1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 16 17 #include <linux/highmem.h> 18 #include <linux/hrtimer.h> 19 #include <linux/kernel.h> 20 #include <linux/kvm_host.h> 21 #include <linux/module.h> 22 #include <linux/moduleparam.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/mm.h> 25 #include <linux/objtool.h> 26 #include <linux/sched.h> 27 #include <linux/sched/smt.h> 28 #include <linux/slab.h> 29 #include <linux/tboot.h> 30 #include <linux/trace_events.h> 31 #include <linux/entry-kvm.h> 32 33 #include <asm/apic.h> 34 #include <asm/asm.h> 35 #include <asm/cpu.h> 36 #include <asm/cpu_device_id.h> 37 #include <asm/debugreg.h> 38 #include <asm/desc.h> 39 #include <asm/fpu/api.h> 40 #include <asm/fpu/xstate.h> 41 #include <asm/idtentry.h> 42 #include <asm/io.h> 43 #include <asm/irq_remapping.h> 44 #include <asm/reboot.h> 45 #include <asm/perf_event.h> 46 #include <asm/mmu_context.h> 47 #include <asm/mshyperv.h> 48 #include <asm/mwait.h> 49 #include <asm/spec-ctrl.h> 50 #include <asm/virtext.h> 51 #include <asm/vmx.h> 52 53 #include "capabilities.h" 54 #include "cpuid.h" 55 #include "hyperv.h" 56 #include "kvm_onhyperv.h" 57 #include "irq.h" 58 #include "kvm_cache_regs.h" 59 #include "lapic.h" 60 #include "mmu.h" 61 #include "nested.h" 62 #include "pmu.h" 63 #include "sgx.h" 64 #include "trace.h" 65 #include "vmcs.h" 66 #include "vmcs12.h" 67 #include "vmx.h" 68 #include "x86.h" 69 #include "smm.h" 70 71 MODULE_AUTHOR("Qumranet"); 72 MODULE_LICENSE("GPL"); 73 74 #ifdef MODULE 75 static const struct x86_cpu_id vmx_cpu_id[] = { 76 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 77 {} 78 }; 79 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 80 #endif 81 82 bool __read_mostly enable_vpid = 1; 83 module_param_named(vpid, enable_vpid, bool, 0444); 84 85 static bool __read_mostly enable_vnmi = 1; 86 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 87 88 bool __read_mostly flexpriority_enabled = 1; 89 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 90 91 bool __read_mostly enable_ept = 1; 92 module_param_named(ept, enable_ept, bool, S_IRUGO); 93 94 bool __read_mostly enable_unrestricted_guest = 1; 95 module_param_named(unrestricted_guest, 96 enable_unrestricted_guest, bool, S_IRUGO); 97 98 bool __read_mostly enable_ept_ad_bits = 1; 99 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 100 101 static bool __read_mostly emulate_invalid_guest_state = true; 102 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 103 104 static bool __read_mostly fasteoi = 1; 105 module_param(fasteoi, bool, S_IRUGO); 106 107 module_param(enable_apicv, bool, S_IRUGO); 108 109 bool __read_mostly enable_ipiv = true; 110 module_param(enable_ipiv, bool, 0444); 111 112 /* 113 * If nested=1, nested virtualization is supported, i.e., guests may use 114 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 115 * use VMX instructions. 116 */ 117 static bool __read_mostly nested = 1; 118 module_param(nested, bool, S_IRUGO); 119 120 bool __read_mostly enable_pml = 1; 121 module_param_named(pml, enable_pml, bool, S_IRUGO); 122 123 static bool __read_mostly error_on_inconsistent_vmcs_config = true; 124 module_param(error_on_inconsistent_vmcs_config, bool, 0444); 125 126 static bool __read_mostly dump_invalid_vmcs = 0; 127 module_param(dump_invalid_vmcs, bool, 0644); 128 129 #define MSR_BITMAP_MODE_X2APIC 1 130 #define MSR_BITMAP_MODE_X2APIC_APICV 2 131 132 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 133 134 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 135 static int __read_mostly cpu_preemption_timer_multi; 136 static bool __read_mostly enable_preemption_timer = 1; 137 #ifdef CONFIG_X86_64 138 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 139 #endif 140 141 extern bool __read_mostly allow_smaller_maxphyaddr; 142 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 143 144 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 145 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 146 #define KVM_VM_CR0_ALWAYS_ON \ 147 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) 148 149 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 150 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 151 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 152 153 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 154 155 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 156 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 157 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 158 RTIT_STATUS_BYTECNT)) 159 160 /* 161 * List of MSRs that can be directly passed to the guest. 162 * In addition to these x2apic and PT MSRs are handled specially. 163 */ 164 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 165 MSR_IA32_SPEC_CTRL, 166 MSR_IA32_PRED_CMD, 167 MSR_IA32_FLUSH_CMD, 168 MSR_IA32_TSC, 169 #ifdef CONFIG_X86_64 170 MSR_FS_BASE, 171 MSR_GS_BASE, 172 MSR_KERNEL_GS_BASE, 173 MSR_IA32_XFD, 174 MSR_IA32_XFD_ERR, 175 #endif 176 MSR_IA32_SYSENTER_CS, 177 MSR_IA32_SYSENTER_ESP, 178 MSR_IA32_SYSENTER_EIP, 179 MSR_CORE_C1_RES, 180 MSR_CORE_C3_RESIDENCY, 181 MSR_CORE_C6_RESIDENCY, 182 MSR_CORE_C7_RESIDENCY, 183 }; 184 185 /* 186 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 187 * ple_gap: upper bound on the amount of time between two successive 188 * executions of PAUSE in a loop. Also indicate if ple enabled. 189 * According to test, this time is usually smaller than 128 cycles. 190 * ple_window: upper bound on the amount of time a guest is allowed to execute 191 * in a PAUSE loop. Tests indicate that most spinlocks are held for 192 * less than 2^12 cycles 193 * Time is measured based on a counter that runs at the same rate as the TSC, 194 * refer SDM volume 3b section 21.6.13 & 22.1.3. 195 */ 196 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 197 module_param(ple_gap, uint, 0444); 198 199 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 200 module_param(ple_window, uint, 0444); 201 202 /* Default doubles per-vcpu window every exit. */ 203 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 204 module_param(ple_window_grow, uint, 0444); 205 206 /* Default resets per-vcpu window every exit to ple_window. */ 207 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 208 module_param(ple_window_shrink, uint, 0444); 209 210 /* Default is to compute the maximum so we can never overflow. */ 211 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 212 module_param(ple_window_max, uint, 0444); 213 214 /* Default is SYSTEM mode, 1 for host-guest mode */ 215 int __read_mostly pt_mode = PT_MODE_SYSTEM; 216 module_param(pt_mode, int, S_IRUGO); 217 218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 219 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 220 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 221 222 /* Storage for pre module init parameter parsing */ 223 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 224 225 static const struct { 226 const char *option; 227 bool for_parse; 228 } vmentry_l1d_param[] = { 229 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 230 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 231 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 232 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 233 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 234 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 235 }; 236 237 #define L1D_CACHE_ORDER 4 238 static void *vmx_l1d_flush_pages; 239 240 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 241 { 242 struct page *page; 243 unsigned int i; 244 245 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 246 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 247 return 0; 248 } 249 250 if (!enable_ept) { 251 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 252 return 0; 253 } 254 255 if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 256 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 257 return 0; 258 } 259 260 /* If set to auto use the default l1tf mitigation method */ 261 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 262 switch (l1tf_mitigation) { 263 case L1TF_MITIGATION_OFF: 264 l1tf = VMENTER_L1D_FLUSH_NEVER; 265 break; 266 case L1TF_MITIGATION_FLUSH_NOWARN: 267 case L1TF_MITIGATION_FLUSH: 268 case L1TF_MITIGATION_FLUSH_NOSMT: 269 l1tf = VMENTER_L1D_FLUSH_COND; 270 break; 271 case L1TF_MITIGATION_FULL: 272 case L1TF_MITIGATION_FULL_FORCE: 273 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 274 break; 275 } 276 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 277 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 278 } 279 280 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 281 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 282 /* 283 * This allocation for vmx_l1d_flush_pages is not tied to a VM 284 * lifetime and so should not be charged to a memcg. 285 */ 286 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 287 if (!page) 288 return -ENOMEM; 289 vmx_l1d_flush_pages = page_address(page); 290 291 /* 292 * Initialize each page with a different pattern in 293 * order to protect against KSM in the nested 294 * virtualization case. 295 */ 296 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 297 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 298 PAGE_SIZE); 299 } 300 } 301 302 l1tf_vmx_mitigation = l1tf; 303 304 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 305 static_branch_enable(&vmx_l1d_should_flush); 306 else 307 static_branch_disable(&vmx_l1d_should_flush); 308 309 if (l1tf == VMENTER_L1D_FLUSH_COND) 310 static_branch_enable(&vmx_l1d_flush_cond); 311 else 312 static_branch_disable(&vmx_l1d_flush_cond); 313 return 0; 314 } 315 316 static int vmentry_l1d_flush_parse(const char *s) 317 { 318 unsigned int i; 319 320 if (s) { 321 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 322 if (vmentry_l1d_param[i].for_parse && 323 sysfs_streq(s, vmentry_l1d_param[i].option)) 324 return i; 325 } 326 } 327 return -EINVAL; 328 } 329 330 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 331 { 332 int l1tf, ret; 333 334 l1tf = vmentry_l1d_flush_parse(s); 335 if (l1tf < 0) 336 return l1tf; 337 338 if (!boot_cpu_has(X86_BUG_L1TF)) 339 return 0; 340 341 /* 342 * Has vmx_init() run already? If not then this is the pre init 343 * parameter parsing. In that case just store the value and let 344 * vmx_init() do the proper setup after enable_ept has been 345 * established. 346 */ 347 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 348 vmentry_l1d_flush_param = l1tf; 349 return 0; 350 } 351 352 mutex_lock(&vmx_l1d_flush_mutex); 353 ret = vmx_setup_l1d_flush(l1tf); 354 mutex_unlock(&vmx_l1d_flush_mutex); 355 return ret; 356 } 357 358 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 359 { 360 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 361 return sysfs_emit(s, "???\n"); 362 363 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 364 } 365 366 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx) 367 { 368 u64 msr; 369 370 if (!vmx->disable_fb_clear) 371 return; 372 373 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL); 374 msr |= FB_CLEAR_DIS; 375 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr); 376 /* Cache the MSR value to avoid reading it later */ 377 vmx->msr_ia32_mcu_opt_ctrl = msr; 378 } 379 380 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx) 381 { 382 if (!vmx->disable_fb_clear) 383 return; 384 385 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS; 386 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl); 387 } 388 389 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx) 390 { 391 vmx->disable_fb_clear = (host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) && 392 !boot_cpu_has_bug(X86_BUG_MDS) && 393 !boot_cpu_has_bug(X86_BUG_TAA); 394 395 /* 396 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS 397 * at VMEntry. Skip the MSR read/write when a guest has no use case to 398 * execute VERW. 399 */ 400 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) || 401 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) && 402 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) && 403 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) && 404 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) && 405 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO))) 406 vmx->disable_fb_clear = false; 407 } 408 409 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 410 .set = vmentry_l1d_flush_set, 411 .get = vmentry_l1d_flush_get, 412 }; 413 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 414 415 static u32 vmx_segment_access_rights(struct kvm_segment *var); 416 417 void vmx_vmexit(void); 418 419 #define vmx_insn_failed(fmt...) \ 420 do { \ 421 WARN_ONCE(1, fmt); \ 422 pr_warn_ratelimited(fmt); \ 423 } while (0) 424 425 void vmread_error(unsigned long field, bool fault) 426 { 427 if (fault) 428 kvm_spurious_fault(); 429 else 430 vmx_insn_failed("vmread failed: field=%lx\n", field); 431 } 432 433 noinline void vmwrite_error(unsigned long field, unsigned long value) 434 { 435 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n", 436 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 437 } 438 439 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 440 { 441 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n", 442 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 443 } 444 445 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 446 { 447 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n", 448 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR)); 449 } 450 451 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 452 { 453 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 454 ext, vpid, gva); 455 } 456 457 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 458 { 459 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 460 ext, eptp, gpa); 461 } 462 463 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 464 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 465 /* 466 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 467 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 468 */ 469 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 470 471 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 472 static DEFINE_SPINLOCK(vmx_vpid_lock); 473 474 struct vmcs_config vmcs_config __ro_after_init; 475 struct vmx_capability vmx_capability __ro_after_init; 476 477 #define VMX_SEGMENT_FIELD(seg) \ 478 [VCPU_SREG_##seg] = { \ 479 .selector = GUEST_##seg##_SELECTOR, \ 480 .base = GUEST_##seg##_BASE, \ 481 .limit = GUEST_##seg##_LIMIT, \ 482 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 483 } 484 485 static const struct kvm_vmx_segment_field { 486 unsigned selector; 487 unsigned base; 488 unsigned limit; 489 unsigned ar_bytes; 490 } kvm_vmx_segment_fields[] = { 491 VMX_SEGMENT_FIELD(CS), 492 VMX_SEGMENT_FIELD(DS), 493 VMX_SEGMENT_FIELD(ES), 494 VMX_SEGMENT_FIELD(FS), 495 VMX_SEGMENT_FIELD(GS), 496 VMX_SEGMENT_FIELD(SS), 497 VMX_SEGMENT_FIELD(TR), 498 VMX_SEGMENT_FIELD(LDTR), 499 }; 500 501 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 502 { 503 vmx->segment_cache.bitmask = 0; 504 } 505 506 static unsigned long host_idt_base; 507 508 #if IS_ENABLED(CONFIG_HYPERV) 509 static struct kvm_x86_ops vmx_x86_ops __initdata; 510 511 static bool __read_mostly enlightened_vmcs = true; 512 module_param(enlightened_vmcs, bool, 0444); 513 514 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu) 515 { 516 struct hv_enlightened_vmcs *evmcs; 517 struct hv_partition_assist_pg **p_hv_pa_pg = 518 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 519 /* 520 * Synthetic VM-Exit is not enabled in current code and so All 521 * evmcs in singe VM shares same assist page. 522 */ 523 if (!*p_hv_pa_pg) 524 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 525 526 if (!*p_hv_pa_pg) 527 return -ENOMEM; 528 529 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 530 531 evmcs->partition_assist_page = 532 __pa(*p_hv_pa_pg); 533 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 534 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 535 536 return 0; 537 } 538 539 static __init void hv_init_evmcs(void) 540 { 541 int cpu; 542 543 if (!enlightened_vmcs) 544 return; 545 546 /* 547 * Enlightened VMCS usage should be recommended and the host needs 548 * to support eVMCS v1 or above. 549 */ 550 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 551 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 552 KVM_EVMCS_VERSION) { 553 554 /* Check that we have assist pages on all online CPUs */ 555 for_each_online_cpu(cpu) { 556 if (!hv_get_vp_assist_page(cpu)) { 557 enlightened_vmcs = false; 558 break; 559 } 560 } 561 562 if (enlightened_vmcs) { 563 pr_info("Using Hyper-V Enlightened VMCS\n"); 564 static_branch_enable(&__kvm_is_using_evmcs); 565 } 566 567 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 568 vmx_x86_ops.enable_l2_tlb_flush 569 = hv_enable_l2_tlb_flush; 570 571 } else { 572 enlightened_vmcs = false; 573 } 574 } 575 576 static void hv_reset_evmcs(void) 577 { 578 struct hv_vp_assist_page *vp_ap; 579 580 if (!kvm_is_using_evmcs()) 581 return; 582 583 /* 584 * KVM should enable eVMCS if and only if all CPUs have a VP assist 585 * page, and should reject CPU onlining if eVMCS is enabled the CPU 586 * doesn't have a VP assist page allocated. 587 */ 588 vp_ap = hv_get_vp_assist_page(smp_processor_id()); 589 if (WARN_ON_ONCE(!vp_ap)) 590 return; 591 592 /* 593 * Reset everything to support using non-enlightened VMCS access later 594 * (e.g. when we reload the module with enlightened_vmcs=0) 595 */ 596 vp_ap->nested_control.features.directhypercall = 0; 597 vp_ap->current_nested_vmcs = 0; 598 vp_ap->enlighten_vmentry = 0; 599 } 600 601 #else /* IS_ENABLED(CONFIG_HYPERV) */ 602 static void hv_init_evmcs(void) {} 603 static void hv_reset_evmcs(void) {} 604 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 605 606 /* 607 * Comment's format: document - errata name - stepping - processor name. 608 * Refer from 609 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 610 */ 611 static u32 vmx_preemption_cpu_tfms[] = { 612 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 613 0x000206E6, 614 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 615 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 616 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 617 0x00020652, 618 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 619 0x00020655, 620 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 621 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 622 /* 623 * 320767.pdf - AAP86 - B1 - 624 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 625 */ 626 0x000106E5, 627 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 628 0x000106A0, 629 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 630 0x000106A1, 631 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 632 0x000106A4, 633 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 634 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 635 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 636 0x000106A5, 637 /* Xeon E3-1220 V2 */ 638 0x000306A8, 639 }; 640 641 static inline bool cpu_has_broken_vmx_preemption_timer(void) 642 { 643 u32 eax = cpuid_eax(0x00000001), i; 644 645 /* Clear the reserved bits */ 646 eax &= ~(0x3U << 14 | 0xfU << 28); 647 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 648 if (eax == vmx_preemption_cpu_tfms[i]) 649 return true; 650 651 return false; 652 } 653 654 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 655 { 656 return flexpriority_enabled && lapic_in_kernel(vcpu); 657 } 658 659 static int possible_passthrough_msr_slot(u32 msr) 660 { 661 u32 i; 662 663 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 664 if (vmx_possible_passthrough_msrs[i] == msr) 665 return i; 666 667 return -ENOENT; 668 } 669 670 static bool is_valid_passthrough_msr(u32 msr) 671 { 672 bool r; 673 674 switch (msr) { 675 case 0x800 ... 0x8ff: 676 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 677 return true; 678 case MSR_IA32_RTIT_STATUS: 679 case MSR_IA32_RTIT_OUTPUT_BASE: 680 case MSR_IA32_RTIT_OUTPUT_MASK: 681 case MSR_IA32_RTIT_CR3_MATCH: 682 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 683 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 684 case MSR_LBR_SELECT: 685 case MSR_LBR_TOS: 686 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 687 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 688 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 689 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 690 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 691 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 692 return true; 693 } 694 695 r = possible_passthrough_msr_slot(msr) != -ENOENT; 696 697 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 698 699 return r; 700 } 701 702 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 703 { 704 int i; 705 706 i = kvm_find_user_return_msr(msr); 707 if (i >= 0) 708 return &vmx->guest_uret_msrs[i]; 709 return NULL; 710 } 711 712 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 713 struct vmx_uret_msr *msr, u64 data) 714 { 715 unsigned int slot = msr - vmx->guest_uret_msrs; 716 int ret = 0; 717 718 if (msr->load_into_hardware) { 719 preempt_disable(); 720 ret = kvm_set_user_return_msr(slot, data, msr->mask); 721 preempt_enable(); 722 } 723 if (!ret) 724 msr->data = data; 725 return ret; 726 } 727 728 static void vmx_emergency_disable(void) 729 { 730 int cpu = raw_smp_processor_id(); 731 struct loaded_vmcs *v; 732 733 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 734 loaded_vmcss_on_cpu_link) 735 vmcs_clear(v->vmcs); 736 737 __cpu_emergency_vmxoff(); 738 } 739 740 static void __loaded_vmcs_clear(void *arg) 741 { 742 struct loaded_vmcs *loaded_vmcs = arg; 743 int cpu = raw_smp_processor_id(); 744 745 if (loaded_vmcs->cpu != cpu) 746 return; /* vcpu migration can race with cpu offline */ 747 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 748 per_cpu(current_vmcs, cpu) = NULL; 749 750 vmcs_clear(loaded_vmcs->vmcs); 751 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 752 vmcs_clear(loaded_vmcs->shadow_vmcs); 753 754 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 755 756 /* 757 * Ensure all writes to loaded_vmcs, including deleting it from its 758 * current percpu list, complete before setting loaded_vmcs->cpu to 759 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first 760 * and add loaded_vmcs to its percpu list before it's deleted from this 761 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 762 */ 763 smp_wmb(); 764 765 loaded_vmcs->cpu = -1; 766 loaded_vmcs->launched = 0; 767 } 768 769 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 770 { 771 int cpu = loaded_vmcs->cpu; 772 773 if (cpu != -1) 774 smp_call_function_single(cpu, 775 __loaded_vmcs_clear, loaded_vmcs, 1); 776 } 777 778 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 779 unsigned field) 780 { 781 bool ret; 782 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 783 784 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 785 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 786 vmx->segment_cache.bitmask = 0; 787 } 788 ret = vmx->segment_cache.bitmask & mask; 789 vmx->segment_cache.bitmask |= mask; 790 return ret; 791 } 792 793 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 794 { 795 u16 *p = &vmx->segment_cache.seg[seg].selector; 796 797 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 798 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 799 return *p; 800 } 801 802 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 803 { 804 ulong *p = &vmx->segment_cache.seg[seg].base; 805 806 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 807 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 808 return *p; 809 } 810 811 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 812 { 813 u32 *p = &vmx->segment_cache.seg[seg].limit; 814 815 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 816 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 817 return *p; 818 } 819 820 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 821 { 822 u32 *p = &vmx->segment_cache.seg[seg].ar; 823 824 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 825 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 826 return *p; 827 } 828 829 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 830 { 831 u32 eb; 832 833 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 834 (1u << DB_VECTOR) | (1u << AC_VECTOR); 835 /* 836 * Guest access to VMware backdoor ports could legitimately 837 * trigger #GP because of TSS I/O permission bitmap. 838 * We intercept those #GP and allow access to them anyway 839 * as VMware does. 840 */ 841 if (enable_vmware_backdoor) 842 eb |= (1u << GP_VECTOR); 843 if ((vcpu->guest_debug & 844 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 845 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 846 eb |= 1u << BP_VECTOR; 847 if (to_vmx(vcpu)->rmode.vm86_active) 848 eb = ~0; 849 if (!vmx_need_pf_intercept(vcpu)) 850 eb &= ~(1u << PF_VECTOR); 851 852 /* When we are running a nested L2 guest and L1 specified for it a 853 * certain exception bitmap, we must trap the same exceptions and pass 854 * them to L1. When running L2, we will only handle the exceptions 855 * specified above if L1 did not want them. 856 */ 857 if (is_guest_mode(vcpu)) 858 eb |= get_vmcs12(vcpu)->exception_bitmap; 859 else { 860 int mask = 0, match = 0; 861 862 if (enable_ept && (eb & (1u << PF_VECTOR))) { 863 /* 864 * If EPT is enabled, #PF is currently only intercepted 865 * if MAXPHYADDR is smaller on the guest than on the 866 * host. In that case we only care about present, 867 * non-reserved faults. For vmcs02, however, PFEC_MASK 868 * and PFEC_MATCH are set in prepare_vmcs02_rare. 869 */ 870 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK; 871 match = PFERR_PRESENT_MASK; 872 } 873 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 874 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match); 875 } 876 877 /* 878 * Disabling xfd interception indicates that dynamic xfeatures 879 * might be used in the guest. Always trap #NM in this case 880 * to save guest xfd_err timely. 881 */ 882 if (vcpu->arch.xfd_no_write_intercept) 883 eb |= (1u << NM_VECTOR); 884 885 vmcs_write32(EXCEPTION_BITMAP, eb); 886 } 887 888 /* 889 * Check if MSR is intercepted for currently loaded MSR bitmap. 890 */ 891 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr) 892 { 893 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS)) 894 return true; 895 896 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr); 897 } 898 899 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx) 900 { 901 unsigned int flags = 0; 902 903 if (vmx->loaded_vmcs->launched) 904 flags |= VMX_RUN_VMRESUME; 905 906 /* 907 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free 908 * to change it directly without causing a vmexit. In that case read 909 * it after vmexit and store it in vmx->spec_ctrl. 910 */ 911 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)) 912 flags |= VMX_RUN_SAVE_SPEC_CTRL; 913 914 return flags; 915 } 916 917 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 918 unsigned long entry, unsigned long exit) 919 { 920 vm_entry_controls_clearbit(vmx, entry); 921 vm_exit_controls_clearbit(vmx, exit); 922 } 923 924 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 925 { 926 unsigned int i; 927 928 for (i = 0; i < m->nr; ++i) { 929 if (m->val[i].index == msr) 930 return i; 931 } 932 return -ENOENT; 933 } 934 935 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 936 { 937 int i; 938 struct msr_autoload *m = &vmx->msr_autoload; 939 940 switch (msr) { 941 case MSR_EFER: 942 if (cpu_has_load_ia32_efer()) { 943 clear_atomic_switch_msr_special(vmx, 944 VM_ENTRY_LOAD_IA32_EFER, 945 VM_EXIT_LOAD_IA32_EFER); 946 return; 947 } 948 break; 949 case MSR_CORE_PERF_GLOBAL_CTRL: 950 if (cpu_has_load_perf_global_ctrl()) { 951 clear_atomic_switch_msr_special(vmx, 952 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 953 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 954 return; 955 } 956 break; 957 } 958 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 959 if (i < 0) 960 goto skip_guest; 961 --m->guest.nr; 962 m->guest.val[i] = m->guest.val[m->guest.nr]; 963 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 964 965 skip_guest: 966 i = vmx_find_loadstore_msr_slot(&m->host, msr); 967 if (i < 0) 968 return; 969 970 --m->host.nr; 971 m->host.val[i] = m->host.val[m->host.nr]; 972 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 973 } 974 975 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 976 unsigned long entry, unsigned long exit, 977 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 978 u64 guest_val, u64 host_val) 979 { 980 vmcs_write64(guest_val_vmcs, guest_val); 981 if (host_val_vmcs != HOST_IA32_EFER) 982 vmcs_write64(host_val_vmcs, host_val); 983 vm_entry_controls_setbit(vmx, entry); 984 vm_exit_controls_setbit(vmx, exit); 985 } 986 987 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 988 u64 guest_val, u64 host_val, bool entry_only) 989 { 990 int i, j = 0; 991 struct msr_autoload *m = &vmx->msr_autoload; 992 993 switch (msr) { 994 case MSR_EFER: 995 if (cpu_has_load_ia32_efer()) { 996 add_atomic_switch_msr_special(vmx, 997 VM_ENTRY_LOAD_IA32_EFER, 998 VM_EXIT_LOAD_IA32_EFER, 999 GUEST_IA32_EFER, 1000 HOST_IA32_EFER, 1001 guest_val, host_val); 1002 return; 1003 } 1004 break; 1005 case MSR_CORE_PERF_GLOBAL_CTRL: 1006 if (cpu_has_load_perf_global_ctrl()) { 1007 add_atomic_switch_msr_special(vmx, 1008 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 1009 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 1010 GUEST_IA32_PERF_GLOBAL_CTRL, 1011 HOST_IA32_PERF_GLOBAL_CTRL, 1012 guest_val, host_val); 1013 return; 1014 } 1015 break; 1016 case MSR_IA32_PEBS_ENABLE: 1017 /* PEBS needs a quiescent period after being disabled (to write 1018 * a record). Disabling PEBS through VMX MSR swapping doesn't 1019 * provide that period, so a CPU could write host's record into 1020 * guest's memory. 1021 */ 1022 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1023 } 1024 1025 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1026 if (!entry_only) 1027 j = vmx_find_loadstore_msr_slot(&m->host, msr); 1028 1029 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 1030 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 1031 printk_once(KERN_WARNING "Not enough msr switch entries. " 1032 "Can't add msr %x\n", msr); 1033 return; 1034 } 1035 if (i < 0) { 1036 i = m->guest.nr++; 1037 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1038 } 1039 m->guest.val[i].index = msr; 1040 m->guest.val[i].value = guest_val; 1041 1042 if (entry_only) 1043 return; 1044 1045 if (j < 0) { 1046 j = m->host.nr++; 1047 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1048 } 1049 m->host.val[j].index = msr; 1050 m->host.val[j].value = host_val; 1051 } 1052 1053 static bool update_transition_efer(struct vcpu_vmx *vmx) 1054 { 1055 u64 guest_efer = vmx->vcpu.arch.efer; 1056 u64 ignore_bits = 0; 1057 int i; 1058 1059 /* Shadow paging assumes NX to be available. */ 1060 if (!enable_ept) 1061 guest_efer |= EFER_NX; 1062 1063 /* 1064 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1065 */ 1066 ignore_bits |= EFER_SCE; 1067 #ifdef CONFIG_X86_64 1068 ignore_bits |= EFER_LMA | EFER_LME; 1069 /* SCE is meaningful only in long mode on Intel */ 1070 if (guest_efer & EFER_LMA) 1071 ignore_bits &= ~(u64)EFER_SCE; 1072 #endif 1073 1074 /* 1075 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1076 * On CPUs that support "load IA32_EFER", always switch EFER 1077 * atomically, since it's faster than switching it manually. 1078 */ 1079 if (cpu_has_load_ia32_efer() || 1080 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 1081 if (!(guest_efer & EFER_LMA)) 1082 guest_efer &= ~EFER_LME; 1083 if (guest_efer != host_efer) 1084 add_atomic_switch_msr(vmx, MSR_EFER, 1085 guest_efer, host_efer, false); 1086 else 1087 clear_atomic_switch_msr(vmx, MSR_EFER); 1088 return false; 1089 } 1090 1091 i = kvm_find_user_return_msr(MSR_EFER); 1092 if (i < 0) 1093 return false; 1094 1095 clear_atomic_switch_msr(vmx, MSR_EFER); 1096 1097 guest_efer &= ~ignore_bits; 1098 guest_efer |= host_efer & ignore_bits; 1099 1100 vmx->guest_uret_msrs[i].data = guest_efer; 1101 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1102 1103 return true; 1104 } 1105 1106 #ifdef CONFIG_X86_32 1107 /* 1108 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1109 * VMCS rather than the segment table. KVM uses this helper to figure 1110 * out the current bases to poke them into the VMCS before entry. 1111 */ 1112 static unsigned long segment_base(u16 selector) 1113 { 1114 struct desc_struct *table; 1115 unsigned long v; 1116 1117 if (!(selector & ~SEGMENT_RPL_MASK)) 1118 return 0; 1119 1120 table = get_current_gdt_ro(); 1121 1122 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1123 u16 ldt_selector = kvm_read_ldt(); 1124 1125 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1126 return 0; 1127 1128 table = (struct desc_struct *)segment_base(ldt_selector); 1129 } 1130 v = get_desc_base(&table[selector >> 3]); 1131 return v; 1132 } 1133 #endif 1134 1135 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1136 { 1137 return vmx_pt_mode_is_host_guest() && 1138 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1139 } 1140 1141 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1142 { 1143 /* The base must be 128-byte aligned and a legal physical address. */ 1144 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1145 } 1146 1147 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1148 { 1149 u32 i; 1150 1151 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1152 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1153 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1154 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1155 for (i = 0; i < addr_range; i++) { 1156 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1157 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1158 } 1159 } 1160 1161 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1162 { 1163 u32 i; 1164 1165 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1166 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1167 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1168 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1169 for (i = 0; i < addr_range; i++) { 1170 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1171 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1172 } 1173 } 1174 1175 static void pt_guest_enter(struct vcpu_vmx *vmx) 1176 { 1177 if (vmx_pt_mode_is_system()) 1178 return; 1179 1180 /* 1181 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1182 * Save host state before VM entry. 