1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/idtentry.h>
42 #include <asm/io.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/reboot.h>
45 #include <asm/perf_event.h>
46 #include <asm/mmu_context.h>
47 #include <asm/mshyperv.h>
48 #include <asm/mwait.h>
49 #include <asm/spec-ctrl.h>
50 #include <asm/vmx.h>
51
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68 #include "smm.h"
69 #include "vmx_onhyperv.h"
70 #include "posted_intr.h"
71
72 MODULE_AUTHOR("Qumranet");
73 MODULE_LICENSE("GPL");
74
75 #ifdef MODULE
76 static const struct x86_cpu_id vmx_cpu_id[] = {
77 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
78 {}
79 };
80 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
81 #endif
82
83 bool __read_mostly enable_vpid = 1;
84 module_param_named(vpid, enable_vpid, bool, 0444);
85
86 static bool __read_mostly enable_vnmi = 1;
87 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
88
89 bool __read_mostly flexpriority_enabled = 1;
90 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
91
92 bool __read_mostly enable_ept = 1;
93 module_param_named(ept, enable_ept, bool, S_IRUGO);
94
95 bool __read_mostly enable_unrestricted_guest = 1;
96 module_param_named(unrestricted_guest,
97 enable_unrestricted_guest, bool, S_IRUGO);
98
99 bool __read_mostly enable_ept_ad_bits = 1;
100 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
101
102 static bool __read_mostly emulate_invalid_guest_state = true;
103 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
104
105 static bool __read_mostly fasteoi = 1;
106 module_param(fasteoi, bool, S_IRUGO);
107
108 module_param(enable_apicv, bool, S_IRUGO);
109
110 bool __read_mostly enable_ipiv = true;
111 module_param(enable_ipiv, bool, 0444);
112
113 /*
114 * If nested=1, nested virtualization is supported, i.e., guests may use
115 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
116 * use VMX instructions.
117 */
118 static bool __read_mostly nested = 1;
119 module_param(nested, bool, S_IRUGO);
120
121 bool __read_mostly enable_pml = 1;
122 module_param_named(pml, enable_pml, bool, S_IRUGO);
123
124 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
125 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
126
127 static bool __read_mostly dump_invalid_vmcs = 0;
128 module_param(dump_invalid_vmcs, bool, 0644);
129
130 #define MSR_BITMAP_MODE_X2APIC 1
131 #define MSR_BITMAP_MODE_X2APIC_APICV 2
132
133 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
134
135 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
136 static int __read_mostly cpu_preemption_timer_multi;
137 static bool __read_mostly enable_preemption_timer = 1;
138 #ifdef CONFIG_X86_64
139 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
140 #endif
141
142 extern bool __read_mostly allow_smaller_maxphyaddr;
143 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
144
145 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
146 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
147 #define KVM_VM_CR0_ALWAYS_ON \
148 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
149
150 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
151 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
152 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
153
154 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
155
156 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
157 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
158 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
159 RTIT_STATUS_BYTECNT))
160
161 /*
162 * List of MSRs that can be directly passed to the guest.
163 * In addition to these x2apic and PT MSRs are handled specially.
164 */
165 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
166 MSR_IA32_SPEC_CTRL,
167 MSR_IA32_PRED_CMD,
168 MSR_IA32_FLUSH_CMD,
169 MSR_IA32_TSC,
170 #ifdef CONFIG_X86_64
171 MSR_FS_BASE,
172 MSR_GS_BASE,
173 MSR_KERNEL_GS_BASE,
174 MSR_IA32_XFD,
175 MSR_IA32_XFD_ERR,
176 #endif
177 MSR_IA32_SYSENTER_CS,
178 MSR_IA32_SYSENTER_ESP,
179 MSR_IA32_SYSENTER_EIP,
180 MSR_CORE_C1_RES,
181 MSR_CORE_C3_RESIDENCY,
182 MSR_CORE_C6_RESIDENCY,
183 MSR_CORE_C7_RESIDENCY,
184 };
185
186 /*
187 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
188 * ple_gap: upper bound on the amount of time between two successive
189 * executions of PAUSE in a loop. Also indicate if ple enabled.
190 * According to test, this time is usually smaller than 128 cycles.
191 * ple_window: upper bound on the amount of time a guest is allowed to execute
192 * in a PAUSE loop. Tests indicate that most spinlocks are held for
193 * less than 2^12 cycles
194 * Time is measured based on a counter that runs at the same rate as the TSC,
195 * refer SDM volume 3b section 21.6.13 & 22.1.3.
196 */
197 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
198 module_param(ple_gap, uint, 0444);
199
200 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
201 module_param(ple_window, uint, 0444);
202
203 /* Default doubles per-vcpu window every exit. */
204 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
205 module_param(ple_window_grow, uint, 0444);
206
207 /* Default resets per-vcpu window every exit to ple_window. */
208 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
209 module_param(ple_window_shrink, uint, 0444);
210
211 /* Default is to compute the maximum so we can never overflow. */
212 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
213 module_param(ple_window_max, uint, 0444);
214
215 /* Default is SYSTEM mode, 1 for host-guest mode */
216 int __read_mostly pt_mode = PT_MODE_SYSTEM;
217 module_param(pt_mode, int, S_IRUGO);
218
219 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
220 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
221 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
222
223 /* Storage for pre module init parameter parsing */
224 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
225
226 static const struct {
227 const char *option;
228 bool for_parse;
229 } vmentry_l1d_param[] = {
230 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
231 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
232 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
233 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
234 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
235 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
236 };
237
238 #define L1D_CACHE_ORDER 4
239 static void *vmx_l1d_flush_pages;
240
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)241 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
242 {
243 struct page *page;
244 unsigned int i;
245
246 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
247 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
248 return 0;
249 }
250
251 if (!enable_ept) {
252 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
253 return 0;
254 }
255
256 if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
257 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
258 return 0;
259 }
260
261 /* If set to auto use the default l1tf mitigation method */
262 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
263 switch (l1tf_mitigation) {
264 case L1TF_MITIGATION_OFF:
265 l1tf = VMENTER_L1D_FLUSH_NEVER;
266 break;
267 case L1TF_MITIGATION_FLUSH_NOWARN:
268 case L1TF_MITIGATION_FLUSH:
269 case L1TF_MITIGATION_FLUSH_NOSMT:
270 l1tf = VMENTER_L1D_FLUSH_COND;
271 break;
272 case L1TF_MITIGATION_FULL:
273 case L1TF_MITIGATION_FULL_FORCE:
274 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
275 break;
276 }
277 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
278 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
279 }
280
281 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
282 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
283 /*
284 * This allocation for vmx_l1d_flush_pages is not tied to a VM
285 * lifetime and so should not be charged to a memcg.
286 */
287 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
288 if (!page)
289 return -ENOMEM;
290 vmx_l1d_flush_pages = page_address(page);
291
292 /*
293 * Initialize each page with a different pattern in
294 * order to protect against KSM in the nested
295 * virtualization case.
296 */
297 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
298 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
299 PAGE_SIZE);
300 }
301 }
302
303 l1tf_vmx_mitigation = l1tf;
304
305 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
306 static_branch_enable(&vmx_l1d_should_flush);
307 else
308 static_branch_disable(&vmx_l1d_should_flush);
309
310 if (l1tf == VMENTER_L1D_FLUSH_COND)
311 static_branch_enable(&vmx_l1d_flush_cond);
312 else
313 static_branch_disable(&vmx_l1d_flush_cond);
314 return 0;
315 }
316
vmentry_l1d_flush_parse(const char * s)317 static int vmentry_l1d_flush_parse(const char *s)
318 {
319 unsigned int i;
320
321 if (s) {
322 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
323 if (vmentry_l1d_param[i].for_parse &&
324 sysfs_streq(s, vmentry_l1d_param[i].option))
325 return i;
326 }
327 }
328 return -EINVAL;
329 }
330
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)331 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
332 {
333 int l1tf, ret;
334
335 l1tf = vmentry_l1d_flush_parse(s);
336 if (l1tf < 0)
337 return l1tf;
338
339 if (!boot_cpu_has(X86_BUG_L1TF))
340 return 0;
341
342 /*
343 * Has vmx_init() run already? If not then this is the pre init
344 * parameter parsing. In that case just store the value and let
345 * vmx_init() do the proper setup after enable_ept has been
346 * established.
347 */
348 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
349 vmentry_l1d_flush_param = l1tf;
350 return 0;
351 }
352
353 mutex_lock(&vmx_l1d_flush_mutex);
354 ret = vmx_setup_l1d_flush(l1tf);
355 mutex_unlock(&vmx_l1d_flush_mutex);
356 return ret;
357 }
358
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)359 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
360 {
361 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
362 return sysfs_emit(s, "???\n");
363
364 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
365 }
366
vmx_disable_fb_clear(struct vcpu_vmx * vmx)367 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
368 {
369 u64 msr;
370
371 if (!vmx->disable_fb_clear)
372 return;
373
374 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
375 msr |= FB_CLEAR_DIS;
376 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
377 /* Cache the MSR value to avoid reading it later */
378 vmx->msr_ia32_mcu_opt_ctrl = msr;
379 }
380
vmx_enable_fb_clear(struct vcpu_vmx * vmx)381 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
382 {
383 if (!vmx->disable_fb_clear)
384 return;
385
386 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
387 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
388 }
389
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)390 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
391 {
392 /*
393 * Disable VERW's behavior of clearing CPU buffers for the guest if the
394 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
395 * the mitigation. Disabling the clearing behavior provides a
396 * performance boost for guests that aren't aware that manually clearing
397 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
398 * and VM-Exit.
399 */
400 vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
401 (host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
402 !boot_cpu_has_bug(X86_BUG_MDS) &&
403 !boot_cpu_has_bug(X86_BUG_TAA);
404
405 /*
406 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
407 * at VMEntry. Skip the MSR read/write when a guest has no use case to
408 * execute VERW.
409 */
410 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
411 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
412 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
413 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
414 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
415 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
416 vmx->disable_fb_clear = false;
417 }
418
419 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
420 .set = vmentry_l1d_flush_set,
421 .get = vmentry_l1d_flush_get,
422 };
423 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
424
425 static u32 vmx_segment_access_rights(struct kvm_segment *var);
426
427 void vmx_vmexit(void);
428
429 #define vmx_insn_failed(fmt...) \
430 do { \
431 WARN_ONCE(1, fmt); \
432 pr_warn_ratelimited(fmt); \
433 } while (0)
434
vmread_error(unsigned long field)435 noinline void vmread_error(unsigned long field)
436 {
437 vmx_insn_failed("vmread failed: field=%lx\n", field);
438 }
439
440 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
vmread_error_trampoline2(unsigned long field,bool fault)441 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
442 {
443 if (fault) {
444 kvm_spurious_fault();
445 } else {
446 instrumentation_begin();
447 vmread_error(field);
448 instrumentation_end();
449 }
450 }
451 #endif
452
vmwrite_error(unsigned long field,unsigned long value)453 noinline void vmwrite_error(unsigned long field, unsigned long value)
454 {
455 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
456 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
457 }
458
vmclear_error(struct vmcs * vmcs,u64 phys_addr)459 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
460 {
461 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
462 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
463 }
464
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)465 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
466 {
467 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
468 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
469 }
470
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)471 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
472 {
473 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
474 ext, vpid, gva);
475 }
476
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)477 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
478 {
479 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
480 ext, eptp, gpa);
481 }
482
483 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
484 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
485 /*
486 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
487 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
488 */
489 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
490
491 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
492 static DEFINE_SPINLOCK(vmx_vpid_lock);
493
494 struct vmcs_config vmcs_config __ro_after_init;
495 struct vmx_capability vmx_capability __ro_after_init;
496
497 #define VMX_SEGMENT_FIELD(seg) \
498 [VCPU_SREG_##seg] = { \
499 .selector = GUEST_##seg##_SELECTOR, \
500 .base = GUEST_##seg##_BASE, \
501 .limit = GUEST_##seg##_LIMIT, \
502 .ar_bytes = GUEST_##seg##_AR_BYTES, \
503 }
504
505 static const struct kvm_vmx_segment_field {
506 unsigned selector;
507 unsigned base;
508 unsigned limit;
509 unsigned ar_bytes;
510 } kvm_vmx_segment_fields[] = {
511 VMX_SEGMENT_FIELD(CS),
512 VMX_SEGMENT_FIELD(DS),
513 VMX_SEGMENT_FIELD(ES),
514 VMX_SEGMENT_FIELD(FS),
515 VMX_SEGMENT_FIELD(GS),
516 VMX_SEGMENT_FIELD(SS),
517 VMX_SEGMENT_FIELD(TR),
518 VMX_SEGMENT_FIELD(LDTR),
519 };
520
vmx_segment_cache_clear(struct vcpu_vmx * vmx)521 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
522 {
523 vmx->segment_cache.bitmask = 0;
524 }
525
526 static unsigned long host_idt_base;
527
528 #if IS_ENABLED(CONFIG_HYPERV)
529 static struct kvm_x86_ops vmx_x86_ops __initdata;
530
531 static bool __read_mostly enlightened_vmcs = true;
532 module_param(enlightened_vmcs, bool, 0444);
533
hv_enable_l2_tlb_flush(struct kvm_vcpu * vcpu)534 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
535 {
536 struct hv_enlightened_vmcs *evmcs;
537 struct hv_partition_assist_pg **p_hv_pa_pg =
538 &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
539 /*
540 * Synthetic VM-Exit is not enabled in current code and so All
541 * evmcs in singe VM shares same assist page.
542 */
543 if (!*p_hv_pa_pg)
544 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
545
546 if (!*p_hv_pa_pg)
547 return -ENOMEM;
548
549 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
550
551 evmcs->partition_assist_page =
552 __pa(*p_hv_pa_pg);
553 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
554 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
555
556 return 0;
557 }
558
hv_init_evmcs(void)559 static __init void hv_init_evmcs(void)
560 {
561 int cpu;
562
563 if (!enlightened_vmcs)
564 return;
565
566 /*
567 * Enlightened VMCS usage should be recommended and the host needs
568 * to support eVMCS v1 or above.
569 */
570 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
571 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
572 KVM_EVMCS_VERSION) {
573
574 /* Check that we have assist pages on all online CPUs */
575 for_each_online_cpu(cpu) {
576 if (!hv_get_vp_assist_page(cpu)) {
577 enlightened_vmcs = false;
578 break;
579 }
580 }
581
582 if (enlightened_vmcs) {
583 pr_info("Using Hyper-V Enlightened VMCS\n");
584 static_branch_enable(&__kvm_is_using_evmcs);
585 }
586
587 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
588 vmx_x86_ops.enable_l2_tlb_flush
589 = hv_enable_l2_tlb_flush;
590
591 } else {
592 enlightened_vmcs = false;
593 }
594 }
595
hv_reset_evmcs(void)596 static void hv_reset_evmcs(void)
597 {
598 struct hv_vp_assist_page *vp_ap;
599
600 if (!kvm_is_using_evmcs())
601 return;
602
603 /*
604 * KVM should enable eVMCS if and only if all CPUs have a VP assist
605 * page, and should reject CPU onlining if eVMCS is enabled the CPU
606 * doesn't have a VP assist page allocated.
607 */
608 vp_ap = hv_get_vp_assist_page(smp_processor_id());
609 if (WARN_ON_ONCE(!vp_ap))
610 return;
611
612 /*
613 * Reset everything to support using non-enlightened VMCS access later
614 * (e.g. when we reload the module with enlightened_vmcs=0)
615 */
616 vp_ap->nested_control.features.directhypercall = 0;
617 vp_ap->current_nested_vmcs = 0;
618 vp_ap->enlighten_vmentry = 0;
619 }
620
621 #else /* IS_ENABLED(CONFIG_HYPERV) */
hv_init_evmcs(void)622 static void hv_init_evmcs(void) {}
hv_reset_evmcs(void)623 static void hv_reset_evmcs(void) {}
624 #endif /* IS_ENABLED(CONFIG_HYPERV) */
625
626 /*
627 * Comment's format: document - errata name - stepping - processor name.
628 * Refer from
629 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
630 */
631 static u32 vmx_preemption_cpu_tfms[] = {
632 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
633 0x000206E6,
634 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
635 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
636 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
637 0x00020652,
638 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
639 0x00020655,
640 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
641 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
642 /*
643 * 320767.pdf - AAP86 - B1 -
644 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
645 */
646 0x000106E5,
647 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
648 0x000106A0,
649 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
650 0x000106A1,
651 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
652 0x000106A4,
653 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
654 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
655 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
656 0x000106A5,
657 /* Xeon E3-1220 V2 */
658 0x000306A8,
659 };
660
cpu_has_broken_vmx_preemption_timer(void)661 static inline bool cpu_has_broken_vmx_preemption_timer(void)
662 {
663 u32 eax = cpuid_eax(0x00000001), i;
664
665 /* Clear the reserved bits */
666 eax &= ~(0x3U << 14 | 0xfU << 28);
667 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
668 if (eax == vmx_preemption_cpu_tfms[i])
669 return true;
670
671 return false;
672 }
673
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)674 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
675 {
676 return flexpriority_enabled && lapic_in_kernel(vcpu);
677 }
678
possible_passthrough_msr_slot(u32 msr)679 static int possible_passthrough_msr_slot(u32 msr)
680 {
681 u32 i;
682
683 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
684 if (vmx_possible_passthrough_msrs[i] == msr)
685 return i;
686
687 return -ENOENT;
688 }
689
is_valid_passthrough_msr(u32 msr)690 static bool is_valid_passthrough_msr(u32 msr)
691 {
692 bool r;
693
694 switch (msr) {
695 case 0x800 ... 0x8ff:
696 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
697 return true;
698 case MSR_IA32_RTIT_STATUS:
699 case MSR_IA32_RTIT_OUTPUT_BASE:
700 case MSR_IA32_RTIT_OUTPUT_MASK:
701 case MSR_IA32_RTIT_CR3_MATCH:
702 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
703 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
704 case MSR_LBR_SELECT:
705 case MSR_LBR_TOS:
706 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
707 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
708 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
709 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
710 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
711 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
712 return true;
713 }
714
715 r = possible_passthrough_msr_slot(msr) != -ENOENT;
716
717 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
718
719 return r;
720 }
721
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)722 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
723 {
724 int i;
725
726 i = kvm_find_user_return_msr(msr);
727 if (i >= 0)
728 return &vmx->guest_uret_msrs[i];
729 return NULL;
730 }
731
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)732 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
733 struct vmx_uret_msr *msr, u64 data)
734 {
735 unsigned int slot = msr - vmx->guest_uret_msrs;
736 int ret = 0;
737
738 if (msr->load_into_hardware) {
739 preempt_disable();
740 ret = kvm_set_user_return_msr(slot, data, msr->mask);
741 preempt_enable();
742 }
743 if (!ret)
744 msr->data = data;
745 return ret;
746 }
747
748 /*
749 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
750 *
751 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
752 * atomically track post-VMXON state, e.g. this may be called in NMI context.
753 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
754 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
755 * magically in RM, VM86, compat mode, or at CPL>0.
756 */
kvm_cpu_vmxoff(void)757 static int kvm_cpu_vmxoff(void)
758 {
759 asm goto("1: vmxoff\n\t"
760 _ASM_EXTABLE(1b, %l[fault])
761 ::: "cc", "memory" : fault);
762
763 cr4_clear_bits(X86_CR4_VMXE);
764 return 0;
765
766 fault:
767 cr4_clear_bits(X86_CR4_VMXE);
768 return -EIO;
769 }
770
vmx_emergency_disable(void)771 static void vmx_emergency_disable(void)
772 {
773 int cpu = raw_smp_processor_id();
774 struct loaded_vmcs *v;
775
776 kvm_rebooting = true;
777
778 /*
779 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
780 * set in task context. If this races with VMX is disabled by an NMI,
781 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
782 * kvm_rebooting set.
783 */
784 if (!(__read_cr4() & X86_CR4_VMXE))
785 return;
786
787 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
788 loaded_vmcss_on_cpu_link)
789 vmcs_clear(v->vmcs);
790
791 kvm_cpu_vmxoff();
792 }
793
__loaded_vmcs_clear(void * arg)794 static void __loaded_vmcs_clear(void *arg)
795 {
796 struct loaded_vmcs *loaded_vmcs = arg;
797 int cpu = raw_smp_processor_id();
798
799 if (loaded_vmcs->cpu != cpu)
800 return; /* vcpu migration can race with cpu offline */
801 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
802 per_cpu(current_vmcs, cpu) = NULL;
803
804 vmcs_clear(loaded_vmcs->vmcs);
805 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
806 vmcs_clear(loaded_vmcs->shadow_vmcs);
807
808 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
809
810 /*
811 * Ensure all writes to loaded_vmcs, including deleting it from its
812 * current percpu list, complete before setting loaded_vmcs->cpu to
813 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
814 * and add loaded_vmcs to its percpu list before it's deleted from this
815 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
816 */
817 smp_wmb();
818
819 loaded_vmcs->cpu = -1;
820 loaded_vmcs->launched = 0;
821 }
822
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)823 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
824 {
825 int cpu = loaded_vmcs->cpu;
826
827 if (cpu != -1)
828 smp_call_function_single(cpu,
829 __loaded_vmcs_clear, loaded_vmcs, 1);
830 }
831
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)832 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
833 unsigned field)
834 {
835 bool ret;
836 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
837
838 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
839 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
840 vmx->segment_cache.bitmask = 0;
841 }
842 ret = vmx->segment_cache.bitmask & mask;
843 vmx->segment_cache.bitmask |= mask;
844 return ret;
845 }
846
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)847 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
848 {
849 u16 *p = &vmx->segment_cache.seg[seg].selector;
850
851 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
852 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
853 return *p;
854 }
855
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)856 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
857 {
858 ulong *p = &vmx->segment_cache.seg[seg].base;
859
860 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
861 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
862 return *p;
863 }
864
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)865 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
866 {
867 u32 *p = &vmx->segment_cache.seg[seg].limit;
868
869 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
870 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
871 return *p;
872 }
873
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)874 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
875 {
876 u32 *p = &vmx->segment_cache.seg[seg].ar;
877
878 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
879 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
880 return *p;
881 }
882
vmx_update_exception_bitmap(struct kvm_vcpu * vcpu)883 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
884 {
885 u32 eb;
886
887 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
888 (1u << DB_VECTOR) | (1u << AC_VECTOR);
889 /*
890 * Guest access to VMware backdoor ports could legitimately
891 * trigger #GP because of TSS I/O permission bitmap.
892 * We intercept those #GP and allow access to them anyway
893 * as VMware does.
894 */
895 if (enable_vmware_backdoor)
896 eb |= (1u << GP_VECTOR);
897 if ((vcpu->guest_debug &
898 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
899 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
900 eb |= 1u << BP_VECTOR;
901 if (to_vmx(vcpu)->rmode.vm86_active)
902 eb = ~0;
903 if (!vmx_need_pf_intercept(vcpu))
904 eb &= ~(1u << PF_VECTOR);
905
906 /* When we are running a nested L2 guest and L1 specified for it a
907 * certain exception bitmap, we must trap the same exceptions and pass
908 * them to L1. When running L2, we will only handle the exceptions
909 * specified above if L1 did not want them.
910 */
911 if (is_guest_mode(vcpu))
912 eb |= get_vmcs12(vcpu)->exception_bitmap;
913 else {
914 int mask = 0, match = 0;
915
916 if (enable_ept && (eb & (1u << PF_VECTOR))) {
917 /*
918 * If EPT is enabled, #PF is currently only intercepted
919 * if MAXPHYADDR is smaller on the guest than on the
920 * host. In that case we only care about present,
921 * non-reserved faults. For vmcs02, however, PFEC_MASK
922 * and PFEC_MATCH are set in prepare_vmcs02_rare.
923 */
924 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
925 match = PFERR_PRESENT_MASK;
926 }
927 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
928 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
929 }
930
931 /*
932 * Disabling xfd interception indicates that dynamic xfeatures
933 * might be used in the guest. Always trap #NM in this case
934 * to save guest xfd_err timely.
935 */
936 if (vcpu->arch.xfd_no_write_intercept)
937 eb |= (1u << NM_VECTOR);
938
939 vmcs_write32(EXCEPTION_BITMAP, eb);
940 }
941
942 /*
943 * Check if MSR is intercepted for currently loaded MSR bitmap.
944 */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)945 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
946 {
947 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
948 return true;
949
950 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
951 }
952
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)953 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
954 {
955 unsigned int flags = 0;
956
957 if (vmx->loaded_vmcs->launched)
958 flags |= VMX_RUN_VMRESUME;
959
960 /*
961 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
962 * to change it directly without causing a vmexit. In that case read
963 * it after vmexit and store it in vmx->spec_ctrl.
964 */
965 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
966 flags |= VMX_RUN_SAVE_SPEC_CTRL;
967
968 return flags;
969 }
970
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)971 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
972 unsigned long entry, unsigned long exit)
973 {
974 vm_entry_controls_clearbit(vmx, entry);
975 vm_exit_controls_clearbit(vmx, exit);
976 }
977
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)978 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
979 {
980 unsigned int i;
981
982 for (i = 0; i < m->nr; ++i) {
983 if (m->val[i].index == msr)
984 return i;
985 }
986 return -ENOENT;
987 }
988
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)989 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
990 {
991 int i;
992 struct msr_autoload *m = &vmx->msr_autoload;
993
994 switch (msr) {
995 case MSR_EFER:
996 if (cpu_has_load_ia32_efer()) {
997 clear_atomic_switch_msr_special(vmx,
998 VM_ENTRY_LOAD_IA32_EFER,
999 VM_EXIT_LOAD_IA32_EFER);
1000 return;
1001 }
1002 break;
1003 case MSR_CORE_PERF_GLOBAL_CTRL:
1004 if (cpu_has_load_perf_global_ctrl()) {
1005 clear_atomic_switch_msr_special(vmx,
1006 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1007 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1008 return;
1009 }
1010 break;
1011 }
1012 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1013 if (i < 0)
1014 goto skip_guest;
1015 --m->guest.nr;
1016 m->guest.val[i] = m->guest.val[m->guest.nr];
1017 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1018
1019 skip_guest:
1020 i = vmx_find_loadstore_msr_slot(&m->host, msr);
1021 if (i < 0)
1022 return;
1023
1024 --m->host.nr;
1025 m->host.val[i] = m->host.val[m->host.nr];
1026 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1027 }
1028
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1029 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1030 unsigned long entry, unsigned long exit,
1031 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1032 u64 guest_val, u64 host_val)
1033 {
1034 vmcs_write64(guest_val_vmcs, guest_val);
1035 if (host_val_vmcs != HOST_IA32_EFER)
1036 vmcs_write64(host_val_vmcs, host_val);
1037 vm_entry_controls_setbit(vmx, entry);
1038 vm_exit_controls_setbit(vmx, exit);
1039 }
1040
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)1041 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1042 u64 guest_val, u64 host_val, bool entry_only)
1043 {
1044 int i, j = 0;
1045 struct msr_autoload *m = &vmx->msr_autoload;
1046
1047 switch (msr) {
1048 case MSR_EFER:
1049 if (cpu_has_load_ia32_efer()) {
1050 add_atomic_switch_msr_special(vmx,
1051 VM_ENTRY_LOAD_IA32_EFER,
1052 VM_EXIT_LOAD_IA32_EFER,
1053 GUEST_IA32_EFER,
1054 HOST_IA32_EFER,
1055 guest_val, host_val);
1056 return;
1057 }
1058 break;
1059 case MSR_CORE_PERF_GLOBAL_CTRL:
1060 if (cpu_has_load_perf_global_ctrl()) {
1061 add_atomic_switch_msr_special(vmx,
1062 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1063 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1064 GUEST_IA32_PERF_GLOBAL_CTRL,
1065 HOST_IA32_PERF_GLOBAL_CTRL,
1066 guest_val, host_val);
1067 return;
1068 }
1069 break;
1070 case MSR_IA32_PEBS_ENABLE:
1071 /* PEBS needs a quiescent period after being disabled (to write
1072 * a record). Disabling PEBS through VMX MSR swapping doesn't
1073 * provide that period, so a CPU could write host's record into
1074 * guest's memory.
1075 */
1076 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1077 }
1078
1079 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1080 if (!entry_only)
1081 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1082
1083 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1084 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1085 printk_once(KERN_WARNING "Not enough msr switch entries. "
1086 "Can't add msr %x\n", msr);
1087 return;
1088 }
1089 if (i < 0) {
1090 i = m->guest.nr++;
1091 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1092 }
1093 m->guest.val[i].index = msr;
1094 m->guest.val[i].value = guest_val;
1095
1096 if (entry_only)
1097 return;
1098
1099 if (j < 0) {
1100 j = m->host.nr++;
1101 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1102 }
1103 m->host.val[j].index = msr;
1104 m->host.val[j].value = host_val;
1105 }
1106
update_transition_efer(struct vcpu_vmx * vmx)1107 static bool update_transition_efer(struct vcpu_vmx *vmx)
1108 {
1109 u64 guest_efer = vmx->vcpu.arch.efer;
1110 u64 ignore_bits = 0;
1111 int i;
1112
1113 /* Shadow paging assumes NX to be available. */
1114 if (!enable_ept)
1115 guest_efer |= EFER_NX;
1116
1117 /*
1118 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1119 */
1120 ignore_bits |= EFER_SCE;
1121 #ifdef CONFIG_X86_64
1122 ignore_bits |= EFER_LMA | EFER_LME;
1123 /* SCE is meaningful only in long mode on Intel */
1124 if (guest_efer & EFER_LMA)
1125 ignore_bits &= ~(u64)EFER_SCE;
1126 #endif
1127
1128 /*
1129 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1130 * On CPUs that support "load IA32_EFER", always switch EFER
1131 * atomically, since it's faster than switching it manually.
1132 */
1133 if (cpu_has_load_ia32_efer() ||
1134 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1135 if (!(guest_efer & EFER_LMA))
1136 guest_efer &= ~EFER_LME;
1137 if (guest_efer != host_efer)
1138 add_atomic_switch_msr(vmx, MSR_EFER,
1139 guest_efer, host_efer, false);
1140 else
1141 clear_atomic_switch_msr(vmx, MSR_EFER);
1142 return false;
1143 }
1144
1145 i = kvm_find_user_return_msr(MSR_EFER);
1146 if (i < 0)
1147 return false;
1148
1149 clear_atomic_switch_msr(vmx, MSR_EFER);
1150
1151 guest_efer &= ~ignore_bits;
1152 guest_efer |= host_efer & ignore_bits;
1153
1154 vmx->guest_uret_msrs[i].data = guest_efer;
1155 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1156
1157 return true;
1158 }
1159
1160 #ifdef CONFIG_X86_32
1161 /*
1162 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1163 * VMCS rather than the segment table. KVM uses this helper to figure
1164 * out the current bases to poke them into the VMCS before entry.
