: /*mov from cr*/ 5031 switch (cr) { 5032 case 3: 5033 WARN_ON_ONCE(enable_unrestricted_guest); 5034 5035 val = kvm_read_cr3(vcpu); 5036 kvm_register_write(vcpu, reg, val); 5037 trace_kvm_cr_read(cr, val); 5038 return kvm_skip_emulated_instruction(vcpu); 5039 case 8: 5040 val = kvm_get_cr8(vcpu); 5041 kvm_register_write(vcpu, reg, val); 5042 trace_kvm_cr_read(cr, val); 5043 return kvm_skip_emulated_instruction(vcpu); 5044 } 5045 break; 5046 case 3: /* lmsw */ 5047 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5048 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 5049 kvm_lmsw(vcpu, val); 5050 5051 return kvm_skip_emulated_instruction(vcpu); 5052 default: 5053 break; 5054 } 5055 vcpu->run->exit_reason = 0; 5056 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5057 (int)(exit_qualification >> 4) & 3, cr); 5058 return 0; 5059 } 5060 5061 static int handle_dr(struct kvm_vcpu *vcpu) 5062 { 5063 unsigned long exit_qualification; 5064 int dr, dr7, reg; 5065 int err = 1; 5066 5067 exit_qualification = vmx_get_exit_qual(vcpu); 5068 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5069 5070 /* First, if DR does not exist, trigger UD */ 5071 if (!kvm_require_dr(vcpu, dr)) 5072 return 1; 5073 5074 if (kvm_x86_ops.get_cpl(vcpu) > 0) 5075 goto out; 5076 5077 dr7 = vmcs_readl(GUEST_DR7); 5078 if (dr7 & DR7_GD) { 5079 /* 5080 * As the vm-exit takes precedence over the debug trap, we 5081 * need to emulate the latter, either for the host or the 5082 * guest debugging itself. 5083 */ 5084 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5085 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5086 vcpu->run->debug.arch.dr7 = dr7; 5087 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5088 vcpu->run->debug.arch.exception = DB_VECTOR; 5089 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5090 return 0; 5091 } else { 5092 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5093 return 1; 5094 } 5095 } 5096 5097 if (vcpu->guest_debug == 0) { 5098 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5099 5100 /* 5101 * No more DR vmexits; force a reload of the debug registers 5102 * and reenter on this instruction. The next vmexit will 5103 * retrieve the full state of the debug registers. 5104 */ 5105 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5106 return 1; 5107 } 5108 5109 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5110 if (exit_qualification & TYPE_MOV_FROM_DR) { 5111 unsigned long val; 5112 5113 kvm_get_dr(vcpu, dr, &val); 5114 kvm_register_write(vcpu, reg, val); 5115 err = 0; 5116 } else { 5117 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5118 } 5119 5120 out: 5121 return kvm_complete_insn_gp(vcpu, err); 5122 } 5123 5124 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5125 { 5126 get_debugreg(vcpu->arch.db[0], 0); 5127 get_debugreg(vcpu->arch.db[1], 1); 5128 get_debugreg(vcpu->arch.db[2], 2); 5129 get_debugreg(vcpu->arch.db[3], 3); 5130 get_debugreg(vcpu->arch.dr6, 6); 5131 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5132 5133 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5134 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5135 5136 /* 5137 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5138 * a stale dr6 from the guest. 5139 */ 5140 set_debugreg(DR6_RESERVED, 6); 5141 } 5142 5143 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5144 { 5145 vmcs_writel(GUEST_DR7, val); 5146 } 5147 5148 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5149 { 5150 kvm_apic_update_ppr(vcpu); 5151 return 1; 5152 } 5153 5154 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5155 { 5156 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5157 5158 kvm_make_request(KVM_REQ_EVENT, vcpu); 5159 5160 ++vcpu->stat.irq_window_exits; 5161 return 1; 5162 } 5163 5164 static int handle_invlpg(struct kvm_vcpu *vcpu) 5165 { 5166 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5167 5168 kvm_mmu_invlpg(vcpu, exit_qualification); 5169 return kvm_skip_emulated_instruction(vcpu); 5170 } 5171 5172 static int handle_apic_access(struct kvm_vcpu *vcpu) 5173 { 5174 if (likely(fasteoi)) { 5175 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5176 int access_type, offset; 5177 5178 access_type = exit_qualification & APIC_ACCESS_TYPE; 5179 offset = exit_qualification & APIC_ACCESS_OFFSET; 5180 /* 5181 * Sane guest uses MOV to write EOI, with written value 5182 * not cared. So make a short-circuit here by avoiding 5183 * heavy instruction emulation. 5184 */ 5185 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5186 (offset == APIC_EOI)) { 5187 kvm_lapic_set_eoi(vcpu); 5188 return kvm_skip_emulated_instruction(vcpu); 5189 } 5190 } 5191 return kvm_emulate_instruction(vcpu, 0); 5192 } 5193 5194 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5195 { 5196 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5197 int vector = exit_qualification & 0xff; 5198 5199 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5200 kvm_apic_set_eoi_accelerated(vcpu, vector); 5201 return 1; 5202 } 5203 5204 static int handle_apic_write(struct kvm_vcpu *vcpu) 5205 { 5206 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5207 u32 offset = exit_qualification & 0xfff; 5208 5209 /* APIC-write VM exit is trap-like and thus no need to adjust IP */ 5210 kvm_apic_write_nodecode(vcpu, offset); 5211 return 1; 5212 } 5213 5214 static int handle_task_switch(struct kvm_vcpu *vcpu) 5215 { 5216 struct vcpu_vmx *vmx = to_vmx(vcpu); 5217 unsigned long exit_qualification; 5218 bool has_error_code = false; 5219 u32 error_code = 0; 5220 u16 tss_selector; 5221 int reason, type, idt_v, idt_index; 5222 5223 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5224 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5225 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5226 5227 exit_qualification = vmx_get_exit_qual(vcpu); 5228 5229 reason = (u32)exit_qualification >> 30; 5230 if (reason == TASK_SWITCH_GATE && idt_v) { 5231 switch (type) { 5232 case INTR_TYPE_NMI_INTR: 5233 vcpu->arch.nmi_injected = false; 5234 vmx_set_nmi_mask(vcpu, true); 5235 break; 5236 case INTR_TYPE_EXT_INTR: 5237 case INTR_TYPE_SOFT_INTR: 5238 kvm_clear_interrupt_queue(vcpu); 5239 break; 5240 case INTR_TYPE_HARD_EXCEPTION: 5241 if (vmx->idt_vectoring_info & 5242 VECTORING_INFO_DELIVER_CODE_MASK) { 5243 has_error_code = true; 5244 error_code = 5245 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5246 } 5247 fallthrough; 5248 case INTR_TYPE_SOFT_EXCEPTION: 5249 kvm_clear_exception_queue(vcpu); 5250 break; 5251 default: 5252 break; 5253 } 5254 } 5255 tss_selector = exit_qualification; 5256 5257 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5258 type != INTR_TYPE_EXT_INTR && 5259 type != INTR_TYPE_NMI_INTR)) 5260 WARN_ON(!skip_emulated_instruction(vcpu)); 5261 5262 /* 5263 * TODO: What about debug traps on tss switch? 5264 * Are we supposed to inject them and update dr6? 5265 */ 5266 return kvm_task_switch(vcpu, tss_selector, 5267 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5268 reason, has_error_code, error_code); 5269 } 5270 5271 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5272 { 5273 unsigned long exit_qualification; 5274 gpa_t gpa; 5275 u64 error_code; 5276 5277 exit_qualification = vmx_get_exit_qual(vcpu); 5278 5279 /* 5280 * EPT violation happened while executing iret from NMI, 5281 * "blocked by NMI" bit has to be set before next VM entry. 5282 * There are errata that may cause this bit to not be set: 5283 * AAK134, BY25. 5284 */ 5285 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5286 enable_vnmi && 5287 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5288 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5289 5290 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5291 trace_kvm_page_fault(gpa, exit_qualification); 5292 5293 /* Is it a read fault? */ 5294 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5295 ? PFERR_USER_MASK : 0; 5296 /* Is it a write fault? */ 5297 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5298 ? PFERR_WRITE_MASK : 0; 5299 /* Is it a fetch fault? */ 5300 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5301 ? PFERR_FETCH_MASK : 0; 5302 /* ept page table entry is present? */ 5303 error_code |= (exit_qualification & 5304 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5305 EPT_VIOLATION_EXECUTABLE)) 5306 ? PFERR_PRESENT_MASK : 0; 5307 5308 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5309 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5310 5311 vcpu->arch.exit_qualification = exit_qualification; 5312 5313 /* 5314 * Check that the GPA doesn't exceed physical memory limits, as that is 5315 * a guest page fault. We have to emulate the instruction here, because 5316 * if the illegal address is that of a paging structure, then 5317 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5318 * would also use advanced VM-exit information for EPT violations to 5319 * reconstruct the page fault error code. 5320 */ 5321 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5322 return kvm_emulate_instruction(vcpu, 0); 5323 5324 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5325 } 5326 5327 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5328 { 5329 gpa_t gpa; 5330 5331 if (!vmx_can_emulate_instruction(vcpu, NULL, 0)) 5332 return 1; 5333 5334 /* 5335 * A nested guest cannot optimize MMIO vmexits, because we have an 5336 * nGPA here instead of the required GPA. 5337 */ 5338 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5339 if (!is_guest_mode(vcpu) && 5340 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5341 trace_kvm_fast_mmio(gpa); 5342 return kvm_skip_emulated_instruction(vcpu); 5343 } 5344 5345 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5346 } 5347 5348 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5349 { 5350 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5351 return -EIO; 5352 5353 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5354 ++vcpu->stat.nmi_window_exits; 5355 kvm_make_request(KVM_REQ_EVENT, vcpu); 5356 5357 return 1; 5358 } 5359 5360 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5361 { 5362 struct vcpu_vmx *vmx = to_vmx(vcpu); 5363 bool intr_window_requested; 5364 unsigned count = 130; 5365 5366 intr_window_requested = exec_controls_get(vmx) & 5367 CPU_BASED_INTR_WINDOW_EXITING; 5368 5369 while (vmx->emulation_required && count-- != 0) { 5370 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5371 return handle_interrupt_window(&vmx->vcpu); 5372 5373 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5374 return 1; 5375 5376 if (!kvm_emulate_instruction(vcpu, 0)) 5377 return 0; 5378 5379 if (vmx->emulation_required && !vmx->rmode.vm86_active && 5380 vcpu->arch.exception.pending) { 5381 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5382 vcpu->run->internal.suberror = 5383 KVM_INTERNAL_ERROR_EMULATION; 5384 vcpu->run->internal.ndata = 0; 5385 return 0; 5386 } 5387 5388 if (vcpu->arch.halt_request) { 5389 vcpu->arch.halt_request = 0; 5390 return kvm_vcpu_halt(vcpu); 5391 } 5392 5393 /* 5394 * Note, return 1 and not 0, vcpu_run() will invoke 5395 * xfer_to_guest_mode() which will create a proper return 5396 * code. 5397 */ 5398 if (__xfer_to_guest_mode_work_pending()) 5399 return 1; 5400 } 5401 5402 return 1; 5403 } 5404 5405 static void grow_ple_window(struct kvm_vcpu *vcpu) 5406 { 5407 struct vcpu_vmx *vmx = to_vmx(vcpu); 5408 unsigned int old = vmx->ple_window; 5409 5410 vmx->ple_window = __grow_ple_window(old, ple_window, 5411 ple_window_grow, 5412 ple_window_max); 5413 5414 if (vmx->ple_window != old) { 5415 vmx->ple_window_dirty = true; 5416 trace_kvm_ple_window_update(vcpu->vcpu_id, 5417 vmx->ple_window, old); 5418 } 5419 } 5420 5421 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5422 { 5423 struct vcpu_vmx *vmx = to_vmx(vcpu); 5424 unsigned int old = vmx->ple_window; 5425 5426 vmx->ple_window = __shrink_ple_window(old, ple_window, 5427 ple_window_shrink, 5428 ple_window); 5429 5430 if (vmx->ple_window != old) { 5431 vmx->ple_window_dirty = true; 5432 trace_kvm_ple_window_update(vcpu->vcpu_id, 5433 vmx->ple_window, old); 5434 } 5435 } 5436 5437 /* 5438 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5439 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5440 */ 5441 static int handle_pause(struct kvm_vcpu *vcpu) 5442 { 5443 if (!kvm_pause_in_guest(vcpu->kvm)) 5444 grow_ple_window(vcpu); 5445 5446 /* 5447 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5448 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5449 * never set PAUSE_EXITING and just set PLE if supported, 5450 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5451 */ 5452 kvm_vcpu_on_spin(vcpu, true); 5453 return kvm_skip_emulated_instruction(vcpu); 5454 } 5455 5456 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5457 { 5458 return 1; 5459 } 5460 5461 static int handle_invpcid(struct kvm_vcpu *vcpu) 5462 { 5463 u32 vmx_instruction_info; 5464 unsigned long type; 5465 gva_t gva; 5466 struct { 5467 u64 pcid; 5468 u64 gla; 5469 } operand; 5470 5471 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5472 kvm_queue_exception(vcpu, UD_VECTOR); 5473 return 1; 5474 } 5475 5476 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5477 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf); 5478 5479 if (type > 3) { 5480 kvm_inject_gp(vcpu, 0); 5481 return 1; 5482 } 5483 5484 /* According to the Intel instruction reference, the memory operand 5485 * is read even if it isn't needed (e.g., for type==all) 5486 */ 5487 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5488 vmx_instruction_info, false, 5489 sizeof(operand), &gva)) 5490 return 1; 5491 5492 return kvm_handle_invpcid(vcpu, type, gva); 5493 } 5494 5495 static int handle_pml_full(struct kvm_vcpu *vcpu) 5496 { 5497 unsigned long exit_qualification; 5498 5499 trace_kvm_pml_full(vcpu->vcpu_id); 5500 5501 exit_qualification = vmx_get_exit_qual(vcpu); 5502 5503 /* 5504 * PML buffer FULL happened while executing iret from NMI, 5505 * "blocked by NMI" bit has to be set before next VM entry. 5506 */ 5507 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5508 enable_vnmi && 5509 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5510 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5511 GUEST_INTR_STATE_NMI); 5512 5513 /* 5514 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5515 * here.., and there's no userspace involvement needed for PML. 5516 */ 5517 return 1; 5518 } 5519 5520 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5521 { 5522 struct vcpu_vmx *vmx = to_vmx(vcpu); 5523 5524 if (!vmx->req_immediate_exit && 5525 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 5526 kvm_lapic_expired_hv_timer(vcpu); 5527 return EXIT_FASTPATH_REENTER_GUEST; 5528 } 5529 5530 return EXIT_FASTPATH_NONE; 5531 } 5532 5533 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5534 { 5535 handle_fastpath_preemption_timer(vcpu); 5536 return 1; 5537 } 5538 5539 /* 5540 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5541 * are overwritten by nested_vmx_setup() when nested=1. 5542 */ 5543 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5544 { 5545 kvm_queue_exception(vcpu, UD_VECTOR); 5546 return 1; 5547 } 5548 5549 #ifndef CONFIG_X86_SGX_KVM 5550 static int handle_encls(struct kvm_vcpu *vcpu) 5551 { 5552 /* 5553 * SGX virtualization is disabled. There is no software enable bit for 5554 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 5555 * the guest from executing ENCLS (when SGX is supported by hardware). 5556 */ 5557 kvm_queue_exception(vcpu, UD_VECTOR); 5558 return 1; 5559 } 5560 #endif /* CONFIG_X86_SGX_KVM */ 5561 5562 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 5563 { 5564 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 5565 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 5566 return 0; 5567 } 5568 5569 /* 5570 * The exit handlers return 1 if the exit was handled fully and guest execution 5571 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5572 * to be done to userspace and return 0. 5573 */ 5574 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5575 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 5576 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5577 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5578 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5579 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5580 [EXIT_REASON_CR_ACCESS] = handle_cr, 5581 [EXIT_REASON_DR_ACCESS] = handle_dr, 5582 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 5583 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 5584 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 5585 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 5586 [EXIT_REASON_HLT] = kvm_emulate_halt, 5587 [EXIT_REASON_INVD] = kvm_emulate_invd, 5588 [EXIT_REASON_INVLPG] = handle_invlpg, 5589 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 5590 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 5591 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5592 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5593 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5594 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5595 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5596 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5597 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5598 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5599 [EXIT_REASON_VMON] = handle_vmx_instruction, 5600 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5601 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5602 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5603 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5604 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 5605 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 5606 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5607 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5608 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5609 [EXIT_REASON_LDTR_TR] = handle_desc, 5610 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5611 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5612 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5613 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 5614 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5615 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 5616 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5617 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5618 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 5619 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 5620 [EXIT_REASON_PML_FULL] = handle_pml_full, 5621 [EXIT_REASON_INVPCID] = handle_invpcid, 5622 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5623 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5624 [EXIT_REASON_ENCLS] = handle_encls, 5625 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 5626 }; 5627 5628 static const int kvm_vmx_max_exit_handlers = 5629 ARRAY_SIZE(kvm_vmx_exit_handlers); 5630 5631 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, 5632 u32 *intr_info, u32 *error_code) 5633 { 5634 struct vcpu_vmx *vmx = to_vmx(vcpu); 5635 5636 *info1 = vmx_get_exit_qual(vcpu); 5637 if (!(vmx->exit_reason.failed_vmentry)) { 5638 *info2 = vmx->idt_vectoring_info; 5639 *intr_info = vmx_get_intr_info(vcpu); 5640 if (is_exception_with_error_code(*intr_info)) 5641 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5642 else 5643 *error_code = 0; 5644 } else { 5645 *info2 = 0; 5646 *intr_info = 0; 5647 *error_code = 0; 5648 } 5649 } 5650 5651 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5652 { 5653 if (vmx->pml_pg) { 5654 __free_page(vmx->pml_pg); 5655 vmx->pml_pg = NULL; 5656 } 5657 } 5658 5659 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5660 { 5661 struct vcpu_vmx *vmx = to_vmx(vcpu); 5662 u64 *pml_buf; 5663 u16 pml_idx; 5664 5665 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5666 5667 /* Do nothing if PML buffer is empty */ 5668 if (pml_idx == (PML_ENTITY_NUM - 1)) 5669 return; 5670 5671 /* PML index always points to next available PML buffer entity */ 5672 if (pml_idx >= PML_ENTITY_NUM) 5673 pml_idx = 0; 5674 else 5675 pml_idx++; 5676 5677 pml_buf = page_address(vmx->pml_pg); 5678 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5679 u64 gpa; 5680 5681 gpa = pml_buf[pml_idx]; 5682 WARN_ON(gpa & (PAGE_SIZE - 1)); 5683 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5684 } 5685 5686 /* reset PML index */ 5687 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5688 } 5689 5690 static void vmx_dump_sel(char *name, uint32_t sel) 5691 { 5692 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5693 name, vmcs_read16(sel), 5694 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5695 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5696 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5697 } 5698 5699 static void vmx_dump_dtsel(char *name, uint32_t limit) 5700 { 5701 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5702 name, vmcs_read32(limit), 5703 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5704 } 5705 5706 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 5707 { 5708 unsigned int i; 5709 struct vmx_msr_entry *e; 5710 5711 pr_err("MSR %s:\n", name); 5712 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 5713 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 5714 } 5715 5716 void dump_vmcs(struct kvm_vcpu *vcpu) 5717 { 5718 struct vcpu_vmx *vmx = to_vmx(vcpu); 5719 u32 vmentry_ctl, vmexit_ctl; 5720 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 5721 unsigned long cr4; 5722 int efer_slot; 5723 5724 if (!dump_invalid_vmcs) { 5725 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 5726 return; 5727 } 5728 5729 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5730 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5731 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5732 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5733 cr4 = vmcs_readl(GUEST_CR4); 5734 secondary_exec_control = 0; 5735 if (cpu_has_secondary_exec_ctrls()) 5736 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5737 5738 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 5739 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 5740 pr_err("*** Guest State ***\n"); 5741 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5742 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5743 vmcs_readl(CR0_GUEST_HOST_MASK)); 5744 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5745 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5746 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5747 if (cpu_has_vmx_ept()) { 5748 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5749 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5750 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5751 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5752 } 5753 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5754 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5755 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5756 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5757 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5758 vmcs_readl(GUEST_SYSENTER_ESP), 5759 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5760 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5761 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5762 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5763 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5764 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5765 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5766 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5767 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5768 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5769 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5770 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 5771 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 5772 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 5773 else if (efer_slot >= 0) 5774 pr_err("EFER= 0x%016llx (autoload)\n", 5775 vmx->msr_autoload.guest.val[efer_slot].value); 5776 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 