xref: /openbmc/linux/arch/x86/kvm/vmx/vmx.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include <linux/frame.h>
20 #include <linux/highmem.h>
21 #include <linux/hrtimer.h>
22 #include <linux/kernel.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/mod_devicetable.h>
27 #include <linux/mm.h>
28 #include <linux/sched.h>
29 #include <linux/sched/smt.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include <linux/trace_events.h>
33 
34 #include <asm/apic.h>
35 #include <asm/asm.h>
36 #include <asm/cpu.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/internal.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mce.h>
45 #include <asm/mmu_context.h>
46 #include <asm/mshyperv.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50 
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "irq.h"
55 #include "kvm_cache_regs.h"
56 #include "lapic.h"
57 #include "mmu.h"
58 #include "nested.h"
59 #include "ops.h"
60 #include "pmu.h"
61 #include "trace.h"
62 #include "vmcs.h"
63 #include "vmcs12.h"
64 #include "vmx.h"
65 #include "x86.h"
66 
67 MODULE_AUTHOR("Qumranet");
68 MODULE_LICENSE("GPL");
69 
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71 	X86_FEATURE_MATCH(X86_FEATURE_VMX),
72 	{}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 
76 bool __read_mostly enable_vpid = 1;
77 module_param_named(vpid, enable_vpid, bool, 0444);
78 
79 static bool __read_mostly enable_vnmi = 1;
80 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
81 
82 bool __read_mostly flexpriority_enabled = 1;
83 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
84 
85 bool __read_mostly enable_ept = 1;
86 module_param_named(ept, enable_ept, bool, S_IRUGO);
87 
88 bool __read_mostly enable_unrestricted_guest = 1;
89 module_param_named(unrestricted_guest,
90 			enable_unrestricted_guest, bool, S_IRUGO);
91 
92 bool __read_mostly enable_ept_ad_bits = 1;
93 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
94 
95 static bool __read_mostly emulate_invalid_guest_state = true;
96 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
97 
98 static bool __read_mostly fasteoi = 1;
99 module_param(fasteoi, bool, S_IRUGO);
100 
101 static bool __read_mostly enable_apicv = 1;
102 module_param(enable_apicv, bool, S_IRUGO);
103 
104 /*
105  * If nested=1, nested virtualization is supported, i.e., guests may use
106  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
107  * use VMX instructions.
108  */
109 static bool __read_mostly nested = 1;
110 module_param(nested, bool, S_IRUGO);
111 
112 static u64 __read_mostly host_xss;
113 
114 bool __read_mostly enable_pml = 1;
115 module_param_named(pml, enable_pml, bool, S_IRUGO);
116 
117 #define MSR_BITMAP_MODE_X2APIC		1
118 #define MSR_BITMAP_MODE_X2APIC_APICV	2
119 
120 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
121 
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
125 #ifdef CONFIG_X86_64
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
127 #endif
128 
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON				\
132 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
133 	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS				      \
135 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
136 	 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
137 
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141 
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143 
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147 	RTIT_STATUS_BYTECNT))
148 
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150 	(~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151 
152 /*
153  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154  * ple_gap:    upper bound on the amount of time between two successive
155  *             executions of PAUSE in a loop. Also indicate if ple enabled.
156  *             According to test, this time is usually smaller than 128 cycles.
157  * ple_window: upper bound on the amount of time a guest is allowed to execute
158  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
159  *             less than 2^12 cycles
160  * Time is measured based on a counter that runs at the same rate as the TSC,
161  * refer SDM volume 3b section 21.6.13 & 22.1.3.
162  */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165 
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168 
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172 
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176 
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180 
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184 
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188 
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191 
192 static const struct {
193 	const char *option;
194 	bool for_parse;
195 } vmentry_l1d_param[] = {
196 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
197 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
198 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
199 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
200 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203 
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206 
207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209 	struct page *page;
210 	unsigned int i;
211 
212 	if (!enable_ept) {
213 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
214 		return 0;
215 	}
216 
217 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
218 		u64 msr;
219 
220 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
221 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
222 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
223 			return 0;
224 		}
225 	}
226 
227 	/* If set to auto use the default l1tf mitigation method */
228 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
229 		switch (l1tf_mitigation) {
230 		case L1TF_MITIGATION_OFF:
231 			l1tf = VMENTER_L1D_FLUSH_NEVER;
232 			break;
233 		case L1TF_MITIGATION_FLUSH_NOWARN:
234 		case L1TF_MITIGATION_FLUSH:
235 		case L1TF_MITIGATION_FLUSH_NOSMT:
236 			l1tf = VMENTER_L1D_FLUSH_COND;
237 			break;
238 		case L1TF_MITIGATION_FULL:
239 		case L1TF_MITIGATION_FULL_FORCE:
240 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
241 			break;
242 		}
243 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
244 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
245 	}
246 
247 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
248 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
249 		/*
250 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
251 		 * lifetime and so should not be charged to a memcg.
252 		 */
253 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
254 		if (!page)
255 			return -ENOMEM;
256 		vmx_l1d_flush_pages = page_address(page);
257 
258 		/*
259 		 * Initialize each page with a different pattern in
260 		 * order to protect against KSM in the nested
261 		 * virtualization case.
262 		 */
263 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
264 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
265 			       PAGE_SIZE);
266 		}
267 	}
268 
269 	l1tf_vmx_mitigation = l1tf;
270 
271 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
272 		static_branch_enable(&vmx_l1d_should_flush);
273 	else
274 		static_branch_disable(&vmx_l1d_should_flush);
275 
276 	if (l1tf == VMENTER_L1D_FLUSH_COND)
277 		static_branch_enable(&vmx_l1d_flush_cond);
278 	else
279 		static_branch_disable(&vmx_l1d_flush_cond);
280 	return 0;
281 }
282 
283 static int vmentry_l1d_flush_parse(const char *s)
284 {
285 	unsigned int i;
286 
287 	if (s) {
288 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
289 			if (vmentry_l1d_param[i].for_parse &&
290 			    sysfs_streq(s, vmentry_l1d_param[i].option))
291 				return i;
292 		}
293 	}
294 	return -EINVAL;
295 }
296 
297 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
298 {
299 	int l1tf, ret;
300 
301 	l1tf = vmentry_l1d_flush_parse(s);
302 	if (l1tf < 0)
303 		return l1tf;
304 
305 	if (!boot_cpu_has(X86_BUG_L1TF))
306 		return 0;
307 
308 	/*
309 	 * Has vmx_init() run already? If not then this is the pre init
310 	 * parameter parsing. In that case just store the value and let
311 	 * vmx_init() do the proper setup after enable_ept has been
312 	 * established.
313 	 */
314 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
315 		vmentry_l1d_flush_param = l1tf;
316 		return 0;
317 	}
318 
319 	mutex_lock(&vmx_l1d_flush_mutex);
320 	ret = vmx_setup_l1d_flush(l1tf);
321 	mutex_unlock(&vmx_l1d_flush_mutex);
322 	return ret;
323 }
324 
325 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
326 {
327 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
328 		return sprintf(s, "???\n");
329 
330 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
331 }
332 
333 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
334 	.set = vmentry_l1d_flush_set,
335 	.get = vmentry_l1d_flush_get,
336 };
337 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
338 
339 static bool guest_state_valid(struct kvm_vcpu *vcpu);
340 static u32 vmx_segment_access_rights(struct kvm_segment *var);
341 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
342 							  u32 msr, int type);
343 
344 void vmx_vmexit(void);
345 
346 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
347 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
348 /*
349  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
350  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
351  */
352 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
353 
354 /*
355  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
356  * can find which vCPU should be waken up.
357  */
358 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
359 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
360 
361 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
362 static DEFINE_SPINLOCK(vmx_vpid_lock);
363 
364 struct vmcs_config vmcs_config;
365 struct vmx_capability vmx_capability;
366 
367 #define VMX_SEGMENT_FIELD(seg)					\
368 	[VCPU_SREG_##seg] = {                                   \
369 		.selector = GUEST_##seg##_SELECTOR,		\
370 		.base = GUEST_##seg##_BASE,		   	\
371 		.limit = GUEST_##seg##_LIMIT,		   	\
372 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
373 	}
374 
375 static const struct kvm_vmx_segment_field {
376 	unsigned selector;
377 	unsigned base;
378 	unsigned limit;
379 	unsigned ar_bytes;
380 } kvm_vmx_segment_fields[] = {
381 	VMX_SEGMENT_FIELD(CS),
382 	VMX_SEGMENT_FIELD(DS),
383 	VMX_SEGMENT_FIELD(ES),
384 	VMX_SEGMENT_FIELD(FS),
385 	VMX_SEGMENT_FIELD(GS),
386 	VMX_SEGMENT_FIELD(SS),
387 	VMX_SEGMENT_FIELD(TR),
388 	VMX_SEGMENT_FIELD(LDTR),
389 };
390 
391 u64 host_efer;
392 
393 /*
394  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
395  * will emulate SYSCALL in legacy mode if the vendor string in guest
396  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
397  * support this emulation, IA32_STAR must always be included in
398  * vmx_msr_index[], even in i386 builds.
399  */
400 const u32 vmx_msr_index[] = {
401 #ifdef CONFIG_X86_64
402 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
403 #endif
404 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
405 };
406 
407 #if IS_ENABLED(CONFIG_HYPERV)
408 static bool __read_mostly enlightened_vmcs = true;
409 module_param(enlightened_vmcs, bool, 0444);
410 
411 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
412 static void check_ept_pointer_match(struct kvm *kvm)
413 {
414 	struct kvm_vcpu *vcpu;
415 	u64 tmp_eptp = INVALID_PAGE;
416 	int i;
417 
418 	kvm_for_each_vcpu(i, vcpu, kvm) {
419 		if (!VALID_PAGE(tmp_eptp)) {
420 			tmp_eptp = to_vmx(vcpu)->ept_pointer;
421 		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
422 			to_kvm_vmx(kvm)->ept_pointers_match
423 				= EPT_POINTERS_MISMATCH;
424 			return;
425 		}
426 	}
427 
428 	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
429 }
430 
431 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
432 		void *data)
433 {
434 	struct kvm_tlb_range *range = data;
435 
436 	return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
437 			range->pages);
438 }
439 
440 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
441 		struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
442 {
443 	u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
444 
445 	/*
446 	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
447 	 * of the base of EPT PML4 table, strip off EPT configuration
448 	 * information.
449 	 */
450 	if (range)
451 		return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
452 				kvm_fill_hv_flush_list_func, (void *)range);
453 	else
454 		return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
455 }
456 
457 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
458 		struct kvm_tlb_range *range)
459 {
460 	struct kvm_vcpu *vcpu;
461 	int ret = 0, i;
462 
463 	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
464 
465 	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
466 		check_ept_pointer_match(kvm);
467 
468 	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
469 		kvm_for_each_vcpu(i, vcpu, kvm) {
470 			/* If ept_pointer is invalid pointer, bypass flush request. */
471 			if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
472 				ret |= __hv_remote_flush_tlb_with_range(
473 					kvm, vcpu, range);
474 		}
475 	} else {
476 		ret = __hv_remote_flush_tlb_with_range(kvm,
477 				kvm_get_vcpu(kvm, 0), range);
478 	}
479 
480 	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
481 	return ret;
482 }
483 static int hv_remote_flush_tlb(struct kvm *kvm)
484 {
485 	return hv_remote_flush_tlb_with_range(kvm, NULL);
486 }
487 
488 #endif /* IS_ENABLED(CONFIG_HYPERV) */
489 
490 /*
491  * Comment's format: document - errata name - stepping - processor name.
492  * Refer from
493  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
494  */
495 static u32 vmx_preemption_cpu_tfms[] = {
496 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
497 0x000206E6,
498 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
499 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
500 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
501 0x00020652,
502 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
503 0x00020655,
504 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
505 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
506 /*
507  * 320767.pdf - AAP86  - B1 -
508  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
509  */
510 0x000106E5,
511 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
512 0x000106A0,
513 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
514 0x000106A1,
515 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
516 0x000106A4,
517  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
518  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
519  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
520 0x000106A5,
521  /* Xeon E3-1220 V2 */
522 0x000306A8,
523 };
524 
525 static inline bool cpu_has_broken_vmx_preemption_timer(void)
526 {
527 	u32 eax = cpuid_eax(0x00000001), i;
528 
529 	/* Clear the reserved bits */
530 	eax &= ~(0x3U << 14 | 0xfU << 28);
531 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
532 		if (eax == vmx_preemption_cpu_tfms[i])
533 			return true;
534 
535 	return false;
536 }
537 
538 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
539 {
540 	return flexpriority_enabled && lapic_in_kernel(vcpu);
541 }
542 
543 static inline bool report_flexpriority(void)
544 {
545 	return flexpriority_enabled;
546 }
547 
548 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
549 {
550 	int i;
551 
552 	for (i = 0; i < vmx->nmsrs; ++i)
553 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
554 			return i;
555 	return -1;
556 }
557 
558 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
559 {
560 	int i;
561 
562 	i = __find_msr_index(vmx, msr);
563 	if (i >= 0)
564 		return &vmx->guest_msrs[i];
565 	return NULL;
566 }
567 
568 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
569 {
570 	vmcs_clear(loaded_vmcs->vmcs);
571 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
572 		vmcs_clear(loaded_vmcs->shadow_vmcs);
573 	loaded_vmcs->cpu = -1;
574 	loaded_vmcs->launched = 0;
575 }
576 
577 #ifdef CONFIG_KEXEC_CORE
578 /*
579  * This bitmap is used to indicate whether the vmclear
580  * operation is enabled on all cpus. All disabled by
581  * default.
582  */
583 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
584 
585 static inline void crash_enable_local_vmclear(int cpu)
586 {
587 	cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
588 }
589 
590 static inline void crash_disable_local_vmclear(int cpu)
591 {
592 	cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
593 }
594 
595 static inline int crash_local_vmclear_enabled(int cpu)
596 {
597 	return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
598 }
599 
600 static void crash_vmclear_local_loaded_vmcss(void)
601 {
602 	int cpu = raw_smp_processor_id();
603 	struct loaded_vmcs *v;
604 
605 	if (!crash_local_vmclear_enabled(cpu))
606 		return;
607 
608 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
609 			    loaded_vmcss_on_cpu_link)
610 		vmcs_clear(v->vmcs);
611 }
612 #else
613 static inline void crash_enable_local_vmclear(int cpu) { }
614 static inline void crash_disable_local_vmclear(int cpu) { }
615 #endif /* CONFIG_KEXEC_CORE */
616 
617 static void __loaded_vmcs_clear(void *arg)
618 {
619 	struct loaded_vmcs *loaded_vmcs = arg;
620 	int cpu = raw_smp_processor_id();
621 
622 	if (loaded_vmcs->cpu != cpu)
623 		return; /* vcpu migration can race with cpu offline */
624 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
625 		per_cpu(current_vmcs, cpu) = NULL;
626 	crash_disable_local_vmclear(cpu);
627 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
628 
629 	/*
630 	 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
631 	 * is before setting loaded_vmcs->vcpu to -1 which is done in
632 	 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
633 	 * then adds the vmcs into percpu list before it is deleted.
634 	 */
635 	smp_wmb();
636 
637 	loaded_vmcs_init(loaded_vmcs);
638 	crash_enable_local_vmclear(cpu);
639 }
640 
641 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
642 {
643 	int cpu = loaded_vmcs->cpu;
644 
645 	if (cpu != -1)
646 		smp_call_function_single(cpu,
647 			 __loaded_vmcs_clear, loaded_vmcs, 1);
648 }
649 
650 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
651 				       unsigned field)
652 {
653 	bool ret;
654 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
655 
656 	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
657 		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
658 		vmx->segment_cache.bitmask = 0;
659 	}
660 	ret = vmx->segment_cache.bitmask & mask;
661 	vmx->segment_cache.bitmask |= mask;
662 	return ret;
663 }
664 
665 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
666 {
667 	u16 *p = &vmx->segment_cache.seg[seg].selector;
668 
669 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
670 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
671 	return *p;
672 }
673 
674 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
675 {
676 	ulong *p = &vmx->segment_cache.seg[seg].base;
677 
678 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
679 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
680 	return *p;
681 }
682 
683 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
684 {
685 	u32 *p = &vmx->segment_cache.seg[seg].limit;
686 
687 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
688 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
689 	return *p;
690 }
691 
692 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
693 {
694 	u32 *p = &vmx->segment_cache.seg[seg].ar;
695 
696 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
697 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
698 	return *p;
699 }
700 
701 void update_exception_bitmap(struct kvm_vcpu *vcpu)
702 {
703 	u32 eb;
704 
705 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
706 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
707 	/*
708 	 * Guest access to VMware backdoor ports could legitimately
709 	 * trigger #GP because of TSS I/O permission bitmap.
710 	 * We intercept those #GP and allow access to them anyway
711 	 * as VMware does.
712 	 */
713 	if (enable_vmware_backdoor)
714 		eb |= (1u << GP_VECTOR);
715 	if ((vcpu->guest_debug &
716 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
717 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
718 		eb |= 1u << BP_VECTOR;
719 	if (to_vmx(vcpu)->rmode.vm86_active)
720 		eb = ~0;
721 	if (enable_ept)
722 		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
723 
724 	/* When we are running a nested L2 guest and L1 specified for it a
725 	 * certain exception bitmap, we must trap the same exceptions and pass
726 	 * them to L1. When running L2, we will only handle the exceptions
727 	 * specified above if L1 did not want them.
728 	 */
729 	if (is_guest_mode(vcpu))
730 		eb |= get_vmcs12(vcpu)->exception_bitmap;
731 
732 	vmcs_write32(EXCEPTION_BITMAP, eb);
733 }
734 
735 /*
736  * Check if MSR is intercepted for currently loaded MSR bitmap.
737  */
738 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
739 {
740 	unsigned long *msr_bitmap;
741 	int f = sizeof(unsigned long);
742 
743 	if (!cpu_has_vmx_msr_bitmap())
744 		return true;
745 
746 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
747 
748 	if (msr <= 0x1fff) {
749 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
750 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
751 		msr &= 0x1fff;
752 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
753 	}
754 
755 	return true;
756 }
757 
758 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
759 		unsigned long entry, unsigned long exit)
760 {
761 	vm_entry_controls_clearbit(vmx, entry);
762 	vm_exit_controls_clearbit(vmx, exit);
763 }
764 
765 static int find_msr(struct vmx_msrs *m, unsigned int msr)
766 {
767 	unsigned int i;
768 
769 	for (i = 0; i < m->nr; ++i) {
770 		if (m->val[i].index == msr)
771 			return i;
772 	}
773 	return -ENOENT;
774 }
775 
776 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
777 {
778 	int i;
779 	struct msr_autoload *m = &vmx->msr_autoload;
780 
781 	switch (msr) {
782 	case MSR_EFER:
783 		if (cpu_has_load_ia32_efer()) {
784 			clear_atomic_switch_msr_special(vmx,
785 					VM_ENTRY_LOAD_IA32_EFER,
786 					VM_EXIT_LOAD_IA32_EFER);
787 			return;
788 		}
789 		break;
790 	case MSR_CORE_PERF_GLOBAL_CTRL:
791 		if (cpu_has_load_perf_global_ctrl()) {
792 			clear_atomic_switch_msr_special(vmx,
793 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
794 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
795 			return;
796 		}
797 		break;
798 	}
799 	i = find_msr(&m->guest, msr);
800 	if (i < 0)
801 		goto skip_guest;
802 	--m->guest.nr;
803 	m->guest.val[i] = m->guest.val[m->guest.nr];
804 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
805 
806 skip_guest:
807 	i = find_msr(&m->host, msr);
808 	if (i < 0)
809 		return;
810 
811 	--m->host.nr;
812 	m->host.val[i] = m->host.val[m->host.nr];
813 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
814 }
815 
816 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
817 		unsigned long entry, unsigned long exit,
818 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
819 		u64 guest_val, u64 host_val)
820 {
821 	vmcs_write64(guest_val_vmcs, guest_val);
822 	if (host_val_vmcs != HOST_IA32_EFER)
823 		vmcs_write64(host_val_vmcs, host_val);
824 	vm_entry_controls_setbit(vmx, entry);
825 	vm_exit_controls_setbit(vmx, exit);
826 }
827 
828 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
829 				  u64 guest_val, u64 host_val, bool entry_only)
830 {
831 	int i, j = 0;
832 	struct msr_autoload *m = &vmx->msr_autoload;
833 
834 	switch (msr) {
835 	case MSR_EFER:
836 		if (cpu_has_load_ia32_efer()) {
837 			add_atomic_switch_msr_special(vmx,
838 					VM_ENTRY_LOAD_IA32_EFER,
839 					VM_EXIT_LOAD_IA32_EFER,
840 					GUEST_IA32_EFER,
841 					HOST_IA32_EFER,
842 					guest_val, host_val);
843 			return;
844 		}
845 		break;
846 	case MSR_CORE_PERF_GLOBAL_CTRL:
847 		if (cpu_has_load_perf_global_ctrl()) {
848 			add_atomic_switch_msr_special(vmx,
849 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
850 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
851 					GUEST_IA32_PERF_GLOBAL_CTRL,
852 					HOST_IA32_PERF_GLOBAL_CTRL,
853 					guest_val, host_val);
854 			return;
855 		}
856 		break;
857 	case MSR_IA32_PEBS_ENABLE:
858 		/* PEBS needs a quiescent period after being disabled (to write
859 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
860 		 * provide that period, so a CPU could write host's record into
861 		 * guest's memory.
862 		 */
863 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
864 	}
865 
866 	i = find_msr(&m->guest, msr);
867 	if (!entry_only)
868 		j = find_msr(&m->host, msr);
869 
870 	if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
871 		(j < 0 &&  m->host.nr == NR_AUTOLOAD_MSRS)) {
872 		printk_once(KERN_WARNING "Not enough msr switch entries. "
873 				"Can't add msr %x\n", msr);
874 		return;
875 	}
876 	if (i < 0) {
877 		i = m->guest.nr++;
878 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
879 	}
880 	m->guest.val[i].index = msr;
881 	m->guest.val[i].value = guest_val;
882 
883 	if (entry_only)
884 		return;
885 
886 	if (j < 0) {
887 		j = m->host.nr++;
888 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
889 	}
890 	m->host.val[j].index = msr;
891 	m->host.val[j].value = host_val;
892 }
893 
894 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
895 {
896 	u64 guest_efer = vmx->vcpu.arch.efer;
897 	u64 ignore_bits = 0;
898 
899 	if (!enable_ept) {
900 		/*
901 		 * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
902 		 * host CPUID is more efficient than testing guest CPUID
903 		 * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
904 		 */
905 		if (boot_cpu_has(X86_FEATURE_SMEP))
906 			guest_efer |= EFER_NX;
907 		else if (!(guest_efer & EFER_NX))
908 			ignore_bits |= EFER_NX;
909 	}
910 
911 	/*
912 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
913 	 */
914 	ignore_bits |= EFER_SCE;
915 #ifdef CONFIG_X86_64
916 	ignore_bits |= EFER_LMA | EFER_LME;
917 	/* SCE is meaningful only in long mode on Intel */
918 	if (guest_efer & EFER_LMA)
919 		ignore_bits &= ~(u64)EFER_SCE;
920 #endif
921 
922 	/*
923 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
924 	 * On CPUs that support "load IA32_EFER", always switch EFER
925 	 * atomically, since it's faster than switching it manually.
926 	 */
927 	if (cpu_has_load_ia32_efer() ||
928 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
929 		if (!(guest_efer & EFER_LMA))
930 			guest_efer &= ~EFER_LME;
931 		if (guest_efer != host_efer)
932 			add_atomic_switch_msr(vmx, MSR_EFER,
933 					      guest_efer, host_efer, false);
934 		else
935 			clear_atomic_switch_msr(vmx, MSR_EFER);
936 		return false;
937 	} else {
938 		clear_atomic_switch_msr(vmx, MSR_EFER);
939 
940 		guest_efer &= ~ignore_bits;
941 		guest_efer |= host_efer & ignore_bits;
942 
943 		vmx->guest_msrs[efer_offset].data = guest_efer;
944 		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
945 
946 		return true;
947 	}
948 }
949 
950 #ifdef CONFIG_X86_32
951 /*
952  * On 32-bit kernels, VM exits still load the FS and GS bases from the
953  * VMCS rather than the segment table.  KVM uses this helper to figure
954  * out the current bases to poke them into the VMCS before entry.
955  */
956 static unsigned long segment_base(u16 selector)
957 {
958 	struct desc_struct *table;
959 	unsigned long v;
960 
961 	if (!(selector & ~SEGMENT_RPL_MASK))
962 		return 0;
963 
964 	table = get_current_gdt_ro();
965 
966 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
967 		u16 ldt_selector = kvm_read_ldt();
968 
969 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
970 			return 0;
971 
972 		table = (struct desc_struct *)segment_base(ldt_selector);
973 	}
974 	v = get_desc_base(&table[selector >> 3]);
975 	return v;
976 }
977 #endif
978 
979 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
980 {
981 	u32 i;
982 
983 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
984 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
985 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
986 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
987 	for (i = 0; i < addr_range; i++) {
988 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
989 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
990 	}
991 }
992 
993 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
994 {
995 	u32 i;
996 
997 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
998 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
999 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1000 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1001 	for (i = 0; i < addr_range; i++) {
1002 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1003 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1004 	}
1005 }
1006 
1007 static void pt_guest_enter(struct vcpu_vmx *vmx)
1008 {
1009 	if (pt_mode == PT_MODE_SYSTEM)
1010 		return;
1011 
1012 	/*
1013 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1014 	 * Save host state before VM entry.
1015 	 */
1016 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1017 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1018 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1019 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1020 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1021 	}
1022 }
1023 
1024 static void pt_guest_exit(struct vcpu_vmx *vmx)
1025 {
1026 	if (pt_mode == PT_MODE_SYSTEM)
1027 		return;
1028 
1029 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1030 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1031 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1032 	}
1033 
1034 	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1035 	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1036 }
1037 
1038 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1039 {
1040 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1041 	struct vmcs_host_state *host_state;
1042 #ifdef CONFIG_X86_64
1043 	int cpu = raw_smp_processor_id();
1044 #endif
1045 	unsigned long fs_base, gs_base;
1046 	u16 fs_sel, gs_sel;
1047 	int i;
1048 
1049 	vmx->req_immediate_exit = false;
1050 
1051 	/*
1052 	 * Note that guest MSRs to be saved/restored can also be changed
1053 	 * when guest state is loaded. This happens when guest transitions
1054 	 * to/from long-mode by setting MSR_EFER.LMA.
1055 	 */
1056 	if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) {
1057 		vmx->guest_msrs_dirty = false;
1058 		for (i = 0; i < vmx->save_nmsrs; ++i)
1059 			kvm_set_shared_msr(vmx->guest_msrs[i].index,
1060 					   vmx->guest_msrs[i].data,
1061 					   vmx->guest_msrs[i].mask);
1062 
1063 	}
1064 
1065 	if (vmx->loaded_cpu_state)
1066 		return;
1067 
1068 	vmx->loaded_cpu_state = vmx->loaded_vmcs;
1069 	host_state = &vmx->loaded_cpu_state->host_state;
1070 
1071 	/*
1072 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1073 	 * allow segment selectors with cpl > 0 or ti == 1.
