1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Kernel-based Virtual Machine driver for Linux 4 * 5 * This module enables machines with Intel VT-x extensions to run virtual 6 * machines without emulation or binary translation. 7 * 8 * Copyright (C) 2006 Qumranet, Inc. 9 * Copyright 2010 Red Hat, Inc. and/or its affiliates. 10 * 11 * Authors: 12 * Avi Kivity <avi@qumranet.com> 13 * Yaniv Kamay <yaniv@qumranet.com> 14 */ 15 16 #include <linux/highmem.h> 17 #include <linux/hrtimer.h> 18 #include <linux/kernel.h> 19 #include <linux/kvm_host.h> 20 #include <linux/module.h> 21 #include <linux/moduleparam.h> 22 #include <linux/mod_devicetable.h> 23 #include <linux/mm.h> 24 #include <linux/objtool.h> 25 #include <linux/sched.h> 26 #include <linux/sched/smt.h> 27 #include <linux/slab.h> 28 #include <linux/tboot.h> 29 #include <linux/trace_events.h> 30 #include <linux/entry-kvm.h> 31 32 #include <asm/apic.h> 33 #include <asm/asm.h> 34 #include <asm/cpu.h> 35 #include <asm/cpu_device_id.h> 36 #include <asm/debugreg.h> 37 #include <asm/desc.h> 38 #include <asm/fpu/internal.h> 39 #include <asm/idtentry.h> 40 #include <asm/io.h> 41 #include <asm/irq_remapping.h> 42 #include <asm/kexec.h> 43 #include <asm/perf_event.h> 44 #include <asm/mmu_context.h> 45 #include <asm/mshyperv.h> 46 #include <asm/mwait.h> 47 #include <asm/spec-ctrl.h> 48 #include <asm/virtext.h> 49 #include <asm/vmx.h> 50 51 #include "capabilities.h" 52 #include "cpuid.h" 53 #include "evmcs.h" 54 #include "hyperv.h" 55 #include "irq.h" 56 #include "kvm_cache_regs.h" 57 #include "lapic.h" 58 #include "mmu.h" 59 #include "nested.h" 60 #include "pmu.h" 61 #include "sgx.h" 62 #include "trace.h" 63 #include "vmcs.h" 64 #include "vmcs12.h" 65 #include "vmx.h" 66 #include "x86.h" 67 68 MODULE_AUTHOR("Qumranet"); 69 MODULE_LICENSE("GPL"); 70 71 #ifdef MODULE 72 static const struct x86_cpu_id vmx_cpu_id[] = { 73 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL), 74 {} 75 }; 76 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); 77 #endif 78 79 bool __read_mostly enable_vpid = 1; 80 module_param_named(vpid, enable_vpid, bool, 0444); 81 82 static bool __read_mostly enable_vnmi = 1; 83 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); 84 85 bool __read_mostly flexpriority_enabled = 1; 86 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); 87 88 bool __read_mostly enable_ept = 1; 89 module_param_named(ept, enable_ept, bool, S_IRUGO); 90 91 bool __read_mostly enable_unrestricted_guest = 1; 92 module_param_named(unrestricted_guest, 93 enable_unrestricted_guest, bool, S_IRUGO); 94 95 bool __read_mostly enable_ept_ad_bits = 1; 96 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); 97 98 static bool __read_mostly emulate_invalid_guest_state = true; 99 module_param(emulate_invalid_guest_state, bool, S_IRUGO); 100 101 static bool __read_mostly fasteoi = 1; 102 module_param(fasteoi, bool, S_IRUGO); 103 104 bool __read_mostly enable_apicv = 1; 105 module_param(enable_apicv, bool, S_IRUGO); 106 107 /* 108 * If nested=1, nested virtualization is supported, i.e., guests may use 109 * VMX and be a hypervisor for its own guests. If nested=0, guests may not 110 * use VMX instructions. 111 */ 112 static bool __read_mostly nested = 1; 113 module_param(nested, bool, S_IRUGO); 114 115 bool __read_mostly enable_pml = 1; 116 module_param_named(pml, enable_pml, bool, S_IRUGO); 117 118 static bool __read_mostly dump_invalid_vmcs = 0; 119 module_param(dump_invalid_vmcs, bool, 0644); 120 121 #define MSR_BITMAP_MODE_X2APIC 1 122 #define MSR_BITMAP_MODE_X2APIC_APICV 2 123 124 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL 125 126 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */ 127 static int __read_mostly cpu_preemption_timer_multi; 128 static bool __read_mostly enable_preemption_timer = 1; 129 #ifdef CONFIG_X86_64 130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO); 131 #endif 132 133 extern bool __read_mostly allow_smaller_maxphyaddr; 134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO); 135 136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD) 137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE 138 #define KVM_VM_CR0_ALWAYS_ON \ 139 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \ 140 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE) 141 142 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE 143 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) 144 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) 145 146 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) 147 148 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \ 149 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \ 150 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \ 151 RTIT_STATUS_BYTECNT)) 152 153 /* 154 * List of MSRs that can be directly passed to the guest. 155 * In addition to these x2apic and PT MSRs are handled specially. 156 */ 157 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = { 158 MSR_IA32_SPEC_CTRL, 159 MSR_IA32_PRED_CMD, 160 MSR_IA32_TSC, 161 #ifdef CONFIG_X86_64 162 MSR_FS_BASE, 163 MSR_GS_BASE, 164 MSR_KERNEL_GS_BASE, 165 #endif 166 MSR_IA32_SYSENTER_CS, 167 MSR_IA32_SYSENTER_ESP, 168 MSR_IA32_SYSENTER_EIP, 169 MSR_CORE_C1_RES, 170 MSR_CORE_C3_RESIDENCY, 171 MSR_CORE_C6_RESIDENCY, 172 MSR_CORE_C7_RESIDENCY, 173 }; 174 175 /* 176 * These 2 parameters are used to config the controls for Pause-Loop Exiting: 177 * ple_gap: upper bound on the amount of time between two successive 178 * executions of PAUSE in a loop. Also indicate if ple enabled. 179 * According to test, this time is usually smaller than 128 cycles. 180 * ple_window: upper bound on the amount of time a guest is allowed to execute 181 * in a PAUSE loop. Tests indicate that most spinlocks are held for 182 * less than 2^12 cycles 183 * Time is measured based on a counter that runs at the same rate as the TSC, 184 * refer SDM volume 3b section 21.6.13 & 22.1.3. 185 */ 186 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP; 187 module_param(ple_gap, uint, 0444); 188 189 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; 190 module_param(ple_window, uint, 0444); 191 192 /* Default doubles per-vcpu window every exit. */ 193 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW; 194 module_param(ple_window_grow, uint, 0444); 195 196 /* Default resets per-vcpu window every exit to ple_window. */ 197 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; 198 module_param(ple_window_shrink, uint, 0444); 199 200 /* Default is to compute the maximum so we can never overflow. */ 201 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX; 202 module_param(ple_window_max, uint, 0444); 203 204 /* Default is SYSTEM mode, 1 for host-guest mode */ 205 int __read_mostly pt_mode = PT_MODE_SYSTEM; 206 module_param(pt_mode, int, S_IRUGO); 207 208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush); 209 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond); 210 static DEFINE_MUTEX(vmx_l1d_flush_mutex); 211 212 /* Storage for pre module init parameter parsing */ 213 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO; 214 215 static const struct { 216 const char *option; 217 bool for_parse; 218 } vmentry_l1d_param[] = { 219 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true}, 220 [VMENTER_L1D_FLUSH_NEVER] = {"never", true}, 221 [VMENTER_L1D_FLUSH_COND] = {"cond", true}, 222 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true}, 223 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false}, 224 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false}, 225 }; 226 227 #define L1D_CACHE_ORDER 4 228 static void *vmx_l1d_flush_pages; 229 230 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf) 231 { 232 struct page *page; 233 unsigned int i; 234 235 if (!boot_cpu_has_bug(X86_BUG_L1TF)) { 236 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 237 return 0; 238 } 239 240 if (!enable_ept) { 241 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED; 242 return 0; 243 } 244 245 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) { 246 u64 msr; 247 248 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr); 249 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) { 250 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED; 251 return 0; 252 } 253 } 254 255 /* If set to auto use the default l1tf mitigation method */ 256 if (l1tf == VMENTER_L1D_FLUSH_AUTO) { 257 switch (l1tf_mitigation) { 258 case L1TF_MITIGATION_OFF: 259 l1tf = VMENTER_L1D_FLUSH_NEVER; 260 break; 261 case L1TF_MITIGATION_FLUSH_NOWARN: 262 case L1TF_MITIGATION_FLUSH: 263 case L1TF_MITIGATION_FLUSH_NOSMT: 264 l1tf = VMENTER_L1D_FLUSH_COND; 265 break; 266 case L1TF_MITIGATION_FULL: 267 case L1TF_MITIGATION_FULL_FORCE: 268 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 269 break; 270 } 271 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) { 272 l1tf = VMENTER_L1D_FLUSH_ALWAYS; 273 } 274 275 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages && 276 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) { 277 /* 278 * This allocation for vmx_l1d_flush_pages is not tied to a VM 279 * lifetime and so should not be charged to a memcg. 280 */ 281 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER); 282 if (!page) 283 return -ENOMEM; 284 vmx_l1d_flush_pages = page_address(page); 285 286 /* 287 * Initialize each page with a different pattern in 288 * order to protect against KSM in the nested 289 * virtualization case. 290 */ 291 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) { 292 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1, 293 PAGE_SIZE); 294 } 295 } 296 297 l1tf_vmx_mitigation = l1tf; 298 299 if (l1tf != VMENTER_L1D_FLUSH_NEVER) 300 static_branch_enable(&vmx_l1d_should_flush); 301 else 302 static_branch_disable(&vmx_l1d_should_flush); 303 304 if (l1tf == VMENTER_L1D_FLUSH_COND) 305 static_branch_enable(&vmx_l1d_flush_cond); 306 else 307 static_branch_disable(&vmx_l1d_flush_cond); 308 return 0; 309 } 310 311 static int vmentry_l1d_flush_parse(const char *s) 312 { 313 unsigned int i; 314 315 if (s) { 316 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) { 317 if (vmentry_l1d_param[i].for_parse && 318 sysfs_streq(s, vmentry_l1d_param[i].option)) 319 return i; 320 } 321 } 322 return -EINVAL; 323 } 324 325 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp) 326 { 327 int l1tf, ret; 328 329 l1tf = vmentry_l1d_flush_parse(s); 330 if (l1tf < 0) 331 return l1tf; 332 333 if (!boot_cpu_has(X86_BUG_L1TF)) 334 return 0; 335 336 /* 337 * Has vmx_init() run already? If not then this is the pre init 338 * parameter parsing. In that case just store the value and let 339 * vmx_init() do the proper setup after enable_ept has been 340 * established. 341 */ 342 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) { 343 vmentry_l1d_flush_param = l1tf; 344 return 0; 345 } 346 347 mutex_lock(&vmx_l1d_flush_mutex); 348 ret = vmx_setup_l1d_flush(l1tf); 349 mutex_unlock(&vmx_l1d_flush_mutex); 350 return ret; 351 } 352 353 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp) 354 { 355 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param))) 356 return sprintf(s, "???\n"); 357 358 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option); 359 } 360 361 static const struct kernel_param_ops vmentry_l1d_flush_ops = { 362 .set = vmentry_l1d_flush_set, 363 .get = vmentry_l1d_flush_get, 364 }; 365 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644); 366 367 static u32 vmx_segment_access_rights(struct kvm_segment *var); 368 369 void vmx_vmexit(void); 370 371 #define vmx_insn_failed(fmt...) \ 372 do { \ 373 WARN_ONCE(1, fmt); \ 374 pr_warn_ratelimited(fmt); \ 375 } while (0) 376 377 asmlinkage void vmread_error(unsigned long field, bool fault) 378 { 379 if (fault) 380 kvm_spurious_fault(); 381 else 382 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field); 383 } 384 385 noinline void vmwrite_error(unsigned long field, unsigned long value) 386 { 387 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n", 388 field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); 389 } 390 391 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr) 392 { 393 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr); 394 } 395 396 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr) 397 { 398 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr); 399 } 400 401 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva) 402 { 403 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n", 404 ext, vpid, gva); 405 } 406 407 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa) 408 { 409 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n", 410 ext, eptp, gpa); 411 } 412 413 static DEFINE_PER_CPU(struct vmcs *, vmxarea); 414 DEFINE_PER_CPU(struct vmcs *, current_vmcs); 415 /* 416 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed 417 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. 418 */ 419 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); 420 421 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); 422 static DEFINE_SPINLOCK(vmx_vpid_lock); 423 424 struct vmcs_config vmcs_config; 425 struct vmx_capability vmx_capability; 426 427 #define VMX_SEGMENT_FIELD(seg) \ 428 [VCPU_SREG_##seg] = { \ 429 .selector = GUEST_##seg##_SELECTOR, \ 430 .base = GUEST_##seg##_BASE, \ 431 .limit = GUEST_##seg##_LIMIT, \ 432 .ar_bytes = GUEST_##seg##_AR_BYTES, \ 433 } 434 435 static const struct kvm_vmx_segment_field { 436 unsigned selector; 437 unsigned base; 438 unsigned limit; 439 unsigned ar_bytes; 440 } kvm_vmx_segment_fields[] = { 441 VMX_SEGMENT_FIELD(CS), 442 VMX_SEGMENT_FIELD(DS), 443 VMX_SEGMENT_FIELD(ES), 444 VMX_SEGMENT_FIELD(FS), 445 VMX_SEGMENT_FIELD(GS), 446 VMX_SEGMENT_FIELD(SS), 447 VMX_SEGMENT_FIELD(TR), 448 VMX_SEGMENT_FIELD(LDTR), 449 }; 450 451 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx) 452 { 453 vmx->segment_cache.bitmask = 0; 454 } 455 456 static unsigned long host_idt_base; 457 458 /* 459 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm 460 * will emulate SYSCALL in legacy mode if the vendor string in guest 461 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To 462 * support this emulation, IA32_STAR must always be included in 463 * vmx_uret_msrs_list[], even in i386 builds. 464 */ 465 static const u32 vmx_uret_msrs_list[] = { 466 #ifdef CONFIG_X86_64 467 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, 468 #endif 469 MSR_EFER, MSR_TSC_AUX, MSR_STAR, 470 MSR_IA32_TSX_CTRL, 471 }; 472 473 #if IS_ENABLED(CONFIG_HYPERV) 474 static bool __read_mostly enlightened_vmcs = true; 475 module_param(enlightened_vmcs, bool, 0444); 476 477 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush, 478 void *data) 479 { 480 struct kvm_tlb_range *range = data; 481 482 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn, 483 range->pages); 484 } 485 486 static inline int hv_remote_flush_root_ept(hpa_t root_ept, 487 struct kvm_tlb_range *range) 488 { 489 if (range) 490 return hyperv_flush_guest_mapping_range(root_ept, 491 kvm_fill_hv_flush_list_func, (void *)range); 492 else 493 return hyperv_flush_guest_mapping(root_ept); 494 } 495 496 static int hv_remote_flush_tlb_with_range(struct kvm *kvm, 497 struct kvm_tlb_range *range) 498 { 499 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 500 struct kvm_vcpu *vcpu; 501 int ret = 0, i, nr_unique_valid_roots; 502 hpa_t root; 503 504 spin_lock(&kvm_vmx->hv_root_ept_lock); 505 506 if (!VALID_PAGE(kvm_vmx->hv_root_ept)) { 507 nr_unique_valid_roots = 0; 508 509 /* 510 * Flush all valid roots, and see if all vCPUs have converged 511 * on a common root, in which case future flushes can skip the 512 * loop and flush the common root. 513 */ 514 kvm_for_each_vcpu(i, vcpu, kvm) { 515 root = to_vmx(vcpu)->hv_root_ept; 516 if (!VALID_PAGE(root) || root == kvm_vmx->hv_root_ept) 517 continue; 518 519 /* 520 * Set the tracked root to the first valid root. Keep 521 * this root for the entirety of the loop even if more 522 * roots are encountered as a low effort optimization 523 * to avoid flushing the same (first) root again. 524 */ 525 if (++nr_unique_valid_roots == 1) 526 kvm_vmx->hv_root_ept = root; 527 528 if (!ret) 529 ret = hv_remote_flush_root_ept(root, range); 530 531 /* 532 * Stop processing roots if a failure occurred and 533 * multiple valid roots have already been detected. 534 */ 535 if (ret && nr_unique_valid_roots > 1) 536 break; 537 } 538 539 /* 540 * The optimized flush of a single root can't be used if there 541 * are multiple valid roots (obviously). 542 */ 543 if (nr_unique_valid_roots > 1) 544 kvm_vmx->hv_root_ept = INVALID_PAGE; 545 } else { 546 ret = hv_remote_flush_root_ept(kvm_vmx->hv_root_ept, range); 547 } 548 549 spin_unlock(&kvm_vmx->hv_root_ept_lock); 550 return ret; 551 } 552 static int hv_remote_flush_tlb(struct kvm *kvm) 553 { 554 return hv_remote_flush_tlb_with_range(kvm, NULL); 555 } 556 557 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu) 558 { 559 struct hv_enlightened_vmcs *evmcs; 560 struct hv_partition_assist_pg **p_hv_pa_pg = 561 &to_kvm_hv(vcpu->kvm)->hv_pa_pg; 562 /* 563 * Synthetic VM-Exit is not enabled in current code and so All 564 * evmcs in singe VM shares same assist page. 565 */ 566 if (!*p_hv_pa_pg) 567 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT); 568 569 if (!*p_hv_pa_pg) 570 return -ENOMEM; 571 572 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs; 573 574 evmcs->partition_assist_page = 575 __pa(*p_hv_pa_pg); 576 evmcs->hv_vm_id = (unsigned long)vcpu->kvm; 577 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1; 578 579 return 0; 580 } 581 582 #endif /* IS_ENABLED(CONFIG_HYPERV) */ 583 584 static void hv_track_root_ept(struct kvm_vcpu *vcpu, hpa_t root_ept) 585 { 586 #if IS_ENABLED(CONFIG_HYPERV) 587 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 588 589 if (kvm_x86_ops.tlb_remote_flush == hv_remote_flush_tlb) { 590 spin_lock(&kvm_vmx->hv_root_ept_lock); 591 to_vmx(vcpu)->hv_root_ept = root_ept; 592 if (root_ept != kvm_vmx->hv_root_ept) 593 kvm_vmx->hv_root_ept = INVALID_PAGE; 594 spin_unlock(&kvm_vmx->hv_root_ept_lock); 595 } 596 #endif 597 } 598 599 /* 600 * Comment's format: document - errata name - stepping - processor name. 601 * Refer from 602 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp 603 */ 604 static u32 vmx_preemption_cpu_tfms[] = { 605 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */ 606 0x000206E6, 607 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */ 608 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */ 609 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */ 610 0x00020652, 611 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */ 612 0x00020655, 613 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */ 614 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */ 615 /* 616 * 320767.pdf - AAP86 - B1 - 617 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile 618 */ 619 0x000106E5, 620 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */ 621 0x000106A0, 622 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */ 623 0x000106A1, 624 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */ 625 0x000106A4, 626 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */ 627 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */ 628 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */ 629 0x000106A5, 630 /* Xeon E3-1220 V2 */ 631 0x000306A8, 632 }; 633 634 static inline bool cpu_has_broken_vmx_preemption_timer(void) 635 { 636 u32 eax = cpuid_eax(0x00000001), i; 637 638 /* Clear the reserved bits */ 639 eax &= ~(0x3U << 14 | 0xfU << 28); 640 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++) 641 if (eax == vmx_preemption_cpu_tfms[i]) 642 return true; 643 644 return false; 645 } 646 647 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu) 648 { 649 return flexpriority_enabled && lapic_in_kernel(vcpu); 650 } 651 652 static inline bool report_flexpriority(void) 653 { 654 return flexpriority_enabled; 655 } 656 657 static int possible_passthrough_msr_slot(u32 msr) 658 { 659 u32 i; 660 661 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) 662 if (vmx_possible_passthrough_msrs[i] == msr) 663 return i; 664 665 return -ENOENT; 666 } 667 668 static bool is_valid_passthrough_msr(u32 msr) 669 { 670 bool r; 671 672 switch (msr) { 673 case 0x800 ... 0x8ff: 674 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */ 675 return true; 676 case MSR_IA32_RTIT_STATUS: 677 case MSR_IA32_RTIT_OUTPUT_BASE: 678 case MSR_IA32_RTIT_OUTPUT_MASK: 679 case MSR_IA32_RTIT_CR3_MATCH: 680 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 681 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */ 682 case MSR_LBR_SELECT: 683 case MSR_LBR_TOS: 684 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31: 685 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31: 686 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31: 687 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8: 688 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8: 689 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */ 690 return true; 691 } 692 693 r = possible_passthrough_msr_slot(msr) != -ENOENT; 694 695 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr); 696 697 return r; 698 } 699 700 static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 701 { 702 int i; 703 704 for (i = 0; i < vmx->nr_uret_msrs; ++i) 705 if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr) 706 return i; 707 return -1; 708 } 709 710 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr) 711 { 712 int i; 713 714 i = __vmx_find_uret_msr(vmx, msr); 715 if (i >= 0) 716 return &vmx->guest_uret_msrs[i]; 717 return NULL; 718 } 719 720 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx, 721 struct vmx_uret_msr *msr, u64 data) 722 { 723 int ret = 0; 724 725 u64 old_msr_data = msr->data; 726 msr->data = data; 727 if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) { 728 preempt_disable(); 729 ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask); 730 preempt_enable(); 731 if (ret) 732 msr->data = old_msr_data; 733 } 734 return ret; 735 } 736 737 #ifdef CONFIG_KEXEC_CORE 738 static void crash_vmclear_local_loaded_vmcss(void) 739 { 740 int cpu = raw_smp_processor_id(); 741 struct loaded_vmcs *v; 742 743 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), 744 loaded_vmcss_on_cpu_link) 745 vmcs_clear(v->vmcs); 746 } 747 #endif /* CONFIG_KEXEC_CORE */ 748 749 static void __loaded_vmcs_clear(void *arg) 750 { 751 struct loaded_vmcs *loaded_vmcs = arg; 752 int cpu = raw_smp_processor_id(); 753 754 if (loaded_vmcs->cpu != cpu) 755 return; /* vcpu migration can race with cpu offline */ 756 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) 757 per_cpu(current_vmcs, cpu) = NULL; 758 759 vmcs_clear(loaded_vmcs->vmcs); 760 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched) 761 vmcs_clear(loaded_vmcs->shadow_vmcs); 762 763 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); 764 765 /* 766 * Ensure all writes to loaded_vmcs, including deleting it from its 767 * current percpu list, complete before setting loaded_vmcs->vcpu to 768 * -1, otherwise a different cpu can see vcpu == -1 first and add 769 * loaded_vmcs to its percpu list before it's deleted from this cpu's 770 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs(). 771 */ 772 smp_wmb(); 773 774 loaded_vmcs->cpu = -1; 775 loaded_vmcs->launched = 0; 776 } 777 778 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) 779 { 780 int cpu = loaded_vmcs->cpu; 781 782 if (cpu != -1) 783 smp_call_function_single(cpu, 784 __loaded_vmcs_clear, loaded_vmcs, 1); 785 } 786 787 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, 788 unsigned field) 789 { 790 bool ret; 791 u32 mask = 1 << (seg * SEG_FIELD_NR + field); 792 793 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) { 794 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS); 795 vmx->segment_cache.bitmask = 0; 796 } 797 ret = vmx->segment_cache.bitmask & mask; 798 vmx->segment_cache.bitmask |= mask; 799 return ret; 800 } 801 802 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) 803 { 804 u16 *p = &vmx->segment_cache.seg[seg].selector; 805 806 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) 807 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); 808 return *p; 809 } 810 811 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) 812 { 813 ulong *p = &vmx->segment_cache.seg[seg].base; 814 815 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) 816 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base); 817 return *p; 818 } 819 820 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) 821 { 822 u32 *p = &vmx->segment_cache.seg[seg].limit; 823 824 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) 825 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); 826 return *p; 827 } 828 829 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) 830 { 831 u32 *p = &vmx->segment_cache.seg[seg].ar; 832 833 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) 834 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); 835 return *p; 836 } 837 838 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu) 839 { 840 u32 eb; 841 842 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | 843 (1u << DB_VECTOR) | (1u << AC_VECTOR); 844 /* 845 * Guest access to VMware backdoor ports could legitimately 846 * trigger #GP because of TSS I/O permission bitmap. 847 * We intercept those #GP and allow access to them anyway 848 * as VMware does. 849 */ 850 if (enable_vmware_backdoor) 851 eb |= (1u << GP_VECTOR); 852 if ((vcpu->guest_debug & 853 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == 854 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) 855 eb |= 1u << BP_VECTOR; 856 if (to_vmx(vcpu)->rmode.vm86_active) 857 eb = ~0; 858 if (!vmx_need_pf_intercept(vcpu)) 859 eb &= ~(1u << PF_VECTOR); 860 861 /* When we are running a nested L2 guest and L1 specified for it a 862 * certain exception bitmap, we must trap the same exceptions and pass 863 * them to L1. When running L2, we will only handle the exceptions 864 * specified above if L1 did not want them. 865 */ 866 if (is_guest_mode(vcpu)) 867 eb |= get_vmcs12(vcpu)->exception_bitmap; 868 else { 869 /* 870 * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched 871 * between guest and host. In that case we only care about present 872 * faults. For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in 873 * prepare_vmcs02_rare. 874 */ 875 bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR)); 876 int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0; 877 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask); 878 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask); 879 } 880 881 vmcs_write32(EXCEPTION_BITMAP, eb); 882 } 883 884 /* 885 * Check if MSR is intercepted for currently loaded MSR bitmap. 886 */ 887 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr) 888 { 889 unsigned long *msr_bitmap; 890 int f = sizeof(unsigned long); 891 892 if (!cpu_has_vmx_msr_bitmap()) 893 return true; 894 895 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap; 896 897 if (msr <= 0x1fff) { 898 return !!test_bit(msr, msr_bitmap + 0x800 / f); 899 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { 900 msr &= 0x1fff; 901 return !!test_bit(msr, msr_bitmap + 0xc00 / f); 902 } 903 904 return true; 905 } 906 907 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx, 908 unsigned long entry, unsigned long exit) 909 { 910 vm_entry_controls_clearbit(vmx, entry); 911 vm_exit_controls_clearbit(vmx, exit); 912 } 913 914 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr) 915 { 916 unsigned int i; 917 918 for (i = 0; i < m->nr; ++i) { 919 if (m->val[i].index == msr) 920 return i; 921 } 922 return -ENOENT; 923 } 924 925 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) 926 { 927 int i; 928 struct msr_autoload *m = &vmx->msr_autoload; 929 930 switch (msr) { 931 case MSR_EFER: 932 if (cpu_has_load_ia32_efer()) { 933 clear_atomic_switch_msr_special(vmx, 934 VM_ENTRY_LOAD_IA32_EFER, 935 VM_EXIT_LOAD_IA32_EFER); 936 return; 937 } 938 break; 939 case MSR_CORE_PERF_GLOBAL_CTRL: 940 if (cpu_has_load_perf_global_ctrl()) { 941 clear_atomic_switch_msr_special(vmx, 942 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 943 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); 944 return; 945 } 946 break; 947 } 948 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 949 if (i < 0) 950 goto skip_guest; 951 --m->guest.nr; 952 m->guest.val[i] = m->guest.val[m->guest.nr]; 953 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 954 955 skip_guest: 956 i = vmx_find_loadstore_msr_slot(&m->host, msr); 957 if (i < 0) 958 return; 959 960 --m->host.nr; 961 m->host.val[i] = m->host.val[m->host.nr]; 962 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 963 } 964 965 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx, 966 unsigned long entry, unsigned long exit, 967 unsigned long guest_val_vmcs, unsigned long host_val_vmcs, 968 u64 guest_val, u64 host_val) 969 { 970 vmcs_write64(guest_val_vmcs, guest_val); 971 if (host_val_vmcs != HOST_IA32_EFER) 972 vmcs_write64(host_val_vmcs, host_val); 973 vm_entry_controls_setbit(vmx, entry); 974 vm_exit_controls_setbit(vmx, exit); 975 } 976 977 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, 978 u64 guest_val, u64 host_val, bool entry_only) 979 { 980 int i, j = 0; 981 struct msr_autoload *m = &vmx->msr_autoload; 982 983 switch (msr) { 984 case MSR_EFER: 985 if (cpu_has_load_ia32_efer()) { 986 add_atomic_switch_msr_special(vmx, 987 VM_ENTRY_LOAD_IA32_EFER, 988 VM_EXIT_LOAD_IA32_EFER, 989 GUEST_IA32_EFER, 990 HOST_IA32_EFER, 991 guest_val, host_val); 992 return; 993 } 994 break; 995 case MSR_CORE_PERF_GLOBAL_CTRL: 996 if (cpu_has_load_perf_global_ctrl()) { 997 add_atomic_switch_msr_special(vmx, 998 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, 999 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, 1000 GUEST_IA32_PERF_GLOBAL_CTRL, 1001 HOST_IA32_PERF_GLOBAL_CTRL, 1002 guest_val, host_val); 1003 return; 1004 } 1005 break; 1006 case MSR_IA32_PEBS_ENABLE: 1007 /* PEBS needs a quiescent period after being disabled (to write 1008 * a record). Disabling PEBS through VMX MSR swapping doesn't 1009 * provide that period, so a CPU could write host's record into 1010 * guest's memory. 1011 */ 1012 wrmsrl(MSR_IA32_PEBS_ENABLE, 0); 1013 } 1014 1015 i = vmx_find_loadstore_msr_slot(&m->guest, msr); 1016 if (!entry_only) 1017 j = vmx_find_loadstore_msr_slot(&m->host, msr); 1018 1019 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) || 1020 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) { 1021 printk_once(KERN_WARNING "Not enough msr switch entries. " 1022 "Can't add msr %x\n", msr); 1023 return; 1024 } 1025 if (i < 0) { 1026 i = m->guest.nr++; 1027 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr); 1028 } 1029 m->guest.val[i].index = msr; 1030 m->guest.val[i].value = guest_val; 1031 1032 if (entry_only) 1033 return; 1034 1035 if (j < 0) { 1036 j = m->host.nr++; 1037 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr); 1038 } 1039 m->host.val[j].index = msr; 1040 m->host.val[j].value = host_val; 1041 } 1042 1043 static bool update_transition_efer(struct vcpu_vmx *vmx) 1044 { 1045 u64 guest_efer = vmx->vcpu.arch.efer; 1046 u64 ignore_bits = 0; 1047 int i; 1048 1049 /* Shadow paging assumes NX to be available. */ 1050 if (!enable_ept) 1051 guest_efer |= EFER_NX; 1052 1053 /* 1054 * LMA and LME handled by hardware; SCE meaningless outside long mode. 1055 */ 1056 ignore_bits |= EFER_SCE; 1057 #ifdef CONFIG_X86_64 1058 ignore_bits |= EFER_LMA | EFER_LME; 1059 /* SCE is meaningful only in long mode on Intel */ 1060 if (guest_efer & EFER_LMA) 1061 ignore_bits &= ~(u64)EFER_SCE; 1062 #endif 1063 1064 /* 1065 * On EPT, we can't emulate NX, so we must switch EFER atomically. 