5777 pr_err("EFER= 0x%016llx (effective)\n", 5778 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 5779 else 5780 pr_err("EFER= 0x%016llx (effective)\n", 5781 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 5782 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 5783 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 5784 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5785 vmcs_read64(GUEST_IA32_DEBUGCTL), 5786 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5787 if (cpu_has_load_perf_global_ctrl() && 5788 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5789 pr_err("PerfGlobCtl = 0x%016llx\n", 5790 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5791 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5792 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5793 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5794 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5795 vmcs_read32(GUEST_ACTIVITY_STATE)); 5796 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5797 pr_err("InterruptStatus = %04x\n", 5798 vmcs_read16(GUEST_INTR_STATUS)); 5799 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 5800 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 5801 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 5802 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 5803 5804 pr_err("*** Host State ***\n"); 5805 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5806 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5807 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5808 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5809 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5810 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5811 vmcs_read16(HOST_TR_SELECTOR)); 5812 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5813 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5814 vmcs_readl(HOST_TR_BASE)); 5815 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5816 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5817 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5818 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5819 vmcs_readl(HOST_CR4)); 5820 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5821 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5822 vmcs_read32(HOST_IA32_SYSENTER_CS), 5823 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5824 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 5825 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 5826 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 5827 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 5828 if (cpu_has_load_perf_global_ctrl() && 5829 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5830 pr_err("PerfGlobCtl = 0x%016llx\n", 5831 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5832 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 5833 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 5834 5835 pr_err("*** Control State ***\n"); 5836 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5837 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5838 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5839 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5840 vmcs_read32(EXCEPTION_BITMAP), 5841 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5842 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5843 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5844 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5845 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5846 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5847 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5848 vmcs_read32(VM_EXIT_INTR_INFO), 5849 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5850 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5851 pr_err(" reason=%08x qualification=%016lx\n", 5852 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5853 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5854 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5855 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5856 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5857 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5858 pr_err("TSC Multiplier = 0x%016llx\n", 5859 vmcs_read64(TSC_MULTIPLIER)); 5860 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5861 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5862 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5863 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5864 } 5865 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5866 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5867 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5868 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5869 } 5870 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 5871 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 5872 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 5873 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 5874 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 5875 pr_err("PLE Gap=%08x Window=%08x\n", 5876 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 5877 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 5878 pr_err("Virtual processor ID = 0x%04x\n", 5879 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 5880 } 5881 5882 /* 5883 * The guest has exited. See if we can fix it or if we need userspace 5884 * assistance. 5885 */ 5886 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 5887 { 5888 struct vcpu_vmx *vmx = to_vmx(vcpu); 5889 union vmx_exit_reason exit_reason = vmx->exit_reason; 5890 u32 vectoring_info = vmx->idt_vectoring_info; 5891 u16 exit_handler_index; 5892 5893 /* 5894 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 5895 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 5896 * querying dirty_bitmap, we only need to kick all vcpus out of guest 5897 * mode as if vcpus is in root mode, the PML buffer must has been 5898 * flushed already. Note, PML is never enabled in hardware while 5899 * running L2. 5900 */ 5901 if (enable_pml && !is_guest_mode(vcpu)) 5902 vmx_flush_pml_buffer(vcpu); 5903 5904 /* 5905 * We should never reach this point with a pending nested VM-Enter, and 5906 * more specifically emulation of L2 due to invalid guest state (see 5907 * below) should never happen as that means we incorrectly allowed a 5908 * nested VM-Enter with an invalid vmcs12. 5909 */ 5910 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 5911 return -EIO; 5912 5913 /* If guest state is invalid, start emulating */ 5914 if (vmx->emulation_required) 5915 return handle_invalid_guest_state(vcpu); 5916 5917 if (is_guest_mode(vcpu)) { 5918 /* 5919 * PML is never enabled when running L2, bail immediately if a 5920 * PML full exit occurs as something is horribly wrong. 5921 */ 5922 if (exit_reason.basic == EXIT_REASON_PML_FULL) 5923 goto unexpected_vmexit; 5924 5925 /* 5926 * The host physical addresses of some pages of guest memory 5927 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 5928 * Page). The CPU may write to these pages via their host 5929 * physical address while L2 is running, bypassing any 5930 * address-translation-based dirty tracking (e.g. EPT write 5931 * protection). 5932 * 5933 * Mark them dirty on every exit from L2 to prevent them from 5934 * getting out of sync with dirty tracking. 5935 */ 5936 nested_mark_vmcs12_pages_dirty(vcpu); 5937 5938 if (nested_vmx_reflect_vmexit(vcpu)) 5939 return 1; 5940 } 5941 5942 if (exit_reason.failed_vmentry) { 5943 dump_vmcs(vcpu); 5944 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5945 vcpu->run->fail_entry.hardware_entry_failure_reason 5946 = exit_reason.full; 5947 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 5948 return 0; 5949 } 5950 5951 if (unlikely(vmx->fail)) { 5952 dump_vmcs(vcpu); 5953 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 5954 vcpu->run->fail_entry.hardware_entry_failure_reason 5955 = vmcs_read32(VM_INSTRUCTION_ERROR); 5956 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 5957 return 0; 5958 } 5959 5960 /* 5961 * Note: 5962 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 5963 * delivery event since it indicates guest is accessing MMIO. 5964 * The vm-exit can be triggered again after return to guest that 5965 * will cause infinite loop. 5966 */ 5967 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 5968 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 5969 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 5970 exit_reason.basic != EXIT_REASON_PML_FULL && 5971 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 5972 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) { 5973 int ndata = 3; 5974 5975 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5976 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 5977 vcpu->run->internal.data[0] = vectoring_info; 5978 vcpu->run->internal.data[1] = exit_reason.full; 5979 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 5980 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 5981 vcpu->run->internal.data[ndata++] = 5982 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5983 } 5984 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 5985 vcpu->run->internal.ndata = ndata; 5986 return 0; 5987 } 5988 5989 if (unlikely(!enable_vnmi && 5990 vmx->loaded_vmcs->soft_vnmi_blocked)) { 5991 if (!vmx_interrupt_blocked(vcpu)) { 5992 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 5993 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 5994 vcpu->arch.nmi_pending) { 5995 /* 5996 * This CPU don't support us in finding the end of an 5997 * NMI-blocked window if the guest runs with IRQs 5998 * disabled. So we pull the trigger after 1 s of 5999 * futile waiting, but inform the user about this. 6000 */ 6001 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6002 "state on VCPU %d after 1 s timeout\n", 6003 __func__, vcpu->vcpu_id); 6004 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6005 } 6006 } 6007 6008 if (exit_fastpath != EXIT_FASTPATH_NONE) 6009 return 1; 6010 6011 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6012 goto unexpected_vmexit; 6013 #ifdef CONFIG_RETPOLINE 6014 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6015 return kvm_emulate_wrmsr(vcpu); 6016 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6017 return handle_preemption_timer(vcpu); 6018 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6019 return handle_interrupt_window(vcpu); 6020 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6021 return handle_external_interrupt(vcpu); 6022 else if (exit_reason.basic == EXIT_REASON_HLT) 6023 return kvm_emulate_halt(vcpu); 6024 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6025 return handle_ept_misconfig(vcpu); 6026 #endif 6027 6028 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6029 kvm_vmx_max_exit_handlers); 6030 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6031 goto unexpected_vmexit; 6032 6033 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6034 6035 unexpected_vmexit: 6036 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6037 exit_reason.full); 6038 dump_vmcs(vcpu); 6039 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6040 vcpu->run->internal.suberror = 6041 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6042 vcpu->run->internal.ndata = 2; 6043 vcpu->run->internal.data[0] = exit_reason.full; 6044 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6045 return 0; 6046 } 6047 6048 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6049 { 6050 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6051 6052 /* 6053 * Even when current exit reason is handled by KVM internally, we 6054 * still need to exit to user space when bus lock detected to inform 6055 * that there is a bus lock in guest. 6056 */ 6057 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6058 if (ret > 0) 6059 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6060 6061 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6062 return 0; 6063 } 6064 return ret; 6065 } 6066 6067 /* 6068 * Software based L1D cache flush which is used when microcode providing 6069 * the cache control MSR is not loaded. 