1183 */ 1184 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1185 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1186 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1187 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1188 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1189 } 1190 } 1191 1192 static void pt_guest_exit(struct vcpu_vmx *vmx) 1193 { 1194 if (vmx_pt_mode_is_system()) 1195 return; 1196 1197 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1198 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges); 1199 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges); 1200 } 1201 1202 /* 1203 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest, 1204 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary. 1205 */ 1206 if (vmx->pt_desc.host.ctl) 1207 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1208 } 1209 1210 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1211 unsigned long fs_base, unsigned long gs_base) 1212 { 1213 if (unlikely(fs_sel != host->fs_sel)) { 1214 if (!(fs_sel & 7)) 1215 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1216 else 1217 vmcs_write16(HOST_FS_SELECTOR, 0); 1218 host->fs_sel = fs_sel; 1219 } 1220 if (unlikely(gs_sel != host->gs_sel)) { 1221 if (!(gs_sel & 7)) 1222 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1223 else 1224 vmcs_write16(HOST_GS_SELECTOR, 0); 1225 host->gs_sel = gs_sel; 1226 } 1227 if (unlikely(fs_base != host->fs_base)) { 1228 vmcs_writel(HOST_FS_BASE, fs_base); 1229 host->fs_base = fs_base; 1230 } 1231 if (unlikely(gs_base != host->gs_base)) { 1232 vmcs_writel(HOST_GS_BASE, gs_base); 1233 host->gs_base = gs_base; 1234 } 1235 } 1236 1237 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1238 { 1239 struct vcpu_vmx *vmx = to_vmx(vcpu); 1240 struct vmcs_host_state *host_state; 1241 #ifdef CONFIG_X86_64 1242 int cpu = raw_smp_processor_id(); 1243 #endif 1244 unsigned long fs_base, gs_base; 1245 u16 fs_sel, gs_sel; 1246 int i; 1247 1248 vmx->req_immediate_exit = false; 1249 1250 /* 1251 * Note that guest MSRs to be saved/restored can also be changed 1252 * when guest state is loaded. This happens when guest transitions 1253 * to/from long-mode by setting MSR_EFER.LMA. 1254 */ 1255 if (!vmx->guest_uret_msrs_loaded) { 1256 vmx->guest_uret_msrs_loaded = true; 1257 for (i = 0; i < kvm_nr_uret_msrs; ++i) { 1258 if (!vmx->guest_uret_msrs[i].load_into_hardware) 1259 continue; 1260 1261 kvm_set_user_return_msr(i, 1262 vmx->guest_uret_msrs[i].data, 1263 vmx->guest_uret_msrs[i].mask); 1264 } 1265 } 1266 1267 if (vmx->nested.need_vmcs12_to_shadow_sync) 1268 nested_sync_vmcs12_to_shadow(vcpu); 1269 1270 if (vmx->guest_state_loaded) 1271 return; 1272 1273 host_state = &vmx->loaded_vmcs->host_state; 1274 1275 /* 1276 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1277 * allow segment selectors with cpl > 0 or ti == 1. 1278 */ 1279 host_state->ldt_sel = kvm_read_ldt(); 1280 1281 #ifdef CONFIG_X86_64 1282 savesegment(ds, host_state->ds_sel); 1283 savesegment(es, host_state->es_sel); 1284 1285 gs_base = cpu_kernelmode_gs_base(cpu); 1286 if (likely(is_64bit_mm(current->mm))) { 1287 current_save_fsgs(); 1288 fs_sel = current->thread.fsindex; 1289 gs_sel = current->thread.gsindex; 1290 fs_base = current->thread.fsbase; 1291 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1292 } else { 1293 savesegment(fs, fs_sel); 1294 savesegment(gs, gs_sel); 1295 fs_base = read_msr(MSR_FS_BASE); 1296 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1297 } 1298 1299 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1300 #else 1301 savesegment(fs, fs_sel); 1302 savesegment(gs, gs_sel); 1303 fs_base = segment_base(fs_sel); 1304 gs_base = segment_base(gs_sel); 1305 #endif 1306 1307 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1308 vmx->guest_state_loaded = true; 1309 } 1310 1311 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1312 { 1313 struct vmcs_host_state *host_state; 1314 1315 if (!vmx->guest_state_loaded) 1316 return; 1317 1318 host_state = &vmx->loaded_vmcs->host_state; 1319 1320 ++vmx->vcpu.stat.host_state_reload; 1321 1322 #ifdef CONFIG_X86_64 1323 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1324 #endif 1325 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1326 kvm_load_ldt(host_state->ldt_sel); 1327 #ifdef CONFIG_X86_64 1328 load_gs_index(host_state->gs_sel); 1329 #else 1330 loadsegment(gs, host_state->gs_sel); 1331 #endif 1332 } 1333 if (host_state->fs_sel & 7) 1334 loadsegment(fs, host_state->fs_sel); 1335 #ifdef CONFIG_X86_64 1336 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1337 loadsegment(ds, host_state->ds_sel); 1338 loadsegment(es, host_state->es_sel); 1339 } 1340 #endif 1341 invalidate_tss_limit(); 1342 #ifdef CONFIG_X86_64 1343 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1344 #endif 1345 load_fixmap_gdt(raw_smp_processor_id()); 1346 vmx->guest_state_loaded = false; 1347 vmx->guest_uret_msrs_loaded = false; 1348 } 1349 1350 #ifdef CONFIG_X86_64 1351 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1352 { 1353 preempt_disable(); 1354 if (vmx->guest_state_loaded) 1355 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1356 preempt_enable(); 1357 return vmx->msr_guest_kernel_gs_base; 1358 } 1359 1360 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1361 { 1362 preempt_disable(); 1363 if (vmx->guest_state_loaded) 1364 wrmsrl(MSR_KERNEL_GS_BASE, data); 1365 preempt_enable(); 1366 vmx->msr_guest_kernel_gs_base = data; 1367 } 1368 #endif 1369 1370 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1371 struct loaded_vmcs *buddy) 1372 { 1373 struct vcpu_vmx *vmx = to_vmx(vcpu); 1374 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1375 struct vmcs *prev; 1376 1377 if (!already_loaded) { 1378 loaded_vmcs_clear(vmx->loaded_vmcs); 1379 local_irq_disable(); 1380 1381 /* 1382 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1383 * this cpu's percpu list, otherwise it may not yet be deleted 1384 * from its previous cpu's percpu list. Pairs with the 1385 * smb_wmb() in __loaded_vmcs_clear(). 1386 */ 1387 smp_rmb(); 1388 1389 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1390 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1391 local_irq_enable(); 1392 } 1393 1394 prev = per_cpu(current_vmcs, cpu); 1395 if (prev != vmx->loaded_vmcs->vmcs) { 1396 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1397 vmcs_load(vmx->loaded_vmcs->vmcs); 1398 1399 /* 1400 * No indirect branch prediction barrier needed when switching 1401 * the active VMCS within a vCPU, unless IBRS is advertised to 1402 * the vCPU. To minimize the number of IBPBs executed, KVM 1403 * performs IBPB on nested VM-Exit (a single nested transition 1404 * may switch the active VMCS multiple times). 1405 */ 1406 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1407 indirect_branch_prediction_barrier(); 1408 } 1409 1410 if (!already_loaded) { 1411 void *gdt = get_current_gdt_ro(); 1412 1413 /* 1414 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1415 * TLB entries from its previous association with the vCPU. 1416 */ 1417 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1418 1419 /* 1420 * Linux uses per-cpu TSS and GDT, so set these when switching 1421 * processors. See 22.2.4. 1422 */ 1423 vmcs_writel(HOST_TR_BASE, 1424 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1425 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1426 1427 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) { 1428 /* 22.2.3 */ 1429 vmcs_writel(HOST_IA32_SYSENTER_ESP, 1430 (unsigned long)(cpu_entry_stack(cpu) + 1)); 1431 } 1432 1433 vmx->loaded_vmcs->cpu = cpu; 1434 } 1435 } 1436 1437 /* 1438 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1439 * vcpu mutex is already taken. 1440 */ 1441 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1442 { 1443 struct vcpu_vmx *vmx = to_vmx(vcpu); 1444 1445 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1446 1447 vmx_vcpu_pi_load(vcpu, cpu); 1448 1449 vmx->host_debugctlmsr = get_debugctlmsr(); 1450 } 1451 1452 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1453 { 1454 vmx_vcpu_pi_put(vcpu); 1455 1456 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1457 } 1458 1459 bool vmx_emulation_required(struct kvm_vcpu *vcpu) 1460 { 1461 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1462 } 1463 1464 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1465 { 1466 struct vcpu_vmx *vmx = to_vmx(vcpu); 1467 unsigned long rflags, save_rflags; 1468 1469 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1470 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1471 rflags = vmcs_readl(GUEST_RFLAGS); 1472 if (vmx->rmode.vm86_active) { 1473 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1474 save_rflags = vmx->rmode.save_rflags; 1475 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1476 } 1477 vmx->rflags = rflags; 1478 } 1479 return vmx->rflags; 1480 } 1481 1482 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1483 { 1484 struct vcpu_vmx *vmx = to_vmx(vcpu); 1485 unsigned long old_rflags; 1486 1487 if (is_unrestricted_guest(vcpu)) { 1488 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1489 vmx->rflags = rflags; 1490 vmcs_writel(GUEST_RFLAGS, rflags); 1491 return; 1492 } 1493 1494 old_rflags = vmx_get_rflags(vcpu); 1495 vmx->rflags = rflags; 1496 if (vmx->rmode.vm86_active) { 1497 vmx->rmode.save_rflags = rflags; 1498 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1499 } 1500 vmcs_writel(GUEST_RFLAGS, rflags); 1501 1502 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1503 vmx->emulation_required = vmx_emulation_required(vcpu); 1504 } 1505 1506 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu) 1507 { 1508 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF; 1509 } 1510 1511 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1512 { 1513 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1514 int ret = 0; 1515 1516 if (interruptibility & GUEST_INTR_STATE_STI) 1517 ret |= KVM_X86_SHADOW_INT_STI; 1518 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1519 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1520 1521 return ret; 1522 } 1523 1524 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1525 { 1526 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1527 u32 interruptibility = interruptibility_old; 1528 1529 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1530 1531 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1532 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1533 else if (mask & KVM_X86_SHADOW_INT_STI) 1534 interruptibility |= GUEST_INTR_STATE_STI; 1535 1536 if ((interruptibility != interruptibility_old)) 1537 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1538 } 1539 1540 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1541 { 1542 struct vcpu_vmx *vmx = to_vmx(vcpu); 1543 unsigned long value; 1544 1545 /* 1546 * Any MSR write that attempts to change bits marked reserved will 1547 * case a #GP fault. 1548 */ 1549 if (data & vmx->pt_desc.ctl_bitmask) 1550 return 1; 1551 1552 /* 1553 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1554 * result in a #GP unless the same write also clears TraceEn. 1555 */ 1556 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1557 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1558 return 1; 1559 1560 /* 1561 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1562 * and FabricEn would cause #GP, if 1563 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1564 */ 1565 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1566 !(data & RTIT_CTL_FABRIC_EN) && 1567 !intel_pt_validate_cap(vmx->pt_desc.caps, 1568 PT_CAP_single_range_output)) 1569 return 1; 1570 1571 /* 1572 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1573 * utilize encodings marked reserved will cause a #GP fault. 1574 */ 1575 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1576 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1577 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1578 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1579 return 1; 1580 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1581 PT_CAP_cycle_thresholds); 1582 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1583 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1584 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1585 return 1; 1586 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1587 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1588 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1589 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1590 return 1; 1591 1592 /* 1593 * If ADDRx_CFG is reserved or the encodings is >2 will 1594 * cause a #GP fault. 1595 */ 1596 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1597 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2)) 1598 return 1; 1599 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1600 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2)) 1601 return 1; 1602 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1603 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2)) 1604 return 1; 1605 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1606 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2)) 1607 return 1; 1608 1609 return 0; 1610 } 1611 1612 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, 1613 void *insn, int insn_len) 1614 { 1615 /* 1616 * Emulation of instructions in SGX enclaves is impossible as RIP does 1617 * not point at the failing instruction, and even if it did, the code 1618 * stream is inaccessible. Inject #UD instead of exiting to userspace 1619 * so that guest userspace can't DoS the guest simply by triggering 1620 * emulation (enclaves are CPL3 only). 1621 */ 1622 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1623 kvm_queue_exception(vcpu, UD_VECTOR); 1624 return false; 1625 } 1626 return true; 1627 } 1628 1629 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1630 { 1631 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1632 unsigned long rip, orig_rip; 1633 u32 instr_len; 1634 1635 /* 1636 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1637 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1638 * set when EPT misconfig occurs. In practice, real hardware updates 1639 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1640 * (namely Hyper-V) don't set it due to it being undefined behavior, 1641 * i.e. we end up advancing IP with some random value. 1642 */ 1643 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1644 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1645 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1646 1647 /* 1648 * Emulating an enclave's instructions isn't supported as KVM 1649 * cannot access the enclave's memory or its true RIP, e.g. the 1650 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1651 * the RIP that actually triggered the VM-Exit. But, because 1652 * most instructions that cause VM-Exit will #UD in an enclave, 1653 * most instruction-based VM-Exits simply do not occur. 1654 * 1655 * There are a few exceptions, notably the debug instructions 1656 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1657 * and generate #DB/#BP as expected, which KVM might intercept. 1658 * But again, the CPU does the dirty work and saves an instr 1659 * length of zero so VMMs don't shoot themselves in the foot. 1660 * WARN if KVM tries to skip a non-zero length instruction on 1661 * a VM-Exit from an enclave. 1662 */ 1663 if (!instr_len) 1664 goto rip_updated; 1665 1666 WARN_ONCE(exit_reason.enclave_mode, 1667 "skipping instruction after SGX enclave VM-Exit"); 1668 1669 orig_rip = kvm_rip_read(vcpu); 1670 rip = orig_rip + instr_len; 1671 #ifdef CONFIG_X86_64 1672 /* 1673 * We need to mask out the high 32 bits of RIP if not in 64-bit 1674 * mode, but just finding out that we are in 64-bit mode is 1675 * quite expensive. Only do it if there was a carry. 1676 */ 1677 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1678 rip = (u32)rip; 1679 #endif 1680 kvm_rip_write(vcpu, rip); 1681 } else { 1682 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1683 return 0; 1684 } 1685 1686 rip_updated: 1687 /* skipping an emulated instruction also counts */ 1688 vmx_set_interrupt_shadow(vcpu, 0); 1689 1690 return 1; 1691 } 1692 1693 /* 1694 * Recognizes a pending MTF VM-exit and records the nested state for later 1695 * delivery. 1696 */ 1697 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1698 { 1699 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1700 struct vcpu_vmx *vmx = to_vmx(vcpu); 1701 1702 if (!is_guest_mode(vcpu)) 1703 return; 1704 1705 /* 1706 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1707 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps 1708 * or ICEBP (in the emulator proper), and skipping of ICEBP after an 1709 * intercepted #DB deliberately avoids single-step #DB and MTF updates 1710 * as ICEBP is higher priority than both. As instruction emulation is 1711 * completed at this point (i.e. KVM is at the instruction boundary), 1712 * any #DB exception pending delivery must be a debug-trap of lower 1713 * priority than MTF. Record the pending MTF state to be delivered in 1714 * vmx_check_nested_events(). 1715 */ 1716 if (nested_cpu_has_mtf(vmcs12) && 1717 (!vcpu->arch.exception.pending || 1718 vcpu->arch.exception.vector == DB_VECTOR) && 1719 (!vcpu->arch.exception_vmexit.pending || 1720 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) { 1721 vmx->nested.mtf_pending = true; 1722 kvm_make_request(KVM_REQ_EVENT, vcpu); 1723 } else { 1724 vmx->nested.mtf_pending = false; 1725 } 1726 } 1727 1728 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1729 { 1730 vmx_update_emulated_instruction(vcpu); 1731 return skip_emulated_instruction(vcpu); 1732 } 1733 1734 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1735 { 1736 /* 1737 * Ensure that we clear the HLT state in the VMCS. We don't need to 1738 * explicitly skip the instruction because if the HLT state is set, 1739 * then the instruction is already executing and RIP has already been 1740 * advanced. 1741 */ 1742 if (kvm_hlt_in_guest(vcpu->kvm) && 1743 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1744 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1745 } 1746 1747 static void vmx_inject_exception(struct kvm_vcpu *vcpu) 1748 { 1749 struct kvm_queued_exception *ex = &vcpu->arch.exception; 1750 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK; 1751 struct vcpu_vmx *vmx = to_vmx(vcpu); 1752 1753 kvm_deliver_exception_payload(vcpu, ex); 1754 1755 if (ex->has_error_code) { 1756 /* 1757 * Despite the error code being architecturally defined as 32 1758 * bits, and the VMCS field being 32 bits, Intel CPUs and thus 1759 * VMX don't actually supporting setting bits 31:16. Hardware 1760 * will (should) never provide a bogus error code, but AMD CPUs 1761 * do generate error codes with bits 31:16 set, and so KVM's 1762 * ABI lets userspace shove in arbitrary 32-bit values. Drop 1763 * the upper bits to avoid VM-Fail, losing information that 1764 * does't really exist is preferable to killing the VM. 1765 */ 1766 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code); 1767 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1768 } 1769 1770 if (vmx->rmode.vm86_active) { 1771 int inc_eip = 0; 1772 if (kvm_exception_is_soft(ex->vector)) 1773 inc_eip = vcpu->arch.event_exit_inst_len; 1774 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip); 1775 return; 1776 } 1777 1778 WARN_ON_ONCE(vmx->emulation_required); 1779 1780 if (kvm_exception_is_soft(ex->vector)) { 1781 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1782 vmx->vcpu.arch.event_exit_inst_len); 1783 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1784 } else 1785 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1786 1787 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1788 1789 vmx_clear_hlt(vcpu); 1790 } 1791 1792 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr, 1793 bool load_into_hardware) 1794 { 1795 struct vmx_uret_msr *uret_msr; 1796 1797 uret_msr = vmx_find_uret_msr(vmx, msr); 1798 if (!uret_msr) 1799 return; 1800 1801 uret_msr->load_into_hardware = load_into_hardware; 1802 } 1803 1804 /* 1805 * Configuring user return MSRs to automatically save, load, and restore MSRs 1806 * that need to be shoved into hardware when running the guest. Note, omitting 1807 * an MSR here does _NOT_ mean it's not emulated, only that it will not be 1808 * loaded into hardware when running the guest. 1809 */ 1810 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx) 1811 { 1812 #ifdef CONFIG_X86_64 1813 bool load_syscall_msrs; 1814 1815 /* 1816 * The SYSCALL MSRs are only needed on long mode guests, and only 1817 * when EFER.SCE is set. 1818 */ 1819 load_syscall_msrs = is_long_mode(&vmx->vcpu) && 1820 (vmx->vcpu.arch.efer & EFER_SCE); 1821 1822 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs); 1823 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs); 1824 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs); 1825 #endif 1826 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx)); 1827 1828 vmx_setup_uret_msr(vmx, MSR_TSC_AUX, 1829 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) || 1830 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID)); 1831 1832 /* 1833 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new 1834 * kernel and old userspace. If those guests run on a tsx=off host, do 1835 * allow guests to use TSX_CTRL, but don't change the value in hardware 1836 * so that TSX remains always disabled. 1837 */ 1838 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM)); 1839 1840 /* 1841 * The set of MSRs to load may have changed, reload MSRs before the 1842 * next VM-Enter. 1843 */ 1844 vmx->guest_uret_msrs_loaded = false; 1845 } 1846 1847 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu) 1848 { 1849 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1850 1851 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) 1852 return vmcs12->tsc_offset; 1853 1854 return 0; 1855 } 1856 1857 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu) 1858 { 1859 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1860 1861 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) && 1862 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING)) 1863 return vmcs12->tsc_multiplier; 1864 1865 return kvm_caps.default_tsc_scaling_ratio; 1866 } 1867 1868 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1869 { 1870 vmcs_write64(TSC_OFFSET, offset); 1871 } 1872 1873 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier) 1874 { 1875 vmcs_write64(TSC_MULTIPLIER, multiplier); 1876 } 1877 1878 /* 1879 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1880 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1881 * all guests if the "nested" module option is off, and can also be disabled 1882 * for a single guest by disabling its VMX cpuid bit. 1883 */ 1884 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1885 { 1886 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1887 } 1888 1889 /* 1890 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of 1891 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain 1892 * backwards compatibility even though KVM doesn't support emulating SMX. And 1893 * because userspace set "VMX in SMX", the guest must also be allowed to set it, 1894 * e.g. if the MSR is left unlocked and the guest does a RMW operation. 1895 */ 1896 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \ 1897 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \ 1898 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \ 1899 FEAT_CTL_SGX_LC_ENABLED | \ 1900 FEAT_CTL_SGX_ENABLED | \ 1901 FEAT_CTL_LMCE_ENABLED) 1902 1903 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx, 1904 struct msr_data *msr) 1905 { 1906 uint64_t valid_bits; 1907 1908 /* 1909 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are 1910 * exposed to the guest. 1911 */ 1912 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits & 1913 ~KVM_SUPPORTED_FEATURE_CONTROL); 1914 1915 if (!msr->host_initiated && 1916 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED)) 1917 return false; 1918 1919 if (msr->host_initiated) 1920 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL; 1921 else 1922 valid_bits = vmx->msr_ia32_feature_control_valid_bits; 1923 1924 return !(msr->data & ~valid_bits); 1925 } 1926 1927 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1928 { 1929 switch (msr->index) { 1930 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 1931 if (!nested) 1932 return 1; 1933 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1934 default: 1935 return KVM_MSR_RET_INVALID; 1936 } 1937 } 1938 1939 /* 1940 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'. 1941 * Returns 0 on success, non-0 otherwise. 1942 * Assumes vcpu_load() was already called. 1943 */ 1944 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1945 { 1946 struct vcpu_vmx *vmx = to_vmx(vcpu); 1947 struct vmx_uret_msr *msr; 1948 u32 index; 1949 1950 switch (msr_info->index) { 1951 #ifdef CONFIG_X86_64 1952 case MSR_FS_BASE: 1953 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1954 break; 1955 case MSR_GS_BASE: 1956 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1957 break; 1958 case MSR_KERNEL_GS_BASE: 1959 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1960 break; 1961 #endif 1962 case MSR_EFER: 1963 return kvm_get_msr_common(vcpu, msr_info); 1964 case MSR_IA32_TSX_CTRL: 1965 if (!msr_info->host_initiated && 1966 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1967 return 1; 1968 goto find_uret_msr; 1969 case MSR_IA32_UMWAIT_CONTROL: 1970 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 1971 return 1; 1972 1973 msr_info->data = vmx->msr_ia32_umwait_control; 1974 break; 1975 case MSR_IA32_SPEC_CTRL: 1976 if (!msr_info->host_initiated && 1977 !guest_has_spec_ctrl_msr(vcpu)) 1978 return 1; 1979 1980 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1981 break; 1982 case MSR_IA32_SYSENTER_CS: 1983 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1984 break; 1985 case MSR_IA32_SYSENTER_EIP: 1986 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1987 break; 1988 case MSR_IA32_SYSENTER_ESP: 1989 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1990 break; 1991 case MSR_IA32_BNDCFGS: 1992 if (!kvm_mpx_supported() || 1993 (!msr_info->host_initiated && 1994 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1995 return 1; 1996 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1997 break; 1998 case MSR_IA32_MCG_EXT_CTL: 1999 if (!msr_info->host_initiated && 2000 !(vmx->msr_ia32_feature_control & 2001 FEAT_CTL_LMCE_ENABLED)) 2002 return 1; 2003 msr_info->data = vcpu->arch.mcg_ext_ctl; 2004 break; 2005 case MSR_IA32_FEAT_CTL: 2006 msr_info->data = vmx->msr_ia32_feature_control; 2007 break; 2008 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2009 if (!msr_info->host_initiated && 2010 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 2011 return 1; 2012 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 2013 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 2014 break; 2015 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2016 if (!nested_vmx_allowed(vcpu)) 2017 return 1; 2018 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 2019 &msr_info->data)) 2020 return 1; 2021 /* 2022 * Enlightened VMCS v1 doesn't have certain VMCS fields but 2023 * instead of just ignoring the features, different Hyper-V 2024 * versions are either trying to use them and fail or do some 2025 * sanity checking and refuse to boot. Filter all unsupported 2026 * features out. 2027 */ 2028 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu)) 2029 nested_evmcs_filter_control_msr(vcpu, msr_info->index, 2030 &msr_info->data); 2031 break; 2032 case MSR_IA32_RTIT_CTL: 2033 if (!vmx_pt_mode_is_host_guest()) 2034 return 1; 2035 msr_info->data = vmx->pt_desc.guest.ctl; 2036 break; 2037 case MSR_IA32_RTIT_STATUS: 2038 if (!vmx_pt_mode_is_host_guest()) 2039 return 1; 2040 msr_info->data = vmx->pt_desc.guest.status; 2041 break; 2042 case MSR_IA32_RTIT_CR3_MATCH: 2043 if (!vmx_pt_mode_is_host_guest() || 2044 !intel_pt_validate_cap(vmx->pt_desc.caps, 2045 PT_CAP_cr3_filtering)) 2046 return 1; 2047 msr_info->data = vmx->pt_desc.guest.cr3_match; 2048 break; 2049 case MSR_IA32_RTIT_OUTPUT_BASE: 2050 if (!vmx_pt_mode_is_host_guest() || 2051 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2052 PT_CAP_topa_output) && 2053 !intel_pt_validate_cap(vmx->pt_desc.caps, 2054 PT_CAP_single_range_output))) 2055 return 1; 2056 msr_info->data = vmx->pt_desc.guest.output_base; 2057 break; 2058 case MSR_IA32_RTIT_OUTPUT_MASK: 2059 if (!vmx_pt_mode_is_host_guest() || 2060 (!intel_pt_validate_cap(vmx->pt_desc.caps, 2061 PT_CAP_topa_output) && 2062 !intel_pt_validate_cap(vmx->pt_desc.caps, 2063 PT_CAP_single_range_output))) 2064 return 1; 2065 msr_info->data = vmx->pt_desc.guest.output_mask; 2066 break; 2067 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2068 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2069 if (!vmx_pt_mode_is_host_guest() || 2070 (index >= 2 * vmx->pt_desc.num_address_ranges)) 2071 return 1; 2072 if (index % 2) 2073 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 2074 else 2075 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 2076 break; 2077 case MSR_IA32_DEBUGCTLMSR: 2078 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 2079 break; 2080 default: 2081 find_uret_msr: 2082 msr = vmx_find_uret_msr(vmx, msr_info->index); 2083 if (msr) { 2084 msr_info->data = msr->data; 2085 break; 2086 } 2087 return kvm_get_msr_common(vcpu, msr_info); 2088 } 2089 2090 return 0; 2091 } 2092 2093 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 2094 u64 data) 2095 { 2096 #ifdef CONFIG_X86_64 2097 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 2098 return (u32)data; 2099 #endif 2100 return (unsigned long)data; 2101 } 2102 2103 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated) 2104 { 2105 u64 debugctl = 0; 2106 2107 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) && 2108 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))) 2109 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT; 2110 2111 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) && 2112 (host_initiated || intel_pmu_lbr_is_enabled(vcpu))) 2113 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI; 2114 2115 return debugctl; 2116 } 2117 2118 /* 2119 * Writes msr value into the appropriate "register". 2120 * Returns 0 on success, non-0 otherwise. 2121 * Assumes vcpu_load() was already called. 2122 */ 2123 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2124 { 2125 struct vcpu_vmx *vmx = to_vmx(vcpu); 2126 struct vmx_uret_msr *msr; 2127 int ret = 0; 2128 u32 msr_index = msr_info->index; 2129 u64 data = msr_info->data; 2130 u32 index; 2131 2132 switch (msr_index) { 2133 case MSR_EFER: 2134 ret = kvm_set_msr_common(vcpu, msr_info); 2135 break; 2136 #ifdef CONFIG_X86_64 2137 case MSR_FS_BASE: 2138 vmx_segment_cache_clear(vmx); 2139 vmcs_writel(GUEST_FS_BASE, data); 2140 break; 2141 case MSR_GS_BASE: 2142 vmx_segment_cache_clear(vmx); 2143 vmcs_writel(GUEST_GS_BASE, data); 2144 break; 2145 case MSR_KERNEL_GS_BASE: 2146 vmx_write_guest_kernel_gs_base(vmx, data); 2147 break; 2148 case MSR_IA32_XFD: 2149 ret = kvm_set_msr_common(vcpu, msr_info); 2150 /* 2151 * Always intercepting WRMSR could incur non-negligible 2152 * overhead given xfd might be changed frequently in 2153 * guest context switch. Disable write interception 2154 * upon the first write with a non-zero value (indicating 2155 * potential usage on dynamic xfeatures). Also update 2156 * exception bitmap to trap #NM for proper virtualization 2157 * of guest xfd_err. 2158 */ 2159 if (!ret && data) { 2160 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD, 2161 MSR_TYPE_RW); 2162 vcpu->arch.xfd_no_write_intercept = true; 2163 vmx_update_exception_bitmap(vcpu); 2164 } 2165 break; 2166 #endif 2167 case MSR_IA32_SYSENTER_CS: 2168 if (is_guest_mode(vcpu)) 2169 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2170 vmcs_write32(GUEST_SYSENTER_CS, data); 2171 break; 2172 case MSR_IA32_SYSENTER_EIP: 2173 if (is_guest_mode(vcpu)) { 2174 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2175 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2176 } 2177 vmcs_writel(GUEST_SYSENTER_EIP, data); 2178 break; 2179 case MSR_IA32_SYSENTER_ESP: 2180 if (is_guest_mode(vcpu)) { 2181 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2182 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2183 } 2184 vmcs_writel(GUEST_SYSENTER_ESP, data); 2185 break; 2186 case MSR_IA32_DEBUGCTLMSR: { 2187 u64 invalid; 2188 2189 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated); 2190 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2191 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data); 2192 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2193 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2194 } 2195 2196 if (invalid) 2197 return 1; 2198 2199 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2200 VM_EXIT_SAVE_DEBUG_CONTROLS) 2201 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2202 2203 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2204 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2205 (data & DEBUGCTLMSR_LBR)) 2206 intel_pmu_create_guest_lbr_event(vcpu); 2207 return 0; 2208 } 2209 case MSR_IA32_BNDCFGS: 2210 if (!kvm_mpx_supported() || 2211 (!msr_info->host_initiated && 2212 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2213 return 1; 2214 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2215 (data & MSR_IA32_BNDCFGS_RSVD)) 2216 return 1; 2217 2218 if (is_guest_mode(vcpu) && 2219 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) || 2220 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS))) 2221 get_vmcs12(vcpu)->guest_bndcfgs = data; 2222 2223 vmcs_write64(GUEST_BNDCFGS, data); 2224 break; 2225 case MSR_IA32_UMWAIT_CONTROL: 2226 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2227 return 1; 2228 2229 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2230 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2231 return 1; 2232 2233 vmx->msr_ia32_umwait_control = data; 2234 break; 2235 case MSR_IA32_SPEC_CTRL: 2236 if (!msr_info->host_initiated && 2237 !guest_has_spec_ctrl_msr(vcpu)) 2238 return 1; 2239 2240 if (kvm_spec_ctrl_test_value(data)) 2241 return 1; 2242 2243 vmx->spec_ctrl = data; 2244 if (!data) 2245 break; 2246 2247 /* 2248 * For non-nested: 2249 * When it's written (to non-zero) for the first time, pass 2250 * it through. 