1066 * On CPUs that support "load IA32_EFER", always switch EFER 1067 * atomically, since it's faster than switching it manually. 1068 */ 1069 if (cpu_has_load_ia32_efer() || 1070 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) { 1071 if (!(guest_efer & EFER_LMA)) 1072 guest_efer &= ~EFER_LME; 1073 if (guest_efer != host_efer) 1074 add_atomic_switch_msr(vmx, MSR_EFER, 1075 guest_efer, host_efer, false); 1076 else 1077 clear_atomic_switch_msr(vmx, MSR_EFER); 1078 return false; 1079 } 1080 1081 i = __vmx_find_uret_msr(vmx, MSR_EFER); 1082 if (i < 0) 1083 return false; 1084 1085 clear_atomic_switch_msr(vmx, MSR_EFER); 1086 1087 guest_efer &= ~ignore_bits; 1088 guest_efer |= host_efer & ignore_bits; 1089 1090 vmx->guest_uret_msrs[i].data = guest_efer; 1091 vmx->guest_uret_msrs[i].mask = ~ignore_bits; 1092 1093 return true; 1094 } 1095 1096 #ifdef CONFIG_X86_32 1097 /* 1098 * On 32-bit kernels, VM exits still load the FS and GS bases from the 1099 * VMCS rather than the segment table. KVM uses this helper to figure 1100 * out the current bases to poke them into the VMCS before entry. 1101 */ 1102 static unsigned long segment_base(u16 selector) 1103 { 1104 struct desc_struct *table; 1105 unsigned long v; 1106 1107 if (!(selector & ~SEGMENT_RPL_MASK)) 1108 return 0; 1109 1110 table = get_current_gdt_ro(); 1111 1112 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) { 1113 u16 ldt_selector = kvm_read_ldt(); 1114 1115 if (!(ldt_selector & ~SEGMENT_RPL_MASK)) 1116 return 0; 1117 1118 table = (struct desc_struct *)segment_base(ldt_selector); 1119 } 1120 v = get_desc_base(&table[selector >> 3]); 1121 return v; 1122 } 1123 #endif 1124 1125 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx) 1126 { 1127 return vmx_pt_mode_is_host_guest() && 1128 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 1129 } 1130 1131 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base) 1132 { 1133 /* The base must be 128-byte aligned and a legal physical address. */ 1134 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128); 1135 } 1136 1137 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range) 1138 { 1139 u32 i; 1140 1141 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1142 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1143 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1144 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1145 for (i = 0; i < addr_range; i++) { 1146 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1147 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1148 } 1149 } 1150 1151 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range) 1152 { 1153 u32 i; 1154 1155 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status); 1156 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base); 1157 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask); 1158 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match); 1159 for (i = 0; i < addr_range; i++) { 1160 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]); 1161 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]); 1162 } 1163 } 1164 1165 static void pt_guest_enter(struct vcpu_vmx *vmx) 1166 { 1167 if (vmx_pt_mode_is_system()) 1168 return; 1169 1170 /* 1171 * GUEST_IA32_RTIT_CTL is already set in the VMCS. 1172 * Save host state before VM entry. 1173 */ 1174 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1175 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1176 wrmsrl(MSR_IA32_RTIT_CTL, 0); 1177 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1178 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1179 } 1180 } 1181 1182 static void pt_guest_exit(struct vcpu_vmx *vmx) 1183 { 1184 if (vmx_pt_mode_is_system()) 1185 return; 1186 1187 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) { 1188 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range); 1189 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range); 1190 } 1191 1192 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */ 1193 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl); 1194 } 1195 1196 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel, 1197 unsigned long fs_base, unsigned long gs_base) 1198 { 1199 if (unlikely(fs_sel != host->fs_sel)) { 1200 if (!(fs_sel & 7)) 1201 vmcs_write16(HOST_FS_SELECTOR, fs_sel); 1202 else 1203 vmcs_write16(HOST_FS_SELECTOR, 0); 1204 host->fs_sel = fs_sel; 1205 } 1206 if (unlikely(gs_sel != host->gs_sel)) { 1207 if (!(gs_sel & 7)) 1208 vmcs_write16(HOST_GS_SELECTOR, gs_sel); 1209 else 1210 vmcs_write16(HOST_GS_SELECTOR, 0); 1211 host->gs_sel = gs_sel; 1212 } 1213 if (unlikely(fs_base != host->fs_base)) { 1214 vmcs_writel(HOST_FS_BASE, fs_base); 1215 host->fs_base = fs_base; 1216 } 1217 if (unlikely(gs_base != host->gs_base)) { 1218 vmcs_writel(HOST_GS_BASE, gs_base); 1219 host->gs_base = gs_base; 1220 } 1221 } 1222 1223 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu) 1224 { 1225 struct vcpu_vmx *vmx = to_vmx(vcpu); 1226 struct vmcs_host_state *host_state; 1227 #ifdef CONFIG_X86_64 1228 int cpu = raw_smp_processor_id(); 1229 #endif 1230 unsigned long fs_base, gs_base; 1231 u16 fs_sel, gs_sel; 1232 int i; 1233 1234 vmx->req_immediate_exit = false; 1235 1236 /* 1237 * Note that guest MSRs to be saved/restored can also be changed 1238 * when guest state is loaded. This happens when guest transitions 1239 * to/from long-mode by setting MSR_EFER.LMA. 1240 */ 1241 if (!vmx->guest_uret_msrs_loaded) { 1242 vmx->guest_uret_msrs_loaded = true; 1243 for (i = 0; i < vmx->nr_active_uret_msrs; ++i) 1244 kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot, 1245 vmx->guest_uret_msrs[i].data, 1246 vmx->guest_uret_msrs[i].mask); 1247 1248 } 1249 1250 if (vmx->nested.need_vmcs12_to_shadow_sync) 1251 nested_sync_vmcs12_to_shadow(vcpu); 1252 1253 if (vmx->guest_state_loaded) 1254 return; 1255 1256 host_state = &vmx->loaded_vmcs->host_state; 1257 1258 /* 1259 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not 1260 * allow segment selectors with cpl > 0 or ti == 1. 1261 */ 1262 host_state->ldt_sel = kvm_read_ldt(); 1263 1264 #ifdef CONFIG_X86_64 1265 savesegment(ds, host_state->ds_sel); 1266 savesegment(es, host_state->es_sel); 1267 1268 gs_base = cpu_kernelmode_gs_base(cpu); 1269 if (likely(is_64bit_mm(current->mm))) { 1270 current_save_fsgs(); 1271 fs_sel = current->thread.fsindex; 1272 gs_sel = current->thread.gsindex; 1273 fs_base = current->thread.fsbase; 1274 vmx->msr_host_kernel_gs_base = current->thread.gsbase; 1275 } else { 1276 savesegment(fs, fs_sel); 1277 savesegment(gs, gs_sel); 1278 fs_base = read_msr(MSR_FS_BASE); 1279 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE); 1280 } 1281 1282 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1283 #else 1284 savesegment(fs, fs_sel); 1285 savesegment(gs, gs_sel); 1286 fs_base = segment_base(fs_sel); 1287 gs_base = segment_base(gs_sel); 1288 #endif 1289 1290 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base); 1291 vmx->guest_state_loaded = true; 1292 } 1293 1294 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx) 1295 { 1296 struct vmcs_host_state *host_state; 1297 1298 if (!vmx->guest_state_loaded) 1299 return; 1300 1301 host_state = &vmx->loaded_vmcs->host_state; 1302 1303 ++vmx->vcpu.stat.host_state_reload; 1304 1305 #ifdef CONFIG_X86_64 1306 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1307 #endif 1308 if (host_state->ldt_sel || (host_state->gs_sel & 7)) { 1309 kvm_load_ldt(host_state->ldt_sel); 1310 #ifdef CONFIG_X86_64 1311 load_gs_index(host_state->gs_sel); 1312 #else 1313 loadsegment(gs, host_state->gs_sel); 1314 #endif 1315 } 1316 if (host_state->fs_sel & 7) 1317 loadsegment(fs, host_state->fs_sel); 1318 #ifdef CONFIG_X86_64 1319 if (unlikely(host_state->ds_sel | host_state->es_sel)) { 1320 loadsegment(ds, host_state->ds_sel); 1321 loadsegment(es, host_state->es_sel); 1322 } 1323 #endif 1324 invalidate_tss_limit(); 1325 #ifdef CONFIG_X86_64 1326 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); 1327 #endif 1328 load_fixmap_gdt(raw_smp_processor_id()); 1329 vmx->guest_state_loaded = false; 1330 vmx->guest_uret_msrs_loaded = false; 1331 } 1332 1333 #ifdef CONFIG_X86_64 1334 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx) 1335 { 1336 preempt_disable(); 1337 if (vmx->guest_state_loaded) 1338 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); 1339 preempt_enable(); 1340 return vmx->msr_guest_kernel_gs_base; 1341 } 1342 1343 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data) 1344 { 1345 preempt_disable(); 1346 if (vmx->guest_state_loaded) 1347 wrmsrl(MSR_KERNEL_GS_BASE, data); 1348 preempt_enable(); 1349 vmx->msr_guest_kernel_gs_base = data; 1350 } 1351 #endif 1352 1353 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu, 1354 struct loaded_vmcs *buddy) 1355 { 1356 struct vcpu_vmx *vmx = to_vmx(vcpu); 1357 bool already_loaded = vmx->loaded_vmcs->cpu == cpu; 1358 struct vmcs *prev; 1359 1360 if (!already_loaded) { 1361 loaded_vmcs_clear(vmx->loaded_vmcs); 1362 local_irq_disable(); 1363 1364 /* 1365 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to 1366 * this cpu's percpu list, otherwise it may not yet be deleted 1367 * from its previous cpu's percpu list. Pairs with the 1368 * smb_wmb() in __loaded_vmcs_clear(). 1369 */ 1370 smp_rmb(); 1371 1372 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, 1373 &per_cpu(loaded_vmcss_on_cpu, cpu)); 1374 local_irq_enable(); 1375 } 1376 1377 prev = per_cpu(current_vmcs, cpu); 1378 if (prev != vmx->loaded_vmcs->vmcs) { 1379 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; 1380 vmcs_load(vmx->loaded_vmcs->vmcs); 1381 1382 /* 1383 * No indirect branch prediction barrier needed when switching 1384 * the active VMCS within a guest, e.g. on nested VM-Enter. 1385 * The L1 VMM can protect itself with retpolines, IBPB or IBRS. 1386 */ 1387 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev)) 1388 indirect_branch_prediction_barrier(); 1389 } 1390 1391 if (!already_loaded) { 1392 void *gdt = get_current_gdt_ro(); 1393 unsigned long sysenter_esp; 1394 1395 /* 1396 * Flush all EPTP/VPID contexts, the new pCPU may have stale 1397 * TLB entries from its previous association with the vCPU. 1398 */ 1399 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); 1400 1401 /* 1402 * Linux uses per-cpu TSS and GDT, so set these when switching 1403 * processors. See 22.2.4. 1404 */ 1405 vmcs_writel(HOST_TR_BASE, 1406 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss); 1407 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */ 1408 1409 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); 1410 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ 1411 1412 vmx->loaded_vmcs->cpu = cpu; 1413 } 1414 1415 /* Setup TSC multiplier */ 1416 if (kvm_has_tsc_control && 1417 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) 1418 decache_tsc_multiplier(vmx); 1419 } 1420 1421 /* 1422 * Switches to specified vcpu, until a matching vcpu_put(), but assumes 1423 * vcpu mutex is already taken. 1424 */ 1425 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) 1426 { 1427 struct vcpu_vmx *vmx = to_vmx(vcpu); 1428 1429 vmx_vcpu_load_vmcs(vcpu, cpu, NULL); 1430 1431 vmx_vcpu_pi_load(vcpu, cpu); 1432 1433 vmx->host_debugctlmsr = get_debugctlmsr(); 1434 } 1435 1436 static void vmx_vcpu_put(struct kvm_vcpu *vcpu) 1437 { 1438 vmx_vcpu_pi_put(vcpu); 1439 1440 vmx_prepare_switch_to_host(to_vmx(vcpu)); 1441 } 1442 1443 static bool emulation_required(struct kvm_vcpu *vcpu) 1444 { 1445 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu); 1446 } 1447 1448 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) 1449 { 1450 struct vcpu_vmx *vmx = to_vmx(vcpu); 1451 unsigned long rflags, save_rflags; 1452 1453 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) { 1454 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1455 rflags = vmcs_readl(GUEST_RFLAGS); 1456 if (vmx->rmode.vm86_active) { 1457 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 1458 save_rflags = vmx->rmode.save_rflags; 1459 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 1460 } 1461 vmx->rflags = rflags; 1462 } 1463 return vmx->rflags; 1464 } 1465 1466 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) 1467 { 1468 struct vcpu_vmx *vmx = to_vmx(vcpu); 1469 unsigned long old_rflags; 1470 1471 if (is_unrestricted_guest(vcpu)) { 1472 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS); 1473 vmx->rflags = rflags; 1474 vmcs_writel(GUEST_RFLAGS, rflags); 1475 return; 1476 } 1477 1478 old_rflags = vmx_get_rflags(vcpu); 1479 vmx->rflags = rflags; 1480 if (vmx->rmode.vm86_active) { 1481 vmx->rmode.save_rflags = rflags; 1482 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 1483 } 1484 vmcs_writel(GUEST_RFLAGS, rflags); 1485 1486 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM) 1487 vmx->emulation_required = emulation_required(vcpu); 1488 } 1489 1490 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu) 1491 { 1492 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1493 int ret = 0; 1494 1495 if (interruptibility & GUEST_INTR_STATE_STI) 1496 ret |= KVM_X86_SHADOW_INT_STI; 1497 if (interruptibility & GUEST_INTR_STATE_MOV_SS) 1498 ret |= KVM_X86_SHADOW_INT_MOV_SS; 1499 1500 return ret; 1501 } 1502 1503 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) 1504 { 1505 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); 1506 u32 interruptibility = interruptibility_old; 1507 1508 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); 1509 1510 if (mask & KVM_X86_SHADOW_INT_MOV_SS) 1511 interruptibility |= GUEST_INTR_STATE_MOV_SS; 1512 else if (mask & KVM_X86_SHADOW_INT_STI) 1513 interruptibility |= GUEST_INTR_STATE_STI; 1514 1515 if ((interruptibility != interruptibility_old)) 1516 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); 1517 } 1518 1519 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) 1520 { 1521 struct vcpu_vmx *vmx = to_vmx(vcpu); 1522 unsigned long value; 1523 1524 /* 1525 * Any MSR write that attempts to change bits marked reserved will 1526 * case a #GP fault. 1527 */ 1528 if (data & vmx->pt_desc.ctl_bitmask) 1529 return 1; 1530 1531 /* 1532 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will 1533 * result in a #GP unless the same write also clears TraceEn. 1534 */ 1535 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) && 1536 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN)) 1537 return 1; 1538 1539 /* 1540 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit 1541 * and FabricEn would cause #GP, if 1542 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0 1543 */ 1544 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) && 1545 !(data & RTIT_CTL_FABRIC_EN) && 1546 !intel_pt_validate_cap(vmx->pt_desc.caps, 1547 PT_CAP_single_range_output)) 1548 return 1; 1549 1550 /* 1551 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that 1552 * utilize encodings marked reserved will cause a #GP fault. 1553 */ 1554 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods); 1555 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) && 1556 !test_bit((data & RTIT_CTL_MTC_RANGE) >> 1557 RTIT_CTL_MTC_RANGE_OFFSET, &value)) 1558 return 1; 1559 value = intel_pt_validate_cap(vmx->pt_desc.caps, 1560 PT_CAP_cycle_thresholds); 1561 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1562 !test_bit((data & RTIT_CTL_CYC_THRESH) >> 1563 RTIT_CTL_CYC_THRESH_OFFSET, &value)) 1564 return 1; 1565 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods); 1566 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) && 1567 !test_bit((data & RTIT_CTL_PSB_FREQ) >> 1568 RTIT_CTL_PSB_FREQ_OFFSET, &value)) 1569 return 1; 1570 1571 /* 1572 * If ADDRx_CFG is reserved or the encodings is >2 will 1573 * cause a #GP fault. 1574 */ 1575 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET; 1576 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2)) 1577 return 1; 1578 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET; 1579 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2)) 1580 return 1; 1581 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET; 1582 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2)) 1583 return 1; 1584 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET; 1585 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2)) 1586 return 1; 1587 1588 return 0; 1589 } 1590 1591 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len) 1592 { 1593 /* 1594 * Emulation of instructions in SGX enclaves is impossible as RIP does 1595 * not point tthe failing instruction, and even if it did, the code 1596 * stream is inaccessible. Inject #UD instead of exiting to userspace 1597 * so that guest userspace can't DoS the guest simply by triggering 1598 * emulation (enclaves are CPL3 only). 1599 */ 1600 if (to_vmx(vcpu)->exit_reason.enclave_mode) { 1601 kvm_queue_exception(vcpu, UD_VECTOR); 1602 return false; 1603 } 1604 return true; 1605 } 1606 1607 static int skip_emulated_instruction(struct kvm_vcpu *vcpu) 1608 { 1609 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason; 1610 unsigned long rip, orig_rip; 1611 u32 instr_len; 1612 1613 /* 1614 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on 1615 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be 1616 * set when EPT misconfig occurs. In practice, real hardware updates 1617 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors 1618 * (namely Hyper-V) don't set it due to it being undefined behavior, 1619 * i.e. we end up advancing IP with some random value. 1620 */ 1621 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) || 1622 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) { 1623 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 1624 1625 /* 1626 * Emulating an enclave's instructions isn't supported as KVM 1627 * cannot access the enclave's memory or its true RIP, e.g. the 1628 * vmcs.GUEST_RIP points at the exit point of the enclave, not 1629 * the RIP that actually triggered the VM-Exit. But, because 1630 * most instructions that cause VM-Exit will #UD in an enclave, 1631 * most instruction-based VM-Exits simply do not occur. 1632 * 1633 * There are a few exceptions, notably the debug instructions 1634 * INT1ICEBRK and INT3, as they are allowed in debug enclaves 1635 * and generate #DB/#BP as expected, which KVM might intercept. 1636 * But again, the CPU does the dirty work and saves an instr 1637 * length of zero so VMMs don't shoot themselves in the foot. 1638 * WARN if KVM tries to skip a non-zero length instruction on 1639 * a VM-Exit from an enclave. 1640 */ 1641 if (!instr_len) 1642 goto rip_updated; 1643 1644 WARN(exit_reason.enclave_mode, 1645 "KVM: skipping instruction after SGX enclave VM-Exit"); 1646 1647 orig_rip = kvm_rip_read(vcpu); 1648 rip = orig_rip + instr_len; 1649 #ifdef CONFIG_X86_64 1650 /* 1651 * We need to mask out the high 32 bits of RIP if not in 64-bit 1652 * mode, but just finding out that we are in 64-bit mode is 1653 * quite expensive. Only do it if there was a carry. 1654 */ 1655 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu)) 1656 rip = (u32)rip; 1657 #endif 1658 kvm_rip_write(vcpu, rip); 1659 } else { 1660 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP)) 1661 return 0; 1662 } 1663 1664 rip_updated: 1665 /* skipping an emulated instruction also counts */ 1666 vmx_set_interrupt_shadow(vcpu, 0); 1667 1668 return 1; 1669 } 1670 1671 /* 1672 * Recognizes a pending MTF VM-exit and records the nested state for later 1673 * delivery. 1674 */ 1675 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu) 1676 { 1677 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1678 struct vcpu_vmx *vmx = to_vmx(vcpu); 1679 1680 if (!is_guest_mode(vcpu)) 1681 return; 1682 1683 /* 1684 * Per the SDM, MTF takes priority over debug-trap exceptions besides 1685 * T-bit traps. As instruction emulation is completed (i.e. at the 1686 * instruction boundary), any #DB exception pending delivery must be a 1687 * debug-trap. Record the pending MTF state to be delivered in 1688 * vmx_check_nested_events(). 1689 */ 1690 if (nested_cpu_has_mtf(vmcs12) && 1691 (!vcpu->arch.exception.pending || 1692 vcpu->arch.exception.nr == DB_VECTOR)) 1693 vmx->nested.mtf_pending = true; 1694 else 1695 vmx->nested.mtf_pending = false; 1696 } 1697 1698 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu) 1699 { 1700 vmx_update_emulated_instruction(vcpu); 1701 return skip_emulated_instruction(vcpu); 1702 } 1703 1704 static void vmx_clear_hlt(struct kvm_vcpu *vcpu) 1705 { 1706 /* 1707 * Ensure that we clear the HLT state in the VMCS. We don't need to 1708 * explicitly skip the instruction because if the HLT state is set, 1709 * then the instruction is already executing and RIP has already been 1710 * advanced. 1711 */ 1712 if (kvm_hlt_in_guest(vcpu->kvm) && 1713 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT) 1714 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 1715 } 1716 1717 static void vmx_queue_exception(struct kvm_vcpu *vcpu) 1718 { 1719 struct vcpu_vmx *vmx = to_vmx(vcpu); 1720 unsigned nr = vcpu->arch.exception.nr; 1721 bool has_error_code = vcpu->arch.exception.has_error_code; 1722 u32 error_code = vcpu->arch.exception.error_code; 1723 u32 intr_info = nr | INTR_INFO_VALID_MASK; 1724 1725 kvm_deliver_exception_payload(vcpu); 1726 1727 if (has_error_code) { 1728 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); 1729 intr_info |= INTR_INFO_DELIVER_CODE_MASK; 1730 } 1731 1732 if (vmx->rmode.vm86_active) { 1733 int inc_eip = 0; 1734 if (kvm_exception_is_soft(nr)) 1735 inc_eip = vcpu->arch.event_exit_inst_len; 1736 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip); 1737 return; 1738 } 1739 1740 WARN_ON_ONCE(vmx->emulation_required); 1741 1742 if (kvm_exception_is_soft(nr)) { 1743 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1744 vmx->vcpu.arch.event_exit_inst_len); 1745 intr_info |= INTR_TYPE_SOFT_EXCEPTION; 1746 } else 1747 intr_info |= INTR_TYPE_HARD_EXCEPTION; 1748 1749 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); 1750 1751 vmx_clear_hlt(vcpu); 1752 } 1753 1754 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr) 1755 { 1756 struct vmx_uret_msr tmp; 1757 int from, to; 1758 1759 from = __vmx_find_uret_msr(vmx, msr); 1760 if (from < 0) 1761 return; 1762 to = vmx->nr_active_uret_msrs++; 1763 1764 tmp = vmx->guest_uret_msrs[to]; 1765 vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from]; 1766 vmx->guest_uret_msrs[from] = tmp; 1767 } 1768 1769 /* 1770 * Set up the vmcs to automatically save and restore system 1771 * msrs. Don't touch the 64-bit msrs if the guest is in legacy 1772 * mode, as fiddling with msrs is very expensive. 1773 */ 1774 static void setup_msrs(struct vcpu_vmx *vmx) 1775 { 1776 vmx->guest_uret_msrs_loaded = false; 1777 vmx->nr_active_uret_msrs = 0; 1778 #ifdef CONFIG_X86_64 1779 /* 1780 * The SYSCALL MSRs are only needed on long mode guests, and only 1781 * when EFER.SCE is set. 1782 */ 1783 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) { 1784 vmx_setup_uret_msr(vmx, MSR_STAR); 1785 vmx_setup_uret_msr(vmx, MSR_LSTAR); 1786 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK); 1787 } 1788 #endif 1789 if (update_transition_efer(vmx)) 1790 vmx_setup_uret_msr(vmx, MSR_EFER); 1791 1792 if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP)) 1793 vmx_setup_uret_msr(vmx, MSR_TSC_AUX); 1794 1795 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL); 1796 1797 if (cpu_has_vmx_msr_bitmap()) 1798 vmx_update_msr_bitmap(&vmx->vcpu); 1799 } 1800 1801 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) 1802 { 1803 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 1804 u64 g_tsc_offset = 0; 1805 1806 /* 1807 * We're here if L1 chose not to trap WRMSR to TSC. According 1808 * to the spec, this should set L1's TSC; The offset that L1 1809 * set for L2 remains unchanged, and still needs to be added 1810 * to the newly set TSC to get L2's TSC. 1811 */ 1812 if (is_guest_mode(vcpu) && 1813 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)) 1814 g_tsc_offset = vmcs12->tsc_offset; 1815 1816 trace_kvm_write_tsc_offset(vcpu->vcpu_id, 1817 vcpu->arch.tsc_offset - g_tsc_offset, 1818 offset); 1819 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset); 1820 return offset + g_tsc_offset; 1821 } 1822 1823 /* 1824 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX 1825 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for 1826 * all guests if the "nested" module option is off, and can also be disabled 1827 * for a single guest by disabling its VMX cpuid bit. 1828 */ 1829 bool nested_vmx_allowed(struct kvm_vcpu *vcpu) 1830 { 1831 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX); 1832 } 1833 1834 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu, 1835 uint64_t val) 1836 { 1837 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits; 1838 1839 return !(val & ~valid_bits); 1840 } 1841 1842 static int vmx_get_msr_feature(struct kvm_msr_entry *msr) 1843 { 1844 switch (msr->index) { 1845 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1846 if (!nested) 1847 return 1; 1848 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data); 1849 case MSR_IA32_PERF_CAPABILITIES: 1850 msr->data = vmx_get_perf_capabilities(); 1851 return 0; 1852 default: 1853 return KVM_MSR_RET_INVALID; 1854 } 1855 } 1856 1857 /* 1858 * Reads an msr value (of 'msr_index') into 'pdata'. 1859 * Returns 0 on success, non-0 otherwise. 1860 * Assumes vcpu_load() was already called. 1861 */ 1862 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 1863 { 1864 struct vcpu_vmx *vmx = to_vmx(vcpu); 1865 struct vmx_uret_msr *msr; 1866 u32 index; 1867 1868 switch (msr_info->index) { 1869 #ifdef CONFIG_X86_64 1870 case MSR_FS_BASE: 1871 msr_info->data = vmcs_readl(GUEST_FS_BASE); 1872 break; 1873 case MSR_GS_BASE: 1874 msr_info->data = vmcs_readl(GUEST_GS_BASE); 1875 break; 1876 case MSR_KERNEL_GS_BASE: 1877 msr_info->data = vmx_read_guest_kernel_gs_base(vmx); 1878 break; 1879 #endif 1880 case MSR_EFER: 1881 return kvm_get_msr_common(vcpu, msr_info); 1882 case MSR_IA32_TSX_CTRL: 1883 if (!msr_info->host_initiated && 1884 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 1885 return 1; 1886 goto find_uret_msr; 1887 case MSR_IA32_UMWAIT_CONTROL: 1888 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 1889 return 1; 1890 1891 msr_info->data = vmx->msr_ia32_umwait_control; 1892 break; 1893 case MSR_IA32_SPEC_CTRL: 1894 if (!msr_info->host_initiated && 1895 !guest_has_spec_ctrl_msr(vcpu)) 1896 return 1; 1897 1898 msr_info->data = to_vmx(vcpu)->spec_ctrl; 1899 break; 1900 case MSR_IA32_SYSENTER_CS: 1901 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS); 1902 break; 1903 case MSR_IA32_SYSENTER_EIP: 1904 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP); 1905 break; 1906 case MSR_IA32_SYSENTER_ESP: 1907 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP); 1908 break; 1909 case MSR_IA32_BNDCFGS: 1910 if (!kvm_mpx_supported() || 1911 (!msr_info->host_initiated && 1912 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 1913 return 1; 1914 msr_info->data = vmcs_read64(GUEST_BNDCFGS); 1915 break; 1916 case MSR_IA32_MCG_EXT_CTL: 1917 if (!msr_info->host_initiated && 1918 !(vmx->msr_ia32_feature_control & 1919 FEAT_CTL_LMCE_ENABLED)) 1920 return 1; 1921 msr_info->data = vcpu->arch.mcg_ext_ctl; 1922 break; 1923 case MSR_IA32_FEAT_CTL: 1924 msr_info->data = vmx->msr_ia32_feature_control; 1925 break; 1926 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 1927 if (!msr_info->host_initiated && 1928 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 1929 return 1; 1930 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash 1931 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0]; 1932 break; 1933 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 1934 if (!nested_vmx_allowed(vcpu)) 1935 return 1; 1936 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index, 1937 &msr_info->data)) 1938 return 1; 1939 /* 1940 * Enlightened VMCS v1 doesn't have certain fields, but buggy 1941 * Hyper-V versions are still trying to use corresponding 1942 * features when they are exposed. Filter out the essential 1943 * minimum. 1944 */ 1945 if (!msr_info->host_initiated && 1946 vmx->nested.enlightened_vmcs_enabled) 1947 nested_evmcs_filter_control_msr(msr_info->index, 1948 &msr_info->data); 1949 break; 1950 case MSR_IA32_RTIT_CTL: 1951 if (!vmx_pt_mode_is_host_guest()) 1952 return 1; 1953 msr_info->data = vmx->pt_desc.guest.ctl; 1954 break; 1955 case MSR_IA32_RTIT_STATUS: 1956 if (!vmx_pt_mode_is_host_guest()) 1957 return 1; 1958 msr_info->data = vmx->pt_desc.guest.status; 1959 break; 1960 case MSR_IA32_RTIT_CR3_MATCH: 1961 if (!vmx_pt_mode_is_host_guest() || 1962 !intel_pt_validate_cap(vmx->pt_desc.caps, 1963 PT_CAP_cr3_filtering)) 1964 return 1; 1965 msr_info->data = vmx->pt_desc.guest.cr3_match; 1966 break; 1967 case MSR_IA32_RTIT_OUTPUT_BASE: 1968 if (!vmx_pt_mode_is_host_guest() || 1969 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1970 PT_CAP_topa_output) && 1971 !intel_pt_validate_cap(vmx->pt_desc.caps, 1972 PT_CAP_single_range_output))) 1973 return 1; 1974 msr_info->data = vmx->pt_desc.guest.output_base; 1975 break; 1976 case MSR_IA32_RTIT_OUTPUT_MASK: 1977 if (!vmx_pt_mode_is_host_guest() || 1978 (!intel_pt_validate_cap(vmx->pt_desc.caps, 1979 PT_CAP_topa_output) && 1980 !intel_pt_validate_cap(vmx->pt_desc.caps, 1981 PT_CAP_single_range_output))) 1982 return 1; 1983 msr_info->data = vmx->pt_desc.guest.output_mask; 1984 break; 1985 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 1986 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 1987 if (!vmx_pt_mode_is_host_guest() || 1988 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 1989 PT_CAP_num_address_ranges))) 1990 return 1; 1991 if (index % 2) 1992 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2]; 1993 else 1994 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2]; 1995 break; 1996 case MSR_TSC_AUX: 1997 if (!msr_info->host_initiated && 1998 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 1999 return 1; 2000 goto find_uret_msr; 2001 case MSR_IA32_DEBUGCTLMSR: 2002 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL); 2003 break; 2004 default: 2005 find_uret_msr: 2006 msr = vmx_find_uret_msr(vmx, msr_info->index); 2007 if (msr) { 2008 msr_info->data = msr->data; 2009 break; 2010 } 2011 return kvm_get_msr_common(vcpu, msr_info); 2012 } 2013 2014 return 0; 2015 } 2016 2017 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu, 2018 u64 data) 2019 { 2020 #ifdef CONFIG_X86_64 2021 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM)) 2022 return (u32)data; 2023 #endif 2024 return (unsigned long)data; 2025 } 2026 2027 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu) 2028 { 2029 u64 debugctl = vmx_supported_debugctl(); 2030 2031 if (!intel_pmu_lbr_is_enabled(vcpu)) 2032 debugctl &= ~DEBUGCTLMSR_LBR_MASK; 2033 2034 return debugctl; 2035 } 2036 2037 /* 2038 * Writes msr value into the appropriate "register". 2039 * Returns 0 on success, non-0 otherwise. 2040 * Assumes vcpu_load() was already called. 