6070 * 6071 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6072 * flush it is required to read in 64 KiB because the replacement algorithm 6073 * is not exactly LRU. This could be sized at runtime via topology 6074 * information but as all relevant affected CPUs have 32KiB L1D cache size 6075 * there is no point in doing so. 6076 */ 6077 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6078 { 6079 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6080 6081 /* 6082 * This code is only executed when the the flush mode is 'cond' or 6083 * 'always' 6084 */ 6085 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6086 bool flush_l1d; 6087 6088 /* 6089 * Clear the per-vcpu flush bit, it gets set again 6090 * either from vcpu_run() or from one of the unsafe 6091 * VMEXIT handlers. 6092 */ 6093 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6094 vcpu->arch.l1tf_flush_l1d = false; 6095 6096 /* 6097 * Clear the per-cpu flush bit, it gets set again from 6098 * the interrupt handlers. 6099 */ 6100 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6101 kvm_clear_cpu_l1tf_flush_l1d(); 6102 6103 if (!flush_l1d) 6104 return; 6105 } 6106 6107 vcpu->stat.l1d_flush++; 6108 6109 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6110 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6111 return; 6112 } 6113 6114 asm volatile( 6115 /* First ensure the pages are in the TLB */ 6116 "xorl %%eax, %%eax\n" 6117 ".Lpopulate_tlb:\n\t" 6118 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6119 "addl $4096, %%eax\n\t" 6120 "cmpl %%eax, %[size]\n\t" 6121 "jne .Lpopulate_tlb\n\t" 6122 "xorl %%eax, %%eax\n\t" 6123 "cpuid\n\t" 6124 /* Now fill the cache */ 6125 "xorl %%eax, %%eax\n" 6126 ".Lfill_cache:\n" 6127 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6128 "addl $64, %%eax\n\t" 6129 "cmpl %%eax, %[size]\n\t" 6130 "jne .Lfill_cache\n\t" 6131 "lfence\n" 6132 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6133 [size] "r" (size) 6134 : "eax", "ebx", "ecx", "edx"); 6135 } 6136 6137 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6138 { 6139 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6140 int tpr_threshold; 6141 6142 if (is_guest_mode(vcpu) && 6143 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6144 return; 6145 6146 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6147 if (is_guest_mode(vcpu)) 6148 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6149 else 6150 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6151 } 6152 6153 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6154 { 6155 struct vcpu_vmx *vmx = to_vmx(vcpu); 6156 u32 sec_exec_control; 6157 6158 if (!lapic_in_kernel(vcpu)) 6159 return; 6160 6161 if (!flexpriority_enabled && 6162 !cpu_has_vmx_virtualize_x2apic_mode()) 6163 return; 6164 6165 /* Postpone execution until vmcs01 is the current VMCS. */ 6166 if (is_guest_mode(vcpu)) { 6167 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6168 return; 6169 } 6170 6171 sec_exec_control = secondary_exec_controls_get(vmx); 6172 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6173 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6174 6175 switch (kvm_get_apic_mode(vcpu)) { 6176 case LAPIC_MODE_INVALID: 6177 WARN_ONCE(true, "Invalid local APIC state"); 6178 break; 6179 case LAPIC_MODE_DISABLED: 6180 break; 6181 case LAPIC_MODE_XAPIC: 6182 if (flexpriority_enabled) { 6183 sec_exec_control |= 6184 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6185 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6186 6187 /* 6188 * Flush the TLB, reloading the APIC access page will 6189 * only do so if its physical address has changed, but 6190 * the guest may have inserted a non-APIC mapping into 6191 * the TLB while the APIC access page was disabled. 6192 */ 6193 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6194 } 6195 break; 6196 case LAPIC_MODE_X2APIC: 6197 if (cpu_has_vmx_virtualize_x2apic_mode()) 6198 sec_exec_control |= 6199 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6200 break; 6201 } 6202 secondary_exec_controls_set(vmx, sec_exec_control); 6203 6204 vmx_update_msr_bitmap_x2apic(vcpu); 6205 } 6206 6207 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6208 { 6209 struct page *page; 6210 6211 /* Defer reload until vmcs01 is the current VMCS. */ 6212 if (is_guest_mode(vcpu)) { 6213 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6214 return; 6215 } 6216 6217 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6218 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6219 return; 6220 6221 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6222 if (is_error_page(page)) 6223 return; 6224 6225 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page)); 6226 vmx_flush_tlb_current(vcpu); 6227 6228 /* 6229 * Do not pin apic access page in memory, the MMU notifier 6230 * will call us again if it is migrated or swapped out. 6231 */ 6232 put_page(page); 6233 } 6234 6235 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6236 { 6237 u16 status; 6238 u8 old; 6239 6240 if (max_isr == -1) 6241 max_isr = 0; 6242 6243 status = vmcs_read16(GUEST_INTR_STATUS); 6244 old = status >> 8; 6245 if (max_isr != old) { 6246 status &= 0xff; 6247 status |= max_isr << 8; 6248 vmcs_write16(GUEST_INTR_STATUS, status); 6249 } 6250 } 6251 6252 static void vmx_set_rvi(int vector) 6253 { 6254 u16 status; 6255 u8 old; 6256 6257 if (vector == -1) 6258 vector = 0; 6259 6260 status = vmcs_read16(GUEST_INTR_STATUS); 6261 old = (u8)status & 0xff; 6262 if ((u8)vector != old) { 6263 status &= ~0xff; 6264 status |= (u8)vector; 6265 vmcs_write16(GUEST_INTR_STATUS, status); 6266 } 6267 } 6268 6269 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6270 { 6271 /* 6272 * When running L2, updating RVI is only relevant when 6273 * vmcs12 virtual-interrupt-delivery enabled. 6274 * However, it can be enabled only when L1 also 6275 * intercepts external-interrupts and in that case 6276 * we should not update vmcs02 RVI but instead intercept 6277 * interrupt. Therefore, do nothing when running L2. 6278 */ 6279 if (!is_guest_mode(vcpu)) 6280 vmx_set_rvi(max_irr); 6281 } 6282 6283 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6284 { 6285 struct vcpu_vmx *vmx = to_vmx(vcpu); 6286 int max_irr; 6287 bool max_irr_updated; 6288 6289 if (KVM_BUG_ON(!vcpu->arch.apicv_active, vcpu->kvm)) 6290 return -EIO; 6291 6292 if (pi_test_on(&vmx->pi_desc)) { 6293 pi_clear_on(&vmx->pi_desc); 6294 /* 6295 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6296 * But on x86 this is just a compiler barrier anyway. 6297 */ 6298 smp_mb__after_atomic(); 6299 max_irr_updated = 6300 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6301 6302 /* 6303 * If we are running L2 and L1 has a new pending interrupt 6304 * which can be injected, we should re-evaluate 6305 * what should be done with this new L1 interrupt. 6306 * If L1 intercepts external-interrupts, we should 6307 * exit from L2 to L1. Otherwise, interrupt should be 6308 * delivered directly to L2. 6309 */ 6310 if (is_guest_mode(vcpu) && max_irr_updated) { 6311 if (nested_exit_on_intr(vcpu)) 6312 kvm_vcpu_exiting_guest_mode(vcpu); 6313 else 6314 kvm_make_request(KVM_REQ_EVENT, vcpu); 6315 } 6316 } else { 6317 max_irr = kvm_lapic_find_highest_irr(vcpu); 6318 } 6319 vmx_hwapic_irr_update(vcpu, max_irr); 6320 return max_irr; 6321 } 6322 6323 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6324 { 6325 if (!kvm_vcpu_apicv_active(vcpu)) 6326 return; 6327 6328 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6329 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6330 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6331 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6332 } 6333 6334 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6335 { 6336 struct vcpu_vmx *vmx = to_vmx(vcpu); 6337 6338 pi_clear_on(&vmx->pi_desc); 6339 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6340 } 6341 6342 void vmx_do_interrupt_nmi_irqoff(unsigned long entry); 6343 6344 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, 6345 unsigned long entry) 6346 { 6347 kvm_before_interrupt(vcpu); 6348 vmx_do_interrupt_nmi_irqoff(entry); 6349 kvm_after_interrupt(vcpu); 6350 } 6351 6352 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) 6353 { 6354 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist; 6355 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6356 6357 /* if exit due to PF check for async PF */ 6358 if (is_page_fault(intr_info)) 6359 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6360 /* Handle machine checks before interrupts are enabled */ 6361 else if (is_machine_check(intr_info)) 6362 kvm_machine_check(); 6363 /* We need to handle NMIs before interrupts are enabled */ 6364 else if (is_nmi(intr_info)) 6365 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry); 6366 } 6367 6368 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6369 { 6370 u32 intr_info = vmx_get_intr_info(vcpu); 6371 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6372 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6373 6374 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6375 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6376 return; 6377 6378 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc)); 6379 } 6380 6381 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6382 { 6383 struct vcpu_vmx *vmx = to_vmx(vcpu); 6384 6385 if (vmx->emulation_required) 6386 return; 6387 6388 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6389 handle_external_interrupt_irqoff(vcpu); 6390 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6391 handle_exception_nmi_irqoff(vmx); 6392 } 6393 6394 /* 6395 * The kvm parameter can be NULL (module initialization, or invocation before 6396 * VM creation). Be sure to check the kvm parameter before using it. 6397 */ 6398 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6399 { 6400 switch (index) { 6401 case MSR_IA32_SMBASE: 6402 /* 6403 * We cannot do SMM unless we can run the guest in big 6404 * real mode. 6405 */ 6406 return enable_unrestricted_guest || emulate_invalid_guest_state; 6407 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 6408 return nested; 6409 case MSR_AMD64_VIRT_SPEC_CTRL: 6410 /* This is AMD only. */ 6411 return false; 6412 default: 6413 return true; 6414 } 6415 } 6416 6417 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6418 { 6419 u32 exit_intr_info; 6420 bool unblock_nmi; 6421 u8 vector; 6422 bool idtv_info_valid; 6423 6424 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6425 6426 if (enable_vnmi) { 6427 if (vmx->loaded_vmcs->nmi_known_unmasked) 6428 return; 6429 6430 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 6431 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6432 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6433 /* 6434 * SDM 3: 27.7.1.2 (September 2008) 6435 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6436 * a guest IRET fault. 6437 * SDM 3: 23.2.2 (September 2008) 6438 * Bit 12 is undefined in any of the following cases: 6439 * If the VM exit sets the valid bit in the IDT-vectoring 6440 * information field. 6441 * If the VM exit is due to a double fault. 6442 */ 6443 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6444 vector != DF_VECTOR && !idtv_info_valid) 6445 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6446 GUEST_INTR_STATE_NMI); 6447 else 6448 vmx->loaded_vmcs->nmi_known_unmasked = 6449 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6450 & GUEST_INTR_STATE_NMI); 6451 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6452 vmx->loaded_vmcs->vnmi_blocked_time += 6453 ktime_to_ns(ktime_sub(ktime_get(), 6454 vmx->loaded_vmcs->entry_time)); 6455 } 6456 6457 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6458 u32 idt_vectoring_info, 6459 int instr_len_field, 6460 int error_code_field) 6461 { 6462 u8 vector; 6463 int type; 6464 bool idtv_info_valid; 6465 6466 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6467 6468 vcpu->arch.nmi_injected = false; 6469 kvm_clear_exception_queue(vcpu); 6470 kvm_clear_interrupt_queue(vcpu); 6471 6472 if (!idtv_info_valid) 6473 return; 6474 6475 kvm_make_request(KVM_REQ_EVENT, vcpu); 6476 6477 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6478 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6479 6480 switch (type) { 6481 case INTR_TYPE_NMI_INTR: 6482 vcpu->arch.nmi_injected = true; 6483 /* 6484 * SDM 3: 27.7.1.2 (September 2008) 6485 * Clear bit "block by NMI" before VM entry if a NMI 6486 * delivery faulted. 