1074 	 */
1075 	host_state->ldt_sel = kvm_read_ldt();
1076 
1077 #ifdef CONFIG_X86_64
1078 	savesegment(ds, host_state->ds_sel);
1079 	savesegment(es, host_state->es_sel);
1080 
1081 	gs_base = cpu_kernelmode_gs_base(cpu);
1082 	if (likely(is_64bit_mm(current->mm))) {
1083 		save_fsgs_for_kvm();
1084 		fs_sel = current->thread.fsindex;
1085 		gs_sel = current->thread.gsindex;
1086 		fs_base = current->thread.fsbase;
1087 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1088 	} else {
1089 		savesegment(fs, fs_sel);
1090 		savesegment(gs, gs_sel);
1091 		fs_base = read_msr(MSR_FS_BASE);
1092 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1093 	}
1094 
1095 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1096 #else
1097 	savesegment(fs, fs_sel);
1098 	savesegment(gs, gs_sel);
1099 	fs_base = segment_base(fs_sel);
1100 	gs_base = segment_base(gs_sel);
1101 #endif
1102 
1103 	if (unlikely(fs_sel != host_state->fs_sel)) {
1104 		if (!(fs_sel & 7))
1105 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1106 		else
1107 			vmcs_write16(HOST_FS_SELECTOR, 0);
1108 		host_state->fs_sel = fs_sel;
1109 	}
1110 	if (unlikely(gs_sel != host_state->gs_sel)) {
1111 		if (!(gs_sel & 7))
1112 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1113 		else
1114 			vmcs_write16(HOST_GS_SELECTOR, 0);
1115 		host_state->gs_sel = gs_sel;
1116 	}
1117 	if (unlikely(fs_base != host_state->fs_base)) {
1118 		vmcs_writel(HOST_FS_BASE, fs_base);
1119 		host_state->fs_base = fs_base;
1120 	}
1121 	if (unlikely(gs_base != host_state->gs_base)) {
1122 		vmcs_writel(HOST_GS_BASE, gs_base);
1123 		host_state->gs_base = gs_base;
1124 	}
1125 }
1126 
1127 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1128 {
1129 	struct vmcs_host_state *host_state;
1130 
1131 	if (!vmx->loaded_cpu_state)
1132 		return;
1133 
1134 	WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
1135 	host_state = &vmx->loaded_cpu_state->host_state;
1136 
1137 	++vmx->vcpu.stat.host_state_reload;
1138 	vmx->loaded_cpu_state = NULL;
1139 
1140 #ifdef CONFIG_X86_64
1141 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1142 #endif
1143 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1144 		kvm_load_ldt(host_state->ldt_sel);
1145 #ifdef CONFIG_X86_64
1146 		load_gs_index(host_state->gs_sel);
1147 #else
1148 		loadsegment(gs, host_state->gs_sel);
1149 #endif
1150 	}
1151 	if (host_state->fs_sel & 7)
1152 		loadsegment(fs, host_state->fs_sel);
1153 #ifdef CONFIG_X86_64
1154 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1155 		loadsegment(ds, host_state->ds_sel);
1156 		loadsegment(es, host_state->es_sel);
1157 	}
1158 #endif
1159 	invalidate_tss_limit();
1160 #ifdef CONFIG_X86_64
1161 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1162 #endif
1163 	load_fixmap_gdt(raw_smp_processor_id());
1164 }
1165 
1166 #ifdef CONFIG_X86_64
1167 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1168 {
1169 	preempt_disable();
1170 	if (vmx->loaded_cpu_state)
1171 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1172 	preempt_enable();
1173 	return vmx->msr_guest_kernel_gs_base;
1174 }
1175 
1176 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1177 {
1178 	preempt_disable();
1179 	if (vmx->loaded_cpu_state)
1180 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1181 	preempt_enable();
1182 	vmx->msr_guest_kernel_gs_base = data;
1183 }
1184 #endif
1185 
1186 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1187 {
1188 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1189 	struct pi_desc old, new;
1190 	unsigned int dest;
1191 
1192 	/*
1193 	 * In case of hot-plug or hot-unplug, we may have to undo
1194 	 * vmx_vcpu_pi_put even if there is no assigned device.  And we
1195 	 * always keep PI.NDST up to date for simplicity: it makes the
1196 	 * code easier, and CPU migration is not a fast path.
1197 	 */
1198 	if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1199 		return;
1200 
1201 	/* The full case.  */
1202 	do {
1203 		old.control = new.control = pi_desc->control;
1204 
1205 		dest = cpu_physical_id(cpu);
1206 
1207 		if (x2apic_enabled())
1208 			new.ndst = dest;
1209 		else
1210 			new.ndst = (dest << 8) & 0xFF00;
1211 
1212 		new.sn = 0;
1213 	} while (cmpxchg64(&pi_desc->control, old.control,
1214 			   new.control) != old.control);
1215 
1216 	/*
1217 	 * Clear SN before reading the bitmap.  The VT-d firmware
1218 	 * writes the bitmap and reads SN atomically (5.2.3 in the
1219 	 * spec), so it doesn't really have a memory barrier that
1220 	 * pairs with this, but we cannot do that and we need one.
1221 	 */
1222 	smp_mb__after_atomic();
1223 
1224 	if (!bitmap_empty((unsigned long *)pi_desc->pir, NR_VECTORS))
1225 		pi_set_on(pi_desc);
1226 }
1227 
1228 /*
1229  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1230  * vcpu mutex is already taken.
1231  */
1232 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1233 {
1234 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1235 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1236 
1237 	if (!already_loaded) {
1238 		loaded_vmcs_clear(vmx->loaded_vmcs);
1239 		local_irq_disable();
1240 		crash_disable_local_vmclear(cpu);
1241 
1242 		/*
1243 		 * Read loaded_vmcs->cpu should be before fetching
1244 		 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1245 		 * See the comments in __loaded_vmcs_clear().
1246 		 */
1247 		smp_rmb();
1248 
1249 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1250 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1251 		crash_enable_local_vmclear(cpu);
1252 		local_irq_enable();
1253 	}
1254 
1255 	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1256 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1257 		vmcs_load(vmx->loaded_vmcs->vmcs);
1258 		indirect_branch_prediction_barrier();
1259 	}
1260 
1261 	if (!already_loaded) {
1262 		void *gdt = get_current_gdt_ro();
1263 		unsigned long sysenter_esp;
1264 
1265 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1266 
1267 		/*
1268 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1269 		 * processors.  See 22.2.4.
1270 		 */
1271 		vmcs_writel(HOST_TR_BASE,
1272 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1273 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1274 
1275 		/*
1276 		 * VM exits change the host TR limit to 0x67 after a VM
1277 		 * exit.  This is okay, since 0x67 covers everything except
1278 		 * the IO bitmap and have have code to handle the IO bitmap
1279 		 * being lost after a VM exit.
1280 		 */
1281 		BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1282 
1283 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1284 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1285 
1286 		vmx->loaded_vmcs->cpu = cpu;
1287 	}
1288 
1289 	/* Setup TSC multiplier */
1290 	if (kvm_has_tsc_control &&
1291 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1292 		decache_tsc_multiplier(vmx);
1293 
1294 	vmx_vcpu_pi_load(vcpu, cpu);
1295 	vmx->host_pkru = read_pkru();
1296 	vmx->host_debugctlmsr = get_debugctlmsr();
1297 }
1298 
1299 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1300 {
1301 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1302 
1303 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1304 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
1305 		!kvm_vcpu_apicv_active(vcpu))
1306 		return;
1307 
1308 	/* Set SN when the vCPU is preempted */
1309 	if (vcpu->preempted)
1310 		pi_set_sn(pi_desc);
1311 }
1312 
1313 void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1314 {
1315 	vmx_vcpu_pi_put(vcpu);
1316 
1317 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1318 }
1319 
1320 static bool emulation_required(struct kvm_vcpu *vcpu)
1321 {
1322 	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1323 }
1324 
1325 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1326 
1327 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1328 {
1329 	unsigned long rflags, save_rflags;
1330 
1331 	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1332 		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1333 		rflags = vmcs_readl(GUEST_RFLAGS);
1334 		if (to_vmx(vcpu)->rmode.vm86_active) {
1335 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1336 			save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1337 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1338 		}
1339 		to_vmx(vcpu)->rflags = rflags;
1340 	}
1341 	return to_vmx(vcpu)->rflags;
1342 }
1343 
1344 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1345 {
1346 	unsigned long old_rflags = vmx_get_rflags(vcpu);
1347 
1348 	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1349 	to_vmx(vcpu)->rflags = rflags;
1350 	if (to_vmx(vcpu)->rmode.vm86_active) {
1351 		to_vmx(vcpu)->rmode.save_rflags = rflags;
1352 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1353 	}
1354 	vmcs_writel(GUEST_RFLAGS, rflags);
1355 
1356 	if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1357 		to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1358 }
1359 
1360 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1361 {
1362 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1363 	int ret = 0;
1364 
1365 	if (interruptibility & GUEST_INTR_STATE_STI)
1366 		ret |= KVM_X86_SHADOW_INT_STI;
1367 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1368 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1369 
1370 	return ret;
1371 }
1372 
1373 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1374 {
1375 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1376 	u32 interruptibility = interruptibility_old;
1377 
1378 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1379 
1380 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1381 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1382 	else if (mask & KVM_X86_SHADOW_INT_STI)
1383 		interruptibility |= GUEST_INTR_STATE_STI;
1384 
1385 	if ((interruptibility != interruptibility_old))
1386 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1387 }
1388 
1389 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1390 {
1391 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1392 	unsigned long value;
1393 
1394 	/*
1395 	 * Any MSR write that attempts to change bits marked reserved will
1396 	 * case a #GP fault.
1397 	 */
1398 	if (data & vmx->pt_desc.ctl_bitmask)
1399 		return 1;
1400 
1401 	/*
1402 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1403 	 * result in a #GP unless the same write also clears TraceEn.
1404 	 */
1405 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1406 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1407 		return 1;
1408 
1409 	/*
1410 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1411 	 * and FabricEn would cause #GP, if
1412 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1413 	 */
1414 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1415 		!(data & RTIT_CTL_FABRIC_EN) &&
1416 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1417 					PT_CAP_single_range_output))
1418 		return 1;
1419 
1420 	/*
1421 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1422 	 * utilize encodings marked reserved will casue a #GP fault.
1423 	 */
1424 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1425 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1426 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1427 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1428 		return 1;
1429 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1430 						PT_CAP_cycle_thresholds);
1431 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1432 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1433 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1434 		return 1;
1435 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1436 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1437 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1438 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1439 		return 1;
1440 
1441 	/*
1442 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1443 	 * cause a #GP fault.
1444 	 */
1445 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1446 	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1447 		return 1;
1448 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1449 	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1450 		return 1;
1451 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1452 	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1453 		return 1;
1454 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1455 	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1456 		return 1;
1457 
1458 	return 0;
1459 }
1460 
1461 
1462 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1463 {
1464 	unsigned long rip;
1465 
1466 	rip = kvm_rip_read(vcpu);
1467 	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1468 	kvm_rip_write(vcpu, rip);
1469 
1470 	/* skipping an emulated instruction also counts */
1471 	vmx_set_interrupt_shadow(vcpu, 0);
1472 }
1473 
1474 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1475 {
1476 	/*
1477 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1478 	 * explicitly skip the instruction because if the HLT state is set,
1479 	 * then the instruction is already executing and RIP has already been
1480 	 * advanced.
1481 	 */
1482 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1483 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1484 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1485 }
1486 
1487 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1488 {
1489 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1490 	unsigned nr = vcpu->arch.exception.nr;
1491 	bool has_error_code = vcpu->arch.exception.has_error_code;
1492 	u32 error_code = vcpu->arch.exception.error_code;
1493 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1494 
1495 	kvm_deliver_exception_payload(vcpu);
1496 
1497 	if (has_error_code) {
1498 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1499 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1500 	}
1501 
1502 	if (vmx->rmode.vm86_active) {
1503 		int inc_eip = 0;
1504 		if (kvm_exception_is_soft(nr))
1505 			inc_eip = vcpu->arch.event_exit_inst_len;
1506 		if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1507 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1508 		return;
1509 	}
1510 
1511 	WARN_ON_ONCE(vmx->emulation_required);
1512 
1513 	if (kvm_exception_is_soft(nr)) {
1514 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1515 			     vmx->vcpu.arch.event_exit_inst_len);
1516 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1517 	} else
1518 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1519 
1520 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1521 
1522 	vmx_clear_hlt(vcpu);
1523 }
1524 
1525 static bool vmx_rdtscp_supported(void)
1526 {
1527 	return cpu_has_vmx_rdtscp();
1528 }
1529 
1530 static bool vmx_invpcid_supported(void)
1531 {
1532 	return cpu_has_vmx_invpcid();
1533 }
1534 
1535 /*
1536  * Swap MSR entry in host/guest MSR entry array.
1537  */
1538 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1539 {
1540 	struct shared_msr_entry tmp;
1541 
1542 	tmp = vmx->guest_msrs[to];
1543 	vmx->guest_msrs[to] = vmx->guest_msrs[from];
1544 	vmx->guest_msrs[from] = tmp;
1545 }
1546 
1547 /*
1548  * Set up the vmcs to automatically save and restore system
1549  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1550  * mode, as fiddling with msrs is very expensive.
1551  */
1552 static void setup_msrs(struct vcpu_vmx *vmx)
1553 {
1554 	int save_nmsrs, index;
1555 
1556 	save_nmsrs = 0;
1557 #ifdef CONFIG_X86_64
1558 	/*
1559 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1560 	 * when EFER.SCE is set.
1561 	 */
1562 	if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1563 		index = __find_msr_index(vmx, MSR_STAR);
1564 		if (index >= 0)
1565 			move_msr_up(vmx, index, save_nmsrs++);
1566 		index = __find_msr_index(vmx, MSR_LSTAR);
1567 		if (index >= 0)
1568 			move_msr_up(vmx, index, save_nmsrs++);
1569 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1570 		if (index >= 0)
1571 			move_msr_up(vmx, index, save_nmsrs++);
1572 	}
1573 #endif
1574 	index = __find_msr_index(vmx, MSR_EFER);
1575 	if (index >= 0 && update_transition_efer(vmx, index))
1576 		move_msr_up(vmx, index, save_nmsrs++);
1577 	index = __find_msr_index(vmx, MSR_TSC_AUX);
1578 	if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1579 		move_msr_up(vmx, index, save_nmsrs++);
1580 
1581 	vmx->save_nmsrs = save_nmsrs;
1582 	vmx->guest_msrs_dirty = true;
1583 
1584 	if (cpu_has_vmx_msr_bitmap())
1585 		vmx_update_msr_bitmap(&vmx->vcpu);
1586 }
1587 
1588 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1589 {
1590 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1591 
1592 	if (is_guest_mode(vcpu) &&
1593 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1594 		return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1595 
1596 	return vcpu->arch.tsc_offset;
1597 }
1598 
1599 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1600 {
1601 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1602 	u64 g_tsc_offset = 0;
1603 
1604 	/*
1605 	 * We're here if L1 chose not to trap WRMSR to TSC. According
1606 	 * to the spec, this should set L1's TSC; The offset that L1
1607 	 * set for L2 remains unchanged, and still needs to be added
1608 	 * to the newly set TSC to get L2's TSC.
1609 	 */
1610 	if (is_guest_mode(vcpu) &&
1611 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1612 		g_tsc_offset = vmcs12->tsc_offset;
1613 
1614 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1615 				   vcpu->arch.tsc_offset - g_tsc_offset,
1616 				   offset);
1617 	vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1618 	return offset + g_tsc_offset;
1619 }
1620 
1621 /*
1622  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1623  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1624  * all guests if the "nested" module option is off, and can also be disabled
1625  * for a single guest by disabling its VMX cpuid bit.
1626  */
1627 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1628 {
1629 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1630 }
1631 
1632 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1633 						 uint64_t val)
1634 {
1635 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1636 
1637 	return !(val & ~valid_bits);
1638 }
1639 
1640 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1641 {
1642 	switch (msr->index) {
1643 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1644 		if (!nested)
1645 			return 1;
1646 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1647 	default:
1648 		return 1;
1649 	}
1650 
1651 	return 0;
1652 }
1653 
1654 /*
1655  * Reads an msr value (of 'msr_index') into 'pdata'.
1656  * Returns 0 on success, non-0 otherwise.
1657  * Assumes vcpu_load() was already called.
1658  */
1659 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1660 {
1661 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1662 	struct shared_msr_entry *msr;
1663 	u32 index;
1664 
1665 	switch (msr_info->index) {
1666 #ifdef CONFIG_X86_64
1667 	case MSR_FS_BASE:
1668 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1669 		break;
1670 	case MSR_GS_BASE:
1671 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1672 		break;
1673 	case MSR_KERNEL_GS_BASE:
1674 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1675 		break;
1676 #endif
1677 	case MSR_EFER:
1678 		return kvm_get_msr_common(vcpu, msr_info);
1679 	case MSR_IA32_SPEC_CTRL:
1680 		if (!msr_info->host_initiated &&
1681 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1682 			return 1;
1683 
1684 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1685 		break;
1686 	case MSR_IA32_SYSENTER_CS:
1687 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1688 		break;
1689 	case MSR_IA32_SYSENTER_EIP:
1690 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1691 		break;
1692 	case MSR_IA32_SYSENTER_ESP:
1693 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1694 		break;
1695 	case MSR_IA32_BNDCFGS:
1696 		if (!kvm_mpx_supported() ||
1697 		    (!msr_info->host_initiated &&
1698 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1699 			return 1;
1700 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1701 		break;
1702 	case MSR_IA32_MCG_EXT_CTL:
1703 		if (!msr_info->host_initiated &&
1704 		    !(vmx->msr_ia32_feature_control &
1705 		      FEATURE_CONTROL_LMCE))
1706 			return 1;
1707 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1708 		break;
1709 	case MSR_IA32_FEATURE_CONTROL:
1710 		msr_info->data = vmx->msr_ia32_feature_control;
1711 		break;
1712 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1713 		if (!nested_vmx_allowed(vcpu))
1714 			return 1;
1715 		return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1716 				       &msr_info->data);
1717 	case MSR_IA32_XSS:
1718 		if (!vmx_xsaves_supported())
1719 			return 1;
1720 		msr_info->data = vcpu->arch.ia32_xss;
1721 		break;
1722 	case MSR_IA32_RTIT_CTL:
1723 		if (pt_mode != PT_MODE_HOST_GUEST)
1724 			return 1;
1725 		msr_info->data = vmx->pt_desc.guest.ctl;
1726 		break;
1727 	case MSR_IA32_RTIT_STATUS:
1728 		if (pt_mode != PT_MODE_HOST_GUEST)
1729 			return 1;
1730 		msr_info->data = vmx->pt_desc.guest.status;
1731 		break;
1732 	case MSR_IA32_RTIT_CR3_MATCH:
1733 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1734 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1735 						PT_CAP_cr3_filtering))
1736 			return 1;
1737 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1738 		break;
1739 	case MSR_IA32_RTIT_OUTPUT_BASE:
1740 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1741 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1742 					PT_CAP_topa_output) &&
1743 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1744 					PT_CAP_single_range_output)))
1745 			return 1;
1746 		msr_info->data = vmx->pt_desc.guest.output_base;
1747 		break;
1748 	case MSR_IA32_RTIT_OUTPUT_MASK:
1749 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1750 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1751 					PT_CAP_topa_output) &&
1752 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1753 					PT_CAP_single_range_output)))
1754 			return 1;
1755 		msr_info->data = vmx->pt_desc.guest.output_mask;
1756 		break;
1757 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1758 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1759 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1760 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1761 					PT_CAP_num_address_ranges)))
1762 			return 1;
1763 		if (index % 2)
1764 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1765 		else
1766 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1767 		break;
1768 	case MSR_TSC_AUX:
1769 		if (!msr_info->host_initiated &&
1770 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1771 			return 1;
1772 		/* Else, falls through */
1773 	default:
1774 		msr = find_msr_entry(vmx, msr_info->index);
1775 		if (msr) {
1776 			msr_info->data = msr->data;
1777 			break;
1778 		}
1779 		return kvm_get_msr_common(vcpu, msr_info);
1780 	}
1781 
1782 	return 0;
1783 }
1784 
1785 /*
1786  * Writes msr value into into the appropriate "register".
1787  * Returns 0 on success, non-0 otherwise.
1788  * Assumes vcpu_load() was already called.
1789  */
1790 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1791 {
1792 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1793 	struct shared_msr_entry *msr;
1794 	int ret = 0;
1795 	u32 msr_index = msr_info->index;
1796 	u64 data = msr_info->data;
1797 	u32 index;
1798 
1799 	switch (msr_index) {
1800 	case MSR_EFER:
1801 		ret = kvm_set_msr_common(vcpu, msr_info);
1802 		break;
1803 #ifdef CONFIG_X86_64
1804 	case MSR_FS_BASE:
1805 		vmx_segment_cache_clear(vmx);
1806 		vmcs_writel(GUEST_FS_BASE, data);
1807 		break;
1808 	case MSR_GS_BASE:
1809 		vmx_segment_cache_clear(vmx);
1810 		vmcs_writel(GUEST_GS_BASE, data);
1811 		break;
1812 	case MSR_KERNEL_GS_BASE:
1813 		vmx_write_guest_kernel_gs_base(vmx, data);
1814 		break;
1815 #endif
1816 	case MSR_IA32_SYSENTER_CS:
1817 		vmcs_write32(GUEST_SYSENTER_CS, data);
1818 		break;
1819 	case MSR_IA32_SYSENTER_EIP:
1820 		vmcs_writel(GUEST_SYSENTER_EIP, data);
1821 		break;
1822 	case MSR_IA32_SYSENTER_ESP:
1823 		vmcs_writel(GUEST_SYSENTER_ESP, data);
1824 		break;
1825 	case MSR_IA32_BNDCFGS:
1826 		if (!kvm_mpx_supported() ||
1827 		    (!msr_info->host_initiated &&
1828 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1829 			return 1;
1830 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1831 		    (data & MSR_IA32_BNDCFGS_RSVD))
1832 			return 1;
1833 		vmcs_write64(GUEST_BNDCFGS, data);
1834 		break;
1835 	case MSR_IA32_SPEC_CTRL:
1836 		if (!msr_info->host_initiated &&
1837 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1838 			return 1;
1839 
1840 		/* The STIBP bit doesn't fault even if it's not advertised */
1841 		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1842 			return 1;
1843 
1844 		vmx->spec_ctrl = data;
1845 
1846 		if (!data)
1847 			break;
1848 
1849 		/*
1850 		 * For non-nested:
1851 		 * When it's written (to non-zero) for the first time, pass
1852 		 * it through.
1853 		 *
1854 		 * For nested:
1855 		 * The handling of the MSR bitmap for L2 guests is done in
1856 		 * nested_vmx_merge_msr_bitmap. We should not touch the
1857 		 * vmcs02.msr_bitmap here since it gets completely overwritten
1858 		 * in the merging. We update the vmcs01 here for L1 as well
1859 		 * since it will end up touching the MSR anyway now.
1860 		 */
1861 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
1862 					      MSR_IA32_SPEC_CTRL,
1863 					      MSR_TYPE_RW);
1864 		break;
1865 	case MSR_IA32_PRED_CMD:
1866 		if (!msr_info->host_initiated &&
1867 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1868 			return 1;
1869 
1870 		if (data & ~PRED_CMD_IBPB)
1871 			return 1;
1872 
1873 		if (!data)
1874 			break;
1875 
1876 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
1877 
1878 		/*
1879 		 * For non-nested:
1880 		 * When it's written (to non-zero) for the first time, pass
1881 		 * it through.
1882 		 *
1883 		 * For nested:
1884 		 * The handling of the MSR bitmap for L2 guests is done in
1885 		 * nested_vmx_merge_msr_bitmap. We should not touch the
1886 		 * vmcs02.msr_bitmap here since it gets completely overwritten
1887 		 * in the merging.
1888 		 */
1889 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
1890 					      MSR_TYPE_W);
1891 		break;
1892 	case MSR_IA32_CR_PAT:
1893 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1894 			if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
1895 				return 1;
1896 			vmcs_write64(GUEST_IA32_PAT, data);
1897 			vcpu->arch.pat = data;
1898 			break;
1899 		}
1900 		ret = kvm_set_msr_common(vcpu, msr_info);
1901 		break;
1902 	case MSR_IA32_TSC_ADJUST:
1903 		ret = kvm_set_msr_common(vcpu, msr_info);
1904 		break;
1905 	case MSR_IA32_MCG_EXT_CTL:
1906 		if ((!msr_info->host_initiated &&
1907 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
1908 		       FEATURE_CONTROL_LMCE)) ||
1909 		    (data & ~MCG_EXT_CTL_LMCE_EN))
1910 			return 1;
1911 		vcpu->arch.mcg_ext_ctl = data;
1912 		break;
1913 	case MSR_IA32_FEATURE_CONTROL:
1914 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
1915 		    (to_vmx(vcpu)->msr_ia32_feature_control &
1916 		     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
1917 			return 1;
1918 		vmx->msr_ia32_feature_control = data;
1919 		if (msr_info->host_initiated && data == 0)
1920 			vmx_leave_nested(vcpu);
1921 		break;
1922 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1923 		if (!msr_info->host_initiated)
1924 			return 1; /* they are read-only */
1925 		if (!nested_vmx_allowed(vcpu))
1926 			return 1;
1927 		return vmx_set_vmx_msr(vcpu, msr_index, data);
1928 	case MSR_IA32_XSS:
1929 		if (!vmx_xsaves_supported())
1930 			return 1;
1931 		/*
1932 		 * The only supported bit as of Skylake is bit 8, but
1933 		 * it is not supported on KVM.