2041 */ 2042 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) 2043 { 2044 struct vcpu_vmx *vmx = to_vmx(vcpu); 2045 struct vmx_uret_msr *msr; 2046 int ret = 0; 2047 u32 msr_index = msr_info->index; 2048 u64 data = msr_info->data; 2049 u32 index; 2050 2051 switch (msr_index) { 2052 case MSR_EFER: 2053 ret = kvm_set_msr_common(vcpu, msr_info); 2054 break; 2055 #ifdef CONFIG_X86_64 2056 case MSR_FS_BASE: 2057 vmx_segment_cache_clear(vmx); 2058 vmcs_writel(GUEST_FS_BASE, data); 2059 break; 2060 case MSR_GS_BASE: 2061 vmx_segment_cache_clear(vmx); 2062 vmcs_writel(GUEST_GS_BASE, data); 2063 break; 2064 case MSR_KERNEL_GS_BASE: 2065 vmx_write_guest_kernel_gs_base(vmx, data); 2066 break; 2067 #endif 2068 case MSR_IA32_SYSENTER_CS: 2069 if (is_guest_mode(vcpu)) 2070 get_vmcs12(vcpu)->guest_sysenter_cs = data; 2071 vmcs_write32(GUEST_SYSENTER_CS, data); 2072 break; 2073 case MSR_IA32_SYSENTER_EIP: 2074 if (is_guest_mode(vcpu)) { 2075 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2076 get_vmcs12(vcpu)->guest_sysenter_eip = data; 2077 } 2078 vmcs_writel(GUEST_SYSENTER_EIP, data); 2079 break; 2080 case MSR_IA32_SYSENTER_ESP: 2081 if (is_guest_mode(vcpu)) { 2082 data = nested_vmx_truncate_sysenter_addr(vcpu, data); 2083 get_vmcs12(vcpu)->guest_sysenter_esp = data; 2084 } 2085 vmcs_writel(GUEST_SYSENTER_ESP, data); 2086 break; 2087 case MSR_IA32_DEBUGCTLMSR: { 2088 u64 invalid = data & ~vcpu_supported_debugctl(vcpu); 2089 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) { 2090 if (report_ignored_msrs) 2091 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n", 2092 __func__, data); 2093 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2094 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR); 2095 } 2096 2097 if (invalid) 2098 return 1; 2099 2100 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls & 2101 VM_EXIT_SAVE_DEBUG_CONTROLS) 2102 get_vmcs12(vcpu)->guest_ia32_debugctl = data; 2103 2104 vmcs_write64(GUEST_IA32_DEBUGCTL, data); 2105 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event && 2106 (data & DEBUGCTLMSR_LBR)) 2107 intel_pmu_create_guest_lbr_event(vcpu); 2108 return 0; 2109 } 2110 case MSR_IA32_BNDCFGS: 2111 if (!kvm_mpx_supported() || 2112 (!msr_info->host_initiated && 2113 !guest_cpuid_has(vcpu, X86_FEATURE_MPX))) 2114 return 1; 2115 if (is_noncanonical_address(data & PAGE_MASK, vcpu) || 2116 (data & MSR_IA32_BNDCFGS_RSVD)) 2117 return 1; 2118 vmcs_write64(GUEST_BNDCFGS, data); 2119 break; 2120 case MSR_IA32_UMWAIT_CONTROL: 2121 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx)) 2122 return 1; 2123 2124 /* The reserved bit 1 and non-32 bit [63:32] should be zero */ 2125 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32))) 2126 return 1; 2127 2128 vmx->msr_ia32_umwait_control = data; 2129 break; 2130 case MSR_IA32_SPEC_CTRL: 2131 if (!msr_info->host_initiated && 2132 !guest_has_spec_ctrl_msr(vcpu)) 2133 return 1; 2134 2135 if (kvm_spec_ctrl_test_value(data)) 2136 return 1; 2137 2138 vmx->spec_ctrl = data; 2139 if (!data) 2140 break; 2141 2142 /* 2143 * For non-nested: 2144 * When it's written (to non-zero) for the first time, pass 2145 * it through. 2146 * 2147 * For nested: 2148 * The handling of the MSR bitmap for L2 guests is done in 2149 * nested_vmx_prepare_msr_bitmap. We should not touch the 2150 * vmcs02.msr_bitmap here since it gets completely overwritten 2151 * in the merging. We update the vmcs01 here for L1 as well 2152 * since it will end up touching the MSR anyway now. 2153 */ 2154 vmx_disable_intercept_for_msr(vcpu, 2155 MSR_IA32_SPEC_CTRL, 2156 MSR_TYPE_RW); 2157 break; 2158 case MSR_IA32_TSX_CTRL: 2159 if (!msr_info->host_initiated && 2160 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR)) 2161 return 1; 2162 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR)) 2163 return 1; 2164 goto find_uret_msr; 2165 case MSR_IA32_PRED_CMD: 2166 if (!msr_info->host_initiated && 2167 !guest_has_pred_cmd_msr(vcpu)) 2168 return 1; 2169 2170 if (data & ~PRED_CMD_IBPB) 2171 return 1; 2172 if (!boot_cpu_has(X86_FEATURE_IBPB)) 2173 return 1; 2174 if (!data) 2175 break; 2176 2177 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); 2178 2179 /* 2180 * For non-nested: 2181 * When it's written (to non-zero) for the first time, pass 2182 * it through. 2183 * 2184 * For nested: 2185 * The handling of the MSR bitmap for L2 guests is done in 2186 * nested_vmx_prepare_msr_bitmap. We should not touch the 2187 * vmcs02.msr_bitmap here since it gets completely overwritten 2188 * in the merging. 2189 */ 2190 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W); 2191 break; 2192 case MSR_IA32_CR_PAT: 2193 if (!kvm_pat_valid(data)) 2194 return 1; 2195 2196 if (is_guest_mode(vcpu) && 2197 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) 2198 get_vmcs12(vcpu)->guest_ia32_pat = data; 2199 2200 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { 2201 vmcs_write64(GUEST_IA32_PAT, data); 2202 vcpu->arch.pat = data; 2203 break; 2204 } 2205 ret = kvm_set_msr_common(vcpu, msr_info); 2206 break; 2207 case MSR_IA32_TSC_ADJUST: 2208 ret = kvm_set_msr_common(vcpu, msr_info); 2209 break; 2210 case MSR_IA32_MCG_EXT_CTL: 2211 if ((!msr_info->host_initiated && 2212 !(to_vmx(vcpu)->msr_ia32_feature_control & 2213 FEAT_CTL_LMCE_ENABLED)) || 2214 (data & ~MCG_EXT_CTL_LMCE_EN)) 2215 return 1; 2216 vcpu->arch.mcg_ext_ctl = data; 2217 break; 2218 case MSR_IA32_FEAT_CTL: 2219 if (!vmx_feature_control_msr_valid(vcpu, data) || 2220 (to_vmx(vcpu)->msr_ia32_feature_control & 2221 FEAT_CTL_LOCKED && !msr_info->host_initiated)) 2222 return 1; 2223 vmx->msr_ia32_feature_control = data; 2224 if (msr_info->host_initiated && data == 0) 2225 vmx_leave_nested(vcpu); 2226 2227 /* SGX may be enabled/disabled by guest's firmware */ 2228 vmx_write_encls_bitmap(vcpu, NULL); 2229 break; 2230 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3: 2231 /* 2232 * On real hardware, the LE hash MSRs are writable before 2233 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX), 2234 * at which point SGX related bits in IA32_FEATURE_CONTROL 2235 * become writable. 2236 * 2237 * KVM does not emulate SGX activation for simplicity, so 2238 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL 2239 * is unlocked. This is technically not architectural 2240 * behavior, but it's close enough. 2241 */ 2242 if (!msr_info->host_initiated && 2243 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) || 2244 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) && 2245 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED)))) 2246 return 1; 2247 vmx->msr_ia32_sgxlepubkeyhash 2248 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data; 2249 break; 2250 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 2251 if (!msr_info->host_initiated) 2252 return 1; /* they are read-only */ 2253 if (!nested_vmx_allowed(vcpu)) 2254 return 1; 2255 return vmx_set_vmx_msr(vcpu, msr_index, data); 2256 case MSR_IA32_RTIT_CTL: 2257 if (!vmx_pt_mode_is_host_guest() || 2258 vmx_rtit_ctl_check(vcpu, data) || 2259 vmx->nested.vmxon) 2260 return 1; 2261 vmcs_write64(GUEST_IA32_RTIT_CTL, data); 2262 vmx->pt_desc.guest.ctl = data; 2263 pt_update_intercept_for_msr(vcpu); 2264 break; 2265 case MSR_IA32_RTIT_STATUS: 2266 if (!pt_can_write_msr(vmx)) 2267 return 1; 2268 if (data & MSR_IA32_RTIT_STATUS_MASK) 2269 return 1; 2270 vmx->pt_desc.guest.status = data; 2271 break; 2272 case MSR_IA32_RTIT_CR3_MATCH: 2273 if (!pt_can_write_msr(vmx)) 2274 return 1; 2275 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2276 PT_CAP_cr3_filtering)) 2277 return 1; 2278 vmx->pt_desc.guest.cr3_match = data; 2279 break; 2280 case MSR_IA32_RTIT_OUTPUT_BASE: 2281 if (!pt_can_write_msr(vmx)) 2282 return 1; 2283 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2284 PT_CAP_topa_output) && 2285 !intel_pt_validate_cap(vmx->pt_desc.caps, 2286 PT_CAP_single_range_output)) 2287 return 1; 2288 if (!pt_output_base_valid(vcpu, data)) 2289 return 1; 2290 vmx->pt_desc.guest.output_base = data; 2291 break; 2292 case MSR_IA32_RTIT_OUTPUT_MASK: 2293 if (!pt_can_write_msr(vmx)) 2294 return 1; 2295 if (!intel_pt_validate_cap(vmx->pt_desc.caps, 2296 PT_CAP_topa_output) && 2297 !intel_pt_validate_cap(vmx->pt_desc.caps, 2298 PT_CAP_single_range_output)) 2299 return 1; 2300 vmx->pt_desc.guest.output_mask = data; 2301 break; 2302 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: 2303 if (!pt_can_write_msr(vmx)) 2304 return 1; 2305 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A; 2306 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps, 2307 PT_CAP_num_address_ranges)) 2308 return 1; 2309 if (is_noncanonical_address(data, vcpu)) 2310 return 1; 2311 if (index % 2) 2312 vmx->pt_desc.guest.addr_b[index / 2] = data; 2313 else 2314 vmx->pt_desc.guest.addr_a[index / 2] = data; 2315 break; 2316 case MSR_TSC_AUX: 2317 if (!msr_info->host_initiated && 2318 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP)) 2319 return 1; 2320 /* Check reserved bit, higher 32 bits should be zero */ 2321 if ((data >> 32) != 0) 2322 return 1; 2323 goto find_uret_msr; 2324 case MSR_IA32_PERF_CAPABILITIES: 2325 if (data && !vcpu_to_pmu(vcpu)->version) 2326 return 1; 2327 if (data & PMU_CAP_LBR_FMT) { 2328 if ((data & PMU_CAP_LBR_FMT) != 2329 (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT)) 2330 return 1; 2331 if (!intel_pmu_lbr_is_compatible(vcpu)) 2332 return 1; 2333 } 2334 ret = kvm_set_msr_common(vcpu, msr_info); 2335 break; 2336 2337 default: 2338 find_uret_msr: 2339 msr = vmx_find_uret_msr(vmx, msr_index); 2340 if (msr) 2341 ret = vmx_set_guest_uret_msr(vmx, msr, data); 2342 else 2343 ret = kvm_set_msr_common(vcpu, msr_info); 2344 } 2345 2346 return ret; 2347 } 2348 2349 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) 2350 { 2351 unsigned long guest_owned_bits; 2352 2353 kvm_register_mark_available(vcpu, reg); 2354 2355 switch (reg) { 2356 case VCPU_REGS_RSP: 2357 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); 2358 break; 2359 case VCPU_REGS_RIP: 2360 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); 2361 break; 2362 case VCPU_EXREG_PDPTR: 2363 if (enable_ept) 2364 ept_save_pdptrs(vcpu); 2365 break; 2366 case VCPU_EXREG_CR0: 2367 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; 2368 2369 vcpu->arch.cr0 &= ~guest_owned_bits; 2370 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits; 2371 break; 2372 case VCPU_EXREG_CR3: 2373 if (is_unrestricted_guest(vcpu) || 2374 (enable_ept && is_paging(vcpu))) 2375 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); 2376 break; 2377 case VCPU_EXREG_CR4: 2378 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; 2379 2380 vcpu->arch.cr4 &= ~guest_owned_bits; 2381 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits; 2382 break; 2383 default: 2384 WARN_ON_ONCE(1); 2385 break; 2386 } 2387 } 2388 2389 static __init int cpu_has_kvm_support(void) 2390 { 2391 return cpu_has_vmx(); 2392 } 2393 2394 static __init int vmx_disabled_by_bios(void) 2395 { 2396 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 2397 !boot_cpu_has(X86_FEATURE_VMX); 2398 } 2399 2400 static int kvm_cpu_vmxon(u64 vmxon_pointer) 2401 { 2402 u64 msr; 2403 2404 cr4_set_bits(X86_CR4_VMXE); 2405 2406 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t" 2407 _ASM_EXTABLE(1b, %l[fault]) 2408 : : [vmxon_pointer] "m"(vmxon_pointer) 2409 : : fault); 2410 return 0; 2411 2412 fault: 2413 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n", 2414 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr); 2415 cr4_clear_bits(X86_CR4_VMXE); 2416 2417 return -EFAULT; 2418 } 2419 2420 static int hardware_enable(void) 2421 { 2422 int cpu = raw_smp_processor_id(); 2423 u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); 2424 int r; 2425 2426 if (cr4_read_shadow() & X86_CR4_VMXE) 2427 return -EBUSY; 2428 2429 /* 2430 * This can happen if we hot-added a CPU but failed to allocate 2431 * VP assist page for it. 2432 */ 2433 if (static_branch_unlikely(&enable_evmcs) && 2434 !hv_get_vp_assist_page(cpu)) 2435 return -EFAULT; 2436 2437 intel_pt_handle_vmx(1); 2438 2439 r = kvm_cpu_vmxon(phys_addr); 2440 if (r) { 2441 intel_pt_handle_vmx(0); 2442 return r; 2443 } 2444 2445 if (enable_ept) 2446 ept_sync_global(); 2447 2448 return 0; 2449 } 2450 2451 static void vmclear_local_loaded_vmcss(void) 2452 { 2453 int cpu = raw_smp_processor_id(); 2454 struct loaded_vmcs *v, *n; 2455 2456 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), 2457 loaded_vmcss_on_cpu_link) 2458 __loaded_vmcs_clear(v); 2459 } 2460 2461 static void hardware_disable(void) 2462 { 2463 vmclear_local_loaded_vmcss(); 2464 2465 if (cpu_vmxoff()) 2466 kvm_spurious_fault(); 2467 2468 intel_pt_handle_vmx(0); 2469 } 2470 2471 /* 2472 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID 2473 * directly instead of going through cpu_has(), to ensure KVM is trapping 2474 * ENCLS whenever it's supported in hardware. It does not matter whether 2475 * the host OS supports or has enabled SGX. 2476 */ 2477 static bool cpu_has_sgx(void) 2478 { 2479 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0)); 2480 } 2481 2482 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, 2483 u32 msr, u32 *result) 2484 { 2485 u32 vmx_msr_low, vmx_msr_high; 2486 u32 ctl = ctl_min | ctl_opt; 2487 2488 rdmsr(msr, vmx_msr_low, vmx_msr_high); 2489 2490 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ 2491 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */ 2492 2493 /* Ensure minimum (required) set of control bits are supported. */ 2494 if (ctl_min & ~ctl) 2495 return -EIO; 2496 2497 *result = ctl; 2498 return 0; 2499 } 2500 2501 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf, 2502 struct vmx_capability *vmx_cap) 2503 { 2504 u32 vmx_msr_low, vmx_msr_high; 2505 u32 min, opt, min2, opt2; 2506 u32 _pin_based_exec_control = 0; 2507 u32 _cpu_based_exec_control = 0; 2508 u32 _cpu_based_2nd_exec_control = 0; 2509 u32 _vmexit_control = 0; 2510 u32 _vmentry_control = 0; 2511 2512 memset(vmcs_conf, 0, sizeof(*vmcs_conf)); 2513 min = CPU_BASED_HLT_EXITING | 2514 #ifdef CONFIG_X86_64 2515 CPU_BASED_CR8_LOAD_EXITING | 2516 CPU_BASED_CR8_STORE_EXITING | 2517 #endif 2518 CPU_BASED_CR3_LOAD_EXITING | 2519 CPU_BASED_CR3_STORE_EXITING | 2520 CPU_BASED_UNCOND_IO_EXITING | 2521 CPU_BASED_MOV_DR_EXITING | 2522 CPU_BASED_USE_TSC_OFFSETTING | 2523 CPU_BASED_MWAIT_EXITING | 2524 CPU_BASED_MONITOR_EXITING | 2525 CPU_BASED_INVLPG_EXITING | 2526 CPU_BASED_RDPMC_EXITING; 2527 2528 opt = CPU_BASED_TPR_SHADOW | 2529 CPU_BASED_USE_MSR_BITMAPS | 2530 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; 2531 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, 2532 &_cpu_based_exec_control) < 0) 2533 return -EIO; 2534 #ifdef CONFIG_X86_64 2535 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2536 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & 2537 ~CPU_BASED_CR8_STORE_EXITING; 2538 #endif 2539 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { 2540 min2 = 0; 2541 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 2542 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2543 SECONDARY_EXEC_WBINVD_EXITING | 2544 SECONDARY_EXEC_ENABLE_VPID | 2545 SECONDARY_EXEC_ENABLE_EPT | 2546 SECONDARY_EXEC_UNRESTRICTED_GUEST | 2547 SECONDARY_EXEC_PAUSE_LOOP_EXITING | 2548 SECONDARY_EXEC_DESC | 2549 SECONDARY_EXEC_ENABLE_RDTSCP | 2550 SECONDARY_EXEC_ENABLE_INVPCID | 2551 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2552 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | 2553 SECONDARY_EXEC_SHADOW_VMCS | 2554 SECONDARY_EXEC_XSAVES | 2555 SECONDARY_EXEC_RDSEED_EXITING | 2556 SECONDARY_EXEC_RDRAND_EXITING | 2557 SECONDARY_EXEC_ENABLE_PML | 2558 SECONDARY_EXEC_TSC_SCALING | 2559 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | 2560 SECONDARY_EXEC_PT_USE_GPA | 2561 SECONDARY_EXEC_PT_CONCEAL_VMX | 2562 SECONDARY_EXEC_ENABLE_VMFUNC | 2563 SECONDARY_EXEC_BUS_LOCK_DETECTION; 2564 if (cpu_has_sgx()) 2565 opt2 |= SECONDARY_EXEC_ENCLS_EXITING; 2566 if (adjust_vmx_controls(min2, opt2, 2567 MSR_IA32_VMX_PROCBASED_CTLS2, 2568 &_cpu_based_2nd_exec_control) < 0) 2569 return -EIO; 2570 } 2571 #ifndef CONFIG_X86_64 2572 if (!(_cpu_based_2nd_exec_control & 2573 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 2574 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; 2575 #endif 2576 2577 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) 2578 _cpu_based_2nd_exec_control &= ~( 2579 SECONDARY_EXEC_APIC_REGISTER_VIRT | 2580 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 2581 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 2582 2583 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP, 2584 &vmx_cap->ept, &vmx_cap->vpid); 2585 2586 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { 2587 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT 2588 enabled */ 2589 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | 2590 CPU_BASED_CR3_STORE_EXITING | 2591 CPU_BASED_INVLPG_EXITING); 2592 } else if (vmx_cap->ept) { 2593 vmx_cap->ept = 0; 2594 pr_warn_once("EPT CAP should not exist if not support " 2595 "1-setting enable EPT VM-execution control\n"); 2596 } 2597 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) && 2598 vmx_cap->vpid) { 2599 vmx_cap->vpid = 0; 2600 pr_warn_once("VPID CAP should not exist if not support " 2601 "1-setting enable VPID VM-execution control\n"); 2602 } 2603 2604 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT; 2605 #ifdef CONFIG_X86_64 2606 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; 2607 #endif 2608 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | 2609 VM_EXIT_LOAD_IA32_PAT | 2610 VM_EXIT_LOAD_IA32_EFER | 2611 VM_EXIT_CLEAR_BNDCFGS | 2612 VM_EXIT_PT_CONCEAL_PIP | 2613 VM_EXIT_CLEAR_IA32_RTIT_CTL; 2614 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, 2615 &_vmexit_control) < 0) 2616 return -EIO; 2617 2618 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; 2619 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR | 2620 PIN_BASED_VMX_PREEMPTION_TIMER; 2621 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, 2622 &_pin_based_exec_control) < 0) 2623 return -EIO; 2624 2625 if (cpu_has_broken_vmx_preemption_timer()) 2626 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 2627 if (!(_cpu_based_2nd_exec_control & 2628 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)) 2629 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; 2630 2631 min = VM_ENTRY_LOAD_DEBUG_CONTROLS; 2632 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | 2633 VM_ENTRY_LOAD_IA32_PAT | 2634 VM_ENTRY_LOAD_IA32_EFER | 2635 VM_ENTRY_LOAD_BNDCFGS | 2636 VM_ENTRY_PT_CONCEAL_PIP | 2637 VM_ENTRY_LOAD_IA32_RTIT_CTL; 2638 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, 2639 &_vmentry_control) < 0) 2640 return -EIO; 2641 2642 /* 2643 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they 2644 * can't be used due to an errata where VM Exit may incorrectly clear 2645 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the 2646 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL. 2647 */ 2648 if (boot_cpu_data.x86 == 0x6) { 2649 switch (boot_cpu_data.x86_model) { 2650 case 26: /* AAK155 */ 2651 case 30: /* AAP115 */ 2652 case 37: /* AAT100 */ 2653 case 44: /* BC86,AAY89,BD102 */ 2654 case 46: /* BA97 */ 2655 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL; 2656 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL; 2657 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " 2658 "does not work properly. Using workaround\n"); 2659 break; 2660 default: 2661 break; 2662 } 2663 } 2664 2665 2666 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); 2667 2668 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ 2669 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) 2670 return -EIO; 2671 2672 #ifdef CONFIG_X86_64 2673 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ 2674 if (vmx_msr_high & (1u<<16)) 2675 return -EIO; 2676 #endif 2677 2678 /* Require Write-Back (WB) memory type for VMCS accesses. */ 2679 if (((vmx_msr_high >> 18) & 15) != 6) 2680 return -EIO; 2681 2682 vmcs_conf->size = vmx_msr_high & 0x1fff; 2683 vmcs_conf->order = get_order(vmcs_conf->size); 2684 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff; 2685 2686 vmcs_conf->revision_id = vmx_msr_low; 2687 2688 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; 2689 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; 2690 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; 2691 vmcs_conf->vmexit_ctrl = _vmexit_control; 2692 vmcs_conf->vmentry_ctrl = _vmentry_control; 2693 2694 #if IS_ENABLED(CONFIG_HYPERV) 2695 if (enlightened_vmcs) 2696 evmcs_sanitize_exec_ctrls(vmcs_conf); 2697 #endif 2698 2699 return 0; 2700 } 2701 2702 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags) 2703 { 2704 int node = cpu_to_node(cpu); 2705 struct page *pages; 2706 struct vmcs *vmcs; 2707 2708 pages = __alloc_pages_node(node, flags, vmcs_config.order); 2709 if (!pages) 2710 return NULL; 2711 vmcs = page_address(pages); 2712 memset(vmcs, 0, vmcs_config.size); 2713 2714 /* KVM supports Enlightened VMCS v1 only */ 2715 if (static_branch_unlikely(&enable_evmcs)) 2716 vmcs->hdr.revision_id = KVM_EVMCS_VERSION; 2717 else 2718 vmcs->hdr.revision_id = vmcs_config.revision_id; 2719 2720 if (shadow) 2721 vmcs->hdr.shadow_vmcs = 1; 2722 return vmcs; 2723 } 2724 2725 void free_vmcs(struct vmcs *vmcs) 2726 { 2727 free_pages((unsigned long)vmcs, vmcs_config.order); 2728 } 2729 2730 /* 2731 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded 2732 */ 2733 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2734 { 2735 if (!loaded_vmcs->vmcs) 2736 return; 2737 loaded_vmcs_clear(loaded_vmcs); 2738 free_vmcs(loaded_vmcs->vmcs); 2739 loaded_vmcs->vmcs = NULL; 2740 if (loaded_vmcs->msr_bitmap) 2741 free_page((unsigned long)loaded_vmcs->msr_bitmap); 2742 WARN_ON(loaded_vmcs->shadow_vmcs != NULL); 2743 } 2744 2745 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) 2746 { 2747 loaded_vmcs->vmcs = alloc_vmcs(false); 2748 if (!loaded_vmcs->vmcs) 2749 return -ENOMEM; 2750 2751 vmcs_clear(loaded_vmcs->vmcs); 2752 2753 loaded_vmcs->shadow_vmcs = NULL; 2754 loaded_vmcs->hv_timer_soft_disabled = false; 2755 loaded_vmcs->cpu = -1; 2756 loaded_vmcs->launched = 0; 2757 2758 if (cpu_has_vmx_msr_bitmap()) { 2759 loaded_vmcs->msr_bitmap = (unsigned long *) 2760 __get_free_page(GFP_KERNEL_ACCOUNT); 2761 if (!loaded_vmcs->msr_bitmap) 2762 goto out_vmcs; 2763 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE); 2764 2765 if (IS_ENABLED(CONFIG_HYPERV) && 2766 static_branch_unlikely(&enable_evmcs) && 2767 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) { 2768 struct hv_enlightened_vmcs *evmcs = 2769 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs; 2770 2771 evmcs->hv_enlightenments_control.msr_bitmap = 1; 2772 } 2773 } 2774 2775 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state)); 2776 memset(&loaded_vmcs->controls_shadow, 0, 2777 sizeof(struct vmcs_controls_shadow)); 2778 2779 return 0; 2780 2781 out_vmcs: 2782 free_loaded_vmcs(loaded_vmcs); 2783 return -ENOMEM; 2784 } 2785 2786 static void free_kvm_area(void) 2787 { 2788 int cpu; 2789 2790 for_each_possible_cpu(cpu) { 2791 free_vmcs(per_cpu(vmxarea, cpu)); 2792 per_cpu(vmxarea, cpu) = NULL; 2793 } 2794 } 2795 2796 static __init int alloc_kvm_area(void) 2797 { 2798 int cpu; 2799 2800 for_each_possible_cpu(cpu) { 2801 struct vmcs *vmcs; 2802 2803 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL); 2804 if (!vmcs) { 2805 free_kvm_area(); 2806 return -ENOMEM; 2807 } 2808 2809 /* 2810 * When eVMCS is enabled, alloc_vmcs_cpu() sets 2811 * vmcs->revision_id to KVM_EVMCS_VERSION instead of 2812 * revision_id reported by MSR_IA32_VMX_BASIC. 2813 * 2814 * However, even though not explicitly documented by 2815 * TLFS, VMXArea passed as VMXON argument should 2816 * still be marked with revision_id reported by 2817 * physical CPU. 2818 */ 2819 if (static_branch_unlikely(&enable_evmcs)) 2820 vmcs->hdr.revision_id = vmcs_config.revision_id; 2821 2822 per_cpu(vmxarea, cpu) = vmcs; 2823 } 2824 return 0; 2825 } 2826 2827 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, 2828 struct kvm_segment *save) 2829 { 2830 if (!emulate_invalid_guest_state) { 2831 /* 2832 * CS and SS RPL should be equal during guest entry according 2833 * to VMX spec, but in reality it is not always so. Since vcpu 2834 * is in the middle of the transition from real mode to 2835 * protected mode it is safe to assume that RPL 0 is a good 2836 * default value. 2837 */ 2838 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) 2839 save->selector &= ~SEGMENT_RPL_MASK; 2840 save->dpl = save->selector & SEGMENT_RPL_MASK; 2841 save->s = 1; 2842 } 2843 vmx_set_segment(vcpu, save, seg); 2844 } 2845 2846 static void enter_pmode(struct kvm_vcpu *vcpu) 2847 { 2848 unsigned long flags; 2849 struct vcpu_vmx *vmx = to_vmx(vcpu); 2850 2851 /* 2852 * Update real mode segment cache. It may be not up-to-date if segment 2853 * register was written while vcpu was in a guest mode. 2854 */ 2855 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2856 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2857 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2858 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2859 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2860 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2861 2862 vmx->rmode.vm86_active = 0; 2863 2864 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2865 2866 flags = vmcs_readl(GUEST_RFLAGS); 2867 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; 2868 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; 2869 vmcs_writel(GUEST_RFLAGS, flags); 2870 2871 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | 2872 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); 2873 2874 vmx_update_exception_bitmap(vcpu); 2875 2876 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2877 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2878 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2879 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2880 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2881 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2882 } 2883 2884 static void fix_rmode_seg(int seg, struct kvm_segment *save) 2885 { 2886 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 2887 struct kvm_segment var = *save; 2888 2889 var.dpl = 0x3; 2890 if (seg == VCPU_SREG_CS) 2891 var.type = 0x3; 2892 2893 if (!emulate_invalid_guest_state) { 2894 var.selector = var.base >> 4; 2895 var.base = var.base & 0xffff0; 2896 var.limit = 0xffff; 2897 var.g = 0; 2898 var.db = 0; 2899 var.present = 1; 2900 var.s = 1; 2901 var.l = 0; 2902 var.unusable = 0; 2903 var.type = 0x3; 2904 var.avl = 0; 2905 if (save->base & 0xf) 2906 printk_once(KERN_WARNING "kvm: segment base is not " 2907 "paragraph aligned when entering " 2908 "protected mode (seg=%d)", seg); 2909 } 2910 2911 vmcs_write16(sf->selector, var.selector); 2912 vmcs_writel(sf->base, var.base); 2913 vmcs_write32(sf->limit, var.limit); 2914 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); 2915 } 2916 2917 static void enter_rmode(struct kvm_vcpu *vcpu) 2918 { 2919 unsigned long flags; 2920 struct vcpu_vmx *vmx = to_vmx(vcpu); 2921 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm); 2922 2923 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); 2924 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); 2925 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); 2926 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); 2927 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); 2928 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); 2929 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); 2930 2931 vmx->rmode.vm86_active = 1; 2932 2933 /* 2934 * Very old userspace does not call KVM_SET_TSS_ADDR before entering 2935 * vcpu. Warn the user that an update is overdue. 2936 */ 2937 if (!kvm_vmx->tss_addr) 2938 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " 2939 "called before entering vcpu\n"); 2940 2941 vmx_segment_cache_clear(vmx); 2942 2943 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr); 2944 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); 2945 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 2946 2947 flags = vmcs_readl(GUEST_RFLAGS); 2948 vmx->rmode.save_rflags = flags; 2949 2950 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; 2951 2952 vmcs_writel(GUEST_RFLAGS, flags); 2953 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); 2954 vmx_update_exception_bitmap(vcpu); 2955 2956 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); 2957 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); 2958 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); 2959 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); 2960 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); 2961 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); 2962 2963 kvm_mmu_reset_context(vcpu); 2964 } 2965 2966 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) 2967 { 2968 struct vcpu_vmx *vmx = to_vmx(vcpu); 2969 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER); 2970 2971 /* Nothing to do if hardware doesn't support EFER. */ 2972 if (!msr) 2973 return 0; 2974 2975 vcpu->arch.efer = efer; 2976 if (efer & EFER_LMA) { 2977 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2978 msr->data = efer; 2979 } else { 2980 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 2981 2982 msr->data = efer & ~EFER_LME; 2983 } 2984 setup_msrs(vmx); 2985 return 0; 2986 } 2987 2988 #ifdef CONFIG_X86_64 2989 2990 static void enter_lmode(struct kvm_vcpu *vcpu) 2991 { 2992 u32 guest_tr_ar; 2993 2994 vmx_segment_cache_clear(to_vmx(vcpu)); 2995 2996 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); 2997 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) { 2998 pr_debug_ratelimited("%s: tss fixup for long mode. \n", 2999 __func__); 3000 vmcs_write32(GUEST_TR_AR_BYTES, 3001 (guest_tr_ar & ~VMX_AR_TYPE_MASK) 3002 | VMX_AR_TYPE_BUSY_64_TSS); 3003 } 3004 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); 3005 } 3006 3007 static void exit_lmode(struct kvm_vcpu *vcpu) 3008 { 3009 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE); 3010 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); 3011 } 3012 3013 #endif 3014 3015 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu) 3016 { 3017 struct vcpu_vmx *vmx = to_vmx(vcpu); 3018 3019 /* 3020 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as 3021 * the CPU is not required to invalidate guest-physical mappings on 3022 * VM-Entry, even if VPID is disabled. Guest-physical mappings are 3023 * associated with the root EPT structure and not any particular VPID 3024 * (INVVPID also isn't required to invalidate guest-physical mappings). 3025 */ 3026 if (enable_ept) { 3027 ept_sync_global(); 3028 } else if (enable_vpid) { 3029 if (cpu_has_vmx_invvpid_global()) { 3030 vpid_sync_vcpu_global(); 3031 } else { 3032 vpid_sync_vcpu_single(vmx->vpid); 3033 vpid_sync_vcpu_single(vmx->nested.vpid02); 3034 } 3035 } 3036 } 3037 3038 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu) 3039 { 3040 struct kvm_mmu *mmu = vcpu->arch.mmu; 3041 u64 root_hpa = mmu->root_hpa; 3042 3043 /* No flush required if the current context is invalid. */ 3044 if (!VALID_PAGE(root_hpa)) 3045 return; 3046 3047 if (enable_ept) 3048 ept_sync_context(construct_eptp(vcpu, root_hpa, 3049 mmu->shadow_root_level)); 3050 else if (!is_guest_mode(vcpu)) 3051 vpid_sync_context(to_vmx(vcpu)->vpid); 3052 else 3053 vpid_sync_context(nested_get_vpid02(vcpu)); 3054 } 3055 3056 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr) 3057 { 3058 /* 3059 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in 3060 * vmx_flush_tlb_guest() for an explanation of why this is ok. 3061 */ 3062 vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr); 3063 } 3064 3065 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu) 3066 { 3067 /* 3068 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0 3069 * or a vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit 3070 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is 3071 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed), 3072 * i.e. no explicit INVVPID is necessary. 