1165 */
segment_base(u16 selector)1166 static unsigned long segment_base(u16 selector)
1167 {
1168 struct desc_struct *table;
1169 unsigned long v;
1170
1171 if (!(selector & ~SEGMENT_RPL_MASK))
1172 return 0;
1173
1174 table = get_current_gdt_ro();
1175
1176 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1177 u16 ldt_selector = kvm_read_ldt();
1178
1179 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1180 return 0;
1181
1182 table = (struct desc_struct *)segment_base(ldt_selector);
1183 }
1184 v = get_desc_base(&table[selector >> 3]);
1185 return v;
1186 }
1187 #endif
1188
pt_can_write_msr(struct vcpu_vmx * vmx)1189 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1190 {
1191 return vmx_pt_mode_is_host_guest() &&
1192 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1193 }
1194
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1195 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1196 {
1197 /* The base must be 128-byte aligned and a legal physical address. */
1198 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1199 }
1200
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1201 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1202 {
1203 u32 i;
1204
1205 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1206 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1207 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1208 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1209 for (i = 0; i < addr_range; i++) {
1210 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1211 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1212 }
1213 }
1214
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1215 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1216 {
1217 u32 i;
1218
1219 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1220 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1221 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1222 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1223 for (i = 0; i < addr_range; i++) {
1224 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1225 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1226 }
1227 }
1228
pt_guest_enter(struct vcpu_vmx * vmx)1229 static void pt_guest_enter(struct vcpu_vmx *vmx)
1230 {
1231 if (vmx_pt_mode_is_system())
1232 return;
1233
1234 /*
1235 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1236 * Save host state before VM entry.
1237 */
1238 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1239 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1240 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1241 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1242 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1243 }
1244 }
1245
pt_guest_exit(struct vcpu_vmx * vmx)1246 static void pt_guest_exit(struct vcpu_vmx *vmx)
1247 {
1248 if (vmx_pt_mode_is_system())
1249 return;
1250
1251 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1252 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1253 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1254 }
1255
1256 /*
1257 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1258 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
1259 */
1260 if (vmx->pt_desc.host.ctl)
1261 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1262 }
1263
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1264 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1265 unsigned long fs_base, unsigned long gs_base)
1266 {
1267 if (unlikely(fs_sel != host->fs_sel)) {
1268 if (!(fs_sel & 7))
1269 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1270 else
1271 vmcs_write16(HOST_FS_SELECTOR, 0);
1272 host->fs_sel = fs_sel;
1273 }
1274 if (unlikely(gs_sel != host->gs_sel)) {
1275 if (!(gs_sel & 7))
1276 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1277 else
1278 vmcs_write16(HOST_GS_SELECTOR, 0);
1279 host->gs_sel = gs_sel;
1280 }
1281 if (unlikely(fs_base != host->fs_base)) {
1282 vmcs_writel(HOST_FS_BASE, fs_base);
1283 host->fs_base = fs_base;
1284 }
1285 if (unlikely(gs_base != host->gs_base)) {
1286 vmcs_writel(HOST_GS_BASE, gs_base);
1287 host->gs_base = gs_base;
1288 }
1289 }
1290
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1291 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1292 {
1293 struct vcpu_vmx *vmx = to_vmx(vcpu);
1294 struct vmcs_host_state *host_state;
1295 #ifdef CONFIG_X86_64
1296 int cpu = raw_smp_processor_id();
1297 #endif
1298 unsigned long fs_base, gs_base;
1299 u16 fs_sel, gs_sel;
1300 int i;
1301
1302 vmx->req_immediate_exit = false;
1303
1304 /*
1305 * Note that guest MSRs to be saved/restored can also be changed
1306 * when guest state is loaded. This happens when guest transitions
1307 * to/from long-mode by setting MSR_EFER.LMA.
1308 */
1309 if (!vmx->guest_uret_msrs_loaded) {
1310 vmx->guest_uret_msrs_loaded = true;
1311 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1312 if (!vmx->guest_uret_msrs[i].load_into_hardware)
1313 continue;
1314
1315 kvm_set_user_return_msr(i,
1316 vmx->guest_uret_msrs[i].data,
1317 vmx->guest_uret_msrs[i].mask);
1318 }
1319 }
1320
1321 if (vmx->nested.need_vmcs12_to_shadow_sync)
1322 nested_sync_vmcs12_to_shadow(vcpu);
1323
1324 if (vmx->guest_state_loaded)
1325 return;
1326
1327 host_state = &vmx->loaded_vmcs->host_state;
1328
1329 /*
1330 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1331 * allow segment selectors with cpl > 0 or ti == 1.
1332 */
1333 host_state->ldt_sel = kvm_read_ldt();
1334
1335 #ifdef CONFIG_X86_64
1336 savesegment(ds, host_state->ds_sel);
1337 savesegment(es, host_state->es_sel);
1338
1339 gs_base = cpu_kernelmode_gs_base(cpu);
1340 if (likely(is_64bit_mm(current->mm))) {
1341 current_save_fsgs();
1342 fs_sel = current->thread.fsindex;
1343 gs_sel = current->thread.gsindex;
1344 fs_base = current->thread.fsbase;
1345 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1346 } else {
1347 savesegment(fs, fs_sel);
1348 savesegment(gs, gs_sel);
1349 fs_base = read_msr(MSR_FS_BASE);
1350 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1351 }
1352
1353 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1354 #else
1355 savesegment(fs, fs_sel);
1356 savesegment(gs, gs_sel);
1357 fs_base = segment_base(fs_sel);
1358 gs_base = segment_base(gs_sel);
1359 #endif
1360
1361 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1362 vmx->guest_state_loaded = true;
1363 }
1364
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1365 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1366 {
1367 struct vmcs_host_state *host_state;
1368
1369 if (!vmx->guest_state_loaded)
1370 return;
1371
1372 host_state = &vmx->loaded_vmcs->host_state;
1373
1374 ++vmx->vcpu.stat.host_state_reload;
1375
1376 #ifdef CONFIG_X86_64
1377 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1378 #endif
1379 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1380 kvm_load_ldt(host_state->ldt_sel);
1381 #ifdef CONFIG_X86_64
1382 load_gs_index(host_state->gs_sel);
1383 #else
1384 loadsegment(gs, host_state->gs_sel);
1385 #endif
1386 }
1387 if (host_state->fs_sel & 7)
1388 loadsegment(fs, host_state->fs_sel);
1389 #ifdef CONFIG_X86_64
1390 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1391 loadsegment(ds, host_state->ds_sel);
1392 loadsegment(es, host_state->es_sel);
1393 }
1394 #endif
1395 invalidate_tss_limit();
1396 #ifdef CONFIG_X86_64
1397 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1398 #endif
1399 load_fixmap_gdt(raw_smp_processor_id());
1400 vmx->guest_state_loaded = false;
1401 vmx->guest_uret_msrs_loaded = false;
1402 }
1403
1404 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1405 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1406 {
1407 preempt_disable();
1408 if (vmx->guest_state_loaded)
1409 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1410 preempt_enable();
1411 return vmx->msr_guest_kernel_gs_base;
1412 }
1413
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1414 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1415 {
1416 preempt_disable();
1417 if (vmx->guest_state_loaded)
1418 wrmsrl(MSR_KERNEL_GS_BASE, data);
1419 preempt_enable();
1420 vmx->msr_guest_kernel_gs_base = data;
1421 }
1422 #endif
1423
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1424 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1425 struct loaded_vmcs *buddy)
1426 {
1427 struct vcpu_vmx *vmx = to_vmx(vcpu);
1428 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1429 struct vmcs *prev;
1430
1431 if (!already_loaded) {
1432 loaded_vmcs_clear(vmx->loaded_vmcs);
1433 local_irq_disable();
1434
1435 /*
1436 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1437 * this cpu's percpu list, otherwise it may not yet be deleted
1438 * from its previous cpu's percpu list. Pairs with the
1439 * smb_wmb() in __loaded_vmcs_clear().
1440 */
1441 smp_rmb();
1442
1443 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1444 &per_cpu(loaded_vmcss_on_cpu, cpu));
1445 local_irq_enable();
1446 }
1447
1448 prev = per_cpu(current_vmcs, cpu);
1449 if (prev != vmx->loaded_vmcs->vmcs) {
1450 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1451 vmcs_load(vmx->loaded_vmcs->vmcs);
1452
1453 /*
1454 * No indirect branch prediction barrier needed when switching
1455 * the active VMCS within a vCPU, unless IBRS is advertised to
1456 * the vCPU. To minimize the number of IBPBs executed, KVM
1457 * performs IBPB on nested VM-Exit (a single nested transition
1458 * may switch the active VMCS multiple times).
1459 */
1460 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1461 indirect_branch_prediction_barrier();
1462 }
1463
1464 if (!already_loaded) {
1465 void *gdt = get_current_gdt_ro();
1466
1467 /*
1468 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1469 * TLB entries from its previous association with the vCPU.
1470 */
1471 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1472
1473 /*
1474 * Linux uses per-cpu TSS and GDT, so set these when switching
1475 * processors. See 22.2.4.
1476 */
1477 vmcs_writel(HOST_TR_BASE,
1478 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1479 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1480
1481 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1482 /* 22.2.3 */
1483 vmcs_writel(HOST_IA32_SYSENTER_ESP,
1484 (unsigned long)(cpu_entry_stack(cpu) + 1));
1485 }
1486
1487 vmx->loaded_vmcs->cpu = cpu;
1488 }
1489 }
1490
1491 /*
1492 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1493 * vcpu mutex is already taken.
1494 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1495 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1496 {
1497 struct vcpu_vmx *vmx = to_vmx(vcpu);
1498
1499 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1500
1501 vmx_vcpu_pi_load(vcpu, cpu);
1502
1503 vmx->host_debugctlmsr = get_debugctlmsr();
1504 }
1505
vmx_vcpu_put(struct kvm_vcpu * vcpu)1506 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1507 {
1508 vmx_vcpu_pi_put(vcpu);
1509
1510 vmx_prepare_switch_to_host(to_vmx(vcpu));
1511 }
1512
vmx_emulation_required(struct kvm_vcpu * vcpu)1513 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1514 {
1515 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1516 }
1517
vmx_get_rflags(struct kvm_vcpu * vcpu)1518 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1519 {
1520 struct vcpu_vmx *vmx = to_vmx(vcpu);
1521 unsigned long rflags, save_rflags;
1522
1523 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1524 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1525 rflags = vmcs_readl(GUEST_RFLAGS);
1526 if (vmx->rmode.vm86_active) {
1527 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1528 save_rflags = vmx->rmode.save_rflags;
1529 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1530 }
1531 vmx->rflags = rflags;
1532 }
1533 return vmx->rflags;
1534 }
1535
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1536 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1537 {
1538 struct vcpu_vmx *vmx = to_vmx(vcpu);
1539 unsigned long old_rflags;
1540
1541 /*
1542 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1543 * is an unrestricted guest in order to mark L2 as needing emulation
1544 * if L1 runs L2 as a restricted guest.
1545 */
1546 if (is_unrestricted_guest(vcpu)) {
1547 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1548 vmx->rflags = rflags;
1549 vmcs_writel(GUEST_RFLAGS, rflags);
1550 return;
1551 }
1552
1553 old_rflags = vmx_get_rflags(vcpu);
1554 vmx->rflags = rflags;
1555 if (vmx->rmode.vm86_active) {
1556 vmx->rmode.save_rflags = rflags;
1557 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1558 }
1559 vmcs_writel(GUEST_RFLAGS, rflags);
1560
1561 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1562 vmx->emulation_required = vmx_emulation_required(vcpu);
1563 }
1564
vmx_get_if_flag(struct kvm_vcpu * vcpu)1565 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1566 {
1567 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1568 }
1569
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1570 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1571 {
1572 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1573 int ret = 0;
1574
1575 if (interruptibility & GUEST_INTR_STATE_STI)
1576 ret |= KVM_X86_SHADOW_INT_STI;
1577 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1578 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1579
1580 return ret;
1581 }
1582
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1583 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1584 {
1585 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1586 u32 interruptibility = interruptibility_old;
1587
1588 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1589
1590 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1591 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1592 else if (mask & KVM_X86_SHADOW_INT_STI)
1593 interruptibility |= GUEST_INTR_STATE_STI;
1594
1595 if ((interruptibility != interruptibility_old))
1596 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1597 }
1598
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1599 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1600 {
1601 struct vcpu_vmx *vmx = to_vmx(vcpu);
1602 unsigned long value;
1603
1604 /*
1605 * Any MSR write that attempts to change bits marked reserved will
1606 * case a #GP fault.
1607 */
1608 if (data & vmx->pt_desc.ctl_bitmask)
1609 return 1;
1610
1611 /*
1612 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1613 * result in a #GP unless the same write also clears TraceEn.
1614 */
1615 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1616 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1617 return 1;
1618
1619 /*
1620 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1621 * and FabricEn would cause #GP, if
1622 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1623 */
1624 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1625 !(data & RTIT_CTL_FABRIC_EN) &&
1626 !intel_pt_validate_cap(vmx->pt_desc.caps,
1627 PT_CAP_single_range_output))
1628 return 1;
1629
1630 /*
1631 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1632 * utilize encodings marked reserved will cause a #GP fault.
1633 */
1634 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1635 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1636 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1637 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1638 return 1;
1639 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1640 PT_CAP_cycle_thresholds);
1641 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1642 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1643 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1644 return 1;
1645 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1646 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1647 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1648 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1649 return 1;
1650
1651 /*
1652 * If ADDRx_CFG is reserved or the encodings is >2 will
1653 * cause a #GP fault.
1654 */
1655 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1656 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1657 return 1;
1658 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1659 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1660 return 1;
1661 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1662 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1663 return 1;
1664 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1665 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1666 return 1;
1667
1668 return 0;
1669 }
1670
vmx_can_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)1671 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1672 void *insn, int insn_len)
1673 {
1674 /*
1675 * Emulation of instructions in SGX enclaves is impossible as RIP does
1676 * not point at the failing instruction, and even if it did, the code
1677 * stream is inaccessible. Inject #UD instead of exiting to userspace
1678 * so that guest userspace can't DoS the guest simply by triggering
1679 * emulation (enclaves are CPL3 only).
1680 */
1681 if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1682 kvm_queue_exception(vcpu, UD_VECTOR);
1683 return false;
1684 }
1685 return true;
1686 }
1687
skip_emulated_instruction(struct kvm_vcpu * vcpu)1688 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1689 {
1690 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1691 unsigned long rip, orig_rip;
1692 u32 instr_len;
1693
1694 /*
1695 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1696 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1697 * set when EPT misconfig occurs. In practice, real hardware updates
1698 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1699 * (namely Hyper-V) don't set it due to it being undefined behavior,
1700 * i.e. we end up advancing IP with some random value.
1701 */
1702 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1703 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1704 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1705
1706 /*
1707 * Emulating an enclave's instructions isn't supported as KVM
1708 * cannot access the enclave's memory or its true RIP, e.g. the
1709 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1710 * the RIP that actually triggered the VM-Exit. But, because
1711 * most instructions that cause VM-Exit will #UD in an enclave,
1712 * most instruction-based VM-Exits simply do not occur.
1713 *
1714 * There are a few exceptions, notably the debug instructions
1715 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1716 * and generate #DB/#BP as expected, which KVM might intercept.
1717 * But again, the CPU does the dirty work and saves an instr
1718 * length of zero so VMMs don't shoot themselves in the foot.
1719 * WARN if KVM tries to skip a non-zero length instruction on
1720 * a VM-Exit from an enclave.
1721 */
1722 if (!instr_len)
1723 goto rip_updated;
1724
1725 WARN_ONCE(exit_reason.enclave_mode,
1726 "skipping instruction after SGX enclave VM-Exit");
1727
1728 orig_rip = kvm_rip_read(vcpu);
1729 rip = orig_rip + instr_len;
1730 #ifdef CONFIG_X86_64
1731 /*
1732 * We need to mask out the high 32 bits of RIP if not in 64-bit
1733 * mode, but just finding out that we are in 64-bit mode is
1734 * quite expensive. Only do it if there was a carry.
1735 */
1736 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1737 rip = (u32)rip;
1738 #endif
1739 kvm_rip_write(vcpu, rip);
1740 } else {
1741 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1742 return 0;
1743 }
1744
1745 rip_updated:
1746 /* skipping an emulated instruction also counts */
1747 vmx_set_interrupt_shadow(vcpu, 0);
1748
1749 return 1;
1750 }
1751
1752 /*
1753 * Recognizes a pending MTF VM-exit and records the nested state for later
1754 * delivery.
1755 */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1756 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1757 {
1758 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1759 struct vcpu_vmx *vmx = to_vmx(vcpu);
1760
1761 if (!is_guest_mode(vcpu))
1762 return;
1763
1764 /*
1765 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1766 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
1767 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1768 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1769 * as ICEBP is higher priority than both. As instruction emulation is
1770 * completed at this point (i.e. KVM is at the instruction boundary),
1771 * any #DB exception pending delivery must be a debug-trap of lower
1772 * priority than MTF. Record the pending MTF state to be delivered in
1773 * vmx_check_nested_events().
1774 */
1775 if (nested_cpu_has_mtf(vmcs12) &&
1776 (!vcpu->arch.exception.pending ||
1777 vcpu->arch.exception.vector == DB_VECTOR) &&
1778 (!vcpu->arch.exception_vmexit.pending ||
1779 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1780 vmx->nested.mtf_pending = true;
1781 kvm_make_request(KVM_REQ_EVENT, vcpu);
1782 } else {
1783 vmx->nested.mtf_pending = false;
1784 }
1785 }
1786
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1787 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1788 {
1789 vmx_update_emulated_instruction(vcpu);
1790 return skip_emulated_instruction(vcpu);
1791 }
1792
vmx_clear_hlt(struct kvm_vcpu * vcpu)1793 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1794 {
1795 /*
1796 * Ensure that we clear the HLT state in the VMCS. We don't need to
1797 * explicitly skip the instruction because if the HLT state is set,
1798 * then the instruction is already executing and RIP has already been
1799 * advanced.
1800 */
1801 if (kvm_hlt_in_guest(vcpu->kvm) &&
1802 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1803 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1804 }
1805
vmx_inject_exception(struct kvm_vcpu * vcpu)1806 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1807 {
1808 struct kvm_queued_exception *ex = &vcpu->arch.exception;
1809 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1810 struct vcpu_vmx *vmx = to_vmx(vcpu);
1811
1812 kvm_deliver_exception_payload(vcpu, ex);
1813
1814 if (ex->has_error_code) {
1815 /*
1816 * Despite the error code being architecturally defined as 32
1817 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1818 * VMX don't actually supporting setting bits 31:16. Hardware
1819 * will (should) never provide a bogus error code, but AMD CPUs
1820 * do generate error codes with bits 31:16 set, and so KVM's
1821 * ABI lets userspace shove in arbitrary 32-bit values. Drop
1822 * the upper bits to avoid VM-Fail, losing information that
1823 * does't really exist is preferable to killing the VM.
1824 */
1825 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1826 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1827 }
1828
1829 if (vmx->rmode.vm86_active) {
1830 int inc_eip = 0;
1831 if (kvm_exception_is_soft(ex->vector))
1832 inc_eip = vcpu->arch.event_exit_inst_len;
1833 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1834 return;
1835 }
1836
1837 WARN_ON_ONCE(vmx->emulation_required);
1838
1839 if (kvm_exception_is_soft(ex->vector)) {
1840 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1841 vmx->vcpu.arch.event_exit_inst_len);
1842 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1843 } else
1844 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1845
1846 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1847
1848 vmx_clear_hlt(vcpu);
1849 }
1850
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr,bool load_into_hardware)1851 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1852 bool load_into_hardware)
1853 {
1854 struct vmx_uret_msr *uret_msr;
1855
1856 uret_msr = vmx_find_uret_msr(vmx, msr);
1857 if (!uret_msr)
1858 return;
1859
1860 uret_msr->load_into_hardware = load_into_hardware;
1861 }
1862
1863 /*
1864 * Configuring user return MSRs to automatically save, load, and restore MSRs
1865 * that need to be shoved into hardware when running the guest. Note, omitting
1866 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1867 * loaded into hardware when running the guest.
1868 */
vmx_setup_uret_msrs(struct vcpu_vmx * vmx)1869 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1870 {
1871 #ifdef CONFIG_X86_64
1872 bool load_syscall_msrs;
1873
1874 /*
1875 * The SYSCALL MSRs are only needed on long mode guests, and only
1876 * when EFER.SCE is set.
1877 */
1878 load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1879 (vmx->vcpu.arch.efer & EFER_SCE);
1880
1881 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1882 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1883 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1884 #endif
1885 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1886
1887 vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1888 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1889 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1890
1891 /*
1892 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1893 * kernel and old userspace. If those guests run on a tsx=off host, do
1894 * allow guests to use TSX_CTRL, but don't change the value in hardware
1895 * so that TSX remains always disabled.
1896 */
1897 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1898
1899 /*
1900 * The set of MSRs to load may have changed, reload MSRs before the
1901 * next VM-Enter.
1902 */
1903 vmx->guest_uret_msrs_loaded = false;
1904 }
1905
vmx_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1906 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1907 {
1908 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1909
1910 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1911 return vmcs12->tsc_offset;
1912
1913 return 0;
1914 }
1915
vmx_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1916 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1917 {
1918 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1919
1920 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1921 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1922 return vmcs12->tsc_multiplier;
1923
1924 return kvm_caps.default_tsc_scaling_ratio;
1925 }
1926
vmx_write_tsc_offset(struct kvm_vcpu * vcpu)1927 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1928 {
1929 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1930 }
1931
vmx_write_tsc_multiplier(struct kvm_vcpu * vcpu)1932 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1933 {
1934 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1935 }
1936
1937 /*
1938 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1939 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain
1940 * backwards compatibility even though KVM doesn't support emulating SMX. And
1941 * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1942 * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1943 */
1944 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \
1945 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \
1946 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1947 FEAT_CTL_SGX_LC_ENABLED | \
1948 FEAT_CTL_SGX_ENABLED | \
1949 FEAT_CTL_LMCE_ENABLED)
1950
is_vmx_feature_control_msr_valid(struct vcpu_vmx * vmx,struct msr_data * msr)1951 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1952 struct msr_data *msr)
1953 {
1954 uint64_t valid_bits;
1955
1956 /*
1957 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1958 * exposed to the guest.
1959 */
1960 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1961 ~KVM_SUPPORTED_FEATURE_CONTROL);
1962
1963 if (!msr->host_initiated &&
1964 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1965 return false;
1966
1967 if (msr->host_initiated)
1968 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1969 else
1970 valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1971
1972 return !(msr->data & ~valid_bits);
1973 }
1974
vmx_get_msr_feature(struct kvm_msr_entry * msr)1975 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1976 {
1977 switch (msr->index) {
1978 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1979 if (!nested)
1980 return 1;
1981 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1982 default:
1983 return KVM_MSR_RET_INVALID;
1984 }
1985 }
1986
1987 /*
1988 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1989 * Returns 0 on success, non-0 otherwise.
1990 * Assumes vcpu_load() was already called.
1991 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1992 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1993 {
1994 struct vcpu_vmx *vmx = to_vmx(vcpu);
1995 struct vmx_uret_msr *msr;
1996 u32 index;
1997
1998 switch (msr_info->index) {
1999 #ifdef CONFIG_X86_64
2000 case MSR_FS_BASE:
2001 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2002 break;
2003 case MSR_GS_BASE:
2004 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2005 break;
2006 case MSR_KERNEL_GS_BASE:
2007 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
2008 break;
2009 #endif
2010 case MSR_EFER:
2011 return kvm_get_msr_common(vcpu, msr_info);
2012 case MSR_IA32_TSX_CTRL:
2013 if (!msr_info->host_initiated &&
2014 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2015 return 1;
2016 goto find_uret_msr;
2017 case MSR_IA32_UMWAIT_CONTROL:
2018 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2019 return 1;
2020
2021 msr_info->data = vmx->msr_ia32_umwait_control;
2022 break;
2023 case MSR_IA32_SPEC_CTRL:
2024 if (!msr_info->host_initiated &&
2025 !guest_has_spec_ctrl_msr(vcpu))
2026 return 1;
2027
2028 msr_info->data = to_vmx(vcpu)->spec_ctrl;
2029 break;
2030 case MSR_IA32_SYSENTER_CS:
2031 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2032 break;
2033 case MSR_IA32_SYSENTER_EIP:
2034 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2035 break;
2036 case MSR_IA32_SYSENTER_ESP:
2037 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2038 break;
2039 case MSR_IA32_BNDCFGS:
2040 if (!kvm_mpx_supported() ||
2041 (!msr_info->host_initiated &&
2042 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2043 return 1;
2044 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2045 break;
2046 case MSR_IA32_MCG_EXT_CTL:
2047 if (!msr_info->host_initiated &&
2048 !(vmx->msr_ia32_feature_control &
2049 FEAT_CTL_LMCE_ENABLED))
2050 return 1;
2051 msr_info->data = vcpu->arch.mcg_ext_ctl;
2052 break;
2053 case MSR_IA32_FEAT_CTL:
2054 msr_info->data = vmx->msr_ia32_feature_control;
2055 break;
2056 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2057 if (!msr_info->host_initiated &&
2058 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2059 return 1;
2060 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2061 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2062 break;
2063 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2064 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2065 return 1;
2066 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2067 &msr_info->data))
2068 return 1;
2069 /*
2070 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2071 * instead of just ignoring the features, different Hyper-V
2072 * versions are either trying to use them and fail or do some
2073 * sanity checking and refuse to boot. Filter all unsupported
2074 * features out.
2075 */
2076 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2077 nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2078 &msr_info->data);
2079 break;
2080 case MSR_IA32_RTIT_CTL:
2081 if (!vmx_pt_mode_is_host_guest())
2082 return 1;
2083 msr_info->data = vmx->pt_desc.guest.ctl;
2084 break;
2085 case MSR_IA32_RTIT_STATUS:
2086 if (!vmx_pt_mode_is_host_guest())
2087 return 1;
2088 msr_info->data = vmx->pt_desc.guest.status;
2089 break;
2090 case MSR_IA32_RTIT_CR3_MATCH:
2091 if (!vmx_pt_mode_is_host_guest() ||
2092 !intel_pt_validate_cap(vmx->pt_desc.caps,
2093 PT_CAP_cr3_filtering))
2094 return 1;
2095 msr_info->data = vmx->pt_desc.guest.cr3_match;
2096 break;
2097 case MSR_IA32_RTIT_OUTPUT_BASE:
2098 if (!vmx_pt_mode_is_host_guest() ||
2099 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2100 PT_CAP_topa_output) &&
2101 !intel_pt_validate_cap(vmx->pt_desc.caps,
2102 PT_CAP_single_range_output)))
2103 return 1;
2104 msr_info->data = vmx->pt_desc.guest.output_base;
2105 break;
2106 case MSR_IA32_RTIT_OUTPUT_MASK:
2107 if (!vmx_pt_mode_is_host_guest() ||
2108 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2109 PT_CAP_topa_output) &&
2110 !intel_pt_validate_cap(vmx->pt_desc.caps,
2111 PT_CAP_single_range_output)))
2112 return 1;
2113 msr_info->data = vmx->pt_desc.guest.output_mask;
2114 break;
2115 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2116 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2117 if (!vmx_pt_mode_is_host_guest() ||
2118 (index >= 2 * vmx->pt_desc.num_address_ranges))
2119 return 1;
2120 if (index % 2)
2121 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2122 else
2123 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2124 break;
2125 case MSR_IA32_DEBUGCTLMSR:
2126 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2127 break;
2128 default:
2129 find_uret_msr:
2130 msr = vmx_find_uret_msr(vmx, msr_info->index);
2131 if (msr) {
2132 msr_info->data = msr->data;
2133 break;
2134 }
2135 return kvm_get_msr_common(vcpu, msr_info);
2136 }
2137
2138 return 0;
2139 }
2140
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2141 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2142 u64 data)
2143 {
2144 #ifdef CONFIG_X86_64
2145 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2146 return (u32)data;
2147 #endif
2148 return (unsigned long)data;
2149 }
2150
vmx_get_supported_debugctl(struct kvm_vcpu * vcpu,bool host_initiated)2151 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2152 {
2153 u64 debugctl = 0;
2154
2155 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2156 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2157 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2158
2159 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2160 (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2161 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2162
2163 return debugctl;
2164 }
2165
2166 /*
2167 * Writes msr value into the appropriate "register".
2168 * Returns 0 on success, non-0 otherwise.
2169 * Assumes vcpu_load() was already called.
2170 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2171 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2172 {
2173 struct vcpu_vmx *vmx = to_vmx(vcpu);
2174 struct vmx_uret_msr *msr;
2175 int ret = 0;
2176 u32 msr_index = msr_info->index;
2177 u64 data = msr_info->data;
2178 u32 index;
2179
2180 switch (msr_index) {
2181 case MSR_EFER:
2182 ret = kvm_set_msr_common(vcpu, msr_info);
2183 break;
2184 #ifdef CONFIG_X86_64
2185 case MSR_FS_BASE:
2186 vmx_segment_cache_clear(vmx);
2187 vmcs_writel(GUEST_FS_BASE, data);
2188 break;
2189 case MSR_GS_BASE:
2190 vmx_segment_cache_clear(vmx);
2191 vmcs_writel(GUEST_GS_BASE, data);
2192 break;
2193 case MSR_KERNEL_GS_BASE:
2194 vmx_write_guest_kernel_gs_base(vmx, data);
2195 break;
2196 case MSR_IA32_XFD:
2197 ret = kvm_set_msr_common(vcpu, msr_info);
2198 /*
2199 * Always intercepting WRMSR could incur non-negligible
2200 * overhead given xfd might be changed frequently in
2201 * guest context switch. Disable write interception
2202 * upon the first write with a non-zero value (indicating
2203 * potential usage on dynamic xfeatures). Also update
2204 * exception bitmap to trap #NM for proper virtualization
2205 * of guest xfd_err.