1934 		 */
1935 		if (data != 0)
1936 			return 1;
1937 		vcpu->arch.ia32_xss = data;
1938 		if (vcpu->arch.ia32_xss != host_xss)
1939 			add_atomic_switch_msr(vmx, MSR_IA32_XSS,
1940 				vcpu->arch.ia32_xss, host_xss, false);
1941 		else
1942 			clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
1943 		break;
1944 	case MSR_IA32_RTIT_CTL:
1945 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1946 			vmx_rtit_ctl_check(vcpu, data) ||
1947 			vmx->nested.vmxon)
1948 			return 1;
1949 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
1950 		vmx->pt_desc.guest.ctl = data;
1951 		pt_update_intercept_for_msr(vmx);
1952 		break;
1953 	case MSR_IA32_RTIT_STATUS:
1954 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1955 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1956 			(data & MSR_IA32_RTIT_STATUS_MASK))
1957 			return 1;
1958 		vmx->pt_desc.guest.status = data;
1959 		break;
1960 	case MSR_IA32_RTIT_CR3_MATCH:
1961 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1962 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1963 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1964 						PT_CAP_cr3_filtering))
1965 			return 1;
1966 		vmx->pt_desc.guest.cr3_match = data;
1967 		break;
1968 	case MSR_IA32_RTIT_OUTPUT_BASE:
1969 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1970 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1971 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1972 					PT_CAP_topa_output) &&
1973 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1974 					PT_CAP_single_range_output)) ||
1975 			(data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
1976 			return 1;
1977 		vmx->pt_desc.guest.output_base = data;
1978 		break;
1979 	case MSR_IA32_RTIT_OUTPUT_MASK:
1980 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1981 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1982 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1983 					PT_CAP_topa_output) &&
1984 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1985 					PT_CAP_single_range_output)))
1986 			return 1;
1987 		vmx->pt_desc.guest.output_mask = data;
1988 		break;
1989 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1990 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1991 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1992 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
1993 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1994 					PT_CAP_num_address_ranges)))
1995 			return 1;
1996 		if (index % 2)
1997 			vmx->pt_desc.guest.addr_b[index / 2] = data;
1998 		else
1999 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2000 		break;
2001 	case MSR_TSC_AUX:
2002 		if (!msr_info->host_initiated &&
2003 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2004 			return 1;
2005 		/* Check reserved bit, higher 32 bits should be zero */
2006 		if ((data >> 32) != 0)
2007 			return 1;
2008 		/* Else, falls through */
2009 	default:
2010 		msr = find_msr_entry(vmx, msr_index);
2011 		if (msr) {
2012 			u64 old_msr_data = msr->data;
2013 			msr->data = data;
2014 			if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2015 				preempt_disable();
2016 				ret = kvm_set_shared_msr(msr->index, msr->data,
2017 							 msr->mask);
2018 				preempt_enable();
2019 				if (ret)
2020 					msr->data = old_msr_data;
2021 			}
2022 			break;
2023 		}
2024 		ret = kvm_set_msr_common(vcpu, msr_info);
2025 	}
2026 
2027 	return ret;
2028 }
2029 
2030 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2031 {
2032 	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2033 	switch (reg) {
2034 	case VCPU_REGS_RSP:
2035 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2036 		break;
2037 	case VCPU_REGS_RIP:
2038 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2039 		break;
2040 	case VCPU_EXREG_PDPTR:
2041 		if (enable_ept)
2042 			ept_save_pdptrs(vcpu);
2043 		break;
2044 	default:
2045 		break;
2046 	}
2047 }
2048 
2049 static __init int cpu_has_kvm_support(void)
2050 {
2051 	return cpu_has_vmx();
2052 }
2053 
2054 static __init int vmx_disabled_by_bios(void)
2055 {
2056 	u64 msr;
2057 
2058 	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2059 	if (msr & FEATURE_CONTROL_LOCKED) {
2060 		/* launched w/ TXT and VMX disabled */
2061 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2062 			&& tboot_enabled())
2063 			return 1;
2064 		/* launched w/o TXT and VMX only enabled w/ TXT */
2065 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2066 			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2067 			&& !tboot_enabled()) {
2068 			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2069 				"activate TXT before enabling KVM\n");
2070 			return 1;
2071 		}
2072 		/* launched w/o TXT and VMX disabled */
2073 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2074 			&& !tboot_enabled())
2075 			return 1;
2076 	}
2077 
2078 	return 0;
2079 }
2080 
2081 static void kvm_cpu_vmxon(u64 addr)
2082 {
2083 	cr4_set_bits(X86_CR4_VMXE);
2084 	intel_pt_handle_vmx(1);
2085 
2086 	asm volatile ("vmxon %0" : : "m"(addr));
2087 }
2088 
2089 static int hardware_enable(void)
2090 {
2091 	int cpu = raw_smp_processor_id();
2092 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2093 	u64 old, test_bits;
2094 
2095 	if (cr4_read_shadow() & X86_CR4_VMXE)
2096 		return -EBUSY;
2097 
2098 	/*
2099 	 * This can happen if we hot-added a CPU but failed to allocate
2100 	 * VP assist page for it.
2101 	 */
2102 	if (static_branch_unlikely(&enable_evmcs) &&
2103 	    !hv_get_vp_assist_page(cpu))
2104 		return -EFAULT;
2105 
2106 	INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2107 	INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2108 	spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2109 
2110 	/*
2111 	 * Now we can enable the vmclear operation in kdump
2112 	 * since the loaded_vmcss_on_cpu list on this cpu
2113 	 * has been initialized.
2114 	 *
2115 	 * Though the cpu is not in VMX operation now, there
2116 	 * is no problem to enable the vmclear operation
2117 	 * for the loaded_vmcss_on_cpu list is empty!
2118 	 */
2119 	crash_enable_local_vmclear(cpu);
2120 
2121 	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2122 
2123 	test_bits = FEATURE_CONTROL_LOCKED;
2124 	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2125 	if (tboot_enabled())
2126 		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2127 
2128 	if ((old & test_bits) != test_bits) {
2129 		/* enable and lock */
2130 		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2131 	}
2132 	kvm_cpu_vmxon(phys_addr);
2133 	if (enable_ept)
2134 		ept_sync_global();
2135 
2136 	return 0;
2137 }
2138 
2139 static void vmclear_local_loaded_vmcss(void)
2140 {
2141 	int cpu = raw_smp_processor_id();
2142 	struct loaded_vmcs *v, *n;
2143 
2144 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2145 				 loaded_vmcss_on_cpu_link)
2146 		__loaded_vmcs_clear(v);
2147 }
2148 
2149 
2150 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2151  * tricks.
2152  */
2153 static void kvm_cpu_vmxoff(void)
2154 {
2155 	asm volatile (__ex("vmxoff"));
2156 
2157 	intel_pt_handle_vmx(0);
2158 	cr4_clear_bits(X86_CR4_VMXE);
2159 }
2160 
2161 static void hardware_disable(void)
2162 {
2163 	vmclear_local_loaded_vmcss();
2164 	kvm_cpu_vmxoff();
2165 }
2166 
2167 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2168 				      u32 msr, u32 *result)
2169 {
2170 	u32 vmx_msr_low, vmx_msr_high;
2171 	u32 ctl = ctl_min | ctl_opt;
2172 
2173 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2174 
2175 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2176 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2177 
2178 	/* Ensure minimum (required) set of control bits are supported. */
2179 	if (ctl_min & ~ctl)
2180 		return -EIO;
2181 
2182 	*result = ctl;
2183 	return 0;
2184 }
2185 
2186 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2187 				    struct vmx_capability *vmx_cap)
2188 {
2189 	u32 vmx_msr_low, vmx_msr_high;
2190 	u32 min, opt, min2, opt2;
2191 	u32 _pin_based_exec_control = 0;
2192 	u32 _cpu_based_exec_control = 0;
2193 	u32 _cpu_based_2nd_exec_control = 0;
2194 	u32 _vmexit_control = 0;
2195 	u32 _vmentry_control = 0;
2196 
2197 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2198 	min = CPU_BASED_HLT_EXITING |
2199 #ifdef CONFIG_X86_64
2200 	      CPU_BASED_CR8_LOAD_EXITING |
2201 	      CPU_BASED_CR8_STORE_EXITING |
2202 #endif
2203 	      CPU_BASED_CR3_LOAD_EXITING |
2204 	      CPU_BASED_CR3_STORE_EXITING |
2205 	      CPU_BASED_UNCOND_IO_EXITING |
2206 	      CPU_BASED_MOV_DR_EXITING |
2207 	      CPU_BASED_USE_TSC_OFFSETING |
2208 	      CPU_BASED_MWAIT_EXITING |
2209 	      CPU_BASED_MONITOR_EXITING |
2210 	      CPU_BASED_INVLPG_EXITING |
2211 	      CPU_BASED_RDPMC_EXITING;
2212 
2213 	opt = CPU_BASED_TPR_SHADOW |
2214 	      CPU_BASED_USE_MSR_BITMAPS |
2215 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2216 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2217 				&_cpu_based_exec_control) < 0)
2218 		return -EIO;
2219 #ifdef CONFIG_X86_64
2220 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2221 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2222 					   ~CPU_BASED_CR8_STORE_EXITING;
2223 #endif
2224 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2225 		min2 = 0;
2226 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2227 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2228 			SECONDARY_EXEC_WBINVD_EXITING |
2229 			SECONDARY_EXEC_ENABLE_VPID |
2230 			SECONDARY_EXEC_ENABLE_EPT |
2231 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2232 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2233 			SECONDARY_EXEC_DESC |
2234 			SECONDARY_EXEC_RDTSCP |
2235 			SECONDARY_EXEC_ENABLE_INVPCID |
2236 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2237 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2238 			SECONDARY_EXEC_SHADOW_VMCS |
2239 			SECONDARY_EXEC_XSAVES |
2240 			SECONDARY_EXEC_RDSEED_EXITING |
2241 			SECONDARY_EXEC_RDRAND_EXITING |
2242 			SECONDARY_EXEC_ENABLE_PML |
2243 			SECONDARY_EXEC_TSC_SCALING |
2244 			SECONDARY_EXEC_PT_USE_GPA |
2245 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2246 			SECONDARY_EXEC_ENABLE_VMFUNC |
2247 			SECONDARY_EXEC_ENCLS_EXITING;
2248 		if (adjust_vmx_controls(min2, opt2,
2249 					MSR_IA32_VMX_PROCBASED_CTLS2,
2250 					&_cpu_based_2nd_exec_control) < 0)
2251 			return -EIO;
2252 	}
2253 #ifndef CONFIG_X86_64
2254 	if (!(_cpu_based_2nd_exec_control &
2255 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2256 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2257 #endif
2258 
2259 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2260 		_cpu_based_2nd_exec_control &= ~(
2261 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2262 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2263 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2264 
2265 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2266 		&vmx_cap->ept, &vmx_cap->vpid);
2267 
2268 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2269 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2270 		   enabled */
2271 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2272 					     CPU_BASED_CR3_STORE_EXITING |
2273 					     CPU_BASED_INVLPG_EXITING);
2274 	} else if (vmx_cap->ept) {
2275 		vmx_cap->ept = 0;
2276 		pr_warn_once("EPT CAP should not exist if not support "
2277 				"1-setting enable EPT VM-execution control\n");
2278 	}
2279 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2280 		vmx_cap->vpid) {
2281 		vmx_cap->vpid = 0;
2282 		pr_warn_once("VPID CAP should not exist if not support "
2283 				"1-setting enable VPID VM-execution control\n");
2284 	}
2285 
2286 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2287 #ifdef CONFIG_X86_64
2288 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2289 #endif
2290 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2291 	      VM_EXIT_SAVE_IA32_PAT |
2292 	      VM_EXIT_LOAD_IA32_PAT |
2293 	      VM_EXIT_LOAD_IA32_EFER |
2294 	      VM_EXIT_CLEAR_BNDCFGS |
2295 	      VM_EXIT_PT_CONCEAL_PIP |
2296 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2297 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2298 				&_vmexit_control) < 0)
2299 		return -EIO;
2300 
2301 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2302 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2303 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2304 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2305 				&_pin_based_exec_control) < 0)
2306 		return -EIO;
2307 
2308 	if (cpu_has_broken_vmx_preemption_timer())
2309 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2310 	if (!(_cpu_based_2nd_exec_control &
2311 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2312 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2313 
2314 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2315 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2316 	      VM_ENTRY_LOAD_IA32_PAT |
2317 	      VM_ENTRY_LOAD_IA32_EFER |
2318 	      VM_ENTRY_LOAD_BNDCFGS |
2319 	      VM_ENTRY_PT_CONCEAL_PIP |
2320 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2321 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2322 				&_vmentry_control) < 0)
2323 		return -EIO;
2324 
2325 	/*
2326 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2327 	 * can't be used due to an errata where VM Exit may incorrectly clear
2328 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2329 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2330 	 */
2331 	if (boot_cpu_data.x86 == 0x6) {
2332 		switch (boot_cpu_data.x86_model) {
2333 		case 26: /* AAK155 */
2334 		case 30: /* AAP115 */
2335 		case 37: /* AAT100 */
2336 		case 44: /* BC86,AAY89,BD102 */
2337 		case 46: /* BA97 */
2338 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2339 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2340 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2341 					"does not work properly. Using workaround\n");
2342 			break;
2343 		default:
2344 			break;
2345 		}
2346 	}
2347 
2348 
2349 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2350 
2351 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2352 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2353 		return -EIO;
2354 
2355 #ifdef CONFIG_X86_64
2356 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2357 	if (vmx_msr_high & (1u<<16))
2358 		return -EIO;
2359 #endif
2360 
2361 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2362 	if (((vmx_msr_high >> 18) & 15) != 6)
2363 		return -EIO;
2364 
2365 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2366 	vmcs_conf->order = get_order(vmcs_conf->size);
2367 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2368 
2369 	vmcs_conf->revision_id = vmx_msr_low;
2370 
2371 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2372 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2373 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2374 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2375 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2376 
2377 	if (static_branch_unlikely(&enable_evmcs))
2378 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2379 
2380 	return 0;
2381 }
2382 
2383 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2384 {
2385 	int node = cpu_to_node(cpu);
2386 	struct page *pages;
2387 	struct vmcs *vmcs;
2388 
2389 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2390 	if (!pages)
2391 		return NULL;
2392 	vmcs = page_address(pages);
2393 	memset(vmcs, 0, vmcs_config.size);
2394 
2395 	/* KVM supports Enlightened VMCS v1 only */
2396 	if (static_branch_unlikely(&enable_evmcs))
2397 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2398 	else
2399 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2400 
2401 	if (shadow)
2402 		vmcs->hdr.shadow_vmcs = 1;
2403 	return vmcs;
2404 }
2405 
2406 void free_vmcs(struct vmcs *vmcs)
2407 {
2408 	free_pages((unsigned long)vmcs, vmcs_config.order);
2409 }
2410 
2411 /*
2412  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2413  */
2414 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2415 {
2416 	if (!loaded_vmcs->vmcs)
2417 		return;
2418 	loaded_vmcs_clear(loaded_vmcs);
2419 	free_vmcs(loaded_vmcs->vmcs);
2420 	loaded_vmcs->vmcs = NULL;
2421 	if (loaded_vmcs->msr_bitmap)
2422 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2423 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2424 }
2425 
2426 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2427 {
2428 	loaded_vmcs->vmcs = alloc_vmcs(false);
2429 	if (!loaded_vmcs->vmcs)
2430 		return -ENOMEM;
2431 
2432 	loaded_vmcs->shadow_vmcs = NULL;
2433 	loaded_vmcs_init(loaded_vmcs);
2434 
2435 	if (cpu_has_vmx_msr_bitmap()) {
2436 		loaded_vmcs->msr_bitmap = (unsigned long *)
2437 				__get_free_page(GFP_KERNEL_ACCOUNT);
2438 		if (!loaded_vmcs->msr_bitmap)
2439 			goto out_vmcs;
2440 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2441 
2442 		if (IS_ENABLED(CONFIG_HYPERV) &&
2443 		    static_branch_unlikely(&enable_evmcs) &&
2444 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2445 			struct hv_enlightened_vmcs *evmcs =
2446 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2447 
2448 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2449 		}
2450 	}
2451 
2452 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2453 
2454 	return 0;
2455 
2456 out_vmcs:
2457 	free_loaded_vmcs(loaded_vmcs);
2458 	return -ENOMEM;
2459 }
2460 
2461 static void free_kvm_area(void)
2462 {
2463 	int cpu;
2464 
2465 	for_each_possible_cpu(cpu) {
2466 		free_vmcs(per_cpu(vmxarea, cpu));
2467 		per_cpu(vmxarea, cpu) = NULL;
2468 	}
2469 }
2470 
2471 static __init int alloc_kvm_area(void)
2472 {
2473 	int cpu;
2474 
2475 	for_each_possible_cpu(cpu) {
2476 		struct vmcs *vmcs;
2477 
2478 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2479 		if (!vmcs) {
2480 			free_kvm_area();
2481 			return -ENOMEM;
2482 		}
2483 
2484 		/*
2485 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2486 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2487 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2488 		 *
2489 		 * However, even though not explicitly documented by
2490 		 * TLFS, VMXArea passed as VMXON argument should
2491 		 * still be marked with revision_id reported by
2492 		 * physical CPU.
2493 		 */
2494 		if (static_branch_unlikely(&enable_evmcs))
2495 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2496 
2497 		per_cpu(vmxarea, cpu) = vmcs;
2498 	}
2499 	return 0;
2500 }
2501 
2502 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2503 		struct kvm_segment *save)
2504 {
2505 	if (!emulate_invalid_guest_state) {
2506 		/*
2507 		 * CS and SS RPL should be equal during guest entry according
2508 		 * to VMX spec, but in reality it is not always so. Since vcpu
2509 		 * is in the middle of the transition from real mode to
2510 		 * protected mode it is safe to assume that RPL 0 is a good
2511 		 * default value.
2512 		 */
2513 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2514 			save->selector &= ~SEGMENT_RPL_MASK;
2515 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2516 		save->s = 1;
2517 	}
2518 	vmx_set_segment(vcpu, save, seg);
2519 }
2520 
2521 static void enter_pmode(struct kvm_vcpu *vcpu)
2522 {
2523 	unsigned long flags;
2524 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2525 
2526 	/*
2527 	 * Update real mode segment cache. It may be not up-to-date if sement
2528 	 * register was written while vcpu was in a guest mode.
2529 	 */
2530 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2531 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2532 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2533 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2534 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2535 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2536 
2537 	vmx->rmode.vm86_active = 0;
2538 
2539 	vmx_segment_cache_clear(vmx);
2540 
2541 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2542 
2543 	flags = vmcs_readl(GUEST_RFLAGS);
2544 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2545 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2546 	vmcs_writel(GUEST_RFLAGS, flags);
2547 
2548 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2549 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2550 
2551 	update_exception_bitmap(vcpu);
2552 
2553 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2554 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2555 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2556 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2557 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2558 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2559 }
2560 
2561 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2562 {
2563 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2564 	struct kvm_segment var = *save;
2565 
2566 	var.dpl = 0x3;
2567 	if (seg == VCPU_SREG_CS)
2568 		var.type = 0x3;
2569 
2570 	if (!emulate_invalid_guest_state) {
2571 		var.selector = var.base >> 4;
2572 		var.base = var.base & 0xffff0;
2573 		var.limit = 0xffff;
2574 		var.g = 0;
2575 		var.db = 0;
2576 		var.present = 1;
2577 		var.s = 1;
2578 		var.l = 0;
2579 		var.unusable = 0;
2580 		var.type = 0x3;
2581 		var.avl = 0;
2582 		if (save->base & 0xf)
2583 			printk_once(KERN_WARNING "kvm: segment base is not "
2584 					"paragraph aligned when entering "
2585 					"protected mode (seg=%d)", seg);
2586 	}
2587 
2588 	vmcs_write16(sf->selector, var.selector);
2589 	vmcs_writel(sf->base, var.base);
2590 	vmcs_write32(sf->limit, var.limit);
2591 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2592 }
2593 
2594 static void enter_rmode(struct kvm_vcpu *vcpu)
2595 {
2596 	unsigned long flags;
2597 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2598 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2599 
2600 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2601 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2602 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2603 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2604 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2605 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2606 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2607 
2608 	vmx->rmode.vm86_active = 1;
2609 
2610 	/*
2611 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2612 	 * vcpu. Warn the user that an update is overdue.
2613 	 */
2614 	if (!kvm_vmx->tss_addr)
2615 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2616 			     "called before entering vcpu\n");
2617 
2618 	vmx_segment_cache_clear(vmx);
2619 
2620 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2621 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2622 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2623 
2624 	flags = vmcs_readl(GUEST_RFLAGS);
2625 	vmx->rmode.save_rflags = flags;
2626 
2627 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2628 
2629 	vmcs_writel(GUEST_RFLAGS, flags);
2630 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2631 	update_exception_bitmap(vcpu);
2632 
2633 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2634 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2635 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2636 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2637 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2638 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2639 
2640 	kvm_mmu_reset_context(vcpu);
2641 }
2642 
2643 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2644 {
2645 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2646 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2647 
2648 	if (!msr)
2649 		return;
2650 
2651 	vcpu->arch.efer = efer;
2652 	if (efer & EFER_LMA) {
2653 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2654 		msr->data = efer;
2655 	} else {
2656 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2657 
2658 		msr->data = efer & ~EFER_LME;
2659 	}
2660 	setup_msrs(vmx);
2661 }
2662 
2663 #ifdef CONFIG_X86_64
2664 
2665 static void enter_lmode(struct kvm_vcpu *vcpu)
2666 {
2667 	u32 guest_tr_ar;
2668 
2669 	vmx_segment_cache_clear(to_vmx(vcpu));
2670 
2671 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2672 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2673 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2674 				     __func__);
2675 		vmcs_write32(GUEST_TR_AR_BYTES,
2676 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2677 			     | VMX_AR_TYPE_BUSY_64_TSS);
2678 	}
2679 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2680 }
2681 
2682 static void exit_lmode(struct kvm_vcpu *vcpu)
2683 {
2684 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2685 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2686 }
2687 
2688 #endif
2689 
2690 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2691 {
2692 	int vpid = to_vmx(vcpu)->vpid;
2693 
2694 	if (!vpid_sync_vcpu_addr(vpid, addr))
2695 		vpid_sync_context(vpid);
2696 
2697 	/*
2698 	 * If VPIDs are not supported or enabled, then the above is a no-op.
2699 	 * But we don't really need a TLB flush in that case anyway, because
2700 	 * each VM entry/exit includes an implicit flush when VPID is 0.
2701 	 */
2702 }
2703 
2704 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2705 {
2706 	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2707 
2708 	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2709 	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2710 }
2711 
2712 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2713 {
2714 	if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2715 		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2716 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2717 }
2718 
2719 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2720 {
2721 	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2722 
2723 	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2724 	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2725 }
2726 
2727 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2728 {
2729 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2730 
2731 	if (!test_bit(VCPU_EXREG_PDPTR,
2732 		      (unsigned long *)&vcpu->arch.regs_dirty))
2733 		return;
2734 
2735 	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2736 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2737 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2738 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2739 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2740 	}
2741 }
2742 
2743 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2744 {
2745 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2746 
2747 	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2748 		mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2749 		mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2750 		mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2751 		mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2752 	}
2753 
2754 	__set_bit(VCPU_EXREG_PDPTR,
2755 		  (unsigned long *)&vcpu->arch.regs_avail);
2756 	__set_bit(VCPU_EXREG_PDPTR,
2757 		  (unsigned long *)&vcpu->arch.regs_dirty);
2758 }
2759 
2760 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2761 					unsigned long cr0,
2762 					struct kvm_vcpu *vcpu)
2763 {
2764 	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2765 		vmx_decache_cr3(vcpu);
2766 	if (!(cr0 & X86_CR0_PG)) {
2767 		/* From paging/starting to nonpaging */
2768 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2769 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2770 			     (CPU_BASED_CR3_LOAD_EXITING |
2771 			      CPU_BASED_CR3_STORE_EXITING));
2772 		vcpu->arch.cr0 = cr0;
2773 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2774 	} else if (!is_paging(vcpu)) {
2775 		/* From nonpaging to paging */
2776 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2777 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2778 			     ~(CPU_BASED_CR3_LOAD_EXITING |
2779 			       CPU_BASED_CR3_STORE_EXITING));
2780 		vcpu->arch.cr0 = cr0;
2781 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2782 	}
2783 
2784 	if (!(cr0 & X86_CR0_WP))
2785 		*hw_cr0 &= ~X86_CR0_WP;
2786 }
2787 
2788 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2789 {
2790 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2791 	unsigned long hw_cr0;
2792 
2793 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2794 	if (enable_unrestricted_guest)
2795 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2796 	else {
2797 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2798 
2799 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2800 			enter_pmode(vcpu);
2801 
2802 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2803 			enter_rmode(vcpu);
2804 	}
2805 
2806 #ifdef CONFIG_X86_64
2807 	if (vcpu->arch.efer & EFER_LME) {
2808 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2809 			enter_lmode(vcpu);
2810 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2811 			exit_lmode(vcpu);
2812 	}
2813 #endif
2814 
2815 	if (enable_ept && !enable_unrestricted_guest)
2816 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2817 
2818 	vmcs_writel(CR0_READ_SHADOW, cr0);
2819 	vmcs_writel(GUEST_CR0, hw_cr0);
2820 	vcpu->arch.cr0 = cr0;
2821 
2822 	/* depends on vcpu->arch.cr0 to be set to a new value */
2823 	vmx->emulation_required = emulation_required(vcpu);
2824 }
2825 
2826 static int get_ept_level(struct kvm_vcpu *vcpu)
2827 {
2828 	if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2829 		return 5;
2830 	return 4;
2831 }
2832 
2833 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2834 {
2835 	u64 eptp = VMX_EPTP_MT_WB;
2836 
2837 	eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2838 
2839 	if (enable_ept_ad_bits &&
2840 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2841 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
2842 	eptp |= (root_hpa & PAGE_MASK);
2843 
2844 	return eptp;
2845 }
2846 
2847 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2848 {
2849 	struct kvm *kvm = vcpu->kvm;
2850 	unsigned long guest_cr3;
2851 	u64 eptp;
2852 
2853 	guest_cr3 = cr3;
2854 	if (enable_ept) {
2855 		eptp = construct_eptp(vcpu, cr3);
2856 		vmcs_write64(EPT_POINTER, eptp);
2857 
2858 		if (kvm_x86_ops->tlb_remote_flush) {
2859 			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2860 			to_vmx(vcpu)->ept_pointer = eptp;
2861 			to_kvm_vmx(kvm)->ept_pointers_match
2862 				= EPT_POINTERS_CHECK;
2863 			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
2864 		}
2865 
2866 		if (enable_unrestricted_guest || is_paging(vcpu) ||
2867 		    is_guest_mode(vcpu))
2868 			guest_cr3 = kvm_read_cr3(vcpu);
2869 		else
2870 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
2871 		ept_load_pdptrs(vcpu);
2872 	}
2873 
2874 	vmcs_writel(GUEST_CR3, guest_cr3);
2875 }
2876 
2877 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
2878 {
2879 	/*
2880 	 * Pass through host's Machine Check Enable value to hw_cr4, which
2881 	 * is in force while we are in guest mode.  Do not let guests control
2882 	 * this bit, even if host CR4.MCE == 0.
2883 	 */
2884 	unsigned long hw_cr4;
2885 
2886 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
2887 	if (enable_unrestricted_guest)
2888 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
2889 	else if (to_vmx(vcpu)->rmode.vm86_active)
2890 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
2891 	else
2892 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
2893 
2894 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
2895 		if (cr4 & X86_CR4_UMIP) {
2896 			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
2897 				SECONDARY_EXEC_DESC);
2898 			hw_cr4 &= ~X86_CR4_UMIP;
2899 		} else if (!is_guest_mode(vcpu) ||
2900 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
2901 			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2902 					SECONDARY_EXEC_DESC);
2903 	}
2904 
2905 	if (cr4 & X86_CR4_VMXE) {
2906 		/*
2907 		 * To use VMXON (and later other VMX instructions), a guest
2908 		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
2909 		 * So basically the check on whether to allow nested VMX
2910 		 * is here.  We operate under the default treatment of SMM,
2911 		 * so VMX cannot be enabled under SMM.
2912 		 */
2913 		if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
2914 			return 1;
2915 	}
2916 
2917 	if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
2918 		return 1;
2919 
2920 	vcpu->arch.cr4 = cr4;
2921 
2922 	if (!enable_unrestricted_guest) {
2923 		if (enable_ept) {
2924 			if (!is_paging(vcpu)) {
2925 				hw_cr4 &= ~X86_CR4_PAE;
2926 				hw_cr4 |= X86_CR4_PSE;
2927 			} else if (!(cr4 & X86_CR4_PAE)) {
2928 				hw_cr4 &= ~X86_CR4_PAE;
2929 			}
2930 		}
2931 
2932 		/*
2933 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
2934 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
2935 		 * to be manually disabled when guest switches to non-paging
2936 		 * mode.
2937 		 *
2938 		 * If !enable_unrestricted_guest, the CPU is always running
2939 		 * with CR0.PG=1 and CR4 needs to be modified.
2940 		 * If enable_unrestricted_guest, the CPU automatically
2941 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
2942 		 */
2943 		if (!is_paging(vcpu))
2944 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
2945 	}
2946 
2947 	vmcs_writel(CR4_READ_SHADOW, cr4);
2948 	vmcs_writel(GUEST_CR4, hw_cr4);
2949 	return 0;
2950 }
2951 
2952 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
2953 {
2954 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2955 	u32 ar;
2956 
2957 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
2958 		*var = vmx->rmode.segs[seg];
2959 		if (seg == VCPU_SREG_TR
2960 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
2961 			return;
2962 		var->base = vmx_read_guest_seg_base(vmx, seg);
2963 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
2964 		return;
2965 	}
2966 	var->base = vmx_read_guest_seg_base(vmx, seg);
2967 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
2968 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
2969 	ar = vmx_read_guest_seg_ar(vmx, seg);
2970 	var->unusable = (ar >> 16) & 1;
2971 	var->type = ar & 15;
2972 	var->s = (ar >> 4) & 1;
2973 	var->dpl = (ar >> 5) & 3;
2974 	/*
2975 	 * Some userspaces do not preserve unusable property. Since usable
2976 	 * segment has to be present according to VMX spec we can use present
2977 	 * property to amend userspace bug by making unusable segment always
2978 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
2979 	 * segment as unusable.