6487 */ 6488 vmx_set_nmi_mask(vcpu, false); 6489 break; 6490 case INTR_TYPE_SOFT_EXCEPTION: 6491 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6492 fallthrough; 6493 case INTR_TYPE_HARD_EXCEPTION: 6494 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6495 u32 err = vmcs_read32(error_code_field); 6496 kvm_requeue_exception_e(vcpu, vector, err); 6497 } else 6498 kvm_requeue_exception(vcpu, vector); 6499 break; 6500 case INTR_TYPE_SOFT_INTR: 6501 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6502 fallthrough; 6503 case INTR_TYPE_EXT_INTR: 6504 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6505 break; 6506 default: 6507 break; 6508 } 6509 } 6510 6511 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6512 { 6513 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6514 VM_EXIT_INSTRUCTION_LEN, 6515 IDT_VECTORING_ERROR_CODE); 6516 } 6517 6518 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6519 { 6520 __vmx_complete_interrupts(vcpu, 6521 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6522 VM_ENTRY_INSTRUCTION_LEN, 6523 VM_ENTRY_EXCEPTION_ERROR_CODE); 6524 6525 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6526 } 6527 6528 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6529 { 6530 int i, nr_msrs; 6531 struct perf_guest_switch_msr *msrs; 6532 6533 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 6534 msrs = perf_guest_get_msrs(&nr_msrs); 6535 if (!msrs) 6536 return; 6537 6538 for (i = 0; i < nr_msrs; i++) 6539 if (msrs[i].host == msrs[i].guest) 6540 clear_atomic_switch_msr(vmx, msrs[i].msr); 6541 else 6542 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6543 msrs[i].host, false); 6544 } 6545 6546 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6547 { 6548 struct vcpu_vmx *vmx = to_vmx(vcpu); 6549 u64 tscl; 6550 u32 delta_tsc; 6551 6552 if (vmx->req_immediate_exit) { 6553 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 6554 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6555 } else if (vmx->hv_deadline_tsc != -1) { 6556 tscl = rdtsc(); 6557 if (vmx->hv_deadline_tsc > tscl) 6558 /* set_hv_timer ensures the delta fits in 32-bits */ 6559 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6560 cpu_preemption_timer_multi); 6561 else 6562 delta_tsc = 0; 6563 6564 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 6565 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6566 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 6567 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 6568 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 6569 } 6570 } 6571 6572 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6573 { 6574 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6575 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6576 vmcs_writel(HOST_RSP, host_rsp); 6577 } 6578 } 6579 6580 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 6581 { 6582 switch (to_vmx(vcpu)->exit_reason.basic) { 6583 case EXIT_REASON_MSR_WRITE: 6584 return handle_fastpath_set_msr_irqoff(vcpu); 6585 case EXIT_REASON_PREEMPTION_TIMER: 6586 return handle_fastpath_preemption_timer(vcpu); 6587 default: 6588 return EXIT_FASTPATH_NONE; 6589 } 6590 } 6591 6592 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 6593 struct vcpu_vmx *vmx) 6594 { 6595 kvm_guest_enter_irqoff(); 6596 6597 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6598 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6599 vmx_l1d_flush(vcpu); 6600 else if (static_branch_unlikely(&mds_user_clear)) 6601 mds_clear_cpu_buffers(); 6602 6603 if (vcpu->arch.cr2 != native_read_cr2()) 6604 native_write_cr2(vcpu->arch.cr2); 6605 6606 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6607 vmx->loaded_vmcs->launched); 6608 6609 vcpu->arch.cr2 = native_read_cr2(); 6610 6611 kvm_guest_exit_irqoff(); 6612 } 6613 6614 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 6615 { 6616 struct vcpu_vmx *vmx = to_vmx(vcpu); 6617 unsigned long cr3, cr4; 6618 6619 /* Record the guest's net vcpu time for enforced NMI injections. */ 6620 if (unlikely(!enable_vnmi && 6621 vmx->loaded_vmcs->soft_vnmi_blocked)) 6622 vmx->loaded_vmcs->entry_time = ktime_get(); 6623 6624 /* Don't enter VMX if guest state is invalid, let the exit handler 6625 start emulation until we arrive back to a valid state */ 6626 if (vmx->emulation_required) 6627 return EXIT_FASTPATH_NONE; 6628 6629 trace_kvm_entry(vcpu); 6630 6631 if (vmx->ple_window_dirty) { 6632 vmx->ple_window_dirty = false; 6633 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6634 } 6635 6636 /* 6637 * We did this in prepare_switch_to_guest, because it needs to 6638 * be within srcu_read_lock. 6639 */ 6640 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 6641 6642 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 6643 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6644 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 6645 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6646 6647 cr3 = __get_current_cr3_fast(); 6648 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 6649 vmcs_writel(HOST_CR3, cr3); 6650 vmx->loaded_vmcs->host_state.cr3 = cr3; 6651 } 6652 6653 cr4 = cr4_read_shadow(); 6654 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6655 vmcs_writel(HOST_CR4, cr4); 6656 vmx->loaded_vmcs->host_state.cr4 = cr4; 6657 } 6658 6659 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 6660 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 6661 set_debugreg(vcpu->arch.dr6, 6); 6662 6663 /* When single-stepping over STI and MOV SS, we must clear the 6664 * corresponding interruptibility bits in the guest state. Otherwise 6665 * vmentry fails as it then expects bit 14 (BS) in pending debug 6666 * exceptions being set, but that's not correct for the guest debugging 6667 * case. */ 6668 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6669 vmx_set_interrupt_shadow(vcpu, 0); 6670 6671 kvm_load_guest_xsave_state(vcpu); 6672 6673 pt_guest_enter(vmx); 6674 6675 atomic_switch_perf_msrs(vmx); 6676 if (intel_pmu_lbr_is_enabled(vcpu)) 6677 vmx_passthrough_lbr_msrs(vcpu); 6678 6679 if (enable_preemption_timer) 6680 vmx_update_hv_timer(vcpu); 6681 6682 kvm_wait_lapic_expire(vcpu); 6683 6684 /* 6685 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6686 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6687 * is no need to worry about the conditional branch over the wrmsr 6688 * being speculatively taken. 6689 */ 6690 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6691 6692 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 6693 vmx_vcpu_enter_exit(vcpu, vmx); 6694 6695 /* 6696 * We do not use IBRS in the kernel. If this vCPU has used the 6697 * SPEC_CTRL MSR it may have left it on; save the value and 6698 * turn it off. This is much more efficient than blindly adding 6699 * it to the atomic save/restore list. Especially as the former 6700 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6701 * 6702 * For non-nested case: 6703 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6704 * save it. 6705 * 6706 * For nested case: 6707 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6708 * save it. 6709 */ 6710 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 6711 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6712 6713 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6714 6715 /* All fields are clean at this point */ 6716 if (static_branch_unlikely(&enable_evmcs)) { 6717 current_evmcs->hv_clean_fields |= 6718 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6719 6720 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 6721 } 6722 6723 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6724 if (vmx->host_debugctlmsr) 6725 update_debugctlmsr(vmx->host_debugctlmsr); 6726 6727 #ifndef CONFIG_X86_64 6728 /* 6729 * The sysexit path does not restore ds/es, so we must set them to 6730 * a reasonable value ourselves. 6731 * 6732 * We can't defer this to vmx_prepare_switch_to_host() since that 6733 * function may be executed in interrupt context, which saves and 6734 * restore segments around it, nullifying its effect. 6735 */ 6736 loadsegment(ds, __USER_DS); 6737 loadsegment(es, __USER_DS); 6738 #endif 6739 6740 vmx_register_cache_reset(vcpu); 6741 6742 pt_guest_exit(vmx); 6743 6744 kvm_load_host_xsave_state(vcpu); 6745 6746 if (is_guest_mode(vcpu)) { 6747 /* 6748 * Track VMLAUNCH/VMRESUME that have made past guest state 6749 * checking. 6750 */ 6751 if (vmx->nested.nested_run_pending && 6752 !vmx->exit_reason.failed_vmentry) 6753 ++vcpu->stat.nested_run; 6754 6755 vmx->nested.nested_run_pending = 0; 6756 } 6757 6758 vmx->idt_vectoring_info = 0; 6759 6760 if (unlikely(vmx->fail)) { 6761 vmx->exit_reason.full = 0xdead; 6762 return EXIT_FASTPATH_NONE; 6763 } 6764 6765 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 6766 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 6767 kvm_machine_check(); 6768 6769 if (likely(!vmx->exit_reason.failed_vmentry)) 6770 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6771 6772 trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX); 6773 6774 if (unlikely(vmx->exit_reason.failed_vmentry)) 6775 return EXIT_FASTPATH_NONE; 6776 6777 vmx->loaded_vmcs->launched = 1; 6778 6779 vmx_recover_nmi_blocking(vmx); 6780 vmx_complete_interrupts(vmx); 6781 6782 if (is_guest_mode(vcpu)) 6783 return EXIT_FASTPATH_NONE; 6784 6785 return vmx_exit_handlers_fastpath(vcpu); 6786 } 6787 6788 static void vmx_free_vcpu(struct kvm_vcpu *vcpu) 6789 { 6790 struct vcpu_vmx *vmx = to_vmx(vcpu); 6791 6792 if (enable_pml) 6793 vmx_destroy_pml_buffer(vmx); 6794 free_vpid(vmx->vpid); 6795 nested_vmx_free_vcpu(vcpu); 6796 free_loaded_vmcs(vmx->loaded_vmcs); 6797 } 6798 6799 static int vmx_create_vcpu(struct kvm_vcpu *vcpu) 6800 { 6801 struct vmx_uret_msr *tsx_ctrl; 6802 struct vcpu_vmx *vmx; 6803 int i, cpu, err; 6804 6805 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 6806 vmx = to_vmx(vcpu); 6807 6808 err = -ENOMEM; 6809 6810 vmx->vpid = allocate_vpid(); 6811 6812 /* 6813 * If PML is turned on, failure on enabling PML just results in failure 6814 * of creating the vcpu, therefore we can simplify PML logic (by 6815 * avoiding dealing with cases, such as enabling PML partially on vcpus 6816 * for the guest), etc. 6817 */ 6818 if (enable_pml) { 6819 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 6820 if (!vmx->pml_pg) 6821 goto free_vpid; 6822 } 6823 6824 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 6825 vmx->guest_uret_msrs[i].data = 0; 6826 vmx->guest_uret_msrs[i].mask = -1ull; 6827 } 6828 if (boot_cpu_has(X86_FEATURE_RTM)) { 6829 /* 6830 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 6831 * Keep the host value unchanged to avoid changing CPUID bits 6832 * under the host kernel's feet. 6833 */ 6834 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 6835 if (tsx_ctrl) 6836 vmx->guest_uret_msrs[i].mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 6837 } 6838 6839 err = alloc_loaded_vmcs(&vmx->vmcs01); 6840 if (err < 0) 6841 goto free_pml; 6842 6843 /* The MSR bitmap starts with all ones */ 6844 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6845 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6846 6847 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 6848 #ifdef CONFIG_X86_64 6849 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 6850 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 6851 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 6852 #endif 6853 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 6854 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 6855 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 6856 if (kvm_cstate_in_guest(vcpu->kvm)) { 6857 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 6858 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 6859 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 6860 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 6861 } 6862 6863 vmx->loaded_vmcs = &vmx->vmcs01; 6864 cpu = get_cpu(); 6865 vmx_vcpu_load(vcpu, cpu); 6866 vcpu->cpu = cpu; 6867 init_vmcs(vmx); 6868 vmx_vcpu_put(vcpu); 6869 put_cpu(); 6870 if (cpu_need_virtualize_apic_accesses(vcpu)) { 6871 err = alloc_apic_access_page(vcpu->kvm); 6872 if (err) 6873 goto free_vmcs; 6874 } 6875 6876 if (enable_ept && !enable_unrestricted_guest) { 6877 err = init_rmode_identity_map(vcpu->kvm); 6878 if (err) 6879 goto free_vmcs; 6880 } 6881 6882 if (nested) 6883 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 6884 else 6885 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs)); 6886 6887 vcpu_setup_sgx_lepubkeyhash(vcpu); 6888 6889 vmx->nested.posted_intr_nv = -1; 6890 vmx->nested.current_vmptr = -1ull; 6891 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 6892 6893 vcpu->arch.microcode_version = 0x100000000ULL; 6894 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 6895 6896 /* 6897 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 6898 * or POSTED_INTR_WAKEUP_VECTOR. 