2251 * 2252 * For nested: 2253 * The handling of the MSR bitmap for L2 guests is done in 2254 * nested_vmx_prepare_msr_bitmap. We should not touch the 2255 * vmcs02.msr_bitmap here since it gets completely overwritten 2256 * in the merging. We update the vmcs01 here for L1 as well 2257 * since it will end up touching the MSR anyway now. 2258 */ 2259 vmx_disable_intercept_for_msr(vcpu, 2260 MSR_IA32_SPEC_CTRL, 2261 MSR_TYPE_RW); 2262 break; 2263 case MSR_IA32_TSX_CTRL: 2264 if (!msr_info->host_initiated && 2265 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2266 return 1; 2267 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2268 return 1; 2269 goto find_uret_msr; 2270 case MSR_IA32_CR_PAT: 2271 ret = kvm_set_msr_common(vcpu, msr_info); 2272 if (ret) 2273 break; 2274 2275 if (is_guest_mode(vcpu) && 2276 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2277 get_vmcs12(vcpu)->guest_ia32_pat = data; 2278 2279 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 2280 vmcs_write64(GUEST_IA32_PAT, data); 2281 break; 2282 case MSR_IA32_MCG_EXT_CTL: 2283 if ((!msr_info->host_initiated && 2284 !(to_vmx(vcpu)->msr_ia32_feature_control & 2285 FEAT_CTL_LMCE_ENABLED)) || 2286 (data & ~MCG_EXT_CTL_LMCE_EN)) 2287 return 1; 2288 vcpu->arch.mcg_ext_ctl = data; 2289 break; 2290 case MSR_IA32_FEAT_CTL: 2291 if (!is_vmx_feature_control_msr_valid(vmx, msr_info)) 2292 return 1; 2293 2294 vmx->msr_ia32_feature_control = data; 2295 if (msr_info->host_initiated && data == 0) 2296 vmx_leave_nested(vcpu); 2297 2298 /* SGX may be enabled/disabled by guest's firmware */ 2299 vmx_write_encls_bitmap(vcpu, NULL); 2300 break; 2301 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2302 /* 2303 * On real hardware, the LE hash MSRs are writable before 2304 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2305 * at which point SGX related bits in IA32_FEATURE_CONTROL 2306 * become writable. 2307 * 2308 * KVM does not emulate SGX activation for simplicity, so 2309 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2310 * is unlocked. This is technically not architectural 2311 * behavior, but it's close enough. 2312 */ 2313 if (!msr_info->host_initiated && 2314 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2315 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2316 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2317 return 1; 2318 vmx->msr_ia32_sgxlepubkeyhash 2319 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2320 break; 2321 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 2322 if (!msr_info->host_initiated) 2323 return 1; /* they are read-only */ 2324 if (!nested_vmx_allowed(vcpu)) 2325 return 1; 2326 return vmx_set_vmx_msr(vcpu, msr_index, data); 2327 case MSR_IA32_RTIT_CTL: 2328 if (!vmx_pt_mode_is_host_guest() || 2329 vmx_rtit_ctl_check(vcpu, data) || 2330 vmx->nested.vmxon) 2331 return 1; 2332 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2333 vmx->pt_desc.guest.ctl = data; 2334 pt_update_intercept_for_msr(vcpu); 2335 break; 2336 case MSR_IA32_RTIT_STATUS: 2337 if (!pt_can_write_msr(vmx)) 2338 return 1; 2339 if (data & MSR_IA32_RTIT_STATUS_MASK) 2340 return 1; 2341 vmx->pt_desc.guest.status = data; 2342 break; 2343 case MSR_IA32_RTIT_CR3_MATCH: 2344 if (!pt_can_write_msr(vmx)) 2345 return 1; 2346 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2347 PT_CAP_cr3_filtering)) 2348 return 1; 2349 vmx->pt_desc.guest.cr3_match = data; 2350 break; 2351 case MSR_IA32_RTIT_OUTPUT_BASE: 2352 if (!pt_can_write_msr(vmx)) 2353 return 1; 2354 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2355 PT_CAP_topa_output) && 2356 !intel_pt_validate_cap(vmx->pt_desc.caps, 2357 PT_CAP_single_range_output)) 2358 return 1; 2359 if (!pt_output_base_valid(vcpu, data)) 2360 return 1; 2361 vmx->pt_desc.guest.output_base = data; 2362 break; 2363 case MSR_IA32_RTIT_OUTPUT_MASK: 2364 if (!pt_can_write_msr(vmx)) 2365 return 1; 2366 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2367 PT_CAP_topa_output) && 2368 !intel_pt_validate_cap(vmx->pt_desc.caps, 2369 PT_CAP_single_range_output)) 2370 return 1; 2371 vmx->pt_desc.guest.output_mask = data; 2372 break; 2373 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2374 if (!pt_can_write_msr(vmx)) 2375 return 1; 2376 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2377 if (index >= 2 * vmx->pt_desc.num_address_ranges) 2378 return 1; 2379 if (is_noncanonical_address(data, vcpu)) 2380 return 1; 2381 if (index % 2) 2382 vmx->pt_desc.guest.addr_b[index / 2] = data; 2383 else 2384 vmx->pt_desc.guest.addr_a[index / 2] = data; 2385 break; 2386 case MSR_IA32_PERF_CAPABILITIES: 2387 if (data && !vcpu_to_pmu(vcpu)->version) 2388 return 1; 2389 if (data & PMU_CAP_LBR_FMT) { 2390 if ((data & PMU_CAP_LBR_FMT) != 2391 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT)) 2392 return 1; 2393 if (!cpuid_model_is_consistent(vcpu)) 2394 return 1; 2395 } 2396 if (data & PERF_CAP_PEBS_FORMAT) { 2397 if ((data & PERF_CAP_PEBS_MASK) != 2398 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK)) 2399 return 1; 2400 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS)) 2401 return 1; 2402 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64)) 2403 return 1; 2404 if (!cpuid_model_is_consistent(vcpu)) 2405 return 1; 2406 } 2407 ret = kvm_set_msr_common(vcpu, msr_info); 2408 break; 2409 2410 default: 2411 find_uret_msr: 2412 msr = vmx_find_uret_msr(vmx, msr_index); 2413 if (msr) 2414 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2415 else 2416 ret = kvm_set_msr_common(vcpu, msr_info); 2417 } 2418 2419 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */ 2420 if (msr_index == MSR_IA32_ARCH_CAPABILITIES) 2421 vmx_update_fb_clear_dis(vcpu, vmx); 2422 2423 return ret; 2424 } 2425 2426 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2427 { 2428 unsigned long guest_owned_bits; 2429 2430 kvm_register_mark_available(vcpu, reg); 2431 2432 switch (reg) { 2433 case VCPU_REGS_RSP: 2434 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2435 break; 2436 case VCPU_REGS_RIP: 2437 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2438 break; 2439 case VCPU_EXREG_PDPTR: 2440 if (enable_ept) 2441 ept_save_pdptrs(vcpu); 2442 break; 2443 case VCPU_EXREG_CR0: 2444 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2445 2446 vcpu->arch.cr0 &= ~guest_owned_bits; 2447 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2448 break; 2449 case VCPU_EXREG_CR3: 2450 /* 2451 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's 2452 * CR3 is loaded into hardware, not the guest's CR3. 2453 */ 2454 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING)) 2455 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2456 break; 2457 case VCPU_EXREG_CR4: 2458 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2459 2460 vcpu->arch.cr4 &= ~guest_owned_bits; 2461 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2462 break; 2463 default: 2464 KVM_BUG_ON(1, vcpu->kvm); 2465 break; 2466 } 2467 } 2468 2469 /* 2470 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2471 * directly instead of going through cpu_has(), to ensure KVM is trapping 2472 * ENCLS whenever it's supported in hardware. It does not matter whether 2473 * the host OS supports or has enabled SGX. 2474 */ 2475 static bool cpu_has_sgx(void) 2476 { 2477 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2478 } 2479 2480 /* 2481 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2482 * can't be used due to errata where VM Exit may incorrectly clear 2483 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the 2484 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2485 */ 2486 static bool cpu_has_perf_global_ctrl_bug(void) 2487 { 2488 if (boot_cpu_data.x86 == 0x6) { 2489 switch (boot_cpu_data.x86_model) { 2490 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */ 2491 case INTEL_FAM6_NEHALEM: /* AAP115 */ 2492 case INTEL_FAM6_WESTMERE: /* AAT100 */ 2493 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */ 2494 case INTEL_FAM6_NEHALEM_EX: /* BA97 */ 2495 return true; 2496 default: 2497 break; 2498 } 2499 } 2500 2501 return false; 2502 } 2503 2504 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result) 2505 { 2506 u32 vmx_msr_low, vmx_msr_high; 2507 u32 ctl = ctl_min | ctl_opt; 2508 2509 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2510 2511 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2512 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2513 2514 /* Ensure minimum (required) set of control bits are supported. */ 2515 if (ctl_min & ~ctl) 2516 return -EIO; 2517 2518 *result = ctl; 2519 return 0; 2520 } 2521 2522 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr) 2523 { 2524 u64 allowed; 2525 2526 rdmsrl(msr, allowed); 2527 2528 return ctl_opt & allowed; 2529 } 2530 2531 static int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2532 struct vmx_capability *vmx_cap) 2533 { 2534 u32 vmx_msr_low, vmx_msr_high; 2535 u32 _pin_based_exec_control = 0; 2536 u32 _cpu_based_exec_control = 0; 2537 u32 _cpu_based_2nd_exec_control = 0; 2538 u64 _cpu_based_3rd_exec_control = 0; 2539 u32 _vmexit_control = 0; 2540 u32 _vmentry_control = 0; 2541 u64 misc_msr; 2542 int i; 2543 2544 /* 2545 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory. 2546 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always 2547 * intercepts writes to PAT and EFER, i.e. never enables those controls. 2548 */ 2549 struct { 2550 u32 entry_control; 2551 u32 exit_control; 2552 } const vmcs_entry_exit_pairs[] = { 2553 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL }, 2554 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT }, 2555 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER }, 2556 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS }, 2557 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL }, 2558 }; 2559 2560 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2561 2562 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL, 2563 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL, 2564 MSR_IA32_VMX_PROCBASED_CTLS, 2565 &_cpu_based_exec_control)) 2566 return -EIO; 2567 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2568 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL, 2569 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL, 2570 MSR_IA32_VMX_PROCBASED_CTLS2, 2571 &_cpu_based_2nd_exec_control)) 2572 return -EIO; 2573 } 2574 #ifndef CONFIG_X86_64 2575 if (!(_cpu_based_2nd_exec_control & 2576 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2577 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2578 #endif 2579 2580 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2581 _cpu_based_2nd_exec_control &= ~( 2582 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2583 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2584 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2585 2586 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2587 &vmx_cap->ept, &vmx_cap->vpid); 2588 2589 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) && 2590 vmx_cap->ept) { 2591 pr_warn_once("EPT CAP should not exist if not support " 2592 "1-setting enable EPT VM-execution control\n"); 2593 2594 if (error_on_inconsistent_vmcs_config) 2595 return -EIO; 2596 2597 vmx_cap->ept = 0; 2598 } 2599 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2600 vmx_cap->vpid) { 2601 pr_warn_once("VPID CAP should not exist if not support " 2602 "1-setting enable VPID VM-execution control\n"); 2603 2604 if (error_on_inconsistent_vmcs_config) 2605 return -EIO; 2606 2607 vmx_cap->vpid = 0; 2608 } 2609 2610 if (!cpu_has_sgx()) 2611 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING; 2612 2613 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS) 2614 _cpu_based_3rd_exec_control = 2615 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL, 2616 MSR_IA32_VMX_PROCBASED_CTLS3); 2617 2618 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS, 2619 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS, 2620 MSR_IA32_VMX_EXIT_CTLS, 2621 &_vmexit_control)) 2622 return -EIO; 2623 2624 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL, 2625 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL, 2626 MSR_IA32_VMX_PINBASED_CTLS, 2627 &_pin_based_exec_control)) 2628 return -EIO; 2629 2630 if (cpu_has_broken_vmx_preemption_timer()) 2631 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2632 if (!(_cpu_based_2nd_exec_control & 2633 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2634 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2635 2636 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS, 2637 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS, 2638 MSR_IA32_VMX_ENTRY_CTLS, 2639 &_vmentry_control)) 2640 return -EIO; 2641 2642 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) { 2643 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control; 2644 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control; 2645 2646 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl)) 2647 continue; 2648 2649 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n", 2650 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl); 2651 2652 if (error_on_inconsistent_vmcs_config) 2653 return -EIO; 2654 2655 _vmentry_control &= ~n_ctrl; 2656 _vmexit_control &= ~x_ctrl; 2657 } 2658 2659 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2660 2661 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2662 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2663 return -EIO; 2664 2665 #ifdef CONFIG_X86_64 2666 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2667 if (vmx_msr_high & (1u<<16)) 2668 return -EIO; 2669 #endif 2670 2671 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2672 if (((vmx_msr_high >> 18) & 15) != 6) 2673 return -EIO; 2674 2675 rdmsrl(MSR_IA32_VMX_MISC, misc_msr); 2676 2677 vmcs_conf->size = vmx_msr_high & 0x1fff; 2678 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2679 2680 vmcs_conf->revision_id = vmx_msr_low; 2681 2682 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2683 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2684 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2685 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control; 2686 vmcs_conf->vmexit_ctrl = _vmexit_control; 2687 vmcs_conf->vmentry_ctrl = _vmentry_control; 2688 vmcs_conf->misc = misc_msr; 2689 2690 #if IS_ENABLED(CONFIG_HYPERV) 2691 if (enlightened_vmcs) 2692 evmcs_sanitize_exec_ctrls(vmcs_conf); 2693 #endif 2694 2695 return 0; 2696 } 2697 2698 static bool kvm_is_vmx_supported(void) 2699 { 2700 int cpu = raw_smp_processor_id(); 2701 2702 if (!cpu_has_vmx()) { 2703 pr_err("VMX not supported by CPU %d\n", cpu); 2704 return false; 2705 } 2706 2707 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2708 !this_cpu_has(X86_FEATURE_VMX)) { 2709 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu); 2710 return false; 2711 } 2712 2713 return true; 2714 } 2715 2716 static int vmx_check_processor_compat(void) 2717 { 2718 int cpu = raw_smp_processor_id(); 2719 struct vmcs_config vmcs_conf; 2720 struct vmx_capability vmx_cap; 2721 2722 if (!kvm_is_vmx_supported()) 2723 return -EIO; 2724 2725 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) { 2726 pr_err("Failed to setup VMCS config on CPU %d\n", cpu); 2727 return -EIO; 2728 } 2729 if (nested) 2730 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept); 2731 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) { 2732 pr_err("Inconsistent VMCS config on CPU %d\n", cpu); 2733 return -EIO; 2734 } 2735 return 0; 2736 } 2737 2738 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2739 { 2740 u64 msr; 2741 2742 cr4_set_bits(X86_CR4_VMXE); 2743 2744 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2745 _ASM_EXTABLE(1b, %l[fault]) 2746 : : [vmxon_pointer] "m"(vmxon_pointer) 2747 : : fault); 2748 return 0; 2749 2750 fault: 2751 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2752 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2753 cr4_clear_bits(X86_CR4_VMXE); 2754 2755 return -EFAULT; 2756 } 2757 2758 static int vmx_hardware_enable(void) 2759 { 2760 int cpu = raw_smp_processor_id(); 2761 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2762 int r; 2763 2764 if (cr4_read_shadow() & X86_CR4_VMXE) 2765 return -EBUSY; 2766 2767 /* 2768 * This can happen if we hot-added a CPU but failed to allocate 2769 * VP assist page for it. 2770 */ 2771 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu)) 2772 return -EFAULT; 2773 2774 intel_pt_handle_vmx(1); 2775 2776 r = kvm_cpu_vmxon(phys_addr); 2777 if (r) { 2778 intel_pt_handle_vmx(0); 2779 return r; 2780 } 2781 2782 if (enable_ept) 2783 ept_sync_global(); 2784 2785 return 0; 2786 } 2787 2788 static void vmclear_local_loaded_vmcss(void) 2789 { 2790 int cpu = raw_smp_processor_id(); 2791 struct loaded_vmcs *v, *n; 2792 2793 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2794 loaded_vmcss_on_cpu_link) 2795 __loaded_vmcs_clear(v); 2796 } 2797 2798 static void vmx_hardware_disable(void) 2799 { 2800 vmclear_local_loaded_vmcss(); 2801 2802 if (cpu_vmxoff()) 2803 kvm_spurious_fault(); 2804 2805 hv_reset_evmcs(); 2806 2807 intel_pt_handle_vmx(0); 2808 } 2809 2810 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2811 { 2812 int node = cpu_to_node(cpu); 2813 struct page *pages; 2814 struct vmcs *vmcs; 2815 2816 pages = __alloc_pages_node(node, flags, 0); 2817 if (!pages) 2818 return NULL; 2819 vmcs = page_address(pages); 2820 memset(vmcs, 0, vmcs_config.size); 2821 2822 /* KVM supports Enlightened VMCS v1 only */ 2823 if (kvm_is_using_evmcs()) 2824 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2825 else 2826 vmcs->hdr.revision_id = vmcs_config.revision_id; 2827 2828 if (shadow) 2829 vmcs->hdr.shadow_vmcs = 1; 2830 return vmcs; 2831 } 2832 2833 void free_vmcs(struct vmcs *vmcs) 2834 { 2835 free_page((unsigned long)vmcs); 2836 } 2837 2838 /* 2839 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2840 */ 2841 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2842 { 2843 if (!loaded_vmcs->vmcs) 2844 return; 2845 loaded_vmcs_clear(loaded_vmcs); 2846 free_vmcs(loaded_vmcs->vmcs); 2847 loaded_vmcs->vmcs = NULL; 2848 if (loaded_vmcs->msr_bitmap) 2849 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2850 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2851 } 2852 2853 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2854 { 2855 loaded_vmcs->vmcs = alloc_vmcs(false); 2856 if (!loaded_vmcs->vmcs) 2857 return -ENOMEM; 2858 2859 vmcs_clear(loaded_vmcs->vmcs); 2860 2861 loaded_vmcs->shadow_vmcs = NULL; 2862 loaded_vmcs->hv_timer_soft_disabled = false; 2863 loaded_vmcs->cpu = -1; 2864 loaded_vmcs->launched = 0; 2865 2866 if (cpu_has_vmx_msr_bitmap()) { 2867 loaded_vmcs->msr_bitmap = (unsigned long *) 2868 __get_free_page(GFP_KERNEL_ACCOUNT); 2869 if (!loaded_vmcs->msr_bitmap) 2870 goto out_vmcs; 2871 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2872 } 2873 2874 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2875 memset(&loaded_vmcs->controls_shadow, 0, 2876 sizeof(struct vmcs_controls_shadow)); 2877 2878 return 0; 2879 2880 out_vmcs: 2881 free_loaded_vmcs(loaded_vmcs); 2882 return -ENOMEM; 2883 } 2884 2885 static void free_kvm_area(void) 2886 { 2887 int cpu; 2888 2889 for_each_possible_cpu(cpu) { 2890 free_vmcs(per_cpu(vmxarea, cpu)); 2891 per_cpu(vmxarea, cpu) = NULL; 2892 } 2893 } 2894 2895 static __init int alloc_kvm_area(void) 2896 { 2897 int cpu; 2898 2899 for_each_possible_cpu(cpu) { 2900 struct vmcs *vmcs; 2901 2902 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2903 if (!vmcs) { 2904 free_kvm_area(); 2905 return -ENOMEM; 2906 } 2907 2908 /* 2909 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2910 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2911 * revision_id reported by MSR_IA32_VMX_BASIC. 2912 * 2913 * However, even though not explicitly documented by 2914 * TLFS, VMXArea passed as VMXON argument should 2915 * still be marked with revision_id reported by 2916 * physical CPU. 2917 */ 2918 if (kvm_is_using_evmcs()) 2919 vmcs->hdr.revision_id = vmcs_config.revision_id; 2920 2921 per_cpu(vmxarea, cpu) = vmcs; 2922 } 2923 return 0; 2924 } 2925 2926 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2927 struct kvm_segment *save) 2928 { 2929 if (!emulate_invalid_guest_state) { 2930 /* 2931 * CS and SS RPL should be equal during guest entry according 2932 * to VMX spec, but in reality it is not always so. Since vcpu 2933 * is in the middle of the transition from real mode to 2934 * protected mode it is safe to assume that RPL 0 is a good 2935 * default value. 2936 */ 2937 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2938 save->selector &= ~SEGMENT_RPL_MASK; 2939 save->dpl = save->selector & SEGMENT_RPL_MASK; 2940 save->s = 1; 2941 } 2942 __vmx_set_segment(vcpu, save, seg); 2943 } 2944 2945 static void enter_pmode(struct kvm_vcpu *vcpu) 2946 { 2947 unsigned long flags; 2948 struct vcpu_vmx *vmx = to_vmx(vcpu); 2949 2950 /* 2951 * Update real mode segment cache. It may be not up-to-date if segment 2952 * register was written while vcpu was in a guest mode. 2953 */ 2954 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2955 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2956 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2957 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2958 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2959 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2960 2961 vmx->rmode.vm86_active = 0; 2962 2963 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2964 2965 flags = vmcs_readl(GUEST_RFLAGS); 2966 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2967 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2968 vmcs_writel(GUEST_RFLAGS, flags); 2969 2970 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2971 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2972 2973 vmx_update_exception_bitmap(vcpu); 2974 2975 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2976 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2977 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2978 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2979 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2980 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2981 } 2982 2983 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2984 { 2985 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2986 struct kvm_segment var = *save; 2987 2988 var.dpl = 0x3; 2989 if (seg == VCPU_SREG_CS) 2990 var.type = 0x3; 2991 2992 if (!emulate_invalid_guest_state) { 2993 var.selector = var.base >> 4; 2994 var.base = var.base & 0xffff0; 2995 var.limit = 0xffff; 2996 var.g = 0; 2997 var.db = 0; 2998 var.present = 1; 2999 var.s = 1; 3000 var.l = 0; 3001 var.unusable = 0; 3002 var.type = 0x3; 3003 var.avl = 0; 3004 if (save->base & 0xf) 3005 pr_warn_once("segment base is not paragraph aligned " 3006 "when entering protected mode (seg=%d)", seg); 3007 } 3008 3009 vmcs_write16(sf->selector, var.selector); 3010 vmcs_writel(sf->base, var.base); 3011 vmcs_write32(sf->limit, var.limit); 3012 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 3013 } 3014 3015 static void enter_rmode(struct kvm_vcpu *vcpu) 3016 { 3017 unsigned long flags; 3018 struct vcpu_vmx *vmx = to_vmx(vcpu); 3019 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 3020 3021 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 3022 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 3023 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 3024 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 3025 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 3026 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 3027 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 3028 3029 vmx->rmode.vm86_active = 1; 3030 3031 /* 3032 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 3033 * vcpu. Warn the user that an update is overdue. 3034 */ 3035 if (!kvm_vmx->tss_addr) 3036 pr_warn_once("KVM_SET_TSS_ADDR needs to be called before running vCPU\n"); 3037 3038 vmx_segment_cache_clear(vmx); 3039 3040 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 3041 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 3042 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 3043 3044 flags = vmcs_readl(GUEST_RFLAGS); 3045 vmx->rmode.save_rflags = flags; 3046 3047 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 3048 3049 vmcs_writel(GUEST_RFLAGS, flags); 3050 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 3051 vmx_update_exception_bitmap(vcpu); 3052 3053 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 3054 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 3055 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 3056 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 3057 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 3058 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 3059 } 3060 3061 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 3062 { 3063 struct vcpu_vmx *vmx = to_vmx(vcpu); 3064 3065 /* Nothing to do if hardware doesn't support EFER. */ 3066 if (!vmx_find_uret_msr(vmx, MSR_EFER)) 3067 return 0; 3068 3069 vcpu->arch.efer = efer; 3070 #ifdef CONFIG_X86_64 3071 if (efer & EFER_LMA) 3072 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE); 3073 else 3074 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE); 3075 #else 3076 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm)) 3077 return 1; 3078 #endif 3079 3080 vmx_setup_uret_msrs(vmx); 3081 return 0; 3082 } 3083 3084 #ifdef CONFIG_X86_64 3085 3086 static void enter_lmode(struct kvm_vcpu *vcpu) 3087 { 3088 u32 guest_tr_ar; 3089 3090 vmx_segment_cache_clear(to_vmx(vcpu)); 3091 3092 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 3093 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 3094 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 3095 __func__); 3096 vmcs_write32(GUEST_TR_AR_BYTES, 3097 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 3098 | VMX_AR_TYPE_BUSY_64_TSS); 3099 } 3100 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 3101 } 3102 3103 static void exit_lmode(struct kvm_vcpu *vcpu) 3104 { 3105 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 3106 } 3107 3108 #endif 3109 3110 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 3111 { 3112 struct vcpu_vmx *vmx = to_vmx(vcpu); 3113 3114 /* 3115 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 3116 * the CPU is not required to invalidate guest-physical mappings on 3117 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 3118 * associated with the root EPT structure and not any particular VPID 3119 * (INVVPID also isn't required to invalidate guest-physical mappings). 3120 */ 3121 if (enable_ept) { 3122 ept_sync_global(); 3123 } else if (enable_vpid) { 3124 if (cpu_has_vmx_invvpid_global()) { 3125 vpid_sync_vcpu_global(); 3126 } else { 3127 vpid_sync_vcpu_single(vmx->vpid); 3128 vpid_sync_vcpu_single(vmx->nested.vpid02); 3129 } 3130 } 3131 } 3132 3133 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu) 3134 { 3135 if (is_guest_mode(vcpu)) 3136 return nested_get_vpid02(vcpu); 3137 return to_vmx(vcpu)->vpid; 3138 } 3139 3140 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 3141 { 3142 struct kvm_mmu *mmu = vcpu->arch.mmu; 3143 u64 root_hpa = mmu->root.hpa; 3144 3145 /* No flush required if the current context is invalid. */ 3146 if (!VALID_PAGE(root_hpa)) 3147 return; 3148 3149 if (enable_ept) 3150 ept_sync_context(construct_eptp(vcpu, root_hpa, 3151 mmu->root_role.level)); 3152 else 3153 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3154 } 3155 3156 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 3157 { 3158 /* 3159 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in 3160 * vmx_flush_tlb_guest() for an explanation of why this is ok. 3161 */ 3162 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr); 3163 } 3164 3165 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 3166 { 3167 /* 3168 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a 3169 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are 3170 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is 3171 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 3172 * i.e. no explicit INVVPID is necessary. 3173 */ 3174 vpid_sync_context(vmx_get_current_vpid(vcpu)); 3175 } 3176 3177 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 3178 { 3179 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3180 3181 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 3182 return; 3183 3184 if (is_pae_paging(vcpu)) { 3185 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3186 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3187 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3188 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3189 } 3190 } 3191 3192 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3193 { 3194 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3195 3196 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3197 return; 3198 3199 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3200 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3201 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3202 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3203 3204 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR); 3205 } 3206 3207 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \ 3208 CPU_BASED_CR3_STORE_EXITING) 3209 3210 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3211 { 3212 struct vcpu_vmx *vmx = to_vmx(vcpu); 3213 unsigned long hw_cr0, old_cr0_pg; 3214 u32 tmp; 3215 3216 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG); 3217 3218 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3219 if (is_unrestricted_guest(vcpu)) 3220 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3221 else { 3222 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3223 if (!enable_ept) 3224 hw_cr0 |= X86_CR0_WP; 3225 3226 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3227 enter_pmode(vcpu); 3228 3229 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3230 enter_rmode(vcpu); 3231 } 3232 3233 vmcs_writel(CR0_READ_SHADOW, cr0); 3234 vmcs_writel(GUEST_CR0, hw_cr0); 3235 vcpu->arch.cr0 = cr0; 3236 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3237 3238 #ifdef CONFIG_X86_64 3239 if (vcpu->arch.efer & EFER_LME) { 3240 if (!old_cr0_pg && (cr0 & X86_CR0_PG)) 3241 enter_lmode(vcpu); 3242 else if (old_cr0_pg && !(cr0 & X86_CR0_PG)) 3243 exit_lmode(vcpu); 3244 } 3245 #endif 3246 3247 if (enable_ept && !is_unrestricted_guest(vcpu)) { 3248 /* 3249 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If 3250 * the below code _enables_ CR3 exiting, vmx_cache_reg() will 3251 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks 3252 * KVM's CR3 is installed. 3253 */ 3254 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3255 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3256 3257 /* 3258 * When running with EPT but not unrestricted guest, KVM must 3259 * intercept CR3 accesses when paging is _disabled_. This is 3260 * necessary because restricted guests can't actually run with 3261 * paging disabled, and so KVM stuffs its own CR3 in order to 3262 * run the guest when identity mapped page tables. 3263 * 3264 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the 3265 * update, it may be stale with respect to CR3 interception, 3266 * e.g. after nested VM-Enter. 3267 * 3268 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or 3269 * stores to forward them to L1, even if KVM does not need to 3270 * intercept them to preserve its identity mapped page tables. 3271 */ 3272 if (!(cr0 & X86_CR0_PG)) { 3273 exec_controls_setbit(vmx, CR3_EXITING_BITS); 3274 } else if (!is_guest_mode(vcpu)) { 3275 exec_controls_clearbit(vmx, CR3_EXITING_BITS); 3276 } else { 3277 tmp = exec_controls_get(vmx); 3278 tmp &= ~CR3_EXITING_BITS; 3279 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS; 3280 exec_controls_set(vmx, tmp); 3281 } 3282 3283 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */ 3284 if ((old_cr0_pg ^ cr0) & X86_CR0_PG) 3285 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3286 3287 /* 3288 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but 3289 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG. 3290 */ 3291 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG)) 3292 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); 3293 } 3294 3295 /* depends on vcpu->arch.cr0 to be set to a new value */ 3296 vmx->emulation_required = vmx_emulation_required(vcpu); 3297 } 3298 3299 static int vmx_get_max_tdp_level(void) 3300 { 3301 if (cpu_has_vmx_ept_5levels()) 3302 return 5; 3303 return 4; 3304 } 3305 3306 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3307 { 3308 u64 eptp = VMX_EPTP_MT_WB; 3309 3310 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3311 3312 if (enable_ept_ad_bits && 3313 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3314 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3315 eptp |= root_hpa; 3316 3317 return eptp; 3318 } 3319 3320 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3321 int root_level) 3322 { 3323 struct kvm *kvm = vcpu->kvm; 3324 bool update_guest_cr3 = true; 3325 unsigned long guest_cr3; 3326 u64 eptp; 3327 3328 if (enable_ept) { 3329 eptp = construct_eptp(vcpu, root_hpa, root_level); 3330 vmcs_write64(EPT_POINTER, eptp); 3331 3332 hv_track_root_tdp(vcpu, root_hpa); 3333 3334 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3335 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3336 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3)) 3337 guest_cr3 = vcpu->arch.cr3; 3338 else /* vmcs.GUEST_CR3 is already up-to-date. */ 3339 update_guest_cr3 = false; 3340 vmx_ept_load_pdptrs(vcpu); 3341 } else { 3342 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3343 } 3344 3345 if (update_guest_cr3) 3346 vmcs_writel(GUEST_CR3, guest_cr3); 3347 } 3348 3349 3350 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3351 { 3352 /* 3353 * We operate under the default treatment of SMM, so VMX cannot be 3354 * enabled under SMM. Note, whether or not VMXE is allowed at all, 3355 * i.e. is a reserved bit, is handled by common x86 code. 3356 */ 3357 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3358 return false; 3359 3360 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3361 return false; 3362 3363 return true; 3364 } 3365 3366 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3367 { 3368 unsigned long old_cr4 = kvm_read_cr4(vcpu); 3369 struct vcpu_vmx *vmx = to_vmx(vcpu); 3370 unsigned long hw_cr4; 3371 3372 /* 3373 * Pass through host's Machine Check Enable value to hw_cr4, which 3374 * is in force while we are in guest mode. Do not let guests control 3375 * this bit, even if host CR4.MCE == 0. 