2980 	 */
2981 	var->present = !var->unusable;
2982 	var->avl = (ar >> 12) & 1;
2983 	var->l = (ar >> 13) & 1;
2984 	var->db = (ar >> 14) & 1;
2985 	var->g = (ar >> 15) & 1;
2986 }
2987 
2988 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
2989 {
2990 	struct kvm_segment s;
2991 
2992 	if (to_vmx(vcpu)->rmode.vm86_active) {
2993 		vmx_get_segment(vcpu, &s, seg);
2994 		return s.base;
2995 	}
2996 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
2997 }
2998 
2999 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3000 {
3001 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3002 
3003 	if (unlikely(vmx->rmode.vm86_active))
3004 		return 0;
3005 	else {
3006 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3007 		return VMX_AR_DPL(ar);
3008 	}
3009 }
3010 
3011 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3012 {
3013 	u32 ar;
3014 
3015 	if (var->unusable || !var->present)
3016 		ar = 1 << 16;
3017 	else {
3018 		ar = var->type & 15;
3019 		ar |= (var->s & 1) << 4;
3020 		ar |= (var->dpl & 3) << 5;
3021 		ar |= (var->present & 1) << 7;
3022 		ar |= (var->avl & 1) << 12;
3023 		ar |= (var->l & 1) << 13;
3024 		ar |= (var->db & 1) << 14;
3025 		ar |= (var->g & 1) << 15;
3026 	}
3027 
3028 	return ar;
3029 }
3030 
3031 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3032 {
3033 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3034 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3035 
3036 	vmx_segment_cache_clear(vmx);
3037 
3038 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3039 		vmx->rmode.segs[seg] = *var;
3040 		if (seg == VCPU_SREG_TR)
3041 			vmcs_write16(sf->selector, var->selector);
3042 		else if (var->s)
3043 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3044 		goto out;
3045 	}
3046 
3047 	vmcs_writel(sf->base, var->base);
3048 	vmcs_write32(sf->limit, var->limit);
3049 	vmcs_write16(sf->selector, var->selector);
3050 
3051 	/*
3052 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3053 	 * qemu binaries.
3054 	 *   IA32 arch specifies that at the time of processor reset the
3055 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3056 	 * is setting it to 0 in the userland code. This causes invalid guest
3057 	 * state vmexit when "unrestricted guest" mode is turned on.
3058 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3059 	 * tree. Newer qemu binaries with that qemu fix would not need this
3060 	 * kvm hack.
3061 	 */
3062 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3063 		var->type |= 0x1; /* Accessed */
3064 
3065 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3066 
3067 out:
3068 	vmx->emulation_required = emulation_required(vcpu);
3069 }
3070 
3071 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3072 {
3073 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3074 
3075 	*db = (ar >> 14) & 1;
3076 	*l = (ar >> 13) & 1;
3077 }
3078 
3079 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3080 {
3081 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3082 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3083 }
3084 
3085 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3086 {
3087 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3088 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3089 }
3090 
3091 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3092 {
3093 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3094 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3095 }
3096 
3097 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3098 {
3099 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3100 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3101 }
3102 
3103 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3104 {
3105 	struct kvm_segment var;
3106 	u32 ar;
3107 
3108 	vmx_get_segment(vcpu, &var, seg);
3109 	var.dpl = 0x3;
3110 	if (seg == VCPU_SREG_CS)
3111 		var.type = 0x3;
3112 	ar = vmx_segment_access_rights(&var);
3113 
3114 	if (var.base != (var.selector << 4))
3115 		return false;
3116 	if (var.limit != 0xffff)
3117 		return false;
3118 	if (ar != 0xf3)
3119 		return false;
3120 
3121 	return true;
3122 }
3123 
3124 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3125 {
3126 	struct kvm_segment cs;
3127 	unsigned int cs_rpl;
3128 
3129 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3130 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3131 
3132 	if (cs.unusable)
3133 		return false;
3134 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3135 		return false;
3136 	if (!cs.s)
3137 		return false;
3138 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3139 		if (cs.dpl > cs_rpl)
3140 			return false;
3141 	} else {
3142 		if (cs.dpl != cs_rpl)
3143 			return false;
3144 	}
3145 	if (!cs.present)
3146 		return false;
3147 
3148 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3149 	return true;
3150 }
3151 
3152 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3153 {
3154 	struct kvm_segment ss;
3155 	unsigned int ss_rpl;
3156 
3157 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3158 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3159 
3160 	if (ss.unusable)
3161 		return true;
3162 	if (ss.type != 3 && ss.type != 7)
3163 		return false;
3164 	if (!ss.s)
3165 		return false;
3166 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3167 		return false;
3168 	if (!ss.present)
3169 		return false;
3170 
3171 	return true;
3172 }
3173 
3174 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3175 {
3176 	struct kvm_segment var;
3177 	unsigned int rpl;
3178 
3179 	vmx_get_segment(vcpu, &var, seg);
3180 	rpl = var.selector & SEGMENT_RPL_MASK;
3181 
3182 	if (var.unusable)
3183 		return true;
3184 	if (!var.s)
3185 		return false;
3186 	if (!var.present)
3187 		return false;
3188 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3189 		if (var.dpl < rpl) /* DPL < RPL */
3190 			return false;
3191 	}
3192 
3193 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3194 	 * rights flags
3195 	 */
3196 	return true;
3197 }
3198 
3199 static bool tr_valid(struct kvm_vcpu *vcpu)
3200 {
3201 	struct kvm_segment tr;
3202 
3203 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3204 
3205 	if (tr.unusable)
3206 		return false;
3207 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3208 		return false;
3209 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3210 		return false;
3211 	if (!tr.present)
3212 		return false;
3213 
3214 	return true;
3215 }
3216 
3217 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3218 {
3219 	struct kvm_segment ldtr;
3220 
3221 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3222 
3223 	if (ldtr.unusable)
3224 		return true;
3225 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3226 		return false;
3227 	if (ldtr.type != 2)
3228 		return false;
3229 	if (!ldtr.present)
3230 		return false;
3231 
3232 	return true;
3233 }
3234 
3235 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3236 {
3237 	struct kvm_segment cs, ss;
3238 
3239 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3240 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3241 
3242 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3243 		 (ss.selector & SEGMENT_RPL_MASK));
3244 }
3245 
3246 /*
3247  * Check if guest state is valid. Returns true if valid, false if
3248  * not.
3249  * We assume that registers are always usable
3250  */
3251 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3252 {
3253 	if (enable_unrestricted_guest)
3254 		return true;
3255 
3256 	/* real mode guest state checks */
3257 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3258 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3259 			return false;
3260 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3261 			return false;
3262 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3263 			return false;
3264 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3265 			return false;
3266 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3267 			return false;
3268 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3269 			return false;
3270 	} else {
3271 	/* protected mode guest state checks */
3272 		if (!cs_ss_rpl_check(vcpu))
3273 			return false;
3274 		if (!code_segment_valid(vcpu))
3275 			return false;
3276 		if (!stack_segment_valid(vcpu))
3277 			return false;
3278 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3279 			return false;
3280 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3281 			return false;
3282 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3283 			return false;
3284 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3285 			return false;
3286 		if (!tr_valid(vcpu))
3287 			return false;
3288 		if (!ldtr_valid(vcpu))
3289 			return false;
3290 	}
3291 	/* TODO:
3292 	 * - Add checks on RIP
3293 	 * - Add checks on RFLAGS
3294 	 */
3295 
3296 	return true;
3297 }
3298 
3299 static int init_rmode_tss(struct kvm *kvm)
3300 {
3301 	gfn_t fn;
3302 	u16 data = 0;
3303 	int idx, r;
3304 
3305 	idx = srcu_read_lock(&kvm->srcu);
3306 	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3307 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3308 	if (r < 0)
3309 		goto out;
3310 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3311 	r = kvm_write_guest_page(kvm, fn++, &data,
3312 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
3313 	if (r < 0)
3314 		goto out;
3315 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3316 	if (r < 0)
3317 		goto out;
3318 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3319 	if (r < 0)
3320 		goto out;
3321 	data = ~0;
3322 	r = kvm_write_guest_page(kvm, fn, &data,
3323 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3324 				 sizeof(u8));
3325 out:
3326 	srcu_read_unlock(&kvm->srcu, idx);
3327 	return r;
3328 }
3329 
3330 static int init_rmode_identity_map(struct kvm *kvm)
3331 {
3332 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3333 	int i, idx, r = 0;
3334 	kvm_pfn_t identity_map_pfn;
3335 	u32 tmp;
3336 
3337 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3338 	mutex_lock(&kvm->slots_lock);
3339 
3340 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3341 		goto out2;
3342 
3343 	if (!kvm_vmx->ept_identity_map_addr)
3344 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3345 	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3346 
3347 	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3348 				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3349 	if (r < 0)
3350 		goto out2;
3351 
3352 	idx = srcu_read_lock(&kvm->srcu);
3353 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3354 	if (r < 0)
3355 		goto out;
3356 	/* Set up identity-mapping pagetable for EPT in real mode */
3357 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3358 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3359 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3360 		r = kvm_write_guest_page(kvm, identity_map_pfn,
3361 				&tmp, i * sizeof(tmp), sizeof(tmp));
3362 		if (r < 0)
3363 			goto out;
3364 	}
3365 	kvm_vmx->ept_identity_pagetable_done = true;
3366 
3367 out:
3368 	srcu_read_unlock(&kvm->srcu, idx);
3369 
3370 out2:
3371 	mutex_unlock(&kvm->slots_lock);
3372 	return r;
3373 }
3374 
3375 static void seg_setup(int seg)
3376 {
3377 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3378 	unsigned int ar;
3379 
3380 	vmcs_write16(sf->selector, 0);
3381 	vmcs_writel(sf->base, 0);
3382 	vmcs_write32(sf->limit, 0xffff);
3383 	ar = 0x93;
3384 	if (seg == VCPU_SREG_CS)
3385 		ar |= 0x08; /* code segment */
3386 
3387 	vmcs_write32(sf->ar_bytes, ar);
3388 }
3389 
3390 static int alloc_apic_access_page(struct kvm *kvm)
3391 {
3392 	struct page *page;
3393 	int r = 0;
3394 
3395 	mutex_lock(&kvm->slots_lock);
3396 	if (kvm->arch.apic_access_page_done)
3397 		goto out;
3398 	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3399 				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3400 	if (r)
3401 		goto out;
3402 
3403 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3404 	if (is_error_page(page)) {
3405 		r = -EFAULT;
3406 		goto out;
3407 	}
3408 
3409 	/*
3410 	 * Do not pin the page in memory, so that memory hot-unplug
3411 	 * is able to migrate it.
3412 	 */
3413 	put_page(page);
3414 	kvm->arch.apic_access_page_done = true;
3415 out:
3416 	mutex_unlock(&kvm->slots_lock);
3417 	return r;
3418 }
3419 
3420 int allocate_vpid(void)
3421 {
3422 	int vpid;
3423 
3424 	if (!enable_vpid)
3425 		return 0;
3426 	spin_lock(&vmx_vpid_lock);
3427 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3428 	if (vpid < VMX_NR_VPIDS)
3429 		__set_bit(vpid, vmx_vpid_bitmap);
3430 	else
3431 		vpid = 0;
3432 	spin_unlock(&vmx_vpid_lock);
3433 	return vpid;
3434 }
3435 
3436 void free_vpid(int vpid)
3437 {
3438 	if (!enable_vpid || vpid == 0)
3439 		return;
3440 	spin_lock(&vmx_vpid_lock);
3441 	__clear_bit(vpid, vmx_vpid_bitmap);
3442 	spin_unlock(&vmx_vpid_lock);
3443 }
3444 
3445 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3446 							  u32 msr, int type)
3447 {
3448 	int f = sizeof(unsigned long);
3449 
3450 	if (!cpu_has_vmx_msr_bitmap())
3451 		return;
3452 
3453 	if (static_branch_unlikely(&enable_evmcs))
3454 		evmcs_touch_msr_bitmap();
3455 
3456 	/*
3457 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3458 	 * have the write-low and read-high bitmap offsets the wrong way round.
3459 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3460 	 */
3461 	if (msr <= 0x1fff) {
3462 		if (type & MSR_TYPE_R)
3463 			/* read-low */
3464 			__clear_bit(msr, msr_bitmap + 0x000 / f);
3465 
3466 		if (type & MSR_TYPE_W)
3467 			/* write-low */
3468 			__clear_bit(msr, msr_bitmap + 0x800 / f);
3469 
3470 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3471 		msr &= 0x1fff;
3472 		if (type & MSR_TYPE_R)
3473 			/* read-high */
3474 			__clear_bit(msr, msr_bitmap + 0x400 / f);
3475 
3476 		if (type & MSR_TYPE_W)
3477 			/* write-high */
3478 			__clear_bit(msr, msr_bitmap + 0xc00 / f);
3479 
3480 	}
3481 }
3482 
3483 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3484 							 u32 msr, int type)
3485 {
3486 	int f = sizeof(unsigned long);
3487 
3488 	if (!cpu_has_vmx_msr_bitmap())
3489 		return;
3490 
3491 	if (static_branch_unlikely(&enable_evmcs))
3492 		evmcs_touch_msr_bitmap();
3493 
3494 	/*
3495 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3496 	 * have the write-low and read-high bitmap offsets the wrong way round.
3497 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3498 	 */
3499 	if (msr <= 0x1fff) {
3500 		if (type & MSR_TYPE_R)
3501 			/* read-low */
3502 			__set_bit(msr, msr_bitmap + 0x000 / f);
3503 
3504 		if (type & MSR_TYPE_W)
3505 			/* write-low */
3506 			__set_bit(msr, msr_bitmap + 0x800 / f);
3507 
3508 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3509 		msr &= 0x1fff;
3510 		if (type & MSR_TYPE_R)
3511 			/* read-high */
3512 			__set_bit(msr, msr_bitmap + 0x400 / f);
3513 
3514 		if (type & MSR_TYPE_W)
3515 			/* write-high */
3516 			__set_bit(msr, msr_bitmap + 0xc00 / f);
3517 
3518 	}
3519 }
3520 
3521 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3522 			     			      u32 msr, int type, bool value)
3523 {
3524 	if (value)
3525 		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3526 	else
3527 		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3528 }
3529 
3530 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3531 {
3532 	u8 mode = 0;
3533 
3534 	if (cpu_has_secondary_exec_ctrls() &&
3535 	    (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
3536 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3537 		mode |= MSR_BITMAP_MODE_X2APIC;
3538 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3539 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3540 	}
3541 
3542 	return mode;
3543 }
3544 
3545 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3546 					 u8 mode)
3547 {
3548 	int msr;
3549 
3550 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3551 		unsigned word = msr / BITS_PER_LONG;
3552 		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3553 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3554 	}
3555 
3556 	if (mode & MSR_BITMAP_MODE_X2APIC) {
3557 		/*
3558 		 * TPR reads and writes can be virtualized even if virtual interrupt
3559 		 * delivery is not in use.
3560 		 */
3561 		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3562 		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3563 			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3564 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3565 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3566 		}
3567 	}
3568 }
3569 
3570 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3571 {
3572 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3573 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3574 	u8 mode = vmx_msr_bitmap_mode(vcpu);
3575 	u8 changed = mode ^ vmx->msr_bitmap_mode;
3576 
3577 	if (!changed)
3578 		return;
3579 
3580 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3581 		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3582 
3583 	vmx->msr_bitmap_mode = mode;
3584 }
3585 
3586 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3587 {
3588 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3589 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3590 	u32 i;
3591 
3592 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3593 							MSR_TYPE_RW, flag);
3594 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3595 							MSR_TYPE_RW, flag);
3596 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3597 							MSR_TYPE_RW, flag);
3598 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3599 							MSR_TYPE_RW, flag);
3600 	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3601 		vmx_set_intercept_for_msr(msr_bitmap,
3602 			MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3603 		vmx_set_intercept_for_msr(msr_bitmap,
3604 			MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3605 	}
3606 }
3607 
3608 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3609 {
3610 	return enable_apicv;
3611 }
3612 
3613 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3614 {
3615 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3616 	void *vapic_page;
3617 	u32 vppr;
3618 	int rvi;
3619 
3620 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3621 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3622 		WARN_ON_ONCE(!vmx->nested.virtual_apic_page))
3623 		return false;
3624 
3625 	rvi = vmx_get_rvi();
3626 
3627 	vapic_page = kmap(vmx->nested.virtual_apic_page);
3628 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3629 	kunmap(vmx->nested.virtual_apic_page);
3630 
3631 	return ((rvi & 0xf0) > (vppr & 0xf0));
3632 }
3633 
3634 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3635 						     bool nested)
3636 {
3637 #ifdef CONFIG_SMP
3638 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3639 
3640 	if (vcpu->mode == IN_GUEST_MODE) {
3641 		/*
3642 		 * The vector of interrupt to be delivered to vcpu had
3643 		 * been set in PIR before this function.
3644 		 *
3645 		 * Following cases will be reached in this block, and
3646 		 * we always send a notification event in all cases as
3647 		 * explained below.
3648 		 *
3649 		 * Case 1: vcpu keeps in non-root mode. Sending a
3650 		 * notification event posts the interrupt to vcpu.
3651 		 *
3652 		 * Case 2: vcpu exits to root mode and is still
3653 		 * runnable. PIR will be synced to vIRR before the
3654 		 * next vcpu entry. Sending a notification event in
3655 		 * this case has no effect, as vcpu is not in root
3656 		 * mode.
3657 		 *
3658 		 * Case 3: vcpu exits to root mode and is blocked.
3659 		 * vcpu_block() has already synced PIR to vIRR and
3660 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3661 		 * a blocked vcpu here does not wait for any requested
3662 		 * interrupts in PIR, and sending a notification event
3663 		 * which has no effect is safe here.
3664 		 */
3665 
3666 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3667 		return true;
3668 	}
3669 #endif
3670 	return false;
3671 }
3672 
3673 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3674 						int vector)
3675 {
3676 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3677 
3678 	if (is_guest_mode(vcpu) &&
3679 	    vector == vmx->nested.posted_intr_nv) {
3680 		/*
3681 		 * If a posted intr is not recognized by hardware,
3682 		 * we will accomplish it in the next vmentry.
3683 		 */
3684 		vmx->nested.pi_pending = true;
3685 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3686 		/* the PIR and ON have been set by L1. */
3687 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3688 			kvm_vcpu_kick(vcpu);
3689 		return 0;
3690 	}
3691 	return -1;
3692 }
3693 /*
3694  * Send interrupt to vcpu via posted interrupt way.
3695  * 1. If target vcpu is running(non-root mode), send posted interrupt
3696  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3697  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3698  * interrupt from PIR in next vmentry.
3699  */
3700 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3701 {
3702 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3703 	int r;
3704 
3705 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3706 	if (!r)
3707 		return;
3708 
3709 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3710 		return;
3711 
3712 	/* If a previous notification has sent the IPI, nothing to do.  */
3713 	if (pi_test_and_set_on(&vmx->pi_desc))
3714 		return;
3715 
3716 	if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3717 		kvm_vcpu_kick(vcpu);
3718 }
3719 
3720 /*
3721  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3722  * will not change in the lifetime of the guest.
3723  * Note that host-state that does change is set elsewhere. E.g., host-state
3724  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3725  */
3726 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3727 {
3728 	u32 low32, high32;
3729 	unsigned long tmpl;
3730 	struct desc_ptr dt;
3731 	unsigned long cr0, cr3, cr4;
3732 
3733 	cr0 = read_cr0();
3734 	WARN_ON(cr0 & X86_CR0_TS);
3735 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3736 
3737 	/*
3738 	 * Save the most likely value for this task's CR3 in the VMCS.
3739 	 * We can't use __get_current_cr3_fast() because we're not atomic.
3740 	 */
3741 	cr3 = __read_cr3();
3742 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
3743 	vmx->loaded_vmcs->host_state.cr3 = cr3;
3744 
3745 	/* Save the most likely value for this task's CR4 in the VMCS. */
3746 	cr4 = cr4_read_shadow();
3747 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
3748 	vmx->loaded_vmcs->host_state.cr4 = cr4;
3749 
3750 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3751 #ifdef CONFIG_X86_64
3752 	/*
3753 	 * Load null selectors, so we can avoid reloading them in
3754 	 * vmx_prepare_switch_to_host(), in case userspace uses
3755 	 * the null selectors too (the expected case).
3756 	 */
3757 	vmcs_write16(HOST_DS_SELECTOR, 0);
3758 	vmcs_write16(HOST_ES_SELECTOR, 0);
3759 #else
3760 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3761 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3762 #endif
3763 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3764 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3765 
3766 	store_idt(&dt);
3767 	vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
3768 	vmx->host_idt_base = dt.address;
3769 
3770 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3771 
3772 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3773 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3774 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3775 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3776 
3777 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3778 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
3779 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3780 	}
3781 
3782 	if (cpu_has_load_ia32_efer())
3783 		vmcs_write64(HOST_IA32_EFER, host_efer);
3784 }
3785 
3786 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3787 {
3788 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3789 	if (enable_ept)
3790 		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3791 	if (is_guest_mode(&vmx->vcpu))
3792 		vmx->vcpu.arch.cr4_guest_owned_bits &=
3793 			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3794 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3795 }
3796 
3797 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3798 {
3799 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3800 
3801 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3802 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3803 
3804 	if (!enable_vnmi)
3805 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3806 
3807 	/* Enable the preemption timer dynamically */
3808 	pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3809 	return pin_based_exec_ctrl;
3810 }
3811 
3812 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3813 {
3814 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3815 
3816 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3817 	if (cpu_has_secondary_exec_ctrls()) {
3818 		if (kvm_vcpu_apicv_active(vcpu))
3819 			vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
3820 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
3821 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3822 		else
3823 			vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
3824 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
3825 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3826 	}
3827 
3828 	if (cpu_has_vmx_msr_bitmap())
3829 		vmx_update_msr_bitmap(vcpu);
3830 }
3831 
3832 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3833 {
3834 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3835 
3836 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3837 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3838 
3839 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3840 		exec_control &= ~CPU_BASED_TPR_SHADOW;
3841 #ifdef CONFIG_X86_64
3842 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
3843 				CPU_BASED_CR8_LOAD_EXITING;
3844 #endif
3845 	}
3846 	if (!enable_ept)
3847 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
3848 				CPU_BASED_CR3_LOAD_EXITING  |
3849 				CPU_BASED_INVLPG_EXITING;
3850 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3851 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3852 				CPU_BASED_MONITOR_EXITING);
3853 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3854 		exec_control &= ~CPU_BASED_HLT_EXITING;
3855 	return exec_control;
3856 }
3857 
3858 
3859 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
3860 {
3861 	struct kvm_vcpu *vcpu = &vmx->vcpu;
3862 
3863 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3864 
3865 	if (pt_mode == PT_MODE_SYSTEM)
3866 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
3867 	if (!cpu_need_virtualize_apic_accesses(vcpu))
3868 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3869 	if (vmx->vpid == 0)
3870 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3871 	if (!enable_ept) {
3872 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3873 		enable_unrestricted_guest = 0;
3874 	}
3875 	if (!enable_unrestricted_guest)
3876 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3877 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
3878 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3879 	if (!kvm_vcpu_apicv_active(vcpu))
3880 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
3881 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3882 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
3883 
3884 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
3885 	 * in vmx_set_cr4.  */
3886 	exec_control &= ~SECONDARY_EXEC_DESC;
3887 
3888 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
3889 	   (handle_vmptrld).
3890 	   We can NOT enable shadow_vmcs here because we don't have yet
3891 	   a current VMCS12
3892 	*/
3893 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
3894 
3895 	if (!enable_pml)
3896 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
3897 
3898 	if (vmx_xsaves_supported()) {
3899 		/* Exposing XSAVES only when XSAVE is exposed */
3900 		bool xsaves_enabled =
3901 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
3902 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
3903 
3904 		if (!xsaves_enabled)
3905 			exec_control &= ~SECONDARY_EXEC_XSAVES;
3906 
3907 		if (nested) {
3908 			if (xsaves_enabled)
3909 				vmx->nested.msrs.secondary_ctls_high |=
3910 					SECONDARY_EXEC_XSAVES;
3911 			else
3912 				vmx->nested.msrs.secondary_ctls_high &=
3913 					~SECONDARY_EXEC_XSAVES;
3914 		}
3915 	}
3916 
3917 	if (vmx_rdtscp_supported()) {
3918 		bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
3919 		if (!rdtscp_enabled)
3920 			exec_control &= ~SECONDARY_EXEC_RDTSCP;
3921 
3922 		if (nested) {
3923 			if (rdtscp_enabled)
3924 				vmx->nested.msrs.secondary_ctls_high |=
3925 					SECONDARY_EXEC_RDTSCP;
3926 			else
3927 				vmx->nested.msrs.secondary_ctls_high &=
3928 					~SECONDARY_EXEC_RDTSCP;
3929 		}
3930 	}
3931 
3932 	if (vmx_invpcid_supported()) {
3933 		/* Exposing INVPCID only when PCID is exposed */
3934 		bool invpcid_enabled =
3935 			guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
3936 			guest_cpuid_has(vcpu, X86_FEATURE_PCID);
3937 
3938 		if (!invpcid_enabled) {
3939 			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
3940 			guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
3941 		}
3942 
3943 		if (nested) {
3944 			if (invpcid_enabled)
3945 				vmx->nested.msrs.secondary_ctls_high |=
3946 					SECONDARY_EXEC_ENABLE_INVPCID;
3947 			else
3948 				vmx->nested.msrs.secondary_ctls_high &=
3949 					~SECONDARY_EXEC_ENABLE_INVPCID;
3950 		}
3951 	}
3952 
3953 	if (vmx_rdrand_supported()) {
3954 		bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
3955 		if (rdrand_enabled)
3956 			exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
3957 
3958 		if (nested) {
3959 			if (rdrand_enabled)
3960 				vmx->nested.msrs.secondary_ctls_high |=
3961 					SECONDARY_EXEC_RDRAND_EXITING;
3962 			else
3963 				vmx->nested.msrs.secondary_ctls_high &=
3964 					~SECONDARY_EXEC_RDRAND_EXITING;
3965 		}
3966 	}
3967 
3968 	if (vmx_rdseed_supported()) {
3969 		bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
3970 		if (rdseed_enabled)
3971 			exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
3972 
3973 		if (nested) {
3974 			if (rdseed_enabled)
3975 				vmx->nested.msrs.secondary_ctls_high |=
3976 					SECONDARY_EXEC_RDSEED_EXITING;
3977 			else
3978 				vmx->nested.msrs.secondary_ctls_high &=
3979 					~SECONDARY_EXEC_RDSEED_EXITING;
3980 		}
3981 	}
3982 
3983 	vmx->secondary_exec_control = exec_control;
3984 }
3985 
3986 static void ept_set_mmio_spte_mask(void)
3987 {
3988 	/*
3989 	 * EPT Misconfigurations can be generated if the value of bits 2:0
3990 	 * of an EPT paging-structure entry is 110b (write/execute).
3991 	 */
3992 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
3993 				   VMX_EPT_MISCONFIG_WX_VALUE);
3994 }
3995 
3996 #define VMX_XSS_EXIT_BITMAP 0
3997 
3998 /*
3999  * Sets up the vmcs for emulated real mode.