2206 */
2207 if (!ret && data) {
2208 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2209 MSR_TYPE_RW);
2210 vcpu->arch.xfd_no_write_intercept = true;
2211 vmx_update_exception_bitmap(vcpu);
2212 }
2213 break;
2214 #endif
2215 case MSR_IA32_SYSENTER_CS:
2216 if (is_guest_mode(vcpu))
2217 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2218 vmcs_write32(GUEST_SYSENTER_CS, data);
2219 break;
2220 case MSR_IA32_SYSENTER_EIP:
2221 if (is_guest_mode(vcpu)) {
2222 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2223 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2224 }
2225 vmcs_writel(GUEST_SYSENTER_EIP, data);
2226 break;
2227 case MSR_IA32_SYSENTER_ESP:
2228 if (is_guest_mode(vcpu)) {
2229 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2230 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2231 }
2232 vmcs_writel(GUEST_SYSENTER_ESP, data);
2233 break;
2234 case MSR_IA32_DEBUGCTLMSR: {
2235 u64 invalid;
2236
2237 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2238 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2239 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2240 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2241 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2242 }
2243
2244 if (invalid)
2245 return 1;
2246
2247 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2248 VM_EXIT_SAVE_DEBUG_CONTROLS)
2249 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2250
2251 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2252 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2253 (data & DEBUGCTLMSR_LBR))
2254 intel_pmu_create_guest_lbr_event(vcpu);
2255 return 0;
2256 }
2257 case MSR_IA32_BNDCFGS:
2258 if (!kvm_mpx_supported() ||
2259 (!msr_info->host_initiated &&
2260 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2261 return 1;
2262 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2263 (data & MSR_IA32_BNDCFGS_RSVD))
2264 return 1;
2265
2266 if (is_guest_mode(vcpu) &&
2267 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2268 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2269 get_vmcs12(vcpu)->guest_bndcfgs = data;
2270
2271 vmcs_write64(GUEST_BNDCFGS, data);
2272 break;
2273 case MSR_IA32_UMWAIT_CONTROL:
2274 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2275 return 1;
2276
2277 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2278 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2279 return 1;
2280
2281 vmx->msr_ia32_umwait_control = data;
2282 break;
2283 case MSR_IA32_SPEC_CTRL:
2284 if (!msr_info->host_initiated &&
2285 !guest_has_spec_ctrl_msr(vcpu))
2286 return 1;
2287
2288 if (kvm_spec_ctrl_test_value(data))
2289 return 1;
2290
2291 vmx->spec_ctrl = data;
2292 if (!data)
2293 break;
2294
2295 /*
2296 * For non-nested:
2297 * When it's written (to non-zero) for the first time, pass
2298 * it through.
2299 *
2300 * For nested:
2301 * The handling of the MSR bitmap for L2 guests is done in
2302 * nested_vmx_prepare_msr_bitmap. We should not touch the
2303 * vmcs02.msr_bitmap here since it gets completely overwritten
2304 * in the merging. We update the vmcs01 here for L1 as well
2305 * since it will end up touching the MSR anyway now.
2306 */
2307 vmx_disable_intercept_for_msr(vcpu,
2308 MSR_IA32_SPEC_CTRL,
2309 MSR_TYPE_RW);
2310 break;
2311 case MSR_IA32_TSX_CTRL:
2312 if (!msr_info->host_initiated &&
2313 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2314 return 1;
2315 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2316 return 1;
2317 goto find_uret_msr;
2318 case MSR_IA32_CR_PAT:
2319 ret = kvm_set_msr_common(vcpu, msr_info);
2320 if (ret)
2321 break;
2322
2323 if (is_guest_mode(vcpu) &&
2324 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2325 get_vmcs12(vcpu)->guest_ia32_pat = data;
2326
2327 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2328 vmcs_write64(GUEST_IA32_PAT, data);
2329 break;
2330 case MSR_IA32_MCG_EXT_CTL:
2331 if ((!msr_info->host_initiated &&
2332 !(to_vmx(vcpu)->msr_ia32_feature_control &
2333 FEAT_CTL_LMCE_ENABLED)) ||
2334 (data & ~MCG_EXT_CTL_LMCE_EN))
2335 return 1;
2336 vcpu->arch.mcg_ext_ctl = data;
2337 break;
2338 case MSR_IA32_FEAT_CTL:
2339 if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2340 return 1;
2341
2342 vmx->msr_ia32_feature_control = data;
2343 if (msr_info->host_initiated && data == 0)
2344 vmx_leave_nested(vcpu);
2345
2346 /* SGX may be enabled/disabled by guest's firmware */
2347 vmx_write_encls_bitmap(vcpu, NULL);
2348 break;
2349 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2350 /*
2351 * On real hardware, the LE hash MSRs are writable before
2352 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2353 * at which point SGX related bits in IA32_FEATURE_CONTROL
2354 * become writable.
2355 *
2356 * KVM does not emulate SGX activation for simplicity, so
2357 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2358 * is unlocked. This is technically not architectural
2359 * behavior, but it's close enough.
2360 */
2361 if (!msr_info->host_initiated &&
2362 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2363 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2364 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2365 return 1;
2366 vmx->msr_ia32_sgxlepubkeyhash
2367 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2368 break;
2369 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2370 if (!msr_info->host_initiated)
2371 return 1; /* they are read-only */
2372 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2373 return 1;
2374 return vmx_set_vmx_msr(vcpu, msr_index, data);
2375 case MSR_IA32_RTIT_CTL:
2376 if (!vmx_pt_mode_is_host_guest() ||
2377 vmx_rtit_ctl_check(vcpu, data) ||
2378 vmx->nested.vmxon)
2379 return 1;
2380 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2381 vmx->pt_desc.guest.ctl = data;
2382 pt_update_intercept_for_msr(vcpu);
2383 break;
2384 case MSR_IA32_RTIT_STATUS:
2385 if (!pt_can_write_msr(vmx))
2386 return 1;
2387 if (data & MSR_IA32_RTIT_STATUS_MASK)
2388 return 1;
2389 vmx->pt_desc.guest.status = data;
2390 break;
2391 case MSR_IA32_RTIT_CR3_MATCH:
2392 if (!pt_can_write_msr(vmx))
2393 return 1;
2394 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2395 PT_CAP_cr3_filtering))
2396 return 1;
2397 vmx->pt_desc.guest.cr3_match = data;
2398 break;
2399 case MSR_IA32_RTIT_OUTPUT_BASE:
2400 if (!pt_can_write_msr(vmx))
2401 return 1;
2402 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2403 PT_CAP_topa_output) &&
2404 !intel_pt_validate_cap(vmx->pt_desc.caps,
2405 PT_CAP_single_range_output))
2406 return 1;
2407 if (!pt_output_base_valid(vcpu, data))
2408 return 1;
2409 vmx->pt_desc.guest.output_base = data;
2410 break;
2411 case MSR_IA32_RTIT_OUTPUT_MASK:
2412 if (!pt_can_write_msr(vmx))
2413 return 1;
2414 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2415 PT_CAP_topa_output) &&
2416 !intel_pt_validate_cap(vmx->pt_desc.caps,
2417 PT_CAP_single_range_output))
2418 return 1;
2419 vmx->pt_desc.guest.output_mask = data;
2420 break;
2421 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2422 if (!pt_can_write_msr(vmx))
2423 return 1;
2424 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2425 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2426 return 1;
2427 if (is_noncanonical_address(data, vcpu))
2428 return 1;
2429 if (index % 2)
2430 vmx->pt_desc.guest.addr_b[index / 2] = data;
2431 else
2432 vmx->pt_desc.guest.addr_a[index / 2] = data;
2433 break;
2434 case MSR_IA32_PERF_CAPABILITIES:
2435 if (data && !vcpu_to_pmu(vcpu)->version)
2436 return 1;
2437 if (data & PMU_CAP_LBR_FMT) {
2438 if ((data & PMU_CAP_LBR_FMT) !=
2439 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2440 return 1;
2441 if (!cpuid_model_is_consistent(vcpu))
2442 return 1;
2443 }
2444 if (data & PERF_CAP_PEBS_FORMAT) {
2445 if ((data & PERF_CAP_PEBS_MASK) !=
2446 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2447 return 1;
2448 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2449 return 1;
2450 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2451 return 1;
2452 if (!cpuid_model_is_consistent(vcpu))
2453 return 1;
2454 }
2455 ret = kvm_set_msr_common(vcpu, msr_info);
2456 break;
2457
2458 default:
2459 find_uret_msr:
2460 msr = vmx_find_uret_msr(vmx, msr_index);
2461 if (msr)
2462 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2463 else
2464 ret = kvm_set_msr_common(vcpu, msr_info);
2465 }
2466
2467 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2468 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2469 vmx_update_fb_clear_dis(vcpu, vmx);
2470
2471 return ret;
2472 }
2473
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2474 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2475 {
2476 unsigned long guest_owned_bits;
2477
2478 kvm_register_mark_available(vcpu, reg);
2479
2480 switch (reg) {
2481 case VCPU_REGS_RSP:
2482 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2483 break;
2484 case VCPU_REGS_RIP:
2485 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2486 break;
2487 case VCPU_EXREG_PDPTR:
2488 if (enable_ept)
2489 ept_save_pdptrs(vcpu);
2490 break;
2491 case VCPU_EXREG_CR0:
2492 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2493
2494 vcpu->arch.cr0 &= ~guest_owned_bits;
2495 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2496 break;
2497 case VCPU_EXREG_CR3:
2498 /*
2499 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2500 * CR3 is loaded into hardware, not the guest's CR3.
2501 */
2502 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2503 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2504 break;
2505 case VCPU_EXREG_CR4:
2506 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2507
2508 vcpu->arch.cr4 &= ~guest_owned_bits;
2509 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2510 break;
2511 default:
2512 KVM_BUG_ON(1, vcpu->kvm);
2513 break;
2514 }
2515 }
2516
2517 /*
2518 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2519 * directly instead of going through cpu_has(), to ensure KVM is trapping
2520 * ENCLS whenever it's supported in hardware. It does not matter whether
2521 * the host OS supports or has enabled SGX.
2522 */
cpu_has_sgx(void)2523 static bool cpu_has_sgx(void)
2524 {
2525 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2526 }
2527
2528 /*
2529 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2530 * can't be used due to errata where VM Exit may incorrectly clear
2531 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2532 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2533 */
cpu_has_perf_global_ctrl_bug(void)2534 static bool cpu_has_perf_global_ctrl_bug(void)
2535 {
2536 if (boot_cpu_data.x86 == 0x6) {
2537 switch (boot_cpu_data.x86_model) {
2538 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */
2539 case INTEL_FAM6_NEHALEM: /* AAP115 */
2540 case INTEL_FAM6_WESTMERE: /* AAT100 */
2541 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */
2542 case INTEL_FAM6_NEHALEM_EX: /* BA97 */
2543 return true;
2544 default:
2545 break;
2546 }
2547 }
2548
2549 return false;
2550 }
2551
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2552 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2553 {
2554 u32 vmx_msr_low, vmx_msr_high;
2555 u32 ctl = ctl_min | ctl_opt;
2556
2557 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2558
2559 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2560 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2561
2562 /* Ensure minimum (required) set of control bits are supported. */
2563 if (ctl_min & ~ctl)
2564 return -EIO;
2565
2566 *result = ctl;
2567 return 0;
2568 }
2569
adjust_vmx_controls64(u64 ctl_opt,u32 msr)2570 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2571 {
2572 u64 allowed;
2573
2574 rdmsrl(msr, allowed);
2575
2576 return ctl_opt & allowed;
2577 }
2578
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2579 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2580 struct vmx_capability *vmx_cap)
2581 {
2582 u32 vmx_msr_low, vmx_msr_high;
2583 u32 _pin_based_exec_control = 0;
2584 u32 _cpu_based_exec_control = 0;
2585 u32 _cpu_based_2nd_exec_control = 0;
2586 u64 _cpu_based_3rd_exec_control = 0;
2587 u32 _vmexit_control = 0;
2588 u32 _vmentry_control = 0;
2589 u64 misc_msr;
2590 int i;
2591
2592 /*
2593 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2594 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2595 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2596 */
2597 struct {
2598 u32 entry_control;
2599 u32 exit_control;
2600 } const vmcs_entry_exit_pairs[] = {
2601 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2602 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT },
2603 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER },
2604 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS },
2605 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL },
2606 };
2607
2608 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2609
2610 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2611 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2612 MSR_IA32_VMX_PROCBASED_CTLS,
2613 &_cpu_based_exec_control))
2614 return -EIO;
2615 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2616 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2617 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2618 MSR_IA32_VMX_PROCBASED_CTLS2,
2619 &_cpu_based_2nd_exec_control))
2620 return -EIO;
2621 }
2622 #ifndef CONFIG_X86_64
2623 if (!(_cpu_based_2nd_exec_control &
2624 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2625 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2626 #endif
2627
2628 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2629 _cpu_based_2nd_exec_control &= ~(
2630 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2631 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2632 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2633
2634 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2635 &vmx_cap->ept, &vmx_cap->vpid);
2636
2637 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2638 vmx_cap->ept) {
2639 pr_warn_once("EPT CAP should not exist if not support "
2640 "1-setting enable EPT VM-execution control\n");
2641
2642 if (error_on_inconsistent_vmcs_config)
2643 return -EIO;
2644
2645 vmx_cap->ept = 0;
2646 }
2647 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2648 vmx_cap->vpid) {
2649 pr_warn_once("VPID CAP should not exist if not support "
2650 "1-setting enable VPID VM-execution control\n");
2651
2652 if (error_on_inconsistent_vmcs_config)
2653 return -EIO;
2654
2655 vmx_cap->vpid = 0;
2656 }
2657
2658 if (!cpu_has_sgx())
2659 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2660
2661 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2662 _cpu_based_3rd_exec_control =
2663 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2664 MSR_IA32_VMX_PROCBASED_CTLS3);
2665
2666 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2667 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2668 MSR_IA32_VMX_EXIT_CTLS,
2669 &_vmexit_control))
2670 return -EIO;
2671
2672 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2673 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2674 MSR_IA32_VMX_PINBASED_CTLS,
2675 &_pin_based_exec_control))
2676 return -EIO;
2677
2678 if (cpu_has_broken_vmx_preemption_timer())
2679 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2680 if (!(_cpu_based_2nd_exec_control &
2681 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2682 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2683
2684 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2685 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2686 MSR_IA32_VMX_ENTRY_CTLS,
2687 &_vmentry_control))
2688 return -EIO;
2689
2690 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2691 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2692 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2693
2694 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2695 continue;
2696
2697 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2698 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2699
2700 if (error_on_inconsistent_vmcs_config)
2701 return -EIO;
2702
2703 _vmentry_control &= ~n_ctrl;
2704 _vmexit_control &= ~x_ctrl;
2705 }
2706
2707 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2708
2709 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2710 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2711 return -EIO;
2712
2713 #ifdef CONFIG_X86_64
2714 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2715 if (vmx_msr_high & (1u<<16))
2716 return -EIO;
2717 #endif
2718
2719 /* Require Write-Back (WB) memory type for VMCS accesses. */
2720 if (((vmx_msr_high >> 18) & 15) != 6)
2721 return -EIO;
2722
2723 rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2724
2725 vmcs_conf->size = vmx_msr_high & 0x1fff;
2726 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2727
2728 vmcs_conf->revision_id = vmx_msr_low;
2729
2730 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2731 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2732 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2733 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2734 vmcs_conf->vmexit_ctrl = _vmexit_control;
2735 vmcs_conf->vmentry_ctrl = _vmentry_control;
2736 vmcs_conf->misc = misc_msr;
2737
2738 #if IS_ENABLED(CONFIG_HYPERV)
2739 if (enlightened_vmcs)
2740 evmcs_sanitize_exec_ctrls(vmcs_conf);
2741 #endif
2742
2743 return 0;
2744 }
2745
__kvm_is_vmx_supported(void)2746 static bool __kvm_is_vmx_supported(void)
2747 {
2748 int cpu = smp_processor_id();
2749
2750 if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2751 pr_err("VMX not supported by CPU %d\n", cpu);
2752 return false;
2753 }
2754
2755 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2756 !this_cpu_has(X86_FEATURE_VMX)) {
2757 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2758 return false;
2759 }
2760
2761 return true;
2762 }
2763
kvm_is_vmx_supported(void)2764 static bool kvm_is_vmx_supported(void)
2765 {
2766 bool supported;
2767
2768 migrate_disable();
2769 supported = __kvm_is_vmx_supported();
2770 migrate_enable();
2771
2772 return supported;
2773 }
2774
vmx_check_processor_compat(void)2775 static int vmx_check_processor_compat(void)
2776 {
2777 int cpu = raw_smp_processor_id();
2778 struct vmcs_config vmcs_conf;
2779 struct vmx_capability vmx_cap;
2780
2781 if (!__kvm_is_vmx_supported())
2782 return -EIO;
2783
2784 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2785 pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2786 return -EIO;
2787 }
2788 if (nested)
2789 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2790 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2791 pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2792 return -EIO;
2793 }
2794 return 0;
2795 }
2796
kvm_cpu_vmxon(u64 vmxon_pointer)2797 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2798 {
2799 u64 msr;
2800
2801 cr4_set_bits(X86_CR4_VMXE);
2802
2803 asm goto("1: vmxon %[vmxon_pointer]\n\t"
2804 _ASM_EXTABLE(1b, %l[fault])
2805 : : [vmxon_pointer] "m"(vmxon_pointer)
2806 : : fault);
2807 return 0;
2808
2809 fault:
2810 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2811 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2812 cr4_clear_bits(X86_CR4_VMXE);
2813
2814 return -EFAULT;
2815 }
2816
vmx_hardware_enable(void)2817 static int vmx_hardware_enable(void)
2818 {
2819 int cpu = raw_smp_processor_id();
2820 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2821 int r;
2822
2823 if (cr4_read_shadow() & X86_CR4_VMXE)
2824 return -EBUSY;
2825
2826 /*
2827 * This can happen if we hot-added a CPU but failed to allocate
2828 * VP assist page for it.
2829 */
2830 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2831 return -EFAULT;
2832
2833 intel_pt_handle_vmx(1);
2834
2835 r = kvm_cpu_vmxon(phys_addr);
2836 if (r) {
2837 intel_pt_handle_vmx(0);
2838 return r;
2839 }
2840
2841 if (enable_ept)
2842 ept_sync_global();
2843
2844 return 0;
2845 }
2846
vmclear_local_loaded_vmcss(void)2847 static void vmclear_local_loaded_vmcss(void)
2848 {
2849 int cpu = raw_smp_processor_id();
2850 struct loaded_vmcs *v, *n;
2851
2852 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2853 loaded_vmcss_on_cpu_link)
2854 __loaded_vmcs_clear(v);
2855 }
2856
vmx_hardware_disable(void)2857 static void vmx_hardware_disable(void)
2858 {
2859 vmclear_local_loaded_vmcss();
2860
2861 if (kvm_cpu_vmxoff())
2862 kvm_spurious_fault();
2863
2864 hv_reset_evmcs();
2865
2866 intel_pt_handle_vmx(0);
2867 }
2868
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2869 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2870 {
2871 int node = cpu_to_node(cpu);
2872 struct page *pages;
2873 struct vmcs *vmcs;
2874
2875 pages = __alloc_pages_node(node, flags, 0);
2876 if (!pages)
2877 return NULL;
2878 vmcs = page_address(pages);
2879 memset(vmcs, 0, vmcs_config.size);
2880
2881 /* KVM supports Enlightened VMCS v1 only */
2882 if (kvm_is_using_evmcs())
2883 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2884 else
2885 vmcs->hdr.revision_id = vmcs_config.revision_id;
2886
2887 if (shadow)
2888 vmcs->hdr.shadow_vmcs = 1;
2889 return vmcs;
2890 }
2891
free_vmcs(struct vmcs * vmcs)2892 void free_vmcs(struct vmcs *vmcs)
2893 {
2894 free_page((unsigned long)vmcs);
2895 }
2896
2897 /*
2898 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2899 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2900 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2901 {
2902 if (!loaded_vmcs->vmcs)
2903 return;
2904 loaded_vmcs_clear(loaded_vmcs);
2905 free_vmcs(loaded_vmcs->vmcs);
2906 loaded_vmcs->vmcs = NULL;
2907 if (loaded_vmcs->msr_bitmap)
2908 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2909 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2910 }
2911
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2912 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2913 {
2914 loaded_vmcs->vmcs = alloc_vmcs(false);
2915 if (!loaded_vmcs->vmcs)
2916 return -ENOMEM;
2917
2918 vmcs_clear(loaded_vmcs->vmcs);
2919
2920 loaded_vmcs->shadow_vmcs = NULL;
2921 loaded_vmcs->hv_timer_soft_disabled = false;
2922 loaded_vmcs->cpu = -1;
2923 loaded_vmcs->launched = 0;
2924
2925 if (cpu_has_vmx_msr_bitmap()) {
2926 loaded_vmcs->msr_bitmap = (unsigned long *)
2927 __get_free_page(GFP_KERNEL_ACCOUNT);
2928 if (!loaded_vmcs->msr_bitmap)
2929 goto out_vmcs;
2930 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2931 }
2932
2933 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2934 memset(&loaded_vmcs->controls_shadow, 0,
2935 sizeof(struct vmcs_controls_shadow));
2936
2937 return 0;
2938
2939 out_vmcs:
2940 free_loaded_vmcs(loaded_vmcs);
2941 return -ENOMEM;
2942 }
2943
free_kvm_area(void)2944 static void free_kvm_area(void)
2945 {
2946 int cpu;
2947
2948 for_each_possible_cpu(cpu) {
2949 free_vmcs(per_cpu(vmxarea, cpu));
2950 per_cpu(vmxarea, cpu) = NULL;
2951 }
2952 }
2953
alloc_kvm_area(void)2954 static __init int alloc_kvm_area(void)
2955 {
2956 int cpu;
2957
2958 for_each_possible_cpu(cpu) {
2959 struct vmcs *vmcs;
2960
2961 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2962 if (!vmcs) {
2963 free_kvm_area();
2964 return -ENOMEM;
2965 }
2966
2967 /*
2968 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2969 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2970 * revision_id reported by MSR_IA32_VMX_BASIC.
2971 *
2972 * However, even though not explicitly documented by
2973 * TLFS, VMXArea passed as VMXON argument should
2974 * still be marked with revision_id reported by
2975 * physical CPU.
2976 */
2977 if (kvm_is_using_evmcs())
2978 vmcs->hdr.revision_id = vmcs_config.revision_id;
2979
2980 per_cpu(vmxarea, cpu) = vmcs;
2981 }
2982 return 0;
2983 }
2984
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2985 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2986 struct kvm_segment *save)
2987 {
2988 if (!emulate_invalid_guest_state) {
2989 /*
2990 * CS and SS RPL should be equal during guest entry according
2991 * to VMX spec, but in reality it is not always so. Since vcpu
2992 * is in the middle of the transition from real mode to
2993 * protected mode it is safe to assume that RPL 0 is a good
2994 * default value.
2995 */
2996 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2997 save->selector &= ~SEGMENT_RPL_MASK;
2998 save->dpl = save->selector & SEGMENT_RPL_MASK;
2999 save->s = 1;
3000 }
3001 __vmx_set_segment(vcpu, save, seg);
3002 }
3003
enter_pmode(struct kvm_vcpu * vcpu)3004 static void enter_pmode(struct kvm_vcpu *vcpu)
3005 {
3006 unsigned long flags;
3007 struct vcpu_vmx *vmx = to_vmx(vcpu);
3008
3009 /*
3010 * Update real mode segment cache. It may be not up-to-date if segment
3011 * register was written while vcpu was in a guest mode.
3012 */
3013 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3014 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3015 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3016 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3017 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3018 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3019
3020 vmx->rmode.vm86_active = 0;
3021
3022 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3023
3024 flags = vmcs_readl(GUEST_RFLAGS);
3025 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3026 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3027 vmcs_writel(GUEST_RFLAGS, flags);
3028
3029 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3030 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3031
3032 vmx_update_exception_bitmap(vcpu);
3033
3034 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3035 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3036 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3037 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3038 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3039 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3040 }
3041
fix_rmode_seg(int seg,struct kvm_segment * save)3042 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3043 {
3044 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3045 struct kvm_segment var = *save;
3046
3047 var.dpl = 0x3;
3048 if (seg == VCPU_SREG_CS)
3049 var.type = 0x3;
3050
3051 if (!emulate_invalid_guest_state) {
3052 var.selector = var.base >> 4;
3053 var.base = var.base & 0xffff0;
3054 var.limit = 0xffff;
3055 var.g = 0;
3056 var.db = 0;
3057 var.present = 1;
3058 var.s = 1;
3059 var.l = 0;
3060 var.unusable = 0;
3061 var.type = 0x3;
3062 var.avl = 0;
3063 if (save->base & 0xf)
3064 pr_warn_once("segment base is not paragraph aligned "
3065 "when entering protected mode (seg=%d)", seg);
3066 }
3067
3068 vmcs_write16(sf->selector, var.selector);
3069 vmcs_writel(sf->base, var.base);
3070 vmcs_write32(sf->limit, var.limit);
3071 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3072 }
3073
enter_rmode(struct kvm_vcpu * vcpu)3074 static void enter_rmode(struct kvm_vcpu *vcpu)
3075 {
3076 unsigned long flags;
3077 struct vcpu_vmx *vmx = to_vmx(vcpu);
3078 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3079
3080 /*
3081 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3082 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3083 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3084 * should VM-Fail and KVM should reject userspace attempts to stuff
3085 * CR0.PG=0 when L2 is active.
3086 */
3087 WARN_ON_ONCE(is_guest_mode(vcpu));
3088
3089 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3090 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3091 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3092 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3093 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3094 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3095 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3096
3097 vmx->rmode.vm86_active = 1;
3098
3099 vmx_segment_cache_clear(vmx);
3100
3101 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3102 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3103 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3104
3105 flags = vmcs_readl(GUEST_RFLAGS);
3106 vmx->rmode.save_rflags = flags;
3107
3108 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3109
3110 vmcs_writel(GUEST_RFLAGS, flags);
3111 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3112 vmx_update_exception_bitmap(vcpu);
3113
3114 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3115 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3116 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3117 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3118 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3119 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3120 }
3121
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3122 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3123 {
3124 struct vcpu_vmx *vmx = to_vmx(vcpu);
3125
3126 /* Nothing to do if hardware doesn't support EFER. */
3127 if (!vmx_find_uret_msr(vmx, MSR_EFER))
3128 return 0;
3129
3130 vcpu->arch.efer = efer;
3131 #ifdef CONFIG_X86_64
3132 if (efer & EFER_LMA)
3133 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3134 else
3135 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3136 #else
3137 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3138 return 1;
3139 #endif
3140
3141 vmx_setup_uret_msrs(vmx);
3142 return 0;
3143 }
3144
3145 #ifdef CONFIG_X86_64
3146
enter_lmode(struct kvm_vcpu * vcpu)3147 static void enter_lmode(struct kvm_vcpu *vcpu)
3148 {
3149 u32 guest_tr_ar;
3150
3151 vmx_segment_cache_clear(to_vmx(vcpu));
3152
3153 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3154 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3155 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3156 __func__);
3157 vmcs_write32(GUEST_TR_AR_BYTES,
3158 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3159 | VMX_AR_TYPE_BUSY_64_TSS);
3160 }
3161 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3162 }
3163
exit_lmode(struct kvm_vcpu * vcpu)3164 static void exit_lmode(struct kvm_vcpu *vcpu)
3165 {
3166 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3167 }
3168
3169 #endif
3170
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)3171 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3172 {
3173 struct vcpu_vmx *vmx = to_vmx(vcpu);
3174
3175 /*
3176 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3177 * the CPU is not required to invalidate guest-physical mappings on
3178 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
3179 * associated with the root EPT structure and not any particular VPID
3180 * (INVVPID also isn't required to invalidate guest-physical mappings).
3181 */
3182 if (enable_ept) {
3183 ept_sync_global();
3184 } else if (enable_vpid) {
3185 if (cpu_has_vmx_invvpid_global()) {
3186 vpid_sync_vcpu_global();
3187 } else {
3188 vpid_sync_vcpu_single(vmx->vpid);
3189 vpid_sync_vcpu_single(vmx->nested.vpid02);
3190 }
3191 }
3192 }
3193
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3194 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3195 {
3196 if (is_guest_mode(vcpu))
3197 return nested_get_vpid02(vcpu);
3198 return to_vmx(vcpu)->vpid;
3199 }
3200
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3201 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3202 {
3203 struct kvm_mmu *mmu = vcpu->arch.mmu;
3204 u64 root_hpa = mmu->root.hpa;
3205
3206 /* No flush required if the current context is invalid. */
3207 if (!VALID_PAGE(root_hpa))
3208 return;
3209
3210 if (enable_ept)
3211 ept_sync_context(construct_eptp(vcpu, root_hpa,
3212 mmu->root_role.level));
3213 else
3214 vpid_sync_context(vmx_get_current_vpid(vcpu));
3215 }
3216
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3217 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3218 {
3219 /*
3220 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3221 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3222 */
3223 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3224 }
3225
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3226 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3227 {
3228 /*
3229 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3230 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3231 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3232 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3233 * i.e. no explicit INVVPID is necessary.
3234 */
3235 vpid_sync_context(vmx_get_current_vpid(vcpu));
3236 }
3237
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3238 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3239 {
3240 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3241
3242 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3243 return;
3244
3245 if (is_pae_paging(vcpu)) {
3246 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3247 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3248 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3249 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3250 }
3251 }
3252
ept_save_pdptrs(struct kvm_vcpu * vcpu)3253 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3254 {
3255 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3256
3257 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3258 return;
3259
3260 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3261 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3262 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3263 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3264
3265 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3266 }
3267
3268 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3269 CPU_BASED_CR3_STORE_EXITING)
3270
vmx_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3271 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3272 {
3273 if (is_guest_mode(vcpu))
3274 return nested_guest_cr0_valid(vcpu, cr0);
3275
3276 if (to_vmx(vcpu)->nested.vmxon)
3277 return nested_host_cr0_valid(vcpu, cr0);
3278
3279 return true;
3280 }
3281
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3282 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3283 {
3284 struct vcpu_vmx *vmx = to_vmx(vcpu);
3285 unsigned long hw_cr0, old_cr0_pg;
3286 u32 tmp;
3287
3288 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3289
3290 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3291 if (enable_unrestricted_guest)
3292 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3293 else {
3294 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3295 if (!enable_ept)
3296 hw_cr0 |= X86_CR0_WP;
3297
3298 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3299 enter_pmode(vcpu);
3300
3301 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3302 enter_rmode(vcpu);
3303 }
3304
3305 vmcs_writel(CR0_READ_SHADOW, cr0);
3306 vmcs_writel(GUEST_CR0, hw_cr0);
3307 vcpu->arch.cr0 = cr0;
3308 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3309
3310 #ifdef CONFIG_X86_64
3311 if (vcpu->arch.efer & EFER_LME) {
3312 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3313 enter_lmode(vcpu);
3314 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3315 exit_lmode(vcpu);
3316 }
3317 #endif
3318
3319 if (enable_ept && !enable_unrestricted_guest) {
3320 /*
3321 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3322 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3323 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3324 * KVM's CR3 is installed.
