1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/highmem.h> 18 #include <linux/hrtimer.h> 19 #include <linux/kernel.h> 20 #include <linux/kvm_host.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/mm.h> 25 #include <linux/objtool.h> 26 #include <linux/sched.h> 27 #include <linux/sched/smt.h> 28 #include <linux/slab.h> 29 #include <linux/tboot.h> 30 #include <linux/trace_events.h> 31 #include <linux/entry-kvm.h> 32 33 #include <asm/apic.h> 34 #include <asm/asm.h> 35 #include <asm/cpu.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/debugreg.h> 38 #include <asm/desc.h> 39 #include <asm/fpu/api.h> 40 #include <asm/fpu/xstate.h> 41 #include <asm/idtentry.h> 42 #include <asm/io.h> 43 #include <asm/irq_remapping.h> 44 #include <asm/reboot.h> 45 #include <asm/perf_event.h> 46 #include <asm/mmu_context.h> 47 #include <asm/mshyperv.h> 48 #include <asm/mwait.h> 49 #include <asm/spec-ctrl.h> 50 #include <asm/vmx.h> 51 52 #include "capabilities.h" 53 #include "cpuid.h" 54 #include "hyperv.h" 55 #include "kvm_onhyperv.h" 56 #include "irq.h" 57 #include "kvm_cache_regs.h" 58 #include "lapic.h" 59 #include "mmu.h" 60 #include "nested.h" 61 #include "pmu.h" 62 #include "sgx.h" 63 #include "trace.h" 64 #include "vmcs.h" 65 #include "vmcs12.h" 66 #include "vmx.h" 67 #include "x86.h" 68 #include "smm.h" 69 70 MODULE_AUTHOR("Qumranet"); 71 MODULE_LICENSE("GPL"); 72 73 #ifdef MODULE 74 static const struct x86_cpu_id vmx_cpu_id[] = { 75 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 76 {} 77 }; 78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 79 #endif 80 81 bool __read_mostly enable_vpid = 1; 82 module_param_named(vpid, enable_vpid, bool, 0444); 83 84 static bool __read_mostly enable_vnmi = 1; 85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 86 87 bool __read_mostly flexpriority_enabled = 1; 88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 89 90 bool __read_mostly enable_ept = 1; 91 module_param_named(ept, enable_ept, bool, S_IRUGO); 92 93 bool __read_mostly enable_unrestricted_guest = 1; 94 module_param_named(unrestricted_guest, 95 enable_unrestricted_guest, bool, S_IRUGO); 96 97 bool __read_mostly enable_ept_ad_bits = 1; 98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 99 100 static bool __read_mostly emulate_invalid_guest_state = true; 101 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 102 103 static bool __read_mostly fasteoi = 1; 104 module_param(fasteoi, bool, S_IRUGO); 105 106 module_param(enable_apicv, bool, S_IRUGO); 107 108 bool __read_mostly enable_ipiv = true; 109 module_param(enable_ipiv, bool, 0444); 110 111 /* 112 * If nested=1, nested virtualization is supported, i.e., guests may use 113 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 114 * use VMX instructions. 115 */ 116 static bool __read_mostly nested = 1; 117 module_param(nested, bool, S_IRUGO); 118 119 bool __read_mostly enable_pml = 1; 120 module_param_named(pml, enable_pml, bool, S_IRUGO); 121 122 static bool __read_mostly error_on_inconsistent_vmcs_config = true; 123 module_param(error_on_inconsistent_vmcs_config, bool, 0444); 124 125 static bool __read_mostly dump_invalid_vmcs = 0; 126 module_param(dump_invalid_vmcs, bool, 0644); 127 128 #define MSR_BITMAP_MODE_X2APIC 1 129 #define MSR_BITMAP_MODE_X2APIC_APICV 2 130 131 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 132 133 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 134 static int __read_mostly cpu_preemption_timer_multi; 135 static bool __read_mostly enable_preemption_timer = 1; 136 #ifdef CONFIG_X86_64 137 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 138 #endif 139 140 extern bool __read_mostly allow_smaller_maxphyaddr; 141 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 142 143 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 144 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 145 #define KVM_VM_CR0_ALWAYS_ON \ 146 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 147 148 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 149 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 150 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 151 152 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 153 154 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 155 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 156 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 157 RTIT_STATUS_BYTECNT)) 158 159 /* 160 * List of MSRs that can be directly passed to the guest. 161 * In addition to these x2apic and PT MSRs are handled specially. 162 */ 163 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 164 MSR_IA32_SPEC_CTRL, 165 MSR_IA32_PRED_CMD, 166 MSR_IA32_FLUSH_CMD, 167 MSR_IA32_TSC, 168 #ifdef CONFIG_X86_64 169 MSR_FS_BASE, 170 MSR_GS_BASE, 171 MSR_KERNEL_GS_BASE, 172 MSR_IA32_XFD, 173 MSR_IA32_XFD_ERR, 174 #endif 175 MSR_IA32_SYSENTER_CS, 176 MSR_IA32_SYSENTER_ESP, 177 MSR_IA32_SYSENTER_EIP, 178 MSR_CORE_C1_RES, 179 MSR_CORE_C3_RESIDENCY, 180 MSR_CORE_C6_RESIDENCY, 181 MSR_CORE_C7_RESIDENCY, 182 }; 183 184 /* 185 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 186 * ple_gap: upper bound on the amount of time between two successive 187 * executions of PAUSE in a loop. Also indicate if ple enabled. 188 * According to test, this time is usually smaller than 128 cycles. 189 * ple_window: upper bound on the amount of time a guest is allowed to execute 190 * in a PAUSE loop. Tests indicate that most spinlocks are held for 191 * less than 2^12 cycles 192 * Time is measured based on a counter that runs at the same rate as the TSC, 193 * refer SDM volume 3b section 21.6.13 & 22.1.3. 194 */ 195 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 196 module_param(ple_gap, uint, 0444); 197 198 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 199 module_param(ple_window, uint, 0444); 200 201 /* Default doubles per-vcpu window every exit. */ 202 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 203 module_param(ple_window_grow, uint, 0444); 204 205 /* Default resets per-vcpu window every exit to ple_window. */ 206 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 207 module_param(ple_window_shrink, uint, 0444); 208 209 /* Default is to compute the maximum so we can never overflow. */ 210 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 211 module_param(ple_window_max, uint, 0444); 212 213 /* Default is SYSTEM mode, 1 for host-guest mode */ 214 int __read_mostly pt_mode = PT_MODE_SYSTEM; 215 module_param(pt_mode, int, S_IRUGO); 216 217 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 219 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 220 221 /* Storage for pre module init parameter parsing */ 222 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 223 224 static const struct { 225 const char *option; 226 bool for_parse; 227 } vmentry_l1d_param[] = { 228 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 229 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 230 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 231 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 232 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 233 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 234 }; 235 236 #define L1D_CACHE_ORDER 4 237 static void *vmx_l1d_flush_pages; 238 239 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 240 { 241 struct page *page; 242 unsigned int i; 243 244 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 245 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 246 return 0; 247 } 248 249 if (!enable_ept) { 250 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 251 return 0; 252 } 253 254 if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 255 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 256 return 0; 257 } 258 259 /* If set to auto use the default l1tf mitigation method */ 260 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 261 switch (l1tf_mitigation) { 262 case L1TF_MITIGATION_OFF: 263 l1tf = VMENTER_L1D_FLUSH_NEVER; 264 break; 265 case L1TF_MITIGATION_FLUSH_NOWARN: 266 case L1TF_MITIGATION_FLUSH: 267 case L1TF_MITIGATION_FLUSH_NOSMT: 268 l1tf = VMENTER_L1D_FLUSH_COND; 269 break; 270 case L1TF_MITIGATION_FULL: 271 case L1TF_MITIGATION_FULL_FORCE: 272 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 273 break; 274 } 275 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 276 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 277 } 278 279 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 280 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 281 /* 282 * This allocation for vmx_l1d_flush_pages is not tied to a VM 283 * lifetime and so should not be charged to a memcg. 284 */ 285 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 286 if (!page) 287 return -ENOMEM; 288 vmx_l1d_flush_pages = page_address(page); 289 290 /* 291 * Initialize each page with a different pattern in 292 * order to protect against KSM in the nested 293 * virtualization case. 294 */ 295 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 296 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 297 PAGE_SIZE); 298 } 299 } 300 301 l1tf_vmx_mitigation = l1tf; 302 303 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 304 static_branch_enable(&vmx_l1d_should_flush); 305 else 306 static_branch_disable(&vmx_l1d_should_flush); 307 308 if (l1tf == VMENTER_L1D_FLUSH_COND) 309 static_branch_enable(&vmx_l1d_flush_cond); 310 else 311 static_branch_disable(&vmx_l1d_flush_cond); 312 return 0; 313 } 314 315 static int vmentry_l1d_flush_parse(const char *s) 316 { 317 unsigned int i; 318 319 if (s) { 320 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 321 if (vmentry_l1d_param[i].for_parse && 322 sysfs_streq(s, vmentry_l1d_param[i].option)) 323 return i; 324 } 325 } 326 return -EINVAL; 327 } 328 329 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 330 { 331 int l1tf, ret; 332 333 l1tf = vmentry_l1d_flush_parse(s); 334 if (l1tf < 0) 335 return l1tf; 336 337 if (!boot_cpu_has(X86_BUG_L1TF)) 338 return 0; 339 340 /* 341 * Has vmx_init() run already? If not then this is the pre init 342 * parameter parsing. In that case just store the value and let 343 * vmx_init() do the proper setup after enable_ept has been 344 * established. 345 */ 346 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 347 vmentry_l1d_flush_param = l1tf; 348 return 0; 349 } 350 351 mutex_lock(&vmx_l1d_flush_mutex); 352 ret = vmx_setup_l1d_flush(l1tf); 353 mutex_unlock(&vmx_l1d_flush_mutex); 354 return ret; 355 } 356 357 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 358 { 359 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 360 return sysfs_emit(s, "???\n"); 361 362 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 363 } 364 365 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) 366 { 367 u64 msr; 368 369 if (!vmx->disable_fb_clear) 370 return; 371 372 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL); 373 msr |= FB_CLEAR_DIS; 374 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr); 375 /* Cache the MSR value to avoid reading it later */ 376 vmx->msr_ia32_mcu_opt_ctrl = msr; 377 } 378 379 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) 380 { 381 if (!vmx->disable_fb_clear) 382 return; 383 384 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; 385 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); 386 } 387 388 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) 389 { 390 vmx->disable_fb_clear = (host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) && 391 !boot_cpu_has_bug(X86_BUG_MDS) && 392 !boot_cpu_has_bug(X86_BUG_TAA); 393 394 /* 395 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS 396 * at VMEntry. Skip the MSR read/write when a guest has no use case to 397 * execute VERW. 398 */ 399 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || 400 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && 401 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && 402 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && 403 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && 404 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) 405 vmx->disable_fb_clear = false; 406 } 407 408 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 409 .set = vmentry_l1d_flush_set, 410 .get = vmentry_l1d_flush_get, 411 }; 412 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 413 414 static u32 vmx_segment_access_rights(struct kvm_segment *var); 415 416 void vmx_vmexit(void); 417 418 #define vmx_insn_failed(fmt...) \ 419 do { \ 420 WARN_ONCE(1, fmt); \ 421 pr_warn_ratelimited(fmt); \ 422 } while (0) 423 424 noinline void vmread_error(unsigned long field) 425 { 426 vmx_insn_failed("vmread failed: field=%lx\n", field); 427 } 428 429 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT 430 noinstr void vmread_error_trampoline2(unsigned long field, bool fault) 431 { 432 if (fault) { 433 kvm_spurious_fault(); 434 } else { 435 instrumentation_begin(); 436 vmread_error(field); 437 instrumentation_end(); 438 } 439 } 440 #endif 441 442 noinline void vmwrite_error(unsigned long field, unsigned long value) 443 { 444 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n", 445 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 446 } 447 448 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 449 { 450 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n", 451 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 452 } 453 454 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 455 { 456 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n", 457 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 458 } 459 460 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 461 { 462 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 463 ext, vpid, gva); 464 } 465 466 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 467 { 468 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 469 ext, eptp, gpa); 470 } 471 472 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 473 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 474 /* 475 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 476 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 477 */ 478 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 479 480 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 481 static DEFINE_SPINLOCK(vmx_vpid_lock); 482 483 struct vmcs_config vmcs_config __ro_after_init; 484 struct vmx_capability vmx_capability __ro_after_init; 485 486 #define VMX_SEGMENT_FIELD(seg) \ 487 [VCPU_SREG_##seg] = { \ 488 .selector = GUEST_##seg##_SELECTOR, \ 489 .base = GUEST_##seg##_BASE, \ 490 .limit = GUEST_##seg##_LIMIT, \ 491 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 492 } 493 494 static const struct kvm_vmx_segment_field { 495 unsigned selector; 496 unsigned base; 497 unsigned limit; 498 unsigned ar_bytes; 499 } kvm_vmx_segment_fields[] = { 500 VMX_SEGMENT_FIELD(CS), 501 VMX_SEGMENT_FIELD(DS), 502 VMX_SEGMENT_FIELD(ES), 503 VMX_SEGMENT_FIELD(FS), 504 VMX_SEGMENT_FIELD(GS), 505 VMX_SEGMENT_FIELD(SS), 506 VMX_SEGMENT_FIELD(TR), 507 VMX_SEGMENT_FIELD(LDTR), 508 }; 509 510 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 511 { 512 vmx->segment_cache.bitmask = 0; 513 } 514 515 static unsigned long host_idt_base; 516 517 #if IS_ENABLED(CONFIG_HYPERV) 518 static struct kvm_x86_ops vmx_x86_ops __initdata; 519 520 static bool __read_mostly enlightened_vmcs = true; 521 module_param(enlightened_vmcs, bool, 0444); 522 523 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu) 524 { 525 struct hv_enlightened_vmcs *evmcs; 526 struct hv_partition_assist_pg **p_hv_pa_pg = 527 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 528 /* 529 * Synthetic VM-Exit is not enabled in current code and so All 530 * evmcs in singe VM shares same assist page. 531 */ 532 if (!*p_hv_pa_pg) 533 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 534 535 if (!*p_hv_pa_pg) 536 return -ENOMEM; 537 538 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 539 540 evmcs->partition_assist_page = 541 __pa(*p_hv_pa_pg); 542 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 543 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 544 545 return 0; 546 } 547 548 static __init void hv_init_evmcs(void) 549 { 550 int cpu; 551 552 if (!enlightened_vmcs) 553 return; 554 555 /* 556 * Enlightened VMCS usage should be recommended and the host needs 557 * to support eVMCS v1 or above. 558 */ 559 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 560 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 561 KVM_EVMCS_VERSION) { 562 563 /* Check that we have assist pages on all online CPUs */ 564 for_each_online_cpu(cpu) { 565 if (!hv_get_vp_assist_page(cpu)) { 566 enlightened_vmcs = false; 567 break; 568 } 569 } 570 571 if (enlightened_vmcs) { 572 pr_info("Using Hyper-V Enlightened VMCS\n"); 573 static_branch_enable(&__kvm_is_using_evmcs); 574 } 575 576 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 577 vmx_x86_ops.enable_l2_tlb_flush 578 = hv_enable_l2_tlb_flush; 579 580 } else { 581 enlightened_vmcs = false; 582 } 583 } 584 585 static void hv_reset_evmcs(void) 586 { 587 struct hv_vp_assist_page *vp_ap; 588 589 if (!kvm_is_using_evmcs()) 590 return; 591 592 /* 593 * KVM should enable eVMCS if and only if all CPUs have a VP assist 594 * page, and should reject CPU onlining if eVMCS is enabled the CPU 595 * doesn't have a VP assist page allocated. 596 */ 597 vp_ap = hv_get_vp_assist_page(smp_processor_id()); 598 if (WARN_ON_ONCE(!vp_ap)) 599 return; 600 601 /* 602 * Reset everything to support using non-enlightened VMCS access later 603 * (e.g. when we reload the module with enlightened_vmcs=0) 604 */ 605 vp_ap->nested_control.features.directhypercall = 0; 606 vp_ap->current_nested_vmcs = 0; 607 vp_ap->enlighten_vmentry = 0; 608 } 609 610 #else /* IS_ENABLED(CONFIG_HYPERV) */ 611 static void hv_init_evmcs(void) {} 612 static void hv_reset_evmcs(void) {} 613 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 614 615 /* 616 * Comment's format: document - errata name - stepping - processor name. 617 * Refer from 618 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 619 */ 620 static u32 vmx_preemption_cpu_tfms[] = { 621 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 622 0x000206E6, 623 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 624 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 625 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 626 0x00020652, 627 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 628 0x00020655, 629 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 630 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 631 /* 632 * 320767.pdf - AAP86 - B1 - 633 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 634 */ 635 0x000106E5, 636 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 637 0x000106A0, 638 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 639 0x000106A1, 640 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 641 0x000106A4, 642 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 643 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 644 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 645 0x000106A5, 646 /* Xeon E3-1220 V2 */ 647 0x000306A8, 648 }; 649 650 static inline bool cpu_has_broken_vmx_preemption_timer(void) 651 { 652 u32 eax = cpuid_eax(0x00000001), i; 653 654 /* Clear the reserved bits */ 655 eax &= ~(0x3U << 14 | 0xfU << 28); 656 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 657 if (eax == vmx_preemption_cpu_tfms[i]) 658 return true; 659 660 return false; 661 } 662 663 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 664 { 665 return flexpriority_enabled && lapic_in_kernel(vcpu); 666 } 667 668 static int possible_passthrough_msr_slot(u32 msr) 669 { 670 u32 i; 671 672 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 673 if (vmx_possible_passthrough_msrs[i] == msr) 674 return i; 675 676 return -ENOENT; 677 } 678 679 static bool is_valid_passthrough_msr(u32 msr) 680 { 681 bool r; 682 683 switch (msr) { 684 case 0x800 ... 0x8ff: 685 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 686 return true; 687 case MSR_IA32_RTIT_STATUS: 688 case MSR_IA32_RTIT_OUTPUT_BASE: 689 case MSR_IA32_RTIT_OUTPUT_MASK: 690 case MSR_IA32_RTIT_CR3_MATCH: 691 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 692 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 693 case MSR_LBR_SELECT: 694 case MSR_LBR_TOS: 695 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 696 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 697 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 698 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 699 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 700 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 701 return true; 702 } 703 704 r = possible_passthrough_msr_slot(msr) != -ENOENT; 705 706 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 707 708 return r; 709 } 710 711 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 712 { 713 int i; 714 715 i = kvm_find_user_return_msr(msr); 716 if (i >= 0) 717 return &vmx->guest_uret_msrs[i]; 718 return NULL; 719 } 720 721 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 722 struct vmx_uret_msr *msr, u64 data) 723 { 724 unsigned int slot = msr - vmx->guest_uret_msrs; 725 int ret = 0; 726 727 if (msr->load_into_hardware) { 728 preempt_disable(); 729 ret = kvm_set_user_return_msr(slot, data, msr->mask); 730 preempt_enable(); 731 } 732 if (!ret) 733 msr->data = data; 734 return ret; 735 } 736 737 /* 738 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults) 739 * 740 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to 741 * atomically track post-VMXON state, e.g. this may be called in NMI context. 742 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e. 743 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is 744 * magically in RM, VM86, compat mode, or at CPL>0. 745 */ 746 static int kvm_cpu_vmxoff(void) 747 { 748 asm goto("1: vmxoff\n\t" 749 _ASM_EXTABLE(1b, %l[fault]) 750 ::: "cc", "memory" : fault); 751 752 cr4_clear_bits(X86_CR4_VMXE); 753 return 0; 754 755 fault: 756 cr4_clear_bits(X86_CR4_VMXE); 757 return -EIO; 758 } 759 760 static void vmx_emergency_disable(void) 761 { 762 int cpu = raw_smp_processor_id(); 763 struct loaded_vmcs *v; 764 765 kvm_rebooting = true; 766 767 /* 768 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be 769 * set in task context. If this races with VMX is disabled by an NMI, 770 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to 771 * kvm_rebooting set. 772 */ 773 if (!(__read_cr4() & X86_CR4_VMXE)) 774 return; 775 776 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 777 loaded_vmcss_on_cpu_link) 778 vmcs_clear(v->vmcs); 779 780 kvm_cpu_vmxoff(); 781 } 782 783 static void __loaded_vmcs_clear(void *arg) 784 { 785 struct loaded_vmcs *loaded_vmcs = arg; 786 int cpu = raw_smp_processor_id(); 787 788 if (loaded_vmcs->cpu != cpu) 789 return; /* vcpu migration can race with cpu offline */ 790 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 791 per_cpu(current_vmcs, cpu) = NULL; 792 793 vmcs_clear(loaded_vmcs->vmcs); 794 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 795 vmcs_clear(loaded_vmcs->shadow_vmcs); 796 797 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 798 799 /* 800 * Ensure all writes to loaded_vmcs, including deleting it from its 801 * current percpu list, complete before setting loaded_vmcs->cpu to 802 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first 803 * and add loaded_vmcs to its percpu list before it's deleted from this 804 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 805 */ 806 smp_wmb(); 807 808 loaded_vmcs->cpu = -1; 809 loaded_vmcs->launched = 0; 810 } 811 812 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 813 { 814 int cpu = loaded_vmcs->cpu; 815 816 if (cpu != -1) 817 smp_call_function_single(cpu, 818 __loaded_vmcs_clear, loaded_vmcs, 1); 819 } 820 821 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 822 unsigned field) 823 { 824 bool ret; 825 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 826 827 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 828 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 829 vmx->segment_cache.bitmask = 0; 830 } 831 ret = vmx->segment_cache.bitmask & mask; 832 vmx->segment_cache.bitmask |= mask; 833 return ret; 834 } 835 836 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 837 { 838 u16 *p = &vmx->segment_cache.seg[seg].selector; 839 840 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 841 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 842 return *p; 843 } 844 845 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 846 { 847 ulong *p = &vmx->segment_cache.seg[seg].base; 848 849 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 850 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 851 return *p; 852 } 853 854 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 855 { 856 u32 *p = &vmx->segment_cache.seg[seg].limit; 857 858 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 859 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 860 return *p; 861 } 862 863 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 864 { 865 u32 *p = &vmx->segment_cache.seg[seg].ar; 866 867 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 868 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 869 return *p; 870 } 871 872 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 873 { 874 u32 eb; 875 876 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 877 (1u << DB_VECTOR) | (1u << AC_VECTOR); 878 /* 879 * Guest access to VMware backdoor ports could legitimately 880 * trigger #GP because of TSS I/O permission bitmap. 881 * We intercept those #GP and allow access to them anyway 882 * as VMware does. 883 */ 884 if (enable_vmware_backdoor) 885 eb |= (1u << GP_VECTOR); 886 if ((vcpu->guest_debug & 887 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 888 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 889 eb |= 1u << BP_VECTOR; 890 if (to_vmx(vcpu)->rmode.vm86_active) 891 eb = ~0; 892 if (!vmx_need_pf_intercept(vcpu)) 893 eb &= ~(1u << PF_VECTOR); 894 895 /* When we are running a nested L2 guest and L1 specified for it a 896 * certain exception bitmap, we must trap the same exceptions and pass 897 * them to L1. When running L2, we will only handle the exceptions 898 * specified above if L1 did not want them. 899 */ 900 if (is_guest_mode(vcpu)) 901 eb |= get_vmcs12(vcpu)->exception_bitmap; 902 else { 903 int mask = 0, match = 0; 904 905 if (enable_ept && (eb & (1u << PF_VECTOR))) { 906 /* 907 * If EPT is enabled, #PF is currently only intercepted 908 * if MAXPHYADDR is smaller on the guest than on the 909 * host. In that case we only care about present, 910 * non-reserved faults. For vmcs02, however, PFEC_MASK 911 * and PFEC_MATCH are set in prepare_vmcs02_rare. 912 */ 913 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 914 match = PFERR_PRESENT_MASK; 915 } 916 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 917 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 918 } 919 920 /* 921 * Disabling xfd interception indicates that dynamic xfeatures 922 * might be used in the guest. Always trap #NM in this case 923 * to save guest xfd_err timely. 924 */ 925 if (vcpu->arch.xfd_no_write_intercept) 926 eb |= (1u << NM_VECTOR); 927 928 vmcs_write32(EXCEPTION_BITMAP, eb); 929 } 930 931 /* 932 * Check if MSR is intercepted for currently loaded MSR bitmap. 933 */ 934 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 935 { 936 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 937 return true; 938 939 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); 940 } 941 942 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) 943 { 944 unsigned int flags = 0; 945 946 if (vmx->loaded_vmcs->launched) 947 flags |= VMX_RUN_VMRESUME; 948 949 /* 950 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free 951 * to change it directly without causing a vmexit. In that case read 952 * it after vmexit and store it in vmx->spec_ctrl. 953 */ 954 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)) 955 flags |= VMX_RUN_SAVE_SPEC_CTRL; 956 957 return flags; 958 } 959 960 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 961 unsigned long entry, unsigned long exit) 962 { 963 vm_entry_controls_clearbit(vmx, entry); 964 vm_exit_controls_clearbit(vmx, exit); 965 } 966 967 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 968 { 969 unsigned int i; 970 971 for (i = 0; i < m->nr; ++i) { 972 if (m->val[i].index == msr) 973 return i; 974 } 975 return -ENOENT; 976 } 977 978 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 979 { 980 int i; 981 struct msr_autoload *m = &vmx->msr_autoload; 982 983 switch (msr) { 984 case MSR_EFER: 985 if (cpu_has_load_ia32_efer()) { 986 clear_atomic_switch_msr_special(vmx, 987 VM_ENTRY_LOAD_IA32_EFER, 988 VM_EXIT_LOAD_IA32_EFER); 989 return; 990 } 991 break; 992 case MSR_CORE_PERF_GLOBAL_CTRL: 993 if (cpu_has_load_perf_global_ctrl()) { 994 clear_atomic_switch_msr_special(vmx, 995 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 996 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 997 return; 998 } 999 break; 1000 } 1001 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1002 if (i < 0) 1003 goto skip_guest; 1004 --m->guest.nr; 1005 m->guest.val[i] = m->guest.val[m->guest.nr]; 1006 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1007 1008 skip_guest: 1009 i = vmx_find_loadstore_msr_slot(&m->host, msr); 1010 if (i < 0) 1011 return; 1012 1013 --m->host.nr; 1014 m->host.val[i] = m->host.val[m->host.nr]; 1015 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1016 } 1017 1018 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 1019 unsigned long entry, unsigned long exit, 1020 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 1021 u64 guest_val, u64 host_val) 1022 { 1023 vmcs_write64(guest_val_vmcs, guest_val); 1024 if (host_val_vmcs != HOST_IA32_EFER) 1025 vmcs_write64(host_val_vmcs, host_val); 1026 vm_entry_controls_setbit(vmx, entry); 1027 vm_exit_controls_setbit(vmx, exit); 1028 } 1029 1030 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 1031 u64 guest_val, u64 host_val, bool entry_only) 1032 { 1033 int i, j = 0; 1034 struct msr_autoload *m = &vmx->msr_autoload; 1035 1036 switch (msr) { 1037 case MSR_EFER: 1038 if (cpu_has_load_ia32_efer()) { 1039 add_atomic_switch_msr_special(vmx, 1040 VM_ENTRY_LOAD_IA32_EFER, 1041 VM_EXIT_LOAD_IA32_EFER, 1042 GUEST_IA32_EFER, 1043 HOST_IA32_EFER, 1044 guest_val, host_val); 1045 return; 1046 } 1047 break; 1048 case MSR_CORE_PERF_GLOBAL_CTRL: 1049 if (cpu_has_load_perf_global_ctrl()) { 1050 add_atomic_switch_msr_special(vmx, 1051 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 1052 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 1053 GUEST_IA32_PERF_GLOBAL_CTRL, 1054 HOST_IA32_PERF_GLOBAL_CTRL, 1055 guest_val, host_val); 1056 return; 1057 } 1058 break; 1059 case MSR_IA32_PEBS_ENABLE: 1060 /* PEBS needs a quiescent period after being disabled (to write 1061 * a record). Disabling PEBS through VMX MSR swapping doesn't 1062 * provide that period, so a CPU could write host's record into 1063 * guest's memory. 1064 */ 1065 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1066 } 1067 1068 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1069 if (!entry_only) 1070 j = vmx_find_loadstore_msr_slot(&m->host, msr); 1071 1072 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 1073 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 1074 printk_once(KERN_WARNING "Not enough msr switch entries. " 1075 "Can't add msr %x\n", msr); 1076 return; 1077 } 1078 if (i < 0) { 1079 i = m->guest.nr++; 1080 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1081 } 1082 m->guest.val[i].index = msr; 1083 m->guest.val[i].value = guest_val; 1084 1085 if (entry_only) 1086 return; 1087 1088 if (j < 0) { 1089 j = m->host.nr++; 1090 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1091 } 1092 m->host.val[j].index = msr; 1093 m->host.val[j].value = host_val; 1094 } 1095 1096 static bool update_transition_efer(struct vcpu_vmx *vmx) 1097 { 1098 u64 guest_efer = vmx->vcpu.arch.efer; 1099 u64 ignore_bits = 0; 1100 int i; 1101 1102 /* Shadow paging assumes NX to be available. */ 1103 if (!enable_ept) 1104 guest_efer |= EFER_NX; 1105 1106 /* 1107 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1108 */ 1109 ignore_bits |= EFER_SCE; 1110 #ifdef CONFIG_X86_64 1111 ignore_bits |= EFER_LMA | EFER_LME; 1112 /* SCE is meaningful only in long mode on Intel */ 1113 if (guest_efer & EFER_LMA) 1114 ignore_bits &= ~(u64)EFER_SCE; 1115 #endif 1116 1117 /* 1118 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1119 * On CPUs that support "load IA32_EFER", always switch EFER 1120 * atomically, since it's faster than switching it manually. 1121 */ 1122 if (cpu_has_load_ia32_efer() || 1123 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 1124 if (!(guest_efer & EFER_LMA)) 1125 guest_efer &= ~EFER_LME; 1126 if (guest_efer != host_efer) 1127 add_atomic_switch_msr(vmx, MSR_EFER, 1128 guest_efer, host_efer, false); 1129 else 1130 clear_atomic_switch_msr(vmx, MSR_EFER); 1131 return false; 1132 } 1133 1134 i = kvm_find_user_return_msr(MSR_EFER); 1135 if (i < 0) 1136 return false; 1137 1138 clear_atomic_switch_msr(vmx, MSR_EFER); 1139 1140 guest_efer &= ~ignore_bits; 1141 guest_efer |= host_efer & ignore_bits; 1142 1143 vmx->guest_uret_msrs[i].data = guest_efer; 1144 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1145 1146 return true; 1147 } 1148 1149 #ifdef CONFIG_X86_32 1150 /* 1151 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1152 * VMCS rather than the segment table. KVM uses this helper to figure 1153 * out the current bases to poke them into the VMCS before entry. 1154 */ 1155 static unsigned long segment_base(u16 selector) 1156 { 1157 struct desc_struct *table; 1158 unsigned long v; 1159 1160 if (!