3376 */ 3377 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3378 if (is_unrestricted_guest(vcpu)) 3379 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3380 else if (vmx->rmode.vm86_active) 3381 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3382 else 3383 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3384 3385 if (vmx_umip_emulated()) { 3386 if (cr4 & X86_CR4_UMIP) { 3387 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3388 hw_cr4 &= ~X86_CR4_UMIP; 3389 } else if (!is_guest_mode(vcpu) || 3390 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3391 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3392 } 3393 } 3394 3395 vcpu->arch.cr4 = cr4; 3396 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3397 3398 if (!is_unrestricted_guest(vcpu)) { 3399 if (enable_ept) { 3400 if (!is_paging(vcpu)) { 3401 hw_cr4 &= ~X86_CR4_PAE; 3402 hw_cr4 |= X86_CR4_PSE; 3403 } else if (!(cr4 & X86_CR4_PAE)) { 3404 hw_cr4 &= ~X86_CR4_PAE; 3405 } 3406 } 3407 3408 /* 3409 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3410 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3411 * to be manually disabled when guest switches to non-paging 3412 * mode. 3413 * 3414 * If !enable_unrestricted_guest, the CPU is always running 3415 * with CR0.PG=1 and CR4 needs to be modified. 3416 * If enable_unrestricted_guest, the CPU automatically 3417 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3418 */ 3419 if (!is_paging(vcpu)) 3420 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3421 } 3422 3423 vmcs_writel(CR4_READ_SHADOW, cr4); 3424 vmcs_writel(GUEST_CR4, hw_cr4); 3425 3426 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3427 kvm_update_cpuid_runtime(vcpu); 3428 } 3429 3430 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3431 { 3432 struct vcpu_vmx *vmx = to_vmx(vcpu); 3433 u32 ar; 3434 3435 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3436 *var = vmx->rmode.segs[seg]; 3437 if (seg == VCPU_SREG_TR 3438 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3439 return; 3440 var->base = vmx_read_guest_seg_base(vmx, seg); 3441 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3442 return; 3443 } 3444 var->base = vmx_read_guest_seg_base(vmx, seg); 3445 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3446 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3447 ar = vmx_read_guest_seg_ar(vmx, seg); 3448 var->unusable = (ar >> 16) & 1; 3449 var->type = ar & 15; 3450 var->s = (ar >> 4) & 1; 3451 var->dpl = (ar >> 5) & 3; 3452 /* 3453 * Some userspaces do not preserve unusable property. Since usable 3454 * segment has to be present according to VMX spec we can use present 3455 * property to amend userspace bug by making unusable segment always 3456 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3457 * segment as unusable. 3458 */ 3459 var->present = !var->unusable; 3460 var->avl = (ar >> 12) & 1; 3461 var->l = (ar >> 13) & 1; 3462 var->db = (ar >> 14) & 1; 3463 var->g = (ar >> 15) & 1; 3464 } 3465 3466 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3467 { 3468 struct kvm_segment s; 3469 3470 if (to_vmx(vcpu)->rmode.vm86_active) { 3471 vmx_get_segment(vcpu, &s, seg); 3472 return s.base; 3473 } 3474 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3475 } 3476 3477 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3478 { 3479 struct vcpu_vmx *vmx = to_vmx(vcpu); 3480 3481 if (unlikely(vmx->rmode.vm86_active)) 3482 return 0; 3483 else { 3484 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3485 return VMX_AR_DPL(ar); 3486 } 3487 } 3488 3489 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3490 { 3491 u32 ar; 3492 3493 ar = var->type & 15; 3494 ar |= (var->s & 1) << 4; 3495 ar |= (var->dpl & 3) << 5; 3496 ar |= (var->present & 1) << 7; 3497 ar |= (var->avl & 1) << 12; 3498 ar |= (var->l & 1) << 13; 3499 ar |= (var->db & 1) << 14; 3500 ar |= (var->g & 1) << 15; 3501 ar |= (var->unusable || !var->present) << 16; 3502 3503 return ar; 3504 } 3505 3506 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3507 { 3508 struct vcpu_vmx *vmx = to_vmx(vcpu); 3509 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3510 3511 vmx_segment_cache_clear(vmx); 3512 3513 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3514 vmx->rmode.segs[seg] = *var; 3515 if (seg == VCPU_SREG_TR) 3516 vmcs_write16(sf->selector, var->selector); 3517 else if (var->s) 3518 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3519 return; 3520 } 3521 3522 vmcs_writel(sf->base, var->base); 3523 vmcs_write32(sf->limit, var->limit); 3524 vmcs_write16(sf->selector, var->selector); 3525 3526 /* 3527 * Fix the "Accessed" bit in AR field of segment registers for older 3528 * qemu binaries. 3529 * IA32 arch specifies that at the time of processor reset the 3530 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3531 * is setting it to 0 in the userland code. This causes invalid guest 3532 * state vmexit when "unrestricted guest" mode is turned on. 3533 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3534 * tree. Newer qemu binaries with that qemu fix would not need this 3535 * kvm hack. 3536 */ 3537 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3538 var->type |= 0x1; /* Accessed */ 3539 3540 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3541 } 3542 3543 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3544 { 3545 __vmx_set_segment(vcpu, var, seg); 3546 3547 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu); 3548 } 3549 3550 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3551 { 3552 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3553 3554 *db = (ar >> 14) & 1; 3555 *l = (ar >> 13) & 1; 3556 } 3557 3558 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3559 { 3560 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3561 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3562 } 3563 3564 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3565 { 3566 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3567 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3568 } 3569 3570 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3571 { 3572 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3573 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3574 } 3575 3576 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3577 { 3578 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3579 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3580 } 3581 3582 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3583 { 3584 struct kvm_segment var; 3585 u32 ar; 3586 3587 vmx_get_segment(vcpu, &var, seg); 3588 var.dpl = 0x3; 3589 if (seg == VCPU_SREG_CS) 3590 var.type = 0x3; 3591 ar = vmx_segment_access_rights(&var); 3592 3593 if (var.base != (var.selector << 4)) 3594 return false; 3595 if (var.limit != 0xffff) 3596 return false; 3597 if (ar != 0xf3) 3598 return false; 3599 3600 return true; 3601 } 3602 3603 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3604 { 3605 struct kvm_segment cs; 3606 unsigned int cs_rpl; 3607 3608 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3609 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3610 3611 if (cs.unusable) 3612 return false; 3613 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3614 return false; 3615 if (!cs.s) 3616 return false; 3617 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3618 if (cs.dpl > cs_rpl) 3619 return false; 3620 } else { 3621 if (cs.dpl != cs_rpl) 3622 return false; 3623 } 3624 if (!cs.present) 3625 return false; 3626 3627 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3628 return true; 3629 } 3630 3631 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3632 { 3633 struct kvm_segment ss; 3634 unsigned int ss_rpl; 3635 3636 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3637 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3638 3639 if (ss.unusable) 3640 return true; 3641 if (ss.type != 3 && ss.type != 7) 3642 return false; 3643 if (!ss.s) 3644 return false; 3645 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3646 return false; 3647 if (!ss.present) 3648 return false; 3649 3650 return true; 3651 } 3652 3653 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3654 { 3655 struct kvm_segment var; 3656 unsigned int rpl; 3657 3658 vmx_get_segment(vcpu, &var, seg); 3659 rpl = var.selector & SEGMENT_RPL_MASK; 3660 3661 if (var.unusable) 3662 return true; 3663 if (!var.s) 3664 return false; 3665 if (!var.present) 3666 return false; 3667 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3668 if (var.dpl < rpl) /* DPL < RPL */ 3669 return false; 3670 } 3671 3672 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3673 * rights flags 3674 */ 3675 return true; 3676 } 3677 3678 static bool tr_valid(struct kvm_vcpu *vcpu) 3679 { 3680 struct kvm_segment tr; 3681 3682 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3683 3684 if (tr.unusable) 3685 return false; 3686 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3687 return false; 3688 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3689 return false; 3690 if (!tr.present) 3691 return false; 3692 3693 return true; 3694 } 3695 3696 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3697 { 3698 struct kvm_segment ldtr; 3699 3700 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3701 3702 if (ldtr.unusable) 3703 return true; 3704 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3705 return false; 3706 if (ldtr.type != 2) 3707 return false; 3708 if (!ldtr.present) 3709 return false; 3710 3711 return true; 3712 } 3713 3714 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3715 { 3716 struct kvm_segment cs, ss; 3717 3718 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3719 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3720 3721 return ((cs.selector & SEGMENT_RPL_MASK) == 3722 (ss.selector & SEGMENT_RPL_MASK)); 3723 } 3724 3725 /* 3726 * Check if guest state is valid. Returns true if valid, false if 3727 * not. 3728 * We assume that registers are always usable 3729 */ 3730 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3731 { 3732 /* real mode guest state checks */ 3733 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3734 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3735 return false; 3736 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3737 return false; 3738 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3739 return false; 3740 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3741 return false; 3742 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3743 return false; 3744 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3745 return false; 3746 } else { 3747 /* protected mode guest state checks */ 3748 if (!cs_ss_rpl_check(vcpu)) 3749 return false; 3750 if (!code_segment_valid(vcpu)) 3751 return false; 3752 if (!stack_segment_valid(vcpu)) 3753 return false; 3754 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3755 return false; 3756 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3757 return false; 3758 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3759 return false; 3760 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3761 return false; 3762 if (!tr_valid(vcpu)) 3763 return false; 3764 if (!ldtr_valid(vcpu)) 3765 return false; 3766 } 3767 /* TODO: 3768 * - Add checks on RIP 3769 * - Add checks on RFLAGS 3770 */ 3771 3772 return true; 3773 } 3774 3775 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3776 { 3777 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3778 u16 data; 3779 int i; 3780 3781 for (i = 0; i < 3; i++) { 3782 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3783 return -EFAULT; 3784 } 3785 3786 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3787 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3788 return -EFAULT; 3789 3790 data = ~0; 3791 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3792 return -EFAULT; 3793 3794 return 0; 3795 } 3796 3797 static int init_rmode_identity_map(struct kvm *kvm) 3798 { 3799 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3800 int i, r = 0; 3801 void __user *uaddr; 3802 u32 tmp; 3803 3804 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3805 mutex_lock(&kvm->slots_lock); 3806 3807 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3808 goto out; 3809 3810 if (!kvm_vmx->ept_identity_map_addr) 3811 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3812 3813 uaddr = __x86_set_memory_region(kvm, 3814 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3815 kvm_vmx->ept_identity_map_addr, 3816 PAGE_SIZE); 3817 if (IS_ERR(uaddr)) { 3818 r = PTR_ERR(uaddr); 3819 goto out; 3820 } 3821 3822 /* Set up identity-mapping pagetable for EPT in real mode */ 3823 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) { 3824 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3825 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3826 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3827 r = -EFAULT; 3828 goto out; 3829 } 3830 } 3831 kvm_vmx->ept_identity_pagetable_done = true; 3832 3833 out: 3834 mutex_unlock(&kvm->slots_lock); 3835 return r; 3836 } 3837 3838 static void seg_setup(int seg) 3839 { 3840 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3841 unsigned int ar; 3842 3843 vmcs_write16(sf->selector, 0); 3844 vmcs_writel(sf->base, 0); 3845 vmcs_write32(sf->limit, 0xffff); 3846 ar = 0x93; 3847 if (seg == VCPU_SREG_CS) 3848 ar |= 0x08; /* code segment */ 3849 3850 vmcs_write32(sf->ar_bytes, ar); 3851 } 3852 3853 int allocate_vpid(void) 3854 { 3855 int vpid; 3856 3857 if (!enable_vpid) 3858 return 0; 3859 spin_lock(&vmx_vpid_lock); 3860 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3861 if (vpid < VMX_NR_VPIDS) 3862 __set_bit(vpid, vmx_vpid_bitmap); 3863 else 3864 vpid = 0; 3865 spin_unlock(&vmx_vpid_lock); 3866 return vpid; 3867 } 3868 3869 void free_vpid(int vpid) 3870 { 3871 if (!enable_vpid || vpid == 0) 3872 return; 3873 spin_lock(&vmx_vpid_lock); 3874 __clear_bit(vpid, vmx_vpid_bitmap); 3875 spin_unlock(&vmx_vpid_lock); 3876 } 3877 3878 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx) 3879 { 3880 /* 3881 * When KVM is a nested hypervisor on top of Hyper-V and uses 3882 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR 3883 * bitmap has changed. 3884 */ 3885 if (kvm_is_using_evmcs()) { 3886 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 3887 3888 if (evmcs->hv_enlightenments_control.msr_bitmap) 3889 evmcs->hv_clean_fields &= 3890 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP; 3891 } 3892 3893 vmx->nested.force_msr_bitmap_recalc = true; 3894 } 3895 3896 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3897 { 3898 struct vcpu_vmx *vmx = to_vmx(vcpu); 3899 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3900 3901 if (!cpu_has_vmx_msr_bitmap()) 3902 return; 3903 3904 vmx_msr_bitmap_l01_changed(vmx); 3905 3906 /* 3907 * Mark the desired intercept state in shadow bitmap, this is needed 3908 * for resync when the MSR filters change. 3909 */ 3910 if (is_valid_passthrough_msr(msr)) { 3911 int idx = possible_passthrough_msr_slot(msr); 3912 3913 if (idx != -ENOENT) { 3914 if (type & MSR_TYPE_R) 3915 clear_bit(idx, vmx->shadow_msr_intercept.read); 3916 if (type & MSR_TYPE_W) 3917 clear_bit(idx, vmx->shadow_msr_intercept.write); 3918 } 3919 } 3920 3921 if ((type & MSR_TYPE_R) && 3922 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3923 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3924 type &= ~MSR_TYPE_R; 3925 } 3926 3927 if ((type & MSR_TYPE_W) && 3928 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3929 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3930 type &= ~MSR_TYPE_W; 3931 } 3932 3933 if (type & MSR_TYPE_R) 3934 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3935 3936 if (type & MSR_TYPE_W) 3937 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3938 } 3939 3940 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3941 { 3942 struct vcpu_vmx *vmx = to_vmx(vcpu); 3943 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3944 3945 if (!cpu_has_vmx_msr_bitmap()) 3946 return; 3947 3948 vmx_msr_bitmap_l01_changed(vmx); 3949 3950 /* 3951 * Mark the desired intercept state in shadow bitmap, this is needed 3952 * for resync when the MSR filter changes. 3953 */ 3954 if (is_valid_passthrough_msr(msr)) { 3955 int idx = possible_passthrough_msr_slot(msr); 3956 3957 if (idx != -ENOENT) { 3958 if (type & MSR_TYPE_R) 3959 set_bit(idx, vmx->shadow_msr_intercept.read); 3960 if (type & MSR_TYPE_W) 3961 set_bit(idx, vmx->shadow_msr_intercept.write); 3962 } 3963 } 3964 3965 if (type & MSR_TYPE_R) 3966 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3967 3968 if (type & MSR_TYPE_W) 3969 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3970 } 3971 3972 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu) 3973 { 3974 /* 3975 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves 3976 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0, 3977 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits. 3978 */ 3979 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG; 3980 const int write_idx = read_idx + (0x800 / sizeof(u64)); 3981 struct vcpu_vmx *vmx = to_vmx(vcpu); 3982 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap; 3983 u8 mode; 3984 3985 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu))) 3986 return; 3987 3988 if (cpu_has_secondary_exec_ctrls() && 3989 (secondary_exec_controls_get(vmx) & 3990 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3991 mode = MSR_BITMAP_MODE_X2APIC; 3992 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3993 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3994 } else { 3995 mode = 0; 3996 } 3997 3998 if (mode == vmx->x2apic_msr_bitmap_mode) 3999 return; 4000 4001 vmx->x2apic_msr_bitmap_mode = mode; 4002 4003 /* 4004 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended 4005 * registers (0x840 and above) intercepted, KVM doesn't support them. 4006 * Intercept all writes by default and poke holes as needed. Pass 4007 * through reads for all valid registers by default in x2APIC+APICv 4008 * mode, only the current timer count needs on-demand emulation by KVM. 4009 */ 4010 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) 4011 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic); 4012 else 4013 msr_bitmap[read_idx] = ~0ull; 4014 msr_bitmap[write_idx] = ~0ull; 4015 4016 /* 4017 * TPR reads and writes can be virtualized even if virtual interrupt 4018 * delivery is not in use. 4019 */ 4020 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 4021 !(mode & MSR_BITMAP_MODE_X2APIC)); 4022 4023 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 4024 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 4025 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 4026 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 4027 if (enable_ipiv) 4028 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW); 4029 } 4030 } 4031 4032 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 4033 { 4034 struct vcpu_vmx *vmx = to_vmx(vcpu); 4035 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 4036 u32 i; 4037 4038 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 4039 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 4040 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 4041 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 4042 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) { 4043 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 4044 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 4045 } 4046 } 4047 4048 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 4049 { 4050 struct vcpu_vmx *vmx = to_vmx(vcpu); 4051 void *vapic_page; 4052 u32 vppr; 4053 int rvi; 4054 4055 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 4056 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 4057 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 4058 return false; 4059 4060 rvi = vmx_get_rvi(); 4061 4062 vapic_page = vmx->nested.virtual_apic_map.hva; 4063 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 4064 4065 return ((rvi & 0xf0) > (vppr & 0xf0)); 4066 } 4067 4068 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 4069 { 4070 struct vcpu_vmx *vmx = to_vmx(vcpu); 4071 u32 i; 4072 4073 /* 4074 * Redo intercept permissions for MSRs that KVM is passing through to 4075 * the guest. Disabling interception will check the new MSR filter and 4076 * ensure that KVM enables interception if usersepace wants to filter 4077 * the MSR. MSRs that KVM is already intercepting don't need to be 4078 * refreshed since KVM is going to intercept them regardless of what 4079 * userspace wants. 4080 */ 4081 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 4082 u32 msr = vmx_possible_passthrough_msrs[i]; 4083 4084 if (!test_bit(i, vmx->shadow_msr_intercept.read)) 4085 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R); 4086 4087 if (!test_bit(i, vmx->shadow_msr_intercept.write)) 4088 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W); 4089 } 4090 4091 /* PT MSRs can be passed through iff PT is exposed to the guest. */ 4092 if (vmx_pt_mode_is_host_guest()) 4093 pt_update_intercept_for_msr(vcpu); 4094 } 4095 4096 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 4097 int pi_vec) 4098 { 4099 #ifdef CONFIG_SMP 4100 if (vcpu->mode == IN_GUEST_MODE) { 4101 /* 4102 * The vector of the virtual has already been set in the PIR. 4103 * Send a notification event to deliver the virtual interrupt 4104 * unless the vCPU is the currently running vCPU, i.e. the 4105 * event is being sent from a fastpath VM-Exit handler, in 4106 * which case the PIR will be synced to the vIRR before 4107 * re-entering the guest. 4108 * 4109 * When the target is not the running vCPU, the following 4110 * possibilities emerge: 4111 * 4112 * Case 1: vCPU stays in non-root mode. Sending a notification 4113 * event posts the interrupt to the vCPU. 4114 * 4115 * Case 2: vCPU exits to root mode and is still runnable. The 4116 * PIR will be synced to the vIRR before re-entering the guest. 4117 * Sending a notification event is ok as the host IRQ handler 4118 * will ignore the spurious event. 4119 * 4120 * Case 3: vCPU exits to root mode and is blocked. vcpu_block() 4121 * has already synced PIR to vIRR and never blocks the vCPU if 4122 * the vIRR is not empty. Therefore, a blocked vCPU here does 4123 * not wait for any requested interrupts in PIR, and sending a 4124 * notification event also results in a benign, spurious event. 4125 */ 4126 4127 if (vcpu != kvm_get_running_vcpu()) 4128 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 4129 return; 4130 } 4131 #endif 4132 /* 4133 * The vCPU isn't in the guest; wake the vCPU in case it is blocking, 4134 * otherwise do nothing as KVM will grab the highest priority pending 4135 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest(). 4136 */ 4137 kvm_vcpu_wake_up(vcpu); 4138 } 4139 4140 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 4141 int vector) 4142 { 4143 struct vcpu_vmx *vmx = to_vmx(vcpu); 4144 4145 if (is_guest_mode(vcpu) && 4146 vector == vmx->nested.posted_intr_nv) { 4147 /* 4148 * If a posted intr is not recognized by hardware, 4149 * we will accomplish it in the next vmentry. 4150 */ 4151 vmx->nested.pi_pending = true; 4152 kvm_make_request(KVM_REQ_EVENT, vcpu); 4153 4154 /* 4155 * This pairs with the smp_mb_*() after setting vcpu->mode in 4156 * vcpu_enter_guest() to guarantee the vCPU sees the event 4157 * request if triggering a posted interrupt "fails" because 4158 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as 4159 * the smb_wmb() in kvm_make_request() only ensures everything 4160 * done before making the request is visible when the request 4161 * is visible, it doesn't ensure ordering between the store to 4162 * vcpu->requests and the load from vcpu->mode. 4163 */ 4164 smp_mb__after_atomic(); 4165 4166 /* the PIR and ON have been set by L1. */ 4167 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR); 4168 return 0; 4169 } 4170 return -1; 4171 } 4172 /* 4173 * Send interrupt to vcpu via posted interrupt way. 4174 * 1. If target vcpu is running(non-root mode), send posted interrupt 4175 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4176 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4177 * interrupt from PIR in next vmentry. 4178 */ 4179 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4180 { 4181 struct vcpu_vmx *vmx = to_vmx(vcpu); 4182 int r; 4183 4184 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4185 if (!r) 4186 return 0; 4187 4188 /* Note, this is called iff the local APIC is in-kernel. */ 4189 if (!vcpu->arch.apic->apicv_active) 4190 return -1; 4191 4192 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4193 return 0; 4194 4195 /* If a previous notification has sent the IPI, nothing to do. */ 4196 if (pi_test_and_set_on(&vmx->pi_desc)) 4197 return 0; 4198 4199 /* 4200 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*() 4201 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is 4202 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a 4203 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE. 4204 */ 4205 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR); 4206 return 0; 4207 } 4208 4209 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode, 4210 int trig_mode, int vector) 4211 { 4212 struct kvm_vcpu *vcpu = apic->vcpu; 4213 4214 if (vmx_deliver_posted_interrupt(vcpu, vector)) { 4215 kvm_lapic_set_irr(vector, apic); 4216 kvm_make_request(KVM_REQ_EVENT, vcpu); 4217 kvm_vcpu_kick(vcpu); 4218 } else { 4219 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, 4220 trig_mode, vector); 4221 } 4222 } 4223 4224 /* 4225 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4226 * will not change in the lifetime of the guest. 4227 * Note that host-state that does change is set elsewhere. E.g., host-state 4228 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4229 */ 4230 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4231 { 4232 u32 low32, high32; 4233 unsigned long tmpl; 4234 unsigned long cr0, cr3, cr4; 4235 4236 cr0 = read_cr0(); 4237 WARN_ON(cr0 & X86_CR0_TS); 4238 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4239 4240 /* 4241 * Save the most likely value for this task's CR3 in the VMCS. 4242 * We can't use __get_current_cr3_fast() because we're not atomic. 4243 */ 4244 cr3 = __read_cr3(); 4245 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4246 vmx->loaded_vmcs->host_state.cr3 = cr3; 4247 4248 /* Save the most likely value for this task's CR4 in the VMCS. */ 4249 cr4 = cr4_read_shadow(); 4250 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4251 vmx->loaded_vmcs->host_state.cr4 = cr4; 4252 4253 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4254 #ifdef CONFIG_X86_64 4255 /* 4256 * Load null selectors, so we can avoid reloading them in 4257 * vmx_prepare_switch_to_host(), in case userspace uses 4258 * the null selectors too (the expected case). 4259 */ 4260 vmcs_write16(HOST_DS_SELECTOR, 0); 4261 vmcs_write16(HOST_ES_SELECTOR, 0); 4262 #else 4263 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4264 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4265 #endif 4266 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4267 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4268 4269 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4270 4271 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4272 4273 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4274 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4275 4276 /* 4277 * SYSENTER is used for 32-bit system calls on either 32-bit or 4278 * 64-bit kernels. It is always zero If neither is allowed, otherwise 4279 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may 4280 * have already done so!). 4281 */ 4282 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32)) 4283 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0); 4284 4285 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4286 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4287 4288 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4289 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4290 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4291 } 4292 4293 if (cpu_has_load_ia32_efer()) 4294 vmcs_write64(HOST_IA32_EFER, host_efer); 4295 } 4296 4297 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4298 { 4299 struct kvm_vcpu *vcpu = &vmx->vcpu; 4300 4301 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4302 ~vcpu->arch.cr4_guest_rsvd_bits; 4303 if (!enable_ept) { 4304 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS; 4305 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS; 4306 } 4307 if (is_guest_mode(&vmx->vcpu)) 4308 vcpu->arch.cr4_guest_owned_bits &= 4309 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4310 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4311 } 4312 4313 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4314 { 4315 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4316 4317 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4318 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4319 4320 if (!enable_vnmi) 4321 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4322 4323 if (!enable_preemption_timer) 4324 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4325 4326 return pin_based_exec_ctrl; 4327 } 4328 4329 static u32 vmx_vmentry_ctrl(void) 4330 { 4331 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl; 4332 4333 if (vmx_pt_mode_is_system()) 4334 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | 4335 VM_ENTRY_LOAD_IA32_RTIT_CTL); 4336 /* 4337 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically. 4338 */ 4339 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 4340 VM_ENTRY_LOAD_IA32_EFER | 4341 VM_ENTRY_IA32E_MODE); 4342 4343 if (cpu_has_perf_global_ctrl_bug()) 4344 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 4345 4346 return vmentry_ctrl; 4347 } 4348 4349 static u32 vmx_vmexit_ctrl(void) 4350 { 4351 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl; 4352 4353 /* 4354 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for 4355 * nested virtualization and thus allowed to be set in vmcs12. 4356 */ 4357 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER | 4358 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER); 4359 4360 if (vmx_pt_mode_is_system()) 4361 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | 4362 VM_EXIT_CLEAR_IA32_RTIT_CTL); 4363 4364 if (cpu_has_perf_global_ctrl_bug()) 4365 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 4366 4367 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */ 4368 return vmexit_ctrl & 4369 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER); 4370 } 4371 4372 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4373 { 4374 struct vcpu_vmx *vmx = to_vmx(vcpu); 4375 4376 if (is_guest_mode(vcpu)) { 4377 vmx->nested.update_vmcs01_apicv_status = true; 4378 return; 4379 } 4380 4381 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4382 4383 if (kvm_vcpu_apicv_active(vcpu)) { 4384 secondary_exec_controls_setbit(vmx, 4385 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4386 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4387 if (enable_ipiv) 4388 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4389 } else { 4390 secondary_exec_controls_clearbit(vmx, 4391 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4392 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4393 if (enable_ipiv) 4394 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT); 4395 } 4396 4397 vmx_update_msr_bitmap_x2apic(vcpu); 4398 } 4399 4400 static u32 vmx_exec_control(struct vcpu_vmx *vmx) 4401 { 4402 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4403 4404 /* 4405 * Not used by KVM, but fully supported for nesting, i.e. are allowed in 4406 * vmcs12 and propagated to vmcs02 when set in vmcs12. 4407 */ 4408 exec_control &= ~(CPU_BASED_RDTSC_EXITING | 4409 CPU_BASED_USE_IO_BITMAPS | 4410 CPU_BASED_MONITOR_TRAP_FLAG | 4411 CPU_BASED_PAUSE_EXITING); 4412 4413 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */ 4414 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING | 4415 CPU_BASED_NMI_WINDOW_EXITING); 4416 4417 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4418 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4419 4420 if (!cpu_need_tpr_shadow(&vmx->vcpu)) 4421 exec_control &= ~CPU_BASED_TPR_SHADOW; 4422 4423 #ifdef CONFIG_X86_64 4424 if (exec_control & CPU_BASED_TPR_SHADOW) 4425 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING | 4426 CPU_BASED_CR8_STORE_EXITING); 4427 else 4428 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4429 CPU_BASED_CR8_LOAD_EXITING; 4430 #endif 4431 /* No need to intercept CR3 access or INVPLG when using EPT. */ 4432 if (enable_ept) 4433 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 4434 CPU_BASED_CR3_STORE_EXITING | 4435 CPU_BASED_INVLPG_EXITING); 4436 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4437 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4438 CPU_BASED_MONITOR_EXITING); 4439 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4440 exec_control &= ~CPU_BASED_HLT_EXITING; 4441 return exec_control; 4442 } 4443 4444 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx) 4445 { 4446 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl; 4447 4448 /* 4449 * IPI virtualization relies on APICv. Disable IPI virtualization if 4450 * APICv is inhibited. 