3073 */ 3074 vpid_sync_context(to_vmx(vcpu)->vpid); 3075 } 3076 3077 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu) 3078 { 3079 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3080 3081 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR)) 3082 return; 3083 3084 if (is_pae_paging(vcpu)) { 3085 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]); 3086 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]); 3087 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]); 3088 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]); 3089 } 3090 } 3091 3092 void ept_save_pdptrs(struct kvm_vcpu *vcpu) 3093 { 3094 struct kvm_mmu *mmu = vcpu->arch.walk_mmu; 3095 3096 if (WARN_ON_ONCE(!is_pae_paging(vcpu))) 3097 return; 3098 3099 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0); 3100 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1); 3101 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2); 3102 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3); 3103 3104 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); 3105 } 3106 3107 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, 3108 unsigned long cr0, 3109 struct kvm_vcpu *vcpu) 3110 { 3111 struct vcpu_vmx *vmx = to_vmx(vcpu); 3112 3113 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3)) 3114 vmx_cache_reg(vcpu, VCPU_EXREG_CR3); 3115 if (!(cr0 & X86_CR0_PG)) { 3116 /* From paging/starting to nonpaging */ 3117 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING | 3118 CPU_BASED_CR3_STORE_EXITING); 3119 vcpu->arch.cr0 = cr0; 3120 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3121 } else if (!is_paging(vcpu)) { 3122 /* From nonpaging to paging */ 3123 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING | 3124 CPU_BASED_CR3_STORE_EXITING); 3125 vcpu->arch.cr0 = cr0; 3126 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); 3127 } 3128 3129 if (!(cr0 & X86_CR0_WP)) 3130 *hw_cr0 &= ~X86_CR0_WP; 3131 } 3132 3133 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) 3134 { 3135 struct vcpu_vmx *vmx = to_vmx(vcpu); 3136 unsigned long hw_cr0; 3137 3138 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF); 3139 if (is_unrestricted_guest(vcpu)) 3140 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; 3141 else { 3142 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; 3143 3144 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) 3145 enter_pmode(vcpu); 3146 3147 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) 3148 enter_rmode(vcpu); 3149 } 3150 3151 #ifdef CONFIG_X86_64 3152 if (vcpu->arch.efer & EFER_LME) { 3153 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) 3154 enter_lmode(vcpu); 3155 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) 3156 exit_lmode(vcpu); 3157 } 3158 #endif 3159 3160 if (enable_ept && !is_unrestricted_guest(vcpu)) 3161 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); 3162 3163 vmcs_writel(CR0_READ_SHADOW, cr0); 3164 vmcs_writel(GUEST_CR0, hw_cr0); 3165 vcpu->arch.cr0 = cr0; 3166 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0); 3167 3168 /* depends on vcpu->arch.cr0 to be set to a new value */ 3169 vmx->emulation_required = emulation_required(vcpu); 3170 } 3171 3172 static int vmx_get_max_tdp_level(void) 3173 { 3174 if (cpu_has_vmx_ept_5levels()) 3175 return 5; 3176 return 4; 3177 } 3178 3179 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level) 3180 { 3181 u64 eptp = VMX_EPTP_MT_WB; 3182 3183 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4; 3184 3185 if (enable_ept_ad_bits && 3186 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu))) 3187 eptp |= VMX_EPTP_AD_ENABLE_BIT; 3188 eptp |= root_hpa; 3189 3190 return eptp; 3191 } 3192 3193 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa, 3194 int root_level) 3195 { 3196 struct kvm *kvm = vcpu->kvm; 3197 bool update_guest_cr3 = true; 3198 unsigned long guest_cr3; 3199 u64 eptp; 3200 3201 if (enable_ept) { 3202 eptp = construct_eptp(vcpu, root_hpa, root_level); 3203 vmcs_write64(EPT_POINTER, eptp); 3204 3205 hv_track_root_ept(vcpu, root_hpa); 3206 3207 if (!enable_unrestricted_guest && !is_paging(vcpu)) 3208 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr; 3209 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) 3210 guest_cr3 = vcpu->arch.cr3; 3211 else /* vmcs01.GUEST_CR3 is already up-to-date. */ 3212 update_guest_cr3 = false; 3213 vmx_ept_load_pdptrs(vcpu); 3214 } else { 3215 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu); 3216 } 3217 3218 if (update_guest_cr3) 3219 vmcs_writel(GUEST_CR3, guest_cr3); 3220 } 3221 3222 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3223 { 3224 /* 3225 * We operate under the default treatment of SMM, so VMX cannot be 3226 * enabled under SMM. Note, whether or not VMXE is allowed at all is 3227 * handled by kvm_is_valid_cr4(). 3228 */ 3229 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu)) 3230 return false; 3231 3232 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4)) 3233 return false; 3234 3235 return true; 3236 } 3237 3238 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) 3239 { 3240 unsigned long old_cr4 = vcpu->arch.cr4; 3241 struct vcpu_vmx *vmx = to_vmx(vcpu); 3242 /* 3243 * Pass through host's Machine Check Enable value to hw_cr4, which 3244 * is in force while we are in guest mode. Do not let guests control 3245 * this bit, even if host CR4.MCE == 0. 3246 */ 3247 unsigned long hw_cr4; 3248 3249 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE); 3250 if (is_unrestricted_guest(vcpu)) 3251 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST; 3252 else if (vmx->rmode.vm86_active) 3253 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON; 3254 else 3255 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON; 3256 3257 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) { 3258 if (cr4 & X86_CR4_UMIP) { 3259 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC); 3260 hw_cr4 &= ~X86_CR4_UMIP; 3261 } else if (!is_guest_mode(vcpu) || 3262 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) { 3263 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC); 3264 } 3265 } 3266 3267 vcpu->arch.cr4 = cr4; 3268 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4); 3269 3270 if (!is_unrestricted_guest(vcpu)) { 3271 if (enable_ept) { 3272 if (!is_paging(vcpu)) { 3273 hw_cr4 &= ~X86_CR4_PAE; 3274 hw_cr4 |= X86_CR4_PSE; 3275 } else if (!(cr4 & X86_CR4_PAE)) { 3276 hw_cr4 &= ~X86_CR4_PAE; 3277 } 3278 } 3279 3280 /* 3281 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in 3282 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs 3283 * to be manually disabled when guest switches to non-paging 3284 * mode. 3285 * 3286 * If !enable_unrestricted_guest, the CPU is always running 3287 * with CR0.PG=1 and CR4 needs to be modified. 3288 * If enable_unrestricted_guest, the CPU automatically 3289 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0. 3290 */ 3291 if (!is_paging(vcpu)) 3292 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE); 3293 } 3294 3295 vmcs_writel(CR4_READ_SHADOW, cr4); 3296 vmcs_writel(GUEST_CR4, hw_cr4); 3297 3298 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE)) 3299 kvm_update_cpuid_runtime(vcpu); 3300 } 3301 3302 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3303 { 3304 struct vcpu_vmx *vmx = to_vmx(vcpu); 3305 u32 ar; 3306 3307 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3308 *var = vmx->rmode.segs[seg]; 3309 if (seg == VCPU_SREG_TR 3310 || var->selector == vmx_read_guest_seg_selector(vmx, seg)) 3311 return; 3312 var->base = vmx_read_guest_seg_base(vmx, seg); 3313 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3314 return; 3315 } 3316 var->base = vmx_read_guest_seg_base(vmx, seg); 3317 var->limit = vmx_read_guest_seg_limit(vmx, seg); 3318 var->selector = vmx_read_guest_seg_selector(vmx, seg); 3319 ar = vmx_read_guest_seg_ar(vmx, seg); 3320 var->unusable = (ar >> 16) & 1; 3321 var->type = ar & 15; 3322 var->s = (ar >> 4) & 1; 3323 var->dpl = (ar >> 5) & 3; 3324 /* 3325 * Some userspaces do not preserve unusable property. Since usable 3326 * segment has to be present according to VMX spec we can use present 3327 * property to amend userspace bug by making unusable segment always 3328 * nonpresent. vmx_segment_access_rights() already marks nonpresent 3329 * segment as unusable. 3330 */ 3331 var->present = !var->unusable; 3332 var->avl = (ar >> 12) & 1; 3333 var->l = (ar >> 13) & 1; 3334 var->db = (ar >> 14) & 1; 3335 var->g = (ar >> 15) & 1; 3336 } 3337 3338 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) 3339 { 3340 struct kvm_segment s; 3341 3342 if (to_vmx(vcpu)->rmode.vm86_active) { 3343 vmx_get_segment(vcpu, &s, seg); 3344 return s.base; 3345 } 3346 return vmx_read_guest_seg_base(to_vmx(vcpu), seg); 3347 } 3348 3349 int vmx_get_cpl(struct kvm_vcpu *vcpu) 3350 { 3351 struct vcpu_vmx *vmx = to_vmx(vcpu); 3352 3353 if (unlikely(vmx->rmode.vm86_active)) 3354 return 0; 3355 else { 3356 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS); 3357 return VMX_AR_DPL(ar); 3358 } 3359 } 3360 3361 static u32 vmx_segment_access_rights(struct kvm_segment *var) 3362 { 3363 u32 ar; 3364 3365 if (var->unusable || !var->present) 3366 ar = 1 << 16; 3367 else { 3368 ar = var->type & 15; 3369 ar |= (var->s & 1) << 4; 3370 ar |= (var->dpl & 3) << 5; 3371 ar |= (var->present & 1) << 7; 3372 ar |= (var->avl & 1) << 12; 3373 ar |= (var->l & 1) << 13; 3374 ar |= (var->db & 1) << 14; 3375 ar |= (var->g & 1) << 15; 3376 } 3377 3378 return ar; 3379 } 3380 3381 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) 3382 { 3383 struct vcpu_vmx *vmx = to_vmx(vcpu); 3384 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3385 3386 vmx_segment_cache_clear(vmx); 3387 3388 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { 3389 vmx->rmode.segs[seg] = *var; 3390 if (seg == VCPU_SREG_TR) 3391 vmcs_write16(sf->selector, var->selector); 3392 else if (var->s) 3393 fix_rmode_seg(seg, &vmx->rmode.segs[seg]); 3394 goto out; 3395 } 3396 3397 vmcs_writel(sf->base, var->base); 3398 vmcs_write32(sf->limit, var->limit); 3399 vmcs_write16(sf->selector, var->selector); 3400 3401 /* 3402 * Fix the "Accessed" bit in AR field of segment registers for older 3403 * qemu binaries. 3404 * IA32 arch specifies that at the time of processor reset the 3405 * "Accessed" bit in the AR field of segment registers is 1. And qemu 3406 * is setting it to 0 in the userland code. This causes invalid guest 3407 * state vmexit when "unrestricted guest" mode is turned on. 3408 * Fix for this setup issue in cpu_reset is being pushed in the qemu 3409 * tree. Newer qemu binaries with that qemu fix would not need this 3410 * kvm hack. 3411 */ 3412 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR)) 3413 var->type |= 0x1; /* Accessed */ 3414 3415 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); 3416 3417 out: 3418 vmx->emulation_required = emulation_required(vcpu); 3419 } 3420 3421 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) 3422 { 3423 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); 3424 3425 *db = (ar >> 14) & 1; 3426 *l = (ar >> 13) & 1; 3427 } 3428 3429 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3430 { 3431 dt->size = vmcs_read32(GUEST_IDTR_LIMIT); 3432 dt->address = vmcs_readl(GUEST_IDTR_BASE); 3433 } 3434 3435 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3436 { 3437 vmcs_write32(GUEST_IDTR_LIMIT, dt->size); 3438 vmcs_writel(GUEST_IDTR_BASE, dt->address); 3439 } 3440 3441 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3442 { 3443 dt->size = vmcs_read32(GUEST_GDTR_LIMIT); 3444 dt->address = vmcs_readl(GUEST_GDTR_BASE); 3445 } 3446 3447 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) 3448 { 3449 vmcs_write32(GUEST_GDTR_LIMIT, dt->size); 3450 vmcs_writel(GUEST_GDTR_BASE, dt->address); 3451 } 3452 3453 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) 3454 { 3455 struct kvm_segment var; 3456 u32 ar; 3457 3458 vmx_get_segment(vcpu, &var, seg); 3459 var.dpl = 0x3; 3460 if (seg == VCPU_SREG_CS) 3461 var.type = 0x3; 3462 ar = vmx_segment_access_rights(&var); 3463 3464 if (var.base != (var.selector << 4)) 3465 return false; 3466 if (var.limit != 0xffff) 3467 return false; 3468 if (ar != 0xf3) 3469 return false; 3470 3471 return true; 3472 } 3473 3474 static bool code_segment_valid(struct kvm_vcpu *vcpu) 3475 { 3476 struct kvm_segment cs; 3477 unsigned int cs_rpl; 3478 3479 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3480 cs_rpl = cs.selector & SEGMENT_RPL_MASK; 3481 3482 if (cs.unusable) 3483 return false; 3484 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK)) 3485 return false; 3486 if (!cs.s) 3487 return false; 3488 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) { 3489 if (cs.dpl > cs_rpl) 3490 return false; 3491 } else { 3492 if (cs.dpl != cs_rpl) 3493 return false; 3494 } 3495 if (!cs.present) 3496 return false; 3497 3498 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ 3499 return true; 3500 } 3501 3502 static bool stack_segment_valid(struct kvm_vcpu *vcpu) 3503 { 3504 struct kvm_segment ss; 3505 unsigned int ss_rpl; 3506 3507 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3508 ss_rpl = ss.selector & SEGMENT_RPL_MASK; 3509 3510 if (ss.unusable) 3511 return true; 3512 if (ss.type != 3 && ss.type != 7) 3513 return false; 3514 if (!ss.s) 3515 return false; 3516 if (ss.dpl != ss_rpl) /* DPL != RPL */ 3517 return false; 3518 if (!ss.present) 3519 return false; 3520 3521 return true; 3522 } 3523 3524 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) 3525 { 3526 struct kvm_segment var; 3527 unsigned int rpl; 3528 3529 vmx_get_segment(vcpu, &var, seg); 3530 rpl = var.selector & SEGMENT_RPL_MASK; 3531 3532 if (var.unusable) 3533 return true; 3534 if (!var.s) 3535 return false; 3536 if (!var.present) 3537 return false; 3538 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) { 3539 if (var.dpl < rpl) /* DPL < RPL */ 3540 return false; 3541 } 3542 3543 /* TODO: Add other members to kvm_segment_field to allow checking for other access 3544 * rights flags 3545 */ 3546 return true; 3547 } 3548 3549 static bool tr_valid(struct kvm_vcpu *vcpu) 3550 { 3551 struct kvm_segment tr; 3552 3553 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); 3554 3555 if (tr.unusable) 3556 return false; 3557 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3558 return false; 3559 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ 3560 return false; 3561 if (!tr.present) 3562 return false; 3563 3564 return true; 3565 } 3566 3567 static bool ldtr_valid(struct kvm_vcpu *vcpu) 3568 { 3569 struct kvm_segment ldtr; 3570 3571 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); 3572 3573 if (ldtr.unusable) 3574 return true; 3575 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */ 3576 return false; 3577 if (ldtr.type != 2) 3578 return false; 3579 if (!ldtr.present) 3580 return false; 3581 3582 return true; 3583 } 3584 3585 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) 3586 { 3587 struct kvm_segment cs, ss; 3588 3589 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); 3590 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); 3591 3592 return ((cs.selector & SEGMENT_RPL_MASK) == 3593 (ss.selector & SEGMENT_RPL_MASK)); 3594 } 3595 3596 /* 3597 * Check if guest state is valid. Returns true if valid, false if 3598 * not. 3599 * We assume that registers are always usable 3600 */ 3601 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu) 3602 { 3603 /* real mode guest state checks */ 3604 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { 3605 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) 3606 return false; 3607 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) 3608 return false; 3609 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) 3610 return false; 3611 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) 3612 return false; 3613 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) 3614 return false; 3615 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) 3616 return false; 3617 } else { 3618 /* protected mode guest state checks */ 3619 if (!cs_ss_rpl_check(vcpu)) 3620 return false; 3621 if (!code_segment_valid(vcpu)) 3622 return false; 3623 if (!stack_segment_valid(vcpu)) 3624 return false; 3625 if (!data_segment_valid(vcpu, VCPU_SREG_DS)) 3626 return false; 3627 if (!data_segment_valid(vcpu, VCPU_SREG_ES)) 3628 return false; 3629 if (!data_segment_valid(vcpu, VCPU_SREG_FS)) 3630 return false; 3631 if (!data_segment_valid(vcpu, VCPU_SREG_GS)) 3632 return false; 3633 if (!tr_valid(vcpu)) 3634 return false; 3635 if (!ldtr_valid(vcpu)) 3636 return false; 3637 } 3638 /* TODO: 3639 * - Add checks on RIP 3640 * - Add checks on RFLAGS 3641 */ 3642 3643 return true; 3644 } 3645 3646 static int init_rmode_tss(struct kvm *kvm, void __user *ua) 3647 { 3648 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0))); 3649 u16 data; 3650 int i; 3651 3652 for (i = 0; i < 3; i++) { 3653 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE)) 3654 return -EFAULT; 3655 } 3656 3657 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; 3658 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16))) 3659 return -EFAULT; 3660 3661 data = ~0; 3662 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8))) 3663 return -EFAULT; 3664 3665 return 0; 3666 } 3667 3668 static int init_rmode_identity_map(struct kvm *kvm) 3669 { 3670 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm); 3671 int i, r = 0; 3672 void __user *uaddr; 3673 u32 tmp; 3674 3675 /* Protect kvm_vmx->ept_identity_pagetable_done. */ 3676 mutex_lock(&kvm->slots_lock); 3677 3678 if (likely(kvm_vmx->ept_identity_pagetable_done)) 3679 goto out; 3680 3681 if (!kvm_vmx->ept_identity_map_addr) 3682 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR; 3683 3684 uaddr = __x86_set_memory_region(kvm, 3685 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 3686 kvm_vmx->ept_identity_map_addr, 3687 PAGE_SIZE); 3688 if (IS_ERR(uaddr)) { 3689 r = PTR_ERR(uaddr); 3690 goto out; 3691 } 3692 3693 /* Set up identity-mapping pagetable for EPT in real mode */ 3694 for (i = 0; i < PT32_ENT_PER_PAGE; i++) { 3695 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | 3696 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); 3697 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) { 3698 r = -EFAULT; 3699 goto out; 3700 } 3701 } 3702 kvm_vmx->ept_identity_pagetable_done = true; 3703 3704 out: 3705 mutex_unlock(&kvm->slots_lock); 3706 return r; 3707 } 3708 3709 static void seg_setup(int seg) 3710 { 3711 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; 3712 unsigned int ar; 3713 3714 vmcs_write16(sf->selector, 0); 3715 vmcs_writel(sf->base, 0); 3716 vmcs_write32(sf->limit, 0xffff); 3717 ar = 0x93; 3718 if (seg == VCPU_SREG_CS) 3719 ar |= 0x08; /* code segment */ 3720 3721 vmcs_write32(sf->ar_bytes, ar); 3722 } 3723 3724 static int alloc_apic_access_page(struct kvm *kvm) 3725 { 3726 struct page *page; 3727 void __user *hva; 3728 int ret = 0; 3729 3730 mutex_lock(&kvm->slots_lock); 3731 if (kvm->arch.apic_access_page_done) 3732 goto out; 3733 hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 3734 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE); 3735 if (IS_ERR(hva)) { 3736 ret = PTR_ERR(hva); 3737 goto out; 3738 } 3739 3740 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 3741 if (is_error_page(page)) { 3742 ret = -EFAULT; 3743 goto out; 3744 } 3745 3746 /* 3747 * Do not pin the page in memory, so that memory hot-unplug 3748 * is able to migrate it. 3749 */ 3750 put_page(page); 3751 kvm->arch.apic_access_page_done = true; 3752 out: 3753 mutex_unlock(&kvm->slots_lock); 3754 return ret; 3755 } 3756 3757 int allocate_vpid(void) 3758 { 3759 int vpid; 3760 3761 if (!enable_vpid) 3762 return 0; 3763 spin_lock(&vmx_vpid_lock); 3764 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); 3765 if (vpid < VMX_NR_VPIDS) 3766 __set_bit(vpid, vmx_vpid_bitmap); 3767 else 3768 vpid = 0; 3769 spin_unlock(&vmx_vpid_lock); 3770 return vpid; 3771 } 3772 3773 void free_vpid(int vpid) 3774 { 3775 if (!enable_vpid || vpid == 0) 3776 return; 3777 spin_lock(&vmx_vpid_lock); 3778 __clear_bit(vpid, vmx_vpid_bitmap); 3779 spin_unlock(&vmx_vpid_lock); 3780 } 3781 3782 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr) 3783 { 3784 int f = sizeof(unsigned long); 3785 3786 if (msr <= 0x1fff) 3787 __clear_bit(msr, msr_bitmap + 0x000 / f); 3788 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3789 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f); 3790 } 3791 3792 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr) 3793 { 3794 int f = sizeof(unsigned long); 3795 3796 if (msr <= 0x1fff) 3797 __clear_bit(msr, msr_bitmap + 0x800 / f); 3798 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3799 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f); 3800 } 3801 3802 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr) 3803 { 3804 int f = sizeof(unsigned long); 3805 3806 if (msr <= 0x1fff) 3807 __set_bit(msr, msr_bitmap + 0x000 / f); 3808 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3809 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f); 3810 } 3811 3812 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr) 3813 { 3814 int f = sizeof(unsigned long); 3815 3816 if (msr <= 0x1fff) 3817 __set_bit(msr, msr_bitmap + 0x800 / f); 3818 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) 3819 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f); 3820 } 3821 3822 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3823 { 3824 struct vcpu_vmx *vmx = to_vmx(vcpu); 3825 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3826 3827 if (!cpu_has_vmx_msr_bitmap()) 3828 return; 3829 3830 if (static_branch_unlikely(&enable_evmcs)) 3831 evmcs_touch_msr_bitmap(); 3832 3833 /* 3834 * Mark the desired intercept state in shadow bitmap, this is needed 3835 * for resync when the MSR filters change. 3836 */ 3837 if (is_valid_passthrough_msr(msr)) { 3838 int idx = possible_passthrough_msr_slot(msr); 3839 3840 if (idx != -ENOENT) { 3841 if (type & MSR_TYPE_R) 3842 clear_bit(idx, vmx->shadow_msr_intercept.read); 3843 if (type & MSR_TYPE_W) 3844 clear_bit(idx, vmx->shadow_msr_intercept.write); 3845 } 3846 } 3847 3848 if ((type & MSR_TYPE_R) && 3849 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) { 3850 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3851 type &= ~MSR_TYPE_R; 3852 } 3853 3854 if ((type & MSR_TYPE_W) && 3855 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) { 3856 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3857 type &= ~MSR_TYPE_W; 3858 } 3859 3860 if (type & MSR_TYPE_R) 3861 vmx_clear_msr_bitmap_read(msr_bitmap, msr); 3862 3863 if (type & MSR_TYPE_W) 3864 vmx_clear_msr_bitmap_write(msr_bitmap, msr); 3865 } 3866 3867 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type) 3868 { 3869 struct vcpu_vmx *vmx = to_vmx(vcpu); 3870 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap; 3871 3872 if (!cpu_has_vmx_msr_bitmap()) 3873 return; 3874 3875 if (static_branch_unlikely(&enable_evmcs)) 3876 evmcs_touch_msr_bitmap(); 3877 3878 /* 3879 * Mark the desired intercept state in shadow bitmap, this is needed 3880 * for resync when the MSR filter changes. 3881 */ 3882 if (is_valid_passthrough_msr(msr)) { 3883 int idx = possible_passthrough_msr_slot(msr); 3884 3885 if (idx != -ENOENT) { 3886 if (type & MSR_TYPE_R) 3887 set_bit(idx, vmx->shadow_msr_intercept.read); 3888 if (type & MSR_TYPE_W) 3889 set_bit(idx, vmx->shadow_msr_intercept.write); 3890 } 3891 } 3892 3893 if (type & MSR_TYPE_R) 3894 vmx_set_msr_bitmap_read(msr_bitmap, msr); 3895 3896 if (type & MSR_TYPE_W) 3897 vmx_set_msr_bitmap_write(msr_bitmap, msr); 3898 } 3899 3900 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu) 3901 { 3902 u8 mode = 0; 3903 3904 if (cpu_has_secondary_exec_ctrls() && 3905 (secondary_exec_controls_get(to_vmx(vcpu)) & 3906 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) { 3907 mode |= MSR_BITMAP_MODE_X2APIC; 3908 if (enable_apicv && kvm_vcpu_apicv_active(vcpu)) 3909 mode |= MSR_BITMAP_MODE_X2APIC_APICV; 3910 } 3911 3912 return mode; 3913 } 3914 3915 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode) 3916 { 3917 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap; 3918 unsigned long read_intercept; 3919 int msr; 3920 3921 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0; 3922 3923 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) { 3924 unsigned int read_idx = msr / BITS_PER_LONG; 3925 unsigned int write_idx = read_idx + (0x800 / sizeof(long)); 3926 3927 msr_bitmap[read_idx] = read_intercept; 3928 msr_bitmap[write_idx] = ~0ul; 3929 } 3930 } 3931 3932 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode) 3933 { 3934 if (!cpu_has_vmx_msr_bitmap()) 3935 return; 3936 3937 vmx_reset_x2apic_msrs(vcpu, mode); 3938 3939 /* 3940 * TPR reads and writes can be virtualized even if virtual interrupt 3941 * delivery is not in use. 3942 */ 3943 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW, 3944 !(mode & MSR_BITMAP_MODE_X2APIC)); 3945 3946 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) { 3947 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW); 3948 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W); 3949 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W); 3950 } 3951 } 3952 3953 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu) 3954 { 3955 struct vcpu_vmx *vmx = to_vmx(vcpu); 3956 u8 mode = vmx_msr_bitmap_mode(vcpu); 3957 u8 changed = mode ^ vmx->msr_bitmap_mode; 3958 3959 if (!changed) 3960 return; 3961 3962 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV)) 3963 vmx_update_msr_bitmap_x2apic(vcpu, mode); 3964 3965 vmx->msr_bitmap_mode = mode; 3966 } 3967 3968 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu) 3969 { 3970 struct vcpu_vmx *vmx = to_vmx(vcpu); 3971 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN); 3972 u32 i; 3973 3974 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag); 3975 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag); 3976 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag); 3977 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag); 3978 for (i = 0; i < vmx->pt_desc.addr_range; i++) { 3979 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag); 3980 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag); 3981 } 3982 } 3983 3984 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu) 3985 { 3986 struct vcpu_vmx *vmx = to_vmx(vcpu); 3987 void *vapic_page; 3988 u32 vppr; 3989 int rvi; 3990 3991 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) || 3992 !nested_cpu_has_vid(get_vmcs12(vcpu)) || 3993 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn)) 3994 return false; 3995 3996 rvi = vmx_get_rvi(); 3997 3998 vapic_page = vmx->nested.virtual_apic_map.hva; 3999 vppr = *((u32 *)(vapic_page + APIC_PROCPRI)); 4000 4001 return ((rvi & 0xf0) > (vppr & 0xf0)); 4002 } 4003 4004 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu) 4005 { 4006 struct vcpu_vmx *vmx = to_vmx(vcpu); 4007 u32 i; 4008 4009 /* 4010 * Set intercept permissions for all potentially passed through MSRs 4011 * again. They will automatically get filtered through the MSR filter, 4012 * so we are back in sync after this. 4013 */ 4014 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) { 4015 u32 msr = vmx_possible_passthrough_msrs[i]; 4016 bool read = test_bit(i, vmx->shadow_msr_intercept.read); 4017 bool write = test_bit(i, vmx->shadow_msr_intercept.write); 4018 4019 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read); 4020 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write); 4021 } 4022 4023 pt_update_intercept_for_msr(vcpu); 4024 vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu)); 4025 } 4026 4027 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu, 4028 bool nested) 4029 { 4030 #ifdef CONFIG_SMP 4031 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR; 4032 4033 if (vcpu->mode == IN_GUEST_MODE) { 4034 /* 4035 * The vector of interrupt to be delivered to vcpu had 4036 * been set in PIR before this function. 4037 * 4038 * Following cases will be reached in this block, and 4039 * we always send a notification event in all cases as 4040 * explained below. 4041 * 4042 * Case 1: vcpu keeps in non-root mode. Sending a 4043 * notification event posts the interrupt to vcpu. 4044 * 4045 * Case 2: vcpu exits to root mode and is still 4046 * runnable. PIR will be synced to vIRR before the 4047 * next vcpu entry. Sending a notification event in 4048 * this case has no effect, as vcpu is not in root 4049 * mode. 4050 * 4051 * Case 3: vcpu exits to root mode and is blocked. 4052 * vcpu_block() has already synced PIR to vIRR and 4053 * never blocks vcpu if vIRR is not cleared. Therefore, 4054 * a blocked vcpu here does not wait for any requested 4055 * interrupts in PIR, and sending a notification event 4056 * which has no effect is safe here. 4057 */ 4058 4059 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec); 4060 return true; 4061 } 4062 #endif 4063 return false; 4064 } 4065 4066 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu, 4067 int vector) 4068 { 4069 struct vcpu_vmx *vmx = to_vmx(vcpu); 4070 4071 if (is_guest_mode(vcpu) && 4072 vector == vmx->nested.posted_intr_nv) { 4073 /* 4074 * If a posted intr is not recognized by hardware, 4075 * we will accomplish it in the next vmentry. 4076 */ 4077 vmx->nested.pi_pending = true; 4078 kvm_make_request(KVM_REQ_EVENT, vcpu); 4079 /* the PIR and ON have been set by L1. */ 4080 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true)) 4081 kvm_vcpu_kick(vcpu); 4082 return 0; 4083 } 4084 return -1; 4085 } 4086 /* 4087 * Send interrupt to vcpu via posted interrupt way. 4088 * 1. If target vcpu is running(non-root mode), send posted interrupt 4089 * notification to vcpu and hardware will sync PIR to vIRR atomically. 4090 * 2. If target vcpu isn't running(root mode), kick it to pick up the 4091 * interrupt from PIR in next vmentry. 4092 */ 4093 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) 4094 { 4095 struct vcpu_vmx *vmx = to_vmx(vcpu); 4096 int r; 4097 4098 r = vmx_deliver_nested_posted_interrupt(vcpu, vector); 4099 if (!r) 4100 return 0; 4101 4102 if (!vcpu->arch.apicv_active) 4103 return -1; 4104 4105 if (pi_test_and_set_pir(vector, &vmx->pi_desc)) 4106 return 0; 4107 4108 /* If a previous notification has sent the IPI, nothing to do. */ 4109 if (pi_test_and_set_on(&vmx->pi_desc)) 4110 return 0; 4111 4112 if (vcpu != kvm_get_running_vcpu() && 4113 !kvm_vcpu_trigger_posted_interrupt(vcpu, false)) 4114 kvm_vcpu_kick(vcpu); 4115 4116 return 0; 4117 } 4118 4119 /* 4120 * Set up the vmcs's constant host-state fields, i.e., host-state fields that 4121 * will not change in the lifetime of the guest. 4122 * Note that host-state that does change is set elsewhere. E.g., host-state 4123 * that is set differently for each CPU is set in vmx_vcpu_load(), not here. 4124 */ 4125 void vmx_set_constant_host_state(struct vcpu_vmx *vmx) 4126 { 4127 u32 low32, high32; 4128 unsigned long tmpl; 4129 unsigned long cr0, cr3, cr4; 4130 4131 cr0 = read_cr0(); 4132 WARN_ON(cr0 & X86_CR0_TS); 4133 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */ 4134 4135 /* 4136 * Save the most likely value for this task's CR3 in the VMCS. 4137 * We can't use __get_current_cr3_fast() because we're not atomic. 4138 */ 4139 cr3 = __read_cr3(); 4140 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */ 4141 vmx->loaded_vmcs->host_state.cr3 = cr3; 4142 4143 /* Save the most likely value for this task's CR4 in the VMCS. */ 4144 cr4 = cr4_read_shadow(); 4145 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */ 4146 vmx->loaded_vmcs->host_state.cr4 = cr4; 4147 4148 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */ 4149 #ifdef CONFIG_X86_64 4150 /* 4151 * Load null selectors, so we can avoid reloading them in 4152 * vmx_prepare_switch_to_host(), in case userspace uses 4153 * the null selectors too (the expected case). 