(selector & ~SEGMENT_RPL_MASK)) 1161 return 0; 1162 1163 table = get_current_gdt_ro(); 1164 1165 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1166 u16 ldt_selector = kvm_read_ldt(); 1167 1168 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1169 return 0; 1170 1171 table = (struct desc_struct *)segment_base(ldt_selector); 1172 } 1173 v = get_desc_base(&table[selector >> 3]); 1174 return v; 1175 } 1176 #endif 1177 1178 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1179 { 1180 return vmx_pt_mode_is_host_guest() && 1181 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1182 } 1183 1184 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1185 { 1186 /* The base must be 128-byte aligned and a legal physical address. */ 1187 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1188 } 1189 1190 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1191 { 1192 u32 i; 1193 1194 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1195 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1196 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1197 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1198 for (i = 0; i < addr_range; i++) { 1199 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1200 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1201 } 1202 } 1203 1204 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1205 { 1206 u32 i; 1207 1208 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1209 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1210 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1211 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1212 for (i = 0; i < addr_range; i++) { 1213 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1214 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1215 } 1216 } 1217 1218 static void pt_guest_enter(struct vcpu_vmx *vmx) 1219 { 1220 if (vmx_pt_mode_is_system()) 1221 return; 1222 1223 /* 1224 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1225 * Save host state before VM entry. 1226 */ 1227 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1228 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1229 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1230 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1231 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1232 } 1233 } 1234 1235 static void pt_guest_exit(struct vcpu_vmx *vmx) 1236 { 1237 if (vmx_pt_mode_is_system()) 1238 return; 1239 1240 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1241 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1242 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1243 } 1244 1245 /* 1246 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1247 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1248 */ 1249 if (vmx->pt_desc.host.ctl) 1250 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1251 } 1252 1253 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1254 unsigned long fs_base, unsigned long gs_base) 1255 { 1256 if (unlikely(fs_sel != host->fs_sel)) { 1257 if (!(fs_sel & 7)) 1258 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1259 else 1260 vmcs_write16(HOST_FS_SELECTOR, 0); 1261 host->fs_sel = fs_sel; 1262 } 1263 if (unlikely(gs_sel != host->gs_sel)) { 1264 if (!(gs_sel & 7)) 1265 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1266 else 1267 vmcs_write16(HOST_GS_SELECTOR, 0); 1268 host->gs_sel = gs_sel; 1269 } 1270 if (unlikely(fs_base != host->fs_base)) { 1271 vmcs_writel(HOST_FS_BASE, fs_base); 1272 host->fs_base = fs_base; 1273 } 1274 if (unlikely(gs_base != host->gs_base)) { 1275 vmcs_writel(HOST_GS_BASE, gs_base); 1276 host->gs_base = gs_base; 1277 } 1278 } 1279 1280 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1281 { 1282 struct vcpu_vmx *vmx = to_vmx(vcpu); 1283 struct vmcs_host_state *host_state; 1284 #ifdef CONFIG_X86_64 1285 int cpu = raw_smp_processor_id(); 1286 #endif 1287 unsigned long fs_base, gs_base; 1288 u16 fs_sel, gs_sel; 1289 int i; 1290 1291 vmx->req_immediate_exit = false; 1292 1293 /* 1294 * Note that guest MSRs to be saved/restored can also be changed 1295 * when guest state is loaded. This happens when guest transitions 1296 * to/from long-mode by setting MSR_EFER.LMA. 1297 */ 1298 if (!vmx->guest_uret_msrs_loaded) { 1299 vmx->guest_uret_msrs_loaded = true; 1300 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1301 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1302 continue; 1303 1304 kvm_set_user_return_msr(i, 1305 vmx->guest_uret_msrs[i].data, 1306 vmx->guest_uret_msrs[i].mask); 1307 } 1308 } 1309 1310 if (vmx->nested.need_vmcs12_to_shadow_sync) 1311 nested_sync_vmcs12_to_shadow(vcpu); 1312 1313 if (vmx->guest_state_loaded) 1314 return; 1315 1316 host_state = &vmx->loaded_vmcs->host_state; 1317 1318 /* 1319 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1320 * allow segment selectors with cpl > 0 or ti == 1. 1321 */ 1322 host_state->ldt_sel = kvm_read_ldt(); 1323 1324 #ifdef CONFIG_X86_64 1325 savesegment(ds, host_state->ds_sel); 1326 savesegment(es, host_state->es_sel); 1327 1328 gs_base = cpu_kernelmode_gs_base(cpu); 1329 if (likely(is_64bit_mm(current->mm))) { 1330 current_save_fsgs(); 1331 fs_sel = current->thread.fsindex; 1332 gs_sel = current->thread.gsindex; 1333 fs_base = current->thread.fsbase; 1334 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1335 } else { 1336 savesegment(fs, fs_sel); 1337 savesegment(gs, gs_sel); 1338 fs_base = read_msr(MSR_FS_BASE); 1339 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1340 } 1341 1342 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1343 #else 1344 savesegment(fs, fs_sel); 1345 savesegment(gs, gs_sel); 1346 fs_base = segment_base(fs_sel); 1347 gs_base = segment_base(gs_sel); 1348 #endif 1349 1350 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1351 vmx->guest_state_loaded = true; 1352 } 1353 1354 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1355 { 1356 struct vmcs_host_state *host_state; 1357 1358 if (!vmx->guest_state_loaded) 1359 return; 1360 1361 host_state = &vmx->loaded_vmcs->host_state; 1362 1363 ++vmx->vcpu.stat.host_state_reload; 1364 1365 #ifdef CONFIG_X86_64 1366 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1367 #endif 1368 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1369 kvm_load_ldt(host_state->ldt_sel); 1370 #ifdef CONFIG_X86_64 1371 load_gs_index(host_state->gs_sel); 1372 #else 1373 loadsegment(gs, host_state->gs_sel); 1374 #endif 1375 } 1376 if (host_state->fs_sel & 7) 1377 loadsegment(fs, host_state->fs_sel); 1378 #ifdef CONFIG_X86_64 1379 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1380 loadsegment(ds, host_state->ds_sel); 1381 loadsegment(es, host_state->es_sel); 1382 } 1383 #endif 1384 invalidate_tss_limit(); 1385 #ifdef CONFIG_X86_64 1386 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1387 #endif 1388 load_fixmap_gdt(raw_smp_processor_id()); 1389 vmx->guest_state_loaded = false; 1390 vmx->guest_uret_msrs_loaded = false; 1391 } 1392 1393 #ifdef CONFIG_X86_64 1394 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1395 { 1396 preempt_disable(); 1397 if (vmx->guest_state_loaded) 1398 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1399 preempt_enable(); 1400 return vmx->msr_guest_kernel_gs_base; 1401 } 1402 1403 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1404 { 1405 preempt_disable(); 1406 if (vmx->guest_state_loaded) 1407 wrmsrl(MSR_KERNEL_GS_BASE, data); 1408 preempt_enable(); 1409 vmx->msr_guest_kernel_gs_base = data; 1410 } 1411 #endif 1412 1413 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1414 struct loaded_vmcs *buddy) 1415 { 1416 struct vcpu_vmx *vmx = to_vmx(vcpu); 1417 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1418 struct vmcs *prev; 1419 1420 if (!already_loaded) { 1421 loaded_vmcs_clear(vmx->loaded_vmcs); 1422 local_irq_disable(); 1423 1424 /* 1425 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1426 * this cpu's percpu list, otherwise it may not yet be deleted 1427 * from its previous cpu's percpu list. Pairs with the 1428 * smb_wmb() in __loaded_vmcs_clear(). 1429 */ 1430 smp_rmb(); 1431 1432 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1433 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1434 local_irq_enable(); 1435 } 1436 1437 prev = per_cpu(current_vmcs, cpu); 1438 if (prev != vmx->loaded_vmcs->vmcs) { 1439 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1440 vmcs_load(vmx->loaded_vmcs->vmcs); 1441 1442 /* 1443 * No indirect branch prediction barrier needed when switching 1444 * the active VMCS within a vCPU, unless IBRS is advertised to 1445 * the vCPU. To minimize the number of IBPBs executed, KVM 1446 * performs IBPB on nested VM-Exit (a single nested transition 1447 * may switch the active VMCS multiple times). 1448 */ 1449 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1450 indirect_branch_prediction_barrier(); 1451 } 1452 1453 if (!already_loaded) { 1454 void *gdt = get_current_gdt_ro(); 1455 1456 /* 1457 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1458 * TLB entries from its previous association with the vCPU. 1459 */ 1460 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1461 1462 /* 1463 * Linux uses per-cpu TSS and GDT, so set these when switching 1464 * processors. See 22.2.4. 1465 */ 1466 vmcs_writel(HOST_TR_BASE, 1467 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1468 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1469 1470 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1471 /* 22.2.3 */ 1472 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1473 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1474 } 1475 1476 vmx->loaded_vmcs->cpu = cpu; 1477 } 1478 } 1479 1480 /* 1481 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1482 * vcpu mutex is already taken. 1483 */ 1484 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1485 { 1486 struct vcpu_vmx *vmx = to_vmx(vcpu); 1487 1488 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1489 1490 vmx_vcpu_pi_load(vcpu, cpu); 1491 1492 vmx->host_debugctlmsr = get_debugctlmsr(); 1493 } 1494 1495 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1496 { 1497 vmx_vcpu_pi_put(vcpu); 1498 1499 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1500 } 1501 1502 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1503 { 1504 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1505 } 1506 1507 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1508 { 1509 struct vcpu_vmx *vmx = to_vmx(vcpu); 1510 unsigned long rflags, save_rflags; 1511 1512 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1513 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1514 rflags = vmcs_readl(GUEST_RFLAGS); 1515 if (vmx->rmode.vm86_active) { 1516 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1517 save_rflags = vmx->rmode.save_rflags; 1518 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1519 } 1520 vmx->rflags = rflags; 1521 } 1522 return vmx->rflags; 1523 } 1524 1525 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1526 { 1527 struct vcpu_vmx *vmx = to_vmx(vcpu); 1528 unsigned long old_rflags; 1529 1530 /* 1531 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU 1532 * is an unrestricted guest in order to mark L2 as needing emulation 1533 * if L1 runs L2 as a restricted guest. 1534 */ 1535 if (is_unrestricted_guest(vcpu)) { 1536 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1537 vmx->rflags = rflags; 1538 vmcs_writel(GUEST_RFLAGS, rflags); 1539 return; 1540 } 1541 1542 old_rflags = vmx_get_rflags(vcpu); 1543 vmx->rflags = rflags; 1544 if (vmx->rmode.vm86_active) { 1545 vmx->rmode.save_rflags = rflags; 1546 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1547 } 1548 vmcs_writel(GUEST_RFLAGS, rflags); 1549 1550 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1551 vmx->emulation_required = vmx_emulation_required(vcpu); 1552 } 1553 1554 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1555 { 1556 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1557 } 1558 1559 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1560 { 1561 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1562 int ret = 0; 1563 1564 if (interruptibility & GUEST_INTR_STATE_STI) 1565 ret |= KVM_X86_SHADOW_INT_STI; 1566 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1567 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1568 1569 return ret; 1570 } 1571 1572 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1573 { 1574 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1575 u32 interruptibility = interruptibility_old; 1576 1577 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1578 1579 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1580 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1581 else if (mask & KVM_X86_SHADOW_INT_STI) 1582 interruptibility |= GUEST_INTR_STATE_STI; 1583 1584 if ((interruptibility != interruptibility_old)) 1585 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1586 } 1587 1588 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1589 { 1590 struct vcpu_vmx *vmx = to_vmx(vcpu); 1591 unsigned long value; 1592 1593 /* 1594 * Any MSR write that attempts to change bits marked reserved will 1595 * case a #GP fault. 1596 */ 1597 if (data & vmx->pt_desc.ctl_bitmask) 1598 return 1; 1599 1600 /* 1601 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1602 * result in a #GP unless the same write also clears TraceEn. 1603 */ 1604 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1605 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1606 return 1; 1607 1608 /* 1609 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1610 * and FabricEn would cause #GP, if 1611 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1612 */ 1613 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1614 !(data & RTIT_CTL_FABRIC_EN) && 1615 !intel_pt_validate_cap(vmx->pt_desc.caps, 1616 PT_CAP_single_range_output)) 1617 return 1; 1618 1619 /* 1620 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1621 * utilize encodings marked reserved will cause a #GP fault. 1622 */ 1623 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1624 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1625 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1626 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1627 return 1; 1628 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1629 PT_CAP_cycle_thresholds); 1630 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1631 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1632 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1633 return 1; 1634 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1635 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1636 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1637 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1638 return 1; 1639 1640 /* 1641 * If ADDRx_CFG is reserved or the encodings is >2 will 1642 * cause a #GP fault. 1643 */ 1644 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1645 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1646 return 1; 1647 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1648 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1649 return 1; 1650 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1651 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1652 return 1; 1653 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1654 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1655 return 1; 1656 1657 return 0; 1658 } 1659 1660 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1661 void *insn, int insn_len) 1662 { 1663 /* 1664 * Emulation of instructions in SGX enclaves is impossible as RIP does 1665 * not point at the failing instruction, and even if it did, the code 1666 * stream is inaccessible. Inject #UD instead of exiting to userspace 1667 * so that guest userspace can't DoS the guest simply by triggering 1668 * emulation (enclaves are CPL3 only). 1669 */ 1670 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1671 kvm_queue_exception(vcpu, UD_VECTOR); 1672 return false; 1673 } 1674 return true; 1675 } 1676 1677 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1678 { 1679 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1680 unsigned long rip, orig_rip; 1681 u32 instr_len; 1682 1683 /* 1684 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1685 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1686 * set when EPT misconfig occurs. In practice, real hardware updates 1687 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1688 * (namely Hyper-V) don't set it due to it being undefined behavior, 1689 * i.e. we end up advancing IP with some random value. 1690 */ 1691 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1692 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1693 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1694 1695 /* 1696 * Emulating an enclave's instructions isn't supported as KVM 1697 * cannot access the enclave's memory or its true RIP, e.g. the 1698 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1699 * the RIP that actually triggered the VM-Exit. But, because 1700 * most instructions that cause VM-Exit will #UD in an enclave, 1701 * most instruction-based VM-Exits simply do not occur. 1702 * 1703 * There are a few exceptions, notably the debug instructions 1704 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1705 * and generate #DB/#BP as expected, which KVM might intercept. 1706 * But again, the CPU does the dirty work and saves an instr 1707 * length of zero so VMMs don't shoot themselves in the foot. 1708 * WARN if KVM tries to skip a non-zero length instruction on 1709 * a VM-Exit from an enclave. 1710 */ 1711 if (!instr_len) 1712 goto rip_updated; 1713 1714 WARN_ONCE(exit_reason.enclave_mode, 1715 "skipping instruction after SGX enclave VM-Exit"); 1716 1717 orig_rip = kvm_rip_read(vcpu); 1718 rip = orig_rip + instr_len; 1719 #ifdef CONFIG_X86_64 1720 /* 1721 * We need to mask out the high 32 bits of RIP if not in 64-bit 1722 * mode, but just finding out that we are in 64-bit mode is 1723 * quite expensive. Only do it if there was a carry. 1724 */ 1725 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1726 rip = (u32)rip; 1727 #endif 1728 kvm_rip_write(vcpu, rip); 1729 } else { 1730 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1731 return 0; 1732 } 1733 1734 rip_updated: 1735 /* skipping an emulated instruction also counts */ 1736 vmx_set_interrupt_shadow(vcpu, 0); 1737 1738 return 1; 1739 } 1740 1741 /* 1742 * Recognizes a pending MTF VM-exit and records the nested state for later 1743 * delivery. 1744 */ 1745 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1746 { 1747 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1748 struct vcpu_vmx *vmx = to_vmx(vcpu); 1749 1750 if (!is_guest_mode(vcpu)) 1751 return; 1752 1753 /* 1754 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1755 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps 1756 * or ICEBP (in the emulator proper), and skipping of ICEBP after an 1757 * intercepted #DB deliberately avoids single-step #DB and MTF updates 1758 * as ICEBP is higher priority than both. As instruction emulation is 1759 * completed at this point (i.e. KVM is at the instruction boundary), 1760 * any #DB exception pending delivery must be a debug-trap of lower 1761 * priority than MTF. Record the pending MTF state to be delivered in 1762 * vmx_check_nested_events(). 1763 */ 1764 if (nested_cpu_has_mtf(vmcs12) && 1765 (!vcpu->arch.exception.pending || 1766 vcpu->arch.exception.vector == DB_VECTOR) && 1767 (!vcpu->arch.exception_vmexit.pending || 1768 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) { 1769 vmx->nested.mtf_pending = true; 1770 kvm_make_request(KVM_REQ_EVENT, vcpu); 1771 } else { 1772 vmx->nested.mtf_pending = false; 1773 } 1774 } 1775 1776 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1777 { 1778 vmx_update_emulated_instruction(vcpu); 1779 return skip_emulated_instruction(vcpu); 1780 } 1781 1782 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1783 { 1784 /* 1785 * Ensure that we clear the HLT state in the VMCS. We don't need to 1786 * explicitly skip the instruction because if the HLT state is set, 1787 * then the instruction is already executing and RIP has already been 1788 * advanced. 1789 */ 1790 if (kvm_hlt_in_guest(vcpu->kvm) && 1791 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1792 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1793 } 1794 1795 static void vmx_inject_exception(struct kvm_vcpu *vcpu) 1796 { 1797 struct kvm_queued_exception *ex = &vcpu->arch.exception; 1798 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; 1799 struct vcpu_vmx *vmx = to_vmx(vcpu); 1800 1801 kvm_deliver_exception_payload(vcpu, ex); 1802 1803 if (ex->has_error_code) { 1804 /* 1805 * Despite the error code being architecturally defined as 32 1806 * bits, and the VMCS field being 32 bits, Intel CPUs and thus 1807 * VMX don't actually supporting setting bits 31:16. Hardware 1808 * will (should) never provide a bogus error code, but AMD CPUs 1809 * do generate error codes with bits 31:16 set, and so KVM's 1810 * ABI lets userspace shove in arbitrary 32-bit values. Drop 1811 * the upper bits to avoid VM-Fail, losing information that 1812 * does't really exist is preferable to killing the VM. 1813 */ 1814 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code); 1815 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1816 } 1817 1818 if (vmx->rmode.vm86_active) { 1819 int inc_eip = 0; 1820 if (kvm_exception_is_soft(ex->vector)) 1821 inc_eip = vcpu->arch.event_exit_inst_len; 1822 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip); 1823 return; 1824 } 1825 1826 WARN_ON_ONCE(vmx->emulation_required); 1827 1828 if (kvm_exception_is_soft(ex->vector)) { 1829 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1830 vmx->vcpu.arch.event_exit_inst_len); 1831 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1832 } else 1833 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1834 1835 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1836 1837 vmx_clear_hlt(vcpu); 1838 } 1839 1840 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1841 bool load_into_hardware) 1842 { 1843 struct vmx_uret_msr *uret_msr; 1844 1845 uret_msr = vmx_find_uret_msr(vmx, msr); 1846 if (!uret_msr) 1847 return; 1848 1849 uret_msr->load_into_hardware = load_into_hardware; 1850 } 1851 1852 /* 1853 * Configuring user return MSRs to automatically save, load, and restore MSRs 1854 * that need to be shoved into hardware when running the guest. Note, omitting 1855 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1856 * loaded into hardware when running the guest. 1857 */ 1858 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1859 { 1860 #ifdef CONFIG_X86_64 1861 bool load_syscall_msrs; 1862 1863 /* 1864 * The SYSCALL MSRs are only needed on long mode guests, and only 1865 * when EFER.SCE is set. 1866 */ 1867 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1868 (vmx->vcpu.arch.efer & EFER_SCE); 1869 1870 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1871 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1872 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1873 #endif 1874 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1875 1876 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1877 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1878 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1879 1880 /* 1881 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1882 * kernel and old userspace. If those guests run on a tsx=off host, do 1883 * allow guests to use TSX_CTRL, but don't change the value in hardware 1884 * so that TSX remains always disabled. 1885 */ 1886 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1887 1888 /* 1889 * The set of MSRs to load may have changed, reload MSRs before the 1890 * next VM-Enter. 1891 */ 1892 vmx->guest_uret_msrs_loaded = false; 1893 } 1894 1895 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1896 { 1897 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1898 1899 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1900 return vmcs12->tsc_offset; 1901 1902 return 0; 1903 } 1904 1905 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1906 { 1907 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1908 1909 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1910 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1911 return vmcs12->tsc_multiplier; 1912 1913 return kvm_caps.default_tsc_scaling_ratio; 1914 } 1915 1916 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu) 1917 { 1918 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset); 1919 } 1920 1921 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu) 1922 { 1923 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio); 1924 } 1925 1926 /* 1927 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of 1928 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain 1929 * backwards compatibility even though KVM doesn't support emulating SMX. And 1930 * because userspace set "VMX in SMX", the guest must also be allowed to set it, 1931 * e.g. if the MSR is left unlocked and the guest does a RMW operation. 1932 */ 1933 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \ 1934 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \ 1935 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \ 1936 FEAT_CTL_SGX_LC_ENABLED | \ 1937 FEAT_CTL_SGX_ENABLED | \ 1938 FEAT_CTL_LMCE_ENABLED) 1939 1940 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx, 1941 struct msr_data *msr) 1942 { 1943 uint64_t valid_bits; 1944 1945 /* 1946 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are 1947 * exposed to the guest. 1948 */ 1949 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits & 1950 ~KVM_SUPPORTED_FEATURE_CONTROL); 1951 1952 if (!msr->host_initiated && 1953 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED)) 1954 return false; 1955 1956 if (msr->host_initiated) 1957 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL; 1958 else 1959 valid_bits = vmx->msr_ia32_feature_control_valid_bits; 1960 1961 return !(msr->data & ~valid_bits); 1962 } 1963 1964 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1965 { 1966 switch (msr->index) { 1967 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 1968 if (!nested) 1969 return 1; 1970 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1971 default: 1972 return KVM_MSR_RET_INVALID; 1973 } 1974 } 1975 1976 /* 1977 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 1978 * Returns 0 on success, non-0 otherwise. 1979 * Assumes vcpu_load() was already called. 1980 */ 1981 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1982 { 1983 struct vcpu_vmx *vmx = to_vmx(vcpu); 1984 struct vmx_uret_msr *msr; 1985 u32 index; 1986 1987 switch (msr_info->index) { 1988 #ifdef CONFIG_X86_64 1989 case MSR_FS_BASE: 1990 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1991 break; 1992 case MSR_GS_BASE: 1993 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1994 break; 1995 case MSR_KERNEL_GS_BASE: 1996 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1997 break; 1998 #endif 1999 case MSR_EFER: 2000 return kvm_get_msr_common(vcpu, msr_info); 2001 case MSR_IA32_TSX_CTRL: 2002 if (!msr_info->host_initiated && 2003 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2004 return 1; 2005 goto find_uret_msr; 2006 case MSR_IA32_UMWAIT_CONTROL: 2007 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2008 return 1; 2009 2010 msr_info->data = vmx->msr_ia32_umwait_control; 2011 break; 2012 case MSR_IA32_SPEC_CTRL: 2013 if (!msr_info->host_initiated && 2014 !guest_has_spec_ctrl_msr(vcpu)) 2015 return 1; 2016 2017 msr_info->data = to_vmx(vcpu)->spec_ctrl; 2018 break; 2019 case MSR_IA32_SYSENTER_CS: 2020 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 2021 break; 2022 case MSR_IA32_SYSENTER_EIP: 2023 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 2024 break; 2025 case MSR_IA32_SYSENTER_ESP: 2026 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 2027 break; 2028 case MSR_IA32_BNDCFGS: 2029 if (!kvm_mpx_supported() || 2030 (!msr_info->host_initiated && 2031 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2032 return 1; 2033 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 2034 break; 2035 case MSR_IA32_MCG_EXT_CTL: 2036 if (!msr_info->host_initiated && 2037 !(vmx->msr_ia32_feature_control & 2038 FEAT_CTL_LMCE_ENABLED)) 2039 return 1; 2040 msr_info->data = vcpu->arch.mcg_ext_ctl; 2041 break; 2042 case MSR_IA32_FEAT_CTL: 2043 msr_info->data = vmx->msr_ia32_feature_control; 2044 break; 2045 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2046 if (!msr_info->host_initiated && 2047 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 2048 return 1; 2049 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 2050 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 2051 break; 2052 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2053 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 2054 return 1; 2055 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 2056 &msr_info->data)) 2057 return 1; 2058 /* 2059 * Enlightened VMCS v1 doesn't have certain VMCS fields but 2060 * instead of just ignoring the features, different Hyper-V 2061 * versions are either trying to use them and fail or do some 2062 * sanity checking and refuse to boot. Filter all unsupported 2063 * features out. 2064 */ 2065 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu)) 2066 nested_evmcs_filter_control_msr(vcpu, msr_info->index, 2067 &msr_info->data); 2068 break; 2069 case MSR_IA32_RTIT_CTL: 2070 if (!vmx_pt_mode_is_host_guest()) 2071 return 1; 2072 msr_info->data = vmx->pt_desc.guest.ctl; 2073 break; 2074 case MSR_IA32_RTIT_STATUS: 2075 if (!vmx_pt_mode_is_host_guest()) 2076 return 1; 2077 msr_info->data = vmx->pt_desc.guest.status; 2078 break; 2079 case MSR_IA32_RTIT_CR3_MATCH: 2080 if (!vmx_pt_mode_is_host_guest() || 2081 !intel_pt_validate_cap(vmx->pt_desc.caps, 2082 PT_CAP_cr3_filtering)) 2083 return 1; 2084 msr_info->data = vmx->pt_desc.guest.cr3_match; 2085 break; 2086 case MSR_IA32_RTIT_OUTPUT_BASE: 2087 if (!vmx_pt_mode_is_host_guest() || 2088 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2089 PT_CAP_topa_output) && 2090 !intel_pt_validate_cap(vmx->pt_desc.caps, 2091 PT_CAP_single_range_output))) 2092 return 1; 2093 msr_info->data = vmx->pt_desc.guest.output_base; 2094 break; 2095 case MSR_IA32_RTIT_OUTPUT_MASK: 2096 if (!vmx_pt_mode_is_host_guest() || 2097 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2098 PT_CAP_topa_output) && 2099 !intel_pt_validate_cap(vmx->pt_desc.caps, 2100 PT_CAP_single_range_output))) 2101 return 1; 2102 msr_info->data = vmx->pt_desc.guest.output_mask; 2103 break; 2104 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2105 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2106 if (!vmx_pt_mode_is_host_guest() || 2107 (index >= 2 * vmx->pt_desc.num_address_ranges)) 2108 return 1; 2109 if (index % 2) 2110 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 2111 else 2112 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 2113 break; 2114 case MSR_IA32_DEBUGCTLMSR: 2115 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 2116 break; 2117 default: 2118 find_uret_msr: 2119 msr = vmx_find_uret_msr(vmx, msr_info->index); 2120 if (msr) { 2121 msr_info->data = msr->data; 2122 break; 2123 } 2124 return kvm_get_msr_common(vcpu, msr_info); 2125 } 2126 2127 return 0; 2128 } 2129 2130 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 2131 u64 data) 2132 { 2133 #ifdef CONFIG_X86_64 2134 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 2135 return (u32)data; 2136 #endif 2137 return (unsigned long)data; 2138 } 2139 2140 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated) 2141 { 2142 u64 debugctl = 0; 2143 2144 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && 2145 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))) 2146 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT; 2147 2148 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) && 2149 (host_initiated || intel_pmu_lbr_is_enabled(vcpu))) 2150 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; 2151 2152 return debugctl; 2153 } 2154 2155 /* 2156 * Writes msr value into the appropriate "register". 2157 * Returns 0 on success, non-0 otherwise. 2158 * Assumes vcpu_load() was already called. 2159 */ 2160 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2161 { 2162 struct vcpu_vmx *vmx = to_vmx(vcpu); 2163 struct vmx_uret_msr *msr; 2164 int ret = 0; 2165 u32 msr_index = msr_info->index; 2166 u64 data = msr_info->data; 2167 u32 index; 2168 2169 switch (msr_index) { 2170 case MSR_EFER: 2171 ret = kvm_set_msr_common(vcpu, msr_info); 2172 break; 2173 #ifdef CONFIG_X86_64 2174 case MSR_FS_BASE: 2175 vmx_segment_cache_clear(vmx); 2176 vmcs_writel(GUEST_FS_BASE, data); 2177 break; 2178 case MSR_GS_BASE: 2179 vmx_segment_cache_clear(vmx); 2180 vmcs_writel(GUEST_GS_BASE, data); 2181 break; 2182 case MSR_KERNEL_GS_BASE: 2183 vmx_write_guest_kernel_gs_base(vmx, data); 2184 break; 2185 case MSR_IA32_XFD: 2186 ret = kvm_set_msr_common(vcpu, msr_info); 2187 /* 2188 * Always intercepting WRMSR could incur non-negligible 2189 * overhead given xfd might be changed frequently in 2190 * guest context switch. Disable write interception 2191 * upon the first write with a non-zero value (indicating 2192 * potential usage on dynamic xfeatures). Also update 2193 * exception bitmap to trap #NM for proper virtualization 2194 * of guest xfd_err. 2195 */ 2196 if (!ret && data) { 2197 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 2198 MSR_TYPE_RW); 2199 vcpu->arch.xfd_no_write_intercept = true; 2200 vmx_update_exception_bitmap(vcpu); 2201 } 2202 break; 2203 #endif 2204 case MSR_IA32_SYSENTER_CS: 2205 if (is_guest_mode(vcpu)) 2206 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2207 vmcs_write32(GUEST_SYSENTER_CS, data); 2208 break; 2209 case MSR_IA32_SYSENTER_EIP: 2210 if (is_guest_mode(vcpu)) { 2211 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2212 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2213 } 2214 vmcs_writel(GUEST_SYSENTER_EIP, data); 2215 break; 2216 case MSR_IA32_SYSENTER_ESP: 2217 if (is_guest_mode(vcpu)) { 2218 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2219 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2220 } 2221 vmcs_writel(GUEST_SYSENTER_ESP, data); 2222 break; 2223 case MSR_IA32_DEBUGCTLMSR: { 2224 u64 invalid; 2225 2226 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated); 2227 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2228 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data); 2229 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2230 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2231 } 2232 2233 if (invalid) 2234 return 1; 2235 2236 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2237 VM_EXIT_SAVE_DEBUG_CONTROLS) 2238 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2239 2240 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2241 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2242 (data & DEBUGCTLMSR_LBR)) 2243 intel_pmu_create_guest_lbr_event(vcpu); 2244 return 0; 2245 } 2246 case MSR_IA32_BNDCFGS: 2247 if (!kvm_mpx_supported() || 2248 (!msr_info->host_initiated && 2249 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2250 return 1; 2251 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2252 (data & MSR_IA32_BNDCFGS_RSVD)) 2253 return 1; 2254 2255 if (is_guest_mode(vcpu) && 2256 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) || 2257 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS))) 2258 get_vmcs12(vcpu)->guest_bndcfgs = data; 2259 2260 vmcs_write64(GUEST_BNDCFGS, data); 2261 break; 2262 case MSR_IA32_UMWAIT_CONTROL: 2263 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2264 return 1; 2265 2266 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2267 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2268 return 1; 2269 2270 vmx->msr_ia32_umwait_control = data; 2271 break; 2272 case MSR_IA32_SPEC_CTRL: 2273 if (!msr_info->host_initiated && 2274 !guest_has_spec_ctrl_msr(vcpu)) 2275 return 1; 2276 2277 if (kvm_spec_ctrl_test_value(data)) 2278 return 1; 2279 2280 vmx->spec_ctrl = data; 2281 if (!data) 2282 break; 2283 2284 /* 2285 * For non-nested: 2286 * When it's written (to non-zero) for the first time, pass 2287 * it through. 