4451 */ 4452 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu)) 4453 exec_control &= ~TERTIARY_EXEC_IPI_VIRT; 4454 4455 return exec_control; 4456 } 4457 4458 /* 4459 * Adjust a single secondary execution control bit to intercept/allow an 4460 * instruction in the guest. This is usually done based on whether or not a 4461 * feature has been exposed to the guest in order to correctly emulate faults. 4462 */ 4463 static inline void 4464 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4465 u32 control, bool enabled, bool exiting) 4466 { 4467 /* 4468 * If the control is for an opt-in feature, clear the control if the 4469 * feature is not exposed to the guest, i.e. not enabled. If the 4470 * control is opt-out, i.e. an exiting control, clear the control if 4471 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4472 * disabled for the associated instruction. Note, the caller is 4473 * responsible presetting exec_control to set all supported bits. 4474 */ 4475 if (enabled == exiting) 4476 *exec_control &= ~control; 4477 4478 /* 4479 * Update the nested MSR settings so that a nested VMM can/can't set 4480 * controls for features that are/aren't exposed to the guest. 4481 */ 4482 if (nested) { 4483 /* 4484 * All features that can be added or removed to VMX MSRs must 4485 * be supported in the first place for nested virtualization. 4486 */ 4487 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control))) 4488 enabled = false; 4489 4490 if (enabled) 4491 vmx->nested.msrs.secondary_ctls_high |= control; 4492 else 4493 vmx->nested.msrs.secondary_ctls_high &= ~control; 4494 } 4495 } 4496 4497 /* 4498 * Wrapper macro for the common case of adjusting a secondary execution control 4499 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4500 * verifies that the control is actually supported by KVM and hardware. 4501 */ 4502 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4503 ({ \ 4504 bool __enabled; \ 4505 \ 4506 if (cpu_has_vmx_##name()) { \ 4507 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4508 X86_FEATURE_##feat_name); \ 4509 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4510 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4511 } \ 4512 }) 4513 4514 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4515 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4516 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4517 4518 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4519 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4520 4521 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) 4522 { 4523 struct kvm_vcpu *vcpu = &vmx->vcpu; 4524 4525 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4526 4527 if (vmx_pt_mode_is_system()) 4528 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4529 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4530 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4531 if (vmx->vpid == 0) 4532 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4533 if (!enable_ept) { 4534 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4535 enable_unrestricted_guest = 0; 4536 } 4537 if (!enable_unrestricted_guest) 4538 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4539 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4540 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4541 if (!kvm_vcpu_apicv_active(vcpu)) 4542 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4543 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4544 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4545 4546 /* 4547 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's 4548 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2. 4549 */ 4550 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC; 4551 4552 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4553 * in vmx_set_cr4. */ 4554 exec_control &= ~SECONDARY_EXEC_DESC; 4555 4556 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4557 (handle_vmptrld). 4558 We can NOT enable shadow_vmcs here because we don't have yet 4559 a current VMCS12 4560 */ 4561 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4562 4563 /* 4564 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4565 * it needs to be set here when dirty logging is already active, e.g. 4566 * if this vCPU was created after dirty logging was enabled. 4567 */ 4568 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 4569 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4570 4571 if (cpu_has_vmx_xsaves()) { 4572 /* Exposing XSAVES only when XSAVE is exposed */ 4573 bool xsaves_enabled = 4574 boot_cpu_has(X86_FEATURE_XSAVE) && 4575 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4576 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4577 4578 vcpu->arch.xsaves_enabled = xsaves_enabled; 4579 4580 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4581 SECONDARY_EXEC_XSAVES, 4582 xsaves_enabled, false); 4583 } 4584 4585 /* 4586 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either 4587 * feature is exposed to the guest. This creates a virtualization hole 4588 * if both are supported in hardware but only one is exposed to the 4589 * guest, but letting the guest execute RDTSCP or RDPID when either one 4590 * is advertised is preferable to emulating the advertised instruction 4591 * in KVM on #UD, and obviously better than incorrectly injecting #UD. 4592 */ 4593 if (cpu_has_vmx_rdtscp()) { 4594 bool rdpid_or_rdtscp_enabled = 4595 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) || 4596 guest_cpuid_has(vcpu, X86_FEATURE_RDPID); 4597 4598 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4599 SECONDARY_EXEC_ENABLE_RDTSCP, 4600 rdpid_or_rdtscp_enabled, false); 4601 } 4602 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4603 4604 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4605 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4606 4607 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4608 ENABLE_USR_WAIT_PAUSE, false); 4609 4610 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4611 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4612 4613 if (!kvm_notify_vmexit_enabled(vcpu->kvm)) 4614 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING; 4615 4616 return exec_control; 4617 } 4618 4619 static inline int vmx_get_pid_table_order(struct kvm *kvm) 4620 { 4621 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table)); 4622 } 4623 4624 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm) 4625 { 4626 struct page *pages; 4627 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4628 4629 if (!irqchip_in_kernel(kvm) || !enable_ipiv) 4630 return 0; 4631 4632 if (kvm_vmx->pid_table) 4633 return 0; 4634 4635 pages = alloc_pages(GFP_KERNEL | __GFP_ZERO, vmx_get_pid_table_order(kvm)); 4636 if (!pages) 4637 return -ENOMEM; 4638 4639 kvm_vmx->pid_table = (void *)page_address(pages); 4640 return 0; 4641 } 4642 4643 static int vmx_vcpu_precreate(struct kvm *kvm) 4644 { 4645 return vmx_alloc_ipiv_pid_table(kvm); 4646 } 4647 4648 #define VMX_XSS_EXIT_BITMAP 0 4649 4650 static void init_vmcs(struct vcpu_vmx *vmx) 4651 { 4652 struct kvm *kvm = vmx->vcpu.kvm; 4653 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 4654 4655 if (nested) 4656 nested_vmx_set_vmcs_shadowing_bitmap(); 4657 4658 if (cpu_has_vmx_msr_bitmap()) 4659 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4660 4661 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */ 4662 4663 /* Control */ 4664 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4665 4666 exec_controls_set(vmx, vmx_exec_control(vmx)); 4667 4668 if (cpu_has_secondary_exec_ctrls()) 4669 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx)); 4670 4671 if (cpu_has_tertiary_exec_ctrls()) 4672 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx)); 4673 4674 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) { 4675 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4676 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4677 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4678 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4679 4680 vmcs_write16(GUEST_INTR_STATUS, 0); 4681 4682 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4683 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4684 } 4685 4686 if (vmx_can_use_ipiv(&vmx->vcpu)) { 4687 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table)); 4688 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1); 4689 } 4690 4691 if (!kvm_pause_in_guest(kvm)) { 4692 vmcs_write32(PLE_GAP, ple_gap); 4693 vmx->ple_window = ple_window; 4694 vmx->ple_window_dirty = true; 4695 } 4696 4697 if (kvm_notify_vmexit_enabled(kvm)) 4698 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window); 4699 4700 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4701 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4702 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4703 4704 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4705 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4706 vmx_set_constant_host_state(vmx); 4707 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4708 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4709 4710 if (cpu_has_vmx_vmfunc()) 4711 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4712 4713 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4714 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4715 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4716 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4717 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4718 4719 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4720 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4721 4722 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4723 4724 /* 22.2.1, 20.8.1 */ 4725 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4726 4727 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits(); 4728 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4729 4730 set_cr4_guest_host_mask(vmx); 4731 4732 if (vmx->vpid != 0) 4733 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4734 4735 if (cpu_has_vmx_xsaves()) 4736 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4737 4738 if (enable_pml) { 4739 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4740 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4741 } 4742 4743 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4744 4745 if (vmx_pt_mode_is_host_guest()) { 4746 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4747 /* Bit[6~0] are forced to 1, writes are ignored. */ 4748 vmx->pt_desc.guest.output_mask = 0x7F; 4749 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4750 } 4751 4752 vmcs_write32(GUEST_SYSENTER_CS, 0); 4753 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4754 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4755 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4756 4757 if (cpu_has_vmx_tpr_shadow()) { 4758 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4759 if (cpu_need_tpr_shadow(&vmx->vcpu)) 4760 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4761 __pa(vmx->vcpu.arch.apic->regs)); 4762 vmcs_write32(TPR_THRESHOLD, 0); 4763 } 4764 4765 vmx_setup_uret_msrs(vmx); 4766 } 4767 4768 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu) 4769 { 4770 struct vcpu_vmx *vmx = to_vmx(vcpu); 4771 4772 init_vmcs(vmx); 4773 4774 if (nested) 4775 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 4776 4777 vcpu_setup_sgx_lepubkeyhash(vcpu); 4778 4779 vmx->nested.posted_intr_nv = -1; 4780 vmx->nested.vmxon_ptr = INVALID_GPA; 4781 vmx->nested.current_vmptr = INVALID_GPA; 4782 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID; 4783 4784 vcpu->arch.microcode_version = 0x100000000ULL; 4785 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 4786 4787 /* 4788 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 4789 * or POSTED_INTR_WAKEUP_VECTOR. 4790 */ 4791 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 4792 vmx->pi_desc.sn = 1; 4793 } 4794 4795 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4796 { 4797 struct vcpu_vmx *vmx = to_vmx(vcpu); 4798 4799 if (!init_event) 4800 __vmx_vcpu_reset(vcpu); 4801 4802 vmx->rmode.vm86_active = 0; 4803 vmx->spec_ctrl = 0; 4804 4805 vmx->msr_ia32_umwait_control = 0; 4806 4807 vmx->hv_deadline_tsc = -1; 4808 kvm_set_cr8(vcpu, 0); 4809 4810 vmx_segment_cache_clear(vmx); 4811 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS); 4812 4813 seg_setup(VCPU_SREG_CS); 4814 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4815 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4816 4817 seg_setup(VCPU_SREG_DS); 4818 seg_setup(VCPU_SREG_ES); 4819 seg_setup(VCPU_SREG_FS); 4820 seg_setup(VCPU_SREG_GS); 4821 seg_setup(VCPU_SREG_SS); 4822 4823 vmcs_write16(GUEST_TR_SELECTOR, 0); 4824 vmcs_writel(GUEST_TR_BASE, 0); 4825 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4826 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4827 4828 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4829 vmcs_writel(GUEST_LDTR_BASE, 0); 4830 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4831 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4832 4833 vmcs_writel(GUEST_GDTR_BASE, 0); 4834 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4835 4836 vmcs_writel(GUEST_IDTR_BASE, 0); 4837 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4838 4839 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4840 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4841 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4842 if (kvm_mpx_supported()) 4843 vmcs_write64(GUEST_BNDCFGS, 0); 4844 4845 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4846 4847 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4848 4849 vpid_sync_context(vmx->vpid); 4850 4851 vmx_update_fb_clear_dis(vcpu, vmx); 4852 } 4853 4854 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4855 { 4856 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4857 } 4858 4859 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4860 { 4861 if (!enable_vnmi || 4862 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4863 vmx_enable_irq_window(vcpu); 4864 return; 4865 } 4866 4867 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4868 } 4869 4870 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected) 4871 { 4872 struct vcpu_vmx *vmx = to_vmx(vcpu); 4873 uint32_t intr; 4874 int irq = vcpu->arch.interrupt.nr; 4875 4876 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected); 4877 4878 ++vcpu->stat.irq_injections; 4879 if (vmx->rmode.vm86_active) { 4880 int inc_eip = 0; 4881 if (vcpu->arch.interrupt.soft) 4882 inc_eip = vcpu->arch.event_exit_inst_len; 4883 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4884 return; 4885 } 4886 intr = irq | INTR_INFO_VALID_MASK; 4887 if (vcpu->arch.interrupt.soft) { 4888 intr |= INTR_TYPE_SOFT_INTR; 4889 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4890 vmx->vcpu.arch.event_exit_inst_len); 4891 } else 4892 intr |= INTR_TYPE_EXT_INTR; 4893 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4894 4895 vmx_clear_hlt(vcpu); 4896 } 4897 4898 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4899 { 4900 struct vcpu_vmx *vmx = to_vmx(vcpu); 4901 4902 if (!enable_vnmi) { 4903 /* 4904 * Tracking the NMI-blocked state in software is built upon 4905 * finding the next open IRQ window. This, in turn, depends on 4906 * well-behaving guests: They have to keep IRQs disabled at 4907 * least as long as the NMI handler runs. Otherwise we may 4908 * cause NMI nesting, maybe breaking the guest. But as this is 4909 * highly unlikely, we can live with the residual risk. 4910 */ 4911 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4912 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4913 } 4914 4915 ++vcpu->stat.nmi_injections; 4916 vmx->loaded_vmcs->nmi_known_unmasked = false; 4917 4918 if (vmx->rmode.vm86_active) { 4919 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4920 return; 4921 } 4922 4923 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4924 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4925 4926 vmx_clear_hlt(vcpu); 4927 } 4928 4929 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4930 { 4931 struct vcpu_vmx *vmx = to_vmx(vcpu); 4932 bool masked; 4933 4934 if (!enable_vnmi) 4935 return vmx->loaded_vmcs->soft_vnmi_blocked; 4936 if (vmx->loaded_vmcs->nmi_known_unmasked) 4937 return false; 4938 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4939 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4940 return masked; 4941 } 4942 4943 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4944 { 4945 struct vcpu_vmx *vmx = to_vmx(vcpu); 4946 4947 if (!enable_vnmi) { 4948 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4949 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4950 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4951 } 4952 } else { 4953 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4954 if (masked) 4955 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4956 GUEST_INTR_STATE_NMI); 4957 else 4958 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4959 GUEST_INTR_STATE_NMI); 4960 } 4961 } 4962 4963 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 4964 { 4965 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4966 return false; 4967 4968 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4969 return true; 4970 4971 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4972 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 4973 GUEST_INTR_STATE_NMI)); 4974 } 4975 4976 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4977 { 4978 if (to_vmx(vcpu)->nested.nested_run_pending) 4979 return -EBUSY; 4980 4981 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 4982 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4983 return -EBUSY; 4984 4985 return !vmx_nmi_blocked(vcpu); 4986 } 4987 4988 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 4989 { 4990 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4991 return false; 4992 4993 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 4994 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4995 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4996 } 4997 4998 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4999 { 5000 if (to_vmx(vcpu)->nested.nested_run_pending) 5001 return -EBUSY; 5002 5003 /* 5004 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 5005 * e.g. if the IRQ arrived asynchronously after checking nested events. 5006 */ 5007 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 5008 return -EBUSY; 5009 5010 return !vmx_interrupt_blocked(vcpu); 5011 } 5012 5013 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 5014 { 5015 void __user *ret; 5016 5017 if (enable_unrestricted_guest) 5018 return 0; 5019 5020 mutex_lock(&kvm->slots_lock); 5021 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 5022 PAGE_SIZE * 3); 5023 mutex_unlock(&kvm->slots_lock); 5024 5025 if (IS_ERR(ret)) 5026 return PTR_ERR(ret); 5027 5028 to_kvm_vmx(kvm)->tss_addr = addr; 5029 5030 return init_rmode_tss(kvm, ret); 5031 } 5032 5033 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 5034 { 5035 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 5036 return 0; 5037 } 5038 5039 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 5040 { 5041 switch (vec) { 5042 case BP_VECTOR: 5043 /* 5044 * Update instruction length as we may reinject the exception 5045 * from user space while in guest debugging mode. 5046 */ 5047 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 5048 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5049 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 5050 return false; 5051 fallthrough; 5052 case DB_VECTOR: 5053 return !(vcpu->guest_debug & 5054 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 5055 case DE_VECTOR: 5056 case OF_VECTOR: 5057 case BR_VECTOR: 5058 case UD_VECTOR: 5059 case DF_VECTOR: 5060 case SS_VECTOR: 5061 case GP_VECTOR: 5062 case MF_VECTOR: 5063 return true; 5064 } 5065 return false; 5066 } 5067 5068 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 5069 int vec, u32 err_code) 5070 { 5071 /* 5072 * Instruction with address size override prefix opcode 0x67 5073 * Cause the #SS fault with 0 error code in VM86 mode. 5074 */ 5075 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 5076 if (kvm_emulate_instruction(vcpu, 0)) { 5077 if (vcpu->arch.halt_request) { 5078 vcpu->arch.halt_request = 0; 5079 return kvm_emulate_halt_noskip(vcpu); 5080 } 5081 return 1; 5082 } 5083 return 0; 5084 } 5085 5086 /* 5087 * Forward all other exceptions that are valid in real mode. 5088 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 5089 * the required debugging infrastructure rework. 5090 */ 5091 kvm_queue_exception(vcpu, vec); 5092 return 1; 5093 } 5094 5095 static int handle_machine_check(struct kvm_vcpu *vcpu) 5096 { 5097 /* handled by vmx_vcpu_run() */ 5098 return 1; 5099 } 5100 5101 /* 5102 * If the host has split lock detection disabled, then #AC is 5103 * unconditionally injected into the guest, which is the pre split lock 5104 * detection behaviour. 5105 * 5106 * If the host has split lock detection enabled then #AC is 5107 * only injected into the guest when: 5108 * - Guest CPL == 3 (user mode) 5109 * - Guest has #AC detection enabled in CR0 5110 * - Guest EFLAGS has AC bit set 5111 */ 5112 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu) 5113 { 5114 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 5115 return true; 5116 5117 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) && 5118 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 5119 } 5120 5121 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 5122 { 5123 struct vcpu_vmx *vmx = to_vmx(vcpu); 5124 struct kvm_run *kvm_run = vcpu->run; 5125 u32 intr_info, ex_no, error_code; 5126 unsigned long cr2, dr6; 5127 u32 vect_info; 5128 5129 vect_info = vmx->idt_vectoring_info; 5130 intr_info = vmx_get_intr_info(vcpu); 5131 5132 /* 5133 * Machine checks are handled by handle_exception_irqoff(), or by 5134 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by 5135 * vmx_vcpu_enter_exit(). 5136 */ 5137 if (is_machine_check(intr_info) || is_nmi(intr_info)) 5138 return 1; 5139 5140 /* 5141 * Queue the exception here instead of in handle_nm_fault_irqoff(). 5142 * This ensures the nested_vmx check is not skipped so vmexit can 5143 * be reflected to L1 (when it intercepts #NM) before reaching this 5144 * point. 5145 */ 5146 if (is_nm_fault(intr_info)) { 5147 kvm_queue_exception(vcpu, NM_VECTOR); 5148 return 1; 5149 } 5150 5151 if (is_invalid_opcode(intr_info)) 5152 return handle_ud(vcpu); 5153 5154 error_code = 0; 5155 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 5156 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5157 5158 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 5159 WARN_ON_ONCE(!enable_vmware_backdoor); 5160 5161 /* 5162 * VMware backdoor emulation on #GP interception only handles 5163 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 5164 * error code on #GP. 5165 */ 5166 if (error_code) { 5167 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 5168 return 1; 5169 } 5170 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 5171 } 5172 5173 /* 5174 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 5175 * MMIO, it is better to report an internal error. 5176 * See the comments in vmx_handle_exit. 5177 */ 5178 if ((vect_info & VECTORING_INFO_VALID_MASK) && 5179 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 5180 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5181 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 5182 vcpu->run->internal.ndata = 4; 5183 vcpu->run->internal.data[0] = vect_info; 5184 vcpu->run->internal.data[1] = intr_info; 5185 vcpu->run->internal.data[2] = error_code; 5186 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 5187 return 0; 5188 } 5189 5190 if (is_page_fault(intr_info)) { 5191 cr2 = vmx_get_exit_qual(vcpu); 5192 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 5193 /* 5194 * EPT will cause page fault only if we need to 5195 * detect illegal GPAs. 5196 */ 5197 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 5198 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 5199 return 1; 5200 } else 5201 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 5202 } 5203 5204 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 5205 5206 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 5207 return handle_rmode_exception(vcpu, ex_no, error_code); 5208 5209 switch (ex_no) { 5210 case DB_VECTOR: 5211 dr6 = vmx_get_exit_qual(vcpu); 5212 if (!(vcpu->guest_debug & 5213 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 5214 /* 5215 * If the #DB was due to ICEBP, a.k.a. INT1, skip the 5216 * instruction. ICEBP generates a trap-like #DB, but 5217 * despite its interception control being tied to #DB, 5218 * is an instruction intercept, i.e. the VM-Exit occurs 5219 * on the ICEBP itself. Use the inner "skip" helper to 5220 * avoid single-step #DB and MTF updates, as ICEBP is 5221 * higher priority. Note, skipping ICEBP still clears 5222 * STI and MOVSS blocking. 5223 * 5224 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS 5225 * if single-step is enabled in RFLAGS and STI or MOVSS 5226 * blocking is active, as the CPU doesn't set the bit 5227 * on VM-Exit due to #DB interception. VM-Entry has a 5228 * consistency check that a single-step #DB is pending 5229 * in this scenario as the previous instruction cannot 5230 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV 5231 * don't modify RFLAGS), therefore the one instruction 5232 * delay when activating single-step breakpoints must 5233 * have already expired. Note, the CPU sets/clears BS 5234 * as appropriate for all other VM-Exits types. 5235 */ 5236 if (is_icebp(intr_info)) 5237 WARN_ON(!skip_emulated_instruction(vcpu)); 5238 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) && 5239 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 5240 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS))) 5241 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 5242 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS); 5243 5244 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 5245 return 1; 5246 } 5247 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 5248 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 5249 fallthrough; 5250 case BP_VECTOR: 5251 /* 5252 * Update instruction length as we may reinject #BP from 5253 * user space while in guest debugging mode. Reading it for 5254 * #DB as well causes no harm, it is not used in that case. 5255 */ 5256 vmx->vcpu.arch.event_exit_inst_len = 5257 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 5258 kvm_run->exit_reason = KVM_EXIT_DEBUG; 5259 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5260 kvm_run->debug.arch.exception = ex_no; 5261 break; 5262 case AC_VECTOR: 5263 if (vmx_guest_inject_ac(vcpu)) { 5264 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 5265 return 1; 5266 } 5267 5268 /* 5269 * Handle split lock. Depending on detection mode this will 5270 * either warn and disable split lock detection for this 5271 * task or force SIGBUS on it. 5272 */ 5273 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 5274 return 1; 5275 fallthrough; 5276 default: 5277 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 5278 kvm_run->ex.exception = ex_no; 5279 kvm_run->ex.error_code = error_code; 5280 break; 5281 } 5282 return 0; 5283 } 5284 5285 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 5286 { 5287 ++vcpu->stat.irq_exits; 5288 return 1; 5289 } 5290 5291 static int handle_triple_fault(struct kvm_vcpu *vcpu) 5292 { 5293 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 5294 vcpu->mmio_needed = 0; 5295 return 0; 5296 } 5297 5298 static int handle_io(struct kvm_vcpu *vcpu) 5299 { 5300 unsigned long exit_qualification; 5301 int size, in, string; 5302 unsigned port; 5303 5304 exit_qualification = vmx_get_exit_qual(vcpu); 5305 string = (exit_qualification & 16) != 0; 5306 5307 ++vcpu->stat.io_exits; 5308 5309 if (string) 5310 return kvm_emulate_instruction(vcpu, 0); 5311 5312 port = exit_qualification >> 16; 5313 size = (exit_qualification & 7) + 1; 5314 in = (exit_qualification & 8) != 0; 5315 5316 return kvm_fast_pio(vcpu, size, port, in); 5317 } 5318 5319 static void 5320 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5321 { 5322 /* 5323 * Patch in the VMCALL instruction: 5324 */ 5325 hypercall[0] = 0x0f; 5326 hypercall[1] = 0x01; 5327 hypercall[2] = 0xc1; 5328 } 5329 5330 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5331 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5332 { 5333 if (is_guest_mode(vcpu)) { 5334 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5335 unsigned long orig_val = val; 5336 5337 /* 5338 * We get here when L2 changed cr0 in a way that did not change 5339 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5340 * but did change L0 shadowed bits. So we first calculate the 5341 * effective cr0 value that L1 would like to write into the 5342 * hardware. It consists of the L2-owned bits from the new 5343 * value combined with the L1-owned bits from L1's guest_cr0. 5344 */ 5345 val = (val & ~vmcs12->cr0_guest_host_mask) | 5346 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5347 5348 if (!nested_guest_cr0_valid(vcpu, val)) 5349 return 1; 5350 5351 if (kvm_set_cr0(vcpu, val)) 5352 return 1; 5353 vmcs_writel(CR0_READ_SHADOW, orig_val); 5354 return 0; 5355 } else { 5356 if (to_vmx(vcpu)->nested.vmxon && 5357 !nested_host_cr0_valid(vcpu, val)) 5358 return 1; 5359 5360 return kvm_set_cr0(vcpu, val); 5361 } 5362 } 5363 5364 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5365 { 5366 if (is_guest_mode(vcpu)) { 5367 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5368 unsigned long orig_val = val; 5369 5370 /* analogously to handle_set_cr0 */ 5371 val = (val & ~vmcs12->cr4_guest_host_mask) | 5372 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5373 if (kvm_set_cr4(vcpu, val)) 5374 return 1; 5375 vmcs_writel(CR4_READ_SHADOW, orig_val); 5376 return 0; 5377 } else 5378 return kvm_set_cr4(vcpu, val); 5379 } 5380 5381 static int handle_desc(struct kvm_vcpu *vcpu) 5382 { 5383 /* 5384 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this 5385 * and other code needs to be updated if UMIP can be guest owned. 5386 */ 5387 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP); 5388 5389 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP)); 5390 return kvm_emulate_instruction(vcpu, 0); 5391 } 5392 5393 static int handle_cr(struct kvm_vcpu *vcpu) 5394 { 5395 unsigned long exit_qualification, val; 5396 int cr; 5397 int reg; 5398 int err; 5399 int ret; 5400 5401 exit_qualification = vmx_get_exit_qual(vcpu); 5402 cr = exit_qualification & 15; 5403 reg = (exit_qualification >> 8) & 15; 5404 switch ((exit_qualification >> 4) & 3) { 5405 case 0: /* mov to cr */ 5406 val = kvm_register_read(vcpu, reg); 5407 trace_kvm_cr_write(cr, val); 5408 switch (cr) { 5409 case 0: 5410 err = handle_set_cr0(vcpu, val); 5411 return kvm_complete_insn_gp(vcpu, err); 5412 case 3: 5413 WARN_ON_ONCE(enable_unrestricted_guest); 5414 5415 err = kvm_set_cr3(vcpu, val); 5416 return kvm_complete_insn_gp(vcpu, err); 5417 case 4: 5418 err = handle_set_cr4(vcpu, val); 5419 return kvm_complete_insn_gp(vcpu, err); 5420 case 8: { 5421 u8 cr8_prev = kvm_get_cr8(vcpu); 5422 u8 cr8 = (u8)val; 5423 err = kvm_set_cr8(vcpu, cr8); 5424 ret = kvm_complete_insn_gp(vcpu, err); 5425 if (lapic_in_kernel(vcpu)) 5426 return ret; 5427 if (cr8_prev <= cr8) 5428 return ret; 5429 /* 5430 * TODO: we might be squashing a 5431 * KVM_GUESTDBG_SINGLESTEP-triggered 5432 * KVM_EXIT_DEBUG here. 5433 */ 5434 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5435 return 0; 5436 } 5437 } 5438 break; 5439 case 2: /* clts */ 5440 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS"); 5441 return -EIO; 5442 case 1: /*mov from cr*/ 5443 switch (cr) { 5444 case 3: 5445 WARN_ON_ONCE(enable_unrestricted_guest); 5446 5447 val = kvm_read_cr3(vcpu); 5448 kvm_register_write(vcpu, reg, val); 5449 trace_kvm_cr_read(cr, val); 5450 return kvm_skip_emulated_instruction(vcpu); 5451 case 8: 5452 val = kvm_get_cr8(vcpu); 5453 kvm_register_write(vcpu, reg, val); 5454 trace_kvm_cr_read(cr, val); 5455 return kvm_skip_emulated_instruction(vcpu); 5456 } 5457 break; 5458 case 3: /* lmsw */ 5459 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5460 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val)); 5461 kvm_lmsw(vcpu, val); 5462 5463 return kvm_skip_emulated_instruction(vcpu); 5464 default: 5465 break; 5466 } 5467 vcpu->run->exit_reason = 0; 5468 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5469 (int)(exit_qualification >> 4) & 3, cr); 5470 return 0; 5471 } 5472 5473 static int handle_dr(struct kvm_vcpu *vcpu) 5474 { 5475 unsigned long exit_qualification; 5476 int dr, dr7, reg; 5477 int err = 1; 5478 5479 exit_qualification = vmx_get_exit_qual(vcpu); 5480 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5481 5482 /* First, if DR does not exist, trigger UD */ 5483 if (!kvm_require_dr(vcpu, dr)) 5484 return 1; 5485 5486 if (vmx_get_cpl(vcpu) > 0) 5487 goto out; 5488 5489 dr7 = vmcs_readl(GUEST_DR7); 5490 if (dr7 & DR7_GD) { 5491 /* 5492 * As the vm-exit takes precedence over the debug trap, we 5493 * need to emulate the latter, either for the host or the 5494 * guest debugging itself. 5495 */ 5496 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5497 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5498 vcpu->run->debug.arch.dr7 = dr7; 5499 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5500 vcpu->run->debug.arch.exception = DB_VECTOR; 5501 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5502 return 0; 5503 } else { 5504 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5505 return 1; 5506 } 5507 } 5508 5509 if (vcpu->guest_debug == 0) { 5510 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5511 5512 /* 5513 * No more DR vmexits; force a reload of the debug registers 5514 * and reenter on this instruction. The next vmexit will 5515 * retrieve the full state of the debug registers. 