3325 */
3326 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3327 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3328
3329 /*
3330 * When running with EPT but not unrestricted guest, KVM must
3331 * intercept CR3 accesses when paging is _disabled_. This is
3332 * necessary because restricted guests can't actually run with
3333 * paging disabled, and so KVM stuffs its own CR3 in order to
3334 * run the guest when identity mapped page tables.
3335 *
3336 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3337 * update, it may be stale with respect to CR3 interception,
3338 * e.g. after nested VM-Enter.
3339 *
3340 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3341 * stores to forward them to L1, even if KVM does not need to
3342 * intercept them to preserve its identity mapped page tables.
3343 */
3344 if (!(cr0 & X86_CR0_PG)) {
3345 exec_controls_setbit(vmx, CR3_EXITING_BITS);
3346 } else if (!is_guest_mode(vcpu)) {
3347 exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3348 } else {
3349 tmp = exec_controls_get(vmx);
3350 tmp &= ~CR3_EXITING_BITS;
3351 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3352 exec_controls_set(vmx, tmp);
3353 }
3354
3355 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3356 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3357 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3358
3359 /*
3360 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3361 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3362 */
3363 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3364 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3365 }
3366
3367 /* depends on vcpu->arch.cr0 to be set to a new value */
3368 vmx->emulation_required = vmx_emulation_required(vcpu);
3369 }
3370
vmx_get_max_ept_level(void)3371 static int vmx_get_max_ept_level(void)
3372 {
3373 if (cpu_has_vmx_ept_5levels())
3374 return 5;
3375 return 4;
3376 }
3377
construct_eptp(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3378 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3379 {
3380 u64 eptp = VMX_EPTP_MT_WB;
3381
3382 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3383
3384 if (enable_ept_ad_bits &&
3385 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3386 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3387 eptp |= root_hpa;
3388
3389 return eptp;
3390 }
3391
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3392 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3393 int root_level)
3394 {
3395 struct kvm *kvm = vcpu->kvm;
3396 bool update_guest_cr3 = true;
3397 unsigned long guest_cr3;
3398 u64 eptp;
3399
3400 if (enable_ept) {
3401 eptp = construct_eptp(vcpu, root_hpa, root_level);
3402 vmcs_write64(EPT_POINTER, eptp);
3403
3404 hv_track_root_tdp(vcpu, root_hpa);
3405
3406 if (!enable_unrestricted_guest && !is_paging(vcpu))
3407 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3408 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3409 guest_cr3 = vcpu->arch.cr3;
3410 else /* vmcs.GUEST_CR3 is already up-to-date. */
3411 update_guest_cr3 = false;
3412 vmx_ept_load_pdptrs(vcpu);
3413 } else {
3414 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3415 }
3416
3417 if (update_guest_cr3)
3418 vmcs_writel(GUEST_CR3, guest_cr3);
3419 }
3420
3421
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3422 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3423 {
3424 /*
3425 * We operate under the default treatment of SMM, so VMX cannot be
3426 * enabled under SMM. Note, whether or not VMXE is allowed at all,
3427 * i.e. is a reserved bit, is handled by common x86 code.
3428 */
3429 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3430 return false;
3431
3432 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3433 return false;
3434
3435 return true;
3436 }
3437
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3438 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3439 {
3440 unsigned long old_cr4 = kvm_read_cr4(vcpu);
3441 struct vcpu_vmx *vmx = to_vmx(vcpu);
3442 unsigned long hw_cr4;
3443
3444 /*
3445 * Pass through host's Machine Check Enable value to hw_cr4, which
3446 * is in force while we are in guest mode. Do not let guests control
3447 * this bit, even if host CR4.MCE == 0.
3448 */
3449 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3450 if (enable_unrestricted_guest)
3451 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3452 else if (vmx->rmode.vm86_active)
3453 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3454 else
3455 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3456
3457 if (vmx_umip_emulated()) {
3458 if (cr4 & X86_CR4_UMIP) {
3459 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3460 hw_cr4 &= ~X86_CR4_UMIP;
3461 } else if (!is_guest_mode(vcpu) ||
3462 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3463 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3464 }
3465 }
3466
3467 vcpu->arch.cr4 = cr4;
3468 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3469
3470 if (!enable_unrestricted_guest) {
3471 if (enable_ept) {
3472 if (!is_paging(vcpu)) {
3473 hw_cr4 &= ~X86_CR4_PAE;
3474 hw_cr4 |= X86_CR4_PSE;
3475 } else if (!(cr4 & X86_CR4_PAE)) {
3476 hw_cr4 &= ~X86_CR4_PAE;
3477 }
3478 }
3479
3480 /*
3481 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3482 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3483 * to be manually disabled when guest switches to non-paging
3484 * mode.
3485 *
3486 * If !enable_unrestricted_guest, the CPU is always running
3487 * with CR0.PG=1 and CR4 needs to be modified.
3488 * If enable_unrestricted_guest, the CPU automatically
3489 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3490 */
3491 if (!is_paging(vcpu))
3492 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3493 }
3494
3495 vmcs_writel(CR4_READ_SHADOW, cr4);
3496 vmcs_writel(GUEST_CR4, hw_cr4);
3497
3498 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3499 kvm_update_cpuid_runtime(vcpu);
3500 }
3501
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3502 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3503 {
3504 struct vcpu_vmx *vmx = to_vmx(vcpu);
3505 u32 ar;
3506
3507 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3508 *var = vmx->rmode.segs[seg];
3509 if (seg == VCPU_SREG_TR
3510 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3511 return;
3512 var->base = vmx_read_guest_seg_base(vmx, seg);
3513 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3514 return;
3515 }
3516 var->base = vmx_read_guest_seg_base(vmx, seg);
3517 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3518 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3519 ar = vmx_read_guest_seg_ar(vmx, seg);
3520 var->unusable = (ar >> 16) & 1;
3521 var->type = ar & 15;
3522 var->s = (ar >> 4) & 1;
3523 var->dpl = (ar >> 5) & 3;
3524 /*
3525 * Some userspaces do not preserve unusable property. Since usable
3526 * segment has to be present according to VMX spec we can use present
3527 * property to amend userspace bug by making unusable segment always
3528 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3529 * segment as unusable.
3530 */
3531 var->present = !var->unusable;
3532 var->avl = (ar >> 12) & 1;
3533 var->l = (ar >> 13) & 1;
3534 var->db = (ar >> 14) & 1;
3535 var->g = (ar >> 15) & 1;
3536 }
3537
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3538 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3539 {
3540 struct kvm_segment s;
3541
3542 if (to_vmx(vcpu)->rmode.vm86_active) {
3543 vmx_get_segment(vcpu, &s, seg);
3544 return s.base;
3545 }
3546 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3547 }
3548
vmx_get_cpl(struct kvm_vcpu * vcpu)3549 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3550 {
3551 struct vcpu_vmx *vmx = to_vmx(vcpu);
3552
3553 if (unlikely(vmx->rmode.vm86_active))
3554 return 0;
3555 else {
3556 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3557 return VMX_AR_DPL(ar);
3558 }
3559 }
3560
vmx_segment_access_rights(struct kvm_segment * var)3561 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3562 {
3563 u32 ar;
3564
3565 ar = var->type & 15;
3566 ar |= (var->s & 1) << 4;
3567 ar |= (var->dpl & 3) << 5;
3568 ar |= (var->present & 1) << 7;
3569 ar |= (var->avl & 1) << 12;
3570 ar |= (var->l & 1) << 13;
3571 ar |= (var->db & 1) << 14;
3572 ar |= (var->g & 1) << 15;
3573 ar |= (var->unusable || !var->present) << 16;
3574
3575 return ar;
3576 }
3577
__vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3578 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3579 {
3580 struct vcpu_vmx *vmx = to_vmx(vcpu);
3581 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3582
3583 vmx_segment_cache_clear(vmx);
3584
3585 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3586 vmx->rmode.segs[seg] = *var;
3587 if (seg == VCPU_SREG_TR)
3588 vmcs_write16(sf->selector, var->selector);
3589 else if (var->s)
3590 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3591 return;
3592 }
3593
3594 vmcs_writel(sf->base, var->base);
3595 vmcs_write32(sf->limit, var->limit);
3596 vmcs_write16(sf->selector, var->selector);
3597
3598 /*
3599 * Fix the "Accessed" bit in AR field of segment registers for older
3600 * qemu binaries.
3601 * IA32 arch specifies that at the time of processor reset the
3602 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3603 * is setting it to 0 in the userland code. This causes invalid guest
3604 * state vmexit when "unrestricted guest" mode is turned on.
3605 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3606 * tree. Newer qemu binaries with that qemu fix would not need this
3607 * kvm hack.
3608 */
3609 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3610 var->type |= 0x1; /* Accessed */
3611
3612 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3613 }
3614
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3615 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3616 {
3617 __vmx_set_segment(vcpu, var, seg);
3618
3619 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3620 }
3621
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3622 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3623 {
3624 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3625
3626 *db = (ar >> 14) & 1;
3627 *l = (ar >> 13) & 1;
3628 }
3629
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3630 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3631 {
3632 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3633 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3634 }
3635
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3636 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3637 {
3638 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3639 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3640 }
3641
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3642 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3643 {
3644 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3645 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3646 }
3647
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3648 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3649 {
3650 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3651 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3652 }
3653
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3654 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3655 {
3656 struct kvm_segment var;
3657 u32 ar;
3658
3659 vmx_get_segment(vcpu, &var, seg);
3660 var.dpl = 0x3;
3661 if (seg == VCPU_SREG_CS)
3662 var.type = 0x3;
3663 ar = vmx_segment_access_rights(&var);
3664
3665 if (var.base != (var.selector << 4))
3666 return false;
3667 if (var.limit != 0xffff)
3668 return false;
3669 if (ar != 0xf3)
3670 return false;
3671
3672 return true;
3673 }
3674
code_segment_valid(struct kvm_vcpu * vcpu)3675 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3676 {
3677 struct kvm_segment cs;
3678 unsigned int cs_rpl;
3679
3680 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3681 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3682
3683 if (cs.unusable)
3684 return false;
3685 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3686 return false;
3687 if (!cs.s)
3688 return false;
3689 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3690 if (cs.dpl > cs_rpl)
3691 return false;
3692 } else {
3693 if (cs.dpl != cs_rpl)
3694 return false;
3695 }
3696 if (!cs.present)
3697 return false;
3698
3699 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3700 return true;
3701 }
3702
stack_segment_valid(struct kvm_vcpu * vcpu)3703 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3704 {
3705 struct kvm_segment ss;
3706 unsigned int ss_rpl;
3707
3708 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3709 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3710
3711 if (ss.unusable)
3712 return true;
3713 if (ss.type != 3 && ss.type != 7)
3714 return false;
3715 if (!ss.s)
3716 return false;
3717 if (ss.dpl != ss_rpl) /* DPL != RPL */
3718 return false;
3719 if (!ss.present)
3720 return false;
3721
3722 return true;
3723 }
3724
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3725 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3726 {
3727 struct kvm_segment var;
3728 unsigned int rpl;
3729
3730 vmx_get_segment(vcpu, &var, seg);
3731 rpl = var.selector & SEGMENT_RPL_MASK;
3732
3733 if (var.unusable)
3734 return true;
3735 if (!var.s)
3736 return false;
3737 if (!var.present)
3738 return false;
3739 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3740 if (var.dpl < rpl) /* DPL < RPL */
3741 return false;
3742 }
3743
3744 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3745 * rights flags
3746 */
3747 return true;
3748 }
3749
tr_valid(struct kvm_vcpu * vcpu)3750 static bool tr_valid(struct kvm_vcpu *vcpu)
3751 {
3752 struct kvm_segment tr;
3753
3754 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3755
3756 if (tr.unusable)
3757 return false;
3758 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3759 return false;
3760 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3761 return false;
3762 if (!tr.present)
3763 return false;
3764
3765 return true;
3766 }
3767
ldtr_valid(struct kvm_vcpu * vcpu)3768 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3769 {
3770 struct kvm_segment ldtr;
3771
3772 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3773
3774 if (ldtr.unusable)
3775 return true;
3776 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3777 return false;
3778 if (ldtr.type != 2)
3779 return false;
3780 if (!ldtr.present)
3781 return false;
3782
3783 return true;
3784 }
3785
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3786 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3787 {
3788 struct kvm_segment cs, ss;
3789
3790 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3791 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3792
3793 return ((cs.selector & SEGMENT_RPL_MASK) ==
3794 (ss.selector & SEGMENT_RPL_MASK));
3795 }
3796
3797 /*
3798 * Check if guest state is valid. Returns true if valid, false if
3799 * not.
3800 * We assume that registers are always usable
3801 */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3802 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3803 {
3804 /* real mode guest state checks */
3805 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3806 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3807 return false;
3808 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3809 return false;
3810 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3811 return false;
3812 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3813 return false;
3814 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3815 return false;
3816 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3817 return false;
3818 } else {
3819 /* protected mode guest state checks */
3820 if (!cs_ss_rpl_check(vcpu))
3821 return false;
3822 if (!code_segment_valid(vcpu))
3823 return false;
3824 if (!stack_segment_valid(vcpu))
3825 return false;
3826 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3827 return false;
3828 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3829 return false;
3830 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3831 return false;
3832 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3833 return false;
3834 if (!tr_valid(vcpu))
3835 return false;
3836 if (!ldtr_valid(vcpu))
3837 return false;
3838 }
3839 /* TODO:
3840 * - Add checks on RIP
3841 * - Add checks on RFLAGS
3842 */
3843
3844 return true;
3845 }
3846
init_rmode_tss(struct kvm * kvm,void __user * ua)3847 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3848 {
3849 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3850 u16 data;
3851 int i;
3852
3853 for (i = 0; i < 3; i++) {
3854 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3855 return -EFAULT;
3856 }
3857
3858 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3859 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3860 return -EFAULT;
3861
3862 data = ~0;
3863 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3864 return -EFAULT;
3865
3866 return 0;
3867 }
3868
init_rmode_identity_map(struct kvm * kvm)3869 static int init_rmode_identity_map(struct kvm *kvm)
3870 {
3871 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3872 int i, r = 0;
3873 void __user *uaddr;
3874 u32 tmp;
3875
3876 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3877 mutex_lock(&kvm->slots_lock);
3878
3879 if (likely(kvm_vmx->ept_identity_pagetable_done))
3880 goto out;
3881
3882 if (!kvm_vmx->ept_identity_map_addr)
3883 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3884
3885 uaddr = __x86_set_memory_region(kvm,
3886 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3887 kvm_vmx->ept_identity_map_addr,
3888 PAGE_SIZE);
3889 if (IS_ERR(uaddr)) {
3890 r = PTR_ERR(uaddr);
3891 goto out;
3892 }
3893
3894 /* Set up identity-mapping pagetable for EPT in real mode */
3895 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3896 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3897 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3898 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3899 r = -EFAULT;
3900 goto out;
3901 }
3902 }
3903 kvm_vmx->ept_identity_pagetable_done = true;
3904
3905 out:
3906 mutex_unlock(&kvm->slots_lock);
3907 return r;
3908 }
3909
seg_setup(int seg)3910 static void seg_setup(int seg)
3911 {
3912 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3913 unsigned int ar;
3914
3915 vmcs_write16(sf->selector, 0);
3916 vmcs_writel(sf->base, 0);
3917 vmcs_write32(sf->limit, 0xffff);
3918 ar = 0x93;
3919 if (seg == VCPU_SREG_CS)
3920 ar |= 0x08; /* code segment */
3921
3922 vmcs_write32(sf->ar_bytes, ar);
3923 }
3924
allocate_vpid(void)3925 int allocate_vpid(void)
3926 {
3927 int vpid;
3928
3929 if (!enable_vpid)
3930 return 0;
3931 spin_lock(&vmx_vpid_lock);
3932 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3933 if (vpid < VMX_NR_VPIDS)
3934 __set_bit(vpid, vmx_vpid_bitmap);
3935 else
3936 vpid = 0;
3937 spin_unlock(&vmx_vpid_lock);
3938 return vpid;
3939 }
3940
free_vpid(int vpid)3941 void free_vpid(int vpid)
3942 {
3943 if (!enable_vpid || vpid == 0)
3944 return;
3945 spin_lock(&vmx_vpid_lock);
3946 __clear_bit(vpid, vmx_vpid_bitmap);
3947 spin_unlock(&vmx_vpid_lock);
3948 }
3949
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)3950 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3951 {
3952 /*
3953 * When KVM is a nested hypervisor on top of Hyper-V and uses
3954 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3955 * bitmap has changed.
3956 */
3957 if (kvm_is_using_evmcs()) {
3958 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3959
3960 if (evmcs->hv_enlightenments_control.msr_bitmap)
3961 evmcs->hv_clean_fields &=
3962 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3963 }
3964
3965 vmx->nested.force_msr_bitmap_recalc = true;
3966 }
3967
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3968 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3969 {
3970 struct vcpu_vmx *vmx = to_vmx(vcpu);
3971 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3972
3973 if (!cpu_has_vmx_msr_bitmap())
3974 return;
3975
3976 vmx_msr_bitmap_l01_changed(vmx);
3977
3978 /*
3979 * Mark the desired intercept state in shadow bitmap, this is needed
3980 * for resync when the MSR filters change.
3981 */
3982 if (is_valid_passthrough_msr(msr)) {
3983 int idx = possible_passthrough_msr_slot(msr);
3984
3985 if (idx != -ENOENT) {
3986 if (type & MSR_TYPE_R)
3987 clear_bit(idx, vmx->shadow_msr_intercept.read);
3988 if (type & MSR_TYPE_W)
3989 clear_bit(idx, vmx->shadow_msr_intercept.write);
3990 }
3991 }
3992
3993 if ((type & MSR_TYPE_R) &&
3994 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3995 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3996 type &= ~MSR_TYPE_R;
3997 }
3998
3999 if ((type & MSR_TYPE_W) &&
4000 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
4001 vmx_set_msr_bitmap_write(msr_bitmap, msr);
4002 type &= ~MSR_TYPE_W;
4003 }
4004
4005 if (type & MSR_TYPE_R)
4006 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4007
4008 if (type & MSR_TYPE_W)
4009 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4010 }
4011
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)4012 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4013 {
4014 struct vcpu_vmx *vmx = to_vmx(vcpu);
4015 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4016
4017 if (!cpu_has_vmx_msr_bitmap())
4018 return;
4019
4020 vmx_msr_bitmap_l01_changed(vmx);
4021
4022 /*
4023 * Mark the desired intercept state in shadow bitmap, this is needed
4024 * for resync when the MSR filter changes.
4025 */
4026 if (is_valid_passthrough_msr(msr)) {
4027 int idx = possible_passthrough_msr_slot(msr);
4028
4029 if (idx != -ENOENT) {
4030 if (type & MSR_TYPE_R)
4031 set_bit(idx, vmx->shadow_msr_intercept.read);
4032 if (type & MSR_TYPE_W)
4033 set_bit(idx, vmx->shadow_msr_intercept.write);
4034 }
4035 }
4036
4037 if (type & MSR_TYPE_R)
4038 vmx_set_msr_bitmap_read(msr_bitmap, msr);
4039
4040 if (type & MSR_TYPE_W)
4041 vmx_set_msr_bitmap_write(msr_bitmap, msr);
4042 }
4043
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu)4044 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4045 {
4046 /*
4047 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4048 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0,
4049 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4050 */
4051 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4052 const int write_idx = read_idx + (0x800 / sizeof(u64));
4053 struct vcpu_vmx *vmx = to_vmx(vcpu);
4054 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4055 u8 mode;
4056
4057 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4058 return;
4059
4060 if (cpu_has_secondary_exec_ctrls() &&
4061 (secondary_exec_controls_get(vmx) &
4062 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4063 mode = MSR_BITMAP_MODE_X2APIC;
4064 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4065 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4066 } else {
4067 mode = 0;
4068 }
4069
4070 if (mode == vmx->x2apic_msr_bitmap_mode)
4071 return;
4072
4073 vmx->x2apic_msr_bitmap_mode = mode;
4074
4075 /*
4076 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended
4077 * registers (0x840 and above) intercepted, KVM doesn't support them.
4078 * Intercept all writes by default and poke holes as needed. Pass
4079 * through reads for all valid registers by default in x2APIC+APICv
4080 * mode, only the current timer count needs on-demand emulation by KVM.
4081 */
4082 if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4083 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4084 else
4085 msr_bitmap[read_idx] = ~0ull;
4086 msr_bitmap[write_idx] = ~0ull;
4087
4088 /*
4089 * TPR reads and writes can be virtualized even if virtual interrupt
4090 * delivery is not in use.
4091 */
4092 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4093 !(mode & MSR_BITMAP_MODE_X2APIC));
4094
4095 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4096 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4097 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4098 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4099 if (enable_ipiv)
4100 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4101 }
4102 }
4103
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)4104 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4105 {
4106 struct vcpu_vmx *vmx = to_vmx(vcpu);
4107 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4108 u32 i;
4109
4110 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4111 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4112 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4113 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4114 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4115 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4116 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4117 }
4118 }
4119
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)4120 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4121 {
4122 struct vcpu_vmx *vmx = to_vmx(vcpu);
4123 void *vapic_page;
4124 u32 vppr;
4125 int rvi;
4126
4127 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4128 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4129 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4130 return false;
4131
4132 rvi = vmx_get_rvi();
4133
4134 vapic_page = vmx->nested.virtual_apic_map.hva;
4135 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4136
4137 return ((rvi & 0xf0) > (vppr & 0xf0));
4138 }
4139
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)4140 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4141 {
4142 struct vcpu_vmx *vmx = to_vmx(vcpu);
4143 u32 i;
4144
4145 /*
4146 * Redo intercept permissions for MSRs that KVM is passing through to
4147 * the guest. Disabling interception will check the new MSR filter and
4148 * ensure that KVM enables interception if usersepace wants to filter
4149 * the MSR. MSRs that KVM is already intercepting don't need to be
4150 * refreshed since KVM is going to intercept them regardless of what
4151 * userspace wants.
4152 */
4153 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4154 u32 msr = vmx_possible_passthrough_msrs[i];
4155
4156 if (!test_bit(i, vmx->shadow_msr_intercept.read))
4157 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4158
4159 if (!test_bit(i, vmx->shadow_msr_intercept.write))
4160 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4161 }
4162
4163 /* PT MSRs can be passed through iff PT is exposed to the guest. */
4164 if (vmx_pt_mode_is_host_guest())
4165 pt_update_intercept_for_msr(vcpu);
4166 }
4167
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,int pi_vec)4168 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4169 int pi_vec)
4170 {
4171 #ifdef CONFIG_SMP
4172 if (vcpu->mode == IN_GUEST_MODE) {
4173 /*
4174 * The vector of the virtual has already been set in the PIR.
4175 * Send a notification event to deliver the virtual interrupt
4176 * unless the vCPU is the currently running vCPU, i.e. the
4177 * event is being sent from a fastpath VM-Exit handler, in
4178 * which case the PIR will be synced to the vIRR before
4179 * re-entering the guest.
4180 *
4181 * When the target is not the running vCPU, the following
4182 * possibilities emerge:
4183 *
4184 * Case 1: vCPU stays in non-root mode. Sending a notification
4185 * event posts the interrupt to the vCPU.
4186 *
4187 * Case 2: vCPU exits to root mode and is still runnable. The
4188 * PIR will be synced to the vIRR before re-entering the guest.
4189 * Sending a notification event is ok as the host IRQ handler
4190 * will ignore the spurious event.
4191 *
4192 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4193 * has already synced PIR to vIRR and never blocks the vCPU if
4194 * the vIRR is not empty. Therefore, a blocked vCPU here does
4195 * not wait for any requested interrupts in PIR, and sending a
4196 * notification event also results in a benign, spurious event.
4197 */
4198
4199 if (vcpu != kvm_get_running_vcpu())
4200 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4201 return;
4202 }
4203 #endif
4204 /*
4205 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4206 * otherwise do nothing as KVM will grab the highest priority pending
4207 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4208 */
4209 kvm_vcpu_wake_up(vcpu);
4210 }
4211
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4212 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4213 int vector)
4214 {
4215 struct vcpu_vmx *vmx = to_vmx(vcpu);
4216
4217 if (is_guest_mode(vcpu) &&
4218 vector == vmx->nested.posted_intr_nv) {
4219 /*
4220 * If a posted intr is not recognized by hardware,
4221 * we will accomplish it in the next vmentry.
4222 */
4223 vmx->nested.pi_pending = true;
4224 kvm_make_request(KVM_REQ_EVENT, vcpu);
4225
4226 /*
4227 * This pairs with the smp_mb_*() after setting vcpu->mode in
4228 * vcpu_enter_guest() to guarantee the vCPU sees the event
4229 * request if triggering a posted interrupt "fails" because
4230 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
4231 * the smb_wmb() in kvm_make_request() only ensures everything
4232 * done before making the request is visible when the request
4233 * is visible, it doesn't ensure ordering between the store to
4234 * vcpu->requests and the load from vcpu->mode.
4235 */
4236 smp_mb__after_atomic();
4237
4238 /* the PIR and ON have been set by L1. */
4239 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4240 return 0;
4241 }
4242 return -1;
4243 }
4244 /*
4245 * Send interrupt to vcpu via posted interrupt way.
4246 * 1. If target vcpu is running(non-root mode), send posted interrupt
4247 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4248 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4249 * interrupt from PIR in next vmentry.
4250 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4251 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4252 {
4253 struct vcpu_vmx *vmx = to_vmx(vcpu);
4254 int r;
4255
4256 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4257 if (!r)
4258 return 0;
4259
4260 /* Note, this is called iff the local APIC is in-kernel. */
4261 if (!vcpu->arch.apic->apicv_active)
4262 return -1;
4263
4264 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4265 return 0;
4266
4267 /* If a previous notification has sent the IPI, nothing to do. */
4268 if (pi_test_and_set_on(&vmx->pi_desc))
4269 return 0;
4270
4271 /*
4272 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4273 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4274 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4275 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4276 */
4277 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4278 return 0;
4279 }
4280
vmx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)4281 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4282 int trig_mode, int vector)
4283 {
4284 struct kvm_vcpu *vcpu = apic->vcpu;
4285
4286 if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4287 kvm_lapic_set_irr(vector, apic);
4288 kvm_make_request(KVM_REQ_EVENT, vcpu);
4289 kvm_vcpu_kick(vcpu);
4290 } else {
4291 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4292 trig_mode, vector);
4293 }
4294 }
4295
4296 /*
4297 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4298 * will not change in the lifetime of the guest.
4299 * Note that host-state that does change is set elsewhere. E.g., host-state
4300 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4301 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4302 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4303 {
4304 u32 low32, high32;
4305 unsigned long tmpl;
4306 unsigned long cr0, cr3, cr4;
4307
4308 cr0 = read_cr0();
4309 WARN_ON(cr0 & X86_CR0_TS);
4310 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4311
4312 /*
4313 * Save the most likely value for this task's CR3 in the VMCS.
4314 * We can't use __get_current_cr3_fast() because we're not atomic.
4315 */
4316 cr3 = __read_cr3();
4317 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4318 vmx->loaded_vmcs->host_state.cr3 = cr3;
4319
4320 /* Save the most likely value for this task's CR4 in the VMCS. */
4321 cr4 = cr4_read_shadow();
4322 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4323 vmx->loaded_vmcs->host_state.cr4 = cr4;
4324
4325 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4326 #ifdef CONFIG_X86_64
4327 /*
4328 * Load null selectors, so we can avoid reloading them in
4329 * vmx_prepare_switch_to_host(), in case userspace uses
4330 * the null selectors too (the expected case).
4331 */
4332 vmcs_write16(HOST_DS_SELECTOR, 0);
4333 vmcs_write16(HOST_ES_SELECTOR, 0);
4334 #else
4335 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4336 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4337 #endif
4338 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4339 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4340
4341 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4342
4343 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4344
4345 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4346 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4347
4348 /*
4349 * SYSENTER is used for 32-bit system calls on either 32-bit or
4350 * 64-bit kernels. It is always zero If neither is allowed, otherwise
4351 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4352 * have already done so!).
4353 */
4354 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4355 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4356
4357 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4358 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4359
4360 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4361 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4362 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4363 }
4364
4365 if (cpu_has_load_ia32_efer())
4366 vmcs_write64(HOST_IA32_EFER, host_efer);
4367 }
4368
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4369 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4370 {
4371 struct kvm_vcpu *vcpu = &vmx->vcpu;
4372
4373 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4374 ~vcpu->arch.cr4_guest_rsvd_bits;
4375 if (!enable_ept) {
4376 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4377 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4378 }
4379 if (is_guest_mode(&vmx->vcpu))
4380 vcpu->arch.cr4_guest_owned_bits &=
4381 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4382 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4383 }
4384
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4385 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4386 {
4387 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4388
4389 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4390 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4391
4392 if (!enable_vnmi)
4393 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4394
4395 if (!enable_preemption_timer)
4396 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4397
4398 return pin_based_exec_ctrl;
4399 }
4400
vmx_vmentry_ctrl(void)4401 static u32 vmx_vmentry_ctrl(void)
4402 {
4403 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4404
4405 if (vmx_pt_mode_is_system())
4406 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4407 VM_ENTRY_LOAD_IA32_RTIT_CTL);
4408 /*
4409 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4410 */
4411 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4412 VM_ENTRY_LOAD_IA32_EFER |
4413 VM_ENTRY_IA32E_MODE);
4414
4415 if (cpu_has_perf_global_ctrl_bug())
4416 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4417
4418 return vmentry_ctrl;
4419 }
4420
vmx_vmexit_ctrl(void)4421 static u32 vmx_vmexit_ctrl(void)
4422 {
4423 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4424
4425 /*
4426 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4427 * nested virtualization and thus allowed to be set in vmcs12.