2288 * 2289 * For nested: 2290 * The handling of the MSR bitmap for L2 guests is done in 2291 * nested_vmx_prepare_msr_bitmap. We should not touch the 2292 * vmcs02.msr_bitmap here since it gets completely overwritten 2293 * in the merging. We update the vmcs01 here for L1 as well 2294 * since it will end up touching the MSR anyway now. 2295 */ 2296 vmx_disable_intercept_for_msr(vcpu, 2297 MSR_IA32_SPEC_CTRL, 2298 MSR_TYPE_RW); 2299 break; 2300 case MSR_IA32_TSX_CTRL: 2301 if (!msr_info->host_initiated && 2302 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2303 return 1; 2304 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2305 return 1; 2306 goto find_uret_msr; 2307 case MSR_IA32_CR_PAT: 2308 ret = kvm_set_msr_common(vcpu, msr_info); 2309 if (ret) 2310 break; 2311 2312 if (is_guest_mode(vcpu) && 2313 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2314 get_vmcs12(vcpu)->guest_ia32_pat = data; 2315 2316 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 2317 vmcs_write64(GUEST_IA32_PAT, data); 2318 break; 2319 case MSR_IA32_MCG_EXT_CTL: 2320 if ((!msr_info->host_initiated && 2321 !(to_vmx(vcpu)->msr_ia32_feature_control & 2322 FEAT_CTL_LMCE_ENABLED)) || 2323 (data & ~MCG_EXT_CTL_LMCE_EN)) 2324 return 1; 2325 vcpu->arch.mcg_ext_ctl = data; 2326 break; 2327 case MSR_IA32_FEAT_CTL: 2328 if (!is_vmx_feature_control_msr_valid(vmx, msr_info)) 2329 return 1; 2330 2331 vmx->msr_ia32_feature_control = data; 2332 if (msr_info->host_initiated && data == 0) 2333 vmx_leave_nested(vcpu); 2334 2335 /* SGX may be enabled/disabled by guest's firmware */ 2336 vmx_write_encls_bitmap(vcpu, NULL); 2337 break; 2338 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2339 /* 2340 * On real hardware, the LE hash MSRs are writable before 2341 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2342 * at which point SGX related bits in IA32_FEATURE_CONTROL 2343 * become writable. 2344 * 2345 * KVM does not emulate SGX activation for simplicity, so 2346 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2347 * is unlocked. This is technically not architectural 2348 * behavior, but it's close enough. 2349 */ 2350 if (!msr_info->host_initiated && 2351 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2352 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2353 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2354 return 1; 2355 vmx->msr_ia32_sgxlepubkeyhash 2356 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2357 break; 2358 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2359 if (!msr_info->host_initiated) 2360 return 1; /* they are read-only */ 2361 if (!guest_can_use(vcpu, X86_FEATURE_VMX)) 2362 return 1; 2363 return vmx_set_vmx_msr(vcpu, msr_index, data); 2364 case MSR_IA32_RTIT_CTL: 2365 if (!vmx_pt_mode_is_host_guest() || 2366 vmx_rtit_ctl_check(vcpu, data) || 2367 vmx->nested.vmxon) 2368 return 1; 2369 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2370 vmx->pt_desc.guest.ctl = data; 2371 pt_update_intercept_for_msr(vcpu); 2372 break; 2373 case MSR_IA32_RTIT_STATUS: 2374 if (!pt_can_write_msr(vmx)) 2375 return 1; 2376 if (data & MSR_IA32_RTIT_STATUS_MASK) 2377 return 1; 2378 vmx->pt_desc.guest.status = data; 2379 break; 2380 case MSR_IA32_RTIT_CR3_MATCH: 2381 if (!pt_can_write_msr(vmx)) 2382 return 1; 2383 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2384 PT_CAP_cr3_filtering)) 2385 return 1; 2386 vmx->pt_desc.guest.cr3_match = data; 2387 break; 2388 case MSR_IA32_RTIT_OUTPUT_BASE: 2389 if (!pt_can_write_msr(vmx)) 2390 return 1; 2391 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2392 PT_CAP_topa_output) && 2393 !intel_pt_validate_cap(vmx->pt_desc.caps, 2394 PT_CAP_single_range_output)) 2395 return 1; 2396 if (!pt_output_base_valid(vcpu, data)) 2397 return 1; 2398 vmx->pt_desc.guest.output_base = data; 2399 break; 2400 case MSR_IA32_RTIT_OUTPUT_MASK: 2401 if (!pt_can_write_msr(vmx)) 2402 return 1; 2403 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2404 PT_CAP_topa_output) && 2405 !intel_pt_validate_cap(vmx->pt_desc.caps, 2406 PT_CAP_single_range_output)) 2407 return 1; 2408 vmx->pt_desc.guest.output_mask = data; 2409 break; 2410 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2411 if (!pt_can_write_msr(vmx)) 2412 return 1; 2413 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2414 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2415 return 1; 2416 if (is_noncanonical_address(data, vcpu)) 2417 return 1; 2418 if (index % 2) 2419 vmx->pt_desc.guest.addr_b[index / 2] = data; 2420 else 2421 vmx->pt_desc.guest.addr_a[index / 2] = data; 2422 break; 2423 case MSR_IA32_PERF_CAPABILITIES: 2424 if (data && !vcpu_to_pmu(vcpu)->version) 2425 return 1; 2426 if (data & PMU_CAP_LBR_FMT) { 2427 if ((data & PMU_CAP_LBR_FMT) != 2428 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT)) 2429 return 1; 2430 if (!cpuid_model_is_consistent(vcpu)) 2431 return 1; 2432 } 2433 if (data & PERF_CAP_PEBS_FORMAT) { 2434 if ((data & PERF_CAP_PEBS_MASK) != 2435 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK)) 2436 return 1; 2437 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS)) 2438 return 1; 2439 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64)) 2440 return 1; 2441 if (!cpuid_model_is_consistent(vcpu)) 2442 return 1; 2443 } 2444 ret = kvm_set_msr_common(vcpu, msr_info); 2445 break; 2446 2447 default: 2448 find_uret_msr: 2449 msr = vmx_find_uret_msr(vmx, msr_index); 2450 if (msr) 2451 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2452 else 2453 ret = kvm_set_msr_common(vcpu, msr_info); 2454 } 2455 2456 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ 2457 if (msr_index == MSR_IA32_ARCH_CAPABILITIES) 2458 vmx_update_fb_clear_dis(vcpu, vmx); 2459 2460 return ret; 2461 } 2462 2463 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2464 { 2465 unsigned long guest_owned_bits; 2466 2467 kvm_register_mark_available(vcpu, reg); 2468 2469 switch (reg) { 2470 case VCPU_REGS_RSP: 2471 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2472 break; 2473 case VCPU_REGS_RIP: 2474 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2475 break; 2476 case VCPU_EXREG_PDPTR: 2477 if (enable_ept) 2478 ept_save_pdptrs(vcpu); 2479 break; 2480 case VCPU_EXREG_CR0: 2481 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2482 2483 vcpu->arch.cr0 &= ~guest_owned_bits; 2484 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2485 break; 2486 case VCPU_EXREG_CR3: 2487 /* 2488 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2489 * CR3 is loaded into hardware, not the guest's CR3. 2490 */ 2491 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2492 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2493 break; 2494 case VCPU_EXREG_CR4: 2495 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2496 2497 vcpu->arch.cr4 &= ~guest_owned_bits; 2498 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2499 break; 2500 default: 2501 KVM_BUG_ON(1, vcpu->kvm); 2502 break; 2503 } 2504 } 2505 2506 /* 2507 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2508 * directly instead of going through cpu_has(), to ensure KVM is trapping 2509 * ENCLS whenever it's supported in hardware. It does not matter whether 2510 * the host OS supports or has enabled SGX. 2511 */ 2512 static bool cpu_has_sgx(void) 2513 { 2514 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2515 } 2516 2517 /* 2518 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2519 * can't be used due to errata where VM Exit may incorrectly clear 2520 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the 2521 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2522 */ 2523 static bool cpu_has_perf_global_ctrl_bug(void) 2524 { 2525 if (boot_cpu_data.x86 == 0x6) { 2526 switch (boot_cpu_data.x86_model) { 2527 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */ 2528 case INTEL_FAM6_NEHALEM: /* AAP115 */ 2529 case INTEL_FAM6_WESTMERE: /* AAT100 */ 2530 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */ 2531 case INTEL_FAM6_NEHALEM_EX: /* BA97 */ 2532 return true; 2533 default: 2534 break; 2535 } 2536 } 2537 2538 return false; 2539 } 2540 2541 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) 2542 { 2543 u32 vmx_msr_low, vmx_msr_high; 2544 u32 ctl = ctl_min | ctl_opt; 2545 2546 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2547 2548 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2549 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2550 2551 /* Ensure minimum (required) set of control bits are supported. */ 2552 if (ctl_min & ~ctl) 2553 return -EIO; 2554 2555 *result = ctl; 2556 return 0; 2557 } 2558 2559 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr) 2560 { 2561 u64 allowed; 2562 2563 rdmsrl(msr, allowed); 2564 2565 return ctl_opt & allowed; 2566 } 2567 2568 static int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2569 struct vmx_capability *vmx_cap) 2570 { 2571 u32 vmx_msr_low, vmx_msr_high; 2572 u32 _pin_based_exec_control = 0; 2573 u32 _cpu_based_exec_control = 0; 2574 u32 _cpu_based_2nd_exec_control = 0; 2575 u64 _cpu_based_3rd_exec_control = 0; 2576 u32 _vmexit_control = 0; 2577 u32 _vmentry_control = 0; 2578 u64 misc_msr; 2579 int i; 2580 2581 /* 2582 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory. 2583 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always 2584 * intercepts writes to PAT and EFER, i.e. never enables those controls. 2585 */ 2586 struct { 2587 u32 entry_control; 2588 u32 exit_control; 2589 } const vmcs_entry_exit_pairs[] = { 2590 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL }, 2591 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT }, 2592 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER }, 2593 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS }, 2594 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL }, 2595 }; 2596 2597 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2598 2599 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL, 2600 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL, 2601 MSR_IA32_VMX_PROCBASED_CTLS, 2602 &_cpu_based_exec_control)) 2603 return -EIO; 2604 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2605 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL, 2606 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL, 2607 MSR_IA32_VMX_PROCBASED_CTLS2, 2608 &_cpu_based_2nd_exec_control)) 2609 return -EIO; 2610 } 2611 #ifndef CONFIG_X86_64 2612 if (!(_cpu_based_2nd_exec_control & 2613 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2614 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2615 #endif 2616 2617 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2618 _cpu_based_2nd_exec_control &= ~( 2619 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2620 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2621 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2622 2623 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2624 &vmx_cap->ept, &vmx_cap->vpid); 2625 2626 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 2627 vmx_cap->ept) { 2628 pr_warn_once("EPT CAP should not exist if not support " 2629 "1-setting enable EPT VM-execution control\n"); 2630 2631 if (error_on_inconsistent_vmcs_config) 2632 return -EIO; 2633 2634 vmx_cap->ept = 0; 2635 } 2636 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2637 vmx_cap->vpid) { 2638 pr_warn_once("VPID CAP should not exist if not support " 2639 "1-setting enable VPID VM-execution control\n"); 2640 2641 if (error_on_inconsistent_vmcs_config) 2642 return -EIO; 2643 2644 vmx_cap->vpid = 0; 2645 } 2646 2647 if (!cpu_has_sgx()) 2648 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING; 2649 2650 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) 2651 _cpu_based_3rd_exec_control = 2652 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL, 2653 MSR_IA32_VMX_PROCBASED_CTLS3); 2654 2655 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS, 2656 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS, 2657 MSR_IA32_VMX_EXIT_CTLS, 2658 &_vmexit_control)) 2659 return -EIO; 2660 2661 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL, 2662 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL, 2663 MSR_IA32_VMX_PINBASED_CTLS, 2664 &_pin_based_exec_control)) 2665 return -EIO; 2666 2667 if (cpu_has_broken_vmx_preemption_timer()) 2668 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2669 if (!(_cpu_based_2nd_exec_control & 2670 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2671 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2672 2673 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS, 2674 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS, 2675 MSR_IA32_VMX_ENTRY_CTLS, 2676 &_vmentry_control)) 2677 return -EIO; 2678 2679 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) { 2680 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control; 2681 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control; 2682 2683 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl)) 2684 continue; 2685 2686 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n", 2687 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl); 2688 2689 if (error_on_inconsistent_vmcs_config) 2690 return -EIO; 2691 2692 _vmentry_control &= ~n_ctrl; 2693 _vmexit_control &= ~x_ctrl; 2694 } 2695 2696 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2697 2698 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2699 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2700 return -EIO; 2701 2702 #ifdef CONFIG_X86_64 2703 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2704 if (vmx_msr_high & (1u<<16)) 2705 return -EIO; 2706 #endif 2707 2708 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2709 if (((vmx_msr_high >> 18) & 15) != 6) 2710 return -EIO; 2711 2712 rdmsrl(MSR_IA32_VMX_MISC, misc_msr); 2713 2714 vmcs_conf->size = vmx_msr_high & 0x1fff; 2715 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2716 2717 vmcs_conf->revision_id = vmx_msr_low; 2718 2719 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2720 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2721 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2722 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control; 2723 vmcs_conf->vmexit_ctrl = _vmexit_control; 2724 vmcs_conf->vmentry_ctrl = _vmentry_control; 2725 vmcs_conf->misc = misc_msr; 2726 2727 #if IS_ENABLED(CONFIG_HYPERV) 2728 if (enlightened_vmcs) 2729 evmcs_sanitize_exec_ctrls(vmcs_conf); 2730 #endif 2731 2732 return 0; 2733 } 2734 2735 static bool __kvm_is_vmx_supported(void) 2736 { 2737 int cpu = smp_processor_id(); 2738 2739 if (!(cpuid_ecx(1) & feature_bit(VMX))) { 2740 pr_err("VMX not supported by CPU %d\n", cpu); 2741 return false; 2742 } 2743 2744 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2745 !this_cpu_has(X86_FEATURE_VMX)) { 2746 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu); 2747 return false; 2748 } 2749 2750 return true; 2751 } 2752 2753 static bool kvm_is_vmx_supported(void) 2754 { 2755 bool supported; 2756 2757 migrate_disable(); 2758 supported = __kvm_is_vmx_supported(); 2759 migrate_enable(); 2760 2761 return supported; 2762 } 2763 2764 static int vmx_check_processor_compat(void) 2765 { 2766 int cpu = raw_smp_processor_id(); 2767 struct vmcs_config vmcs_conf; 2768 struct vmx_capability vmx_cap; 2769 2770 if (!__kvm_is_vmx_supported()) 2771 return -EIO; 2772 2773 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) { 2774 pr_err("Failed to setup VMCS config on CPU %d\n", cpu); 2775 return -EIO; 2776 } 2777 if (nested) 2778 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept); 2779 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) { 2780 pr_err("Inconsistent VMCS config on CPU %d\n", cpu); 2781 return -EIO; 2782 } 2783 return 0; 2784 } 2785 2786 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2787 { 2788 u64 msr; 2789 2790 cr4_set_bits(X86_CR4_VMXE); 2791 2792 asm goto("1: vmxon %[vmxon_pointer]\n\t" 2793 _ASM_EXTABLE(1b, %l[fault]) 2794 : : [vmxon_pointer] "m"(vmxon_pointer) 2795 : : fault); 2796 return 0; 2797 2798 fault: 2799 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2800 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2801 cr4_clear_bits(X86_CR4_VMXE); 2802 2803 return -EFAULT; 2804 } 2805 2806 static int vmx_hardware_enable(void) 2807 { 2808 int cpu = raw_smp_processor_id(); 2809 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2810 int r; 2811 2812 if (cr4_read_shadow() & X86_CR4_VMXE) 2813 return -EBUSY; 2814 2815 /* 2816 * This can happen if we hot-added a CPU but failed to allocate 2817 * VP assist page for it. 2818 */ 2819 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu)) 2820 return -EFAULT; 2821 2822 intel_pt_handle_vmx(1); 2823 2824 r = kvm_cpu_vmxon(phys_addr); 2825 if (r) { 2826 intel_pt_handle_vmx(0); 2827 return r; 2828 } 2829 2830 if (enable_ept) 2831 ept_sync_global(); 2832 2833 return 0; 2834 } 2835 2836 static void vmclear_local_loaded_vmcss(void) 2837 { 2838 int cpu = raw_smp_processor_id(); 2839 struct loaded_vmcs *v, *n; 2840 2841 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2842 loaded_vmcss_on_cpu_link) 2843 __loaded_vmcs_clear(v); 2844 } 2845 2846 static void vmx_hardware_disable(void) 2847 { 2848 vmclear_local_loaded_vmcss(); 2849 2850 if (kvm_cpu_vmxoff()) 2851 kvm_spurious_fault(); 2852 2853 hv_reset_evmcs(); 2854 2855 intel_pt_handle_vmx(0); 2856 } 2857 2858 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2859 { 2860 int node = cpu_to_node(cpu); 2861 struct page *pages; 2862 struct vmcs *vmcs; 2863 2864 pages = __alloc_pages_node(node, flags, 0); 2865 if (!pages) 2866 return NULL; 2867 vmcs = page_address(pages); 2868 memset(vmcs, 0, vmcs_config.size); 2869 2870 /* KVM supports Enlightened VMCS v1 only */ 2871 if (kvm_is_using_evmcs()) 2872 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2873 else 2874 vmcs->hdr.revision_id = vmcs_config.revision_id; 2875 2876 if (shadow) 2877 vmcs->hdr.shadow_vmcs = 1; 2878 return vmcs; 2879 } 2880 2881 void free_vmcs(struct vmcs *vmcs) 2882 { 2883 free_page((unsigned long)vmcs); 2884 } 2885 2886 /* 2887 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2888 */ 2889 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2890 { 2891 if (!loaded_vmcs->vmcs) 2892 return; 2893 loaded_vmcs_clear(loaded_vmcs); 2894 free_vmcs(loaded_vmcs->vmcs); 2895 loaded_vmcs->vmcs = NULL; 2896 if (loaded_vmcs->msr_bitmap) 2897 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2898 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2899 } 2900 2901 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2902 { 2903 loaded_vmcs->vmcs = alloc_vmcs(false); 2904 if (!loaded_vmcs->vmcs) 2905 return -ENOMEM; 2906 2907 vmcs_clear(loaded_vmcs->vmcs); 2908 2909 loaded_vmcs->shadow_vmcs = NULL; 2910 loaded_vmcs->hv_timer_soft_disabled = false; 2911 loaded_vmcs->cpu = -1; 2912 loaded_vmcs->launched = 0; 2913 2914 if (cpu_has_vmx_msr_bitmap()) { 2915 loaded_vmcs->msr_bitmap = (unsigned long *) 2916 __get_free_page(GFP_KERNEL_ACCOUNT); 2917 if (!loaded_vmcs->msr_bitmap) 2918 goto out_vmcs; 2919 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2920 } 2921 2922 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2923 memset(&loaded_vmcs->controls_shadow, 0, 2924 sizeof(struct vmcs_controls_shadow)); 2925 2926 return 0; 2927 2928 out_vmcs: 2929 free_loaded_vmcs(loaded_vmcs); 2930 return -ENOMEM; 2931 } 2932 2933 static void free_kvm_area(void) 2934 { 2935 int cpu; 2936 2937 for_each_possible_cpu(cpu) { 2938 free_vmcs(per_cpu(vmxarea, cpu)); 2939 per_cpu(vmxarea, cpu) = NULL; 2940 } 2941 } 2942 2943 static __init int alloc_kvm_area(void) 2944 { 2945 int cpu; 2946 2947 for_each_possible_cpu(cpu) { 2948 struct vmcs *vmcs; 2949 2950 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2951 if (!vmcs) { 2952 free_kvm_area(); 2953 return -ENOMEM; 2954 } 2955 2956 /* 2957 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2958 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2959 * revision_id reported by MSR_IA32_VMX_BASIC. 2960 * 2961 * However, even though not explicitly documented by 2962 * TLFS, VMXArea passed as VMXON argument should 2963 * still be marked with revision_id reported by 2964 * physical CPU. 2965 */ 2966 if (kvm_is_using_evmcs()) 2967 vmcs->hdr.revision_id = vmcs_config.revision_id; 2968 2969 per_cpu(vmxarea, cpu) = vmcs; 2970 } 2971 return 0; 2972 } 2973 2974 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2975 struct kvm_segment *save) 2976 { 2977 if (!emulate_invalid_guest_state) { 2978 /* 2979 * CS and SS RPL should be equal during guest entry according 2980 * to VMX spec, but in reality it is not always so. Since vcpu 2981 * is in the middle of the transition from real mode to 2982 * protected mode it is safe to assume that RPL 0 is a good 2983 * default value. 2984 */ 2985 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2986 save->selector &= ~SEGMENT_RPL_MASK; 2987 save->dpl = save->selector & SEGMENT_RPL_MASK; 2988 save->s = 1; 2989 } 2990 __vmx_set_segment(vcpu, save, seg); 2991 } 2992 2993 static void enter_pmode(struct kvm_vcpu *vcpu) 2994 { 2995 unsigned long flags; 2996 struct vcpu_vmx *vmx = to_vmx(vcpu); 2997 2998 /* 2999 * Update real mode segment cache. It may be not up-to-date if segment 3000 * register was written while vcpu was in a guest mode. 3001 */ 3002 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3003 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3004 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3005 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3006 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3007 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3008 3009 vmx->rmode.vm86_active = 0; 3010 3011 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3012 3013 flags = vmcs_readl(GUEST_RFLAGS); 3014 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 3015 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 3016 vmcs_writel(GUEST_RFLAGS, flags); 3017 3018 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 3019 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 3020 3021 vmx_update_exception_bitmap(vcpu); 3022 3023 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3024 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3025 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3026 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3027 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3028 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3029 } 3030 3031 static void fix_rmode_seg(int seg, struct kvm_segment *save) 3032 { 3033 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3034 struct kvm_segment var = *save; 3035 3036 var.dpl = 0x3; 3037 if (seg == VCPU_SREG_CS) 3038 var.type = 0x3; 3039 3040 if (!emulate_invalid_guest_state) { 3041 var.selector = var.base >> 4; 3042 var.base = var.base & 0xffff0; 3043 var.limit = 0xffff; 3044 var.g = 0; 3045 var.db = 0; 3046 var.present = 1; 3047 var.s = 1; 3048 var.l = 0; 3049 var.unusable = 0; 3050 var.type = 0x3; 3051 var.avl = 0; 3052 if (save->base & 0xf) 3053 pr_warn_once("segment base is not paragraph aligned " 3054 "when entering protected mode (seg=%d)", seg); 3055 } 3056 3057 vmcs_write16(sf->selector, var.selector); 3058 vmcs_writel(sf->base, var.base); 3059 vmcs_write32(sf->limit, var.limit); 3060 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 3061 } 3062 3063 static void enter_rmode(struct kvm_vcpu *vcpu) 3064 { 3065 unsigned long flags; 3066 struct vcpu_vmx *vmx = to_vmx(vcpu); 3067 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 3068 3069 /* 3070 * KVM should never use VM86 to virtualize Real Mode when L2 is active, 3071 * as using VM86 is unnecessary if unrestricted guest is enabled, and 3072 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0 3073 * should VM-Fail and KVM should reject userspace attempts to stuff 3074 * CR0.PG=0 when L2 is active. 3075 */ 3076 WARN_ON_ONCE(is_guest_mode(vcpu)); 3077 3078 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3079 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3080 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3081 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3082 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3083 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3084 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3085 3086 vmx->rmode.vm86_active = 1; 3087 3088 vmx_segment_cache_clear(vmx); 3089 3090 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 3091 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 3092 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 3093 3094 flags = vmcs_readl(GUEST_RFLAGS); 3095 vmx->rmode.save_rflags = flags; 3096 3097 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 3098 3099 vmcs_writel(GUEST_RFLAGS, flags); 3100 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 3101 vmx_update_exception_bitmap(vcpu); 3102 3103 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3104 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3105 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3106 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3107 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3108 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3109 } 3110 3111 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 3112 { 3113 struct vcpu_vmx *vmx = to_vmx(vcpu); 3114 3115 /* Nothing to do if hardware doesn't support EFER. */ 3116 if (!vmx_find_uret_msr(vmx, MSR_EFER)) 3117 return 0; 3118 3119 vcpu->arch.efer = efer; 3120 #ifdef CONFIG_X86_64 3121 if (efer & EFER_LMA) 3122 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); 3123 else 3124 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); 3125 #else 3126 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm)) 3127 return 1; 3128 #endif 3129 3130 vmx_setup_uret_msrs(vmx); 3131 return 0; 3132 } 3133 3134 #ifdef CONFIG_X86_64 3135 3136 static void enter_lmode(struct kvm_vcpu *vcpu) 3137 { 3138 u32 guest_tr_ar; 3139 3140 vmx_segment_cache_clear(to_vmx(vcpu)); 3141 3142 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 3143 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 3144 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 3145 __func__); 3146 vmcs_write32(GUEST_TR_AR_BYTES, 3147 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 3148 | VMX_AR_TYPE_BUSY_64_TSS); 3149 } 3150 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 3151 } 3152 3153 static void exit_lmode(struct kvm_vcpu *vcpu) 3154 { 3155 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 3156 } 3157 3158 #endif 3159 3160 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 3161 { 3162 struct vcpu_vmx *vmx = to_vmx(vcpu); 3163 3164 /* 3165 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 3166 * the CPU is not required to invalidate guest-physical mappings on 3167 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 3168 * associated with the root EPT structure and not any particular VPID 3169 * (INVVPID also isn't required to invalidate guest-physical mappings). 3170 */ 3171 if (enable_ept) { 3172 ept_sync_global(); 3173 } else if (enable_vpid) { 3174 if (cpu_has_vmx_invvpid_global()) { 3175 vpid_sync_vcpu_global(); 3176 } else { 3177 vpid_sync_vcpu_single(vmx->vpid); 3178 vpid_sync_vcpu_single(vmx->nested.vpid02); 3179 } 3180 } 3181 } 3182 3183 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 3184 { 3185 if (is_guest_mode(vcpu)) 3186 return nested_get_vpid02(vcpu); 3187 return to_vmx(vcpu)->vpid; 3188 } 3189 3190 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 3191 { 3192 struct kvm_mmu *mmu = vcpu->arch.mmu; 3193 u64 root_hpa = mmu->root.hpa; 3194 3195 /* No flush required if the current context is invalid. */ 3196 if (!VALID_PAGE(root_hpa)) 3197 return; 3198 3199 if (enable_ept) 3200 ept_sync_context(construct_eptp(vcpu, root_hpa, 3201 mmu->root_role.level)); 3202 else 3203 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3204 } 3205 3206 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 3207 { 3208 /* 3209 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 3210 * vmx_flush_tlb_guest() for an explanation of why this is ok. 3211 */ 3212 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 3213 } 3214 3215 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 3216 { 3217 /* 3218 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 3219 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 3220 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 3221 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 3222 * i.e. no explicit INVVPID is necessary. 3223 */ 3224 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3225 } 3226 3227 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 3228 { 3229 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3230 3231 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 3232 return; 3233 3234 if (is_pae_paging(vcpu)) { 3235 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3236 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3237 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3238 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3239 } 3240 } 3241 3242 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3243 { 3244 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3245 3246 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3247 return; 3248 3249 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3250 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3251 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3252 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3253 3254 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3255 } 3256 3257 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3258 CPU_BASED_CR3_STORE_EXITING) 3259 3260 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3261 { 3262 if (is_guest_mode(vcpu)) 3263 return nested_guest_cr0_valid(vcpu, cr0); 3264 3265 if (to_vmx(vcpu)->nested.vmxon) 3266 return nested_host_cr0_valid(vcpu, cr0); 3267 3268 return true; 3269 } 3270 3271 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3272 { 3273 struct vcpu_vmx *vmx = to_vmx(vcpu); 3274 unsigned long hw_cr0, old_cr0_pg; 3275 u32 tmp; 3276 3277 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3278 3279 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3280 if (enable_unrestricted_guest) 3281 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3282 else { 3283 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3284 if (!enable_ept) 3285 hw_cr0 |= X86_CR0_WP; 3286 3287 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3288 enter_pmode(vcpu); 3289 3290 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3291 enter_rmode(vcpu); 3292 } 3293 3294 vmcs_writel(CR0_READ_SHADOW, cr0); 3295 vmcs_writel(GUEST_CR0, hw_cr0); 3296 vcpu->arch.cr0 = cr0; 3297 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3298 3299 #ifdef CONFIG_X86_64 3300 if (vcpu->arch.efer & EFER_LME) { 3301 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3302 enter_lmode(vcpu); 3303 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3304 exit_lmode(vcpu); 3305 } 3306 #endif 3307 3308 if (enable_ept && !enable_unrestricted_guest) { 3309 /* 3310 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3311 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3312 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3313 * KVM's CR3 is installed. 3314 */ 3315 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3316 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3317 3318 /* 3319 * When running with EPT but not unrestricted guest, KVM must 3320 * intercept CR3 accesses when paging is _disabled_. This is 3321 * necessary because restricted guests can't actually run with 3322 * paging disabled, and so KVM stuffs its own CR3 in order to 3323 * run the guest when identity mapped page tables. 3324 * 3325 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3326 * update, it may be stale with respect to CR3 interception, 3327 * e.g. after nested VM-Enter. 3328 * 3329 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3330 * stores to forward them to L1, even if KVM does not need to 3331 * intercept them to preserve its identity mapped page tables. 3332 */ 3333 if (!