5516 */ 5517 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5518 return 1; 5519 } 5520 5521 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5522 if (exit_qualification & TYPE_MOV_FROM_DR) { 5523 unsigned long val; 5524 5525 kvm_get_dr(vcpu, dr, &val); 5526 kvm_register_write(vcpu, reg, val); 5527 err = 0; 5528 } else { 5529 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5530 } 5531 5532 out: 5533 return kvm_complete_insn_gp(vcpu, err); 5534 } 5535 5536 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5537 { 5538 get_debugreg(vcpu->arch.db[0], 0); 5539 get_debugreg(vcpu->arch.db[1], 1); 5540 get_debugreg(vcpu->arch.db[2], 2); 5541 get_debugreg(vcpu->arch.db[3], 3); 5542 get_debugreg(vcpu->arch.dr6, 6); 5543 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5544 5545 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5546 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5547 5548 /* 5549 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees 5550 * a stale dr6 from the guest. 5551 */ 5552 set_debugreg(DR6_RESERVED, 6); 5553 } 5554 5555 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5556 { 5557 vmcs_writel(GUEST_DR7, val); 5558 } 5559 5560 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5561 { 5562 kvm_apic_update_ppr(vcpu); 5563 return 1; 5564 } 5565 5566 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5567 { 5568 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5569 5570 kvm_make_request(KVM_REQ_EVENT, vcpu); 5571 5572 ++vcpu->stat.irq_window_exits; 5573 return 1; 5574 } 5575 5576 static int handle_invlpg(struct kvm_vcpu *vcpu) 5577 { 5578 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5579 5580 kvm_mmu_invlpg(vcpu, exit_qualification); 5581 return kvm_skip_emulated_instruction(vcpu); 5582 } 5583 5584 static int handle_apic_access(struct kvm_vcpu *vcpu) 5585 { 5586 if (likely(fasteoi)) { 5587 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5588 int access_type, offset; 5589 5590 access_type = exit_qualification & APIC_ACCESS_TYPE; 5591 offset = exit_qualification & APIC_ACCESS_OFFSET; 5592 /* 5593 * Sane guest uses MOV to write EOI, with written value 5594 * not cared. So make a short-circuit here by avoiding 5595 * heavy instruction emulation. 5596 */ 5597 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5598 (offset == APIC_EOI)) { 5599 kvm_lapic_set_eoi(vcpu); 5600 return kvm_skip_emulated_instruction(vcpu); 5601 } 5602 } 5603 return kvm_emulate_instruction(vcpu, 0); 5604 } 5605 5606 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5607 { 5608 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5609 int vector = exit_qualification & 0xff; 5610 5611 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5612 kvm_apic_set_eoi_accelerated(vcpu, vector); 5613 return 1; 5614 } 5615 5616 static int handle_apic_write(struct kvm_vcpu *vcpu) 5617 { 5618 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5619 5620 /* 5621 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and 5622 * hardware has done any necessary aliasing, offset adjustments, etc... 5623 * for the access. I.e. the correct value has already been written to 5624 * the vAPIC page for the correct 16-byte chunk. KVM needs only to 5625 * retrieve the register value and emulate the access. 5626 */ 5627 u32 offset = exit_qualification & 0xff0; 5628 5629 kvm_apic_write_nodecode(vcpu, offset); 5630 return 1; 5631 } 5632 5633 static int handle_task_switch(struct kvm_vcpu *vcpu) 5634 { 5635 struct vcpu_vmx *vmx = to_vmx(vcpu); 5636 unsigned long exit_qualification; 5637 bool has_error_code = false; 5638 u32 error_code = 0; 5639 u16 tss_selector; 5640 int reason, type, idt_v, idt_index; 5641 5642 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5643 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5644 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5645 5646 exit_qualification = vmx_get_exit_qual(vcpu); 5647 5648 reason = (u32)exit_qualification >> 30; 5649 if (reason == TASK_SWITCH_GATE && idt_v) { 5650 switch (type) { 5651 case INTR_TYPE_NMI_INTR: 5652 vcpu->arch.nmi_injected = false; 5653 vmx_set_nmi_mask(vcpu, true); 5654 break; 5655 case INTR_TYPE_EXT_INTR: 5656 case INTR_TYPE_SOFT_INTR: 5657 kvm_clear_interrupt_queue(vcpu); 5658 break; 5659 case INTR_TYPE_HARD_EXCEPTION: 5660 if (vmx->idt_vectoring_info & 5661 VECTORING_INFO_DELIVER_CODE_MASK) { 5662 has_error_code = true; 5663 error_code = 5664 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5665 } 5666 fallthrough; 5667 case INTR_TYPE_SOFT_EXCEPTION: 5668 kvm_clear_exception_queue(vcpu); 5669 break; 5670 default: 5671 break; 5672 } 5673 } 5674 tss_selector = exit_qualification; 5675 5676 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5677 type != INTR_TYPE_EXT_INTR && 5678 type != INTR_TYPE_NMI_INTR)) 5679 WARN_ON(!skip_emulated_instruction(vcpu)); 5680 5681 /* 5682 * TODO: What about debug traps on tss switch? 5683 * Are we supposed to inject them and update dr6? 5684 */ 5685 return kvm_task_switch(vcpu, tss_selector, 5686 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5687 reason, has_error_code, error_code); 5688 } 5689 5690 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5691 { 5692 unsigned long exit_qualification; 5693 gpa_t gpa; 5694 u64 error_code; 5695 5696 exit_qualification = vmx_get_exit_qual(vcpu); 5697 5698 /* 5699 * EPT violation happened while executing iret from NMI, 5700 * "blocked by NMI" bit has to be set before next VM entry. 5701 * There are errata that may cause this bit to not be set: 5702 * AAK134, BY25. 5703 */ 5704 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5705 enable_vnmi && 5706 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5707 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5708 5709 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5710 trace_kvm_page_fault(vcpu, gpa, exit_qualification); 5711 5712 /* Is it a read fault? */ 5713 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5714 ? PFERR_USER_MASK : 0; 5715 /* Is it a write fault? */ 5716 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5717 ? PFERR_WRITE_MASK : 0; 5718 /* Is it a fetch fault? */ 5719 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5720 ? PFERR_FETCH_MASK : 0; 5721 /* ept page table entry is present? */ 5722 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK) 5723 ? PFERR_PRESENT_MASK : 0; 5724 5725 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5726 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5727 5728 vcpu->arch.exit_qualification = exit_qualification; 5729 5730 /* 5731 * Check that the GPA doesn't exceed physical memory limits, as that is 5732 * a guest page fault. We have to emulate the instruction here, because 5733 * if the illegal address is that of a paging structure, then 5734 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5735 * would also use advanced VM-exit information for EPT violations to 5736 * reconstruct the page fault error code. 5737 */ 5738 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5739 return kvm_emulate_instruction(vcpu, 0); 5740 5741 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5742 } 5743 5744 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5745 { 5746 gpa_t gpa; 5747 5748 if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) 5749 return 1; 5750 5751 /* 5752 * A nested guest cannot optimize MMIO vmexits, because we have an 5753 * nGPA here instead of the required GPA. 5754 */ 5755 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5756 if (!is_guest_mode(vcpu) && 5757 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5758 trace_kvm_fast_mmio(gpa); 5759 return kvm_skip_emulated_instruction(vcpu); 5760 } 5761 5762 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5763 } 5764 5765 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5766 { 5767 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm)) 5768 return -EIO; 5769 5770 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5771 ++vcpu->stat.nmi_window_exits; 5772 kvm_make_request(KVM_REQ_EVENT, vcpu); 5773 5774 return 1; 5775 } 5776 5777 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu) 5778 { 5779 struct vcpu_vmx *vmx = to_vmx(vcpu); 5780 5781 return vmx->emulation_required && !vmx->rmode.vm86_active && 5782 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected); 5783 } 5784 5785 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5786 { 5787 struct vcpu_vmx *vmx = to_vmx(vcpu); 5788 bool intr_window_requested; 5789 unsigned count = 130; 5790 5791 intr_window_requested = exec_controls_get(vmx) & 5792 CPU_BASED_INTR_WINDOW_EXITING; 5793 5794 while (vmx->emulation_required && count-- != 0) { 5795 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5796 return handle_interrupt_window(&vmx->vcpu); 5797 5798 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5799 return 1; 5800 5801 if (!kvm_emulate_instruction(vcpu, 0)) 5802 return 0; 5803 5804 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5805 kvm_prepare_emulation_failure_exit(vcpu); 5806 return 0; 5807 } 5808 5809 if (vcpu->arch.halt_request) { 5810 vcpu->arch.halt_request = 0; 5811 return kvm_emulate_halt_noskip(vcpu); 5812 } 5813 5814 /* 5815 * Note, return 1 and not 0, vcpu_run() will invoke 5816 * xfer_to_guest_mode() which will create a proper return 5817 * code. 5818 */ 5819 if (__xfer_to_guest_mode_work_pending()) 5820 return 1; 5821 } 5822 5823 return 1; 5824 } 5825 5826 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu) 5827 { 5828 if (vmx_emulation_required_with_pending_exception(vcpu)) { 5829 kvm_prepare_emulation_failure_exit(vcpu); 5830 return 0; 5831 } 5832 5833 return 1; 5834 } 5835 5836 static void grow_ple_window(struct kvm_vcpu *vcpu) 5837 { 5838 struct vcpu_vmx *vmx = to_vmx(vcpu); 5839 unsigned int old = vmx->ple_window; 5840 5841 vmx->ple_window = __grow_ple_window(old, ple_window, 5842 ple_window_grow, 5843 ple_window_max); 5844 5845 if (vmx->ple_window != old) { 5846 vmx->ple_window_dirty = true; 5847 trace_kvm_ple_window_update(vcpu->vcpu_id, 5848 vmx->ple_window, old); 5849 } 5850 } 5851 5852 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5853 { 5854 struct vcpu_vmx *vmx = to_vmx(vcpu); 5855 unsigned int old = vmx->ple_window; 5856 5857 vmx->ple_window = __shrink_ple_window(old, ple_window, 5858 ple_window_shrink, 5859 ple_window); 5860 5861 if (vmx->ple_window != old) { 5862 vmx->ple_window_dirty = true; 5863 trace_kvm_ple_window_update(vcpu->vcpu_id, 5864 vmx->ple_window, old); 5865 } 5866 } 5867 5868 /* 5869 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5870 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5871 */ 5872 static int handle_pause(struct kvm_vcpu *vcpu) 5873 { 5874 if (!kvm_pause_in_guest(vcpu->kvm)) 5875 grow_ple_window(vcpu); 5876 5877 /* 5878 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5879 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5880 * never set PAUSE_EXITING and just set PLE if supported, 5881 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5882 */ 5883 kvm_vcpu_on_spin(vcpu, true); 5884 return kvm_skip_emulated_instruction(vcpu); 5885 } 5886 5887 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5888 { 5889 return 1; 5890 } 5891 5892 static int handle_invpcid(struct kvm_vcpu *vcpu) 5893 { 5894 u32 vmx_instruction_info; 5895 unsigned long type; 5896 gva_t gva; 5897 struct { 5898 u64 pcid; 5899 u64 gla; 5900 } operand; 5901 int gpr_index; 5902 5903 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5904 kvm_queue_exception(vcpu, UD_VECTOR); 5905 return 1; 5906 } 5907 5908 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5909 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info); 5910 type = kvm_register_read(vcpu, gpr_index); 5911 5912 /* According to the Intel instruction reference, the memory operand 5913 * is read even if it isn't needed (e.g., for type==all) 5914 */ 5915 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5916 vmx_instruction_info, false, 5917 sizeof(operand), &gva)) 5918 return 1; 5919 5920 return kvm_handle_invpcid(vcpu, type, gva); 5921 } 5922 5923 static int handle_pml_full(struct kvm_vcpu *vcpu) 5924 { 5925 unsigned long exit_qualification; 5926 5927 trace_kvm_pml_full(vcpu->vcpu_id); 5928 5929 exit_qualification = vmx_get_exit_qual(vcpu); 5930 5931 /* 5932 * PML buffer FULL happened while executing iret from NMI, 5933 * "blocked by NMI" bit has to be set before next VM entry. 5934 */ 5935 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5936 enable_vnmi && 5937 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5938 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5939 GUEST_INTR_STATE_NMI); 5940 5941 /* 5942 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5943 * here.., and there's no userspace involvement needed for PML. 5944 */ 5945 return 1; 5946 } 5947 5948 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5949 { 5950 struct vcpu_vmx *vmx = to_vmx(vcpu); 5951 5952 if (!vmx->req_immediate_exit && 5953 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 5954 kvm_lapic_expired_hv_timer(vcpu); 5955 return EXIT_FASTPATH_REENTER_GUEST; 5956 } 5957 5958 return EXIT_FASTPATH_NONE; 5959 } 5960 5961 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5962 { 5963 handle_fastpath_preemption_timer(vcpu); 5964 return 1; 5965 } 5966 5967 /* 5968 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5969 * are overwritten by nested_vmx_setup() when nested=1. 5970 */ 5971 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5972 { 5973 kvm_queue_exception(vcpu, UD_VECTOR); 5974 return 1; 5975 } 5976 5977 #ifndef CONFIG_X86_SGX_KVM 5978 static int handle_encls(struct kvm_vcpu *vcpu) 5979 { 5980 /* 5981 * SGX virtualization is disabled. There is no software enable bit for 5982 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 5983 * the guest from executing ENCLS (when SGX is supported by hardware). 5984 */ 5985 kvm_queue_exception(vcpu, UD_VECTOR); 5986 return 1; 5987 } 5988 #endif /* CONFIG_X86_SGX_KVM */ 5989 5990 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 5991 { 5992 /* 5993 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK 5994 * VM-Exits. Unconditionally set the flag here and leave the handling to 5995 * vmx_handle_exit(). 5996 */ 5997 to_vmx(vcpu)->exit_reason.bus_lock_detected = true; 5998 return 1; 5999 } 6000 6001 static int handle_notify(struct kvm_vcpu *vcpu) 6002 { 6003 unsigned long exit_qual = vmx_get_exit_qual(vcpu); 6004 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID; 6005 6006 ++vcpu->stat.notify_window_exits; 6007 6008 /* 6009 * Notify VM exit happened while executing iret from NMI, 6010 * "blocked by NMI" bit has to be set before next VM entry. 6011 */ 6012 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI)) 6013 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6014 GUEST_INTR_STATE_NMI); 6015 6016 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER || 6017 context_invalid) { 6018 vcpu->run->exit_reason = KVM_EXIT_NOTIFY; 6019 vcpu->run->notify.flags = context_invalid ? 6020 KVM_NOTIFY_CONTEXT_INVALID : 0; 6021 return 0; 6022 } 6023 6024 return 1; 6025 } 6026 6027 /* 6028 * The exit handlers return 1 if the exit was handled fully and guest execution 6029 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 6030 * to be done to userspace and return 0. 6031 */ 6032 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 6033 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 6034 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 6035 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 6036 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 6037 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 6038 [EXIT_REASON_CR_ACCESS] = handle_cr, 6039 [EXIT_REASON_DR_ACCESS] = handle_dr, 6040 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 6041 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 6042 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 6043 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 6044 [EXIT_REASON_HLT] = kvm_emulate_halt, 6045 [EXIT_REASON_INVD] = kvm_emulate_invd, 6046 [EXIT_REASON_INVLPG] = handle_invlpg, 6047 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 6048 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 6049 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 6050 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 6051 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 6052 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 6053 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 6054 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 6055 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 6056 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 6057 [EXIT_REASON_VMON] = handle_vmx_instruction, 6058 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 6059 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 6060 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 6061 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 6062 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 6063 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 6064 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 6065 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 6066 [EXIT_REASON_GDTR_IDTR] = handle_desc, 6067 [EXIT_REASON_LDTR_TR] = handle_desc, 6068 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 6069 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 6070 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 6071 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 6072 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 6073 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 6074 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 6075 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 6076 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 6077 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 6078 [EXIT_REASON_PML_FULL] = handle_pml_full, 6079 [EXIT_REASON_INVPCID] = handle_invpcid, 6080 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 6081 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 6082 [EXIT_REASON_ENCLS] = handle_encls, 6083 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 6084 [EXIT_REASON_NOTIFY] = handle_notify, 6085 }; 6086 6087 static const int kvm_vmx_max_exit_handlers = 6088 ARRAY_SIZE(kvm_vmx_exit_handlers); 6089 6090 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason, 6091 u64 *info1, u64 *info2, 6092 u32 *intr_info, u32 *error_code) 6093 { 6094 struct vcpu_vmx *vmx = to_vmx(vcpu); 6095 6096 *reason = vmx->exit_reason.full; 6097 *info1 = vmx_get_exit_qual(vcpu); 6098 if (!(vmx->exit_reason.failed_vmentry)) { 6099 *info2 = vmx->idt_vectoring_info; 6100 *intr_info = vmx_get_intr_info(vcpu); 6101 if (is_exception_with_error_code(*intr_info)) 6102 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 6103 else 6104 *error_code = 0; 6105 } else { 6106 *info2 = 0; 6107 *intr_info = 0; 6108 *error_code = 0; 6109 } 6110 } 6111 6112 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 6113 { 6114 if (vmx->pml_pg) { 6115 __free_page(vmx->pml_pg); 6116 vmx->pml_pg = NULL; 6117 } 6118 } 6119 6120 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 6121 { 6122 struct vcpu_vmx *vmx = to_vmx(vcpu); 6123 u64 *pml_buf; 6124 u16 pml_idx; 6125 6126 pml_idx = vmcs_read16(GUEST_PML_INDEX); 6127 6128 /* Do nothing if PML buffer is empty */ 6129 if (pml_idx == (PML_ENTITY_NUM - 1)) 6130 return; 6131 6132 /* PML index always points to next available PML buffer entity */ 6133 if (pml_idx >= PML_ENTITY_NUM) 6134 pml_idx = 0; 6135 else 6136 pml_idx++; 6137 6138 pml_buf = page_address(vmx->pml_pg); 6139 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 6140 u64 gpa; 6141 6142 gpa = pml_buf[pml_idx]; 6143 WARN_ON(gpa & (PAGE_SIZE - 1)); 6144 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 6145 } 6146 6147 /* reset PML index */ 6148 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 6149 } 6150 6151 static void vmx_dump_sel(char *name, uint32_t sel) 6152 { 6153 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 6154 name, vmcs_read16(sel), 6155 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 6156 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 6157 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 6158 } 6159 6160 static void vmx_dump_dtsel(char *name, uint32_t limit) 6161 { 6162 pr_err("%s limit=0x%08x, base=0x%016lx\n", 6163 name, vmcs_read32(limit), 6164 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 6165 } 6166 6167 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 6168 { 6169 unsigned int i; 6170 struct vmx_msr_entry *e; 6171 6172 pr_err("MSR %s:\n", name); 6173 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 6174 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 6175 } 6176 6177 void dump_vmcs(struct kvm_vcpu *vcpu) 6178 { 6179 struct vcpu_vmx *vmx = to_vmx(vcpu); 6180 u32 vmentry_ctl, vmexit_ctl; 6181 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 6182 u64 tertiary_exec_control; 6183 unsigned long cr4; 6184 int efer_slot; 6185 6186 if (!dump_invalid_vmcs) { 6187 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 6188 return; 6189 } 6190 6191 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 6192 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 6193 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 6194 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 6195 cr4 = vmcs_readl(GUEST_CR4); 6196 6197 if (cpu_has_secondary_exec_ctrls()) 6198 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 6199 else 6200 secondary_exec_control = 0; 6201 6202 if (cpu_has_tertiary_exec_ctrls()) 6203 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL); 6204 else 6205 tertiary_exec_control = 0; 6206 6207 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n", 6208 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu); 6209 pr_err("*** Guest State ***\n"); 6210 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6211 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 6212 vmcs_readl(CR0_GUEST_HOST_MASK)); 6213 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 6214 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 6215 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 6216 if (cpu_has_vmx_ept()) { 6217 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 6218 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 6219 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 6220 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 6221 } 6222 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 6223 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 6224 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 6225 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 6226 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6227 vmcs_readl(GUEST_SYSENTER_ESP), 6228 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 6229 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 6230 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 6231 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 6232 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 6233 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 6234 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 6235 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 6236 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 6237 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 6238 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 6239 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 6240 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 6241 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 6242 else if (efer_slot >= 0) 6243 pr_err("EFER= 0x%016llx (autoload)\n", 6244 vmx->msr_autoload.guest.val[efer_slot].value); 6245 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 6246 pr_err("EFER= 0x%016llx (effective)\n", 6247 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 6248 else 6249 pr_err("EFER= 0x%016llx (effective)\n", 6250 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 6251 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 6252 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 6253 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 6254 vmcs_read64(GUEST_IA32_DEBUGCTL), 6255 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 6256 if (cpu_has_load_perf_global_ctrl() && 6257 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 6258 pr_err("PerfGlobCtl = 0x%016llx\n", 6259 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 6260 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 6261 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 6262 pr_err("Interruptibility = %08x ActivityState = %08x\n", 6263 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 6264 vmcs_read32(GUEST_ACTIVITY_STATE)); 6265 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 6266 pr_err("InterruptStatus = %04x\n", 6267 vmcs_read16(GUEST_INTR_STATUS)); 6268 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 6269 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 6270 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 6271 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 6272 6273 pr_err("*** Host State ***\n"); 6274 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 6275 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 6276 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 6277 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 6278 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 6279 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 6280 vmcs_read16(HOST_TR_SELECTOR)); 6281 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 6282 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 6283 vmcs_readl(HOST_TR_BASE)); 6284 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 6285 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 6286 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 6287 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 6288 vmcs_readl(HOST_CR4)); 6289 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 6290 vmcs_readl(HOST_IA32_SYSENTER_ESP), 6291 vmcs_read32(HOST_IA32_SYSENTER_CS), 6292 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 6293 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 6294 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 6295 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 6296 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 6297 if (cpu_has_load_perf_global_ctrl() && 6298 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 6299 pr_err("PerfGlobCtl = 0x%016llx\n", 6300 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 6301 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 6302 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 6303 6304 pr_err("*** Control State ***\n"); 6305 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n", 6306 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control); 6307 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n", 6308 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl); 6309 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 6310 vmcs_read32(EXCEPTION_BITMAP), 6311 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 6312 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 6313 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 6314 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6315 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 6316 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 6317 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 6318 vmcs_read32(VM_EXIT_INTR_INFO), 6319 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 6320 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 6321 pr_err(" reason=%08x qualification=%016lx\n", 6322 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 6323 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 6324 vmcs_read32(IDT_VECTORING_INFO_FIELD), 6325 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 6326 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 6327 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 6328 pr_err("TSC Multiplier = 0x%016llx\n", 6329 vmcs_read64(TSC_MULTIPLIER)); 6330 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 6331 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 6332 u16 status = vmcs_read16(GUEST_INTR_STATUS); 6333 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 6334 } 6335 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 6336 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 6337 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 6338 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 6339 } 6340 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 6341 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 6342 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 6343 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 6344 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 6345 pr_err("PLE Gap=%08x Window=%08x\n", 6346 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 6347 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 6348 pr_err("Virtual processor ID = 0x%04x\n", 6349 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 6350 } 6351 6352 /* 6353 * The guest has exited. See if we can fix it or if we need userspace 6354 * assistance. 6355 */ 6356 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6357 { 6358 struct vcpu_vmx *vmx = to_vmx(vcpu); 6359 union vmx_exit_reason exit_reason = vmx->exit_reason; 6360 u32 vectoring_info = vmx->idt_vectoring_info; 6361 u16 exit_handler_index; 6362 6363 /* 6364 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 6365 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 6366 * querying dirty_bitmap, we only need to kick all vcpus out of guest 6367 * mode as if vcpus is in root mode, the PML buffer must has been 6368 * flushed already. Note, PML is never enabled in hardware while 6369 * running L2. 6370 */ 6371 if (enable_pml && !is_guest_mode(vcpu)) 6372 vmx_flush_pml_buffer(vcpu); 6373 6374 /* 6375 * KVM should never reach this point with a pending nested VM-Enter. 6376 * More specifically, short-circuiting VM-Entry to emulate L2 due to 6377 * invalid guest state should never happen as that means KVM knowingly 6378 * allowed a nested VM-Enter with an invalid vmcs12. More below. 6379 */ 6380 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm)) 6381 return -EIO; 6382 6383 if (is_guest_mode(vcpu)) { 6384 /* 6385 * PML is never enabled when running L2, bail immediately if a 6386 * PML full exit occurs as something is horribly wrong. 6387 */ 6388 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6389 goto unexpected_vmexit; 6390 6391 /* 6392 * The host physical addresses of some pages of guest memory 6393 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6394 * Page). The CPU may write to these pages via their host 6395 * physical address while L2 is running, bypassing any 6396 * address-translation-based dirty tracking (e.g. EPT write 6397 * protection). 6398 * 6399 * Mark them dirty on every exit from L2 to prevent them from 6400 * getting out of sync with dirty tracking. 6401 */ 6402 nested_mark_vmcs12_pages_dirty(vcpu); 6403 6404 /* 6405 * Synthesize a triple fault if L2 state is invalid. In normal 6406 * operation, nested VM-Enter rejects any attempt to enter L2 6407 * with invalid state. However, those checks are skipped if 6408 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If 6409 * L2 state is invalid, it means either L1 modified SMRAM state 6410 * or userspace provided bad state. Synthesize TRIPLE_FAULT as 6411 * doing so is architecturally allowed in the RSM case, and is 6412 * the least awful solution for the userspace case without 6413 * risking false positives. 6414 */ 6415 if (vmx->emulation_required) { 6416 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0); 6417 return 1; 6418 } 6419 6420 if (nested_vmx_reflect_vmexit(vcpu)) 6421 return 1; 6422 } 6423 6424 /* If guest state is invalid, start emulating. L2 is handled above. */ 6425 if (vmx->emulation_required) 6426 return handle_invalid_guest_state(vcpu); 6427 6428 if (exit_reason.failed_vmentry) { 6429 dump_vmcs(vcpu); 6430 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6431 vcpu->run->fail_entry.hardware_entry_failure_reason 6432 = exit_reason.full; 6433 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6434 return 0; 6435 } 6436 6437 if (unlikely(vmx->fail)) { 6438 dump_vmcs(vcpu); 6439 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6440 vcpu->run->fail_entry.hardware_entry_failure_reason 6441 = vmcs_read32(VM_INSTRUCTION_ERROR); 6442 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6443 return 0; 6444 } 6445 6446 /* 6447 * Note: 6448 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6449 * delivery event since it indicates guest is accessing MMIO. 6450 * The vm-exit can be triggered again after return to guest that 6451 * will cause infinite loop. 6452 */ 6453 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6454 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6455 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6456 exit_reason.basic != EXIT_REASON_PML_FULL && 6457 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6458 exit_reason.basic != EXIT_REASON_TASK_SWITCH && 6459 exit_reason.basic != EXIT_REASON_NOTIFY)) { 6460 int ndata = 3; 6461 6462 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6463 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6464 vcpu->run->internal.data[0] = vectoring_info; 6465 vcpu->run->internal.data[1] = exit_reason.full; 6466 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 6467 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6468 vcpu->run->internal.data[ndata++] = 6469 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6470 } 6471 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6472 vcpu->run->internal.ndata = ndata; 6473 return 0; 6474 } 6475 6476 if (unlikely(!enable_vnmi && 6477 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6478 if (!vmx_interrupt_blocked(vcpu)) { 6479 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6480 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6481 vcpu->arch.nmi_pending) { 6482 /* 6483 * This CPU don't support us in finding the end of an 6484 * NMI-blocked window if the guest runs with IRQs 6485 * disabled. So we pull the trigger after 1 s of 6486 * futile waiting, but inform the user about this. 6487 */ 6488 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6489 "state on VCPU %d after 1 s timeout\n", 6490 __func__, vcpu->vcpu_id); 6491 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6492 } 6493 } 6494 6495 if (exit_fastpath != EXIT_FASTPATH_NONE) 6496 return 1; 6497 6498 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6499 goto unexpected_vmexit; 6500 #ifdef CONFIG_RETPOLINE 6501 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6502 return kvm_emulate_wrmsr(vcpu); 6503 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6504 return handle_preemption_timer(vcpu); 6505 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6506 return handle_interrupt_window(vcpu); 6507 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6508 return handle_external_interrupt(vcpu); 6509 else if (exit_reason.basic == EXIT_REASON_HLT) 6510 return kvm_emulate_halt(vcpu); 6511 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6512 return handle_ept_misconfig(vcpu); 6513 #endif 6514 6515 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6516 kvm_vmx_max_exit_handlers); 6517 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6518 goto unexpected_vmexit; 6519 6520 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6521 6522 unexpected_vmexit: 6523 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6524 exit_reason.full); 6525 dump_vmcs(vcpu); 6526 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6527 vcpu->run->internal.suberror = 6528 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6529 vcpu->run->internal.ndata = 2; 6530 vcpu->run->internal.data[0] = exit_reason.full; 6531 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6532 return 0; 6533 } 6534 6535 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6536 { 6537 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6538 6539 /* 6540 * Exit to user space when bus lock detected to inform that there is 6541 * a bus lock in guest. 