4000  */
4001 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4002 {
4003 	int i;
4004 
4005 	if (nested)
4006 		nested_vmx_vcpu_setup();
4007 
4008 	if (cpu_has_vmx_msr_bitmap())
4009 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4010 
4011 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4012 
4013 	/* Control */
4014 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4015 	vmx->hv_deadline_tsc = -1;
4016 
4017 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4018 
4019 	if (cpu_has_secondary_exec_ctrls()) {
4020 		vmx_compute_secondary_exec_control(vmx);
4021 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4022 			     vmx->secondary_exec_control);
4023 	}
4024 
4025 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4026 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4027 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4028 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4029 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4030 
4031 		vmcs_write16(GUEST_INTR_STATUS, 0);
4032 
4033 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4034 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4035 	}
4036 
4037 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4038 		vmcs_write32(PLE_GAP, ple_gap);
4039 		vmx->ple_window = ple_window;
4040 		vmx->ple_window_dirty = true;
4041 	}
4042 
4043 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4044 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4045 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4046 
4047 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4048 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4049 	vmx_set_constant_host_state(vmx);
4050 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4051 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4052 
4053 	if (cpu_has_vmx_vmfunc())
4054 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4055 
4056 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4057 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4058 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4059 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4060 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4061 
4062 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4063 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4064 
4065 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4066 		u32 index = vmx_msr_index[i];
4067 		u32 data_low, data_high;
4068 		int j = vmx->nmsrs;
4069 
4070 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
4071 			continue;
4072 		if (wrmsr_safe(index, data_low, data_high) < 0)
4073 			continue;
4074 		vmx->guest_msrs[j].index = i;
4075 		vmx->guest_msrs[j].data = 0;
4076 		vmx->guest_msrs[j].mask = -1ull;
4077 		++vmx->nmsrs;
4078 	}
4079 
4080 	vm_exit_controls_init(vmx, vmx_vmexit_ctrl());
4081 
4082 	/* 22.2.1, 20.8.1 */
4083 	vm_entry_controls_init(vmx, vmx_vmentry_ctrl());
4084 
4085 	vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4086 	vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4087 
4088 	set_cr4_guest_host_mask(vmx);
4089 
4090 	if (vmx_xsaves_supported())
4091 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4092 
4093 	if (enable_pml) {
4094 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4095 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4096 	}
4097 
4098 	if (cpu_has_vmx_encls_vmexit())
4099 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4100 
4101 	if (pt_mode == PT_MODE_HOST_GUEST) {
4102 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4103 		/* Bit[6~0] are forced to 1, writes are ignored. */
4104 		vmx->pt_desc.guest.output_mask = 0x7F;
4105 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4106 	}
4107 }
4108 
4109 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4110 {
4111 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4112 	struct msr_data apic_base_msr;
4113 	u64 cr0;
4114 
4115 	vmx->rmode.vm86_active = 0;
4116 	vmx->spec_ctrl = 0;
4117 
4118 	vcpu->arch.microcode_version = 0x100000000ULL;
4119 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4120 	kvm_set_cr8(vcpu, 0);
4121 
4122 	if (!init_event) {
4123 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4124 				     MSR_IA32_APICBASE_ENABLE;
4125 		if (kvm_vcpu_is_reset_bsp(vcpu))
4126 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4127 		apic_base_msr.host_initiated = true;
4128 		kvm_set_apic_base(vcpu, &apic_base_msr);
4129 	}
4130 
4131 	vmx_segment_cache_clear(vmx);
4132 
4133 	seg_setup(VCPU_SREG_CS);
4134 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4135 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4136 
4137 	seg_setup(VCPU_SREG_DS);
4138 	seg_setup(VCPU_SREG_ES);
4139 	seg_setup(VCPU_SREG_FS);
4140 	seg_setup(VCPU_SREG_GS);
4141 	seg_setup(VCPU_SREG_SS);
4142 
4143 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4144 	vmcs_writel(GUEST_TR_BASE, 0);
4145 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4146 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4147 
4148 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4149 	vmcs_writel(GUEST_LDTR_BASE, 0);
4150 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4151 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4152 
4153 	if (!init_event) {
4154 		vmcs_write32(GUEST_SYSENTER_CS, 0);
4155 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
4156 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
4157 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4158 	}
4159 
4160 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4161 	kvm_rip_write(vcpu, 0xfff0);
4162 
4163 	vmcs_writel(GUEST_GDTR_BASE, 0);
4164 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4165 
4166 	vmcs_writel(GUEST_IDTR_BASE, 0);
4167 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4168 
4169 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4170 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4171 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4172 	if (kvm_mpx_supported())
4173 		vmcs_write64(GUEST_BNDCFGS, 0);
4174 
4175 	setup_msrs(vmx);
4176 
4177 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4178 
4179 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
4180 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4181 		if (cpu_need_tpr_shadow(vcpu))
4182 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4183 				     __pa(vcpu->arch.apic->regs));
4184 		vmcs_write32(TPR_THRESHOLD, 0);
4185 	}
4186 
4187 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4188 
4189 	if (vmx->vpid != 0)
4190 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4191 
4192 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4193 	vmx->vcpu.arch.cr0 = cr0;
4194 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
4195 	vmx_set_cr4(vcpu, 0);
4196 	vmx_set_efer(vcpu, 0);
4197 
4198 	update_exception_bitmap(vcpu);
4199 
4200 	vpid_sync_context(vmx->vpid);
4201 	if (init_event)
4202 		vmx_clear_hlt(vcpu);
4203 }
4204 
4205 static void enable_irq_window(struct kvm_vcpu *vcpu)
4206 {
4207 	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
4208 		      CPU_BASED_VIRTUAL_INTR_PENDING);
4209 }
4210 
4211 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4212 {
4213 	if (!enable_vnmi ||
4214 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4215 		enable_irq_window(vcpu);
4216 		return;
4217 	}
4218 
4219 	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
4220 		      CPU_BASED_VIRTUAL_NMI_PENDING);
4221 }
4222 
4223 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4224 {
4225 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4226 	uint32_t intr;
4227 	int irq = vcpu->arch.interrupt.nr;
4228 
4229 	trace_kvm_inj_virq(irq);
4230 
4231 	++vcpu->stat.irq_injections;
4232 	if (vmx->rmode.vm86_active) {
4233 		int inc_eip = 0;
4234 		if (vcpu->arch.interrupt.soft)
4235 			inc_eip = vcpu->arch.event_exit_inst_len;
4236 		if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4237 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4238 		return;
4239 	}
4240 	intr = irq | INTR_INFO_VALID_MASK;
4241 	if (vcpu->arch.interrupt.soft) {
4242 		intr |= INTR_TYPE_SOFT_INTR;
4243 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4244 			     vmx->vcpu.arch.event_exit_inst_len);
4245 	} else
4246 		intr |= INTR_TYPE_EXT_INTR;
4247 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4248 
4249 	vmx_clear_hlt(vcpu);
4250 }
4251 
4252 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4253 {
4254 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4255 
4256 	if (!enable_vnmi) {
4257 		/*
4258 		 * Tracking the NMI-blocked state in software is built upon
4259 		 * finding the next open IRQ window. This, in turn, depends on
4260 		 * well-behaving guests: They have to keep IRQs disabled at
4261 		 * least as long as the NMI handler runs. Otherwise we may
4262 		 * cause NMI nesting, maybe breaking the guest. But as this is
4263 		 * highly unlikely, we can live with the residual risk.
4264 		 */
4265 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4266 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4267 	}
4268 
4269 	++vcpu->stat.nmi_injections;
4270 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4271 
4272 	if (vmx->rmode.vm86_active) {
4273 		if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4274 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4275 		return;
4276 	}
4277 
4278 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4279 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4280 
4281 	vmx_clear_hlt(vcpu);
4282 }
4283 
4284 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4285 {
4286 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4287 	bool masked;
4288 
4289 	if (!enable_vnmi)
4290 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4291 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4292 		return false;
4293 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4294 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4295 	return masked;
4296 }
4297 
4298 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4299 {
4300 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4301 
4302 	if (!enable_vnmi) {
4303 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4304 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4305 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4306 		}
4307 	} else {
4308 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4309 		if (masked)
4310 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4311 				      GUEST_INTR_STATE_NMI);
4312 		else
4313 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4314 					GUEST_INTR_STATE_NMI);
4315 	}
4316 }
4317 
4318 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4319 {
4320 	if (to_vmx(vcpu)->nested.nested_run_pending)
4321 		return 0;
4322 
4323 	if (!enable_vnmi &&
4324 	    to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4325 		return 0;
4326 
4327 	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4328 		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4329 		   | GUEST_INTR_STATE_NMI));
4330 }
4331 
4332 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4333 {
4334 	return (!to_vmx(vcpu)->nested.nested_run_pending &&
4335 		vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4336 		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4337 			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4338 }
4339 
4340 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4341 {
4342 	int ret;
4343 
4344 	if (enable_unrestricted_guest)
4345 		return 0;
4346 
4347 	ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4348 				    PAGE_SIZE * 3);
4349 	if (ret)
4350 		return ret;
4351 	to_kvm_vmx(kvm)->tss_addr = addr;
4352 	return init_rmode_tss(kvm);
4353 }
4354 
4355 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4356 {
4357 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4358 	return 0;
4359 }
4360 
4361 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4362 {
4363 	switch (vec) {
4364 	case BP_VECTOR:
4365 		/*
4366 		 * Update instruction length as we may reinject the exception
4367 		 * from user space while in guest debugging mode.
4368 		 */
4369 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4370 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4371 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4372 			return false;
4373 		/* fall through */
4374 	case DB_VECTOR:
4375 		if (vcpu->guest_debug &
4376 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4377 			return false;
4378 		/* fall through */
4379 	case DE_VECTOR:
4380 	case OF_VECTOR:
4381 	case BR_VECTOR:
4382 	case UD_VECTOR:
4383 	case DF_VECTOR:
4384 	case SS_VECTOR:
4385 	case GP_VECTOR:
4386 	case MF_VECTOR:
4387 		return true;
4388 	break;
4389 	}
4390 	return false;
4391 }
4392 
4393 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4394 				  int vec, u32 err_code)
4395 {
4396 	/*
4397 	 * Instruction with address size override prefix opcode 0x67
4398 	 * Cause the #SS fault with 0 error code in VM86 mode.
4399 	 */
4400 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4401 		if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4402 			if (vcpu->arch.halt_request) {
4403 				vcpu->arch.halt_request = 0;
4404 				return kvm_vcpu_halt(vcpu);
4405 			}
4406 			return 1;
4407 		}
4408 		return 0;
4409 	}
4410 
4411 	/*
4412 	 * Forward all other exceptions that are valid in real mode.
4413 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4414 	 *        the required debugging infrastructure rework.
4415 	 */
4416 	kvm_queue_exception(vcpu, vec);
4417 	return 1;
4418 }
4419 
4420 /*
4421  * Trigger machine check on the host. We assume all the MSRs are already set up
4422  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4423  * We pass a fake environment to the machine check handler because we want
4424  * the guest to be always treated like user space, no matter what context
4425  * it used internally.
4426  */
4427 static void kvm_machine_check(void)
4428 {
4429 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4430 	struct pt_regs regs = {
4431 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
4432 		.flags = X86_EFLAGS_IF,
4433 	};
4434 
4435 	do_machine_check(&regs, 0);
4436 #endif
4437 }
4438 
4439 static int handle_machine_check(struct kvm_vcpu *vcpu)
4440 {
4441 	/* already handled by vcpu_run */
4442 	return 1;
4443 }
4444 
4445 static int handle_exception(struct kvm_vcpu *vcpu)
4446 {
4447 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4448 	struct kvm_run *kvm_run = vcpu->run;
4449 	u32 intr_info, ex_no, error_code;
4450 	unsigned long cr2, rip, dr6;
4451 	u32 vect_info;
4452 	enum emulation_result er;
4453 
4454 	vect_info = vmx->idt_vectoring_info;
4455 	intr_info = vmx->exit_intr_info;
4456 
4457 	if (is_machine_check(intr_info))
4458 		return handle_machine_check(vcpu);
4459 
4460 	if (is_nmi(intr_info))
4461 		return 1;  /* already handled by vmx_vcpu_run() */
4462 
4463 	if (is_invalid_opcode(intr_info))
4464 		return handle_ud(vcpu);
4465 
4466 	error_code = 0;
4467 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4468 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4469 
4470 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4471 		WARN_ON_ONCE(!enable_vmware_backdoor);
4472 		er = kvm_emulate_instruction(vcpu,
4473 			EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
4474 		if (er == EMULATE_USER_EXIT)
4475 			return 0;
4476 		else if (er != EMULATE_DONE)
4477 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4478 		return 1;
4479 	}
4480 
4481 	/*
4482 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4483 	 * MMIO, it is better to report an internal error.
4484 	 * See the comments in vmx_handle_exit.
4485 	 */
4486 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4487 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4488 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4489 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4490 		vcpu->run->internal.ndata = 3;
4491 		vcpu->run->internal.data[0] = vect_info;
4492 		vcpu->run->internal.data[1] = intr_info;
4493 		vcpu->run->internal.data[2] = error_code;
4494 		return 0;
4495 	}
4496 
4497 	if (is_page_fault(intr_info)) {
4498 		cr2 = vmcs_readl(EXIT_QUALIFICATION);
4499 		/* EPT won't cause page fault directly */
4500 		WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4501 		return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4502 	}
4503 
4504 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4505 
4506 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4507 		return handle_rmode_exception(vcpu, ex_no, error_code);
4508 
4509 	switch (ex_no) {
4510 	case AC_VECTOR:
4511 		kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4512 		return 1;
4513 	case DB_VECTOR:
4514 		dr6 = vmcs_readl(EXIT_QUALIFICATION);
4515 		if (!(vcpu->guest_debug &
4516 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4517 			vcpu->arch.dr6 &= ~15;
4518 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
4519 			if (is_icebp(intr_info))
4520 				skip_emulated_instruction(vcpu);
4521 
4522 			kvm_queue_exception(vcpu, DB_VECTOR);
4523 			return 1;
4524 		}
4525 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4526 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4527 		/* fall through */
4528 	case BP_VECTOR:
4529 		/*
4530 		 * Update instruction length as we may reinject #BP from
4531 		 * user space while in guest debugging mode. Reading it for
4532 		 * #DB as well causes no harm, it is not used in that case.
4533 		 */
4534 		vmx->vcpu.arch.event_exit_inst_len =
4535 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4536 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4537 		rip = kvm_rip_read(vcpu);
4538 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4539 		kvm_run->debug.arch.exception = ex_no;
4540 		break;
4541 	default:
4542 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4543 		kvm_run->ex.exception = ex_no;
4544 		kvm_run->ex.error_code = error_code;
4545 		break;
4546 	}
4547 	return 0;
4548 }
4549 
4550 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4551 {
4552 	++vcpu->stat.irq_exits;
4553 	return 1;
4554 }
4555 
4556 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4557 {
4558 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4559 	vcpu->mmio_needed = 0;
4560 	return 0;
4561 }
4562 
4563 static int handle_io(struct kvm_vcpu *vcpu)
4564 {
4565 	unsigned long exit_qualification;
4566 	int size, in, string;
4567 	unsigned port;
4568 
4569 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4570 	string = (exit_qualification & 16) != 0;
4571 
4572 	++vcpu->stat.io_exits;
4573 
4574 	if (string)
4575 		return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4576 
4577 	port = exit_qualification >> 16;
4578 	size = (exit_qualification & 7) + 1;
4579 	in = (exit_qualification & 8) != 0;
4580 
4581 	return kvm_fast_pio(vcpu, size, port, in);
4582 }
4583 
4584 static void
4585 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4586 {
4587 	/*
4588 	 * Patch in the VMCALL instruction:
4589 	 */
4590 	hypercall[0] = 0x0f;
4591 	hypercall[1] = 0x01;
4592 	hypercall[2] = 0xc1;
4593 }
4594 
4595 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4596 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4597 {
4598 	if (is_guest_mode(vcpu)) {
4599 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4600 		unsigned long orig_val = val;
4601 
4602 		/*
4603 		 * We get here when L2 changed cr0 in a way that did not change
4604 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4605 		 * but did change L0 shadowed bits. So we first calculate the
4606 		 * effective cr0 value that L1 would like to write into the
4607 		 * hardware. It consists of the L2-owned bits from the new
4608 		 * value combined with the L1-owned bits from L1's guest_cr0.
4609 		 */
4610 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4611 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4612 
4613 		if (!nested_guest_cr0_valid(vcpu, val))
4614 			return 1;
4615 
4616 		if (kvm_set_cr0(vcpu, val))
4617 			return 1;
4618 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4619 		return 0;
4620 	} else {
4621 		if (to_vmx(vcpu)->nested.vmxon &&
4622 		    !nested_host_cr0_valid(vcpu, val))
4623 			return 1;
4624 
4625 		return kvm_set_cr0(vcpu, val);
4626 	}
4627 }
4628 
4629 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4630 {
4631 	if (is_guest_mode(vcpu)) {
4632 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4633 		unsigned long orig_val = val;
4634 
4635 		/* analogously to handle_set_cr0 */
4636 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4637 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4638 		if (kvm_set_cr4(vcpu, val))
4639 			return 1;
4640 		vmcs_writel(CR4_READ_SHADOW, orig_val);
4641 		return 0;
4642 	} else
4643 		return kvm_set_cr4(vcpu, val);
4644 }
4645 
4646 static int handle_desc(struct kvm_vcpu *vcpu)
4647 {
4648 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4649 	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4650 }
4651 
4652 static int handle_cr(struct kvm_vcpu *vcpu)
4653 {
4654 	unsigned long exit_qualification, val;
4655 	int cr;
4656 	int reg;
4657 	int err;
4658 	int ret;
4659 
4660 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4661 	cr = exit_qualification & 15;
4662 	reg = (exit_qualification >> 8) & 15;
4663 	switch ((exit_qualification >> 4) & 3) {
4664 	case 0: /* mov to cr */
4665 		val = kvm_register_readl(vcpu, reg);
4666 		trace_kvm_cr_write(cr, val);
4667 		switch (cr) {
4668 		case 0:
4669 			err = handle_set_cr0(vcpu, val);
4670 			return kvm_complete_insn_gp(vcpu, err);
4671 		case 3:
4672 			WARN_ON_ONCE(enable_unrestricted_guest);
4673 			err = kvm_set_cr3(vcpu, val);
4674 			return kvm_complete_insn_gp(vcpu, err);
4675 		case 4:
4676 			err = handle_set_cr4(vcpu, val);
4677 			return kvm_complete_insn_gp(vcpu, err);
4678 		case 8: {
4679 				u8 cr8_prev = kvm_get_cr8(vcpu);
4680 				u8 cr8 = (u8)val;
4681 				err = kvm_set_cr8(vcpu, cr8);
4682 				ret = kvm_complete_insn_gp(vcpu, err);
4683 				if (lapic_in_kernel(vcpu))
4684 					return ret;
4685 				if (cr8_prev <= cr8)
4686 					return ret;
4687 				/*
4688 				 * TODO: we might be squashing a
4689 				 * KVM_GUESTDBG_SINGLESTEP-triggered
4690 				 * KVM_EXIT_DEBUG here.
4691 				 */
4692 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4693 				return 0;
4694 			}
4695 		}
4696 		break;
4697 	case 2: /* clts */
4698 		WARN_ONCE(1, "Guest should always own CR0.TS");
4699 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4700 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4701 		return kvm_skip_emulated_instruction(vcpu);
4702 	case 1: /*mov from cr*/
4703 		switch (cr) {
4704 		case 3:
4705 			WARN_ON_ONCE(enable_unrestricted_guest);
4706 			val = kvm_read_cr3(vcpu);
4707 			kvm_register_write(vcpu, reg, val);
4708 			trace_kvm_cr_read(cr, val);
4709 			return kvm_skip_emulated_instruction(vcpu);
4710 		case 8:
4711 			val = kvm_get_cr8(vcpu);
4712 			kvm_register_write(vcpu, reg, val);
4713 			trace_kvm_cr_read(cr, val);
4714 			return kvm_skip_emulated_instruction(vcpu);
4715 		}
4716 		break;
4717 	case 3: /* lmsw */
4718 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4719 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4720 		kvm_lmsw(vcpu, val);
4721 
4722 		return kvm_skip_emulated_instruction(vcpu);
4723 	default:
4724 		break;
4725 	}
4726 	vcpu->run->exit_reason = 0;
4727 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4728 	       (int)(exit_qualification >> 4) & 3, cr);
4729 	return 0;
4730 }
4731 
4732 static int handle_dr(struct kvm_vcpu *vcpu)
4733 {
4734 	unsigned long exit_qualification;
4735 	int dr, dr7, reg;
4736 
4737 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4738 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4739 
4740 	/* First, if DR does not exist, trigger UD */
4741 	if (!kvm_require_dr(vcpu, dr))
4742 		return 1;
4743 
4744 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
4745 	if (!kvm_require_cpl(vcpu, 0))
4746 		return 1;
4747 	dr7 = vmcs_readl(GUEST_DR7);
4748 	if (dr7 & DR7_GD) {
4749 		/*
4750 		 * As the vm-exit takes precedence over the debug trap, we
4751 		 * need to emulate the latter, either for the host or the
4752 		 * guest debugging itself.
4753 		 */
4754 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4755 			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4756 			vcpu->run->debug.arch.dr7 = dr7;
4757 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4758 			vcpu->run->debug.arch.exception = DB_VECTOR;
4759 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4760 			return 0;
4761 		} else {
4762 			vcpu->arch.dr6 &= ~15;
4763 			vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4764 			kvm_queue_exception(vcpu, DB_VECTOR);
4765 			return 1;
4766 		}
4767 	}
4768 
4769 	if (vcpu->guest_debug == 0) {
4770 		vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
4771 				CPU_BASED_MOV_DR_EXITING);
4772 
4773 		/*
4774 		 * No more DR vmexits; force a reload of the debug registers
4775 		 * and reenter on this instruction.  The next vmexit will
4776 		 * retrieve the full state of the debug registers.
4777 		 */
4778 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4779 		return 1;
4780 	}
4781 
4782 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4783 	if (exit_qualification & TYPE_MOV_FROM_DR) {
4784 		unsigned long val;
4785 
4786 		if (kvm_get_dr(vcpu, dr, &val))
4787 			return 1;
4788 		kvm_register_write(vcpu, reg, val);
4789 	} else
4790 		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4791 			return 1;
4792 
4793 	return kvm_skip_emulated_instruction(vcpu);
4794 }
4795 
4796 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4797 {
4798 	return vcpu->arch.dr6;
4799 }
4800 
4801 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4802 {
4803 }
4804 
4805 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4806 {
4807 	get_debugreg(vcpu->arch.db[0], 0);
4808 	get_debugreg(vcpu->arch.db[1], 1);
4809 	get_debugreg(vcpu->arch.db[2], 2);
4810 	get_debugreg(vcpu->arch.db[3], 3);
4811 	get_debugreg(vcpu->arch.dr6, 6);
4812 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4813 
4814 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4815 	vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
4816 }
4817 
4818 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4819 {
4820 	vmcs_writel(GUEST_DR7, val);
4821 }
4822 
4823 static int handle_cpuid(struct kvm_vcpu *vcpu)
4824 {
4825 	return kvm_emulate_cpuid(vcpu);
4826 }
4827 
4828 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4829 {
4830 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4831 	struct msr_data msr_info;
4832 
4833 	msr_info.index = ecx;
4834 	msr_info.host_initiated = false;
4835 	if (vmx_get_msr(vcpu, &msr_info)) {
4836 		trace_kvm_msr_read_ex(ecx);
4837 		kvm_inject_gp(vcpu, 0);
4838 		return 1;
4839 	}
4840 
4841 	trace_kvm_msr_read(ecx, msr_info.data);
4842 
4843 	/* FIXME: handling of bits 32:63 of rax, rdx */
4844 	vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
4845 	vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
4846 	return kvm_skip_emulated_instruction(vcpu);
4847 }
4848 
4849 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4850 {
4851 	struct msr_data msr;
4852 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4853 	u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4854 		| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4855 
4856 	msr.data = data;
4857 	msr.index = ecx;
4858 	msr.host_initiated = false;
4859 	if (kvm_set_msr(vcpu, &msr) != 0) {
4860 		trace_kvm_msr_write_ex(ecx, data);
4861 		kvm_inject_gp(vcpu, 0);
4862 		return 1;
4863 	}
4864 
4865 	trace_kvm_msr_write(ecx, data);
4866 	return kvm_skip_emulated_instruction(vcpu);
4867 }
4868 
4869 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4870 {
4871 	kvm_apic_update_ppr(vcpu);
4872 	return 1;
4873 }
4874 
4875 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4876 {
4877 	vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
4878 			CPU_BASED_VIRTUAL_INTR_PENDING);
4879 
4880 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4881 
4882 	++vcpu->stat.irq_window_exits;
4883 	return 1;
4884 }
4885 
4886 static int handle_halt(struct kvm_vcpu *vcpu)
4887 {
4888 	return kvm_emulate_halt(vcpu);
4889 }
4890 
4891 static int handle_vmcall(struct kvm_vcpu *vcpu)
4892 {
4893 	return kvm_emulate_hypercall(vcpu);
4894 }
4895 
4896 static int handle_invd(struct kvm_vcpu *vcpu)
4897 {
4898 	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4899 }
4900 
4901 static int handle_invlpg(struct kvm_vcpu *vcpu)
4902 {
4903 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4904 
4905 	kvm_mmu_invlpg(vcpu, exit_qualification);
4906 	return kvm_skip_emulated_instruction(vcpu);
4907 }
4908 
4909 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4910 {
4911 	int err;
4912 
4913 	err = kvm_rdpmc(vcpu);
4914 	return kvm_complete_insn_gp(vcpu, err);
4915 }
4916 
4917 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4918 {
4919 	return kvm_emulate_wbinvd(vcpu);
4920 }
4921 
4922 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4923 {
4924 	u64 new_bv = kvm_read_edx_eax(vcpu);
4925 	u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4926 
4927 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4928 		return kvm_skip_emulated_instruction(vcpu);
4929 	return 1;
4930 }
4931 
4932 static int handle_xsaves(struct kvm_vcpu *vcpu)
4933 {
4934 	kvm_skip_emulated_instruction(vcpu);
4935 	WARN(1, "this should never happen\n");
4936 	return 1;
4937 }
4938 
4939 static int handle_xrstors(struct kvm_vcpu *vcpu)
4940 {
4941 	kvm_skip_emulated_instruction(vcpu);
4942 	WARN(1, "this should never happen\n");
4943 	return 1;
4944 }
4945 
4946 static int handle_apic_access(struct kvm_vcpu *vcpu)
4947 {
4948 	if (likely(fasteoi)) {
4949 		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4950 		int access_type, offset;
4951 
4952 		access_type = exit_qualification & APIC_ACCESS_TYPE;
4953 		offset = exit_qualification & APIC_ACCESS_OFFSET;
4954 		/*
4955 		 * Sane guest uses MOV to write EOI, with written value
4956 		 * not cared. So make a short-circuit here by avoiding
4957 		 * heavy instruction emulation.