(cr0 & X86_CR0_PG)) { 3334 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3335 } else if (!is_guest_mode(vcpu)) { 3336 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3337 } else { 3338 tmp = exec_controls_get(vmx); 3339 tmp &= ~CR3_EXITING_BITS; 3340 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3341 exec_controls_set(vmx, tmp); 3342 } 3343 3344 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3345 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3346 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3347 3348 /* 3349 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3350 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3351 */ 3352 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3353 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3354 } 3355 3356 /* depends on vcpu->arch.cr0 to be set to a new value */ 3357 vmx->emulation_required = vmx_emulation_required(vcpu); 3358 } 3359 3360 static int vmx_get_max_ept_level(void) 3361 { 3362 if (cpu_has_vmx_ept_5levels()) 3363 return 5; 3364 return 4; 3365 } 3366 3367 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3368 { 3369 u64 eptp = VMX_EPTP_MT_WB; 3370 3371 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3372 3373 if (enable_ept_ad_bits && 3374 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3375 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3376 eptp |= root_hpa; 3377 3378 return eptp; 3379 } 3380 3381 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3382 int root_level) 3383 { 3384 struct kvm *kvm = vcpu->kvm; 3385 bool update_guest_cr3 = true; 3386 unsigned long guest_cr3; 3387 u64 eptp; 3388 3389 if (enable_ept) { 3390 eptp = construct_eptp(vcpu, root_hpa, root_level); 3391 vmcs_write64(EPT_POINTER, eptp); 3392 3393 hv_track_root_tdp(vcpu, root_hpa); 3394 3395 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3396 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3397 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3398 guest_cr3 = vcpu->arch.cr3; 3399 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3400 update_guest_cr3 = false; 3401 vmx_ept_load_pdptrs(vcpu); 3402 } else { 3403 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3404 } 3405 3406 if (update_guest_cr3) 3407 vmcs_writel(GUEST_CR3, guest_cr3); 3408 } 3409 3410 3411 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3412 { 3413 /* 3414 * We operate under the default treatment of SMM, so VMX cannot be 3415 * enabled under SMM. Note, whether or not VMXE is allowed at all, 3416 * i.e. is a reserved bit, is handled by common x86 code. 3417 */ 3418 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3419 return false; 3420 3421 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3422 return false; 3423 3424 return true; 3425 } 3426 3427 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3428 { 3429 unsigned long old_cr4 = kvm_read_cr4(vcpu); 3430 struct vcpu_vmx *vmx = to_vmx(vcpu); 3431 unsigned long hw_cr4; 3432 3433 /* 3434 * Pass through host's Machine Check Enable value to hw_cr4, which 3435 * is in force while we are in guest mode. Do not let guests control 3436 * this bit, even if host CR4.MCE == 0. 3437 */ 3438 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3439 if (enable_unrestricted_guest) 3440 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3441 else if (vmx->rmode.vm86_active) 3442 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3443 else 3444 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3445 3446 if (vmx_umip_emulated()) { 3447 if (cr4 & X86_CR4_UMIP) { 3448 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3449 hw_cr4 &= ~X86_CR4_UMIP; 3450 } else if (!is_guest_mode(vcpu) || 3451 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3452 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3453 } 3454 } 3455 3456 vcpu->arch.cr4 = cr4; 3457 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3458 3459 if (!enable_unrestricted_guest) { 3460 if (enable_ept) { 3461 if (!is_paging(vcpu)) { 3462 hw_cr4 &= ~X86_CR4_PAE; 3463 hw_cr4 |= X86_CR4_PSE; 3464 } else if (!(cr4 & X86_CR4_PAE)) { 3465 hw_cr4 &= ~X86_CR4_PAE; 3466 } 3467 } 3468 3469 /* 3470 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3471 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3472 * to be manually disabled when guest switches to non-paging 3473 * mode. 3474 * 3475 * If !enable_unrestricted_guest, the CPU is always running 3476 * with CR0.PG=1 and CR4 needs to be modified. 3477 * If enable_unrestricted_guest, the CPU automatically 3478 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3479 */ 3480 if (!is_paging(vcpu)) 3481 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3482 } 3483 3484 vmcs_writel(CR4_READ_SHADOW, cr4); 3485 vmcs_writel(GUEST_CR4, hw_cr4); 3486 3487 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3488 kvm_update_cpuid_runtime(vcpu); 3489 } 3490 3491 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3492 { 3493 struct vcpu_vmx *vmx = to_vmx(vcpu); 3494 u32 ar; 3495 3496 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3497 *var = vmx->rmode.segs[seg]; 3498 if (seg == VCPU_SREG_TR 3499 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3500 return; 3501 var->base = vmx_read_guest_seg_base(vmx, seg); 3502 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3503 return; 3504 } 3505 var->base = vmx_read_guest_seg_base(vmx, seg); 3506 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3507 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3508 ar = vmx_read_guest_seg_ar(vmx, seg); 3509 var->unusable = (ar >> 16) & 1; 3510 var->type = ar & 15; 3511 var->s = (ar >> 4) & 1; 3512 var->dpl = (ar >> 5) & 3; 3513 /* 3514 * Some userspaces do not preserve unusable property. Since usable 3515 * segment has to be present according to VMX spec we can use present 3516 * property to amend userspace bug by making unusable segment always 3517 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3518 * segment as unusable. 3519 */ 3520 var->present = !var->unusable; 3521 var->avl = (ar >> 12) & 1; 3522 var->l = (ar >> 13) & 1; 3523 var->db = (ar >> 14) & 1; 3524 var->g = (ar >> 15) & 1; 3525 } 3526 3527 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3528 { 3529 struct kvm_segment s; 3530 3531 if (to_vmx(vcpu)->rmode.vm86_active) { 3532 vmx_get_segment(vcpu, &s, seg); 3533 return s.base; 3534 } 3535 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3536 } 3537 3538 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3539 { 3540 struct vcpu_vmx *vmx = to_vmx(vcpu); 3541 3542 if (unlikely(vmx->rmode.vm86_active)) 3543 return 0; 3544 else { 3545 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3546 return VMX_AR_DPL(ar); 3547 } 3548 } 3549 3550 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3551 { 3552 u32 ar; 3553 3554 ar = var->type & 15; 3555 ar |= (var->s & 1) << 4; 3556 ar |= (var->dpl & 3) << 5; 3557 ar |= (var->present & 1) << 7; 3558 ar |= (var->avl & 1) << 12; 3559 ar |= (var->l & 1) << 13; 3560 ar |= (var->db & 1) << 14; 3561 ar |= (var->g & 1) << 15; 3562 ar |= (var->unusable || !var->present) << 16; 3563 3564 return ar; 3565 } 3566 3567 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3568 { 3569 struct vcpu_vmx *vmx = to_vmx(vcpu); 3570 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3571 3572 vmx_segment_cache_clear(vmx); 3573 3574 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3575 vmx->rmode.segs[seg] = *var; 3576 if (seg == VCPU_SREG_TR) 3577 vmcs_write16(sf->selector, var->selector); 3578 else if (var->s) 3579 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3580 return; 3581 } 3582 3583 vmcs_writel(sf->base, var->base); 3584 vmcs_write32(sf->limit, var->limit); 3585 vmcs_write16(sf->selector, var->selector); 3586 3587 /* 3588 * Fix the "Accessed" bit in AR field of segment registers for older 3589 * qemu binaries. 3590 * IA32 arch specifies that at the time of processor reset the 3591 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3592 * is setting it to 0 in the userland code. This causes invalid guest 3593 * state vmexit when "unrestricted guest" mode is turned on. 3594 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3595 * tree. Newer qemu binaries with that qemu fix would not need this 3596 * kvm hack. 3597 */ 3598 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3599 var->type |= 0x1; /* Accessed */ 3600 3601 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3602 } 3603 3604 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3605 { 3606 __vmx_set_segment(vcpu, var, seg); 3607 3608 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3609 } 3610 3611 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3612 { 3613 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3614 3615 *db = (ar >> 14) & 1; 3616 *l = (ar >> 13) & 1; 3617 } 3618 3619 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3620 { 3621 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3622 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3623 } 3624 3625 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3626 { 3627 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3628 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3629 } 3630 3631 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3632 { 3633 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3634 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3635 } 3636 3637 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3638 { 3639 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3640 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3641 } 3642 3643 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3644 { 3645 struct kvm_segment var; 3646 u32 ar; 3647 3648 vmx_get_segment(vcpu, &var, seg); 3649 var.dpl = 0x3; 3650 if (seg == VCPU_SREG_CS) 3651 var.type = 0x3; 3652 ar = vmx_segment_access_rights(&var); 3653 3654 if (var.base != (var.selector << 4)) 3655 return false; 3656 if (var.limit != 0xffff) 3657 return false; 3658 if (ar != 0xf3) 3659 return false; 3660 3661 return true; 3662 } 3663 3664 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3665 { 3666 struct kvm_segment cs; 3667 unsigned int cs_rpl; 3668 3669 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3670 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3671 3672 if (cs.unusable) 3673 return false; 3674 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3675 return false; 3676 if (!cs.s) 3677 return false; 3678 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3679 if (cs.dpl > cs_rpl) 3680 return false; 3681 } else { 3682 if (cs.dpl != cs_rpl) 3683 return false; 3684 } 3685 if (!cs.present) 3686 return false; 3687 3688 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3689 return true; 3690 } 3691 3692 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3693 { 3694 struct kvm_segment ss; 3695 unsigned int ss_rpl; 3696 3697 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3698 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3699 3700 if (ss.unusable) 3701 return true; 3702 if (ss.type != 3 && ss.type != 7) 3703 return false; 3704 if (!ss.s) 3705 return false; 3706 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3707 return false; 3708 if (!ss.present) 3709 return false; 3710 3711 return true; 3712 } 3713 3714 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3715 { 3716 struct kvm_segment var; 3717 unsigned int rpl; 3718 3719 vmx_get_segment(vcpu, &var, seg); 3720 rpl = var.selector & SEGMENT_RPL_MASK; 3721 3722 if (var.unusable) 3723 return true; 3724 if (!var.s) 3725 return false; 3726 if (!var.present) 3727 return false; 3728 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3729 if (var.dpl < rpl) /* DPL < RPL */ 3730 return false; 3731 } 3732 3733 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3734 * rights flags 3735 */ 3736 return true; 3737 } 3738 3739 static bool tr_valid(struct kvm_vcpu *vcpu) 3740 { 3741 struct kvm_segment tr; 3742 3743 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3744 3745 if (tr.unusable) 3746 return false; 3747 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3748 return false; 3749 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3750 return false; 3751 if (!tr.present) 3752 return false; 3753 3754 return true; 3755 } 3756 3757 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3758 { 3759 struct kvm_segment ldtr; 3760 3761 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3762 3763 if (ldtr.unusable) 3764 return true; 3765 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3766 return false; 3767 if (ldtr.type != 2) 3768 return false; 3769 if (!ldtr.present) 3770 return false; 3771 3772 return true; 3773 } 3774 3775 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3776 { 3777 struct kvm_segment cs, ss; 3778 3779 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3780 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3781 3782 return ((cs.selector & SEGMENT_RPL_MASK) == 3783 (ss.selector & SEGMENT_RPL_MASK)); 3784 } 3785 3786 /* 3787 * Check if guest state is valid. Returns true if valid, false if 3788 * not. 3789 * We assume that registers are always usable 3790 */ 3791 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3792 { 3793 /* real mode guest state checks */ 3794 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3795 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3796 return false; 3797 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3798 return false; 3799 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3800 return false; 3801 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3802 return false; 3803 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3804 return false; 3805 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3806 return false; 3807 } else { 3808 /* protected mode guest state checks */ 3809 if (!cs_ss_rpl_check(vcpu)) 3810 return false; 3811 if (!code_segment_valid(vcpu)) 3812 return false; 3813 if (!stack_segment_valid(vcpu)) 3814 return false; 3815 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3816 return false; 3817 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3818 return false; 3819 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3820 return false; 3821 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3822 return false; 3823 if (!tr_valid(vcpu)) 3824 return false; 3825 if (!ldtr_valid(vcpu)) 3826 return false; 3827 } 3828 /* TODO: 3829 * - Add checks on RIP 3830 * - Add checks on RFLAGS 3831 */ 3832 3833 return true; 3834 } 3835 3836 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3837 { 3838 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3839 u16 data; 3840 int i; 3841 3842 for (i = 0; i < 3; i++) { 3843 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3844 return -EFAULT; 3845 } 3846 3847 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3848 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3849 return -EFAULT; 3850 3851 data = ~0; 3852 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3853 return -EFAULT; 3854 3855 return 0; 3856 } 3857 3858 static int init_rmode_identity_map(struct kvm *kvm) 3859 { 3860 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3861 int i, r = 0; 3862 void __user *uaddr; 3863 u32 tmp; 3864 3865 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3866 mutex_lock(&kvm->slots_lock); 3867 3868 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3869 goto out; 3870 3871 if (!kvm_vmx->ept_identity_map_addr) 3872 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3873 3874 uaddr = __x86_set_memory_region(kvm, 3875 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3876 kvm_vmx->ept_identity_map_addr, 3877 PAGE_SIZE); 3878 if (IS_ERR(uaddr)) { 3879 r = PTR_ERR(uaddr); 3880 goto out; 3881 } 3882 3883 /* Set up identity-mapping pagetable for EPT in real mode */ 3884 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) { 3885 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3886 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3887 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3888 r = -EFAULT; 3889 goto out; 3890 } 3891 } 3892 kvm_vmx->ept_identity_pagetable_done = true; 3893 3894 out: 3895 mutex_unlock(&kvm->slots_lock); 3896 return r; 3897 } 3898 3899 static void seg_setup(int seg) 3900 { 3901 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3902 unsigned int ar; 3903 3904 vmcs_write16(sf->selector, 0); 3905 vmcs_writel(sf->base, 0); 3906 vmcs_write32(sf->limit, 0xffff); 3907 ar = 0x93; 3908 if (seg == VCPU_SREG_CS) 3909 ar |= 0x08; /* code segment */ 3910 3911 vmcs_write32(sf->ar_bytes, ar); 3912 } 3913 3914 int allocate_vpid(void) 3915 { 3916 int vpid; 3917 3918 if (!enable_vpid) 3919 return 0; 3920 spin_lock(&vmx_vpid_lock); 3921 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3922 if (vpid < VMX_NR_VPIDS) 3923 __set_bit(vpid, vmx_vpid_bitmap); 3924 else 3925 vpid = 0; 3926 spin_unlock(&vmx_vpid_lock); 3927 return vpid; 3928 } 3929 3930 void free_vpid(int vpid) 3931 { 3932 if (!enable_vpid || vpid == 0) 3933 return; 3934 spin_lock(&vmx_vpid_lock); 3935 __clear_bit(vpid, vmx_vpid_bitmap); 3936 spin_unlock(&vmx_vpid_lock); 3937 } 3938 3939 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3940 { 3941 /* 3942 * When KVM is a nested hypervisor on top of Hyper-V and uses 3943 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3944 * bitmap has changed. 3945 */ 3946 if (kvm_is_using_evmcs()) { 3947 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 3948 3949 if (evmcs->hv_enlightenments_control.msr_bitmap) 3950 evmcs->hv_clean_fields &= 3951 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; 3952 } 3953 3954 vmx->nested.force_msr_bitmap_recalc = true; 3955 } 3956 3957 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3958 { 3959 struct vcpu_vmx *vmx = to_vmx(vcpu); 3960 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3961 3962 if (!cpu_has_vmx_msr_bitmap()) 3963 return; 3964 3965 vmx_msr_bitmap_l01_changed(vmx); 3966 3967 /* 3968 * Mark the desired intercept state in shadow bitmap, this is needed 3969 * for resync when the MSR filters change. 3970 */ 3971 if (is_valid_passthrough_msr(msr)) { 3972 int idx = possible_passthrough_msr_slot(msr); 3973 3974 if (idx != -ENOENT) { 3975 if (type & MSR_TYPE_R) 3976 clear_bit(idx, vmx->shadow_msr_intercept.read); 3977 if (type & MSR_TYPE_W) 3978 clear_bit(idx, vmx->shadow_msr_intercept.write); 3979 } 3980 } 3981 3982 if ((type & MSR_TYPE_R) && 3983 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3984 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3985 type &= ~MSR_TYPE_R; 3986 } 3987 3988 if ((type & MSR_TYPE_W) && 3989 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3990 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3991 type &= ~MSR_TYPE_W; 3992 } 3993 3994 if (type & MSR_TYPE_R) 3995 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3996 3997 if (type & MSR_TYPE_W) 3998 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3999 } 4000 4001 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 4002 { 4003 struct vcpu_vmx *vmx = to_vmx(vcpu); 4004 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 4005 4006 if (!cpu_has_vmx_msr_bitmap()) 4007 return; 4008 4009 vmx_msr_bitmap_l01_changed(vmx); 4010 4011 /* 4012 * Mark the desired intercept state in shadow bitmap, this is needed 4013 * for resync when the MSR filter changes. 4014 */ 4015 if (is_valid_passthrough_msr(msr)) { 4016 int idx = possible_passthrough_msr_slot(msr); 4017 4018 if (idx != -ENOENT) { 4019 if (type & MSR_TYPE_R) 4020 set_bit(idx, vmx->shadow_msr_intercept.read); 4021 if (type & MSR_TYPE_W) 4022 set_bit(idx, vmx->shadow_msr_intercept.write); 4023 } 4024 } 4025 4026 if (type & MSR_TYPE_R) 4027 vmx_set_msr_bitmap_read(msr_bitmap, msr); 4028 4029 if (type & MSR_TYPE_W) 4030 vmx_set_msr_bitmap_write(msr_bitmap, msr); 4031 } 4032 4033 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 4034 { 4035 /* 4036 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves 4037 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0, 4038 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits. 4039 */ 4040 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG; 4041 const int write_idx = read_idx + (0x800 / sizeof(u64)); 4042 struct vcpu_vmx *vmx = to_vmx(vcpu); 4043 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap; 4044 u8 mode; 4045 4046 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu))) 4047 return; 4048 4049 if (cpu_has_secondary_exec_ctrls() && 4050 (secondary_exec_controls_get(vmx) & 4051 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 4052 mode = MSR_BITMAP_MODE_X2APIC; 4053 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 4054 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 4055 } else { 4056 mode = 0; 4057 } 4058 4059 if (mode == vmx->x2apic_msr_bitmap_mode) 4060 return; 4061 4062 vmx->x2apic_msr_bitmap_mode = mode; 4063 4064 /* 4065 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended 4066 * registers (0x840 and above) intercepted, KVM doesn't support them. 4067 * Intercept all writes by default and poke holes as needed. Pass 4068 * through reads for all valid registers by default in x2APIC+APICv 4069 * mode, only the current timer count needs on-demand emulation by KVM. 4070 */ 4071 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) 4072 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic); 4073 else 4074 msr_bitmap[read_idx] = ~0ull; 4075 msr_bitmap[write_idx] = ~0ull; 4076 4077 /* 4078 * TPR reads and writes can be virtualized even if virtual interrupt 4079 * delivery is not in use. 4080 */ 4081 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 4082 !(mode & MSR_BITMAP_MODE_X2APIC)); 4083 4084 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 4085 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 4086 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 4087 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 4088 if (enable_ipiv) 4089 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW); 4090 } 4091 } 4092 4093 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 4094 { 4095 struct vcpu_vmx *vmx = to_vmx(vcpu); 4096 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 4097 u32 i; 4098 4099 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 4100 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 4101 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 4102 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 4103 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 4104 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 4105 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 4106 } 4107 } 4108 4109 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 4110 { 4111 struct vcpu_vmx *vmx = to_vmx(vcpu); 4112 void *vapic_page; 4113 u32 vppr; 4114 int rvi; 4115 4116 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 4117 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 4118 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 4119 return false; 4120 4121 rvi = vmx_get_rvi(); 4122 4123 vapic_page = vmx->nested.virtual_apic_map.hva; 4124 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 4125 4126 return ((rvi & 0xf0) > (vppr & 0xf0)); 4127 } 4128 4129 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 4130 { 4131 struct vcpu_vmx *vmx = to_vmx(vcpu); 4132 u32 i; 4133 4134 /* 4135 * Redo intercept permissions for MSRs that KVM is passing through to 4136 * the guest. Disabling interception will check the new MSR filter and 4137 * ensure that KVM enables interception if usersepace wants to filter 4138 * the MSR. MSRs that KVM is already intercepting don't need to be 4139 * refreshed since KVM is going to intercept them regardless of what 4140 * userspace wants. 4141 */ 4142 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 4143 u32 msr = vmx_possible_passthrough_msrs[i]; 4144 4145 if (!test_bit(i, vmx->shadow_msr_intercept.read)) 4146 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R); 4147 4148 if (!test_bit(i, vmx->shadow_msr_intercept.write)) 4149 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W); 4150 } 4151 4152 /* PT MSRs can be passed through iff PT is exposed to the guest. */ 4153 if (vmx_pt_mode_is_host_guest()) 4154 pt_update_intercept_for_msr(vcpu); 4155 } 4156 4157 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 4158 int pi_vec) 4159 { 4160 #ifdef CONFIG_SMP 4161 if (vcpu->mode == IN_GUEST_MODE) { 4162 /* 4163 * The vector of the virtual has already been set in the PIR. 4164 * Send a notification event to deliver the virtual interrupt 4165 * unless the vCPU is the currently running vCPU, i.e. the 4166 * event is being sent from a fastpath VM-Exit handler, in 4167 * which case the PIR will be synced to the vIRR before 4168 * re-entering the guest. 4169 * 4170 * When the target is not the running vCPU, the following 4171 * possibilities emerge: 4172 * 4173 * Case 1: vCPU stays in non-root mode. Sending a notification 4174 * event posts the interrupt to the vCPU. 4175 * 4176 * Case 2: vCPU exits to root mode and is still runnable. The 4177 * PIR will be synced to the vIRR before re-entering the guest. 4178 * Sending a notification event is ok as the host IRQ handler 4179 * will ignore the spurious event. 4180 * 4181 * Case 3: vCPU exits to root mode and is blocked. vcpu_block() 4182 * has already synced PIR to vIRR and never blocks the vCPU if 4183 * the vIRR is not empty. Therefore, a blocked vCPU here does 4184 * not wait for any requested interrupts in PIR, and sending a 4185 * notification event also results in a benign, spurious event. 4186 */ 4187 4188 if (vcpu != kvm_get_running_vcpu()) 4189 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 4190 return; 4191 } 4192 #endif 4193 /* 4194 * The vCPU isn't in the guest; wake the vCPU in case it is blocking, 4195 * otherwise do nothing as KVM will grab the highest priority pending 4196 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). 4197 */ 4198 kvm_vcpu_wake_up(vcpu); 4199 } 4200 4201 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 4202 int vector) 4203 { 4204 struct vcpu_vmx *vmx = to_vmx(vcpu); 4205 4206 if (is_guest_mode(vcpu) && 4207 vector == vmx->nested.posted_intr_nv) { 4208 /* 4209 * If a posted intr is not recognized by hardware, 4210 * we will accomplish it in the next vmentry. 4211 */ 4212 vmx->nested.pi_pending = true; 4213 kvm_make_request(KVM_REQ_EVENT, vcpu); 4214 4215 /* 4216 * This pairs with the smp_mb_*() after setting vcpu->mode in 4217 * vcpu_enter_guest() to guarantee the vCPU sees the event 4218 * request if triggering a posted interrupt "fails" because 4219 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 4220 * the smb_wmb() in kvm_make_request() only ensures everything 4221 * done before making the request is visible when the request 4222 * is visible, it doesn't ensure ordering between the store to 4223 * vcpu->requests and the load from vcpu->mode. 4224 */ 4225 smp_mb__after_atomic(); 4226 4227 /* the PIR and ON have been set by L1. */ 4228 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); 4229 return 0; 4230 } 4231 return -1; 4232 } 4233 /* 4234 * Send interrupt to vcpu via posted interrupt way. 4235 * 1. If target vcpu is running(non-root mode), send posted interrupt 4236 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4237 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4238 * interrupt from PIR in next vmentry. 4239 */ 4240 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4241 { 4242 struct vcpu_vmx *vmx = to_vmx(vcpu); 4243 int r; 4244 4245 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4246 if (!r) 4247 return 0; 4248 4249 /* Note, this is called iff the local APIC is in-kernel. */ 4250 if (!vcpu->arch.apic->apicv_active) 4251 return -1; 4252 4253 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4254 return 0; 4255 4256 /* If a previous notification has sent the IPI, nothing to do. */ 4257 if (pi_test_and_set_on(&vmx->pi_desc)) 4258 return 0; 4259 4260 /* 4261 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() 4262 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is 4263 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a 4264 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. 4265 */ 4266 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); 4267 return 0; 4268 } 4269 4270 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 4271 int trig_mode, int vector) 4272 { 4273 struct kvm_vcpu *vcpu = apic->vcpu; 4274 4275 if (vmx_deliver_posted_interrupt(vcpu, vector)) { 4276 kvm_lapic_set_irr(vector, apic); 4277 kvm_make_request(KVM_REQ_EVENT, vcpu); 4278 kvm_vcpu_kick(vcpu); 4279 } else { 4280 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 4281 trig_mode, vector); 4282 } 4283 } 4284 4285 /* 4286 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4287 * will not change in the lifetime of the guest. 4288 * Note that host-state that does change is set elsewhere. E.g., host-state 4289 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4290 */ 4291 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4292 { 4293 u32 low32, high32; 4294 unsigned long tmpl; 4295 unsigned long cr0, cr3, cr4; 4296 4297 cr0 = read_cr0(); 4298 WARN_ON(cr0 & X86_CR0_TS); 4299 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4300 4301 /* 4302 * Save the most likely value for this task's CR3 in the VMCS. 4303 * We can't use __get_current_cr3_fast() because we're not atomic. 4304 */ 4305 cr3 = __read_cr3(); 4306 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4307 vmx->loaded_vmcs->host_state.cr3 = cr3; 4308 4309 /* Save the most likely value for this task's CR4 in the VMCS. */ 4310 cr4 = cr4_read_shadow(); 4311 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4312 vmx->loaded_vmcs->host_state.cr4 = cr4; 4313 4314 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4315 #ifdef CONFIG_X86_64 4316 /* 4317 * Load null selectors, so we can avoid reloading them in 4318 * vmx_prepare_switch_to_host(), in case userspace uses 4319 * the null selectors too (the expected case). 4320 */ 4321 vmcs_write16(HOST_DS_SELECTOR, 0); 4322 vmcs_write16(HOST_ES_SELECTOR, 0); 4323 #else 4324 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4325 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4326 #endif 4327 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4328 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4329 4330 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4331 4332 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4333 4334 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4335 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4336 4337 /* 4338 * SYSENTER is used for 32-bit system calls on either 32-bit or 4339 * 64-bit kernels. It is always zero If neither is allowed, otherwise 4340 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may 4341 * have already done so!). 4342 */ 4343 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) 4344 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4345 4346 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4347 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4348 4349 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4350 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4351 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4352 } 4353 4354 if (cpu_has_load_ia32_efer()) 4355 vmcs_write64(HOST_IA32_EFER, host_efer); 4356 } 4357 4358 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4359 { 4360 struct kvm_vcpu *vcpu = &vmx->vcpu; 4361 4362 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4363 ~vcpu->arch.cr4_guest_rsvd_bits; 4364 if (!enable_ept) { 4365 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4366 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4367 } 4368 if (is_guest_mode(&vmx->vcpu)) 4369 vcpu->arch.cr4_guest_owned_bits &= 4370 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4371 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4372 } 4373 4374 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4375 { 4376 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4377 4378 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4379 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4380 4381 if (!enable_vnmi) 4382 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4383 4384 if (!enable_preemption_timer) 4385 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4386 4387 return pin_based_exec_ctrl; 4388 } 4389 4390 static u32 vmx_vmentry_ctrl(void) 4391 { 4392 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4393 4394 if (vmx_pt_mode_is_system()) 4395 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4396 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4397 /* 4398 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically. 4399 */ 4400 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 4401 VM_ENTRY_LOAD_IA32_EFER | 4402 VM_ENTRY_IA32E_MODE); 4403 4404 if (cpu_has_perf_global_ctrl_bug()) 4405 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 4406 4407 return vmentry_ctrl; 4408 } 4409 4410 static u32 vmx_vmexit_ctrl(void) 4411 { 4412 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4413 4414 /* 4415 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for 4416 * nested virtualization and thus allowed to be set in vmcs12. 4417 */ 4418 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER | 4419 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER); 4420 4421 if (vmx_pt_mode_is_system()) 4422 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4423 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4424 4425 if (cpu_has_perf_global_ctrl_bug()) 4426 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 4427 4428 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4429 return vmexit_ctrl & 4430 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4431 } 4432 4433 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4434 { 4435 struct vcpu_vmx *vmx = to_vmx(vcpu); 4436 4437 if (is_guest_mode(vcpu)) { 4438 vmx->nested.update_vmcs01_apicv_status = true; 4439 return; 4440 } 4441 4442 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4443 4444 if (kvm_vcpu_apicv_active(vcpu)) { 4445 secondary_exec_controls_setbit(vmx, 4446 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4447 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4448 if (enable_ipiv) 4449 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4450 } else { 4451 secondary_exec_controls_clearbit(vmx, 4452 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4453 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4454 if (enable_ipiv) 4455 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4456 } 4457 4458 vmx_update_msr_bitmap_x2apic(vcpu); 4459 } 4460 4461 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4462 { 4463 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4464 4465 /* 4466 * Not used by KVM, but fully supported for nesting, i.e. are allowed in 4467 * vmcs12 and propagated to vmcs02 when set in vmcs12. 