4428 */
4429 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4430 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4431
4432 if (vmx_pt_mode_is_system())
4433 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4434 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4435
4436 if (cpu_has_perf_global_ctrl_bug())
4437 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4438
4439 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4440 return vmexit_ctrl &
4441 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4442 }
4443
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4444 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4445 {
4446 struct vcpu_vmx *vmx = to_vmx(vcpu);
4447
4448 if (is_guest_mode(vcpu)) {
4449 vmx->nested.update_vmcs01_apicv_status = true;
4450 return;
4451 }
4452
4453 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4454
4455 if (kvm_vcpu_apicv_active(vcpu)) {
4456 secondary_exec_controls_setbit(vmx,
4457 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4458 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4459 if (enable_ipiv)
4460 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4461 } else {
4462 secondary_exec_controls_clearbit(vmx,
4463 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4464 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4465 if (enable_ipiv)
4466 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4467 }
4468
4469 vmx_update_msr_bitmap_x2apic(vcpu);
4470 }
4471
vmx_exec_control(struct vcpu_vmx * vmx)4472 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4473 {
4474 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4475
4476 /*
4477 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4478 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4479 */
4480 exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4481 CPU_BASED_USE_IO_BITMAPS |
4482 CPU_BASED_MONITOR_TRAP_FLAG |
4483 CPU_BASED_PAUSE_EXITING);
4484
4485 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4486 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4487 CPU_BASED_NMI_WINDOW_EXITING);
4488
4489 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4490 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4491
4492 if (!cpu_need_tpr_shadow(&vmx->vcpu))
4493 exec_control &= ~CPU_BASED_TPR_SHADOW;
4494
4495 #ifdef CONFIG_X86_64
4496 if (exec_control & CPU_BASED_TPR_SHADOW)
4497 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4498 CPU_BASED_CR8_STORE_EXITING);
4499 else
4500 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4501 CPU_BASED_CR8_LOAD_EXITING;
4502 #endif
4503 /* No need to intercept CR3 access or INVPLG when using EPT. */
4504 if (enable_ept)
4505 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4506 CPU_BASED_CR3_STORE_EXITING |
4507 CPU_BASED_INVLPG_EXITING);
4508 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4509 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4510 CPU_BASED_MONITOR_EXITING);
4511 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4512 exec_control &= ~CPU_BASED_HLT_EXITING;
4513 return exec_control;
4514 }
4515
vmx_tertiary_exec_control(struct vcpu_vmx * vmx)4516 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4517 {
4518 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4519
4520 /*
4521 * IPI virtualization relies on APICv. Disable IPI virtualization if
4522 * APICv is inhibited.
4523 */
4524 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4525 exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4526
4527 return exec_control;
4528 }
4529
4530 /*
4531 * Adjust a single secondary execution control bit to intercept/allow an
4532 * instruction in the guest. This is usually done based on whether or not a
4533 * feature has been exposed to the guest in order to correctly emulate faults.
4534 */
4535 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4536 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4537 u32 control, bool enabled, bool exiting)
4538 {
4539 /*
4540 * If the control is for an opt-in feature, clear the control if the
4541 * feature is not exposed to the guest, i.e. not enabled. If the
4542 * control is opt-out, i.e. an exiting control, clear the control if
4543 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4544 * disabled for the associated instruction. Note, the caller is
4545 * responsible presetting exec_control to set all supported bits.
4546 */
4547 if (enabled == exiting)
4548 *exec_control &= ~control;
4549
4550 /*
4551 * Update the nested MSR settings so that a nested VMM can/can't set
4552 * controls for features that are/aren't exposed to the guest.
4553 */
4554 if (nested) {
4555 /*
4556 * All features that can be added or removed to VMX MSRs must
4557 * be supported in the first place for nested virtualization.
4558 */
4559 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4560 enabled = false;
4561
4562 if (enabled)
4563 vmx->nested.msrs.secondary_ctls_high |= control;
4564 else
4565 vmx->nested.msrs.secondary_ctls_high &= ~control;
4566 }
4567 }
4568
4569 /*
4570 * Wrapper macro for the common case of adjusting a secondary execution control
4571 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4572 * verifies that the control is actually supported by KVM and hardware.
4573 */
4574 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4575 ({ \
4576 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \
4577 bool __enabled; \
4578 \
4579 if (cpu_has_vmx_##name()) { \
4580 if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \
4581 __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \
4582 else \
4583 __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \
4584 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4585 __enabled, exiting); \
4586 } \
4587 })
4588
4589 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4590 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4591 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4592
4593 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4594 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4595
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4596 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4597 {
4598 struct kvm_vcpu *vcpu = &vmx->vcpu;
4599
4600 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4601
4602 if (vmx_pt_mode_is_system())
4603 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4604 if (!cpu_need_virtualize_apic_accesses(vcpu))
4605 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4606 if (vmx->vpid == 0)
4607 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4608 if (!enable_ept) {
4609 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4610 enable_unrestricted_guest = 0;
4611 }
4612 if (!enable_unrestricted_guest)
4613 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4614 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4615 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4616 if (!kvm_vcpu_apicv_active(vcpu))
4617 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4618 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4619 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4620
4621 /*
4622 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4623 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4624 */
4625 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4626
4627 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4628 * in vmx_set_cr4. */
4629 exec_control &= ~SECONDARY_EXEC_DESC;
4630
4631 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4632 (handle_vmptrld).
4633 We can NOT enable shadow_vmcs here because we don't have yet
4634 a current VMCS12
4635 */
4636 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4637
4638 /*
4639 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4640 * it needs to be set here when dirty logging is already active, e.g.
4641 * if this vCPU was created after dirty logging was enabled.
4642 */
4643 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4644 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4645
4646 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4647
4648 /*
4649 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4650 * feature is exposed to the guest. This creates a virtualization hole
4651 * if both are supported in hardware but only one is exposed to the
4652 * guest, but letting the guest execute RDTSCP or RDPID when either one
4653 * is advertised is preferable to emulating the advertised instruction
4654 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4655 */
4656 if (cpu_has_vmx_rdtscp()) {
4657 bool rdpid_or_rdtscp_enabled =
4658 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4659 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4660
4661 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4662 SECONDARY_EXEC_ENABLE_RDTSCP,
4663 rdpid_or_rdtscp_enabled, false);
4664 }
4665
4666 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4667
4668 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4669 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4670
4671 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4672 ENABLE_USR_WAIT_PAUSE, false);
4673
4674 if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4675 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4676
4677 if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4678 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4679
4680 return exec_control;
4681 }
4682
vmx_get_pid_table_order(struct kvm * kvm)4683 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4684 {
4685 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4686 }
4687
vmx_alloc_ipiv_pid_table(struct kvm * kvm)4688 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4689 {
4690 struct page *pages;
4691 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4692
4693 if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4694 return 0;
4695
4696 if (kvm_vmx->pid_table)
4697 return 0;
4698
4699 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4700 vmx_get_pid_table_order(kvm));
4701 if (!pages)
4702 return -ENOMEM;
4703
4704 kvm_vmx->pid_table = (void *)page_address(pages);
4705 return 0;
4706 }
4707
vmx_vcpu_precreate(struct kvm * kvm)4708 static int vmx_vcpu_precreate(struct kvm *kvm)
4709 {
4710 return vmx_alloc_ipiv_pid_table(kvm);
4711 }
4712
4713 #define VMX_XSS_EXIT_BITMAP 0
4714
init_vmcs(struct vcpu_vmx * vmx)4715 static void init_vmcs(struct vcpu_vmx *vmx)
4716 {
4717 struct kvm *kvm = vmx->vcpu.kvm;
4718 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4719
4720 if (nested)
4721 nested_vmx_set_vmcs_shadowing_bitmap();
4722
4723 if (cpu_has_vmx_msr_bitmap())
4724 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4725
4726 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4727
4728 /* Control */
4729 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4730
4731 exec_controls_set(vmx, vmx_exec_control(vmx));
4732
4733 if (cpu_has_secondary_exec_ctrls())
4734 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4735
4736 if (cpu_has_tertiary_exec_ctrls())
4737 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4738
4739 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4740 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4741 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4742 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4743 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4744
4745 vmcs_write16(GUEST_INTR_STATUS, 0);
4746
4747 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4748 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4749 }
4750
4751 if (vmx_can_use_ipiv(&vmx->vcpu)) {
4752 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4753 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4754 }
4755
4756 if (!kvm_pause_in_guest(kvm)) {
4757 vmcs_write32(PLE_GAP, ple_gap);
4758 vmx->ple_window = ple_window;
4759 vmx->ple_window_dirty = true;
4760 }
4761
4762 if (kvm_notify_vmexit_enabled(kvm))
4763 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4764
4765 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4766 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4767 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4768
4769 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4770 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4771 vmx_set_constant_host_state(vmx);
4772 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4773 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4774
4775 if (cpu_has_vmx_vmfunc())
4776 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4777
4778 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4779 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4780 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4781 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4782 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4783
4784 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4785 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4786
4787 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4788
4789 /* 22.2.1, 20.8.1 */
4790 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4791
4792 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4793 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4794
4795 set_cr4_guest_host_mask(vmx);
4796
4797 if (vmx->vpid != 0)
4798 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4799
4800 if (cpu_has_vmx_xsaves())
4801 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4802
4803 if (enable_pml) {
4804 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4805 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4806 }
4807
4808 vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4809
4810 if (vmx_pt_mode_is_host_guest()) {
4811 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4812 /* Bit[6~0] are forced to 1, writes are ignored. */
4813 vmx->pt_desc.guest.output_mask = 0x7F;
4814 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4815 }
4816
4817 vmcs_write32(GUEST_SYSENTER_CS, 0);
4818 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4819 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4820 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4821
4822 if (cpu_has_vmx_tpr_shadow()) {
4823 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4824 if (cpu_need_tpr_shadow(&vmx->vcpu))
4825 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4826 __pa(vmx->vcpu.arch.apic->regs));
4827 vmcs_write32(TPR_THRESHOLD, 0);
4828 }
4829
4830 vmx_setup_uret_msrs(vmx);
4831 }
4832
__vmx_vcpu_reset(struct kvm_vcpu * vcpu)4833 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4834 {
4835 struct vcpu_vmx *vmx = to_vmx(vcpu);
4836
4837 init_vmcs(vmx);
4838
4839 if (nested)
4840 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4841
4842 vcpu_setup_sgx_lepubkeyhash(vcpu);
4843
4844 vmx->nested.posted_intr_nv = -1;
4845 vmx->nested.vmxon_ptr = INVALID_GPA;
4846 vmx->nested.current_vmptr = INVALID_GPA;
4847 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4848
4849 vcpu->arch.microcode_version = 0x100000000ULL;
4850 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4851
4852 /*
4853 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4854 * or POSTED_INTR_WAKEUP_VECTOR.
4855 */
4856 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4857 vmx->pi_desc.sn = 1;
4858 }
4859
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4860 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4861 {
4862 struct vcpu_vmx *vmx = to_vmx(vcpu);
4863
4864 if (!init_event)
4865 __vmx_vcpu_reset(vcpu);
4866
4867 vmx->rmode.vm86_active = 0;
4868 vmx->spec_ctrl = 0;
4869
4870 vmx->msr_ia32_umwait_control = 0;
4871
4872 vmx->hv_deadline_tsc = -1;
4873 kvm_set_cr8(vcpu, 0);
4874
4875 vmx_segment_cache_clear(vmx);
4876 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4877
4878 seg_setup(VCPU_SREG_CS);
4879 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4880 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4881
4882 seg_setup(VCPU_SREG_DS);
4883 seg_setup(VCPU_SREG_ES);
4884 seg_setup(VCPU_SREG_FS);
4885 seg_setup(VCPU_SREG_GS);
4886 seg_setup(VCPU_SREG_SS);
4887
4888 vmcs_write16(GUEST_TR_SELECTOR, 0);
4889 vmcs_writel(GUEST_TR_BASE, 0);
4890 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4891 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4892
4893 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4894 vmcs_writel(GUEST_LDTR_BASE, 0);
4895 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4896 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4897
4898 vmcs_writel(GUEST_GDTR_BASE, 0);
4899 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4900
4901 vmcs_writel(GUEST_IDTR_BASE, 0);
4902 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4903
4904 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4905 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4906 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4907 if (kvm_mpx_supported())
4908 vmcs_write64(GUEST_BNDCFGS, 0);
4909
4910 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4911
4912 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4913
4914 vpid_sync_context(vmx->vpid);
4915
4916 vmx_update_fb_clear_dis(vcpu, vmx);
4917 }
4918
vmx_enable_irq_window(struct kvm_vcpu * vcpu)4919 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4920 {
4921 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4922 }
4923
vmx_enable_nmi_window(struct kvm_vcpu * vcpu)4924 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4925 {
4926 if (!enable_vnmi ||
4927 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4928 vmx_enable_irq_window(vcpu);
4929 return;
4930 }
4931
4932 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4933 }
4934
vmx_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)4935 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4936 {
4937 struct vcpu_vmx *vmx = to_vmx(vcpu);
4938 uint32_t intr;
4939 int irq = vcpu->arch.interrupt.nr;
4940
4941 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4942
4943 ++vcpu->stat.irq_injections;
4944 if (vmx->rmode.vm86_active) {
4945 int inc_eip = 0;
4946 if (vcpu->arch.interrupt.soft)
4947 inc_eip = vcpu->arch.event_exit_inst_len;
4948 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4949 return;
4950 }
4951 intr = irq | INTR_INFO_VALID_MASK;
4952 if (vcpu->arch.interrupt.soft) {
4953 intr |= INTR_TYPE_SOFT_INTR;
4954 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4955 vmx->vcpu.arch.event_exit_inst_len);
4956 } else
4957 intr |= INTR_TYPE_EXT_INTR;
4958 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4959
4960 vmx_clear_hlt(vcpu);
4961 }
4962
vmx_inject_nmi(struct kvm_vcpu * vcpu)4963 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4964 {
4965 struct vcpu_vmx *vmx = to_vmx(vcpu);
4966
4967 if (!enable_vnmi) {
4968 /*
4969 * Tracking the NMI-blocked state in software is built upon
4970 * finding the next open IRQ window. This, in turn, depends on
4971 * well-behaving guests: They have to keep IRQs disabled at
4972 * least as long as the NMI handler runs. Otherwise we may
4973 * cause NMI nesting, maybe breaking the guest. But as this is
4974 * highly unlikely, we can live with the residual risk.
4975 */
4976 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4977 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4978 }
4979
4980 ++vcpu->stat.nmi_injections;
4981 vmx->loaded_vmcs->nmi_known_unmasked = false;
4982
4983 if (vmx->rmode.vm86_active) {
4984 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4985 return;
4986 }
4987
4988 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4989 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4990
4991 vmx_clear_hlt(vcpu);
4992 }
4993
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4994 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4995 {
4996 struct vcpu_vmx *vmx = to_vmx(vcpu);
4997 bool masked;
4998
4999 if (!enable_vnmi)
5000 return vmx->loaded_vmcs->soft_vnmi_blocked;
5001 if (vmx->loaded_vmcs->nmi_known_unmasked)
5002 return false;
5003 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5004 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5005 return masked;
5006 }
5007
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5008 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5009 {
5010 struct vcpu_vmx *vmx = to_vmx(vcpu);
5011
5012 if (!enable_vnmi) {
5013 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5014 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5015 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5016 }
5017 } else {
5018 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5019 if (masked)
5020 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5021 GUEST_INTR_STATE_NMI);
5022 else
5023 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5024 GUEST_INTR_STATE_NMI);
5025 }
5026 }
5027
vmx_nmi_blocked(struct kvm_vcpu * vcpu)5028 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5029 {
5030 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5031 return false;
5032
5033 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5034 return true;
5035
5036 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5037 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5038 GUEST_INTR_STATE_NMI));
5039 }
5040
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)5041 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5042 {
5043 if (to_vmx(vcpu)->nested.nested_run_pending)
5044 return -EBUSY;
5045
5046 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
5047 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5048 return -EBUSY;
5049
5050 return !vmx_nmi_blocked(vcpu);
5051 }
5052
__vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5053 bool __vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5054 {
5055 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5056 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5057 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5058 }
5059
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5060 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5061 {
5062 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5063 return false;
5064
5065 return __vmx_interrupt_blocked(vcpu);
5066 }
5067
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)5068 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5069 {
5070 if (to_vmx(vcpu)->nested.nested_run_pending)
5071 return -EBUSY;
5072
5073 /*
5074 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5075 * e.g. if the IRQ arrived asynchronously after checking nested events.
5076 */
5077 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5078 return -EBUSY;
5079
5080 return !vmx_interrupt_blocked(vcpu);
5081 }
5082
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)5083 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5084 {
5085 void __user *ret;
5086
5087 if (enable_unrestricted_guest)
5088 return 0;
5089
5090 mutex_lock(&kvm->slots_lock);
5091 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5092 PAGE_SIZE * 3);
5093 mutex_unlock(&kvm->slots_lock);
5094
5095 if (IS_ERR(ret))
5096 return PTR_ERR(ret);
5097
5098 to_kvm_vmx(kvm)->tss_addr = addr;
5099
5100 return init_rmode_tss(kvm, ret);
5101 }
5102
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5103 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5104 {
5105 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5106 return 0;
5107 }
5108
rmode_exception(struct kvm_vcpu * vcpu,int vec)5109 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5110 {
5111 switch (vec) {
5112 case BP_VECTOR:
5113 /*
5114 * Update instruction length as we may reinject the exception
5115 * from user space while in guest debugging mode.
5116 */
5117 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5118 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5119 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5120 return false;
5121 fallthrough;
5122 case DB_VECTOR:
5123 return !(vcpu->guest_debug &
5124 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5125 case DE_VECTOR:
5126 case OF_VECTOR:
5127 case BR_VECTOR:
5128 case UD_VECTOR:
5129 case DF_VECTOR:
5130 case SS_VECTOR:
5131 case GP_VECTOR:
5132 case MF_VECTOR:
5133 return true;
5134 }
5135 return false;
5136 }
5137
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5138 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5139 int vec, u32 err_code)
5140 {
5141 /*
5142 * Instruction with address size override prefix opcode 0x67
5143 * Cause the #SS fault with 0 error code in VM86 mode.
5144 */
5145 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5146 if (kvm_emulate_instruction(vcpu, 0)) {
5147 if (vcpu->arch.halt_request) {
5148 vcpu->arch.halt_request = 0;
5149 return kvm_emulate_halt_noskip(vcpu);
5150 }
5151 return 1;
5152 }
5153 return 0;
5154 }
5155
5156 /*
5157 * Forward all other exceptions that are valid in real mode.
5158 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5159 * the required debugging infrastructure rework.
5160 */
5161 kvm_queue_exception(vcpu, vec);
5162 return 1;
5163 }
5164
handle_machine_check(struct kvm_vcpu * vcpu)5165 static int handle_machine_check(struct kvm_vcpu *vcpu)
5166 {
5167 /* handled by vmx_vcpu_run() */
5168 return 1;
5169 }
5170
5171 /*
5172 * If the host has split lock detection disabled, then #AC is
5173 * unconditionally injected into the guest, which is the pre split lock
5174 * detection behaviour.
5175 *
5176 * If the host has split lock detection enabled then #AC is
5177 * only injected into the guest when:
5178 * - Guest CPL == 3 (user mode)
5179 * - Guest has #AC detection enabled in CR0
5180 * - Guest EFLAGS has AC bit set
5181 */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)5182 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5183 {
5184 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5185 return true;
5186
5187 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5188 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5189 }
5190
handle_exception_nmi(struct kvm_vcpu * vcpu)5191 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5192 {
5193 struct vcpu_vmx *vmx = to_vmx(vcpu);
5194 struct kvm_run *kvm_run = vcpu->run;
5195 u32 intr_info, ex_no, error_code;
5196 unsigned long cr2, dr6;
5197 u32 vect_info;
5198
5199 vect_info = vmx->idt_vectoring_info;
5200 intr_info = vmx_get_intr_info(vcpu);
5201
5202 /*
5203 * Machine checks are handled by handle_exception_irqoff(), or by
5204 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by
5205 * vmx_vcpu_enter_exit().
5206 */
5207 if (is_machine_check(intr_info) || is_nmi(intr_info))
5208 return 1;
5209
5210 /*
5211 * Queue the exception here instead of in handle_nm_fault_irqoff().
5212 * This ensures the nested_vmx check is not skipped so vmexit can
5213 * be reflected to L1 (when it intercepts #NM) before reaching this
5214 * point.
5215 */
5216 if (is_nm_fault(intr_info)) {
5217 kvm_queue_exception(vcpu, NM_VECTOR);
5218 return 1;
5219 }
5220
5221 if (is_invalid_opcode(intr_info))
5222 return handle_ud(vcpu);
5223
5224 error_code = 0;
5225 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5226 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5227
5228 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5229 WARN_ON_ONCE(!enable_vmware_backdoor);
5230
5231 /*
5232 * VMware backdoor emulation on #GP interception only handles
5233 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5234 * error code on #GP.
5235 */
5236 if (error_code) {
5237 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5238 return 1;
5239 }
5240 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5241 }
5242
5243 /*
5244 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5245 * MMIO, it is better to report an internal error.
5246 * See the comments in vmx_handle_exit.
5247 */
5248 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5249 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5250 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5251 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5252 vcpu->run->internal.ndata = 4;
5253 vcpu->run->internal.data[0] = vect_info;
5254 vcpu->run->internal.data[1] = intr_info;
5255 vcpu->run->internal.data[2] = error_code;
5256 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5257 return 0;
5258 }
5259
5260 if (is_page_fault(intr_info)) {
5261 cr2 = vmx_get_exit_qual(vcpu);
5262 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5263 /*
5264 * EPT will cause page fault only if we need to
5265 * detect illegal GPAs.
5266 */
5267 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5268 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5269 return 1;
5270 } else
5271 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5272 }
5273
5274 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5275
5276 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5277 return handle_rmode_exception(vcpu, ex_no, error_code);
5278
5279 switch (ex_no) {
5280 case DB_VECTOR:
5281 dr6 = vmx_get_exit_qual(vcpu);
5282 if (!(vcpu->guest_debug &
5283 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5284 /*
5285 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5286 * instruction. ICEBP generates a trap-like #DB, but
5287 * despite its interception control being tied to #DB,
5288 * is an instruction intercept, i.e. the VM-Exit occurs
5289 * on the ICEBP itself. Use the inner "skip" helper to
5290 * avoid single-step #DB and MTF updates, as ICEBP is
5291 * higher priority. Note, skipping ICEBP still clears
5292 * STI and MOVSS blocking.
5293 *
5294 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5295 * if single-step is enabled in RFLAGS and STI or MOVSS
5296 * blocking is active, as the CPU doesn't set the bit
5297 * on VM-Exit due to #DB interception. VM-Entry has a
5298 * consistency check that a single-step #DB is pending
5299 * in this scenario as the previous instruction cannot
5300 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5301 * don't modify RFLAGS), therefore the one instruction
5302 * delay when activating single-step breakpoints must
5303 * have already expired. Note, the CPU sets/clears BS
5304 * as appropriate for all other VM-Exits types.
5305 */
5306 if (is_icebp(intr_info))
5307 WARN_ON(!skip_emulated_instruction(vcpu));
5308 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5309 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5310 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5311 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5312 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5313
5314 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5315 return 1;
5316 }
5317 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5318 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5319 fallthrough;
5320 case BP_VECTOR:
5321 /*
5322 * Update instruction length as we may reinject #BP from
5323 * user space while in guest debugging mode. Reading it for
5324 * #DB as well causes no harm, it is not used in that case.
5325 */
5326 vmx->vcpu.arch.event_exit_inst_len =
5327 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5328 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5329 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5330 kvm_run->debug.arch.exception = ex_no;
5331 break;
5332 case AC_VECTOR:
5333 if (vmx_guest_inject_ac(vcpu)) {
5334 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5335 return 1;
5336 }
5337
5338 /*
5339 * Handle split lock. Depending on detection mode this will
5340 * either warn and disable split lock detection for this
5341 * task or force SIGBUS on it.
5342 */
5343 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5344 return 1;
5345 fallthrough;
5346 default:
5347 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5348 kvm_run->ex.exception = ex_no;
5349 kvm_run->ex.error_code = error_code;
5350 break;
5351 }
5352 return 0;
5353 }
5354
handle_external_interrupt(struct kvm_vcpu * vcpu)5355 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5356 {
5357 ++vcpu->stat.irq_exits;
5358 return 1;
5359 }
5360
handle_triple_fault(struct kvm_vcpu * vcpu)5361 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5362 {
5363 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5364 vcpu->mmio_needed = 0;
5365 return 0;
5366 }
5367
handle_io(struct kvm_vcpu * vcpu)5368 static int handle_io(struct kvm_vcpu *vcpu)
5369 {
5370 unsigned long exit_qualification;
5371 int size, in, string;
5372 unsigned port;
5373
5374 exit_qualification = vmx_get_exit_qual(vcpu);
5375 string = (exit_qualification & 16) != 0;
5376
5377 ++vcpu->stat.io_exits;
5378
5379 if (string)
5380 return kvm_emulate_instruction(vcpu, 0);
5381
5382 port = exit_qualification >> 16;
5383 size = (exit_qualification & 7) + 1;
5384 in = (exit_qualification & 8) != 0;
5385
5386 return kvm_fast_pio(vcpu, size, port, in);
5387 }
5388
5389 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5390 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5391 {
5392 /*
5393 * Patch in the VMCALL instruction:
5394 */
5395 hypercall[0] = 0x0f;
5396 hypercall[1] = 0x01;
5397 hypercall[2] = 0xc1;
5398 }
5399
5400 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5401 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5402 {
5403 if (is_guest_mode(vcpu)) {
5404 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5405 unsigned long orig_val = val;
5406
5407 /*
5408 * We get here when L2 changed cr0 in a way that did not change
5409 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5410 * but did change L0 shadowed bits. So we first calculate the
5411 * effective cr0 value that L1 would like to write into the
5412 * hardware. It consists of the L2-owned bits from the new
5413 * value combined with the L1-owned bits from L1's guest_cr0.
5414 */
5415 val = (val & ~vmcs12->cr0_guest_host_mask) |
5416 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5417
5418 if (kvm_set_cr0(vcpu, val))
5419 return 1;
5420 vmcs_writel(CR0_READ_SHADOW, orig_val);
5421 return 0;
5422 } else {
5423 return kvm_set_cr0(vcpu, val);
5424 }
5425 }
5426
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5427 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5428 {
5429 if (is_guest_mode(vcpu)) {
5430 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5431 unsigned long orig_val = val;
5432
5433 /* analogously to handle_set_cr0 */
5434 val = (val & ~vmcs12->cr4_guest_host_mask) |
5435 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5436 if (kvm_set_cr4(vcpu, val))
5437 return 1;
5438 vmcs_writel(CR4_READ_SHADOW, orig_val);
5439 return 0;
5440 } else
5441 return kvm_set_cr4(vcpu, val);
5442 }
5443
handle_desc(struct kvm_vcpu * vcpu)5444 static int handle_desc(struct kvm_vcpu *vcpu)
5445 {
5446 /*
5447 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5448 * and other code needs to be updated if UMIP can be guest owned.
5449 */
5450 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5451
5452 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5453 return kvm_emulate_instruction(vcpu, 0);
5454 }
5455
handle_cr(struct kvm_vcpu * vcpu)5456 static int handle_cr(struct kvm_vcpu *vcpu)
5457 {
5458 unsigned long exit_qualification, val;
5459 int cr;
5460 int reg;
5461 int err;
5462 int ret;
5463
5464 exit_qualification = vmx_get_exit_qual(vcpu);
5465 cr = exit_qualification & 15;
5466 reg = (exit_qualification >> 8) & 15;
5467 switch ((exit_qualification >> 4) & 3) {
5468 case 0: /* mov to cr */
5469 val = kvm_register_read(vcpu, reg);
5470 trace_kvm_cr_write(cr, val);
5471 switch (cr) {
5472 case 0:
5473 err = handle_set_cr0(vcpu, val);
5474 return kvm_complete_insn_gp(vcpu, err);
5475 case 3:
5476 WARN_ON_ONCE(enable_unrestricted_guest);
5477
5478 err = kvm_set_cr3(vcpu, val);
5479 return kvm_complete_insn_gp(vcpu, err);
5480 case 4:
5481 err = handle_set_cr4(vcpu, val);
5482 return kvm_complete_insn_gp(vcpu, err);
5483 case 8: {
5484 u8 cr8_prev = kvm_get_cr8(vcpu);
5485 u8 cr8 = (u8)val;
5486 err = kvm_set_cr8(vcpu, cr8);
5487 ret = kvm_complete_insn_gp(vcpu, err);
5488 if (lapic_in_kernel(vcpu))
5489 return ret;
5490 if (cr8_prev <= cr8)
5491 return ret;
5492 /*
5493 * TODO: we might be squashing a
5494 * KVM_GUESTDBG_SINGLESTEP-triggered
5495 * KVM_EXIT_DEBUG here.
5496 */
5497 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5498 return 0;
5499 }
5500 }
5501 break;
5502 case 2: /* clts */
5503 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5504 return -EIO;
5505 case 1: /*mov from cr*/
5506 switch (cr) {
5507 case 3:
5508 WARN_ON_ONCE(enable_unrestricted_guest);
5509
5510 val = kvm_read_cr3(vcpu);
5511 kvm_register_write(vcpu, reg, val);
5512 trace_kvm_cr_read(cr, val);
5513 return kvm_skip_emulated_instruction(vcpu);
5514 case 8:
5515 val = kvm_get_cr8(vcpu);
5516 kvm_register_write(vcpu, reg, val);
5517 trace_kvm_cr_read(cr, val);
5518 return kvm_skip_emulated_instruction(vcpu);
5519 }
5520 break;
5521 case 3: /* lmsw */
5522 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5523 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5524 kvm_lmsw(vcpu, val);
5525
5526 return kvm_skip_emulated_instruction(vcpu);
5527 default:
5528 break;
5529 }
5530 vcpu->run->exit_reason = 0;
5531 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5532 (int)(exit_qualification >> 4) & 3, cr);
5533 return 0;
5534 }
5535
handle_dr(struct kvm_vcpu * vcpu)5536 static int handle_dr(struct kvm_vcpu *vcpu)
5537 {
5538 unsigned long exit_qualification;
5539 int dr, dr7, reg;
5540 int err = 1;
5541
5542 exit_qualification = vmx_get_exit_qual(vcpu);
5543 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5544
5545 /* First, if DR does not exist, trigger UD */
5546 if (!kvm_require_dr(vcpu, dr))
5547 return 1;
5548
5549 if (vmx_get_cpl(vcpu) > 0)
5550 goto out;
5551
5552 dr7 = vmcs_readl(GUEST_DR7);
5553 if (dr7 & DR7_GD) {
5554 /*
5555 * As the vm-exit takes precedence over the debug trap, we
5556 * need to emulate the latter, either for the host or the
5557 * guest debugging itself.
5558 */
5559 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5560 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5561 vcpu->run->debug.arch.dr7 = dr7;
5562 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5563 vcpu->run->debug.arch.exception = DB_VECTOR;
5564 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5565 return 0;
5566 } else {
5567 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5568 return 1;
5569 }
5570 }
5571
5572 if (vcpu->guest_debug == 0) {
5573 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5574
5575 /*
5576 * No more DR vmexits; force a reload of the debug registers
5577 * and reenter on this instruction. The next vmexit will
5578 * retrieve the full state of the debug registers.