6899 */ 6900 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 6901 vmx->pi_desc.sn = 1; 6902 6903 return 0; 6904 6905 free_vmcs: 6906 free_loaded_vmcs(vmx->loaded_vmcs); 6907 free_pml: 6908 vmx_destroy_pml_buffer(vmx); 6909 free_vpid: 6910 free_vpid(vmx->vpid); 6911 return err; 6912 } 6913 6914 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6915 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6916 6917 static int vmx_vm_init(struct kvm *kvm) 6918 { 6919 if (!ple_gap) 6920 kvm->arch.pause_in_guest = true; 6921 6922 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 6923 switch (l1tf_mitigation) { 6924 case L1TF_MITIGATION_OFF: 6925 case L1TF_MITIGATION_FLUSH_NOWARN: 6926 /* 'I explicitly don't care' is set */ 6927 break; 6928 case L1TF_MITIGATION_FLUSH: 6929 case L1TF_MITIGATION_FLUSH_NOSMT: 6930 case L1TF_MITIGATION_FULL: 6931 /* 6932 * Warn upon starting the first VM in a potentially 6933 * insecure environment. 6934 */ 6935 if (sched_smt_active()) 6936 pr_warn_once(L1TF_MSG_SMT); 6937 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 6938 pr_warn_once(L1TF_MSG_L1D); 6939 break; 6940 case L1TF_MITIGATION_FULL_FORCE: 6941 /* Flush is enforced */ 6942 break; 6943 } 6944 } 6945 return 0; 6946 } 6947 6948 static int __init vmx_check_processor_compat(void) 6949 { 6950 struct vmcs_config vmcs_conf; 6951 struct vmx_capability vmx_cap; 6952 6953 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 6954 !this_cpu_has(X86_FEATURE_VMX)) { 6955 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id()); 6956 return -EIO; 6957 } 6958 6959 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 6960 return -EIO; 6961 if (nested) 6962 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept); 6963 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 6964 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 6965 smp_processor_id()); 6966 return -EIO; 6967 } 6968 return 0; 6969 } 6970 6971 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 6972 { 6973 u8 cache; 6974 u64 ipat = 0; 6975 6976 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 6977 * memory aliases with conflicting memory types and sometimes MCEs. 6978 * We have to be careful as to what are honored and when. 6979 * 6980 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 6981 * UC. The effective memory type is UC or WC depending on guest PAT. 6982 * This was historically the source of MCEs and we want to be 6983 * conservative. 6984 * 6985 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 6986 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 6987 * EPT memory type is set to WB. The effective memory type is forced 6988 * WB. 6989 * 6990 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 6991 * EPT memory type is used to emulate guest CD/MTRR. 6992 */ 6993 6994 if (is_mmio) { 6995 cache = MTRR_TYPE_UNCACHABLE; 6996 goto exit; 6997 } 6998 6999 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 7000 ipat = VMX_EPT_IPAT_BIT; 7001 cache = MTRR_TYPE_WRBACK; 7002 goto exit; 7003 } 7004 7005 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 7006 ipat = VMX_EPT_IPAT_BIT; 7007 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7008 cache = MTRR_TYPE_WRBACK; 7009 else 7010 cache = MTRR_TYPE_UNCACHABLE; 7011 goto exit; 7012 } 7013 7014 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); 7015 7016 exit: 7017 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; 7018 } 7019 7020 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7021 { 7022 /* 7023 * These bits in the secondary execution controls field 7024 * are dynamic, the others are mostly based on the hypervisor 7025 * architecture and the guest's CPUID. Do not touch the 7026 * dynamic bits. 7027 */ 7028 u32 mask = 7029 SECONDARY_EXEC_SHADOW_VMCS | 7030 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7031 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7032 SECONDARY_EXEC_DESC; 7033 7034 u32 cur_ctl = secondary_exec_controls_get(vmx); 7035 7036 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7037 } 7038 7039 /* 7040 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7041 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7042 */ 7043 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7044 { 7045 struct vcpu_vmx *vmx = to_vmx(vcpu); 7046 struct kvm_cpuid_entry2 *entry; 7047 7048 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7049 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7050 7051 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7052 if (entry && (entry->_reg & (_cpuid_mask))) \ 7053 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7054 } while (0) 7055 7056 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 7057 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7058 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7059 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7060 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7061 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7062 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7063 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7064 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7065 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7066 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7067 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7068 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7069 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7070 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7071 7072 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 7073 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7074 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7075 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7076 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7077 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7078 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7079 7080 #undef cr4_fixed1_update 7081 } 7082 7083 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 7084 { 7085 struct vcpu_vmx *vmx = to_vmx(vcpu); 7086 7087 if (kvm_mpx_supported()) { 7088 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 7089 7090 if (mpx_enabled) { 7091 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 7092 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 7093 } else { 7094 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 7095 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 7096 } 7097 } 7098 } 7099 7100 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7101 { 7102 struct vcpu_vmx *vmx = to_vmx(vcpu); 7103 struct kvm_cpuid_entry2 *best = NULL; 7104 int i; 7105 7106 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7107 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 7108 if (!best) 7109 return; 7110 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7111 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7112 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7113 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7114 } 7115 7116 /* Get the number of configurable Address Ranges for filtering */ 7117 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps, 7118 PT_CAP_num_address_ranges); 7119 7120 /* Initialize and clear the no dependency bits */ 7121 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7122 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC); 7123 7124 /* 7125 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7126 * will inject an #GP 7127 */ 7128 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7129 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7130 7131 /* 7132 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7133 * PSBFreq can be set 7134 */ 7135 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7136 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7137 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7138 7139 /* 7140 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and 7141 * MTCFreq can be set 7142 */ 7143 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7144 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7145 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE); 7146 7147 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7148 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7149 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7150 RTIT_CTL_PTW_EN); 7151 7152 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7153 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7154 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7155 7156 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7157 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7158 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7159 7160 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7161 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7162 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7163 7164 /* unmask address range configure area */ 7165 for (i = 0; i < vmx->pt_desc.addr_range; i++) 7166 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7167 } 7168 7169 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7170 { 7171 struct vcpu_vmx *vmx = to_vmx(vcpu); 7172 7173 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7174 vcpu->arch.xsaves_enabled = false; 7175 7176 vmx_setup_uret_msrs(vmx); 7177 7178 if (cpu_has_secondary_exec_ctrls()) 7179 vmcs_set_secondary_exec_control(vmx, 7180 vmx_secondary_exec_control(vmx)); 7181 7182 if (nested_vmx_allowed(vcpu)) 7183 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7184 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7185 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7186 else 7187 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7188 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7189 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7190 7191 if (nested_vmx_allowed(vcpu)) { 7192 nested_vmx_cr_fixed1_bits_update(vcpu); 7193 nested_vmx_entry_exit_ctls_update(vcpu); 7194 } 7195 7196 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7197 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7198 update_intel_pt_cfg(vcpu); 7199 7200 if (boot_cpu_has(X86_FEATURE_RTM)) { 7201 struct vmx_uret_msr *msr; 7202 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7203 if (msr) { 7204 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7205 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7206 } 7207 } 7208 7209 set_cr4_guest_host_mask(vmx); 7210 7211 vmx_write_encls_bitmap(vcpu, NULL); 7212 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7213 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7214 else 7215 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7216 7217 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7218 vmx->msr_ia32_feature_control_valid_bits |= 7219 FEAT_CTL_SGX_LC_ENABLED; 7220 else 7221 