6542 */ 6543 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6544 if (ret > 0) 6545 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6546 6547 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6548 return 0; 6549 } 6550 return ret; 6551 } 6552 6553 /* 6554 * Software based L1D cache flush which is used when microcode providing 6555 * the cache control MSR is not loaded. 6556 * 6557 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6558 * flush it is required to read in 64 KiB because the replacement algorithm 6559 * is not exactly LRU. This could be sized at runtime via topology 6560 * information but as all relevant affected CPUs have 32KiB L1D cache size 6561 * there is no point in doing so. 6562 */ 6563 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6564 { 6565 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6566 6567 /* 6568 * This code is only executed when the flush mode is 'cond' or 6569 * 'always' 6570 */ 6571 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6572 bool flush_l1d; 6573 6574 /* 6575 * Clear the per-vcpu flush bit, it gets set again 6576 * either from vcpu_run() or from one of the unsafe 6577 * VMEXIT handlers. 6578 */ 6579 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6580 vcpu->arch.l1tf_flush_l1d = false; 6581 6582 /* 6583 * Clear the per-cpu flush bit, it gets set again from 6584 * the interrupt handlers. 6585 */ 6586 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6587 kvm_clear_cpu_l1tf_flush_l1d(); 6588 6589 if (!flush_l1d) 6590 return; 6591 } 6592 6593 vcpu->stat.l1d_flush++; 6594 6595 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6596 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6597 return; 6598 } 6599 6600 asm volatile( 6601 /* First ensure the pages are in the TLB */ 6602 "xorl %%eax, %%eax\n" 6603 ".Lpopulate_tlb:\n\t" 6604 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6605 "addl $4096, %%eax\n\t" 6606 "cmpl %%eax, %[size]\n\t" 6607 "jne .Lpopulate_tlb\n\t" 6608 "xorl %%eax, %%eax\n\t" 6609 "cpuid\n\t" 6610 /* Now fill the cache */ 6611 "xorl %%eax, %%eax\n" 6612 ".Lfill_cache:\n" 6613 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6614 "addl $64, %%eax\n\t" 6615 "cmpl %%eax, %[size]\n\t" 6616 "jne .Lfill_cache\n\t" 6617 "lfence\n" 6618 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6619 [size] "r" (size) 6620 : "eax", "ebx", "ecx", "edx"); 6621 } 6622 6623 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6624 { 6625 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6626 int tpr_threshold; 6627 6628 if (is_guest_mode(vcpu) && 6629 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6630 return; 6631 6632 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6633 if (is_guest_mode(vcpu)) 6634 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6635 else 6636 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6637 } 6638 6639 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6640 { 6641 struct vcpu_vmx *vmx = to_vmx(vcpu); 6642 u32 sec_exec_control; 6643 6644 if (!lapic_in_kernel(vcpu)) 6645 return; 6646 6647 if (!flexpriority_enabled && 6648 !cpu_has_vmx_virtualize_x2apic_mode()) 6649 return; 6650 6651 /* Postpone execution until vmcs01 is the current VMCS. */ 6652 if (is_guest_mode(vcpu)) { 6653 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6654 return; 6655 } 6656 6657 sec_exec_control = secondary_exec_controls_get(vmx); 6658 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6659 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6660 6661 switch (kvm_get_apic_mode(vcpu)) { 6662 case LAPIC_MODE_INVALID: 6663 WARN_ONCE(true, "Invalid local APIC state"); 6664 break; 6665 case LAPIC_MODE_DISABLED: 6666 break; 6667 case LAPIC_MODE_XAPIC: 6668 if (flexpriority_enabled) { 6669 sec_exec_control |= 6670 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6671 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6672 6673 /* 6674 * Flush the TLB, reloading the APIC access page will 6675 * only do so if its physical address has changed, but 6676 * the guest may have inserted a non-APIC mapping into 6677 * the TLB while the APIC access page was disabled. 6678 */ 6679 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6680 } 6681 break; 6682 case LAPIC_MODE_X2APIC: 6683 if (cpu_has_vmx_virtualize_x2apic_mode()) 6684 sec_exec_control |= 6685 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6686 break; 6687 } 6688 secondary_exec_controls_set(vmx, sec_exec_control); 6689 6690 vmx_update_msr_bitmap_x2apic(vcpu); 6691 } 6692 6693 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6694 { 6695 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT; 6696 struct kvm *kvm = vcpu->kvm; 6697 struct kvm_memslots *slots = kvm_memslots(kvm); 6698 struct kvm_memory_slot *slot; 6699 unsigned long mmu_seq; 6700 kvm_pfn_t pfn; 6701 6702 /* Defer reload until vmcs01 is the current VMCS. */ 6703 if (is_guest_mode(vcpu)) { 6704 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6705 return; 6706 } 6707 6708 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6709 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6710 return; 6711 6712 /* 6713 * Grab the memslot so that the hva lookup for the mmu_notifier retry 6714 * is guaranteed to use the same memslot as the pfn lookup, i.e. rely 6715 * on the pfn lookup's validation of the memslot to ensure a valid hva 6716 * is used for the retry check. 6717 */ 6718 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT); 6719 if (!slot || slot->flags & KVM_MEMSLOT_INVALID) 6720 return; 6721 6722 /* 6723 * Ensure that the mmu_notifier sequence count is read before KVM 6724 * retrieves the pfn from the primary MMU. Note, the memslot is 6725 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb() 6726 * in kvm_mmu_invalidate_end(). 6727 */ 6728 mmu_seq = kvm->mmu_invalidate_seq; 6729 smp_rmb(); 6730 6731 /* 6732 * No need to retry if the memslot does not exist or is invalid. KVM 6733 * controls the APIC-access page memslot, and only deletes the memslot 6734 * if APICv is permanently inhibited, i.e. the memslot won't reappear. 6735 */ 6736 pfn = gfn_to_pfn_memslot(slot, gfn); 6737 if (is_error_noslot_pfn(pfn)) 6738 return; 6739 6740 read_lock(&vcpu->kvm->mmu_lock); 6741 if (mmu_invalidate_retry_hva(kvm, mmu_seq, 6742 gfn_to_hva_memslot(slot, gfn))) { 6743 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6744 read_unlock(&vcpu->kvm->mmu_lock); 6745 goto out; 6746 } 6747 6748 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn)); 6749 read_unlock(&vcpu->kvm->mmu_lock); 6750 6751 vmx_flush_tlb_current(vcpu); 6752 6753 out: 6754 /* 6755 * Do not pin apic access page in memory, the MMU notifier 6756 * will call us again if it is migrated or swapped out. 6757 */ 6758 kvm_release_pfn_clean(pfn); 6759 } 6760 6761 static void vmx_hwapic_isr_update(int max_isr) 6762 { 6763 u16 status; 6764 u8 old; 6765 6766 if (max_isr == -1) 6767 max_isr = 0; 6768 6769 status = vmcs_read16(GUEST_INTR_STATUS); 6770 old = status >> 8; 6771 if (max_isr != old) { 6772 status &= 0xff; 6773 status |= max_isr << 8; 6774 vmcs_write16(GUEST_INTR_STATUS, status); 6775 } 6776 } 6777 6778 static void vmx_set_rvi(int vector) 6779 { 6780 u16 status; 6781 u8 old; 6782 6783 if (vector == -1) 6784 vector = 0; 6785 6786 status = vmcs_read16(GUEST_INTR_STATUS); 6787 old = (u8)status & 0xff; 6788 if ((u8)vector != old) { 6789 status &= ~0xff; 6790 status |= (u8)vector; 6791 vmcs_write16(GUEST_INTR_STATUS, status); 6792 } 6793 } 6794 6795 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6796 { 6797 /* 6798 * When running L2, updating RVI is only relevant when 6799 * vmcs12 virtual-interrupt-delivery enabled. 6800 * However, it can be enabled only when L1 also 6801 * intercepts external-interrupts and in that case 6802 * we should not update vmcs02 RVI but instead intercept 6803 * interrupt. Therefore, do nothing when running L2. 6804 */ 6805 if (!is_guest_mode(vcpu)) 6806 vmx_set_rvi(max_irr); 6807 } 6808 6809 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6810 { 6811 struct vcpu_vmx *vmx = to_vmx(vcpu); 6812 int max_irr; 6813 bool got_posted_interrupt; 6814 6815 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm)) 6816 return -EIO; 6817 6818 if (pi_test_on(&vmx->pi_desc)) { 6819 pi_clear_on(&vmx->pi_desc); 6820 /* 6821 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6822 * But on x86 this is just a compiler barrier anyway. 6823 */ 6824 smp_mb__after_atomic(); 6825 got_posted_interrupt = 6826 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6827 } else { 6828 max_irr = kvm_lapic_find_highest_irr(vcpu); 6829 got_posted_interrupt = false; 6830 } 6831 6832 /* 6833 * Newly recognized interrupts are injected via either virtual interrupt 6834 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is 6835 * disabled in two cases: 6836 * 6837 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1 6838 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a 6839 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected 6840 * into L2, but KVM doesn't use virtual interrupt delivery to inject 6841 * interrupts into L2, and so KVM_REQ_EVENT is again needed. 6842 * 6843 * 2) If APICv is disabled for this vCPU, assigned devices may still 6844 * attempt to post interrupts. The posted interrupt vector will cause 6845 * a VM-Exit and the subsequent entry will call sync_pir_to_irr. 6846 */ 6847 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu)) 6848 vmx_set_rvi(max_irr); 6849 else if (got_posted_interrupt) 6850 kvm_make_request(KVM_REQ_EVENT, vcpu); 6851 6852 return max_irr; 6853 } 6854 6855 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6856 { 6857 if (!kvm_vcpu_apicv_active(vcpu)) 6858 return; 6859 6860 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6861 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6862 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6863 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6864 } 6865 6866 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6867 { 6868 struct vcpu_vmx *vmx = to_vmx(vcpu); 6869 6870 pi_clear_on(&vmx->pi_desc); 6871 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6872 } 6873 6874 void vmx_do_interrupt_irqoff(unsigned long entry); 6875 void vmx_do_nmi_irqoff(void); 6876 6877 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu) 6878 { 6879 /* 6880 * Save xfd_err to guest_fpu before interrupt is enabled, so the 6881 * MSR value is not clobbered by the host activity before the guest 6882 * has chance to consume it. 6883 * 6884 * Do not blindly read xfd_err here, since this exception might 6885 * be caused by L1 interception on a platform which doesn't 6886 * support xfd at all. 6887 * 6888 * Do it conditionally upon guest_fpu::xfd. xfd_err matters 6889 * only when xfd contains a non-zero value. 6890 * 6891 * Queuing exception is done in vmx_handle_exit. See comment there. 6892 */ 6893 if (vcpu->arch.guest_fpu.fpstate->xfd) 6894 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); 6895 } 6896 6897 static void handle_exception_irqoff(struct vcpu_vmx *vmx) 6898 { 6899 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6900 6901 /* if exit due to PF check for async PF */ 6902 if (is_page_fault(intr_info)) 6903 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6904 /* if exit due to NM, handle before interrupts are enabled */ 6905 else if (is_nm_fault(intr_info)) 6906 handle_nm_fault_irqoff(&vmx->vcpu); 6907 /* Handle machine checks before interrupts are enabled */ 6908 else if (is_machine_check(intr_info)) 6909 kvm_machine_check(); 6910 } 6911 6912 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6913 { 6914 u32 intr_info = vmx_get_intr_info(vcpu); 6915 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6916 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6917 6918 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm, 6919 "unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6920 return; 6921 6922 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); 6923 vmx_do_interrupt_irqoff(gate_offset(desc)); 6924 kvm_after_interrupt(vcpu); 6925 6926 vcpu->arch.at_instruction_boundary = true; 6927 } 6928 6929 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6930 { 6931 struct vcpu_vmx *vmx = to_vmx(vcpu); 6932 6933 if (vmx->emulation_required) 6934 return; 6935 6936 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6937 handle_external_interrupt_irqoff(vcpu); 6938 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6939 handle_exception_irqoff(vmx); 6940 } 6941 6942 /* 6943 * The kvm parameter can be NULL (module initialization, or invocation before 6944 * VM creation). Be sure to check the kvm parameter before using it. 6945 */ 6946 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6947 { 6948 switch (index) { 6949 case MSR_IA32_SMBASE: 6950 if (!IS_ENABLED(CONFIG_KVM_SMM)) 6951 return false; 6952 /* 6953 * We cannot do SMM unless we can run the guest in big 6954 * real mode. 6955 */ 6956 return enable_unrestricted_guest || emulate_invalid_guest_state; 6957 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR: 6958 return nested; 6959 case MSR_AMD64_VIRT_SPEC_CTRL: 6960 case MSR_AMD64_TSC_RATIO: 6961 /* This is AMD only. */ 6962 return false; 6963 default: 6964 return true; 6965 } 6966 } 6967 6968 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6969 { 6970 u32 exit_intr_info; 6971 bool unblock_nmi; 6972 u8 vector; 6973 bool idtv_info_valid; 6974 6975 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6976 6977 if (enable_vnmi) { 6978 if (vmx->loaded_vmcs->nmi_known_unmasked) 6979 return; 6980 6981 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 6982 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6983 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6984 /* 6985 * SDM 3: 27.7.1.2 (September 2008) 6986 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6987 * a guest IRET fault. 6988 * SDM 3: 23.2.2 (September 2008) 6989 * Bit 12 is undefined in any of the following cases: 6990 * If the VM exit sets the valid bit in the IDT-vectoring 6991 * information field. 6992 * If the VM exit is due to a double fault. 6993 */ 6994 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6995 vector != DF_VECTOR && !idtv_info_valid) 6996 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6997 GUEST_INTR_STATE_NMI); 6998 else 6999 vmx->loaded_vmcs->nmi_known_unmasked = 7000 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 7001 & GUEST_INTR_STATE_NMI); 7002 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 7003 vmx->loaded_vmcs->vnmi_blocked_time += 7004 ktime_to_ns(ktime_sub(ktime_get(), 7005 vmx->loaded_vmcs->entry_time)); 7006 } 7007 7008 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 7009 u32 idt_vectoring_info, 7010 int instr_len_field, 7011 int error_code_field) 7012 { 7013 u8 vector; 7014 int type; 7015 bool idtv_info_valid; 7016 7017 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 7018 7019 vcpu->arch.nmi_injected = false; 7020 kvm_clear_exception_queue(vcpu); 7021 kvm_clear_interrupt_queue(vcpu); 7022 7023 if (!idtv_info_valid) 7024 return; 7025 7026 kvm_make_request(KVM_REQ_EVENT, vcpu); 7027 7028 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 7029 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 7030 7031 switch (type) { 7032 case INTR_TYPE_NMI_INTR: 7033 vcpu->arch.nmi_injected = true; 7034 /* 7035 * SDM 3: 27.7.1.2 (September 2008) 7036 * Clear bit "block by NMI" before VM entry if a NMI 7037 * delivery faulted. 7038 */ 7039 vmx_set_nmi_mask(vcpu, false); 7040 break; 7041 case INTR_TYPE_SOFT_EXCEPTION: 7042 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7043 fallthrough; 7044 case INTR_TYPE_HARD_EXCEPTION: 7045 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 7046 u32 err = vmcs_read32(error_code_field); 7047 kvm_requeue_exception_e(vcpu, vector, err); 7048 } else 7049 kvm_requeue_exception(vcpu, vector); 7050 break; 7051 case INTR_TYPE_SOFT_INTR: 7052 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 7053 fallthrough; 7054 case INTR_TYPE_EXT_INTR: 7055 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 7056 break; 7057 default: 7058 break; 7059 } 7060 } 7061 7062 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 7063 { 7064 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 7065 VM_EXIT_INSTRUCTION_LEN, 7066 IDT_VECTORING_ERROR_CODE); 7067 } 7068 7069 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 7070 { 7071 __vmx_complete_interrupts(vcpu, 7072 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 7073 VM_ENTRY_INSTRUCTION_LEN, 7074 VM_ENTRY_EXCEPTION_ERROR_CODE); 7075 7076 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 7077 } 7078 7079 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 7080 { 7081 int i, nr_msrs; 7082 struct perf_guest_switch_msr *msrs; 7083 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu); 7084 7085 pmu->host_cross_mapped_mask = 0; 7086 if (pmu->pebs_enable & pmu->global_ctrl) 7087 intel_pmu_cross_mapped_check(pmu); 7088 7089 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 7090 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu); 7091 if (!msrs) 7092 return; 7093 7094 for (i = 0; i < nr_msrs; i++) 7095 if (msrs[i].host == msrs[i].guest) 7096 clear_atomic_switch_msr(vmx, msrs[i].msr); 7097 else 7098 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 7099 msrs[i].host, false); 7100 } 7101 7102 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 7103 { 7104 struct vcpu_vmx *vmx = to_vmx(vcpu); 7105 u64 tscl; 7106 u32 delta_tsc; 7107 7108 if (vmx->req_immediate_exit) { 7109 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 7110 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7111 } else if (vmx->hv_deadline_tsc != -1) { 7112 tscl = rdtsc(); 7113 if (vmx->hv_deadline_tsc > tscl) 7114 /* set_hv_timer ensures the delta fits in 32-bits */ 7115 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 7116 cpu_preemption_timer_multi); 7117 else 7118 delta_tsc = 0; 7119 7120 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 7121 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 7122 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 7123 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 7124 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 7125 } 7126 } 7127 7128 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 7129 { 7130 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 7131 vmx->loaded_vmcs->host_state.rsp = host_rsp; 7132 vmcs_writel(HOST_RSP, host_rsp); 7133 } 7134 } 7135 7136 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, 7137 unsigned int flags) 7138 { 7139 u64 hostval = this_cpu_read(x86_spec_ctrl_current); 7140 7141 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) 7142 return; 7143 7144 if (flags & VMX_RUN_SAVE_SPEC_CTRL) 7145 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL); 7146 7147 /* 7148 * If the guest/host SPEC_CTRL values differ, restore the host value. 7149 * 7150 * For legacy IBRS, the IBRS bit always needs to be written after 7151 * transitioning from a less privileged predictor mode, regardless of 7152 * whether the guest/host values differ. 7153 */ 7154 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) || 7155 vmx->spec_ctrl != hostval) 7156 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval); 7157 7158 barrier_nospec(); 7159 } 7160 7161 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 7162 { 7163 switch (to_vmx(vcpu)->exit_reason.basic) { 7164 case EXIT_REASON_MSR_WRITE: 7165 return handle_fastpath_set_msr_irqoff(vcpu); 7166 case EXIT_REASON_PREEMPTION_TIMER: 7167 return handle_fastpath_preemption_timer(vcpu); 7168 default: 7169 return EXIT_FASTPATH_NONE; 7170 } 7171 } 7172 7173 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 7174 unsigned int flags) 7175 { 7176 struct vcpu_vmx *vmx = to_vmx(vcpu); 7177 7178 guest_state_enter_irqoff(); 7179 7180 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 7181 if (static_branch_unlikely(&vmx_l1d_should_flush)) 7182 vmx_l1d_flush(vcpu); 7183 else if (static_branch_unlikely(&mds_user_clear)) 7184 mds_clear_cpu_buffers(); 7185 else if (static_branch_unlikely(&mmio_stale_data_clear) && 7186 kvm_arch_has_assigned_device(vcpu->kvm)) 7187 mds_clear_cpu_buffers(); 7188 7189 vmx_disable_fb_clear(vmx); 7190 7191 if (vcpu->arch.cr2 != native_read_cr2()) 7192 native_write_cr2(vcpu->arch.cr2); 7193 7194 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 7195 flags); 7196 7197 vcpu->arch.cr2 = native_read_cr2(); 7198 7199 vmx_enable_fb_clear(vmx); 7200 7201 if (unlikely(vmx->fail)) 7202 vmx->exit_reason.full = 0xdead; 7203 else 7204 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 7205 7206 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI && 7207 is_nmi(vmx_get_intr_info(vcpu))) { 7208 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI); 7209 vmx_do_nmi_irqoff(); 7210 kvm_after_interrupt(vcpu); 7211 } 7212 7213 guest_state_exit_irqoff(); 7214 } 7215 7216 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 7217 { 7218 struct vcpu_vmx *vmx = to_vmx(vcpu); 7219 unsigned long cr3, cr4; 7220 7221 /* Record the guest's net vcpu time for enforced NMI injections. */ 7222 if (unlikely(!enable_vnmi && 7223 vmx->loaded_vmcs->soft_vnmi_blocked)) 7224 vmx->loaded_vmcs->entry_time = ktime_get(); 7225 7226 /* 7227 * Don't enter VMX if guest state is invalid, let the exit handler 7228 * start emulation until we arrive back to a valid state. Synthesize a 7229 * consistency check VM-Exit due to invalid guest state and bail. 7230 */ 7231 if (unlikely(vmx->emulation_required)) { 7232 vmx->fail = 0; 7233 7234 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE; 7235 vmx->exit_reason.failed_vmentry = 1; 7236 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1); 7237 vmx->exit_qualification = ENTRY_FAIL_DEFAULT; 7238 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2); 7239 vmx->exit_intr_info = 0; 7240 return EXIT_FASTPATH_NONE; 7241 } 7242 7243 trace_kvm_entry(vcpu); 7244 7245 if (vmx->ple_window_dirty) { 7246 vmx->ple_window_dirty = false; 7247 vmcs_write32(PLE_WINDOW, vmx->ple_window); 7248 } 7249 7250 /* 7251 * We did this in prepare_switch_to_guest, because it needs to 7252 * be within srcu_read_lock. 7253 */ 7254 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 7255 7256 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 7257 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 7258 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 7259 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 7260 vcpu->arch.regs_dirty = 0; 7261 7262 /* 7263 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately 7264 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time 7265 * it switches back to the current->mm, which can occur in KVM context 7266 * when switching to a temporary mm to patch kernel code, e.g. if KVM 7267 * toggles a static key while handling a VM-Exit. 7268 */ 7269 cr3 = __get_current_cr3_fast(); 7270 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 7271 vmcs_writel(HOST_CR3, cr3); 7272 vmx->loaded_vmcs->host_state.cr3 = cr3; 7273 } 7274 7275 cr4 = cr4_read_shadow(); 7276 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 7277 vmcs_writel(HOST_CR4, cr4); 7278 vmx->loaded_vmcs->host_state.cr4 = cr4; 7279 } 7280 7281 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ 7282 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) 7283 set_debugreg(vcpu->arch.dr6, 6); 7284 7285 /* When single-stepping over STI and MOV SS, we must clear the 7286 * corresponding interruptibility bits in the guest state. Otherwise 7287 * vmentry fails as it then expects bit 14 (BS) in pending debug 7288 * exceptions being set, but that's not correct for the guest debugging 7289 * case. */ 7290 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 7291 vmx_set_interrupt_shadow(vcpu, 0); 7292 7293 kvm_load_guest_xsave_state(vcpu); 7294 7295 pt_guest_enter(vmx); 7296 7297 atomic_switch_perf_msrs(vmx); 7298 if (intel_pmu_lbr_is_enabled(vcpu)) 7299 vmx_passthrough_lbr_msrs(vcpu); 7300 7301 if (enable_preemption_timer) 7302 vmx_update_hv_timer(vcpu); 7303 7304 kvm_wait_lapic_expire(vcpu); 7305 7306 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 7307 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx)); 7308 7309 /* All fields are clean at this point */ 7310 if (kvm_is_using_evmcs()) { 7311 current_evmcs->hv_clean_fields |= 7312 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 7313 7314 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 7315 } 7316 7317 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 7318 if (vmx->host_debugctlmsr) 7319 update_debugctlmsr(vmx->host_debugctlmsr); 7320 7321 #ifndef CONFIG_X86_64 7322 /* 7323 * The sysexit path does not restore ds/es, so we must set them to 7324 * a reasonable value ourselves. 7325 * 7326 * We can't defer this to vmx_prepare_switch_to_host() since that 7327 * function may be executed in interrupt context, which saves and 7328 * restore segments around it, nullifying its effect. 7329 */ 7330 loadsegment(ds, __USER_DS); 7331 loadsegment(es, __USER_DS); 7332 #endif 7333 7334 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET; 7335 7336 pt_guest_exit(vmx); 7337 7338 kvm_load_host_xsave_state(vcpu); 7339 7340 if (is_guest_mode(vcpu)) { 7341 /* 7342 * Track VMLAUNCH/VMRESUME that have made past guest state 7343 * checking. 7344 */ 7345 if (vmx->nested.nested_run_pending && 7346 !vmx->exit_reason.failed_vmentry) 7347 ++vcpu->stat.nested_run; 7348 7349 vmx->nested.nested_run_pending = 0; 7350 } 7351 7352 vmx->idt_vectoring_info = 0; 7353 7354 if (unlikely(vmx->fail)) 7355 return EXIT_FASTPATH_NONE; 7356 7357 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 7358 kvm_machine_check(); 7359 7360 if (likely(!vmx->exit_reason.failed_vmentry)) 7361 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 7362 7363 trace_kvm_exit(vcpu, KVM_ISA_VMX); 7364 7365 if (unlikely(vmx->exit_reason.failed_vmentry)) 7366 return EXIT_FASTPATH_NONE; 7367 7368 vmx->loaded_vmcs->launched = 1; 7369 7370 vmx_recover_nmi_blocking(vmx); 7371 vmx_complete_interrupts(vmx); 7372 7373 if (is_guest_mode(vcpu)) 7374 return EXIT_FASTPATH_NONE; 7375 7376 return vmx_exit_handlers_fastpath(vcpu); 7377 } 7378 7379 static void vmx_vcpu_free(struct kvm_vcpu *vcpu) 7380 { 7381 struct vcpu_vmx *vmx = to_vmx(vcpu); 7382 7383 if (enable_pml) 7384 vmx_destroy_pml_buffer(vmx); 7385 free_vpid(vmx->vpid); 7386 nested_vmx_free_vcpu(vcpu); 7387 free_loaded_vmcs(vmx->loaded_vmcs); 7388 } 7389 7390 static int vmx_vcpu_create(struct kvm_vcpu *vcpu) 7391 { 7392 struct vmx_uret_msr *tsx_ctrl; 7393 struct vcpu_vmx *vmx; 7394 int i, err; 7395 7396 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 7397 vmx = to_vmx(vcpu); 7398 7399 INIT_LIST_HEAD(&vmx->pi_wakeup_list); 7400 7401 err = -ENOMEM; 7402 7403 vmx->vpid = allocate_vpid(); 7404 7405 /* 7406 * If PML is turned on, failure on enabling PML just results in failure 7407 * of creating the vcpu, therefore we can simplify PML logic (by 7408 * avoiding dealing with cases, such as enabling PML partially on vcpus 7409 * for the guest), etc. 7410 */ 7411 if (enable_pml) { 7412 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 7413 if (!vmx->pml_pg) 7414 goto free_vpid; 7415 } 7416 7417 for (i = 0; i < kvm_nr_uret_msrs; ++i) 7418 vmx->guest_uret_msrs[i].mask = -1ull; 7419 if (boot_cpu_has(X86_FEATURE_RTM)) { 7420 /* 7421 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception. 7422 * Keep the host value unchanged to avoid changing CPUID bits 7423 * under the host kernel's feet. 7424 */ 7425 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7426 if (tsx_ctrl) 7427 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 7428 } 7429 7430 err = alloc_loaded_vmcs(&vmx->vmcs01); 7431 if (err < 0) 7432 goto free_pml; 7433 7434 /* 7435 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a 7436 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the 7437 * feature only for vmcs01, KVM currently isn't equipped to realize any 7438 * performance benefits from enabling it for vmcs02. 7439 */ 7440 if (kvm_is_using_evmcs() && 7441 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 7442 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs; 7443 7444 evmcs->hv_enlightenments_control.msr_bitmap = 1; 7445 } 7446 7447 /* The MSR bitmap starts with all ones */ 7448 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7449 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 7450 7451 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 7452 #ifdef CONFIG_X86_64 7453 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 7454 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 7455 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 7456 #endif 7457 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 7458 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 7459 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 7460 if (kvm_cstate_in_guest(vcpu->kvm)) { 7461 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 7462 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 7463 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 7464 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 7465 } 7466 7467 vmx->loaded_vmcs = &vmx->vmcs01; 7468 7469 if (cpu_need_virtualize_apic_accesses(vcpu)) { 7470 err = kvm_alloc_apic_access_page(vcpu->kvm); 7471 if (err) 7472 goto free_vmcs; 7473 } 7474 7475 if (enable_ept && !enable_unrestricted_guest) { 7476 err = init_rmode_identity_map(vcpu->kvm); 7477 if (err) 7478 goto free_vmcs; 7479 } 7480 7481 if (vmx_can_use_ipiv(vcpu)) 7482 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id], 7483 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID); 7484 7485 return 0; 7486 7487 free_vmcs: 7488 free_loaded_vmcs(vmx->loaded_vmcs); 7489 free_pml: 7490 vmx_destroy_pml_buffer(vmx); 7491 free_vpid: 7492 free_vpid(vmx->vpid); 7493 return err; 7494 } 7495 7496 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7497 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 7498 7499 static int vmx_vm_init(struct kvm *kvm) 7500 { 7501 if (!ple_gap) 7502 kvm->arch.pause_in_guest = true; 7503 7504 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7505 switch (l1tf_mitigation) { 7506 case L1TF_MITIGATION_OFF: 7507 case L1TF_MITIGATION_FLUSH_NOWARN: 7508 /* 'I explicitly don't care' is set */ 7509 break; 7510 case L1TF_MITIGATION_FLUSH: 7511 case L1TF_MITIGATION_FLUSH_NOSMT: 7512 case L1TF_MITIGATION_FULL: 7513 /* 7514 * Warn upon starting the first VM in a potentially 7515 * insecure environment. 7516 */ 7517 if (sched_smt_active()) 7518 pr_warn_once(L1TF_MSG_SMT); 7519 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7520 pr_warn_once(L1TF_MSG_L1D); 7521 break; 7522 case L1TF_MITIGATION_FULL_FORCE: 7523 /* Flush is enforced */ 7524 break; 7525 } 7526 } 7527 return 0; 7528 } 7529 7530 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7531 { 7532 u8 cache; 7533 7534 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 7535 * memory aliases with conflicting memory types and sometimes MCEs. 7536 * We have to be careful as to what are honored and when. 7537 * 7538 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 7539 * UC. The effective memory type is UC or WC depending on guest PAT. 7540 * This was historically the source of MCEs and we want to be 7541 * conservative. 