5579 */
5580 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5581 return 1;
5582 }
5583
5584 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5585 if (exit_qualification & TYPE_MOV_FROM_DR) {
5586 unsigned long val;
5587
5588 kvm_get_dr(vcpu, dr, &val);
5589 kvm_register_write(vcpu, reg, val);
5590 err = 0;
5591 } else {
5592 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5593 }
5594
5595 out:
5596 return kvm_complete_insn_gp(vcpu, err);
5597 }
5598
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5599 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5600 {
5601 get_debugreg(vcpu->arch.db[0], 0);
5602 get_debugreg(vcpu->arch.db[1], 1);
5603 get_debugreg(vcpu->arch.db[2], 2);
5604 get_debugreg(vcpu->arch.db[3], 3);
5605 get_debugreg(vcpu->arch.dr6, 6);
5606 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5607
5608 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5609 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5610
5611 /*
5612 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5613 * a stale dr6 from the guest.
5614 */
5615 set_debugreg(DR6_RESERVED, 6);
5616 }
5617
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5618 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5619 {
5620 vmcs_writel(GUEST_DR7, val);
5621 }
5622
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5623 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5624 {
5625 kvm_apic_update_ppr(vcpu);
5626 return 1;
5627 }
5628
handle_interrupt_window(struct kvm_vcpu * vcpu)5629 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5630 {
5631 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5632
5633 kvm_make_request(KVM_REQ_EVENT, vcpu);
5634
5635 ++vcpu->stat.irq_window_exits;
5636 return 1;
5637 }
5638
handle_invlpg(struct kvm_vcpu * vcpu)5639 static int handle_invlpg(struct kvm_vcpu *vcpu)
5640 {
5641 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5642
5643 kvm_mmu_invlpg(vcpu, exit_qualification);
5644 return kvm_skip_emulated_instruction(vcpu);
5645 }
5646
handle_apic_access(struct kvm_vcpu * vcpu)5647 static int handle_apic_access(struct kvm_vcpu *vcpu)
5648 {
5649 if (likely(fasteoi)) {
5650 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5651 int access_type, offset;
5652
5653 access_type = exit_qualification & APIC_ACCESS_TYPE;
5654 offset = exit_qualification & APIC_ACCESS_OFFSET;
5655 /*
5656 * Sane guest uses MOV to write EOI, with written value
5657 * not cared. So make a short-circuit here by avoiding
5658 * heavy instruction emulation.
5659 */
5660 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5661 (offset == APIC_EOI)) {
5662 kvm_lapic_set_eoi(vcpu);
5663 return kvm_skip_emulated_instruction(vcpu);
5664 }
5665 }
5666 return kvm_emulate_instruction(vcpu, 0);
5667 }
5668
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5669 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5670 {
5671 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5672 int vector = exit_qualification & 0xff;
5673
5674 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5675 kvm_apic_set_eoi_accelerated(vcpu, vector);
5676 return 1;
5677 }
5678
handle_apic_write(struct kvm_vcpu * vcpu)5679 static int handle_apic_write(struct kvm_vcpu *vcpu)
5680 {
5681 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5682
5683 /*
5684 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5685 * hardware has done any necessary aliasing, offset adjustments, etc...
5686 * for the access. I.e. the correct value has already been written to
5687 * the vAPIC page for the correct 16-byte chunk. KVM needs only to
5688 * retrieve the register value and emulate the access.
5689 */
5690 u32 offset = exit_qualification & 0xff0;
5691
5692 kvm_apic_write_nodecode(vcpu, offset);
5693 return 1;
5694 }
5695
handle_task_switch(struct kvm_vcpu * vcpu)5696 static int handle_task_switch(struct kvm_vcpu *vcpu)
5697 {
5698 struct vcpu_vmx *vmx = to_vmx(vcpu);
5699 unsigned long exit_qualification;
5700 bool has_error_code = false;
5701 u32 error_code = 0;
5702 u16 tss_selector;
5703 int reason, type, idt_v, idt_index;
5704
5705 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5706 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5707 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5708
5709 exit_qualification = vmx_get_exit_qual(vcpu);
5710
5711 reason = (u32)exit_qualification >> 30;
5712 if (reason == TASK_SWITCH_GATE && idt_v) {
5713 switch (type) {
5714 case INTR_TYPE_NMI_INTR:
5715 vcpu->arch.nmi_injected = false;
5716 vmx_set_nmi_mask(vcpu, true);
5717 break;
5718 case INTR_TYPE_EXT_INTR:
5719 case INTR_TYPE_SOFT_INTR:
5720 kvm_clear_interrupt_queue(vcpu);
5721 break;
5722 case INTR_TYPE_HARD_EXCEPTION:
5723 if (vmx->idt_vectoring_info &
5724 VECTORING_INFO_DELIVER_CODE_MASK) {
5725 has_error_code = true;
5726 error_code =
5727 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5728 }
5729 fallthrough;
5730 case INTR_TYPE_SOFT_EXCEPTION:
5731 kvm_clear_exception_queue(vcpu);
5732 break;
5733 default:
5734 break;
5735 }
5736 }
5737 tss_selector = exit_qualification;
5738
5739 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5740 type != INTR_TYPE_EXT_INTR &&
5741 type != INTR_TYPE_NMI_INTR))
5742 WARN_ON(!skip_emulated_instruction(vcpu));
5743
5744 /*
5745 * TODO: What about debug traps on tss switch?
5746 * Are we supposed to inject them and update dr6?
5747 */
5748 return kvm_task_switch(vcpu, tss_selector,
5749 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5750 reason, has_error_code, error_code);
5751 }
5752
handle_ept_violation(struct kvm_vcpu * vcpu)5753 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5754 {
5755 unsigned long exit_qualification;
5756 gpa_t gpa;
5757 u64 error_code;
5758
5759 exit_qualification = vmx_get_exit_qual(vcpu);
5760
5761 /*
5762 * EPT violation happened while executing iret from NMI,
5763 * "blocked by NMI" bit has to be set before next VM entry.
5764 * There are errata that may cause this bit to not be set:
5765 * AAK134, BY25.
5766 */
5767 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5768 enable_vnmi &&
5769 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5770 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5771
5772 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5773 trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5774
5775 /* Is it a read fault? */
5776 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5777 ? PFERR_USER_MASK : 0;
5778 /* Is it a write fault? */
5779 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5780 ? PFERR_WRITE_MASK : 0;
5781 /* Is it a fetch fault? */
5782 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5783 ? PFERR_FETCH_MASK : 0;
5784 /* ept page table entry is present? */
5785 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5786 ? PFERR_PRESENT_MASK : 0;
5787
5788 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5789 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5790
5791 vcpu->arch.exit_qualification = exit_qualification;
5792
5793 /*
5794 * Check that the GPA doesn't exceed physical memory limits, as that is
5795 * a guest page fault. We have to emulate the instruction here, because
5796 * if the illegal address is that of a paging structure, then
5797 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5798 * would also use advanced VM-exit information for EPT violations to
5799 * reconstruct the page fault error code.
5800 */
5801 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5802 return kvm_emulate_instruction(vcpu, 0);
5803
5804 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5805 }
5806
handle_ept_misconfig(struct kvm_vcpu * vcpu)5807 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5808 {
5809 gpa_t gpa;
5810
5811 if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5812 return 1;
5813
5814 /*
5815 * A nested guest cannot optimize MMIO vmexits, because we have an
5816 * nGPA here instead of the required GPA.
5817 */
5818 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5819 if (!is_guest_mode(vcpu) &&
5820 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5821 trace_kvm_fast_mmio(gpa);
5822 return kvm_skip_emulated_instruction(vcpu);
5823 }
5824
5825 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5826 }
5827
handle_nmi_window(struct kvm_vcpu * vcpu)5828 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5829 {
5830 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5831 return -EIO;
5832
5833 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5834 ++vcpu->stat.nmi_window_exits;
5835 kvm_make_request(KVM_REQ_EVENT, vcpu);
5836
5837 return 1;
5838 }
5839
vmx_emulation_required_with_pending_exception(struct kvm_vcpu * vcpu)5840 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5841 {
5842 struct vcpu_vmx *vmx = to_vmx(vcpu);
5843
5844 return vmx->emulation_required && !vmx->rmode.vm86_active &&
5845 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5846 }
5847
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5848 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5849 {
5850 struct vcpu_vmx *vmx = to_vmx(vcpu);
5851 bool intr_window_requested;
5852 unsigned count = 130;
5853
5854 intr_window_requested = exec_controls_get(vmx) &
5855 CPU_BASED_INTR_WINDOW_EXITING;
5856
5857 while (vmx->emulation_required && count-- != 0) {
5858 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5859 return handle_interrupt_window(&vmx->vcpu);
5860
5861 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5862 return 1;
5863
5864 if (!kvm_emulate_instruction(vcpu, 0))
5865 return 0;
5866
5867 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5868 kvm_prepare_emulation_failure_exit(vcpu);
5869 return 0;
5870 }
5871
5872 if (vcpu->arch.halt_request) {
5873 vcpu->arch.halt_request = 0;
5874 return kvm_emulate_halt_noskip(vcpu);
5875 }
5876
5877 /*
5878 * Note, return 1 and not 0, vcpu_run() will invoke
5879 * xfer_to_guest_mode() which will create a proper return
5880 * code.
5881 */
5882 if (__xfer_to_guest_mode_work_pending())
5883 return 1;
5884 }
5885
5886 return 1;
5887 }
5888
vmx_vcpu_pre_run(struct kvm_vcpu * vcpu)5889 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5890 {
5891 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5892 kvm_prepare_emulation_failure_exit(vcpu);
5893 return 0;
5894 }
5895
5896 return 1;
5897 }
5898
grow_ple_window(struct kvm_vcpu * vcpu)5899 static void grow_ple_window(struct kvm_vcpu *vcpu)
5900 {
5901 struct vcpu_vmx *vmx = to_vmx(vcpu);
5902 unsigned int old = vmx->ple_window;
5903
5904 vmx->ple_window = __grow_ple_window(old, ple_window,
5905 ple_window_grow,
5906 ple_window_max);
5907
5908 if (vmx->ple_window != old) {
5909 vmx->ple_window_dirty = true;
5910 trace_kvm_ple_window_update(vcpu->vcpu_id,
5911 vmx->ple_window, old);
5912 }
5913 }
5914
shrink_ple_window(struct kvm_vcpu * vcpu)5915 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5916 {
5917 struct vcpu_vmx *vmx = to_vmx(vcpu);
5918 unsigned int old = vmx->ple_window;
5919
5920 vmx->ple_window = __shrink_ple_window(old, ple_window,
5921 ple_window_shrink,
5922 ple_window);
5923
5924 if (vmx->ple_window != old) {
5925 vmx->ple_window_dirty = true;
5926 trace_kvm_ple_window_update(vcpu->vcpu_id,
5927 vmx->ple_window, old);
5928 }
5929 }
5930
5931 /*
5932 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5933 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5934 */
handle_pause(struct kvm_vcpu * vcpu)5935 static int handle_pause(struct kvm_vcpu *vcpu)
5936 {
5937 if (!kvm_pause_in_guest(vcpu->kvm))
5938 grow_ple_window(vcpu);
5939
5940 /*
5941 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5942 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5943 * never set PAUSE_EXITING and just set PLE if supported,
5944 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5945 */
5946 kvm_vcpu_on_spin(vcpu, true);
5947 return kvm_skip_emulated_instruction(vcpu);
5948 }
5949
handle_monitor_trap(struct kvm_vcpu * vcpu)5950 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5951 {
5952 return 1;
5953 }
5954
handle_invpcid(struct kvm_vcpu * vcpu)5955 static int handle_invpcid(struct kvm_vcpu *vcpu)
5956 {
5957 u32 vmx_instruction_info;
5958 unsigned long type;
5959 gva_t gva;
5960 struct {
5961 u64 pcid;
5962 u64 gla;
5963 } operand;
5964 int gpr_index;
5965
5966 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5967 kvm_queue_exception(vcpu, UD_VECTOR);
5968 return 1;
5969 }
5970
5971 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5972 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5973 type = kvm_register_read(vcpu, gpr_index);
5974
5975 /* According to the Intel instruction reference, the memory operand
5976 * is read even if it isn't needed (e.g., for type==all)
5977 */
5978 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5979 vmx_instruction_info, false,
5980 sizeof(operand), &gva))
5981 return 1;
5982
5983 return kvm_handle_invpcid(vcpu, type, gva);
5984 }
5985
handle_pml_full(struct kvm_vcpu * vcpu)5986 static int handle_pml_full(struct kvm_vcpu *vcpu)
5987 {
5988 unsigned long exit_qualification;
5989
5990 trace_kvm_pml_full(vcpu->vcpu_id);
5991
5992 exit_qualification = vmx_get_exit_qual(vcpu);
5993
5994 /*
5995 * PML buffer FULL happened while executing iret from NMI,
5996 * "blocked by NMI" bit has to be set before next VM entry.
5997 */
5998 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5999 enable_vnmi &&
6000 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6001 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6002 GUEST_INTR_STATE_NMI);
6003
6004 /*
6005 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
6006 * here.., and there's no userspace involvement needed for PML.
6007 */
6008 return 1;
6009 }
6010
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu)6011 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
6012 {
6013 struct vcpu_vmx *vmx = to_vmx(vcpu);
6014
6015 if (!vmx->req_immediate_exit &&
6016 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
6017 kvm_lapic_expired_hv_timer(vcpu);
6018 return EXIT_FASTPATH_REENTER_GUEST;
6019 }
6020
6021 return EXIT_FASTPATH_NONE;
6022 }
6023
handle_preemption_timer(struct kvm_vcpu * vcpu)6024 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6025 {
6026 handle_fastpath_preemption_timer(vcpu);
6027 return 1;
6028 }
6029
6030 /*
6031 * When nested=0, all VMX instruction VM Exits filter here. The handlers
6032 * are overwritten by nested_vmx_setup() when nested=1.
6033 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)6034 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6035 {
6036 kvm_queue_exception(vcpu, UD_VECTOR);
6037 return 1;
6038 }
6039
6040 #ifndef CONFIG_X86_SGX_KVM
handle_encls(struct kvm_vcpu * vcpu)6041 static int handle_encls(struct kvm_vcpu *vcpu)
6042 {
6043 /*
6044 * SGX virtualization is disabled. There is no software enable bit for
6045 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6046 * the guest from executing ENCLS (when SGX is supported by hardware).
6047 */
6048 kvm_queue_exception(vcpu, UD_VECTOR);
6049 return 1;
6050 }
6051 #endif /* CONFIG_X86_SGX_KVM */
6052
handle_bus_lock_vmexit(struct kvm_vcpu * vcpu)6053 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6054 {
6055 /*
6056 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6057 * VM-Exits. Unconditionally set the flag here and leave the handling to
6058 * vmx_handle_exit().
6059 */
6060 to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6061 return 1;
6062 }
6063
handle_notify(struct kvm_vcpu * vcpu)6064 static int handle_notify(struct kvm_vcpu *vcpu)
6065 {
6066 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6067 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6068
6069 ++vcpu->stat.notify_window_exits;
6070
6071 /*
6072 * Notify VM exit happened while executing iret from NMI,
6073 * "blocked by NMI" bit has to be set before next VM entry.
6074 */
6075 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6076 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6077 GUEST_INTR_STATE_NMI);
6078
6079 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6080 context_invalid) {
6081 vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6082 vcpu->run->notify.flags = context_invalid ?
6083 KVM_NOTIFY_CONTEXT_INVALID : 0;
6084 return 0;
6085 }
6086
6087 return 1;
6088 }
6089
6090 /*
6091 * The exit handlers return 1 if the exit was handled fully and guest execution
6092 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6093 * to be done to userspace and return 0.
6094 */
6095 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6096 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
6097 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6098 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6099 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6100 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6101 [EXIT_REASON_CR_ACCESS] = handle_cr,
6102 [EXIT_REASON_DR_ACCESS] = handle_dr,
6103 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
6104 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
6105 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
6106 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
6107 [EXIT_REASON_HLT] = kvm_emulate_halt,
6108 [EXIT_REASON_INVD] = kvm_emulate_invd,
6109 [EXIT_REASON_INVLPG] = handle_invlpg,
6110 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
6111 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
6112 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
6113 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
6114 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
6115 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
6116 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
6117 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
6118 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
6119 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
6120 [EXIT_REASON_VMON] = handle_vmx_instruction,
6121 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6122 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6123 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6124 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6125 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
6126 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
6127 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6128 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6129 [EXIT_REASON_GDTR_IDTR] = handle_desc,
6130 [EXIT_REASON_LDTR_TR] = handle_desc,
6131 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6132 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6133 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6134 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
6135 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
6136 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
6137 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
6138 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
6139 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
6140 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
6141 [EXIT_REASON_PML_FULL] = handle_pml_full,
6142 [EXIT_REASON_INVPCID] = handle_invpcid,
6143 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
6144 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6145 [EXIT_REASON_ENCLS] = handle_encls,
6146 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
6147 [EXIT_REASON_NOTIFY] = handle_notify,
6148 };
6149
6150 static const int kvm_vmx_max_exit_handlers =
6151 ARRAY_SIZE(kvm_vmx_exit_handlers);
6152
vmx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)6153 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6154 u64 *info1, u64 *info2,
6155 u32 *intr_info, u32 *error_code)
6156 {
6157 struct vcpu_vmx *vmx = to_vmx(vcpu);
6158
6159 *reason = vmx->exit_reason.full;
6160 *info1 = vmx_get_exit_qual(vcpu);
6161 if (!(vmx->exit_reason.failed_vmentry)) {
6162 *info2 = vmx->idt_vectoring_info;
6163 *intr_info = vmx_get_intr_info(vcpu);
6164 if (is_exception_with_error_code(*intr_info))
6165 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6166 else
6167 *error_code = 0;
6168 } else {
6169 *info2 = 0;
6170 *intr_info = 0;
6171 *error_code = 0;
6172 }
6173 }
6174
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)6175 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6176 {
6177 if (vmx->pml_pg) {
6178 __free_page(vmx->pml_pg);
6179 vmx->pml_pg = NULL;
6180 }
6181 }
6182
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)6183 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6184 {
6185 struct vcpu_vmx *vmx = to_vmx(vcpu);
6186 u64 *pml_buf;
6187 u16 pml_idx;
6188
6189 pml_idx = vmcs_read16(GUEST_PML_INDEX);
6190
6191 /* Do nothing if PML buffer is empty */
6192 if (pml_idx == (PML_ENTITY_NUM - 1))
6193 return;
6194
6195 /* PML index always points to next available PML buffer entity */
6196 if (pml_idx >= PML_ENTITY_NUM)
6197 pml_idx = 0;
6198 else
6199 pml_idx++;
6200
6201 pml_buf = page_address(vmx->pml_pg);
6202 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6203 u64 gpa;
6204
6205 gpa = pml_buf[pml_idx];
6206 WARN_ON(gpa & (PAGE_SIZE - 1));
6207 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6208 }
6209
6210 /* reset PML index */
6211 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6212 }
6213
vmx_dump_sel(char * name,uint32_t sel)6214 static void vmx_dump_sel(char *name, uint32_t sel)
6215 {
6216 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6217 name, vmcs_read16(sel),
6218 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6219 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6220 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6221 }
6222
vmx_dump_dtsel(char * name,uint32_t limit)6223 static void vmx_dump_dtsel(char *name, uint32_t limit)
6224 {
6225 pr_err("%s limit=0x%08x, base=0x%016lx\n",
6226 name, vmcs_read32(limit),
6227 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6228 }
6229
vmx_dump_msrs(char * name,struct vmx_msrs * m)6230 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6231 {
6232 unsigned int i;
6233 struct vmx_msr_entry *e;
6234
6235 pr_err("MSR %s:\n", name);
6236 for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6237 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6238 }
6239
dump_vmcs(struct kvm_vcpu * vcpu)6240 void dump_vmcs(struct kvm_vcpu *vcpu)
6241 {
6242 struct vcpu_vmx *vmx = to_vmx(vcpu);
6243 u32 vmentry_ctl, vmexit_ctl;
6244 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6245 u64 tertiary_exec_control;
6246 unsigned long cr4;
6247 int efer_slot;
6248
6249 if (!dump_invalid_vmcs) {
6250 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6251 return;
6252 }
6253
6254 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6255 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6256 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6257 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6258 cr4 = vmcs_readl(GUEST_CR4);
6259
6260 if (cpu_has_secondary_exec_ctrls())
6261 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6262 else
6263 secondary_exec_control = 0;
6264
6265 if (cpu_has_tertiary_exec_ctrls())
6266 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6267 else
6268 tertiary_exec_control = 0;
6269
6270 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6271 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6272 pr_err("*** Guest State ***\n");
6273 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6274 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6275 vmcs_readl(CR0_GUEST_HOST_MASK));
6276 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6277 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6278 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6279 if (cpu_has_vmx_ept()) {
6280 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
6281 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6282 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
6283 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6284 }
6285 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
6286 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6287 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
6288 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6289 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6290 vmcs_readl(GUEST_SYSENTER_ESP),
6291 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6292 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
6293 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
6294 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
6295 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
6296 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
6297 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
6298 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6299 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6300 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6301 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
6302 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6303 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6304 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6305 else if (efer_slot >= 0)
6306 pr_err("EFER= 0x%016llx (autoload)\n",
6307 vmx->msr_autoload.guest.val[efer_slot].value);
6308 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6309 pr_err("EFER= 0x%016llx (effective)\n",
6310 vcpu->arch.efer | (EFER_LMA | EFER_LME));
6311 else
6312 pr_err("EFER= 0x%016llx (effective)\n",
6313 vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6314 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6315 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6316 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
6317 vmcs_read64(GUEST_IA32_DEBUGCTL),
6318 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6319 if (cpu_has_load_perf_global_ctrl() &&
6320 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6321 pr_err("PerfGlobCtl = 0x%016llx\n",
6322 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6323 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6324 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6325 pr_err("Interruptibility = %08x ActivityState = %08x\n",
6326 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6327 vmcs_read32(GUEST_ACTIVITY_STATE));
6328 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6329 pr_err("InterruptStatus = %04x\n",
6330 vmcs_read16(GUEST_INTR_STATUS));
6331 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6332 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6333 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6334 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6335
6336 pr_err("*** Host State ***\n");
6337 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
6338 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6339 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6340 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6341 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6342 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6343 vmcs_read16(HOST_TR_SELECTOR));
6344 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6345 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6346 vmcs_readl(HOST_TR_BASE));
6347 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6348 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6349 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6350 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6351 vmcs_readl(HOST_CR4));
6352 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6353 vmcs_readl(HOST_IA32_SYSENTER_ESP),
6354 vmcs_read32(HOST_IA32_SYSENTER_CS),
6355 vmcs_readl(HOST_IA32_SYSENTER_EIP));
6356 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6357 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6358 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6359 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6360 if (cpu_has_load_perf_global_ctrl() &&
6361 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6362 pr_err("PerfGlobCtl = 0x%016llx\n",
6363 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6364 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6365 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6366
6367 pr_err("*** Control State ***\n");
6368 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6369 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6370 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6371 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6372 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6373 vmcs_read32(EXCEPTION_BITMAP),
6374 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6375 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6376 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6377 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6378 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6379 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6380 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6381 vmcs_read32(VM_EXIT_INTR_INFO),
6382 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6383 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6384 pr_err(" reason=%08x qualification=%016lx\n",
6385 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6386 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6387 vmcs_read32(IDT_VECTORING_INFO_FIELD),
6388 vmcs_read32(IDT_VECTORING_ERROR_CODE));
6389 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6390 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6391 pr_err("TSC Multiplier = 0x%016llx\n",
6392 vmcs_read64(TSC_MULTIPLIER));
6393 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6394 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6395 u16 status = vmcs_read16(GUEST_INTR_STATUS);
6396 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6397 }
6398 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6399 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6400 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6401 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6402 }
6403 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6404 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6405 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6406 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6407 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6408 pr_err("PLE Gap=%08x Window=%08x\n",
6409 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6410 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6411 pr_err("Virtual processor ID = 0x%04x\n",
6412 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6413 }
6414
6415 /*
6416 * The guest has exited. See if we can fix it or if we need userspace
6417 * assistance.
6418 */
__vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6419 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6420 {
6421 struct vcpu_vmx *vmx = to_vmx(vcpu);
6422 union vmx_exit_reason exit_reason = vmx->exit_reason;
6423 u32 vectoring_info = vmx->idt_vectoring_info;
6424 u16 exit_handler_index;
6425
6426 /*
6427 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6428 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6429 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6430 * mode as if vcpus is in root mode, the PML buffer must has been
6431 * flushed already. Note, PML is never enabled in hardware while
6432 * running L2.
6433 */
6434 if (enable_pml && !is_guest_mode(vcpu))
6435 vmx_flush_pml_buffer(vcpu);
6436
6437 /*
6438 * KVM should never reach this point with a pending nested VM-Enter.
6439 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6440 * invalid guest state should never happen as that means KVM knowingly
6441 * allowed a nested VM-Enter with an invalid vmcs12. More below.
6442 */
6443 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6444 return -EIO;
6445
6446 if (is_guest_mode(vcpu)) {
6447 /*
6448 * PML is never enabled when running L2, bail immediately if a
6449 * PML full exit occurs as something is horribly wrong.
6450 */
6451 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6452 goto unexpected_vmexit;
6453
6454 /*
6455 * The host physical addresses of some pages of guest memory
6456 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6457 * Page). The CPU may write to these pages via their host
6458 * physical address while L2 is running, bypassing any
6459 * address-translation-based dirty tracking (e.g. EPT write
6460 * protection).
6461 *
6462 * Mark them dirty on every exit from L2 to prevent them from
6463 * getting out of sync with dirty tracking.
6464 */
6465 nested_mark_vmcs12_pages_dirty(vcpu);
6466
6467 /*
6468 * Synthesize a triple fault if L2 state is invalid. In normal
6469 * operation, nested VM-Enter rejects any attempt to enter L2
6470 * with invalid state. However, those checks are skipped if
6471 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
6472 * L2 state is invalid, it means either L1 modified SMRAM state
6473 * or userspace provided bad state. Synthesize TRIPLE_FAULT as
6474 * doing so is architecturally allowed in the RSM case, and is
6475 * the least awful solution for the userspace case without
6476 * risking false positives.
6477 */
6478 if (vmx->emulation_required) {
6479 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6480 return 1;
6481 }
6482
6483 if (nested_vmx_reflect_vmexit(vcpu))
6484 return 1;
6485 }
6486
6487 /* If guest state is invalid, start emulating. L2 is handled above. */
6488 if (vmx->emulation_required)
6489 return handle_invalid_guest_state(vcpu);
6490
6491 if (exit_reason.failed_vmentry) {
6492 dump_vmcs(vcpu);
6493 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6494 vcpu->run->fail_entry.hardware_entry_failure_reason
6495 = exit_reason.full;
6496 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6497 return 0;
6498 }
6499
6500 if (unlikely(vmx->fail)) {
6501 dump_vmcs(vcpu);
6502 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6503 vcpu->run->fail_entry.hardware_entry_failure_reason
6504 = vmcs_read32(VM_INSTRUCTION_ERROR);
6505 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6506 return 0;
6507 }
6508
6509 /*
6510 * Note:
6511 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6512 * delivery event since it indicates guest is accessing MMIO.
6513 * The vm-exit can be triggered again after return to guest that
6514 * will cause infinite loop.
6515 */
6516 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6517 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6518 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6519 exit_reason.basic != EXIT_REASON_PML_FULL &&
6520 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6521 exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6522 exit_reason.basic != EXIT_REASON_NOTIFY)) {
6523 int ndata = 3;
6524
6525 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6526 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6527 vcpu->run->internal.data[0] = vectoring_info;
6528 vcpu->run->internal.data[1] = exit_reason.full;
6529 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6530 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6531 vcpu->run->internal.data[ndata++] =
6532 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6533 }
6534 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6535 vcpu->run->internal.ndata = ndata;
6536 return 0;
6537 }
6538
6539 if (unlikely(!enable_vnmi &&
6540 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6541 if (!vmx_interrupt_blocked(vcpu)) {
6542 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6543 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6544 vcpu->arch.nmi_pending) {
6545 /*
6546 * This CPU don't support us in finding the end of an
6547 * NMI-blocked window if the guest runs with IRQs
6548 * disabled. So we pull the trigger after 1 s of
6549 * futile waiting, but inform the user about this.
6550 */
6551 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6552 "state on VCPU %d after 1 s timeout\n",
6553 __func__, vcpu->vcpu_id);
6554 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6555 }
6556 }
6557
6558 if (exit_fastpath != EXIT_FASTPATH_NONE)
6559 return 1;
6560
6561 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6562 goto unexpected_vmexit;
6563 #ifdef CONFIG_RETPOLINE
6564 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6565 return kvm_emulate_wrmsr(vcpu);
6566 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6567 return handle_preemption_timer(vcpu);
6568 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6569 return handle_interrupt_window(vcpu);
6570 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6571 return handle_external_interrupt(vcpu);
6572 else if (exit_reason.basic == EXIT_REASON_HLT)
6573 return kvm_emulate_halt(vcpu);
6574 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6575 return handle_ept_misconfig(vcpu);
6576 #endif
6577
6578 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6579 kvm_vmx_max_exit_handlers);
6580 if (!kvm_vmx_exit_handlers[exit_handler_index])
6581 goto unexpected_vmexit;
6582
6583 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6584
6585 unexpected_vmexit:
6586 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6587 exit_reason.full);
6588 dump_vmcs(vcpu);
6589 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6590 vcpu->run->internal.suberror =
6591 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6592 vcpu->run->internal.ndata = 2;
6593 vcpu->run->internal.data[0] = exit_reason.full;
6594 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6595 return 0;
6596 }
6597
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6598 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6599 {
6600 int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6601
6602 /*
6603 * Exit to user space when bus lock detected to inform that there is
6604 * a bus lock in guest.
6605 */
6606 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6607 if (ret > 0)
6608 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6609
6610 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6611 return 0;
6612 }
6613 return ret;
6614 }
6615
6616 /*
6617 * Software based L1D cache flush which is used when microcode providing
6618 * the cache control MSR is not loaded.
6619 *
6620 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6621 * flush it is required to read in 64 KiB because the replacement algorithm
6622 * is not exactly LRU. This could be sized at runtime via topology
6623 * information but as all relevant affected CPUs have 32KiB L1D cache size
6624 * there is no point in doing so.
6625 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6626 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6627 {
6628 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6629
6630 /*
6631 * This code is only executed when the flush mode is 'cond' or
6632 * 'always'
6633 */
6634 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6635 bool flush_l1d;
6636
6637 /*
6638 * Clear the per-vcpu flush bit, it gets set again
6639 * either from vcpu_run() or from one of the unsafe
6640 * VMEXIT handlers.