4154 */ 4155 vmcs_write16(HOST_DS_SELECTOR, 0); 4156 vmcs_write16(HOST_ES_SELECTOR, 0); 4157 #else 4158 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4159 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4160 #endif 4161 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */ 4162 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */ 4163 4164 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */ 4165 4166 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */ 4167 4168 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); 4169 vmcs_write32(HOST_IA32_SYSENTER_CS, low32); 4170 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); 4171 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */ 4172 4173 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { 4174 rdmsr(MSR_IA32_CR_PAT, low32, high32); 4175 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); 4176 } 4177 4178 if (cpu_has_load_ia32_efer()) 4179 vmcs_write64(HOST_IA32_EFER, host_efer); 4180 } 4181 4182 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) 4183 { 4184 struct kvm_vcpu *vcpu = &vmx->vcpu; 4185 4186 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS & 4187 ~vcpu->arch.cr4_guest_rsvd_bits; 4188 if (!enable_ept) 4189 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE; 4190 if (is_guest_mode(&vmx->vcpu)) 4191 vcpu->arch.cr4_guest_owned_bits &= 4192 ~get_vmcs12(vcpu)->cr4_guest_host_mask; 4193 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits); 4194 } 4195 4196 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) 4197 { 4198 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; 4199 4200 if (!kvm_vcpu_apicv_active(&vmx->vcpu)) 4201 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; 4202 4203 if (!enable_vnmi) 4204 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS; 4205 4206 if (!enable_preemption_timer) 4207 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER; 4208 4209 return pin_based_exec_ctrl; 4210 } 4211 4212 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) 4213 { 4214 struct vcpu_vmx *vmx = to_vmx(vcpu); 4215 4216 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4217 if (cpu_has_secondary_exec_ctrls()) { 4218 if (kvm_vcpu_apicv_active(vcpu)) 4219 secondary_exec_controls_setbit(vmx, 4220 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4221 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4222 else 4223 secondary_exec_controls_clearbit(vmx, 4224 SECONDARY_EXEC_APIC_REGISTER_VIRT | 4225 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4226 } 4227 4228 if (cpu_has_vmx_msr_bitmap()) 4229 vmx_update_msr_bitmap(vcpu); 4230 } 4231 4232 u32 vmx_exec_control(struct vcpu_vmx *vmx) 4233 { 4234 u32 exec_control = vmcs_config.cpu_based_exec_ctrl; 4235 4236 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT) 4237 exec_control &= ~CPU_BASED_MOV_DR_EXITING; 4238 4239 if (!cpu_need_tpr_shadow(&vmx->vcpu)) { 4240 exec_control &= ~CPU_BASED_TPR_SHADOW; 4241 #ifdef CONFIG_X86_64 4242 exec_control |= CPU_BASED_CR8_STORE_EXITING | 4243 CPU_BASED_CR8_LOAD_EXITING; 4244 #endif 4245 } 4246 if (!enable_ept) 4247 exec_control |= CPU_BASED_CR3_STORE_EXITING | 4248 CPU_BASED_CR3_LOAD_EXITING | 4249 CPU_BASED_INVLPG_EXITING; 4250 if (kvm_mwait_in_guest(vmx->vcpu.kvm)) 4251 exec_control &= ~(CPU_BASED_MWAIT_EXITING | 4252 CPU_BASED_MONITOR_EXITING); 4253 if (kvm_hlt_in_guest(vmx->vcpu.kvm)) 4254 exec_control &= ~CPU_BASED_HLT_EXITING; 4255 return exec_control; 4256 } 4257 4258 /* 4259 * Adjust a single secondary execution control bit to intercept/allow an 4260 * instruction in the guest. This is usually done based on whether or not a 4261 * feature has been exposed to the guest in order to correctly emulate faults. 4262 */ 4263 static inline void 4264 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control, 4265 u32 control, bool enabled, bool exiting) 4266 { 4267 /* 4268 * If the control is for an opt-in feature, clear the control if the 4269 * feature is not exposed to the guest, i.e. not enabled. If the 4270 * control is opt-out, i.e. an exiting control, clear the control if 4271 * the feature _is_ exposed to the guest, i.e. exiting/interception is 4272 * disabled for the associated instruction. Note, the caller is 4273 * responsible presetting exec_control to set all supported bits. 4274 */ 4275 if (enabled == exiting) 4276 *exec_control &= ~control; 4277 4278 /* 4279 * Update the nested MSR settings so that a nested VMM can/can't set 4280 * controls for features that are/aren't exposed to the guest. 4281 */ 4282 if (nested) { 4283 if (enabled) 4284 vmx->nested.msrs.secondary_ctls_high |= control; 4285 else 4286 vmx->nested.msrs.secondary_ctls_high &= ~control; 4287 } 4288 } 4289 4290 /* 4291 * Wrapper macro for the common case of adjusting a secondary execution control 4292 * based on a single guest CPUID bit, with a dedicated feature bit. This also 4293 * verifies that the control is actually supported by KVM and hardware. 4294 */ 4295 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \ 4296 ({ \ 4297 bool __enabled; \ 4298 \ 4299 if (cpu_has_vmx_##name()) { \ 4300 __enabled = guest_cpuid_has(&(vmx)->vcpu, \ 4301 X86_FEATURE_##feat_name); \ 4302 vmx_adjust_secondary_exec_control(vmx, exec_control, \ 4303 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \ 4304 } \ 4305 }) 4306 4307 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */ 4308 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \ 4309 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false) 4310 4311 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \ 4312 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true) 4313 4314 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx) 4315 { 4316 struct kvm_vcpu *vcpu = &vmx->vcpu; 4317 4318 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; 4319 4320 if (vmx_pt_mode_is_system()) 4321 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX); 4322 if (!cpu_need_virtualize_apic_accesses(vcpu)) 4323 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 4324 if (vmx->vpid == 0) 4325 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; 4326 if (!enable_ept) { 4327 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; 4328 enable_unrestricted_guest = 0; 4329 } 4330 if (!enable_unrestricted_guest) 4331 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; 4332 if (kvm_pause_in_guest(vmx->vcpu.kvm)) 4333 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; 4334 if (!kvm_vcpu_apicv_active(vcpu)) 4335 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | 4336 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); 4337 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 4338 4339 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP, 4340 * in vmx_set_cr4. */ 4341 exec_control &= ~SECONDARY_EXEC_DESC; 4342 4343 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD 4344 (handle_vmptrld). 4345 We can NOT enable shadow_vmcs here because we don't have yet 4346 a current VMCS12 4347 */ 4348 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; 4349 4350 /* 4351 * PML is enabled/disabled when dirty logging of memsmlots changes, but 4352 * it needs to be set here when dirty logging is already active, e.g. 4353 * if this vCPU was created after dirty logging was enabled. 4354 */ 4355 if (!vcpu->kvm->arch.cpu_dirty_logging_count) 4356 exec_control &= ~SECONDARY_EXEC_ENABLE_PML; 4357 4358 if (cpu_has_vmx_xsaves()) { 4359 /* Exposing XSAVES only when XSAVE is exposed */ 4360 bool xsaves_enabled = 4361 boot_cpu_has(X86_FEATURE_XSAVE) && 4362 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) && 4363 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES); 4364 4365 vcpu->arch.xsaves_enabled = xsaves_enabled; 4366 4367 vmx_adjust_secondary_exec_control(vmx, &exec_control, 4368 SECONDARY_EXEC_XSAVES, 4369 xsaves_enabled, false); 4370 } 4371 4372 vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP); 4373 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID); 4374 4375 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND); 4376 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED); 4377 4378 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG, 4379 ENABLE_USR_WAIT_PAUSE, false); 4380 4381 if (!vcpu->kvm->arch.bus_lock_detection_enabled) 4382 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION; 4383 4384 vmx->secondary_exec_control = exec_control; 4385 } 4386 4387 #define VMX_XSS_EXIT_BITMAP 0 4388 4389 /* 4390 * Noting that the initialization of Guest-state Area of VMCS is in 4391 * vmx_vcpu_reset(). 4392 */ 4393 static void init_vmcs(struct vcpu_vmx *vmx) 4394 { 4395 if (nested) 4396 nested_vmx_set_vmcs_shadowing_bitmap(); 4397 4398 if (cpu_has_vmx_msr_bitmap()) 4399 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap)); 4400 4401 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ 4402 4403 /* Control */ 4404 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx)); 4405 4406 exec_controls_set(vmx, vmx_exec_control(vmx)); 4407 4408 if (cpu_has_secondary_exec_ctrls()) { 4409 vmx_compute_secondary_exec_control(vmx); 4410 secondary_exec_controls_set(vmx, vmx->secondary_exec_control); 4411 } 4412 4413 if (kvm_vcpu_apicv_active(&vmx->vcpu)) { 4414 vmcs_write64(EOI_EXIT_BITMAP0, 0); 4415 vmcs_write64(EOI_EXIT_BITMAP1, 0); 4416 vmcs_write64(EOI_EXIT_BITMAP2, 0); 4417 vmcs_write64(EOI_EXIT_BITMAP3, 0); 4418 4419 vmcs_write16(GUEST_INTR_STATUS, 0); 4420 4421 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR); 4422 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); 4423 } 4424 4425 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) { 4426 vmcs_write32(PLE_GAP, ple_gap); 4427 vmx->ple_window = ple_window; 4428 vmx->ple_window_dirty = true; 4429 } 4430 4431 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); 4432 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); 4433 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */ 4434 4435 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */ 4436 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */ 4437 vmx_set_constant_host_state(vmx); 4438 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ 4439 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ 4440 4441 if (cpu_has_vmx_vmfunc()) 4442 vmcs_write64(VM_FUNCTION_CONTROL, 0); 4443 4444 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); 4445 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); 4446 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val)); 4447 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); 4448 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val)); 4449 4450 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) 4451 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); 4452 4453 vm_exit_controls_set(vmx, vmx_vmexit_ctrl()); 4454 4455 /* 22.2.1, 20.8.1 */ 4456 vm_entry_controls_set(vmx, vmx_vmentry_ctrl()); 4457 4458 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS; 4459 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits); 4460 4461 set_cr4_guest_host_mask(vmx); 4462 4463 if (vmx->vpid != 0) 4464 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); 4465 4466 if (cpu_has_vmx_xsaves()) 4467 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP); 4468 4469 if (enable_pml) { 4470 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg)); 4471 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 4472 } 4473 4474 vmx_write_encls_bitmap(&vmx->vcpu, NULL); 4475 4476 if (vmx_pt_mode_is_host_guest()) { 4477 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc)); 4478 /* Bit[6~0] are forced to 1, writes are ignored. */ 4479 vmx->pt_desc.guest.output_mask = 0x7F; 4480 vmcs_write64(GUEST_IA32_RTIT_CTL, 0); 4481 } 4482 } 4483 4484 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) 4485 { 4486 struct vcpu_vmx *vmx = to_vmx(vcpu); 4487 struct msr_data apic_base_msr; 4488 u64 cr0; 4489 4490 vmx->rmode.vm86_active = 0; 4491 vmx->spec_ctrl = 0; 4492 4493 vmx->msr_ia32_umwait_control = 0; 4494 4495 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); 4496 vmx->hv_deadline_tsc = -1; 4497 kvm_set_cr8(vcpu, 0); 4498 4499 if (!init_event) { 4500 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE | 4501 MSR_IA32_APICBASE_ENABLE; 4502 if (kvm_vcpu_is_reset_bsp(vcpu)) 4503 apic_base_msr.data |= MSR_IA32_APICBASE_BSP; 4504 apic_base_msr.host_initiated = true; 4505 kvm_set_apic_base(vcpu, &apic_base_msr); 4506 } 4507 4508 vmx_segment_cache_clear(vmx); 4509 4510 seg_setup(VCPU_SREG_CS); 4511 vmcs_write16(GUEST_CS_SELECTOR, 0xf000); 4512 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul); 4513 4514 seg_setup(VCPU_SREG_DS); 4515 seg_setup(VCPU_SREG_ES); 4516 seg_setup(VCPU_SREG_FS); 4517 seg_setup(VCPU_SREG_GS); 4518 seg_setup(VCPU_SREG_SS); 4519 4520 vmcs_write16(GUEST_TR_SELECTOR, 0); 4521 vmcs_writel(GUEST_TR_BASE, 0); 4522 vmcs_write32(GUEST_TR_LIMIT, 0xffff); 4523 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); 4524 4525 vmcs_write16(GUEST_LDTR_SELECTOR, 0); 4526 vmcs_writel(GUEST_LDTR_BASE, 0); 4527 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); 4528 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); 4529 4530 if (!init_event) { 4531 vmcs_write32(GUEST_SYSENTER_CS, 0); 4532 vmcs_writel(GUEST_SYSENTER_ESP, 0); 4533 vmcs_writel(GUEST_SYSENTER_EIP, 0); 4534 vmcs_write64(GUEST_IA32_DEBUGCTL, 0); 4535 } 4536 4537 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); 4538 kvm_rip_write(vcpu, 0xfff0); 4539 4540 vmcs_writel(GUEST_GDTR_BASE, 0); 4541 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); 4542 4543 vmcs_writel(GUEST_IDTR_BASE, 0); 4544 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); 4545 4546 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); 4547 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); 4548 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0); 4549 if (kvm_mpx_supported()) 4550 vmcs_write64(GUEST_BNDCFGS, 0); 4551 4552 setup_msrs(vmx); 4553 4554 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */ 4555 4556 if (cpu_has_vmx_tpr_shadow() && !init_event) { 4557 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); 4558 if (cpu_need_tpr_shadow(vcpu)) 4559 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 4560 __pa(vcpu->arch.apic->regs)); 4561 vmcs_write32(TPR_THRESHOLD, 0); 4562 } 4563 4564 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 4565 4566 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; 4567 vmx->vcpu.arch.cr0 = cr0; 4568 vmx_set_cr0(vcpu, cr0); /* enter rmode */ 4569 vmx_set_cr4(vcpu, 0); 4570 vmx_set_efer(vcpu, 0); 4571 4572 vmx_update_exception_bitmap(vcpu); 4573 4574 vpid_sync_context(vmx->vpid); 4575 if (init_event) 4576 vmx_clear_hlt(vcpu); 4577 } 4578 4579 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu) 4580 { 4581 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 4582 } 4583 4584 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu) 4585 { 4586 if (!enable_vnmi || 4587 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) { 4588 vmx_enable_irq_window(vcpu); 4589 return; 4590 } 4591 4592 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 4593 } 4594 4595 static void vmx_inject_irq(struct kvm_vcpu *vcpu) 4596 { 4597 struct vcpu_vmx *vmx = to_vmx(vcpu); 4598 uint32_t intr; 4599 int irq = vcpu->arch.interrupt.nr; 4600 4601 trace_kvm_inj_virq(irq); 4602 4603 ++vcpu->stat.irq_injections; 4604 if (vmx->rmode.vm86_active) { 4605 int inc_eip = 0; 4606 if (vcpu->arch.interrupt.soft) 4607 inc_eip = vcpu->arch.event_exit_inst_len; 4608 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip); 4609 return; 4610 } 4611 intr = irq | INTR_INFO_VALID_MASK; 4612 if (vcpu->arch.interrupt.soft) { 4613 intr |= INTR_TYPE_SOFT_INTR; 4614 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 4615 vmx->vcpu.arch.event_exit_inst_len); 4616 } else 4617 intr |= INTR_TYPE_EXT_INTR; 4618 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); 4619 4620 vmx_clear_hlt(vcpu); 4621 } 4622 4623 static void vmx_inject_nmi(struct kvm_vcpu *vcpu) 4624 { 4625 struct vcpu_vmx *vmx = to_vmx(vcpu); 4626 4627 if (!enable_vnmi) { 4628 /* 4629 * Tracking the NMI-blocked state in software is built upon 4630 * finding the next open IRQ window. This, in turn, depends on 4631 * well-behaving guests: They have to keep IRQs disabled at 4632 * least as long as the NMI handler runs. Otherwise we may 4633 * cause NMI nesting, maybe breaking the guest. But as this is 4634 * highly unlikely, we can live with the residual risk. 4635 */ 4636 vmx->loaded_vmcs->soft_vnmi_blocked = 1; 4637 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4638 } 4639 4640 ++vcpu->stat.nmi_injections; 4641 vmx->loaded_vmcs->nmi_known_unmasked = false; 4642 4643 if (vmx->rmode.vm86_active) { 4644 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0); 4645 return; 4646 } 4647 4648 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 4649 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); 4650 4651 vmx_clear_hlt(vcpu); 4652 } 4653 4654 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) 4655 { 4656 struct vcpu_vmx *vmx = to_vmx(vcpu); 4657 bool masked; 4658 4659 if (!enable_vnmi) 4660 return vmx->loaded_vmcs->soft_vnmi_blocked; 4661 if (vmx->loaded_vmcs->nmi_known_unmasked) 4662 return false; 4663 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI; 4664 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4665 return masked; 4666 } 4667 4668 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) 4669 { 4670 struct vcpu_vmx *vmx = to_vmx(vcpu); 4671 4672 if (!enable_vnmi) { 4673 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) { 4674 vmx->loaded_vmcs->soft_vnmi_blocked = masked; 4675 vmx->loaded_vmcs->vnmi_blocked_time = 0; 4676 } 4677 } else { 4678 vmx->loaded_vmcs->nmi_known_unmasked = !masked; 4679 if (masked) 4680 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 4681 GUEST_INTR_STATE_NMI); 4682 else 4683 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, 4684 GUEST_INTR_STATE_NMI); 4685 } 4686 } 4687 4688 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu) 4689 { 4690 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4691 return false; 4692 4693 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked) 4694 return true; 4695 4696 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4697 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 4698 GUEST_INTR_STATE_NMI)); 4699 } 4700 4701 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4702 { 4703 if (to_vmx(vcpu)->nested.nested_run_pending) 4704 return -EBUSY; 4705 4706 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */ 4707 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu)) 4708 return -EBUSY; 4709 4710 return !vmx_nmi_blocked(vcpu); 4711 } 4712 4713 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu) 4714 { 4715 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4716 return false; 4717 4718 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) || 4719 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 4720 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); 4721 } 4722 4723 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection) 4724 { 4725 if (to_vmx(vcpu)->nested.nested_run_pending) 4726 return -EBUSY; 4727 4728 /* 4729 * An IRQ must not be injected into L2 if it's supposed to VM-Exit, 4730 * e.g. if the IRQ arrived asynchronously after checking nested events. 4731 */ 4732 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) 4733 return -EBUSY; 4734 4735 return !vmx_interrupt_blocked(vcpu); 4736 } 4737 4738 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) 4739 { 4740 void __user *ret; 4741 4742 if (enable_unrestricted_guest) 4743 return 0; 4744 4745 mutex_lock(&kvm->slots_lock); 4746 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr, 4747 PAGE_SIZE * 3); 4748 mutex_unlock(&kvm->slots_lock); 4749 4750 if (IS_ERR(ret)) 4751 return PTR_ERR(ret); 4752 4753 to_kvm_vmx(kvm)->tss_addr = addr; 4754 4755 return init_rmode_tss(kvm, ret); 4756 } 4757 4758 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) 4759 { 4760 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr; 4761 return 0; 4762 } 4763 4764 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) 4765 { 4766 switch (vec) { 4767 case BP_VECTOR: 4768 /* 4769 * Update instruction length as we may reinject the exception 4770 * from user space while in guest debugging mode. 4771 */ 4772 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = 4773 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4774 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) 4775 return false; 4776 fallthrough; 4777 case DB_VECTOR: 4778 return !(vcpu->guest_debug & 4779 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)); 4780 case DE_VECTOR: 4781 case OF_VECTOR: 4782 case BR_VECTOR: 4783 case UD_VECTOR: 4784 case DF_VECTOR: 4785 case SS_VECTOR: 4786 case GP_VECTOR: 4787 case MF_VECTOR: 4788 return true; 4789 } 4790 return false; 4791 } 4792 4793 static int handle_rmode_exception(struct kvm_vcpu *vcpu, 4794 int vec, u32 err_code) 4795 { 4796 /* 4797 * Instruction with address size override prefix opcode 0x67 4798 * Cause the #SS fault with 0 error code in VM86 mode. 4799 */ 4800 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { 4801 if (kvm_emulate_instruction(vcpu, 0)) { 4802 if (vcpu->arch.halt_request) { 4803 vcpu->arch.halt_request = 0; 4804 return kvm_vcpu_halt(vcpu); 4805 } 4806 return 1; 4807 } 4808 return 0; 4809 } 4810 4811 /* 4812 * Forward all other exceptions that are valid in real mode. 4813 * FIXME: Breaks guest debugging in real mode, needs to be fixed with 4814 * the required debugging infrastructure rework. 4815 */ 4816 kvm_queue_exception(vcpu, vec); 4817 return 1; 4818 } 4819 4820 static int handle_machine_check(struct kvm_vcpu *vcpu) 4821 { 4822 /* handled by vmx_vcpu_run() */ 4823 return 1; 4824 } 4825 4826 /* 4827 * If the host has split lock detection disabled, then #AC is 4828 * unconditionally injected into the guest, which is the pre split lock 4829 * detection behaviour. 4830 * 4831 * If the host has split lock detection enabled then #AC is 4832 * only injected into the guest when: 4833 * - Guest CPL == 3 (user mode) 4834 * - Guest has #AC detection enabled in CR0 4835 * - Guest EFLAGS has AC bit set 4836 */ 4837 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu) 4838 { 4839 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) 4840 return true; 4841 4842 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) && 4843 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC); 4844 } 4845 4846 static int handle_exception_nmi(struct kvm_vcpu *vcpu) 4847 { 4848 struct vcpu_vmx *vmx = to_vmx(vcpu); 4849 struct kvm_run *kvm_run = vcpu->run; 4850 u32 intr_info, ex_no, error_code; 4851 unsigned long cr2, rip, dr6; 4852 u32 vect_info; 4853 4854 vect_info = vmx->idt_vectoring_info; 4855 intr_info = vmx_get_intr_info(vcpu); 4856 4857 if (is_machine_check(intr_info) || is_nmi(intr_info)) 4858 return 1; /* handled by handle_exception_nmi_irqoff() */ 4859 4860 if (is_invalid_opcode(intr_info)) 4861 return handle_ud(vcpu); 4862 4863 error_code = 0; 4864 if (intr_info & INTR_INFO_DELIVER_CODE_MASK) 4865 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 4866 4867 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) { 4868 WARN_ON_ONCE(!enable_vmware_backdoor); 4869 4870 /* 4871 * VMware backdoor emulation on #GP interception only handles 4872 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero 4873 * error code on #GP. 4874 */ 4875 if (error_code) { 4876 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); 4877 return 1; 4878 } 4879 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP); 4880 } 4881 4882 /* 4883 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing 4884 * MMIO, it is better to report an internal error. 4885 * See the comments in vmx_handle_exit. 4886 */ 4887 if ((vect_info & VECTORING_INFO_VALID_MASK) && 4888 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { 4889 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 4890 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; 4891 vcpu->run->internal.ndata = 4; 4892 vcpu->run->internal.data[0] = vect_info; 4893 vcpu->run->internal.data[1] = intr_info; 4894 vcpu->run->internal.data[2] = error_code; 4895 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu; 4896 return 0; 4897 } 4898 4899 if (is_page_fault(intr_info)) { 4900 cr2 = vmx_get_exit_qual(vcpu); 4901 if (enable_ept && !vcpu->arch.apf.host_apf_flags) { 4902 /* 4903 * EPT will cause page fault only if we need to 4904 * detect illegal GPAs. 4905 */ 4906 WARN_ON_ONCE(!allow_smaller_maxphyaddr); 4907 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code); 4908 return 1; 4909 } else 4910 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0); 4911 } 4912 4913 ex_no = intr_info & INTR_INFO_VECTOR_MASK; 4914 4915 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) 4916 return handle_rmode_exception(vcpu, ex_no, error_code); 4917 4918 switch (ex_no) { 4919 case DB_VECTOR: 4920 dr6 = vmx_get_exit_qual(vcpu); 4921 if (!(vcpu->guest_debug & 4922 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { 4923 if (is_icebp(intr_info)) 4924 WARN_ON(!skip_emulated_instruction(vcpu)); 4925 4926 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); 4927 return 1; 4928 } 4929 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; 4930 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); 4931 fallthrough; 4932 case BP_VECTOR: 4933 /* 4934 * Update instruction length as we may reinject #BP from 4935 * user space while in guest debugging mode. Reading it for 4936 * #DB as well causes no harm, it is not used in that case. 4937 */ 4938 vmx->vcpu.arch.event_exit_inst_len = 4939 vmcs_read32(VM_EXIT_INSTRUCTION_LEN); 4940 kvm_run->exit_reason = KVM_EXIT_DEBUG; 4941 rip = kvm_rip_read(vcpu); 4942 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; 4943 kvm_run->debug.arch.exception = ex_no; 4944 break; 4945 case AC_VECTOR: 4946 if (guest_inject_ac(vcpu)) { 4947 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code); 4948 return 1; 4949 } 4950 4951 /* 4952 * Handle split lock. Depending on detection mode this will 4953 * either warn and disable split lock detection for this 4954 * task or force SIGBUS on it. 4955 */ 4956 if (handle_guest_split_lock(kvm_rip_read(vcpu))) 4957 return 1; 4958 fallthrough; 4959 default: 4960 kvm_run->exit_reason = KVM_EXIT_EXCEPTION; 4961 kvm_run->ex.exception = ex_no; 4962 kvm_run->ex.error_code = error_code; 4963 break; 4964 } 4965 return 0; 4966 } 4967 4968 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu) 4969 { 4970 ++vcpu->stat.irq_exits; 4971 return 1; 4972 } 4973 4974 static int handle_triple_fault(struct kvm_vcpu *vcpu) 4975 { 4976 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; 4977 vcpu->mmio_needed = 0; 4978 return 0; 4979 } 4980 4981 static int handle_io(struct kvm_vcpu *vcpu) 4982 { 4983 unsigned long exit_qualification; 4984 int size, in, string; 4985 unsigned port; 4986 4987 exit_qualification = vmx_get_exit_qual(vcpu); 4988 string = (exit_qualification & 16) != 0; 4989 4990 ++vcpu->stat.io_exits; 4991 4992 if (string) 4993 return kvm_emulate_instruction(vcpu, 0); 4994 4995 port = exit_qualification >> 16; 4996 size = (exit_qualification & 7) + 1; 4997 in = (exit_qualification & 8) != 0; 4998 4999 return kvm_fast_pio(vcpu, size, port, in); 5000 } 5001 5002 static void 5003 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) 5004 { 5005 /* 5006 * Patch in the VMCALL instruction: 5007 */ 5008 hypercall[0] = 0x0f; 5009 hypercall[1] = 0x01; 5010 hypercall[2] = 0xc1; 5011 } 5012 5013 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ 5014 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) 5015 { 5016 if (is_guest_mode(vcpu)) { 5017 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5018 unsigned long orig_val = val; 5019 5020 /* 5021 * We get here when L2 changed cr0 in a way that did not change 5022 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), 5023 * but did change L0 shadowed bits. So we first calculate the 5024 * effective cr0 value that L1 would like to write into the 5025 * hardware. It consists of the L2-owned bits from the new 5026 * value combined with the L1-owned bits from L1's guest_cr0. 5027 */ 5028 val = (val & ~vmcs12->cr0_guest_host_mask) | 5029 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); 5030 5031 if (!nested_guest_cr0_valid(vcpu, val)) 5032 return 1; 5033 5034 if (kvm_set_cr0(vcpu, val)) 5035 return 1; 5036 vmcs_writel(CR0_READ_SHADOW, orig_val); 5037 return 0; 5038 } else { 5039 if (to_vmx(vcpu)->nested.vmxon && 5040 !nested_host_cr0_valid(vcpu, val)) 5041 return 1; 5042 5043 return kvm_set_cr0(vcpu, val); 5044 } 5045 } 5046 5047 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) 5048 { 5049 if (is_guest_mode(vcpu)) { 5050 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 5051 unsigned long orig_val = val; 5052 5053 /* analogously to handle_set_cr0 */ 5054 val = (val & ~vmcs12->cr4_guest_host_mask) | 5055 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); 5056 if (kvm_set_cr4(vcpu, val)) 5057 return 1; 5058 vmcs_writel(CR4_READ_SHADOW, orig_val); 5059 return 0; 5060 } else 5061 return kvm_set_cr4(vcpu, val); 5062 } 5063 5064 static int handle_desc(struct kvm_vcpu *vcpu) 5065 { 5066 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP)); 5067 return kvm_emulate_instruction(vcpu, 0); 5068 } 5069 5070 static int handle_cr(struct kvm_vcpu *vcpu) 5071 { 5072 unsigned long exit_qualification, val; 5073 int cr; 5074 int reg; 5075 int err; 5076 int ret; 5077 5078 exit_qualification = vmx_get_exit_qual(vcpu); 5079 cr = exit_qualification & 15; 5080 reg = (exit_qualification >> 8) & 15; 5081 switch ((exit_qualification >> 4) & 3) { 5082 case 0: /* mov to cr */ 5083 val = kvm_register_read(vcpu, reg); 5084 trace_kvm_cr_write(cr, val); 5085 switch (cr) { 5086 case 0: 5087 err = handle_set_cr0(vcpu, val); 5088 return kvm_complete_insn_gp(vcpu, err); 5089 case 3: 5090 WARN_ON_ONCE(enable_unrestricted_guest); 5091 err = kvm_set_cr3(vcpu, val); 5092 return kvm_complete_insn_gp(vcpu, err); 5093 case 4: 5094 err = handle_set_cr4(vcpu, val); 5095 return kvm_complete_insn_gp(vcpu, err); 5096 case 8: { 5097 u8 cr8_prev = kvm_get_cr8(vcpu); 5098 u8 cr8 = (u8)val; 5099 err = kvm_set_cr8(vcpu, cr8); 5100 ret = kvm_complete_insn_gp(vcpu, err); 5101 if (lapic_in_kernel(vcpu)) 5102 return ret; 5103 if (cr8_prev <= cr8) 5104 return ret; 5105 /* 5106 * TODO: we might be squashing a 5107 * KVM_GUESTDBG_SINGLESTEP-triggered 5108 * KVM_EXIT_DEBUG here. 5109 */ 5110 vcpu->run->exit_reason = KVM_EXIT_SET_TPR; 5111 return 0; 5112 } 5113 } 5114 break; 5115 case 2: /* clts */ 5116 WARN_ONCE(1, "Guest should always own CR0.TS"); 5117 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); 5118 trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); 5119 return kvm_skip_emulated_instruction(vcpu); 5120 case 1: /*mov from cr*/ 5121 switch (cr) { 5122 case 3: 5123 WARN_ON_ONCE(enable_unrestricted_guest); 5124 val = kvm_read_cr3(vcpu); 5125 kvm_register_write(vcpu, reg, val); 5126 trace_kvm_cr_read(cr, val); 5127 return kvm_skip_emulated_instruction(vcpu); 5128 case 8: 5129 val = kvm_get_cr8(vcpu); 5130 kvm_register_write(vcpu, reg, val); 5131 trace_kvm_cr_read(cr, val); 5132 return kvm_skip_emulated_instruction(vcpu); 5133 } 5134 break; 5135 case 3: /* lmsw */ 5136 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; 5137 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); 5138 kvm_lmsw(vcpu, val); 5139 5140 return kvm_skip_emulated_instruction(vcpu); 5141 default: 5142 break; 5143 } 5144 vcpu->run->exit_reason = 0; 5145 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", 5146 (int)(exit_qualification >> 4) & 3, cr); 5147 return 0; 5148 } 5149 5150 static int handle_dr(struct kvm_vcpu *vcpu) 5151 { 5152 unsigned long exit_qualification; 5153 int dr, dr7, reg; 5154 int err = 1; 5155 5156 exit_qualification = vmx_get_exit_qual(vcpu); 5157 dr = exit_qualification & DEBUG_REG_ACCESS_NUM; 5158 5159 /* First, if DR does not exist, trigger UD */ 5160 if (!kvm_require_dr(vcpu, dr)) 5161 return 1; 5162 5163 if (kvm_x86_ops.get_cpl(vcpu) > 0) 5164 goto out; 5165 5166 dr7 = vmcs_readl(GUEST_DR7); 5167 if (dr7 & DR7_GD) { 5168 /* 5169 * As the vm-exit takes precedence over the debug trap, we 5170 * need to emulate the latter, either for the host or the 5171 * guest debugging itself. 