7542 * 7543 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7544 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7545 * EPT memory type is set to WB. The effective memory type is forced 7546 * WB. 7547 * 7548 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7549 * EPT memory type is used to emulate guest CD/MTRR. 7550 */ 7551 7552 if (is_mmio) 7553 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; 7554 7555 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) 7556 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7557 7558 if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) { 7559 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7560 cache = MTRR_TYPE_WRBACK; 7561 else 7562 cache = MTRR_TYPE_UNCACHABLE; 7563 7564 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; 7565 } 7566 7567 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT; 7568 } 7569 7570 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl) 7571 { 7572 /* 7573 * These bits in the secondary execution controls field 7574 * are dynamic, the others are mostly based on the hypervisor 7575 * architecture and the guest's CPUID. Do not touch the 7576 * dynamic bits. 7577 */ 7578 u32 mask = 7579 SECONDARY_EXEC_SHADOW_VMCS | 7580 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7581 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7582 SECONDARY_EXEC_DESC; 7583 7584 u32 cur_ctl = secondary_exec_controls_get(vmx); 7585 7586 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7587 } 7588 7589 /* 7590 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7591 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7592 */ 7593 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7594 { 7595 struct vcpu_vmx *vmx = to_vmx(vcpu); 7596 struct kvm_cpuid_entry2 *entry; 7597 7598 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7599 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7600 7601 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7602 if (entry && (entry->_reg & (_cpuid_mask))) \ 7603 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7604 } while (0) 7605 7606 entry = kvm_find_cpuid_entry(vcpu, 0x1); 7607 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7608 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7609 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7610 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7611 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7612 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7613 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7614 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7615 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7616 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7617 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7618 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7619 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7620 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7621 7622 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0); 7623 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7624 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7625 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7626 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7627 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7628 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7629 7630 #undef cr4_fixed1_update 7631 } 7632 7633 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7634 { 7635 struct vcpu_vmx *vmx = to_vmx(vcpu); 7636 struct kvm_cpuid_entry2 *best = NULL; 7637 int i; 7638 7639 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7640 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i); 7641 if (!best) 7642 return; 7643 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7644 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7645 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7646 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7647 } 7648 7649 /* Get the number of configurable Address Ranges for filtering */ 7650 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps, 7651 PT_CAP_num_address_ranges); 7652 7653 /* Initialize and clear the no dependency bits */ 7654 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7655 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC | 7656 RTIT_CTL_BRANCH_EN); 7657 7658 /* 7659 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7660 * will inject an #GP 7661 */ 7662 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7663 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7664 7665 /* 7666 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7667 * PSBFreq can be set 7668 */ 7669 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7670 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7671 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7672 7673 /* 7674 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set 7675 */ 7676 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7677 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7678 RTIT_CTL_MTC_RANGE); 7679 7680 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7681 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7682 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7683 RTIT_CTL_PTW_EN); 7684 7685 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7686 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7687 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7688 7689 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7690 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7691 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7692 7693 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7694 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7695 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7696 7697 /* unmask address range configure area */ 7698 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) 7699 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7700 } 7701 7702 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7703 { 7704 struct vcpu_vmx *vmx = to_vmx(vcpu); 7705 7706 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7707 vcpu->arch.xsaves_enabled = false; 7708 7709 vmx_setup_uret_msrs(vmx); 7710 7711 if (cpu_has_secondary_exec_ctrls()) 7712 vmcs_set_secondary_exec_control(vmx, 7713 vmx_secondary_exec_control(vmx)); 7714 7715 if (nested_vmx_allowed(vcpu)) 7716 vmx->msr_ia32_feature_control_valid_bits |= 7717 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7718 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7719 else 7720 vmx->msr_ia32_feature_control_valid_bits &= 7721 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7722 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7723 7724 if (nested_vmx_allowed(vcpu)) 7725 nested_vmx_cr_fixed1_bits_update(vcpu); 7726 7727 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7728 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7729 update_intel_pt_cfg(vcpu); 7730 7731 if (boot_cpu_has(X86_FEATURE_RTM)) { 7732 struct vmx_uret_msr *msr; 7733 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7734 if (msr) { 7735 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7736 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7737 } 7738 } 7739 7740 if (kvm_cpu_cap_has(X86_FEATURE_XFD)) 7741 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R, 7742 !guest_cpuid_has(vcpu, X86_FEATURE_XFD)); 7743 7744 if (boot_cpu_has(X86_FEATURE_IBPB)) 7745 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W, 7746 !guest_has_pred_cmd_msr(vcpu)); 7747 7748 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D)) 7749 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W, 7750 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)); 7751 7752 set_cr4_guest_host_mask(vmx); 7753 7754 vmx_write_encls_bitmap(vcpu, NULL); 7755 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7756 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7757 else 7758 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7759 7760 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7761 vmx->msr_ia32_feature_control_valid_bits |= 7762 FEAT_CTL_SGX_LC_ENABLED; 7763 else 7764 vmx->msr_ia32_feature_control_valid_bits &= 7765 ~FEAT_CTL_SGX_LC_ENABLED; 7766 7767 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7768 vmx_update_exception_bitmap(vcpu); 7769 } 7770 7771 static u64 vmx_get_perf_capabilities(void) 7772 { 7773 u64 perf_cap = PMU_CAP_FW_WRITES; 7774 struct x86_pmu_lbr lbr; 7775 u64 host_perf_cap = 0; 7776 7777 if (!enable_pmu) 7778 return 0; 7779 7780 if (boot_cpu_has(X86_FEATURE_PDCM)) 7781 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap); 7782 7783 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) { 7784 x86_perf_get_lbr(&lbr); 7785 if (lbr.nr) 7786 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT; 7787 } 7788 7789 if (vmx_pebs_supported()) { 7790 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK; 7791 if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4) 7792 perf_cap &= ~PERF_CAP_PEBS_BASELINE; 7793 } 7794 7795 return perf_cap; 7796 } 7797 7798 static __init void vmx_set_cpu_caps(void) 7799 { 7800 kvm_set_cpu_caps(); 7801 7802 /* CPUID 0x1 */ 7803 if (nested) 7804 kvm_cpu_cap_set(X86_FEATURE_VMX); 7805 7806 /* CPUID 0x7 */ 7807 if (kvm_mpx_supported()) 7808 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7809 if (!cpu_has_vmx_invpcid()) 7810 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7811 if (vmx_pt_mode_is_host_guest()) 7812 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7813 if (vmx_pebs_supported()) { 7814 kvm_cpu_cap_check_and_set(X86_FEATURE_DS); 7815 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64); 7816 } 7817 7818 if (!enable_pmu) 7819 kvm_cpu_cap_clear(X86_FEATURE_PDCM); 7820 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities(); 7821 7822 if (!enable_sgx) { 7823 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7824 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7825 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7826 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7827 } 7828 7829 if (vmx_umip_emulated()) 7830 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7831 7832 /* CPUID 0xD.1 */ 7833 kvm_caps.supported_xss = 0; 7834 if (!cpu_has_vmx_xsaves()) 7835 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7836 7837 /* CPUID 0x80000001 and 0x7 (RDPID) */ 7838 if (!cpu_has_vmx_rdtscp()) { 7839 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7840 kvm_cpu_cap_clear(X86_FEATURE_RDPID); 7841 } 7842 7843 if (cpu_has_vmx_waitpkg()) 7844 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7845 } 7846 7847 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7848 { 7849 to_vmx(vcpu)->req_immediate_exit = true; 7850 } 7851 7852 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7853 struct x86_instruction_info *info) 7854 { 7855 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7856 unsigned short port; 7857 bool intercept; 7858 int size; 7859 7860 if (info->intercept == x86_intercept_in || 7861 info->intercept == x86_intercept_ins) { 7862 port = info->src_val; 7863 size = info->dst_bytes; 7864 } else { 7865 port = info->dst_val; 7866 size = info->src_bytes; 7867 } 7868 7869 /* 7870 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7871 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7872 * control. 7873 * 7874 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7875 */ 7876 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7877 intercept = nested_cpu_has(vmcs12, 7878 CPU_BASED_UNCOND_IO_EXITING); 7879 else 7880 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7881 7882 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7883 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7884 } 7885 7886 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7887 struct x86_instruction_info *info, 7888 enum x86_intercept_stage stage, 7889 struct x86_exception *exception) 7890 { 7891 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7892 7893 switch (info->intercept) { 7894 /* 7895 * RDPID causes #UD if disabled through secondary execution controls. 7896 * Because it is marked as EmulateOnUD, we need to intercept it here. 7897 * Note, RDPID is hidden behind ENABLE_RDTSCP. 7898 */ 7899 case x86_intercept_rdpid: 7900 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7901 exception->vector = UD_VECTOR; 7902 exception->error_code_valid = false; 7903 return X86EMUL_PROPAGATE_FAULT; 7904 } 7905 break; 7906 7907 case x86_intercept_in: 7908 case x86_intercept_ins: 7909 case x86_intercept_out: 7910 case x86_intercept_outs: 7911 return vmx_check_intercept_io(vcpu, info); 7912 7913 case x86_intercept_lgdt: 7914 case x86_intercept_lidt: 7915 case x86_intercept_lldt: 7916 case x86_intercept_ltr: 7917 case x86_intercept_sgdt: 7918 case x86_intercept_sidt: 7919 case x86_intercept_sldt: 7920 case x86_intercept_str: 7921 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7922 return X86EMUL_CONTINUE; 7923 7924 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7925 break; 7926 7927 case x86_intercept_pause: 7928 /* 7929 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides 7930 * with vanilla NOPs in the emulator. Apply the interception 7931 * check only to actual PAUSE instructions. Don't check 7932 * PAUSE-loop-exiting, software can't expect a given PAUSE to 7933 * exit, i.e. KVM is within its rights to allow L2 to execute 7934 * the PAUSE. 7935 */ 7936 if ((info->rep_prefix != REPE_PREFIX) || 7937 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING)) 7938 return X86EMUL_CONTINUE; 7939 7940 break; 7941 7942 /* TODO: check more intercepts... */ 7943 default: 7944 break; 7945 } 7946 7947 return X86EMUL_UNHANDLEABLE; 7948 } 7949 7950 #ifdef CONFIG_X86_64 7951 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7952 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7953 u64 divisor, u64 *result) 7954 { 7955 u64 low = a << shift, high = a >> (64 - shift); 7956 7957 /* To avoid the overflow on divq */ 7958 if (high >= divisor) 7959 return 1; 7960 7961 /* Low hold the result, high hold rem which is discarded */ 7962 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7963 "rm" (divisor), "0" (low), "1" (high)); 7964 *result = low; 7965 7966 return 0; 7967 } 7968 7969 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7970 bool *expired) 7971 { 7972 struct vcpu_vmx *vmx; 7973 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7974 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7975 7976 vmx = to_vmx(vcpu); 7977 tscl = rdtsc(); 7978 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7979 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7980 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7981 ktimer->timer_advance_ns); 7982 7983 if (delta_tsc > lapic_timer_advance_cycles) 7984 delta_tsc -= lapic_timer_advance_cycles; 7985 else 7986 delta_tsc = 0; 7987 7988 /* Convert to host delta tsc if tsc scaling is enabled */ 7989 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio && 7990 delta_tsc && u64_shl_div_u64(delta_tsc, 7991 kvm_caps.tsc_scaling_ratio_frac_bits, 7992 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc)) 7993 return -ERANGE; 7994 7995 /* 7996 * If the delta tsc can't fit in the 32 bit after the multi shift, 7997 * we can't use the preemption timer. 7998 * It's possible that it fits on later vmentries, but checking 7999 * on every vmentry is costly so we just use an hrtimer. 8000 */ 8001 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 8002 return -ERANGE; 8003 8004 vmx->hv_deadline_tsc = tscl + delta_tsc; 8005 *expired = !delta_tsc; 8006 return 0; 8007 } 8008 8009 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 8010 { 8011 to_vmx(vcpu)->hv_deadline_tsc = -1; 8012 } 8013 #endif 8014 8015 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 8016 { 8017 if (!kvm_pause_in_guest(vcpu->kvm)) 8018 shrink_ple_window(vcpu); 8019 } 8020 8021 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 8022 { 8023 struct vcpu_vmx *vmx = to_vmx(vcpu); 8024 8025 if (WARN_ON_ONCE(!enable_pml)) 8026 return; 8027 8028 if (is_guest_mode(vcpu)) { 8029 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 8030 return; 8031 } 8032 8033 /* 8034 * Note, nr_memslots_dirty_logging can be changed concurrent with this 8035 * code, but in that case another update request will be made and so 8036 * the guest will never run with a stale PML value. 8037 */ 8038 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging)) 8039 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8040 else 8041 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 8042 } 8043 8044 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 8045 { 8046 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 8047 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 8048 FEAT_CTL_LMCE_ENABLED; 8049 else 8050 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 8051 ~FEAT_CTL_LMCE_ENABLED; 8052 } 8053 8054 #ifdef CONFIG_KVM_SMM 8055 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 8056 { 8057 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 8058 if (to_vmx(vcpu)->nested.nested_run_pending) 8059 return -EBUSY; 8060 return !is_smm(vcpu); 8061 } 8062 8063 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram) 8064 { 8065 struct vcpu_vmx *vmx = to_vmx(vcpu); 8066 8067 /* 8068 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on 8069 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong 8070 * SMI and RSM only modify state that is saved and restored via SMRAM. 8071 * E.g. most MSRs are left untouched, but many are modified by VM-Exit 8072 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM. 8073 */ 8074 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 8075 if (vmx->nested.smm.guest_mode) 8076 nested_vmx_vmexit(vcpu, -1, 0, 0); 8077 8078 vmx->nested.smm.vmxon = vmx->nested.vmxon; 8079 vmx->nested.vmxon = false; 8080 vmx_clear_hlt(vcpu); 8081 return 0; 8082 } 8083 8084 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram) 8085 { 8086 struct vcpu_vmx *vmx = to_vmx(vcpu); 8087 int ret; 8088 8089 if (vmx->nested.smm.vmxon) { 8090 vmx->nested.vmxon = true; 8091 vmx->nested.smm.vmxon = false; 8092 } 8093 8094 if (vmx->nested.smm.guest_mode) { 8095 ret = nested_vmx_enter_non_root_mode(vcpu, false); 8096 if (ret) 8097 return ret; 8098 8099 vmx->nested.nested_run_pending = 1; 8100 vmx->nested.smm.guest_mode = false; 8101 } 8102 return 0; 8103 } 8104 8105 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 8106 { 8107 /* RSM will cause a vmexit anyway. */ 8108 } 8109 #endif 8110 8111 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 8112 { 8113 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 8114 } 8115 8116 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 8117 { 8118 if (is_guest_mode(vcpu)) { 8119 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 8120 8121 if (hrtimer_try_to_cancel(timer) == 1) 8122 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 8123 } 8124 } 8125 8126 static void vmx_hardware_unsetup(void) 8127 { 8128 kvm_set_posted_intr_wakeup_handler(NULL); 8129 8130 if (nested) 8131 nested_vmx_hardware_unsetup(); 8132 8133 free_kvm_area(); 8134 } 8135 8136 #define VMX_REQUIRED_APICV_INHIBITS \ 8137 ( \ 8138 BIT(APICV_INHIBIT_REASON_DISABLE)| \ 8139 BIT(APICV_INHIBIT_REASON_ABSENT) | \ 8140 BIT(APICV_INHIBIT_REASON_HYPERV) | \ 8141 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \ 8142 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \ 8143 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \ 8144 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \ 8145 ) 8146 8147 static void vmx_vm_destroy(struct kvm *kvm) 8148 { 8149 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 8150 8151 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm)); 8152 } 8153 8154 static struct kvm_x86_ops vmx_x86_ops __initdata = { 8155 .name = KBUILD_MODNAME, 8156 8157 .check_processor_compatibility = vmx_check_processor_compat, 8158 8159 .hardware_unsetup = vmx_hardware_unsetup, 8160 8161 .hardware_enable = vmx_hardware_enable, 8162 .hardware_disable = vmx_hardware_disable, 8163 .has_emulated_msr = vmx_has_emulated_msr, 8164 8165 .vm_size = sizeof(struct kvm_vmx), 8166 .vm_init = vmx_vm_init, 8167 .vm_destroy = vmx_vm_destroy, 8168 8169 .vcpu_precreate = vmx_vcpu_precreate, 8170 .vcpu_create = vmx_vcpu_create, 8171 .vcpu_free = vmx_vcpu_free, 8172 .vcpu_reset = vmx_vcpu_reset, 8173 8174 .prepare_switch_to_guest = vmx_prepare_switch_to_guest, 8175 .vcpu_load = vmx_vcpu_load, 8176 .vcpu_put = vmx_vcpu_put, 8177 8178 .update_exception_bitmap = vmx_update_exception_bitmap, 8179 .get_msr_feature = vmx_get_msr_feature, 8180 .get_msr = vmx_get_msr, 8181 .set_msr = vmx_set_msr, 8182 .get_segment_base = vmx_get_segment_base, 8183 .get_segment = vmx_get_segment, 8184 .set_segment = vmx_set_segment, 8185 .get_cpl = vmx_get_cpl, 8186 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 8187 .set_cr0 = vmx_set_cr0, 8188 .is_valid_cr4 = vmx_is_valid_cr4, 8189 .set_cr4 = vmx_set_cr4, 8190 .set_efer = vmx_set_efer, 8191 .get_idt = vmx_get_idt, 8192 .set_idt = vmx_set_idt, 8193 .get_gdt = vmx_get_gdt, 8194 .set_gdt = vmx_set_gdt, 8195 .set_dr7 = vmx_set_dr7, 8196 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 8197 .cache_reg = vmx_cache_reg, 8198 .get_rflags = vmx_get_rflags, 8199 .set_rflags = vmx_set_rflags, 8200 .get_if_flag = vmx_get_if_flag, 8201 8202 .flush_tlb_all = vmx_flush_tlb_all, 8203 .flush_tlb_current = vmx_flush_tlb_current, 8204 .flush_tlb_gva = vmx_flush_tlb_gva, 8205 .flush_tlb_guest = vmx_flush_tlb_guest, 8206 8207 .vcpu_pre_run = vmx_vcpu_pre_run, 8208 .vcpu_run = vmx_vcpu_run, 8209 .handle_exit = vmx_handle_exit, 8210 .skip_emulated_instruction = vmx_skip_emulated_instruction, 8211 .update_emulated_instruction = vmx_update_emulated_instruction, 8212 .set_interrupt_shadow = vmx_set_interrupt_shadow, 8213 .get_interrupt_shadow = vmx_get_interrupt_shadow, 8214 .patch_hypercall = vmx_patch_hypercall, 8215 .inject_irq = vmx_inject_irq, 8216 .inject_nmi = vmx_inject_nmi, 8217 .inject_exception = vmx_inject_exception, 8218 .cancel_injection = vmx_cancel_injection, 8219 .interrupt_allowed = vmx_interrupt_allowed, 8220 .nmi_allowed = vmx_nmi_allowed, 8221 .get_nmi_mask = vmx_get_nmi_mask, 8222 .set_nmi_mask = vmx_set_nmi_mask, 8223 .enable_nmi_window = vmx_enable_nmi_window, 8224 .enable_irq_window = vmx_enable_irq_window, 8225 .update_cr8_intercept = vmx_update_cr8_intercept, 8226 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 8227 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 8228 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 8229 .load_eoi_exitmap = vmx_load_eoi_exitmap, 8230 .apicv_post_state_restore = vmx_apicv_post_state_restore, 8231 .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS, 8232 .hwapic_irr_update = vmx_hwapic_irr_update, 8233 .hwapic_isr_update = vmx_hwapic_isr_update, 8234 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 8235 .sync_pir_to_irr = vmx_sync_pir_to_irr, 8236 .deliver_interrupt = vmx_deliver_interrupt, 8237 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 8238 8239 .set_tss_addr = vmx_set_tss_addr, 8240 .set_identity_map_addr = vmx_set_identity_map_addr, 8241 .get_mt_mask = vmx_get_mt_mask, 8242 8243 .get_exit_info = vmx_get_exit_info, 8244 8245 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 8246 8247 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 8248 8249 .get_l2_tsc_offset = vmx_get_l2_tsc_offset, 8250 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier, 8251 .write_tsc_offset = vmx_write_tsc_offset, 8252 .write_tsc_multiplier = vmx_write_tsc_multiplier, 8253 8254 .load_mmu_pgd = vmx_load_mmu_pgd, 8255 8256 .check_intercept = vmx_check_intercept, 8257 .handle_exit_irqoff = vmx_handle_exit_irqoff, 8258 8259 .request_immediate_exit = vmx_request_immediate_exit, 8260 8261 .sched_in = vmx_sched_in, 8262 8263 .cpu_dirty_log_size = PML_ENTITY_NUM, 8264 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 8265 8266 .nested_ops = &vmx_nested_ops, 8267 8268 .pi_update_irte = vmx_pi_update_irte, 8269 .pi_start_assignment = vmx_pi_start_assignment, 8270 8271 #ifdef CONFIG_X86_64 8272 .set_hv_timer = vmx_set_hv_timer, 8273 .cancel_hv_timer = vmx_cancel_hv_timer, 8274 #endif 8275 8276 .setup_mce = vmx_setup_mce, 8277 8278 #ifdef CONFIG_KVM_SMM 8279 .smi_allowed = vmx_smi_allowed, 8280 .enter_smm = vmx_enter_smm, 8281 .leave_smm = vmx_leave_smm, 8282 .enable_smi_window = vmx_enable_smi_window, 8283 #endif 8284 8285 .can_emulate_instruction = vmx_can_emulate_instruction, 8286 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 8287 .migrate_timers = vmx_migrate_timers, 8288 8289 .msr_filter_changed = vmx_msr_filter_changed, 8290 .complete_emulated_msr = kvm_complete_insn_gp, 8291 8292 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 8293 }; 8294 8295 static unsigned int vmx_handle_intel_pt_intr(void) 8296 { 8297 struct kvm_vcpu *vcpu = kvm_get_running_vcpu(); 8298 8299 /* '0' on failure so that the !PT case can use a RET0 static call. */ 8300 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu)) 8301 return 0; 8302 8303 kvm_make_request(KVM_REQ_PMI, vcpu); 8304 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT, 8305 (unsigned long *)&vcpu->arch.pmu.global_status); 8306 return 1; 8307 } 8308 8309 static __init void vmx_setup_user_return_msrs(void) 8310 { 8311 8312 /* 8313 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 8314 * will emulate SYSCALL in legacy mode if the vendor string in guest 8315 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 8316 * support this emulation, MSR_STAR is included in the list for i386, 8317 * but is never loaded into hardware. MSR_CSTAR is also never loaded 8318 * into hardware and is here purely for emulation purposes. 8319 */ 8320 const u32 vmx_uret_msrs_list[] = { 8321 #ifdef CONFIG_X86_64 8322 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 8323 #endif 8324 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 8325 MSR_IA32_TSX_CTRL, 8326 }; 8327 int i; 8328 8329 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 8330 8331 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 8332 kvm_add_user_return_msr(vmx_uret_msrs_list[i]); 8333 } 8334 8335 static void __init vmx_setup_me_spte_mask(void) 8336 { 8337 u64 me_mask = 0; 8338 8339 /* 8340 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use 8341 * the former to avoid exposing shadow_phys_bits. 8342 * 8343 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to 8344 * shadow_phys_bits. On MKTME and/or TDX capable systems, 8345 * boot_cpu_data.x86_phys_bits holds the actual physical address 8346 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR 8347 * reported by CPUID. Those bits between are KeyID bits. 8348 */ 8349 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits()) 8350 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits, 8351 kvm_get_shadow_phys_bits() - 1); 8352 /* 8353 * Unlike SME, host kernel doesn't support setting up any 8354 * MKTME KeyID on Intel platforms. No memory encryption 8355 * bits should be included into the SPTE. 8356 */ 8357 kvm_mmu_set_me_spte_mask(0, me_mask); 8358 } 8359 8360 static struct kvm_x86_init_ops vmx_init_ops __initdata; 8361 8362 static __init int hardware_setup(void) 8363 { 8364 unsigned long host_bndcfgs; 8365 struct desc_ptr dt; 8366 int r; 8367 8368 store_idt(&dt); 8369 host_idt_base = dt.address; 8370 8371 vmx_setup_user_return_msrs(); 8372 8373 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 8374 return -EIO; 8375 8376 if (cpu_has_perf_global_ctrl_bug()) 8377 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 8378 "does not work properly. Using workaround\n"); 8379 8380 if (boot_cpu_has(X86_FEATURE_NX)) 8381 kvm_enable_efer_bits(EFER_NX); 8382 8383 if (boot_cpu_has(X86_FEATURE_MPX)) { 8384 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 8385 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost"); 8386 } 8387 8388 if (!cpu_has_vmx_mpx()) 8389 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 8390 XFEATURE_MASK_BNDCSR); 8391 8392 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 8393 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 8394 enable_vpid = 0; 8395 8396 if (!cpu_has_vmx_ept() || 8397 !cpu_has_vmx_ept_4levels() || 8398 !cpu_has_vmx_ept_mt_wb() || 8399 !cpu_has_vmx_invept_global()) 8400 enable_ept = 0; 8401 8402 /* NX support is required for shadow paging. */ 8403 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) { 8404 pr_err_ratelimited("NX (Execute Disable) not supported\n"); 8405 return -EOPNOTSUPP; 8406 } 8407 8408 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 8409 enable_ept_ad_bits = 0; 8410 8411 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 8412 enable_unrestricted_guest = 0; 8413 8414 if (!cpu_has_vmx_flexpriority()) 8415 flexpriority_enabled = 0; 8416 8417 if (!cpu_has_virtual_nmis()) 8418 enable_vnmi = 0; 8419 8420 #ifdef CONFIG_X86_SGX_KVM 8421 if (!cpu_has_vmx_encls_vmexit()) 8422 enable_sgx = false; 8423 #endif 8424 8425 /* 8426 * set_apic_access_page_addr() is used to reload apic access 8427 * page upon invalidation. No need to do anything if not 8428 * using the APIC_ACCESS_ADDR VMCS field. 8429 */ 8430 if (!flexpriority_enabled) 8431 vmx_x86_ops.set_apic_access_page_addr = NULL; 8432 8433 if (!cpu_has_vmx_tpr_shadow()) 8434 vmx_x86_ops.update_cr8_intercept = NULL; 8435 8436 #if IS_ENABLED(CONFIG_HYPERV) 8437 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 8438 && enable_ept) { 8439 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs; 8440 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range; 8441 } 8442 #endif 8443 8444 if (!cpu_has_vmx_ple()) { 8445 ple_gap = 0; 8446 ple_window = 0; 8447 ple_window_grow = 0; 8448 ple_window_max = 0; 8449 ple_window_shrink = 0; 8450 } 8451 8452 if (!cpu_has_vmx_apicv()) 8453 enable_apicv = 0; 8454 if (!enable_apicv) 8455 vmx_x86_ops.sync_pir_to_irr = NULL; 8456 8457 if (!enable_apicv || !cpu_has_vmx_ipiv()) 8458 enable_ipiv = false; 8459 8460 if (cpu_has_vmx_tsc_scaling()) 8461 kvm_caps.has_tsc_control = true; 8462 8463 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 8464 kvm_caps.tsc_scaling_ratio_frac_bits = 48; 8465 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 8466 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit(); 8467 8468 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 8469 8470 if (enable_ept) 8471 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 8472 cpu_has_vmx_ept_execute_only()); 8473 8474 /* 8475 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID 8476 * bits to shadow_zero_check. 8477 */ 8478 vmx_setup_me_spte_mask(); 8479 8480 kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(), 8481 ept_caps_to_lpage_level(vmx_capability.ept)); 8482 8483 /* 8484 * Only enable PML when hardware supports PML feature, and both EPT 8485 * and EPT A/D bit features are enabled -- PML depends on them to work. 8486 */ 8487 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 8488 enable_pml = 0; 8489 8490 if (!enable_pml) 8491 vmx_x86_ops.cpu_dirty_log_size = 0; 8492 8493 if (!cpu_has_vmx_preemption_timer()) 8494 enable_preemption_timer = false; 8495 8496 if (enable_preemption_timer) { 8497 u64 use_timer_freq = 5000ULL * 1000 * 1000; 8498 8499 cpu_preemption_timer_multi = 8500 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 8501 8502 if (tsc_khz) 8503 use_timer_freq = (u64)tsc_khz * 1000; 8504 use_timer_freq >>= cpu_preemption_timer_multi; 8505 8506 /* 8507 * KVM "disables" the preemption timer by setting it to its max 8508 * value. Don't use the timer if it might cause spurious exits 8509 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 8510 */ 8511 if (use_timer_freq > 0xffffffffu / 10) 8512 enable_preemption_timer = false; 8513 } 8514 8515 if (!enable_preemption_timer) { 8516 vmx_x86_ops.set_hv_timer = NULL; 8517 vmx_x86_ops.cancel_hv_timer = NULL; 8518 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 8519 } 8520 8521 kvm_caps.supported_mce_cap |= MCG_LMCE_P; 8522 kvm_caps.supported_mce_cap |= MCG_CMCI_P; 8523 8524 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 8525 return -EINVAL; 8526 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt()) 8527 pt_mode = PT_MODE_SYSTEM; 8528 if (pt_mode == PT_MODE_HOST_GUEST) 8529 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr; 8530 else 8531 vmx_init_ops.handle_intel_pt_intr = NULL; 8532 8533 setup_default_sgx_lepubkeyhash(); 8534 8535 if (nested) { 8536 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept); 8537 8538 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 8539 if (r) 8540 return r; 8541 } 8542 8543 vmx_set_cpu_caps(); 8544 8545 r = alloc_kvm_area(); 8546 if (r && nested) 8547 nested_vmx_hardware_unsetup(); 8548 8549 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 8550 8551 return r; 8552 } 8553 8554 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 8555 .hardware_setup = hardware_setup, 8556 .handle_intel_pt_intr = NULL, 8557 8558 .runtime_ops = &vmx_x86_ops, 8559 .pmu_ops = &intel_pmu_ops, 8560 }; 8561 8562 static void vmx_cleanup_l1d_flush(void) 8563 { 8564 if (vmx_l1d_flush_pages) { 8565 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 8566 vmx_l1d_flush_pages = NULL; 8567 } 8568 /* Restore state so sysfs ignores VMX */ 8569 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 8570 } 8571 8572 static void __vmx_exit(void) 8573 { 8574 allow_smaller_maxphyaddr = false; 8575 8576 cpu_emergency_unregister_virt_callback(vmx_emergency_disable); 8577 8578 vmx_cleanup_l1d_flush(); 8579 } 8580 8581 static void vmx_exit(void) 8582 { 8583 kvm_exit(); 8584 kvm_x86_vendor_exit(); 8585 8586 __vmx_exit(); 8587 } 8588 module_exit(vmx_exit); 8589 8590 static int __init vmx_init(void) 8591 { 8592 int r, cpu; 8593 8594 if (!kvm_is_vmx_supported()) 8595 return -EOPNOTSUPP; 8596 8597 /* 8598 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing 8599 * to unwind if a later step fails. 8600 */ 8601 hv_init_evmcs(); 8602 8603 r = kvm_x86_vendor_init(&vmx_init_ops); 8604 if (r) 8605 return r; 8606 8607 /* 8608 * Must be called after common x86 init so enable_ept is properly set 8609 * up. Hand the parameter mitigation value in which was stored in 8610 * the pre module init parser. If no parameter was given, it will 8611 * contain 'auto' which will be turned into the default 'cond' 8612 * mitigation mode. 8613 */ 8614 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8615 if (r) 8616 goto err_l1d_flush; 8617 8618 for_each_possible_cpu(cpu) { 8619 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8620 8621 pi_init_cpu(cpu); 8622 } 8623 8624 cpu_emergency_register_virt_callback(vmx_emergency_disable); 8625 8626 vmx_check_vmcs12_offsets(); 8627 8628 /* 8629 * Shadow paging doesn't have a (further) performance penalty 8630 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8631 * by default 8632 */ 8633 if (!enable_ept) 8634 allow_smaller_maxphyaddr = true; 8635 8636 /* 8637 * Common KVM initialization _must_ come last, after this, /dev/kvm is 8638 * exposed to userspace! 8639 */ 8640 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx), 8641 THIS_MODULE); 8642 if (r) 8643 goto err_kvm_init; 8644 8645 return 0; 8646 8647 err_kvm_init: 8648 __vmx_exit(); 8649 err_l1d_flush: 8650 kvm_x86_vendor_exit(); 8651 return r; 8652 } 8653 module_init(vmx_init); 8654