4468 */ 4469 exec_control &= ~(CPU_BASED_RDTSC_EXITING | 4470 CPU_BASED_USE_IO_BITMAPS | 4471 CPU_BASED_MONITOR_TRAP_FLAG | 4472 CPU_BASED_PAUSE_EXITING); 4473 4474 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */ 4475 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING | 4476 CPU_BASED_NMI_WINDOW_EXITING); 4477 4478 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4479 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4480 4481 if (!cpu_need_tpr_shadow(&vmx->vcpu)) 4482 exec_control &= ~CPU_BASED_TPR_SHADOW; 4483 4484 #ifdef CONFIG_X86_64 4485 if (exec_control & CPU_BASED_TPR_SHADOW) 4486 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING | 4487 CPU_BASED_CR8_STORE_EXITING); 4488 else 4489 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4490 CPU_BASED_CR8_LOAD_EXITING; 4491 #endif 4492 /* No need to intercept CR3 access or INVPLG when using EPT. */ 4493 if (enable_ept) 4494 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 4495 CPU_BASED_CR3_STORE_EXITING | 4496 CPU_BASED_INVLPG_EXITING); 4497 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4498 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4499 CPU_BASED_MONITOR_EXITING); 4500 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4501 exec_control &= ~CPU_BASED_HLT_EXITING; 4502 return exec_control; 4503 } 4504 4505 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx) 4506 { 4507 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl; 4508 4509 /* 4510 * IPI virtualization relies on APICv. Disable IPI virtualization if 4511 * APICv is inhibited. 4512 */ 4513 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu)) 4514 exec_control &= ~TERTIARY_EXEC_IPI_VIRT; 4515 4516 return exec_control; 4517 } 4518 4519 /* 4520 * Adjust a single secondary execution control bit to intercept/allow an 4521 * instruction in the guest. This is usually done based on whether or not a 4522 * feature has been exposed to the guest in order to correctly emulate faults. 4523 */ 4524 static inline void 4525 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4526 u32 control, bool enabled, bool exiting) 4527 { 4528 /* 4529 * If the control is for an opt-in feature, clear the control if the 4530 * feature is not exposed to the guest, i.e. not enabled. If the 4531 * control is opt-out, i.e. an exiting control, clear the control if 4532 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4533 * disabled for the associated instruction. Note, the caller is 4534 * responsible presetting exec_control to set all supported bits. 4535 */ 4536 if (enabled == exiting) 4537 *exec_control &= ~control; 4538 4539 /* 4540 * Update the nested MSR settings so that a nested VMM can/can't set 4541 * controls for features that are/aren't exposed to the guest. 4542 */ 4543 if (nested) { 4544 /* 4545 * All features that can be added or removed to VMX MSRs must 4546 * be supported in the first place for nested virtualization. 4547 */ 4548 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control))) 4549 enabled = false; 4550 4551 if (enabled) 4552 vmx->nested.msrs.secondary_ctls_high |= control; 4553 else 4554 vmx->nested.msrs.secondary_ctls_high &= ~control; 4555 } 4556 } 4557 4558 /* 4559 * Wrapper macro for the common case of adjusting a secondary execution control 4560 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4561 * verifies that the control is actually supported by KVM and hardware. 4562 */ 4563 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4564 ({ \ 4565 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \ 4566 bool __enabled; \ 4567 \ 4568 if (cpu_has_vmx_##name()) { \ 4569 if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \ 4570 __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \ 4571 else \ 4572 __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \ 4573 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\ 4574 __enabled, exiting); \ 4575 } \ 4576 }) 4577 4578 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4579 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4580 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4581 4582 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4583 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4584 4585 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4586 { 4587 struct kvm_vcpu *vcpu = &vmx->vcpu; 4588 4589 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4590 4591 if (vmx_pt_mode_is_system()) 4592 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4593 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4594 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4595 if (vmx->vpid == 0) 4596 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4597 if (!enable_ept) { 4598 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4599 enable_unrestricted_guest = 0; 4600 } 4601 if (!enable_unrestricted_guest) 4602 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4603 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4604 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4605 if (!kvm_vcpu_apicv_active(vcpu)) 4606 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4607 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4608 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4609 4610 /* 4611 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's 4612 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2. 4613 */ 4614 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC; 4615 4616 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4617 * in vmx_set_cr4. */ 4618 exec_control &= ~SECONDARY_EXEC_DESC; 4619 4620 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4621 (handle_vmptrld). 4622 We can NOT enable shadow_vmcs here because we don't have yet 4623 a current VMCS12 4624 */ 4625 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4626 4627 /* 4628 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4629 * it needs to be set here when dirty logging is already active, e.g. 4630 * if this vCPU was created after dirty logging was enabled. 4631 */ 4632 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 4633 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4634 4635 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES); 4636 4637 /* 4638 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4639 * feature is exposed to the guest. This creates a virtualization hole 4640 * if both are supported in hardware but only one is exposed to the 4641 * guest, but letting the guest execute RDTSCP or RDPID when either one 4642 * is advertised is preferable to emulating the advertised instruction 4643 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4644 */ 4645 if (cpu_has_vmx_rdtscp()) { 4646 bool rdpid_or_rdtscp_enabled = 4647 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4648 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4649 4650 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4651 SECONDARY_EXEC_ENABLE_RDTSCP, 4652 rdpid_or_rdtscp_enabled, false); 4653 } 4654 4655 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4656 4657 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4658 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4659 4660 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4661 ENABLE_USR_WAIT_PAUSE, false); 4662 4663 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4664 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4665 4666 if (!kvm_notify_vmexit_enabled(vcpu->kvm)) 4667 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING; 4668 4669 return exec_control; 4670 } 4671 4672 static inline int vmx_get_pid_table_order(struct kvm *kvm) 4673 { 4674 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table)); 4675 } 4676 4677 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm) 4678 { 4679 struct page *pages; 4680 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4681 4682 if (!irqchip_in_kernel(kvm) || !enable_ipiv) 4683 return 0; 4684 4685 if (kvm_vmx->pid_table) 4686 return 0; 4687 4688 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 4689 vmx_get_pid_table_order(kvm)); 4690 if (!pages) 4691 return -ENOMEM; 4692 4693 kvm_vmx->pid_table = (void *)page_address(pages); 4694 return 0; 4695 } 4696 4697 static int vmx_vcpu_precreate(struct kvm *kvm) 4698 { 4699 return vmx_alloc_ipiv_pid_table(kvm); 4700 } 4701 4702 #define VMX_XSS_EXIT_BITMAP 0 4703 4704 static void init_vmcs(struct vcpu_vmx *vmx) 4705 { 4706 struct kvm *kvm = vmx->vcpu.kvm; 4707 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4708 4709 if (nested) 4710 nested_vmx_set_vmcs_shadowing_bitmap(); 4711 4712 if (cpu_has_vmx_msr_bitmap()) 4713 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4714 4715 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4716 4717 /* Control */ 4718 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4719 4720 exec_controls_set(vmx, vmx_exec_control(vmx)); 4721 4722 if (cpu_has_secondary_exec_ctrls()) 4723 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4724 4725 if (cpu_has_tertiary_exec_ctrls()) 4726 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx)); 4727 4728 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) { 4729 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4730 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4731 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4732 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4733 4734 vmcs_write16(GUEST_INTR_STATUS, 0); 4735 4736 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4737 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4738 } 4739 4740 if (vmx_can_use_ipiv(&vmx->vcpu)) { 4741 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table)); 4742 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1); 4743 } 4744 4745 if (!kvm_pause_in_guest(kvm)) { 4746 vmcs_write32(PLE_GAP, ple_gap); 4747 vmx->ple_window = ple_window; 4748 vmx->ple_window_dirty = true; 4749 } 4750 4751 if (kvm_notify_vmexit_enabled(kvm)) 4752 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); 4753 4754 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4755 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4756 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4757 4758 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4759 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4760 vmx_set_constant_host_state(vmx); 4761 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4762 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4763 4764 if (cpu_has_vmx_vmfunc()) 4765 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4766 4767 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4768 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4769 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4770 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4771 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4772 4773 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4774 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4775 4776 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4777 4778 /* 22.2.1, 20.8.1 */ 4779 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4780 4781 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); 4782 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4783 4784 set_cr4_guest_host_mask(vmx); 4785 4786 if (vmx->vpid != 0) 4787 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4788 4789 if (cpu_has_vmx_xsaves()) 4790 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4791 4792 if (enable_pml) { 4793 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4794 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4795 } 4796 4797 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4798 4799 if (vmx_pt_mode_is_host_guest()) { 4800 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4801 /* Bit[6~0] are forced to 1, writes are ignored. */ 4802 vmx->pt_desc.guest.output_mask = 0x7F; 4803 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4804 } 4805 4806 vmcs_write32(GUEST_SYSENTER_CS, 0); 4807 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4808 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4809 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4810 4811 if (cpu_has_vmx_tpr_shadow()) { 4812 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4813 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4814 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4815 __pa(vmx->vcpu.arch.apic->regs)); 4816 vmcs_write32(TPR_THRESHOLD, 0); 4817 } 4818 4819 vmx_setup_uret_msrs(vmx); 4820 } 4821 4822 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4823 { 4824 struct vcpu_vmx *vmx = to_vmx(vcpu); 4825 4826 init_vmcs(vmx); 4827 4828 if (nested) 4829 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4830 4831 vcpu_setup_sgx_lepubkeyhash(vcpu); 4832 4833 vmx->nested.posted_intr_nv = -1; 4834 vmx->nested.vmxon_ptr = INVALID_GPA; 4835 vmx->nested.current_vmptr = INVALID_GPA; 4836 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4837 4838 vcpu->arch.microcode_version = 0x100000000ULL; 4839 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4840 4841 /* 4842 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4843 * or POSTED_INTR_WAKEUP_VECTOR. 4844 */ 4845 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4846 vmx->pi_desc.sn = 1; 4847 } 4848 4849 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4850 { 4851 struct vcpu_vmx *vmx = to_vmx(vcpu); 4852 4853 if (!init_event) 4854 __vmx_vcpu_reset(vcpu); 4855 4856 vmx->rmode.vm86_active = 0; 4857 vmx->spec_ctrl = 0; 4858 4859 vmx->msr_ia32_umwait_control = 0; 4860 4861 vmx->hv_deadline_tsc = -1; 4862 kvm_set_cr8(vcpu, 0); 4863 4864 vmx_segment_cache_clear(vmx); 4865 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4866 4867 seg_setup(VCPU_SREG_CS); 4868 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4869 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4870 4871 seg_setup(VCPU_SREG_DS); 4872 seg_setup(VCPU_SREG_ES); 4873 seg_setup(VCPU_SREG_FS); 4874 seg_setup(VCPU_SREG_GS); 4875 seg_setup(VCPU_SREG_SS); 4876 4877 vmcs_write16(GUEST_TR_SELECTOR, 0); 4878 vmcs_writel(GUEST_TR_BASE, 0); 4879 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4880 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4881 4882 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4883 vmcs_writel(GUEST_LDTR_BASE, 0); 4884 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4885 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4886 4887 vmcs_writel(GUEST_GDTR_BASE, 0); 4888 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4889 4890 vmcs_writel(GUEST_IDTR_BASE, 0); 4891 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4892 4893 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4894 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4895 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4896 if (kvm_mpx_supported()) 4897 vmcs_write64(GUEST_BNDCFGS, 0); 4898 4899 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4900 4901 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4902 4903 vpid_sync_context(vmx->vpid); 4904 4905 vmx_update_fb_clear_dis(vcpu, vmx); 4906 } 4907 4908 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4909 { 4910 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4911 } 4912 4913 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4914 { 4915 if (!enable_vnmi || 4916 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4917 vmx_enable_irq_window(vcpu); 4918 return; 4919 } 4920 4921 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4922 } 4923 4924 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 4925 { 4926 struct vcpu_vmx *vmx = to_vmx(vcpu); 4927 uint32_t intr; 4928 int irq = vcpu->arch.interrupt.nr; 4929 4930 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected); 4931 4932 ++vcpu->stat.irq_injections; 4933 if (vmx->rmode.vm86_active) { 4934 int inc_eip = 0; 4935 if (vcpu->arch.interrupt.soft) 4936 inc_eip = vcpu->arch.event_exit_inst_len; 4937 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4938 return; 4939 } 4940 intr = irq | INTR_INFO_VALID_MASK; 4941 if (vcpu->arch.interrupt.soft) { 4942 intr |= INTR_TYPE_SOFT_INTR; 4943 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4944 vmx->vcpu.arch.event_exit_inst_len); 4945 } else 4946 intr |= INTR_TYPE_EXT_INTR; 4947 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4948 4949 vmx_clear_hlt(vcpu); 4950 } 4951 4952 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4953 { 4954 struct vcpu_vmx *vmx = to_vmx(vcpu); 4955 4956 if (!enable_vnmi) { 4957 /* 4958 * Tracking the NMI-blocked state in software is built upon 4959 * finding the next open IRQ window. This, in turn, depends on 4960 * well-behaving guests: They have to keep IRQs disabled at 4961 * least as long as the NMI handler runs. Otherwise we may 4962 * cause NMI nesting, maybe breaking the guest. But as this is 4963 * highly unlikely, we can live with the residual risk. 4964 */ 4965 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4966 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4967 } 4968 4969 ++vcpu->stat.nmi_injections; 4970 vmx->loaded_vmcs->nmi_known_unmasked = false; 4971 4972 if (vmx->rmode.vm86_active) { 4973 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4974 return; 4975 } 4976 4977 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4978 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4979 4980 vmx_clear_hlt(vcpu); 4981 } 4982 4983 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4984 { 4985 struct vcpu_vmx *vmx = to_vmx(vcpu); 4986 bool masked; 4987 4988 if (!enable_vnmi) 4989 return vmx->loaded_vmcs->soft_vnmi_blocked; 4990 if (vmx->loaded_vmcs->nmi_known_unmasked) 4991 return false; 4992 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4993 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4994 return masked; 4995 } 4996 4997 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4998 { 4999 struct vcpu_vmx *vmx = to_vmx(vcpu); 5000 5001 if (!enable_vnmi) { 5002 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 5003 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 5004 vmx->loaded_vmcs->vnmi_blocked_time = 0; 5005 } 5006 } else { 5007 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 5008 if (masked) 5009 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5010 GUEST_INTR_STATE_NMI); 5011 else 5012 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 5013 GUEST_INTR_STATE_NMI); 5014 } 5015 } 5016 5017 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 5018 { 5019 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5020 return false; 5021 5022 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 5023 return true; 5024 5025 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5026 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 5027 GUEST_INTR_STATE_NMI)); 5028 } 5029 5030 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5031 { 5032 if (to_vmx(vcpu)->nested.nested_run_pending) 5033 return -EBUSY; 5034 5035 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 5036 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 5037 return -EBUSY; 5038 5039 return !vmx_nmi_blocked(vcpu); 5040 } 5041 5042 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 5043 { 5044 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5045 return false; 5046 5047 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 5048 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5049 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 5050 } 5051 5052 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 5053 { 5054 if (to_vmx(vcpu)->nested.nested_run_pending) 5055 return -EBUSY; 5056 5057 /* 5058 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 5059 * e.g. if the IRQ arrived asynchronously after checking nested events. 5060 */ 5061 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5062 return -EBUSY; 5063 5064 return !vmx_interrupt_blocked(vcpu); 5065 } 5066 5067 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 5068 { 5069 void __user *ret; 5070 5071 if (enable_unrestricted_guest) 5072 return 0; 5073 5074 mutex_lock(&kvm->slots_lock); 5075 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 5076 PAGE_SIZE * 3); 5077 mutex_unlock(&kvm->slots_lock); 5078 5079 if (IS_ERR(ret)) 5080 return PTR_ERR(ret); 5081 5082 to_kvm_vmx(kvm)->tss_addr = addr; 5083 5084 return init_rmode_tss(kvm, ret); 5085 } 5086 5087 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 5088 { 5089 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 5090 return 0; 5091 } 5092 5093 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 5094 { 5095 switch (vec) { 5096 case BP_VECTOR: 5097 /* 5098 * Update instruction length as we may reinject the exception 5099 * from user space while in guest debugging mode. 5100 */ 5101 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 5102 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5103 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 5104 return false; 5105 fallthrough; 5106 case DB_VECTOR: 5107 return !(vcpu->guest_debug & 5108 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 5109 case DE_VECTOR: 5110 case OF_VECTOR: 5111 case BR_VECTOR: 5112 case UD_VECTOR: 5113 case DF_VECTOR: 5114 case SS_VECTOR: 5115 case GP_VECTOR: 5116 case MF_VECTOR: 5117 return true; 5118 } 5119 return false; 5120 } 5121 5122 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 5123 int vec, u32 err_code) 5124 { 5125 /* 5126 * Instruction with address size override prefix opcode 0x67 5127 * Cause the #SS fault with 0 error code in VM86 mode. 5128 */ 5129 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 5130 if (kvm_emulate_instruction(vcpu, 0)) { 5131 if (vcpu->arch.halt_request) { 5132 vcpu->arch.halt_request = 0; 5133 return kvm_emulate_halt_noskip(vcpu); 5134 } 5135 return 1; 5136 } 5137 return 0; 5138 } 5139 5140 /* 5141 * Forward all other exceptions that are valid in real mode. 5142 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 5143 * the required debugging infrastructure rework. 5144 */ 5145 kvm_queue_exception(vcpu, vec); 5146 return 1; 5147 } 5148 5149 static int handle_machine_check(struct kvm_vcpu *vcpu) 5150 { 5151 /* handled by vmx_vcpu_run() */ 5152 return 1; 5153 } 5154 5155 /* 5156 * If the host has split lock detection disabled, then #AC is 5157 * unconditionally injected into the guest, which is the pre split lock 5158 * detection behaviour. 5159 * 5160 * If the host has split lock detection enabled then #AC is 5161 * only injected into the guest when: 5162 * - Guest CPL == 3 (user mode) 5163 * - Guest has #AC detection enabled in CR0 5164 * - Guest EFLAGS has AC bit set 5165 */ 5166 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 5167 { 5168 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5169 return true; 5170 5171 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) && 5172 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 5173 } 5174 5175 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 5176 { 5177 struct vcpu_vmx *vmx = to_vmx(vcpu); 5178 struct kvm_run *kvm_run = vcpu->run; 5179 u32 intr_info, ex_no, error_code; 5180 unsigned long cr2, dr6; 5181 u32 vect_info; 5182 5183 vect_info = vmx->idt_vectoring_info; 5184 intr_info = vmx_get_intr_info(vcpu); 5185 5186 /* 5187 * Machine checks are handled by handle_exception_irqoff(), or by 5188 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by 5189 * vmx_vcpu_enter_exit(). 5190 */ 5191 if (is_machine_check(intr_info) || is_nmi(intr_info)) 5192 return 1; 5193 5194 /* 5195 * Queue the exception here instead of in handle_nm_fault_irqoff(). 5196 * This ensures the nested_vmx check is not skipped so vmexit can 5197 * be reflected to L1 (when it intercepts #NM) before reaching this 5198 * point. 5199 */ 5200 if (is_nm_fault(intr_info)) { 5201 kvm_queue_exception(vcpu, NM_VECTOR); 5202 return 1; 5203 } 5204 5205 if (is_invalid_opcode(intr_info)) 5206 return handle_ud(vcpu); 5207 5208 error_code = 0; 5209 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 5210 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5211 5212 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 5213 WARN_ON_ONCE(!enable_vmware_backdoor); 5214 5215 /* 5216 * VMware backdoor emulation on #GP interception only handles 5217 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 5218 * error code on #GP. 5219 */ 5220 if (error_code) { 5221 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 5222 return 1; 5223 } 5224 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 5225 } 5226 5227 /* 5228 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 5229 * MMIO, it is better to report an internal error. 5230 * See the comments in vmx_handle_exit. 5231 */ 5232 if ((vect_info & VECTORING_INFO_VALID_MASK) && 5233 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 5234 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5235 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 5236 vcpu->run->internal.ndata = 4; 5237 vcpu->run->internal.data[0] = vect_info; 5238 vcpu->run->internal.data[1] = intr_info; 5239 vcpu->run->internal.data[2] = error_code; 5240 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 5241 return 0; 5242 } 5243 5244 if (is_page_fault(intr_info)) { 5245 cr2 = vmx_get_exit_qual(vcpu); 5246 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 5247 /* 5248 * EPT will cause page fault only if we need to 5249 * detect illegal GPAs. 5250 */ 5251 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 5252 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 5253 return 1; 5254 } else 5255 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 5256 } 5257 5258 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 5259 5260 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 5261 return handle_rmode_exception(vcpu, ex_no, error_code); 5262 5263 switch (ex_no) { 5264 case DB_VECTOR: 5265 dr6 = vmx_get_exit_qual(vcpu); 5266 if (!(vcpu->guest_debug & 5267 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 5268 /* 5269 * If the #DB was due to ICEBP, a.k.a. INT1, skip the 5270 * instruction. ICEBP generates a trap-like #DB, but 5271 * despite its interception control being tied to #DB, 5272 * is an instruction intercept, i.e. the VM-Exit occurs 5273 * on the ICEBP itself. Use the inner "skip" helper to 5274 * avoid single-step #DB and MTF updates, as ICEBP is 5275 * higher priority. Note, skipping ICEBP still clears 5276 * STI and MOVSS blocking. 5277 * 5278 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS 5279 * if single-step is enabled in RFLAGS and STI or MOVSS 5280 * blocking is active, as the CPU doesn't set the bit 5281 * on VM-Exit due to #DB interception. VM-Entry has a 5282 * consistency check that a single-step #DB is pending 5283 * in this scenario as the previous instruction cannot 5284 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV 5285 * don't modify RFLAGS), therefore the one instruction 5286 * delay when activating single-step breakpoints must 5287 * have already expired. Note, the CPU sets/clears BS 5288 * as appropriate for all other VM-Exits types. 5289 */ 5290 if (is_icebp(intr_info)) 5291 WARN_ON(!skip_emulated_instruction(vcpu)); 5292 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && 5293 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5294 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) 5295 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 5296 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); 5297 5298 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 5299 return 1; 5300 } 5301 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 5302 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 5303 fallthrough; 5304 case BP_VECTOR: 5305 /* 5306 * Update instruction length as we may reinject #BP from 5307 * user space while in guest debugging mode. Reading it for 5308 * #DB as well causes no harm, it is not used in that case. 5309 */ 5310 vmx->vcpu.arch.event_exit_inst_len = 5311 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5312 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5313 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5314 kvm_run->debug.arch.exception = ex_no; 5315 break; 5316 case AC_VECTOR: 5317 if (vmx_guest_inject_ac(vcpu)) { 5318 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 5319 return 1; 5320 } 5321 5322 /* 5323 * Handle split lock. Depending on detection mode this will 5324 * either warn and disable split lock detection for this 5325 * task or force SIGBUS on it. 5326 */ 5327 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 5328 return 1; 5329 fallthrough; 5330 default: 5331 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 5332 kvm_run->ex.exception = ex_no; 5333 kvm_run->ex.error_code = error_code; 5334 break; 5335 } 5336 return 0; 5337 } 5338 5339 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 5340 { 5341 ++vcpu->stat.irq_exits; 5342 return 1; 5343 } 5344 5345 static int handle_triple_fault(struct kvm_vcpu *vcpu) 5346 { 5347 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5348 vcpu->mmio_needed = 0; 5349 return 0; 5350 } 5351 5352 static int handle_io(struct kvm_vcpu *vcpu) 5353 { 5354 unsigned long exit_qualification; 5355 int size, in, string; 5356 unsigned port; 5357 5358 exit_qualification = vmx_get_exit_qual(vcpu); 5359 string = (exit_qualification & 16) != 0; 5360 5361 ++vcpu->stat.io_exits; 5362 5363 if (string) 5364 return kvm_emulate_instruction(vcpu, 0); 5365 5366 port = exit_qualification >> 16; 5367 size = (exit_qualification & 7) + 1; 5368 in = (exit_qualification & 8) != 0; 5369 5370 return kvm_fast_pio(vcpu, size, port, in); 5371 } 5372 5373 static void 5374 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5375 { 5376 /* 5377 * Patch in the VMCALL instruction: 5378 */ 5379 hypercall[0] = 0x0f; 5380 hypercall[1] = 0x01; 5381 hypercall[2] = 0xc1; 5382 } 5383 5384 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5385 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5386 { 5387 if (is_guest_mode(vcpu)) { 5388 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5389 unsigned long orig_val = val; 5390 5391 /* 5392 * We get here when L2 changed cr0 in a way that did not change 5393 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5394 * but did change L0 shadowed bits. So we first calculate the 5395 * effective cr0 value that L1 would like to write into the 5396 * hardware. It consists of the L2-owned bits from the new 5397 * value combined with the L1-owned bits from L1's guest_cr0. 5398 */ 5399 val = (val & ~vmcs12->cr0_guest_host_mask) | 5400 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5401 5402 if (kvm_set_cr0(vcpu, val)) 5403 return 1; 5404 vmcs_writel(CR0_READ_SHADOW, orig_val); 5405 return 0; 5406 } else { 5407 return kvm_set_cr0(vcpu, val); 5408 } 5409 } 5410 5411 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5412 { 5413 if (is_guest_mode(vcpu)) { 5414 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5415 unsigned long orig_val = val; 5416 5417 /* analogously to handle_set_cr0 */ 5418 val = (val & ~vmcs12->cr4_guest_host_mask) | 5419 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5420 if (kvm_set_cr4(vcpu, val)) 5421 return 1; 5422 vmcs_writel(CR4_READ_SHADOW, orig_val); 5423 return 0; 5424 } else 5425 return kvm_set_cr4(vcpu, val); 5426 } 5427 5428 static int handle_desc(struct kvm_vcpu *vcpu) 5429 { 5430 /* 5431 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this 5432 * and other code needs to be updated if UMIP can be guest owned. 5433 */ 5434 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP); 5435 5436 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP)); 5437 return kvm_emulate_instruction(vcpu, 0); 5438 } 5439 5440 static int handle_cr(struct kvm_vcpu *vcpu) 5441 { 5442 unsigned long exit_qualification, val; 5443 int cr; 5444 int reg; 5445 int err; 5446 int ret; 5447 5448 exit_qualification = vmx_get_exit_qual(vcpu); 5449 cr = exit_qualification & 15; 5450 reg = (exit_qualification >> 8) & 15; 5451 switch ((exit_qualification >> 4) & 3) { 5452 case 0: /* mov to cr */ 5453 val = kvm_register_read(vcpu, reg); 5454 trace_kvm_cr_write(cr, val); 5455 switch (cr) { 5456 case 0: 5457 err = handle_set_cr0(vcpu, val); 5458 return kvm_complete_insn_gp(vcpu, err); 5459 case 3: 5460 WARN_ON_ONCE(enable_unrestricted_guest); 5461 5462 err = kvm_set_cr3(vcpu, val); 5463 return kvm_complete_insn_gp(vcpu, err); 5464 case 4: 5465 err = handle_set_cr4(vcpu, val); 5466 return kvm_complete_insn_gp(vcpu, err); 5467 case 8: { 5468 u8 cr8_prev = kvm_get_cr8(vcpu); 5469 u8 cr8 = (u8)val; 5470 err = kvm_set_cr8(vcpu, cr8); 5471 ret = kvm_complete_insn_gp(vcpu, err); 5472 if (lapic_in_kernel(vcpu)) 5473 return ret; 5474 if (cr8_prev <= cr8) 5475 return ret; 5476 /* 5477 * TODO: we might be squashing a 5478 * KVM_GUESTDBG_SINGLESTEP-triggered 5479 * KVM_EXIT_DEBUG here. 5480 */ 5481 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5482 return 0; 5483 } 5484 } 5485 break; 5486 case 2: /* clts */ 5487 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5488 return -EIO; 5489 case 1: /*mov from cr*/ 5490 switch (cr) { 5491 case 3: 5492 WARN_ON_ONCE(enable_unrestricted_guest); 5493 5494 val = kvm_read_cr3(vcpu); 5495 kvm_register_write(vcpu, reg, val); 5496 trace_kvm_cr_read(cr, val); 5497 return kvm_skip_emulated_instruction(vcpu); 5498 case 8: 5499 val = kvm_get_cr8(vcpu); 5500 kvm_register_write(vcpu, reg, val); 5501 trace_kvm_cr_read(cr, val); 5502 return kvm_skip_emulated_instruction(vcpu); 5503 } 5504 break; 5505 case 3: /* lmsw */ 5506 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5507 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val)); 5508 kvm_lmsw(vcpu, val); 5509 5510 return kvm_skip_emulated_instruction(vcpu); 5511 default: 5512 break; 5513 } 5514 vcpu->run->exit_reason = 0; 5515 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5516 (int)(exit_qualification >> 4) & 3, cr); 5517 return 0; 5518 } 5519 5520 static int handle_dr(struct kvm_vcpu *vcpu) 5521 { 5522 unsigned long exit_qualification; 5523 int dr, dr7, reg; 5524 int err = 1; 5525 5526 exit_qualification = vmx_get_exit_qual(vcpu); 5527 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5528 5529 /* First, if DR does not exist, trigger UD */ 5530 if (!kvm_require_dr(vcpu, dr)) 5531 return 1; 5532 5533 if (vmx_get_cpl(vcpu) > 0) 5534 goto out; 5535 5536 dr7 = vmcs_readl(GUEST_DR7); 5537 if (dr7 & DR7_GD) { 5538 /* 5539 * As the vm-exit takes precedence over the debug trap, we 5540 * need to emulate the latter, either for the host or the 5541 * guest debugging itself. 5542 */ 5543 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5544 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5545 vcpu->run->debug.arch.dr7 = dr7; 5546 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5547 vcpu->run->debug.arch.exception = DB_VECTOR; 5548 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5549 return 0; 5550 } else { 5551 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5552 return 1; 5553 } 5554 } 5555 5556 if (vcpu->guest_debug == 0) { 5557 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5558 5559 /* 5560 * No more DR vmexits; force a reload of the debug registers 5561 * and reenter on this instruction. The next vmexit will 5562 * retrieve the full state of the debug registers. 