5172 */ 5173 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { 5174 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW; 5175 vcpu->run->debug.arch.dr7 = dr7; 5176 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu); 5177 vcpu->run->debug.arch.exception = DB_VECTOR; 5178 vcpu->run->exit_reason = KVM_EXIT_DEBUG; 5179 return 0; 5180 } else { 5181 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD); 5182 return 1; 5183 } 5184 } 5185 5186 if (vcpu->guest_debug == 0) { 5187 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5188 5189 /* 5190 * No more DR vmexits; force a reload of the debug registers 5191 * and reenter on this instruction. The next vmexit will 5192 * retrieve the full state of the debug registers. 5193 */ 5194 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; 5195 return 1; 5196 } 5197 5198 reg = DEBUG_REG_ACCESS_REG(exit_qualification); 5199 if (exit_qualification & TYPE_MOV_FROM_DR) { 5200 unsigned long val; 5201 5202 kvm_get_dr(vcpu, dr, &val); 5203 kvm_register_write(vcpu, reg, val); 5204 err = 0; 5205 } else { 5206 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg)); 5207 } 5208 5209 out: 5210 return kvm_complete_insn_gp(vcpu, err); 5211 } 5212 5213 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) 5214 { 5215 get_debugreg(vcpu->arch.db[0], 0); 5216 get_debugreg(vcpu->arch.db[1], 1); 5217 get_debugreg(vcpu->arch.db[2], 2); 5218 get_debugreg(vcpu->arch.db[3], 3); 5219 get_debugreg(vcpu->arch.dr6, 6); 5220 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7); 5221 5222 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; 5223 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING); 5224 } 5225 5226 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) 5227 { 5228 vmcs_writel(GUEST_DR7, val); 5229 } 5230 5231 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) 5232 { 5233 kvm_apic_update_ppr(vcpu); 5234 return 1; 5235 } 5236 5237 static int handle_interrupt_window(struct kvm_vcpu *vcpu) 5238 { 5239 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING); 5240 5241 kvm_make_request(KVM_REQ_EVENT, vcpu); 5242 5243 ++vcpu->stat.irq_window_exits; 5244 return 1; 5245 } 5246 5247 static int handle_invlpg(struct kvm_vcpu *vcpu) 5248 { 5249 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5250 5251 kvm_mmu_invlpg(vcpu, exit_qualification); 5252 return kvm_skip_emulated_instruction(vcpu); 5253 } 5254 5255 static int handle_apic_access(struct kvm_vcpu *vcpu) 5256 { 5257 if (likely(fasteoi)) { 5258 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5259 int access_type, offset; 5260 5261 access_type = exit_qualification & APIC_ACCESS_TYPE; 5262 offset = exit_qualification & APIC_ACCESS_OFFSET; 5263 /* 5264 * Sane guest uses MOV to write EOI, with written value 5265 * not cared. So make a short-circuit here by avoiding 5266 * heavy instruction emulation. 5267 */ 5268 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && 5269 (offset == APIC_EOI)) { 5270 kvm_lapic_set_eoi(vcpu); 5271 return kvm_skip_emulated_instruction(vcpu); 5272 } 5273 } 5274 return kvm_emulate_instruction(vcpu, 0); 5275 } 5276 5277 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) 5278 { 5279 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5280 int vector = exit_qualification & 0xff; 5281 5282 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */ 5283 kvm_apic_set_eoi_accelerated(vcpu, vector); 5284 return 1; 5285 } 5286 5287 static int handle_apic_write(struct kvm_vcpu *vcpu) 5288 { 5289 unsigned long exit_qualification = vmx_get_exit_qual(vcpu); 5290 u32 offset = exit_qualification & 0xfff; 5291 5292 /* APIC-write VM exit is trap-like and thus no need to adjust IP */ 5293 kvm_apic_write_nodecode(vcpu, offset); 5294 return 1; 5295 } 5296 5297 static int handle_task_switch(struct kvm_vcpu *vcpu) 5298 { 5299 struct vcpu_vmx *vmx = to_vmx(vcpu); 5300 unsigned long exit_qualification; 5301 bool has_error_code = false; 5302 u32 error_code = 0; 5303 u16 tss_selector; 5304 int reason, type, idt_v, idt_index; 5305 5306 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); 5307 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); 5308 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); 5309 5310 exit_qualification = vmx_get_exit_qual(vcpu); 5311 5312 reason = (u32)exit_qualification >> 30; 5313 if (reason == TASK_SWITCH_GATE && idt_v) { 5314 switch (type) { 5315 case INTR_TYPE_NMI_INTR: 5316 vcpu->arch.nmi_injected = false; 5317 vmx_set_nmi_mask(vcpu, true); 5318 break; 5319 case INTR_TYPE_EXT_INTR: 5320 case INTR_TYPE_SOFT_INTR: 5321 kvm_clear_interrupt_queue(vcpu); 5322 break; 5323 case INTR_TYPE_HARD_EXCEPTION: 5324 if (vmx->idt_vectoring_info & 5325 VECTORING_INFO_DELIVER_CODE_MASK) { 5326 has_error_code = true; 5327 error_code = 5328 vmcs_read32(IDT_VECTORING_ERROR_CODE); 5329 } 5330 fallthrough; 5331 case INTR_TYPE_SOFT_EXCEPTION: 5332 kvm_clear_exception_queue(vcpu); 5333 break; 5334 default: 5335 break; 5336 } 5337 } 5338 tss_selector = exit_qualification; 5339 5340 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && 5341 type != INTR_TYPE_EXT_INTR && 5342 type != INTR_TYPE_NMI_INTR)) 5343 WARN_ON(!skip_emulated_instruction(vcpu)); 5344 5345 /* 5346 * TODO: What about debug traps on tss switch? 5347 * Are we supposed to inject them and update dr6? 5348 */ 5349 return kvm_task_switch(vcpu, tss_selector, 5350 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, 5351 reason, has_error_code, error_code); 5352 } 5353 5354 static int handle_ept_violation(struct kvm_vcpu *vcpu) 5355 { 5356 unsigned long exit_qualification; 5357 gpa_t gpa; 5358 u64 error_code; 5359 5360 exit_qualification = vmx_get_exit_qual(vcpu); 5361 5362 /* 5363 * EPT violation happened while executing iret from NMI, 5364 * "blocked by NMI" bit has to be set before next VM entry. 5365 * There are errata that may cause this bit to not be set: 5366 * AAK134, BY25. 5367 */ 5368 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5369 enable_vnmi && 5370 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5371 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI); 5372 5373 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5374 trace_kvm_page_fault(gpa, exit_qualification); 5375 5376 /* Is it a read fault? */ 5377 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ) 5378 ? PFERR_USER_MASK : 0; 5379 /* Is it a write fault? */ 5380 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE) 5381 ? PFERR_WRITE_MASK : 0; 5382 /* Is it a fetch fault? */ 5383 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR) 5384 ? PFERR_FETCH_MASK : 0; 5385 /* ept page table entry is present? */ 5386 error_code |= (exit_qualification & 5387 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE | 5388 EPT_VIOLATION_EXECUTABLE)) 5389 ? PFERR_PRESENT_MASK : 0; 5390 5391 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ? 5392 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK; 5393 5394 vcpu->arch.exit_qualification = exit_qualification; 5395 5396 /* 5397 * Check that the GPA doesn't exceed physical memory limits, as that is 5398 * a guest page fault. We have to emulate the instruction here, because 5399 * if the illegal address is that of a paging structure, then 5400 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we 5401 * would also use advanced VM-exit information for EPT violations to 5402 * reconstruct the page fault error code. 5403 */ 5404 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa))) 5405 return kvm_emulate_instruction(vcpu, 0); 5406 5407 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); 5408 } 5409 5410 static int handle_ept_misconfig(struct kvm_vcpu *vcpu) 5411 { 5412 gpa_t gpa; 5413 5414 if (!vmx_can_emulate_instruction(vcpu, NULL, 0)) 5415 return 1; 5416 5417 /* 5418 * A nested guest cannot optimize MMIO vmexits, because we have an 5419 * nGPA here instead of the required GPA. 5420 */ 5421 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); 5422 if (!is_guest_mode(vcpu) && 5423 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) { 5424 trace_kvm_fast_mmio(gpa); 5425 return kvm_skip_emulated_instruction(vcpu); 5426 } 5427 5428 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0); 5429 } 5430 5431 static int handle_nmi_window(struct kvm_vcpu *vcpu) 5432 { 5433 WARN_ON_ONCE(!enable_vnmi); 5434 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING); 5435 ++vcpu->stat.nmi_window_exits; 5436 kvm_make_request(KVM_REQ_EVENT, vcpu); 5437 5438 return 1; 5439 } 5440 5441 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) 5442 { 5443 struct vcpu_vmx *vmx = to_vmx(vcpu); 5444 bool intr_window_requested; 5445 unsigned count = 130; 5446 5447 intr_window_requested = exec_controls_get(vmx) & 5448 CPU_BASED_INTR_WINDOW_EXITING; 5449 5450 while (vmx->emulation_required && count-- != 0) { 5451 if (intr_window_requested && !vmx_interrupt_blocked(vcpu)) 5452 return handle_interrupt_window(&vmx->vcpu); 5453 5454 if (kvm_test_request(KVM_REQ_EVENT, vcpu)) 5455 return 1; 5456 5457 if (!kvm_emulate_instruction(vcpu, 0)) 5458 return 0; 5459 5460 if (vmx->emulation_required && !vmx->rmode.vm86_active && 5461 vcpu->arch.exception.pending) { 5462 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 5463 vcpu->run->internal.suberror = 5464 KVM_INTERNAL_ERROR_EMULATION; 5465 vcpu->run->internal.ndata = 0; 5466 return 0; 5467 } 5468 5469 if (vcpu->arch.halt_request) { 5470 vcpu->arch.halt_request = 0; 5471 return kvm_vcpu_halt(vcpu); 5472 } 5473 5474 /* 5475 * Note, return 1 and not 0, vcpu_run() will invoke 5476 * xfer_to_guest_mode() which will create a proper return 5477 * code. 5478 */ 5479 if (__xfer_to_guest_mode_work_pending()) 5480 return 1; 5481 } 5482 5483 return 1; 5484 } 5485 5486 static void grow_ple_window(struct kvm_vcpu *vcpu) 5487 { 5488 struct vcpu_vmx *vmx = to_vmx(vcpu); 5489 unsigned int old = vmx->ple_window; 5490 5491 vmx->ple_window = __grow_ple_window(old, ple_window, 5492 ple_window_grow, 5493 ple_window_max); 5494 5495 if (vmx->ple_window != old) { 5496 vmx->ple_window_dirty = true; 5497 trace_kvm_ple_window_update(vcpu->vcpu_id, 5498 vmx->ple_window, old); 5499 } 5500 } 5501 5502 static void shrink_ple_window(struct kvm_vcpu *vcpu) 5503 { 5504 struct vcpu_vmx *vmx = to_vmx(vcpu); 5505 unsigned int old = vmx->ple_window; 5506 5507 vmx->ple_window = __shrink_ple_window(old, ple_window, 5508 ple_window_shrink, 5509 ple_window); 5510 5511 if (vmx->ple_window != old) { 5512 vmx->ple_window_dirty = true; 5513 trace_kvm_ple_window_update(vcpu->vcpu_id, 5514 vmx->ple_window, old); 5515 } 5516 } 5517 5518 /* 5519 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE 5520 * exiting, so only get here on cpu with PAUSE-Loop-Exiting. 5521 */ 5522 static int handle_pause(struct kvm_vcpu *vcpu) 5523 { 5524 if (!kvm_pause_in_guest(vcpu->kvm)) 5525 grow_ple_window(vcpu); 5526 5527 /* 5528 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting" 5529 * VM-execution control is ignored if CPL > 0. OTOH, KVM 5530 * never set PAUSE_EXITING and just set PLE if supported, 5531 * so the vcpu must be CPL=0 if it gets a PAUSE exit. 5532 */ 5533 kvm_vcpu_on_spin(vcpu, true); 5534 return kvm_skip_emulated_instruction(vcpu); 5535 } 5536 5537 static int handle_monitor_trap(struct kvm_vcpu *vcpu) 5538 { 5539 return 1; 5540 } 5541 5542 static int handle_invpcid(struct kvm_vcpu *vcpu) 5543 { 5544 u32 vmx_instruction_info; 5545 unsigned long type; 5546 gva_t gva; 5547 struct { 5548 u64 pcid; 5549 u64 gla; 5550 } operand; 5551 5552 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) { 5553 kvm_queue_exception(vcpu, UD_VECTOR); 5554 return 1; 5555 } 5556 5557 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); 5558 type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf); 5559 5560 if (type > 3) { 5561 kvm_inject_gp(vcpu, 0); 5562 return 1; 5563 } 5564 5565 /* According to the Intel instruction reference, the memory operand 5566 * is read even if it isn't needed (e.g., for type==all) 5567 */ 5568 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu), 5569 vmx_instruction_info, false, 5570 sizeof(operand), &gva)) 5571 return 1; 5572 5573 return kvm_handle_invpcid(vcpu, type, gva); 5574 } 5575 5576 static int handle_pml_full(struct kvm_vcpu *vcpu) 5577 { 5578 unsigned long exit_qualification; 5579 5580 trace_kvm_pml_full(vcpu->vcpu_id); 5581 5582 exit_qualification = vmx_get_exit_qual(vcpu); 5583 5584 /* 5585 * PML buffer FULL happened while executing iret from NMI, 5586 * "blocked by NMI" bit has to be set before next VM entry. 5587 */ 5588 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) && 5589 enable_vnmi && 5590 (exit_qualification & INTR_INFO_UNBLOCK_NMI)) 5591 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 5592 GUEST_INTR_STATE_NMI); 5593 5594 /* 5595 * PML buffer already flushed at beginning of VMEXIT. Nothing to do 5596 * here.., and there's no userspace involvement needed for PML. 5597 */ 5598 return 1; 5599 } 5600 5601 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu) 5602 { 5603 struct vcpu_vmx *vmx = to_vmx(vcpu); 5604 5605 if (!vmx->req_immediate_exit && 5606 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) { 5607 kvm_lapic_expired_hv_timer(vcpu); 5608 return EXIT_FASTPATH_REENTER_GUEST; 5609 } 5610 5611 return EXIT_FASTPATH_NONE; 5612 } 5613 5614 static int handle_preemption_timer(struct kvm_vcpu *vcpu) 5615 { 5616 handle_fastpath_preemption_timer(vcpu); 5617 return 1; 5618 } 5619 5620 /* 5621 * When nested=0, all VMX instruction VM Exits filter here. The handlers 5622 * are overwritten by nested_vmx_setup() when nested=1. 5623 */ 5624 static int handle_vmx_instruction(struct kvm_vcpu *vcpu) 5625 { 5626 kvm_queue_exception(vcpu, UD_VECTOR); 5627 return 1; 5628 } 5629 5630 #ifndef CONFIG_X86_SGX_KVM 5631 static int handle_encls(struct kvm_vcpu *vcpu) 5632 { 5633 /* 5634 * SGX virtualization is disabled. There is no software enable bit for 5635 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent 5636 * the guest from executing ENCLS (when SGX is supported by hardware). 5637 */ 5638 kvm_queue_exception(vcpu, UD_VECTOR); 5639 return 1; 5640 } 5641 #endif /* CONFIG_X86_SGX_KVM */ 5642 5643 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu) 5644 { 5645 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 5646 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 5647 return 0; 5648 } 5649 5650 /* 5651 * The exit handlers return 1 if the exit was handled fully and guest execution 5652 * may resume. Otherwise they set the kvm_run parameter to indicate what needs 5653 * to be done to userspace and return 0. 5654 */ 5655 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { 5656 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi, 5657 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt, 5658 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault, 5659 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window, 5660 [EXIT_REASON_IO_INSTRUCTION] = handle_io, 5661 [EXIT_REASON_CR_ACCESS] = handle_cr, 5662 [EXIT_REASON_DR_ACCESS] = handle_dr, 5663 [EXIT_REASON_CPUID] = kvm_emulate_cpuid, 5664 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr, 5665 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr, 5666 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window, 5667 [EXIT_REASON_HLT] = kvm_emulate_halt, 5668 [EXIT_REASON_INVD] = kvm_emulate_invd, 5669 [EXIT_REASON_INVLPG] = handle_invlpg, 5670 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc, 5671 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall, 5672 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction, 5673 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction, 5674 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction, 5675 [EXIT_REASON_VMPTRST] = handle_vmx_instruction, 5676 [EXIT_REASON_VMREAD] = handle_vmx_instruction, 5677 [EXIT_REASON_VMRESUME] = handle_vmx_instruction, 5678 [EXIT_REASON_VMWRITE] = handle_vmx_instruction, 5679 [EXIT_REASON_VMOFF] = handle_vmx_instruction, 5680 [EXIT_REASON_VMON] = handle_vmx_instruction, 5681 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold, 5682 [EXIT_REASON_APIC_ACCESS] = handle_apic_access, 5683 [EXIT_REASON_APIC_WRITE] = handle_apic_write, 5684 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced, 5685 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd, 5686 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv, 5687 [EXIT_REASON_TASK_SWITCH] = handle_task_switch, 5688 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check, 5689 [EXIT_REASON_GDTR_IDTR] = handle_desc, 5690 [EXIT_REASON_LDTR_TR] = handle_desc, 5691 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation, 5692 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig, 5693 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause, 5694 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait, 5695 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap, 5696 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor, 5697 [EXIT_REASON_INVEPT] = handle_vmx_instruction, 5698 [EXIT_REASON_INVVPID] = handle_vmx_instruction, 5699 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op, 5700 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op, 5701 [EXIT_REASON_PML_FULL] = handle_pml_full, 5702 [EXIT_REASON_INVPCID] = handle_invpcid, 5703 [EXIT_REASON_VMFUNC] = handle_vmx_instruction, 5704 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer, 5705 [EXIT_REASON_ENCLS] = handle_encls, 5706 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit, 5707 }; 5708 5709 static const int kvm_vmx_max_exit_handlers = 5710 ARRAY_SIZE(kvm_vmx_exit_handlers); 5711 5712 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2, 5713 u32 *intr_info, u32 *error_code) 5714 { 5715 struct vcpu_vmx *vmx = to_vmx(vcpu); 5716 5717 *info1 = vmx_get_exit_qual(vcpu); 5718 if (!(vmx->exit_reason.failed_vmentry)) { 5719 *info2 = vmx->idt_vectoring_info; 5720 *intr_info = vmx_get_intr_info(vcpu); 5721 if (is_exception_with_error_code(*intr_info)) 5722 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); 5723 else 5724 *error_code = 0; 5725 } else { 5726 *info2 = 0; 5727 *intr_info = 0; 5728 *error_code = 0; 5729 } 5730 } 5731 5732 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx) 5733 { 5734 if (vmx->pml_pg) { 5735 __free_page(vmx->pml_pg); 5736 vmx->pml_pg = NULL; 5737 } 5738 } 5739 5740 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu) 5741 { 5742 struct vcpu_vmx *vmx = to_vmx(vcpu); 5743 u64 *pml_buf; 5744 u16 pml_idx; 5745 5746 pml_idx = vmcs_read16(GUEST_PML_INDEX); 5747 5748 /* Do nothing if PML buffer is empty */ 5749 if (pml_idx == (PML_ENTITY_NUM - 1)) 5750 return; 5751 5752 /* PML index always points to next available PML buffer entity */ 5753 if (pml_idx >= PML_ENTITY_NUM) 5754 pml_idx = 0; 5755 else 5756 pml_idx++; 5757 5758 pml_buf = page_address(vmx->pml_pg); 5759 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) { 5760 u64 gpa; 5761 5762 gpa = pml_buf[pml_idx]; 5763 WARN_ON(gpa & (PAGE_SIZE - 1)); 5764 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT); 5765 } 5766 5767 /* reset PML index */ 5768 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1); 5769 } 5770 5771 static void vmx_dump_sel(char *name, uint32_t sel) 5772 { 5773 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n", 5774 name, vmcs_read16(sel), 5775 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR), 5776 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR), 5777 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR)); 5778 } 5779 5780 static void vmx_dump_dtsel(char *name, uint32_t limit) 5781 { 5782 pr_err("%s limit=0x%08x, base=0x%016lx\n", 5783 name, vmcs_read32(limit), 5784 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT)); 5785 } 5786 5787 static void vmx_dump_msrs(char *name, struct vmx_msrs *m) 5788 { 5789 unsigned int i; 5790 struct vmx_msr_entry *e; 5791 5792 pr_err("MSR %s:\n", name); 5793 for (i = 0, e = m->val; i < m->nr; ++i, ++e) 5794 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value); 5795 } 5796 5797 void dump_vmcs(struct kvm_vcpu *vcpu) 5798 { 5799 struct vcpu_vmx *vmx = to_vmx(vcpu); 5800 u32 vmentry_ctl, vmexit_ctl; 5801 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control; 5802 unsigned long cr4; 5803 int efer_slot; 5804 5805 if (!dump_invalid_vmcs) { 5806 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n"); 5807 return; 5808 } 5809 5810 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS); 5811 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS); 5812 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); 5813 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL); 5814 cr4 = vmcs_readl(GUEST_CR4); 5815 secondary_exec_control = 0; 5816 if (cpu_has_secondary_exec_ctrls()) 5817 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); 5818 5819 pr_err("*** Guest State ***\n"); 5820 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5821 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW), 5822 vmcs_readl(CR0_GUEST_HOST_MASK)); 5823 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n", 5824 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK)); 5825 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3)); 5826 if (cpu_has_vmx_ept()) { 5827 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n", 5828 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1)); 5829 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n", 5830 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3)); 5831 } 5832 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n", 5833 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP)); 5834 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n", 5835 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7)); 5836 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5837 vmcs_readl(GUEST_SYSENTER_ESP), 5838 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP)); 5839 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR); 5840 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR); 5841 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR); 5842 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR); 5843 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR); 5844 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR); 5845 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT); 5846 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR); 5847 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT); 5848 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR); 5849 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER); 5850 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER) 5851 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER)); 5852 else if (efer_slot >= 0) 5853 pr_err("EFER= 0x%016llx (autoload)\n", 5854 vmx->msr_autoload.guest.val[efer_slot].value); 5855 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE) 5856 pr_err("EFER= 0x%016llx (effective)\n", 5857 vcpu->arch.efer | (EFER_LMA | EFER_LME)); 5858 else 5859 pr_err("EFER= 0x%016llx (effective)\n", 5860 vcpu->arch.efer & ~(EFER_LMA | EFER_LME)); 5861 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT) 5862 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT)); 5863 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n", 5864 vmcs_read64(GUEST_IA32_DEBUGCTL), 5865 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS)); 5866 if (cpu_has_load_perf_global_ctrl() && 5867 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) 5868 pr_err("PerfGlobCtl = 0x%016llx\n", 5869 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL)); 5870 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS) 5871 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS)); 5872 pr_err("Interruptibility = %08x ActivityState = %08x\n", 5873 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO), 5874 vmcs_read32(GUEST_ACTIVITY_STATE)); 5875 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) 5876 pr_err("InterruptStatus = %04x\n", 5877 vmcs_read16(GUEST_INTR_STATUS)); 5878 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0) 5879 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest); 5880 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0) 5881 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest); 5882 5883 pr_err("*** Host State ***\n"); 5884 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n", 5885 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP)); 5886 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n", 5887 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR), 5888 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR), 5889 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR), 5890 vmcs_read16(HOST_TR_SELECTOR)); 5891 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n", 5892 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE), 5893 vmcs_readl(HOST_TR_BASE)); 5894 pr_err("GDTBase=%016lx IDTBase=%016lx\n", 5895 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE)); 5896 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n", 5897 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3), 5898 vmcs_readl(HOST_CR4)); 5899 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n", 5900 vmcs_readl(HOST_IA32_SYSENTER_ESP), 5901 vmcs_read32(HOST_IA32_SYSENTER_CS), 5902 vmcs_readl(HOST_IA32_SYSENTER_EIP)); 5903 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER) 5904 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER)); 5905 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT) 5906 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT)); 5907 if (cpu_has_load_perf_global_ctrl() && 5908 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) 5909 pr_err("PerfGlobCtl = 0x%016llx\n", 5910 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL)); 5911 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0) 5912 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host); 5913 5914 pr_err("*** Control State ***\n"); 5915 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n", 5916 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control); 5917 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl); 5918 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n", 5919 vmcs_read32(EXCEPTION_BITMAP), 5920 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK), 5921 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH)); 5922 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n", 5923 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 5924 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE), 5925 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN)); 5926 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n", 5927 vmcs_read32(VM_EXIT_INTR_INFO), 5928 vmcs_read32(VM_EXIT_INTR_ERROR_CODE), 5929 vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); 5930 pr_err(" reason=%08x qualification=%016lx\n", 5931 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION)); 5932 pr_err("IDTVectoring: info=%08x errcode=%08x\n", 5933 vmcs_read32(IDT_VECTORING_INFO_FIELD), 5934 vmcs_read32(IDT_VECTORING_ERROR_CODE)); 5935 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET)); 5936 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING) 5937 pr_err("TSC Multiplier = 0x%016llx\n", 5938 vmcs_read64(TSC_MULTIPLIER)); 5939 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) { 5940 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) { 5941 u16 status = vmcs_read16(GUEST_INTR_STATUS); 5942 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff); 5943 } 5944 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD)); 5945 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) 5946 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR)); 5947 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR)); 5948 } 5949 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR) 5950 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV)); 5951 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT)) 5952 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER)); 5953 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING) 5954 pr_err("PLE Gap=%08x Window=%08x\n", 5955 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW)); 5956 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID) 5957 pr_err("Virtual processor ID = 0x%04x\n", 5958 vmcs_read16(VIRTUAL_PROCESSOR_ID)); 5959 } 5960 5961 /* 5962 * The guest has exited. See if we can fix it or if we need userspace 5963 * assistance. 5964 */ 5965 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 5966 { 5967 struct vcpu_vmx *vmx = to_vmx(vcpu); 5968 union vmx_exit_reason exit_reason = vmx->exit_reason; 5969 u32 vectoring_info = vmx->idt_vectoring_info; 5970 u16 exit_handler_index; 5971 5972 /* 5973 * Flush logged GPAs PML buffer, this will make dirty_bitmap more 5974 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before 5975 * querying dirty_bitmap, we only need to kick all vcpus out of guest 5976 * mode as if vcpus is in root mode, the PML buffer must has been 5977 * flushed already. Note, PML is never enabled in hardware while 5978 * running L2. 5979 */ 5980 if (enable_pml && !is_guest_mode(vcpu)) 5981 vmx_flush_pml_buffer(vcpu); 5982 5983 /* 5984 * We should never reach this point with a pending nested VM-Enter, and 5985 * more specifically emulation of L2 due to invalid guest state (see 5986 * below) should never happen as that means we incorrectly allowed a 5987 * nested VM-Enter with an invalid vmcs12. 5988 */ 5989 WARN_ON_ONCE(vmx->nested.nested_run_pending); 5990 5991 /* If guest state is invalid, start emulating */ 5992 if (vmx->emulation_required) 5993 return handle_invalid_guest_state(vcpu); 5994 5995 if (is_guest_mode(vcpu)) { 5996 /* 5997 * PML is never enabled when running L2, bail immediately if a 5998 * PML full exit occurs as something is horribly wrong. 5999 */ 6000 if (exit_reason.basic == EXIT_REASON_PML_FULL) 6001 goto unexpected_vmexit; 6002 6003 /* 6004 * The host physical addresses of some pages of guest memory 6005 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC 6006 * Page). The CPU may write to these pages via their host 6007 * physical address while L2 is running, bypassing any 6008 * address-translation-based dirty tracking (e.g. EPT write 6009 * protection). 6010 * 6011 * Mark them dirty on every exit from L2 to prevent them from 6012 * getting out of sync with dirty tracking. 