6641 */
6642 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6643 vcpu->arch.l1tf_flush_l1d = false;
6644
6645 /*
6646 * Clear the per-cpu flush bit, it gets set again from
6647 * the interrupt handlers.
6648 */
6649 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6650 kvm_clear_cpu_l1tf_flush_l1d();
6651
6652 if (!flush_l1d)
6653 return;
6654 }
6655
6656 vcpu->stat.l1d_flush++;
6657
6658 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6659 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6660 return;
6661 }
6662
6663 asm volatile(
6664 /* First ensure the pages are in the TLB */
6665 "xorl %%eax, %%eax\n"
6666 ".Lpopulate_tlb:\n\t"
6667 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6668 "addl $4096, %%eax\n\t"
6669 "cmpl %%eax, %[size]\n\t"
6670 "jne .Lpopulate_tlb\n\t"
6671 "xorl %%eax, %%eax\n\t"
6672 "cpuid\n\t"
6673 /* Now fill the cache */
6674 "xorl %%eax, %%eax\n"
6675 ".Lfill_cache:\n"
6676 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6677 "addl $64, %%eax\n\t"
6678 "cmpl %%eax, %[size]\n\t"
6679 "jne .Lfill_cache\n\t"
6680 "lfence\n"
6681 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6682 [size] "r" (size)
6683 : "eax", "ebx", "ecx", "edx");
6684 }
6685
vmx_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6686 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6687 {
6688 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6689 int tpr_threshold;
6690
6691 if (is_guest_mode(vcpu) &&
6692 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6693 return;
6694
6695 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6696 if (is_guest_mode(vcpu))
6697 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6698 else
6699 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6700 }
6701
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6702 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6703 {
6704 struct vcpu_vmx *vmx = to_vmx(vcpu);
6705 u32 sec_exec_control;
6706
6707 if (!lapic_in_kernel(vcpu))
6708 return;
6709
6710 if (!flexpriority_enabled &&
6711 !cpu_has_vmx_virtualize_x2apic_mode())
6712 return;
6713
6714 /* Postpone execution until vmcs01 is the current VMCS. */
6715 if (is_guest_mode(vcpu)) {
6716 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6717 return;
6718 }
6719
6720 sec_exec_control = secondary_exec_controls_get(vmx);
6721 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6722 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6723
6724 switch (kvm_get_apic_mode(vcpu)) {
6725 case LAPIC_MODE_INVALID:
6726 WARN_ONCE(true, "Invalid local APIC state");
6727 break;
6728 case LAPIC_MODE_DISABLED:
6729 break;
6730 case LAPIC_MODE_XAPIC:
6731 if (flexpriority_enabled) {
6732 sec_exec_control |=
6733 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6734 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6735
6736 /*
6737 * Flush the TLB, reloading the APIC access page will
6738 * only do so if its physical address has changed, but
6739 * the guest may have inserted a non-APIC mapping into
6740 * the TLB while the APIC access page was disabled.
6741 */
6742 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6743 }
6744 break;
6745 case LAPIC_MODE_X2APIC:
6746 if (cpu_has_vmx_virtualize_x2apic_mode())
6747 sec_exec_control |=
6748 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6749 break;
6750 }
6751 secondary_exec_controls_set(vmx, sec_exec_control);
6752
6753 vmx_update_msr_bitmap_x2apic(vcpu);
6754 }
6755
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6756 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6757 {
6758 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6759 struct kvm *kvm = vcpu->kvm;
6760 struct kvm_memslots *slots = kvm_memslots(kvm);
6761 struct kvm_memory_slot *slot;
6762 unsigned long mmu_seq;
6763 kvm_pfn_t pfn;
6764
6765 /* Defer reload until vmcs01 is the current VMCS. */
6766 if (is_guest_mode(vcpu)) {
6767 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6768 return;
6769 }
6770
6771 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6772 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6773 return;
6774
6775 /*
6776 * Grab the memslot so that the hva lookup for the mmu_notifier retry
6777 * is guaranteed to use the same memslot as the pfn lookup, i.e. rely
6778 * on the pfn lookup's validation of the memslot to ensure a valid hva
6779 * is used for the retry check.
6780 */
6781 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6782 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6783 return;
6784
6785 /*
6786 * Ensure that the mmu_notifier sequence count is read before KVM
6787 * retrieves the pfn from the primary MMU. Note, the memslot is
6788 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb()
6789 * in kvm_mmu_invalidate_end().
6790 */
6791 mmu_seq = kvm->mmu_invalidate_seq;
6792 smp_rmb();
6793
6794 /*
6795 * No need to retry if the memslot does not exist or is invalid. KVM
6796 * controls the APIC-access page memslot, and only deletes the memslot
6797 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6798 */
6799 pfn = gfn_to_pfn_memslot(slot, gfn);
6800 if (is_error_noslot_pfn(pfn))
6801 return;
6802
6803 read_lock(&vcpu->kvm->mmu_lock);
6804 if (mmu_invalidate_retry_hva(kvm, mmu_seq,
6805 gfn_to_hva_memslot(slot, gfn))) {
6806 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6807 read_unlock(&vcpu->kvm->mmu_lock);
6808 goto out;
6809 }
6810
6811 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6812 read_unlock(&vcpu->kvm->mmu_lock);
6813
6814 /*
6815 * No need for a manual TLB flush at this point, KVM has already done a
6816 * flush if there were SPTEs pointing at the previous page.
6817 */
6818 out:
6819 /*
6820 * Do not pin apic access page in memory, the MMU notifier
6821 * will call us again if it is migrated or swapped out.
6822 */
6823 kvm_release_pfn_clean(pfn);
6824 }
6825
vmx_hwapic_isr_update(int max_isr)6826 static void vmx_hwapic_isr_update(int max_isr)
6827 {
6828 u16 status;
6829 u8 old;
6830
6831 if (max_isr == -1)
6832 max_isr = 0;
6833
6834 status = vmcs_read16(GUEST_INTR_STATUS);
6835 old = status >> 8;
6836 if (max_isr != old) {
6837 status &= 0xff;
6838 status |= max_isr << 8;
6839 vmcs_write16(GUEST_INTR_STATUS, status);
6840 }
6841 }
6842
vmx_set_rvi(int vector)6843 static void vmx_set_rvi(int vector)
6844 {
6845 u16 status;
6846 u8 old;
6847
6848 if (vector == -1)
6849 vector = 0;
6850
6851 status = vmcs_read16(GUEST_INTR_STATUS);
6852 old = (u8)status & 0xff;
6853 if ((u8)vector != old) {
6854 status &= ~0xff;
6855 status |= (u8)vector;
6856 vmcs_write16(GUEST_INTR_STATUS, status);
6857 }
6858 }
6859
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6860 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6861 {
6862 /*
6863 * When running L2, updating RVI is only relevant when
6864 * vmcs12 virtual-interrupt-delivery enabled.
6865 * However, it can be enabled only when L1 also
6866 * intercepts external-interrupts and in that case
6867 * we should not update vmcs02 RVI but instead intercept
6868 * interrupt. Therefore, do nothing when running L2.
6869 */
6870 if (!is_guest_mode(vcpu))
6871 vmx_set_rvi(max_irr);
6872 }
6873
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6874 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6875 {
6876 struct vcpu_vmx *vmx = to_vmx(vcpu);
6877 int max_irr;
6878 bool got_posted_interrupt;
6879
6880 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6881 return -EIO;
6882
6883 if (pi_test_on(&vmx->pi_desc)) {
6884 pi_clear_on(&vmx->pi_desc);
6885 /*
6886 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6887 * But on x86 this is just a compiler barrier anyway.
6888 */
6889 smp_mb__after_atomic();
6890 got_posted_interrupt =
6891 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6892 } else {
6893 max_irr = kvm_lapic_find_highest_irr(vcpu);
6894 got_posted_interrupt = false;
6895 }
6896
6897 /*
6898 * Newly recognized interrupts are injected via either virtual interrupt
6899 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
6900 * disabled in two cases:
6901 *
6902 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1
6903 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6904 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
6905 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6906 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6907 *
6908 * 2) If APICv is disabled for this vCPU, assigned devices may still
6909 * attempt to post interrupts. The posted interrupt vector will cause
6910 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6911 */
6912 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6913 vmx_set_rvi(max_irr);
6914 else if (got_posted_interrupt)
6915 kvm_make_request(KVM_REQ_EVENT, vcpu);
6916
6917 return max_irr;
6918 }
6919
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6920 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6921 {
6922 if (!kvm_vcpu_apicv_active(vcpu))
6923 return;
6924
6925 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6926 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6927 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6928 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6929 }
6930
vmx_apicv_pre_state_restore(struct kvm_vcpu * vcpu)6931 static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6932 {
6933 struct vcpu_vmx *vmx = to_vmx(vcpu);
6934
6935 pi_clear_on(&vmx->pi_desc);
6936 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6937 }
6938
6939 void vmx_do_interrupt_irqoff(unsigned long entry);
6940 void vmx_do_nmi_irqoff(void);
6941
handle_nm_fault_irqoff(struct kvm_vcpu * vcpu)6942 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6943 {
6944 /*
6945 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6946 * MSR value is not clobbered by the host activity before the guest
6947 * has chance to consume it.
6948 *
6949 * Do not blindly read xfd_err here, since this exception might
6950 * be caused by L1 interception on a platform which doesn't
6951 * support xfd at all.
6952 *
6953 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6954 * only when xfd contains a non-zero value.
6955 *
6956 * Queuing exception is done in vmx_handle_exit. See comment there.
6957 */
6958 if (vcpu->arch.guest_fpu.fpstate->xfd)
6959 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6960 }
6961
handle_exception_irqoff(struct vcpu_vmx * vmx)6962 static void handle_exception_irqoff(struct vcpu_vmx *vmx)
6963 {
6964 u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6965
6966 /* if exit due to PF check for async PF */
6967 if (is_page_fault(intr_info))
6968 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6969 /* if exit due to NM, handle before interrupts are enabled */
6970 else if (is_nm_fault(intr_info))
6971 handle_nm_fault_irqoff(&vmx->vcpu);
6972 /* Handle machine checks before interrupts are enabled */
6973 else if (is_machine_check(intr_info))
6974 kvm_machine_check();
6975 }
6976
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6977 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6978 {
6979 u32 intr_info = vmx_get_intr_info(vcpu);
6980 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6981 gate_desc *desc = (gate_desc *)host_idt_base + vector;
6982
6983 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6984 "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6985 return;
6986
6987 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6988 vmx_do_interrupt_irqoff(gate_offset(desc));
6989 kvm_after_interrupt(vcpu);
6990
6991 vcpu->arch.at_instruction_boundary = true;
6992 }
6993
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6994 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6995 {
6996 struct vcpu_vmx *vmx = to_vmx(vcpu);
6997
6998 if (vmx->emulation_required)
6999 return;
7000
7001 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
7002 handle_external_interrupt_irqoff(vcpu);
7003 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
7004 handle_exception_irqoff(vmx);
7005 }
7006
7007 /*
7008 * The kvm parameter can be NULL (module initialization, or invocation before
7009 * VM creation). Be sure to check the kvm parameter before using it.
7010 */
vmx_has_emulated_msr(struct kvm * kvm,u32 index)7011 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7012 {
7013 switch (index) {
7014 case MSR_IA32_SMBASE:
7015 if (!IS_ENABLED(CONFIG_KVM_SMM))
7016 return false;
7017 /*
7018 * We cannot do SMM unless we can run the guest in big
7019 * real mode.
7020 */
7021 return enable_unrestricted_guest || emulate_invalid_guest_state;
7022 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7023 return nested;
7024 case MSR_AMD64_VIRT_SPEC_CTRL:
7025 case MSR_AMD64_TSC_RATIO:
7026 /* This is AMD only. */
7027 return false;
7028 default:
7029 return true;
7030 }
7031 }
7032
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)7033 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7034 {
7035 u32 exit_intr_info;
7036 bool unblock_nmi;
7037 u8 vector;
7038 bool idtv_info_valid;
7039
7040 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7041
7042 if (enable_vnmi) {
7043 if (vmx->loaded_vmcs->nmi_known_unmasked)
7044 return;
7045
7046 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7047 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7048 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7049 /*
7050 * SDM 3: 27.7.1.2 (September 2008)
7051 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7052 * a guest IRET fault.
7053 * SDM 3: 23.2.2 (September 2008)
7054 * Bit 12 is undefined in any of the following cases:
7055 * If the VM exit sets the valid bit in the IDT-vectoring
7056 * information field.
7057 * If the VM exit is due to a double fault.
7058 */
7059 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7060 vector != DF_VECTOR && !idtv_info_valid)
7061 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7062 GUEST_INTR_STATE_NMI);
7063 else
7064 vmx->loaded_vmcs->nmi_known_unmasked =
7065 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7066 & GUEST_INTR_STATE_NMI);
7067 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7068 vmx->loaded_vmcs->vnmi_blocked_time +=
7069 ktime_to_ns(ktime_sub(ktime_get(),
7070 vmx->loaded_vmcs->entry_time));
7071 }
7072
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)7073 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7074 u32 idt_vectoring_info,
7075 int instr_len_field,
7076 int error_code_field)
7077 {
7078 u8 vector;
7079 int type;
7080 bool idtv_info_valid;
7081
7082 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7083
7084 vcpu->arch.nmi_injected = false;
7085 kvm_clear_exception_queue(vcpu);
7086 kvm_clear_interrupt_queue(vcpu);
7087
7088 if (!idtv_info_valid)
7089 return;
7090
7091 kvm_make_request(KVM_REQ_EVENT, vcpu);
7092
7093 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7094 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7095
7096 switch (type) {
7097 case INTR_TYPE_NMI_INTR:
7098 vcpu->arch.nmi_injected = true;
7099 /*
7100 * SDM 3: 27.7.1.2 (September 2008)
7101 * Clear bit "block by NMI" before VM entry if a NMI
7102 * delivery faulted.
7103 */
7104 vmx_set_nmi_mask(vcpu, false);
7105 break;
7106 case INTR_TYPE_SOFT_EXCEPTION:
7107 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7108 fallthrough;
7109 case INTR_TYPE_HARD_EXCEPTION:
7110 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7111 u32 err = vmcs_read32(error_code_field);
7112 kvm_requeue_exception_e(vcpu, vector, err);
7113 } else
7114 kvm_requeue_exception(vcpu, vector);
7115 break;
7116 case INTR_TYPE_SOFT_INTR:
7117 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7118 fallthrough;
7119 case INTR_TYPE_EXT_INTR:
7120 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7121 break;
7122 default:
7123 break;
7124 }
7125 }
7126
vmx_complete_interrupts(struct vcpu_vmx * vmx)7127 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7128 {
7129 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7130 VM_EXIT_INSTRUCTION_LEN,
7131 IDT_VECTORING_ERROR_CODE);
7132 }
7133
vmx_cancel_injection(struct kvm_vcpu * vcpu)7134 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7135 {
7136 __vmx_complete_interrupts(vcpu,
7137 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7138 VM_ENTRY_INSTRUCTION_LEN,
7139 VM_ENTRY_EXCEPTION_ERROR_CODE);
7140
7141 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7142 }
7143
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)7144 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7145 {
7146 int i, nr_msrs;
7147 struct perf_guest_switch_msr *msrs;
7148 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7149
7150 pmu->host_cross_mapped_mask = 0;
7151 if (pmu->pebs_enable & pmu->global_ctrl)
7152 intel_pmu_cross_mapped_check(pmu);
7153
7154 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7155 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7156 if (!msrs)
7157 return;
7158
7159 for (i = 0; i < nr_msrs; i++)
7160 if (msrs[i].host == msrs[i].guest)
7161 clear_atomic_switch_msr(vmx, msrs[i].msr);
7162 else
7163 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7164 msrs[i].host, false);
7165 }
7166
vmx_update_hv_timer(struct kvm_vcpu * vcpu)7167 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
7168 {
7169 struct vcpu_vmx *vmx = to_vmx(vcpu);
7170 u64 tscl;
7171 u32 delta_tsc;
7172
7173 if (vmx->req_immediate_exit) {
7174 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7175 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7176 } else if (vmx->hv_deadline_tsc != -1) {
7177 tscl = rdtsc();
7178 if (vmx->hv_deadline_tsc > tscl)
7179 /* set_hv_timer ensures the delta fits in 32-bits */
7180 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7181 cpu_preemption_timer_multi);
7182 else
7183 delta_tsc = 0;
7184
7185 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7186 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7187 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7188 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7189 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7190 }
7191 }
7192
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)7193 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7194 {
7195 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7196 vmx->loaded_vmcs->host_state.rsp = host_rsp;
7197 vmcs_writel(HOST_RSP, host_rsp);
7198 }
7199 }
7200
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)7201 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7202 unsigned int flags)
7203 {
7204 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7205
7206 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7207 return;
7208
7209 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7210 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7211
7212 /*
7213 * If the guest/host SPEC_CTRL values differ, restore the host value.
7214 *
7215 * For legacy IBRS, the IBRS bit always needs to be written after
7216 * transitioning from a less privileged predictor mode, regardless of
7217 * whether the guest/host values differ.
7218 */
7219 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7220 vmx->spec_ctrl != hostval)
7221 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7222
7223 barrier_nospec();
7224 }
7225
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu)7226 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7227 {
7228 switch (to_vmx(vcpu)->exit_reason.basic) {
7229 case EXIT_REASON_MSR_WRITE:
7230 return handle_fastpath_set_msr_irqoff(vcpu);
7231 case EXIT_REASON_PREEMPTION_TIMER:
7232 return handle_fastpath_preemption_timer(vcpu);
7233 default:
7234 return EXIT_FASTPATH_NONE;
7235 }
7236 }
7237
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,unsigned int flags)7238 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7239 unsigned int flags)
7240 {
7241 struct vcpu_vmx *vmx = to_vmx(vcpu);
7242
7243 guest_state_enter_irqoff();
7244
7245 /*
7246 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7247 * mitigation for MDS is done late in VMentry and is still
7248 * executed in spite of L1D Flush. This is because an extra VERW
7249 * should not matter much after the big hammer L1D Flush.
7250 */
7251 if (static_branch_unlikely(&vmx_l1d_should_flush))
7252 vmx_l1d_flush(vcpu);
7253 else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7254 kvm_arch_has_assigned_device(vcpu->kvm))
7255 mds_clear_cpu_buffers();
7256
7257 vmx_disable_fb_clear(vmx);
7258
7259 if (vcpu->arch.cr2 != native_read_cr2())
7260 native_write_cr2(vcpu->arch.cr2);
7261
7262 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7263 flags);
7264
7265 vcpu->arch.cr2 = native_read_cr2();
7266 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7267
7268 vmx->idt_vectoring_info = 0;
7269
7270 vmx_enable_fb_clear(vmx);
7271
7272 if (unlikely(vmx->fail)) {
7273 vmx->exit_reason.full = 0xdead;
7274 goto out;
7275 }
7276
7277 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7278 if (likely(!vmx->exit_reason.failed_vmentry))
7279 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7280
7281 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7282 is_nmi(vmx_get_intr_info(vcpu))) {
7283 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7284 vmx_do_nmi_irqoff();
7285 kvm_after_interrupt(vcpu);
7286 }
7287
7288 out:
7289 guest_state_exit_irqoff();
7290 }
7291
vmx_vcpu_run(struct kvm_vcpu * vcpu)7292 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7293 {
7294 struct vcpu_vmx *vmx = to_vmx(vcpu);
7295 unsigned long cr3, cr4;
7296
7297 /* Record the guest's net vcpu time for enforced NMI injections. */
7298 if (unlikely(!enable_vnmi &&
7299 vmx->loaded_vmcs->soft_vnmi_blocked))
7300 vmx->loaded_vmcs->entry_time = ktime_get();
7301
7302 /*
7303 * Don't enter VMX if guest state is invalid, let the exit handler
7304 * start emulation until we arrive back to a valid state. Synthesize a
7305 * consistency check VM-Exit due to invalid guest state and bail.
7306 */
7307 if (unlikely(vmx->emulation_required)) {
7308 vmx->fail = 0;
7309
7310 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7311 vmx->exit_reason.failed_vmentry = 1;
7312 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7313 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7314 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7315 vmx->exit_intr_info = 0;
7316 return EXIT_FASTPATH_NONE;
7317 }
7318
7319 trace_kvm_entry(vcpu);
7320
7321 if (vmx->ple_window_dirty) {
7322 vmx->ple_window_dirty = false;
7323 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7324 }
7325
7326 /*
7327 * We did this in prepare_switch_to_guest, because it needs to
7328 * be within srcu_read_lock.
7329 */
7330 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7331
7332 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7333 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7334 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7335 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7336 vcpu->arch.regs_dirty = 0;
7337
7338 /*
7339 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
7340 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7341 * it switches back to the current->mm, which can occur in KVM context
7342 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7343 * toggles a static key while handling a VM-Exit.
7344 */
7345 cr3 = __get_current_cr3_fast();
7346 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7347 vmcs_writel(HOST_CR3, cr3);
7348 vmx->loaded_vmcs->host_state.cr3 = cr3;
7349 }
7350
7351 cr4 = cr4_read_shadow();
7352 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7353 vmcs_writel(HOST_CR4, cr4);
7354 vmx->loaded_vmcs->host_state.cr4 = cr4;
7355 }
7356
7357 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7358 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7359 set_debugreg(vcpu->arch.dr6, 6);
7360
7361 /* When single-stepping over STI and MOV SS, we must clear the
7362 * corresponding interruptibility bits in the guest state. Otherwise
7363 * vmentry fails as it then expects bit 14 (BS) in pending debug
7364 * exceptions being set, but that's not correct for the guest debugging
7365 * case. */
7366 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7367 vmx_set_interrupt_shadow(vcpu, 0);
7368
7369 kvm_load_guest_xsave_state(vcpu);
7370
7371 pt_guest_enter(vmx);
7372
7373 atomic_switch_perf_msrs(vmx);
7374 if (intel_pmu_lbr_is_enabled(vcpu))
7375 vmx_passthrough_lbr_msrs(vcpu);
7376
7377 if (enable_preemption_timer)
7378 vmx_update_hv_timer(vcpu);
7379
7380 kvm_wait_lapic_expire(vcpu);
7381
7382 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7383 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7384
7385 /* All fields are clean at this point */
7386 if (kvm_is_using_evmcs()) {
7387 current_evmcs->hv_clean_fields |=
7388 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7389
7390 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7391 }
7392
7393 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7394 if (vmx->host_debugctlmsr)
7395 update_debugctlmsr(vmx->host_debugctlmsr);
7396
7397 #ifndef CONFIG_X86_64
7398 /*
7399 * The sysexit path does not restore ds/es, so we must set them to
7400 * a reasonable value ourselves.
7401 *
7402 * We can't defer this to vmx_prepare_switch_to_host() since that
7403 * function may be executed in interrupt context, which saves and
7404 * restore segments around it, nullifying its effect.
7405 */
7406 loadsegment(ds, __USER_DS);
7407 loadsegment(es, __USER_DS);
7408 #endif
7409
7410 pt_guest_exit(vmx);
7411
7412 kvm_load_host_xsave_state(vcpu);
7413
7414 if (is_guest_mode(vcpu)) {
7415 /*
7416 * Track VMLAUNCH/VMRESUME that have made past guest state
7417 * checking.
7418 */
7419 if (vmx->nested.nested_run_pending &&
7420 !vmx->exit_reason.failed_vmentry)
7421 ++vcpu->stat.nested_run;
7422
7423 vmx->nested.nested_run_pending = 0;
7424 }
7425
7426 if (unlikely(vmx->fail))
7427 return EXIT_FASTPATH_NONE;
7428
7429 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7430 kvm_machine_check();
7431
7432 trace_kvm_exit(vcpu, KVM_ISA_VMX);
7433
7434 if (unlikely(vmx->exit_reason.failed_vmentry))
7435 return EXIT_FASTPATH_NONE;
7436
7437 vmx->loaded_vmcs->launched = 1;
7438
7439 vmx_recover_nmi_blocking(vmx);
7440 vmx_complete_interrupts(vmx);
7441
7442 if (is_guest_mode(vcpu))
7443 return EXIT_FASTPATH_NONE;
7444
7445 return vmx_exit_handlers_fastpath(vcpu);
7446 }
7447
vmx_vcpu_free(struct kvm_vcpu * vcpu)7448 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7449 {
7450 struct vcpu_vmx *vmx = to_vmx(vcpu);
7451
7452 if (enable_pml)
7453 vmx_destroy_pml_buffer(vmx);
7454 free_vpid(vmx->vpid);
7455 nested_vmx_free_vcpu(vcpu);
7456 free_loaded_vmcs(vmx->loaded_vmcs);
7457 }
7458
vmx_vcpu_create(struct kvm_vcpu * vcpu)7459 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7460 {
7461 struct vmx_uret_msr *tsx_ctrl;
7462 struct vcpu_vmx *vmx;
7463 int i, err;
7464
7465 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7466 vmx = to_vmx(vcpu);
7467
7468 INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7469
7470 err = -ENOMEM;
7471
7472 vmx->vpid = allocate_vpid();
7473
7474 /*
7475 * If PML is turned on, failure on enabling PML just results in failure
7476 * of creating the vcpu, therefore we can simplify PML logic (by
7477 * avoiding dealing with cases, such as enabling PML partially on vcpus
7478 * for the guest), etc.
7479 */
7480 if (enable_pml) {
7481 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7482 if (!vmx->pml_pg)
7483 goto free_vpid;
7484 }
7485
7486 for (i = 0; i < kvm_nr_uret_msrs; ++i)
7487 vmx->guest_uret_msrs[i].mask = -1ull;
7488 if (boot_cpu_has(X86_FEATURE_RTM)) {
7489 /*
7490 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7491 * Keep the host value unchanged to avoid changing CPUID bits
7492 * under the host kernel's feet.
7493 */
7494 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7495 if (tsx_ctrl)
7496 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7497 }
7498
7499 err = alloc_loaded_vmcs(&vmx->vmcs01);
7500 if (err < 0)
7501 goto free_pml;
7502
7503 /*
7504 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7505 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7506 * feature only for vmcs01, KVM currently isn't equipped to realize any
7507 * performance benefits from enabling it for vmcs02.
7508 */
7509 if (kvm_is_using_evmcs() &&
7510 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7511 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7512
7513 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7514 }
7515
7516 /* The MSR bitmap starts with all ones */
7517 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7518 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7519
7520 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7521 #ifdef CONFIG_X86_64
7522 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7523 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7524 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7525 #endif
7526 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7527 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7528 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7529 if (kvm_cstate_in_guest(vcpu->kvm)) {
7530 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7531 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7532 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7533 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7534 }
7535
7536 vmx->loaded_vmcs = &vmx->vmcs01;
7537
7538 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7539 err = kvm_alloc_apic_access_page(vcpu->kvm);
7540 if (err)
7541 goto free_vmcs;
7542 }
7543
7544 if (enable_ept && !enable_unrestricted_guest) {
7545 err = init_rmode_identity_map(vcpu->kvm);
7546 if (err)
7547 goto free_vmcs;
7548 }
7549
7550 if (vmx_can_use_ipiv(vcpu))
7551 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7552 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7553
7554 return 0;
7555
7556 free_vmcs:
7557 free_loaded_vmcs(vmx->loaded_vmcs);
7558 free_pml:
7559 vmx_destroy_pml_buffer(vmx);
7560 free_vpid:
7561 free_vpid(vmx->vpid);
7562 return err;
7563 }
7564
7565 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7566 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7567
vmx_vm_init(struct kvm * kvm)7568 static int vmx_vm_init(struct kvm *kvm)
7569 {
7570 if (!ple_gap)
7571 kvm->arch.pause_in_guest = true;
7572
7573 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7574 switch (l1tf_mitigation) {
7575 case L1TF_MITIGATION_OFF:
7576 case L1TF_MITIGATION_FLUSH_NOWARN:
7577 /* 'I explicitly don't care' is set */
7578 break;
7579 case L1TF_MITIGATION_FLUSH:
7580 case L1TF_MITIGATION_FLUSH_NOSMT:
7581 case L1TF_MITIGATION_FULL:
7582 /*
7583 * Warn upon starting the first VM in a potentially
7584 * insecure environment.
7585 */
7586 if (sched_smt_active())
7587 pr_warn_once(L1TF_MSG_SMT);
7588 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7589 pr_warn_once(L1TF_MSG_L1D);
7590 break;
7591 case L1TF_MITIGATION_FULL_FORCE:
7592 /* Flush is enforced */
7593 break;
7594 }
7595 }
7596 return 0;
7597 }
7598
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7599 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7600 {
7601 u8 cache;
7602
7603 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7604 * memory aliases with conflicting memory types and sometimes MCEs.
7605 * We have to be careful as to what are honored and when.
7606 *
7607 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
7608 * UC. The effective memory type is UC or WC depending on guest PAT.
7609 * This was historically the source of MCEs and we want to be
7610 * conservative.
7611 *
7612 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7613 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
7614 * EPT memory type is set to WB. The effective memory type is forced
7615 * WB.
7616 *
7617 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
7618 * EPT memory type is used to emulate guest CD/MTRR.
7619 */
7620
7621 if (is_mmio)
7622 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7623
7624 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7625 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7626
7627 if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7628 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7629 cache = MTRR_TYPE_WRBACK;
7630 else
7631 cache = MTRR_TYPE_UNCACHABLE;
7632
7633 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7634 }
7635
7636 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7637 }
7638
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx,u32 new_ctl)7639 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7640 {
7641 /*
7642 * These bits in the secondary execution controls field
7643 * are dynamic, the others are mostly based on the hypervisor
7644 * architecture and the guest's CPUID. Do not touch the
7645 * dynamic bits.