5563 */ 5564 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5565 return 1; 5566 } 5567 5568 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5569 if (exit_qualification & TYPE_MOV_FROM_DR) { 5570 unsigned long val; 5571 5572 kvm_get_dr(vcpu, dr, &val); 5573 kvm_register_write(vcpu, reg, val); 5574 err = 0; 5575 } else { 5576 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5577 } 5578 5579 out: 5580 return kvm_complete_insn_gp(vcpu, err); 5581 } 5582 5583 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5584 { 5585 get_debugreg(vcpu->arch.db[0], 0); 5586 get_debugreg(vcpu->arch.db[1], 1); 5587 get_debugreg(vcpu->arch.db[2], 2); 5588 get_debugreg(vcpu->arch.db[3], 3); 5589 get_debugreg(vcpu->arch.dr6, 6); 5590 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5591 5592 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5593 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5594 5595 /* 5596 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5597 * a stale dr6 from the guest. 5598 */ 5599 set_debugreg(DR6_RESERVED, 6); 5600 } 5601 5602 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5603 { 5604 vmcs_writel(GUEST_DR7, val); 5605 } 5606 5607 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5608 { 5609 kvm_apic_update_ppr(vcpu); 5610 return 1; 5611 } 5612 5613 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5614 { 5615 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5616 5617 kvm_make_request(KVM_REQ_EVENT, vcpu); 5618 5619 ++vcpu->stat.irq_window_exits; 5620 return 1; 5621 } 5622 5623 static int handle_invlpg(struct kvm_vcpu *vcpu) 5624 { 5625 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5626 5627 kvm_mmu_invlpg(vcpu, exit_qualification); 5628 return kvm_skip_emulated_instruction(vcpu); 5629 } 5630 5631 static int handle_apic_access(struct kvm_vcpu *vcpu) 5632 { 5633 if (likely(fasteoi)) { 5634 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5635 int access_type, offset; 5636 5637 access_type = exit_qualification & APIC_ACCESS_TYPE; 5638 offset = exit_qualification & APIC_ACCESS_OFFSET; 5639 /* 5640 * Sane guest uses MOV to write EOI, with written value 5641 * not cared. So make a short-circuit here by avoiding 5642 * heavy instruction emulation. 5643 */ 5644 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5645 (offset == APIC_EOI)) { 5646 kvm_lapic_set_eoi(vcpu); 5647 return kvm_skip_emulated_instruction(vcpu); 5648 } 5649 } 5650 return kvm_emulate_instruction(vcpu, 0); 5651 } 5652 5653 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5654 { 5655 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5656 int vector = exit_qualification & 0xff; 5657 5658 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5659 kvm_apic_set_eoi_accelerated(vcpu, vector); 5660 return 1; 5661 } 5662 5663 static int handle_apic_write(struct kvm_vcpu *vcpu) 5664 { 5665 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5666 5667 /* 5668 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and 5669 * hardware has done any necessary aliasing, offset adjustments, etc... 5670 * for the access. I.e. the correct value has already been written to 5671 * the vAPIC page for the correct 16-byte chunk. KVM needs only to 5672 * retrieve the register value and emulate the access. 5673 */ 5674 u32 offset = exit_qualification & 0xff0; 5675 5676 kvm_apic_write_nodecode(vcpu, offset); 5677 return 1; 5678 } 5679 5680 static int handle_task_switch(struct kvm_vcpu *vcpu) 5681 { 5682 struct vcpu_vmx *vmx = to_vmx(vcpu); 5683 unsigned long exit_qualification; 5684 bool has_error_code = false; 5685 u32 error_code = 0; 5686 u16 tss_selector; 5687 int reason, type, idt_v, idt_index; 5688 5689 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5690 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5691 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5692 5693 exit_qualification = vmx_get_exit_qual(vcpu); 5694 5695 reason = (u32)exit_qualification >> 30; 5696 if (reason == TASK_SWITCH_GATE && idt_v) { 5697 switch (type) { 5698 case INTR_TYPE_NMI_INTR: 5699 vcpu->arch.nmi_injected = false; 5700 vmx_set_nmi_mask(vcpu, true); 5701 break; 5702 case INTR_TYPE_EXT_INTR: 5703 case INTR_TYPE_SOFT_INTR: 5704 kvm_clear_interrupt_queue(vcpu); 5705 break; 5706 case INTR_TYPE_HARD_EXCEPTION: 5707 if (vmx->idt_vectoring_info & 5708 VECTORING_INFO_DELIVER_CODE_MASK) { 5709 has_error_code = true; 5710 error_code = 5711 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5712 } 5713 fallthrough; 5714 case INTR_TYPE_SOFT_EXCEPTION: 5715 kvm_clear_exception_queue(vcpu); 5716 break; 5717 default: 5718 break; 5719 } 5720 } 5721 tss_selector = exit_qualification; 5722 5723 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5724 type != INTR_TYPE_EXT_INTR && 5725 type != INTR_TYPE_NMI_INTR)) 5726 WARN_ON(!skip_emulated_instruction(vcpu)); 5727 5728 /* 5729 * TODO: What about debug traps on tss switch? 5730 * Are we supposed to inject them and update dr6? 5731 */ 5732 return kvm_task_switch(vcpu, tss_selector, 5733 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5734 reason, has_error_code, error_code); 5735 } 5736 5737 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5738 { 5739 unsigned long exit_qualification; 5740 gpa_t gpa; 5741 u64 error_code; 5742 5743 exit_qualification = vmx_get_exit_qual(vcpu); 5744 5745 /* 5746 * EPT violation happened while executing iret from NMI, 5747 * "blocked by NMI" bit has to be set before next VM entry. 5748 * There are errata that may cause this bit to not be set: 5749 * AAK134, BY25. 5750 */ 5751 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5752 enable_vnmi && 5753 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5754 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5755 5756 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5757 trace_kvm_page_fault(vcpu, gpa, exit_qualification); 5758 5759 /* Is it a read fault? */ 5760 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5761 ? PFERR_USER_MASK : 0; 5762 /* Is it a write fault? */ 5763 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5764 ? PFERR_WRITE_MASK : 0; 5765 /* Is it a fetch fault? */ 5766 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5767 ? PFERR_FETCH_MASK : 0; 5768 /* ept page table entry is present? */ 5769 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK) 5770 ? PFERR_PRESENT_MASK : 0; 5771 5772 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5773 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5774 5775 vcpu->arch.exit_qualification = exit_qualification; 5776 5777 /* 5778 * Check that the GPA doesn't exceed physical memory limits, as that is 5779 * a guest page fault. We have to emulate the instruction here, because 5780 * if the illegal address is that of a paging structure, then 5781 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5782 * would also use advanced VM-exit information for EPT violations to 5783 * reconstruct the page fault error code. 5784 */ 5785 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5786 return kvm_emulate_instruction(vcpu, 0); 5787 5788 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5789 } 5790 5791 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5792 { 5793 gpa_t gpa; 5794 5795 if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) 5796 return 1; 5797 5798 /* 5799 * A nested guest cannot optimize MMIO vmexits, because we have an 5800 * nGPA here instead of the required GPA. 5801 */ 5802 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5803 if (!is_guest_mode(vcpu) && 5804 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5805 trace_kvm_fast_mmio(gpa); 5806 return kvm_skip_emulated_instruction(vcpu); 5807 } 5808 5809 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5810 } 5811 5812 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5813 { 5814 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5815 return -EIO; 5816 5817 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5818 ++vcpu->stat.nmi_window_exits; 5819 kvm_make_request(KVM_REQ_EVENT, vcpu); 5820 5821 return 1; 5822 } 5823 5824 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) 5825 { 5826 struct vcpu_vmx *vmx = to_vmx(vcpu); 5827 5828 return vmx->emulation_required && !vmx->rmode.vm86_active && 5829 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected); 5830 } 5831 5832 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5833 { 5834 struct vcpu_vmx *vmx = to_vmx(vcpu); 5835 bool intr_window_requested; 5836 unsigned count = 130; 5837 5838 intr_window_requested = exec_controls_get(vmx) & 5839 CPU_BASED_INTR_WINDOW_EXITING; 5840 5841 while (vmx->emulation_required && count-- != 0) { 5842 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5843 return handle_interrupt_window(&vmx->vcpu); 5844 5845 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5846 return 1; 5847 5848 if (!kvm_emulate_instruction(vcpu, 0)) 5849 return 0; 5850 5851 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5852 kvm_prepare_emulation_failure_exit(vcpu); 5853 return 0; 5854 } 5855 5856 if (vcpu->arch.halt_request) { 5857 vcpu->arch.halt_request = 0; 5858 return kvm_emulate_halt_noskip(vcpu); 5859 } 5860 5861 /* 5862 * Note, return 1 and not 0, vcpu_run() will invoke 5863 * xfer_to_guest_mode() which will create a proper return 5864 * code. 5865 */ 5866 if (__xfer_to_guest_mode_work_pending()) 5867 return 1; 5868 } 5869 5870 return 1; 5871 } 5872 5873 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) 5874 { 5875 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5876 kvm_prepare_emulation_failure_exit(vcpu); 5877 return 0; 5878 } 5879 5880 return 1; 5881 } 5882 5883 static void grow_ple_window(struct kvm_vcpu *vcpu) 5884 { 5885 struct vcpu_vmx *vmx = to_vmx(vcpu); 5886 unsigned int old = vmx->ple_window; 5887 5888 vmx->ple_window = __grow_ple_window(old, ple_window, 5889 ple_window_grow, 5890 ple_window_max); 5891 5892 if (vmx->ple_window != old) { 5893 vmx->ple_window_dirty = true; 5894 trace_kvm_ple_window_update(vcpu->vcpu_id, 5895 vmx->ple_window, old); 5896 } 5897 } 5898 5899 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5900 { 5901 struct vcpu_vmx *vmx = to_vmx(vcpu); 5902 unsigned int old = vmx->ple_window; 5903 5904 vmx->ple_window = __shrink_ple_window(old, ple_window, 5905 ple_window_shrink, 5906 ple_window); 5907 5908 if (vmx->ple_window != old) { 5909 vmx->ple_window_dirty = true; 5910 trace_kvm_ple_window_update(vcpu->vcpu_id, 5911 vmx->ple_window, old); 5912 } 5913 } 5914 5915 /* 5916 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5917 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5918 */ 5919 static int handle_pause(struct kvm_vcpu *vcpu) 5920 { 5921 if (!kvm_pause_in_guest(vcpu->kvm)) 5922 grow_ple_window(vcpu); 5923 5924 /* 5925 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5926 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5927 * never set PAUSE_EXITING and just set PLE if supported, 5928 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5929 */ 5930 kvm_vcpu_on_spin(vcpu, true); 5931 return kvm_skip_emulated_instruction(vcpu); 5932 } 5933 5934 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5935 { 5936 return 1; 5937 } 5938 5939 static int handle_invpcid(struct kvm_vcpu *vcpu) 5940 { 5941 u32 vmx_instruction_info; 5942 unsigned long type; 5943 gva_t gva; 5944 struct { 5945 u64 pcid; 5946 u64 gla; 5947 } operand; 5948 int gpr_index; 5949 5950 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5951 kvm_queue_exception(vcpu, UD_VECTOR); 5952 return 1; 5953 } 5954 5955 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5956 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5957 type = kvm_register_read(vcpu, gpr_index); 5958 5959 /* According to the Intel instruction reference, the memory operand 5960 * is read even if it isn't needed (e.g., for type==all) 5961 */ 5962 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5963 vmx_instruction_info, false, 5964 sizeof(operand), &gva)) 5965 return 1; 5966 5967 return kvm_handle_invpcid(vcpu, type, gva); 5968 } 5969 5970 static int handle_pml_full(struct kvm_vcpu *vcpu) 5971 { 5972 unsigned long exit_qualification; 5973 5974 trace_kvm_pml_full(vcpu->vcpu_id); 5975 5976 exit_qualification = vmx_get_exit_qual(vcpu); 5977 5978 /* 5979 * PML buffer FULL happened while executing iret from NMI, 5980 * "blocked by NMI" bit has to be set before next VM entry. 5981 */ 5982 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5983 enable_vnmi && 5984 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5985 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5986 GUEST_INTR_STATE_NMI); 5987 5988 /* 5989 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5990 * here.., and there's no userspace involvement needed for PML. 5991 */ 5992 return 1; 5993 } 5994 5995 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5996 { 5997 struct vcpu_vmx *vmx = to_vmx(vcpu); 5998 5999 if (!vmx->req_immediate_exit && 6000 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 6001 kvm_lapic_expired_hv_timer(vcpu); 6002 return EXIT_FASTPATH_REENTER_GUEST; 6003 } 6004 6005 return EXIT_FASTPATH_NONE; 6006 } 6007 6008 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 6009 { 6010 handle_fastpath_preemption_timer(vcpu); 6011 return 1; 6012 } 6013 6014 /* 6015 * When nested=0, all VMX instruction VM Exits filter here. The handlers 6016 * are overwritten by nested_vmx_setup() when nested=1. 6017 */ 6018 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 6019 { 6020 kvm_queue_exception(vcpu, UD_VECTOR); 6021 return 1; 6022 } 6023 6024 #ifndef CONFIG_X86_SGX_KVM 6025 static int handle_encls(struct kvm_vcpu *vcpu) 6026 { 6027 /* 6028 * SGX virtualization is disabled. There is no software enable bit for 6029 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 6030 * the guest from executing ENCLS (when SGX is supported by hardware). 6031 */ 6032 kvm_queue_exception(vcpu, UD_VECTOR); 6033 return 1; 6034 } 6035 #endif /* CONFIG_X86_SGX_KVM */ 6036 6037 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 6038 { 6039 /* 6040 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 6041 * VM-Exits. Unconditionally set the flag here and leave the handling to 6042 * vmx_handle_exit(). 6043 */ 6044 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 6045 return 1; 6046 } 6047 6048 static int handle_notify(struct kvm_vcpu *vcpu) 6049 { 6050 unsigned long exit_qual = vmx_get_exit_qual(vcpu); 6051 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID; 6052 6053 ++vcpu->stat.notify_window_exits; 6054 6055 /* 6056 * Notify VM exit happened while executing iret from NMI, 6057 * "blocked by NMI" bit has to be set before next VM entry. 6058 */ 6059 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI)) 6060 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6061 GUEST_INTR_STATE_NMI); 6062 6063 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER || 6064 context_invalid) { 6065 vcpu->run->exit_reason = KVM_EXIT_NOTIFY; 6066 vcpu->run->notify.flags = context_invalid ? 6067 KVM_NOTIFY_CONTEXT_INVALID : 0; 6068 return 0; 6069 } 6070 6071 return 1; 6072 } 6073 6074 /* 6075 * The exit handlers return 1 if the exit was handled fully and guest execution 6076 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 6077 * to be done to userspace and return 0. 6078 */ 6079 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 6080 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 6081 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 6082 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 6083 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 6084 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 6085 [EXIT_REASON_CR_ACCESS] = handle_cr, 6086 [EXIT_REASON_DR_ACCESS] = handle_dr, 6087 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 6088 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 6089 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 6090 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 6091 [EXIT_REASON_HLT] = kvm_emulate_halt, 6092 [EXIT_REASON_INVD] = kvm_emulate_invd, 6093 [EXIT_REASON_INVLPG] = handle_invlpg, 6094 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 6095 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 6096 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 6097 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 6098 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 6099 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 6100 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 6101 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 6102 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 6103 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 6104 [EXIT_REASON_VMON] = handle_vmx_instruction, 6105 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 6106 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 6107 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 6108 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 6109 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 6110 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 6111 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 6112 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 6113 [EXIT_REASON_GDTR_IDTR] = handle_desc, 6114 [EXIT_REASON_LDTR_TR] = handle_desc, 6115 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 6116 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 6117 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 6118 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 6119 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 6120 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 6121 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 6122 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 6123 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 6124 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 6125 [EXIT_REASON_PML_FULL] = handle_pml_full, 6126 [EXIT_REASON_INVPCID] = handle_invpcid, 6127 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 6128 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 6129 [EXIT_REASON_ENCLS] = handle_encls, 6130 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 6131 [EXIT_REASON_NOTIFY] = handle_notify, 6132 }; 6133 6134 static const int kvm_vmx_max_exit_handlers = 6135 ARRAY_SIZE(kvm_vmx_exit_handlers); 6136 6137 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 6138 u64 *info1, u64 *info2, 6139 u32 *intr_info, u32 *error_code) 6140 { 6141 struct vcpu_vmx *vmx = to_vmx(vcpu); 6142 6143 *reason = vmx->exit_reason.full; 6144 *info1 = vmx_get_exit_qual(vcpu); 6145 if (!(vmx->exit_reason.failed_vmentry)) { 6146 *info2 = vmx->idt_vectoring_info; 6147 *intr_info = vmx_get_intr_info(vcpu); 6148 if (is_exception_with_error_code(*intr_info)) 6149 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 6150 else 6151 *error_code = 0; 6152 } else { 6153 *info2 = 0; 6154 *intr_info = 0; 6155 *error_code = 0; 6156 } 6157 } 6158 6159 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 6160 { 6161 if (vmx->pml_pg) { 6162 __free_page(vmx->pml_pg); 6163 vmx->pml_pg = NULL; 6164 } 6165 } 6166 6167 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 6168 { 6169 struct vcpu_vmx *vmx = to_vmx(vcpu); 6170 u64 *pml_buf; 6171 u16 pml_idx; 6172 6173 pml_idx = vmcs_read16(GUEST_PML_INDEX); 6174 6175 /* Do nothing if PML buffer is empty */ 6176 if (pml_idx == (PML_ENTITY_NUM - 1)) 6177 return; 6178 6179 /* PML index always points to next available PML buffer entity */ 6180 if (pml_idx >= PML_ENTITY_NUM) 6181 pml_idx = 0; 6182 else 6183 pml_idx++; 6184 6185 pml_buf = page_address(vmx->pml_pg); 6186 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 6187 u64 gpa; 6188 6189 gpa = pml_buf[pml_idx]; 6190 WARN_ON(gpa & (PAGE_SIZE - 1)); 6191 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 6192 } 6193 6194 /* reset PML index */ 6195 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 6196 } 6197 6198 static void vmx_dump_sel(char *name, uint32_t sel) 6199 { 6200 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 6201 name, vmcs_read16(sel), 6202 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 6203 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 6204 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 6205 } 6206 6207 static void vmx_dump_dtsel(char *name, uint32_t limit) 6208 { 6209 pr_err("%s limit=0x%08x, base=0x%016lx\n", 6210 name, vmcs_read32(limit), 6211 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 6212 } 6213 6214 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 6215 { 6216 unsigned int i; 6217 struct vmx_msr_entry *e; 6218 6219 pr_err("MSR %s:\n", name); 6220 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 6221 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 6222 } 6223 6224 void dump_vmcs(struct kvm_vcpu *vcpu) 6225 { 6226 struct vcpu_vmx *vmx = to_vmx(vcpu); 6227 u32 vmentry_ctl, vmexit_ctl; 6228 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 6229 u64 tertiary_exec_control; 6230 unsigned long cr4; 6231 int efer_slot; 6232 6233 if (!dump_invalid_vmcs) { 6234 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 6235 return; 6236 } 6237 6238 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 6239 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 6240 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 6241 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 6242 cr4 = vmcs_readl(GUEST_CR4); 6243 6244 if (cpu_has_secondary_exec_ctrls()) 6245 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 6246 else 6247 secondary_exec_control = 0; 6248 6249 if (cpu_has_tertiary_exec_ctrls()) 6250 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL); 6251 else 6252 tertiary_exec_control = 0; 6253 6254 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 6255 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 6256 pr_err("*** Guest State ***\n"); 6257 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6258 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 6259 vmcs_readl(CR0_GUEST_HOST_MASK)); 6260 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6261 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 6262 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 6263 if (cpu_has_vmx_ept()) { 6264 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 6265 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 6266 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 6267 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 6268 } 6269 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 6270 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 6271 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 6272 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 6273 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6274 vmcs_readl(GUEST_SYSENTER_ESP), 6275 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 6276 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 6277 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 6278 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 6279 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 6280 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 6281 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 6282 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 6283 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 6284 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 6285 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 6286 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 6287 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 6288 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 6289 else if (efer_slot >= 0) 6290 pr_err("EFER= 0x%016llx (autoload)\n", 6291 vmx->msr_autoload.guest.val[efer_slot].value); 6292 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 6293 pr_err("EFER= 0x%016llx (effective)\n", 6294 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 6295 else 6296 pr_err("EFER= 0x%016llx (effective)\n", 6297 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 6298 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 6299 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 6300 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 6301 vmcs_read64(GUEST_IA32_DEBUGCTL), 6302 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 6303 if (cpu_has_load_perf_global_ctrl() && 6304 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 6305 pr_err("PerfGlobCtl = 0x%016llx\n", 6306 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 6307 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 6308 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 6309 pr_err("Interruptibility = %08x ActivityState = %08x\n", 6310 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 6311 vmcs_read32(GUEST_ACTIVITY_STATE)); 6312 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 6313 pr_err("InterruptStatus = %04x\n", 6314 vmcs_read16(GUEST_INTR_STATUS)); 6315 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 6316 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 6317 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 6318 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 6319 6320 pr_err("*** Host State ***\n"); 6321 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 6322 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 6323 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 6324 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 6325 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 6326 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 6327 vmcs_read16(HOST_TR_SELECTOR)); 6328 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 6329 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 6330 vmcs_readl(HOST_TR_BASE)); 6331 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 6332 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 6333 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 6334 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 6335 vmcs_readl(HOST_CR4)); 6336 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6337 vmcs_readl(HOST_IA32_SYSENTER_ESP), 6338 vmcs_read32(HOST_IA32_SYSENTER_CS), 6339 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 6340 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 6341 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 6342 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 6343 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 6344 if (cpu_has_load_perf_global_ctrl() && 6345 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 6346 pr_err("PerfGlobCtl = 0x%016llx\n", 6347 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 6348 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 6349 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 6350 6351 pr_err("*** Control State ***\n"); 6352 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n", 6353 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control); 6354 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n", 6355 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl); 6356 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 6357 vmcs_read32(EXCEPTION_BITMAP), 6358 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 6359 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 6360 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 6361 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6362 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 6363 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 6364 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 6365 vmcs_read32(VM_EXIT_INTR_INFO), 6366 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 6367 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 6368 pr_err(" reason=%08x qualification=%016lx\n", 6369 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 6370 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 6371 vmcs_read32(IDT_VECTORING_INFO_FIELD), 6372 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 6373 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 6374 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 6375 pr_err("TSC Multiplier = 0x%016llx\n", 6376 vmcs_read64(TSC_MULTIPLIER)); 6377 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 6378 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 6379 u16 status = vmcs_read16(GUEST_INTR_STATUS); 6380 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 6381 } 6382 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 6383 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 6384 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 6385 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 6386 } 6387 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 6388 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 6389 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 6390 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 6391 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 6392 pr_err("PLE Gap=%08x Window=%08x\n", 6393 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 6394 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 6395 pr_err("Virtual processor ID = 0x%04x\n", 6396 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 6397 } 6398 6399 /* 6400 * The guest has exited. See if we can fix it or if we need userspace 6401 * assistance. 6402 */ 6403 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6404 { 6405 struct vcpu_vmx *vmx = to_vmx(vcpu); 6406 union vmx_exit_reason exit_reason = vmx->exit_reason; 6407 u32 vectoring_info = vmx->idt_vectoring_info; 6408 u16 exit_handler_index; 6409 6410 /* 6411 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 6412 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 6413 * querying dirty_bitmap, we only need to kick all vcpus out of guest 6414 * mode as if vcpus is in root mode, the PML buffer must has been 6415 * flushed already. Note, PML is never enabled in hardware while 6416 * running L2. 6417 */ 6418 if (enable_pml && !is_guest_mode(vcpu)) 6419 vmx_flush_pml_buffer(vcpu); 6420 6421 /* 6422 * KVM should never reach this point with a pending nested VM-Enter. 6423 * More specifically, short-circuiting VM-Entry to emulate L2 due to 6424 * invalid guest state should never happen as that means KVM knowingly 6425 * allowed a nested VM-Enter with an invalid vmcs12. More below. 6426 */ 6427 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 6428 return -EIO; 6429 6430 if (is_guest_mode(vcpu)) { 6431 /* 6432 * PML is never enabled when running L2, bail immediately if a 6433 * PML full exit occurs as something is horribly wrong. 6434 */ 6435 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6436 goto unexpected_vmexit; 6437 6438 /* 6439 * The host physical addresses of some pages of guest memory 6440 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6441 * Page). The CPU may write to these pages via their host 6442 * physical address while L2 is running, bypassing any 6443 * address-translation-based dirty tracking (e.g. EPT write 6444 * protection). 6445 * 6446 * Mark them dirty on every exit from L2 to prevent them from 6447 * getting out of sync with dirty tracking. 6448 */ 6449 nested_mark_vmcs12_pages_dirty(vcpu); 6450 6451 /* 6452 * Synthesize a triple fault if L2 state is invalid. In normal 6453 * operation, nested VM-Enter rejects any attempt to enter L2 6454 * with invalid state. However, those checks are skipped if 6455 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6456 * L2 state is invalid, it means either L1 modified SMRAM state 6457 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6458 * doing so is architecturally allowed in the RSM case, and is 6459 * the least awful solution for the userspace case without 6460 * risking false positives. 6461 */ 6462 if (vmx->emulation_required) { 6463 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6464 return 1; 6465 } 6466 6467 if (nested_vmx_reflect_vmexit(vcpu)) 6468 return 1; 6469 } 6470 6471 /* If guest state is invalid, start emulating. L2 is handled above. */ 6472 if (vmx->emulation_required) 6473 return handle_invalid_guest_state(vcpu); 6474 6475 if (exit_reason.failed_vmentry) { 6476 dump_vmcs(vcpu); 6477 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6478 vcpu->run->fail_entry.hardware_entry_failure_reason 6479 = exit_reason.full; 6480 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6481 return 0; 6482 } 6483 6484 if (unlikely(vmx->fail)) { 6485 dump_vmcs(vcpu); 6486 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6487 vcpu->run->fail_entry.hardware_entry_failure_reason 6488 = vmcs_read32(VM_INSTRUCTION_ERROR); 6489 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6490 return 0; 6491 } 6492 6493 /* 6494 * Note: 6495 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6496 * delivery event since it indicates guest is accessing MMIO. 6497 * The vm-exit can be triggered again after return to guest that 6498 * will cause infinite loop. 6499 */ 6500 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6501 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6502 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6503 exit_reason.basic != EXIT_REASON_PML_FULL && 6504 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6505 exit_reason.basic != EXIT_REASON_TASK_SWITCH && 6506 exit_reason.basic != EXIT_REASON_NOTIFY)) { 6507 int ndata = 3; 6508 6509 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6510 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6511 vcpu->run->internal.data[0] = vectoring_info; 6512 vcpu->run->internal.data[1] = exit_reason.full; 6513 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 6514 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6515 vcpu->run->internal.data[ndata++] = 6516 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6517 } 6518 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6519 vcpu->run->internal.ndata = ndata; 6520 return 0; 6521 } 6522 6523 if (unlikely(!enable_vnmi && 6524 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6525 if (!vmx_interrupt_blocked(vcpu)) { 6526 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6527 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6528 vcpu->arch.nmi_pending) { 6529 /* 6530 * This CPU don't support us in finding the end of an 6531 * NMI-blocked window if the guest runs with IRQs 6532 * disabled. So we pull the trigger after 1 s of 6533 * futile waiting, but inform the user about this. 6534 */ 6535 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6536 "state on VCPU %d after 1 s timeout\n", 6537 __func__, vcpu->vcpu_id); 6538 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6539 } 6540 } 6541 6542 if (exit_fastpath != EXIT_FASTPATH_NONE) 6543 return 1; 6544 6545 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6546 goto unexpected_vmexit; 6547 #ifdef CONFIG_RETPOLINE 6548 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6549 return kvm_emulate_wrmsr(vcpu); 6550 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6551 return handle_preemption_timer(vcpu); 6552 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6553 return handle_interrupt_window(vcpu); 6554 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6555 return handle_external_interrupt(vcpu); 6556 else if (exit_reason.basic == EXIT_REASON_HLT) 6557 return kvm_emulate_halt(vcpu); 6558 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6559 return handle_ept_misconfig(vcpu); 6560 #endif 6561 6562 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6563 kvm_vmx_max_exit_handlers); 6564 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6565 goto unexpected_vmexit; 6566 6567 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6568 6569 unexpected_vmexit: 6570 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6571 exit_reason.full); 6572 dump_vmcs(vcpu); 6573 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6574 vcpu->run->internal.suberror = 6575 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6576 vcpu->run->internal.ndata = 2; 6577 vcpu->run->internal.data[0] = exit_reason.full; 6578 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6579 return 0; 6580 } 6581 6582 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6583 { 6584 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6585 6586 /* 6587 * Exit to user space when bus lock detected to inform that there is 6588 * a bus lock in guest. 