6013 */ 6014 nested_mark_vmcs12_pages_dirty(vcpu); 6015 6016 if (nested_vmx_reflect_vmexit(vcpu)) 6017 return 1; 6018 } 6019 6020 if (exit_reason.failed_vmentry) { 6021 dump_vmcs(vcpu); 6022 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6023 vcpu->run->fail_entry.hardware_entry_failure_reason 6024 = exit_reason.full; 6025 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6026 return 0; 6027 } 6028 6029 if (unlikely(vmx->fail)) { 6030 dump_vmcs(vcpu); 6031 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; 6032 vcpu->run->fail_entry.hardware_entry_failure_reason 6033 = vmcs_read32(VM_INSTRUCTION_ERROR); 6034 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu; 6035 return 0; 6036 } 6037 6038 /* 6039 * Note: 6040 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by 6041 * delivery event since it indicates guest is accessing MMIO. 6042 * The vm-exit can be triggered again after return to guest that 6043 * will cause infinite loop. 6044 */ 6045 if ((vectoring_info & VECTORING_INFO_VALID_MASK) && 6046 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI && 6047 exit_reason.basic != EXIT_REASON_EPT_VIOLATION && 6048 exit_reason.basic != EXIT_REASON_PML_FULL && 6049 exit_reason.basic != EXIT_REASON_APIC_ACCESS && 6050 exit_reason.basic != EXIT_REASON_TASK_SWITCH)) { 6051 int ndata = 3; 6052 6053 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6054 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; 6055 vcpu->run->internal.data[0] = vectoring_info; 6056 vcpu->run->internal.data[1] = exit_reason.full; 6057 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification; 6058 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) { 6059 vcpu->run->internal.data[ndata++] = 6060 vmcs_read64(GUEST_PHYSICAL_ADDRESS); 6061 } 6062 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; 6063 vcpu->run->internal.ndata = ndata; 6064 return 0; 6065 } 6066 6067 if (unlikely(!enable_vnmi && 6068 vmx->loaded_vmcs->soft_vnmi_blocked)) { 6069 if (!vmx_interrupt_blocked(vcpu)) { 6070 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6071 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL && 6072 vcpu->arch.nmi_pending) { 6073 /* 6074 * This CPU don't support us in finding the end of an 6075 * NMI-blocked window if the guest runs with IRQs 6076 * disabled. So we pull the trigger after 1 s of 6077 * futile waiting, but inform the user about this. 6078 */ 6079 printk(KERN_WARNING "%s: Breaking out of NMI-blocked " 6080 "state on VCPU %d after 1 s timeout\n", 6081 __func__, vcpu->vcpu_id); 6082 vmx->loaded_vmcs->soft_vnmi_blocked = 0; 6083 } 6084 } 6085 6086 if (exit_fastpath != EXIT_FASTPATH_NONE) 6087 return 1; 6088 6089 if (exit_reason.basic >= kvm_vmx_max_exit_handlers) 6090 goto unexpected_vmexit; 6091 #ifdef CONFIG_RETPOLINE 6092 if (exit_reason.basic == EXIT_REASON_MSR_WRITE) 6093 return kvm_emulate_wrmsr(vcpu); 6094 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER) 6095 return handle_preemption_timer(vcpu); 6096 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW) 6097 return handle_interrupt_window(vcpu); 6098 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6099 return handle_external_interrupt(vcpu); 6100 else if (exit_reason.basic == EXIT_REASON_HLT) 6101 return kvm_emulate_halt(vcpu); 6102 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) 6103 return handle_ept_misconfig(vcpu); 6104 #endif 6105 6106 exit_handler_index = array_index_nospec((u16)exit_reason.basic, 6107 kvm_vmx_max_exit_handlers); 6108 if (!kvm_vmx_exit_handlers[exit_handler_index]) 6109 goto unexpected_vmexit; 6110 6111 return kvm_vmx_exit_handlers[exit_handler_index](vcpu); 6112 6113 unexpected_vmexit: 6114 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", 6115 exit_reason.full); 6116 dump_vmcs(vcpu); 6117 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; 6118 vcpu->run->internal.suberror = 6119 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON; 6120 vcpu->run->internal.ndata = 2; 6121 vcpu->run->internal.data[0] = exit_reason.full; 6122 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu; 6123 return 0; 6124 } 6125 6126 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath) 6127 { 6128 int ret = __vmx_handle_exit(vcpu, exit_fastpath); 6129 6130 /* 6131 * Even when current exit reason is handled by KVM internally, we 6132 * still need to exit to user space when bus lock detected to inform 6133 * that there is a bus lock in guest. 6134 */ 6135 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) { 6136 if (ret > 0) 6137 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK; 6138 6139 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK; 6140 return 0; 6141 } 6142 return ret; 6143 } 6144 6145 /* 6146 * Software based L1D cache flush which is used when microcode providing 6147 * the cache control MSR is not loaded. 6148 * 6149 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to 6150 * flush it is required to read in 64 KiB because the replacement algorithm 6151 * is not exactly LRU. This could be sized at runtime via topology 6152 * information but as all relevant affected CPUs have 32KiB L1D cache size 6153 * there is no point in doing so. 6154 */ 6155 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu) 6156 { 6157 int size = PAGE_SIZE << L1D_CACHE_ORDER; 6158 6159 /* 6160 * This code is only executed when the the flush mode is 'cond' or 6161 * 'always' 6162 */ 6163 if (static_branch_likely(&vmx_l1d_flush_cond)) { 6164 bool flush_l1d; 6165 6166 /* 6167 * Clear the per-vcpu flush bit, it gets set again 6168 * either from vcpu_run() or from one of the unsafe 6169 * VMEXIT handlers. 6170 */ 6171 flush_l1d = vcpu->arch.l1tf_flush_l1d; 6172 vcpu->arch.l1tf_flush_l1d = false; 6173 6174 /* 6175 * Clear the per-cpu flush bit, it gets set again from 6176 * the interrupt handlers. 6177 */ 6178 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d(); 6179 kvm_clear_cpu_l1tf_flush_l1d(); 6180 6181 if (!flush_l1d) 6182 return; 6183 } 6184 6185 vcpu->stat.l1d_flush++; 6186 6187 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) { 6188 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH); 6189 return; 6190 } 6191 6192 asm volatile( 6193 /* First ensure the pages are in the TLB */ 6194 "xorl %%eax, %%eax\n" 6195 ".Lpopulate_tlb:\n\t" 6196 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6197 "addl $4096, %%eax\n\t" 6198 "cmpl %%eax, %[size]\n\t" 6199 "jne .Lpopulate_tlb\n\t" 6200 "xorl %%eax, %%eax\n\t" 6201 "cpuid\n\t" 6202 /* Now fill the cache */ 6203 "xorl %%eax, %%eax\n" 6204 ".Lfill_cache:\n" 6205 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t" 6206 "addl $64, %%eax\n\t" 6207 "cmpl %%eax, %[size]\n\t" 6208 "jne .Lfill_cache\n\t" 6209 "lfence\n" 6210 :: [flush_pages] "r" (vmx_l1d_flush_pages), 6211 [size] "r" (size) 6212 : "eax", "ebx", "ecx", "edx"); 6213 } 6214 6215 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) 6216 { 6217 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 6218 int tpr_threshold; 6219 6220 if (is_guest_mode(vcpu) && 6221 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) 6222 return; 6223 6224 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr; 6225 if (is_guest_mode(vcpu)) 6226 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold; 6227 else 6228 vmcs_write32(TPR_THRESHOLD, tpr_threshold); 6229 } 6230 6231 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu) 6232 { 6233 struct vcpu_vmx *vmx = to_vmx(vcpu); 6234 u32 sec_exec_control; 6235 6236 if (!lapic_in_kernel(vcpu)) 6237 return; 6238 6239 if (!flexpriority_enabled && 6240 !cpu_has_vmx_virtualize_x2apic_mode()) 6241 return; 6242 6243 /* Postpone execution until vmcs01 is the current VMCS. */ 6244 if (is_guest_mode(vcpu)) { 6245 vmx->nested.change_vmcs01_virtual_apic_mode = true; 6246 return; 6247 } 6248 6249 sec_exec_control = secondary_exec_controls_get(vmx); 6250 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 6251 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE); 6252 6253 switch (kvm_get_apic_mode(vcpu)) { 6254 case LAPIC_MODE_INVALID: 6255 WARN_ONCE(true, "Invalid local APIC state"); 6256 case LAPIC_MODE_DISABLED: 6257 break; 6258 case LAPIC_MODE_XAPIC: 6259 if (flexpriority_enabled) { 6260 sec_exec_control |= 6261 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; 6262 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu); 6263 6264 /* 6265 * Flush the TLB, reloading the APIC access page will 6266 * only do so if its physical address has changed, but 6267 * the guest may have inserted a non-APIC mapping into 6268 * the TLB while the APIC access page was disabled. 6269 */ 6270 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); 6271 } 6272 break; 6273 case LAPIC_MODE_X2APIC: 6274 if (cpu_has_vmx_virtualize_x2apic_mode()) 6275 sec_exec_control |= 6276 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; 6277 break; 6278 } 6279 secondary_exec_controls_set(vmx, sec_exec_control); 6280 6281 vmx_update_msr_bitmap(vcpu); 6282 } 6283 6284 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu) 6285 { 6286 struct page *page; 6287 6288 /* Defer reload until vmcs01 is the current VMCS. */ 6289 if (is_guest_mode(vcpu)) { 6290 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true; 6291 return; 6292 } 6293 6294 if (!(secondary_exec_controls_get(to_vmx(vcpu)) & 6295 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) 6296 return; 6297 6298 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT); 6299 if (is_error_page(page)) 6300 return; 6301 6302 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page)); 6303 vmx_flush_tlb_current(vcpu); 6304 6305 /* 6306 * Do not pin apic access page in memory, the MMU notifier 6307 * will call us again if it is migrated or swapped out. 6308 */ 6309 put_page(page); 6310 } 6311 6312 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) 6313 { 6314 u16 status; 6315 u8 old; 6316 6317 if (max_isr == -1) 6318 max_isr = 0; 6319 6320 status = vmcs_read16(GUEST_INTR_STATUS); 6321 old = status >> 8; 6322 if (max_isr != old) { 6323 status &= 0xff; 6324 status |= max_isr << 8; 6325 vmcs_write16(GUEST_INTR_STATUS, status); 6326 } 6327 } 6328 6329 static void vmx_set_rvi(int vector) 6330 { 6331 u16 status; 6332 u8 old; 6333 6334 if (vector == -1) 6335 vector = 0; 6336 6337 status = vmcs_read16(GUEST_INTR_STATUS); 6338 old = (u8)status & 0xff; 6339 if ((u8)vector != old) { 6340 status &= ~0xff; 6341 status |= (u8)vector; 6342 vmcs_write16(GUEST_INTR_STATUS, status); 6343 } 6344 } 6345 6346 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) 6347 { 6348 /* 6349 * When running L2, updating RVI is only relevant when 6350 * vmcs12 virtual-interrupt-delivery enabled. 6351 * However, it can be enabled only when L1 also 6352 * intercepts external-interrupts and in that case 6353 * we should not update vmcs02 RVI but instead intercept 6354 * interrupt. Therefore, do nothing when running L2. 6355 */ 6356 if (!is_guest_mode(vcpu)) 6357 vmx_set_rvi(max_irr); 6358 } 6359 6360 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) 6361 { 6362 struct vcpu_vmx *vmx = to_vmx(vcpu); 6363 int max_irr; 6364 bool max_irr_updated; 6365 6366 WARN_ON(!vcpu->arch.apicv_active); 6367 if (pi_test_on(&vmx->pi_desc)) { 6368 pi_clear_on(&vmx->pi_desc); 6369 /* 6370 * IOMMU can write to PID.ON, so the barrier matters even on UP. 6371 * But on x86 this is just a compiler barrier anyway. 6372 */ 6373 smp_mb__after_atomic(); 6374 max_irr_updated = 6375 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr); 6376 6377 /* 6378 * If we are running L2 and L1 has a new pending interrupt 6379 * which can be injected, we should re-evaluate 6380 * what should be done with this new L1 interrupt. 6381 * If L1 intercepts external-interrupts, we should 6382 * exit from L2 to L1. Otherwise, interrupt should be 6383 * delivered directly to L2. 6384 */ 6385 if (is_guest_mode(vcpu) && max_irr_updated) { 6386 if (nested_exit_on_intr(vcpu)) 6387 kvm_vcpu_exiting_guest_mode(vcpu); 6388 else 6389 kvm_make_request(KVM_REQ_EVENT, vcpu); 6390 } 6391 } else { 6392 max_irr = kvm_lapic_find_highest_irr(vcpu); 6393 } 6394 vmx_hwapic_irr_update(vcpu, max_irr); 6395 return max_irr; 6396 } 6397 6398 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) 6399 { 6400 if (!kvm_vcpu_apicv_active(vcpu)) 6401 return; 6402 6403 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); 6404 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); 6405 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); 6406 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); 6407 } 6408 6409 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) 6410 { 6411 struct vcpu_vmx *vmx = to_vmx(vcpu); 6412 6413 pi_clear_on(&vmx->pi_desc); 6414 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir)); 6415 } 6416 6417 void vmx_do_interrupt_nmi_irqoff(unsigned long entry); 6418 6419 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, 6420 unsigned long entry) 6421 { 6422 kvm_before_interrupt(vcpu); 6423 vmx_do_interrupt_nmi_irqoff(entry); 6424 kvm_after_interrupt(vcpu); 6425 } 6426 6427 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx) 6428 { 6429 const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist; 6430 u32 intr_info = vmx_get_intr_info(&vmx->vcpu); 6431 6432 /* if exit due to PF check for async PF */ 6433 if (is_page_fault(intr_info)) 6434 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags(); 6435 /* Handle machine checks before interrupts are enabled */ 6436 else if (is_machine_check(intr_info)) 6437 kvm_machine_check(); 6438 /* We need to handle NMIs before interrupts are enabled */ 6439 else if (is_nmi(intr_info)) 6440 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry); 6441 } 6442 6443 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu) 6444 { 6445 u32 intr_info = vmx_get_intr_info(vcpu); 6446 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK; 6447 gate_desc *desc = (gate_desc *)host_idt_base + vector; 6448 6449 if (WARN_ONCE(!is_external_intr(intr_info), 6450 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info)) 6451 return; 6452 6453 handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc)); 6454 } 6455 6456 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) 6457 { 6458 struct vcpu_vmx *vmx = to_vmx(vcpu); 6459 6460 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT) 6461 handle_external_interrupt_irqoff(vcpu); 6462 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI) 6463 handle_exception_nmi_irqoff(vmx); 6464 } 6465 6466 /* 6467 * The kvm parameter can be NULL (module initialization, or invocation before 6468 * VM creation). Be sure to check the kvm parameter before using it. 6469 */ 6470 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index) 6471 { 6472 switch (index) { 6473 case MSR_IA32_SMBASE: 6474 /* 6475 * We cannot do SMM unless we can run the guest in big 6476 * real mode. 6477 */ 6478 return enable_unrestricted_guest || emulate_invalid_guest_state; 6479 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC: 6480 return nested; 6481 case MSR_AMD64_VIRT_SPEC_CTRL: 6482 /* This is AMD only. */ 6483 return false; 6484 default: 6485 return true; 6486 } 6487 } 6488 6489 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) 6490 { 6491 u32 exit_intr_info; 6492 bool unblock_nmi; 6493 u8 vector; 6494 bool idtv_info_valid; 6495 6496 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6497 6498 if (enable_vnmi) { 6499 if (vmx->loaded_vmcs->nmi_known_unmasked) 6500 return; 6501 6502 exit_intr_info = vmx_get_intr_info(&vmx->vcpu); 6503 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; 6504 vector = exit_intr_info & INTR_INFO_VECTOR_MASK; 6505 /* 6506 * SDM 3: 27.7.1.2 (September 2008) 6507 * Re-set bit "block by NMI" before VM entry if vmexit caused by 6508 * a guest IRET fault. 6509 * SDM 3: 23.2.2 (September 2008) 6510 * Bit 12 is undefined in any of the following cases: 6511 * If the VM exit sets the valid bit in the IDT-vectoring 6512 * information field. 6513 * If the VM exit is due to a double fault. 6514 */ 6515 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && 6516 vector != DF_VECTOR && !idtv_info_valid) 6517 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, 6518 GUEST_INTR_STATE_NMI); 6519 else 6520 vmx->loaded_vmcs->nmi_known_unmasked = 6521 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) 6522 & GUEST_INTR_STATE_NMI); 6523 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked)) 6524 vmx->loaded_vmcs->vnmi_blocked_time += 6525 ktime_to_ns(ktime_sub(ktime_get(), 6526 vmx->loaded_vmcs->entry_time)); 6527 } 6528 6529 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, 6530 u32 idt_vectoring_info, 6531 int instr_len_field, 6532 int error_code_field) 6533 { 6534 u8 vector; 6535 int type; 6536 bool idtv_info_valid; 6537 6538 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; 6539 6540 vcpu->arch.nmi_injected = false; 6541 kvm_clear_exception_queue(vcpu); 6542 kvm_clear_interrupt_queue(vcpu); 6543 6544 if (!idtv_info_valid) 6545 return; 6546 6547 kvm_make_request(KVM_REQ_EVENT, vcpu); 6548 6549 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; 6550 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; 6551 6552 switch (type) { 6553 case INTR_TYPE_NMI_INTR: 6554 vcpu->arch.nmi_injected = true; 6555 /* 6556 * SDM 3: 27.7.1.2 (September 2008) 6557 * Clear bit "block by NMI" before VM entry if a NMI 6558 * delivery faulted. 6559 */ 6560 vmx_set_nmi_mask(vcpu, false); 6561 break; 6562 case INTR_TYPE_SOFT_EXCEPTION: 6563 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6564 fallthrough; 6565 case INTR_TYPE_HARD_EXCEPTION: 6566 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { 6567 u32 err = vmcs_read32(error_code_field); 6568 kvm_requeue_exception_e(vcpu, vector, err); 6569 } else 6570 kvm_requeue_exception(vcpu, vector); 6571 break; 6572 case INTR_TYPE_SOFT_INTR: 6573 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); 6574 fallthrough; 6575 case INTR_TYPE_EXT_INTR: 6576 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); 6577 break; 6578 default: 6579 break; 6580 } 6581 } 6582 6583 static void vmx_complete_interrupts(struct vcpu_vmx *vmx) 6584 { 6585 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, 6586 VM_EXIT_INSTRUCTION_LEN, 6587 IDT_VECTORING_ERROR_CODE); 6588 } 6589 6590 static void vmx_cancel_injection(struct kvm_vcpu *vcpu) 6591 { 6592 __vmx_complete_interrupts(vcpu, 6593 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), 6594 VM_ENTRY_INSTRUCTION_LEN, 6595 VM_ENTRY_EXCEPTION_ERROR_CODE); 6596 6597 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); 6598 } 6599 6600 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) 6601 { 6602 int i, nr_msrs; 6603 struct perf_guest_switch_msr *msrs; 6604 6605 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */ 6606 msrs = perf_guest_get_msrs(&nr_msrs); 6607 if (!msrs) 6608 return; 6609 6610 for (i = 0; i < nr_msrs; i++) 6611 if (msrs[i].host == msrs[i].guest) 6612 clear_atomic_switch_msr(vmx, msrs[i].msr); 6613 else 6614 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, 6615 msrs[i].host, false); 6616 } 6617 6618 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu) 6619 { 6620 struct vcpu_vmx *vmx = to_vmx(vcpu); 6621 u64 tscl; 6622 u32 delta_tsc; 6623 6624 if (vmx->req_immediate_exit) { 6625 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0); 6626 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6627 } else if (vmx->hv_deadline_tsc != -1) { 6628 tscl = rdtsc(); 6629 if (vmx->hv_deadline_tsc > tscl) 6630 /* set_hv_timer ensures the delta fits in 32-bits */ 6631 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >> 6632 cpu_preemption_timer_multi); 6633 else 6634 delta_tsc = 0; 6635 6636 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc); 6637 vmx->loaded_vmcs->hv_timer_soft_disabled = false; 6638 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) { 6639 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1); 6640 vmx->loaded_vmcs->hv_timer_soft_disabled = true; 6641 } 6642 } 6643 6644 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp) 6645 { 6646 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) { 6647 vmx->loaded_vmcs->host_state.rsp = host_rsp; 6648 vmcs_writel(HOST_RSP, host_rsp); 6649 } 6650 } 6651 6652 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu) 6653 { 6654 switch (to_vmx(vcpu)->exit_reason.basic) { 6655 case EXIT_REASON_MSR_WRITE: 6656 return handle_fastpath_set_msr_irqoff(vcpu); 6657 case EXIT_REASON_PREEMPTION_TIMER: 6658 return handle_fastpath_preemption_timer(vcpu); 6659 default: 6660 return EXIT_FASTPATH_NONE; 6661 } 6662 } 6663 6664 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, 6665 struct vcpu_vmx *vmx) 6666 { 6667 kvm_guest_enter_irqoff(); 6668 6669 /* L1D Flush includes CPU buffer clear to mitigate MDS */ 6670 if (static_branch_unlikely(&vmx_l1d_should_flush)) 6671 vmx_l1d_flush(vcpu); 6672 else if (static_branch_unlikely(&mds_user_clear)) 6673 mds_clear_cpu_buffers(); 6674 6675 if (vcpu->arch.cr2 != native_read_cr2()) 6676 native_write_cr2(vcpu->arch.cr2); 6677 6678 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs, 6679 vmx->loaded_vmcs->launched); 6680 6681 vcpu->arch.cr2 = native_read_cr2(); 6682 6683 kvm_guest_exit_irqoff(); 6684 } 6685 6686 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu) 6687 { 6688 struct vcpu_vmx *vmx = to_vmx(vcpu); 6689 unsigned long cr3, cr4; 6690 6691 /* Record the guest's net vcpu time for enforced NMI injections. */ 6692 if (unlikely(!enable_vnmi && 6693 vmx->loaded_vmcs->soft_vnmi_blocked)) 6694 vmx->loaded_vmcs->entry_time = ktime_get(); 6695 6696 /* Don't enter VMX if guest state is invalid, let the exit handler 6697 start emulation until we arrive back to a valid state */ 6698 if (vmx->emulation_required) 6699 return EXIT_FASTPATH_NONE; 6700 6701 trace_kvm_entry(vcpu); 6702 6703 if (vmx->ple_window_dirty) { 6704 vmx->ple_window_dirty = false; 6705 vmcs_write32(PLE_WINDOW, vmx->ple_window); 6706 } 6707 6708 /* 6709 * We did this in prepare_switch_to_guest, because it needs to 6710 * be within srcu_read_lock. 6711 */ 6712 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync); 6713 6714 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP)) 6715 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); 6716 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP)) 6717 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); 6718 6719 cr3 = __get_current_cr3_fast(); 6720 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) { 6721 vmcs_writel(HOST_CR3, cr3); 6722 vmx->loaded_vmcs->host_state.cr3 = cr3; 6723 } 6724 6725 cr4 = cr4_read_shadow(); 6726 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) { 6727 vmcs_writel(HOST_CR4, cr4); 6728 vmx->loaded_vmcs->host_state.cr4 = cr4; 6729 } 6730 6731 /* When single-stepping over STI and MOV SS, we must clear the 6732 * corresponding interruptibility bits in the guest state. Otherwise 6733 * vmentry fails as it then expects bit 14 (BS) in pending debug 6734 * exceptions being set, but that's not correct for the guest debugging 6735 * case. */ 6736 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) 6737 vmx_set_interrupt_shadow(vcpu, 0); 6738 6739 kvm_load_guest_xsave_state(vcpu); 6740 6741 pt_guest_enter(vmx); 6742 6743 atomic_switch_perf_msrs(vmx); 6744 if (intel_pmu_lbr_is_enabled(vcpu)) 6745 vmx_passthrough_lbr_msrs(vcpu); 6746 6747 if (enable_preemption_timer) 6748 vmx_update_hv_timer(vcpu); 6749 6750 kvm_wait_lapic_expire(vcpu); 6751 6752 /* 6753 * If this vCPU has touched SPEC_CTRL, restore the guest's value if 6754 * it's non-zero. Since vmentry is serialising on affected CPUs, there 6755 * is no need to worry about the conditional branch over the wrmsr 6756 * being speculatively taken. 6757 */ 6758 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0); 6759 6760 /* The actual VMENTER/EXIT is in the .noinstr.text section. */ 6761 vmx_vcpu_enter_exit(vcpu, vmx); 6762 6763 /* 6764 * We do not use IBRS in the kernel. If this vCPU has used the 6765 * SPEC_CTRL MSR it may have left it on; save the value and 6766 * turn it off. This is much more efficient than blindly adding 6767 * it to the atomic save/restore list. Especially as the former 6768 * (Saving guest MSRs on vmexit) doesn't even exist in KVM. 6769 * 6770 * For non-nested case: 6771 * If the L01 MSR bitmap does not intercept the MSR, then we need to 6772 * save it. 6773 * 6774 * For nested case: 6775 * If the L02 MSR bitmap does not intercept the MSR, then we need to 6776 * save it. 6777 */ 6778 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) 6779 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); 6780 6781 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0); 6782 6783 /* All fields are clean at this point */ 6784 if (static_branch_unlikely(&enable_evmcs)) { 6785 current_evmcs->hv_clean_fields |= 6786 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL; 6787 6788 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu); 6789 } 6790 6791 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ 6792 if (vmx->host_debugctlmsr) 6793 update_debugctlmsr(vmx->host_debugctlmsr); 6794 6795 #ifndef CONFIG_X86_64 6796 /* 6797 * The sysexit path does not restore ds/es, so we must set them to 6798 * a reasonable value ourselves. 6799 * 6800 * We can't defer this to vmx_prepare_switch_to_host() since that 6801 * function may be executed in interrupt context, which saves and 6802 * restore segments around it, nullifying its effect. 6803 */ 6804 loadsegment(ds, __USER_DS); 6805 loadsegment(es, __USER_DS); 6806 #endif 6807 6808 vmx_register_cache_reset(vcpu); 6809 6810 pt_guest_exit(vmx); 6811 6812 kvm_load_host_xsave_state(vcpu); 6813 6814 vmx->nested.nested_run_pending = 0; 6815 vmx->idt_vectoring_info = 0; 6816 6817 if (unlikely(vmx->fail)) { 6818 vmx->exit_reason.full = 0xdead; 6819 return EXIT_FASTPATH_NONE; 6820 } 6821 6822 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON); 6823 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY)) 6824 kvm_machine_check(); 6825 6826 if (likely(!vmx->exit_reason.failed_vmentry)) 6827 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); 6828 6829 trace_kvm_exit(vmx->exit_reason.full, vcpu, KVM_ISA_VMX); 6830 6831 if (unlikely(vmx->exit_reason.failed_vmentry)) 6832 return EXIT_FASTPATH_NONE; 6833 6834 vmx->loaded_vmcs->launched = 1; 6835 6836 vmx_recover_nmi_blocking(vmx); 6837 vmx_complete_interrupts(vmx); 6838 6839 if (is_guest_mode(vcpu)) 6840 return EXIT_FASTPATH_NONE; 6841 6842 return vmx_exit_handlers_fastpath(vcpu); 6843 } 6844 6845 static void vmx_free_vcpu(struct kvm_vcpu *vcpu) 6846 { 6847 struct vcpu_vmx *vmx = to_vmx(vcpu); 6848 6849 if (enable_pml) 6850 vmx_destroy_pml_buffer(vmx); 6851 free_vpid(vmx->vpid); 6852 nested_vmx_free_vcpu(vcpu); 6853 free_loaded_vmcs(vmx->loaded_vmcs); 6854 } 6855 6856 static int vmx_create_vcpu(struct kvm_vcpu *vcpu) 6857 { 6858 struct vcpu_vmx *vmx; 6859 int i, cpu, err; 6860 6861 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0); 6862 vmx = to_vmx(vcpu); 6863 6864 err = -ENOMEM; 6865 6866 vmx->vpid = allocate_vpid(); 6867 6868 /* 6869 * If PML is turned on, failure on enabling PML just results in failure 6870 * of creating the vcpu, therefore we can simplify PML logic (by 6871 * avoiding dealing with cases, such as enabling PML partially on vcpus 6872 * for the guest), etc. 6873 */ 6874 if (enable_pml) { 6875 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); 6876 if (!vmx->pml_pg) 6877 goto free_vpid; 6878 } 6879 6880 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS); 6881 6882 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) { 6883 u32 index = vmx_uret_msrs_list[i]; 6884 u32 data_low, data_high; 6885 int j = vmx->nr_uret_msrs; 6886 6887 if (rdmsr_safe(index, &data_low, &data_high) < 0) 6888 continue; 6889 if (wrmsr_safe(index, data_low, data_high) < 0) 6890 continue; 6891 6892 vmx->guest_uret_msrs[j].slot = i; 6893 vmx->guest_uret_msrs[j].data = 0; 6894 switch (index) { 6895 case MSR_IA32_TSX_CTRL: 6896 /* 6897 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID 6898 * interception. Keep the host value unchanged to avoid 6899 * changing CPUID bits under the host kernel's feet. 6900 * 6901 * hle=0, rtm=0, tsx_ctrl=1 can be found with some 6902 * combinations of new kernel and old userspace. If 6903 * those guests run on a tsx=off host, do allow guests 6904 * to use TSX_CTRL, but do not change the value on the 6905 * host so that TSX remains always disabled. 6906 */ 6907 if (boot_cpu_has(X86_FEATURE_RTM)) 6908 vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR; 6909 else 6910 vmx->guest_uret_msrs[j].mask = 0; 6911 break; 6912 default: 6913 vmx->guest_uret_msrs[j].mask = -1ull; 6914 break; 6915 } 6916 ++vmx->nr_uret_msrs; 6917 } 6918 6919 err = alloc_loaded_vmcs(&vmx->vmcs01); 6920 if (err < 0) 6921 goto free_pml; 6922 6923 /* The MSR bitmap starts with all ones */ 6924 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6925 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS); 6926 6927 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R); 6928 #ifdef CONFIG_X86_64 6929 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW); 6930 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW); 6931 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW); 6932 #endif 6933 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW); 6934 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW); 6935 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW); 6936 if (kvm_cstate_in_guest(vcpu->kvm)) { 6937 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R); 6938 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R); 6939 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R); 6940 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R); 6941 } 6942 vmx->msr_bitmap_mode = 0; 6943 6944 vmx->loaded_vmcs = &vmx->vmcs01; 6945 cpu = get_cpu(); 6946 vmx_vcpu_load(vcpu, cpu); 6947 vcpu->cpu = cpu; 6948 init_vmcs(vmx); 6949 vmx_vcpu_put(vcpu); 6950 put_cpu(); 6951 if (cpu_need_virtualize_apic_accesses(vcpu)) { 6952 err = alloc_apic_access_page(vcpu->kvm); 6953 if (err) 6954 goto free_vmcs; 6955 } 6956 6957 if (enable_ept && !enable_unrestricted_guest) { 6958 err = init_rmode_identity_map(vcpu->kvm); 6959 if (err) 6960 goto free_vmcs; 6961 } 6962 6963 if (nested) 6964 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs)); 6965 else 6966 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs)); 6967 6968 vcpu_setup_sgx_lepubkeyhash(vcpu); 6969 6970 vmx->nested.posted_intr_nv = -1; 6971 vmx->nested.current_vmptr = -1ull; 6972 6973 vcpu->arch.microcode_version = 0x100000000ULL; 6974 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED; 6975 6976 /* 6977 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR 6978 * or POSTED_INTR_WAKEUP_VECTOR. 6979 */ 6980 vmx->pi_desc.nv = POSTED_INTR_VECTOR; 6981 vmx->pi_desc.sn = 1; 6982 6983 #if IS_ENABLED(CONFIG_HYPERV) 6984 vmx->hv_root_ept = INVALID_PAGE; 6985 #endif 6986 return 0; 6987 6988 free_vmcs: 6989 free_loaded_vmcs(vmx->loaded_vmcs); 6990 free_pml: 6991 vmx_destroy_pml_buffer(vmx); 6992 free_vpid: 6993 free_vpid(vmx->vpid); 6994 return err; 6995 } 6996 6997 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6998 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n" 6999 7000 static int vmx_vm_init(struct kvm *kvm) 7001 { 7002 #if IS_ENABLED(CONFIG_HYPERV) 7003 spin_lock_init(&to_kvm_vmx(kvm)->hv_root_ept_lock); 7004 #endif 7005 7006 if (!ple_gap) 7007 kvm->arch.pause_in_guest = true; 7008 7009 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) { 7010 switch (l1tf_mitigation) { 7011 case L1TF_MITIGATION_OFF: 7012 case L1TF_MITIGATION_FLUSH_NOWARN: 7013 /* 'I explicitly don't care' is set */ 7014 break; 7015 case L1TF_MITIGATION_FLUSH: 7016 case L1TF_MITIGATION_FLUSH_NOSMT: 7017 case L1TF_MITIGATION_FULL: 7018 /* 7019 * Warn upon starting the first VM in a potentially 7020 * insecure environment. 7021 */ 7022 if (sched_smt_active()) 7023 pr_warn_once(L1TF_MSG_SMT); 7024 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER) 7025 pr_warn_once(L1TF_MSG_L1D); 7026 break; 7027 case L1TF_MITIGATION_FULL_FORCE: 7028 /* Flush is enforced */ 7029 break; 7030 } 7031 } 7032 kvm_apicv_init(kvm, enable_apicv); 7033 return 0; 7034 } 7035 7036 static int __init vmx_check_processor_compat(void) 7037 { 7038 struct vmcs_config vmcs_conf; 7039 struct vmx_capability vmx_cap; 7040 7041 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) || 7042 !this_cpu_has(X86_FEATURE_VMX)) { 7043 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id()); 7044 return -EIO; 7045 } 7046 7047 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) 7048 return -EIO; 7049 if (nested) 7050 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept); 7051 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { 7052 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", 7053 smp_processor_id()); 7054 return -EIO; 7055 } 7056 return 0; 7057 } 7058 7059 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) 7060 { 7061 u8 cache; 7062 u64 ipat = 0; 7063 7064 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in 7065 * memory aliases with conflicting memory types and sometimes MCEs. 7066 * We have to be careful as to what are honored and when. 7067 * 7068 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to 7069 * UC. The effective memory type is UC or WC depending on guest PAT. 7070 * This was historically the source of MCEs and we want to be 7071 * conservative. 