4958 		 */
4959 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4960 		    (offset == APIC_EOI)) {
4961 			kvm_lapic_set_eoi(vcpu);
4962 			return kvm_skip_emulated_instruction(vcpu);
4963 		}
4964 	}
4965 	return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
4966 }
4967 
4968 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
4969 {
4970 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4971 	int vector = exit_qualification & 0xff;
4972 
4973 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
4974 	kvm_apic_set_eoi_accelerated(vcpu, vector);
4975 	return 1;
4976 }
4977 
4978 static int handle_apic_write(struct kvm_vcpu *vcpu)
4979 {
4980 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4981 	u32 offset = exit_qualification & 0xfff;
4982 
4983 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
4984 	kvm_apic_write_nodecode(vcpu, offset);
4985 	return 1;
4986 }
4987 
4988 static int handle_task_switch(struct kvm_vcpu *vcpu)
4989 {
4990 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4991 	unsigned long exit_qualification;
4992 	bool has_error_code = false;
4993 	u32 error_code = 0;
4994 	u16 tss_selector;
4995 	int reason, type, idt_v, idt_index;
4996 
4997 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4998 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
4999 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5000 
5001 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5002 
5003 	reason = (u32)exit_qualification >> 30;
5004 	if (reason == TASK_SWITCH_GATE && idt_v) {
5005 		switch (type) {
5006 		case INTR_TYPE_NMI_INTR:
5007 			vcpu->arch.nmi_injected = false;
5008 			vmx_set_nmi_mask(vcpu, true);
5009 			break;
5010 		case INTR_TYPE_EXT_INTR:
5011 		case INTR_TYPE_SOFT_INTR:
5012 			kvm_clear_interrupt_queue(vcpu);
5013 			break;
5014 		case INTR_TYPE_HARD_EXCEPTION:
5015 			if (vmx->idt_vectoring_info &
5016 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5017 				has_error_code = true;
5018 				error_code =
5019 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5020 			}
5021 			/* fall through */
5022 		case INTR_TYPE_SOFT_EXCEPTION:
5023 			kvm_clear_exception_queue(vcpu);
5024 			break;
5025 		default:
5026 			break;
5027 		}
5028 	}
5029 	tss_selector = exit_qualification;
5030 
5031 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5032 		       type != INTR_TYPE_EXT_INTR &&
5033 		       type != INTR_TYPE_NMI_INTR))
5034 		skip_emulated_instruction(vcpu);
5035 
5036 	if (kvm_task_switch(vcpu, tss_selector,
5037 			    type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5038 			    has_error_code, error_code) == EMULATE_FAIL) {
5039 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5040 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5041 		vcpu->run->internal.ndata = 0;
5042 		return 0;
5043 	}
5044 
5045 	/*
5046 	 * TODO: What about debug traps on tss switch?
5047 	 *       Are we supposed to inject them and update dr6?
5048 	 */
5049 
5050 	return 1;
5051 }
5052 
5053 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5054 {
5055 	unsigned long exit_qualification;
5056 	gpa_t gpa;
5057 	u64 error_code;
5058 
5059 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5060 
5061 	/*
5062 	 * EPT violation happened while executing iret from NMI,
5063 	 * "blocked by NMI" bit has to be set before next VM entry.
5064 	 * There are errata that may cause this bit to not be set:
5065 	 * AAK134, BY25.
5066 	 */
5067 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5068 			enable_vnmi &&
5069 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5070 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5071 
5072 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5073 	trace_kvm_page_fault(gpa, exit_qualification);
5074 
5075 	/* Is it a read fault? */
5076 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5077 		     ? PFERR_USER_MASK : 0;
5078 	/* Is it a write fault? */
5079 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5080 		      ? PFERR_WRITE_MASK : 0;
5081 	/* Is it a fetch fault? */
5082 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5083 		      ? PFERR_FETCH_MASK : 0;
5084 	/* ept page table entry is present? */
5085 	error_code |= (exit_qualification &
5086 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5087 			EPT_VIOLATION_EXECUTABLE))
5088 		      ? PFERR_PRESENT_MASK : 0;
5089 
5090 	error_code |= (exit_qualification & 0x100) != 0 ?
5091 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5092 
5093 	vcpu->arch.exit_qualification = exit_qualification;
5094 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5095 }
5096 
5097 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5098 {
5099 	gpa_t gpa;
5100 
5101 	/*
5102 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5103 	 * nGPA here instead of the required GPA.
5104 	 */
5105 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5106 	if (!is_guest_mode(vcpu) &&
5107 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5108 		trace_kvm_fast_mmio(gpa);
5109 		/*
5110 		 * Doing kvm_skip_emulated_instruction() depends on undefined
5111 		 * behavior: Intel's manual doesn't mandate
5112 		 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
5113 		 * occurs and while on real hardware it was observed to be set,
5114 		 * other hypervisors (namely Hyper-V) don't set it, we end up
5115 		 * advancing IP with some random value. Disable fast mmio when
5116 		 * running nested and keep it for real hardware in hope that
5117 		 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
5118 		 */
5119 		if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
5120 			return kvm_skip_emulated_instruction(vcpu);
5121 		else
5122 			return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
5123 								EMULATE_DONE;
5124 	}
5125 
5126 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5127 }
5128 
5129 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5130 {
5131 	WARN_ON_ONCE(!enable_vnmi);
5132 	vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5133 			CPU_BASED_VIRTUAL_NMI_PENDING);
5134 	++vcpu->stat.nmi_window_exits;
5135 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5136 
5137 	return 1;
5138 }
5139 
5140 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5141 {
5142 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5143 	enum emulation_result err = EMULATE_DONE;
5144 	int ret = 1;
5145 	u32 cpu_exec_ctrl;
5146 	bool intr_window_requested;
5147 	unsigned count = 130;
5148 
5149 	/*
5150 	 * We should never reach the point where we are emulating L2
5151 	 * due to invalid guest state as that means we incorrectly
5152 	 * allowed a nested VMEntry with an invalid vmcs12.
5153 	 */
5154 	WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5155 
5156 	cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5157 	intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5158 
5159 	while (vmx->emulation_required && count-- != 0) {
5160 		if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5161 			return handle_interrupt_window(&vmx->vcpu);
5162 
5163 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5164 			return 1;
5165 
5166 		err = kvm_emulate_instruction(vcpu, 0);
5167 
5168 		if (err == EMULATE_USER_EXIT) {
5169 			++vcpu->stat.mmio_exits;
5170 			ret = 0;
5171 			goto out;
5172 		}
5173 
5174 		if (err != EMULATE_DONE)
5175 			goto emulation_error;
5176 
5177 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5178 		    vcpu->arch.exception.pending)
5179 			goto emulation_error;
5180 
5181 		if (vcpu->arch.halt_request) {
5182 			vcpu->arch.halt_request = 0;
5183 			ret = kvm_vcpu_halt(vcpu);
5184 			goto out;
5185 		}
5186 
5187 		if (signal_pending(current))
5188 			goto out;
5189 		if (need_resched())
5190 			schedule();
5191 	}
5192 
5193 out:
5194 	return ret;
5195 
5196 emulation_error:
5197 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5198 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5199 	vcpu->run->internal.ndata = 0;
5200 	return 0;
5201 }
5202 
5203 static void grow_ple_window(struct kvm_vcpu *vcpu)
5204 {
5205 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5206 	int old = vmx->ple_window;
5207 
5208 	vmx->ple_window = __grow_ple_window(old, ple_window,
5209 					    ple_window_grow,
5210 					    ple_window_max);
5211 
5212 	if (vmx->ple_window != old)
5213 		vmx->ple_window_dirty = true;
5214 
5215 	trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
5216 }
5217 
5218 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5219 {
5220 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5221 	int old = vmx->ple_window;
5222 
5223 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5224 					      ple_window_shrink,
5225 					      ple_window);
5226 
5227 	if (vmx->ple_window != old)
5228 		vmx->ple_window_dirty = true;
5229 
5230 	trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
5231 }
5232 
5233 /*
5234  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5235  */
5236 static void wakeup_handler(void)
5237 {
5238 	struct kvm_vcpu *vcpu;
5239 	int cpu = smp_processor_id();
5240 
5241 	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5242 	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5243 			blocked_vcpu_list) {
5244 		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5245 
5246 		if (pi_test_on(pi_desc) == 1)
5247 			kvm_vcpu_kick(vcpu);
5248 	}
5249 	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5250 }
5251 
5252 static void vmx_enable_tdp(void)
5253 {
5254 	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5255 		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5256 		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5257 		0ull, VMX_EPT_EXECUTABLE_MASK,
5258 		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5259 		VMX_EPT_RWX_MASK, 0ull);
5260 
5261 	ept_set_mmio_spte_mask();
5262 	kvm_enable_tdp();
5263 }
5264 
5265 /*
5266  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5267  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5268  */
5269 static int handle_pause(struct kvm_vcpu *vcpu)
5270 {
5271 	if (!kvm_pause_in_guest(vcpu->kvm))
5272 		grow_ple_window(vcpu);
5273 
5274 	/*
5275 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5276 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5277 	 * never set PAUSE_EXITING and just set PLE if supported,
5278 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5279 	 */
5280 	kvm_vcpu_on_spin(vcpu, true);
5281 	return kvm_skip_emulated_instruction(vcpu);
5282 }
5283 
5284 static int handle_nop(struct kvm_vcpu *vcpu)
5285 {
5286 	return kvm_skip_emulated_instruction(vcpu);
5287 }
5288 
5289 static int handle_mwait(struct kvm_vcpu *vcpu)
5290 {
5291 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5292 	return handle_nop(vcpu);
5293 }
5294 
5295 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5296 {
5297 	kvm_queue_exception(vcpu, UD_VECTOR);
5298 	return 1;
5299 }
5300 
5301 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5302 {
5303 	return 1;
5304 }
5305 
5306 static int handle_monitor(struct kvm_vcpu *vcpu)
5307 {
5308 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5309 	return handle_nop(vcpu);
5310 }
5311 
5312 static int handle_invpcid(struct kvm_vcpu *vcpu)
5313 {
5314 	u32 vmx_instruction_info;
5315 	unsigned long type;
5316 	bool pcid_enabled;
5317 	gva_t gva;
5318 	struct x86_exception e;
5319 	unsigned i;
5320 	unsigned long roots_to_free = 0;
5321 	struct {
5322 		u64 pcid;
5323 		u64 gla;
5324 	} operand;
5325 
5326 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5327 		kvm_queue_exception(vcpu, UD_VECTOR);
5328 		return 1;
5329 	}
5330 
5331 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5332 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5333 
5334 	if (type > 3) {
5335 		kvm_inject_gp(vcpu, 0);
5336 		return 1;
5337 	}
5338 
5339 	/* According to the Intel instruction reference, the memory operand
5340 	 * is read even if it isn't needed (e.g., for type==all)
5341 	 */
5342 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5343 				vmx_instruction_info, false, &gva))
5344 		return 1;
5345 
5346 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5347 		kvm_inject_page_fault(vcpu, &e);
5348 		return 1;
5349 	}
5350 
5351 	if (operand.pcid >> 12 != 0) {
5352 		kvm_inject_gp(vcpu, 0);
5353 		return 1;
5354 	}
5355 
5356 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5357 
5358 	switch (type) {
5359 	case INVPCID_TYPE_INDIV_ADDR:
5360 		if ((!pcid_enabled && (operand.pcid != 0)) ||
5361 		    is_noncanonical_address(operand.gla, vcpu)) {
5362 			kvm_inject_gp(vcpu, 0);
5363 			return 1;
5364 		}
5365 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5366 		return kvm_skip_emulated_instruction(vcpu);
5367 
5368 	case INVPCID_TYPE_SINGLE_CTXT:
5369 		if (!pcid_enabled && (operand.pcid != 0)) {
5370 			kvm_inject_gp(vcpu, 0);
5371 			return 1;
5372 		}
5373 
5374 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5375 			kvm_mmu_sync_roots(vcpu);
5376 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5377 		}
5378 
5379 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5380 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5381 			    == operand.pcid)
5382 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5383 
5384 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5385 		/*
5386 		 * If neither the current cr3 nor any of the prev_roots use the
5387 		 * given PCID, then nothing needs to be done here because a
5388 		 * resync will happen anyway before switching to any other CR3.
5389 		 */
5390 
5391 		return kvm_skip_emulated_instruction(vcpu);
5392 
5393 	case INVPCID_TYPE_ALL_NON_GLOBAL:
5394 		/*
5395 		 * Currently, KVM doesn't mark global entries in the shadow
5396 		 * page tables, so a non-global flush just degenerates to a
5397 		 * global flush. If needed, we could optimize this later by
5398 		 * keeping track of global entries in shadow page tables.
5399 		 */
5400 
5401 		/* fall-through */
5402 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
5403 		kvm_mmu_unload(vcpu);
5404 		return kvm_skip_emulated_instruction(vcpu);
5405 
5406 	default:
5407 		BUG(); /* We have already checked above that type <= 3 */
5408 	}
5409 }
5410 
5411 static int handle_pml_full(struct kvm_vcpu *vcpu)
5412 {
5413 	unsigned long exit_qualification;
5414 
5415 	trace_kvm_pml_full(vcpu->vcpu_id);
5416 
5417 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5418 
5419 	/*
5420 	 * PML buffer FULL happened while executing iret from NMI,
5421 	 * "blocked by NMI" bit has to be set before next VM entry.
5422 	 */
5423 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5424 			enable_vnmi &&
5425 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5426 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5427 				GUEST_INTR_STATE_NMI);
5428 
5429 	/*
5430 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5431 	 * here.., and there's no userspace involvement needed for PML.
5432 	 */
5433 	return 1;
5434 }
5435 
5436 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5437 {
5438 	if (!to_vmx(vcpu)->req_immediate_exit)
5439 		kvm_lapic_expired_hv_timer(vcpu);
5440 	return 1;
5441 }
5442 
5443 /*
5444  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5445  * are overwritten by nested_vmx_setup() when nested=1.
5446  */
5447 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5448 {
5449 	kvm_queue_exception(vcpu, UD_VECTOR);
5450 	return 1;
5451 }
5452 
5453 static int handle_encls(struct kvm_vcpu *vcpu)
5454 {
5455 	/*
5456 	 * SGX virtualization is not yet supported.  There is no software
5457 	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5458 	 * to prevent the guest from executing ENCLS.
5459 	 */
5460 	kvm_queue_exception(vcpu, UD_VECTOR);
5461 	return 1;
5462 }
5463 
5464 /*
5465  * The exit handlers return 1 if the exit was handled fully and guest execution
5466  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5467  * to be done to userspace and return 0.
5468  */
5469 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5470 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
5471 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5472 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5473 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5474 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5475 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5476 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5477 	[EXIT_REASON_CPUID]                   = handle_cpuid,
5478 	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
5479 	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5480 	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5481 	[EXIT_REASON_HLT]                     = handle_halt,
5482 	[EXIT_REASON_INVD]		      = handle_invd,
5483 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5484 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
5485 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
5486 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5487 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5488 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5489 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5490 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5491 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5492 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5493 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5494 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5495 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5496 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5497 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5498 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5499 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
5500 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
5501 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5502 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5503 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5504 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5505 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5506 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5507 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5508 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
5509 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5510 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5511 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5512 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5513 	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
5514 	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
5515 	[EXIT_REASON_XSAVES]                  = handle_xsaves,
5516 	[EXIT_REASON_XRSTORS]                 = handle_xrstors,
5517 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5518 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5519 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5520 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5521 	[EXIT_REASON_ENCLS]		      = handle_encls,
5522 };
5523 
5524 static const int kvm_vmx_max_exit_handlers =
5525 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5526 
5527 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5528 {
5529 	*info1 = vmcs_readl(EXIT_QUALIFICATION);
5530 	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5531 }
5532 
5533 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5534 {
5535 	if (vmx->pml_pg) {
5536 		__free_page(vmx->pml_pg);
5537 		vmx->pml_pg = NULL;
5538 	}
5539 }
5540 
5541 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5542 {
5543 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5544 	u64 *pml_buf;
5545 	u16 pml_idx;
5546 
5547 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5548 
5549 	/* Do nothing if PML buffer is empty */
5550 	if (pml_idx == (PML_ENTITY_NUM - 1))
5551 		return;
5552 
5553 	/* PML index always points to next available PML buffer entity */
5554 	if (pml_idx >= PML_ENTITY_NUM)
5555 		pml_idx = 0;
5556 	else
5557 		pml_idx++;
5558 
5559 	pml_buf = page_address(vmx->pml_pg);
5560 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5561 		u64 gpa;
5562 
5563 		gpa = pml_buf[pml_idx];
5564 		WARN_ON(gpa & (PAGE_SIZE - 1));
5565 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5566 	}
5567 
5568 	/* reset PML index */
5569 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5570 }
5571 
5572 /*
5573  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5574  * Called before reporting dirty_bitmap to userspace.
5575  */
5576 static void kvm_flush_pml_buffers(struct kvm *kvm)
5577 {
5578 	int i;
5579 	struct kvm_vcpu *vcpu;
5580 	/*
5581 	 * We only need to kick vcpu out of guest mode here, as PML buffer
5582 	 * is flushed at beginning of all VMEXITs, and it's obvious that only
5583 	 * vcpus running in guest are possible to have unflushed GPAs in PML
5584 	 * buffer.
5585 	 */
5586 	kvm_for_each_vcpu(i, vcpu, kvm)
5587 		kvm_vcpu_kick(vcpu);
5588 }
5589 
5590 static void vmx_dump_sel(char *name, uint32_t sel)
5591 {
5592 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5593 	       name, vmcs_read16(sel),
5594 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5595 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5596 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5597 }
5598 
5599 static void vmx_dump_dtsel(char *name, uint32_t limit)
5600 {
5601 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5602 	       name, vmcs_read32(limit),
5603 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5604 }
5605 
5606 static void dump_vmcs(void)
5607 {
5608 	u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5609 	u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5610 	u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5611 	u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5612 	u32 secondary_exec_control = 0;
5613 	unsigned long cr4 = vmcs_readl(GUEST_CR4);
5614 	u64 efer = vmcs_read64(GUEST_IA32_EFER);
5615 	int i, n;
5616 
5617 	if (cpu_has_secondary_exec_ctrls())
5618 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5619 
5620 	pr_err("*** Guest State ***\n");
5621 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5622 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5623 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5624 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5625 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5626 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5627 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5628 	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5629 	{
5630 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5631 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5632 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5633 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5634 	}
5635 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5636 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5637 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5638 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5639 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5640 	       vmcs_readl(GUEST_SYSENTER_ESP),
5641 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5642 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5643 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5644 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5645 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5646 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5647 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5648 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5649 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5650 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5651 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5652 	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5653 	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5654 		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5655 		       efer, vmcs_read64(GUEST_IA32_PAT));
5656 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5657 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5658 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5659 	if (cpu_has_load_perf_global_ctrl() &&
5660 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5661 		pr_err("PerfGlobCtl = 0x%016llx\n",
5662 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5663 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5664 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5665 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5666 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5667 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5668 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5669 		pr_err("InterruptStatus = %04x\n",
5670 		       vmcs_read16(GUEST_INTR_STATUS));
5671 
5672 	pr_err("*** Host State ***\n");
5673 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5674 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5675 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5676 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5677 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5678 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5679 	       vmcs_read16(HOST_TR_SELECTOR));
5680 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5681 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5682 	       vmcs_readl(HOST_TR_BASE));
5683 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5684 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5685 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5686 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5687 	       vmcs_readl(HOST_CR4));
5688 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5689 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5690 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5691 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5692 	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5693 		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5694 		       vmcs_read64(HOST_IA32_EFER),
5695 		       vmcs_read64(HOST_IA32_PAT));
5696 	if (cpu_has_load_perf_global_ctrl() &&
5697 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5698 		pr_err("PerfGlobCtl = 0x%016llx\n",
5699 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5700 
5701 	pr_err("*** Control State ***\n");
5702 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5703 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5704 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5705 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5706 	       vmcs_read32(EXCEPTION_BITMAP),
5707 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5708 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5709 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5710 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5711 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5712 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5713 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5714 	       vmcs_read32(VM_EXIT_INTR_INFO),
5715 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5716 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5717 	pr_err("        reason=%08x qualification=%016lx\n",
5718 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5719 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5720 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5721 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5722 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5723 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5724 		pr_err("TSC Multiplier = 0x%016llx\n",
5725 		       vmcs_read64(TSC_MULTIPLIER));
5726 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
5727 		pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5728 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5729 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5730 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5731 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5732 	n = vmcs_read32(CR3_TARGET_COUNT);
5733 	for (i = 0; i + 1 < n; i += 4)
5734 		pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5735 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5736 		       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5737 	if (i < n)
5738 		pr_err("CR3 target%u=%016lx\n",
5739 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5740 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5741 		pr_err("PLE Gap=%08x Window=%08x\n",
5742 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5743 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5744 		pr_err("Virtual processor ID = 0x%04x\n",
5745 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5746 }
5747 
5748 /*
5749  * The guest has exited.  See if we can fix it or if we need userspace
5750  * assistance.
5751  */
5752 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5753 {
5754 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5755 	u32 exit_reason = vmx->exit_reason;
5756 	u32 vectoring_info = vmx->idt_vectoring_info;
5757 
5758 	trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5759 
5760 	/*
5761 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5762 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5763 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5764 	 * mode as if vcpus is in root mode, the PML buffer must has been
5765 	 * flushed already.
5766 	 */
5767 	if (enable_pml)
5768 		vmx_flush_pml_buffer(vcpu);
5769 
5770 	/* If guest state is invalid, start emulating */
5771 	if (vmx->emulation_required)
5772 		return handle_invalid_guest_state(vcpu);
5773 
5774 	if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5775 		return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5776 
5777 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5778 		dump_vmcs();
5779 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5780 		vcpu->run->fail_entry.hardware_entry_failure_reason
5781 			= exit_reason;
5782 		return 0;
5783 	}
5784 
5785 	if (unlikely(vmx->fail)) {
5786 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5787 		vcpu->run->fail_entry.hardware_entry_failure_reason
5788 			= vmcs_read32(VM_INSTRUCTION_ERROR);
5789 		return 0;
5790 	}
5791 
5792 	/*
5793 	 * Note:
5794 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5795 	 * delivery event since it indicates guest is accessing MMIO.
5796 	 * The vm-exit can be triggered again after return to guest that
5797 	 * will cause infinite loop.
5798 	 */
5799 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5800 			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5801 			exit_reason != EXIT_REASON_EPT_VIOLATION &&
5802 			exit_reason != EXIT_REASON_PML_FULL &&
5803 			exit_reason != EXIT_REASON_TASK_SWITCH)) {
5804 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5805 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5806 		vcpu->run->internal.ndata = 3;
5807 		vcpu->run->internal.data[0] = vectoring_info;
5808 		vcpu->run->internal.data[1] = exit_reason;
5809 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5810 		if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5811 			vcpu->run->internal.ndata++;
5812 			vcpu->run->internal.data[3] =
5813 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5814 		}
5815 		return 0;
5816 	}
5817 
5818 	if (unlikely(!enable_vnmi &&
5819 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
5820 		if (vmx_interrupt_allowed(vcpu)) {
5821 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5822 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5823 			   vcpu->arch.nmi_pending) {
5824 			/*
5825 			 * This CPU don't support us in finding the end of an
5826 			 * NMI-blocked window if the guest runs with IRQs
5827 			 * disabled. So we pull the trigger after 1 s of
5828 			 * futile waiting, but inform the user about this.
5829 			 */
5830 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5831 			       "state on VCPU %d after 1 s timeout\n",
5832 			       __func__, vcpu->vcpu_id);
5833 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5834 		}
5835 	}
5836 
5837 	if (exit_reason < kvm_vmx_max_exit_handlers
5838 	    && kvm_vmx_exit_handlers[exit_reason])
5839 		return kvm_vmx_exit_handlers[exit_reason](vcpu);
5840 	else {
5841 		vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5842 				exit_reason);
5843 		kvm_queue_exception(vcpu, UD_VECTOR);
5844 		return 1;
5845 	}
5846 }
5847 
5848 /*
5849  * Software based L1D cache flush which is used when microcode providing
5850  * the cache control MSR is not loaded.
5851  *
5852  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5853  * flush it is required to read in 64 KiB because the replacement algorithm
5854  * is not exactly LRU. This could be sized at runtime via topology
5855  * information but as all relevant affected CPUs have 32KiB L1D cache size
5856  * there is no point in doing so.
5857  */
5858 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5859 {
5860 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
5861 
5862 	/*
5863 	 * This code is only executed when the the flush mode is 'cond' or
5864 	 * 'always'
5865 	 */
5866 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
5867 		bool flush_l1d;
5868 
5869 		/*
5870 		 * Clear the per-vcpu flush bit, it gets set again
5871 		 * either from vcpu_run() or from one of the unsafe
5872 		 * VMEXIT handlers.
5873 		 */
5874 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
5875 		vcpu->arch.l1tf_flush_l1d = false;
5876 
5877 		/*
5878 		 * Clear the per-cpu flush bit, it gets set again from
5879 		 * the interrupt handlers.
5880 		 */
5881 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5882 		kvm_clear_cpu_l1tf_flush_l1d();
5883 
5884 		if (!flush_l1d)
5885 			return;
5886 	}
5887 
5888 	vcpu->stat.l1d_flush++;
5889 
5890 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
5891 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
5892 		return;
5893 	}
5894 
5895 	asm volatile(
5896 		/* First ensure the pages are in the TLB */
5897 		"xorl	%%eax, %%eax\n"
5898 		".Lpopulate_tlb:\n\t"
5899 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5900 		"addl	$4096, %%eax\n\t"
5901 		"cmpl	%%eax, %[size]\n\t"
5902 		"jne	.Lpopulate_tlb\n\t"
5903 		"xorl	%%eax, %%eax\n\t"
5904 		"cpuid\n\t"
5905 		/* Now fill the cache */
5906 		"xorl	%%eax, %%eax\n"
5907 		".Lfill_cache:\n"
5908 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
5909 		"addl	$64, %%eax\n\t"
5910 		"cmpl	%%eax, %[size]\n\t"
5911 		"jne	.Lfill_cache\n\t"
5912 		"lfence\n"
5913 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
5914 		    [size] "r" (size)
5915 		: "eax", "ebx", "ecx", "edx");
5916 }
5917 
5918 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5919 {
5920 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5921 
5922 	if (is_guest_mode(vcpu) &&
5923 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
5924 		return;
5925 
5926 	if (irr == -1 || tpr < irr) {
5927 		vmcs_write32(TPR_THRESHOLD, 0);
5928 		return;
5929 	}
5930 
5931 	vmcs_write32(TPR_THRESHOLD, irr);
5932 }
5933 
5934 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
5935 {
5936 	u32 sec_exec_control;
5937 
5938 	if (!lapic_in_kernel(vcpu))
5939 		return;
5940 
5941 	if (!flexpriority_enabled &&
5942 	    !cpu_has_vmx_virtualize_x2apic_mode())
5943 		return;
5944 
5945 	/* Postpone execution until vmcs01 is the current VMCS. */
5946 	if (is_guest_mode(vcpu)) {
5947 		to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
5948 		return;
5949 	}
5950 
5951 	sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5952 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
5953 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
5954 
5955 	switch (kvm_get_apic_mode(vcpu)) {
5956 	case LAPIC_MODE_INVALID:
5957 		WARN_ONCE(true, "Invalid local APIC state");
5958 	case LAPIC_MODE_DISABLED:
5959 		break;
5960 	case LAPIC_MODE_XAPIC:
5961 		if (flexpriority_enabled) {
5962 			sec_exec_control |=
5963 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5964 			vmx_flush_tlb(vcpu, true);
5965 		}
5966 		break;
5967 	case LAPIC_MODE_X2APIC:
5968 		if (cpu_has_vmx_virtualize_x2apic_mode())
5969 			sec_exec_control |=
5970 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
5971 		break;
5972 	}
5973 	vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
5974 
5975 	vmx_update_msr_bitmap(vcpu);
5976 }
5977 
5978 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
5979 {
5980 	if (!is_guest_mode(vcpu)) {
5981 		vmcs_write64(APIC_ACCESS_ADDR, hpa);
5982 		vmx_flush_tlb(vcpu, true);
5983 	}
5984 }
5985 
5986 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
5987 {
5988 	u16 status;
5989 	u8 old;
5990 
5991 	if (max_isr == -1)
5992 		max_isr = 0;
5993 
5994 	status = vmcs_read16(GUEST_INTR_STATUS);
5995 	old = status >> 8;
5996 	if (max_isr != old) {
5997 		status &= 0xff;
5998 		status |= max_isr << 8;
5999 		vmcs_write16(GUEST_INTR_STATUS, status);
6000 	}
6001 }
6002 
6003 static void vmx_set_rvi(int vector)
6004 {
6005 	u16 status;
6006 	u8 old;
6007 
6008 	if (vector == -1)
6009 		vector = 0;
6010 
6011 	status = vmcs_read16(GUEST_INTR_STATUS);
6012 	old = (u8)status & 0xff;
6013 	if ((u8)vector != old) {
6014 		status &= ~0xff;
6015 		status |= (u8)vector;
6016 		vmcs_write16(GUEST_INTR_STATUS, status);
6017 	}
6018 }
6019 
6020 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6021 {
6022 	/*
6023 	 * When running L2, updating RVI is only relevant when
6024 	 * vmcs12 virtual-interrupt-delivery enabled.