7646 */
7647 u32 mask =
7648 SECONDARY_EXEC_SHADOW_VMCS |
7649 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7650 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7651 SECONDARY_EXEC_DESC;
7652
7653 u32 cur_ctl = secondary_exec_controls_get(vmx);
7654
7655 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7656 }
7657
7658 /*
7659 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7660 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7661 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7662 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7663 {
7664 struct vcpu_vmx *vmx = to_vmx(vcpu);
7665 struct kvm_cpuid_entry2 *entry;
7666
7667 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7668 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7669
7670 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7671 if (entry && (entry->_reg & (_cpuid_mask))) \
7672 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7673 } while (0)
7674
7675 entry = kvm_find_cpuid_entry(vcpu, 0x1);
7676 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7677 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7678 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7679 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7680 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7681 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7682 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7683 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7684 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7685 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7686 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7687 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7688 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7689 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7690
7691 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7692 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7693 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7694 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7695 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7696 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7697 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7698
7699 #undef cr4_fixed1_update
7700 }
7701
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7702 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7703 {
7704 struct vcpu_vmx *vmx = to_vmx(vcpu);
7705 struct kvm_cpuid_entry2 *best = NULL;
7706 int i;
7707
7708 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7709 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7710 if (!best)
7711 return;
7712 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7713 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7714 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7715 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7716 }
7717
7718 /* Get the number of configurable Address Ranges for filtering */
7719 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7720 PT_CAP_num_address_ranges);
7721
7722 /* Initialize and clear the no dependency bits */
7723 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7724 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7725 RTIT_CTL_BRANCH_EN);
7726
7727 /*
7728 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7729 * will inject an #GP
7730 */
7731 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7732 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7733
7734 /*
7735 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7736 * PSBFreq can be set
7737 */
7738 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7739 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7740 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7741
7742 /*
7743 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7744 */
7745 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7746 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7747 RTIT_CTL_MTC_RANGE);
7748
7749 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7750 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7751 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7752 RTIT_CTL_PTW_EN);
7753
7754 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7755 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7756 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7757
7758 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7759 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7760 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7761
7762 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7763 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7764 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7765
7766 /* unmask address range configure area */
7767 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7768 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7769 }
7770
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7771 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7772 {
7773 struct vcpu_vmx *vmx = to_vmx(vcpu);
7774
7775 /*
7776 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7777 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7778 * set if and only if XSAVE is supported.
7779 */
7780 if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7781 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7782 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7783
7784 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7785
7786 vmx_setup_uret_msrs(vmx);
7787
7788 if (cpu_has_secondary_exec_ctrls())
7789 vmcs_set_secondary_exec_control(vmx,
7790 vmx_secondary_exec_control(vmx));
7791
7792 if (guest_can_use(vcpu, X86_FEATURE_VMX))
7793 vmx->msr_ia32_feature_control_valid_bits |=
7794 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7795 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7796 else
7797 vmx->msr_ia32_feature_control_valid_bits &=
7798 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7799 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7800
7801 if (guest_can_use(vcpu, X86_FEATURE_VMX))
7802 nested_vmx_cr_fixed1_bits_update(vcpu);
7803
7804 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7805 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7806 update_intel_pt_cfg(vcpu);
7807
7808 if (boot_cpu_has(X86_FEATURE_RTM)) {
7809 struct vmx_uret_msr *msr;
7810 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7811 if (msr) {
7812 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7813 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7814 }
7815 }
7816
7817 if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7818 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7819 !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7820
7821 if (boot_cpu_has(X86_FEATURE_IBPB))
7822 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7823 !guest_has_pred_cmd_msr(vcpu));
7824
7825 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7826 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7827 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7828
7829 set_cr4_guest_host_mask(vmx);
7830
7831 vmx_write_encls_bitmap(vcpu, NULL);
7832 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7833 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7834 else
7835 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7836
7837 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7838 vmx->msr_ia32_feature_control_valid_bits |=
7839 FEAT_CTL_SGX_LC_ENABLED;
7840 else
7841 vmx->msr_ia32_feature_control_valid_bits &=
7842 ~FEAT_CTL_SGX_LC_ENABLED;
7843
7844 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7845 vmx_update_exception_bitmap(vcpu);
7846 }
7847
vmx_get_perf_capabilities(void)7848 static u64 vmx_get_perf_capabilities(void)
7849 {
7850 u64 perf_cap = PMU_CAP_FW_WRITES;
7851 struct x86_pmu_lbr lbr;
7852 u64 host_perf_cap = 0;
7853
7854 if (!enable_pmu)
7855 return 0;
7856
7857 if (boot_cpu_has(X86_FEATURE_PDCM))
7858 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7859
7860 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7861 x86_perf_get_lbr(&lbr);
7862 if (lbr.nr)
7863 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7864 }
7865
7866 if (vmx_pebs_supported()) {
7867 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7868
7869 /*
7870 * Disallow adaptive PEBS as it is functionally broken, can be
7871 * used by the guest to read *host* LBRs, and can be used to
7872 * bypass userspace event filters. To correctly and safely
7873 * support adaptive PEBS, KVM needs to:
7874 *
7875 * 1. Account for the ADAPTIVE flag when (re)programming fixed
7876 * counters.
7877 *
7878 * 2. Gain support from perf (or take direct control of counter
7879 * programming) to support events without adaptive PEBS
7880 * enabled for the hardware counter.
7881 *
7882 * 3. Ensure LBR MSRs cannot hold host data on VM-Entry with
7883 * adaptive PEBS enabled and MSR_PEBS_DATA_CFG.LBRS=1.
7884 *
7885 * 4. Document which PMU events are effectively exposed to the
7886 * guest via adaptive PEBS, and make adaptive PEBS mutually
7887 * exclusive with KVM_SET_PMU_EVENT_FILTER if necessary.
7888 */
7889 perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7890 }
7891
7892 return perf_cap;
7893 }
7894
vmx_set_cpu_caps(void)7895 static __init void vmx_set_cpu_caps(void)
7896 {
7897 kvm_set_cpu_caps();
7898
7899 /* CPUID 0x1 */
7900 if (nested)
7901 kvm_cpu_cap_set(X86_FEATURE_VMX);
7902
7903 /* CPUID 0x7 */
7904 if (kvm_mpx_supported())
7905 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7906 if (!cpu_has_vmx_invpcid())
7907 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7908 if (vmx_pt_mode_is_host_guest())
7909 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7910 if (vmx_pebs_supported()) {
7911 kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7912 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7913 }
7914
7915 if (!enable_pmu)
7916 kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7917 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7918
7919 if (!enable_sgx) {
7920 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7921 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7922 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7923 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7924 }
7925
7926 if (vmx_umip_emulated())
7927 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7928
7929 /* CPUID 0xD.1 */
7930 kvm_caps.supported_xss = 0;
7931 if (!cpu_has_vmx_xsaves())
7932 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7933
7934 /* CPUID 0x80000001 and 0x7 (RDPID) */
7935 if (!cpu_has_vmx_rdtscp()) {
7936 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7937 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7938 }
7939
7940 if (cpu_has_vmx_waitpkg())
7941 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7942 }
7943
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7944 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7945 {
7946 to_vmx(vcpu)->req_immediate_exit = true;
7947 }
7948
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)7949 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7950 struct x86_instruction_info *info)
7951 {
7952 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7953 unsigned short port;
7954 bool intercept;
7955 int size;
7956
7957 if (info->intercept == x86_intercept_in ||
7958 info->intercept == x86_intercept_ins) {
7959 port = info->src_val;
7960 size = info->dst_bytes;
7961 } else {
7962 port = info->dst_val;
7963 size = info->src_bytes;
7964 }
7965
7966 /*
7967 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7968 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7969 * control.
7970 *
7971 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7972 */
7973 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7974 intercept = nested_cpu_has(vmcs12,
7975 CPU_BASED_UNCOND_IO_EXITING);
7976 else
7977 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7978
7979 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7980 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7981 }
7982
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)7983 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7984 struct x86_instruction_info *info,
7985 enum x86_intercept_stage stage,
7986 struct x86_exception *exception)
7987 {
7988 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7989
7990 switch (info->intercept) {
7991 /*
7992 * RDPID causes #UD if disabled through secondary execution controls.
7993 * Because it is marked as EmulateOnUD, we need to intercept it here.
7994 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7995 */
7996 case x86_intercept_rdpid:
7997 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7998 exception->vector = UD_VECTOR;
7999 exception->error_code_valid = false;
8000 return X86EMUL_PROPAGATE_FAULT;
8001 }
8002 break;
8003
8004 case x86_intercept_in:
8005 case x86_intercept_ins:
8006 case x86_intercept_out:
8007 case x86_intercept_outs:
8008 return vmx_check_intercept_io(vcpu, info);
8009
8010 case x86_intercept_lgdt:
8011 case x86_intercept_lidt:
8012 case x86_intercept_lldt:
8013 case x86_intercept_ltr:
8014 case x86_intercept_sgdt:
8015 case x86_intercept_sidt:
8016 case x86_intercept_sldt:
8017 case x86_intercept_str:
8018 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
8019 return X86EMUL_CONTINUE;
8020
8021 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
8022 break;
8023
8024 case x86_intercept_pause:
8025 /*
8026 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8027 * with vanilla NOPs in the emulator. Apply the interception
8028 * check only to actual PAUSE instructions. Don't check
8029 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8030 * exit, i.e. KVM is within its rights to allow L2 to execute
8031 * the PAUSE.
8032 */
8033 if ((info->rep_prefix != REPE_PREFIX) ||
8034 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
8035 return X86EMUL_CONTINUE;
8036
8037 break;
8038
8039 /* TODO: check more intercepts... */
8040 default:
8041 break;
8042 }
8043
8044 return X86EMUL_UNHANDLEABLE;
8045 }
8046
8047 #ifdef CONFIG_X86_64
8048 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)8049 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8050 u64 divisor, u64 *result)
8051 {
8052 u64 low = a << shift, high = a >> (64 - shift);
8053
8054 /* To avoid the overflow on divq */
8055 if (high >= divisor)
8056 return 1;
8057
8058 /* Low hold the result, high hold rem which is discarded */
8059 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8060 "rm" (divisor), "0" (low), "1" (high));
8061 *result = low;
8062
8063 return 0;
8064 }
8065
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)8066 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8067 bool *expired)
8068 {
8069 struct vcpu_vmx *vmx;
8070 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8071 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8072
8073 vmx = to_vmx(vcpu);
8074 tscl = rdtsc();
8075 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8076 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8077 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8078 ktimer->timer_advance_ns);
8079
8080 if (delta_tsc > lapic_timer_advance_cycles)
8081 delta_tsc -= lapic_timer_advance_cycles;
8082 else
8083 delta_tsc = 0;
8084
8085 /* Convert to host delta tsc if tsc scaling is enabled */
8086 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8087 delta_tsc && u64_shl_div_u64(delta_tsc,
8088 kvm_caps.tsc_scaling_ratio_frac_bits,
8089 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8090 return -ERANGE;
8091
8092 /*
8093 * If the delta tsc can't fit in the 32 bit after the multi shift,
8094 * we can't use the preemption timer.
8095 * It's possible that it fits on later vmentries, but checking
8096 * on every vmentry is costly so we just use an hrtimer.
8097 */
8098 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8099 return -ERANGE;
8100
8101 vmx->hv_deadline_tsc = tscl + delta_tsc;
8102 *expired = !delta_tsc;
8103 return 0;
8104 }
8105
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)8106 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8107 {
8108 to_vmx(vcpu)->hv_deadline_tsc = -1;
8109 }
8110 #endif
8111
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)8112 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
8113 {
8114 if (!kvm_pause_in_guest(vcpu->kvm))
8115 shrink_ple_window(vcpu);
8116 }
8117
vmx_update_cpu_dirty_logging(struct kvm_vcpu * vcpu)8118 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8119 {
8120 struct vcpu_vmx *vmx = to_vmx(vcpu);
8121
8122 if (WARN_ON_ONCE(!enable_pml))
8123 return;
8124
8125 if (is_guest_mode(vcpu)) {
8126 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8127 return;
8128 }
8129
8130 /*
8131 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8132 * code, but in that case another update request will be made and so
8133 * the guest will never run with a stale PML value.
8134 */
8135 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8136 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8137 else
8138 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8139 }
8140
vmx_setup_mce(struct kvm_vcpu * vcpu)8141 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
8142 {
8143 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8144 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8145 FEAT_CTL_LMCE_ENABLED;
8146 else
8147 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8148 ~FEAT_CTL_LMCE_ENABLED;
8149 }
8150
8151 #ifdef CONFIG_KVM_SMM
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)8152 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8153 {
8154 /* we need a nested vmexit to enter SMM, postpone if run is pending */
8155 if (to_vmx(vcpu)->nested.nested_run_pending)
8156 return -EBUSY;
8157 return !is_smm(vcpu);
8158 }
8159
vmx_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)8160 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8161 {
8162 struct vcpu_vmx *vmx = to_vmx(vcpu);
8163
8164 /*
8165 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8166 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
8167 * SMI and RSM only modify state that is saved and restored via SMRAM.
8168 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8169 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8170 */
8171 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8172 if (vmx->nested.smm.guest_mode)
8173 nested_vmx_vmexit(vcpu, -1, 0, 0);
8174
8175 vmx->nested.smm.vmxon = vmx->nested.vmxon;
8176 vmx->nested.vmxon = false;
8177 vmx_clear_hlt(vcpu);
8178 return 0;
8179 }
8180
vmx_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)8181 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8182 {
8183 struct vcpu_vmx *vmx = to_vmx(vcpu);
8184 int ret;
8185
8186 if (vmx->nested.smm.vmxon) {
8187 vmx->nested.vmxon = true;
8188 vmx->nested.smm.vmxon = false;
8189 }
8190
8191 if (vmx->nested.smm.guest_mode) {
8192 ret = nested_vmx_enter_non_root_mode(vcpu, false);
8193 if (ret)
8194 return ret;
8195
8196 vmx->nested.nested_run_pending = 1;
8197 vmx->nested.smm.guest_mode = false;
8198 }
8199 return 0;
8200 }
8201
vmx_enable_smi_window(struct kvm_vcpu * vcpu)8202 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8203 {
8204 /* RSM will cause a vmexit anyway. */
8205 }
8206 #endif
8207
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)8208 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8209 {
8210 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8211 }
8212
vmx_migrate_timers(struct kvm_vcpu * vcpu)8213 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8214 {
8215 if (is_guest_mode(vcpu)) {
8216 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8217
8218 if (hrtimer_try_to_cancel(timer) == 1)
8219 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8220 }
8221 }
8222
vmx_hardware_unsetup(void)8223 static void vmx_hardware_unsetup(void)
8224 {
8225 kvm_set_posted_intr_wakeup_handler(NULL);
8226
8227 if (nested)
8228 nested_vmx_hardware_unsetup();
8229
8230 free_kvm_area();
8231 }
8232
8233 #define VMX_REQUIRED_APICV_INHIBITS \
8234 ( \
8235 BIT(APICV_INHIBIT_REASON_DISABLE)| \
8236 BIT(APICV_INHIBIT_REASON_ABSENT) | \
8237 BIT(APICV_INHIBIT_REASON_HYPERV) | \
8238 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \
8239 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \
8240 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \
8241 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \
8242 )
8243
vmx_vm_destroy(struct kvm * kvm)8244 static void vmx_vm_destroy(struct kvm *kvm)
8245 {
8246 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8247
8248 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8249 }
8250
8251 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8252 .name = KBUILD_MODNAME,
8253
8254 .check_processor_compatibility = vmx_check_processor_compat,
8255
8256 .hardware_unsetup = vmx_hardware_unsetup,
8257
8258 .hardware_enable = vmx_hardware_enable,
8259 .hardware_disable = vmx_hardware_disable,
8260 .has_emulated_msr = vmx_has_emulated_msr,
8261
8262 .vm_size = sizeof(struct kvm_vmx),
8263 .vm_init = vmx_vm_init,
8264 .vm_destroy = vmx_vm_destroy,
8265
8266 .vcpu_precreate = vmx_vcpu_precreate,
8267 .vcpu_create = vmx_vcpu_create,
8268 .vcpu_free = vmx_vcpu_free,
8269 .vcpu_reset = vmx_vcpu_reset,
8270
8271 .prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8272 .vcpu_load = vmx_vcpu_load,
8273 .vcpu_put = vmx_vcpu_put,
8274
8275 .update_exception_bitmap = vmx_update_exception_bitmap,
8276 .get_msr_feature = vmx_get_msr_feature,
8277 .get_msr = vmx_get_msr,
8278 .set_msr = vmx_set_msr,
8279 .get_segment_base = vmx_get_segment_base,
8280 .get_segment = vmx_get_segment,
8281 .set_segment = vmx_set_segment,
8282 .get_cpl = vmx_get_cpl,
8283 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8284 .is_valid_cr0 = vmx_is_valid_cr0,
8285 .set_cr0 = vmx_set_cr0,
8286 .is_valid_cr4 = vmx_is_valid_cr4,
8287 .set_cr4 = vmx_set_cr4,
8288 .set_efer = vmx_set_efer,
8289 .get_idt = vmx_get_idt,
8290 .set_idt = vmx_set_idt,
8291 .get_gdt = vmx_get_gdt,
8292 .set_gdt = vmx_set_gdt,
8293 .set_dr7 = vmx_set_dr7,
8294 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8295 .cache_reg = vmx_cache_reg,
8296 .get_rflags = vmx_get_rflags,
8297 .set_rflags = vmx_set_rflags,
8298 .get_if_flag = vmx_get_if_flag,
8299
8300 .flush_tlb_all = vmx_flush_tlb_all,
8301 .flush_tlb_current = vmx_flush_tlb_current,
8302 .flush_tlb_gva = vmx_flush_tlb_gva,
8303 .flush_tlb_guest = vmx_flush_tlb_guest,
8304
8305 .vcpu_pre_run = vmx_vcpu_pre_run,
8306 .vcpu_run = vmx_vcpu_run,
8307 .handle_exit = vmx_handle_exit,
8308 .skip_emulated_instruction = vmx_skip_emulated_instruction,
8309 .update_emulated_instruction = vmx_update_emulated_instruction,
8310 .set_interrupt_shadow = vmx_set_interrupt_shadow,
8311 .get_interrupt_shadow = vmx_get_interrupt_shadow,
8312 .patch_hypercall = vmx_patch_hypercall,
8313 .inject_irq = vmx_inject_irq,
8314 .inject_nmi = vmx_inject_nmi,
8315 .inject_exception = vmx_inject_exception,
8316 .cancel_injection = vmx_cancel_injection,
8317 .interrupt_allowed = vmx_interrupt_allowed,
8318 .nmi_allowed = vmx_nmi_allowed,
8319 .get_nmi_mask = vmx_get_nmi_mask,
8320 .set_nmi_mask = vmx_set_nmi_mask,
8321 .enable_nmi_window = vmx_enable_nmi_window,
8322 .enable_irq_window = vmx_enable_irq_window,
8323 .update_cr8_intercept = vmx_update_cr8_intercept,
8324 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8325 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8326 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8327 .load_eoi_exitmap = vmx_load_eoi_exitmap,
8328 .apicv_pre_state_restore = vmx_apicv_pre_state_restore,
8329 .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
8330 .hwapic_irr_update = vmx_hwapic_irr_update,
8331 .hwapic_isr_update = vmx_hwapic_isr_update,
8332 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8333 .sync_pir_to_irr = vmx_sync_pir_to_irr,
8334 .deliver_interrupt = vmx_deliver_interrupt,
8335 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8336
8337 .set_tss_addr = vmx_set_tss_addr,
8338 .set_identity_map_addr = vmx_set_identity_map_addr,
8339 .get_mt_mask = vmx_get_mt_mask,
8340
8341 .get_exit_info = vmx_get_exit_info,
8342
8343 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8344
8345 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8346
8347 .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8348 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8349 .write_tsc_offset = vmx_write_tsc_offset,
8350 .write_tsc_multiplier = vmx_write_tsc_multiplier,
8351
8352 .load_mmu_pgd = vmx_load_mmu_pgd,
8353
8354 .check_intercept = vmx_check_intercept,
8355 .handle_exit_irqoff = vmx_handle_exit_irqoff,
8356
8357 .request_immediate_exit = vmx_request_immediate_exit,
8358
8359 .sched_in = vmx_sched_in,
8360
8361 .cpu_dirty_log_size = PML_ENTITY_NUM,
8362 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8363
8364 .nested_ops = &vmx_nested_ops,
8365
8366 .pi_update_irte = vmx_pi_update_irte,
8367 .pi_start_assignment = vmx_pi_start_assignment,
8368
8369 #ifdef CONFIG_X86_64
8370 .set_hv_timer = vmx_set_hv_timer,
8371 .cancel_hv_timer = vmx_cancel_hv_timer,
8372 #endif
8373
8374 .setup_mce = vmx_setup_mce,
8375
8376 #ifdef CONFIG_KVM_SMM
8377 .smi_allowed = vmx_smi_allowed,
8378 .enter_smm = vmx_enter_smm,
8379 .leave_smm = vmx_leave_smm,
8380 .enable_smi_window = vmx_enable_smi_window,
8381 #endif
8382
8383 .can_emulate_instruction = vmx_can_emulate_instruction,
8384 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8385 .migrate_timers = vmx_migrate_timers,
8386
8387 .msr_filter_changed = vmx_msr_filter_changed,
8388 .complete_emulated_msr = kvm_complete_insn_gp,
8389
8390 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8391 };
8392
vmx_handle_intel_pt_intr(void)8393 static unsigned int vmx_handle_intel_pt_intr(void)
8394 {
8395 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8396
8397 /* '0' on failure so that the !PT case can use a RET0 static call. */
8398 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8399 return 0;
8400
8401 kvm_make_request(KVM_REQ_PMI, vcpu);
8402 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8403 (unsigned long *)&vcpu->arch.pmu.global_status);
8404 return 1;
8405 }
8406
vmx_setup_user_return_msrs(void)8407 static __init void vmx_setup_user_return_msrs(void)
8408 {
8409
8410 /*
8411 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8412 * will emulate SYSCALL in legacy mode if the vendor string in guest
8413 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8414 * support this emulation, MSR_STAR is included in the list for i386,
8415 * but is never loaded into hardware. MSR_CSTAR is also never loaded
8416 * into hardware and is here purely for emulation purposes.
8417 */
8418 const u32 vmx_uret_msrs_list[] = {
8419 #ifdef CONFIG_X86_64
8420 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8421 #endif
8422 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8423 MSR_IA32_TSX_CTRL,
8424 };
8425 int i;
8426
8427 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8428
8429 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8430 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8431 }
8432
vmx_setup_me_spte_mask(void)8433 static void __init vmx_setup_me_spte_mask(void)
8434 {
8435 u64 me_mask = 0;
8436
8437 /*
8438 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use
8439 * the former to avoid exposing shadow_phys_bits.
8440 *
8441 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8442 * shadow_phys_bits. On MKTME and/or TDX capable systems,
8443 * boot_cpu_data.x86_phys_bits holds the actual physical address
8444 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8445 * reported by CPUID. Those bits between are KeyID bits.
8446 */
8447 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8448 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8449 kvm_get_shadow_phys_bits() - 1);
8450 /*
8451 * Unlike SME, host kernel doesn't support setting up any
8452 * MKTME KeyID on Intel platforms. No memory encryption
8453 * bits should be included into the SPTE.
8454 */
8455 kvm_mmu_set_me_spte_mask(0, me_mask);
8456 }
8457
8458 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8459
hardware_setup(void)8460 static __init int hardware_setup(void)
8461 {
8462 unsigned long host_bndcfgs;
8463 struct desc_ptr dt;
8464 int r;
8465
8466 store_idt(&dt);
8467 host_idt_base = dt.address;
8468
8469 vmx_setup_user_return_msrs();
8470
8471 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8472 return -EIO;
8473
8474 if (cpu_has_perf_global_ctrl_bug())
8475 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8476 "does not work properly. Using workaround\n");
8477
8478 if (boot_cpu_has(X86_FEATURE_NX))
8479 kvm_enable_efer_bits(EFER_NX);
8480
8481 if (boot_cpu_has(X86_FEATURE_MPX)) {
8482 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8483 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8484 }
8485
8486 if (!cpu_has_vmx_mpx())
8487 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8488 XFEATURE_MASK_BNDCSR);
8489
8490 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8491 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8492 enable_vpid = 0;
8493
8494 if (!cpu_has_vmx_ept() ||
8495 !cpu_has_vmx_ept_4levels() ||
8496 !cpu_has_vmx_ept_mt_wb() ||
8497 !cpu_has_vmx_invept_global())
8498 enable_ept = 0;
8499
8500 /* NX support is required for shadow paging. */
8501 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8502 pr_err_ratelimited("NX (Execute Disable) not supported\n");
8503 return -EOPNOTSUPP;
8504 }
8505
8506 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8507 enable_ept_ad_bits = 0;
8508
8509 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8510 enable_unrestricted_guest = 0;
8511
8512 if (!cpu_has_vmx_flexpriority())
8513 flexpriority_enabled = 0;
8514
8515 if (!cpu_has_virtual_nmis())
8516 enable_vnmi = 0;
8517
8518 #ifdef CONFIG_X86_SGX_KVM
8519 if (!cpu_has_vmx_encls_vmexit())
8520 enable_sgx = false;
8521 #endif
8522
8523 /*
8524 * set_apic_access_page_addr() is used to reload apic access
8525 * page upon invalidation. No need to do anything if not
8526 * using the APIC_ACCESS_ADDR VMCS field.
8527 */
8528 if (!flexpriority_enabled)
8529 vmx_x86_ops.set_apic_access_page_addr = NULL;
8530
8531 if (!cpu_has_vmx_tpr_shadow())
8532 vmx_x86_ops.update_cr8_intercept = NULL;
8533
8534 #if IS_ENABLED(CONFIG_HYPERV)
8535 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8536 && enable_ept) {
8537 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8538 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8539 }
8540 #endif
8541
8542 if (!cpu_has_vmx_ple()) {
8543 ple_gap = 0;
8544 ple_window = 0;
8545 ple_window_grow = 0;
8546 ple_window_max = 0;
8547 ple_window_shrink = 0;
8548 }
8549
8550 if (!cpu_has_vmx_apicv())
8551 enable_apicv = 0;
8552 if (!enable_apicv)
8553 vmx_x86_ops.sync_pir_to_irr = NULL;
8554
8555 if (!enable_apicv || !cpu_has_vmx_ipiv())
8556 enable_ipiv = false;
8557
8558 if (cpu_has_vmx_tsc_scaling())
8559 kvm_caps.has_tsc_control = true;
8560
8561 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8562 kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8563 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8564 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8565
8566 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8567
8568 if (enable_ept)
8569 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8570 cpu_has_vmx_ept_execute_only());
8571
8572 /*
8573 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8574 * bits to shadow_zero_check.
8575 */
8576 vmx_setup_me_spte_mask();
8577
8578 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8579 ept_caps_to_lpage_level(vmx_capability.ept));
8580
8581 /*
8582 * Only enable PML when hardware supports PML feature, and both EPT
8583 * and EPT A/D bit features are enabled -- PML depends on them to work.
8584 */
8585 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8586 enable_pml = 0;
8587
8588 if (!enable_pml)
8589 vmx_x86_ops.cpu_dirty_log_size = 0;
8590
8591 if (!cpu_has_vmx_preemption_timer())
8592 enable_preemption_timer = false;
8593
8594 if (enable_preemption_timer) {
8595 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8596
8597 cpu_preemption_timer_multi =
8598 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8599
8600 if (tsc_khz)
8601 use_timer_freq = (u64)tsc_khz * 1000;
8602 use_timer_freq >>= cpu_preemption_timer_multi;
8603
8604 /*
8605 * KVM "disables" the preemption timer by setting it to its max
8606 * value. Don't use the timer if it might cause spurious exits
8607 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8608 */
8609 if (use_timer_freq > 0xffffffffu / 10)
8610 enable_preemption_timer = false;
8611 }
8612
8613 if (!enable_preemption_timer) {
8614 vmx_x86_ops.set_hv_timer = NULL;
8615 vmx_x86_ops.cancel_hv_timer = NULL;
8616 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8617 }
8618
8619 kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8620 kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8621
8622 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8623 return -EINVAL;
8624 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8625 pt_mode = PT_MODE_SYSTEM;
8626 if (pt_mode == PT_MODE_HOST_GUEST)
8627 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8628 else
8629 vmx_init_ops.handle_intel_pt_intr = NULL;
8630
8631 setup_default_sgx_lepubkeyhash();
8632
8633 if (nested) {
8634 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8635
8636 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8637 if (r)
8638 return r;
8639 }
8640
8641 vmx_set_cpu_caps();
8642
8643 r = alloc_kvm_area();
8644 if (r && nested)
8645 nested_vmx_hardware_unsetup();
8646
8647 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8648
8649 return r;
8650 }
8651
8652 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8653 .hardware_setup = hardware_setup,
8654 .handle_intel_pt_intr = NULL,
8655
8656 .runtime_ops = &vmx_x86_ops,
8657 .pmu_ops = &intel_pmu_ops,
8658 };
8659
vmx_cleanup_l1d_flush(void)8660 static void vmx_cleanup_l1d_flush(void)
8661 {
8662 if (vmx_l1d_flush_pages) {
8663 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8664 vmx_l1d_flush_pages = NULL;
8665 }
8666 /* Restore state so sysfs ignores VMX */
8667 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8668 }
8669
__vmx_exit(void)8670 static void __vmx_exit(void)
8671 {
8672 allow_smaller_maxphyaddr = false;
8673
8674 cpu_emergency_unregister_virt_callback(vmx_emergency_disable);
8675
8676 vmx_cleanup_l1d_flush();
8677 }
8678
vmx_exit(void)8679 static void vmx_exit(void)
8680 {
8681 kvm_exit();
8682 kvm_x86_vendor_exit();
8683
8684 __vmx_exit();
8685 }
8686 module_exit(vmx_exit);
8687
vmx_init(void)8688 static int __init vmx_init(void)
8689 {
8690 int r, cpu;
8691
8692 if (!kvm_is_vmx_supported())
8693 return -EOPNOTSUPP;
8694
8695 /*
8696 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8697 * to unwind if a later step fails.
8698 */
8699 hv_init_evmcs();
8700
8701 r = kvm_x86_vendor_init(&vmx_init_ops);
8702 if (r)
8703 return r;
8704
8705 /*
8706 * Must be called after common x86 init so enable_ept is properly set
8707 * up. Hand the parameter mitigation value in which was stored in
8708 * the pre module init parser. If no parameter was given, it will
8709 * contain 'auto' which will be turned into the default 'cond'
8710 * mitigation mode.
8711 */
8712 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8713 if (r)
8714 goto err_l1d_flush;
8715
8716 for_each_possible_cpu(cpu) {
8717 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8718
8719 pi_init_cpu(cpu);
8720 }
8721
8722 cpu_emergency_register_virt_callback(vmx_emergency_disable);
8723
8724 vmx_check_vmcs12_offsets();
8725
8726 /*
8727 * Shadow paging doesn't have a (further) performance penalty
8728 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8729 * by default
8730 */
8731 if (!enable_ept)
8732 allow_smaller_maxphyaddr = true;
8733
8734 /*
8735 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8736 * exposed to userspace!
8737 */
8738 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8739 THIS_MODULE);
8740 if (r)
8741 goto err_kvm_init;
8742
8743 return 0;
8744
8745 err_kvm_init:
8746 __vmx_exit();
8747 err_l1d_flush:
8748 kvm_x86_vendor_exit();
8749 return r;
8750 }
8751 module_init(vmx_init);
8752