7072 * 7073 * When there is no need to deal with noncoherent DMA (e.g., no VT-d 7074 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The 7075 * EPT memory type is set to WB. The effective memory type is forced 7076 * WB. 7077 * 7078 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The 7079 * EPT memory type is used to emulate guest CD/MTRR. 7080 */ 7081 7082 if (is_mmio) { 7083 cache = MTRR_TYPE_UNCACHABLE; 7084 goto exit; 7085 } 7086 7087 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) { 7088 ipat = VMX_EPT_IPAT_BIT; 7089 cache = MTRR_TYPE_WRBACK; 7090 goto exit; 7091 } 7092 7093 if (kvm_read_cr0(vcpu) & X86_CR0_CD) { 7094 ipat = VMX_EPT_IPAT_BIT; 7095 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) 7096 cache = MTRR_TYPE_WRBACK; 7097 else 7098 cache = MTRR_TYPE_UNCACHABLE; 7099 goto exit; 7100 } 7101 7102 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn); 7103 7104 exit: 7105 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat; 7106 } 7107 7108 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx) 7109 { 7110 /* 7111 * These bits in the secondary execution controls field 7112 * are dynamic, the others are mostly based on the hypervisor 7113 * architecture and the guest's CPUID. Do not touch the 7114 * dynamic bits. 7115 */ 7116 u32 mask = 7117 SECONDARY_EXEC_SHADOW_VMCS | 7118 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | 7119 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | 7120 SECONDARY_EXEC_DESC; 7121 7122 u32 new_ctl = vmx->secondary_exec_control; 7123 u32 cur_ctl = secondary_exec_controls_get(vmx); 7124 7125 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask)); 7126 } 7127 7128 /* 7129 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits 7130 * (indicating "allowed-1") if they are supported in the guest's CPUID. 7131 */ 7132 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu) 7133 { 7134 struct vcpu_vmx *vmx = to_vmx(vcpu); 7135 struct kvm_cpuid_entry2 *entry; 7136 7137 vmx->nested.msrs.cr0_fixed1 = 0xffffffff; 7138 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE; 7139 7140 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \ 7141 if (entry && (entry->_reg & (_cpuid_mask))) \ 7142 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \ 7143 } while (0) 7144 7145 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0); 7146 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME)); 7147 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME)); 7148 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC)); 7149 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE)); 7150 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE)); 7151 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE)); 7152 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE)); 7153 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE)); 7154 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR)); 7155 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM)); 7156 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX)); 7157 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX)); 7158 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID)); 7159 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE)); 7160 7161 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0); 7162 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE)); 7163 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP)); 7164 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP)); 7165 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU)); 7166 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP)); 7167 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57)); 7168 7169 #undef cr4_fixed1_update 7170 } 7171 7172 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu) 7173 { 7174 struct vcpu_vmx *vmx = to_vmx(vcpu); 7175 7176 if (kvm_mpx_supported()) { 7177 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX); 7178 7179 if (mpx_enabled) { 7180 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS; 7181 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS; 7182 } else { 7183 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS; 7184 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS; 7185 } 7186 } 7187 } 7188 7189 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu) 7190 { 7191 struct vcpu_vmx *vmx = to_vmx(vcpu); 7192 struct kvm_cpuid_entry2 *best = NULL; 7193 int i; 7194 7195 for (i = 0; i < PT_CPUID_LEAVES; i++) { 7196 best = kvm_find_cpuid_entry(vcpu, 0x14, i); 7197 if (!best) 7198 return; 7199 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax; 7200 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx; 7201 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx; 7202 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx; 7203 } 7204 7205 /* Get the number of configurable Address Ranges for filtering */ 7206 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps, 7207 PT_CAP_num_address_ranges); 7208 7209 /* Initialize and clear the no dependency bits */ 7210 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS | 7211 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC); 7212 7213 /* 7214 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise 7215 * will inject an #GP 7216 */ 7217 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering)) 7218 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN; 7219 7220 /* 7221 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and 7222 * PSBFreq can be set 7223 */ 7224 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc)) 7225 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC | 7226 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ); 7227 7228 /* 7229 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and 7230 * MTCFreq can be set 7231 */ 7232 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc)) 7233 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN | 7234 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE); 7235 7236 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */ 7237 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite)) 7238 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW | 7239 RTIT_CTL_PTW_EN); 7240 7241 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */ 7242 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace)) 7243 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN; 7244 7245 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */ 7246 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output)) 7247 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA; 7248 7249 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */ 7250 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys)) 7251 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN; 7252 7253 /* unmask address range configure area */ 7254 for (i = 0; i < vmx->pt_desc.addr_range; i++) 7255 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4)); 7256 } 7257 7258 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu) 7259 { 7260 struct vcpu_vmx *vmx = to_vmx(vcpu); 7261 7262 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */ 7263 vcpu->arch.xsaves_enabled = false; 7264 7265 if (cpu_has_secondary_exec_ctrls()) { 7266 vmx_compute_secondary_exec_control(vmx); 7267 vmcs_set_secondary_exec_control(vmx); 7268 } 7269 7270 if (nested_vmx_allowed(vcpu)) 7271 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7272 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7273 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX; 7274 else 7275 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7276 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX | 7277 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX); 7278 7279 if (nested_vmx_allowed(vcpu)) { 7280 nested_vmx_cr_fixed1_bits_update(vcpu); 7281 nested_vmx_entry_exit_ctls_update(vcpu); 7282 } 7283 7284 if (boot_cpu_has(X86_FEATURE_INTEL_PT) && 7285 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT)) 7286 update_intel_pt_cfg(vcpu); 7287 7288 if (boot_cpu_has(X86_FEATURE_RTM)) { 7289 struct vmx_uret_msr *msr; 7290 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL); 7291 if (msr) { 7292 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM); 7293 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE); 7294 } 7295 } 7296 7297 set_cr4_guest_host_mask(vmx); 7298 7299 vmx_write_encls_bitmap(vcpu, NULL); 7300 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX)) 7301 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED; 7302 else 7303 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED; 7304 7305 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC)) 7306 vmx->msr_ia32_feature_control_valid_bits |= 7307 FEAT_CTL_SGX_LC_ENABLED; 7308 else 7309 vmx->msr_ia32_feature_control_valid_bits &= 7310 ~FEAT_CTL_SGX_LC_ENABLED; 7311 7312 /* Refresh #PF interception to account for MAXPHYADDR changes. */ 7313 vmx_update_exception_bitmap(vcpu); 7314 } 7315 7316 static __init void vmx_set_cpu_caps(void) 7317 { 7318 kvm_set_cpu_caps(); 7319 7320 /* CPUID 0x1 */ 7321 if (nested) 7322 kvm_cpu_cap_set(X86_FEATURE_VMX); 7323 7324 /* CPUID 0x7 */ 7325 if (kvm_mpx_supported()) 7326 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX); 7327 if (!cpu_has_vmx_invpcid()) 7328 kvm_cpu_cap_clear(X86_FEATURE_INVPCID); 7329 if (vmx_pt_mode_is_host_guest()) 7330 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT); 7331 7332 if (!enable_sgx) { 7333 kvm_cpu_cap_clear(X86_FEATURE_SGX); 7334 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC); 7335 kvm_cpu_cap_clear(X86_FEATURE_SGX1); 7336 kvm_cpu_cap_clear(X86_FEATURE_SGX2); 7337 } 7338 7339 if (vmx_umip_emulated()) 7340 kvm_cpu_cap_set(X86_FEATURE_UMIP); 7341 7342 /* CPUID 0xD.1 */ 7343 supported_xss = 0; 7344 if (!cpu_has_vmx_xsaves()) 7345 kvm_cpu_cap_clear(X86_FEATURE_XSAVES); 7346 7347 /* CPUID 0x80000001 */ 7348 if (!cpu_has_vmx_rdtscp()) 7349 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP); 7350 7351 if (cpu_has_vmx_waitpkg()) 7352 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG); 7353 } 7354 7355 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu) 7356 { 7357 to_vmx(vcpu)->req_immediate_exit = true; 7358 } 7359 7360 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu, 7361 struct x86_instruction_info *info) 7362 { 7363 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7364 unsigned short port; 7365 bool intercept; 7366 int size; 7367 7368 if (info->intercept == x86_intercept_in || 7369 info->intercept == x86_intercept_ins) { 7370 port = info->src_val; 7371 size = info->dst_bytes; 7372 } else { 7373 port = info->dst_val; 7374 size = info->src_bytes; 7375 } 7376 7377 /* 7378 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction 7379 * VM-exits depend on the 'unconditional IO exiting' VM-execution 7380 * control. 7381 * 7382 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps. 7383 */ 7384 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) 7385 intercept = nested_cpu_has(vmcs12, 7386 CPU_BASED_UNCOND_IO_EXITING); 7387 else 7388 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size); 7389 7390 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7391 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE; 7392 } 7393 7394 static int vmx_check_intercept(struct kvm_vcpu *vcpu, 7395 struct x86_instruction_info *info, 7396 enum x86_intercept_stage stage, 7397 struct x86_exception *exception) 7398 { 7399 struct vmcs12 *vmcs12 = get_vmcs12(vcpu); 7400 7401 switch (info->intercept) { 7402 /* 7403 * RDPID causes #UD if disabled through secondary execution controls. 7404 * Because it is marked as EmulateOnUD, we need to intercept it here. 7405 */ 7406 case x86_intercept_rdtscp: 7407 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) { 7408 exception->vector = UD_VECTOR; 7409 exception->error_code_valid = false; 7410 return X86EMUL_PROPAGATE_FAULT; 7411 } 7412 break; 7413 7414 case x86_intercept_in: 7415 case x86_intercept_ins: 7416 case x86_intercept_out: 7417 case x86_intercept_outs: 7418 return vmx_check_intercept_io(vcpu, info); 7419 7420 case x86_intercept_lgdt: 7421 case x86_intercept_lidt: 7422 case x86_intercept_lldt: 7423 case x86_intercept_ltr: 7424 case x86_intercept_sgdt: 7425 case x86_intercept_sidt: 7426 case x86_intercept_sldt: 7427 case x86_intercept_str: 7428 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC)) 7429 return X86EMUL_CONTINUE; 7430 7431 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */ 7432 break; 7433 7434 /* TODO: check more intercepts... */ 7435 default: 7436 break; 7437 } 7438 7439 return X86EMUL_UNHANDLEABLE; 7440 } 7441 7442 #ifdef CONFIG_X86_64 7443 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */ 7444 static inline int u64_shl_div_u64(u64 a, unsigned int shift, 7445 u64 divisor, u64 *result) 7446 { 7447 u64 low = a << shift, high = a >> (64 - shift); 7448 7449 /* To avoid the overflow on divq */ 7450 if (high >= divisor) 7451 return 1; 7452 7453 /* Low hold the result, high hold rem which is discarded */ 7454 asm("divq %2\n\t" : "=a" (low), "=d" (high) : 7455 "rm" (divisor), "0" (low), "1" (high)); 7456 *result = low; 7457 7458 return 0; 7459 } 7460 7461 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc, 7462 bool *expired) 7463 { 7464 struct vcpu_vmx *vmx; 7465 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles; 7466 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer; 7467 7468 vmx = to_vmx(vcpu); 7469 tscl = rdtsc(); 7470 guest_tscl = kvm_read_l1_tsc(vcpu, tscl); 7471 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl; 7472 lapic_timer_advance_cycles = nsec_to_cycles(vcpu, 7473 ktimer->timer_advance_ns); 7474 7475 if (delta_tsc > lapic_timer_advance_cycles) 7476 delta_tsc -= lapic_timer_advance_cycles; 7477 else 7478 delta_tsc = 0; 7479 7480 /* Convert to host delta tsc if tsc scaling is enabled */ 7481 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio && 7482 delta_tsc && u64_shl_div_u64(delta_tsc, 7483 kvm_tsc_scaling_ratio_frac_bits, 7484 vcpu->arch.tsc_scaling_ratio, &delta_tsc)) 7485 return -ERANGE; 7486 7487 /* 7488 * If the delta tsc can't fit in the 32 bit after the multi shift, 7489 * we can't use the preemption timer. 7490 * It's possible that it fits on later vmentries, but checking 7491 * on every vmentry is costly so we just use an hrtimer. 7492 */ 7493 if (delta_tsc >> (cpu_preemption_timer_multi + 32)) 7494 return -ERANGE; 7495 7496 vmx->hv_deadline_tsc = tscl + delta_tsc; 7497 *expired = !delta_tsc; 7498 return 0; 7499 } 7500 7501 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu) 7502 { 7503 to_vmx(vcpu)->hv_deadline_tsc = -1; 7504 } 7505 #endif 7506 7507 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu) 7508 { 7509 if (!kvm_pause_in_guest(vcpu->kvm)) 7510 shrink_ple_window(vcpu); 7511 } 7512 7513 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu) 7514 { 7515 struct vcpu_vmx *vmx = to_vmx(vcpu); 7516 7517 if (is_guest_mode(vcpu)) { 7518 vmx->nested.update_vmcs01_cpu_dirty_logging = true; 7519 return; 7520 } 7521 7522 /* 7523 * Note, cpu_dirty_logging_count can be changed concurrent with this 7524 * code, but in that case another update request will be made and so 7525 * the guest will never run with a stale PML value. 7526 */ 7527 if (vcpu->kvm->arch.cpu_dirty_logging_count) 7528 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7529 else 7530 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML); 7531 } 7532 7533 static int vmx_pre_block(struct kvm_vcpu *vcpu) 7534 { 7535 if (pi_pre_block(vcpu)) 7536 return 1; 7537 7538 if (kvm_lapic_hv_timer_in_use(vcpu)) 7539 kvm_lapic_switch_to_sw_timer(vcpu); 7540 7541 return 0; 7542 } 7543 7544 static void vmx_post_block(struct kvm_vcpu *vcpu) 7545 { 7546 if (kvm_x86_ops.set_hv_timer) 7547 kvm_lapic_switch_to_hv_timer(vcpu); 7548 7549 pi_post_block(vcpu); 7550 } 7551 7552 static void vmx_setup_mce(struct kvm_vcpu *vcpu) 7553 { 7554 if (vcpu->arch.mcg_cap & MCG_LMCE_P) 7555 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |= 7556 FEAT_CTL_LMCE_ENABLED; 7557 else 7558 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &= 7559 ~FEAT_CTL_LMCE_ENABLED; 7560 } 7561 7562 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection) 7563 { 7564 /* we need a nested vmexit to enter SMM, postpone if run is pending */ 7565 if (to_vmx(vcpu)->nested.nested_run_pending) 7566 return -EBUSY; 7567 return !is_smm(vcpu); 7568 } 7569 7570 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) 7571 { 7572 struct vcpu_vmx *vmx = to_vmx(vcpu); 7573 7574 vmx->nested.smm.guest_mode = is_guest_mode(vcpu); 7575 if (vmx->nested.smm.guest_mode) 7576 nested_vmx_vmexit(vcpu, -1, 0, 0); 7577 7578 vmx->nested.smm.vmxon = vmx->nested.vmxon; 7579 vmx->nested.vmxon = false; 7580 vmx_clear_hlt(vcpu); 7581 return 0; 7582 } 7583 7584 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate) 7585 { 7586 struct vcpu_vmx *vmx = to_vmx(vcpu); 7587 int ret; 7588 7589 if (vmx->nested.smm.vmxon) { 7590 vmx->nested.vmxon = true; 7591 vmx->nested.smm.vmxon = false; 7592 } 7593 7594 if (vmx->nested.smm.guest_mode) { 7595 ret = nested_vmx_enter_non_root_mode(vcpu, false); 7596 if (ret) 7597 return ret; 7598 7599 vmx->nested.smm.guest_mode = false; 7600 } 7601 return 0; 7602 } 7603 7604 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu) 7605 { 7606 /* RSM will cause a vmexit anyway. */ 7607 } 7608 7609 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu) 7610 { 7611 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu); 7612 } 7613 7614 static void vmx_migrate_timers(struct kvm_vcpu *vcpu) 7615 { 7616 if (is_guest_mode(vcpu)) { 7617 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer; 7618 7619 if (hrtimer_try_to_cancel(timer) == 1) 7620 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED); 7621 } 7622 } 7623 7624 static void hardware_unsetup(void) 7625 { 7626 if (nested) 7627 nested_vmx_hardware_unsetup(); 7628 7629 free_kvm_area(); 7630 } 7631 7632 static bool vmx_check_apicv_inhibit_reasons(ulong bit) 7633 { 7634 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) | 7635 BIT(APICV_INHIBIT_REASON_HYPERV); 7636 7637 return supported & BIT(bit); 7638 } 7639 7640 static struct kvm_x86_ops vmx_x86_ops __initdata = { 7641 .hardware_unsetup = hardware_unsetup, 7642 7643 .hardware_enable = hardware_enable, 7644 .hardware_disable = hardware_disable, 7645 .cpu_has_accelerated_tpr = report_flexpriority, 7646 .has_emulated_msr = vmx_has_emulated_msr, 7647 7648 .vm_size = sizeof(struct kvm_vmx), 7649 .vm_init = vmx_vm_init, 7650 7651 .vcpu_create = vmx_create_vcpu, 7652 .vcpu_free = vmx_free_vcpu, 7653 .vcpu_reset = vmx_vcpu_reset, 7654 7655 .prepare_guest_switch = vmx_prepare_switch_to_guest, 7656 .vcpu_load = vmx_vcpu_load, 7657 .vcpu_put = vmx_vcpu_put, 7658 7659 .update_exception_bitmap = vmx_update_exception_bitmap, 7660 .get_msr_feature = vmx_get_msr_feature, 7661 .get_msr = vmx_get_msr, 7662 .set_msr = vmx_set_msr, 7663 .get_segment_base = vmx_get_segment_base, 7664 .get_segment = vmx_get_segment, 7665 .set_segment = vmx_set_segment, 7666 .get_cpl = vmx_get_cpl, 7667 .get_cs_db_l_bits = vmx_get_cs_db_l_bits, 7668 .set_cr0 = vmx_set_cr0, 7669 .is_valid_cr4 = vmx_is_valid_cr4, 7670 .set_cr4 = vmx_set_cr4, 7671 .set_efer = vmx_set_efer, 7672 .get_idt = vmx_get_idt, 7673 .set_idt = vmx_set_idt, 7674 .get_gdt = vmx_get_gdt, 7675 .set_gdt = vmx_set_gdt, 7676 .set_dr7 = vmx_set_dr7, 7677 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs, 7678 .cache_reg = vmx_cache_reg, 7679 .get_rflags = vmx_get_rflags, 7680 .set_rflags = vmx_set_rflags, 7681 7682 .tlb_flush_all = vmx_flush_tlb_all, 7683 .tlb_flush_current = vmx_flush_tlb_current, 7684 .tlb_flush_gva = vmx_flush_tlb_gva, 7685 .tlb_flush_guest = vmx_flush_tlb_guest, 7686 7687 .run = vmx_vcpu_run, 7688 .handle_exit = vmx_handle_exit, 7689 .skip_emulated_instruction = vmx_skip_emulated_instruction, 7690 .update_emulated_instruction = vmx_update_emulated_instruction, 7691 .set_interrupt_shadow = vmx_set_interrupt_shadow, 7692 .get_interrupt_shadow = vmx_get_interrupt_shadow, 7693 .patch_hypercall = vmx_patch_hypercall, 7694 .set_irq = vmx_inject_irq, 7695 .set_nmi = vmx_inject_nmi, 7696 .queue_exception = vmx_queue_exception, 7697 .cancel_injection = vmx_cancel_injection, 7698 .interrupt_allowed = vmx_interrupt_allowed, 7699 .nmi_allowed = vmx_nmi_allowed, 7700 .get_nmi_mask = vmx_get_nmi_mask, 7701 .set_nmi_mask = vmx_set_nmi_mask, 7702 .enable_nmi_window = vmx_enable_nmi_window, 7703 .enable_irq_window = vmx_enable_irq_window, 7704 .update_cr8_intercept = vmx_update_cr8_intercept, 7705 .set_virtual_apic_mode = vmx_set_virtual_apic_mode, 7706 .set_apic_access_page_addr = vmx_set_apic_access_page_addr, 7707 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, 7708 .load_eoi_exitmap = vmx_load_eoi_exitmap, 7709 .apicv_post_state_restore = vmx_apicv_post_state_restore, 7710 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons, 7711 .hwapic_irr_update = vmx_hwapic_irr_update, 7712 .hwapic_isr_update = vmx_hwapic_isr_update, 7713 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt, 7714 .sync_pir_to_irr = vmx_sync_pir_to_irr, 7715 .deliver_posted_interrupt = vmx_deliver_posted_interrupt, 7716 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt, 7717 7718 .set_tss_addr = vmx_set_tss_addr, 7719 .set_identity_map_addr = vmx_set_identity_map_addr, 7720 .get_mt_mask = vmx_get_mt_mask, 7721 7722 .get_exit_info = vmx_get_exit_info, 7723 7724 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid, 7725 7726 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, 7727 7728 .write_l1_tsc_offset = vmx_write_l1_tsc_offset, 7729 7730 .load_mmu_pgd = vmx_load_mmu_pgd, 7731 7732 .check_intercept = vmx_check_intercept, 7733 .handle_exit_irqoff = vmx_handle_exit_irqoff, 7734 7735 .request_immediate_exit = vmx_request_immediate_exit, 7736 7737 .sched_in = vmx_sched_in, 7738 7739 .cpu_dirty_log_size = PML_ENTITY_NUM, 7740 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging, 7741 7742 .pre_block = vmx_pre_block, 7743 .post_block = vmx_post_block, 7744 7745 .pmu_ops = &intel_pmu_ops, 7746 .nested_ops = &vmx_nested_ops, 7747 7748 .update_pi_irte = pi_update_irte, 7749 7750 #ifdef CONFIG_X86_64 7751 .set_hv_timer = vmx_set_hv_timer, 7752 .cancel_hv_timer = vmx_cancel_hv_timer, 7753 #endif 7754 7755 .setup_mce = vmx_setup_mce, 7756 7757 .smi_allowed = vmx_smi_allowed, 7758 .pre_enter_smm = vmx_pre_enter_smm, 7759 .pre_leave_smm = vmx_pre_leave_smm, 7760 .enable_smi_window = vmx_enable_smi_window, 7761 7762 .can_emulate_instruction = vmx_can_emulate_instruction, 7763 .apic_init_signal_blocked = vmx_apic_init_signal_blocked, 7764 .migrate_timers = vmx_migrate_timers, 7765 7766 .msr_filter_changed = vmx_msr_filter_changed, 7767 .complete_emulated_msr = kvm_complete_insn_gp, 7768 7769 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector, 7770 }; 7771 7772 static __init int hardware_setup(void) 7773 { 7774 unsigned long host_bndcfgs; 7775 struct desc_ptr dt; 7776 int r, i, ept_lpage_level; 7777 7778 store_idt(&dt); 7779 host_idt_base = dt.address; 7780 7781 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) 7782 kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]); 7783 7784 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0) 7785 return -EIO; 7786 7787 if (boot_cpu_has(X86_FEATURE_NX)) 7788 kvm_enable_efer_bits(EFER_NX); 7789 7790 if (boot_cpu_has(X86_FEATURE_MPX)) { 7791 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs); 7792 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost"); 7793 } 7794 7795 if (!cpu_has_vmx_mpx()) 7796 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS | 7797 XFEATURE_MASK_BNDCSR); 7798 7799 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() || 7800 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global())) 7801 enable_vpid = 0; 7802 7803 if (!cpu_has_vmx_ept() || 7804 !cpu_has_vmx_ept_4levels() || 7805 !cpu_has_vmx_ept_mt_wb() || 7806 !cpu_has_vmx_invept_global()) 7807 enable_ept = 0; 7808 7809 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept) 7810 enable_ept_ad_bits = 0; 7811 7812 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept) 7813 enable_unrestricted_guest = 0; 7814 7815 if (!cpu_has_vmx_flexpriority()) 7816 flexpriority_enabled = 0; 7817 7818 if (!cpu_has_virtual_nmis()) 7819 enable_vnmi = 0; 7820 7821 /* 7822 * set_apic_access_page_addr() is used to reload apic access 7823 * page upon invalidation. No need to do anything if not 7824 * using the APIC_ACCESS_ADDR VMCS field. 7825 */ 7826 if (!flexpriority_enabled) 7827 vmx_x86_ops.set_apic_access_page_addr = NULL; 7828 7829 if (!cpu_has_vmx_tpr_shadow()) 7830 vmx_x86_ops.update_cr8_intercept = NULL; 7831 7832 #if IS_ENABLED(CONFIG_HYPERV) 7833 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH 7834 && enable_ept) { 7835 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb; 7836 vmx_x86_ops.tlb_remote_flush_with_range = 7837 hv_remote_flush_tlb_with_range; 7838 } 7839 #endif 7840 7841 if (!cpu_has_vmx_ple()) { 7842 ple_gap = 0; 7843 ple_window = 0; 7844 ple_window_grow = 0; 7845 ple_window_max = 0; 7846 ple_window_shrink = 0; 7847 } 7848 7849 if (!cpu_has_vmx_apicv()) { 7850 enable_apicv = 0; 7851 vmx_x86_ops.sync_pir_to_irr = NULL; 7852 } 7853 7854 if (cpu_has_vmx_tsc_scaling()) { 7855 kvm_has_tsc_control = true; 7856 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX; 7857 kvm_tsc_scaling_ratio_frac_bits = 48; 7858 } 7859 7860 kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection(); 7861 7862 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ 7863 7864 if (enable_ept) 7865 kvm_mmu_set_ept_masks(enable_ept_ad_bits, 7866 cpu_has_vmx_ept_execute_only()); 7867 7868 if (!enable_ept) 7869 ept_lpage_level = 0; 7870 else if (cpu_has_vmx_ept_1g_page()) 7871 ept_lpage_level = PG_LEVEL_1G; 7872 else if (cpu_has_vmx_ept_2m_page()) 7873 ept_lpage_level = PG_LEVEL_2M; 7874 else 7875 ept_lpage_level = PG_LEVEL_4K; 7876 kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level); 7877 7878 /* 7879 * Only enable PML when hardware supports PML feature, and both EPT 7880 * and EPT A/D bit features are enabled -- PML depends on them to work. 7881 */ 7882 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml()) 7883 enable_pml = 0; 7884 7885 if (!enable_pml) 7886 vmx_x86_ops.cpu_dirty_log_size = 0; 7887 7888 if (!cpu_has_vmx_preemption_timer()) 7889 enable_preemption_timer = false; 7890 7891 if (enable_preemption_timer) { 7892 u64 use_timer_freq = 5000ULL * 1000 * 1000; 7893 u64 vmx_msr; 7894 7895 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); 7896 cpu_preemption_timer_multi = 7897 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK; 7898 7899 if (tsc_khz) 7900 use_timer_freq = (u64)tsc_khz * 1000; 7901 use_timer_freq >>= cpu_preemption_timer_multi; 7902 7903 /* 7904 * KVM "disables" the preemption timer by setting it to its max 7905 * value. Don't use the timer if it might cause spurious exits 7906 * at a rate faster than 0.1 Hz (of uninterrupted guest time). 7907 */ 7908 if (use_timer_freq > 0xffffffffu / 10) 7909 enable_preemption_timer = false; 7910 } 7911 7912 if (!enable_preemption_timer) { 7913 vmx_x86_ops.set_hv_timer = NULL; 7914 vmx_x86_ops.cancel_hv_timer = NULL; 7915 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit; 7916 } 7917 7918 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler); 7919 7920 kvm_mce_cap_supported |= MCG_LMCE_P; 7921 7922 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST) 7923 return -EINVAL; 7924 if (!enable_ept || !cpu_has_vmx_intel_pt()) 7925 pt_mode = PT_MODE_SYSTEM; 7926 7927 setup_default_sgx_lepubkeyhash(); 7928 7929 if (nested) { 7930 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, 7931 vmx_capability.ept); 7932 7933 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers); 7934 if (r) 7935 return r; 7936 } 7937 7938 vmx_set_cpu_caps(); 7939 7940 r = alloc_kvm_area(); 7941 if (r) 7942 nested_vmx_hardware_unsetup(); 7943 return r; 7944 } 7945 7946 static struct kvm_x86_init_ops vmx_init_ops __initdata = { 7947 .cpu_has_kvm_support = cpu_has_kvm_support, 7948 .disabled_by_bios = vmx_disabled_by_bios, 7949 .check_processor_compatibility = vmx_check_processor_compat, 7950 .hardware_setup = hardware_setup, 7951 7952 .runtime_ops = &vmx_x86_ops, 7953 }; 7954 7955 static void vmx_cleanup_l1d_flush(void) 7956 { 7957 if (vmx_l1d_flush_pages) { 7958 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER); 7959 vmx_l1d_flush_pages = NULL; 7960 } 7961 /* Restore state so sysfs ignores VMX */ 7962 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO; 7963 } 7964 7965 static void vmx_exit(void) 7966 { 7967 #ifdef CONFIG_KEXEC_CORE 7968 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL); 7969 synchronize_rcu(); 7970 #endif 7971 7972 kvm_exit(); 7973 7974 #if IS_ENABLED(CONFIG_HYPERV) 7975 if (static_branch_unlikely(&enable_evmcs)) { 7976 int cpu; 7977 struct hv_vp_assist_page *vp_ap; 7978 /* 7979 * Reset everything to support using non-enlightened VMCS 7980 * access later (e.g. when we reload the module with 7981 * enlightened_vmcs=0) 7982 */ 7983 for_each_online_cpu(cpu) { 7984 vp_ap = hv_get_vp_assist_page(cpu); 7985 7986 if (!vp_ap) 7987 continue; 7988 7989 vp_ap->nested_control.features.directhypercall = 0; 7990 vp_ap->current_nested_vmcs = 0; 7991 vp_ap->enlighten_vmentry = 0; 7992 } 7993 7994 static_branch_disable(&enable_evmcs); 7995 } 7996 #endif 7997 vmx_cleanup_l1d_flush(); 7998 } 7999 module_exit(vmx_exit); 8000 8001 static int __init vmx_init(void) 8002 { 8003 int r, cpu; 8004 8005 #if IS_ENABLED(CONFIG_HYPERV) 8006 /* 8007 * Enlightened VMCS usage should be recommended and the host needs 8008 * to support eVMCS v1 or above. We can also disable eVMCS support 8009 * with module parameter. 8010 */ 8011 if (enlightened_vmcs && 8012 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED && 8013 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >= 8014 KVM_EVMCS_VERSION) { 8015 int cpu; 8016 8017 /* Check that we have assist pages on all online CPUs */ 8018 for_each_online_cpu(cpu) { 8019 if (!hv_get_vp_assist_page(cpu)) { 8020 enlightened_vmcs = false; 8021 break; 8022 } 8023 } 8024 8025 if (enlightened_vmcs) { 8026 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n"); 8027 static_branch_enable(&enable_evmcs); 8028 } 8029 8030 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH) 8031 vmx_x86_ops.enable_direct_tlbflush 8032 = hv_enable_direct_tlbflush; 8033 8034 } else { 8035 enlightened_vmcs = false; 8036 } 8037 #endif 8038 8039 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx), 8040 __alignof__(struct vcpu_vmx), THIS_MODULE); 8041 if (r) 8042 return r; 8043 8044 /* 8045 * Must be called after kvm_init() so enable_ept is properly set 8046 * up. Hand the parameter mitigation value in which was stored in 8047 * the pre module init parser. If no parameter was given, it will 8048 * contain 'auto' which will be turned into the default 'cond' 8049 * mitigation mode. 8050 */ 8051 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param); 8052 if (r) { 8053 vmx_exit(); 8054 return r; 8055 } 8056 8057 for_each_possible_cpu(cpu) { 8058 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); 8059 8060 pi_init_cpu(cpu); 8061 } 8062 8063 #ifdef CONFIG_KEXEC_CORE 8064 rcu_assign_pointer(crash_vmclear_loaded_vmcss, 8065 crash_vmclear_local_loaded_vmcss); 8066 #endif 8067 vmx_check_vmcs12_offsets(); 8068 8069 /* 8070 * Shadow paging doesn't have a (further) performance penalty 8071 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it 8072 * by default 8073 */ 8074 if (!enable_ept) 8075 allow_smaller_maxphyaddr = true; 8076 8077 return 0; 8078 } 8079 module_init(vmx_init); 8080