6589 */ 6590 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6591 if (ret > 0) 6592 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6593 6594 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6595 return 0; 6596 } 6597 return ret; 6598 } 6599 6600 /* 6601 * Software based L1D cache flush which is used when microcode providing 6602 * the cache control MSR is not loaded. 6603 * 6604 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6605 * flush it is required to read in 64 KiB because the replacement algorithm 6606 * is not exactly LRU. This could be sized at runtime via topology 6607 * information but as all relevant affected CPUs have 32KiB L1D cache size 6608 * there is no point in doing so. 6609 */ 6610 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6611 { 6612 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6613 6614 /* 6615 * This code is only executed when the flush mode is 'cond' or 6616 * 'always' 6617 */ 6618 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6619 bool flush_l1d; 6620 6621 /* 6622 * Clear the per-vcpu flush bit, it gets set again 6623 * either from vcpu_run() or from one of the unsafe 6624 * VMEXIT handlers. 6625 */ 6626 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6627 vcpu->arch.l1tf_flush_l1d = false; 6628 6629 /* 6630 * Clear the per-cpu flush bit, it gets set again from 6631 * the interrupt handlers. 6632 */ 6633 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6634 kvm_clear_cpu_l1tf_flush_l1d(); 6635 6636 if (!flush_l1d) 6637 return; 6638 } 6639 6640 vcpu->stat.l1d_flush++; 6641 6642 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6643 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6644 return; 6645 } 6646 6647 asm volatile( 6648 /* First ensure the pages are in the TLB */ 6649 "xorl %%eax, %%eax\n" 6650 ".Lpopulate_tlb:\n\t" 6651 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6652 "addl $4096, %%eax\n\t" 6653 "cmpl %%eax, %[size]\n\t" 6654 "jne .Lpopulate_tlb\n\t" 6655 "xorl %%eax, %%eax\n\t" 6656 "cpuid\n\t" 6657 /* Now fill the cache */ 6658 "xorl %%eax, %%eax\n" 6659 ".Lfill_cache:\n" 6660 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6661 "addl $64, %%eax\n\t" 6662 "cmpl %%eax, %[size]\n\t" 6663 "jne .Lfill_cache\n\t" 6664 "lfence\n" 6665 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6666 [size] "r" (size) 6667 : "eax", "ebx", "ecx", "edx"); 6668 } 6669 6670 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6671 { 6672 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6673 int tpr_threshold; 6674 6675 if (is_guest_mode(vcpu) && 6676 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6677 return; 6678 6679 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6680 if (is_guest_mode(vcpu)) 6681 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6682 else 6683 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6684 } 6685 6686 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6687 { 6688 struct vcpu_vmx *vmx = to_vmx(vcpu); 6689 u32 sec_exec_control; 6690 6691 if (!lapic_in_kernel(vcpu)) 6692 return; 6693 6694 if (!flexpriority_enabled && 6695 !cpu_has_vmx_virtualize_x2apic_mode()) 6696 return; 6697 6698 /* Postpone execution until vmcs01 is the current VMCS. */ 6699 if (is_guest_mode(vcpu)) { 6700 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6701 return; 6702 } 6703 6704 sec_exec_control = secondary_exec_controls_get(vmx); 6705 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6706 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6707 6708 switch (kvm_get_apic_mode(vcpu)) { 6709 case LAPIC_MODE_INVALID: 6710 WARN_ONCE(true, "Invalid local APIC state"); 6711 break; 6712 case LAPIC_MODE_DISABLED: 6713 break; 6714 case LAPIC_MODE_XAPIC: 6715 if (flexpriority_enabled) { 6716 sec_exec_control |= 6717 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6718 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6719 6720 /* 6721 * Flush the TLB, reloading the APIC access page will 6722 * only do so if its physical address has changed, but 6723 * the guest may have inserted a non-APIC mapping into 6724 * the TLB while the APIC access page was disabled. 6725 */ 6726 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6727 } 6728 break; 6729 case LAPIC_MODE_X2APIC: 6730 if (cpu_has_vmx_virtualize_x2apic_mode()) 6731 sec_exec_control |= 6732 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6733 break; 6734 } 6735 secondary_exec_controls_set(vmx, sec_exec_control); 6736 6737 vmx_update_msr_bitmap_x2apic(vcpu); 6738 } 6739 6740 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6741 { 6742 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT; 6743 struct kvm *kvm = vcpu->kvm; 6744 struct kvm_memslots *slots = kvm_memslots(kvm); 6745 struct kvm_memory_slot *slot; 6746 unsigned long mmu_seq; 6747 kvm_pfn_t pfn; 6748 6749 /* Defer reload until vmcs01 is the current VMCS. */ 6750 if (is_guest_mode(vcpu)) { 6751 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6752 return; 6753 } 6754 6755 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6756 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6757 return; 6758 6759 /* 6760 * Grab the memslot so that the hva lookup for the mmu_notifier retry 6761 * is guaranteed to use the same memslot as the pfn lookup, i.e. rely 6762 * on the pfn lookup's validation of the memslot to ensure a valid hva 6763 * is used for the retry check. 6764 */ 6765 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT); 6766 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 6767 return; 6768 6769 /* 6770 * Ensure that the mmu_notifier sequence count is read before KVM 6771 * retrieves the pfn from the primary MMU. Note, the memslot is 6772 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb() 6773 * in kvm_mmu_invalidate_end(). 6774 */ 6775 mmu_seq = kvm->mmu_invalidate_seq; 6776 smp_rmb(); 6777 6778 /* 6779 * No need to retry if the memslot does not exist or is invalid. KVM 6780 * controls the APIC-access page memslot, and only deletes the memslot 6781 * if APICv is permanently inhibited, i.e. the memslot won't reappear. 6782 */ 6783 pfn = gfn_to_pfn_memslot(slot, gfn); 6784 if (is_error_noslot_pfn(pfn)) 6785 return; 6786 6787 read_lock(&vcpu->kvm->mmu_lock); 6788 if (mmu_invalidate_retry_hva(kvm, mmu_seq, 6789 gfn_to_hva_memslot(slot, gfn))) { 6790 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6791 read_unlock(&vcpu->kvm->mmu_lock); 6792 goto out; 6793 } 6794 6795 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn)); 6796 read_unlock(&vcpu->kvm->mmu_lock); 6797 6798 /* 6799 * No need for a manual TLB flush at this point, KVM has already done a 6800 * flush if there were SPTEs pointing at the previous page. 6801 */ 6802 out: 6803 /* 6804 * Do not pin apic access page in memory, the MMU notifier 6805 * will call us again if it is migrated or swapped out. 6806 */ 6807 kvm_release_pfn_clean(pfn); 6808 } 6809 6810 static void vmx_hwapic_isr_update(int max_isr) 6811 { 6812 u16 status; 6813 u8 old; 6814 6815 if (max_isr == -1) 6816 max_isr = 0; 6817 6818 status = vmcs_read16(GUEST_INTR_STATUS); 6819 old = status >> 8; 6820 if (max_isr != old) { 6821 status &= 0xff; 6822 status |= max_isr << 8; 6823 vmcs_write16(GUEST_INTR_STATUS, status); 6824 } 6825 } 6826 6827 static void vmx_set_rvi(int vector) 6828 { 6829 u16 status; 6830 u8 old; 6831 6832 if (vector == -1) 6833 vector = 0; 6834 6835 status = vmcs_read16(GUEST_INTR_STATUS); 6836 old = (u8)status & 0xff; 6837 if ((u8)vector != old) { 6838 status &= ~0xff; 6839 status |= (u8)vector; 6840 vmcs_write16(GUEST_INTR_STATUS, status); 6841 } 6842 } 6843 6844 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6845 { 6846 /* 6847 * When running L2, updating RVI is only relevant when 6848 * vmcs12 virtual-interrupt-delivery enabled. 6849 * However, it can be enabled only when L1 also 6850 * intercepts external-interrupts and in that case 6851 * we should not update vmcs02 RVI but instead intercept 6852 * interrupt. Therefore, do nothing when running L2. 6853 */ 6854 if (!is_guest_mode(vcpu)) 6855 vmx_set_rvi(max_irr); 6856 } 6857 6858 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6859 { 6860 struct vcpu_vmx *vmx = to_vmx(vcpu); 6861 int max_irr; 6862 bool got_posted_interrupt; 6863 6864 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6865 return -EIO; 6866 6867 if (pi_test_on(&vmx->pi_desc)) { 6868 pi_clear_on(&vmx->pi_desc); 6869 /* 6870 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6871 * But on x86 this is just a compiler barrier anyway. 6872 */ 6873 smp_mb__after_atomic(); 6874 got_posted_interrupt = 6875 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6876 } else { 6877 max_irr = kvm_lapic_find_highest_irr(vcpu); 6878 got_posted_interrupt = false; 6879 } 6880 6881 /* 6882 * Newly recognized interrupts are injected via either virtual interrupt 6883 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6884 * disabled in two cases: 6885 * 6886 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6887 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6888 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6889 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6890 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6891 * 6892 * 2) If APICv is disabled for this vCPU, assigned devices may still 6893 * attempt to post interrupts. The posted interrupt vector will cause 6894 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6895 */ 6896 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6897 vmx_set_rvi(max_irr); 6898 else if (got_posted_interrupt) 6899 kvm_make_request(KVM_REQ_EVENT, vcpu); 6900 6901 return max_irr; 6902 } 6903 6904 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6905 { 6906 if (!kvm_vcpu_apicv_active(vcpu)) 6907 return; 6908 6909 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6910 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6911 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6912 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6913 } 6914 6915 static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu) 6916 { 6917 struct vcpu_vmx *vmx = to_vmx(vcpu); 6918 6919 pi_clear_on(&vmx->pi_desc); 6920 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6921 } 6922 6923 void vmx_do_interrupt_irqoff(unsigned long entry); 6924 void vmx_do_nmi_irqoff(void); 6925 6926 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6927 { 6928 /* 6929 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6930 * MSR value is not clobbered by the host activity before the guest 6931 * has chance to consume it. 6932 * 6933 * Do not blindly read xfd_err here, since this exception might 6934 * be caused by L1 interception on a platform which doesn't 6935 * support xfd at all. 6936 * 6937 * Do it conditionally upon guest_fpu::xfd. xfd_err matters 6938 * only when xfd contains a non-zero value. 6939 * 6940 * Queuing exception is done in vmx_handle_exit. See comment there. 6941 */ 6942 if (vcpu->arch.guest_fpu.fpstate->xfd) 6943 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 6944 } 6945 6946 static void handle_exception_irqoff(struct vcpu_vmx *vmx) 6947 { 6948 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6949 6950 /* if exit due to PF check for async PF */ 6951 if (is_page_fault(intr_info)) 6952 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6953 /* if exit due to NM, handle before interrupts are enabled */ 6954 else if (is_nm_fault(intr_info)) 6955 handle_nm_fault_irqoff(&vmx->vcpu); 6956 /* Handle machine checks before interrupts are enabled */ 6957 else if (is_machine_check(intr_info)) 6958 kvm_machine_check(); 6959 } 6960 6961 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6962 { 6963 u32 intr_info = vmx_get_intr_info(vcpu); 6964 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6965 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6966 6967 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6968 "unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6969 return; 6970 6971 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 6972 vmx_do_interrupt_irqoff(gate_offset(desc)); 6973 kvm_after_interrupt(vcpu); 6974 6975 vcpu->arch.at_instruction_boundary = true; 6976 } 6977 6978 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6979 { 6980 struct vcpu_vmx *vmx = to_vmx(vcpu); 6981 6982 if (vmx->emulation_required) 6983 return; 6984 6985 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6986 handle_external_interrupt_irqoff(vcpu); 6987 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6988 handle_exception_irqoff(vmx); 6989 } 6990 6991 /* 6992 * The kvm parameter can be NULL (module initialization, or invocation before 6993 * VM creation). Be sure to check the kvm parameter before using it. 6994 */ 6995 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6996 { 6997 switch (index) { 6998 case MSR_IA32_SMBASE: 6999 if (!IS_ENABLED(CONFIG_KVM_SMM)) 7000 return false; 7001 /* 7002 * We cannot do SMM unless we can run the guest in big 7003 * real mode. 7004 */ 7005 return enable_unrestricted_guest || emulate_invalid_guest_state; 7006 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 7007 return nested; 7008 case MSR_AMD64_VIRT_SPEC_CTRL: 7009 case MSR_AMD64_TSC_RATIO: 7010 /* This is AMD only. */ 7011 return false; 7012 default: 7013 return true; 7014 } 7015 } 7016 7017 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 7018 { 7019 u32 exit_intr_info; 7020 bool unblock_nmi; 7021 u8 vector; 7022 bool idtv_info_valid; 7023 7024 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7025 7026 if (enable_vnmi) { 7027 if (vmx->loaded_vmcs->nmi_known_unmasked) 7028 return; 7029 7030 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 7031 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 7032 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 7033 /* 7034 * SDM 3: 27.7.1.2 (September 2008) 7035 * Re-set bit "block by NMI" before VM entry if vmexit caused by 7036 * a guest IRET fault. 7037 * SDM 3: 23.2.2 (September 2008) 7038 * Bit 12 is undefined in any of the following cases: 7039 * If the VM exit sets the valid bit in the IDT-vectoring 7040 * information field. 7041 * If the VM exit is due to a double fault. 7042 */ 7043 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 7044 vector != DF_VECTOR && !idtv_info_valid) 7045 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 7046 GUEST_INTR_STATE_NMI); 7047 else 7048 vmx->loaded_vmcs->nmi_known_unmasked = 7049 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 7050 & GUEST_INTR_STATE_NMI); 7051 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 7052 vmx->loaded_vmcs->vnmi_blocked_time += 7053 ktime_to_ns(ktime_sub(ktime_get(), 7054 vmx->loaded_vmcs->entry_time)); 7055 } 7056 7057 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 7058 u32 idt_vectoring_info, 7059 int instr_len_field, 7060 int error_code_field) 7061 { 7062 u8 vector; 7063 int type; 7064 bool idtv_info_valid; 7065 7066 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7067 7068 vcpu->arch.nmi_injected = false; 7069 kvm_clear_exception_queue(vcpu); 7070 kvm_clear_interrupt_queue(vcpu); 7071 7072 if (!idtv_info_valid) 7073 return; 7074 7075 kvm_make_request(KVM_REQ_EVENT, vcpu); 7076 7077 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 7078 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 7079 7080 switch (type) { 7081 case INTR_TYPE_NMI_INTR: 7082 vcpu->arch.nmi_injected = true; 7083 /* 7084 * SDM 3: 27.7.1.2 (September 2008) 7085 * Clear bit "block by NMI" before VM entry if a NMI 7086 * delivery faulted. 7087 */ 7088 vmx_set_nmi_mask(vcpu, false); 7089 break; 7090 case INTR_TYPE_SOFT_EXCEPTION: 7091 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7092 fallthrough; 7093 case INTR_TYPE_HARD_EXCEPTION: 7094 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 7095 u32 err = vmcs_read32(error_code_field); 7096 kvm_requeue_exception_e(vcpu, vector, err); 7097 } else 7098 kvm_requeue_exception(vcpu, vector); 7099 break; 7100 case INTR_TYPE_SOFT_INTR: 7101 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7102 fallthrough; 7103 case INTR_TYPE_EXT_INTR: 7104 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 7105 break; 7106 default: 7107 break; 7108 } 7109 } 7110 7111 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 7112 { 7113 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 7114 VM_EXIT_INSTRUCTION_LEN, 7115 IDT_VECTORING_ERROR_CODE); 7116 } 7117 7118 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 7119 { 7120 __vmx_complete_interrupts(vcpu, 7121 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 7122 VM_ENTRY_INSTRUCTION_LEN, 7123 VM_ENTRY_EXCEPTION_ERROR_CODE); 7124 7125 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 7126 } 7127 7128 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 7129 { 7130 int i, nr_msrs; 7131 struct perf_guest_switch_msr *msrs; 7132 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu); 7133 7134 pmu->host_cross_mapped_mask = 0; 7135 if (pmu->pebs_enable & pmu->global_ctrl) 7136 intel_pmu_cross_mapped_check(pmu); 7137 7138 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 7139 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu); 7140 if (!msrs) 7141 return; 7142 7143 for (i = 0; i < nr_msrs; i++) 7144 if (msrs[i].host == msrs[i].guest) 7145 clear_atomic_switch_msr(vmx, msrs[i].msr); 7146 else 7147 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 7148 msrs[i].host, false); 7149 } 7150 7151 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 7152 { 7153 struct vcpu_vmx *vmx = to_vmx(vcpu); 7154 u64 tscl; 7155 u32 delta_tsc; 7156 7157 if (vmx->req_immediate_exit) { 7158 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 7159 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7160 } else if (vmx->hv_deadline_tsc != -1) { 7161 tscl = rdtsc(); 7162 if (vmx->hv_deadline_tsc > tscl) 7163 /* set_hv_timer ensures the delta fits in 32-bits */ 7164 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 7165 cpu_preemption_timer_multi); 7166 else 7167 delta_tsc = 0; 7168 7169 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 7170 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7171 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 7172 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 7173 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 7174 } 7175 } 7176 7177 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 7178 { 7179 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 7180 vmx->loaded_vmcs->host_state.rsp = host_rsp; 7181 vmcs_writel(HOST_RSP, host_rsp); 7182 } 7183 } 7184 7185 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, 7186 unsigned int flags) 7187 { 7188 u64 hostval = this_cpu_read(x86_spec_ctrl_current); 7189 7190 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) 7191 return; 7192 7193 if (flags & VMX_RUN_SAVE_SPEC_CTRL) 7194 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL); 7195 7196 /* 7197 * If the guest/host SPEC_CTRL values differ, restore the host value. 7198 * 7199 * For legacy IBRS, the IBRS bit always needs to be written after 7200 * transitioning from a less privileged predictor mode, regardless of 7201 * whether the guest/host values differ. 7202 */ 7203 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) || 7204 vmx->spec_ctrl != hostval) 7205 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval); 7206 7207 barrier_nospec(); 7208 } 7209 7210 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 7211 { 7212 switch (to_vmx(vcpu)->exit_reason.basic) { 7213 case EXIT_REASON_MSR_WRITE: 7214 return handle_fastpath_set_msr_irqoff(vcpu); 7215 case EXIT_REASON_PREEMPTION_TIMER: 7216 return handle_fastpath_preemption_timer(vcpu); 7217 default: 7218 return EXIT_FASTPATH_NONE; 7219 } 7220 } 7221 7222 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 7223 unsigned int flags) 7224 { 7225 struct vcpu_vmx *vmx = to_vmx(vcpu); 7226 7227 guest_state_enter_irqoff(); 7228 7229 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 7230 if (static_branch_unlikely(&vmx_l1d_should_flush)) 7231 vmx_l1d_flush(vcpu); 7232 else if (static_branch_unlikely(&mds_user_clear)) 7233 mds_clear_cpu_buffers(); 7234 else if (static_branch_unlikely(&mmio_stale_data_clear) && 7235 kvm_arch_has_assigned_device(vcpu->kvm)) 7236 mds_clear_cpu_buffers(); 7237 7238 vmx_disable_fb_clear(vmx); 7239 7240 if (vcpu->arch.cr2 != native_read_cr2()) 7241 native_write_cr2(vcpu->arch.cr2); 7242 7243 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 7244 flags); 7245 7246 vcpu->arch.cr2 = native_read_cr2(); 7247 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 7248 7249 vmx->idt_vectoring_info = 0; 7250 7251 vmx_enable_fb_clear(vmx); 7252 7253 if (unlikely(vmx->fail)) { 7254 vmx->exit_reason.full = 0xdead; 7255 goto out; 7256 } 7257 7258 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 7259 if (likely(!vmx->exit_reason.failed_vmentry)) 7260 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 7261 7262 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI && 7263 is_nmi(vmx_get_intr_info(vcpu))) { 7264 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 7265 vmx_do_nmi_irqoff(); 7266 kvm_after_interrupt(vcpu); 7267 } 7268 7269 out: 7270 guest_state_exit_irqoff(); 7271 } 7272 7273 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 7274 { 7275 struct vcpu_vmx *vmx = to_vmx(vcpu); 7276 unsigned long cr3, cr4; 7277 7278 /* Record the guest's net vcpu time for enforced NMI injections. */ 7279 if (unlikely(!enable_vnmi && 7280 vmx->loaded_vmcs->soft_vnmi_blocked)) 7281 vmx->loaded_vmcs->entry_time = ktime_get(); 7282 7283 /* 7284 * Don't enter VMX if guest state is invalid, let the exit handler 7285 * start emulation until we arrive back to a valid state. Synthesize a 7286 * consistency check VM-Exit due to invalid guest state and bail. 7287 */ 7288 if (unlikely(vmx->emulation_required)) { 7289 vmx->fail = 0; 7290 7291 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 7292 vmx->exit_reason.failed_vmentry = 1; 7293 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 7294 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 7295 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 7296 vmx->exit_intr_info = 0; 7297 return EXIT_FASTPATH_NONE; 7298 } 7299 7300 trace_kvm_entry(vcpu); 7301 7302 if (vmx->ple_window_dirty) { 7303 vmx->ple_window_dirty = false; 7304 vmcs_write32(PLE_WINDOW, vmx->ple_window); 7305 } 7306 7307 /* 7308 * We did this in prepare_switch_to_guest, because it needs to 7309 * be within srcu_read_lock. 7310 */ 7311 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 7312 7313 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 7314 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 7315 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 7316 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 7317 vcpu->arch.regs_dirty = 0; 7318 7319 /* 7320 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately 7321 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time 7322 * it switches back to the current->mm, which can occur in KVM context 7323 * when switching to a temporary mm to patch kernel code, e.g. if KVM 7324 * toggles a static key while handling a VM-Exit. 7325 */ 7326 cr3 = __get_current_cr3_fast(); 7327 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 7328 vmcs_writel(HOST_CR3, cr3); 7329 vmx->loaded_vmcs->host_state.cr3 = cr3; 7330 } 7331 7332 cr4 = cr4_read_shadow(); 7333 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 7334 vmcs_writel(HOST_CR4, cr4); 7335 vmx->loaded_vmcs->host_state.cr4 = cr4; 7336 } 7337 7338 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 7339 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 7340 set_debugreg(vcpu->arch.dr6, 6); 7341 7342 /* When single-stepping over STI and MOV SS, we must clear the 7343 * corresponding interruptibility bits in the guest state. Otherwise 7344 * vmentry fails as it then expects bit 14 (BS) in pending debug 7345 * exceptions being set, but that's not correct for the guest debugging 7346 * case. */ 7347 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7348 vmx_set_interrupt_shadow(vcpu, 0); 7349 7350 kvm_load_guest_xsave_state(vcpu); 7351 7352 pt_guest_enter(vmx); 7353 7354 atomic_switch_perf_msrs(vmx); 7355 if (intel_pmu_lbr_is_enabled(vcpu)) 7356 vmx_passthrough_lbr_msrs(vcpu); 7357 7358 if (enable_preemption_timer) 7359 vmx_update_hv_timer(vcpu); 7360 7361 kvm_wait_lapic_expire(vcpu); 7362 7363 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 7364 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx)); 7365 7366 /* All fields are clean at this point */ 7367 if (kvm_is_using_evmcs()) { 7368 current_evmcs->hv_clean_fields |= 7369 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 7370 7371 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 7372 } 7373 7374 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 7375 if (vmx->host_debugctlmsr) 7376 update_debugctlmsr(vmx->host_debugctlmsr); 7377 7378 #ifndef CONFIG_X86_64 7379 /* 7380 * The sysexit path does not restore ds/es, so we must set them to 7381 * a reasonable value ourselves. 7382 * 7383 * We can't defer this to vmx_prepare_switch_to_host() since that 7384 * function may be executed in interrupt context, which saves and 7385 * restore segments around it, nullifying its effect. 7386 */ 7387 loadsegment(ds, __USER_DS); 7388 loadsegment(es, __USER_DS); 7389 #endif 7390 7391 pt_guest_exit(vmx); 7392 7393 kvm_load_host_xsave_state(vcpu); 7394 7395 if (is_guest_mode(vcpu)) { 7396 /* 7397 * Track VMLAUNCH/VMRESUME that have made past guest state 7398 * checking. 7399 */ 7400 if (vmx->nested.nested_run_pending && 7401 !vmx->exit_reason.failed_vmentry) 7402 ++vcpu->stat.nested_run; 7403 7404 vmx->nested.nested_run_pending = 0; 7405 } 7406 7407 if (unlikely(vmx->fail)) 7408 return EXIT_FASTPATH_NONE; 7409 7410 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 7411 kvm_machine_check(); 7412 7413 trace_kvm_exit(vcpu, KVM_ISA_VMX); 7414 7415 if (unlikely(vmx->exit_reason.failed_vmentry)) 7416 return EXIT_FASTPATH_NONE; 7417 7418 vmx->loaded_vmcs->launched = 1; 7419 7420 vmx_recover_nmi_blocking(vmx); 7421 vmx_complete_interrupts(vmx); 7422 7423 if (is_guest_mode(vcpu)) 7424 return EXIT_FASTPATH_NONE; 7425 7426 return vmx_exit_handlers_fastpath(vcpu); 7427 } 7428 7429 static void vmx_vcpu_free(struct kvm_vcpu *vcpu) 7430 { 7431 struct vcpu_vmx *vmx = to_vmx(vcpu); 7432 7433 if (enable_pml) 7434 vmx_destroy_pml_buffer(vmx); 7435 free_vpid(vmx->vpid); 7436 nested_vmx_free_vcpu(vcpu); 7437 free_loaded_vmcs(vmx->loaded_vmcs); 7438 } 7439 7440 static int vmx_vcpu_create(struct kvm_vcpu *vcpu) 7441 { 7442 struct vmx_uret_msr *tsx_ctrl; 7443 struct vcpu_vmx *vmx; 7444 int i, err; 7445 7446 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 7447 vmx = to_vmx(vcpu); 7448 7449 INIT_LIST_HEAD(&vmx->pi_wakeup_list); 7450 7451 err = -ENOMEM; 7452 7453 vmx->vpid = allocate_vpid(); 7454 7455 /* 7456 * If PML is turned on, failure on enabling PML just results in failure 7457 * of creating the vcpu, therefore we can simplify PML logic (by 7458 * avoiding dealing with cases, such as enabling PML partially on vcpus 7459 * for the guest), etc. 7460 */ 7461 if (enable_pml) { 7462 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7463 if (!vmx->pml_pg) 7464 goto free_vpid; 7465 } 7466 7467 for (i = 0; i < kvm_nr_uret_msrs; ++i) 7468 vmx->guest_uret_msrs[i].mask = -1ull; 7469 if (boot_cpu_has(X86_FEATURE_RTM)) { 7470 /* 7471 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 7472 * Keep the host value unchanged to avoid changing CPUID bits 7473 * under the host kernel's feet. 7474 */ 7475 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7476 if (tsx_ctrl) 7477 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 7478 } 7479 7480 err = alloc_loaded_vmcs(&vmx->vmcs01); 7481 if (err < 0) 7482 goto free_pml; 7483 7484 /* 7485 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 7486 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 7487 * feature only for vmcs01, KVM currently isn't equipped to realize any 7488 * performance benefits from enabling it for vmcs02. 7489 */ 7490 if (kvm_is_using_evmcs() && 7491 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 7492 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 7493 7494 evmcs->hv_enlightenments_control.msr_bitmap = 1; 7495 } 7496 7497 /* The MSR bitmap starts with all ones */ 7498 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7499 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7500 7501 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 7502 #ifdef CONFIG_X86_64 7503 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 7504 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 7505 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 7506 #endif 7507 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 7508 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 7509 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 7510 if (kvm_cstate_in_guest(vcpu->kvm)) { 7511 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 7512 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 7513 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 7514 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 7515 } 7516 7517 vmx->loaded_vmcs = &vmx->vmcs01; 7518 7519 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7520 err = kvm_alloc_apic_access_page(vcpu->kvm); 7521 if (err) 7522 goto free_vmcs; 7523 } 7524 7525 if (enable_ept && !enable_unrestricted_guest) { 7526 err = init_rmode_identity_map(vcpu->kvm); 7527 if (err) 7528 goto free_vmcs; 7529 } 7530 7531 if (vmx_can_use_ipiv(vcpu)) 7532 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id], 7533 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID); 7534 7535 return 0; 7536 7537 free_vmcs: 7538 free_loaded_vmcs(vmx->loaded_vmcs); 7539 free_pml: 7540 vmx_destroy_pml_buffer(vmx); 7541 free_vpid: 7542 free_vpid(vmx->vpid); 7543 return err; 7544 } 7545 7546 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7547 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7548 7549 static int vmx_vm_init(struct kvm *kvm) 7550 { 7551 if (!ple_gap) 7552 kvm->arch.pause_in_guest = true; 7553 7554 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7555 switch (l1tf_mitigation) { 7556 case L1TF_MITIGATION_OFF: 7557 case L1TF_MITIGATION_FLUSH_NOWARN: 7558 /* 'I explicitly don't care' is set */ 7559 break; 7560 case L1TF_MITIGATION_FLUSH: 7561 case L1TF_MITIGATION_FLUSH_NOSMT: 7562 case L1TF_MITIGATION_FULL: 7563 /* 7564 * Warn upon starting the first VM in a potentially 7565 * insecure environment. 7566 */ 7567 if (sched_smt_active()) 7568 pr_warn_once(L1TF_MSG_SMT); 7569 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7570 pr_warn_once(L1TF_MSG_L1D); 7571 break; 7572 case L1TF_MITIGATION_FULL_FORCE: 7573 /* Flush is enforced */ 7574 break; 7575 } 7576 } 7577 return 0; 7578 } 7579 7580 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7581 { 7582 u8 cache; 7583 7584 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 7585 * memory aliases with conflicting memory types and sometimes MCEs. 7586 * We have to be careful as to what are honored and when. 7587 * 7588 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 7589 * UC. The effective memory type is UC or WC depending on guest PAT. 7590 * This was historically the source of MCEs and we want to be 7591 * conservative. 