6025 	 * However, it can be enabled only when L1 also
6026 	 * intercepts external-interrupts and in that case
6027 	 * we should not update vmcs02 RVI but instead intercept
6028 	 * interrupt. Therefore, do nothing when running L2.
6029 	 */
6030 	if (!is_guest_mode(vcpu))
6031 		vmx_set_rvi(max_irr);
6032 }
6033 
6034 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6035 {
6036 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6037 	int max_irr;
6038 	bool max_irr_updated;
6039 
6040 	WARN_ON(!vcpu->arch.apicv_active);
6041 	if (pi_test_on(&vmx->pi_desc)) {
6042 		pi_clear_on(&vmx->pi_desc);
6043 		/*
6044 		 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
6045 		 * But on x86 this is just a compiler barrier anyway.
6046 		 */
6047 		smp_mb__after_atomic();
6048 		max_irr_updated =
6049 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6050 
6051 		/*
6052 		 * If we are running L2 and L1 has a new pending interrupt
6053 		 * which can be injected, we should re-evaluate
6054 		 * what should be done with this new L1 interrupt.
6055 		 * If L1 intercepts external-interrupts, we should
6056 		 * exit from L2 to L1. Otherwise, interrupt should be
6057 		 * delivered directly to L2.
6058 		 */
6059 		if (is_guest_mode(vcpu) && max_irr_updated) {
6060 			if (nested_exit_on_intr(vcpu))
6061 				kvm_vcpu_exiting_guest_mode(vcpu);
6062 			else
6063 				kvm_make_request(KVM_REQ_EVENT, vcpu);
6064 		}
6065 	} else {
6066 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6067 	}
6068 	vmx_hwapic_irr_update(vcpu, max_irr);
6069 	return max_irr;
6070 }
6071 
6072 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6073 {
6074 	if (!kvm_vcpu_apicv_active(vcpu))
6075 		return;
6076 
6077 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6078 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6079 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6080 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6081 }
6082 
6083 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6084 {
6085 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6086 
6087 	pi_clear_on(&vmx->pi_desc);
6088 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6089 }
6090 
6091 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6092 {
6093 	u32 exit_intr_info = 0;
6094 	u16 basic_exit_reason = (u16)vmx->exit_reason;
6095 
6096 	if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6097 	      || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
6098 		return;
6099 
6100 	if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6101 		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6102 	vmx->exit_intr_info = exit_intr_info;
6103 
6104 	/* if exit due to PF check for async PF */
6105 	if (is_page_fault(exit_intr_info))
6106 		vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6107 
6108 	/* Handle machine checks before interrupts are enabled */
6109 	if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
6110 	    is_machine_check(exit_intr_info))
6111 		kvm_machine_check();
6112 
6113 	/* We need to handle NMIs before interrupts are enabled */
6114 	if (is_nmi(exit_intr_info)) {
6115 		kvm_before_interrupt(&vmx->vcpu);
6116 		asm("int $2");
6117 		kvm_after_interrupt(&vmx->vcpu);
6118 	}
6119 }
6120 
6121 static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6122 {
6123 	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6124 
6125 	if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6126 			== (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6127 		unsigned int vector;
6128 		unsigned long entry;
6129 		gate_desc *desc;
6130 		struct vcpu_vmx *vmx = to_vmx(vcpu);
6131 #ifdef CONFIG_X86_64
6132 		unsigned long tmp;
6133 #endif
6134 
6135 		vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
6136 		desc = (gate_desc *)vmx->host_idt_base + vector;
6137 		entry = gate_offset(desc);
6138 		asm volatile(
6139 #ifdef CONFIG_X86_64
6140 			"mov %%" _ASM_SP ", %[sp]\n\t"
6141 			"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6142 			"push $%c[ss]\n\t"
6143 			"push %[sp]\n\t"
6144 #endif
6145 			"pushf\n\t"
6146 			__ASM_SIZE(push) " $%c[cs]\n\t"
6147 			CALL_NOSPEC
6148 			:
6149 #ifdef CONFIG_X86_64
6150 			[sp]"=&r"(tmp),
6151 #endif
6152 			ASM_CALL_CONSTRAINT
6153 			:
6154 			THUNK_TARGET(entry),
6155 			[ss]"i"(__KERNEL_DS),
6156 			[cs]"i"(__KERNEL_CS)
6157 			);
6158 	}
6159 }
6160 STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
6161 
6162 static bool vmx_has_emulated_msr(int index)
6163 {
6164 	switch (index) {
6165 	case MSR_IA32_SMBASE:
6166 		/*
6167 		 * We cannot do SMM unless we can run the guest in big
6168 		 * real mode.
6169 		 */
6170 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6171 	case MSR_AMD64_VIRT_SPEC_CTRL:
6172 		/* This is AMD only.  */
6173 		return false;
6174 	default:
6175 		return true;
6176 	}
6177 }
6178 
6179 static bool vmx_pt_supported(void)
6180 {
6181 	return pt_mode == PT_MODE_HOST_GUEST;
6182 }
6183 
6184 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6185 {
6186 	u32 exit_intr_info;
6187 	bool unblock_nmi;
6188 	u8 vector;
6189 	bool idtv_info_valid;
6190 
6191 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6192 
6193 	if (enable_vnmi) {
6194 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6195 			return;
6196 		/*
6197 		 * Can't use vmx->exit_intr_info since we're not sure what
6198 		 * the exit reason is.
6199 		 */
6200 		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6201 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6202 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6203 		/*
6204 		 * SDM 3: 27.7.1.2 (September 2008)
6205 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6206 		 * a guest IRET fault.
6207 		 * SDM 3: 23.2.2 (September 2008)
6208 		 * Bit 12 is undefined in any of the following cases:
6209 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6210 		 *   information field.
6211 		 *  If the VM exit is due to a double fault.
6212 		 */
6213 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6214 		    vector != DF_VECTOR && !idtv_info_valid)
6215 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6216 				      GUEST_INTR_STATE_NMI);
6217 		else
6218 			vmx->loaded_vmcs->nmi_known_unmasked =
6219 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6220 				  & GUEST_INTR_STATE_NMI);
6221 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6222 		vmx->loaded_vmcs->vnmi_blocked_time +=
6223 			ktime_to_ns(ktime_sub(ktime_get(),
6224 					      vmx->loaded_vmcs->entry_time));
6225 }
6226 
6227 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6228 				      u32 idt_vectoring_info,
6229 				      int instr_len_field,
6230 				      int error_code_field)
6231 {
6232 	u8 vector;
6233 	int type;
6234 	bool idtv_info_valid;
6235 
6236 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6237 
6238 	vcpu->arch.nmi_injected = false;
6239 	kvm_clear_exception_queue(vcpu);
6240 	kvm_clear_interrupt_queue(vcpu);
6241 
6242 	if (!idtv_info_valid)
6243 		return;
6244 
6245 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6246 
6247 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6248 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6249 
6250 	switch (type) {
6251 	case INTR_TYPE_NMI_INTR:
6252 		vcpu->arch.nmi_injected = true;
6253 		/*
6254 		 * SDM 3: 27.7.1.2 (September 2008)
6255 		 * Clear bit "block by NMI" before VM entry if a NMI
6256 		 * delivery faulted.
6257 		 */
6258 		vmx_set_nmi_mask(vcpu, false);
6259 		break;
6260 	case INTR_TYPE_SOFT_EXCEPTION:
6261 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6262 		/* fall through */
6263 	case INTR_TYPE_HARD_EXCEPTION:
6264 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6265 			u32 err = vmcs_read32(error_code_field);
6266 			kvm_requeue_exception_e(vcpu, vector, err);
6267 		} else
6268 			kvm_requeue_exception(vcpu, vector);
6269 		break;
6270 	case INTR_TYPE_SOFT_INTR:
6271 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6272 		/* fall through */
6273 	case INTR_TYPE_EXT_INTR:
6274 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6275 		break;
6276 	default:
6277 		break;
6278 	}
6279 }
6280 
6281 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6282 {
6283 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6284 				  VM_EXIT_INSTRUCTION_LEN,
6285 				  IDT_VECTORING_ERROR_CODE);
6286 }
6287 
6288 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6289 {
6290 	__vmx_complete_interrupts(vcpu,
6291 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6292 				  VM_ENTRY_INSTRUCTION_LEN,
6293 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6294 
6295 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6296 }
6297 
6298 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6299 {
6300 	int i, nr_msrs;
6301 	struct perf_guest_switch_msr *msrs;
6302 
6303 	msrs = perf_guest_get_msrs(&nr_msrs);
6304 
6305 	if (!msrs)
6306 		return;
6307 
6308 	for (i = 0; i < nr_msrs; i++)
6309 		if (msrs[i].host == msrs[i].guest)
6310 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6311 		else
6312 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6313 					msrs[i].host, false);
6314 }
6315 
6316 static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val)
6317 {
6318 	vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val);
6319 	if (!vmx->loaded_vmcs->hv_timer_armed)
6320 		vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
6321 			      PIN_BASED_VMX_PREEMPTION_TIMER);
6322 	vmx->loaded_vmcs->hv_timer_armed = true;
6323 }
6324 
6325 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6326 {
6327 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6328 	u64 tscl;
6329 	u32 delta_tsc;
6330 
6331 	if (vmx->req_immediate_exit) {
6332 		vmx_arm_hv_timer(vmx, 0);
6333 		return;
6334 	}
6335 
6336 	if (vmx->hv_deadline_tsc != -1) {
6337 		tscl = rdtsc();
6338 		if (vmx->hv_deadline_tsc > tscl)
6339 			/* set_hv_timer ensures the delta fits in 32-bits */
6340 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6341 				cpu_preemption_timer_multi);
6342 		else
6343 			delta_tsc = 0;
6344 
6345 		vmx_arm_hv_timer(vmx, delta_tsc);
6346 		return;
6347 	}
6348 
6349 	if (vmx->loaded_vmcs->hv_timer_armed)
6350 		vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
6351 				PIN_BASED_VMX_PREEMPTION_TIMER);
6352 	vmx->loaded_vmcs->hv_timer_armed = false;
6353 }
6354 
6355 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6356 {
6357 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6358 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6359 		vmcs_writel(HOST_RSP, host_rsp);
6360 	}
6361 }
6362 
6363 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6364 
6365 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6366 {
6367 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6368 	unsigned long cr3, cr4;
6369 
6370 	/* Record the guest's net vcpu time for enforced NMI injections. */
6371 	if (unlikely(!enable_vnmi &&
6372 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6373 		vmx->loaded_vmcs->entry_time = ktime_get();
6374 
6375 	/* Don't enter VMX if guest state is invalid, let the exit handler
6376 	   start emulation until we arrive back to a valid state */
6377 	if (vmx->emulation_required)
6378 		return;
6379 
6380 	if (vmx->ple_window_dirty) {
6381 		vmx->ple_window_dirty = false;
6382 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6383 	}
6384 
6385 	if (vmx->nested.need_vmcs12_sync)
6386 		nested_sync_from_vmcs12(vcpu);
6387 
6388 	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6389 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6390 	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6391 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6392 
6393 	cr3 = __get_current_cr3_fast();
6394 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6395 		vmcs_writel(HOST_CR3, cr3);
6396 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6397 	}
6398 
6399 	cr4 = cr4_read_shadow();
6400 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6401 		vmcs_writel(HOST_CR4, cr4);
6402 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6403 	}
6404 
6405 	/* When single-stepping over STI and MOV SS, we must clear the
6406 	 * corresponding interruptibility bits in the guest state. Otherwise
6407 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6408 	 * exceptions being set, but that's not correct for the guest debugging
6409 	 * case. */
6410 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6411 		vmx_set_interrupt_shadow(vcpu, 0);
6412 
6413 	if (static_cpu_has(X86_FEATURE_PKU) &&
6414 	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6415 	    vcpu->arch.pkru != vmx->host_pkru)
6416 		__write_pkru(vcpu->arch.pkru);
6417 
6418 	pt_guest_enter(vmx);
6419 
6420 	atomic_switch_perf_msrs(vmx);
6421 
6422 	vmx_update_hv_timer(vcpu);
6423 
6424 	/*
6425 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6426 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6427 	 * is no need to worry about the conditional branch over the wrmsr
6428 	 * being speculatively taken.
6429 	 */
6430 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6431 
6432 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6433 		vmx_l1d_flush(vcpu);
6434 
6435 	if (vcpu->arch.cr2 != read_cr2())
6436 		write_cr2(vcpu->arch.cr2);
6437 
6438 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6439 				   vmx->loaded_vmcs->launched);
6440 
6441 	vcpu->arch.cr2 = read_cr2();
6442 
6443 	/*
6444 	 * We do not use IBRS in the kernel. If this vCPU has used the
6445 	 * SPEC_CTRL MSR it may have left it on; save the value and
6446 	 * turn it off. This is much more efficient than blindly adding
6447 	 * it to the atomic save/restore list. Especially as the former
6448 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6449 	 *
6450 	 * For non-nested case:
6451 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6452 	 * save it.
6453 	 *
6454 	 * For nested case:
6455 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6456 	 * save it.
6457 	 */
6458 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6459 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6460 
6461 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6462 
6463 	/* Eliminate branch target predictions from guest mode */
6464 	vmexit_fill_RSB();
6465 
6466 	/* All fields are clean at this point */
6467 	if (static_branch_unlikely(&enable_evmcs))
6468 		current_evmcs->hv_clean_fields |=
6469 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6470 
6471 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6472 	if (vmx->host_debugctlmsr)
6473 		update_debugctlmsr(vmx->host_debugctlmsr);
6474 
6475 #ifndef CONFIG_X86_64
6476 	/*
6477 	 * The sysexit path does not restore ds/es, so we must set them to
6478 	 * a reasonable value ourselves.
6479 	 *
6480 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6481 	 * function may be executed in interrupt context, which saves and
6482 	 * restore segments around it, nullifying its effect.
6483 	 */
6484 	loadsegment(ds, __USER_DS);
6485 	loadsegment(es, __USER_DS);
6486 #endif
6487 
6488 	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6489 				  | (1 << VCPU_EXREG_RFLAGS)
6490 				  | (1 << VCPU_EXREG_PDPTR)
6491 				  | (1 << VCPU_EXREG_SEGMENTS)
6492 				  | (1 << VCPU_EXREG_CR3));
6493 	vcpu->arch.regs_dirty = 0;
6494 
6495 	pt_guest_exit(vmx);
6496 
6497 	/*
6498 	 * eager fpu is enabled if PKEY is supported and CR4 is switched
6499 	 * back on host, so it is safe to read guest PKRU from current
6500 	 * XSAVE.
6501 	 */
6502 	if (static_cpu_has(X86_FEATURE_PKU) &&
6503 	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6504 		vcpu->arch.pkru = __read_pkru();
6505 		if (vcpu->arch.pkru != vmx->host_pkru)
6506 			__write_pkru(vmx->host_pkru);
6507 	}
6508 
6509 	vmx->nested.nested_run_pending = 0;
6510 	vmx->idt_vectoring_info = 0;
6511 
6512 	vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6513 	if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6514 		return;
6515 
6516 	vmx->loaded_vmcs->launched = 1;
6517 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6518 
6519 	vmx_complete_atomic_exit(vmx);
6520 	vmx_recover_nmi_blocking(vmx);
6521 	vmx_complete_interrupts(vmx);
6522 }
6523 
6524 static struct kvm *vmx_vm_alloc(void)
6525 {
6526 	struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6527 					    GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6528 					    PAGE_KERNEL);
6529 	return &kvm_vmx->kvm;
6530 }
6531 
6532 static void vmx_vm_free(struct kvm *kvm)
6533 {
6534 	vfree(to_kvm_vmx(kvm));
6535 }
6536 
6537 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6538 {
6539 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6540 
6541 	if (enable_pml)
6542 		vmx_destroy_pml_buffer(vmx);
6543 	free_vpid(vmx->vpid);
6544 	nested_vmx_free_vcpu(vcpu);
6545 	free_loaded_vmcs(vmx->loaded_vmcs);
6546 	kfree(vmx->guest_msrs);
6547 	kvm_vcpu_uninit(vcpu);
6548 	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6549 	kmem_cache_free(kvm_vcpu_cache, vmx);
6550 }
6551 
6552 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6553 {
6554 	int err;
6555 	struct vcpu_vmx *vmx;
6556 	unsigned long *msr_bitmap;
6557 	int cpu;
6558 
6559 	vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6560 	if (!vmx)
6561 		return ERR_PTR(-ENOMEM);
6562 
6563 	vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6564 			GFP_KERNEL_ACCOUNT);
6565 	if (!vmx->vcpu.arch.guest_fpu) {
6566 		printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6567 		err = -ENOMEM;
6568 		goto free_partial_vcpu;
6569 	}
6570 
6571 	vmx->vpid = allocate_vpid();
6572 
6573 	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6574 	if (err)
6575 		goto free_vcpu;
6576 
6577 	err = -ENOMEM;
6578 
6579 	/*
6580 	 * If PML is turned on, failure on enabling PML just results in failure
6581 	 * of creating the vcpu, therefore we can simplify PML logic (by
6582 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6583 	 * for the guest, etc.
6584 	 */
6585 	if (enable_pml) {
6586 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6587 		if (!vmx->pml_pg)
6588 			goto uninit_vcpu;
6589 	}
6590 
6591 	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6592 	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6593 		     > PAGE_SIZE);
6594 
6595 	if (!vmx->guest_msrs)
6596 		goto free_pml;
6597 
6598 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6599 	if (err < 0)
6600 		goto free_msrs;
6601 
6602 	msr_bitmap = vmx->vmcs01.msr_bitmap;
6603 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6604 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6605 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6606 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6607 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6608 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6609 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6610 	vmx->msr_bitmap_mode = 0;
6611 
6612 	vmx->loaded_vmcs = &vmx->vmcs01;
6613 	cpu = get_cpu();
6614 	vmx_vcpu_load(&vmx->vcpu, cpu);
6615 	vmx->vcpu.cpu = cpu;
6616 	vmx_vcpu_setup(vmx);
6617 	vmx_vcpu_put(&vmx->vcpu);
6618 	put_cpu();
6619 	if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6620 		err = alloc_apic_access_page(kvm);
6621 		if (err)
6622 			goto free_vmcs;
6623 	}
6624 
6625 	if (enable_ept && !enable_unrestricted_guest) {
6626 		err = init_rmode_identity_map(kvm);
6627 		if (err)
6628 			goto free_vmcs;
6629 	}
6630 
6631 	if (nested)
6632 		nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6633 					   vmx_capability.ept,
6634 					   kvm_vcpu_apicv_active(&vmx->vcpu));
6635 	else
6636 		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6637 
6638 	vmx->nested.posted_intr_nv = -1;
6639 	vmx->nested.current_vmptr = -1ull;
6640 
6641 	vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6642 
6643 	/*
6644 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6645 	 * or POSTED_INTR_WAKEUP_VECTOR.
6646 	 */
6647 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6648 	vmx->pi_desc.sn = 1;
6649 
6650 	vmx->ept_pointer = INVALID_PAGE;
6651 
6652 	return &vmx->vcpu;
6653 
6654 free_vmcs:
6655 	free_loaded_vmcs(vmx->loaded_vmcs);
6656 free_msrs:
6657 	kfree(vmx->guest_msrs);
6658 free_pml:
6659 	vmx_destroy_pml_buffer(vmx);
6660 uninit_vcpu:
6661 	kvm_vcpu_uninit(&vmx->vcpu);
6662 free_vcpu:
6663 	free_vpid(vmx->vpid);
6664 	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6665 free_partial_vcpu:
6666 	kmem_cache_free(kvm_vcpu_cache, vmx);
6667 	return ERR_PTR(err);
6668 }
6669 
6670 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
6671 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
6672 
6673 static int vmx_vm_init(struct kvm *kvm)
6674 {
6675 	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6676 
6677 	if (!ple_gap)
6678 		kvm->arch.pause_in_guest = true;
6679 
6680 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6681 		switch (l1tf_mitigation) {
6682 		case L1TF_MITIGATION_OFF:
6683 		case L1TF_MITIGATION_FLUSH_NOWARN:
6684 			/* 'I explicitly don't care' is set */
6685 			break;
6686 		case L1TF_MITIGATION_FLUSH:
6687 		case L1TF_MITIGATION_FLUSH_NOSMT:
6688 		case L1TF_MITIGATION_FULL:
6689 			/*
6690 			 * Warn upon starting the first VM in a potentially
6691 			 * insecure environment.
6692 			 */
6693 			if (sched_smt_active())
6694 				pr_warn_once(L1TF_MSG_SMT);
6695 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6696 				pr_warn_once(L1TF_MSG_L1D);
6697 			break;
6698 		case L1TF_MITIGATION_FULL_FORCE:
6699 			/* Flush is enforced */
6700 			break;
6701 		}
6702 	}
6703 	return 0;
6704 }
6705 
6706 static void __init vmx_check_processor_compat(void *rtn)
6707 {
6708 	struct vmcs_config vmcs_conf;
6709 	struct vmx_capability vmx_cap;
6710 
6711 	*(int *)rtn = 0;
6712 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6713 		*(int *)rtn = -EIO;
6714 	if (nested)
6715 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6716 					   enable_apicv);
6717 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6718 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6719 				smp_processor_id());
6720 		*(int *)rtn = -EIO;
6721 	}
6722 }
6723 
6724 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6725 {
6726 	u8 cache;
6727 	u64 ipat = 0;
6728 
6729 	/* For VT-d and EPT combination
6730 	 * 1. MMIO: always map as UC
6731 	 * 2. EPT with VT-d:
6732 	 *   a. VT-d without snooping control feature: can't guarantee the
6733 	 *	result, try to trust guest.
6734 	 *   b. VT-d with snooping control feature: snooping control feature of
6735 	 *	VT-d engine can guarantee the cache correctness. Just set it
6736 	 *	to WB to keep consistent with host. So the same as item 3.
6737 	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6738 	 *    consistent with host MTRR
6739 	 */
6740 	if (is_mmio) {
6741 		cache = MTRR_TYPE_UNCACHABLE;
6742 		goto exit;
6743 	}
6744 
6745 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6746 		ipat = VMX_EPT_IPAT_BIT;
6747 		cache = MTRR_TYPE_WRBACK;
6748 		goto exit;
6749 	}
6750 
6751 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6752 		ipat = VMX_EPT_IPAT_BIT;
6753 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6754 			cache = MTRR_TYPE_WRBACK;
6755 		else
6756 			cache = MTRR_TYPE_UNCACHABLE;
6757 		goto exit;
6758 	}
6759 
6760 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6761 
6762 exit:
6763 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6764 }
6765 
6766 static int vmx_get_lpage_level(void)
6767 {
6768 	if (enable_ept && !cpu_has_vmx_ept_1g_page())
6769 		return PT_DIRECTORY_LEVEL;
6770 	else
6771 		/* For shadow and EPT supported 1GB page */
6772 		return PT_PDPE_LEVEL;
6773 }
6774 
6775 static void vmcs_set_secondary_exec_control(u32 new_ctl)
6776 {
6777 	/*
6778 	 * These bits in the secondary execution controls field
6779 	 * are dynamic, the others are mostly based on the hypervisor
6780 	 * architecture and the guest's CPUID.  Do not touch the
6781 	 * dynamic bits.
6782 	 */
6783 	u32 mask =
6784 		SECONDARY_EXEC_SHADOW_VMCS |
6785 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6786 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6787 		SECONDARY_EXEC_DESC;
6788 
6789 	u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6790 
6791 	vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6792 		     (new_ctl & ~mask) | (cur_ctl & mask));
6793 }
6794 
6795 /*
6796  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6797  * (indicating "allowed-1") if they are supported in the guest's CPUID.
6798  */
6799 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6800 {
6801 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6802 	struct kvm_cpuid_entry2 *entry;
6803 
6804 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6805 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6806 
6807 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
6808 	if (entry && (entry->_reg & (_cpuid_mask)))			\
6809 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
6810 } while (0)
6811 
6812 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6813 	cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
6814 	cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
6815 	cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
6816 	cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
6817 	cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
6818 	cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
6819 	cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
6820 	cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
6821 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
6822 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6823 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
6824 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
6825 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
6826 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
6827 
6828 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6829 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
6830 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
6831 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
6832 	cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
6833 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
6834 
6835 #undef cr4_fixed1_update
6836 }
6837 
6838 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
6839 {
6840 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6841 
6842 	if (kvm_mpx_supported()) {
6843 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
6844 
6845 		if (mpx_enabled) {
6846 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
6847 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
6848 		} else {
6849 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
6850 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
6851 		}
6852 	}
6853 }
6854 
6855 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
6856 {
6857 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6858 	struct kvm_cpuid_entry2 *best = NULL;
6859 	int i;
6860 
6861 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
6862 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
6863 		if (!best)
6864 			return;
6865 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
6866 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
6867 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
6868 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
6869 	}
6870 
6871 	/* Get the number of configurable Address Ranges for filtering */
6872 	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
6873 						PT_CAP_num_address_ranges);
6874 
6875 	/* Initialize and clear the no dependency bits */
6876 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
6877 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
6878 
6879 	/*
6880 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
6881 	 * will inject an #GP
6882 	 */
6883 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
6884 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
6885 
6886 	/*
6887 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
6888 	 * PSBFreq can be set
6889 	 */
6890 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
6891 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
6892 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
6893 
6894 	/*
6895 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
6896 	 * MTCFreq can be set
6897 	 */
6898 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
6899 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
6900 				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
6901 
6902 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
6903 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
6904 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
6905 							RTIT_CTL_PTW_EN);
6906 
6907 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
6908 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
6909 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
6910 
6911 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
6912 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
6913 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
6914 
6915 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
6916 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
6917 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
6918 
6919 	/* unmask address range configure area */
6920 	for (i = 0; i < vmx->pt_desc.addr_range; i++)
6921 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
6922 }
6923 
6924 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6925 {
6926 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6927 
6928 	if (cpu_has_secondary_exec_ctrls()) {
6929 		vmx_compute_secondary_exec_control(vmx);
6930 		vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
6931 	}
6932 
6933 	if (nested_vmx_allowed(vcpu))
6934 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
6935 			FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6936 	else
6937 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
6938 			~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6939 
6940 	if (nested_vmx_allowed(vcpu)) {
6941 		nested_vmx_cr_fixed1_bits_update(vcpu);
6942 		nested_vmx_entry_exit_ctls_update(vcpu);
6943 	}
6944 
6945 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
6946 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
6947 		update_intel_pt_cfg(vcpu);
6948 }
6949 
6950 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6951 {
6952 	if (func == 1 && nested)
6953 		entry->ecx |= bit(X86_FEATURE_VMX);
6954 }
6955 
6956 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
6957 {
6958 	to_vmx(vcpu)->req_immediate_exit = true;
6959 }
6960 
6961 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
6962 			       struct x86_instruction_info *info,
6963 			       enum x86_intercept_stage stage)
6964 {
6965 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6966 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6967 
6968 	/*
6969 	 * RDPID causes #UD if disabled through secondary execution controls.