vmx->msr_ia32_feature_control_valid_bits &= 7222 ~FEAT_CTL_SGX_LC_ENABLED; 7223 7224 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7225 vmx_update_exception_bitmap(vcpu); 7226 } 7227 7228 static __init void vmx_set_cpu_caps(void) 7229 { 7230 kvm_set_cpu_caps(); 7231 7232 /* CPUID 0x1 */ 7233 if (nested) 7234 kvm_cpu_cap_set(X86_FEATURE_VMX); 7235 7236 /* CPUID 0x7 */ 7237 if (kvm_mpx_supported()) 7238 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7239 if (!cpu_has_vmx_invpcid()) 7240 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7241 if (vmx_pt_mode_is_host_guest()) 7242 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7243 7244 if (!enable_sgx) { 7245 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7246 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7247 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7248 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7249 } 7250 7251 if (vmx_umip_emulated()) 7252 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7253 7254 /* CPUID 0xD.1 */ 7255 supported_xss = 0; 7256 if (!cpu_has_vmx_xsaves()) 7257 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7258 7259 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7260 if (!cpu_has_vmx_rdtscp()) { 7261 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7262 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7263 } 7264 7265 if (cpu_has_vmx_waitpkg()) 7266 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7267 } 7268 7269 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7270 { 7271 to_vmx(vcpu)->req_immediate_exit = true; 7272 } 7273 7274 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7275 struct x86_instruction_info *info) 7276 { 7277 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7278 unsigned short port; 7279 bool intercept; 7280 int size; 7281 7282 if (info->intercept == x86_intercept_in || 7283 info->intercept == x86_intercept_ins) { 7284 port = info->src_val; 7285 size = info->dst_bytes; 7286 } else { 7287 port = info->dst_val; 7288 size = info->src_bytes; 7289 } 7290 7291 /* 7292 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7293 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7294 * control. 7295 * 7296 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7297 */ 7298 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7299 intercept = nested_cpu_has(vmcs12, 7300 CPU_BASED_UNCOND_IO_EXITING); 7301 else 7302 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7303 7304 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7305 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7306 } 7307 7308 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7309 struct x86_instruction_info *info, 7310 enum x86_intercept_stage stage, 7311 struct x86_exception *exception) 7312 { 7313 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7314 7315 switch (info->intercept) { 7316 /* 7317 * RDPID causes #UD if disabled through secondary execution controls. 7318 * Because it is marked as EmulateOnUD, we need to intercept it here. 7319 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7320 */ 7321 case x86_intercept_rdpid: 7322 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7323 exception->vector = UD_VECTOR; 7324 exception->error_code_valid = false; 7325 return X86EMUL_PROPAGATE_FAULT; 7326 } 7327 break; 7328 7329 case x86_intercept_in: 7330 case x86_intercept_ins: 7331 case x86_intercept_out: 7332 case x86_intercept_outs: 7333 return vmx_check_intercept_io(vcpu, info); 7334 7335 case x86_intercept_lgdt: 7336 case x86_intercept_lidt: 7337 case x86_intercept_lldt: 7338 case x86_intercept_ltr: 7339 case x86_intercept_sgdt: 7340 case x86_intercept_sidt: 7341 case x86_intercept_sldt: 7342 case x86_intercept_str: 7343 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7344 return X86EMUL_CONTINUE; 7345 7346 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7347 break; 7348 7349 /* TODO: check more intercepts... */ 7350 default: 7351 break; 7352 } 7353 7354 return X86EMUL_UNHANDLEABLE; 7355 } 7356 7357 #ifdef CONFIG_X86_64 7358 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7359 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7360 u64 divisor, u64 *result) 7361 { 7362 u64 low = a << shift, high = a >> (64 - shift); 7363 7364 /* To avoid the overflow on divq */ 7365 if (high >= divisor) 7366 return 1; 7367 7368 /* Low hold the result, high hold rem which is discarded */ 7369 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7370 "rm" (divisor), "0" (low), "1" (high)); 7371 *result = low; 7372 7373 return 0; 7374 } 7375 7376 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7377 bool *expired) 7378 { 7379 struct vcpu_vmx *vmx; 7380 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7381 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7382 7383 vmx = to_vmx(vcpu); 7384 tscl = rdtsc(); 7385 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7386 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7387 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7388 ktimer->timer_advance_ns); 7389 7390 if (delta_tsc > lapic_timer_advance_cycles) 7391 delta_tsc -= lapic_timer_advance_cycles; 7392 else 7393 delta_tsc = 0; 7394 7395 /* Convert to host delta tsc if tsc scaling is enabled */ 7396 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7397 delta_tsc && u64_shl_div_u64(delta_tsc, 7398 kvm_tsc_scaling_ratio_frac_bits, 7399 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 7400 return -ERANGE; 7401 7402 /* 7403 * If the delta tsc can't fit in the 32 bit after the multi shift, 7404 * we can't use the preemption timer. 7405 * It's possible that it fits on later vmentries, but checking 7406 * on every vmentry is costly so we just use an hrtimer. 7407 */ 7408 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7409 return -ERANGE; 7410 7411 vmx->hv_deadline_tsc = tscl + delta_tsc; 7412 *expired = !delta_tsc; 7413 return 0; 7414 } 7415 7416 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7417 { 7418 to_vmx(vcpu)->hv_deadline_tsc = -1; 7419 } 7420 #endif 7421 7422 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7423 { 7424 if (!kvm_pause_in_guest(vcpu->kvm)) 7425 shrink_ple_window(vcpu); 7426 } 7427 7428 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 7429 { 7430 struct vcpu_vmx *vmx = to_vmx(vcpu); 7431 7432 if (is_guest_mode(vcpu)) { 7433 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 7434 return; 7435 } 7436 7437 /* 7438 * Note, cpu_dirty_logging_count can be changed concurrent with this 7439 * code, but in that case another update request will be made and so 7440 * the guest will never run with a stale PML value. 7441 */ 7442 if (vcpu->kvm->arch.cpu_dirty_logging_count) 7443 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7444 else 7445 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7446 } 7447 7448 static int vmx_pre_block(struct kvm_vcpu *vcpu) 7449 { 7450 if (pi_pre_block(vcpu)) 7451 return 1; 7452 7453 if (kvm_lapic_hv_timer_in_use(vcpu)) 7454 kvm_lapic_switch_to_sw_timer(vcpu); 7455 7456 return 0; 7457 } 7458 7459 static void vmx_post_block(struct kvm_vcpu *vcpu) 7460 { 7461 if (kvm_x86_ops.set_hv_timer) 7462 kvm_lapic_switch_to_hv_timer(vcpu); 7463 7464 pi_post_block(vcpu); 7465 } 7466 7467 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7468 { 7469 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7470 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7471 FEAT_CTL_LMCE_ENABLED; 7472 else 7473 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7474 ~FEAT_CTL_LMCE_ENABLED; 7475 } 7476 7477 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 7478 { 7479 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7480 if (to_vmx(vcpu)->nested.nested_run_pending) 7481 return -EBUSY; 7482 return !is_smm(vcpu); 7483 } 7484 7485 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7486 { 7487 struct vcpu_vmx *vmx = to_vmx(vcpu); 7488 7489 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7490 if (vmx->nested.smm.guest_mode) 7491 nested_vmx_vmexit(vcpu, -1, 0, 0); 7492 7493 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7494 vmx->nested.vmxon = false; 7495 vmx_clear_hlt(vcpu); 7496 return 0; 7497 } 7498 7499 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7500 { 7501 struct vcpu_vmx *vmx = to_vmx(vcpu); 7502 int ret; 7503 7504 if (vmx->nested.smm.vmxon) { 7505 vmx->nested.vmxon = true; 7506 vmx->nested.smm.vmxon = false; 7507 } 7508 7509 if (vmx->nested.smm.guest_mode) { 7510 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7511 if (ret) 7512 return ret; 7513 7514 vmx->nested.smm.guest_mode = false; 7515 } 7516 return 0; 7517 } 7518 7519 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 7520 { 7521 /* RSM will cause a vmexit anyway. */ 7522 } 7523 7524 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 7525 { 7526 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 7527 } 7528 7529 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 7530 { 7531 if (is_guest_mode(vcpu)) { 7532 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 7533 7534 if (hrtimer_try_to_cancel(timer) == 1) 7535 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 7536 } 7537 } 7538 7539 static void hardware_unsetup(void) 7540 { 7541 if (nested) 7542 nested_vmx_hardware_unsetup(); 7543 7544 free_kvm_area(); 7545 } 7546 7547 static bool vmx_check_apicv_inhibit_reasons(ulong bit) 7548 { 7549 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 7550 BIT(APICV_INHIBIT_REASON_HYPERV); 7551 7552 return supported & BIT(bit); 7553 } 7554 7555 static struct kvm_x86_ops vmx_x86_ops __initdata = { 7556 .hardware_unsetup = hardware_unsetup, 7557 7558 .hardware_enable = hardware_enable, 7559 .hardware_disable = hardware_disable, 7560 .cpu_has_accelerated_tpr = report_flexpriority, 7561 .has_emulated_msr = vmx_has_emulated_msr, 7562 7563 .vm_size = sizeof(struct kvm_vmx), 7564 .vm_init = vmx_vm_init, 7565 7566 .vcpu_create = vmx_create_vcpu, 7567 .vcpu_free = vmx_free_vcpu, 7568 .vcpu_reset = vmx_vcpu_reset, 7569 7570 .prepare_guest_switch = vmx_prepare_switch_to_guest, 7571 .vcpu_load = vmx_vcpu_load, 7572 .vcpu_put = vmx_vcpu_put, 7573 7574 .update_exception_bitmap = vmx_update_exception_bitmap, 7575 .get_msr_feature = vmx_get_msr_feature, 7576 .get_msr = vmx_get_msr, 7577 .set_msr = vmx_set_msr, 7578 .get_segment_base = vmx_get_segment_base, 7579 .get_segment = vmx_get_segment, 7580 .set_segment = vmx_set_segment, 7581 .get_cpl = vmx_get_cpl, 7582 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7583 .set_cr0 = vmx_set_cr0, 7584 .is_valid_cr4 = vmx_is_valid_cr4, 7585 .set_cr4 = vmx_set_cr4, 7586 .set_efer = vmx_set_efer, 7587 .get_idt = vmx_get_idt, 7588 .set_idt = vmx_set_idt, 7589 .get_gdt = vmx_get_gdt, 7590 .set_gdt = vmx_set_gdt, 7591 .set_dr7 = vmx_set_dr7, 7592 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7593 .cache_reg = vmx_cache_reg, 7594 .get_rflags = vmx_get_rflags, 7595 .set_rflags = vmx_set_rflags, 7596 7597 .tlb_flush_all = vmx_flush_tlb_all, 7598 .tlb_flush_current = vmx_flush_tlb_current, 7599 .tlb_flush_gva = vmx_flush_tlb_gva, 7600 .tlb_flush_guest = vmx_flush_tlb_guest, 7601 7602 .run = vmx_vcpu_run, 7603 .handle_exit = vmx_handle_exit, 7604 .skip_emulated_instruction = vmx_skip_emulated_instruction, 7605 .update_emulated_instruction = vmx_update_emulated_instruction, 7606 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7607 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7608 .patch_hypercall = vmx_patch_hypercall, 7609 .set_irq = vmx_inject_irq, 7610 .set_nmi = vmx_inject_nmi, 7611 .queue_exception = vmx_queue_exception, 7612 .cancel_injection = vmx_cancel_injection, 7613 .interrupt_allowed = vmx_interrupt_allowed, 7614 .nmi_allowed = vmx_nmi_allowed, 7615 .get_nmi_mask = vmx_get_nmi_mask, 7616 .set_nmi_mask = vmx_set_nmi_mask, 7617 .enable_nmi_window = vmx_enable_nmi_window, 7618 .enable_irq_window = vmx_enable_irq_window, 7619 .update_cr8_intercept = vmx_update_cr8_intercept, 7620 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7621 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7622 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7623 