7592 * 7593 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7594 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7595 * EPT memory type is set to WB. The effective memory type is forced 7596 * WB. 7597 * 7598 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7599 * EPT memory type is used to emulate guest CD/MTRR. 7600 */ 7601 7602 if (is_mmio) 7603 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7604 7605 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) 7606 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7607 7608 if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) { 7609 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7610 cache = MTRR_TYPE_WRBACK; 7611 else 7612 cache = MTRR_TYPE_UNCACHABLE; 7613 7614 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7615 } 7616 7617 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT; 7618 } 7619 7620 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7621 { 7622 /* 7623 * These bits in the secondary execution controls field 7624 * are dynamic, the others are mostly based on the hypervisor 7625 * architecture and the guest's CPUID. Do not touch the 7626 * dynamic bits. 7627 */ 7628 u32 mask = 7629 SECONDARY_EXEC_SHADOW_VMCS | 7630 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7631 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7632 SECONDARY_EXEC_DESC; 7633 7634 u32 cur_ctl = secondary_exec_controls_get(vmx); 7635 7636 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7637 } 7638 7639 /* 7640 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7641 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7642 */ 7643 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7644 { 7645 struct vcpu_vmx *vmx = to_vmx(vcpu); 7646 struct kvm_cpuid_entry2 *entry; 7647 7648 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7649 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7650 7651 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7652 if (entry && (entry->_reg & (_cpuid_mask))) \ 7653 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7654 } while (0) 7655 7656 entry = kvm_find_cpuid_entry(vcpu, 0x1); 7657 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7658 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7659 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7660 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7661 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7662 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7663 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7664 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7665 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7666 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7667 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7668 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7669 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7670 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7671 7672 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0); 7673 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7674 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7675 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7676 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7677 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7678 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7679 7680 #undef cr4_fixed1_update 7681 } 7682 7683 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7684 { 7685 struct vcpu_vmx *vmx = to_vmx(vcpu); 7686 struct kvm_cpuid_entry2 *best = NULL; 7687 int i; 7688 7689 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7690 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i); 7691 if (!best) 7692 return; 7693 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7694 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7695 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7696 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7697 } 7698 7699 /* Get the number of configurable Address Ranges for filtering */ 7700 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7701 PT_CAP_num_address_ranges); 7702 7703 /* Initialize and clear the no dependency bits */ 7704 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7705 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7706 RTIT_CTL_BRANCH_EN); 7707 7708 /* 7709 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7710 * will inject an #GP 7711 */ 7712 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7713 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7714 7715 /* 7716 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7717 * PSBFreq can be set 7718 */ 7719 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7720 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7721 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7722 7723 /* 7724 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7725 */ 7726 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7727 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7728 RTIT_CTL_MTC_RANGE); 7729 7730 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7731 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7732 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7733 RTIT_CTL_PTW_EN); 7734 7735 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7736 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7737 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7738 7739 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7740 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7741 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7742 7743 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7744 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7745 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7746 7747 /* unmask address range configure area */ 7748 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7749 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7750 } 7751 7752 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7753 { 7754 struct vcpu_vmx *vmx = to_vmx(vcpu); 7755 7756 /* 7757 * XSAVES is effectively enabled if and only if XSAVE is also exposed 7758 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be 7759 * set if and only if XSAVE is supported. 7760 */ 7761 if (boot_cpu_has(X86_FEATURE_XSAVE) && 7762 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE)) 7763 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES); 7764 7765 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX); 7766 7767 vmx_setup_uret_msrs(vmx); 7768 7769 if (cpu_has_secondary_exec_ctrls()) 7770 vmcs_set_secondary_exec_control(vmx, 7771 vmx_secondary_exec_control(vmx)); 7772 7773 if (guest_can_use(vcpu, X86_FEATURE_VMX)) 7774 vmx->msr_ia32_feature_control_valid_bits |= 7775 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7776 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7777 else 7778 vmx->msr_ia32_feature_control_valid_bits &= 7779 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7780 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7781 7782 if (guest_can_use(vcpu, X86_FEATURE_VMX)) 7783 nested_vmx_cr_fixed1_bits_update(vcpu); 7784 7785 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7786 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7787 update_intel_pt_cfg(vcpu); 7788 7789 if (boot_cpu_has(X86_FEATURE_RTM)) { 7790 struct vmx_uret_msr *msr; 7791 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7792 if (msr) { 7793 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7794 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7795 } 7796 } 7797 7798 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 7799 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 7800 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); 7801 7802 if (boot_cpu_has(X86_FEATURE_IBPB)) 7803 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, 7804 !guest_has_pred_cmd_msr(vcpu)); 7805 7806 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 7807 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, 7808 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 7809 7810 set_cr4_guest_host_mask(vmx); 7811 7812 vmx_write_encls_bitmap(vcpu, NULL); 7813 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7814 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7815 else 7816 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7817 7818 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7819 vmx->msr_ia32_feature_control_valid_bits |= 7820 FEAT_CTL_SGX_LC_ENABLED; 7821 else 7822 vmx->msr_ia32_feature_control_valid_bits &= 7823 ~FEAT_CTL_SGX_LC_ENABLED; 7824 7825 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7826 vmx_update_exception_bitmap(vcpu); 7827 } 7828 7829 static u64 vmx_get_perf_capabilities(void) 7830 { 7831 u64 perf_cap = PMU_CAP_FW_WRITES; 7832 struct x86_pmu_lbr lbr; 7833 u64 host_perf_cap = 0; 7834 7835 if (!enable_pmu) 7836 return 0; 7837 7838 if (boot_cpu_has(X86_FEATURE_PDCM)) 7839 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap); 7840 7841 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) { 7842 x86_perf_get_lbr(&lbr); 7843 if (lbr.nr) 7844 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT; 7845 } 7846 7847 if (vmx_pebs_supported()) { 7848 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK; 7849 if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4) 7850 perf_cap &= ~PERF_CAP_PEBS_BASELINE; 7851 } 7852 7853 return perf_cap; 7854 } 7855 7856 static __init void vmx_set_cpu_caps(void) 7857 { 7858 kvm_set_cpu_caps(); 7859 7860 /* CPUID 0x1 */ 7861 if (nested) 7862 kvm_cpu_cap_set(X86_FEATURE_VMX); 7863 7864 /* CPUID 0x7 */ 7865 if (kvm_mpx_supported()) 7866 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7867 if (!cpu_has_vmx_invpcid()) 7868 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7869 if (vmx_pt_mode_is_host_guest()) 7870 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7871 if (vmx_pebs_supported()) { 7872 kvm_cpu_cap_check_and_set(X86_FEATURE_DS); 7873 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64); 7874 } 7875 7876 if (!enable_pmu) 7877 kvm_cpu_cap_clear(X86_FEATURE_PDCM); 7878 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities(); 7879 7880 if (!enable_sgx) { 7881 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7882 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7883 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7884 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7885 } 7886 7887 if (vmx_umip_emulated()) 7888 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7889 7890 /* CPUID 0xD.1 */ 7891 kvm_caps.supported_xss = 0; 7892 if (!cpu_has_vmx_xsaves()) 7893 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7894 7895 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7896 if (!cpu_has_vmx_rdtscp()) { 7897 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7898 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7899 } 7900 7901 if (cpu_has_vmx_waitpkg()) 7902 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7903 } 7904 7905 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7906 { 7907 to_vmx(vcpu)->req_immediate_exit = true; 7908 } 7909 7910 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7911 struct x86_instruction_info *info) 7912 { 7913 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7914 unsigned short port; 7915 bool intercept; 7916 int size; 7917 7918 if (info->intercept == x86_intercept_in || 7919 info->intercept == x86_intercept_ins) { 7920 port = info->src_val; 7921 size = info->dst_bytes; 7922 } else { 7923 port = info->dst_val; 7924 size = info->src_bytes; 7925 } 7926 7927 /* 7928 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7929 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7930 * control. 7931 * 7932 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7933 */ 7934 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7935 intercept = nested_cpu_has(vmcs12, 7936 CPU_BASED_UNCOND_IO_EXITING); 7937 else 7938 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7939 7940 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7941 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7942 } 7943 7944 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7945 struct x86_instruction_info *info, 7946 enum x86_intercept_stage stage, 7947 struct x86_exception *exception) 7948 { 7949 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7950 7951 switch (info->intercept) { 7952 /* 7953 * RDPID causes #UD if disabled through secondary execution controls. 7954 * Because it is marked as EmulateOnUD, we need to intercept it here. 7955 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7956 */ 7957 case x86_intercept_rdpid: 7958 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7959 exception->vector = UD_VECTOR; 7960 exception->error_code_valid = false; 7961 return X86EMUL_PROPAGATE_FAULT; 7962 } 7963 break; 7964 7965 case x86_intercept_in: 7966 case x86_intercept_ins: 7967 case x86_intercept_out: 7968 case x86_intercept_outs: 7969 return vmx_check_intercept_io(vcpu, info); 7970 7971 case x86_intercept_lgdt: 7972 case x86_intercept_lidt: 7973 case x86_intercept_lldt: 7974 case x86_intercept_ltr: 7975 case x86_intercept_sgdt: 7976 case x86_intercept_sidt: 7977 case x86_intercept_sldt: 7978 case x86_intercept_str: 7979 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7980 return X86EMUL_CONTINUE; 7981 7982 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7983 break; 7984 7985 case x86_intercept_pause: 7986 /* 7987 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides 7988 * with vanilla NOPs in the emulator. Apply the interception 7989 * check only to actual PAUSE instructions. Don't check 7990 * PAUSE-loop-exiting, software can't expect a given PAUSE to 7991 * exit, i.e. KVM is within its rights to allow L2 to execute 7992 * the PAUSE. 7993 */ 7994 if ((info->rep_prefix != REPE_PREFIX) || 7995 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING)) 7996 return X86EMUL_CONTINUE; 7997 7998 break; 7999 8000 /* TODO: check more intercepts... */ 8001 default: 8002 break; 8003 } 8004 8005 return X86EMUL_UNHANDLEABLE; 8006 } 8007 8008 #ifdef CONFIG_X86_64 8009 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 8010 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 8011 u64 divisor, u64 *result) 8012 { 8013 u64 low = a << shift, high = a >> (64 - shift); 8014 8015 /* To avoid the overflow on divq */ 8016 if (high >= divisor) 8017 return 1; 8018 8019 /* Low hold the result, high hold rem which is discarded */ 8020 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 8021 "rm" (divisor), "0" (low), "1" (high)); 8022 *result = low; 8023 8024 return 0; 8025 } 8026 8027 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 8028 bool *expired) 8029 { 8030 struct vcpu_vmx *vmx; 8031 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 8032 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 8033 8034 vmx = to_vmx(vcpu); 8035 tscl = rdtsc(); 8036 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 8037 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 8038 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 8039 ktimer->timer_advance_ns); 8040 8041 if (delta_tsc > lapic_timer_advance_cycles) 8042 delta_tsc -= lapic_timer_advance_cycles; 8043 else 8044 delta_tsc = 0; 8045 8046 /* Convert to host delta tsc if tsc scaling is enabled */ 8047 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio && 8048 delta_tsc && u64_shl_div_u64(delta_tsc, 8049 kvm_caps.tsc_scaling_ratio_frac_bits, 8050 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 8051 return -ERANGE; 8052 8053 /* 8054 * If the delta tsc can't fit in the 32 bit after the multi shift, 8055 * we can't use the preemption timer. 8056 * It's possible that it fits on later vmentries, but checking 8057 * on every vmentry is costly so we just use an hrtimer. 8058 */ 8059 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 8060 return -ERANGE; 8061 8062 vmx->hv_deadline_tsc = tscl + delta_tsc; 8063 *expired = !delta_tsc; 8064 return 0; 8065 } 8066 8067 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 8068 { 8069 to_vmx(vcpu)->hv_deadline_tsc = -1; 8070 } 8071 #endif 8072 8073 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 8074 { 8075 if (!kvm_pause_in_guest(vcpu->kvm)) 8076 shrink_ple_window(vcpu); 8077 } 8078 8079 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 8080 { 8081 struct vcpu_vmx *vmx = to_vmx(vcpu); 8082 8083 if (WARN_ON_ONCE(!enable_pml)) 8084 return; 8085 8086 if (is_guest_mode(vcpu)) { 8087 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 8088 return; 8089 } 8090 8091 /* 8092 * Note, nr_memslots_dirty_logging can be changed concurrent with this 8093 * code, but in that case another update request will be made and so 8094 * the guest will never run with a stale PML value. 8095 */ 8096 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 8097 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8098 else 8099 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8100 } 8101 8102 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 8103 { 8104 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 8105 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 8106 FEAT_CTL_LMCE_ENABLED; 8107 else 8108 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 8109 ~FEAT_CTL_LMCE_ENABLED; 8110 } 8111 8112 #ifdef CONFIG_KVM_SMM 8113 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 8114 { 8115 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 8116 if (to_vmx(vcpu)->nested.nested_run_pending) 8117 return -EBUSY; 8118 return !is_smm(vcpu); 8119 } 8120 8121 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 8122 { 8123 struct vcpu_vmx *vmx = to_vmx(vcpu); 8124 8125 /* 8126 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on 8127 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong 8128 * SMI and RSM only modify state that is saved and restored via SMRAM. 8129 * E.g. most MSRs are left untouched, but many are modified by VM-Exit 8130 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM. 8131 */ 8132 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 8133 if (vmx->nested.smm.guest_mode) 8134 nested_vmx_vmexit(vcpu, -1, 0, 0); 8135 8136 vmx->nested.smm.vmxon = vmx->nested.vmxon; 8137 vmx->nested.vmxon = false; 8138 vmx_clear_hlt(vcpu); 8139 return 0; 8140 } 8141 8142 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 8143 { 8144 struct vcpu_vmx *vmx = to_vmx(vcpu); 8145 int ret; 8146 8147 if (vmx->nested.smm.vmxon) { 8148 vmx->nested.vmxon = true; 8149 vmx->nested.smm.vmxon = false; 8150 } 8151 8152 if (vmx->nested.smm.guest_mode) { 8153 ret = nested_vmx_enter_non_root_mode(vcpu, false); 8154 if (ret) 8155 return ret; 8156 8157 vmx->nested.nested_run_pending = 1; 8158 vmx->nested.smm.guest_mode = false; 8159 } 8160 return 0; 8161 } 8162 8163 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 8164 { 8165 /* RSM will cause a vmexit anyway. */ 8166 } 8167 #endif 8168 8169 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 8170 { 8171 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 8172 } 8173 8174 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 8175 { 8176 if (is_guest_mode(vcpu)) { 8177 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 8178 8179 if (hrtimer_try_to_cancel(timer) == 1) 8180 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 8181 } 8182 } 8183 8184 static void vmx_hardware_unsetup(void) 8185 { 8186 kvm_set_posted_intr_wakeup_handler(NULL); 8187 8188 if (nested) 8189 nested_vmx_hardware_unsetup(); 8190 8191 free_kvm_area(); 8192 } 8193 8194 #define VMX_REQUIRED_APICV_INHIBITS \ 8195 ( \ 8196 BIT(APICV_INHIBIT_REASON_DISABLE)| \ 8197 BIT(APICV_INHIBIT_REASON_ABSENT) | \ 8198 BIT(APICV_INHIBIT_REASON_HYPERV) | \ 8199 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \ 8200 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \ 8201 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \ 8202 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \ 8203 ) 8204 8205 static void vmx_vm_destroy(struct kvm *kvm) 8206 { 8207 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 8208 8209 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm)); 8210 } 8211 8212 static struct kvm_x86_ops vmx_x86_ops __initdata = { 8213 .name = KBUILD_MODNAME, 8214 8215 .check_processor_compatibility = vmx_check_processor_compat, 8216 8217 .hardware_unsetup = vmx_hardware_unsetup, 8218 8219 .hardware_enable = vmx_hardware_enable, 8220 .hardware_disable = vmx_hardware_disable, 8221 .has_emulated_msr = vmx_has_emulated_msr, 8222 8223 .vm_size = sizeof(struct kvm_vmx), 8224 .vm_init = vmx_vm_init, 8225 .vm_destroy = vmx_vm_destroy, 8226 8227 .vcpu_precreate = vmx_vcpu_precreate, 8228 .vcpu_create = vmx_vcpu_create, 8229 .vcpu_free = vmx_vcpu_free, 8230 .vcpu_reset = vmx_vcpu_reset, 8231 8232 .prepare_switch_to_guest = vmx_prepare_switch_to_guest, 8233 .vcpu_load = vmx_vcpu_load, 8234 .vcpu_put = vmx_vcpu_put, 8235 8236 .update_exception_bitmap = vmx_update_exception_bitmap, 8237 .get_msr_feature = vmx_get_msr_feature, 8238 .get_msr = vmx_get_msr, 8239 .set_msr = vmx_set_msr, 8240 .get_segment_base = vmx_get_segment_base, 8241 .get_segment = vmx_get_segment, 8242 .set_segment = vmx_set_segment, 8243 .get_cpl = vmx_get_cpl, 8244 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 8245 .is_valid_cr0 = vmx_is_valid_cr0, 8246 .set_cr0 = vmx_set_cr0, 8247 .is_valid_cr4 = vmx_is_valid_cr4, 8248 .set_cr4 = vmx_set_cr4, 8249 .set_efer = vmx_set_efer, 8250 .get_idt = vmx_get_idt, 8251 .set_idt = vmx_set_idt, 8252 .get_gdt = vmx_get_gdt, 8253 .set_gdt = vmx_set_gdt, 8254 .set_dr7 = vmx_set_dr7, 8255 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 8256 .cache_reg = vmx_cache_reg, 8257 .get_rflags = vmx_get_rflags, 8258 .set_rflags = vmx_set_rflags, 8259 .get_if_flag = vmx_get_if_flag, 8260 8261 .flush_tlb_all = vmx_flush_tlb_all, 8262 .flush_tlb_current = vmx_flush_tlb_current, 8263 .flush_tlb_gva = vmx_flush_tlb_gva, 8264 .flush_tlb_guest = vmx_flush_tlb_guest, 8265 8266 .vcpu_pre_run = vmx_vcpu_pre_run, 8267 .vcpu_run = vmx_vcpu_run, 8268 .handle_exit = vmx_handle_exit, 8269 .skip_emulated_instruction = vmx_skip_emulated_instruction, 8270 .update_emulated_instruction = vmx_update_emulated_instruction, 8271 .set_interrupt_shadow = vmx_set_interrupt_shadow, 8272 .get_interrupt_shadow = vmx_get_interrupt_shadow, 8273 .patch_hypercall = vmx_patch_hypercall, 8274 .inject_irq = vmx_inject_irq, 8275 .inject_nmi = vmx_inject_nmi, 8276 .inject_exception = vmx_inject_exception, 8277 .cancel_injection = vmx_cancel_injection, 8278 .interrupt_allowed = vmx_interrupt_allowed, 8279 .nmi_allowed = vmx_nmi_allowed, 8280 .get_nmi_mask = vmx_get_nmi_mask, 8281 .set_nmi_mask = vmx_set_nmi_mask, 8282 .enable_nmi_window = vmx_enable_nmi_window, 8283 .enable_irq_window = vmx_enable_irq_window, 8284 .update_cr8_intercept = vmx_update_cr8_intercept, 8285 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 8286 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 8287 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 8288 .load_eoi_exitmap = vmx_load_eoi_exitmap, 8289 .apicv_pre_state_restore = vmx_apicv_pre_state_restore, 8290 .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS, 8291 .hwapic_irr_update = vmx_hwapic_irr_update, 8292 .hwapic_isr_update = vmx_hwapic_isr_update, 8293 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 8294 .sync_pir_to_irr = vmx_sync_pir_to_irr, 8295 .deliver_interrupt = vmx_deliver_interrupt, 8296 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 8297 8298 .set_tss_addr = vmx_set_tss_addr, 8299 .set_identity_map_addr = vmx_set_identity_map_addr, 8300 .get_mt_mask = vmx_get_mt_mask, 8301 8302 .get_exit_info = vmx_get_exit_info, 8303 8304 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 8305 8306 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 8307 8308 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 8309 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 8310 .write_tsc_offset = vmx_write_tsc_offset, 8311 .write_tsc_multiplier = vmx_write_tsc_multiplier, 8312 8313 .load_mmu_pgd = vmx_load_mmu_pgd, 8314 8315 .check_intercept = vmx_check_intercept, 8316 .handle_exit_irqoff = vmx_handle_exit_irqoff, 8317 8318 .request_immediate_exit = vmx_request_immediate_exit, 8319 8320 .sched_in = vmx_sched_in, 8321 8322 .cpu_dirty_log_size = PML_ENTITY_NUM, 8323 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 8324 8325 .nested_ops = &vmx_nested_ops, 8326 8327 .pi_update_irte = vmx_pi_update_irte, 8328 .pi_start_assignment = vmx_pi_start_assignment, 8329 8330 #ifdef CONFIG_X86_64 8331 .set_hv_timer = vmx_set_hv_timer, 8332 .cancel_hv_timer = vmx_cancel_hv_timer, 8333 #endif 8334 8335 .setup_mce = vmx_setup_mce, 8336 8337 #ifdef CONFIG_KVM_SMM 8338 .smi_allowed = vmx_smi_allowed, 8339 .enter_smm = vmx_enter_smm, 8340 .leave_smm = vmx_leave_smm, 8341 .enable_smi_window = vmx_enable_smi_window, 8342 #endif 8343 8344 .can_emulate_instruction = vmx_can_emulate_instruction, 8345 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 8346 .migrate_timers = vmx_migrate_timers, 8347 8348 .msr_filter_changed = vmx_msr_filter_changed, 8349 .complete_emulated_msr = kvm_complete_insn_gp, 8350 8351 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 8352 }; 8353 8354 static unsigned int vmx_handle_intel_pt_intr(void) 8355 { 8356 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 8357 8358 /* '0' on failure so that the !PT case can use a RET0 static call. */ 8359 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu)) 8360 return 0; 8361 8362 kvm_make_request(KVM_REQ_PMI, vcpu); 8363 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 8364 (unsigned long *)&vcpu->arch.pmu.global_status); 8365 return 1; 8366 } 8367 8368 static __init void vmx_setup_user_return_msrs(void) 8369 { 8370 8371 /* 8372 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 8373 * will emulate SYSCALL in legacy mode if the vendor string in guest 8374 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 8375 * support this emulation, MSR_STAR is included in the list for i386, 8376 * but is never loaded into hardware. MSR_CSTAR is also never loaded 8377 * into hardware and is here purely for emulation purposes. 8378 */ 8379 const u32 vmx_uret_msrs_list[] = { 8380 #ifdef CONFIG_X86_64 8381 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 8382 #endif 8383 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 8384 MSR_IA32_TSX_CTRL, 8385 }; 8386 int i; 8387 8388 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 8389 8390 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 8391 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 8392 } 8393 8394 static void __init vmx_setup_me_spte_mask(void) 8395 { 8396 u64 me_mask = 0; 8397 8398 /* 8399 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use 8400 * the former to avoid exposing shadow_phys_bits. 8401 * 8402 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to 8403 * shadow_phys_bits. On MKTME and/or TDX capable systems, 8404 * boot_cpu_data.x86_phys_bits holds the actual physical address 8405 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR 8406 * reported by CPUID. Those bits between are KeyID bits. 8407 */ 8408 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits()) 8409 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits, 8410 kvm_get_shadow_phys_bits() - 1); 8411 /* 8412 * Unlike SME, host kernel doesn't support setting up any 8413 * MKTME KeyID on Intel platforms. No memory encryption 8414 * bits should be included into the SPTE. 8415 */ 8416 kvm_mmu_set_me_spte_mask(0, me_mask); 8417 } 8418 8419 static struct kvm_x86_init_ops vmx_init_ops __initdata; 8420 8421 static __init int hardware_setup(void) 8422 { 8423 unsigned long host_bndcfgs; 8424 struct desc_ptr dt; 8425 int r; 8426 8427 store_idt(&dt); 8428 host_idt_base = dt.address; 8429 8430 vmx_setup_user_return_msrs(); 8431 8432 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 8433 return -EIO; 8434 8435 if (cpu_has_perf_global_ctrl_bug()) 8436 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 8437 "does not work properly. Using workaround\n"); 8438 8439 if (boot_cpu_has(X86_FEATURE_NX)) 8440 kvm_enable_efer_bits(EFER_NX); 8441 8442 if (boot_cpu_has(X86_FEATURE_MPX)) { 8443 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 8444 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost"); 8445 } 8446 8447 if (!cpu_has_vmx_mpx()) 8448 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 8449 XFEATURE_MASK_BNDCSR); 8450 8451 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 8452 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 8453 enable_vpid = 0; 8454 8455 if (!cpu_has_vmx_ept() || 8456 !cpu_has_vmx_ept_4levels() || 8457 !cpu_has_vmx_ept_mt_wb() || 8458 !cpu_has_vmx_invept_global()) 8459 enable_ept = 0; 8460 8461 /* NX support is required for shadow paging. */ 8462 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 8463 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 8464 return -EOPNOTSUPP; 8465 } 8466 8467 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 8468 enable_ept_ad_bits = 0; 8469 8470 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 8471 enable_unrestricted_guest = 0; 8472 8473 if (!cpu_has_vmx_flexpriority()) 8474 flexpriority_enabled = 0; 8475 8476 if (!cpu_has_virtual_nmis()) 8477 enable_vnmi = 0; 8478 8479 #ifdef CONFIG_X86_SGX_KVM 8480 if (!cpu_has_vmx_encls_vmexit()) 8481 enable_sgx = false; 8482 #endif 8483 8484 /* 8485 * set_apic_access_page_addr() is used to reload apic access 8486 * page upon invalidation. No need to do anything if not 8487 * using the APIC_ACCESS_ADDR VMCS field. 8488 */ 8489 if (!flexpriority_enabled) 8490 vmx_x86_ops.set_apic_access_page_addr = NULL; 8491 8492 if (!cpu_has_vmx_tpr_shadow()) 8493 vmx_x86_ops.update_cr8_intercept = NULL; 8494 8495 #if IS_ENABLED(CONFIG_HYPERV) 8496 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 8497 && enable_ept) { 8498 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs; 8499 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range; 8500 } 8501 #endif 8502 8503 if (!cpu_has_vmx_ple()) { 8504 ple_gap = 0; 8505 ple_window = 0; 8506 ple_window_grow = 0; 8507 ple_window_max = 0; 8508 ple_window_shrink = 0; 8509 } 8510 8511 if (!cpu_has_vmx_apicv()) 8512 enable_apicv = 0; 8513 if (!enable_apicv) 8514 vmx_x86_ops.sync_pir_to_irr = NULL; 8515 8516 if (!enable_apicv || !cpu_has_vmx_ipiv()) 8517 enable_ipiv = false; 8518 8519 if (cpu_has_vmx_tsc_scaling()) 8520 kvm_caps.has_tsc_control = true; 8521 8522 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 8523 kvm_caps.tsc_scaling_ratio_frac_bits = 48; 8524 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 8525 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit(); 8526 8527 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 8528 8529 if (enable_ept) 8530 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 8531 cpu_has_vmx_ept_execute_only()); 8532 8533 /* 8534 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID 8535 * bits to shadow_zero_check. 8536 */ 8537 vmx_setup_me_spte_mask(); 8538 8539 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(), 8540 ept_caps_to_lpage_level(vmx_capability.ept)); 8541 8542 /* 8543 * Only enable PML when hardware supports PML feature, and both EPT 8544 * and EPT A/D bit features are enabled -- PML depends on them to work. 8545 */ 8546 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 8547 enable_pml = 0; 8548 8549 if (!enable_pml) 8550 vmx_x86_ops.cpu_dirty_log_size = 0; 8551 8552 if (!cpu_has_vmx_preemption_timer()) 8553 enable_preemption_timer = false; 8554 8555 if (enable_preemption_timer) { 8556 u64 use_timer_freq = 5000ULL * 1000 * 1000; 8557 8558 cpu_preemption_timer_multi = 8559 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 8560 8561 if (tsc_khz) 8562 use_timer_freq = (u64)tsc_khz * 1000; 8563 use_timer_freq >>= cpu_preemption_timer_multi; 8564 8565 /* 8566 * KVM "disables" the preemption timer by setting it to its max 8567 * value. Don't use the timer if it might cause spurious exits 8568 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 8569 */ 8570 if (use_timer_freq > 0xffffffffu / 10) 8571 enable_preemption_timer = false; 8572 } 8573 8574 if (!enable_preemption_timer) { 8575 vmx_x86_ops.set_hv_timer = NULL; 8576 vmx_x86_ops.cancel_hv_timer = NULL; 8577 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 8578 } 8579 8580 kvm_caps.supported_mce_cap |= MCG_LMCE_P; 8581 kvm_caps.supported_mce_cap |= MCG_CMCI_P; 8582 8583 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 8584 return -EINVAL; 8585 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt()) 8586 pt_mode = PT_MODE_SYSTEM; 8587 if (pt_mode == PT_MODE_HOST_GUEST) 8588 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 8589 else 8590 vmx_init_ops.handle_intel_pt_intr = NULL; 8591 8592 setup_default_sgx_lepubkeyhash(); 8593 8594 if (nested) { 8595 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept); 8596 8597 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8598 if (r) 8599 return r; 8600 } 8601 8602 vmx_set_cpu_caps(); 8603 8604 r = alloc_kvm_area(); 8605 if (r && nested) 8606 nested_vmx_hardware_unsetup(); 8607 8608 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8609 8610 return r; 8611 } 8612 8613 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 8614 .hardware_setup = hardware_setup, 8615 .handle_intel_pt_intr = NULL, 8616 8617 .runtime_ops = &vmx_x86_ops, 8618 .pmu_ops = &intel_pmu_ops, 8619 }; 8620 8621 static void vmx_cleanup_l1d_flush(void) 8622 { 8623 if (vmx_l1d_flush_pages) { 8624 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8625 vmx_l1d_flush_pages = NULL; 8626 } 8627 /* Restore state so sysfs ignores VMX */ 8628 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8629 } 8630 8631 static void __vmx_exit(void) 8632 { 8633 allow_smaller_maxphyaddr = false; 8634 8635 cpu_emergency_unregister_virt_callback(vmx_emergency_disable); 8636 8637 vmx_cleanup_l1d_flush(); 8638 } 8639 8640 static void vmx_exit(void) 8641 { 8642 kvm_exit(); 8643 kvm_x86_vendor_exit(); 8644 8645 __vmx_exit(); 8646 } 8647 module_exit(vmx_exit); 8648 8649 static int __init vmx_init(void) 8650 { 8651 int r, cpu; 8652 8653 if (!kvm_is_vmx_supported()) 8654 return -EOPNOTSUPP; 8655 8656 /* 8657 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing 8658 * to unwind if a later step fails. 8659 */ 8660 hv_init_evmcs(); 8661 8662 r = kvm_x86_vendor_init(&vmx_init_ops); 8663 if (r) 8664 return r; 8665 8666 /* 8667 * Must be called after common x86 init so enable_ept is properly set 8668 * up. Hand the parameter mitigation value in which was stored in 8669 * the pre module init parser. If no parameter was given, it will 8670 * contain 'auto' which will be turned into the default 'cond' 8671 * mitigation mode. 8672 */ 8673 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8674 if (r) 8675 goto err_l1d_flush; 8676 8677 for_each_possible_cpu(cpu) { 8678 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8679 8680 pi_init_cpu(cpu); 8681 } 8682 8683 cpu_emergency_register_virt_callback(vmx_emergency_disable); 8684 8685 vmx_check_vmcs12_offsets(); 8686 8687 /* 8688 * Shadow paging doesn't have a (further) performance penalty 8689 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8690 * by default 8691 */ 8692 if (!enable_ept) 8693 allow_smaller_maxphyaddr = true; 8694 8695 /* 8696 * Common KVM initialization _must_ come last, after this, /dev/kvm is 8697 * exposed to userspace! 8698 */ 8699 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), 8700 THIS_MODULE); 8701 if (r) 8702 goto err_kvm_init; 8703 8704 return 0; 8705 8706 err_kvm_init: 8707 __vmx_exit(); 8708 err_l1d_flush: 8709 kvm_x86_vendor_exit(); 8710 return r; 8711 } 8712 module_init(vmx_init); 8713