6970 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
6971 	 */
6972 	if (info->intercept == x86_intercept_rdtscp &&
6973 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
6974 		ctxt->exception.vector = UD_VECTOR;
6975 		ctxt->exception.error_code_valid = false;
6976 		return X86EMUL_PROPAGATE_FAULT;
6977 	}
6978 
6979 	/* TODO: check more intercepts... */
6980 	return X86EMUL_CONTINUE;
6981 }
6982 
6983 #ifdef CONFIG_X86_64
6984 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
6985 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
6986 				  u64 divisor, u64 *result)
6987 {
6988 	u64 low = a << shift, high = a >> (64 - shift);
6989 
6990 	/* To avoid the overflow on divq */
6991 	if (high >= divisor)
6992 		return 1;
6993 
6994 	/* Low hold the result, high hold rem which is discarded */
6995 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
6996 	    "rm" (divisor), "0" (low), "1" (high));
6997 	*result = low;
6998 
6999 	return 0;
7000 }
7001 
7002 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
7003 {
7004 	struct vcpu_vmx *vmx;
7005 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7006 
7007 	if (kvm_mwait_in_guest(vcpu->kvm))
7008 		return -EOPNOTSUPP;
7009 
7010 	vmx = to_vmx(vcpu);
7011 	tscl = rdtsc();
7012 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7013 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7014 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns);
7015 
7016 	if (delta_tsc > lapic_timer_advance_cycles)
7017 		delta_tsc -= lapic_timer_advance_cycles;
7018 	else
7019 		delta_tsc = 0;
7020 
7021 	/* Convert to host delta tsc if tsc scaling is enabled */
7022 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7023 			u64_shl_div_u64(delta_tsc,
7024 				kvm_tsc_scaling_ratio_frac_bits,
7025 				vcpu->arch.tsc_scaling_ratio,
7026 				&delta_tsc))
7027 		return -ERANGE;
7028 
7029 	/*
7030 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7031 	 * we can't use the preemption timer.
7032 	 * It's possible that it fits on later vmentries, but checking
7033 	 * on every vmentry is costly so we just use an hrtimer.
7034 	 */
7035 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7036 		return -ERANGE;
7037 
7038 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7039 	return delta_tsc == 0;
7040 }
7041 
7042 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7043 {
7044 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7045 }
7046 #endif
7047 
7048 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7049 {
7050 	if (!kvm_pause_in_guest(vcpu->kvm))
7051 		shrink_ple_window(vcpu);
7052 }
7053 
7054 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7055 				     struct kvm_memory_slot *slot)
7056 {
7057 	kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7058 	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7059 }
7060 
7061 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7062 				       struct kvm_memory_slot *slot)
7063 {
7064 	kvm_mmu_slot_set_dirty(kvm, slot);
7065 }
7066 
7067 static void vmx_flush_log_dirty(struct kvm *kvm)
7068 {
7069 	kvm_flush_pml_buffers(kvm);
7070 }
7071 
7072 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7073 {
7074 	struct vmcs12 *vmcs12;
7075 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7076 	gpa_t gpa;
7077 	struct page *page = NULL;
7078 	u64 *pml_address;
7079 
7080 	if (is_guest_mode(vcpu)) {
7081 		WARN_ON_ONCE(vmx->nested.pml_full);
7082 
7083 		/*
7084 		 * Check if PML is enabled for the nested guest.
7085 		 * Whether eptp bit 6 is set is already checked
7086 		 * as part of A/D emulation.
7087 		 */
7088 		vmcs12 = get_vmcs12(vcpu);
7089 		if (!nested_cpu_has_pml(vmcs12))
7090 			return 0;
7091 
7092 		if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7093 			vmx->nested.pml_full = true;
7094 			return 1;
7095 		}
7096 
7097 		gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7098 
7099 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
7100 		if (is_error_page(page))
7101 			return 0;
7102 
7103 		pml_address = kmap(page);
7104 		pml_address[vmcs12->guest_pml_index--] = gpa;
7105 		kunmap(page);
7106 		kvm_release_page_clean(page);
7107 	}
7108 
7109 	return 0;
7110 }
7111 
7112 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7113 					   struct kvm_memory_slot *memslot,
7114 					   gfn_t offset, unsigned long mask)
7115 {
7116 	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7117 }
7118 
7119 static void __pi_post_block(struct kvm_vcpu *vcpu)
7120 {
7121 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7122 	struct pi_desc old, new;
7123 	unsigned int dest;
7124 
7125 	do {
7126 		old.control = new.control = pi_desc->control;
7127 		WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7128 		     "Wakeup handler not enabled while the VCPU is blocked\n");
7129 
7130 		dest = cpu_physical_id(vcpu->cpu);
7131 
7132 		if (x2apic_enabled())
7133 			new.ndst = dest;
7134 		else
7135 			new.ndst = (dest << 8) & 0xFF00;
7136 
7137 		/* set 'NV' to 'notification vector' */
7138 		new.nv = POSTED_INTR_VECTOR;
7139 	} while (cmpxchg64(&pi_desc->control, old.control,
7140 			   new.control) != old.control);
7141 
7142 	if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7143 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7144 		list_del(&vcpu->blocked_vcpu_list);
7145 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7146 		vcpu->pre_pcpu = -1;
7147 	}
7148 }
7149 
7150 /*
7151  * This routine does the following things for vCPU which is going
7152  * to be blocked if VT-d PI is enabled.
7153  * - Store the vCPU to the wakeup list, so when interrupts happen
7154  *   we can find the right vCPU to wake up.
7155  * - Change the Posted-interrupt descriptor as below:
7156  *      'NDST' <-- vcpu->pre_pcpu
7157  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7158  * - If 'ON' is set during this process, which means at least one
7159  *   interrupt is posted for this vCPU, we cannot block it, in
7160  *   this case, return 1, otherwise, return 0.
7161  *
7162  */
7163 static int pi_pre_block(struct kvm_vcpu *vcpu)
7164 {
7165 	unsigned int dest;
7166 	struct pi_desc old, new;
7167 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7168 
7169 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7170 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
7171 		!kvm_vcpu_apicv_active(vcpu))
7172 		return 0;
7173 
7174 	WARN_ON(irqs_disabled());
7175 	local_irq_disable();
7176 	if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7177 		vcpu->pre_pcpu = vcpu->cpu;
7178 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7179 		list_add_tail(&vcpu->blocked_vcpu_list,
7180 			      &per_cpu(blocked_vcpu_on_cpu,
7181 				       vcpu->pre_pcpu));
7182 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7183 	}
7184 
7185 	do {
7186 		old.control = new.control = pi_desc->control;
7187 
7188 		WARN((pi_desc->sn == 1),
7189 		     "Warning: SN field of posted-interrupts "
7190 		     "is set before blocking\n");
7191 
7192 		/*
7193 		 * Since vCPU can be preempted during this process,
7194 		 * vcpu->cpu could be different with pre_pcpu, we
7195 		 * need to set pre_pcpu as the destination of wakeup
7196 		 * notification event, then we can find the right vCPU
7197 		 * to wakeup in wakeup handler if interrupts happen
7198 		 * when the vCPU is in blocked state.
7199 		 */
7200 		dest = cpu_physical_id(vcpu->pre_pcpu);
7201 
7202 		if (x2apic_enabled())
7203 			new.ndst = dest;
7204 		else
7205 			new.ndst = (dest << 8) & 0xFF00;
7206 
7207 		/* set 'NV' to 'wakeup vector' */
7208 		new.nv = POSTED_INTR_WAKEUP_VECTOR;
7209 	} while (cmpxchg64(&pi_desc->control, old.control,
7210 			   new.control) != old.control);
7211 
7212 	/* We should not block the vCPU if an interrupt is posted for it.  */
7213 	if (pi_test_on(pi_desc) == 1)
7214 		__pi_post_block(vcpu);
7215 
7216 	local_irq_enable();
7217 	return (vcpu->pre_pcpu == -1);
7218 }
7219 
7220 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7221 {
7222 	if (pi_pre_block(vcpu))
7223 		return 1;
7224 
7225 	if (kvm_lapic_hv_timer_in_use(vcpu))
7226 		kvm_lapic_switch_to_sw_timer(vcpu);
7227 
7228 	return 0;
7229 }
7230 
7231 static void pi_post_block(struct kvm_vcpu *vcpu)
7232 {
7233 	if (vcpu->pre_pcpu == -1)
7234 		return;
7235 
7236 	WARN_ON(irqs_disabled());
7237 	local_irq_disable();
7238 	__pi_post_block(vcpu);
7239 	local_irq_enable();
7240 }
7241 
7242 static void vmx_post_block(struct kvm_vcpu *vcpu)
7243 {
7244 	if (kvm_x86_ops->set_hv_timer)
7245 		kvm_lapic_switch_to_hv_timer(vcpu);
7246 
7247 	pi_post_block(vcpu);
7248 }
7249 
7250 /*
7251  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7252  *
7253  * @kvm: kvm
7254  * @host_irq: host irq of the interrupt
7255  * @guest_irq: gsi of the interrupt
7256  * @set: set or unset PI
7257  * returns 0 on success, < 0 on failure
7258  */
7259 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7260 			      uint32_t guest_irq, bool set)
7261 {
7262 	struct kvm_kernel_irq_routing_entry *e;
7263 	struct kvm_irq_routing_table *irq_rt;
7264 	struct kvm_lapic_irq irq;
7265 	struct kvm_vcpu *vcpu;
7266 	struct vcpu_data vcpu_info;
7267 	int idx, ret = 0;
7268 
7269 	if (!kvm_arch_has_assigned_device(kvm) ||
7270 		!irq_remapping_cap(IRQ_POSTING_CAP) ||
7271 		!kvm_vcpu_apicv_active(kvm->vcpus[0]))
7272 		return 0;
7273 
7274 	idx = srcu_read_lock(&kvm->irq_srcu);
7275 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7276 	if (guest_irq >= irq_rt->nr_rt_entries ||
7277 	    hlist_empty(&irq_rt->map[guest_irq])) {
7278 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7279 			     guest_irq, irq_rt->nr_rt_entries);
7280 		goto out;
7281 	}
7282 
7283 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7284 		if (e->type != KVM_IRQ_ROUTING_MSI)
7285 			continue;
7286 		/*
7287 		 * VT-d PI cannot support posting multicast/broadcast
7288 		 * interrupts to a vCPU, we still use interrupt remapping
7289 		 * for these kind of interrupts.
7290 		 *
7291 		 * For lowest-priority interrupts, we only support
7292 		 * those with single CPU as the destination, e.g. user
7293 		 * configures the interrupts via /proc/irq or uses
7294 		 * irqbalance to make the interrupts single-CPU.
7295 		 *
7296 		 * We will support full lowest-priority interrupt later.
7297 		 */
7298 
7299 		kvm_set_msi_irq(kvm, e, &irq);
7300 		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
7301 			/*
7302 			 * Make sure the IRTE is in remapped mode if
7303 			 * we don't handle it in posted mode.
7304 			 */
7305 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7306 			if (ret < 0) {
7307 				printk(KERN_INFO
7308 				   "failed to back to remapped mode, irq: %u\n",
7309 				   host_irq);
7310 				goto out;
7311 			}
7312 
7313 			continue;
7314 		}
7315 
7316 		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7317 		vcpu_info.vector = irq.vector;
7318 
7319 		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7320 				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7321 
7322 		if (set)
7323 			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7324 		else
7325 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7326 
7327 		if (ret < 0) {
7328 			printk(KERN_INFO "%s: failed to update PI IRTE\n",
7329 					__func__);
7330 			goto out;
7331 		}
7332 	}
7333 
7334 	ret = 0;
7335 out:
7336 	srcu_read_unlock(&kvm->irq_srcu, idx);
7337 	return ret;
7338 }
7339 
7340 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7341 {
7342 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7343 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7344 			FEATURE_CONTROL_LMCE;
7345 	else
7346 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7347 			~FEATURE_CONTROL_LMCE;
7348 }
7349 
7350 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7351 {
7352 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7353 	if (to_vmx(vcpu)->nested.nested_run_pending)
7354 		return 0;
7355 	return 1;
7356 }
7357 
7358 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7359 {
7360 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7361 
7362 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7363 	if (vmx->nested.smm.guest_mode)
7364 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7365 
7366 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7367 	vmx->nested.vmxon = false;
7368 	vmx_clear_hlt(vcpu);
7369 	return 0;
7370 }
7371 
7372 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
7373 {
7374 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7375 	int ret;
7376 
7377 	if (vmx->nested.smm.vmxon) {
7378 		vmx->nested.vmxon = true;
7379 		vmx->nested.smm.vmxon = false;
7380 	}
7381 
7382 	if (vmx->nested.smm.guest_mode) {
7383 		vcpu->arch.hflags &= ~HF_SMM_MASK;
7384 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7385 		vcpu->arch.hflags |= HF_SMM_MASK;
7386 		if (ret)
7387 			return ret;
7388 
7389 		vmx->nested.smm.guest_mode = false;
7390 	}
7391 	return 0;
7392 }
7393 
7394 static int enable_smi_window(struct kvm_vcpu *vcpu)
7395 {
7396 	return 0;
7397 }
7398 
7399 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7400 {
7401 	return 0;
7402 }
7403 
7404 static __init int hardware_setup(void)
7405 {
7406 	unsigned long host_bndcfgs;
7407 	int r, i;
7408 
7409 	rdmsrl_safe(MSR_EFER, &host_efer);
7410 
7411 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7412 		kvm_define_shared_msr(i, vmx_msr_index[i]);
7413 
7414 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7415 		return -EIO;
7416 
7417 	if (boot_cpu_has(X86_FEATURE_NX))
7418 		kvm_enable_efer_bits(EFER_NX);
7419 
7420 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7421 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7422 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7423 	}
7424 
7425 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7426 		rdmsrl(MSR_IA32_XSS, host_xss);
7427 
7428 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7429 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7430 		enable_vpid = 0;
7431 
7432 	if (!cpu_has_vmx_ept() ||
7433 	    !cpu_has_vmx_ept_4levels() ||
7434 	    !cpu_has_vmx_ept_mt_wb() ||
7435 	    !cpu_has_vmx_invept_global())
7436 		enable_ept = 0;
7437 
7438 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7439 		enable_ept_ad_bits = 0;
7440 
7441 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7442 		enable_unrestricted_guest = 0;
7443 
7444 	if (!cpu_has_vmx_flexpriority())
7445 		flexpriority_enabled = 0;
7446 
7447 	if (!cpu_has_virtual_nmis())
7448 		enable_vnmi = 0;
7449 
7450 	/*
7451 	 * set_apic_access_page_addr() is used to reload apic access
7452 	 * page upon invalidation.  No need to do anything if not
7453 	 * using the APIC_ACCESS_ADDR VMCS field.
7454 	 */
7455 	if (!flexpriority_enabled)
7456 		kvm_x86_ops->set_apic_access_page_addr = NULL;
7457 
7458 	if (!cpu_has_vmx_tpr_shadow())
7459 		kvm_x86_ops->update_cr8_intercept = NULL;
7460 
7461 	if (enable_ept && !cpu_has_vmx_ept_2m_page())
7462 		kvm_disable_largepages();
7463 
7464 #if IS_ENABLED(CONFIG_HYPERV)
7465 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7466 	    && enable_ept) {
7467 		kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7468 		kvm_x86_ops->tlb_remote_flush_with_range =
7469 				hv_remote_flush_tlb_with_range;
7470 	}
7471 #endif
7472 
7473 	if (!cpu_has_vmx_ple()) {
7474 		ple_gap = 0;
7475 		ple_window = 0;
7476 		ple_window_grow = 0;
7477 		ple_window_max = 0;
7478 		ple_window_shrink = 0;
7479 	}
7480 
7481 	if (!cpu_has_vmx_apicv()) {
7482 		enable_apicv = 0;
7483 		kvm_x86_ops->sync_pir_to_irr = NULL;
7484 	}
7485 
7486 	if (cpu_has_vmx_tsc_scaling()) {
7487 		kvm_has_tsc_control = true;
7488 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7489 		kvm_tsc_scaling_ratio_frac_bits = 48;
7490 	}
7491 
7492 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7493 
7494 	if (enable_ept)
7495 		vmx_enable_tdp();
7496 	else
7497 		kvm_disable_tdp();
7498 
7499 	/*
7500 	 * Only enable PML when hardware supports PML feature, and both EPT
7501 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7502 	 */
7503 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7504 		enable_pml = 0;
7505 
7506 	if (!enable_pml) {
7507 		kvm_x86_ops->slot_enable_log_dirty = NULL;
7508 		kvm_x86_ops->slot_disable_log_dirty = NULL;
7509 		kvm_x86_ops->flush_log_dirty = NULL;
7510 		kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7511 	}
7512 
7513 	if (!cpu_has_vmx_preemption_timer())
7514 		kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7515 
7516 	if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
7517 		u64 vmx_msr;
7518 
7519 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7520 		cpu_preemption_timer_multi =
7521 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7522 	} else {
7523 		kvm_x86_ops->set_hv_timer = NULL;
7524 		kvm_x86_ops->cancel_hv_timer = NULL;
7525 	}
7526 
7527 	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7528 
7529 	kvm_mce_cap_supported |= MCG_LMCE_P;
7530 
7531 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7532 		return -EINVAL;
7533 	if (!enable_ept || !cpu_has_vmx_intel_pt())
7534 		pt_mode = PT_MODE_SYSTEM;
7535 
7536 	if (nested) {
7537 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7538 					   vmx_capability.ept, enable_apicv);
7539 
7540 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7541 		if (r)
7542 			return r;
7543 	}
7544 
7545 	r = alloc_kvm_area();
7546 	if (r)
7547 		nested_vmx_hardware_unsetup();
7548 	return r;
7549 }
7550 
7551 static __exit void hardware_unsetup(void)
7552 {
7553 	if (nested)
7554 		nested_vmx_hardware_unsetup();
7555 
7556 	free_kvm_area();
7557 }
7558 
7559 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7560 	.cpu_has_kvm_support = cpu_has_kvm_support,
7561 	.disabled_by_bios = vmx_disabled_by_bios,
7562 	.hardware_setup = hardware_setup,
7563 	.hardware_unsetup = hardware_unsetup,
7564 	.check_processor_compatibility = vmx_check_processor_compat,
7565 	.hardware_enable = hardware_enable,
7566 	.hardware_disable = hardware_disable,
7567 	.cpu_has_accelerated_tpr = report_flexpriority,
7568 	.has_emulated_msr = vmx_has_emulated_msr,
7569 
7570 	.vm_init = vmx_vm_init,
7571 	.vm_alloc = vmx_vm_alloc,
7572 	.vm_free = vmx_vm_free,
7573 
7574 	.vcpu_create = vmx_create_vcpu,
7575 	.vcpu_free = vmx_free_vcpu,
7576 	.vcpu_reset = vmx_vcpu_reset,
7577 
7578 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7579 	.vcpu_load = vmx_vcpu_load,
7580 	.vcpu_put = vmx_vcpu_put,
7581 
7582 	.update_bp_intercept = update_exception_bitmap,
7583 	.get_msr_feature = vmx_get_msr_feature,
7584 	.get_msr = vmx_get_msr,
7585 	.set_msr = vmx_set_msr,
7586 	.get_segment_base = vmx_get_segment_base,
7587 	.get_segment = vmx_get_segment,
7588 	.set_segment = vmx_set_segment,
7589 	.get_cpl = vmx_get_cpl,
7590 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7591 	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7592 	.decache_cr3 = vmx_decache_cr3,
7593 	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7594 	.set_cr0 = vmx_set_cr0,
7595 	.set_cr3 = vmx_set_cr3,
7596 	.set_cr4 = vmx_set_cr4,
7597 	.set_efer = vmx_set_efer,
7598 	.get_idt = vmx_get_idt,
7599 	.set_idt = vmx_set_idt,
7600 	.get_gdt = vmx_get_gdt,
7601 	.set_gdt = vmx_set_gdt,
7602 	.get_dr6 = vmx_get_dr6,
7603 	.set_dr6 = vmx_set_dr6,
7604 	.set_dr7 = vmx_set_dr7,
7605 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7606 	.cache_reg = vmx_cache_reg,
7607 	.get_rflags = vmx_get_rflags,
7608 	.set_rflags = vmx_set_rflags,
7609 
7610 	.tlb_flush = vmx_flush_tlb,
7611 	.tlb_flush_gva = vmx_flush_tlb_gva,
7612 
7613 	.run = vmx_vcpu_run,
7614 	.handle_exit = vmx_handle_exit,
7615 	.skip_emulated_instruction = skip_emulated_instruction,
7616 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7617 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7618 	.patch_hypercall = vmx_patch_hypercall,
7619 	.set_irq = vmx_inject_irq,
7620 	.set_nmi = vmx_inject_nmi,
7621 	.queue_exception = vmx_queue_exception,
7622 	.cancel_injection = vmx_cancel_injection,
7623 	.interrupt_allowed = vmx_interrupt_allowed,
7624 	.nmi_allowed = vmx_nmi_allowed,
7625 	.get_nmi_mask = vmx_get_nmi_mask,
7626 	.set_nmi_mask = vmx_set_nmi_mask,
7627 	.enable_nmi_window = enable_nmi_window,
7628 	.enable_irq_window = enable_irq_window,
7629 	.update_cr8_intercept = update_cr8_intercept,
7630 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7631 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7632 	.get_enable_apicv = vmx_get_enable_apicv,
7633 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7634 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7635 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7636 	.hwapic_irr_update = vmx_hwapic_irr_update,
7637 	.hwapic_isr_update = vmx_hwapic_isr_update,
7638 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7639 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7640 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7641 
7642 	.set_tss_addr = vmx_set_tss_addr,
7643 	.set_identity_map_addr = vmx_set_identity_map_addr,
7644 	.get_tdp_level = get_ept_level,
7645 	.get_mt_mask = vmx_get_mt_mask,
7646 
7647 	.get_exit_info = vmx_get_exit_info,
7648 
7649 	.get_lpage_level = vmx_get_lpage_level,
7650 
7651 	.cpuid_update = vmx_cpuid_update,
7652 
7653 	.rdtscp_supported = vmx_rdtscp_supported,
7654 	.invpcid_supported = vmx_invpcid_supported,
7655 
7656 	.set_supported_cpuid = vmx_set_supported_cpuid,
7657 
7658 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7659 
7660 	.read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7661 	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7662 
7663 	.set_tdp_cr3 = vmx_set_cr3,
7664 
7665 	.check_intercept = vmx_check_intercept,
7666 	.handle_external_intr = vmx_handle_external_intr,
7667 	.mpx_supported = vmx_mpx_supported,
7668 	.xsaves_supported = vmx_xsaves_supported,
7669 	.umip_emulated = vmx_umip_emulated,
7670 	.pt_supported = vmx_pt_supported,
7671 
7672 	.request_immediate_exit = vmx_request_immediate_exit,
7673 
7674 	.sched_in = vmx_sched_in,
7675 
7676 	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7677 	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7678 	.flush_log_dirty = vmx_flush_log_dirty,
7679 	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7680 	.write_log_dirty = vmx_write_pml_buffer,
7681 
7682 	.pre_block = vmx_pre_block,
7683 	.post_block = vmx_post_block,
7684 
7685 	.pmu_ops = &intel_pmu_ops,
7686 
7687 	.update_pi_irte = vmx_update_pi_irte,
7688 
7689 #ifdef CONFIG_X86_64
7690 	.set_hv_timer = vmx_set_hv_timer,
7691 	.cancel_hv_timer = vmx_cancel_hv_timer,
7692 #endif
7693 
7694 	.setup_mce = vmx_setup_mce,
7695 
7696 	.smi_allowed = vmx_smi_allowed,
7697 	.pre_enter_smm = vmx_pre_enter_smm,
7698 	.pre_leave_smm = vmx_pre_leave_smm,
7699 	.enable_smi_window = enable_smi_window,
7700 
7701 	.check_nested_events = NULL,
7702 	.get_nested_state = NULL,
7703 	.set_nested_state = NULL,
7704 	.get_vmcs12_pages = NULL,
7705 	.nested_enable_evmcs = NULL,
7706 	.need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7707 };
7708 
7709 static void vmx_cleanup_l1d_flush(void)
7710 {
7711 	if (vmx_l1d_flush_pages) {
7712 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7713 		vmx_l1d_flush_pages = NULL;
7714 	}
7715 	/* Restore state so sysfs ignores VMX */
7716 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7717 }
7718 
7719 static void vmx_exit(void)
7720 {
7721 #ifdef CONFIG_KEXEC_CORE
7722 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7723 	synchronize_rcu();
7724 #endif
7725 
7726 	kvm_exit();
7727 
7728 #if IS_ENABLED(CONFIG_HYPERV)
7729 	if (static_branch_unlikely(&enable_evmcs)) {
7730 		int cpu;
7731 		struct hv_vp_assist_page *vp_ap;
7732 		/*
7733 		 * Reset everything to support using non-enlightened VMCS
7734 		 * access later (e.g. when we reload the module with
7735 		 * enlightened_vmcs=0)
7736 		 */
7737 		for_each_online_cpu(cpu) {
7738 			vp_ap =	hv_get_vp_assist_page(cpu);
7739 
7740 			if (!vp_ap)
7741 				continue;
7742 
7743 			vp_ap->current_nested_vmcs = 0;
7744 			vp_ap->enlighten_vmentry = 0;
7745 		}
7746 
7747 		static_branch_disable(&enable_evmcs);
7748 	}
7749 #endif
7750 	vmx_cleanup_l1d_flush();
7751 }
7752 module_exit(vmx_exit);
7753 
7754 static int __init vmx_init(void)
7755 {
7756 	int r;
7757 
7758 #if IS_ENABLED(CONFIG_HYPERV)
7759 	/*
7760 	 * Enlightened VMCS usage should be recommended and the host needs
7761 	 * to support eVMCS v1 or above. We can also disable eVMCS support
7762 	 * with module parameter.
7763 	 */
7764 	if (enlightened_vmcs &&
7765 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7766 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7767 	    KVM_EVMCS_VERSION) {
7768 		int cpu;
7769 
7770 		/* Check that we have assist pages on all online CPUs */
7771 		for_each_online_cpu(cpu) {
7772 			if (!hv_get_vp_assist_page(cpu)) {
7773 				enlightened_vmcs = false;
7774 				break;
7775 			}
7776 		}
7777 
7778 		if (enlightened_vmcs) {
7779 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7780 			static_branch_enable(&enable_evmcs);
7781 		}
7782 	} else {
7783 		enlightened_vmcs = false;
7784 	}
7785 #endif
7786 
7787 	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7788 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
7789 	if (r)
7790 		return r;
7791 
7792 	/*
7793 	 * Must be called after kvm_init() so enable_ept is properly set
7794 	 * up. Hand the parameter mitigation value in which was stored in
7795 	 * the pre module init parser. If no parameter was given, it will
7796 	 * contain 'auto' which will be turned into the default 'cond'
7797 	 * mitigation mode.
7798 	 */
7799 	if (boot_cpu_has(X86_BUG_L1TF)) {
7800 		r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7801 		if (r) {
7802 			vmx_exit();
7803 			return r;
7804 		}
7805 	}
7806 
7807 #ifdef CONFIG_KEXEC_CORE
7808 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
7809 			   crash_vmclear_local_loaded_vmcss);
7810 #endif
7811 	vmx_check_vmcs12_offsets();
7812 
7813 	return 0;
7814 }
7815 module_init(vmx_init);
7816