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7624 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7625 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons, 7626 .hwapic_irr_update = vmx_hwapic_irr_update, 7627 .hwapic_isr_update = vmx_hwapic_isr_update, 7628 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7629 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7630 .deliver_posted_interrupt = vmx_deliver_posted_interrupt, 7631 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 7632 7633 .set_tss_addr = vmx_set_tss_addr, 7634 .set_identity_map_addr = vmx_set_identity_map_addr, 7635 .get_mt_mask = vmx_get_mt_mask, 7636 7637 .get_exit_info = vmx_get_exit_info, 7638 7639 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 7640 7641 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7642 7643 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 7644 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 7645 .write_tsc_offset = vmx_write_tsc_offset, 7646 .write_tsc_multiplier = vmx_write_tsc_multiplier, 7647 7648 .load_mmu_pgd = vmx_load_mmu_pgd, 7649 7650 .check_intercept = vmx_check_intercept, 7651 .handle_exit_irqoff = vmx_handle_exit_irqoff, 7652 7653 .request_immediate_exit = vmx_request_immediate_exit, 7654 7655 .sched_in = vmx_sched_in, 7656 7657 .cpu_dirty_log_size = PML_ENTITY_NUM, 7658 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 7659 7660 .pre_block = vmx_pre_block, 7661 .post_block = vmx_post_block, 7662 7663 .pmu_ops = &intel_pmu_ops, 7664 .nested_ops = &vmx_nested_ops, 7665 7666 .update_pi_irte = pi_update_irte, 7667 .start_assignment = vmx_pi_start_assignment, 7668 7669 #ifdef CONFIG_X86_64 7670 .set_hv_timer = vmx_set_hv_timer, 7671 .cancel_hv_timer = vmx_cancel_hv_timer, 7672 #endif 7673 7674 .setup_mce = vmx_setup_mce, 7675 7676 .smi_allowed = vmx_smi_allowed, 7677 .enter_smm = vmx_enter_smm, 7678 .leave_smm = vmx_leave_smm, 7679 .enable_smi_window = vmx_enable_smi_window, 7680 7681 .can_emulate_instruction = vmx_can_emulate_instruction, 7682 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 7683 .migrate_timers = vmx_migrate_timers, 7684 7685 .msr_filter_changed = vmx_msr_filter_changed, 7686 .complete_emulated_msr = kvm_complete_insn_gp, 7687 7688 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 7689 }; 7690 7691 static __init void vmx_setup_user_return_msrs(void) 7692 { 7693 7694 /* 7695 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 7696 * will emulate SYSCALL in legacy mode if the vendor string in guest 7697 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 7698 * support this emulation, MSR_STAR is included in the list for i386, 7699 * but is never loaded into hardware. MSR_CSTAR is also never loaded 7700 * into hardware and is here purely for emulation purposes. 7701 */ 7702 const u32 vmx_uret_msrs_list[] = { 7703 #ifdef CONFIG_X86_64 7704 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 7705 #endif 7706 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 7707 MSR_IA32_TSX_CTRL, 7708 }; 7709 int i; 7710 7711 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 7712 7713 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 7714 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 7715 } 7716 7717 static __init int hardware_setup(void) 7718 { 7719 unsigned long host_bndcfgs; 7720 struct desc_ptr dt; 7721 int r, ept_lpage_level; 7722 7723 store_idt(&dt); 7724 host_idt_base = dt.address; 7725 7726 vmx_setup_user_return_msrs(); 7727 7728 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7729 return -EIO; 7730 7731 if (boot_cpu_has(X86_FEATURE_NX)) 7732 kvm_enable_efer_bits(EFER_NX); 7733 7734 if (boot_cpu_has(X86_FEATURE_MPX)) { 7735 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7736 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7737 } 7738 7739 if (!cpu_has_vmx_mpx()) 7740 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 7741 XFEATURE_MASK_BNDCSR); 7742 7743 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7744 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7745 enable_vpid = 0; 7746 7747 if (!cpu_has_vmx_ept() || 7748 !cpu_has_vmx_ept_4levels() || 7749 !cpu_has_vmx_ept_mt_wb() || 7750 !cpu_has_vmx_invept_global()) 7751 enable_ept = 0; 7752 7753 /* NX support is required for shadow paging. */ 7754 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 7755 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n"); 7756 return -EOPNOTSUPP; 7757 } 7758 7759 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7760 enable_ept_ad_bits = 0; 7761 7762 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7763 enable_unrestricted_guest = 0; 7764 7765 if (!cpu_has_vmx_flexpriority()) 7766 flexpriority_enabled = 0; 7767 7768 if (!cpu_has_virtual_nmis()) 7769 enable_vnmi = 0; 7770 7771 /* 7772 * set_apic_access_page_addr() is used to reload apic access 7773 * page upon invalidation. No need to do anything if not 7774 * using the APIC_ACCESS_ADDR VMCS field. 7775 */ 7776 if (!flexpriority_enabled) 7777 vmx_x86_ops.set_apic_access_page_addr = NULL; 7778 7779 if (!cpu_has_vmx_tpr_shadow()) 7780 vmx_x86_ops.update_cr8_intercept = NULL; 7781 7782 #if IS_ENABLED(CONFIG_HYPERV) 7783 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7784 && enable_ept) { 7785 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb; 7786 vmx_x86_ops.tlb_remote_flush_with_range = 7787 hv_remote_flush_tlb_with_range; 7788 } 7789 #endif 7790 7791 if (!cpu_has_vmx_ple()) { 7792 ple_gap = 0; 7793 ple_window = 0; 7794 ple_window_grow = 0; 7795 ple_window_max = 0; 7796 ple_window_shrink = 0; 7797 } 7798 7799 if (!cpu_has_vmx_apicv()) { 7800 enable_apicv = 0; 7801 vmx_x86_ops.sync_pir_to_irr = NULL; 7802 } 7803 7804 if (cpu_has_vmx_tsc_scaling()) { 7805 kvm_has_tsc_control = true; 7806 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7807 kvm_tsc_scaling_ratio_frac_bits = 48; 7808 } 7809 7810 kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 7811 7812 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7813 7814 if (enable_ept) 7815 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 7816 cpu_has_vmx_ept_execute_only()); 7817 7818 if (!enable_ept) 7819 ept_lpage_level = 0; 7820 else if (cpu_has_vmx_ept_1g_page()) 7821 ept_lpage_level = PG_LEVEL_1G; 7822 else if (cpu_has_vmx_ept_2m_page()) 7823 ept_lpage_level = PG_LEVEL_2M; 7824 else 7825 ept_lpage_level = PG_LEVEL_4K; 7826 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(), 7827 ept_lpage_level); 7828 7829 /* 7830 * Only enable PML when hardware supports PML feature, and both EPT 7831 * and EPT A/D bit features are enabled -- PML depends on them to work. 7832 */ 7833 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 7834 enable_pml = 0; 7835 7836 if (!enable_pml) 7837 vmx_x86_ops.cpu_dirty_log_size = 0; 7838 7839 if (!cpu_has_vmx_preemption_timer()) 7840 enable_preemption_timer = false; 7841 7842 if (enable_preemption_timer) { 7843 u64 use_timer_freq = 5000ULL * 1000 * 1000; 7844 u64 vmx_msr; 7845 7846 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 7847 cpu_preemption_timer_multi = 7848 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 7849 7850 if (tsc_khz) 7851 use_timer_freq = (u64)tsc_khz * 1000; 7852 use_timer_freq >>= cpu_preemption_timer_multi; 7853 7854 /* 7855 * KVM "disables" the preemption timer by setting it to its max 7856 * value. Don't use the timer if it might cause spurious exits 7857 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 7858 */ 7859 if (use_timer_freq > 0xffffffffu / 10) 7860 enable_preemption_timer = false; 7861 } 7862 7863 if (!enable_preemption_timer) { 7864 vmx_x86_ops.set_hv_timer = NULL; 7865 vmx_x86_ops.cancel_hv_timer = NULL; 7866 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 7867 } 7868 7869 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 7870 7871 kvm_mce_cap_supported |= MCG_LMCE_P; 7872 7873 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 7874 return -EINVAL; 7875 if (!enable_ept || !cpu_has_vmx_intel_pt()) 7876 pt_mode = PT_MODE_SYSTEM; 7877 7878 setup_default_sgx_lepubkeyhash(); 7879 7880 if (nested) { 7881 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 7882 vmx_capability.ept); 7883 7884 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 7885 if (r) 7886 return r; 7887 } 7888 7889 vmx_set_cpu_caps(); 7890 7891 r = alloc_kvm_area(); 7892 if (r) 7893 nested_vmx_hardware_unsetup(); 7894 return r; 7895 } 7896 7897 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 7898 .cpu_has_kvm_support = cpu_has_kvm_support, 7899 .disabled_by_bios = vmx_disabled_by_bios, 7900 .check_processor_compatibility = vmx_check_processor_compat, 7901 .hardware_setup = hardware_setup, 7902 7903 .runtime_ops = &vmx_x86_ops, 7904 }; 7905 7906 static void vmx_cleanup_l1d_flush(void) 7907 { 7908 if (vmx_l1d_flush_pages) { 7909 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 7910 vmx_l1d_flush_pages = NULL; 7911 } 7912 /* Restore state so sysfs ignores VMX */ 7913 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 7914 } 7915 7916 static void vmx_exit(void) 7917 { 7918 #ifdef CONFIG_KEXEC_CORE 7919 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 7920 synchronize_rcu(); 7921 #endif 7922 7923 kvm_exit(); 7924 7925 #if IS_ENABLED(CONFIG_HYPERV) 7926 if (static_branch_unlikely(&enable_evmcs)) { 7927 int cpu; 7928 struct hv_vp_assist_page *vp_ap; 7929 /* 7930 * Reset everything to support using non-enlightened VMCS 7931 * access later (e.g. when we reload the module with 7932 * enlightened_vmcs=0) 7933 */ 7934 for_each_online_cpu(cpu) { 7935 vp_ap = hv_get_vp_assist_page(cpu); 7936 7937 if (!vp_ap) 7938 continue; 7939 7940 vp_ap->nested_control.features.directhypercall = 0; 7941 vp_ap->current_nested_vmcs = 0; 7942 vp_ap->enlighten_vmentry = 0; 7943 } 7944 7945 static_branch_disable(&enable_evmcs); 7946 } 7947 #endif 7948 vmx_cleanup_l1d_flush(); 7949 7950 allow_smaller_maxphyaddr = false; 7951 } 7952 module_exit(vmx_exit); 7953 7954 static int __init vmx_init(void) 7955 { 7956 int r, cpu; 7957 7958 #if IS_ENABLED(CONFIG_HYPERV) 7959 /* 7960 * Enlightened VMCS usage should be recommended and the host needs 7961 * to support eVMCS v1 or above. We can also disable eVMCS support 7962 * with module parameter. 7963 */ 7964 if (enlightened_vmcs && 7965 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 7966 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 7967 KVM_EVMCS_VERSION) { 7968 int cpu; 7969 7970 /* Check that we have assist pages on all online CPUs */ 7971 for_each_online_cpu(cpu) { 7972 if (!hv_get_vp_assist_page(cpu)) { 7973 enlightened_vmcs = false; 7974 break; 7975 } 7976 } 7977 7978 if (enlightened_vmcs) { 7979 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 7980 static_branch_enable(&enable_evmcs); 7981 } 7982 7983 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 7984 vmx_x86_ops.enable_direct_tlbflush 7985 = hv_enable_direct_tlbflush; 7986 7987 } else { 7988 enlightened_vmcs = false; 7989 } 7990 #endif 7991 7992 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx), 7993 __alignof__(struct vcpu_vmx), THIS_MODULE); 7994 if (r) 7995 return r; 7996 7997 /* 7998 * Must be called after kvm_init() so enable_ept is properly set 7999 * up. Hand the parameter mitigation value in which was stored in 8000 * the pre module init parser. If no parameter was given, it will 8001 * contain 'auto' which will be turned into the default 'cond' 8002 * mitigation mode. 8003 */ 8004 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8005 if (r) { 8006 vmx_exit(); 8007 return r; 8008 } 8009 8010 for_each_possible_cpu(cpu) { 8011 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8012 8013 pi_init_cpu(cpu); 8014 } 8015 8016 #ifdef CONFIG_KEXEC_CORE 8017 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 8018 crash_vmclear_local_loaded_vmcss); 8019 #endif 8020 vmx_check_vmcs12_offsets(); 8021 8022 /* 8023 * Shadow paging doesn't have a (further) performance penalty 8024 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8025 * by default 8026 */ 8027 if (!enable_ept) 8028 allow_smaller_maxphyaddr = true; 8029 8030 return 0; 8031 } 8032 module_init(vmx_init); 8033